
Natural for Ajax

Application Modernization

Version 9.3.2

February 2025

This document applies to Natural for Ajax Version 9.3.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2009-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: ONE-NATNJX-APP-MODERNIZATION-932-20250213

Table of Contents

Application Modernization ... v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Overview of Conversion Steps .. 5
3 Map Conversion .. 7

General Information ... 8
Using the Map Converter ... 9
Location of the Files ... 14
After the Conversion .. 14
Using the Conversion Rules Tool ... 16
Sample Conversion Rules Files .. 17
Using the Conversion Logs Tool .. 18

4 Customizing the Map Conversion Process ... 21
Map Converter Processing ... 22
Conversion Rules ... 26
Templates ... 36
Tag Converters ... 39

5 Code Conversion ... 41
General Information ... 42
Generating Adapters .. 42
Structure of a Map-Based Application ... 42
Structure of a Natural for Ajax Application .. 43
Tasks of the Code Conversion .. 44
DEFINE DATA Statement .. 44
INPUT Statement ... 45
REINPUT Statement ... 46
PF-Key Event Handling ... 48
SET KEY Statement .. 49
Array Data .. 52
Processing Rules ... 53
System Variables .. 53
Variable Names Containing Special Characters .. 55

iii

iv

Application Modernization

This section describes how to convert a character-based Natural application to a Natural for Ajax
application.

The information in this part is organized under the following headings:

Overview of Conversion Steps

Map Conversion

Customizing the Map Conversion Process

Code Conversion

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Application Modernization2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareGmbHproducts provide functionalitywith respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

3Application Modernization

About this Documentation

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Overview of Conversion Steps

The conversion of a character-based Natural application to a Natural for Ajax application consists
of several steps as illustrated in the following graphic:

■ Step 1: Map Extraction
Extracts from each Natural map the information that is required to create a corresponding
Natural for Ajax page. For each map, a map extract file is created. This step is automatically
performed by the Map Converter, see below.

■ Step 2: INPUT Statement Extraction
This step is required for Natural applications that do not use maps, but use INPUT statements
for the dynamic specification of the screen layouts.

Extracts from each INPUT statement in the source code the information that is required to create
a corresponding Natural for Ajax page. For each INPUT statement, a map extract file is created.

5

This file has the same format as a map extract file created by the map extraction process, and it
is also intended as input for the map conversion.

Required tool: Natural Engineer which is provided with NaturalONE.
■ Step 3: Map Conversion
Processes the map extract files and creates the corresponding Natural for Ajax pages.

Required tool: Map Converter.

SeeMap Conversion and Customizing the Map Conversion Process for further information.
■ Step 4: Code Conversion
This step requires that the Natural for Ajax pages have already been created.

Modifies the application code in such as way that it can use the newly created Natural for Ajax
pages. The application can still run in a terminal, in the Natural Web I/O Interface client or in
batch as before. But it can now also run in a Natural for Ajax session with the new Natural for
Ajax pages.

Required tool: Natural Engineer which is provided with NaturalONE.

Code conversion can also be performedmanually. SeeCode Conversion for further information.

The resultingNatural forAjax applicationmimics the character-based application. The user interface
is not restructured in the sense that several maps are combined into a single page or that complex
maps are split into several separate pages. This kind of restructuring is not part of the conversion,
but of the normal development of a Natural for Ajax application.

Application Modernization6

Overview of Conversion Steps

3 Map Conversion

■ General Information ... 8
■ Using the Map Converter .. 9
■ Location of the Files ... 14
■ After the Conversion .. 14
■ Using the Conversion Rules Tool .. 16
■ Sample Conversion Rules Files .. 17
■ Using the Conversion Logs Tool ... 18

7

General Information

The Map Converter analyses the code of a Natural map and creates a so-called “map extract file”
for eachmap. Themap extract file contains information about the map. Normally, the map extract
file is automatically deleted when the conversion process is completed. However, you also have
the option to keep this file. Themap extract files have the extension .njx and are not human-readable.
They are only intended as input for the map conversion.

The conversion process can also be started on an existing map extract file which has been created
for the INPUT statements in your source code.

The conversion process creates aNatural for Ajax page layout from eachmap extract file. Controls
on themap are converted to controls on the page.Many features of the original map are converted
to features of the page.

Note: It is only possible to process character maps. GUI elements contained in maps are not
extracted.

By default, the Map Converter uses a predefined set of page templates and conversion rules that
control the conversion process. The templates and the conversion rules can bemodified or extended
to adapt the converter to the requirements of a specific conversion project. With the advanced
option to program own conversion handlers, the Map Converter provides additional flexibility
and extensibility.

The following tools are available for the conversion of maps:

■ Map Converter
This tool is used formass generation of layouts and also for generating single layouts. SeeUsing
the Map Converter for further information.

■ Conversion Rules
You can use this tool to copy the conversion rules from other user interface components to the
current user interface component. SeeUsing the Conversion Rules Tool for further information.

■ Conversion Logs
You can use this tool to view or delete the log files that have been created during the conversion.
See Using the Conversion Logs Tool for further information.

Application Modernization8

Map Conversion

Using the Map Converter

The Map Converter is used for mass generation of layouts and also for generating single layouts.

To convert maps

1 In the Project Explorer view or in theNatural Navigator view, select the Natural project
which contains the maps that are to be converted.

Or:

If you want to convert just a couple of maps or already existing map extract files, select them
in the Project Explorer view or in theNatural Navigator view.

2 From the Filemenu, chooseNew > Other. In the resultingNew dialog box, expand theNat-
ural node, selectMap Conversion and then choose theNext button.

Or:

If you have selected single maps or map extract files, invoke the context menu and choose
Convert Map.

The following dialog box appears.

9Application Modernization

Map Conversion

The left side of the dialog box shows the libraries in the selected project.

The right side of the dialog box shows the maps in the library which is currently selected on
the left. If available, map extract files are also shown.

3 Select all maps and map extract files for which you want to generate a layout.

4 From theDestination drop-down list box, select the user interface component in the current
project into which the layouts are to be generated.

Application Modernization10

Map Conversion

5 If the map extract files which are generated for the selected maps are to be deleted after the
generation, leave theKeepmap extracts check box blank. If youwant to keep themap extract
files, select this check box.

6 If you want to use the default conversion rules and related templates, leave the Use project-
specific rules check box empty. In this case, theRulesdrop-down list box provides for selection
the default conversion rules.

If you want to use your own project-specific conversion rules, select this check box. In this
case, theRules drop-down list box provides for selection the project-specific conversion rules
that can be found in the convrules subfolder of your user interface component. See alsoUsing
the Conversion Rules Tool.

7 From the Rules drop-down list box, select the conversion rules that you want to use.

8 Choose theNext button to display the optional preview pages of the wizard (see below).

Or:

Choose the Finish button to perform all selected actions and to close the wizard.

The preview pages for the following actions are provided in thewizardwhen you choose theNext
button repeatedly:

■ Previewing the Generation Results
■ Previewing the Page Layout

Previewing the Generation Results

The second page of the wizard lists all maps and map extract files that you have selected on the
first page. When you select one of these entries, information such as the following is shown at the
bottom of the page.

11Application Modernization

Map Conversion

The left side of the page shows the XML code of the map extract file (either of the map extract file
that will be generated for a selected map, or of an existing map extract file).

