S software~

A SOFTWARE GMBH BRAND

Natural

Statements

Version 9.2.3

February 2025

ADABAS & NATURAL

This document applies to Natural Version 9.2.3 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1979-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATMF-NNATSTATEMENTS-923-20250213

Table of Contents

PTOACE ..ot xxi
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
L e e 5
2 Statements Grouped by FUNCtionc.cceciiiiiiiiiiiiiiiiiccccce e 7
Database Access and Updatecoceiviiiiiiiiiiiiiiiiiiiiii, 8
Arithmetic and Data Movement Operationsccoceeviiiiniiiiiiiiciicc, 10
Loop EXeCUtiONcoviiiiiiiiiiiiiii 10
Creation of Output Reportsccoovviiiiiiiiiiiiii 10
Screen Generation for Interactive Processingccccoceevviiiiiiniiiiiinicnncnns 11
Processing of Logical Conditionsccceeieiiiiiiiiiiiiiiciicce, 12
Invoking Programs and Routinesccocceiiviiiiiiiiiniiiiniie, 12
FUNCHONS ..o 12
Program and Session Terminationc.cccocieiiiiiiiiiiiiii 13
Control of Work Files / PC Filescccccooviiiiiiiiiiiiiiiiiccc 13
Component Based Programmingccccoceeiiiiiiiiiiiiniciiccccccccc 13
Memory Management Control for Dynamic Variables or X-Arrays 14
Natural Remote Procedure Callcccociiiiiiiiiiiiiiiiiii 14
Internet and Parsingc.cocoooiiiiiiiiiii 15
MiSCellaneousccuiiiiiiiiiiiiiic 15
Reporting Mode Statementsc.ocoooiiiiiiiiiiiii 15
Statements Available with Predict Case and Entire DBcccocciiiiis 17

3 Syntax Symbols and Operand Definition Tablesccccccovviiiiiiiiiin, 19
Syntax SYMDOLSooviiiiiiiiiii e 20
Operand Definition Tableccccocciiiiiiiiiiiiiiiiiiii 21

IT Using Natural SQL Statementscccoooeiiiiiiiiiiiiic 25
4 Common Set and Extended Setc.cocoviiiiiiiiiiiii 27
5 Basic Syntactical [temsccooiiiiiiiiii 29
CONSLANES ..ot 30
INAINES ... 30
Parametersooviiiiiiiiiiic 34
Include Columns Clausecccocuiiiiiiiiiiiiiiiiiccc 37
Period Clausecccooiiiiiiiiiiiiii 38
Natural Formats and SQL Data TYPesccccceeviiiiiiiiiiiiiiiiiiiiiiicciicie, 39

6 Natural View CONCePtcccovviiiiiiiiiiiicicccec 41
7 Scalar EXPIeSSIONSc.cciiiuiiiiiiiiiiiiiiiiiiciiic e 43
Scalar EXPressionccccciiiiiiiiiiiiiiiiiiiiiicici 44
Scalar OPeratorcooviviiiiiiii 44
FaCtOr oo 45
Row Value EXPIessionccociiiiiiiiiiiiciiccicccceec e 56

8 Search Conditionscciiiiiiiiiiiiiiii 57

Statements

Search Conditioncccovviiiiiiiiiiiiiiii 58
Predicateccouiiiiiiiiii 58

9 Select EXPIeSSIONScocviiiiiiiiiiiiiiiii i 65
SeleCtiONooiviiiiiiiiii 66
Table EXPIeSSIonccciiiiiiiiiiiiiiiiiicic e 67

10 Flexible SQLccoiiiiiiiiiiiiiiciec 77
Using Flexible SQLcooiiiiiiiiiiiiieect e 78
Specifying Text Variables in Flexible SQLc.cccccoviiiiiniiiniiiiiiii, 79

III Referenced Example Programscccocoviiiiiiiiiiiiiciciccccccceecc 81
11 Referenced Example Programscccccoeeuiiviiiiiiiiiiiiiiiiiiiiicicciecec e 83
ASSIGN L. 84

AT BREAKoiiiiiiiiiiiiiiiic s 85

AT END OF DATA ...ttt 87

AT END OF PAGEcccooiiiiiiiiiiiiiiiiiciccc 88

AT START OF DATA ... 88

AT TOP OF PAGEc..ooiiiiiiiiiiiiiiicicicc s 90
DEFINE SUBROUTINEccooiiiiiiiiiiiiiiiicccccce 91
FIND oot 92
FOR i 94
HISTOGRAM ..ottt 95

LF 95
PERFORM BREAK PROCESSINGcccoiiiiiiiiiiiiiiiiiciieicecsieecee e 97
READ ..ot 98
REPEAT ..ot 99
SORT ... 100
STORE ..ottt 101
UPDATE ..ottt 103
Example Programs for System Variablesccccocooviiiiiiiiiiiii, 104

IV e 109
12 ACCEPT/REJECT ...ooiiiiiiiiiiiiiiiiicc s 111
ACCEPT/REJECT USAEcovviviiiiiiiiiiiiiiiiccicec e 112
ACCEPT/REJECT Syntax Descriptionccccccuvvvviiiiiiiiiiiiiiiiiiiciiccecn 112
Processing of Multiple ACCEPT/REJECT Statementscccccceouiiiiinnnnnns 113
Limit NOtationcoooiiiiiiiiii 113
HOId Statusoooviiiiiiiiiiicc 114
ACCEPT/REJECT EXamplesccccccciiiiiiiiiiiiiiiiiiiiiiciccicccceee e, 114

13 ADD i 117
ADD USAZEcvviiiiiiiiiiiiiiiiiicccic i 118
Syntax 1 - ADD Statement without GIVING Clauseccccccoeeiviiininnnnen. 118
Syntax 2 - ADD Statement with GIVING Clausecccccoooiiiiiiiiinnn, 119
ADD EXaMPIE ..oooiiiiiiiiiiiiiiici 121

14 ASSIGN ..ot s 123
15 AT BREAK ...oviiiiiiiiiiicc e 125
AT BREAK USAZEooiiiiiiiiiiiiiiiiiiciicicceeei s 126

AT BREAK Syntax Descriptionccccovuiiiiiiiiiiiiiiiiiiiiiiccicciccen 127

Statements

Statements

Multiple Break Levelscccccovviiiiiiiiiiiiiiiiiiiiiicc, 128
AT BREAK EXamplesccccooiiiiiiiiiiiiiiiiicc 129
16 AT END OF DATAcoooiiiiiiiiiccc s 133
AT END OF DATA USAEcocveiuiiiiiiiiiiiiiiiiiic it 134
AT END OF DATA ReStrictionscccceoeeiiiiniiiiiiiiiiiiiciicceccvecccene 135
AT END OF DATA Syntax Descriptionccceevviiiiiiiiiiiiiiiiccciecciece 135
AT END OF DATA EXampleccccccoviiiiiiiiiiiiiiiiiiciicicciccececcic e 136
17 AT END OF PAGEc..ooiiiiiiiiicccc s 139
AT END OF PAGE USaGEecccooviiiiiiiiiiiiiiiciiicciccecic e 140
AT END OF PAGE Syntax Descriptionccccccovviiiiiiiiiiiiiiiniiiiciece, 142
AT END OF PAGE EXamplesc.ccccoviiiiiiiiiiiiiiiicccecceeec 143
18 AT START OF DATAooiiiiiiiiiiiiiiciccec s 147
AT START OF DATA USAQEEcovveiuiiiiiiiiiiiiieiiieieeieie st 148
AT START OF DATA Syntax Descriptionccccccevviiiiiiiiniiiiniiciniinnnnn, 149
AT START OF DATA EXampleccccocciiiiiiiiiiiiiiiiiiiiiinicececcieeee, 149
19 AT TOP OF PAGEc.ooiiiiiiiiiiiiiiiccc s 153
AT TOP OF PAGE USAgeveeiiiiiiiiiiiiiiiiiiicciiicciccc e 154
AT TOP OF PAGE ReStrictionsccccovvuiiiiiiiiiiiiiiiicciccciecccecccecee 155
AT TOP OF PAGE Syntax Descriptionccccceivviiiiiiiiiiiiiiiiiiiieee, 155
AT TOP OF PAGE EXamplecccccoviiiiiiiiiiiiiiiiiiiiiiiiicicicceceeeee 156
20 BACKOUT TRANSACTIONcoiiiiiiiiiiiiiiciiciici e 159
BACKOUT TRANSACTION USaZeccovevuiiiiiiiiiiiiiiiiciiiciceiicciececenecceea 160
BACKOUT TRANSACTION Restrictionscccccceevvuiiiiiiiiininiiiiiiccicenen, 161
Database-Specific Considerations for BACKOUT TRANSACTION 161
BACKOUT TRANSACTION Exampleccccoeiiiiiiiiiiiiiiiiiiiiiiiciicie 161
21 BEFORE BREAK PROCESSINGccccociiiiiiiiiiiiiiiiiicicsecicccceec e 163
BEFORE BREAK PROCESSING USagecocvevviiuieiiiiiiiiiciiiicinecciceiccneenn 164
BEFORE BREAK PROCESSING Restrictionscccccoueviiiiiiiiiiiiiiiiieenens 165
BEFORE BREAK PROCESSING Syntax Descriptionccccoecvviviiiiinnnnnne. 165
BEFORE BREAK PROCESSING Examplecccoceiiiiiiiiiiiiiiiiiiccee, 166
22 CALL oo 167
CALL USAZE «.eoviieiiiiiieiiciieeee e 168
CALL Syntax Descriptionccccocuiiiiiiiiiiiiiiiiiiiciceccccc e 168
Return Code ..o 169
Register USagecccuiiiiiiiiiiiiiiiiic e 169
Storage ALNMENtccoiviiiiiiiiiiiiiii i 170
Adabas Callscccocuiiiiiiiiiiiiiiiii 171
Direct/Dynamic Loadingccccoeoiiiiiiiiiiiiiiiiiiiiiiiccieeccccecce 171
Linkage CONVENtIONScccuiiiiiiiiiiiiiiiiiiii e 173
Program Propertiesccccoooieiiiiiiiiiiii 174
Calling a PL/I Programcccccoouiiiiiiiiiiiiiiiiiiciicciec e 175
Calling @ C Programccooiiiiiiiiiiiiiciiece e 177
INTERFACEZooiiiiiiiiiiicicec e 180
23 CALL FILE ..ottt 193
CALL FILE USAEEoeiiviiiiiiiiiiiiiiiciccicceccic et 194

Statements v

Statements

CALL FILE ReStrictionsc.cocueiuiiiiiiiiiiiiiiiiciiciccicciecce e 194
CALL FILE Syntax Descriptioncccooviiiiiiiiiiiiiiiicciccceccee, 194
CALL FILE EXamMPIeccoiiiiiiiiiiiiiiiiiiiiiiciiici e 195

24 CALL LOOP ..ottt 197
CALL LOOP USAZEoovvuviiiiiiiiiiiiiiiiiiiiie it 198
CALL LOOP ReStrictionsc.ceeiuiiiiiiiiiiiiiiiiciiiiccieccccccieccce e 198
CALL LOOP Syntax Descriptionccccceevviiiiiiiiiiiiiiiiiiiiciiic e 199
CALL LOOP EXampleccccovviiiiuiiiiiiiiiiiiiiiiiiicciicic e 199

25 CALLDBPROC (SQL) ..ottt 201
CALLDBPROC USQZEc.vveiiiiiiiiiiiiiiiiiiiceciiccciic e 202
ReSIICHON v 203
CALLDBPROC Syntax Descriptioncccceiviiiiiiiiiiiiiiiiiiniiiiicciees 203
CALLDBPROC Exampleccccoeviiiiiiiiiiiiiiiiiiiiicicieeccecee e 205

26 CALLNAT ..ottt 207
CALLNAT USAEZE ...cvviiiiiiiiiiiiiiiiicciiceciiec e 208
CALLNAT Syntax Descriptionccooveviiiiiiiiiiiiiiccccc 209
Parameter Transfer with Dynamic Variablesc.cccccooviiniiiiiiniiinninnnn. 211
CALLNAT EXamPIEScccuiiiiiiiiiiiiiiiiiiiiccicic e 212

27 CLOSE CONVERSATIONcooiiiiiiiiiiiiiiiiciiciccc e 215
CLOSE CONVERSATION USageccceovuiiiiiiiiiiiiiiiiiiieiccieeieeie e 216
CLOSE CONVERSATION Syntax Descriptionccoceviiiiiiiiiiiiiiicnn, 216
Further Information and CLOSE CONVERSATION Examples 217
PP P OO PP P PO 219
28 CLOSE PC FILEcoiiiiiiiiiiiiiiciiiic s 221
CLOSE PC FILE USAQZEcocviiiiiiiiiiiiiiiiiiieiicie et 222
CLOSE PC FILE Syntax Descriptioncccccceviiiiiiiiiiiiiiiiiiiiiciiies 222
CLOSE PC FILE EXamplecccooiiiiiiiiiiiiiiiiiiiiciicicciec e 222

29 CLOSE PRINTERccciiiiiiiiiiiiiiiiiicei e 225
CLOSE PRINTER USAZEccvviuiiiuiiiiiiiiiiiiicic e 226
CLOSE PRINTER Syntax Descriptioncccooiiiiiiiiiiiiiiiiiccs 226
CLOSE PRINTER EXamplecccccocuiviiiiiiiiiiiiiiiiiiicccecccccce 227

30 CLOSE WORK FILEccooiiiiiiiiiiiiiiiiiicicicccceee s 229
CLOSE WORK FILE USQgEccceviiimiiiiiiiiiiiiiiiiciieccc e 230
CLOSE WORK FILE Syntax Descriptionccccccovvuiiiiiiiiiiiiiiiiniiiiiees 230
EXAMPIE ..ooviiiiiiii 231

31 COMMIT (SQL) .eviiiiiiiiiiiieiccc e 233
COMMIT USAGE ...ttt 234
Consideration for Non-Natural-Programscccceceeeiiniiiiiiniiniienieineens 234
COMMIT EXamPIe ...cc.oovvviiiiiiiiiiiiiiiiiiicicc 234

32 COMPOSE ..ottt 235
COMPOSE USAZEoovuviiiiiiiiiiiiiiiicciiic i 236
COMPOSE Syntax Descriptionccccooveieiiiiiiiiiiiccccccee 237
Formatting Processcccccoovviiiiiiiiiiiiiiiiiii 250
Dialog Mode Processingccocueviiiiiiiiiiiiiiiiciieicceccicecec e 251
Input/Output Processing by Non-Natural Programsc.cccceceeeeieiiinncene 253

Vi Statements

Statements

COMPOSE EXamplesccccovuiiiiiiiiiiiiiiiiiiiciiic i 254

33 COMPRESSooiiiiiiiiiiiiiiccc s 263
COMPRESS USAGEcooovviiiiiiiiiiiiiiiiciiicccii e 264
COMPRESS Syntax Descriptionccccecieeiiiiiiiiiiiiiceicceccie e 264
COMPRESS Processingccccocoviiiiiiiiiiiiiiiiiiiiiiciiiceciicssiee e 268
COMPRESS EXamMPIEScccuiiiiiiiiiiiiiiiiiiiiiciiciccie s 269

34 COMPUITEcoviiiiiiiiiiiicicc s 273
COMPUTE USQGEooovviiiiiiiiiiiiiiicciiic e 274
COMPUTE Syntax Descriptioncccooieiiiiiiniiiiiiiciccccecece 276
Result Precision of @ Divisioncccccoviiiiiiiiiiiiiiiic 278
COMPUTE EXamplesccooiiiiiiiiiiiiiiiccicccccicece e 279

35 CREATE OBJECTooiiiiiiiiiiiiiiciiciccc e 281
CREATE OBJECT USAZEcouviiuiiiiiiiiiiiiiiie ittt 282
CREATE OBJECT Syntax Descriptionccccccvviiiiiiiiiiiiiiiiiniiiniiieee, 282

36 DECIDE FORocoiiiiiiiiiiiic s 285
DECIDE FOR USAGEcccuiiiiiiiiiiiiiiiiiiiiicciieic s 286
DECIDE FOR Syntax Descriptionccccccovviiiiiiiiiiiiiiiiiiiiciccicen 286
DECIDE FOR EXamplesccccccueiuiiiiiiiiiiiiiiiiiiicice e 287

37 DECIDE ON ..ottt 291
DECIDE ON USAZE ...cuviiuiiiiiiiiiiiiiiiiiicieeieite e 292
DECIDE ON Syntax Descriptionccccovieiiiiiiiiiiiiiiiciicccceccec 292
DECIDE ON EXamplescccceiiiiiiiiiiiiiiiiiiiiiciic e 294

B8 DEFINE CLASSooiiiiiiiiiictc e 297
DEFINE CLASS USAZEcoovviiiiiiiiiiiiiiiciiiciiicic et 298
DEFINE CLASS Syntax Descriptioncccceiviiiiiiiiiiiiiiiiiiiccicccn 298
VIDEFINE DATAooiiiiiiiiiii e 301
39 Function and Basic Syntax Rulescccccccoviiiiiiiiniii, 303
DEFINE DATA USAGE ...c.eovuiiiiiiiiiiiiiiiiiiiicciieic e 304
DEFINE DATA General Syntax Rulescccccoeviiiiiiiiiiiiiniiiiiiicen, 304
DEFINE DATA Programming Modesc.cccooviiiiiiiiiiiiniiccccs 304

40 Defining Global Datacccceviiiiiiiiiiiiiiiiiiccece 307
DEFINE DATA GLOBAL USageccouiiiiiiiiiiiiiiiiiiiiiccicciciccieeeeieeee e 308
DEFINE DATA GLOBAL Syntax Descriptionc.ccccooviiiiiiiiiniiiniinnnn, 308

41 Defining Parameter Dataccccccooiiiiiiiiiiiiiiiiiiii, 311
DEFINE DATA PARAMETER USagecccccooiiiiiiiiiiiiiiiiiiiiciccicccee 312
DEFINE DATA PARAMETER ReStrictionscccccoviiiiiiiiiiiiiiciicics 312
DEFINE DATA PARAMETER Syntax Descriptionccccccceeviiiiiiiccnnenns 312

42 Defining Local Datacccooviiiiiiiiiiiiiiiiiiicccc e 317
DEFINE DATA LOCAL USAGEcccuviiiiiiiiiiiiiiiiiiicicciciccieeeeie e 318
ReSIICHON .. 318
DEFINE DATA LOCAL Syntax Descriptioncccccoeviiiiiiiiiiiiiiiiiiieenne, 318

43 Defining Application-Independent Variablesc.coccooiniiiiii 323
DEFINE DATA INDEPENDENT USagecccccccevviiuiiiiiiiiiiiiiiiicciccicceciens 324
DEFINE DATA INDEPENDENT Syntax Descriptioncccccceiiiniinnnen. 324

44 Defining Context Variables for Natural RPCc.ccccccoviiiiiiiiiniiiiieeen. 327

Statements Vii

Statements

DEFINE DATA CONTEXT USAEcccvevuiiiiiiiiiiiiiiiiiiiicicciiesiccic e 328
DEFINE DATA CONTEXT Restrictionscccccoeuvviiiiiiiiiiiiiiiiiciicice 329
DEFINE DATA CONTEXT Syntax Descriptioncccccovvuviiiiiiiiiiiiiinnnnn. 329
45 Defining NaturalX Objectsccocoeiiiiiiiiiiii 331
DEFINE DATA OBJECT USAgEccecvuviiiiiiiniiiiiiiiiicciiciccc e 332
DEFINE DATA OBJECT Syntax Descriptioncccccceviiiiiiiiiiiiiniinnnnens 332
46 Variable Definitioncccccooviiiiiiiiiiiiiii 335
Variable Definition Syntax Descriptioncccccoeeiviiiiiiiiiiiiniiiiiiiinie, 336
47 View Definitionccccoiiiiiiiiiiiiiiiiiiiii 339
View Definition Syntax Descriptionccccceviiiiiiiiiiiiiiiiiiiiiciicicn 340
48 Redefinitioncccuiiiiiiiiiiiiiiiiii 345
Redefinition Restrictionscccccooiiiiiiiiiiiiiiiiii 346
Redefinition Syntax Descriptionccccocveviiiiiiiiiiiiiiicc 346
49 Array Dimension Definitionccocoeiiiiiiiiiiiiiiiiiiiiiccccceeen 349
Syntax Description of Array Dimension Definitionc.cccoooiiiiiniinnnn. 350
50 Initial-Value Definitionccccocoiviiiiiiiiiiiii, 353
Restrictions with Initial-Value Definitionccccocoviiiiiiiiinine, 354
Syntax Description of Initial-Value Definitionccccooiviiiiiinnin, 354
51 Initial/Constant Values for an Arrayccccoccevviiiiiiiiiiiiiniiicicceeceeeeen 357
Restrictions for Initial/Constant Values for an Arrayccccceviiviiiniinnn. 358
Syntax Description of Initial/Constant Values for an Arrayc..ccccceuennin. 359
52 EM, HD, PM Parameters for Field/Variableccoooviviviiiiiiiiiiiiiiieeeiiiieeeeennnns 363
Syntax Description of EM, HD, PM Parameters for Field/Variable 364
53 Examples of DEFINE DATA Statement Usageccccoceeviiiiiiniiiiiinienneenen. 365
Example 1 - DEFINE DATA LOCAL (Local Data Definition) 366
Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization) 366
Example 3 - DEFINE DATA (View Definition, Array Redefinition) 370
Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas) 371
Example 5 - DEFINE DATA (Initialization)ccccccovviiiiiiiiiiiiiiiiiiinne 372
Example 6 - DEFINE DATA (Variable Array)ccccoooeviiiiiniiiiciiiiieicns 372
.. 375
54 DEFINE FUNCTIONc.ooiiiiiiiiiiiiiiiiiieciececee e 377
DEFINE FUNCTION USAgEcceovuiiiiiiiiiiiiiiiiiiiiciciecec i 378
DEFINE FUNCTION Syntax Descriptionccccceeiviiiiiiiiiiiiniiiiniiennee, 378
DEFINE FUNCTION Examplescccccoviiiiiiiiiiiiiiiiiiiicieciccccccie 382
55 DEFINE PRINTERc.ccciiiiiiiiiiiiiiiiiiccccc s 383
DEFINE PRINTER USagecccoovuiiiiiiiiiiiiiiiiciiiicciiciccee e 384
DEFINE PRINTER Syntax Descriptioncccccoocviiiiiiiiiiiiniiiiiicienen, 384
Printer Name under z/OS Batch, TSO and Serverccooeeveviviieriiiiiinneennnn. 388
Printer Name under CICScccoiiiiiiiiiiic 391
Printer Name under Com-pleteccccoooiiiiiiiiiiiiiniiiiiii 392
Printer Name under Com-plete/SMARTScccccooiiiiiiiiiiiii, 392
Printer Names under Natural Advanced Facilitiesccccccooiiininnn. 392
Printer Name for Additional Reports and Remote Destinations 393
DEFINE PRINTER Examplescccccooiiiiiiiiiiiiiiiiiiicicccccicceci 393

viii

Statements

Statements

56 DEFINE PROTOTYPEc.ccciiiiiiiiiiiiiiiiiiicccccee e 397
DEFINE PROTOTYPE USageccceovuiiiiiiiiiiiiiiiiiicicceccic i 398
DEFINE PROTOTYPE Syntax Descriptioncccccovvviiiiiiiiiiiiiiiiniiieninnen, 399
DEFINE PROTOTYPE EXamplescccccceviiiiiiiiiiiiiiiiiiiiccicicicciee 402

57 DEFINE SUBROUTINEcccooiiiiiiiiiiiiiiiiciccciccec 405
DEFINE SUBROUTINE USagecccocuiiuiiiiiiiiiiiiiiiiiiiciccieciccicce e 406
DEFINE SUBROUTINE ReStrictionsccccoviiiiiiiiiiiiiiiiiiiiciiciccecs 407
DEFINE SUBROUTINE Syntax Descriptionccccoecuvviiiiiiiiiiiiiiiiiienine. 408
DEFINE SUBROUTINE Examplescccccceouiiiiiiiiiiiiiiiiiiiiiiiciicccec 408

58 DEFINE WINDOWccooiiiiiiiiiiiiiiiiciiccicccc e 413
DEFINE WINDOW USageccouiiiiiiiiiiiiiiiiiiicciieicee e 414
DEFINE WINDOW Syntax Descriptionccccoveiiiiiiiiiiiiiniiiiiiiee, 415
Protection of Input Fields in a Windowccccocoooiiiiiiiiiiis 419
Invoking Different WIndowscccooviiiiiiiiiiiiiiiiicccceceee 419
DEFINE WINDOW Examplecccccccoviiiiiiiiiiiiiiiiiiiiiiiiciicciccieccceiee 419

59 DEFINE WORK FILEccocoiiiiiiiiiiiiiiiiiiiiiie e 421
DEFINE WORK FILE USAGE€coceivuiiiiiiiiiiiiiiiiciccec e 422
DEFINE WORK FILE Syntax Descriptionccccoeiiiiiiiiiiiiiiiii 422
Work File Name under z/OS Batch, TSO and Servercccoeeveeeeeveeeneeeeeennnnn. 424
Work File Name under CICScccooiiiiiiiiiiiiiiiiiic, 427
Work File Name under Com-plete/SMARTSccccooiiiniiiniiiiicice, 427

VIIL oo 429

60 DELETEc.ooiiiiiiiiiicc e 431
DELETE USQZEeooiiiiiiiiiiiiiiiiiiiiicccciiccicc s 432
DELETE ReStrictionccccoiiiiiiiiiiiiiiiiiicciicciccccce e 432
DELETE Syntax Descriptionccccccoiiiiiiiiiiiiiiiiiiiiiicciiciiccecees 432
DELETE Database-Specific Considerationsccccceeviiiiiiiiiiiiiinininnenn, 433
DELETE EXamplesc.cocooiiiiiiiiiiiccecc 433

61 DELETE (SQL) ..ouviiiiiiiiiiiciiciecc s 435
DELETE (SQL) USAZEcocviiiiiiiiiiiiiiiiiiiicicciciccic st 436
Syntax 1 - Searched DELETEccccooiiiiiiiiiiiiiiiiiiiicciccecece, 436
Syntax 2 - Positioned DELETEc.cccooiiiiiiiiiiiiiiiccccccce 438

62 DISPLAY ..ottt 441
DISPLAY USAGE ...ccouviiiiiiiiiiiiiiiicciicccec e 442
DISPLAY Syntax Descriptionccoooiiiiiiiiiiiiiiiiccc e 442
Defaults Applicable for a DISPLAY Statementcccccoocviiiiiiiiiiinniiinnenns 454
DISPLAY EXaMPIEScovviiiiiiiiiiiiicciieic et 455

63 DIVIDEoooiiiiiiiiiiiiiicc 463
DIVIDE USAQZEuveiuiiniiiiiiiiiiiiiiiiiieit et e 464
Syntax 1 - DIVIDE Statement without GIVING Clausecc.cccoocveinin. 464
Syntax 2 - DIVIDE Statement with GIVING Clauseccccccoecuiviiiniinnnen. 465
Syntax 3 - DIVIDE Statement with REMAINDER Clauseccccoeoce.. 466
EXamMPLe ..o 467

64 DO/DOENDooiiiiiiiiiiiiiiiice s 469
DO/DOEND USAZEeeeuiiiiiiiiiiciiieiee ettt 470

Statements iX

Statements

DO/DOEND RESEIICHONS ovuuniiiiiiiiiiiieeeeiiieeeeeeiee et e e et e e et e s esaaseeesanans 470
DO/DOEND EXamplec.ccooiviiiiiiiiiiiiiiiiiiiieicicciccc e 471

65 DOWNLOAD PC FILEcoooiiiiiiiiiiiiiiicicc s 473
DOWNLOAD PC FILE USAgEeccooviiiiiiiiiiiiiiiiiiicciccececncec e 474
DOWNLOAD PC FILE Syntax Descriptionccccccoeviiiiiiiiiiiniiiiiiicnne, 474
DOWNLOAD PC FILE Examplescccccoovuiiiiiiiiiiiiiiiiiciicceccicccn, 475

00 EJECT oo 479
] G R T O 480
EJECT Syntax Descriptioncccccooviiiiiiiiiiiiiiicccccccce 480
PIOCESSING ..ccuvviiiiiiiiiiiiciic 482
EJECT EXampleccoooiiiiiiiiiiiiicccccec s 482

07 END oo 485
END USAevviiiiiiiiiiiec 486
END Syntax Descriptionccccooviiiiiiiiiiiiiiiiiicicccec 486
END EXamplesccoooiiiiiiiiiiiiiiiiiiiiiiiiii e 487

68 END TRANSACTIONooiiiiiiiiiiiiiiiiicciciccce e 489
END TRANSACTION USAEooviiiiiiniiiiiiiiieiicciicetc et 490
END TRANSACTION ReStrictionsccccevvuiiiiiiiiiiiiiiiiiiciicccicccciene 490
END TRANSACTION Syntax Descriptionccccceeiiviiiiiiiiniiiiniiiinnenns 491
Databases Affectedccoccoiiiiiiiiiiiiiiiii 491
END TRANSACTION Database-Specific Considerationsc.cccceueuee. 492
END TRANSACTION Examplescccccocviiiiiiiiiiiiiiiiiiiiiicciccccccce 492

09 ESCAPE ... 495
ESCAPE USAZEvviiiiiiiiiiiiiiiiiiiiiicciiciicccc e 496
ESCAPE Syntax Descriptioncccooiiiiiiiiiiiiiiiiic 497
ESCAPE EXamplecccooiiiiiiiiiiiiiiiiiiiiiiicciic e 498

70 EXAMINEoooiiiiiiii s 501
Syntax 1 - EXAMINEcccoooiiiiiiiiiic 502
Syntax 2 - EXAMINE TRANSLATEcccccooiiiiiiiiiiiiiiiiiccccccie 510
Syntax 3 - EXAMINE for Unicode Graphemescccocoviiiiiiiininiinnn. 512
EXAMINE EXampIesccocuiiiiiiiiiiiiiiiiiiciiicieccie e 514

71T EXPAND L..ooiiiiiiiiiiii s 523
EXPAND USAZEe ...covviiiiiiiiiiiiiiiiiiiiiic e 524
EXPAND Syntax Descriptionccccoeviiiiiiiiiiiiiiiiiiiiiiciecieccciccecs 524
... 529
T2 FETCH oot 531
FETCH USAZE ...cvviiiiiiiiiiiiiiiiciicic e 532
FETCH Syntax Descriptionccccoicuiiiiiiiiiiiiiiiiiiiiiiciiciccccs 532
FETCH EXamplec.cccciiiiiiiiiiiiiiiiiiiicici e 534

73 FIND oo 537
FIND USQZEevviiiiiiiiiiiiiiii it 538
FIND ReStIICtONS ...ooovvviiiiiiiiiiicciiccciccc e 540
Syntax 1 - FIND Statement with Processing LoOpccccoecviiiiiiiiiiiinnnnnn. 540
Syntax 2 - FIND Statement without Processing Loopc.cccccevevviiiiiinnnn 540
Syntax Descriptioncccccoiiiiiiiiiiiiiiiii 541

Statements

Statements

FIND EXamplescccoiiiiiiiiiiiiiiiiiiiiiiiicccccc 564

74 FOR ..o 575
FOR USAZE ...oeiiiiiiiiiiiiiiiiiiciiccc e 576
FOR Syntax Descriptioncccccooviiiiiiiiiiiiiiiccccececee e 576
FOR EXQMPIE ..ot 578

7O FORMAToiiiiiiiiiiiicic e 581
FORMAT USQZEcovuviiiiiiiiiiiiiiiii it 582
FORMAT Syntax Descriptionccccocvuiiiiiiiiiiiiiiiiiiiciiiceciecece 582
Applicable Parameters for FORMATccocooviiiiiiiiiiicccce 583
FORMAT EXampleccccoiiiiiiiiiiiiiiiiiiiiiicccccee e 585

76 GET oo 587
GET USAZE ...veiiiiiiiiiii i 588
GET ReStriCtONSc.uoiiiuiiiiiiiiiiiicciiccci 588
GET Syntax Descriptionccccoiuiiiiiiiiiiiiiiiiiiiiiccieccccec 589
GET EXamPIe ...ooiiiiiiiiiiiiiiiiiiicc e 590

77 GET SAME ...oooiiiiiiiiiiic e 593
GET SAME USAZEvviiiiiiiiiiiiiiiiiciiccic e 594
GET SAME ReStrictionsccuueiiiiiiiiiiiiiiceiicceccciccc e 594
GET SAME Syntax Descriptioncccccceviiiiiiiiiiiiiiiiiiiiecec, 595
GET SAME Examplecccccoiiiiiiiiiiiiiiiiiiiiiicc 595

78 GET TRANSACTION DATAcooiiiiiiiiiiiiic e 597
GET TRANSACTION DATA USagec.covvevmiiiiiiiiiiiiiiieiciicineeicee e 598
ReSIICHON .. 598
GET TRANSACTION DATA Syntax Descriptionccccceviviiiiiiiiiinnnnne. 599
GET TRANSACTION DATA Examplecccccoviiiiiiniiiiiiiiiiiiiiiciccns 599

79 HISTOGRAMoiiiiiiiiiiiiiiiicicicc s 601
HISTOGRAM USAZEcoovviiiiiiiiiiiiiiiicciiccciiccc e 602
HISTOGRAM ReStIiCtioNSc.coiviiiiiiiiiiiiiiiiiicciccec 603
HISTOGRAM Syntax Descriptioncccoceviviiiiiiiiiiiiiiiiiiiiiciecec 603
System Variables Available with HISTOGRAMcccooiiiiiiiiiiiiic, 608
HISTOGRAM EXaMPIESoooviiiiiiiiiiiiiiiiicicciicie e 609

BO IE e 613
IE USAGE ..oiiiiiiiiiiiiiiiiiicciiii e 614

IF Syntax Descriptionccccciiiiiiiiiiiiiiiiiiiiii 614

IF EXamPIe ...oooiiiiiiiic 615

81 IF SELECTIONccuiiiiiiiiiiiiiiiicciieicecce et 617
IF SELECTION USAGEeeiiuviiiiiiiiiiiiiiiiiiicciccieccc e 618

IF SELECTION Syntax Descriptionccccccevciiiiiiiiiiiiiniiiiniiciccee 618

IF SELECTION EXampleccccoviiiiiiiiiiiiiiiiiiiiiicicec e 620

B2 IGNOREooiiiiiiiiiiiiicice s 621
IGNORE USAZEooiviiiiiiiiiiiiiiiiicciiiccicccicccs e 622
IGNORE EXamplec.coooiiiiiiiiiiiiciccce e 622

83 INCLUDE ...ttt 623
INCLUDE USAZEoooviiiiiiiiiiiiiiiiiiic et 624
INCLUDE Syntax Descriptionccccoecuiiiiiiiiiiiiiiiiiiiiiniiecciiccciccees 624
Statements Xi

Statements

INCLUDE EXamplesccccoiiiiiiiiiiiiiiiiiiiiicin e 625
XINPUT o s 631
84 INPUT Syntax 1 - Dynamic Screen Layout Specificationccccceevviinnennen. 637
INPUT Syntax 1 - DeScriptionc..cccoeviviiiiiiiiiiiiiccceecieecce e 638
Examples - INPUT Syntax 1cccceeiiiiiiiiiiiiiiiiiiiiiieceecccee e 647

85 INPUT Syntax 2 - Using Predefined Map Layoutcccoooveviiiiiniinnnnnnn 651
INPUT USING MAP without Parameter Listccccoccooviiiiiiiiinn. 652
INPUT Fields Defined in the Programccccccoccoiiiiiiiiniiiiiiniiiiiine 653
INPUT Syntax 2 - DeScriptionc..ccoeuiiviiiiiiiiiiiiiccicccei e 653
Using the INPUT Statement in Non-Screen Modescccocevviiiiiininnn. 654
Processing Data from the Natural Stack ..o 657
Using the INPUT Statement in Batch Modecccooviiiiiiiiiiiiniiiii, 657

XL e e 661
86 INSERT (SQL) ...eoiiiiiiiiiiiiiiiciccieiccc e 663
INSERT USAGE ...ooovviiiiiiiiiiiiciiicciic et 664
INSERT Syntax Descriptioncccocoviiiiiiiiiiiiiiiicieciceeecec e 664
INSERT EXAMPILE ..ccueviiiiiiiiiiiiiiiiiiiciiccie e 669

87 INTERFACEoiiiiiiiiiiii e 671
INTERFACE USAEcooviiiiiiiiiiiiiiiii it 672
INTERFACE Syntax Descriptioncccccovvuiiiiiiiiiiiiiiiiiiccieccece 672

B8 LIMIT ..o s 679
LIMIT USAGE ...vvviiiiiiiiiiiiiiiiccciiic e 680
LIMIT Syntax Descriptioncccccoviiiiiiiiiiiiiiiiiccicccececee e 681
LIMIT EXQMPLES ...cuviiiiiiiiiiiiiiiiiiieciccic e 681

89 LOORP ... s 683
LOOP USQZEvviiiiiiiiiiiiiiiiii i 684
LOQOP ReStTICHON ...ttt 684
LOOP Syntax Descriptionccccceeviiiiiiiiiiiiieicciceecc e 685
LOOP EXamPIEScoooviiiiiiiiiiiiiiiiiiiiciiccicccccc s 685

90 MERGE (SQL) ..ottt 687
MERGE USAEcoouviiiiiiiiiiiiiiiiiciicciciic e 688
MERGE ReStrictioncccooviiiiiiiiiiiiiiiiiiiicc 688
MERGE Syntax Descriptioncccccooiiviiiiiiiiiiiicici e 688
MERGE EXamplesccccoooiiiiiiiiiiiiiiiiiiiiiiicc 694

91 METHOD ..ot 697
METHOD USQGEccuvviiiiiiiiiiiiiiiiiiiiciic s 698
METHOD Syntax Descriptionccccooiiiiiiiiiiiiiiiic 698
METHOD EXampleccccooiiiiiiiiiiiiiiiieieceeecceee e 699

92 MOWVE L. 703
MOVE USAZE ...cuvioviiiiiiiciiceteee et 704
Syntax 1 - MOVE ... 704
Syntax 2 - MOVE SUBSTRINGccccccooiiiiiiiiiiiiiiiciicicccec 706
Syntax 3 - MOVE BY NAME / POSITIONccccccoviiiiiiiiiiiiiiiiciicciee 708
Syntax 4 - MOVE EDITED (Edit Mask Specified with operand?2) 709
Syntax 5 - MOVE EDITED (Edit Mask Specified with operandl) 710

Xii Statements

Statements

Syntax 6 - MOVE LEFT / RIGHT JUSTIFIEDc.cccccocueiiiiiiiiiniiiiiiicicee 711
Syntax 7 - MOVE NORMALIZEDccccociiiiiiiiiiiiiiiiniccciccec 712
Syntax 8 - MOVE ENCODEDccccccoviiiiiiiiiiiiiiiiiiiiecce e 714
Syntax 9 - MOVE ALL ..o 717
MOVE EXaAMPIESoooiiiiiiiiiiiiiiiiiiiiicie e 719

93 MOVE INDEXEDc..coiiiiiiiiiiiiiiiiiiciciccc e 725
94 MULTIPLY ...ooiiiiiiiiiiiiiiicicc s 727
MULTIPLY USQZEvveiiuviiiiiiiiiiiiiiiiiiicciiic et 728
Syntax 1 - MULTIPLY Statement without GIVING Clausec..cccc.ce... 728
Syntax 2 - MULTIPLY Statement with GIVING Clausecccccceevvenniennn. 729
EXAMPIE ..coviiiiiiiiic 730

95 NEWPAGEooiiiiiiiiiiiiccc e 733
NEWPAGE USAZEcvviiiiiiiiiiiiiiiiiiiiiicicccce e 734
NEWPAGE Syntax Descriptionccccceiiiiiiiiiiiiiiiiiiicice 734
NEWPAGE EXamplecccccociiiiiiiiiiiiiiiiiiiiiccicc e 735

96 OBTAIN ..ot 739
OBTAIN USAZE ...coovviiiiiiiiiiiiiiiii it 740
OBTAIN ReStrictionccueiiiuiiiiiiiiiiiiiiiiiccicccccc 740
OBTAIN Syntax Descriptionccccoceiiiiiiiiiiiiiiiiiiiiiiiicc 741
OBTAIN EXamplesccccoiiiiiiiiiiiiiiiiiiiiiiiicic e 745

97 ON ERROR ..ottt 747
ON ERROR USAZEcoiuviiiiiiiiiiiiiiiiiiiiiiic i 748

ON ERROR ReStrictioncccoviiiiiiiiiiiiiiiiiiiiiicccccc 748

ON ERROR Syntax Descriptionccccoeeiiiiiiiiiiiiiiiiiiiiiiciicecc i, 749

ON ERROR Processing within Objects on Different Levels 749

ON ERROR System Variablesccccoeouiiiiiiiiiiiiiiiiiiiiiececciececceeeeee 750

ON ERROR EXampleccccoviiiiiiiiiiiiiiiiiiiiiiic e 750

98 OPEN CONVERSATIONcooiiiiiiiiiiiiiiiiiiciicicc e 753
OPEN CONVERSATION USagecocvviuiiiuiiiiiiiiiieiiiiiciiciiceicsnee e 754
OPEN CONVERSATION Syntax Descriptionccccooiiiiiiiiiiniiiiicnn, 754
Further Information and OPEN CONVERSATION Examples 755

99 OPTIONS ..o s 757
OPTIONS USAZEuvviiiiiiiiiiiiiiiiiiiiie e 758
Processing of Multiple OPTIONS Statementsccccccceevviiiiiiiiiiiiniennn. 758

XIL e 759
100 PARSE JSONciiiiiiiiiiiiiiiieiceic et 761
PARSE JSON USAEEccvviiiiiiiiiiiiiiiiiiiciiicie et 762
PARSE JSON Syntax Descriptionccccceviiiiiiiiiiiiiiiiiiiiiiiecieece, 763
PARSE JSON Examplescccccciiiiiiiiiiiiiiiiiiiiiiiiiiccecceccccec s 766

101 PARSE XML ...ooiiiiiiiiiiiiiiiiicic e 773
PARSE XML USAZEccccuviiiiiiiiiiiiiiiiiiiiic i 774
PARSE XML Syntax Descriptionccooeeiiiiiiiiiiiiiiiccccccee 775
PARSE XML EXaMPIES ...ceviiiiiiiiiiiiiiiiiiiciiciic e 778