The right side shows the XML code that will be generated for the page layout.

Application Modernization12

Map Conversion

Previewing the Page Layout

The third (and last) page of the wizard lists all maps and map extract files that you have selected
on the first page. When you select one of these entries, the preview area at the bottom of this page
shows the layout that will be generated for this entry. This is the page layout as it will appear in
the browser.

13Application Modernization

Map Conversion

Location of the Files

The following table explains where the different types of files can be found.

... are stored in this folderThese files ...

SRC subfolder of the library.Adapters, maps

convrules subfolder of the user interface component.Conversion rules

RES subfolder of the librarywhich also contains the correspondingmap (only if theKeep
map extracts option was specified).

Map extract files

xml subfolder of the user interface component.Page layouts

After the Conversion

The conversion process creates a page layout in the user interface component that you specified
as the destination in theMap Converter. When you save the page layout, a Natural adapter is
generated into the folder that you specified when creating a user interface component.

You will notice that the parameter data area is the same as in the original map. This is the case
even though the map uses system variables and variables with special characters. The necessary
translation is done inside the generated adapter code and does not influence the application code.
In more complex cases, the parameter data area of the adapter will contain more fields or partly
different fields than the parameter data area of the map. This depends also on the applied conver-
sion rules.

After the conversion, you create a main program for the adapter and run it in the browser.

Application Modernization14

Map Conversion

You may notice the following effects of the applied conversion rules:

■ The title in the first row of themap has been placed into the caption of the page and the asterisks
have been stripped off. Your application will quite surely have a different layout of the map
titles. The conversion rules can therefore be adapted to accommodate the needs of your applic-
ation, and the rule that identifies the title and places it into the caption is just a simple application
of customizing the conversion rules.

■ The literals such as "F4 Delete" on the map have each been turned into a button control and a
label. This is also due to a sample conversion rule contained in the default conversion rules.

■ The date field has been converted to a field control with the data type "date". This enables the
user to select the date with the Date Input dialog box.

15Application Modernization

Map Conversion

Using the Conversion Rules Tool

Using this tool you can copy the default conversion rules and templates to a selected user interface
component for modification.

To invoke the Conversion Rules tool

1 In the Project Explorer view, select the Natural project for which you want to invoke the
Conversion Rules tool.

2 Invoke the context menu and from the Ajax Developermenu, choose Conversion Rules.

To copy the conversion rules

1 From the Project drop-down list box, select the user interface component intowhich youwant
to copy the conversion rules.

2 In the Conversion Rules box, select the rules file(s) that you want to copy and choose the >
button.

Or:

If you want to copy all files, choose the >> button.

Application Modernization16

Map Conversion

The selected files are shown on the right side of the Conversion Rules box.

To deselect one or more files, you can use the < or << button.

For each selected rules file, the templates that are used in the rules file are automatically se-
lected in the Templates box, so that always a consistent set of rules and templates is selected
for copying.

3 Optional. If youwant to overwrite any existing rules and templates files with the same names
in the selected project, activate theOverwrite existing files check box.

4 Choose the Copy Selected Rules button to copy the rules and templates files to the selected
project.

Sample Conversion Rules Files

For the most common conversions the following sample conversion rules files exists:

DescriptionFile

Basic conversion rules for FIELD, TEXTGRIDSSS2 and
ROWTABLEAREA2 controls.

convrulesDefault.xml

Example rules for NJX:FIELDLIST and NJX:FIELDVALUE controls.convrulesFieldlist.xml

Example rules for NJX:FIELDLIST and NJX:FIELDITEM controls.convrulesFieldlist2.xml

Example rules for ROWTABLEAREA3.convrulesMultidimensionalArrays.xml

Example rules for arranging all identified functions as buttons in a
row at the bottom of the page layout.

convrulesSButtonrow.xml

Arrays are also mapped to simple FIELD controls. No grid controls
are generated.

convrulesSNoGrids.xml

Example rules for using a conversion listener to generate TEXTIDs (=
multilanguage support).

convrulesTextids.xml

Example rules to generate the corresponding attributes and data
controls for CV variables in the page layout.

convrulesCVVariables.xml

See also the comments on top of each conversion rules file for further details.

17Application Modernization

Map Conversion

Using the Conversion Logs Tool

Using this tool you can view the log files that have been created during the conversion of Natural
maps to Natural for Ajax layouts. You can also delete these log files.

To invoke the Conversion Logs tool

1 In the Project Explorer view, select the Natural project for which you want to invoke the
Conversion Logs tool.

2 Invoke the context menu and from the Ajax Developermenu, choose Conversion Logs.

To view a log file

1 From the Project drop-down list box, select the user interface component for which youwant
to view a log file.

The log files contained in this user interface component are shown in the drop-down list box
to the right.

2 Select the log file that you want to view.

3 Choose the Load Log File button.

Application Modernization18

Map Conversion

Log lines for the selected log file are now shown at the bottom of the tool. Each log file contains
the conversion results of one or several maps. The log lines that are shown belong to an indi-
vidual map; this is the map that is selected in the Logged map conversions drop-down list
box.

4 Optional. Select a different map from the Logged map conversions drop-down list box.

The conversion result of the newly selected map is immediately shown at the bottom of the
tool.

5 Optional. Choose theView Text button to display the content of the selected log file as a CSV
file in a dialog. This shows the conversion results for all maps.

To delete log files

1 Select the project for which you want to delete the log files.

2 Choose the Delete Log Files button.

A dialog appears asking to confirm the deletion.

3 Choose the Yes button to delete all log files in the selected project.

19Application Modernization

Map Conversion

20

4 Customizing the Map Conversion Process

■ Map Converter Processing .. 22
■ Conversion Rules .. 26
■ Templates .. 36
■ Tag Converters ... 39

21

Map Converter Processing

The map conversion process reads a map extract file and transforms it into a corresponding Nat-
ural for Ajax page layout file. The conversion process is controlled by rules and templates.

The Map Converter ships with a default set of conversion rules and corresponding template files.
This set allows for default map conversions without changing rules or templates. In most cases,
you will add or modify some conversion rules and/or templates to customize the conversion ac-
cording to the requirements of your application.

For advanced customization, there is also the possibility to plug own Java-written conversion
classes (the so-called “tag converters”) into the conversion processing. But you should only do
this in very rare cases.

The following topics are covered below:

■ Processing of Rows and Columns
■ Processing of Sequence and Grid Areas

Application Modernization22

Customizing the Map Conversion Process

■ Summary: Processing Steps of the Map Converter

Processing of Rows and Columns

By default, for each row and column in a map, a corresponding row and column is generated in
the layout. By default, the Map Converter inserts the converted rows and columns at a defined
position within a corresponding page template. Template and insert position can be defined by
the user. Skipping or different handling of specific rows and columns can be defined via corres-
ponding conversion rules.

The following sections describe the default processing for rows and columns in case no specific
rules for different insert positions are specified:

■ Rows
■ Columns

Rows

For each row in a map, the Map Converter generates an ITR (independent table row) control with
the default settings. For empty rows, an ITR control containing the control defined in the
EMPTYROW_TEMPLATE is generated.

Columns

The fields and literals within a row are aligned to columns according to the following rules:

■ Column Start Position
If an absolute column start position is defined for a field or literal in themap, the corresponding
control in the page layout is aligned so that it starts exactly with the specified column. This is
done by inserting a HDIST (horizontal distance) control with a corresponding width as a filler.