102 PASSW ..o 783
PASSW USAZEooovuiiiiiiiiiiiiiiiiiciccicic e 784
Statements xiii

Statements

XIII

PASSW ReStIICtIONoooiiiiiiiiiiiiiiiiiiiicciccc 785
PASSW Syntax Descriptioncccoeiiviiiiiiiiiiiicc 785
PASSW EXaMPIEooovviiiiiiiiiiiiiiiiicicicic 786
103 PERFORMcociiiiiiiiiiiiiiiiicccc e 787
PERFORM USAEEcvviiiiiiiiiiiiiiiiiiiiicciic et 788
PERFORM Syntax Descriptioncccoooiiiiiiiiiiiiiiiiccee, 788
PERFORM EXamplescccccoeviiiiiiiiiiiiiiiiiiiiiiiiiicciiccc e 791
104 PERFORM BREAK PROCESSINGc.ccocoiiiiiiiiiiiiiiiiccicciccc e 795
PERFORM BREAK PROCESSING USagecccccovviiuiiiiiiiiiiiiiiiciiceicen 796
PERFORM BREAK PROCESSING Syntax Descriptionccccocoveviiiinnnnen. 796
PERFORM BREAK PROCESSING Exampleccccooviviiiiiiniiiiiiiciicn, 797
105 PRINT ..ot s 799
PRINT USAZE ...covviiniiiiiiiiiiiiii it 800
PRINT Syntax Descriptioncccccooviiiiiiiiiiiiiii e, 801
PRINT EXamMPIe ...oooiiiiiiiiiiiiiiiiii e 806
106 PROCESS ..ot 809
PROCESS USAZEooiiviiiiiiiiiiiiiiiiiicciiicctccccc e 810
PROCESS ReStrictionc.cociiuiiiiiiiiiiiiciiiicciicccicccce e 810
PROCESS Syntax Descriptioncccceovuiiiiiiiiiiiiiiiiiiiicicciiccicc e 810
107 PROCESS COMMANDcciiiiiiiiiiiiiiiiiiiciicicecce s 813
PROCESS COMMAND USAZEeceoiuiiimiiiiiiiniiiiiciicciccciec e 815
PROCESS COMMAND Syntax Descriptioncccocuvvviiiiiiiiiiiiiniiininnnn. 816
PROCESS COMMAND EXamplesc.cccoeiiiiiiiiiiiiiiicciceiceeccieeceene 826
108 PROCESS PAGEcooiiiiiiiiiiiiiiiicccicc s 829
PROCESS PAGE USagecceoiiiiiiiiiiiiiiiiiiiciiccecici e 830
Syntax 1 - PROCESS PAGEccccccooiiiiiiiiiiiiiiiiicccc 830
Syntax 2 - PROCESS PAGE USINGcccocooiiiiiiiiiiiiiiiceciccie 833
Syntax 3 - PROCESS PAGE UPDATEc.ccooiiiiiiiiiiicecee 836
Syntax 4 - PROCESS PAGE MODALcccocoiiiiiiiiiiiiiiiiiccciccce 839
PROCESS PAGE Examplesccccocoiiiiiiiiiiiiiiiicc 841
109 PROCESS SQL (SQL) ...voiiiiiiiiiiiiiiiiciciiciieic s 843
PROCESS SQL USAZEccuvviiiiiiiiiiiiiiiiiiiciic i 844
PROCESS SQL Syntax Descriptioncccccoeiiiiiiiiiiiiiiiiiiciiciccieces 844
PROCESS SQL EXamplesccccccceiiiiiiiiiiiiiiiiiiiiiiccicccceec e 845
110 PROPERTY ...ooiiiiiiiiiiiiiic e 847
PROPERTY USAZEoeoviiiiiiiiiiiiiiiiiiciicciccec et 848
PROPERTY Syntax Descriptionccccooviieiiiiiiiiiiniiicicccc 848
PROPERTY Examplecccccoiiiiiiiiiiiiiiiiiiiiiiiiic e 849
... 851
11T READ oo 853
READ USAGEuvviiiiiiiiiiiiiiiiicciic e 854
READ Syntax Descriptionccccceeiiiiiiiiiiiiiiiicciecceceeeec e 855
System Variables Available with READcccccooiiiiiiiiiiiiiiiiiicicic, 867
READ EXampPlesc.cocviiiiiiiiiiiieicicccccece 867
112 READ RESULT SET (SQL) ...cooviiiiiiiiiiiiiiiiiiiiccieicceccccic e 877

Xiv

Statements

Statements

READ RESULT SET USAEccovviiiiiiiiiiiiiiiiiiiic it 878
READ RESULT SET ReStrictioncccceevuiiiiiiiiiiiiiiiiiiciiccecccce 879
READ RESULT SET Syntax Descriptioncccccoeviiiiiiiiiiiiiiiniiiiciiecnen, 879
READ RESULT SET Exampleccccooiiiiiiiiiiiiiiiiiiii, 881

113 READ WORK FILEccoooiiiiiiiiiiiiiiiicccc s 883
READ WORK FILE USAGEcccoovuiiiiiiiiiiiiiiiiiiiiciic e 884
Syntax 1 - READ WORK FILE with Processing LOOPccccceevviriiieniuieniennnn. 884
Syntax 2 - READ WORK FILE without Processing Loopcccccecuveviinnnen. 885
READ WORK FILE Syntax Descriptionccoecooviiiiiiiiiiniiiciccecic, 885
Field Lengthsccccoiiiiiiiiiiiiiic 888
Variable Index Rangeccociiiiiiiiiiiiiic 889
Handling of Dynamic Variablesccccooviiiiiiiiiiiiiiiiiciiciccccecee 889
Handling of X-ATITayscccoviiiiiiiiiiiiiiiiccccccecc e 889
READ WORK FILE Examplescccccocouiiiiiiiiiiiiiiiiiiiiiiiciecccccee e 889

114 READLOBoooiiiiiiiiieic e 895
READLOB USAGEcoviiiiiiieiiiciiccieeectce s 896
READLOB ReStrictionsc..cocviiiiiiiiiiiiiiiiciiecicciccccc e 896
READLOB Syntax Descriptioncccooeiiiiiiiiiiiiiiiiicice 897
System Variables Available with READLOBccccoociiiiiniiiiiiiiiiiiceee 899
READLOB Functional Considerationsccccoceiviiiiiiiiiiiiiininiienicnn, 900
READLOB EXamplesc.cccooiiiiiiiiiiiiiiiceciec e 900

115 REDEFINEoooiiiiiiiiiiiiiccce e 903
REDEFINE USAZEeeoiuiiiiiiiiiiiiiiiiiiiicciccicec e 904
REDEFINE ReStrictioncccooiiiiiiiiiiiiiiiiiicicicccce e 904
REDEFINE Syntax Descriptionccccovvuiiiiiiiiiiiiiiiiiiiiccieccieccecnn 904
REDEFINE EXamplescccccciiiiiiiiiiiiiiiiiiiiiicciiccicccce s 905

116 REDUCE ..ottt 907
REDUCE USAZEvveviiiiiiiiiitieiieicieete et 908
REDUCE Syntax Descriptioncccccooviiiiiiiiiiiiiiiiiiiiiiiiciecciiecciees 908

117 REINPUT L..ooiiiiiiiiii s 913
REINPUT USAEZEoovviiiiiiiiiiiiiiiiiiiicciccic i 914
REINPUT Syntax Descriptioncccoooiiiiiiiiiiiiiiiiiiccicce, 915
REINPUT EXamplescccooiiiiiiiiiiiiiiiiiiiiiiicciccceec e 921

TI8 REJECT ..ot 925
TI9 RELEASE ...cooiiiiiiiiicc e 927
RELEASE USAZEcoivuiiiiiiiiiiiiiiiiicciiccic e 928
RELEASE Syntax Descriptioncccocoiiiiiiiiiiiiiiiiccce, 928
RELEASE EXampleccccociiiiiiiiiiiiiiiiicciccceeceeee e 929

120 REPEAT ..ottt 931
REPEAT USAZEe ...ooovviiiiiiiiii s 932
REPEAT Syntax Descriptioncccccviiuiiiiiiiiiiiiiiiiiiiicciieccieccees 932
REPEAT EXamplescc.ooiiiiiiiiiiiiiiicicccecec e 933

121 REQUEST DOCUMENTociiiiiiiiiiiiiiiciiici s 937
REQUEST DOCUMENT USageccceovvuiiimiiiiiiiiiiiiiiiciiccciiccieeiec e 938
REQUEST DOCUMENT Syntax Descriptionccccceeviiiiiiiiiiniiiiiicnnnn. 938
Statements XV

Statements

Automatically Generated Headersccoccoooiiiiiiiiiiiiii 944
URL Encoding for Special Characterscccccocoviiiiiiiniiiiiiicccns 945
HTTP/HTTPS Responses Redirected and Deniedc.ccccevviiiiiiiiininn. 947
REQUEST DOCUMENT Examplesc.ccccooiiiiiiiiiiiiiiiciccicccicec 948

122 RESET ..ot 955
RESET USAZEeeiuviiiiiiiiiiiiiiiicie e 956
RESET Syntax Descriptionccccccooviiiiiiiiiiiiiiiiiiiiicciiccicc e 956
RESET EXamplec.cociiiiiiiiiiiiiiiiiiiiiiii e 957

123 RESIZE ..ottt 959
RESIZE USAGEvvviiiiiiiiiiiiiiiiiiiiicciiccic s 960
RESIZE Syntax Descriptioncccocviiiiiiiiiiiiiiciccccccccccc 960

124 ROLLBACK (SQL) ..eoiitiiiiiiiiiiiieic i 965
ROLLBACK USAEZE ...ccuviiiiiiiiiiiiiiiiiiiiieiic e 966
Consideration for Non-Natural Programsccccceevviiniiiniiiniiiniiniieneene 966
ROLLBACK Examplecccccciiiiiiiiiiiiiiiiiiiiiiiiiciccec e 967

125 RETRY oo 969
RETRY USAZE ...coiuviiiiiiiiiiiiiiiii it 970
RETRY ReStriCtioNScooiuiiiiiiiiiiiiiiiiiiccicciicccccc e 970
RETRY EXaMPIe ..ccuviiiiiiiiiiiiiiiiiciiceeccccte e 970

126 RUN L.t 973
RUN USAZE ..ot 974
RUN Syntax Descriptioncccccociiiiiiiiiiiiiiiiiiiicicicccceciecn 974
Dynamic Source Text Creation/Executionccccoeiviiiiiiiiininiiicn. 975
RUN EXQMPIE ..ot 976

XIV e 979
127 SELECT (SQL) .eviiiiiiiiiiiiiiciiciceie s 981
SELECT USAZEoeooiuviiiiiiiiiiii it 982
Syntax 1 - Cursor-Oriented Selectionc.ccooieiiiiiiiiiiiii, 982
Syntax 2 - Non-Cursor Selectionccceceiviiiiiiiiiiiiiiiiiiiiiicciccicee 983
SELECT Syntax Element Descriptioncccocueviiiiiiiiiiiiiiiccccccc 984

JOIN QUETIES vttt et et e e e e e e e ettt e e e e e e e eeearaaeaeeeeeeaaes 1001

128 SEND METHODccooiiiiiiiiiiiiiiiiiciici s 1003
SEND METHOD USAEEcocviiuiiiiiiiiiiiiiiii it 1004
SEND METHOD Syntax Descriptionccccovvviiiiiiiiiiiiiiiniiicieccen 1004
SEND METHOD Exampleccccoiiiiiiiiiiiiiiiiiiicicccice e 1007

129 SEPARATEoooviiiiiiiiiiiiccccc e 1015
SEPARATE USAGEooviiuiiiiiiiiiiiii ittt 1016
SEPARATE Syntax Descriptioncccccceiviiiiiiiiiiiiiiiiiiiiciiciecen 1016
Rules and Operational Considerationsc.ccoccveviiiiiiiiiiiiiiniiiccie, 1020
SEPARATE EXamplesccooiiiiiiiiiiiiiicce 1022

130 SET CONTROLooiiiiiiiiiiiiiiicccieccec e 1029
SET CONTROL USAZEcoovviiiuiiiiiiiiiiiiiciiiciiic e 1030

SET CONTROL Syntax Descriptionccccccevvviiiiiiiiiiiiiiiiniiiiciecen 1030

SET CONTROL EXamplesccccoviiiiiiiiiiiiiiiiiiiiiciiceiec e 1030

131 SET GLOBALSoiiiiiiiiiiiiiciciieccc e 1033
XVi Statements

Statements

SET GLOBALS USAZEccoiiuiiiiiiiiiiiiiiiiiciiicciic e 1034

SET GLOBALS Syntax Descriptionc.ccccoeieiiiiiiiiiiiiiiieiceiccc 1034

SET GLOBALS Parameterscc.cocueeeiiiiiiiniiiiiieiiccicciecce e 1035

SET GLOBALS EXampleccccoviiiiiiiiiiiiiicicccci e 1036

132 SET KEY oottt 1037
SET KEY USAGEccvviiuiiiiiiiiiiiiiiiicciccciic e 1038

SET KEY Syntax Descriptionccccceeviiiiiiiiiiiiiiiiiiiiiiiciccccce 1038
Making Keys Program-Sensitive and Deactivating Keyscccccoceenin. 1039
Assigning Commands/PTrogramsccocevveviiiiiiiniiiiieeecc 1041
Assigning Input DATA ... 1041
COMMAND OFF/ONoiiiiiiiiiiiiiiiiciiiicccc e 1042
Assigning HELD ..o 1042
DYNAMIC OPtiON ...cooviiiiiiiiiiiiiiiiiiiiccicieccic e 1043
DISABLED OPHONccuoiiiiiiiiiiiiiiiiiiciciccic e 1043

SET KEY Statements on Different Program Levelscccccociviiiniiin, 1044
AsSIgNING NAMESooiiiiiiiiiiiii e 1046

SET KEY EXamPIeccccoiiiiiiiiiiiiiiiiiiiiiiccicccccc e 1047

133 SET TIMEcoiiiiiiiiiiiiciicce s 1049
SET TIME USAGEooiviiiiiiiiiiiiiiiiiciicicci e 1050

SET TIME EXamplecccoviiiiiiiiiiiiiiiiiiiiiiiccic e 1050

134 SET WINDOWccoiiiiiiiiiiiiiiiic s 1053
SET WINDOW USAEEecccuviiiiiiiiiiiiiiiiiiiiiciicciec e 1054

SET WINDOW Syntax Descriptionccceeieviiiiiniieiiciieicciceecieecn, 1054

SET WINDOW EXamplecociiiiiiiiiiiiiiiiiiiiiiciccieeccece e 1054

135 SKIP ..ot s 1055
SKIP USAZE ...eoiuviiiiiiiiiiiiiiiiie e s 1056
SKIP Syntax Descriptionccccocuiiiiiiiiiiiiiiiiiiiiiciicceccec 1056
SKIP EXamPIe ...cuviiviiiiiiieicciieic e 1057

136 SORT ..o 1059
SORT USAZEoouviiiiiiiiiiiii e 1060
SORT ReStIICHONSoovviiiiiiiiiiiiiiciieciciccci e 1061
SORT Syntax Descriptioncccooiiiiiiiiiiiiiiiiicicec e, 1061
Three-Phase SORT Processingcccoceeviiiiiiiiiiiiiiiiiiiiiccceicn 1064
SORT EXaMPIE ...ooiiiiiiiiiiiiiiiiiiiii i 1065
Using External Sort Programsc.cccooiiiiiiiiiiiiiiciccc 1069

137 STACK ..o 1071
STACK USAZE ...oovvviiiiiiiiiiiiiiiiieec s 1072
STACK Syntax Descriptioncccceovviiiiiiiiiiiiiiiiiiiiiciicecec e 1072
STACK EXamplecccociiiiiiiiiiiiiiiiiiiiiiiciicc e 1075

138 STOP ..o 1077
STOP USAZE ...veeiviiiiiiiiiiiii et 1078
STOP EXamPIe ...uvoviiiiiiiiicic e 1078

D OO POTROPTR 1081
139 STORE ..o 1083
STORE USQZEccoiuviiiiiiiiiiiiiiiii it 1084
Statements XVii

Statements

Database-Specific Considerationscccoceeiiviiiiiiiiiiicicc, 1085
STORE Syntax Descriptionccocviiiiiiiiiiiiiii, 1085
STORE EXamPIEScceeiiuiiiiiiiiiiiiiiiiiiiiccic e 1087
140 SUBTRACT ...ttt 1091
SUBTRACT USAZEcvvviiiiiiiiiiiiiiiiiiiiciiccic i 1092
Syntax 1 - SUBTRACT Statement without GIVING Clausecc......... 1092
Syntax 2 - SUBTRACT Statement with GIVING Clausecccccceeveennene 1093
SUBTRACT EXamplec.coccuiiiiiiiiiiiiiiiiiiic i 1094
141 SUSPEND IDENTICAL SUPPRESSccccccoviiiiiiiiiiiiiiiicicccccce, 1095
SUSPEND IDENTICAL SUPPRESS Usagec.ccoceeiiiiiiiiiiiiiiiiiieicnene 1096
SUSPEND IDENTICAL SUPPRESS Syntax Descriptionccccccovenennen. 1096
SUSPEND IDENTICAL SUPPRESS Examplesccccocuvviiiiiiiiiiiiiiiinnn. 1096
142 TERMINATE ...cooiiiiiiiiiiiiiiiiece e 1101
TERMINATE USAEcoovviiiiiiiiiiiiiiiiiiciiiiiccci e 1102
TERMINATE Syntax Descriptioncccovviiiiiiiiiiiiiiiiiiiiieciecn 1102
Program Receiving Control after Terminationc.ccccoeoiiiii, 1103
TERMINATE EXampleccccccooviiiiiiiiiiiiiiiiiiicccciccecc e 1103
143 UPDATE ..o 1105
UPDATE USAZE ...ccvviiiiiiiiiiiiiiiiiiiiccciic e 1106
UPDATE ReStrictionscccuiiiiiiiiiiiiiiiiiiiiicccicciccec e 1107
Database-Specific Considerationscoccoceeiiviiiiiiiiiiiiiiccc 1107
UPDATE Syntax Descriptionccccevviiiiiiiiiiiiiiiiiiiiiececec, 1107
UPDATE EXampleccooiiiiiiiiiiiiiieiccci e 1109
144 UPDATE (SQL) «.eviiiiiiiiiiiiiiiicec i 1111
UPDATE USAEEoooviiiiiiiiiiiiiiiicieciccee e 1112
Syntax 1 - Searched UPDATEccccoiiiiiiiiiiiiiicneecececececee e 1112
Syntax 2 - Positioned UPDATEccccociviiiiiiiiiiiiiiiicccn 1115
UPDATE EXamplescccooioiiiiiiiiiiiiiic e 1116
145 UPDATELOBccuiiiiiiiiiiiicccecc s 1119
UPDATELOB USAGEooviiiiiiiiiiiiiiiiiicieciccce s 1120
UPDATELOB ReStrictionsccoovuiiiiiiiiiiiiiiciiicciccecccccce e 1120
UPDATELOB Syntax Descriptionccccoccviiiiiiiiiiiiiiiiiiiciccicccies 1121
System Variable Available with UPDATELOBccccoooiiiiiiiiiiiiiine. 1122
UPDATELOB Functional Considerationscccccooviiviiiiiiiininiiiicnne 1123
UPDATELOB EXamplesccooiiiiiiiiiiiiiiieccccee e 1123
146 UPLOAD PC FILEcooiiiiiiiiiiiiiiiiicccec s 1127
UPLOAD PC FILE USAEcooiuiiiiiiiiiiiiiiiciici e 1128
UPLOAD PC FILE Syntax Descriptionccccccoviiiiiiiiiiiiiiiiniinnnnn. 1129
UPLOAD PC FILE EXampleccccociiiiiiiiiiiiiiiiiiiiiiciiccicccceeecce 1130
147 WRITE ..ot 1131
WRITE USAZEevviiiiiiiiiiiiiiiiicciiicciicciec e 1132
Syntax 1 - Dynamic Formattingcccocoviiiiiiiiiiiic 1132
Syntax 2 - Using Predefined Form/Mapcccccoceeviiiiiiiiiiiiiniiiiiiiccs 1140
WRITE EXamPIESccoiiiiiiiiiiiiiiiiiiiiicicicccic e 1141
148 WRITE TITLEcooiiiiiiiiiiiiiiiiiicccc s 1147

XViii

Statements

Statements

WRITE TITLE USAGEcovvviiiiiiiiiiiiiiiiiiiiiciicciccic e 1148
WRITE TITLE ReStrictionscccccooviiiiiiiiiiiiiiiiicicccccccccccc 1149
WRITE TITLE Syntax Descriptionccccccovviiiiiiiiiiiiiiiiiiiiiccceee 1149
WRITE TITLE EXampleccccoooiiiiiiiiiiiiiiiiiiiciccccence 1153
149 WRITE TRAILERcoiiiiiiiiiiiiiiicccee e 1155
WRITE TRAILER USAGEeceeovuiiiiiiiiiiiiiiiiiiiiciicciccicec e 1156
WRITE TRAILER ReStrictionscccoooviiiiiiiiiiiiiiiiiiciiiccececcec 1157
WRITE TRAILER Syntax Descriptioncccccoevviiiiiiiiiiiiiiiiiiiicciiecc, 1157
WRITE TRAILER Exampleccccooiiiiiiiiiiiiiiiiiiccccs 1161
150 WRITE WORK FILEc.cooiiiiiiiiiiiiiiiiiicicccccee s 1163
WRITE WORK FILE USAEoovvviiiiiiiiiiiiiiiiiiiciicciecccec s 1164
WRITE WORK FILE Syntax Descriptionccccooviiviiiiiniiiiiiniiiiniiiens 1164
External Representation of Fieldscccoooviiiiiiii, 1166
Handling of Large and Dynamic Variablesccccccoviniiniiiiinnnnn, 1167
EXamplecooooiiiiiiiiiii 1167

Statements

XiX

XX

Preface

This document describes native Natural programming language (DML) statements and Natural
SQL statements. It is organized under the following headings:

Statements Grouped by Function

Provides an overview of the Natural statements ordered by
functional groups.

Definition Tables

Syntax Symbols and Operand

Information on the symbols that are used within the diagrams
that describe the syntax of Natural statements and on operand
definition tables.

Using Natural SQL Statements

Describes rules specific to using Natural SQL statements.

Referenced Example Programs

Contains additional example programs that are referenced in the
Statements and System Variables documentation.

Related Topics:

See also the Programming Guide for statement usage related topics such as: User-Defined Variables
| Dynamic and Large Variables | User-Defined Constants | Report Specification | Text Notation | User
Comments | Rules for Arithmetic Assignment | Logical Condition Criteria | Function Call

Statements in Alphabetical Order:

A-C D-F G-0 P-R S-Z
ACCEPT/REJECT DECIDE FOR GET PARSE JSON SELECT (SQL)
ADD DECIDE ON GET SAME PARSE XML SEND METHOD
ASSIGN DEFINE CLASS GET PASSW SEPARATE

AT BREAK DEFINE DATA TRANSACTION PERFORM SET CONTROL
AT END OF DATA DEFINE FUNCTION |[DATA PERFORM BREAK SET GLOBALS
AT END OF PAGE DEFINE PRINTER |HISTOGRAM PROCESSING SET KEY

AT START OF DATA |DEFINE PROTOTYPE|IF PRINT SET TIME

AT TOP OF PAGE DEFINE IF SELECTION |PROCESS SET WINDOW
BACKOUT SUBROUTINE IGNORE PROCESS COMMAND |SKIP
TRANSACTION DEFINE WINDOW INCLUDE PROCESS PAGE SORT

BEFORE BREAK DEFINE WORK FILE[INPUT PROCESS STACK
PROCESSING DELETE INSERT (SQL) [SQL (saQL) STOP

CALL DELETE (SQL) INTERFACE PROPERTY STORE

CALL FILE DISPLAY LIMIT READ SUBTRACT
CALL LOOP DIVIDE LOOP READ RESULT SET |SUSPEND
CALLDBPROC (SQL) |DO/DOEND MERGE (SQL) (saL) IDENTICAL
CALLNAT DOWNLOAD PC FILE|METHOD READ WORK FILE |SUPPRESS
CLOSE EJECT MOVE READLOB TERMINATE
CONVERSATION END MOVE INDEXED |REDEFINE UPDATE
CLOSE PC FILE END TRANSACTION |MULTIPLY REDUCE UPDATE (SQL)
CLOSE PRINTER ESCAPE NEWPAGE REINPUT UPDATELOB

XXi

Preface

A-C

ROLLBACK (SQL)
RUN

D-F G-0 P-R S-Z
CLOSE WORK FILE |EXAMINE OBTAIN REJECT UPLOAD PC FILE
COMMIT (SQL) EXPAND ON ERROR RELEASE WRITE
COMPOSE FETCH OPEN REPEAT WRITE TITLE
COMPRESS FIND CONVERSATION |REQUEST DOCUMENT |WRITE TRAILER
COMPUTE FOR OPTIONS RESET WRITE WORK FILE
CREATE OBJECT FORMAT RESIZE

RETRY

XXii

Statements

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Statements

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software GmbH products provide functionality with respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

Statements 3

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

|

= 2 Statements Grouped by Function

= 3 Syntax Symbols and Operand Definition Tablescccuvvviiiiiiiiiiiie e 19

2 Statements Grouped by Function

m Database ACCESS N UPUALEiiiiiiiiiiiii e 8
= Arithmetic and Data Movement OpErationsciiiiiiiiiiiiiie e 10
B 100D EXECULION ...ttt 10
m Creation Of OUIPUE REPOTS ..ottt e e e ae e e e 10
= Screen Generation for INteractive ProCESSINGvvvvviiiiiiii i 1
= Processing of LOGICal CONAIIONSouuriiiiiiiii e 12
= [nvoking Programs and ROULINESuueuieiiiiiiiiiiiiiiiiiiiiiieiiisiiaeeseeeeses s nnssnnsnnnnnenes 12
LI 12101 o OO PP PTPPPPPPRRR 12
= Program and SesSion TErMINALIONoiuiiiiiiiiiii et 13
m Control Of WOrK FileS / PC FlES ... 13
= Component Based Programmingo.uueieoiuiire ettt 13
= Memory Management Control for Dynamic Variables 0r X-AITayscccvuvviiieeieiiiiiiiiiiee e 14
m Natural Remote Procedure Calloooiiiiiiiii e e e 14
B nternet and Parsingcooooiiiiiii i 15
B MISCRIANEOUS ... e 15
= Reporting Mode STAEMENTSviiiiiiii s 15
= Statements Available with Predict Case and Entire DBoviiiiiiiiii e 17

Statements Grouped by Function

) Notes:

1. Certain statements can be used both in structured mode and in reporting mode, while others
can be used in reporting mode only. See Natural Programming Modes in the Programming Guide.

2. The statements DLOGOFF, DLOGON, SHOW, IMPORT and EXPORT are only available when Entire DB
is installed. For a description, see the Entire DB documentation.

Database Access and Update

The following types of statements are available:

= Natural DML Statements

= Natural SQL Statements

Natural DML Statements

The following Natural data manipulation language (DML) statements are used to access and ma-
nipulate information contained in a database.

READ Reads a database file in physical or logical sequence of records.

READLOB Reads a LOB field (Large OBject field) in fixed length segments using
multiple database calls.

FIND Selects records from a database file based on user-specified criteria.

HISTOGRAM Reads the values of a database field.

GET Reads a record with a given ISN (internal sequence number) or RNO (record
number).

GET SAME Re-reads the record currently being processed.

ACCEPT/REJECT Accepts/reject records based on user-specified criteria.

PASSW Provides password for access to a password-protected file.

LIMIT Limits the number of executions of a READ, FIND or HISTOGRAM processing
loop.

STORE Adds a new record to the database.

UPDATE Updates a record in the database.

UPDATELOB Updates a data segment of a LOB field (Large OBject field) in a database
record.

DELETE Deletes a record from the database.

END TRANSACTION Indicates the end of a logical transaction.

BACKOUT TRANSACTION Backs out a partially completed logical transaction.

GET TRANSACTION DATA Reads transaction data stored with a previous END TRANSACTION statement.

Statements

Statements Grouped by Function

RETRY

Attempts to re-read a record which is in hold status for another user.

AT START OF DATA

Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

BEFORE BREAK PROCESSING |Specifies statements to be performed before performing break processing.

PERFORM BREAK PROCESSING|Immediately invokes break processing.

Natural SQL Statements

In addition to the Natural DML statements, Natural also provides SQL statements for use in Nat-

ural programs that

manipulate data on an SQL database.

The following Natural SQL statements are available:

CALLDBPROC Invokes a stored procedure of the SQL database system to which Natural is connected.

COMMIT Indicates the end of a logical transaction and releases all data locked during the
transaction. All data modifications are committed and made permanent.

DELETE Deletes either rows in a table without using a cursor (“searched” DELETE) or rows in
a table to which a cursor is positioned (“positioned” DELETE).

INSERT Adds one or more new rows to a table.

MERGE Updates a table using the specified input data. Rows in the target table that match the

input data are updated as specified, and rows that do not exist in the target table are
inserted.

PROCESS SQL

Issues SQL statements to the underlying database.

READ RESULT SET

Reads a result set which was created by a stored procedure that was invoked by a
previous CALLDBPROC statement.

ROLLBACK Undoes all database modifications made since the beginning of the last recovery unit.

SELECT Supports both the cursor-oriented selection that is used to retrieve an arbitrary number
of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row.

UPDATE Performs an update operation on either rows in a table without using a cursor

(“searched” UPDATE) or columns in a row to which a cursor is positioned (“positioned”
UPDATE).

Statements

Statements Grouped by Function

Arithmetic and Data Movement Operations

The following statements are used for arithmetic and data movement operations:

COMPUTE Performs arithmetic operations or assigns values to fields.
ADD Adds two or more operands.

SUBTRACT Subtracts one or more operands from another operand.
MULTIPLY Multiplies two or more operands.

DIVIDE Divides one operand into another.

EXAMINE TRANSLATE |Translates the characters contained in a field into upper-case or lower-case, or into

other characters.

MOVE Moves the value of an operand to one or more fields.

MOVE ALL Moves multiple occurrences of a value to another field.

COMPRESS Concatenates the value of two or more fields into a single field.

SEPARATE Separates the content of a field into two or more fields.

EXAMINE Scans a field for a specific value and replaces it, and/or counts how often it occurs.
RESET Sets the value of a field to zero (if numeric) or blank (if alphanumeric), or to its

initial value.

Loop Execution

The following statements are related to the execution of processing loops:

ESCAPE

Stops the execution of a processing loop.

FOR

Initiates a processing loop and controls the number of times the loop is to be processed.

REPEAT

Initiates a processing loop (and terminates it based on a specified condition).

SORT

Sorts records.

Creation of Output Reports

The following statements are used for the creation of output reports:

10

Statements

Statements Grouped by Function

FORMAT

Specifies output parameter settings.

DISPLAY

Specifies fields to be output in column form.

WRITE /PRINT

Specifies fields to be output in non-column form.

WRITE TITLE

Specifies text to be output at the top of each page of a report.

WRITE TRAILER

Specifies text to be output at the bottom of each page of a report.

AT TOP OF PAGE

Specifies processing to be performed when a new output page is started.

AT END OF PAGE

Specifies processing to be performed when the end of an output page
is reached.

SKIP Generates one or more blank lines in a report.
EJECT Causes a page advance without titles or headings.
NEWPAGE Causes a page advance with titles and headings.

SUSPEND IDENTICAL SUPPRESS

Suspends identical suppression for a single record.

DEFINE PRINTER

Allocates a report to a logical output destination.

CLOSE PRINTER

Closes a printer.

Screen Generation for Interactive Processing

The following statements are used to create data screens (maps) for the purpose of interactive

processing of data:

INPUT Creates a formatted screen (map) for data display/ entry.

REINPUT Re-executes an INPUT statement (if invalid data were entered in response to the
previous INPUT statement).

DEFINE WINDOW Specifies the size, position and attributes of a window.

SET WINDOW Activates and de-activates a window.

PROCESS PAGE Creates a data mapping to a web rich GUI screen.

layout.

PROCESS PAGE USING |Performs rich GUII/O processing using an adapter object generated from a page

PROCESS PAGE UPDATE |Re-executes a PROCESS PAGE statement.

PROCESS PAGE MODAL |Initiates a processing block and controls the lifetime of a rich GUI window.

Statements

11

Statements Grouped by Function

Processing of Logical Conditions

The following statements are used to control the execution of statements based on conditions de-

tected during the execution of a Natural program:

IF Performs statements depending on a logical condition.

IF SELECTION |Verifies that in a sequence of alphanumeric fields one and only one contains a value.

DECIDE FOR |Performs statements depending on logical conditions.

DECIDE ON Performs statements depending on the contents of a variable.

Invoking Programs and Routines

The following statements are used in conjunction with the execution of programs and routines:

CALL Invokes a non-Natural program from a Natural program.

CALLNAT Invokes a Natural subprogram.

CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.
CALL LOOP Generates a processing loop containing a call to a non-Natural program.

DEFINE SUBROUTINE |Defines a Natural subroutine.

ESCAPE Stops the execution of a routine.
FETCH Invokes a Natural program.
PERFORM Invokes a Natural subroutine.

PROCESS COMMAND |Invokes a command processor.

RUN Compiles and executes a source program.

Functions

The following Natural statements are used to create functions:

12

Statements

Statements Grouped by Function

DEFINE FUNCTION |Creates functions which can be called instead of operands in Natural statements.

Functions are defined in Natural objects of type function.

DEFINE PROTOTYPE |Specifies the properties to be used for a function call.

Function Call Used to call Natural objects of type function.

Program and Session Termination

The following Natural statements are used to terminate the execution of an application or to ter-
minate the Natural session.

STOP

Terminates the execution of an application.

TERMINATE

Terminates the Natural session.

Control of Work Files / PC Files

The following Natural statements are used to read/write data to a physical sequential (non-Adabas)

work file:

WRITE WORK FILE |Writes data to a work file.

DOWNLOAD PC FILE|Enables transfer data from a mainframe or a Linux platform to the PC.

READ WORK

FILE |Reads data from a work file.

UPLOAD PC

FILE |Enables transfer data from a PC to a mainframe or a Linux platform.

CLOSE WORK FILE |Closes a work file.

CLOSE PC FILE Closes a specific PC work file.

DEFINE WORK FILE|Assigns a file name to a work file.

Component Based Programming

The following Natural statements are used in conjunction with component based programming:

Statements

13

Statements Grouped by Function

DEFINE CLASS |Specifies a class from within a Natural class module.

CREATE OBJECT |Creates an object (also known as an instance) of a given class.

SEND METHOD |Invokes a method of an object.

INTERFACE Defines an interface (a collection of methods and properties) for a certain feature of a
class.

METHOD Assigns a subprogram as the implementation of a method, outside an interface definition.

PROPERTY Assigns an object data variable as the implementation to a property, outside an interface
definition.

Memory Management Control for Dynamic Variables or X-Arrays

EXPAND |Expands the allocated memory of dynamic variables to a given size.

REDUCE |Reduces the size of a dynamic variable.

RESIZE |Adjusts the size of a dynamic variable.

Natural Remote Procedure Call

OPEN CONVERSATION

Allows the RPC Client to open a conversation and specify the remote
subprograms to be included in the conversation.

CLOSE CONVERSATION

Allows the client to close conversations. You can close the current conversation,
another open conversation, or all open conversations.

DEFINE DATA CONTEXT

Defines variables known as context variables, which are meant to be available
to multiple remote subprograms within one conversation, without having to
explicitly pass the variables as parameters with the corresponding CALLNAT
statements.

See also the section Natural Statements Involved in the Natural RPC (Remote Procedure Call) docu-

mentation.

14

Statements

Statements Grouped by Function

Internet and Parsing

PARSE JSON Allows you to parse JSON documents from a Natural program.

PARSE XML Allows you to parse XML documents from a Natural program.

REQUEST DOCUMENT |Allows you to access an external system.

Miscellaneous

DEFINE DATA |Defines the data elements which are to be used in a Natural program or routine.

END Indicates the end of the source code of a Natural program or routine.
INCLUDE Incorporates Natural copycode at compilation.
ON ERROR Intercepts runtime errors which would otherwise result in a Natural error message, followed

by the termination of the Natural program.

RELEASE Deletes the contents of the Natural stack; releases sets of ISN sets retained via a FIND
statement; releases Natural global variables.

SET CONTROL |Performs a Natural terminal command from within a Natural program.

SET KEY Assigns functions to terminal keys.

SET GLOBALS |Sets values for session parameters.

SET TIME Establishes a point-in-time reference for a *TIMD system variable.

STACK Places data and/or commands into the Natural stack.

Reporting Mode Statements

The following statements are for reporting mode only:

LOOP Closes a processing loop.

DO/DOEND|Specify a group of statements to be executed based on a logical condition.

OBTAIN |[Causes one or more fields to be read from a file.

REDEFINE|Redefines a field.

The following statements can be used both in structured mode and in reporting mode, however,
the statement structure and, with some of them, the functionality is different:

Statements 15

Statements Grouped by Function

AT START OF DATA

Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

AT TOP OF PAGE

Specifies processing to be performed when a new output page is started.

AT END OF PAGE

Specifies processing to be performed when the end of an output page is
reached.

BEFORE BREAK PROCESSING

Specifies statements to be performed before performing break processing.

CALL LOOP Generates a processing loop containing a call to a non-Natural program.
CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.
COMPUTE Performs arithmetic operations or assigns values to fields.

DEFINE SUBROUTINE Defines a Natural subroutine.

ESCAPE Stops the execution of a processing loop.

FIND Selects records from a database file based on user-specified criteria.

GET SAME Re-reads the record currently being processed.

HISTOGRAM Reads the values of a database field.

IF Performs statements depending on a logical condition.

IF SELECTION

Verifies that in a sequence of alphanumeric fields one and only one contains
a value.

ON ERROR Intercepts runtime errors which would otherwise result in a Natural error
message, followed by the termination of the Natural program.

READ Reads a database file in physical or logical sequence of records.

READ WORK FILE Reads data from a work file.

REPEAT Initiates a processing loop (and terminates it based on a specified condition).

SORT Sorts records.

STORE Adds a new record to the database.

UPDATE Updates a record in the database.

UPLOAD PC FILE

Enables transfer data from a PC to a mainframe or a Linux platform.

16

Statements

Statements Grouped by Function

Statements Available with Predict Case and Entire DB

The following Natural statements can be used in conjunction with Predict Case and Entire DB
Engine:

" DLOGOFF/DLOGON

= TIMPORT

= EXPORT

= SHOW

For more information about these statements, see the Predict Case documentation.

Statements 17

18

3 Syntax Symbols and Operand Definition Tables

B SYNEAX SYMDOIS .
= Operand Definition Tableuvviiiiii i

19

Syntax Symbols and Operand Definition Tables

Syntax Symbols

The following symbols are used within the diagrams that describe the syntax of Natural statements:

Syntax Symbol

Description

ABCDEF

Upper-case non-italic letters indicate that the term is either a Natural keyword or a
Natural reserved word that must be entered exactly as specified.

ABCDEF

If an optional term in upper-case letters is completely underlined (not a hyperlink!),
this indicates that the term is the default value. If you omit the term, the underlined
value applies.

If a term in upper-case letters is partially underlined (not a hyperlink!), this indicates
that the underlined portion is an acceptable abbreviation of the term.

Letters in italics are used to represent variable information. You must supply a valid
value when specifying this term.

Note: Inplaceof statementor statements, you must supply one or several suitable

statements, depending on the situation. If you do not want to supply a specific
statement, you may insert the IGNORE statement.

Elements contained within square brackets are optional.

If the square brackets contain several lines stacked one above the other, each line is an
optional alternative. You may choose at most one of the alternatives.

If the braces contain several lines stacked one above the other, each line is an alternative.
You must choose exactly one of the alternatives.

The vertical bar separates alternatives.

A term preceding an ellipsis may optionally be repeated. A number after the ellipsis
indicates how many times the term may be repeated.

If the term preceding the ellipsis is an expression enclosed in square brackets or braces,
the ellipsis applies to the entire bracketed expression.

A term preceding a comma-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by commas. A number after the comma-ellipsis indicates
how many times the term may be repeated.

If the term preceding the comma-ellipsis is an expression enclosed in square brackets
or braces, the comma-ellipsis applies to the entire bracketed expression.

A term preceding a colon-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by colons. A number after the colon-ellipsis indicates
how many times the term may be repeated.

If the term preceding the colon-ellipsis is an expression enclosed in square brackets or
braces, the colon-ellipsis applies to the entire bracketed expression.

20

Statements

Syntax Symbols and Operand Definition Tables

Syntax Symbol Description

Other symbols All other symbols except those defined in this table must be entered exactly as specified.

(except[1 { !}

Exception: The SQL scalar concatenation operator is represented by two vertical bars
..) |that must be entered literally as they appear in the syntax definition.

Example:

WRITE [USING] {

FORM

MAP } operandl [operand? ...]

WRITE, USING, MAP and FORM are Natural keywords which you must enter as specified.

operandl and operand?Z are user-supplied variables for which you specify the names of the objects
you wish to deal with.

The braces indicate that you must choose whether to specity either FORM or MAP; however, you
must specify one of the two.

The square brackets indicate that USING and operand? are optional elements which you can, but
need not, specify.

The ellipsis indicates that you may specify operandZ? several times.

Operand Definition Table

Whenever one or more operands appear in the syntax of a Natural statement, the following table
is provided:

Operand Possible Structure Possible Formats Referencing [Dynamic Definition
Permitted
operand1|C s |A|G|N/M|E |A|UIN|P|1[F[B|D|T|L|C| O] yes/no yes/no

This table provides the following information on each operand:

Possible Structure

Indicates the structure which the operand may take:

Statements 21

Syntax Symbols and Operand Definition Tables

C |Constant.

S |Single occurrence (scalar; that is, a field/variable which is neither an array nor a group).
A Array.

G |Group.

NIM | Natural system variable:

N All system variables can be used.

M Only modifiable system variables can be used. For information on
whether the content of a system variable is modifiable or not, see
the Natural System Variables documentation.

E

Arithmetic expressions.

Possible Formats

Indicates the format which the operand may take:

Alphanumeric (EBCDIC code page)

Alphanumeric (Unicode)

Numeric unpacked

o =Z c >

Packed numeric

Integer

Floating point

Binary

Date

Time

Logical

Attribute control

ol O r - O o m

HANDLE OF OBJECT

Referencing Permitted

Indicates whether the operand may be referenced or not, using a statement label or the source
code line number.

22

Statements

Syntax Symbols and Operand Definition Tables

Dynamic Definition

Indicates whether the field may be dynamically defined within the body of the program. This is
possible in reporting mode only.

Statements 23

24

I I Using Natural SQL Statements

In addition to the native Natural DML statements, Natural provides Natural SQL statements for
use in Natural programs that maintain data contained in an SQL or SQL-compliant database.

This chapter describes the special syntax rules and conventions that apply when using Natural
SQL statements.

Common Set and Extended Set
Basic Syntactical Items
Natural View Concept

Scalar Expressions

Search Conditions

Select Expressions

Flexible SQL

Overview of Natural SQL Statements:

CALLDBPROC | COMMIT | DELETE | INSERT | MERGE | PROCESS SQL | READ RESULT SET | ROLLBACK
| SELECT | UPDATE

25

26

4 Common Set and Extended Set

The SQL statements available within the Natural programming language comprise two different
syntax sets:

® Common Set
The Common Set basically corresponds to the standard SQL syntax definitions and is provided
for each SQL-compliant database system supported by Natural.

* Extended Set
The Extended Set, in addition, provides special enhancements to the Common Set to support
specific features of the various supported database systems. The supported part of the Extended
Set differs with each of these database systems.

The Natural SQL statements documentation mainly describes the Natural SQL Common Set. The
statement syntax adheres as far as possible to the syntax described in the relevant literature on
SQL; please, refer to this literature for further details. For details on the Natural SQL Extended
Set, see the documentation of Natural for Db2.

27

28

5

Basic Syntactical ltems

Parameters ...

INCIUAE COlUMNS CIAUSE ... e e e e et ettt

Period Clause

Natural Formats and SQL Data TYPEScuveriiiiiiii e

29

Basic Syntactical Items

This chapter describes basic syntactical items, which are referenced within the individual SQL
statement descriptions.

Constants

The constants used in the syntactical descriptions of the Natural SQL statements are:

constant |Theitem constant refers to either a Natural constant or an SQL datetime constant.

integer |Theitem 7nteger always represents an integer constant.

| Note: If the character for decimal point notation (session parameter DC) is set to a comma

(,), any specified numeric constant must not be followed directly by a comma, but must be
separated from it by a blank character; otherwise an error or wrong results occur.

Invalid Syntax: Valid Syntax:

VALUES (1,'A") leads to a syntax error. [VALUES (1 ,"'A")

VALUES (1,2,3) leads to wrong results.|VALUES (1 ,2 ,3)

SQL Datetime Constants

An SQL datetime constant is a character string constant of a particular format that specifies one
of the following:

DATE string-constant Specifies an SQL date constant, for example: DATE '2013-15-01".

TIME string-constant Specifies an SQL time constant, for example: TIME '10:30:15".

TIMESTAMP string-constant|Specifies an SQL time stamp constant, for example: TIMESTAMP
'2014-15-01 10:20:15.123456".

For information on the valid string-constant formats, refer to IBM's Db2 SQL reference information.

Names

The names used in the syntactical descriptions of the Natural SQL statements are:

= authorization-identifier
= ddm-name

= view-name

= column-name

= |ocation-name

30 Statements

Basic Syntactical ltems

= fable-name
= correlation-name

authorization-identifier

Theitem authorization-identifier, whichis also called creator name, is used to qualify database
tables and views. See also authorization-identifier under table-name below.

ddm-name

The item ddm-name always refers to the name of a Natural data definition module (DDM) as created
with the Natural utility SYSDDM.

view-name

The item view-name always refers to the name of a Natural view as defined in the DEFINE DATA
statement.

column-name
The item column-name always refers to the name of a physical database column.
location-name

The item Tocation-name always denotes the location of the table. Specification of location-name
is optional and belongs to the SOL Extended Set.

table-name

The item table-name in this section is used to reference both SQL base tables and SQL viewed
tables.

Syntax of item table-name:

[[Tocation-name]Jauthorization-identifier.Jddm-name

Syntax Element Description:

Statements 31

Basic Syntactical Items

Syntax Element

Description

ddm-name

A Natural data definition module (DDM) must have been created for a
table to be used. The name of such a DDM must be the same as the
corresponding database table name or view name.

location-name

This optional item specifies the location of the table to be accessed.

authorization-identifier

There are two ways of specifying the authorization-identifierofa
database table or view.

One way corresponds to the standard SQL syntax, in which the
authorization-identifierisseparated from the table name by a period.
Using this form, the name of the DDM must be the same as the name of
the database table without the authorization-identifier.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF PERSONNEL
02 NAME
02 AGE
END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL.PERSONNEL

Alternatively, you can define the authorization-identifier as part
of the DDM name. The DDM name then consists of the
authorization-identifierand the database table name separated by
a hyphen (-). The hyphen between the authorization-identifierand
the table name is converted internally into a period.

Note: This form of DDM name can also be used with a FIND or READ

statement, because it conforms to the DDM naming conventions applicable
to these statements.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
02 NAME
02 AGE
END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL-PERSONNEL

If the authorization-identifierhas been specified neither explicitly

nor within the DDM name, it is determined by the SQL database system.

32

Statements

Basic Syntactical ltems

Syntax Element

Description

In addition to being used in SELECT statements, table names can also be
specified in DELETE, INSERT and UPDATE statements.

Examples:

DELETE FROM SQL.PERSONNEL
WHERE AGE IS NULL

INSERT INTO SQL.PERSONNEL (NAME,AGE)
VALUES ("ADKINSON',35)

UPDATE SQL.PERSONNEL
SET SALARY = SALARY * 1.1
WHERE AGE > 30

correlation-name

The item correlation-name represents an alias name for a table-name. It can be used to qualify
column names; it also serves to implicitly qualify fields in a Natural view when used with the
INTO clause of the SELECT statement.

Example:

DEFINE DATA LOCAL

01 PERS-NAME (A20)
01 EMPL-NAME (A20)
01 AGE (I2)
END-DEFINE

SELECT X.NAME , Y.NAME , X.AGE
INTO PERS-NAME , EMPL-NAME , AGE

FROM SQL-PERSONNEL X
WHERE X.AGE = Y.AGE
END-SELECT

, SQL-EMPLOYEES Y

Although in most cases the use of correlation-names is not necessary, they may help to make

the statement clearer.

Statements

33

Basic Syntactical Items

Parameters

Syntax of item parameter:

[[:sq7-type]:] host-variable[INDICATOR[:] host-variable] [LINDICATORI[:]1 host-variable]

Syntax Element Description:

Syntax Element

Description

sqgl-type

An sq] -typespecifies the SQL data type of the host-variable whenitis used for Db2
access. The specification of sq7-typeis optional as most SQL data types are implicitly
assigned to Natural host-variables. However, for some Natural host-variables the SQL
data type cannot be associated implicitly.

sql-typebelongs to the SOL Extended Set.

If a sqi-typeis specified, it has to be surrounded by colons (:). Valid sql-types are:

Natural Format Db2 SQL Data Type
sql-type

BLOBFILE group(14,14,14,A255) BLOB file reference(916/917)
CLOBFILE |group(I4,14,14,A255) CLOB file reference(920/921)
DBCLOBFILE |group(14,14,14,A255) DBCLOB file reference(924/925)

BLOBLOC |(14) BLOB locator960/961)
CLOBLOC |(14) CLOB locator(964/965)
DBCLOBLOC | (14) DBCLOB locator(968/969)

See also Natural Formats and SQL Data Types.

host-variable

A host-variableisaNatural user-defined variable (no system variable) which is
referenced in an SQL statement. It can be either an individual field or defined as part of
a Natural view.

When defined as a receiving field (for example, in the INTO clause), a host-variable
identifies a variable to which a value is assigned by the database system.

When defined as a sending field (for example, in the WHERE clause), a host-variable
specifies a value to be passed from the program to the database system.

See also Natural Formats and SQL Data Types.

[:]

Colon:

To comply with SQL standards, a host-variable can also be prefixed by a colon (:).
When used with flexible SQL, host-variables must be qualified by colons.

Example:

34

Statements

Basic Syntactical ltems

Syntax Element

Description

SELECT NAME INTO :ffNAME FROM PERSONNEL
WHERE AGE = :VALUE

The colon is always required if the variable name is identical to an SQL reserved word.
In a context in which either a host-variable or a column can be referenced, the use of
a name without a colon is interpreted as a reference to a column.

INDICATOR

INDICATOR Clause:

The INDICATOR clause is an optional feature to distinguish between a “null” value (that
is, no value at all) and the actual values 0 or “blank”.

When specified with a receiving host-variable (target field), the INDICATOR
host-variable (nullindicator field) serves to find out whether a column to be retrieved
is “null”.

Example:

DEFINE DATA LOCAL

1 NAME (A20)
1 NAMEIND (I2)
END-DEFINE
SELECT *

INTO NAME INDICATOR NAMEIND

In this example, NAME represents the receiving host-variable and NAMEIND the null
indicator field.

If a null indicator field has been specified and the column to be retrieved is null, the value
of the null indicator field is negative and the target field is set to 0 or “blank” depending
on its data type. Otherwise, the value of the null indicator field is greater than or equal
to 0.

When specified with a sending host-variable (source field), the null indicator field is
used to designate a null value for this field.

Example:

DEFINE DATA LOCAL

1 NAME (A20)

1 NAMEIND (I2)

UPDATE ...

SET NAME = :NAME INDICATOR :NAMEIND
WHERE ...

In this example, : NAME represents the sending host-variable and : NAMEIND the null
indicator field. By entering a negative value as input for the null indicator field, a null
value is assigned to a database column.

An INDICATOR host-variableis of format/length I2.

Statements

35

Basic Syntactical Items

Syntax Element |Description
LINDICATOR LINDICATOR Clause:
The LINDICATOR clause is an optional feature which is used to support columns of varying
lengths, for example, VARCHAR or LONG VARCHAR type.
When specified with a receiving host-variable (target field), the LINDICATOR
host-variable (length indicator field) contains the number of characters actually
returned by the database into the target field. The target field is always padded with
blanks.
If the VARCHAR or LONG VARCHAR column contains more characters than fit in the target
field, the length indicator field is set to the length actually returned (that is, the length of
the target field) and the null indicator field (if specified) is set to the total length of this
column.
Example
DEFINE DATA LOCAL
1 ADDRESSLIND (I2)
1 ADDRESS (A50/1:6)
END-DEFINE
SELECT *
INTO :ADDRESS(*) LINDICATOR :ADDRESSLIND
In this example, : ADDRESS (*) represents the target field which receives the first 300
bytes (if available) of the addressed VARCHAR or LONG VARCHAR column, and
:ADDRESSLIND represents the length indicator field which contains the number of
characters actually returned.
When specified with a sending host-variable (source field), the length indicator field
specifies the number of characters of the source field which are to be passed to the
database.
Example:
DEFINE DATA LOCAL
1 NAMELIND (I2)
1 NAME (A20)
1 AGE (I2)
END-DEFINE
MOVE 4 TO NAMELIND
MOVE 'ABC%' TO NAME
SELECT AGE
INTO :AGE

WHERE NAME LIKE :NAME LINDICATOR :NAMELIND

36 Statements

Basic Syntactical ltems

Syntax Element

Description

A LINDICATOR host-variableis of format/length I2 or I4. For performance reasons,
it should be specified immediately before the corresponding target or source field;
otherwise, the field is copied to the temporary storage at runtime.

If the LINDICATOR field is defined as an 12 field, the SQL data type VARCHAR is used for
sending or receiving the corresponding column. If the LINDICATOR host-variableis
specified as 14, a large object data type (CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to its real
length. The LINDICATOR field and *LENGTH are set to this length. In case of a fixed length
field, the column is read up to the defined length. In both cases, the field is written up to
the value defined in the LINDICATOR field.

Let a fixed length field be defined witha LINDICATOR field specified as I2. If the VARCHAR
column contains more characters than fit into this fixed length field, the length indicator
field is set to the length actually returned and the null indicator field (if specified) is set
to the total length of this column (retrieval). This is not possible for fixed length fields
greater than or equal to 32 KB (length does not fit into null indicator field).

Include Columns Clause

include-columns

This clause belongs to the SOL Extended Set. It is available in the statements DELETE, INSERT,
MERGE and UPDATE.

Syntax of include-columns clause:

INCLUDE (column-name data-type,...)

Syntax Element Description:

Syntax Element

Description

INCLUDE

The keyword INCLUDE introduces a list of columns that is to be included in the result table
of a DELETE, INSERT, MERGE or UPDATE statement. INCLUDE can only be specified when a
DELETE, INSERT, MERGE or UPDATE statement is nested in the FROM clause of a SELECT
statement.

column-name

Specifies the name of a column of the result table of the MERGE statement that is not the
same name as another include column or a column in the target table.

data-type

Specifies the data type of the include column. See below.

Statements

37

Basic Syntactical Items

data-type

{ buflt—fn-type}
distinct-type

Syntax Element Description:

Syntax Element

Description

built-in-type

Specifies a built-in data type. See the IBM Db2 for z/OS documentation for a description
of built-in types.

distinct-type

Specifies a distinct type.

Period Clause

period-clause

This clause belongs to the SOL Extended Set. It is available in the statements searched DELETE
and searched UPDATE.

Syntax:

FOR PORTION OF

BUSINESS_TIME FROM exprl1 T0 expr2

Syntax Element Description:

Syntax Element

Description

FOR PORTION OF
BUSINESS_TIME

Specifies that the DELETE or UPDATE only applies to row values for the portion of the
BUSINESS_TIME period in the row that is specified by the period clause.

BUSINESS_TIME mustbe a period that is defined for the table referenced in the DELETE
and UPDATE statement.

FROM exprl TO
exprz

Specifies that the update applies to rows for the period that is specified by FROM exprl
TO exprl.

If the period that is specified by the start value and the end value for the
BUSINESS_TIME of a row is fully contained in the specified period (if the start value
for the period in the row is less than exprZ and the end value for the period in the row
is greater than expr1I), that row is updated or deleted, and the start and end values for
the BUSINESS_TIME period remain unchanged.

If the period that is specified by the start value and the end value for the
BUSINESS_TIME of arow is only partially contained in the specified period (if the start
value for the period in the row is greater than exprZ or the end value for the period

38

Statements

Basic Syntactical ltems

Syntax Element

Description

in the row is less than expr1I), that row is updated or deleted and then one or two
additional rows are inserted. The inserted rows represent the original row values for
the periods that were not updated or deleted by the update operation. For the inserted
rows, the start value and end value for the BUSINESS_TIME are set in such a way that
either the start value for the BUSINESS_TIME is the start value for the BUSINESS_TIME
of the original row and the end value is exprl, or the start value is exprZ and the end
value is the end value for the BUSINESS_TIME of the original row.

exprland expr?2

Specify expressions that return a value of a built-in data type.

The result of each expression must be comparable to the data type of the columns of
the specified period. Timestamp with TIME ZONE is not allowed as the result data type
for exprlor expr?.

Natural Formats and SQL Data Types

The Natural data format of a host-variable is converted to an SQL data type according to the fol-

lowing table:

Natural Format/Length SQL Data Type

An, ADYNAMIC CHAR (n), VARCHAR(n), CLOB(n)
B2 (COMPOPT DB2BIN=0FF) SMALLINT

B4 (COMPOPT DB2BIN=0FF) INT

F4 REAL

F8 DOUBLE PRECISION

12 SMALLINT

14 INT

Nnn.m NUMERIC (nn+m, m)

Pnn.m NUMERIC (nn+m, m)

T, A8 TIME

T (COMPOPT DB2TSTI=0ON) TIMESTAMP

D, A10 DATE

A26 TIMESTAMP

A19 TIMESTAMP(0)

A20+n TIMESTAMP(n) (1<=n<=12)

A25 TIMESTAMP(0) WITH TIMEZONE
A26+n TIMESTAMP(n) WITH TIMEZONE (1<=n<=12)
Gn; for view fields only GRAPHIC (n)

Statements

39

Basic Syntactical Items

Natural Format/Length

SQL Data Type

Un, UDYNAMIC

GRAPHIC (n) ,VARGRAPHIC(1), DBCLOB(1)
CCSID 1200

Bn, BDYNAMIC (COMPOPT DBZBIN=0N)

BINARY(n), VARBINARY(), BLOB(n)

Bn, BDYNAMIC (COMPOPT DBZBIN=0FF)

CHAR(n), VARCHAR(n), BLOB(n)

P19.0 BIGINT
F8 DECFLOAT(n)
A DYNAMIC, BDYNAMIC, U DYNAMIC XML

Group structure(14,14,14, A255) prefixed with
:BLOBFILE:

BLOB-file-reference

Group structure(14,14,14, A255) prefixed with
:CLOBFILE:

CLOB-file-reference

Group structure(14,14,14, A255) prefixed with
:DBCLOBFILE:

DBCLOB-file-reference

14 prefixed with :BLOBLOC:

BLOB-locator

14 prefixed with :CLOBLOC:

CLOB-locator

14 prefixed with :DBCLOBLOC:

DBCLOB-locator

Natural does not check whether the converted SQL data type is compatible to the database column.
Except for fields of format N, no data conversion is done.

In addition, the following extensions to standard Natural formats are available with Natural SQL:

® A one-dimensional array of format A can be used to support alphanumeric columns longer than
253 bytes. This array must be defined beginning with index 1 and can only be referenced by
using an asterisk (*) as the index. The corresponding SQL data type is CHAR (n), where nis the

total number of bytes in the array.

" Aspecial host-variabieindicated by the keyword LINDICATOR can be used to support variable-
length columns. The corresponding SQL data type is VARCHAR (n); see also the LINDICATOR

clause.

® The Natural formats date (D) and time (T) can be used with Natural for Db2. They are converted

to Db2 DATE and TIME.

A sending field specified as one-dimensional array without a LINDICATOR field is converted into
the SQL data type VARCHAR. The length is the total number of bytes in the array, not taking into

account trailing blanks.

40

Statements

6 Natural View Concept

Some Natural SQL statements also support the use of Natural views.

A Natural view can be specified instead of a parameter list, where each field of the view - except
group fields, redefining fields and fields prefixed with L@ or N@- corresponds to one parameter
(host variable).

Fields with names prefixed with L@ or N@ can only exist with corresponding master fields; that is,
fields of the same name, where:

" | @ fields are converted into LINDICATOR fields,
= N@ fields are converted into INDICATOR fields.

L@ fields should have been specified at view definition, immediately before the master fields to
which they apply.

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 PERSID (I14)
02 NAME (A20)
02 N@NAME (12) /* null indicator of NAME
02 L@ADDRESS (I2) /* length indicator of ADDRESS
02 ADDRESS (A50/1:6)
02 N@ADDRESS (I2) /* null indicator of ADDRESS
01 #PERSID (I14)
END-DEFINE
SELECT *

INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE PERSID = {fPERSID

END-SELECT

41

Natural View Concept

The above example is equivalent to the following one:

SELECT *
INTO PERSID,
NAME INDICATOR N@NAME,

ADDRESS(*)INDICATOR N@ADDRESS LINDICATOR L@ADDRESS
FROM SQL-PERSONNEL
WHERE PERSID = #PERSID

END-SELECT

42

Statements

7

Scalar Expressions

Scalar Expression
Scalar Operator
Factorc.ovven.

Row Value Expression

43

Scalar Expressions

+

{ factor }
(scalar-expression)

scalar-expression scalar-operator scalar-expression

Scalar Expression

A scalar-expression consists of a factor or other scalar expressions including scalar operators.
Concerning reference priority, scalar expressions behave as follows:

® When a non-qualified variable name is specified in a scalar expression, the first approach is to
resolve the variable name as column name of the referenced table.

® If no column with the specified name is available in the referenced table, Natural tries to resolve
this variable as a Natural user-defined variable (host variable).

Scalar Operator

/
|

CONCAT

A scalar-operator canbe any of the operators listed above. The minus (-) and slash (/) operators
must be separated by at least one blank from preceding operators.

44 Statements

Scalar Expressions

Factor

Common Set Syntax:

atom
column-reference
aggregate-function
special-register

Extended Set Syntax:

atom

column-reference
aggregate-function
olap-specification
row-change-expression
special-register
scalar-function
(scalar-expression,.)
labeled-duration
case-expression
cast-expression
user-defined-function-reference
sequence-reference
time-zone-specific-expression
scalar-fullselect

A factor can consist of one of the items listed in the above diagram and described in the text below.

Atom

{ parameter }
constant

An atom can be either a parameter or a constant.

Statements 45

Scalar Expressions

Column Reference

table-name.

correlation-name.

column-name

A column-referenceis a column name optionally qualified by either a tab7e-name or a
correlation-name (see also the section Basic Syntactical Items). Qualified names are often

clearer than unqualified names and sometimes they are essential.

] Note: A table name in this context must not be qualified explicitly with an authorization

identifier. Use a correlation name instead if you need a qualified table name.

If a column is referenced by a table-name or correlation-name, it must be contained in the cor-
responding table. If neither a table-name nor a correlation-name is specified, the respective

column must be in one of the tables specified in the FROM clause (see Table Expression).

Aggregate Function

Common Set Syntax:

(*)
-
COUN (DISTINCT column-reference)
AVG
MAX (DISTINCT column-reference)
MIN ([ALL] scalar-expression)
SUM
Extended Set Syntax:

46

Statements

Scalar Expressions

{ C08§$N;16 } (‘ { DISATLILN(;T } scalar-expression
AVG
MAX
MIN
SUM

STDDEV

STDDEV_SAMP ({ DISATLILNCT } scalar-expression)
VARTANCE

VAR_POP
VAR
VARTANCE_SAMP
VAR_SAMP

CORRELATION
CORR
COVARIANCE
‘ COVAR_POP] (scalar-expression-1,scalar-expression-2)
COVAR
COVARTANCE_SAMP
COVAR_SAMP

SQL provides a number of special functions to enhance its basic retrieval power. The so-called
SQL aggregate functions currently available and supported by Natural are:

AVG gives the average of the values in a column

COUNT |gives the number of values in a column

MAX gives the highest value in a column
MIN gives the lowest value in a column
SUM gives the sum of the values in a column

Apart from COUNT (*), each of these functions operates on the collection of scalar values in an ar-
gument (that is, a single columnora scalar-expression)and produces a scalar value as its result.

Example:

DEFINE DATA LOCAL
1 AVGAGE (I2)
END-DEFINE

SELECT AVG (AGE)
INTO AVGAGE
FROM SQL-PERSONNEL

Statements 47

Scalar Expressions

DISTINCT

In general, the argument can optionally be preceded by the keyword DISTINCT to eliminate redund-
ant duplicate values before the function is applied.

If DISTINCT is specified, the argument must be the name of a single column; if DISTINCT is omitted,
the argument can consist of a general scalar-expression.

DISTINCT is not allowed with the special function COUNT (*), which is provided to count all rows
without eliminating any duplicates.

ROW CHANGE Expression

ROW CHANGE {
TOKEN

TIMESTAMP

} FOR table-designator

A ROW CHANGE expression returns a token or a timestamp that represents the last change to a row.

TIMESTAMP Specifies a timestamp is returned that represents the last time when a row was
changed.
TOKEN Specifies a token of type BIGINT is returned that represents a relative point in

the modification sequence of a row.

FOR table-designator

Identifies the table in which the expression is referenced. table-designator
has to be a valid Natural SQL DDM.

OLAP Specification

The following clauses of the OLAP Specification require the IBM Db2 Analytics Accelerator for

z/OS:

CUME_DIST
PERCENT_RANK
NTILE

LAG

LEAD
FIRST_VALUE
LAST_VALUE
NTH_VALUE
RATIO_TO_REPORT

48

Statements

Scalar Expressions

ordered-0LAP-specification
numbering-specification
aggregation-specification

ordered-0LAP-specification

CUME_DIST ()

PERCENT_RANK ()

RANK () OVER

DENSE_RANK () (Iwindow-partition-clause]
NTILE (num-tile) window-order-clause)
lag-function

lead-function

lag-function

"RESPECT NULLS'
} 111

LAG (expression [, offset [, default [, {
"IGNORE NULLS'

lead-function

"RESPECT NULLS'
} 119

LEAD (expression [, offset [, default [, {
"IGNORE NULLS'

numbering-specification

ROW_NUMBER () OVER([wfndow-partition-c]ause][window-order-clauseh‘

aggregation-specification

aggregate-function . o
OVER ([window-partition-clause])
OLAP-column-function

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED }
FOLLOWING
window-aggregation-group-clause

window-order-clause {

Statements 49

Scalar Expressions

aggregate-function

AVG function

COUNT function
COUNT_BIG function

MAX function

MIN function
STDDEV function
SUM function
VARIANCE function

CORRELATION function

COVARIANCE function

OLAP-column-function

nth-value-function

first-value-function

last-value-function

ratio-to-report-function

first-value-function

FIRST_VALUE (expression [, {

"RESPECT NULLS'

"IGNORE NULLS'

|

last-value-function

'RESPECT NULLS'

LAST_VALUE (expression [, {

"IGNORE NULLS'

}

nth-value-function

NTH_VALUE (expression , nth-row)

50

Statements

Scalar Expressions

ratio-to-report-function

RATIO_TO_REPORT (expression)\

window-aggregation-group-clause

oy [
RANGE group

group-end

group-start

unsigned-constant PRECEDING

‘ UNBOUNDED PRECEDING]
CURRENT ROW

group-between

‘BETWEENgroup—bound-lANDgroup—bound-Z

group-bound-1

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-bound-2

UNBOUNDED FOLLOWING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-end

{ UNBOUNDED FOLLOWING }
unsigned-constant FOLLOWING

Statements 51

Scalar Expressions

window-partition-clause

PARTITION BY partitioning-expression,..

window-order-clause
ASC
NULLS LAST
ORDER BY ASC NULLS FIRST
{sort-key-expression DESC by
DESC NULLS FIRST
DESC NULLS LAST

Online analytical processing (OLAP) specifications provide the ability to return ranking, row
numbering and aggregation information as a scalar value in the result of a query. An OLAP spe-
cification can be included in an expression, in a select-list, or in the ORDER BY clause of a SELECT
statement. The query result to which the OLAP specifications are applied is the result table of the
innermost subselect that includes the OLAP specifications.

RANK Specifies that the rank of a row is defined as 1 plus the number of rows that strictly precede
the row.

DENSE_RANK |Specifies that the rank of a row is defined as 1 plus the number of preceding rows that are
distinct with respect to the ordering.

ROW_NUMBER |Specifies that a sequential row number is computed for the row that is defined by the

ordering, starting with 1 for the first row.

PARTITION BY

Defines the partition within which the OLAP operation is applied.

ORDER BY Defines the ordering of rows within a partition that is used to determine the value of the
OLAP specification.

ASC Specifies that the values of sort-key-expression are used in ascending order.

DESC Specifies that the values of sort-key-expression are used in descending order.

NULLS_FIRST

Specifies that the window ordering considers null values before all non-null values in the
sort order.

NULLS LAST

Specifies that the window ordering considers null values after all non-null values in the
sort order.

Example:

Display the ranking of employees that have a total salary of more than $30,000, in order by last

name.

52

Statements

Scalar Expressions

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVERCORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM DSN8910-EMP WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME;

Time-Zone-Specific Expression

time-zone-specific-expression

Specifies a timestamp with time zone value: AT LOCAL or AT TIME ZONE

AT

LOCAL

function-invocation
(expression)
constant
column-name
variable
special-register
scalar-fullselect
case-expression
cast-specification

{AT LOCAL}

AT

TIME ZONE

function-invocation
(expression)

function-invocation
(expression)

constant constant
column-name column-name
variable {AT TIME ZONE} variable

special-register
scalar-fullselect
case-expression
cast-specification

special-register
scalar-fullselect
case-expression
cast-specification

Special Register

special-register

A reference to a special register returns a scalar value.

For more information on the special registers that are supported by Natural, see special-register
in the section Syntactical Items Common to Natural SQL Statements in the Database Management System
Interfaces documentation.

Statements 53

Scalar Expressions

Scalar Function

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions.

For information on the scalar functions that are supported by Natural, see scalar-functionin
the section Syntactical Items Common to Natural SQL Statements in the Database Management System
Interfaces documentation.

Labeled Duration

labeled-duration

YEAR

YEARS

MONTH
MONTHS

DAY

DAYS

HOUR

HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

scalar-expression

A Tabeled-duration denotes a specific unit of time as expressed by a number which can be an
expression followed by one of the duration keywords.

labeled-duration does not conform to standard SQL, and is therefore supported by the Natural
SQL Extended Set only.

Case Expression

case-expression

54 Statements

Scalar Expressions

searched-when-clause
CASE } [

ELSE { NULL . }] END
scalar-expression

simple-when-clause

A case-expressiondoes not conform to standard SQL and is therefore supported by the Natural
SQL Extended Set only.

Searched WHEN Clause

WHEN search-condition THEN {

NULL }
scalar-expression

A Searched When Clause does not conform to standard SQL and is therefore supported by the
Natural SOL Extended Set only.

See details on search-condition.

Simple WHEN Clause

sca7ar-express7'on{ WHEN scalar-expression THEN { NULL . }}
scalar-expression

A Simple WHEN Clause does not conform to standard SQL and is therefore supported by the Nat-
ural SOL Extended Set only.

Cast Expression

cast-expression

‘CAST (scalar-expressionAS data-type) ‘

A CAST expression does not conform to standard SQL and is therefore supported by the Natural
SQL Extended Set only.

User-Defined Function Reference
The option user-defined-function-reference belongs to the Natural SOL Extended Set. This

option enables you to invoke any user-defined function. Arguments have to be placed in brackets
and separated by commas. The user-defined function must be declared in the target RDBMS.

Statements 55

Scalar Expressions

Sequence Reference

The option sequence-reference belongs to the Natural SOL Extended Set.

PREVIOUS VALUE FOR sequence-name

{ NEXT VALUE FOR sequence-name }

This option enables you to reference the next value or the previous value of a sequence object. The
sequence object has to be created in the target RDBMS before it could be referenced at runtime.

Scalar Fullselect

(fullselect)

The option scalar-fullselect belongs to the Natural SOL Extended Set.

A scalar-fullselect as supported in an expressionisa fullselect - enclosed in parentheses -
that returns a single row consisting of a single column value. If the ful7select does not return a
row, the result of the expression is the null value. If more than one row is to be returned for a
scalar-fullselect, an error occurs.

Row Value Expression

‘(sca lar-expression,..) ‘

A row-value-expressionreturns a single row that consists of one or more column values. The
values can be specified as a list of expressions. The number of columns that are returned by the
row-value-expressionisequal to the number of expressions. row-value-expressioncanbeused
as an operand of several predicates (quantified, DISTINCT, comparison, and IN).

56 Statements

8

Search Conditions

B S RANCN CONGIION .ottt

= Predicate

57

Search Conditions

predicate
[NOT] .
(search-condition)
AND
search-condition { oR } search-condition

Search Condition

A search-conditioncan consist of a simple predicate or multiple search-conditions. Multiple
search-conditions are combined with the Boolean operators AND, OR and NOT, and can contain
parentheses if required to indicate a desired order of evaluation.

Example

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
SELECT *
INTO NAME, AGE
FROM SQL-PERSONNEL

WHERE AGE = 32 AND NAME > 'K’
END-SELECT

Predicate

58 Statements

Search Conditions

scalar-expressfon{ scalar-expression }
comparison subquery

scalar-expression[NOT] BETWEEN scalar-expression AND scalar-expression

scalar-expression IS[NOT]DISTINCT FROM scalar-expression

column-reference atom
[NOT] LIKE { special-register } [ESCAPE aton
column-referencelIS [NOT] NULL
subquery
scalar-expression
[NOT] IN [{ atom. , }]
special-register

scalar-expression ALL
com arisoz ANY subquery

P SOME

EXISTS subquery
XMLEXISTS (xquery-expression-constant{BY REFIPASSING xquery-argument,...})

A predicate specifies a condition that can be “true”, “false” or “unknown”.

Ina search-condition,a predicate can consist of a simple or complex comparison operation or
other kinds of conditions.

Example:

SELECT NAME, AGE
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE AGE BETWEEN 20 AND 30
OR AGE IN (32, 34, 36)
AND NAME LIKE 'Zer'

J Note: The percent sign (%) may conflict with Natural terminal commands. If so, you must

define a terminal command control character different from %; see Changing the Terminal
Command Control Character in the Terminal Commands documentation.

The individual predicates are explained in the following topics (for further information on predic-
ates, please refer to the relevant literature). According to the syntax above, they are called as follows:

= Comparison Predicate
= BETWEEN Predicate
= DISTINCT Predicate
= | I[KE Predicate

= NULL Predicate

Statements 59

Search Conditions

= [N Predicate

= Quantified Predicate

= EXISTS Predicate

= XMLEXISTS Predicate

Comparison Predicate

scalar-expression comparison scalar-expression

row-value-expression comparison row-value-expression

A comparison predicate compares two values or a set of values with another set of values.

In the syntax diagram above, comparison can be one of the following operators:

equal to

less than

V| A

greater than

<= |less than or equal to

>= |greater than or equal to

<> |notequal to

See information on scalar-expression.

Subquery

(select-expression)

A subqueryisa select-expression that is nested inside another such expression.

Example:

DEFINE DATA LOCAL
1 #NAME (A20)
1 #PERSNR (I4)
END-DEFINE

SELECT NAME, PERSNR
INTO #NAME, {FPERSNR
FROM SQL-PERSONNEL
WHERE PERSNR IN
(SELECT PERSNR
FROM SQL-AUTOMOBILES
WHERE COLOR = 'black')

60 Statements

Search Conditions

END-SELECT

For further information, see Select Expressions.

BETWEEN Predicate

scalar-expression[NOT] BETWEEN scalar-expression AND scalar-expression

A BETWEEN predicate compares a value with a range of values.

See information on scalar-expression.

DISTINCT Predicate

{ scalar-expression IS[NOT] DISTINCT FROM scalar-expression }

row-value-expression IS[NOT]DISTINCT FROM row-value-expression

A DISTINCT predicate compares a value with another value or a set of values with another set of
values.

LIKE Predicate

atom

column-reference [NOT] LIKE { } [ESCAPE atom]

special-register

A LIKE predicate searches for strings that have a certain pattern.

See information on column-reference, atomand special-register.

NULL Predicate

ISINOT]NULL
column-reference ‘ ISNULL]
NOTNULL

A NULL predicate tests for null values.

If the compiler option DB2ARRY is set to ON, it is possible to specify an Natural array or an fixed index
range of an array as atom. The Natural SQL compiler will then decompose the array or fixed index
range into a list of scalar host variables.

See information on column-reference.

Statements 61

Search Conditions

IN Predicate

subquery }

scalar-expression [NOT] IN { .
row-value-expression

row-value-expression [NOT] IN subquery

An IN predicate compares a value or a set of values with a collection of values.
See information on scalar-expression, atomand special-register.

See information on subquery.

Quantified Predicate
SOME
scalar-expression comparison ANY subquery
ALL
. SOME
row-value-expression = ANY subquery
row-value-expression <> ALL subquery

A quantified predicate compares a value or a set of values with a collection of values.

See information on scalar-expression, comparisonand subquery.

EXISTS Predicate

EXISTS subquery

An EXISTS predicate tests for the existence of certain rows.

The EXISTS predicate evaluates to true only if the result of evaluating the subquery is not empty;
that s, if there exists at least one record (row) in the FROM table of the subquery satisfying the search
condition of the WHERE clause of this subquery.

Example of EXISTS:

62 Statements

Search Conditions

DEFINE DATA LOCAL
1 fFNAME (A20)
END-DEFINE

SELECT NAME
INTO {fFNAME
FROM SQL-PERSONNEL
WHERE EXISTS
(SELECT *
FROM SQL-EMPLOYEES
WHERE PERSNR > 1000
AND NAME < "L")

END-SELECT

See information on subquery.

XMLEXISTS Predicate

XMLEXISTS (xquery-expression-constant [

PASSING xquery-argument,...

xquery-argument

{ xquery-context-item-expression

xquery-context-item-expressionAS identifier

}

The XMLEXISTS predicate belongs to the Natural SQL Extended Set.

The XMLEXISTS predicate tests whether an XPATH expression returns a sequence of one or more

items. For further information, see the IBM Db2 XML Guide.

Statements

63

64

9 Select Expressions

= Selection

= Table Expression

65

Select Expressions

SELECT selection table-expression

A select-expression specifies a result table. It is used in the following Natural SQL statements:
INSERT | SELECT | UPDATE

Selection
scalar-expression [[AS] correlation-name]
[ALL] unpack-row !
DISTINCT
*

A selection specifies the columns of the result set tables to be selected.

Syntax Element Description:

Syntax Element Description

ALL|DISTINCT Elimination of Duplicate Rows:

Duplicate rows are not automatically eliminated from the result of a
select-expression. To request this, specify the keyword DISTINCT.

The alternative to DISTINCT is ALL. ALL is assumed if neither is specified.

scalar-expression|Scalar Expression:

Instead of, or as well as, simple column names, a selection can also include general
scalar expressions containing scalar operators and scalar functions which provide
computed values (see also the section Scalar Expressions).

Example:

SELECT NAME, 65 - AGE
FROM SQL-PERSONNEL

AS The optional keyword AS introduces a correlation-name for a column.

correlation-name |Correlation Name:

A correlation-name canbe assigned toa scalar-expression as an alias name
for a result column.

The correlation-nameneed notbe unique.Ifno correlation-nameisspecified
for a result column, the corresponding column-name will be used (if the result
column is derived from a column name; if not, the result table will have no name).

66 Statements

Select Expressions

Syntax Element Description

The name of a result column may be used, for example, as column name in the
ORDER BY clause of a SELECT statement.

unpack-row See unpack-rowbelow.

* Asterisk Notation:
All columns of the result table are selected.

Example:

SELECT *
FROM SQL-PERSONNEL, SQL-AUTOMOBILES

unpack-row

UNPACK (scalar-expression) .* AS ({field-name data-type}, ..)

An unpack - rowspecifies a row of unpacked binary values that are returned when the SQL UNPACK
functionis invoked. The number of field-namesand data-types must match the number of fields
returned by the UNPACK function.

Table Expression

‘ from-clause [where-clause]

The table-expressionspecifies from where and according to what criteria rows are to be selected.
The following topics are covered below:

= FROM Clause

= Table Reference

= WHERE Clause

= GROUP BY Clause

= HAVING Clause

= ORDER BY Clause

= INPUT SEQUENCE

= ORDER OF table-designator
= FETCH FIRST Clause

Statements 67

Select Expressions

= Examples of Table Expressions

FROM Clause

FROM table-reference,...

This clause specifies from which tables the result set is built.

Table Reference

table-name|[period-specification][correlation-clause]

[TABLE] subquery correlation-clause

Jjoined-table _
TABLE (function-name (scalar-expression,..)) correlation-clause
data-change-table-reference[correlation-clause]
xmltable-function correlation-clause

The tables specified in the FROM clause must contain the column fields used in the selection list.

You can either specify a single table or produce an intermediate table resulting from a subquery
or a “join” operation (see below).

Since various tables (that is, DDMs) can be addressed in one FROM clause and since a
table-expression can contain several FROM clauses if subqueries are specified, the database ID
(DBID) of the first DDM specified in the first FROM clause of the whole expression is used to
identify the underlying database involved.

TABLE function-name Clause

The TABLE function-name clause belongs to the SOL Extended Set and requires a
correlation-clause with a column-name list.

Period Specification

The period-specification clause belongs to the SOL Extended Set.

AS OF expr
FOR { %:IEEE;I?;:ME } ‘ FROM exprl1 70 expr2
- BETWEEN exprl AND exprZ2

period-specificationoptionally specifies that a period specification applies to the temporal
table table-name. The same period name (SYSTEM_TIME or BUSINESS_TIME) must not be specified
more than one time for the same table.

68 Statements

Select Expressions

Syntax Element

Description

FOR SYSTEM_TIME

Specifies that the SYSTEM_TIME period is used for the period-specification.
SYSTEM_TIME must be a period that is defined in the table and the table must
be a system-maintained temporal table that is defined with system data
versioning.

FOR BUSINESS_TIME

Specifies that the BUSINESS_TIME period is used for the
period-specification. BUSINESS_TIME mustbe a period that is defined in
the table.

expr, exprl, expr?

Specify expressions that return a value of a built-in data type that is comparable
to the data type of the columns of the specified period and must not contain a
TIME ZONE.

AS OF expr

Specifies that the table includes each row for which the start value for the
specified period is less than or equal to expr and the end value for the period
is greater than expr.

FROM exprl TO exprZ

Specifies that the table includes rows that exist for the period specified from
exprlupto exprZ. Arow isincluded in the table if the start value for the
period in the row is less than exprZ and the end value for the period in the row
is greater than exprl.

BETWEEN exprl AND
expre

Specifies that the table includes a row in which the specified period overlaps
at any point in time between exprl and exprZ. A row is included in the table
if the start value for the period in the row is less than or equal to exprZ and the
end value for the period in the row is greater than expr1I.

Optionally, a correlation-clause can be assigned to a table-name. For a subquery, a
correlation-clause must be assigned.

Correlation Clause

[AS] correlation-name[(column-name, . ..)]

A correlation-clause consists of optional keyword ASand a correlation-name and is optionally
followed by a plain column-name list. The column-name list belongs to the SOL Extended Set.

Joined Table

table-reference

(joined-table)

INNER

LEFT LCOUTER]
RIGHT [OUTER]
FULL [OUTER]

JOIN table-referenceON join-condition

A joined-table specifies an intermediate table resulting from a “join” operation.

Statements

69

Select Expressions

The “join” can be an INNER, LEFT OUTER, RIGHT OUTER or FULL OUTER JOIN.If you do not specity
anything, INNER applies.

Multiple “join” operations can be nested; that is, the tables which create the intermediate result
table can themselves be intermediate result tables of a “join” operation or a subquery; and the
latter, in turn, can also have a joined-table or another subguery in its FROM clause.

Join Condition

For INNER, LEFT OUTER, and RIGHT OUTER joins:

‘search-condition

For FULL OUTER joins:

‘fu]]-jofn-expression= full-join-expression[AND ..]

Full Join Expression

‘ column-name

{ VALUE
COALESCE

} (column-name , ...)

Within a join-expressiononly column-names and the scalar-function VALUE (or its synonym
COALESCE) are allowed.

See details on column-name.
Data Change Table Reference

The data-change-table-reference clause belongs to the SOL Extended Set.

FINAL TABLE (INSERT-statement)

{ FINAL } TABLE
OLD (searched-UPDATE-statement)

OLD TABLE (searched-DELETE-statement)
FINAL TABLE (MERGE-statement)

A data-change-table-reference specifies an intermediate result table, which is based on the
rows that are changed by the SQL change statement specified in the clause. A
data-change-table-reference can only be specified as the only table reference in the FROM clause.

Syntax Element Description:

70 Statements

Select Expressions

Syntax Element |Description

FINAL TABLE |Specifies that the rows of the intermediate result table represent the set of rows that are
changed by the SQL data change statement as they appear at the completion of the SQL
data change statement.

OLD TABLE |Specifies that the rows of the intermediate result table represent the set of rows that are
changed by the SQL data change statement as they exist prior to the application of the SQL
data change statement.

XMLTABLE Function

The xmitable-function clause belongs to the SOL Extended Set.

The item xmltable-function specifies an invocation of the built-in XMLTABLE function.

WHERE Clause

[WHERE search-condition] ‘

The WHERE clause is used to specify the selection criteria (search-condition) for the rows to be
selected.

Example:

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
SELECT =
INTO NAME, AGE
FROM SQL-PERSONNEL

WHERE AGE = 32
END-SELECT

For further information, see Search Conditions.

Statements 71

Select Expressions

GROUP BY Clause

GROUP BY grouping-set P

grouping-expression

super-group

The GROUP BY clause specifies a grouping of the result table. The result of GROUP BY is a set of
groups of rows. Within each group of more than one row, all values defining the group are equal.

grouping-expression

A grouping expression is a scalar expression that defines the grouping of a result set.

grouping-set

{ grouping—expression}
super-group

GROUPING SETS (S o)
grouping—expression})

super-group

A grouping-set is used to specify multiple grouping clauses in a single statement. A
grouping-set combines two or more groups of rows into a single result set. It is the same as
the union of multiple select expressions with a GROUP BY clause where each expression corres-
ponds toone grouping-set. A grouping-setisasingle element or a list of elements delimited
by parentheses. An element is eithera grouping-expressionora super-group. A grouping-set
has the advantage that the groups are computed with a single pass over the base table.

super-group

ROLLUP (grouping-expression-11ist)
CUBE (grouping-expression-1ist

()

A super-group is a more complex grouping-set.

A grouping-expression-1ist defines the number of elements used in a ROLLUP or CUBE oper-
ation. Elements with multiple grouping-expressions are delimited by parentheses:

{ grouping-expression }
(grouping-expression,...) a

Grand total ():

ROLLUP and CUBE return a row which is the overall (grand total) aggregation. This can be spe-
cified with empty parentheses () within the GROUPING SETS clause.

72

Statements

Select Expressions

ROLLUP
A ROLLUP grouping is like a series of grouping-sets. In addition to the regular grouped
rows, a ROLLUP grouping produces a result set that contains subtotal rows. Subtotal rows
are “super-aggregate” rows which contain additional aggregates. The aggregate values
are retrieved with the same column functions that are used to obtain the regular grouped
rows.