Note: A precise vertical alignment of fields is only possible if absolute column start posi-
tions are defined for the fields.

■ Conversion Rules
If no absolute column start position is defined for a field or literal in the map, a HDIST control
is not added as a filler by default. In this case, the field or literal is simply appended as the last
subnode of the current ITR control. In many cases, this would result in a layout that requires
additionalmanual adding of fillers. This is because appending two field controlswithout adding
anyHDIST control often does not look as intended. Therefore, theMapConverter includes default
conversion rules for filler settings. You can modify the default conversion rules or add your
own conversion rules to fine-tune this behavior. For more information, see Conversion Rules.

23Application Modernization

Customizing the Map Conversion Process

■ ColumnWidth
A character map has a fixed number of rows and columns. For the literal "ABCD", this means
that it uses exactly 4 columns. Calculating the correct width and height of field on a web page
is more complex. The width of "ABCD" will most likely be greater than the width of "llll". Very
short fields (with a length of one or two characters) should have a minimum width so that the
content is fully visible. You can fine-tune the width by adapting the predefined conversion rule
variable $$widthfactor$$ or by adding your own conversion rules. For more information, see
Conversion Rules.

Processing of Sequence and Grid Areas

The map extract file also contains information about arrays. With Application Designer, arrays
are usually rendered as grid controls. Application Designer provides a couple of grid controls.
These are:

■ TEXTGRID2 - a grid containing text.
■ TEXTGRIDSSS2 - a text grid with server-side scrolling.
■ ROWTABLEAREA2 - a grid containing other controls.
■ MGDGRID - a managed grid.

You can find more details on these grid controls ...

■ ... in the context of Natural: Natural Page Layout >Working with Grids
■ ... in the context of Java: Java Page Layout >Working with Grids

The Map Converter tries to convert arrays into suitable grid controls. Before the real conversion
of arrays to grid controls can be done, the Map Converter must first identify the sequence and
grid areas on themap. During this process of area identification, theMapConverter groups literals
and fields together into sequences and areas. Whether the corresponding fields or literals are ac-
tually converted into a grid depends on the conversion rules that are executed after this area
identification step.

This process of area identification is simply a kind of marking. The corresponding sequence and
area objects can be used as source in the conversion rules to define the actual controls.

Application Modernization24

Customizing the Map Conversion Process

Summary: Processing Steps of the Map Converter

The conversion is done in several steps:

1. The map extract file is loaded and the corresponding rows and columns are collected.

2. The sequence and grid areas are identified.

3. For each row, the list of items in this row is processed, according to the column order. An item
can be one of the following: a simple literal, a field or an area. For each found item, the corres-
ponding conversion rules are executed.

25Application Modernization

Customizing the Map Conversion Process

Conversion Rules

Different conversion projects have different requirements to the conversion process. The Map
Converter is driven by conversion rules and thus allows for flexible control of the conversion
process. Conversion rules define how source items (items froma givenmap extract file) aremapped
to target items (items in the page layout to be created) and underwhich conditions a certain source
item shall be converted to a certain target item. The Map Converter is delivered with a default set
of conversion rules contained in the file convrulesDefault.xml in the subdirectory convrules in the
Application Designer project njxmapconverter. A more application-specific conversion can be
achieved by copying and modifying the default set of rules or by adding own rules.

Each set of conversion rules is defined in an XML file according to the XML schema convrules.xsd
in the subdirectory convrules in the Application Designer project njxmapconverter. Each individual
conversion rule consists of a name, a description, a source and a target. The source identifies an
element in the map extract file. The target identifies controls and attributes to be generated in the
page layout.

The conversion rules make often use of regular expressions and so-called capture groups. For
more information about regular expressions, see for instance the web site http://www.regular-ex-
pressions.info.

The following topics are covered below:

■ Conversion Rules Examples
■ Default Conversion Rules File
■ Conversion Rules that Often Need to be Adapted
■ Writing Your Own Conversion Rules

Conversion Rules Examples

The following examples are provided:

■ Example 1
■ Example 2

Application Modernization26

Customizing the Map Conversion Process

http://www.regular-expressions.info/
http://www.regular-expressions.info/

■ Example 3

Example 1

The following example rule (contained in the default conversion rules file) defines that fields in
themap extract filewith the qualification AD=O shall be converted to field controlswith the property
displayonly="true".

<convrule rulename="Ofield_rule">
<description>Defines the control template to be used for input fields
which are specified as output only.</description>
<source>

<sourceitem>ifField</sourceitem>
<sourcecond>
<condattr>//ifAD</condattr>
<condvalue>.*O.*</condvalue>

</sourcecond>
</source>
<target>

<targetitem>$OFIELD_TEMPLATE</targetitem>
</target>

</convrule>

The source element specifies that this rule applies to fields (element ifField) that have an AD
parameter (element ifAD) that contains a letter "O" (matching the regular expression .*O.*). The
target element specifies that these fields are to be converted towhatever is contained in the template
file OFIELD_TEMPLATE.xml. This template file must be contained in the same directory as the
conversion rules file.

The template file contains the detailed specification of the field to be generated. The file
OFIELD_TEMPLATE.xml delivered with the map converter contains, for instance, the following:

<?xml version="1.0" encoding="UTF-8"?>
<field valueprop="$$" width="$$" noborder="true" displayonly="true"/>

That is, the resulting field is generated without a border (noborder="true") and as a display-only
field (displayonly="true"). The valueprop and width to be assigned ($$) are not determined by
this rule, but are left under the control of other rules.

27Application Modernization

Customizing the Map Conversion Process

Example 2

The following example rule (contained in the default conversion rules file) defines that for all
fields that are defined with the format An in the map extract file, an attribute datatype="string
n" shall be added to the element that is generated into the page layout.

<convrule rulename="AfixType_rule">
<description>All Natural "An" dfFields are converted to the
Application Designer datatype "string n". Example: "A10" is
converted to "string n".</description>
<source>

<sourceitem>dfField</sourceitem>
<selection>

<selectattr>dfFormat</selectattr>
<selectval>A([0-9]+)</selectval>

</selection>
</source>
<target>
<targetitem>$$</targetitem>
<targetattr>

<attrname>datatype</attrname>
<attrvalue>string $1</attrvalue>

</targetattr>
</target>

</convrule>

The source element specifies that this rule applies to fields that have in the field definition (element
dfField) a format (element dfFormat) of An (matching the regular expression A([0-9]+)). The
target element specifies that for whatever element is generated into the page layout for this kind
of fields, an attribute datatype="string $1" shall be added. In terms of regular expressions, $1
refers to the contents of the first “capture group” of the regular expression A([0-9]+). In case of
a formatA20, $1will evaluate to 20 and thus an attribute datatype="string 20"will be generated.

The control to be generated into the page layout (<targetitem>$$</targetitem>) is not determined
by this rule, but is left under the control of other rules.

Summary: The combination of the two rules in example 1 and 2 makes sure that output fields, for
example, of format A20 are converted to field controls with displayonly="true" and
datatype="string 20".

Application Modernization28

Customizing the Map Conversion Process

Example 3

The following more advanced rule was created for the use of a specific conversion project. The
following task had to be achieved: A literal of the format "F10 Change" shall be converted to a
button that is named "F10", is labeled "Change" and raises an event named "PF10".With the explan-
ations from the examples above, the rule should be nearly self-explanatory.