In general, you specify a ROLLUP with n elements as

GROUP BY ROLLUP (cl, c2, ..., cn-1, cn)

which is the equivalent of:

GROUP BY GROUPING SETS ((cl, c2, ..., cn-1, cn),
(cl, c2, ..., cn-1),
(cl, c2),
(cl),
¢)
CUBE

A CUBE grouping is like a series of grouping-sets. In addition to the ROLLUP aggregation
rows, CUBE produces a result set that contains cross-tabulation rows. Cross-tabulation rows
are additional “super-aggregate” rows. The grouping-expression-1ist of a CUBE computes
all permutations along with the grand total. As a result, the n elements of a CUBE translate
to 2**n grouping-sets. For example:

GROUP BY CUBE (a, b, c)

is the equivalent of:

GROUP BY GROUPING SETS ((a, b, c),

(a, b),
(a, ¢),
(b, ¢),

(a),

(b),

(c),

Statements 73

Select Expressions

()

HAVING Clause

’[HAVING search-condition]

If the HAVING clause is specified, the GROUP BY clause should also be specified.

Just as the WHERE clause is used to exclude rows from a result table, the HAVING clause is used to
exclude groups and therefore also based on a search-condition. Scalar expressions in a HAVING
clause must be single-valued per group.

For further information, see Scalar Expressions and Search Conditions.

Example:

DEFINE DATA LOCAL
1 #NAME (A20)
1 #AVGAGE (I2)
1 #NUMBER (I2)
END-DEFINE

SELECT NAME, AVGCAGE), COUNT(*)
INTO #fNAME, #AVGAGE, #NUMBER
FROM SQL-PERSONNEL
GROUP BY NAME
HAVING COUNT(*) > 1

ORDER BY Clause

yunn

ASC]

sort-key[DESC

ORDER BY
INPUT SEQUENCE

ORDER OF table-designator

The order-by clause specifies row ordering of the result table.

74 Statements

Select Expressions

sort-key

column-name
integer

sort-key-expression

A sort-key-expressionis an expression which is more than a column-name or an unsigned
integer constant.

INPUT SEQUENCE

INPUT SEQUENCE belongs to the SOL Extended Set.

INPUT SEQUENCE indicates that the result table reflects the input order of the rows specified in the
VALUES clause of an INSERT statement.

INPUT SEQUENCE can only be specified if an INSERT statement is specified in the from-clause.

ORDER OF table-designator

ORDER OF table-designator belongs to the SOL Extended Set.

ORDER OF specifies that the row ordering of the designated table by the table-designatoris applied
to the result table of the query.

table-designator uniquely identifies a base table, a view, or the nested table expression of a
subselect.

FETCH FIRST Clause

The fetch-first clause belongs to the SOL Extended Set.

1 ROWS
FETCH FIRST { integer } { ROW } ONLY

The fetch-first clause limits the number of rows that can be fetched. It improves the performance
of queries when only a limited number of rows are needed.

Statements 75

Select Expressions

Examples of Table Expressions
Example 1:

DEFINE DATA LOCAL

01 #NAME (A20)
01 #fFIRSTNAME (Al5)
01 {ffAGE (I2)
END-DEFINE

SELECT NAME, FIRSTNAME, AGE
INTO #fNAME, #FIRSTNAME, #AGE
FROM SQL-PERSONNEL

WHERE NAME IS NOT NULL
AND AGE > 20

DISPLAY #NAME #FIRSTNAME #AGE
END-SELECT

éND
Example 2:

DEFINE DATA LOCAL
01 #COUNT (I4)

END-DEFINE

SELECT SINGLE COUNT(*) INTO #COUNT FROM SQL-PERSONNEL

76

Statements

10 Flexible SQL

= Using Flexible SQLcccoveeviiinnnnn

= Specifying Text Variables in Flexible SQL

77

Flexible SQL

The so-called “Flexible SQL”, which is a further possibility of issuing SQL statements, enables you
to use arbitrary SQL syntax.

Using Flexible SQL

In addition to the SQL syntax described in the previous sections, flexible SQL enables you to use
arbitrary SQL syntax.

Characters << and >>

Flexible SQL is enclosed in << and >> characters. It can include arbitrary SQL text and host variables.
Within flexible SQL, host variables must be prefixed by a colon (:).

The flexible SQL string can cover several statement lines. Comments are possible, too (see also the
statement PROCESS SQL).

Flexible SQL can be used as a replacement for any of the following syntactical SQL items:

= atom
® column-reference
® scalar-expression

® predicate

Flexible SQL can also be used between the clauses of a select expression:

SELECT selection

KL ool >
INTO ...
FROM ...

N D 4
WHERE ...

N D 4
GROUP BY ...
N D 4
HAVING ...
NG 4
ORDER BY ...
KL ool >

| Note: The SQL text used in flexible SQL is not recognized by the Natural compiler. The
SQL text (with replaced host variables) is simply copied into the SQL string passed to the
database system. Syntax errors in flexible SQL are detected at runtime when the database
executes the corresponding statement.

78 Statements

Flexible SQL

Example 1

SELECT NAME

FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) >> = << MONTH (CURRENT_DATE) >>

Example 2:

SELECT NAME

FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) = MONTH (CURRENT_DATE) >>

Example 3:

SELECT NAME

FROM SQL-EMPLOYEES
WHERE SALARY > 50000
<< INTERSECT
SELECT NAME
FROM SQL-EMPLOYEES
WHERE DEPT = '"DEPT1O0'

>>

Specifying Text Variables in Flexible SQL

Within flexible SQL, you can also specify so-called “text variables”.

<<:T:host-variable[LINDICATOR:host-variable]>>

The syntax items are described below:

A text variable is a host-variab]le prefixed by : T:. It must be in alphanumeric format.

At runtime, a text variable within an SQL statement will be replaced by its contents that is,
the text string contained in the text variable will be inserted into the SQL string.

After the replacement, trailing blanks will be removed from the inserted text string.

You have to make sure yourself that the content of a text variable results in a syntactically
correct SQL string. In particular, the content of a text variable must not contain
host-variables.

A statement containing a text variable will always be executed in dynamic SQL mode.

LINDICATOR

LINDICATOR Option:

Statements

79

Flexible SQL

The text variable can be followed by the keyword LINDICATOR and a length indicator variable
(thatis, a host-variable prefixed by colon).

The length indicator variable has to be of format/length I2.

If no LINDICATOR variable is specified, the entire content of the text variable will be inserted
into the SQL string.

If you specify a LINDICATOR variable, only the first n characters (n being the value of the
LINDICATOR variable) of the text variable content will be inserted into the SQL string. If the
number in the LINDICATOR variable is greater than the length of the text variable content,
the entire text variable content will be inserted. If the number in the LINDICATOR variable is
negative or 0, nothing will be inserted.

See general information on host-variable.

Example Using Text Variable

DEFINE DATA LOCAL

01 TEXTVAR (A200)

01 TABLES VIEW OF SYSIBM-SYSTABLES
02 NAME
02 CREATOR

END-DEFINE

*

MOVE 'WHERE NAME > "'SYS'' AND CREATOR = ''SYSIBM''' TO TEXTVAR
*
SELECT * INTO VIEW TABLES
FROM SYSIBM-SYSTABLES
<K :T:TEXTVAR >>
DISPLAY TABLES
END-SELECT

*

END

The generated SQL statement (as displayed with the LISTSQL system command) will look as follows:

SELECT NAME, CREATOR FROM SYSIBM.SYSTABLES:T: FOR FETCH ONLY

The executed SQL statement will look as follows:

SELECT TABNAME, CREATOR FROM SYSIBM.SYSTABLES

WHERE TABNAME > 'SYS' AND CREATOR = 'SYSIBM'

80

Statements

I11

Referenced Example Programs

81

82

11 Referenced Example Programs

B ASSIGN e e 84
B AT BREAK L.t 85
B AT END OF DAT A Lottt ettt e et e e et e e et e e et e s 87
B AT END OF PAGE ...t 88
B AT START OF DATA Lttt 88
B AT TOP OF PAGE ...ttt 90
B DEFINE SUBROUTINE ...t 91
B TN D et e et 92
LI O PP P PP PP RPPPR PP 94
B HISTOGRAM L.ttt 95
L | O TP U PO U P PP TPUP PRI 95
= PERFORM BREAK PROCESSING ...ttt 97
B R E A D et e ettt 98
B R E P E A s 99
LT] PP PP OPPPR 100
B S T O R E L. 101
B UPDATE e 103
= Example Programs for System Variablesoooiiiiiiiiiiiiii e 104

83

Referenced Example Programs

This chapter contains additional example programs that are referenced in the Natural statements
and system variables reference documentation. All these examples are contained in the library

SYSEXSYN.

Note: Generally, the example programs shown in the statement descriptions are written in

structured mode. For statements where the reporting-mode syntax differs considerably
from the structured-mode syntax, references to equivalent reporting-mode examples are
also provided. The example programs are available in source-code form in the Natural library
SYSEXSYN. Further example programs of using Natural statements are documented in the
section Referenced Example Programs in the Programming Guide. These example programs are
provided in the Natural library SYSEXPG. Ask your Natural administrator about the availab-
ility of these libraries at your site. The example programs use data from the files EMPLOYEES

and VEHICLES, which are supplied by Software AG for demonstration purposes.

ASSIGN

The following example is referenced in the ASSIGN/COMPUTE statement description:

ASGEXIR - ASSIGN (reporting mode)

** Example "ASGEXIR': ASSIGN (reporting mode)

R R R R B B b e b R B R I e R e e R e e b e I b e B e i e b e e b e b b e e b e b S e e S e b b S e e b o 4

RESET #A (N3)

#B (A6)

##C (N0.3)

#D (N0O.5)

#/E (N1.3)

##F (N5)

#G (A25)

#H (A3/1:3)
*
ffA = 5
#B = "ABC'
ffc = .45
#D = #/E = -0.12345
ASSIGN ROUNDED #F = 199.999
#G = 'HELLO"
*

fiH (1) "UVW'
ffH (3) = "XYZ'
*

END

Output of Program AEDEX1R:

WRITE NOTITLE '=' #A
WRITE '=' #B

WRITE '=' #C

WRITE '=' #D / '=' {tE
WRITE '=" #F

WRITE '=" #G

WRITE '=' #H (1:3)

84

Statements

Referenced Example Programs

A 5

##B: ABC

#C: .450

#D: -.12345

#E: -0.123

JEF - 200

#G: HELLO

JH: UVW XYZ
AT BREAK

The following examples are referenced in the AT BREAK statement description:

ATBEXIR - AT BREAK (reporting mode)

** Example "ATBEXIR': AT BREAK (reporting mode)

khkkkhkkhkhkhkhkkhkhhhkkhkkhhhhkhkkhhhhhkkhkkhhhhkhkkhhhhkhkkhhhhhkhkhhhhkkhkhhhhkkhkkhhhkhkkhkhhhrhkkhhhhrkkhhrrtkk

*

LIMIT 10
READ EMPLOYEES BY CITY

AT BREAK OF CITY DO

SKIP 1

DOEND

/*

DISPLAY NOTITLE CITY (IS=0ON) COUNTRY (IS=0N) NAME
LOOP
END

Output of Program ATBEX1R:

CITY COUNTRY NAME
ATKEN USA SENKO
AIX EN OTHE F GODEFROY
AJACCIO CANALE
ALBERTSLUND DK PLOUG
ALBUQUERQUE USA HAMMOND
ROLLING
FREEMAN
LINCOLN
ALFRETON UK GOLDBERG

Statements 85

Referenced Example Programs

ALICANTE

ATBEX5R - AT BREAK statement with multiple break levels (reporting mode)

** Example "ATBEX5R': AT BREAK (multiple break Tevels) (reporting mode)

R R R R R b b R b e S b e I b R e i b e b S e i i b R e i R b S e b R R e b b e S b b

E

RESET LEAVE-DUE-L (N4)

*

LIMIT 5

FIND EMPLOYEES WITH CITY =
SORTED BY CITY DEPT

MOVE LEAVE-DUE TO LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME LEAVE-DUE-L

AT BREAK OF DEPT
WRITE NOTITLE /

T*DEPT OLD(DEPT) T*LEAVE-DUE-L SUM(CLEAVE-DUE-L) /

AT BREAK OF CITY
WRITE NOTITLE

T*CITY OLD(CCITY) T*LEAVE-DUE-L SUM(LEAVE-DUE-L) //

LOOP

*

END

Output of Program ATBEX5R:

CITY DEPARTMENT
CODE
PHILADELPHIA MGMT30
MGMT30
TECH10
TECH10
PHILADELPHIA
PITTSBURGH MGMT10
MGMT10
PITTSBURGH

GOMEZ

"PHILADELPHIA" OR =

WOLF-TERROINE
MACKARNESS

BUSH
NETTLEFOLDS

FLETCHER

"PITTSBURGH'

LEAVE-DUE-L

11
27

38

39
24

63

101

34

34

34

86

Statements

Referenced Example Programs

AT END OF DATA

The following example is referenced in the AT END OF DATA statement description:

AEDEXIR - AT END OF DATA (reporting mode)

** Example '"AEDEXIR': AT END OF DATA (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S

LIMIT 5
EMP. FIND EMPLOYEES WITH CITY = "STUTTGART'
IF NO RECORDS FOUND
ENTER
DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)
/%
AT END OF DATA DO
IF *COUNTER (EMP.) = 0 DO
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM
DOEND
WRITE NOTITLE / "SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X "MINIMUM:' MIN(CSALARY(1)) CURR-CODE (1)
/ 7X "AVERAGE:' AVER(SALARY (1)) CURR-CODE (1)

DOEND
LOOP
END

Output of Program AEDEX1R:

PERSONNEL NAME FIRST-NAME ANNUAL
ID SALARY
11100328 BERGHAUS ROSE 70800
11100329 BARTHEL PETER 42000
11300313 AECKERLE SUSANNE 55200
11300316 KANTE GABRIELE 61200
11500304 KLUGE ELKE 49200

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

CURRENCY
CODE

DM
DM
DM
DM
DM

Statements

87

Referenced Example Programs

AT END OF PAGE

The following example is referenced in the AT END OF PAGE statement description:

AEPEXIR - AT END OF PAGE (reporting mode)

** Example '"AEPEXIR': AT END OF PAGE (reporting mode)
RRA R R B R R R e e b b R e b b e e b b e b b e e i b b S e b b S e b i R e e b b R e b b S e e b b R e b b e b b S
FORMAT PS=10
LIMIT 10
READ EMPLOYEES BY PERSONNEL-ID FROM '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS

NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*
AT END OF PAGE DO
WRITE / 28T "AVERAGE SALARY: ..." AVER(SALARY (1)) CURR-CODE (1)

DOEND

/*
LOOP
END

Output of Program AEPEX1R:

NAME CURRENT SALARY CURRENCY
POSITION CODE

CREMER ANALYST 34000 USD

MARKUSH TRAINEE 22000 USD

GEE MANAGER 39500 USD

KUNEY DBA 40200 USD

NEEDHAM PROGRAMMER 32500 USD

JACKSON PROGRAMMER 33000 USD
AVERAGE SALARY: ... 33533 USD

AT START OF DATA

The following example is referenced in the AT START 0F DATA statement description:

88 Statements

Referenced Example Programs

ASDEXIR - AT START OF DATA (reporting mode)

** Example '"ASDEXIR': AT START OF DATA (reporting mode)

R R R e e b b S b b e b b S b b e b e S b S b S S b S b e b e b S b b S b S b b e b b S b b e b b b Y

RESET #CITY (A20) #CNTL (A1)

*

REPEAT
INPUT "ENTER VALUE FOR CITY' #CITY
/*
IF #CITY = ' ' OR= "END' DO
STOP
DOEND

FIND EMPLOYEES WITH CITY = #CITY
IF NO RECORDS FOUND DO
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE
DOEND
/%
AT START OF DATA DO
INPUT (AD=0) 'RECORDS FOUND' *NUMBER //
"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=A)
IF #CNTL NE 'D' DO
ESCAPE BOTTOM
DOEND
DOEND
/*
DISPLAY NAME FIRST-NAME
LOOP
LOOP
END

Output of Program ASDEX1R:

ENTER VALUE FOR CITY PARIS

After entering and confirming city name:

RECORDS FOUND 26
ENTER 'D' TO DISPLAY RECORDS D

After entering and confirming D:

Statements

89

Referenced Example Programs

NAME FIRST-NAME
MATZIERE ELISABETH
MARX JEAN-MARTE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS
CENSTER BERNARD
DuC JEAN-PAUL
CAHN RAYMOND
MAZUY ROBERT
FAURIE HENRI
VALLY ALAIN
BRETON JEAN-MARTE
GIGLEUX JACQUES
KORAB-BRZOZOWSKI BOGDAN
XOLIN CHRISTIAN
LEGRIS ROGER
VVVV
AT TOP OF PAGE

The following example is referenced in the AT TOP OF PAGE statement description:

ATPEXIR - AT TOP OF PAGE (reporting mode)

** Example "ATPEXIR': AT TOP OF PAGE (reporting mode)

R R R R B b e b b e R e b b e R e i e b e B e b e I e e e B e e b e e b e b e b e e b e e b e b e b e b e b e e b 4

*

FORMAT PS=15

LIMIT 15

*

READ EMPLOYEES BY NAME STARTING FROM 'L
DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER "-" (78)

/%
AT TOP OF PAGE DO
WRITE 'BEGINNING NAME:' NAME

DOEND
/*
AT END OF PAGE DO
SKIP 1
WRITE "ENDING NAME: " NAME

90

Statements

Referenced Example Programs

DOEND
LOOP
END

DEFINE SUBROUTINE

The following example is referenced in the DEFINE SUBROUTINE statement description:

DSREXIR - DEFINE SUBROUTINE (reporting mode)

** Example 'DSREXIR': DEFINE SUBROUTINE (reporting mode)
P e b b b i B i S e B i b b e b B b b i i b b b o b b b b i S B b i g B b o i b i o S b b b o i
RESET #ARRAY-ALL (A300)

X (N2) Y (N2)
REDEFINE #fARRAY-ALL (FARRAY (A75/1:4))

JFARRAY-ALL (#ALINE (A25/1:4,1:3))

*
FORMAT PS=20
LIMIT 5

*

MOVE 1 TO #X Y
*
FIND EMPLOYEES WITH NAME = 'SMITH'
OBTAIN ADDRESS-LINE (1:2)
/*
MOVE NAME TO F#ALINE (HX,4HY)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #FALINE (#X+3,4Y)
IF #Y = 3 DO
MOVE 1 TO #Y
PERFORM PRINT
DOEND
ELSE DO
ADD 1 TO fY
DOEND
AT END OF DATA DO
PERFORM PRINT
DOEND
LOOP
*
DEFINE SUBROUTINE PRINT
WRITE NOTITLE (AD=0I1) #ARRAY(*)
RESET #ARRAY (*)
SKIP 1
RETURN

*

END

Statements 91

Referenced Example Programs

Output of Program AEDEX1R:

SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD
MILWAUKEE

554349 877-4563

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963

FIND

14100 ESWORTHY RD.
MONTERREY

The following examples are referenced in the FIND statement description:

FNDFIR - FIND statement with FIRST option (reporting mode)

** Example "FNDFIR': FIND FIRST

R R R b R R b b R b e b S e I b R R i b e i b R e i b i R e i b R e i b b i b R R e i b b e b b

*

FIND FIRST EMPLOYEES WITH CITY = 'DERBY'

*

WRITE NOTITLE "TOTAL RECORDS SELECTED:' *NUMBER

SKIP 2

WRITE '***FIRST PERSON SELECTED***'
'NAME : " NAME /
"DEPARTMENT: " DEPT /
'JoB TITLE: ' JOB-TITLE

*

END

Output of Program FNDFIR:

TOTAL RECORDS SELECTED: 141

FIRST PERSON SELECTED

NAME : DEAKIN
DEPARTMENT: SALEO1
JOB TITLE: SALES ACCOUNTANT

92

Statements

Referenced Example Programs

FNDNUM - FIND statement with NUMBER option (reporting mode)

** Example "FNDNUM': FIND NUMBER

R R e b S b S b e b b e b e b e b b e e b e e b e S e e e S e e b e e b e e b S e b e e i b e b e e b o S

RESET #BIRTH (D)

*

MOVE EDITED '19500101" TO #BIRTH (EM=YYYYMMDD)
*
FIND NUMBER EMPLOYEES WITH CITY = 'MADRID'
WHERE BIRTH LT #BIRTH
*
WRITE NOTITLE 'TOTAL RECORDS SELECTED: " *NUMBER
/ "TOTAL BORN BEFORE 1 JAN 1950: ' *COUNTER

*

END

Output of Program FNDNUM:

TOTAL RECORDS SELECTED: 41
TOTAL BORN BEFORE 1 JAN 1950: 16

FNDUNQ - FIND statement with UNIQUE option (reporting mode)

** Example 'FNDUNQ': FIND UNIQUE

R R R b e b e b e b e R e b b e b b e e B e b e e e e e e I (e e b e b e b e e b e b e b e e b S b e b e e b o 4
RESET #NAME (A20)
*

*

INPUT "ENTER EMPLOYEE NAME: ' #NAME
IF #NAME = ' '
STOP

*

FIND UNIQUE EMPLOYEES WITH NAME = #NAME

*

DISPLAY NOTITLE NAME FIRST-NAME JOB-TITLE
*
ON ERROR DO
WRITE 'NAME EITHER NOT UNIQUE OR DOES NOT EXIST'
FETCH 'FNDUNQ®
DOEND

*

END

Output of Program FNDUNQ:

Statements 93

Referenced Example Programs

ENTER EMPLOYEE NAME: HEURTEBISE

After entering and confirming name HEURTEBISE:

NAME FIRST-NAME CURRENT
POSITION
HEURTEBISE MICHEL CONTROLEUR DE GESTION

FOR

The following example is referenced in the FOR statement description:

FOREXIR - FOR (reporting mode)

** fxample 'FOREX1R': FOR (reporting mode)
R R R b R e e b b e b b e b S S b b S e b b S e i S e b b e b S e b b S S e b S S e b b e e b b e e
RESET #FINDEX (I1)
#ROOT (N2.7)

*
FOR #INDEX 1 TO 5

COMPUTE #RO0OT = SQRT (#INDEX)

WRITE NOTITLE '=' ffINDEX 3X '=" #R0OOT
LOOP
*
SKIP 1
FOR ffINDEX 1 TO 5 STEP 2

COMPUTE #ROOT = SQRT (#INDEX)

WRITE '=" #fINDEX 3X '=' {fROOT
LOOP

*

END

Output of Program FOREX1R:

FFINDEX : 1 {#ROOT: 1.0000000
FFINDEX : 2 ffROOT: 1.4142135
FFINDEX : 3 #ROOT: 1.7320508
JFINDEX : 4 #ROOT: 2.0000000
F#FINDEX : 5 #ROOT: 2.2360679
FFINDEX : 1 {#ROOT: 1.0000000
FFINDEX : 3 #ROOT: 1.7320508
FFINDEX : 5 #ROOT: 2.2360679

94

Statements

Referenced Example Programs

HISTOGRAM

The following example is referenced in the HISTOGRAM statement description:

HSTEX1R - HISTOGRAM (reporting mode)

** Example "HSTEXIR': HISTOGRAM (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S
*

LIMIT 8
HISTOGRAM EMPLOYEES CITY STARTING FROM 'M'
DISPLAY NOTITLE CITY

"NUMBER OF/PERSONS' *NUMBER *COUNTER
LOOP

*

END

Output of Program HSTEX1R:

CITY NUMBER OF CNT
PERSONS

MADISON

MADRID 4
MAILLY LE CAMP

MAMERS

MANSFIELD

MARSETLLE

MATLOCK

MELBOURNE

N RN E W
O N O OB W

IF

The following example is referenced in the IF statement description:

Statements 95

Referenced Example Programs

IFEX1R - IF (reporting mode)

**% Example 'IFEXIR':

RO R b e b S b S b e b o b e b e b e b b e e b e e b e e e e e S e e b e e b e e b e e b e e i b e b e e o S

RESET #BIRTH (D)

*

MOVE EDITED '19450101°

IF (reporting mode)

SUSPEND IDENTICAL SUPPRESS

LIMIT 20

*

FND. FIND EMPLOYEES WITH CITY
SORTED BY NAME BIRTH

IF SALARY (1) LT 40000

WRITE NOTITLE ‘'****x!

ELSE DO

IF BIRTH GT #BIRTH DO

FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID (FND.)

DISPLAY (IS=0ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8)

LOOP
DOEND
DOEND
LOOP
END

Output of Program IFEXIR:

NAME

BAECKER

*xxHx BECKER
BLOEMER

FALTER

peasieasas [FALTER
ks GROTHE
FxxAk HETLBROCK
*xx%*x HESCHMANN
HUCH

*FxxHA KICKSTEIN
FrkAAk KLEENE
FxxAEE KRAMER

1956-01-05

1979-11-07
1954-05-23

1952-09-12

NAME 30X

TO #BIRTH (EM=YYYYMMDD)

"FRANKFURT'

ANNUAL MAKE
SALARY

74400 BMW

45200 FIAT
70800 FORD

67200 MERCEDES

"SALARY LT 40000'

SALARY

SALARY
SALARY
SALARY
SALARY

SALARY
SALARY
SALARY

LT

LT
LT
LT
LT

LT
LT
LT

40000

40000
40000
40000
40000

40000
40000
40000

96

Statements

Referenced Example Programs

PERFORM BREAK PROCESSING

The following example is referenced in the PERFORM BREAK PROCESSING statement description:

PBPEXIR - PERFORM BREAK PROCESSING (reporting mode)

** Example 'PBPEXIR': PERFORM BREAK PROCESSING (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S

RESET #LINE (N2) #INDEX (N2)
*
MOVE 1 TO #LINE
FOR #INDEX 1 TO 18
PERFORM BREAK PROCESSING
/*
AT BREAK OF #fINDEX /1/ DO
WRITE NOTITLE / 'PLEASE COMPLETE LINES 1-9 ABOVE' /
MOVE 1 TO #LINE
DOEND
/*
WRITE NOTITLE '_" (64) '=' #LINE
ADD 1 TO #LINE
LOOP
END

Output of Program PBPEX1R:

FFLINE:
JFLINE:
JFLINE:
JFLINE:
JFLINE:
FLINE:
JFLINE:
FLINE:
JFLINE:

O 0O N o o B wnmMn -

PLEASE COMPLETE LINES 1-9 ABOVE

JFLINE:
#FLINE:
JFLINE:
fFLINE:
JFLINE:
JFLINE :
#FLINE:
JFLINE:
#FLINE:

W 00 N O O B WM

PLEASE COMPLETE LINES 1-9 ABOVE

Statements 97

Referenced Example Programs

READ

The following example is referenced in the READ statement description:

REAEXIR - READ (reporting mode)

** Example 'REAEXIR': READ (reporting mode)

RRA R R B R R R e e b b R e b b e e b b e b b e e i b b S e b b S e b i R e e b b R e b b S e e b b R e b b e b b S

LIMIT 3

*

WRITE 'READ IN PHYSICAL SEQUENCE'
READ EMPLOYEES IN PHYSICAL SEQUENCE
DISPLAY NOTITLE PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / '"READ IN ISN SEQUENCE'

READ EMPLOYEES BY ISN STARTING FROM 1 ENDING AT 3
DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / '"READ IN NAME SEQUENCE'

READ EMPLOYEES BY NAME

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / 'READ IN NAME SEQUENCE STARTING FROM "'M""'
READ EMPLOYEES BY NAME STARTING FROM 'M’
DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

END

Output of Program REAEX1R:

PERSONNEL NAME
ID

READ IN PHYSICAL SEQUENCE
50005800 ADAM

50005600 MORENO

50005500 BLOND

READ IN ISN SEQUENCE
50005800 ADAM
50005600 MORENO
50005500 BLOND

READ IN NAME SEQUENCE

98

Statements

Referenced Example Programs

60008339 ABELLAN 478 1
30000231 ACHIESON 878
50005800 ADAM 1 3

READ IN NAME SEQUENCE STARTING FROM 'M'

30008125 MACDONALD 923 1
20028700 MACKARNESS 765

40000045 MADSEN 508 3
REPEAT

The following examples are referenced in the REPEAT statement description:

RPTEXIR - REPEAT (reporting mode)

** Example 'RPTEXIR': REPEAT (reporting mode)

khkkkhkkhkhkhkhkkhkhhhkkhkkhhhhkhkkhhhhhkkhkkhhhhkhkkhhhhkhkkhhhhhkhkhhhhkkhkhhhhkkhkkhhhkhkkhkhhhrhkkhhhhrkkhhrrtkk

RESET #PERS-NR (A8)
*
REPEAT
INPUT 'ENTER A PERSONNEL NUMBER:' #PERS-NR
IF #fPERS-NR = '
ESCAPE BOTTOM
FIND EMPLOYEES WITH PERSONNEL-ID = #PERS-NR
IF NO RECORD FOUND
REINPUT 'NO RECORD FOUND'
DISPLAY NOTITLE NAME
LOOP
LOOP

*

END

Output of Program RPTEX1R:

ENTER A PERSONNEL NUMBER:

RPTEX2R - REPEAT with WHILE and UNTIL option (reporting mode)

** Example 'RPTEX2R': REPEAT (with WHILE and UNTIL option)

R R b i b S b b e b b e e b e b b e e e e b e e e e e e e e b e b e b e e b e e b e e i b e b e e b i S
RESET #X (I1) Y (I1)

*

*

REPEAT WHILE #X <= 5
ADD 1 TO #X
WRITE NOTITLE '=' #X
LOOP

*

Statements

99

Referenced Example Programs

SKIP 3

REPEAT
ADD 1 TO #
WRITE '=' 4y
UNTIL #Y =6

LOOP

*

END

Output of Program RPTEX2R:

X
X
X
X
X
X

D OB~ W N

7Y
7Y
7Y
Y -
Y
Y -

D OB~ W

SORT

The following example is referenced in the SORT statement description:

SRTEXIR - SORT (reporting mode)

**% Example '"SRTEXIR': SORT (reporting mode)
khkkkhkhkkhkhkkhhkkhhkhhkkhkhkhhkkhkhkhhkkhhkhhkkhkhkhhkkhhkhhkhkhkhhkhhkhhkhrkhhkhkhkhhkhkrkhhkhrkhhkhkrkhhkhrkhhkhkrkhkrkhxk
RESET #AVG (P11) #TOTAL-TOTAL (P11) #TOTAL-SALARY (P11)

JFAVER-PERCENT (N3.2)

*

LIMIT 3

FIND EMPLOYEES WITH CITY =

OBTAIN SALARY(1:2)
COMPUTE #TOTAL-SALARY

/*

SORT BY PERSONNEL-ID USING #TOTAL-SALARY SALARY(*) CURR-CODE
GIVE AVER(#TOTAL-SALARY)

/%
AT START OF DATA DO

SALARY (1) + SALARY (2)
ACCEPT IF #TOTAL-SALARY GT O

100

Statements

Referenced Example Programs

WRITE NOTITLE '*" (40)
"AVG CUMULATIVE SALARY:' *AVER (#TOTAL-SALARY) /
MOVE *AVER (#TOTAL-SALARY) TO #AVG
DOEND
COMPUTE ROUNDED ffAVER-PERCENT = #TOTAL-SALARY / #AVG * 100
ADD #TOTAL-SALARY TO #TOTAL-TOTAL
/*
DISPLAY NOTITLE PERSONNEL-ID SALARY (1) SALARY (2)
#fTOTAL-SALARY CURR-CODE (1)
"PERCENT/OF/AVER' #fAVER-PERCENT
AT END OF DATA
WRITE / '*' (40) 'TOTAL SALARIES PAID: " #TOTAL-TOTAL
LOOP

*

END

Output of Program SRTEX1R:

PERSONNEL ANNUAL ANNUAL #fTOTAL-SALARY CURRENCY PERCENT

ID SALARY SALARY CODE OF

AVER

Kok ok kkokkkkkkkokkkkkkkkkkkkkkkkkkxkkkkkkxk% AVG CUMULATIVE SALARY : 44633
20000100 31000 29400 60400 USD 135.30
20019200 18000 17100 35100 USD 78.60
20020400 20000 18400 38400 USD 86.00
Kok kok ok kk ok ok ok k ok ok k ok k ok kk ok ok kkkkkkkkkkkkxkkkkx TOTAL SALARIES PAID: 133900
STORE

The following example is referenced in the STORE statement description:

STOEXIR - STORE (reporting mode)

** Example 'STOEXIR': STORE (reporting mode)

**

**% CAUTION: Executing this example will modify the database records!

R R R o R R b b R b b e b e e I b R e i b b e i b R e i b i R e I b R e i i b e b R e i b b e b b

RESET #PERSONNEL-ID (A8)

#ENAME (A20)
#FIRST-NAME (Al15)
#BIRTH-D (D)

#IMAR-STAT (A1)
#BIRTH (A8)
FCITY (A20)

Statements 101

Referenced Example Programs

fFCOUNTRY (A3)
FCONF (A1)
*
REPEAT
INPUT '"ENTER A PERSONNEL ID AND NAME (OR ''END'' TO END)' //
"PERSONNEL-ID : ' #PERSONNEL-ID //
"NAME : " fINAME /
"FIRST-NAME : ' #FIRST-NAME
/*
/* VALIDATE ENTERED DATA
/*
IF #PERSONNEL-ID = 'END' OR #NAME = '"END'
STOP
IF #NAME = ' '

REINPUT WITH TEXT '"ENTER A LAST-NAME' MARK 2 AND SOUND ALARM
IF #FIRST-NAME = ' '

REINPUT WITH TEXT "ENTER A FIRST-NAME' MARK 3 AND SOUND ALARM
/*
/* ENSURE PERSON IS NOT ALREADY ON FILE
/*
FIND NUMBER EMPLOYEES WITH PERSONNEL-ID = {PERSONNEL-ID
IF *NUMBER > 0

REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS'

MARK 1 AND SOUND ALARM

MOVE 'N' TO #CONF

/*

/* GET FURTHER INFORMATION

/*

INPUT
"ADDITIONAL PERSONNEL DATA' /117
"PERSONNEL-ID :' #fPERSONNEL-ID (AD=I0) /
"NAME ' fENAME (AD=I0) /
"FIRST-NAME ;' #fFIRST-NAME (AD=I0Q) ///
"MARITAL STATUS ' #IMAR-STAT /
"DATE OF BIRTH (YYYYMMDD) :' #BIRTH /
"CITY 2 JICITY /
"COUNTRY (3 CHARACTERS) ' JICOUNTRY //
"ADD THIS RECORD (Y/N) ;' JFCONF (AD=M)

/*

/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA

/*

IF NOT (#MAR-STAT = 'S' OR = 'M' OR = 'D' OR = 'W")
REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -
"M=MARRIED D=DIVORCED W=WIDOWED' MARK 1
IF NOT (#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
REINPUT TEXT 'ENTER CORRECT DATE' MARK 2
IF #CITY = '
REINPUT TEXT 'ENTER A CITY NAME' MARK 3
IF #COUNTRY = ' '
REINPUT TEXT 'ENTER A COUNTRY CODE' MARK 4
IF NOT (#CONF = 'N' OR= 'Y")
REINPUT TEXT 'ENTER Y (YES) OR N (NO)' MARK 5

102 Statements

Referenced Example Programs

IF #CONF = 'N'
ESCAPE TOP
/*
/* ADD THE RECORD
/*
MOVE EDITED #BIRTH TO #BIRTH-D (EM=YYYYMMDD)
/*
STORE RECORD IN EMPLOYEES
WITH PERSONNEL-ID = #PERSONNEL-ID

NAME = {NAME
FIRST-NAME = {fFIRST-NAME
MAR-STAT = JMAR-STAT
BIRTH = #BIRTH-D
CITY = {fCITY
COUNTRY = JfCOUNTRY
END OF TRANSACTION
/*
WRITE NOTITLE 'RECORD HAS BEEN ADDED'
/*
LOOP
END
UPDATE

The following example is referenced in the UPDATE statement description:

UPDEXIR - UPDATE (reporting mode)

** Example 'UPDEXIR': UPDATE (reporting mode)

**

**% CAUTION: Executing this example will modify the database records!

R R R R R R R b e b e S R R i R e R e b R e i R b e b R R e i S b e S b b 4

RESET #NAME (A20)
*
INPUT "ENTER A NAME:' #NAME (AD=M)
IF #NAME = ' '

STOP
*
FIND EMPLOYEES WITH NAME = #NAME

IF NO RECORDS FOUND

REINPUT WITH 'NO RECORDS FOUND' MARK 1

/%

INPUT 'NAME: " NAME (AD=0) /
"FIRST NAME:' FIRST-NAME (AD=M) /
"CITY: " CITY (AD=M)

/*

UPDATE USING SAME RECORD

/*

END TRANSACTION

Statements 103

Referenced Example Programs

/*
LOOP
*

END

Output of Program UPDEX1R:

ENTER A NAME:

Example Programs for System Variables

The following examples are referenced in the *0CCURRENCE system variable description:

OCC1P - System Variable *OCCURRENCE

** Example 'OCCIP': *OCCURRENCE

R R R R R R R b e R R b b e e e e S R b b e e e e e R R i e e e e e e R i o e e e e S e b b e e e e e
DEFINE DATA LOCAL

1 #N1 (N7/1:10)

1 #N2 (N7/1:10,1:10)

1 #N3 (N7/1:10,1:10,1:10)

END-DEFINE

*

CALLNAT "OCCIN' 4NL1(*) #N2(1:2,1:4) 4#N3(1:6,1:7,1:8)

*

END

Subprogram 0CC1N Called by Program 0CC1P:

** Example 'OCCIN': *OCCURRENCE (called by 0CC1P)
Khkhkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkhhkkhhkhhkkhhkhhkhhkhhkkhhkhhkhhkhhkkhhkkhhkhhkhkkhhkhhkkhkkhxk
DEFINE DATA

PARAMETER

1 PARML (N7/1:V)

1 PARM2 (N7/1:V,1:V)

1 PARM3 (N7/1:V,1:V,1:V)

LOCAL

1 f0CC2 (14/1:2)

1 #0CC3 (14/1:3)

1 40CC1 (14)

END-DEFINE

*

MOVE *0CC(PARM1) TO #0CC1

MOVE *0CC(PARM2,*) TO #0CC2(*)

MOVE *OCC(PARM3,*) TO #0CC3(*)

*

DISPLAY #f0CC1 #0CC2(*) #0CC3(*)

DISPLAY *0CC(PARM1,*) *0CC(PARM2,*) *0CC(PARM3,*)

104

Statements

Referenced Example Programs

*

NEWPAGE

*

WRITE NOHDR

'Occurrences

/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences

*

END

of
of
of
of
of
of

of

LW = =

Output of Program 0CC1P - Page 1:

. parameter:
. parameter:
. parameter:
. parameter:
. parameter:
. parameter:

. parameter:

*0CC(PARMI)

*0CC(PARMI, 1)
*0CC(PARMI, *)
*0CC(PARMZ,1)
0CC(PARMZ,)
*0CC(PARM3,1)
*0CC(PARM3,3)
*0CC(PARM3, *)

*0CC(PARMZ,2)

*0CC(PARM3,2)

Page 1 05-01-18 10:21:30
##0CC1 ##0CC2 ##0CC3
10 2 6
4 7
8
10 2 6
4 7
8
Output of Program 0CC1P - Page 2:
Page 2 05-01-18 10:21:30
Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 2. parameter: 2 4
Occurrences of 2. parameter: 2 4
Occurrences of 3. parameter: 6 7 8
Occurrences of 3. parameter: 6 7 8
Statements 105

Referenced Example Programs

OCC2P - System Variable *OCCURRENCE

** Example '0CCZ2P': *OCCURRENCE

RO R b e b S b S b e b o b e b e b e b b e e b e e b e e e e e S e e b e e b e e b e e b e e i b e b e e o S

DEFINE DATA LOCAL
1 4N (N7/1:10)
1 41 (I4)
END-DEFINE
*
FOR #I=1 TO 10
MOVE #I TO #N(#I)
END-FOR

*

WRITE 'Passing occurrences 1:5'

CALLNAT "OCC2N" #N(1:5)

*

WRITE 'Passing occurrences 5:10°'

CALLNAT "OCC2N' #N(5:10)

*

END

Subprogram 0CC2N Called by Program 0CC2P:

** Example 'OCC2N': *OCCURRENCE (called by 0CC2P)

R R R b R R e I b R R e S b b e e b b S e e b b e e b b e e b b i S b b R e I b b R e e b b b e e b R e S b b i e e b b Y

DEFINE DATA

PARAMETER

1 #FARR (N7/1:V)

LOCAL

11 (N7)

END-DEFINE

*

FOR I=1 TO *0CC(#ARR)
DISPLAY #ARR(I)

END-FOR

*

END

Output of Program 0CC2P:

Page 1

Passing occurrences 1:5

o1 B~ W N

Passing occurrences 5:10

o1

05-01-18

10:33:03

106

Statements

Referenced Example Programs

O O 0

Statements 107

108

IV

B 2 ACCEPT/REJECT ..o 111
BB ADD e 117
B4 ASSIGN e 123
B I8 AT BREAK ..o 125
B A6 AT END OF DATA .o 133
AT ATEND OF PAGE ... 139
B 18 AT START OF DATA L.t 147
B IO AT TOP OF PAGE ... 153
m 20 BACKOUT TRANSACTION ...ttt 159
® 21 BEFORE BREAK PROCESSINGoiiiiiiiiiiie e 163
B 22 CALL s 167
B 23 CALL FILE ..o 193
B 24 CALL LOOP ...t 197
B 25 CALLDBPROC (SQL) ..ttt 201
B 20 CALLN AT e 207
B 27 CLOSE CONVERSATION ...ttt 215

109

110

12 ACCEPT/REJECT

B ACCEPT/REJECT USAQE ... vvvieeeiiiie ettt ettt e e e e et e e et a e e et a e e e 112
m ACCEPT/REJECT Syntax DeSCHPLONvvviiiiiiiieeiii ittt 112
= Processing of Multiple ACCEPT/REJECT Statementscuvviiiiiiiiiieiiiec e 113
B LIMIENOLAHION ..o e 113
B HOIA SEALUS .. eeeee ettt et e et e e e et e e e reee e 114
B ACCEPT/REJECT EXAMPIESvviieeeiiiii e ettt ettt e ettt e et e et e e e e s 114

M

ACCEPT/REJECT

{ ACCEPT

} [IF] Togical-condition
REJECT

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION |
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | HISTOGRAM | GET | GET SAME |
GET TRANSACTION DATA | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

ACCEPT/REJECT Usage

The statements ACCEPT and REJECT are used for accepting/rejecting a record based on user-specified
logical criterion. The ACCEPT/REJECT statement may be used in conjunction with statements which
read data records in a processing loop (FIND, READ, HISTOGRAM, CALL FILE, SORT or READ WORK
FILE). The criterion is evaluated after the record has been selected/read.

Whenever an ACCEPT/REJECT statement is encountered for processing, it will internally refer to the
innermost currently active processing loop initiated with one of the above mentioned statements.

When ACCEPT/REJECT statements are placed in a subroutine, in case of a record reject, the sub-
routine(s) entered in the processing loop will automatically be terminated and processing will
continue with the next record of the innermost currently active processing loop.

ACCEPT/REJECT Syntax Description

Syntax Element Description

IF IF Clause:

An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read
with a FIND, READ, or HISTOGRAM statement. The logical condition criteria are
evaluated after the record has been read and after record processing has started.

lTogical-condition|Logical Condition Criterion:
The basic criterion is a relational expression. Multiple relational expressions may
be combined with logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

112 Statements

ACCEPT/REJECT

Syntax Element Description

The fields used to specify the logical criterion may be database fields or user-defined
variables. For additional information on logical conditions, see Logical Condition
Criteria in the Programming Guide.

Note: When ACCEPT/REJECT is used with a HI STOGRAM statement, only the database
field specified in the HI STOGRAM statement may be used as a logical criterion.

Processing of Multiple ACCEPT/REJECT Statements

Normally, only one ACCEPT or REJECT statement is required in a single processing loop. If more
than one ACCEPT/REJECT is specified consecutively, the following conditions apply:

® If consecutive ACCEPT and REJECT statements are contained in the same processing loop, they
are processed in the specified order.

® If an ACCEPT condition is satisfied, the record will be accepted and consecutive ACCEPT/REJECT
statements will be ignored.

® If a REJECT condition is satisfied, the record will be rejected and consecutive ACCEPT/REJECT
statements will be ignored.

= If the processing continues to the last ACCEPT/REJECT statement, the last statement will determine
whether the record is accepted or rejected.

If other statements are interleaved between multiple ACCEPT/REJECT statements, each ACCEPT/REJECT
will be handled independently.

Limit Notation

If a LIMIT statement or other limit notation has been specified for a processing loop containing an
ACCEPT or REJECT statement, each record processed is counted against the limit regardless of
whether or not the record is accepted or rejected.

Statements 113

ACCEPT/REJECT

Hold Status

ACCEPT/REJECT processing does not cause a held record to be released from hold status unless the
profile parameter RI (Release ISNs) has been set to RI=0N.

ACCEPT/REJECT Examples

Example 1 - ACCEPT

** Example 'ACREX1':
R R R B b R R e I b b R e S b b e e b b e b b e e i b b e e b b S e b b R e I b b S e e b b e e b b b e b e e b b S S
DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

= Example 1 - ACCEPT
= Example 2 - ACCEPT / REJECT

2 NAME

2 SEX

2 MAR-STAT
END-DEFINE

*

LIMIT 50
READ EMPLOY-VIEW

ACCEPT IF SEX='M" AND MAR-STAT = 'S’

WRITE NOTITLE '=' NAME '=" SEX 5X '=" MAR-STAT
END-READ
END
Output of Program ACREX1:
NAME: MORENOQ S EX: M MARITAL STATUS: S
NAME: VAUZELLE SEX: M MARITAL STATUS: S
NAME: BAILLET S EX: M MARITAL STATUS: S
NAME: HEURTEBISE S EX: M MARITAL STATUS: S
NAME: LION S EX: M MARITAL STATUS: S
NAME: DEZELUS S EX: M MARITAL STATUS: S
NAME: BOYER S EX: M MARITAL STATUS: S
NAME: BROUSSE S E X: M MARITAL STATUS: S
NAME: DROMARD S EX: M MARITAL STATUS: S
NAME: DUC S E X: M MARITAL STATUS: S
NAME: BEGUERIE SEX: M MARITAL STATUS: S
NAME: FOREST S EX: M MARITAL STATUS: S
NAME: GEORGES S EX: M MARITAL STATUS: S
114 Statements

ACCEPT/REJECT

Example 2 - ACCEPT / REJECT

** Example 'ACREX2': ACCEPT/REJECT

R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1)
*
1 ffPROC-COUNT (N8) INIT <0>
END-DEFINE
*
EMP. FIND EMPLOY-VIEW WITH NAME = 'JACKSON'
WRITE NOTITLE *COUNTER NAME FIRST-NAME 'SALARY:' SALARY(1)
/*
ACCEPT IF SALARY (1) LT 50000
WRITE *COUNTER 'ACCEPTED FOR FURTHER PROCESSING'
/*
REJECT IF SALARY (1) GT 30000
WRITE *COUNTER 'NOT REJECTED'
/*
ADD 1 TO #PROC-COUNT
END-FIND
*
SKIP 2
WRITE NOTITLE 'TOTAL PERSONS FOUND ' *NUMBER (EMP.) /
"TOTAL PERSONS SELECTED' #PROC-COUNT
END

Output of Program ACREX2:

1 JACKSON CLAUDE SALARY:
1 ACCEPTED FOR FURTHER PROCESSING
2 JACKSON FORTUNA SALARY:
2 ACCEPTED FOR FURTHER PROCESSING
3 JACKSON CHARLIE SALARY :
3 ACCEPTED FOR FURTHER PROCESSING
3 NOT REJECTED

TOTAL PERSONS FOUND 3

TOTAL PERSONS SELECTED 1

33000

36000

23000

Statements

15

116

13 ADD

B ADD USQE ...ttt 118
= Syntax 1 - ADD Statement without GIVING ClaUuSEccooiiiiiiiiiiiiec it 118
= Syntax 2 - ADD Statement With GIVING ClaUSEooiiiiiiiiieiiiiie e 119
B ADD EXAMPIE ..ot e e ettt e e e e e e e aaaaa e 121

"7

ADD

Related Statements: COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
| SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

ADD Usage

The ADD statement is used to add two or more operands.

This statements has two different syntax structures.

J Notes:

1. At the time the ADD statement is executed, each operand used in the arithmetic operation must
contain a valid value.

2. For additions involving arrays, see also the section Arithmetic Operations with Arrays.

3. As for the formats of the operands, see also the section Performance Considerations for Mixed
Formats.

Syntax 1 - ADD Statement without GIVING Clause

(arithmetic-expression)

ADD [ROUNDED] {
operandl

} .. 10 operand?

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 1):

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandl|C|S |[A| |N N|P|I|F| |D|T yes no

operandZ| |S |A| M N|P|I|F| |D|T yes yes

Syntax Element Description:

118 Statements

ADD

Syntax Element

Description:

arithmetic-expression

See Arithmetic Expression in the COMPUTE statement.

operandl TO operand?

Operands:

operandl and operand? are summands. The result is stored in operand?
(result field). Hence, the statement is equivalent to:

operand? := operand? + operandl + ...
ROUNDED ROUNDED Option:
If the keyword ROUNDED is used, the result will be rounded.
For information on rounding, see Rules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.
Example:

The statement

ADD #A(*) TO #B(*)

ADD S TO #R
ADD #S #T TO #R
ADD #FA(*) TO #R

equivalent to COMPUTE #B(*)

FFACX) + 1B (*)

equivalent to COMPUTE #R = ##S + {R
equivalent to COMPUTE #R := S + #T + 4R
equivalent to COMPUTE #R = fFAC*) + R

Syntax 2 - ADD Statement with GIVING Clause

ADD [ROUNDED] {

(arithmetic-expression)
operandl

} .. GIVING operand?

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 2):

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C|S |A NP|I|F| |D|T yes no

operandz| |S |A A|UIN|P|I|F(B*|D|T yes yes

* Format B of operand? may be used only with a length of less than or equal to 4.

Syntax Element Description:

Statements

19

ADD

Syntax Element Description:

arithmetic-expression See Arithmetic Expression in the COMPUTE statement.

operandl GIVING operandZ |Operands:

operandl is a summand. operandZ is only used to receive the result of
the operation; it is not included in the addition. Hence, the statement is
equivalent to:

operand? := operandl + ...

ROUNDED ROUNDED Option:
If the keyword ROUNDED is used, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

| Note: If Syntax 2 is used, the following applies: Only the (operandl) field(s) left of the

keyword GIVING are the terms of the addition, the field right of the keyword GIVING
(operand?)isjust used to receive the result value. If just a single (operandi) field is supplied,
the ADD operation turns into an assignment.

Example:

The statement

ADD #S GIVING #R is equivalent to COMPUTE #R := #S
ADD #S #T GIVING #R is equivalent to COMPUTE #R := #S + #T

ADD #A(*) 0 GIVING #R 1is equivalent to COMPUTE #R := #A(*) + 0
which is a legal operation, due to the rules defined
in Arithmetic Operations with Arrays

ADD #A(*) GIVING #R is equivalent to COMPUTE #R := #A(*)
which is an illegal operation, due to the rules
defined in Assignment Operations with Arrays

120 Statements

ADD

ADD Example

** Example '"ADDEX1': ADD

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

DEFINE DATA LOCAL

1 #A (P2)

1 4B (P1.1)

1 #C (P1)

1 #fDATE (D)

1 JARRAY1 (P5/1:4,1:4) INIT (2,*) <5>

1 #fARRAY2 (P5/1:4,1:4) INIT (4,*) <10>

END-DEFINE

*

ADD +5 -2 -1 GIVING #A

WRITE NOTITLE 'ADD +5 -2 -1 GIVING #A' 15X '=' #A

*

ADD .231 3.6 GIVING #B

WRITE / 'ADD .231 3.6 GIVING #B' 15X '=' #B

*

ADD ROUNDED 2.9 3.8 GIVING #C

WRITE / "ADD ROUNDED 2.9 3.8 GIVING #C' 8X '=' #C

S

MOVE *DATX TO #DATE

ADD 7 TO {#fDATE

WRITE / "CURRENT DATE:" *DATX (DF=L) 13X
"CURRENT DATE + 7:' #DATE (DF=L)

*

WRITE / "JFARRAY1 AND #fARRAY2 BEFORE ADDITION'
/ '=" #IARRAY1 (2,*) '=' #fARRAY2 (4,*)

ADD #fARRAY1 (2,*) TO #fARRAY2 (4,*)

WRITE / "{FARRAY1 AND #fARRAY2 AFTER ADDITION'
/ '='" #ARRAY1 (2,*) '=' #fARRAY2 (4,*)

*

END

Output of Program ADDEXI:

ADD +5 -2 -1 GIVING #A A 2

ADD .231 3.6 GIVING #B #B: 3.8

ADD ROUNDED 2.9 3.8 GIVING #C #C: 7

CURRENT DATE: 2005-01-10 CURRENT DATE + 7: 2005-01-17

##ARRAY1 AND #fARRAY2 BEFORE ADDITION
fFARRAY1: 5 5 S 5 JFARRAY2: 10 10 10

10

Statements

121

ADD

F#FARRAY1 AND #ARRAY2 AFTER ADDITION
#FARRAY1 : 5 5 5 5 JFARRAYZ: 15 15 15 15

122 Statements

14 ASSIGN

See the statement COMPUTE.

123

124

15 AT BREAK

B AT BREAK USEGE ...ttt ettt et e et e e 126
® AT BREAK Syntax DESCHIPHONeieiiiiiieeiiii ettt ettt e e e e e e e nneeeas 127
B MUHIPIE BrEaK LEVEIS ...ttt 128
B AT BREAK EXGMPIES ..ottt ettt e e e e et eeeaea e e 129

125

AT BREAK

Structured Mode Syntax

[AT] BREAK [(r)] [OF] operandl[/n/]
statement ...
END-BREAK

Reporting Mode Syntax

[AT] BREAK [(r)] [OF] operandI[/n/]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION
| BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

AT BREAK Usage

The AT BREAK statement is used to cause the execution of one or more statements whenever a
change in value of a control field occurs. It is used in conjunction with automatic break processing
and is available with the following statements: FIND, READ, HISTOGRAM, SORT, READ WORK FILE.

The automatic break processing works as follows: Immediately after a record was read by the
processing loop, the control field is checked. If a value change is detected in comparison to the
previous record, the statements included in the AT BREAK statement block are executed. This does
not apply to the very first record in the processing loop. In addition, when the processing loop is
terminated (as reading of records is complete or due to an ESCAPE BOTTOM statement), a final exe-
cution of the statements in the AT BREAK statement block is triggered.

For further information, see Automatic Break Processing in the Programming Guide.

An AT BREAK statement block is only executed if the object which contains the statement is active
at the time when the break condition occurs.

It is possible to initiate a new processing loop within an AT BREAK condition. This loop must also
be closed within the same AT BREAK condition.

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

126 Statements

AT BREAK

Natural system functions may be used in conjunction with an AT BREAK statement, see Natural
System Functions for Use in Processing Loops in the System Functions documentation and Example of
System Functions with AT BREAK Statement in the Programming Guide.

For further information, see also the section AT BREAK Statement in the Programming Guide. It
covers topics such as:

= Control Break Based on a Database Field
® Control Break Based on a User-Defined Variable

AT BREAK Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operand1| |s | | | |AJUN|P[1[F[BD|T|L]]] yes no

Syntax Element Description:

Syntax Element Description

(r) Reference Notation:

By default, the final AT BREAK condition (for loop termination) is always related to the
outermost active processing loop initiated with a FIND, READ, READ WORK FILE,
HISTOGRAM or SORT statement.

With the notation (1) you can relate the final break condition of an AT BREAK statement
to another specific currently open processing loop (that is, the loop in which the AT
BREAK statement is located or any outer loop).

Example:

READ ...
FIND ...
FIND ...
AT BREAK ...
FIND ...
END-FIND
END-BREAK
END-FIND
END-FIND
END-READ

Statements 127

AT BREAK

Syntax Element

Description

In this example, the final AT BREAK condition is related to the READ loop initiated in
line 0120. It would be possible to have it related to one of the FIND loops initiated in
line 0130 and 0140, but not to the one initiated in line 0160.

If (r) is specified for a break hierarchy, it must be specified with the first AT BREAK
statement and applies also to all AT BREAK statements which follow.

operandl

Control Field:

The field used as the break control field is usually a database field. If a user-defined
variable is used, it must be initialized prior to the evaluation of automatic break
processing (see BEFORE BREAK PROCESSING statement). A specific occurrence of an
array can also be used as a control field.

/n/

Notation /n/:

The notation /n/ may be used to indicate that only the first 1 positions (counting from
left to right) of the control field are to be checked for a change in value. This notation
can only be used with operands of format A, B, N or P.

A control break occurs when the value of the control field changes, or when all records
in the processing loop for which the AT BREAK statement applies have been processed.

statement ...

Statement(s) to be Executed at Break Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

END-BREAK

statement
DO statement
DOEND

End of AT BREAK Statement:

In structured mode, the Natural reserved word END-BREAK must be used to end the
AT BREAK statement.

In reporting mode, use the DO ... DOEND statements to supply one or several suitable
statements, depending on the situation, and to end the AT BREAK statement. If you
specify only a single statement, you can omit the DO ... DOEND statements. With
respect to good coding practice, this is not recommended.

Multiple Break Levels

Multiple AT BREAK statements may be specified within a processing loop within the same program
module. If multiple BREAK statements are specified for the same processing loop, they form a
hierarchy of break levels independent of whether they are specified consecutively or interspersed
within other statements. The first AT BREAK statement represents the lowest control break level,
and each additional AT BREAK statement represents the next higher control break level.

Every processing loop in a loop hierarchy may have its own break hierarchy attached.

128

Statements

AT BREAK

Example:
Structured Mode: Reporting Mode:
FIND ... FIND ...
AT BREAK AT BREAK
DO
END-BREAK
AT BREAK DOEND
ce AT BREAK
END-BREAK DO
AT BREAK ce
DOEND
END-BREAK
END-FIND

A change in the value of a control field in a break level causes break processing to be activated for
that break level and all lower break levels, regardless of the values of the control fields for the
lower break levels.

For easier program maintenance, it is recommended to specify multiple breaks consecutively.

See also Example 3 below and the section Multiple Control Break Levels in the Programming Guide.

AT BREAK Examples

This section covers the following topics:

= Example 1 - AT BREAK
= Example 2 - AT BREAK Using /n/ Notation
= Example 3 - AT BREAK with Multiple Break Levels

For further examples of AT BREAK, see Natural System Functions for Use in Processing Loops, Examples
ATBEX3 and ATBEX4.

Statements 129

AT BREAK

Example 1 - AT BREAK

** Example 'ATBEX1S': AT BREAK (structured mode)

R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 COUNTRY

2 NAME
END-DEFINE

*

LIMIT 10

READ EMPLOY-VIEW BY CITY

AT BREAK OF CITY
SKIP 1
END-BREAK

DISPLAY NOTITLE CITY (IS=0ON) COUNTRY (IS=0N) NAME

END-READ

*

END

Output of Program ATBEX1S:

ATKEN

AIX EN OTHE

AJACCIO

ALBERTSLUND

ALBUQUERQUE

ALFRETON

ALICANTE

Equivalent reporting-mode example: ATBEX1R.

COUNTRY

DK

USA

UK

E

SENKO
GODEFROY
CANALE
PLOUG
HAMMOND
ROLLING
FREEMAN
LINCOLN
GOLDBERG

GOMEZ

130

Statements

AT BREAK

Example 2 - AT BREAK Using /n/ Notation

** Example 'ATBEX2': AT BREAK (with /n/ notation)
R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 DEPT

2 NAME
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY DEPT STARTING FROM ‘A’
AT BREAK OF DEPT /4/

SKIP 1

END-BREAK

DISPLAY NOTITLE DEPT NAME
END-READ

*

END

Output of Program ATBEX2:

DEPARTMENT NAME
CODE
ADMAO1 JENSEN
ADMAO1 PETERSEN
ADMAO1 MORTENSEN
ADMAO1 MADSEN
ADMAO1 BUHL
ADMAO?2 HERMANSEN
ADMAO2 PLOUG
ADMAO?2 HANSEN
COMPO1 HEURTEBISE
COMPO1 TANCHOU

Example 3 - AT BREAK with Multiple Break Levels

** Example '"ATBEX5S': AT BREAK (multiple break levels) (structured mode)
R R R o R R b b i b e b e I b R i b e i b e b i R e i R i b S e b R R i b b e S b b 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 DEPT

2 NAME

2 LEAVE-DUE
1 #LEAVE-DUE-L (N4)
END-DEFINE

Statements 131

AT BREAK

*

LIMIT 5
FIND EMPLOY-VIEW WITH CITY = "PHILADELPHIA" OR = 'PITTSBURGH'
SORTED BY CITY DEPT
MOVE LEAVE-DUE TO #LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME #LEAVE-DUE-L
/*
AT BREAK OF DEPT
WRITE NOTITLE /
T*DEPT OLD(DEPT) T*#fLEAVE-DUE-L SUM(#fLEAVE-DUE-L) /
END-BREAK
AT BREAK OF CITY
WRITE NOTITLE
T*CITY OLD(CITY) T*{fLEAVE-DUE-L SUM({LEAVE-DUE-L) //
END-BREAK
END-FIND

*

END

Output of Program ATBEX5:

CITY DEPARTMENT NAME ##LEAVE-DUE-L
CODE

PHILADELPHIA MGMT30 WOLF-TERROINE 11
MACKARNESS 27

MGMT30 38

TECHIO BUSH 39

NETTLEFOLDS 24

TECH10 63

PHILADELPHIA 101
PITTSBURGH MGMT10 FLETCHER 34
MGMT10 34

PITTSBURGH 34

Equivalent reporting-mode example: ATBEX5R.

132 Statements

16 AT END OF DATA

B AT END OF DATA USBQEeeeeeeiiiiee ettt ettt 134
B AT END OF DATA RESIICHONSvvveeeeitiiii ettt ettt e e e e e e e e e e e 135
m AT END OF DATA SyntaX DESCIPHONvviieiiiiii et 135
B AT END OF DATA EXGMPIE ..ottt 136

133

AT END OF DATA

Structured Mode Syntax

[AT] END [OF] DATA [(r)]
statement ...
END-ENDDATA

Reporting Mode Syntax

[AT] END [OF] DATA [(r)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | BACKOUT TRANSACTION
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION
DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

AT END OF DATA Usage

The AT END OF DATA statement is used to specify processing to be performed when all records
selected for a database processing loop have been processed.

This section covers the following topics:

= Processing

= Values of Database Fields
= Positioning

= System Functions

See also AT START/END OF DATA Statements in the Programming Guide.

134 Statements

AT END OF DATA

Processing

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Values of Database Fields

When the AT END OF DATA condition for the processing loop occurs, all database fields contain
the data from the last record processed.

Positioning

This statement must be specified within the same program module which contains the loop creating
statement.

System Functions

Natural system functions may be used in conjunction with an AT END OF DATA statement as de-
scribed in Using System Functions in Processing Loops in the System Functions documentation.

AT END OF DATA Restrictions

* This statement can only be used in a processing loop that has been initiated with one of the
following statements: FIND, READ, READ WORK FILE, HISTOGRAM or SORT.

® It may be used only once per processing loop.

= It is not evaluated if the processing loop referenced for END OF DATA processing is not entered.

AT END OF DATA Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:
An AT END OF DATA statement may be related to a specific active processing
loop by using the notation (r).

If this notation is not used, the AT END OF DATA statement will be related to
the outermost active database processing loop.

statement ... Statement(s) to be Executed at End of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

Statements 135

AT END OF DATA

Syntax Element

Description

END-ENDDATA

statement ...

DO statement ...

DOEND

End of AT END OF DATA Statement:

In structured mode, the Natural reserved word END-ENDDATA must be used
to end the AT END OF DATA statement.

Inreporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF
DATA statement. If you specify only a single statement, you can omit the DO

DOEND statements. With respect to good coding practice, this is not
recommended.

AT END OF DATA Example

** Example '"AEDEX1S': AT END OF DATA

R R R o R R b b R b e b R e I b R i b b e o S e b i R e i R i i b b e b R R e i b b e i b b 4

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME
2 FIRST-NAME

2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE

*

LIMIT 5

EMP. FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'
IF NO RECORDS FOUND

ENTER
END-NOREC

DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)

/*

AT END OF DATA

IF *COUNTER (EMP.) = 0
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM

END-IF

WRITE NOTITLE /

END-ENDDATA
/*
END-FIND

*

END

"SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X '"MINIMUM:' MIN(CSALARY(1)) CURR-CODE (1)
/ 7X "AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)

136

Statements

AT END OF DATA

See also Natural System Functions for Use in Processing Loops in the System Functions documentation.

Output of Program AEDEX1S:

PERSONNEL NAME FIRST-NAME ANNUAL ~ CURRENCY
ID SALARY CODE
11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

Equivalent reporting-mode example: AEDEXIR.

Statements 137

138

17 AT END OF PAGE

B AT END OF PAGE USBGEvvveieeiiiit ettt ettt ettt e e e et e e st e e e e nara e e e 140
= AT END OF PAGE Syntax DeSCHPLONcooiuiviiiiiiiieiiicctiie et 142
m AT END OF PAGE EXGMPIESiiieiei ittt 143

139

AT END OF PAGE

Structured Mode Syntax

[AT] END [OF] PAGE [(rep)]
statement ...
END-ENDPAGE

Reporting Mode Syntax

[AT] END [OF] PAGE [(rep)]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

AT END OF PAGE Usage

The AT END OF PAGE statement is used to specify processing that is to be performed when an end-
of-page condition is detected (see session parameter PS in the Parameter Reference). An end-of-page
condition may also occur as a result of a SKIP or NEWPAGE statement, but not as a result of an EJECT
or INPUT statement.

See also the following sections in the Programming Guide:

" Report Format and Control

" Report Specification - (rep) Notation
® Layout of an Output Page

AT END OF PAGE Statement

140 Statements

AT END OF PAGE

Processing

An AT END OF PAGE statement block is only executed if the object which contains the statement
block is active at the time when the end-of-page condition occurs.

An AT END OF PAGE statement must not be placed within an inline subroutine.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Logical Page Size

The end-of-page check is performed after the processing of a DISPLAY or WRITE statement is com-
pleted. Therefore, if a DISPLAY or WRITE statement produces multiple lines of output, overflow of
the physical page may occur before an end-of-page condition is detected.

Alogical page size (session parameter PS) which is less than the physical page size must be specified
to ensure that information printed by an AT END OF PAGE statement appears on the same physical
page as the title.

Last-Page Handling

Within a main program, an end-of-page condition is activated when the execution of the main
program terminates via ESCAPE, STOP or END.

Within a subroutine, an end-of-page condition is not activated when the execution of the subroutine
terminates via ESCAPE-ROUTINE, RETURN or END-SUBROUTINE.

System Functions

Natural system functions may be used in conjunction with an AT END OF PAGE statement as de-
scribed in the section Using System Functions in Processing Loops in the System Functions document-
ation.

If a system function is to be used within an AT END OF PAGE statement block, the GIVE SYSTEM
FUNCTIONS clause must be specified in the corresponding DISPLAY statement.

Statements 141

AT END OF PAGE

INPUT Statement with AT END OF PAGE

If an INPUT statement is specified withinan AT END OF PAGE statement block, no new page operation
is performed. The page size (session parameter PS) must be reduced to a value that allows the
lines created by the INPUT statement to appear on the same physical page.

See also:

= Split Screen Feature of INPUT Statement
® Example 2 - AT END OF PAGE with INPUT Statement

AT END OF PAGE Syntax Description

Syntax Element Description

(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for
which the AT END OF PAGE statement is applicable. A value in the range 0 -
31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the AT END OF PAGE statement will apply to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

statement Statement(s) to be Executed at End of Page Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Example below.

END-ENDPAGE End of AT END OF PAGE Statement:
Séa timin t . In structured mode, the Natural reserved word END-ENDPAGE must be used to
SLALeMent - lend the AT END OF PAGE statement.
DOEND
In reporting mode, use the D0 ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF PAGE
statement. If you specify only a single statement, you can omitthe DO ... DOEND

statements. With respect to good coding practice, this is not recommended.

142 Statements

AT END OF PAGE

AT END OF PAGE Examples

= Example 1 - AT END OF PAGE
= Example 2 - AT END OF PAGE with INPUT Statement

Example 1 - AT END OF PAGE

** Example "AEPEX1S': AT END OF PAGE (structured mode)
KA KRR AR A AR AR R AR A AR A AR AR R AR A AR A AR AR KR AR KA KA AR AR KA KR KA KA AR AR KA A AR A A KA AR ARk AK
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
FORMAT PS=10
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000°
DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*

AT END OF PAGE

WRITE / 28T 'AVERAGE SALARY: ..." AVER(SALARY(1)) CURR-CODE (1)
END-ENDPAGE

END-READ
*
END

See also Natural System Functions for Use in Processing Loops.

Output of Program AEPEX1S:

NAME CURRENT SALARY CURRENCY
POSITION CODE
CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

Statements 143

AT END OF PAGE

AVERAGE SALARY: ... 33533 USD

Equivalent reporting-mode example: AEPEX1R.

Example 2 - AT END OF PAGE with INPUT Statement

** Example 'AEPEX2': AT END OF PAGE (with INPUT)

R R B b R R e e b b R e e b b e e b b e e b b e e i b b e e b b S e b b R e I b b R e b b e e b R e i b b e e b b b S 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 POST-CODE
2 CITY
*
1 #START-NAME (A20)
END-DEFINE

*

FORMAT PS=21
*
REPEAT
READ (15) EMPLOY-VIEW BY NAME = #START-NAME
DISPLAY NOTITLE NAME FIRST-NAME POST-CODE CITY
END-READ
NEWPAGE
/*
AT END OF PAGE
MOVE NAME TO #START-NAME

INPUT / "-" (79)
/ 10T 'Reposition to name ==>'
fFSTART-NAME (AD=MI) '(''.'' to exit)"
IF #START-NAME = '.'
STOP
END-IF
END-ENDPAGE
/*
END-REPEAT

END

Output of Program AEPEX2S:

NAME FIRST-NAME POSTAL

ADDRESS
ABELLAN KEPA 28014

ACHIESON ROBERT DE3 4TR
ADAM SIMONE 89300
ADKINSON JEFF 11201
ADKINSON PHYLLIS 90211

MADRID

DERBY

JOIGNY
BROOKLYN
BEVERLEY HILLS

144

Statements

AT END OF PAGE

ADKINSON HAZEL 20760 GAITHERSBURG
ADKINSON DAVID 27514 CHAPEL HILL
ADKINSON CHARLIE 21730 LEXINGTON
ADKTNSON MARTHA 17010 FRAMINGHAM
ADKINSON TIMMIE 17300 BEDFORD
ADKTINSON BOB 66044 LAWRENCE
AECKERLE SUSANNE 7000 STUTTGART
AFANASSTEV PHILIP 39401 HATTIESBURG
AFANASSTEV ROSE 60201 EVANSTON
AHL FLEMMING 2300 SUNDBY
Reposition to name ==> AHL (".' to exit)
Statements 145

146

18 AT START OF DATA

B AT START OF DATA USAQEeeeeitiiee e ettt ettt ettt et e et e e et e e e e et e e e 148
= AT START OF DATA SyntaX DESCHPHONcoiiiiiiiiiii et a e 149
B AT START OF DATA EXGMPIE ...ttt et a e e 149

147

AT START OF DATA

Structured Mode Syntax

[AT] START [OF] DATA[(n)]
statement ...
END-START

Reporting Mode Syntax

[AT] START [OF] DATA [(n)]
{ statement }
DO statement... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT END OF DATA | BACKOUT TRANSACTION | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

AT START OF DATA Usage

The statement AT START OF DATA is used to perform processing immediately after the first of a
set of records is read for a processing loop that has been initiated by one of the following statements:
READ, FIND, HISTOGRAM, SORT or READ WORK FILE.

See also AT START/END OF DATA Statements in the Programming Guide.
Processing

If the loop-initiating statement contains a WHERE clause, the at-start-of-data condition will be true
when the first record is read which meets both the basic search and the WHERE criteria.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

148 Statements

AT START OF DATA

Value of Database Fields

All database fields contain the values of the record which caused the at-start-of-data condition to
be true (that is, the first record of the set of records to be processed).

Positioning

This statement must be positioned within a processing loop, and it may be used only once per
processing loop.

AT START OF DATA Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:

An AT START OF DATA statement may be related to a specific outer active
processing loop by using the notation (r). If this notation is not used, the
statement is related to the outermost active processing loop.

statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-START End of AT START OF DATA Statement:

statement ...
DO statement ... DOEND

In structured mode, the Natural reserved word END-START must be used to
end the AT START OF DATA statement.

In reporting mode, use the D0 ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT START
OF DATA statement. If you specify only a single statement, you can omit the
DO ... DOEND statements. With respect to good coding practice, this is not
recommended.

AT START OF DATA Example

** Example 'ASDEX1S': AT START OF DATA (structured mode)
RRAR R b R R e b b R e b b e e b b e e b b e b b b S e b b S S b R e b b e e b b i e e b R e B b b e e b b Y
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY

*

1 J)ICNTL (A1) INIT <" '>

Statements 149

AT START OF DATA

1 #CITY (A20) INIT <' '>

END-DEFINE
*
REPEAT
INPUT 'ENTER VALUE FOR CITY' #CITY
IF #CITY = ' ' OR = 'END'
STOP
END-IF

FIND EMPLOY-VIEW WITH CITY = #CITY
IF NO RECORDS FOUND
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE BOTTOM
END-NOREC
/*
AT START OF DATA
INPUT (AD=0) 'RECORDS FOUND' *NUMBER //

"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=A)

IF #CNTL NE 'D'
ESCAPE BOTTOM
END-IF
END-START
/*
DISPLAY NAME FIRST-NAME
END-FIND
END-REPEAT
END

Output of Program ASDEX1S:

ENTER VALUE FOR CITY PARIS

After entering and confirming name of city:

RECORDS FOUND 26

ENTER 'D' TO DISPLAY RECORDS D

Records displayed:

NAME FIRST-NAME
MATZTERE ELISABETH
MARX JEAN-MARIE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS

150

Statements

AT START OF DATA

CENSTER
DUC
CAHN
MAZUY
FAURIE
VALLY
BRETON
GIGLEUX
KORAB-BRZOZOWSKI
XOLIN
LEGRIS
VVVV

Equivalent reporting-mode example: ASDEXIR.

BERNARD
JEAN-PAUL
RAYMOND
ROBERT
HENRI
ALAIN
JEAN-MARIE
JACQUES
BOGDAN
CHRISTIAN
ROGER

Statements

151

152

19 AT TOP OF PAGE

B AT TOP OF PAGE USBQE ... veeeeiiiie etttk ettt ettt e et e et e e 154
B AT TOP OF PAGE RESICHONSvveiieeiiiii ettt e e e 155
= AT TOP OF PAGE Syntax DESCHIPHONeeiiiiiiieeiiiiie ettt 155
B AT TOP OF PAGE EXAMPIE ...ttt 156

153

AT TOP OF PAGE

Structured Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
statement ...
END-TOPPAGE

Reporting Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

AT TOP OF PAGE Usage

The statement AT TOP OF PAGE is used to specify processing which is to be performed when a
new page is started.

See also the following sections in the Programming Guide:

" Report Format and Control

" Report Specification - (rep) Notation
® Layout of an Output Page

" AT TOP OF PAGE Statement

154 Statements

AT TOP OF PAGE

Processing

A new page is started when the internal line counter exceeds the page size set with the session
parameter PS (page size for Natural reports), or when a NEWPAGE statement is executed. Either of
these events cause a top-of-page condition to be true. An EJECT statement causes a new page to
be started but does not cause a top-of-page condition.

An AT TOP OF PAGE statement block is only executed when the object which contains the statement
is active at the time when the top-of-page condition occurs.

Any output created as a result of AT TOP 0F PAGE processing will appear following the title line
with an intervening blank line.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

AT TOP OF PAGE Restrictions

An AT TOP OF PAGE statement must not be placed within an inline subroutine.

AT TOP OF PAGE Syntax Description

Syntax Element Description

(rep) Report Specification:
The notation (rep) may be used to specify the identification of the report for
which the AT TOP OF PAGE statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the AT TOP OF PAGE statement applies to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

Statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-TOPPAGE End of AT TOP OF PAGE Statement:
[5) Sa timin t . t . In structured mode, the Natural reserved word END- TOPPAGE must be used to
DOEIjDa ement. .- end the AT TOP OF PAGE statement.

Statements 155

AT TOP OF PAGE

Syntax Element Description

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT TOP 0F

PAGE statement. If you specify only a single statement, you can omit the DO . ..
DOEND statements. With respect to good coding practice, this is not recommended.

AT TOP OF PAGE Example

** Example 'ATPEX1S': AT TOP OF PAGE (structured mode)
R R R o R R b b R b i b e b R R i b b e b S e b i R e i i S e b b e e b R e i b b e S b b i 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
2 DEPT
END-DEFINE
*
FORMAT PS=15
LIMIT 15
READ EMPLOY-VIEW BY NAME STARTING FROM 'L’
DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER '-' (78)
/*
AT TOP OF PAGE
WRITE 'BEGINNING NAME:' NAME
END-TOPPAGE
/*
AT END OF PAGE
SKIP 1
WRITE '"ENDING NAME: ' NAME
END-ENDPAGE
END-READ
END

Output of Program ATPEX1S:

EMPLOYEE REPORT

BEGINNING NAME: LAFON

NAME FIRST-NAME CITY DEPARTMENT
CODE
LAFON CHRISTIANE PARIS VENT18
LANDMANN HARRY ESCHBORN MARK29
LANE JACQUELINE DERBY MGMTO2

156 Statements

AT TOP OF PAGE

LANKATILLEKE
LANNON
LANNON
LARSEN
LARSEN

ENDING NAME:

Equivalent reporting-mode example: ATPEX1R.

LARSEN

LALITH
BOB
LESLIE
CARL
MOGENS

FRANKFURT
LINCOLN
SEATTLE
FARUM
VEMMELEV

PROD22
SALE20
SALE30
SYSAO1
SYSAOQ2

Statements

157

158

20 BACKOUT TRANSACTION

® BACKOUT TRANSACTION USBQEveeeiiiiiee ettt ettt e e et e e e taaae e n 160
= BACKOUT TRANSACTION RESHHCHONS .. .vveivireeiiseeiiie ettt 161
= Database-Specific Considerations for BACKOUT TRANSACTIONcooiviiiiiiiieeei e 161
® BACKOUT TRANSACTION EXAMPIEceiuviiiieeiiiiie ettt et e e e nnaee e e 161

159

BACKOUT TRANSACTION

BACKOUT [TRANSACTION]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

BACKOUT TRANSACTION Usage

The BACKOUT TRANSACTION statement is used to back out all database updates performed during
the current logical transaction. This statement also releases all records held during the transaction.

The statement is executed only if a database transaction under control of Natural has taken place.
For which databases the statement is executed depends on the setting of the profile parameter ET
(execution of END/BACKOUT TRANSACTION statements):

" If ET=0FF, the statement is executed only for the database affected by the transaction.

= If ET=0N, the statement is executed for all databases that have been referenced since the last exe-
cution of a BACKOUT TRANSACTION or END TRANSACTION statement.

Backout Transaction Issued by Natural

If the user interrupts the current Natural operation with a terminal command (command %% or
CLEAR key), Natural issues a BACKOUT TRANSACTION statement.

See also the terminal command %% in the Terminal Commands documentation.
Additional Information

For additional information on the use of the transaction backout feature, see the sections Database
Update - Transaction Processing and Backing Out a Transaction in the Programming Guide.

160 Statements

BACKOUT TRANSACTION

BACKOUT TRANSACTION Restrictions

This statement is not available with Entire System Server.

Database-Specific Considerations for BACKOUT TRANSACTION

SQL Databases |As most SQL databases close all cursors when a logical unit of work ends, a BACKOUT
TRANSACTION statement must not be placed within a database modification loop; instead,
it has to be placed after such a loop.

BACKOUT TRANSACTION Example

** Example "BOTEX1': BACKOUT TRANSACTION

* %

**% CAUTION: Executing this example will modify the database records!
khkkhkhkhkhkkhkhkhhkhkkhkhkhhkhkhkkhkhhhhhkhkhhhrhkhkhkhhhhkhkhhhhhkhkhhhhkhkhkhhhhkhkhkhhrhkkhkhkhhkkhkhkhhrkkhkhkhkrkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 DEPT

2 LEAVE-DUE

2 LEAVE-TAKEN
*
1 {#fDEPT (A6)
1 #fRESP (A3)
END-DEFINE
*
LIMIT 3
INPUT 'DEPARTMENT TO BE UPDATED:"' #DEPT
IF #DEPT = ' '

STOP
END-IF
*
FIND EMPLOY-VIEW WITH DEPT = 4DEPT

IF NO RECORDS FOUND

REINPUT 'NO RECORDS FOUND'

END-NOREC
INPUT 'NAME: " NAME (AD=0) /
"LEAVE DUE: ' LEAVE-DUE (AD=M) /
"LEAVE TAKEN:" LEAVE-TAKEN (AD=M)
UPDATE
END-FIND

*

Statements 161

BACKOUT TRANSACTION

INPUT 'UPDATE TO BE PERFORMED? YES/NO:' #RESP
DECIDE ON FIRST #RESP
VALUE 'YES'
END TRANSACTION
VALUE 'NO'
BACKOUT TRANSACTION
NONE
REINPUT 'PLEASE ENTER YES OR NO'
END-DECIDE

*

END

Output of Program BOTEX1:

DEPARTMENT TO BE UPDATED: MGMT30

Result for department MGMT30:

NAME : POREE
LEAVE DUE: 45
LEAVE TAKEN: 31

Confirmation query:

UPDATE TO BE PERFORMED YES/NO: NO

162 Statements

21 BEFORE BREAK PROCESSING

= BEFORE BREAK PROCESSING USAQJEccuvviiieiiiiiieeiiie ettt 164
= BEFORE BREAK PROCESSING RESHCHONSceiiiiiiiiieeie e 165
= BEFORE BREAK PROCESSING Syntax DeSCrPtionccuuvriiiiiiiiieiiiiii e 165
= BEFORE BREAK PROCESSING EXaMPIEovviieiiiiiiciiie e 166

163

BEFORE BREAK PROCESSING

Structured Mode Syntax

BEFORE [BREAK] [PROCESSING]
statement ...
END-BEFORE

Reporting Mode Syntax

BEFORE [BREAK] [PROCESSING]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION | HISTOGRAM
| LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

BEFORE BREAK PROCESSING Usage

The BEFORE BREAK PROCESSING statement may be used in conjunction with automatic break pro-
cessing to perform processing;:

" before the value of the break control field is checked;

" before the statements specified with an AT BREAK statement are executed;

" before Natural system functions are evaluated.

This statement is most often used to initialize or compute values of user-defined variables which
are to be used in break processing (see AT BREAK statement).

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

See also the following sections in the Programming Guide:

= Control Breaks
® BEFORE BREAK PROCESSING Statement
® Example of BEFORE BREAK PROCESSING Statement

164 Statements

BEFORE BREAK PROCESSING

BEFORE BREAK PROCESSING Restrictions

® The BEFORE BREAK PROCESSING statement may only be used with a processing loop that has
been initiated with one of the following statements:

® FIND

® READ

® HISTOGRAM

® SORT

® READ WORK FILE

It may be placed anywhere within the processing loop and is always related to the processing

loop in which it is contained. Only one BEFORE BREAK PROCESSING statement may be specified
per processing loop.

® The BEFORE BREAK PROCESSING statement must not be used in conjunction with the statement
PERFORM BREAK PROCESSING.

BEFORE BREAK PROCESSING Syntax Description

Syntax Element Description

statement. .. Statement(s) for Break Processing;:
In place of statement, you must supply one or several suitable statements,
depending on the situation.

For an example of a statement, see Example below.

If no break processing is to be performed (that is, no AT BREAK statement is
specified for the processing loop), any statements specified with a BEFORE
BREAK PROCESSING statement will not be executed.

END-BEFORE End of BEFORE BREAK PROCESSING Statement:

statement ...
DO statement ... DOEND

In structured mode, the Natural reserved word END-BEFORE must be used
to end the BEFORE BREAK PROCESSING statement.

Inreporting mode, usethe DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the BEFORE BREAK
PROCESSING statement. If you specify only a single statement, you can omit
the DO ... DOEND statements. With respect to good coding practice, this is

not recommended.

Statements 165

BEFORE BREAK PROCESSING

BEFORE BREAK PROCESSING Example

**

**

DE
1

*

1
EN
*
LI
RE

B

EN
EN

Example 'BBPEX1': BEFORE BREAK PROCESSING
ko o o o o ook ok ok ko ok o o ok ok ok ok ok ok ok ko ok ko o o ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok o ok ok ok
FINE DATA LOCAL
EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 SALARY (1)
2 BONUS (1,1)

#INCOME (P11)
D-DEFINE

MIT 7
AD EMPLOY-VIEW BY CITY = 'L’
/%
EFORE BREAK PROCESSING
COMPUTE #fINCOME = SALARY (1) + BONUS (1,1)
END-BEFORE
/%
AT BREAK OF CITY
WRITE NOTITLE 'AVERAGE INCOME FOR' OLD (CITY) 20X AVER(#INCOME) /
END-BREAK
/*
DISPLAY CITY 'NAME' NAME 'SALARY' SALARY (1) 'BONUS' BONUS (1,1)
D-READ
D

Output of Program BBPEX1:

CITY NAME SALARY BONUS

LA BASSEE HULOT 165000 70000

AVERAGE INCOME FOR LA BASSEE 235000
LA CHAPELLE ST LUC GUILLARD 124100 23000

LA CHAPELLE ST LUC BERGE 198500 50000

LA CHAPELLE ST LUC POLETTE 124090 23000

LA CHAPELLE ST LUC DELAUNEY 115000 23000

LA CHAPELLE ST LUC SCHECK 125600 23000

LA CHAPELLE ST LUC KREEBS 184550 50000
AVERAGE INCOME FOR LA CHAPELLE ST LUC 177306
166 Statements

22 CALL

B CALL USBQE ... ettt 168
B CALL Syntax DESCIPHONvieeiiiiieeiiiiit ettt e et e e ettt e e e e e et ee e e e e nneee s 168
B REIUM GO0 .ottt e e e e e e e e e e e e e e 169
B REGISTEN USBUE ..ttt 169
B SHOragE AlIGNMENE L...eiii it e et e e e e e e e e e 170
B AADAS CallS ...t e e e e et aaaaaa e 171
B Direct/DYNamiC LOAINGcooiiiiiiiie e 171
B [NKAGE CONVENTIONS ...iiiiitii ettt e e ettt e e e e e e e 173
B PrOGram PrOPEITIESeeieiiiiii ettt e et e e e e e e e e e 174
B CalliNg @ PLI PIOGIAMvviieeeee ettt e et e e e e e e et e e e e e e s s a e e e e 175
B CalliNg @ C PrOGraM ..ottt 177
B INTERFACEA ..ottt 180

167

CALL

CALL[INTERFACE4] operandl [[USING] operand?...128]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALL Usage

The CALL statement is used to call an external program written in another standard programming
language from a Natural program and then return to the next statement after the CALL statement.