Note that according to the rules of regular expressions, the variable $1 refers to the stringmatched
by the expression part in the first pair of parentheses (the first “capture group”), that is for instance
"F10", and the variable $3 refers to the string matched by the expression part in the third pair of
parentheses (the third “capture group”), that is for instance "Change".

<convrule rulename="Function_rule" lone="true">
<description>Generates a button from specific literals.</description>

<source>
<sourceitem>ltLiteral</sourceitem>
<selection>
<selectattr>ltName</selectattr>
<selectval>(F[0-9]+)(\p{Space})(.*)</selectval>

</selection>
</source>
<target>

<targetitem>$BUTTON_TEMPLATE</targetitem>
<targetattr>
<attrname>name</attrname>
<attrvalue>$1</attrvalue>

</targetattr>
<targetattr>
<attrname>method</attrname>
<attrvalue>P$1</attrvalue>

</targetattr>
</target>
<target>

<targetitem>hdist</targetitem>
<targetattr>
<attrname>width</attrname>
<attrvalue>4</attrvalue>

</targetattr>
</target>
<target>

<targetitem>label</targetitem>
<targetattr>
<attrname>name</attrname>
<attrvalue>$3</attrvalue>

</targetattr>
</target>

</convrule>

29Application Modernization

Customizing the Map Conversion Process

Default Conversion Rules File

The Map Converter is delivered with a default set of conversion rules contained in the file con-
vrulesDefault.xml in the subdirectory convrules in theApplicationDesigner project njxmapconverter.
A more application-specific conversion can be achieved by copying andmodifying the default set
of rules or by adding own rules.

The following topics are covered below:

■ Root Rule
■ Data Type Conversion Rules
■ Other Default Conversion Rules

Root Rule

Like every conversion rules file, the file contains exactly one "Root_rule". The root rule specifies
the template file to be used for the overall page layout. In this template file, the application-specific
page layout can be defined, using company logos, colors, fonts, etc. The root rule must always
have "map" as the source item and must refer to some variable defined in the page template file
as the target item. The place of that variable specifies where in the page template the converted
map items are placed. See for instance the root rule from the default conversion rules:

<convrule rulename="Root_rule">
<description>Exactly one rule with the sourceitem "map" is required.
This rule must define the natpage template and insert position of
the conversion result.</description>
<source>

<sourceitem>map</sourceitem>
</source>
<target>

<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
</target>

</convrule>

The rule refers to a page layout template NATPAGE_TEMPLATE.xml and refers to a variable
defined in that template where the converted map elements shall be placed. Here is the corres-
ponding content of the page layout template NATPAGE_TEMPLATE.xml:

<?xml version="1.0" encoding="UTF-8"?>
<natpage xmlns:njx=http://www.softwareag.com/njx/njxMapConverter

natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>
<pagebody>

<njx:njxvariable name="MAPROOT"/>
</pagebody>
<statusbar withdistance="false"/>

</natpage>

Application Modernization30

Customizing the Map Conversion Process

This template specifies the following:

■ The overall page layout shall consist of the elements titlebar, pagebody and statusbar.
■ The converted map elements shall be placed into the pagebody.
■ The name of the Natural adapter to be generated from that page layout shall be determined by
a rule (natsource="$$NATSOURCE$$"). There must be a corresponding rule that yields a value
for the variable $$NATSOURCE$$, for instance derived from themap name.We shall see later how
to define such a rule.

■ All strings in the page layout shall be mapped to Natural variables of type A in the adapter in-
terface (natsinglebyte="true").

■ The text displayed in the title bar shall be determined by a rule (name="$$TITLEVAR$$"). There
must be a corresponding rule that yields a value for the variable $$TITLEVAR$$, for instance
derived from a literal in the first row in the map. We shall see later how to define such a rule.

Data Type Conversion Rules

The default conversion rules file contains a set of rules that control the conversion of data types:
fromNatural data types in the map to corresponding Application Designer data types in the page
layout. An example was given above in Example 2. Usually, these rules need not be adapted. They
have been chosen in such a way that the process of extracting maps, converting them to layouts
and generatingNatural adapters for these usually yields the samedata types in the adapter interface
as in the map interface.

Other Default Conversion Rules

Other default conversion rules define a default mapping for literals, modifiable fields, output
fields, modifiable grids, output grids, system variables and fields with special characters like "#"
in their names. These rules need only be adapted in special cases.

Conversion Rules that Often Need to be Adapted

Some conversion rules need to be adapted in nearly all conversion projects. These rules are con-
tained in the section "APPLICATION SPECIFIC RULES" in the default conversion rules file.

The following topics are covered below:

■ Naming of Adapters

31Application Modernization

Customizing the Map Conversion Process

■ Setting the Title of a Map

Naming of Adapters

Each application has a different naming convention for Natural objects. There is a rule (it is named
"Natsource_rule" in the default conversion rules file) that controls how adapter names are derived
from map names. The rule replaces the first letter "M" in the map name with an "A" and places
the resulting string into the variable NATSOURCE. Remember that in the default page template, the
natsource property of NATPAGE (which defines the adapter name to generated) is preset with
the variable reference $$NATSOURCE$$. Thus, a map with the name TESTM1 results in an adapter
named TESTA1. Other naming conventions for maps will require a more sophisticated adapter
naming rule.

Setting the Title of a Map

Each application has a different way of showing titles in a map. Often, the title string shall be
placed into the title bar of the resulting page layout during conversion. There is a rule (in the default
conversion rules file, it is named "Titlevar_rule") that controls how the title string in a map is re-
cognized. The rule searches in the first row of a map for a literal enclosed in "***" and places the
resulting string into the variable TITLEVAR. Remember that in the default page template, the name
property of the titlebar element (which defines the string to be shown in the title bar) is preset
with the variable reference $$TITLEBAR$$. So this rule takes care that the found literal is placed
into the titlebar element of the page. Other conventions for map titles will require a more
sophisticated rule.

Writing Your Own Conversion Rules

When writing your own conversion rules, you can use the default rules as examples. In order to
write rules from scratch, you need to know the elements of the map that can be referred to as
source items and the full syntax of the rule definition.

■ TheXML schema of themap extract files is contained in the file naturalmap.xsd in the subdirectory
convrules in the Application Designer project njxmapconverter.

■ As described in Processing of Sequence and Grid Areas, one step in the map conversion is the
detection of sequence and grid areas in the map. Conversion rules can also refer to the detected
sequence and grid areas. The XML schema of themap extract files after the detection of sequence
and grid areas is described in the extendedXML schema naturalmapxml_extended.xsd in the same
directory.

■ The syntax of the conversion rules is described by the XML schema convrules.xsd in the same
directory.

The basic structure of a conversion rule is as follows:

Application Modernization32

Customizing the Map Conversion Process

<convrule rulename="...">
<description>...</description>
<source>...</source>
<target>...</target>
<target>...</target>
...

</convrule>

This means, a conversion rule consists of one source element and (optionally) one or several
target elements. The source element identifies an item from themap. The target elements specify
the conversion output. If no target elements are specified, nothing is generated from the identified
source element.