The called program may be written in any programming language which supports a standard
CALL interface. Multiple CALL statements to one or more external programs may be specified.

A CALL statement may be issued within a program to be executed under control of a TP monitor,
provided that the TP monitor supports a CALL interface.

CALL Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandl|C |S A yes no

operandZ|C |S |A |G A|UIN|P|I|EFB|D|T|L|C|G yes yes

Syntax Element Description:

Syntax Element Description

INTERFACE4 Interface Usage:
The optional keyword INTERFACE4 specifies the type of the interface that is used for
the call of the external program. See the section INTERFACE4 below.

operandl Program Name:

The name of the program to be called (operandl) can be specified as a constant or - if
different programs are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 8. A program name must be placed left-justified in the variable.

168 Statements

CALL

Syntax Element

Description

[USING]
operand?

Parameters to be Passed:

The CALL statement may contain up to 128 parameters (operand?), unless the
INTERFACE4 option is used. In that case, the number of parameters is limited by the
size of the cataloged object. Depending on all other statements in the Natural object,
up to 16370 parameters may be used. Standard linkage register conventions are used.
One address is passed in the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user
wishes to specify the beginning address of a group, the first field of the group must be
specified.

Note: The internal representation of positive signs of packed numbers is changed to

the value specified by the PSIGNF parameter of the NTCMP0 macro (Compilation Options)
before control is passed to the external program.

Return Code

The condition code of any called program (content of Register 15 upon return to Natural) may be
obtained by using the Natural system function RET (Return Code Function).

Example:

RESET #fRETURN(B4)

CALL 'PROGIL'

IF RET ('PROGL'

) > #RETURN

WRITE 'ERROR OCCURRED IN PROGRAMI'

END-IF

Register Usage

Register|Contents

R1 Address pointer to the parameter address list.

R2 Address pointer to the field (parameter) description list. The field description list contains
information on the first 128 fields passed in the parameter list. Each description is a 4-byte entry
containing the following information:

= the Ist byte contains the type of variable (A, B,...);
B if a variable of type A exceeds a size of 32767 bytes, it is passed as type Y;

Statements

169

CALL

Register

Contents

= if a variable of type B exceeds a size of 32767 bytes, it is passed as type X; the types X and Y have
been introduced to support long alpha and binary variables with the standard CALL interface.

If field type is N or P:

= the 2nd byte contains the total number of digits;
= the 3rd byte contains the number of digits before the decimal point;

= the 4th byte contains the number of digits after the decimal point.
If field type is X or Y:

® the 2nd byte is unused;
® the 3rd-4th byte contain zero;
® the length of the field is passed via R4.

All other field types:

® the 2nd byte is unused;
® the 3rd-4th byte contain the length of field.

R3 Address pointer to list of field lengths. Each length field is a 4-byte entry containing the length of
each field passed in the parameter list. In the case of an array, the length is the sum of the individual
occurrences' lengths.

R4 Only for type X and Y, a 4-byte long entry for each variable of type A or B that exceeds the size of
32767 bytes.

R13 Address of 18-word save area.

R14 Return address.

R15 Entry address/return code.

Storage Alignment

See the section Storage Alignment in the Programming Guide.

170

Statements

CALL

Adabas Calls

A called program may contain a call to Adabas. The called program must not issue an Adabas
open or close command. Adabas will open all database files referenced.

If Adabas exclusive (EXU) update mode is to be used, the Natural profile parameter 0PRB (Database
Open/Close Processing) must be used in order to open all referenced files. Before you attempt to
use EXU update mode, you should consult your Natural administrator.

If a called program issues Adabas commands that begin or end a transaction, Natural will not be
able to recognize the change of the transaction status.

Calls to Adabas must comply with the calling conventions for the Adabas application programming
interface (API) for the respective TP monitor or operating system. This applies also if Natural is
acting as a server, for example, under z/OS or SMARTS.

Direct/Dynamic Loading

The called program may either be directly linked to the Natural nucleus (that is, the program is
specified with the profile parameter CSTATIC (Programs Statically Linked to Natural) in the Nat-
ural parameter module (described in the Operations documentation), or it may be loaded dynam-
ically the first time it is called.

If it is to be loaded dynamically, the load module library containing the called program must be
concatenated to the Natural load library in the Natural execution JCL or in the appropriate TP-
monitor program library. Ask your Natural administrator for additional information.

Example:

The example below shows a Natural program which calls the COBOL program TABSUB for the
purpose of converting a country code into the corresponding country name. Two parameter fields
are passed by the Natural program to TABSUB:

" the first parameter is the country code, as read from the database;

* the second parameter is used to return the corresponding country name.

Calling Natural Program:

Statements 171

CALL

** Example 'CALEX1': CALL PROGRAM 'TABSUB'

R R R o R R b R R e b b e b e e b b R e i b b e e b e i b b R i b b R e S b b S b R R e b b e S b b

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 BIRTH

2 COUNTRY
*
1 #fCOUNTRY (A3)
1 #COUNTRY-NAME (A15)
1 #FIND-FROM (D)
1 #FIND-TO (D)
END-DEFINE

*

MOVE EDITED '19550701' TO #fFIND-FROM (EM=YYYYMMDD)
MOVE EDITED '19550731"' TO #FIND-TO (EM=YYYYMMDD)
*
FIND EMPLOY-VIEW WITH BIRTH = #FIND-FROM THRU #FIND-TO
MOVE COUNTRY TO #COUNTRY
/*
CALL '"TABSUB' #COUNTRY {fCOUNTRY-NAME
/%
DISPLAY NAME BIRTH (EM=YYYY-MM-DD) #fCOUNTRY-NAME
END-FIND
END

Called COBOL program TABSUB:

IDENTIFICATION DIVISION.
PROGRAM-ID. TABSUB.
REMARKS. THIS PROGRAM PROVIDES THE COUNTRY NAME
FOR A GIVEN COUNTRY CODE.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
01 COUNTRY-CODE PIC X(3).
01 COUNTRY-NAME PIC X(15).
PROCEDURE DIVISION USING COUNTRY-CODE COUNTRY-NAME.
P-CONVERT.

MOVE SPACES TO COUNTRY-NAME.

IF COUNTRY-CODE

IF COUNTRY-CODE = "FRA' MOVE 'FRANCE' TO COUNTRY-NAME.

IF COUNTRY-CODE = 'GER' MOVE 'GERMANY' TO COUNTRY-NAME.
IF COUNTRY-CODE = "HOL' MOVE 'HOLLAND' TO COUNTRY-NAME.

IF COUNTRY-CODE = '"ITA' MOVE "ITALY' TO COUNTRY-NAME.
IF COUNTRY-CODE = "SPA' MOVE 'SPAIN' TO COUNTRY-NAME.

I[F COUNTRY-CODE = "UK' MOVE 'UNITED KINGDOM' TO COUNTRY-NAME.

P-RETURN.
GOBACK.

"BLG' MOVE 'BELGIUM' TO COUNTRY-NAME.
IF COUNTRY-CODE = 'DEN' MOVE 'DENMARK' TO COUNTRY-NAME.

172

Statements

CALL

Linkage Conventions

Standard linkage register notation is used in batch mode. Each TP monitor has its own conventions.
These conventions must be followed; otherwise, unpredictable results could occur.

The following sections describe conventions that apply for the supported TP monitors.

= CALL Using Com-plete
= CALL Using CICS

CALL Using Com-plete

The called program must reside in the Com-plete online load library. This allows Com-plete to
load the program dynamically. The Com-plete utility ULIB may be used to catalog the program.

CALL Using CICS

The called non-Natural subprogram must reside in one of the load libraries of the the DFHRPL library
concatenation of the CICS JCL. The subprogram must have a processing program table (PPT) entry
in the operating PPT, so that CICS can locate the subprogram and load it.

The CALLRPL parameter of the NTCICSP macro controls where and how the parameter list addresses
are passed to the external subroutine program.

If you wish the parameter values themselves, rather than the address of their address list, to be
passed in a CICS COMMAREA (or Container), issue the Natural (call options) %P=C (or %P=CC)
terminal command before the call. Alternatively, you can define the call options by using the PGP
profile parameter.

When a Natural program calls a non-Natural subprogram under CICS, the call is accomplished
by an EXEC CICS LINK request. This does not apply to LE subprograms. For information on how
Natural supports IBM Language Environment (LE) subprograms, see section LE Subprograms in
the Natural Operations documentation.

If you use standard linkage conventions (direct branch using a BASR instruction) for the call instead,
issue the terminal command %P=S, or specify the STDL property with the PGP profile parameter. In
this case, the called subprogram must adhere to standard linkage conventions with standard register
usage. The CICS-supplied stub routines (for example, DFHELII) do not need to be linked to the
called subprogram if no EXEC CICS commands are executed.

Issue the %P=SQ terminal command, or specify the STDLQ property with the PGP profile parameter
if both of the following conditions apply:

Statements 173

CALL

® The subprogram called using standard linkage conventions is quasi-reentrant only (but not
threadsafe and fully reentrant), that is, it is defined with the CICS PPT attribute
CONCURRENCY (QUASTIRENT).

" Natural is defined with the CICS PPT attribute CONCURRENCY (REQUIRED).
As a result, the called subprogram is executed under the CICS QR TCB.

For more information about this topic, see section Threadsafe Considerations in the Natural TP
Monitor Interfaces documentation.

If a program linked with AMODE=24 is called in a 31-bit-mode environment and the threads are al-
located above the 16 MB memory line, a “call by value” will be performed automatically; that is,
the specified parameters which are to be passed to the called program will be copied below the
16 MB memory line.

Return Codes under CICS

CICS itself does not support return codes for a call with CICS conventions (EXEC CICS LINK), with
the exception of calling C/C++ programs where values passed by the exit () function or the
return() statement are saved in the EIBRESP? field. However, the Natural CICS Interface supports
return codes for the CALL statement: When control is returned from the called program, Natural
first checks the EIBRESP?2 field for a non-zero return code.

Then Natural checks whether the first fullword of the COMMAREA has changed (only if COM-
MAREA was used for parameter address lists). If it has, its new content will be taken as the return
code. If it has not changed, the first fullword of the TWA will be checked (only if TWA was used
for parameter address lists) and its new content taken as the return code. If neither of the two
tullwords has changed, the return code will be 0.

| Note: When parameter values are passed in the COMMAREA (%P=C), only the EIBRESP?

field is checked for a return code; that is, for non-C/C++ programs the return code is always
0.

Program Properties

To define properties permanently for external programs to be called, use the profile parameter
PGP. To define temporary properties for external programs to be called, use the terminal command
hP=.

174 Statements

CALL

Calling a PL/I Program

A called program written in PL/I requires the following additional procedure:

Since the parameter list is a standard list and is not an argument list being passed from another
PL/I program, the addresses passed do not point at a LOCATOR DESCRIPTOR. This problem may be
resolved by defining the parameter fields as arithmetic variables. This causes PL/I to treat the
parameter list as addresses of data instead of addresses of LOCATOR DESCRIPTOR control blocks.

The technique suggested for defining the parameter fields is illustrated in the following example:

PLIPROG: PROCCINPUT_PARM_1, INPUT_PARM_2) OPTIONS(MAIN);
DECLARE (INPUT_PARM_1, INPUT_PARM_2) FIXED;
PTR_PARM_1 = ADDRCINPUT_PARM_1);
PTR_PARM_2 = ADDR(INPUT_PARM_2);
DECLARE FIRST_PARM PIC '99' BASED (PTR_PARM_1);
DECLARE SECOND_PARM CHAR(12) BASED (PTR_PARM_2);

Each parameter in the input list should be treated as a unique element. The number of input
parameters should exactly match the number being passed from the Natural program. The input
parameters and their attributes must match the Natural definitions or unpredictable results may
occur. For additional information on passing parameters in PL/I, see the relevant IBM PL/I docu-
mentation.

The following topics are covered below:

= Example of Calling a PL/I Program
= Example of Calling a PL/I Program which is Operating under CICS

Example of Calling a PL/I Program

** Example 'CALEX2': CALL PROGRAM 'NATPLI'

Kk ok o o o o ook ok ok kK Kk ko ok o ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ko ok ko ok ok ok ok ok
DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 AREA-CODE

2 REDEFINE AREA-CODE
3 #fAC (N1)

*

1 #INPUT-NUMBER (N2)
1 #OUTPUT-COMMENT (A15)
END-DEFINE
*
READ EMPLOY-VIEW IN LOGICAL SEQUENCE BY NAME
STARTING FROM 'WAGNER'
MOVE ' ' TO #OUTPUT-COMMENT

Statements 175

CALL

MOVE #AC TO #INPUT-NUMBER
/*
CALL 'NATPLI' #INPUT-NUMBER #fOUTPUT-COMMENT
/*
END-READ

*

END

Called PL/I program NATPLI:

NATPLI: PROC(PARM_COUNT, PARM_COMMENT) OPTIONS(MAIN);

/* x/
/* THIS PROGRAM ACCEPTS AN INPUT NUMBER =/
/* AND TRANSLATES IT TO AN OUTPUT CHARACTER */
/* STRING FOR PLACEMENT ON THE FINAL */
/* NATURAL REPORT o/
/* */
e o/

DECLARE (PARM_COUNT, PARM_COMMENT) FIXED;
DECLARE ADDR BUILTIN;
COUNT_PTR = ADDR(PARM_COUNT) ;
COMMENT_PTR = ADDR(PARM_COMMENT) ;
DECLARE INPUT_NUMBER PIC '99' BASED (COUNT_PTR);
DECLARE OUTPUT_COMMENT CHAR(15) BASED (COMMENT_PTR);
DECLARE COMMENT_TABLE(9) CHAR(15) STATIC INITIAL
('COMMENT1 i
"COMMENT2 " e
"COMMENT3 "
'COMMENT4 "
"COMMENT5 ',
'COMMENT6 o
"COMMENT? "o
'COMMENTS8 "
'COMMENT9 "¢
OUTPUT_COMMENT = COMMENT_TABLE(CINPUT_NUMBER) ;
RETURN;
END NATPLI;

Example of Calling a PL/I Program which is Operating under CICS

** Example 'CALEX3': CALL PROGRAM 'CICSP'

Sk ok o o o o o ok ok ok ok kK K ko ok ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok
DEFINE DATA LOCAL

1 #fMESSAGE (A10) INIT <" '>

END-DEFINE

*

CALL 'CICSP' {MESSAGE

DISPLAY {#MESSAGE

*

END

176

Statements

CALL

Called PL/I program CICSP:

CICSP: PROCEDURE OPTIONS (MAIN REENTRANT);
DCL TWA_ADDRESS BASED(TWA_POINTER) ;
DCL LIST_ADDRESS POINTER;
DCL PTR_TO_LIST POINTER BASED(CLIST_ADDRESS);
DCL PARM_01 POINTER;
DCL MESSAGE CHAR(10) BASED(PARM_01);
EXEC CICS ADDRESS TWA(TWA_POINTER);
MESSAGE="SUCCESS"'; EXEC CICS RETURN; END CICSP;

Calling a C Program

Before using a C program, you need to compile and link it.

® Use for instance IBM's C compiler to build the executable module. Since IBM's C compiler pro-
duces LE code, the sample is only executable in an LE environment. To execute LE programs,
the Natural front-end needs to be installed LE enabled.

® If you intend to use any other C compiler, such as Dignus or SASC, you need to build a module
which is callable from a non-C environment. Refer to the appropriate compiler documentation
for further information.

® The include file NATUSER needs to be included in the C program.

C programs written for INTERFACE4 can be used on mainframe systems as well as on Linux or
Windows systems, whereas C programs, written for the standard Call Interface, are platform-de-
pendent.

If it is intended to call the C Program via CALL INTERFACE4 or if a Natural subprogram is called
from the C Program, NATXCAL4 needs to be linked to the executable module. Use one of the
INTERFACE4 Call Back Functions to retrieve the parameter description and parameter values. The
Call Back Functions are described below.

Use function ncxr_if4_callnat, to execute a Natural subprogram from the C program.

Prototype:

int ncxr_if4_callnat (char *natpgm, int parmnum, struct parameter_description <
*descr);

Parameter description:

Statements 177

CALL

natpgm |Name of the Natural subprogram to be invoked.

parmnum|Number of parameter fields to be passed to the subprogram.

descr |Addressofa struct parameter_description.

See Operand Structure for INTERFACE4 for a detailed description of this structure.

return |Return Value:

Information:

0

OK

If a Natural error occurs while the subprogram is executed,
information about this error will be returned in the variable
natpgmin the form *NATnnnn, where nnnn is the
corresponding Natural error number.

-1

Illegal parameter number.

-2

Internal error.

The following topics are covered below:

= Example of Calling a C Program via Standard CALL
= Example of Calling a C Program via CALL INTERFACE4

Example of Calling a C Program via Standard CALL

**% Example 'CALEX4': CALL

PROGRAM "ADD'

R R R R R R R R R R b R R R R b R R R R b R b R R i b b R e S b i 4

DEFINE DATA LOCAL

1 f0P1 (I4)

1 f#f0P2 (I4)

1 f/SUM (14)

END-DEFINE

*

CALL "ADD' #0P1 #0P2 #SUM
DISPLAY #SUM

*

END

Called C program ADD:

/*

**% Example C Program ADD.

&
NATFCT ADD (int *opl, int
{

@

*op2, int *sum)

*sum = *opl + *op?Z; /* add operands */

return 0; /* return successfully */

} /* ADD */

178 Statements

CALL

Example of Calling a C Program via CALL INTERFACE4

** Example 'CALEX5': CALL PROGRAM 'ADD4'

ok ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok kK
DEFINE DATA LOCAL

1 ##0P1 (I4)

1 #0P2 (14)

1 #SUM (14)

END-DEFINE

*

CALL INTERFACE4 'ADD4' #0P1 #0P2 #SUM

DISPLAY #SUM

*

END

Called C program ADD4:

NATFCT ADD4 NATARGDEF(numparm, parmhandle, parmdec)
{

NATTYP_I4 opl, op2, sum; /* local integers */
int i; /* loop counter */
struct parameter_description desc;

int rc; /* return code access functions */
/*

** test number of arguments

v/

if (numparm != 3) return 1;

/*

** test types of arguments

o

for (i = 0; i < (int) numparm; i++)

{
rc = ncxr_get_parm_info(i, parmhandle, &desc);
if (rc) return rc;

if (desc.format != 'I" || desc.length != sizeof(NATTYP_I4) || desc.dimensions <
I=0)

{

return 2; /* invalid parameter */

}
}
/*
** get arguments
o
rc = ncxr_get_parm(0, parmhandle, sizeof opl, (void *)&opl);
if (rc) return rc;

rc = ncxr_get_parm(1, parmhandle, sizeof op2, (void *)&op2);

Statements 179

CALL

if (rc) return rc;

/*

** perform the addition
o

sum = opl + op2;

/*

** move the result back to operand 3

&

rc = ncxr_put_parm(2, parmhandle, sizeof sum, (void *)&sum);
if (rc) return rc;

/*

** 311 ok, return success to the caller
&/

return 0;

} /* ADD4 */

INTERFACE4

The keyword INTERFACE4 specifies the type of the interface that is used for the call of the external
program. This keyword is optional. If this keyword is specified, the interface, which is defined as
INTERFACE4, is used for the call of the external program.

The following table lists the differences between the CALL statement used with INTERFACE4 and
the one used without INTERFACE4:

CALL statement without keyword CALL statement with keyword
INTERFACE4 INTERFACE4

Number of parameters possible 128 16370 or less

Maximum data size of one parameter |no restriction 1 GB

Retrieve array information no yes

Support of large and dynamic operands |full read access, write without yes
changing size of operand

Parameter access via API direct via API

The maximum number of parameters is limited by the maximum size of the generated program
(GP) and by the maximum size of a statement. 16370 parameters are possible if the program contains
only the CALL statement. The maximum number is lower if other statements are used.

The following topics are covered below:

= INTERFACE4 - External 3GL Program Interface
= QOperand Structure for INTERFACE4

180 Statements

CALL

= INTERFACE4 - Parameter Access
= Exported Functions

INTERFACE4 - External 3GL Program Interface

The interface of the external 3GL program is defined as follows, when INTERFACE4 is specified
with the Natural CALL statement:

NATFCT functionname (numparm, parmhandle, traditional)

USR_WORD|numparm; 16 bit unsigned short value, containing the total number of transferred

operands (operand?).

void

*parmhandle; |Pointer to the parameter passing structure.

void

*traditional;|Check for interface type (if it is not a NULL pointer it is the traditional CALL
interface).

Operand Structure for INTERFACE4

The operand structure of INTERFACE4 isnamed parameter_descriptionand is defined as follows.
The structure is delivered with the header file natuser.h.

struct parameter_description
void * |address Address of the parameter data, not aligned, realloc() and
free() are not allowed.
int format Field data format: NCXR_TYPE_ALPHA, etc. (natuser.h).
int Tength Length (before decimal point, if applicable).
int precision Length after decimal point (if applicable).
int byte_Tlength Length of field in bytes (output only).
int dimensions Number of dimensions (0 to IF4_MAX_DIM).
int length_all Total data length of array in bytes (output only).
int flags Several flag bits combined by bitwise OR operation, meaning:
IF4_FLG_PROTECTED: The parameter is write-protected.
IF4_FLG_DYNAMIC: The parameter is a dynamic
variable.
[F4_FLG_NOT_CONTIGUOUS: The array elements are not
contiguous (have spaces between
them).
IF4_FLG_ATV: The parameter is an
application-independent variable.
IF4_FLG_DYNVAR: The parameter is a dynamic
variable.

Statements 181

CALL

IF4_FLG_XARRAY: The parameter is an X-array.
IF4_FLG_LBVAR_O: The lower bound of dimension 0
is variable.
IF4_FLG_UBVAR_O: The upper bound of dimension 0
is variable.
IF4_FLG_LBVAR_I: The lower bound of dimension 1
is variable.
IF4_FLG_UBVAR_I: The upper bound of dimension 1
is variable.
IF4_FLG_LBVAR_Z: The lower bound of dimension 2
is variable.
IF4_FLG_UBVAR_Z: The upper bound of dimension 2
is variable.
int occurrences[IF4_MAX_DIM] |Array occurrences in each dimension.
int indexfactors[IF4_MAX_DIM]|Array index factors for each dimension.
void * |dynp Reserved for internal use.
void * |pops Reserved for internal use.

The address element is null for arrays of dynamic variables and for X-arrays. In these cases, the
array data cannot be accessed as a whole, but must be accessed through the parameter access
functions described below.

For arrays with fixed bounds of variables with fixed length, the array contents can be accessed
directly using the address element. In these cases the address of an array element (i,j k) is computed
as follows (especially if the array elements are not contiguous):

elementaddress = address + i * indexfactors[0] + j * indexfactors[1l] + k * «
indexfactors[2]

If the array has less than 3 dimensions, leave out the last terms.
INTERFACE4 - Parameter Access

A set of functions is available to be used for the access of the parameters. The process flow is as
follows:

® The 3GL program is called via the CALL statement with the INTERFACE4 option, and the parameters
are passed to the 3GL program as described above.

® The 3GL program can now use the exported functions of Natural, to retrieve either the parameter
data itself, or information about the parameter, such as format, length, array information, etc.

® The exported functions can also be used to pass back parameter data.

There are also functions to create and initialize a new parameter set in order to call arbitrary sub-
programs from a 3GL program. With this technique a parameter access is guaranteed to avoid

182 Statements

CALL

memory overwrites done by the 3GL program. (Natural's data is safe: memory overwrites within

the 3GL program's data are still possible).
Exported Functions

The following topics are covered below:

= Get Parameter Information

= Get Parameter Data

= Write Back Operand Data

= Create, Initialize and Delete a Parameter Set
= Create Parameter Set

= Delete Parameter Set

= |nitialize a Scalar of a Static Data Type

= |nitialize an Array of a Static Data Type

= |nitialize a Scalar of a Dynamic Data Type
= |nitialize an Array of a Dynamic Data Type
= Resize an X-array Parameter

Get Parameter Information

This function is used by the 3GL program to receive all necessary information from any parameter.
This information is returned in the struct parameter_description, whichis documented above.

Prototype:

int ncxr_get_parm_info (int parmnum, void *parmhandle, struct parameter_description «

*descr);

Parameter Description:

Range: 0 ... numparm-1.

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list.

parmhand]le |Pointer to the internal parameter structure

descr Addressof a struct parameter_description
return Return Value: Information:
0 OK
-1 Illegal parameter number.
-2 Internal error.
-7 Interface version conflict.

Statements

183

CALL

Get Parameter Data

This function is used by the 3GL program to get the data from any parameter.

Natural identifies the parameter by the given parameter number and writes the parameter data
to the given buffer address with the given buffer size.

If the parameter data is longer than the given buffer size, Natural will truncate the data to the
given length. The external 3GL program can make use of the function ncxr_get_parm_info, to
request the length of the parameter data.

There are two functions to get parameter data: ncxr_get_parm gets the whole parameter (even if
the parameter is an array), whereas ncxr_get_parm_array gets the specified array element.

If no memory of the indicated size is allocated for “buffer” by the 3GL program (dynamically or
statically), results of the operation are unpredictable. Natural will only check for a null pointer.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_get_parm(int parmnum, void *parmhandle, int buffer_length, void *buffer)

int ncxr_get_parm_array(int parmnum, void *parmhandle, int buffer_length, void <
*pbuffer, int *indexes)

This function is identical to ncxr_get_parm, except that the indexes for each dimension can be
specified. The indexes for unused dimensions should be specified as 0.

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.
parmhandle Pointer to the internal parameter structure

buffer_length|Length of the buffer, where the requested data has to be written to

buffer Address of buffer, where the requested data has to be written to. This buffer should be
aligned to allow easy access to 12/14/F4/F8 variables.
indexes Array with index information
return Return Value: Information:
<0 Error during retrieval of the information:
-1 Illegal parameter number.
-2 Internal error.
-3 Data has been truncated.

184 Statements

CALL

-4 Data is not an array.

-7 Interface version conflict.

-100 Index for dimension 0 is out of range.

-101 Index for dimension 1 is out of range.

-102 Index for dimension 2 is out of range.

0 Successful operation.

>0 Successful operation, but the data was only this
number of bytes long (buffer was longer than the
data).

Write Back Operand Data

These functions are used by the 3GL program to write back the data to any parameter. Natural
identifies the parameter by the given parameter number and writes the parameter data from the
given buffer address with the given buffer size to the parameter data. If the parameter data is
shorter than the given buffer size, the data will be truncated to the parameters data length, that
is, the rest of the buffer will be ignored. If the parameter data is longer than the given buffer size,
the data will be copied only to the given buffer length, the rest of the parameter stays untouched.
This applies to arrays in the same way. For dynamic variables as parameters, the parameter is
resized to the given buffer length.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_put_parm (int parmnum, void *parmhandle,
int buffer_length, void *buffer);
int ncxr_put_parm_array (int parmnum, void *parmhandle,
int buffer_length, void *buffer,
int *indexes);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.
parmhandle Pointer to the internal parameter structure.

buffer_length|Length of the data to be copied back to the address of buffer, where the data comes from.

indexes Index information

return Return Value: Information:
<0 Error during copying of the information:
-1 Illegal parameter number.

Statements 185

CALL

-2 Internal error.

-3 Too much data has been given. The copy back was done
with parameter length.

-4 Parameter is not an array.

-5 Parameter is protected (constant or AD=0).

-6 Dynamic variable could not be resized due to an “out of
memory” condition.

-7 Interface version conflict.

-13 The given buffer includes an incomplete Unicode character.

-100 Index for dimension 0 is out of range.

-101 Index for dimension 1 is out of range.

-102 Index for dimension 2 is out of range.

0 Successful operation.

>0 Successful operation, but the parameter was this number
of bytes long (length of parameter greater than given
length).

Create, Initialize and Delete a Parameter Set

If a 3GL program wants to call a Natural subprogram, it needs to build a parameter set that cor-
responds to the parameters the subprogram expects. The function ncxr_create_parmis used to
create a set of parameters to be passed with a call to ncxr_callnat_handle.

Prototype:

int ncxr_callnat_handle(int subname, void *parmhandle)

Parameter description:

subname Name of subprogram that is called

parmhandle|Parameter set handle

return Return Value: Information:
<0 Error
0 Successful operation

The set of parameters created is represented by an opaque parameter handle, like the parameter
set that is passed to the 3GL program with the CALL INTERFACE4 statement. Thus, the newly created
parameter set can be manipulated with functions ncxr_put_parm* and ncxr_get_parm* as described
above.

The newly created parameter set is not yet initialized after having called the function
ncxr_create_parm. Anindividual parameter is initialized to a specific data type by a set of

186 Statements

CALL

ncxr_parm_init* functions described below. The functions ncxr_put_parm*and ncxr_get_parm*
are then used to access the contents of each individual parameter. After the caller has finished
with the parameter set, they must delete the parameter handle. Thus, a typical sequence in creating
and using a set of parameters for a subprogram to be called through ncxr_callnat_handle will
be:

ncxr_create_parm
ncxr_init_ parm*
ncxr_init_ parm*

ncxr_put_ parm*
ncxr_put_ parm*

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_callnat_handle

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_get_ parm*
ncxr_get_ parm*

ncxr_delete_parm
Create Parameter Set

The function ncxr_create_parmis used to create a set of parameters to be passed with a call to
ncxr_callnat_handle.

Prototype:

int ncxr_create_parm(int parmnum, void** pparmhandle)

Parameter Description:

parmnum Number of parameters to be created.
pparmhand]e |Pointer to the created parameter handle.
return Return Value: Information:
<0 Error:
-1 Illegal parameter count.
-2 Internal error.
-6 Out of memory condition.
0 Successful operation.

Statements 187

CALL

Delete Parameter Set

The function ncxr_delete_parmis used to delete a set of parameters that was created with
ncxr_create_parm.

Prototype:

int ncxr_delete_parm(void* parmhandle)

Parameter Description:

parmhandle

Pointer to the parameter handle to be deleted.

return

Return Value: Information:

<0 Error:

-2 Internal error.

0 Successful operation.

Initialize a Scalar of a Static Data Type

Prototype:

int ncxr_init_parm_s(int parmnum, void *parmhandle,
char format, int Tength, int precision, int flags);

Parameter Description:

parmnum

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhandle

Pointer to the parameter handle.

format Format of the parameter.
Tength Length of the parameter.
precision [Precision of the parameter.
flags IFA_FLG_PROTECTED
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
0 Successful operation.
188 Statements

CALL

Initialize an Array of a Static Data Type

Prototype:

int ncxr_init_parm_sa(int parmnum, void *parmhandle,
char format, int Tength, int precision,
int dim, int *occ, int flags);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhand]e |Pointer to the parameter handle.

format Format of the parameter.

Tength Length of the parameter.

precision [Precision of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.
flags A combination of the flags

IFA_FLG_PROTECTED
IFA_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_?
IFA_FLG_UBVAR_Z

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.

Statements 189

CALL

Initialize a Scalar of a Dynamic Data Type

Prototype:

int ncxr_init_parm_d(int parmnum, void *parmhandle,

char format,

int flags);

Parameter Description:

parmnum

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 numparm-1.

parmhandle

Pointer to the parameter handle.

format Format of the parameter.

flags IFA_FLG_PROTECTED

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
0 Successful operation.

Initialize an Array of a Dynamic Data Type

Prototype:

int ncxr_init_parm_da(int parmnum, void *parmhandle,

char format,

int dim, int *occ, int flags);

Parameter Description:

parmnum

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 numparm-1.

parmhandle

Pointer to the parameter handle.

format Format of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.

flags A combination of the flags
IFA_FLG_PROTECTED
IF4_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4_FLG_LBVAR_1

190 Statements

CALL

IF4_FLG_UBVAR_1
IFA_FLG_LBVAR_?
IFA_FLG_UBVAR_2

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.

Resize an X-array Parameter

Prototype:

int ncxr_resize_parm_array(int parmnum, void *parmhandle, int *occ);

Parameter Description:

Range: 0 ... numparm-1.

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.

parmhand]le |Pointer to the parameter handle.

occ New number of occurrences per dimension.
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-12 Operand is not resizable (in one of the specified
dimensions).
0 Successful operation.

All function prototypes are declared in the file natuser.h.

Statements

191

192

23 CALL FILE

B CALL FILE USQE ... it ee ettt ettt e e e ettt e e e e e e ettt e e e e e e e e et eaaeeee e 194
B CALL FILE RESIFICHONS ..ottt ettt et e ettt e et e e e et e e e e 194
8 CALL FILE Syntax DESCHPHONeeeiiiiiiiee ittt e e 194
B CALL FILE EXAMPIE ...ttt ettt e e e e e e ettt e e e e e e e aa e e e 195

193

CALL FILE

Structured Mode Syntax

CALL FILE'program-name' operandl operand2
statement ...
END-FILE

Reporting Mode Syntax

CALL FILE'program-name' operandl operand?
statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALL FILE Usage

The CALL FILE statement is used to call a non-Natural program which reads a record from a non-
Adabas file and returns the record to the Natural program for processing.

CALL FILE Restrictions

The statements AT BREAK, AT START OF DATAand AT END OF DATA mustnotbe used withina CALL
FILE processing loop.

CALL FILE Syntax Description

Operand Definition Table:

194 Statements

CALL FILE

Operand | Possible Structure Possible Formats Referencing Dynamic Definition
Permitted

operandl A AUNPIFBDTLC yes yes

operandZ A |G AUNPIFBDTLC yes yes

Syntax Element Description:

Syntax Element Description

"program-name' |Program to be Called:
The name of the non-Natural program to be called.

operandl Control Field:
operandl is used to provide control information.

operand? Record Area:
operandZ defines the record area.
The format of the record to be read can be described using field definitions (or FILLER
nX) entries following the name of the first field in the record. The fields used to define
the record format must not have been previously defined in the Natural program. This
ensures that fields are allocated in the contiguous storage by Natural.

statement ... |Processing Loop:
The CALL FILE statement initiates a processing loop which must be terminated with
an ESCAPE or STOP statement. More than one ESCAPE statement may be specified to
escape from a CALL FILE loop based on different conditions.

END-FILE End of CALL FILE Statement:

LooP In structured mode, the Natural reserved keyword END- FILE must be used to end the
CALL FILE statement.
In reporting mode, the Natural statement LOOP isused to end the CALL FILE statement.

CALL FILE Example

Calling Program:

** Example 'CFIEX1':

CALL FILE

R R R R e R b e b b R b e b i e R e i e R e e b e I e S e e B e e b e e b e b e b e e b e b e b e e i e b e S e e b o 4

DEFINE DATA LOCAL
1 #fCONTROL (A3)

1 ffRECORD
2 A (A10)
2 B (N3.2)
2 #FILLL (A3)
2 {tC (P3.1)
END-DEFINE
*
Statements 195

CALL FILE

CALL FILE "USER1" #fCONTROL #RECORD
IF #CONTROL = "END'
ESCAPE BOTTOM
END-IF
END-FILE

/*****************************

/* ... PROCESS RECORD ...

/*****************************

END

The byte layout of the record passed by the called program to the Natural program in the above

example is as follows:

CONTROL #A 1B FILLER 4C
(A3) (A10) (N3.2) 3X (P3.1)

XXX XXXXXXXXXX XXXXX XXX XXX

Called COBOL Program:

ID DIVISION.
PROGRAM-ID. USERI.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT USRFILE ASSIGN UT-S-FILEUSR.

DATA DIVISION.
FILE SECTION.

FD USRFILE RECORDING F LABEL RECORD OMITTED

DATA RECORD DATA-IN.
01 DATA-IN PIC X(80).
LINKAGE SECTION.
01 CONTROL-FIELD PIC XXX.
01 RECORD-IN PIC X(21).

PROCEDURE DIVISION USING CONTROL-FIELD RECORD-IN.

BEGIN.
GO TO FILE-OPEN.
FILE-OPEN.
OPEN INPUT USRFILE
MOVE SPACES TO CONTROL-FIELD.

ALTER BEGIN TO PROCEED TO FILE-READ.

FILE-READ.
READ USRFILE INTO RECORD-IN
AT END

MOVE '"END' TO CONTROL-FIELD

CLOSE USRFILE

ALTER BEGIN TO PROCEED TO FILE-OPEN.

GOBACK.

196

Statements

24 CALL LOOP

B CALL LOOP USJE ...ttt etttk ettt ettt et e et e e nee e 198
B CALL LOOP RESHCHONSvvteeeiiet ettt et e et e e e e et e e e e e 198
® CALL LOOP Syntax DESCHIPHONeeiiiiiiieeiiiit ettt e e 199
B CALL LOOP EXGMPIE ...ttt 199

197

CALL LOOP

Structured Mode Syntax

CALL LOOP operandl [operandZ]..A40
statement ...
END-LOOP

Reporting Mode Syntax

CALL LOOP operandl [operandZ]...40
statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL FILE | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALL LOOP Usage

The CALL LOOP statement is used to generate a processing loop that contains a call to a non-Natural
program.

Unlike the CALL statement, the CALL LOOP statement results in a processing loop which is used to
repeatedly call the non-Natural program. See the CALL statement for a detailed description of the
CALL processing.

CALL LOOP Restrictions

The statements AT BREAK, AT START OF DATAand AT END OF DATA must notbe used withina CALL
LOOP processing loop.

198 Statements

CALL LOOP

CALL LOOP Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl|C (S A yes no

operandZ|C |S |A |G A|UIN|P|I|F|B|D|T|L|C yes yes

Syntax Element Description:

Syntax Element Description

operandl Program to be Called:

The name of the non-Natural program to be called can be specified as a constant or -
if different programs are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 8. A program name must be placed left-justified in the variable.

operand? Parameters:

The CALL LOOP statement can have a maximum of 40 parameters. The parameter list
is constructed as described for the CALL statement. Fields used in the parameter list
may be initially defined in the CALL LOOP statement itself or may have been previously
defined.

statement ... |Processing Loop:
The CALL LOOP statement initiates a processing loop which must be terminated with
an ESCAPE statement.

END-LOOP End of CALL LOOP Statement:
LOOP

In structured mode, the Natural reserved word END-LOOP must be used to end the
CALL LOOP statement.

In reporting mode, the Natural statement LOOP is used to end the CALL LOOP statement.

CALL LOOP Example

DEFINE DATA LOCAL

1 PARAMETER1 (A10)

END-DEFINE

CALL LOOP 'ABC' PARAMETER1L
IF PARAMETERI = "END'

ESCAPE BOTTOM

END-IF

END-LOOP

END

Statements 199

200

25 cavoerroc (SQL)

B CALLDBPROGC USBGE ...ttt ettt 202
L =140) O URPUPPPPPRRR 203
= CALLDBPROC Syntax DESCHPHONciueiiieeiiiii ettt 203
B CALLDBPROGC EXAMPIE ...t 205

201

CALLDBPROC (SQL)

CALLDBPROC dbproc ddm-name

o {e | = 2]

[RESULT SETS result-set...]
[GIVING sqTcode]

NONE
[CALLMODE={ }]
NATURAL

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

See also CALLDBPROC - SQL in the Natural for Db2 part of the Database Management System Interfaces
documentation.

CALLDBPROC Usage

The CALLDBPROC statement is used to invoke a stored procedure of the SQL database system to
which Natural is connected.

The stored procedure can be either a Natural subprogram (only available when executed from
Db2 for z/OS) or a program written in another programming language.

In addition to the passing of parameters between the invoking object and the stored procedure,
CALLDBPROC supports “result sets”; these make it possible to return a larger amount of data from
the stored procedure to the invoking object than would be possible via parameters.

The result sets are “temporary result tables” which are created by the stored procedure and which
can be read and processed by the invoking object via a READ RESULT SET statement.

| Note: Ingeneral, the invoking of a stored procedure could be compared with the invoking

of a Natural subprogram: when the CALLDBPROC statement is executed, control is passed to
the stored procedure; after processing of the stored procedure, control is returned to the
invoking object and processing continues with the statement following the CALLDBPROC
statement.

202 Statements

CALLDBPROC (SQL)

Restriction

This statement is available only with Natural for Db2.

CALLDBPROC Syntax Description

Syntax
Element

Description

dbproc

Stored Procedure to be Invoked:

As dbproc you specify the name of the stored procedure to be invoked. The name can be
specified either as an alphanumeric variable or as a constant (enclosed in apostrophes).

The name must adhere to the rules for stored procedure names of the target database system.

If the stored procedure is a Natural subprogram, the actual procedure name must not be
longer than 8 characters.

ddm-name

Name of a Natural Data Definition Module:

The name of a DDM must be specified to provide the “address” of the database which executes
the stored procedure. For further information, see ddm-name.

[USING]
parameter

Parameter(s) to be Passed:

As parameter, you can specify parameters which are passed from the invoking object to the
stored procedure. A parameter can be

® a host-variable (optionally with INDICATOR and LINDICATOR clauses),
B a constant, or

® the keyword NULL.

See further details on host-variable.

AD=

Attribute Definition:

If parameterisa host-variable, you can mark it as follows:

AD=0 Non-modifiable, see session parameter AD=0.

(Corresponding procedure notation in Db2 for
z/OS: IN.)

AD=M Modifiable, see session parameter AD=M.

(Corresponding procedure notation in Db2 for
z/OS: INOUT.)

AD=A For input only, see session parameter AD=A.

Statements

203

CALLDBPROC (SQL)

Syntax
Element

Description

(Corresponding procedure notation in Db2 for
z/OS: 0UT.)

If parameteris a constant, AD cannot be explicitly specified. For constants, AD=0 always
applies.

RESULT
SETS
result-set

Field for Result-Set Locator Variable:
As result-set you specify a field in which a result-set locator is to be returned.
A result set has to be a variable of format/length I4.

The value of a result set variable is merely a number which identifies the result set and which
can be referenced in a subsequent READ RESULT SET statement.

The sequence of the result - set values correspond to the sequence of the result sets returned
by the stored procedure.

The contents of the result sets can be processed by a subsequent READ RESULT SET statement.
If no result set is returned, the corresponding result-set variable will contain 0.

Multiple result sets can be specified only when the stored procedure is invoked via Natural
for Db2.

See also Result Sets (in the Natural for Db2 part of the Database Management System Interfaces
documentation).

GIVING
sglcode

GIVING sqlcode Option:

This option may be used to obtain the SQLCODE of the SQL CALL statement invoking the
stored procedure.

If this option is specified and the SQLCODE of the stored procedure is not 0, no Natural error
message will be issued. In this case, the action to be taken in reaction to the SQLCODE value
has to be coded in the invoking Natural object.

The sqlcode field has to be a variable of format/length 14.

If the GIVING sqg/code option is omitted, a Natural error message will be issued if the
SQLCODE of the stored procedure is not 0.

CALLMODE=

CALLMODE Parameter:

Possible settings are:

CALLMODE=NATURAL This setting applies if the stored procedure is a
Natural subprogram which is defined with
PARAMETER STYLE GENERAL or PARAMETER STYLE
GENERAL WITH NULL, otherwise specify NONE
(default).

204

Statements

CALLDBPROC (SQL)

Syntax Description

Element
This setting also has an impact on internal
parameters that are passed to/from the stored
procedure. For details, see CALLMODE=NATURAL
in the section CALLDBPROC of the Natural for Db2
documentation.

CALLMODE=NONE This is the default.
CALLDBPROC Example

The following example shows a Natural program that calls the stored procedure DEMO_PROC to
retrieve all names of table PERSON that belong to a given range.

Three parameter fields are passed to DEMO_PROC: the first and second parameters pass starting and
ending values of the range of names to the stored procedure, and the third parameter receives a
name that meets the criterion.

In this example, the names are returned in a result set that is processed using the READ RESULT
SET statement.

DEFINE DATA LOCAL
1 PERSON VIEW OF DEMO-PERSON

2 PERSON_ID

2 LAST_NAME
1 #BEGIN (A2) INIT <'AB'>
1 #fEND (A2) INIT <'DE'>
1 #RESPONSE (14)
1 #RESULT (I4)
1 JINAME (A20)
END-DEFINE

CALLDBPROC 'DEMO_PROC' DEMO-PERSON #BEGIN (AD=0) #END (AD=0) #NAME (AD=A)
RESULT SETS {fRESULT
GIVING #RESPONSE

READ RESULT SET #RESULT INTO #NAME FROM DEMO-PERSON
GIVING {FRESPONSE
DISPLAY {NAME
END-RESULT

END

Statements 205

CALLDBPROC (SQL)

For further examples, see Example of CALLDBPROC/READ RESULT SET in the section CALLDB-
PROC of the Natural for Db2 documentation.

206 Statements

26 CALLNAT

B CALLNAT USJE ettt ettt et e sttt ettt et e e e e et e e 208
B CALLNAT Syntax DESCHPLONvvviiiiiieiieiiiiiie e e e e e e a e e e 209
= Parameter Transfer with Dynamic Variables ... 211
B CALLNAT EXAMPIES ...ttt ettt ettt e e e ettt e e e e e e e ettt e e e e e e e et eaeeeaeas 212

207

CALLNAT

M
operandZ2 (AD= ‘ 0 ’)

CALLNAT operandl [USING] A

nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALLNAT Usage

The CALLNAT statement is used to invoke a Natural subprogram for execution. (A Natural subpro-
gram can only be invoked via a CALLNAT statement; it cannot be executed by itself.)

When the CALLNAT statement is executed, the execution of the invoking object (that is, the object
containing the CALLNAT statement) will be suspended and the invoked subprogram will be executed.
The execution of the subprogram continues until either its END statement is reached or processing
of the subprogram is stopped by an ESCAPE ROUTINE statement being executed. In either case,
processing of the invoking object will then continue with the statement following the CALLNAT
statement.

) Notes:

1. A subprogram can in turn invoke other subprograms.

2. A subprogram has no access to the global data area used by the invoking object. If a subprogram
in turn invokes a subroutine or helproutine, it can establish its own global data area to be shared
with the subroutine/helproutine.

208 Statements

CALLNAT

CALLNAT Syntax Description

Operand Definition Table:

Operand |Possible Structure Possible Formats Referencing |Dynamic Definition
Permitted

operandI|C |S A yes no

operand2|C |S |A |G A|UN|P|I|F|B|D|T|L|C|G|O yes yes

Syntax Element Description:

Syntax
Element

Description

operandl

Subprogram to be Invoked:

As operandl, you specify the name of the subprogram to be invoked. The name may be specified
either as a constant of 1 to 8 characters, or - if different subprograms are to be called dependent
on program logic - as an alphanumeric variable of length 1 to 8. The case of the specified name
is not translated.

The subprogram name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different subprograms for the
processing of input, depending on the language in which input is provided.

operand?

Parameters:

If parameters are passed to the subprogram, the structure of the parameter list must be defined
inaDEFINE DATA PARAMETER statement. The parameters specified with the CALLNAT statement
are the only data available to the subprogram from the invoking object.

By default, the parameters are passed by reference, that is, the data are transferred via address
parameters, the parameter values themselves are not moved. However, it is also possible to
pass parameters by value, that is, pass the actual parameter values. To do so, you define these
fieldsinthe DEFINE DATA PARAMETER statement of the subprogram with the option BY VALUE
or BY VALUE RESULT (see parameter-data-definitionin the description of the DEFINE
DATA statement).

= [f parameters are passed by reference, the following applies: The sequence, format and length
of the parameters in the invoking object must match exactly the sequence, format and length
of the DEFINE DATA PARAMETER structure in the invoked subprogram. The names of the
variables in the invoking object and the invoked subprogram may be different.

If parameters are passed by value, the following applies: The sequence of the parameters in
the invoking object must match exactly the sequence in the DEFINE DATA PARAMETER
structure of the invoked subprogram. Formats and lengths of the variables in the invoking
object and the subprogram may be different; however, they have to be data transfer compatible;

Statements

209

CALLNAT

Syntax
Element

Description

see the corresponding table in the section Rules for Arithmetic Assignments, Data Transfer in
the Programming Guide. The names of the variables in the invoking object and the subprogram
may be different. If parameter values that have been modified in the subprogram are to be
passed back to the invoking object, you have to define these fields with BY VALUE RESULT.
When BY VALUE is specified without RESULT, it is not possible to pass modified parameter
values back to the invoking object (regardless of the AD specification; see also below).

Note: With BY VALUE, an internal copy of the parameter values is created. The subprogram

accesses this copy and can modify it, but this will not affect the original parameter values in
the invoking object. With BY VALUE RESULT, an internal copy is likewise created, however,
after termination of the subprogram, the original parameter values are overwritten by the
(modified) values of the copy.

For both ways of passing parameters, the following applies:

If a group is specified as operandZ, the individual fields contained in that group are passed to
the subprogram; that is, for each of these fields a corresponding field must be defined in the
subprogram's parameter data area.

In the parameter data area of the invoked subprogram, a redefinition of groups is only permitted
within a REDEFINE block.

If an array is passed, its number of dimensions and occurrences in the subprogram's parameter
data area must be the same as in the CALLNAT parameter list.

Note: If multiple occurrences of an array that is defined as part of an indexed group are passed

with the CALLNAT statement, the corresponding fields in the subprogram's parameter data area
must not be redefined, as this would lead to the wrong addresses being passed.

When the option PCHECK of the COMPOPT command is set to ON, the compiler will check the
number, format, length and array index bounds of the parameters that are specified ina CALLNAT
statement. Also, the OPTIONAL feature of the DEFINE DATA PARAMETER statement is considered
in the parameter check.

Note: Numeric constant parameters are internally represented in packed form (format P). For

further information see the Programming Guide > Numeric Constants.

Attribute Definition:

If operand?Zis a variable, you can mark it in one of the following ways:

AD=0 Non-modifiable, see session parameter AD=0.

Note: Internally, AD=0 is processed in the same

way as BY VALUE (see
parameter-data-definitionin the
description of the DEFINE DATA statement).

AD=M Modifiable, see session parameter AD=M.

210

Statements

CALLNAT

Syntax Description
Element
This is the default setting.
AD=A Input only, see session parameter AD=A.
If operand?is a constant, AD cannot be explicitly specified. For constants AD=0 always applies.
nX Parameters to be Skipped:

With the notation nX you can specify that the next n parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the
next 1 parameters no values are passed to the subprogram. The possible range of values for 1

is1l - 4096.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the

subprogram's DEFINE DATA PARAMETER statement. 0PTIONAL means that a value can - but
need not - be passed from the invoking object to such a parameter.

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).

A call by reference is possible because the value space of a dynamic variable is contiguous. A call
by value causes an assignment with the variable definition of the caller as the source operand and
the parameter definition as the destination operand. In addition, a call by value result causes the
movement to change to the opposite direction. When using a call-by-reference, both definitions

must be DYNAMIC. If only one of them is DYNAMIC, a runtime error is raised. In case of a call by value
(result) all combinations are possible.

The following table illustrates the valid combinations of statically and dynamically defined variables
of the caller, and statically and dynamically defined parameters concerning the parameter transfer.

Call By Reference

operand? of caller|Parameter definition
Static Dynamic

Static yes no

Dynamic no yes

The formats of the dynamic variables A or B must match.

Statements

211

CALLNAT

Call by Value (Result)

operand? of caller|Parameter definition
Static Dynamic

Static yes yes

Dynamic yes yes

Note: When using static/dynamic or dynamic/static definitions, a value truncation may

occur according to the data transfer rules of the appropriate assignments.

CALLNAT Examples

= Example 1
= Example 2

Example 1
Calling Program:

*% Example 'CNTEX1': CALLNAT

P R b i B B b b o B i i o i o b b b b b i b b g b i e o b o i e b b b e b i i g i b b b o o b b b i e b i b b b o
DEFINE DATA LOCAL

1 #FIELDL (N6)

1 #/FIELD2 (A20)

1 /FIELD3 (A10)

END-DEFINE

*

CALLNAT 'CNTEXIN' #FIELD1 (AD=M) {fFIELD2 (AD=0) #FIELD3 'P4 TEXT'

*

WRITE '=' #FIELDl '=' #FIELD2 '=' #FIELD3

*

END

Called Subprogram CNTEXIN:

*% Example 'CNTEXIN': CALLNAT (called by CNTEXL1)

P R e b i b b i i b o B b B b i b i b b e b b b i b o b b e b i i e b b b b b o b i e e b b b i i b b b b o b i b b b
DEFINE DATA PARAMETER

1 ffFIELDA (N6)

1 #fFIELDB (A20)

1 #FIELDC (A10)

1 fFIELDD (A7)

END-DEFINE

*
*

212 Statements

CALLNAT

JIFIELDA := 4711

*

#FIELDB := 'HALLO'
*

##FIELDC := 'ABC'

*

WRITE '=' #FIELDA '=' #FIELDB '=' #FIELDC '=' #FIELDD
*

END

Example 2

Calling Program:

** Example 'CNTEX2': CALLNAT
Khkhkkhhkkhhkhhkkhhkkhhkkhhkhhkhhhhkhhhhkhhhhkhhhhhhhhkhhkhhkhhkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhrkhrkhkrkhrk
DEFINE DATA LOCAL

1 #ARRAYL (N4/1:10,1:10)

1 #NUM (N2)

END-DEFINE

*
*
CALLNAT '"CNTEX2N' #fARRAY1 (2:5,%*)
*
FOR #NUM 1 TO 10

WRITE #NUM #FARRAYI(#NUM,1:10)
END-FOR

*

END

Called Subprogram CNTEX2N:

** Example 'CNTEX2N': CALLNAT (called by CNTEX2)

R R R o R R b b R b e b e S b R R i b b e i b e i b R e i b R i i b b e b R R e i b b e b i 4
DEFINE DATA

PARAMETER

1 #FARRAY (N4/1:4,1:10)

LOCAL

11 (I2)

END-DEFINE

*

*

FOR I 1 10
F#ARRAY (1,1) :=1
#FARRAY (2,1) := 100 + I
#FARRAY (3,1) := 200 + I
FFARRAY (4,1) := 300 + I
END-FOR

*

END

Statements 213

214

27 CLOSE CONVERSATION

B CLOSE CONVERSATION USJE ... vveevtieeeiiie ettt ettt 216
m CLOSE CONVERSATION SyntaxX DESCHIPHONcciiiiiieeiiiiie ettt 216
= Further Information and CLOSE CONVERSATION EXaMPIESccovvvirieiiiiiieeiiiiieeeeie et 217

215

CLOSE CONVERSATION

operandl ...
CLOSE CONVERSATION ‘ *CONVID]
ALL

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DEFINE DATA CONTEXT | OPEN CONVERSATION

Belongs to Function Group: Natural Remote Procedure Call

CLOSE CONVERSATION Usage

The statement CLOSE CONVERSATION is used in conjunction with the Natural RPC (Remote Procedure
Call). It allows the client to close conversations. You can close the current conversation, another
open conversation, or all open conversations.

| Note: A logon to another library does not automatically close conversations.

CLOSE CONVERSATION Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted Dynamic Definition

operandl ‘S ‘A ‘ I yes no

Syntax Element Description:

Syntax Element|Description

operandl Identifier of Conversation to be Closed:
To close a specific open conversation, specify its ID as operand]I.

operandl must be a variable of format/length 14.

*CONVID Closing the Current Conversation:
To close the current conversation, specify *CONVID.

The ID of the current conversation is determined by the value of the system variable *CONVID.

ALL Closing All Open Conversations:

To close all open conversations, specify ALL.

216 Statements

CLOSE CONVERSATION

Further Information and CLOSE CONVERSATION Examples

See the following sections in the Natural RPC (Remote Procedure Call) documentation:

® Natural RPC Operation in Conversational Mode
® Using a Conversational RPC

Statements 217

218

V

= 28 CLOSE PC FILE .
= 29 CLOSE PRINTER

B 30 CLOSE WORK FILE ...ttt

= 31 COMMIT (SQL) ...
= 32 COMPOSE
= 33 COMPRESS........
= 34 COMPUTE
= 35 CREATE OBJECT
= 36 DECIDE FOR ...
= 37 DECIDEON
= 38 DEFINE CLASS ..

219

220

28 CLOSE PC FILE

B CLOSE PC FILE USAQEvvvieeeiiiiiee ettt ettt ettt e et e e et e e et a e e e 222
® CLOSE PC FILE Syntax DESCHPHONeiiiiiiiiiiiiiie e 222
B CLOSE PC FILE EXAMPIE ...ttt e e 222

221

CLOSE PC FILE

PC
CLOSE { } [FILE] work-file-number
WORK

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DOWNLOAD PC FILE | UPLOAD PC FILE

Belongs to Function Group: Control of Work Files / PC Files

CLOSE PC FILE Usage

The statement CLOSE PC FILE is used to close a specific PC work file. It allows you to explicitly
specify in a program that a PC work file is to be closed.

A work file is also closed automatically when command mode is reached.
The settings in the NTWORK macro apply.

See also the Natural Connection and Entire Connection documentation.

CLOSE PC FILE Syntax Description

Syntax Element Description

work-file-number |The work-file-number isthe number of the PC work file to be closed.

This number must correspond to one of the work file numbers for the PC as defined
to Natural.

CLOSE PC FILE Example

The following program demonstrates the use of the CLOSE PC FILE statement.

** Example 'PCCLEX1': CLOSE PC FILE

**

** NOTE: Example requires that Natural Connection is installed.

R R R R R R R R R R R R R R R R R B R R R R R e b e e e e e i e b 4
DEFINE DATA LOCAL

01 W-DAT (A40)

01 REC-NUM (N3)

01 I (P3)

END-DEFINE

222 Statements

CLOSE PC FILE

*

REPEAT
UPLOAD PC FILE 7 ONCE W-DAT /* Data upload
AT END OF FILE
ESCAPE BOTTOM
END-ENDFILE
INPUT 'Processing file' W-DAT (AD=0)
/ "Enter record number to display' REC-NUM
IF REC-NUM = 0
STOP
END-IF
FOR I =1 TO REC-NUM
UPLOAD PC FILE 7 ONCE W-DAT
AT END OF FILE
WRITE 'Max. record number reached, last record is'
ESCAPE BOTTOM
END-ENDFILE
END-FOR
I =1 -1
WRITE 'Record' I ':' W-DAT
CLOSE PC FILE 7 /* Close PC file 7
END-REPEAT
END

Output of Program PCCLEX1:

When you run the program, a window appears in which you specify the name of the PC file from
which the data is to be uploaded. The data is then uploaded from the PC. At the end of each loop,
the PC file is closed.

Statements 223

224

29 CLOSE PRINTER

B CLOSE PRINTER USAQEeeiiiiiiieeiiiie ettt ettt e et e ettt e e et e e e e 226
® CLOSE PRINTER Syntax DESCHPHONcooiiiiiiiiiie ettt 226
B CLOSE PRINTER EXGMPIEccivvieieeiiiie ettt ettt e et e e e e 227

225

CLOSE PRINTER

logical-printer-name
CLOSE PRINTER { (109 P) }

(printer-number)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE IDEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

CLOSE PRINTER Usage

The CLOSE PRINTER statement is used to close a specific printer. With this statement, you explicitly
specify in a program that a printer is to be closed.

A printer is also closed automatically in one of the following cases:

® when a DEFINE PRINTER statement in which the same printer is defined again is executed;

® when command mode is reached.

When a printer is closed, the profile associated with the printer (see PROFILE clause of the DEFINE
PRINTER statement) is deleted, that is, any further writes to the printer are affected.

CLOSE PRINTER Syntax Description

Syntax Element Description

lTogical-printer-name|Logical Printer Name:

With the 1ogical-printer-name you specify which printer is to be closed.
The name is the same as in the corresponding DEFINE PRINTER statement in
which you defined the printer.

Naming conventions for the Togical-printer-name are the same as for
user-defined variables, see Naming Conventions for User-Defined Variables in Using
Natural.

printer-number Printer Number:

Alternatively to the Togical-printer-name, you may define the
printer-number to specify which printer is to be closed.

The printer-number may be a number in the range from 0 - 31. This is the
number also to be used ina DISPLAY /WRITE or DEFINE PRINTER statement.

226 Statements

CLOSE PRINTER

Syntax Element Description

Printer number 0 indicates the hardcopy printer.

CLOSE PRINTER Example

** Example 'CLPEX1': CLOSE PRINTER

R R R e e b e b e b e b e b b e b e R e e b e e b e e e e B e i e B e e b e b e b e e b e b e b e b e b S b e b e b e b o 4

DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 BIRTH
*
1 #1-NAME (A20)
END-DEFINE

*

DEFINE PRINTER (PRTO1=I)
*
REPEAT
INPUT "SELECT PERSON' #I-NAME
IF #I-NAME = ' '
STOP
END-IF
FIND EMP-VIEW WITH NAME = #I-NAME

NAME '," FIRST-NAME
PERSONNEL-ID
BIRTH (EM=YYYY-MM-DD)

WRITE (PRTO1) 'NAME g ¢
/ '"PERSONNEL-ID :'
/ 'BIRTH g ¥
END-FIND
/*
CLOSE PRINTER (PRTO1)
/*
END-REPEAT
END
Statements

227

228

30 CLOSE WORK FILE

B CLOSE WORK FILE USJE ... eeeuiiieeiiit ettt ettt e 230
® CLOSE WORK FILE Syntax DESCIPHONccvviiieeiiiiiie ittt 230
LI 1oL OSSPSR 231

229

CLOSE WORK FILE

CLOSE WORKI[FILE] work-file-number

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DEFINE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

CLOSE WORK FILE Usage

The statement CLOSE WORK FILE is used to close a specific work file. It allows you to explicitly
specify in a program that a work file is to be closed.

A work file is closed automatically:

® When command mode is reached.
® When an end-of-file condition occurs during the execution of a READ WORK FILE statement.

" Before a DEFINE WORK FILE statement is executed which assigns another data set to the work
file number concerned.

® According to sub-parameter CLOSE of profile parameter WORK.

CLOSE WORK FILE isignored for work files for which CLOSE=FIN is specified in profile parameter
WORK.

CLOSE WORK FILE Syntax Description

Syntax Element Description

work-file-number |Work File Number:
The work file number (as defined to Natural) to be used.

The work file number is either

B a numeric constant in the value range 1:32 or

® anumeric variable of type B/N/P/I defined with a CONST clause which assigns
a value in range 1:32. Precision digits for type (N/P) are not allowed.

230 Statements

CLOSE WORK FILE

Example

** Example 'CWFEX1': CLOSE WORK FILE

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

DEFINE DATA LOCAL
1 W-DAT (A20)
1 REC-NUM (N3)
11 (P3)
END-DEFINE
*
REPEAT
READ WORK FILE 1 ONCE W-DAT
/%
AT END OF FILE
ESCAPE BOTTOM
END-ENDFILE

/* READ MASTER RECORD

INPUT 'PROCESSING FILE' W-DAT (AD=0)
/ "ENTER RECORDNUMBER TO DISPLAY' REC-NUM

IF REC-NUM = 0
STOP
END-IF
FOR' I =1 TO REC-NUM
/%
READ WORK FILE 1 ONCE W-DAT
/*
AT END OF FILE

WRITE '"RECORD-NUMBER TOO HIGH,

ESCAPE BOTTOM
END-ENDFILE
END-FOR
I =1 -1
WRITE '"RECORD" I ":' W-DAT
/*
CLOSE WORK FILE 1
/*
END-REPEAT
END

LAST RECORD IS'

Statements

231

232

31 commr (SQL)

B COMMIT USBQE ...ttt ettt ettt et e ettt e e e e s 234
= Consideration for NON-Natural-Programseeeiiiiiiiiiiii e 234
B COMMIT EXGMPIE ...ttt ettt et et e et e e e et e e e e nneeees 234

233

COMMIT (SQL)

Belongs to Function Group: Database Access and Update

See also COMMIT - SQL in the Natural for Db2 part of the Database Management System Interfaces
documentation:

COMMIT Usage

The SQL COMMIT statement corresponds to the END TRANSACTION statement. It indicates the end of
a logical transaction and releases all data locked during the transaction. All data modifications
are committed and made permanent.

& Important: As all cursors are closed when a logical unit of work ends, a COMMIT statement

must not be placed within a database modification loop; instead, it has to be placed outside
such a loop or after the outermost loop of nested loops.

Consideration for Non-Natural-Programs

If an external program written in another standard programming language is called from a Natural
program, this external program should not contain its own COMMIT statement if the Natural program
issues database calls, too. The calling Natural program should issue the COMMIT statement on behalf
of the external program.

COMMIT Example

DELETE FROM SQL-PERSONNEL WHERE NAME = "SMITH'
COMMIT

234 Statements

32 COMPOSE

B COMPOSE USAQGEveeeiiiee ettt ettt ettt et e et e et e et e et e e 236
B COMPOSE SyntaX DESCIIPHONvviiieeiiiiie ettt e e e e e e 237
B FOMMAING PTOCESS ...ttt ettt et e e e e e e e 250
B Dialog MOUE PrOCESSINGceeiiiie ettt 251
= |nput/Output Processing by Non-Natural Programscccvvviiiiiiiiiiiiiiiiee e 253
B COMPOSE EXAMPIES ...ttt ettt e e e oottt e e e e e e e ettt e e e e e e e e e tteneeeeeeas 254

235

COMPOSE

This statement can only be used if the office system Con-nect and the text formatter Con-form are
installed.

COMPOSE
[RESETTING-cTause]
[MOVING-clausel
[ASSIGNING-clause]
[FORMATTING-clausel
[EXTRACTING-clausel

If you specify more than one clause, these clauses and their subclauses will be processed in the
order shown above.

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

COMPOSE Usage

The COMPOSE statement may be used to initiate text formatting by Con-form directly from a Natural
program. Con-form is a text formatter which is automatically installed with Con-nect.

The text to be formatted can either be supplied using variables or it may be retrieved from a Con-
nect text block (a document containing Con-form formatting instructions).

The contents of Natural variables can be passed to Con-form as variables for dynamic inclusion
in the formatted text.

The values contained in a Con-form variable can also be returned to the Natural program from
the text formatter.

When the Con-form instructions are completed (resulting in a formatted document), the output
is passed to one of the following places:

® a Natural report,

* a document in the Con-nect system file,

® variables in the Natural program that executes the COMPOSE statement,

® anon-Natural program.

236 Statements

COMPOSE

COMPOSE Syntax Description

= RESETTING-clause
= MOVING-clause

= ASSIGNING-clause
= FORMATTING-clause
= EXTRACTING-clause

RESETTING-clause

This clause may be used to delete information from the text format area of the Con-form buffer
and to release memory from the Con-form buffer allocated by the CSIZE profile parameter in the
Natural parameter module.

TEXTAREA
MACROAREA

DATAAREA l
ALL

RESETTING [

Syntax Element Description:

Syntax Element|Description

DATAAREA Deletes all active text variables.
TEXTAREA Deletes all text input data.

Note: For compatibility reasons, the keyword TEXTAREA refers to DATAAREA as used in the
MOVING clause.

MACROAREA |Deletes all text macros.
ALL Deletes all of the above.

See also Example 1 and Example 2.
MOVING-clause

You can use this clause to move text lines to the text format area of the Con-form buffer, or directly
to the formatter, and to retrieve formatted text output from the Con-form buffer.

It may be used to move one or more text values to the text format area (see Syntax 1). This area
may be used as a source of input for formatting operations.

If the text formatter is currently waiting for input (see Dialog Mode Processing), the text will be
passed directly to it without being stored in Con-form's buffer (see Syntax 1 and Syntax 2). The
source input is terminated with the LAST option.

Statements 237

COMPOSE

If the formatted text is currently waiting for output (see Dialog Mode Processing), Syntax 3 of the
MOVING clause is used to pass control back from the Natural program to the formatter.

For description of the status variables, see FORMATTING-clause.

Depending on the status of the dialog mode processing, one of the following forms of the MOVING
clause may be used:

Syntax 1 - Dialog Mode for Input

Syntax 1 of the MOVING clause is applicable when formatting has not begun or the formatter is in
dialog mode for input and is waiting for input (TERM in the status variable “State”).

MOVING [operandl]..37 [TO DATAAREA][LAST]
[STATUS [TO] operand? [operand3|[operand4d [operand5]]]]

Syntax 2 - Dialog Mode for Both Input and Output

Syntax 2 of the MOVING clause is applicable when the formatter is in dialog mode for both input
and output, and is waiting for further input (status TERM in the status variable “State”). The
formatter will not accept more than one line of input in this mode.

The execution context may change between succession of executed COMPOSE statements. Therefore,
it is necessary to re-specify the output variables even when the formatter is waiting for input.

[OUTPUT] TO
VARTABLES operandé

MOVING [
... 20

{ operandl [TO DATAAREA] }]
LAST

[STATUS [TO] operandZ? [operand3 [operand4d [operand5]]]]

Syntax 3 - Dialog Mode for Output

Syntax 3 of the MOVING clause is applicable when the formatter is in dialog mode for output (and
possibly for input at the same time), and is passing output to the Natural program (status STRG in
the status variable “State”).

MOVING OUTPUT [TO VARIABLES] operandé...20
[STATUS[TO] operandZoperand3 [operand4[operand5]]]]

Operand Definition Table:

238 Statements

COMPOSE

Operand Possible Structure Possible Formats |Referencing | Dynamic Definition
Permitted
operandl |C |S |A AIN|P yes no
operandZ2 S A yes yes
operand3 S B yes yes
operand4 S B yes yes
operandb S B yes yes
operandé S |A A yes no

Syntax Element Description:

Syntax Element|Description
operandl Contains the input (unformatted) text lines.
Format/length: (An), where nis a maximum value of 253, (N 1) or (Pn), where nis a maximum
value of 29.
operand? Contains the status variable “State”.
Format/length: (A4)
operand3 Contains the status variable “Position” (page number).
Format/length: (B4)
operand4 Contains the status variable “Position” (line number).
Format/length: (B4)
operandb Contains the status variable “Amount of output data” (number of lines).
Format/length: (B4)
operandé Contains the output (formatted) text lines.
Format/length: (A n), where n is a maximum value of 253.
ASSIGNING-clause

You can use this clause to assign the values of Natural variables to Con-form text variables. These
text variables may subsequently be referred to in formatting operations.

ASSIGNING [TEXTVARIABLE] {operandl=operand?}, ...19

Operand Definition Table:

Statements

239

COMPOSE

Operand Possible Structure | Possible Formats |Referencing| Dynamic Definition
Permitted

operandl |C A yes no

operandz |C AIN|P yes yes

Syntax Element Description:

Syntax Element

Description

operandl operandl is the name of the Con-form text variable. The text variable must be specified in
upper case.
Format/length: (A n), where n is a maximum value of 253.

operand? operand? is the name of a given Natural variable.

Format/length: (An), where nis a maximum value of 253, (N 1) or (Pn), where nis a maximum

value of 29.

See also Example 3 and Example 4.

FORMATTING-clause

This clause causes Con-form to produce formatted output. You can use it to create text in final
form, that is, with correct line and page breaks, using input which can be a combination of text
and Con-form instructions.

The formatting options are specified in one or more subclauses. If subclauses are omitted, Con-
form will apply default formatting options.

The status variable is used in dialog mode.

FORMATTING

OUTPUT-subclause
INPUT-subclause
STATUS-subclause
PROFILE-subclause
MESSAGES-subclause
ERRORS-subclause
ENDING-subclause
STARTING-subclause

Syntax Element Description:

240

Statements

COMPOSE

Syntax Element

Description

OUTPUT-subclause

The output medium. This can be a Natural report, a document in a Con-nect cabinet,
one or more Natural variables (or an array of Natural variables), or a non-Natural
program.

See Output-subclause in the following section.

INPUT-subclause

The input medium. This can be a Con-nect document, the text format area of the
Con-form buffer (see DATAAREA in the MOVING clause), the environment of the
Natural program(s) executing the COMPOSE statement(s) (see the MOVING clause),
a non-Natural program, or a mixture of these four possibilities.

STATUS-subclause

The status of the formatting operation. The formatting operation may involve
multiple executions of a COMPOSE statement (in dialog mode processing). For
example, the input is fed into the text format area by a Natural program, and the
output is passed from the text format area into the environment of a Natural
program (that is, one or more Natural variables). Therefore it is necessary to inform
the Natural program of the formatting status.

The following variables are passed to the Natural program during the formatting
process:

State TERM when the dialog mode is ready for input.

STRG when the dialog mode is ready for output.

END if the formatting process was completed
successfully.

ENDX if the formatting process was completed
unsuccessfully.

Position Page and line number of the document that is
being formatted. The page and line numbers
are kept separately in two variables (page
position and line position).

Amount of Output Data The number of lines of formatted output which
are being passed to the Natural program. The
formatter uses this number as the pointer to the
next output variable to be filled. The value is
incremented by 1 before the output line is
issued. If the current value is out of range, the
value is set to 1.

PROFILE-subclause

Text block to be processed before input is processed.

See PROFILE-subclause in the following section.

MESSAGES-subclause

ERRORS-subclause

Controls the output of warning messages and statistical information and error
processing.

See MESSAGES-subclause and ERRORS-subclause in the following section.

ENDING-subclause

Defines the page where output of formatted text is to stop.

See ENDING-subclause in the following section.

Statements

241

COMPOSE

STARTING-subclause|Defines the page where output of formatted text is to start.

See STARTING-subclause in the following section.

OUTPUT-subclause

This subclause enables you to direct Con-form's formatted text output to a specific destination.

If this subclause is omitted, Natural's main printer will be used as the default output device.

(rep)
SUPPRESSED
QUTPUT CALLING operandl
TO VARIABLES [CONTROL operand? operand3] operand4...20
DOCUMENT-option

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing| Dynamic Definition
Permitted

operandl |C |S A yes no

operandz |C |S A yes no

operand3 |C |S A yes no

operand4 S |A A yes no

Syntax Element Description:

Syntax Element Description

(rep) If the output is directed to a printer (that is, the report number is not 0 and a Con-nect
printer profile has been loaded (by the Con-nect API subprogram Z-DRIVER), the
settings of that profile will be used to control the text highlighting options of the
formatted output text.

If a printer profile is active and the logical form feed controls were not specified,
page ejects will be inserted by use of the appropriate internal Natural nucleus
functions.

Any other highlighting text option which is not reflected in the currently active
Con-nect printer profile will be ignored.

Note: Executions of the COMPOSE RESETTING ALL or COMPOSE FORMATTING

statement with non-report output destination will unload a printer profile from the
text format area.

242 Statements

COMPOSE

If output is directed to Report 0 or if a printer profile is not active, Con-nect will pass
the responsibility of the output handling to the Natural nucleus routines. In this case,
only the highlighting text options boldface, underline and italics will be recognized.

Note: Areportwhichisreferred toina DEFINE PRINTER (n) OUTPUT 'CONNECT'

statement must not be specified as output destination in a COMPOSE FORMATTING
statement.

SUPPRESSED This option causes the output to be suppressed.

CALLING operandl |operandl is the name of the called program.
Format/length: (A n), where n is a maximum value of 8.

See the section Input/Output Processing by Non-Natural Programs.

TO VARIABLES Generally, the formatted text will be passed in final format to an array of Natural
[CONTROL operandZ|variables. Each line fills one variable (if necessary, the line may be truncated to fit
operand3] into the variables). Text highlighting options will be ignored, with the exception of
operand4 the CONTROL variables specified, which will be used to emphasize sections of the text

(that is, boldface or underscore).

If the CONTROL variables I and N are specified, the formatted text will be produced
in an intermediate format (that is, with interspersed logical control sequences).

operand? is the starting character. Format/length: (Al).
operand3is the ending character. Format/length: (A1).

Example using angle brackets as starting and ending characters:

<ABC...XYZ>

operand4 is the output field. Format/length: (An), where n is a maximum value of
253.

For further information, see the section Dialog Mode Processing, and in particular
the subsection Dialog Mode for Output.

DOCUMENT-option |See DOCUMENT-option below.

DOCUMENT-option

The DOCUMENT option of the OUTPUT subclause enables you to direct Con-form's formatted text to
a Con-nect cabinet in final (Txt) or intermediate (Int) format. The document text of Int format
cannot be modified.

Statements 243

COMPOSE

FINAL
DOCUMENT INIO [{ INTERMEDIATE }] [CABINET] operandl [PASSW=operand?]
operand3 [operand4] }
[GIVING]{ operand4 [operand3]

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing| Dynamic Definition
Permitted

operandl |C |S A yes no

operand?2 S A yes no

operand3 S B yes yes

operand4 S B yes yes

Syntax Element Description:

Syntax Element

Description

INIQ FINAL |
INTERMEDIATE
CABINET

If the keyword F INAL is specified, the document will be created in final form text.
In this case, specific text highlighting options such as boldface or italics will be
ignored.

If the keyword INTERMEDIATE is specified, the document will be added to the
folder COMPOSE without a document name. The subject line will be filled with the
name of the program executing the COMPOSE FORMATTING statement along with
the date and time of execution.

CABINET operandl

operandl may be used to identify a specific cabinet.
Format/length: (A n), where n is a maximum value of 8.

If operand1 is not specified, the document will be added to the current user's
cabinet (that is, to the cabinet whose ID is identical to the currently active Natural
user ID).

Con-form enforces adherence to Con-nect access restrictions and only accepts
cabinet IDs which have been defined to Con-nect.

Note: Cabinet IDs must be specified in upper case.

PASSW=operand?

A password must be specified if storing the document in a cabinet to which the
currently assumed user ID has no access.

Format/length: (A n), where n is a maximum value of 8.

operand3 operand3is used by the formatter to pass a unique key from the document back
to the Natural program. It is supported for compatibility reasons only.
Format/length: (B10)
244 Statements

COMPOSE

operand4 operand4 isused by the formatter to pass an ISN, which points to the formatted
output document, back to the Natural program. This ISN can be useful when
referencing the document in successive calls to Con-nect APIs.
Format/length: (B4)

INPUT-subclause

This subclause may be used to specify the sources which will supply input for the text formatter.

| Note: If this subclause is omitted, the DATAAREA (text format area of the Con-form buffer)
will be processed by default.

DATAAREA
INPUT

operandl

EXIT operand?
[FROM { CABINET operand? }]
[PASSW=0perand3] ?
FROM { EXIT operand? }
CABINET operandZ2 [PASSW=operand3] 10

Operand Definition Table:

Operand Possible Structure | Possible Formats [Referencing| Dynamic Definition
Permitted

operandl |C |S A yes no

operandz |C A yes no

operand3 A yes no

Syntax Element Description:

Syntax Element

Description

DATAAREA

The input may be taken from Con-form's data area (or a mixture of text from the text
format area and from the dialog mode is also possible) which must be filled by one
or more MOV ING operations; see the MOVING clause.

operandl

Alternatively, the input may be taken from a text block. The name of the text block
is specified by operand]l.

Note: Text block IDs must be specified in upper case.

Format/length: (An), where 1 is a maximum value of 253.

The text block may be contained in a Con-nect cabinet, or it may be supplied by a
non-Natural program. It will be invoked using the same conventions which apply to
the CALL statement. A hierarchy of Con-nect cabinets or non-Natural programs may
be specified, each of which will be scanned in turn for the text block specified in
operandl.

Statements

245

COMPOSE

CABINET operand?

The input (a text block specified by operandI) might be taken from a specific Con-nect
cabinet.
operand?Z is the name of the Con-nect cabinet.

Note: Cabinet IDs must be specified in upper case.

Format/length: (An), where 1 is a maximum value of 8.

EXIT operandZ?

operand? is the name of the exit.

Format/length: (A n), where n is a maximum value of 8.

PASSW=operand3

A password must be specified if the document is stored in a cabinet to which the
currently assumed user ID has no access.

Format/length: (An), where 1 is a maximum value of 8.

Con-form enforces adherence to Con-nect access restrictions and only accepts cabinet
IDs which have been defined to Con-nect.

See also Example 4.

STATUS-subclause

The STATUS subclause used in the FORMATTING clause corresponds to the STATUS subclause of the
MOVING clause. It should be used to make sure that the formatting process is always in the appro-
priate status for a given processing step.

STATUS operandl [operandZ[operand3[operand4]]]

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing| Dynamic Definition
Permitted

operandl S A yes no

operand? S B yes no

operand3 S B yes no

operand4 S B yes no

Syntax Element Description:

246

Statements

COMPOSE

Syntax Element | Description

operandl Contains the status variable “State” (status of formatting process).
Format/length: (A4)

operandZ |Contains the status variable “Position” (page number).
Format/length: (B4)

operand3 Contains the status variable “Position” (line number).
Format/length: (B4)

operand4 Contains the status variable “Amount of Output Data” (number of lines).
Format/length: (B4)

PROFILE-subclause

This subclause causes the content of the specified text block to be processed prior to any input
which has been specified with the INPUT subclause (by default, a text block will not be processed

as a profile).

PROFILE operandl ‘

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

operandl |C

s [[[AL yes o

Syntax Element Description:

Syntax Element

Description

operandl

operandl is the name of the text block (for example, FPROFILE - formatting profile).

Format/length: (An), where 1 is a maximum value of 32.

MESSAGES-subclause

When this subclause is specified, warning messages and statistical information are to be displayed
upon completion of formatting or the error may be simply suppressed (ignored).

Statements

247

COMPOSE

MESSAGES {

[LISTED][ON](rep)}
SUPPRESSED

Syntax Element Description:

Syntax Element

Description

(rep)

The notation (rep) specifies the report for which the subclause is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

For information on how to control the format of an output report created with Natural, see
Report Format and Control in the Programming Guide.

SUPPRESSED

When specified, this keyword indicates that no messages are to be displayed and errors are
to be ignored.

ERRORS-subclause

You can use the ERRORS subclause to specify the actions to be performed when a formatting error
occurs. The error may be processed by Natural's standard error-processing routine, or it may be
listed on a specified Natural report.

ERRORS {

[LISTED][ON](rep)}
INTERCEPTED

Syntax Element Description:

Syntax Element

Description

(rep)

The notation (rep) specifies the report for which the subclause is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

For information on how to control the format of an output report created with Natural, see
Report Format and Control in the Programming Guide.

INTERCEPTED

When specified, this keyword indicates that the error is to be processed by Natural's standard
error-processing routine.

| Note: Errors and messages are mutually exclusive. Some errors may cause the standard

Natural error-process routine to be invoked, even if a different option was specified. Errors
or messages must not be directed to a report which is directed to the Con-nect system by a
DEFINE PRINTER (n) QUTPUT 'CONNECT' statement.

248

Statements

COMPOSE

ENDING-subclause

This subclause causes output of formatted text to be suppressed after a specific page number. Al-
ternatively, it limits the amount of formatted output to a specified number of pages.

ENDING {

[AT] [PAGE] operandl }
AFTER operandl [PAGES]

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition
operana [5 [[[[INPI[[I[II[[e o
Syntax Element Description:

Syntax Element Description

[AT] [PAGE] operandl

Causes output of formatted text to be suppressed following a page with a
number specified in operandl.

Format/length: (Nn) or (Pn), where 1 is a maximum value of 5.

AFTER operandl [PAGES]

Limits the amount of formatted output to a number of pages as specified
with operandl.

STARTING-subclause

This subclause causes output of formatted text to be suppressed until the page with the specified
number (operandl) is reached.

‘STARTING [FROM] [PAGE] operandl

Operand Definition Table:

Operand Possible Structure

Possible Formats | Referencing Permitted | Dynamic Definition

operandl |C ‘S ‘ | ‘

NPT yes o

Syntax Element Description:

Statements

249

COMPOSE

Syntax Element | Description

operandl The output of formatted text to be suppressed until the page with the number specified in
operandl is reached.

Format/length: (Nn) or (Pn), where nis a maximum value of 5.

EXTRACTING-clause

You can use this clause to assign the values of Con-form text variables to Natural variables. The
current text variable settings may be the result of previous formatting operations.

EXTRACTING [TEXTVARIABLE] {operandi=operand?z},... 19

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition
operandl S AIN|P yes yes
operandZ |C |S A yes no
Syntax Element Description:

Syntax Element|Description

operandl operandl is the name of a given Natural variable.

Format/length: (An), where nis a maximum value of 253, (N) or (Pn), where nis a maximum
value of 29.

operandZ operand? is the name of a Con-form text variable. It must be specified in upper case.

Format/length: (A n), where n is a maximum value of 253.

See also Example 6.

Formatting Process

The formatting process begins when the FORMATTING clause of the COMPOSE statement is executed
(evenif text input via a MOVING clause is intended, but no such input has been provided yet). While
the formatting process is active, the text input resulting from the execution of the COMPOSE MOVING
statement is fed directly for formatting (and cannot be re-used in a later formatting process). If
the formatting process is inactive, the text input is stored intermediately in the text format area of
the Con-form buffer. Thus the input can be re-used for multiple formatting processes.

250 Statements

COMPOSE

Since the Con-form buffer is not cleared at the end of the Natural program, the respective COMPOSE
statements need not be executed within one Natural program; they can be issued in several suc-
cessively invoked programs.

The execution of a RESETTING or FORMATTING clause, or a serious formatting error, causes the ter-
mination of an ongoing formatting pass.

End-of-input is specified by the LAST subclause of the MOVING clause.

When a Con-nect document is specified as the source of input, end-of-input is assumed when the
end of that document is reached.

) Note: Itis recommended to use the STATUS subclause of the FORMATTING or MOVING clause

to make sure that the formatting process is always in the appropriate status for a given
processing step.

Dialog Mode Processing

Dialog mode processing is the set of interactions which are performed between a user program
and the formatter while formatting input and producing output.

Dialog mode allows a user program to supply raw text as input to the formatter at any level of
the input hierarchy. It also accepts formatted output directly in the current program environment.

The dialog is achieved by subdividing the formatting process into a series of steps, each of which
is separately invoked by a COMPOSE statement.

= Dialog Mode for Input

= Dialog Mode for Output

= Dialog Mode for Input and Output

= Execution of COMPOSE Statements in Dialog Mode

Dialog Mode for Input

Dialog mode for input is activated if the source of the input text is DATAAREA (text format area), or
if the Con-form instruction . TE ON for terminal input is encountered, and the text format area does
not contain any more text to be processed. Dialog mode for input is signaled by the value TERM in
the status variable “State”.