The basic structure of a source element is as follows (example):

<source>
<sourceitem>ltLiteral</sourceitem>

<selection>
<selectattr>ltName</selectattr>
<selectval>***(.*)***</selectval>

</selection>
<sourcecond>
<condattr>ltRow</condattr>
<condvalue>1</condvalue>

</sourcecond>
</source>

The sourceitem element refers to a specific kind of item on a map, such as a literal (ltLiteral),
a defined field (dfField), an input field (ifField) or the identifier of the map (identity). The
elements that can be used here are specified by the XML schema that describes the map extract
after the detection of sequence and grid areas (naturalmapxml_extended.xsd). Therefore, the elements
sequenceArea and gridArea, which are only known after this processing, can also be used here.

The selectattr and selectval elements are used to match an element of a specific kind by its
attribute values. The selectval element uses regular expressions to perform a match. Capturing
groups such as (.*) can be used here, so that the target part of the conversion rule can later refer
to parts of the matched value.

The selectattr element not only accepts single attributes but also XPATH expressions. You can
find an example for the usage of XPATH expressions in the file convrulesSNoGrids.xml:

<source>
<sourceitem>ifField</sourceitem>
<selection>
<selectattr>ifIndex/ifOffset</selectattr>
<selectval>([1-9]*)</selectval>

</selection>
</source>

33Application Modernization

Customizing the Map Conversion Process

In the above example all ifIndex/ifOffset values, which are subnodes of the currently processed
ifField are found. For each value found it is checked whether it matches the regular expression
specified in the selectval element. Only if all values found match the regular expression, the
capturing is done on the concatenated found values. If any values found do not match the regular
expression, the rule is not applied to the ifField.

When you are using XPATH expressions, it is important to keep the two-step process in mind:

■ matching for each single value and
■ capturing on the concatenated values.

Finally, there can be zero, one or several sourcecond elements, which allow to define further to
whichmap items the rule applies. If several sourcecond elements are specified, the rule is triggered
only if all conditions match (logical AND).

The basic structure of a target element is as follows:

<target>
<targetitem>...</targetitem>
<targetattr>

<attrname>...</attrname>
<attrvalue>...</attrvalue>

</targetattr>
<targetattr>

...
</targetattr>
...

</target>

In detail, there are several different options to specify a target item:

■ Specify the root element name of an Application Designer control, along with its attributes and
attribute values. The attribute value can be a constant, a variable or a reference to a capturing
group from a regular expression in a sourcecond element of the same rule. In this case, the
corresponding control is generated during conversion.

<target>
<targetitem>label</targetitem>
<targetattr>

<attrname>height</attrname>
<attrvalue>10</attrvalue>

</targetattr>
<targetattr>

<attrname>width</attrname>
<attrvalue>$$width$$</attrvalue>

</targetattr>
<targetattr>

<attrname>name</attrname>
<attrvalue>$1</attrvalue>

Application Modernization34

Customizing the Map Conversion Process

</targetattr>
</target>

■ Specify the name of a variable that is defined in the conversion rules file in a convvariable
element.

<target>
<targetitem>$$name$$</targetitem>

</target>

■ Refer to the name of a template file, optionally along with attribute names and values. In this
case, whatever is contained in the template file will be generated. Attribute definitions in the
template file are replaced.

<target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
<targetattr>

<attrname>name</attrname>
<attrvalue>$1</attrvalue>

</targetattr>
<targetattr>

<attrname>method</attrname>
<attrvalue>P$1</attrvalue>

</targetattr>
</target>

■ Refer to the name of a template variable and the name of a template file, separated by a dot. In
this case, the template variable is replaced with whatever is contained in the template file.

<target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>

</target>

■ Only in the root rule: Specify the name of a template file and the name of a template variable
that is contained in this file, separated by a dot. In this case, the template variable is replaced
with the entire result of the map conversion.

<target>
<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>

</target>

■ Specify "$$" as the target item. This is useful when writing a more general rule that is to apply
after another more specific rule has already created a target item. The attributes specified along
with the target item "$$" are applied to the already created target item, whatever this target item
was.

35Application Modernization

Customizing the Map Conversion Process

<target>
<targetitem>$$</targetitem>
<targetattr>

<attrname>datatype</attrname>
<attrvalue>xs:double</attrvalue>

</targetattr>
</target>

■ Specify "$." as the target item. This refers to the template that is currently being processed. The
attributes specified along with the target item "$." are applied to the current template.

<target>
<targetitem>$.</targetitem>
<targetattr>

<attrname>$$NATSOURCE$$</attrname>
<attrvalue>$1-A</attrvalue>

</targetattr>
</target>

Templates

The Map Converter assembles page layouts from templates. Which templates are used, how they
are assembled and how variables in templates are filled is controlled by the conversion rules.

A template file describes the general layout of an entire Application Designer page layout or of
an individual Application Designer control. A template can contain variables and references to
other templates. During conversion, the Map Converter resolves the structure of the templates
and fills the variables with specific values, depending on the contents of the map.

A template file can describe a simple control such as a FIELD control or a more complex control
such as a TEXTGRIDSSS2 control. For the same control, multiple templatesmay exist. For example,
an ofield_TEMPLATE and an ifield_TEMPLATEmay both be templates for the FIELD control. The
ofield_TEMPLATEwould be used for output fields, the ifield_TEMPLATE for modifiable fields.
Which template is used for which subset of fields of the map is specified in the conversion rules.

Template files are well-formed XML files which contain control definitions. They are placed in
the folder convrules of your Application Designer project directory. The file name must end with
"_TEMPLATE.xml". The Map Converter ships with a set of default template files.

The following topics are covered below:

■ Variables in Templates
■ Templates in Templates

Application Modernization36

Customizing the Map Conversion Process

■ Editing Templates

Variables in Templates

As already seen in the examples above, templates can contain variables. Variables can be freely
defined by the user. Example:

<?xml version="1.0" encoding="UTF-8"?>
<natpage xmlns:njx=http://www.softwareag.com/njx/njxMapConverter

natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>
<pagebody>

<njx:njxvariable name="MAPROOT"/>
</pagebody>
<statusbar withdistance="false"/>

</natpage>

■ Variables as placeholders for the property values of controls
An example is the variable $$TITLEVAR$$ in the template above. If a template contains a variable
such as name="$$TITLEVAR$$", there must be a corresponding rule that yields a value for the
variable $$TITLEVAR$$. The Map Converter replaces the variable with this value.

The built-in variable $$ has a specific meaning. If it occurs as a property value, there is no spe-
cific rule needed to produce the value. Instead, the Map Converter receives the value from a so-
called tag converter. Tag converters are Java classes that are delivered with the Map Converter.
Exchanging or writing your own tag converters is an advanced way of extending the Map
Converter and is usually not required. See Tag Converters for further information.

■ Variables as placeholders for controls and containers
An example is the variable MAPROOT in the template above. Such a variable is defined by inserting
an NJX:NJXVARIABLE control (from the controls palette of the Layout Painter) into a template.
As long as the XMLof the template iswell-formed, anNJX:NJXVARIABLE control can be inserted
at any place in the template. Conversion rules refer to this variable as $MAPROOT. Notice that the
value in the name property of an NJX:NJXVARIABLE control does not start with $. Instead, the
NJX:NJXVARIABLE control itself defines that it is a variable. The NJX:NJXVARIABLE control
is a special control in theNatural Extensions section of the Layout Painter's controls palette.

37Application Modernization

Customizing the Map Conversion Process

Templates in Templates

Templates can refer to other templates. This can be done via adding variables. The variable can
serve as a placeholder for another template. The template name is defined via a corresponding
rule.

Example (GRID_TEMPLATE.xml):

<?xml version="1.0" encoding="UTF-8"?>
<rowtablearea2 withborder="false" griddataprop="$$gridname$$" rowcount="$$" >

<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDHEADER" />

</tr>
<repeat>

<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDITEM" />

</tr>
</repeat>

</rowtablearea2>

This means: A conversion rule like the following maps a grid area detected in the map to a
ROWTABLEAREA2 control and formats the header and rows as specified in the templates
GRIDHEADER_TEMPLATE.xml and GRIDITEM_TEMPLATE.xml.

<convrule rulename="Griditem_rule">
<description>Mapping rule for the items of grid.</description>
<source>
<sourceitem>gridArea//ifField</sourceitem>

</source>
<target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>

</target>
<target>
<targetitem>$GRIDHEADER.$GRIDHEADER_TEMPLATE</targetitem>

</target>
</convrule>

Application Modernization38

Customizing the Map Conversion Process

Editing Templates

Only NATPAGE templates (like the default NATPAGE templateNATPAGE_TEMPLATE.xml) can
be editedwith the Layout Painter. Templates for individual controlsmust currently be edited using
a text editor.

Tag Converters

A templatemust be a valid XMLdocument. The root elementmust correspond to the root element
of a valid Application Designer control. Templates can contain variables. A special variable is the
variable $$.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<button name="$$" method="$$"></button>

Each template is processed by a so-called tag converter. Tag converters are in charge of resolving
the variable $$. A tag converter is a Java class thatmust support a specific interface and be available
in the class path of the Map Converter. Which tag converter is used depends on the root element
of the template.

In the above example, the root element is the BUTTON control. The following rule applies:

■ If a Java class with the name
com.softwareag.natural.mapconverter.converters.BUTTONConverter is found in the Java
class path, this Java class is used as the tag converter.

■ Otherwise, the class com.softwareag.natural.mapconverter.converters.DEFAULTConverter
is used as the tag converter.

In the above example, the Map Converter tries to find the class BUTTONConverter first. Since a
specific tag converter for the BUTTON control is not delivered with the Map Converter, the class
DEFAULTConverter is used as the tag converter.

In order to supply a custom tag converter for the BUTTON control, for instance, you would have
to create a Java class BUTTONConverter that belongs to the package
com.softwareag.natural.mapconverter.converters andmake it available in the Java class path
of the Map Converter.

Detailed information on how to write your own tag converters is provided in the Application
Designer development workplace as Javadoc; seeMap Converter Extension API in theNatural
Tools node of the navigation frame (under Tools & Documentation).

39Application Modernization

Customizing the Map Conversion Process

40

5 Code Conversion

■ General Information ... 42
■ Generating Adapters .. 42
■ Structure of a Map-Based Application .. 42
■ Structure of a Natural for Ajax Application .. 43
■ Tasks of the Code Conversion ... 44
■ DEFINE DATA Statement .. 44
■ INPUT Statement .. 45
■ REINPUT Statement .. 46
■ PF-Key Event Handling .. 48
■ SET KEY Statement .. 49
■ Array Data ... 52
■ Processing Rules .. 53
■ System Variables .. 53
■ Variable Names Containing Special Characters ... 55

41

General Information

After theMap Converter has been used to create page layouts frommap extract files, the last step
in the conversion process is adapting the application code to the new user interface. This step can
either be performed manually or, with Natural Engineer, partly automatically. In the following,
the manual code conversion is described.

Generating Adapters

First of all, it is necessary to generate HTML code and Natural adapters from the page layouts
that have been created by the Map Converter. This is the same procedure as with page layouts
that have been created manually with the Layout Painter. Then, the adapters are imported into
the Natural development environment.

Structure of a Map-Based Application

In this context, we need not consider the application code as a whole, but only the layer that
handles the user interface. Often, the user interface handling part of a map-based application is
structured in the following way:

■ DEFINE DATA

■ Initialization
■ REPEAT

■ INPUT [USING MAP map-name]

■ Includes client-side validations (processing rules)
■ Server-side validations

■ REINPUT or ESCAPE TOP

■ DECIDE ON *PF-KEY

■ Function key handler 1
■ Processing
■ REINPUT or ESCAPE TOP

■ Function key handler 2
■ Processing
■ REINPUT or ESCAPE TOP

Application Modernization42

Code Conversion

■ Function key handler n
■ Processing
■ ESCAPE BOTTOM

■ ...
■ END-DECIDE

■ END-REPEAT

■ Cleanup
■ END

In practice,

■ the REPEAT loop might or might not be there, and
■ there might not be a clean DECIDE structure for the function key handlers. Instead, checks for
the pressed function key might be spread all over the code.

However, accepting these differences, the above structure shouldmatch a large number of applic-
ations.

Structure of a Natural for Ajax Application

The corresponding part of a Natural for Ajax application looks as follows:

■ DEFINE DATA

■ Initialization
■ REPEAT

■ PROCESS PAGE USING adapter-name

■ Includes client-side validations
■ Server-side validations

■ PROCESS PAGE UPDATE FULL

■ DECIDE ON *PAGE-EVENT

■ Event handler 1
■ Processing
■ PROCESS PAGE UPDATE FULL or ESCAPE TOP

■ Event handler 2
■ Processing
■ PROCESS PAGE UPDATE FULL or ESCAPE TOP

43Application Modernization

Code Conversion

■ Event handler n
■ Processing
■ ESCAPE BOTTOM

■ ...
■ END-DECIDE

■ END-REPEAT

■ Cleanup
■ END

Tasks of the Code Conversion

The code conversion should achieve the following:

■ It should be minimal invasive.
■ It should not duplicate business code.
■ The converted application should be able to run not only with the new user interface, but also
in a terminal session, in a Natural Web I/O Interface session and in batch, if it did so before the
code conversion.

In detail, the code conversion needs to deal with the statements and constructs mentioned below.

DEFINE DATA Statement

The DEFINE DATA statement must be extended because the data structures exchanged between a
program and map are not fully identical to those exchanged between a program and the corres-
ponding adapter.

The default conversion rules deliveredwith theMap Converter perform a data typemapping that
tries to ensure that the data elements in themap interface aremapped to data elements of the same
type and name in the adapter interface.

The Application Designer controls are usually not only bound to business data elements, but also
to additional control fields.Which control fields these are depends on theway inwhich the elements
of a map are mapped to Application Designer controls by the Map Converter rules. For instance,
a statusprop can be assigned to a field, which results in an additional parameter in the parameter
data area of the adapter. An array on amap can have been converted to a grid control with server-
side scrolling. In this case, the additional data structures needed to control server-side scrolling
need to be added to the DEFINE DATA statement.

Application Modernization44

Code Conversion

statusprop

The statusprop is needed to control the error status or focus of a FIELD (Java or Natural) control
dynamically (see example 3 for the REINPUT statement below where it is used to replace the MARK
*field-name clause). The default conversion rules contain a rule that creates a statusprop property
for each map field that is controlled by a control variable. The adapter generator creates from this
property a corresponding status variable and a comment line that identifies the status variable as
belonging to the field.

Example

The parameter data area of the map contains:

01 LIB-NAME (A8)
01 LIB-NAME-CV (C)

The parameter data area of the adapter will then contain:

* statusprop= STATUS_LIB-NAME-CV
01 LIB-NAME (A8)
01 STATUS_LIB-NAME-CV (A) DYNAMIC

The variable STATUS_LIB-NAME-CV is not yet known to the main program and must be defined
there.

INPUT Statement

The replacement for the INPUT statement is the PROCESS PAGE statement. In its simplest form, the
INPUT statement just references themap. In this case, it is just replaced by a PROCESS PAGE statement
with the corresponding adapter.

Example 1

Main program before conversion:

INPUT USING MAP 'MMENU'

Main program after conversion:

45Application Modernization

Code Conversion

IF *BROWSER-IO NE 'RICHGUI'
INPUT USING MAP 'MMENU'

ELSE
PROCESS PAGE USING 'AMENU'

END-IF

The INPUT statement can come with a message text that is displayed in the status bar. There is no
direct replacement for this construction because the PROCESS PAGE statement (in contrast to the
PROCESS PAGE UPDATE statement) does not support the SEND EVENT clause.

Example 2

Main program before conversion:

INPUT WITH TEXT MSG01 USING MAP 'MMENU'

Main program after conversion (no message will be displayed):

IF *BROWSER-IO NE 'RICHGUI'
INPUT WITH TEXT MSG01 USING MAP 'MMENU'

ELSE
PROCESS PAGE USING 'AMENU'

END-IF

REINPUT Statement

The replacement for the REINPUT statement is the PROCESS PAGE UPDATE statement. In its simplest
form, the REINPUT statement comes with a message text that is displayed in the status bar. In the
converted code, this is handled by the SEND EVENT clause of the PROCESS PAGE UPDATE statement.

Example 1

Main program before conversion:

REINPUT [FULL] WITH TEXT MSG01

Main program after conversion:

IF *BROWSER-IO NE 'RICHGUI'
REINPUT [FULL] WITH TEXT MSG01

ELSE
PROCESS PAGE UPDATE [FULL]

AND SEND EVENT 'nat:page.message'
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSG01

Application Modernization46

Code Conversion

END-PARAMETERS
END-IF

The REINPUT statement can come with a message number and replacements. In this case, the
message must be created from number and replacements before it is sent to the status bar with
the SEND EVENT clause.

Example 2

This example uses a subprogram GETMSTXT that builds themessage text from number and replace-
ments.

Main program before conversion:

REINPUT [FULL] WITH TEXT *MSGNR, REPL1, REPL2

Main program after conversion:

IF *BROWSER-IO NE 'RICHGUI'
REINPUT [FULL] WITH TEXT *MSGNR, REPL1, REPL2

ELSE
CALLNAT 'GETMSTXT' MSTEXT MSGNR REPL1 REPL2
PROCESS PAGE UPDATE [FULL]

AND SEND EVENT 'nat:page.message'
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSTEXT

END-PARAMETERS
END-IF

Example 3

The REINPUT statement can come with a MARK clause in order to put the focus on a field. This case
requires that a statusprop property is created for the field during map conversion. The variable
bound to the statusprop property is then used before the PROCESS PAGE UPDATE statement to set
the FOCUS to the field.

Main program before conversion:

REINPUT [FULL] WITH TEXT MSG01 MARK *LIB-NAME

Main program after conversion:

47Application Modernization

Code Conversion

01 STATUS_LIB-NAME-CV (A) DYNAMIC
...
IF *BROWSER-IO NE 'RICHGUI'

REINPUT [FULL] WITH TEXT MSG01 MARK *LIB-NAME
ELSE

STATUS_LIB-NAME-CV := 'FOCUS'
PROCESS PAGE UPDATE FULL

AND SEND EVENT 'nat:page.message'
WITH PARAMETERS
NAME 'type' VALUE 'W'
NAME 'short' VALUE MSG01

END-PARAMETERS
END-IF

PF-Key Event Handling

The original application might contain checks for the content of the system variable *PF-KEY at
arbitrary places in the code. In order to handle function key events correctly in the converted ap-
plication, several things need to be achieved:

■ In response to the function keys, the converted application must raise events that are named
like the possible contents of *PF-KEY. This can be achieved by using a page template such as
NATPAGEHOTKEYS_TEMPLATE.xmlwhich contains the required hot key definitions.

■ A common local variable must be set up right after the INPUT or PROCESS PAGE statement that
contains either the value *PF-KEY or *PAGE-EVENT, depending on the execution environment.
The name of the variable can be freely chosen. In the example below, the name XEVENT is used.

■ The events nat:page.end and nat:browser.endmust be handled in such a way so that the
program terminates. See also Built-in Events and User-defined Events.

■ A default event handler must be set up that takes care of the values of *PAGE-EVENT that are not
expected by the original application code. These unexpected events are simply replied with a
PROCESS PAGE UPDATE FULL statement.

Example

01 XEVENT (U) DYNAMIC
...
PROCESS PAGE USING ...
...
IF *BROWSER-IO = 'RICHGUI'

DECIDE FOR FIRST CONDITION
WHEN *PAGE-EVENT = 'nat:page.end'
STOP

WHEN *PAGE-EVENT = MASK ('PF'*) OR = MASK ('PA'*)
OR = 'ENTR' OR = 'CLR'
XEVENT := *PAGE-EVENT

WHEN NONE

Application Modernization48

Code Conversion

PROCESS PAGE UPDATE FULL
END-DECIDE

ELSE
XEVENT := *PF-KEY

END-IF

All references to *PF-KEY in the code must then be replaced by references to XEVENT.

SET KEY Statement

Natural forAjax provides two controls (NJX:BUTTONITEMLIST andNJX:BUTTONITEMLISTFIX)
that represent a row of buttons. These controls can be used to replace the visual representation of
the function keys from the original application. If the page template NATPAGEPFKEYS_TEM-
PLATE.xml or a similar individually adapted template is usedduringmap conversion, each resulting
page will contain a row of function key buttons. The subject of this section is how the converted
application can control the labeling and the program-sensitivity of the function keys with only
little code changes.

Natural controls the labeling and program-sensitivity of the function keys in a highly dynamic
way. The corresponding application code (SET KEY statements) can be distributed across program
levels and can be lexically separated from the corresponding INPUT statements. Also, the SET KEY
statement has several flavors, some affecting all keys and others affecting only individual keys.
As a result, the status of the function keys at a given point in time can only be determined at ap-
plication runtime.

Therefore, the following approach is chosen: Natural provides the application programming inter-
face (API) USR4005 that reads the current function key naming and program-sensitivity at runtime.
During code conversion, a call to this API is inserted after each SET KEY statement or into each
round trip. This call reads the function key status and passes it to the user interface.

Example

Main program before conversion:

SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'
PF3 NAMED 'Modify' PF4 NAMED 'Delete' PF5 NAMED 'F5'
PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display'
PF9 NAMED 'F9' PF10 NAMED 'F10' PF11 NAMED 'F11' PF12 NAMED 'F12'
*
INPUT USING MAP "KEYS-M"
*
END

Map before conversion:

49Application Modernization

Code Conversion

*** PF-Keys ***

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Enter F1 F2 Modif Delet F5 F6 Creat Displ F9 F10 F11 F12

Main program after conversion:

DEFINE DATA LOCAL
1 PFKEY (1:*)
2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC
2 TITLE (A) DYNAMIC
2 VISIBLE (L)
1 METHODS (A4/13) CONST <'ENTR','PF1','PF2','PF3','PF4',
'PF5','PF6','PF7','PF8','PF9','PF10','PF11','PF12'>
END-DEFINE
*
SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'
PF3 NAMED 'Modify' PF4 NAMED 'Delete' PF5 NAMED 'F5'
PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display'
PF9 NAMED 'F9' PF10 NAMED 'F10' PF11 NAMED 'F11' PF12 NAMED 'F12'
*
IF *BROWSER-IO NE "RICHGUI"

INPUT USING MAP "KEYS-M"
ELSE

EXPAND ARRAY PFKEY TO (1:13)
METHOD(1:13) := METHODS (*)
CALLNAT "GETKEY-N" PFKEY (*)
PROCESS PAGE USING "KEYS-A"

END-IF
*
END

Application Modernization50

Code Conversion

Page after conversion:

Explanation

The structure PFKEY is generated into the Natural adapter of the page as the application interface
to the BUTTONITEMLISTFIX control.

The subprogram GETKEY-N is a convenience wrapper for the API subprogram USR4005. It uses
USR4005 to determine the labeling and the program-sensitivity status for a given list of function
keys. Each function key is identified by the *PF-KEY value it raises. GETKEY-N returns the function
key information in a data structure suitable for the application interface of the BUTTONITEML-
ISTFIX control. The subprogram is delivered in source code with the Natural for Ajax demos and
can be adapted to the needs of the application.

51Application Modernization

Code Conversion

Array Data

To use grid controls like TEXTGRIDSSS2 andROWTABLEAREA2, you need to bind the griddata-
prop attribute to an array structure at level 1. For the example Natural data definitions below the
griddataprop attribute needs to be bound to the level1 field.

Example 1

1 level1 (00001:00005)
2 arrayfield1 (a10)
2 arrayfield2 (a10)

Example 2

1 level1
2 arrayfield1(a10/00001:00005)
2 arrayfield2(a10/00001:00005)

Natural however, also allows to have a combination of single fields and arrays as shown in the
following example:

Example 3

1 level1
2 field1 (a10)
2 arrayfield1(a10/00001:00005)
2 arrayfield2(a10/00001:00005)

To bind a TEXTGRIDSSS3 or ROWTABLEAREA2 to structures as shown in example 3 you basically
have two options:

Option 1

Change the original Natural data definition structure, which is usually the preferred and recom-
mended way.

Option 2

Add an extra set of variable definitions to your Natural code like:

Application Modernization52

Code Conversion

1 level1x
2 field1 (a10)
1 level1
2 array1(a10/00001:00005)
2 array2(a10/00001:00005)

Youmay need to add extraNatural code to transfer the values to/from the original fields. However,
if the Natural source code only references the variables without level 1 qualifiers (for example,
using reset array1(*) instead of reset level1.array1(*)) no source change is required except
for the initial data definitions.

If Option 1 is not possible, the convrulesCVVariables.xml example rules file offers semi-automated
support for Option 2. It automatically splits the original structure into two and adds an "x" to the
name of the newly created structure for the non-array fields in the adapter and adapter interface
as shown in Option 2.

Processing Rules

The Natural maps in the application to be converted may contain processing rules. In the sense
of a Natural for Ajax application, the processing rules are server-side validations because they are
executed on the Natural server side of the application.

In order to extract processing rules from the maps and to turn them into server-side validations
in the converted application, the Natural Engineer function “Separate Processing Rules from
Maps” can be used.

There is currently no function available that automatically turns processing rules into client-side
validations in Application Designer.

System Variables

If a map displays a system variable (for example, *DATX), a specific default conversion rule takes
care that the necessary code for handling the system variable is generated into theNatural adapter
of the resulting page layout.

Example 1

The map displays the contents of the system variables *DATX and *TIMX. The contents of these
system variables are not modifiable.

The DEFINE DATA statement of the adapter will then contain:

53Application Modernization

Code Conversion

LOCAL
01 XDATX (A8)
01 XTIMX (A8)

The body of the adapter will then contain:

XDATX := *DATX
XTIMX := *TIMX
*
PROCESS PAGE ... WITH
PARAMETERS
...
NAME U'XDATX'
VALUE XDATX

NAME U'XTIMX'
VALUE XTIMX

END-PARAMETERS

The main program needs no special adaptation.

Example 2

Themapdisplays the content of the systemvariable *CODEPAGE. The content of this systemvariables
is modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XCODEPAGE (A64)

The body of the adapter will then contain:

XCODEPAGE := *CODEPAGE
*
PROCESS PAGE ... WITH
PARAMETERS
...
NAME U’XCODEPAGE’
VALUE XCODEPAGE

...
END-PARAMETERS
*
*CODEPAGE := XCODEPAGE

The main program needs no special adaptation.

Application Modernization54

Code Conversion

Variable Names Containing Special Characters

A similar procedure applies to special characters contained in variable names. These are the fol-
lowing special characters:

+
#
/
@
§
&
$

Note: The hash (#) can occur only as the first character.

Variables names containing these special characters cannot be directly bound to Application De-
signer control attributes. A specific default conversion rule replaces the names containing these
special characters with configurable replacements. The original field name is generated into the
parameter data area of the Natural adapter and a corresponding mapping is generated into the
PROCESS PAGE statement of the adapter.

Example

The map displays the variables #FIRST and #LAST.

The DEFINE DATA statement of the adapter will then contain:

DEFINE DATA PARAMETER
1 #FIRST (A16)
1 #LAST (A20)

The body of the adapter will then contain:

...
PROCESS PAGE ... WITH
PARAMETERS
...
NAME U'HFIRST'

VALUE #FIRST
NAME U'HLAST'
VALUE #LAST

...
END-PARAMETERS

The main program needs no special adaptation.

55Application Modernization

Code Conversion

56

	Application Modernization
	Table of Contents
	Application Modernization
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Overview of Conversion Steps
	3 Map Conversion
	General Information
	Using the Map Converter
	Previewing the Generation Results
	Previewing the Page Layout

	Location of the Files
	After the Conversion
	Using the Conversion Rules Tool
	Sample Conversion Rules Files
	Using the Conversion Logs Tool

	4 Customizing the Map Conversion Process
	Map Converter Processing
	Processing of Rows and Columns
	Rows
	Columns

	Processing of Sequence and Grid Areas
	Summary: Processing Steps of the Map Converter

	Conversion Rules
	Conversion Rules Examples
	Example 1
	Example 2
	Example 3

	Default Conversion Rules File
	Root Rule
	Data Type Conversion Rules
	Other Default Conversion Rules

	Conversion Rules that Often Need to be Adapted
	Naming of Adapters
	Setting the Title of a Map

	Writing Your Own Conversion Rules

	Templates
	Variables in Templates
	Templates in Templates
	Editing Templates

	Tag Converters

	5 Code Conversion
	General Information
	Generating Adapters
	Structure of a Map-Based Application
	Structure of a Natural for Ajax Application
	Tasks of the Code Conversion
	DEFINE DATA Statement
	statusprop

	INPUT Statement
	REINPUT Statement
	PF-Key Event Handling
	SET KEY Statement
	Array Data
	Processing Rules
	System Variables
	Variable Names Containing Special Characters