The user program should respond by supplying the required input by invoking the MOVING function
in a subsequently-processed COMPOSE statement. The user program can terminate terminal input
by specifying the LAST option of the MOVING clause (or . TE OFF if terminal input was invoked by
.TE ON) as text through the MOVING function. The formatter will signal the end of the formatting
process with END, or ENDX in the case of an error, in the status variable “State”.

Statements 251

COMPOSE

See also Example 7.
Dialog Mode for Output

Dialog mode for output is activated if the destination of the outputis T0 VARIABLES. The formatter
passes control back to the Natural program environment as soon as the supplied Natural variables
are filled or a page break is reached (whichever occurs first). Dialog mode for output is signaled
with STRG in the status variable “State”.

The user program should respond by taking the formatted output just placed into the Natural
variables and designate another set of Natural variables as the output destination in a subsequently
processed COMPOSE MOVING statement. The end of the formatting process is indicated with END (or
ENDX in the case of an error) in the status variable “State”.

| Note: When dialog mode is used (see the INPUT and OUTPUT subclauses), the formatting

operation is usually spread across several executions of a COMPOSE statement.
Dialog Mode for Input and Output

Dialog mode can be activated for combined input and output processing. Therefore, when the
formatter requests for further input (indicated in the status variable “State” by TERM) or when the
formatter provides output (indicated by STRG), the Natural program must take the appropriate
action.

When dialog mode is entered for combined input and output processing, only one line of input
is accepted by the formatter at a time. In the case of input mode only, multiple lines are accepted
at one time.

Execution of COMPOSE Statements in Dialog Mode

While it has been pointed out that dialog mode is entered via a COMPOSE FORMATTING statement
which encompasses a series of COMPOSE MOVING executions, please note the following;:
" COMPOSE ASSIGNINGand COMPOSE EXTRACTING statements are valid while dialog mode is active.

® COMPOSE RESETTING and COMPOSE FORMATTING will force the immediate termination of all
formatting.

252 Statements

COMPOSE

Input/Output Processing by Non-Natural Programs

Depending on the parameters specified with the FORMATTING clause, input and output may be
processed by non-Natural programs. Such programs are invoked by the same mechanism that is
used within the Natural CALL statement.

The COMPOSE statement exchanges parameters with these programs using the standard linkage
conventions (dynamic loading is not possible in a CICS environment).

. Note: Input/output processing by non-Natural programs is only possible on mainframe

computers; on other platforms, the appropriate parts of the COMPOSE statement are ignored.

Depending on the status of the formatting process, two or three parameters are passed between
the formatter and the non-Natural programs:

Parameter 1 | Function code is passed from the formatter to non-Natural programs. Possible values:
(format/length

A1)

Initiate (input, output).

Open document (input).

Read one line of document (input).

Close document (input).

I
0
R
W Write one line of output (output).
C
T

Terminate (input, output).

Parameter 2 | Response code is passed from non-Natural programs to the formatter.
(format/length

B1) Possible values:

X'00" Function successfully completed.

X'01" In response to function 0: document could not be found.

In response to function R: end of document was reached.

X"FF' Function not completed.
Parameter 3 |In the case of the functions 0 and W, these parameters are passed from the formatter to
(format non-Natural programs. However, the parameters from the function R are passed from
A1/256) non-Natural programs to the formatter.

Bytes1-2 Signify the length n of this parameter.

Bytes 3 - 4 Empty.

Bytes5-n Function 0: Document name.

Function R: Line read by the non-Natural program.

Function W: Line of output from the formatter.

Output is preceded by N if a form feed is required, otherwise by 1.

Specific options for highlighting text such as boldface and italics are ignored if the output is
passed to a non-Natural program.

Statements 253

COMPOSE

COMPOSE Examples

= Example 1
= Example 2
= Example 3
= Example 4
= Example 5
= Example 6
= Example 7

Example 1

The following COMPOSE statement results in a formatted output of the text block TEXT within the
Con-nect cabinet TL1B which is produced on Report 1. Errors and statistical messages are displayed
on Report 0 (the default printer).

COMPOSE RESETTING ALL
FORMATTING INPUT 'TEXT' FROM CABINET 'TLIB'
OUTPUT (1)
MESSAGES LISTED ON (0)

Example 2
The following COMPOSE statements result in a formatted output of text on Report 0 (default printer).

COMPOSE RESETTING ALL
COMPOSE MOVING '.FI ON' 'This is an example'
COMPOSE MOVING 'for use of Con-form from'

'within Natural applications' LAST
COMPOSE FORMATTING

Example 3

The following COMPOSE statement results in the assignment of values to Con-form text variables
&VAR1 and &VAR2 in a Con-nect procedure.

COMPOSE ASSIGNING 'VARL' = 'Textl', 'VARZ' = 540

254 Statements

COMPOSE

Example 4
Text block XYZ in cabinet XYLIB:

.FI ON

Dear Mr &name.,

LIL

I am pleased to invite you to a presentation of our new product &prod..

Natural program:

INPUT #NAME (A32) #PROD (A32)

COMPOSE ASSIGNING 'NAME' = #NAME, 'PROD' = #PROD
FORMATTING INPUT 'XYZ' FROM CABINET 'XYLIB'
QUTPUT (1) MESSAGES SUPPRESSED

Input map produced by program:

#NAME Davenport
#/PROD NaturalONE

Resulting output:

Dear Mr Davenport,

I am pleased to invite you to a presentation of our new product NaturalONE.
Example 5

This is an example of formatting in dialog mode with combined input/output handling. The example
program initiates the line-oriented formatting mode of Con-form, passes some instructions/variables
to Con-form, and performs a subroutine which displays status information and formatted output
lines on the screen.

DEFINE DATA LOCAL

01 #fLINES_PER_PERFORM(P5) /* counts repeat loops per PERFORM CNF_OUT
01 #TRACE(AL) TINT<'N'> /* if 'Y' displays additional trace info
01 #OUT_FORM(AL1) INIT<'F'> /* output format

01 #START_PAGE (P3) INIT<1> /* beginning of display

01 #CNTR (P5) /* Loop counter

01 #STATI /* Status information

02 #STATUS (A4) /* can be STRG TERM END or ENDX

02 #PAGE (B4) /* current page number

02 #LINE (B4) /* current Tine number on page (not .tt/.bt)
02 #NO_LINES (B4) /* number of Tines returned

02 REDEFINE #NO_LINES
03 #NO_LINES_I (I4)

Statements 255

COMPOSE

01 #OUTPUT(
01 #INDEX (
END-DEFINE
*
SET KEY ALL
SET CONTROL
INPUT
008/008
/08X
/08X
/08X

/44X
/44X
/50X

*

IF *PF-KEY
SET CONT
STOP

END-IF

*

IF NOT (40U
REINPUT

END-IF

*

WRITE TITLE

'Stat
/ -1 (79

*

SET CONTROL

COMPOSE RESETTING ALL /* clear all text format area of Con-form buffer

RESET 4#NO_L
*
* start Tin
* starting
DECIDE ON F
VALUE 'F
COMPO

VALUE 'M
COMPO

VALUE "I
COMPO

NONE
STOP

A30/4) /* output of formatted Tine
P3) /* index as pointer to output Tine

IM9I

'Demonstration of formatted output to variable'(I)

"Enter page to start display ;' {ISTART_PAGE(AD=MIL)

'Display additional trace data ?:' #TRACE(AD=MIT)
'"Please select the output format:' #fOUT_FORM(AD=MIT)

'"(F=Final without BP/US-marks'
'M=Final with BP/US marks "<>"'
'I=Intermediate)’

"PF3=Exit'(I)

EQ 'PF3'
ROL 'MB'

T_FORM EQ 'F'" OR EQ 'M" OR EQ 'I")

' Please enter valid code!' MARK *#fOUT_FORM ALARM

LEFT

* Page * Line * No.Lines >> Formatted Output'(I)

) (1)
lMBl
INES

e-oriented formatting-mode here

from 0O

IRST VALUE OF #OUT_FORM

SE FORMATTING

QUTPUT TO VARIABLES {OUTPUT (1:4)

STATUS ##STATUS PAGE #LINE #NO_LINES

SE FORMATTING

QUTPUT TO VARIABLES CONTROL '<' '>'
FFOUTPUT (1:4)

STATUS #STATUS HPAGE #LINE #NO_LINES

SE FORMATTING

QUTPUT TO VARIABLES CONTROL 'I' 'N'
FOUTPUT (1:4)

STATUS #STATUS HPAGE #LINE #NO_LINES

/*
/*

/*
/*

/*
/*

to Output
get Status

to output
get Status

to output
get Status

256

Statements

COMPOSE

END-DECIDE

*

RESET #NO_LINES

*

* Put some commands to Con-form to see something

*

COMPOSE MOVING
".pl 16;.hs 2;.tt 1Formatting in Variable//;.tt 2//"' /* Cmd
QUTPUT TO VARIABLES OUTPUT (1:4) /* to OQutput
STATUS #STATUS #PAGE #LINE #NO_LINES /* get Status

*

COMPOSE MOVING
".fs 1;.bt Page End #//;.fi on;.th *=15' /* Commands

QUTPUT TO VARIABLES #QUTPUT (1:4) /* to Qutput
STATUS {#fSTATUS PAGE #LINE #NO_LINES /* get Status
*
*
* loop 40-times, send commands to con-form and display output
*
COMPOSE ASSIGNING 'Value' = '1-20' /* Assign value to variable &Value
*
FOR #fCNTR 1 40 /* Loop some time
IF #STATUS NE 'TERM' /* no wait-for-input => error!!!!
IF #STATUS EQ 'STRG'
IGNORE
ELSE
WRITE 'Unexpected Status-code' #STATUS(AD=0I1) 'found!’
/ 'Execution has stopped....'
STOP
END-TF
END-TF
*
IF #CNTR EQ 21
COMPOSE ASSIGNING 'Value' = '21-40" /* Assign a variable-value
END-IF
COMPOSE ASSIGNING 'CNTR' = #CNTR /* Again assignment
COMPOSE MOVING
".BP;&Value *Pass &CNTR;.BR' /* Commands
QUTPUT TO VARIABLES #OUTPUT (1:4) /* to output
STATUS #STATUS #PAGE #LINE #NO_LINES /* get status
PERFORM CNF-OUT /* show result
END-FOR
COMPOSE MOVING
LAST /* End of processing
QUTPUT TO VARIABLES #OUTPUT (1:4) /* to output

STATUS #STATUS #PAGE #LINE #INO_LINES /* get status
*
IF #TRACE EQ "Y'
WRITE 'End of processing...'(I)
END-TF

*

* Subroutines

Statements

257

COMPOSE

*

PERFORM CNF-0OUT

*

* Subroutine to display any waiting output from Con-form
*
DEFINE SUBROUTINE CNF-OUT
RESET #LINES_PER_PERFORM
REPEAT UNTIL #STATUS EQ 'TERM' /* TERM = input waiting
PERFORM BREAK /* do some break processing
AT BREAK OF #PAGE
IF #PAGE GT #START_PAGE
WRITE "-'(79)(I)
END-TF
IF #TRACE EQ 'Y
WRITE 'End of this page...'(I)
END-TF
NEWPAGE
END-BREAK
IF #PAGE GE #START_PAGE /* show Tine of output
IF #NO_LINES_I GT O
FOR #fINDEX 1 #NO_LINES_I
ADD 1 TO #fLINES_PER_PERFORM /* count Tloops
WRITE NOTIT NOHDR #STATUS '*' #PAGE '*' #LINE
"' INO_LINES
">>' ffOUTPUT (#FINDEX)
END-FOR
END-TF
END-IF
IF #STATUS NE 'STRG' /* if no wait on output
ESCAPE BOTTOM
END-TF
RESET #NO_LINES
COMPOSE MOVING
OUTPUT TO VARIABLES #OUTPUT (1:4) /* get output
STATUS #STATUS {#PAGE #LINE #NO_LINES /* Status
END-REPEAT

IF #TRACE EQ 'Y

WRITE 'Count of lines per PERFORM was'(I) #LINES_PER_PERFORM(AD=0I)

END-IF
*
END-SUBROUTINE
SET CONTROL 'MB'
END

258

Statements

COMPOSE

Example 6
Text block 'ABC' in cabinet 'ZLIB':

.0p das=6
.CV c=(&A+&B+&D)*&A/12345678901234567 .89

Natural Program:

DEFINE DATA LOCAL

01 NA (P14.1) INIT <-12345678.1>

01 NB (N15.1) INIT <1234567890.1>
01 ND (P15.1) INIT <1122334455.1>
01 NC (N03.6)

01 NCOMP (N03.6)

END-DEFINE

COMPOSE RESETTING ALL

COMPOSE ASSIGNING '"A'=NA,'B'=NB,'D'=ND

COMPOSE FORMATTING INPUT "ABC' FROM CABINET '"ZLIB'

COMPOSE EXTRACTING NC='C"

COMPUTE ROUNDED NCOMP=(NA+NB+ND) * NA /12345678901234567 .89
WRITE (0) "CONFORM C ="' NC / 'NATURAL C =" NCOMP

END

Resulting Output:

CONFORM C = -2.344557
NATURAL C = -2.344557
Example 7

The following is an example of using the Con-form instruction . TE ON/OFF in dialog mode for
input. A Natural program calls the Con-form document LETTER containing this instruction from
cabinet XYLIB.

Natural program:

| Note: This simplified Natural program is intended for demonstration purposes only; for
example, the required fields SALUTATION, LASTNAME, STREET, CITY are not verified.

Statements 259

COMPOSE

DEFINE

DATA LOCAL

01 #ENTER (A15) INIT <'Special offer:'>

01 SLINE (A15) INIT <'.SL 1'>
01 #TEXT (A60/1:4)
01 SALUTATION (A30)
01 LASTNAME (A30)
01 STREET (A30)
01 CITY (A30)
01 #STATUS (A4)
01 #fPAGE (B4)
01 #LINE (B4)
01 #NUMBER (B4)
END-DEFINE
COMPOSE RESETTING ALL
INPUT 25X 'Advertising Tetter'
/- (75)
/ 'Salutation: ' SALUTATION (AD='_")
/ ‘'Lastname : ' LASTNAME (AD='_")
/ 'Street : ' STREET (AD="_")
/ 'City : " CITY (AD='_")
/- (75)
// '-'" #fENTER (AD=01)
/ '"-'"] TEXT(1) (AD='_")
/'-'"] TEXT(2) (AD="_")
/- A TEXT(3) (AD='_")
/ '-']TEXT(4) (AD="_")
COMPOSE ASSIGNING "SALUT' = SALUTATION,
"NAME' = LASTNAME,
"STREET'= STREET,
"TOWN" = CITY
COMPOSE FORMATTING INPUT 'LETTER" FROM CABINET

DECIDE
WHEN

WHEN

WHEN

WHEN

WHEN

END-DEC
END

FOR FIRST CONDITION
#TEXT(4) NE ' '

COMPOSE MOVING SLINE #TEXT(1) #TEXT(2) #TEXT(3) H#TEXT(4)

".TE OFF' STATUS {#/STATUS {PAGE
#TEXT(3) NE ' '
COMPOSE MOVING SLINE #TEXT(1) #TEXT(2)
".TE OFF' STATUS {#STATUS #PAGE
F#TEXT(2) NE '
COMPOSE MOVING SLINE #TEXT(1) #TEXT(2)
'".TE OFF' STATUS {#STATUS #PAGE
FFTEXT(1) NE '
COMPOSE MOVING SLINE #TEXT(1)
".TE OFF' STATUS {#fSTATUS #PAGE
NONE
COMPOSE MOVING
".TE OFF' STATUS {#STATUS #PAGE
IDE

Con-form document LETTER:

"XYLIB

fFLINE

FFTEXT(3)

F#FLINE

FFLINE

#FLINE

#FLINE

#FNUMBER

#NUMBER

#FNUMBER

#FNUMBER

#NUMBER

260

Statements

COMPOSE

.PL 22;.ILM 0;.RM 60;.HS 0;

&salut &name

&street

&town

.SL 2

Dear &salut &name.,
.SL

.LM 0;.JU OFF;.FI ON

.HM 0;.FM 0;.FS O

Your subscription with MAGNIFICENT WILDLIFE magazine will soon expire.
If you act now and renew your subscription for one full year, you will
receive a 40% discount - a savings of $25.00 off the newsstand price!$

.TE ON

.SL 2

Sincerely,$

J. Baker$

Vice President of Sales

Screen prior to input:

Advertising letter

Salutation:

Lastname

Street

City

Special offer:

Screen after input:

Advertising letter

Salutation: Mister

Lastname : Poe
Street : 203 North Amity Street
City : Baltimore, Maryland

Special offer:

Take $500 off a trip to one of the world's premier wildlife-
viewing destinations through our travel partner.

Resulting letter after formatting is complete:

Statements

261

COMPOSE

MISTER POE
203 NORTH AMITY STREET
BALTIMORE, MARYLAND

Dear MISTER POE,

Your subscription with MAGNIFICENT WILDLIFE magazine will
soon expire. If you act now and renew your subscription for
one full year, you will receive a 40% discount - a savings
of $25.00 off the newsstand price!

TAKE $500 OFF A TRIP TO ONE OF THE WORLD'S PREMIER WILDLIFE-
VIEWING DESTINATIONS THROUGH OUR TRAVEL PARTNER.

Sincerely,
J. Baker
Vice President of Sales

262 Statements

33 COMPRESS

B COMPRESS USBGEeeevvviieeeiitie ettt ettt e e et e et e e et e e e ettt e e e ettt e e e e st e e e e st e e e e enseee s 264
B COMPRESS Syntax DESCIHPHONvviiiiiiiiiiiiite e 264
B COMPRESS PIOCESSINGvvteettiee ettt ettt ettt e sttt e ettt e et e e et e e ettt e e e e e e e eneeeas 268
B COMPRESS EXAMPIESoeeeiiiiiiiieie ettt e e e e ettt e e e e e e ettt e eeee e 269

263

COMPRESS

COMPRESS [NUMERIC] [FULL]

{ operandl [(parameter)]

INTO {

[LEAVING [SPACE]

SUBSTRING (operandl,operand3,operand4) [(parameter)]

operandZ

SUBSTRING
(operandz,operandb,operandé6)

LEAVING NO [SPACE]
WITH[ALL] [DELIMITERS] [operand7]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ASSIGN | COMPUTE | EXAMINE | MOVE | MOVE ALL | SEPARATE

Belongs to Function Group: Arithmetic and Data Movement Operations

COMPRESS Usage

The COMPRESS statement is used to transfer (combine) the contents of one or more operands into

a single field.

COMPRESS Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S |A |G |N |[A|U|N|PI|F|B|D|T|L| |G|O yes no
operand?2 S A|U B yes yes
operand3 |C |S N|P|I| (B yes no
operand4 |C |S N|P|I| [B yes no
operand5 |C |S N|P|I| |B yes no
operand6 |C |S N|P|I| [B yes no
operand/7 |C |S A|U B yes no

" Format B of operand3, operand4, operands and operandé may be used only with a length of less

than or equal to 4.

264

Statements

COMPRESS

Syntax Element Description:

Syntax Description
Element
NUMERIC Handling of Sign Characters:
This option determines how sign characters and decimal characters are to be handled:
Without NUMERIC, decimal points and signs in numeric source values are suppressed before
the values are transferred. For example:
COMPRESS -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: 123*123
With NUMERIC, decimal points and signs in numeric source values are also transferred to the
target field.
For floating point source values, decimal points and signs are transferred, regardless of
whether NUMERIC has been specified or not.
Example 1:
COMPRESS NUMERIC -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: -123%1.23
Example 2:
COMPRESS NUMERIC 'ABC' -0056.00 -0056.10 -0056.01
INTO #fTARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*-56*-56.1%-56.01
Example 3:
COMPRESS NUMERIC FULL 'ABC' -0056.00 -0056.10 -0056.01
INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*-0056.00*-0056.10*-0056.01
FULL Handling of Source Field Values:
Without FULL, the following are removed from the source fields before the values are
transferred:
B Jeading zeros before the decimal point for fields of format N, P or I
® trailing zeros after the decimal point for fields of format N or P
® trailing blanks for fields of format A
® and leading binary zeros for fields of format B
For a numeric source field containing all zeros, one zero will be transferred. For example:
Statements 265

COMPRESS

Syntax
Element

Description

COMPRESS 'ABC ' 001 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*1

With FULL, the values of the source fields in their actual lengths will be transferred to the
target field. In other words:

B Jeading zeros before the decimal point for fields of format N, P or I

B trailing zeros after the decimal point for fields of format N or P

B and trailing blanks for fields of format A

B Jeading binary zeros for fields of format B

are displayed as entered. For example:

COMPRESS FULL 'ABC ' 001 INTO #TARGET WITH DELIMITER '=*'
Content of #TARGET is: ABC *001

operandl

Source Fields:
As operandl, you specify the fields whose contents are to be transferred.

Note: If operandl is not of format A or B, its content is converted into alphanumeric

representation before it is transferred. If necessary, the alphanumeric representation is
truncated.

Using operandl without an explicit Edit Mask, a ...

- Time variable (format T) is transferred only with the time component, not the date
component.

- Logical variable (format L) with value <false> is represented by a blank and value <true> is
represented by char "X".

operand?

Target Field:
As operandZ, you specify the field which is to receive the values of the source fields.

If the target field is of format U (Unicode) and if a source field of format B is involved, the
length of the sending binary field must be even.

LEAVING
SPACE

Values in Target Field Separated by a Blank:

If you use the COMPRESS statement without any further options, or if you specify LEAVING
SPACE (which also applies by default), the values in the target field will be separated from
one another by a blank.

LEAVING NO
SPACE

Values in Target Field Not Separated:
If you specify LEAVING NO SPACE, the values in the target field will not be separated from
one another by a blank or any other character.

parameter

Print Mode/Date Format/Edit Mask Parameters:
As parameter, you can specify the session parameters PM, DF, EM, or EMU:

266

Statements

COMPRESS

Syntax Description
Element

PM=I In order to support languages whose writing
direction is from right to left, you can specify PM=1
so as to transfer the value of operandl in inverse
(right-to-left) direction to operandZ. For example,
as a result of the following statements, the content
of ##B would be ZYXABC:

MOVE 'XYZ' TO #A

COMPRESS #fA (PM=I) 'ABC'

INTO #B LEAVING NO SPACE

Any trailing blanks in operand1I will be removed
(except if FULL is specified), then the value is
reversed character by character and transferred
to operand?.

DF If operandl is a date variable, you can specify
the session parameter DF as parameter for this
variable.

EM= Edit Mask:

For details on edit masks, see the session
parameter EM in the Parameter Reference. The EM
parameter cannot be applied for group operands
or when the SUBSTRING option is used.

EMU= Unicode Edit Mask:

For details on Unicode edit masks, see the session
parameter EMU in the Parameter Reference. The
EMU parameter cannot be applied for group
operands or when the SUBSTRING option is used.
SUBSTRING |SUBSTRING Option:
(operandl, |If operandl is of alphanumeric (A), Unicode (U) or binary (B) format, you can use the
operand3, |SUBSTRING option to transfer only a certain part of a source field. After the field name
operand4) |(operandl)you specify first the starting position (operand3) and then the length (operand4)
of the field portion to be transferred.
INTO INTO Clause:
SUBSTRING
(operand?, Also, you can use the SUBSTRING option in the INTO clause to transfer source values into a
operands, certain part of the target field.
d
operando) In both cases, the use of the SUBSTRING option in a COMPRESS statement corresponds to that
in a MOVE statement. See the MOVE statement for details on the SUBSTRING option.
WITH Input Delimiter Character:
DELIMITERS

If you wish the values in the target field to be separated from one another by a specific
character, you use the DELIMITERS option.

Statements

267

COMPRESS

Syntax Description
Element

If you specify WITH DELIMITERS without operand/, the values will be separated by the
input delimiter character as defined with the session parameter 1D.

WITH Specific Delimiter Character:

DELIMITERS|If you specify WITH DELIMITERS operand/, the values will be separated by the character
operand/ |specified with operand/. operand/ must be a single character. If operand/ is a variable, it
must be of format/length (A1) or (B1).

If the target field is of format A or B, the format/length of the delimiter has to be (A1), (B1)
or (U1).

If the target field is of format U (Unicode), the format/length of the delimiter has to be (A1),
(B2) or (U1).

WITH ALL |Handling of Delimiters:

Without ALL, a delimiter is placed in the target field only between values actually transferred.
For example:

COMPRESS 'A' ' ' 'C" ' ' INTO #TARGET WITH DELIMITERS '*'
Content of #TARGET is: A*C

With ALL, a delimiter is also placed in the target field for each blank value that is not actually
transferred. This means that the number of delimiters in the target field corresponds to the
number of source fields minus 1. This may be useful, for example, if the content of the target
field is to be separated again with a subsequent SEPARATE statement. For example:

COMPRESS 'A' ' ' 'C" " ' INTO #TARGET WITH ALL DELIMITERS '*'
Content of #TARGET is: A**(C*

COMPRESS Processing

A destination field of format B is handled like a destination field of format A.

The COMPRESS operation terminates when either all operands have been processed or the target
field (operand?) is filled.

If the target field contains more positions than all operands combined, all remaining positions of
operand2 will be filled with blanks. If the target field is shorter, the value will be truncated.

If operand?Zis a dynamic variable, the COMPRESS operation terminates when all source operands
have been processed. No truncation will be performed. The length of operand? after the COMPRESS
operation will correspond to the combined length of the source operands. The current length of
a dynamic variable can be ascertained by using the system variable *LENGTH.

268 Statements

COMPRESS

COMPRESS Examples

This section covers the following topics:

= Example 1 - Compress

= Example 2 - Compress Leaving No Space
= Example 3 - Compress with Delimiter

= Example 4 - Compress with Edit Mask EM

Example 1 - Compress

** Example 'CMPEX1': COMPRESS
Ak kAhkhkhhkkkhhhhkhkkhhhhkhkkhhhhkkhkhhhhkkhkkhhhhkkkhhhhhkhhhhhkkhkhhhhkkhkkhhkhhkhkhhhrrhkkhhrhkkhhrrktkk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
*
1 #COMPRESSED-NAME (A20)
END-DEFINE
*
LIMIT 4
READ EMPLOY-VIEW BY NAME
COMPRESS FIRST-NAME MIDDLE-I NAME INTO #COMPRESSED-NAME
DISPLAY NOTITLE
FIRST-NAME MIDDLE-1 NAME 5X #COMPRESSED-NAME
END-READ

*

END

Output of Program CMPEXI:

FIRST-NAME MIDDLE-I NAME #fFCOMPRESSED-NAME
KEPA ABELLAN KEPA ABELLAN
ROBERT W ACHIESON ROBERT W ACHIESON
SIMONE ADAM SIMONE ADAM
JEFF H ADKINSON JEFF H ADKINSON

Statements

269

COMPRESS

Example 2 - Compress Leaving No Space

** Example 'CMPEX2': COMPRESS (with LEAVING NO SPACE)
R R R R B R R B R R R R R R R e R e e i e I e b e e b e b S e e b e e S e i e b o 4
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CURR-CODE (1)
2 SALARY (1)
*
1 #CCSALARY (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY
LEAVING NO SPACE
DISPLAY NOTITLE
NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY
END-READ

*

END

Output of Program CMPEX2:

NAME CURRENCY ANNUAL fFCCSALARY
CODE SALARY
ABELLAN PTA 1450000 PTA1450000
ACHIESON UKL 11300 UKL11300
ADAM FRA 159980 FRA159980
ADKINSON UsD 34500 USD34500

Example 3 - Compress with Delimiter

** Example 'CMPEX3': COMPRESS (with delimiter)
ok ok ok ok o ok ok ok ok ok kK ko ok o o ok ok o ok ok ok ok ok ko ok ok o o ok o o ok ok ok ok ok ok ok Rk ok o ok ok ok o ok ok ok ok ok ok ok ko ok ko ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CURR-CODE (1)
2 SALARY (1)
*
1 #CCSALARY (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

270

Statements

COMPRESS

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY
WITH DELIMITER '*'
DISPLAY NOTITLE NAME CURR-CODE (1) SALARY (1) 5X ffCCSALARY
END-READ

*

END

Output of Program CMPEX3:

NAME CURRENCY ~ ANNUAL #FCCSALARY
CODE SALARY
ABELLAN PTA 1450000 PTA*1450000
ACHIESON UKL 11300 UKL*11300
ADAM FRA 159980 FRA*159980
ADKINSON UsD 34500 USD*34500

Example 4 - Compress with Edit Mask EM

** Example 'CMPEX4': COMPRESS (with edit mask EM)

R R R o R R b b i b e b e I b R i b e i b e b i R e i R i b S e b R R i b b e S b b 4

DEFINE DATA LOCAL

1 #A10 (A10) INIT <'ABCDEF'>

1 #14 (14) INIT <-123>

1 4T (T) INIT <E'2021-11-22 10:24:36'>
1 4L (L) INIT <TRUE>

1 #fRESULT (A70)

END-DEFINE

*

COMPRESS '#A:' {#AL0 (EM=X_X_X)

"J14: 4§14 (EM=-9997)

T 4T (EM=YYYY-MM-DD_HH:1I1I)

L L (EM=FALSE/TRUE) INTO #fRESULT
PRINT #RESULT
END

Output of Program CMPEX4:

#FA: A_B_C #I4: -0123 #T: 2021-11-22_10:24 {fL: TRUE

Statements 271

272

34 COMPUTE

B COMPUTE USBGE ...ttt ettt ettt e ettt e ettt e ettt e e et e e e nbbee e 274
B COMPUTE SyntaX DESCHPHONvvviiiiiiiiiiiiiiie e 276
B Result Precision 0f @ DIVISIONviiieiiiiiiie et 278
B COMPUTE EXGMPIES ...ttt e e e e ettt e e e e e e e ettt eeeeaa e e e 279

273

COMPUTE

Structured Mode Syntax

arithmetic-expression
operandZ

SUBSTRING
(operand2,operand3,operand4)

{ COMPUTE }

ASSTGN {operandl

[ROUNDED] ‘
=} ...

arithmetic-expression
{operandl operand?
=}.. SUBSTRING
(operand2,operand3,operand4)
Reporting Mode Syntax
arithmetic-expression
COMPUTE o operand?
[{ ASSTGN } [ROUNDED]] {operandl[:]=} .. ‘ SUBSTRING
(operandZ,operand3,operand4)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ADD | COMPRESS | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

COMPUTE Usage

The COMPUTE statement is used to perform an arithmetic or assignment operation.

A COMPUTE statement with multiple target operands (operandl) is identical to the corresponding
individual COMPUTE statements if the source operand (operand?) is not an arithmetic expression.

##TARGETL := #fTARGET2 := #SOURCE

is identical to

#FTARGETL := #SOURCE
#TARGET2 := #SOURCE

Example:

274 Statements

COMPUTE

DEFINE DATA LOCAL

1 JFARRAY(I4/1:3) INIT <3,0,9>
1 #INDEX(I4)

1 #RESULT(I4)

END-DEFINE

*

FINDEX := 1

*

FINDEX := /* #INDEX is 3
#RESULT := /* #RESULT is 9
HHARRAY (#FINDEX)

*

JFINDEX := 2

*

#FINDEX := /* f#FINDEX is O

JFARRAY (3) := /* returns runtime error NAT1316
JFARRAY (FINDEX)

END

If the source operand is an arithmetic expression, the expression is evaluated and its result is stored
in a temporary variable. Then the temporary variable is assigned to the target operands.

#TARGET1 := #TARGET2 := #SOURCE1 + 1
is identical to

#FTEMP := #fSOURCE1 + 1

#TARGET1 := #TEMP

#TARGET2 := HTEMP

Example:

DEFINE DATA LOCAL

1 #ARRAY (I4/1:3) INIT <2, 0, 9
1 ffINDEX(I4)

1 fRESULT(I4)

END-DEFINE

S

FFINDEX := 1

*

FINDEX := /* FINDEX is 3
#RESULT := /* {RESULT s 3
#ARRAY (INDEX) + 1

*

J#FINDEX := 2

*

#FINDEX := /* J/INDEX is 0
FARRAY (3) := /* returns run time error NAT1316
#FARRAY (##INDEX)

END

For further information, see Rules for Arithmetic Assignment in the Programming Guide and particu-
larly the following sections:

Statements 275

COMPUTE

= Arithmetic Operations with Arrays

® Data Transfer (for information on data transfer compatibility and the rules for data transfer)

COMPUTE Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl S|A| M| |A|UIN|P|I|FB |D|T|L|C|G|O yes yes
operandZ |C|S |A| |N|E |A|UN|PI|FIB |D|T|L|C|G|O yes no
operand3 |C|S NP |I| |B* yes no
operand4 |C|S N|P|I| |B* yes no

*If operand3or operand4 is a binary variable, it may be used only with a length of less than or
equal to 4.

Syntax Element Description:

Syntax Element Description

COMPUTE | ASSIGN [:]= Usage of Keywords:

This statement may be issued in short form by omitting the statement
keyword COMPUTE (or ASSIGN).

In structured mode, when the statement keyword COMPUTE (or ASSIGN)
is omitted, the equal sign (=) must be preceded by a colon (:).

However, when the ROUNDED option is used, the statement keyword
COMPUTE (or ASSIGN) must be specified.

ROUNDED ROUNDED Option:

If you specify the keyword ROUNDED, the value will be rounded before
it is assigned to operand1l.

For information on rounding, see Rules for Arithmetic Assignments, Field
Truncation and Field Rounding in the Programming Guide.

operandl Result Field:
operandl will contain the result of the arithmetic/assignment operation.

For the precision of the result, see Precision of Results of Arithmetic
Operations in the Programming Guide.

If operandlis a database field, the field in the database is not updated.

276 Statements

COMPUTE

Syntax Element

Description

If operandl is a dynamic variable, it is filled with exactly the data and
length of operandZ or the length of the result of the arithmetic-operation,
including trailing blanks. The current length of a dynamic variable can
be obtained by using the system variable *LENGTH.

For general information on dynamic variables, see Using Dynamic and
Large Variables.

arithmetic-expression

Arithmetic Expression:

An arithmetic expression consists of one or more constants, database
fields, and user-defined variables.

Natural mathematical functions (described in the System Functions
documentation) may also be used as arithmetic operands.

Operands used in an arithmetic expression must be defined with format
N,BLED,orT

As for the formats of the operands, see also Performance Considerations
for Mixed Formats in the Programming Guide.

The following connecting operators may be used:

Operator: Symbol:
Parentheses)
Exponentiation *x
Multiplication *
Division

Addition +
Subtraction -

Each operator should be preceded and followed by at least one blank
so as to avoid any conflict with a variable name that contains any of the
above characters.

The processing order of arithmetic operations is:

1. Parentheses

2. Exponentiation

3. Multiplication/division (left to right as detected)
4. Addition/subtraction (left to right as detected)

operand?

Source Field:

operandZis the source field. If operandl is of format C, operandZ may
also be specified as an attribute constant.

See User-Defined Constants in the Programming Guide.

Statements

277

COMPUTE

Syntax Element

Description

SUBSTRING
(operandZ,operand3,operand4)

SUBSTRING Option:
Without the substring option, the whole content of operandZis moved.

If operandl and operandZ are of alphanumeric, Unicode or binary
format, you may use the SUBSTRING option to assign a certain part of
operandZto operandl.

After the field name (operand?) in the SUBSTRING clause, you specify
the starting position (operand3) and then the length (operand4) of the
field portion to be moved.

For example, to assign the 3rd to 6th position of field #8 to field #A, you
would specify:

ffA := SUBSTRING(#B,3,4)

If you omit operand3, the starting position is assumed to be 1. If you
omit operand4, thelength is assumed to range from the starting position
to the end of the field.

Note: ASSIGN with the SUBSTRING option is a byte-by-byte assignment

(that is, the rules described under Rules for Arithmetic Assignment in the
Programming Guide do not apply).

See also MOVE SUBSTRING.

Result Precision of a Division

The precision (number of decimal positions) of the result of a division in a COMPUTE statement is
determined by the precision of either the first operand (dividend) or the first result field, whichever

is greater.

For a division of integer operands, however, the following applies: For a division of two integer
constants, the precision of the result is determined by the precision of the first result field; however,
if at least one of the two integer operands is a variable, the result is also of integer format (that is,
without decimal positions, regardless of the precision of the result field).

278

Statements

COMPUTE

COMPUTE Examples

= Example 1 - ASSIGN Statement
= Example 2 - COMPUTE Statement

Example 1 - ASSIGN Statement

** Example "ASGEX1S': ASSIGN (structured mode)

R R R B b R R e I b b R e e b b e e b b S e b b e e i b b e e b b S e b b R e I b b b b S e b R e b b b e b b b e 4

DEFINE DATA LOCAL

1

| b b e

1

17
1B
#C
1D
f+HE
1FF
#G
1FH

(N3)
(AG)
(NO.3)
(NO.5)
(N1.3)
(N5)
(A25)
(A3/1:3)

END-DEFINE

*

ASSIGN ftA
ASSIGN #B
ASSIGN #C

5
"ABC'
.45

ASSIGN #D = #f/E = -0.12345
ASSIGN ROUNDED #F = 199.999

#G := "HELLO"'
#H (1) := "UVW'
fiH (3) = 'XYZ'

*

END

Output of Program ASGEX1S:

A
1#B:
f#tC:
#D:
ftE
JFF:
G
1 :

5

ABC
.450

-.12345
-0.123

200
HELLO
UVIW XYZ

WRITE NOTITLE '=" A
WRITE '=' #B

WRITE '=' #C

WRITE '=' #D / '=' {tE
WRITE '=' #F

WRITE '=' #G

WRITE '=' #H (1:3)

Equivalent reporting-mode example: ASGEXIR.

Statements

279

COMPUTE

Example 2 - COMPUTE Statement

** Example 'CPTEX1': COMPUTE

R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 SALARY (1:2)

*

1 #A (P4)

1 4B (N3.4)
1 #C (N3.4)
1 #CUM-SALARY (P10)
1 #I (P2)
END-DEFINE

*

COMPUTE #A =3 * 2 + 4 / 2 - 1

WRITE NOTITLE 'COMPUTE #A =3 * 2 + 4 / 2 - 1"

*

COMPUTE ROUNDED #B = 3 -4 / 2 * .89

WRITE 'COMPUTE ROUNDED #B = 3 -4 / 2 * .89' 5X

*

COMPUTE #fC = SQRT (iB)

WRITE 'COMPUTE #C = SQRT (#B)' 18X '=' #C

*

LIMIT 1

READ EMPLOY-VIEW BY PERSONNEL-ID STARTING FROM
WRITE / 'CURRENT SALARY: ' 4X SALARY (1)

/ "PREVIOUS SALARY:' 4X SALARY (2)
FOR #I =1 T0 2
COMPUTE #CUM-SALARY = #fCUM-SALARY + SALARY
END-FOR
WRITE '"CUMULATIVE SALARY:' {#CUM-SALARY
END-READ

*

END

Output of Program CPTEX1:

COMPUTE #f/A =3 * 2 + 4 / 2 - 1 fFA:
COMPUTE ROUNDED #B =3 -4 / 2 * .89 1B
COMPUTE #C = SQRT (#B) #C:
CURRENT SALARY: 34000
PREVIOUS SALARY: 32300
CUMULATIVE SALARY: 66300

10X "=" #fA

'=' §B

'20017000"

(1)

1.2200
1.1045

280

Statements

35 CREATE OBJECT

= CREATE OBJECT Usage..................

= CREATE OBJECT Syntax Description

281

CREATE OBJECT

CREATE OBJECT operandl OF [CLASS] operand2
[GIVING operand3]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE CLASS | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

CREATE OBJECT Usage

The CREATE OBJECT statement is used to create an instance of a class.

CREATE OBJECT Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats |Referencing| Dynamic Definition
Permitted

operandl S O no no

operand? |C |S A yes no

operand3 S N I yes no

Syntax Element Description:

Syntax Element Description

operandl Object Handle:

operand]l contains the value NULL-HANDLE.

operandl must be defined as an object handle (HANDLE OF OBJECT). The object
handle is filled when the object is successfully created. When not successfully returned,

OF CLASS Class-Name:
operand?

the DEFINE CLASS statement.

operandZis the name of the class of which the object is to be created. For classes that
are not registered as DCOM classes, it must contain the class name defined in the
DEFINE CLASS statement. For classes that are registered as DCOM classes, it must
contain either the ProgID of the class or the class GUID. For Natural classes that are
registered as DCOM classes, the ProgID corresponds to the class name specified in

282

Statements

CREATE OBJECT

Syntax Element

Description

CREATE OBJECT #01 OF CLASS "Employee" or

CREATE OBJECT #01 OF CLASS "653BCFE0-84DA-11D0-BEB3-10005A66D231"

GIVING operand3

GIVING Clause:

If this clause is specified, operand3 contains either the Natural message number if

an error occurred, Or zero on success.

If this clause is not specified, Natural run time error processing is triggered if an error

occurs.

Statements

283

284

36 DECIDE FOR

B DECIDE FOR USAQEeieiiititie ettt ettt e e ettt e e et e e ettt e e e st e e e et aa e e e e 286
m DECIDE FOR Syntax DESCHPLONcoeiiiiiiiiiii ettt e e e e e e e 286
B DECIDE FOR EXAMPIESeeeeeiiiiit ettt ettt ettt e et e e e e e e as 287

285

DECIDE FOR

{ FIRST
EVERY

DECIDE FOR

[WHEN ANY statement..]
[WHEN ALL statement ..]
WHEN NONE statement..
END-DECIDE

{WHEN Togical-condition statement..}..

} CONDITION

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE ON | IF | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

DECIDE FOR Usage

The DECIDE FOR statement is used to decide for one or more actions depending on multiple condi-

tions (cases).

] Note: If no action is to be performed under a certain condition, you must specify the state-

ment IGNORE in the corresponding clause of the DECIDE FOR statement.

DECIDE FOR Syntax Description

Syntax Element

Description

FIRST CONDITION

Processing of First Condition Only:
Only the first true condition is to be processed.

See also Example 1.

EVERY CONDITION

Processing of Every Condition:
Every true condition is to be processed.

See also Example 2.

WHEN Togical-condition
Statement

Logical Condition(s) to be Processed:
With this clause, you specify the logical condition(s) to be processed.

See the section Logical Condition Criteria in the Programming Guide.

WHEN ANY statement

WHEN ANY Clause:

286

Statements

DECIDE FOR

Syntax Element

Description

With WHEN ANY, you can specify the statement(s) to be executed when
any of the logical conditions are true.

WHEN ALL statement

WHEN ALL Clause:

With WHEN ALL, you can specify the statement (s) to be executed when
all logical conditions are true.

This clause is applicable only if EVERY has been specified.

WHEN NONE statement

WHEN NONE Clause:

With WHEN NONE, you specify the statement(s) to be executed when none
of the logical conditions are true.

END-DECIDE End of DECIDE FOR Statement:
The Natural reserved word END-DECIDE must be used toend the DECIDE
FOR statement.

DECIDE FOR Examples

= Example 1 - DECIDE FOR with FIRST Option
= Example 2 - DECIDE FOR with EVERY Option

Example 1 - DECIDE FOR with FIRST Option

** Example 'DECEX1': DECID
R R R R B b 4
DEFINE DATA LOCAL

1 #FUNCTION (A1)

1 #PARM (A1)
END-DEFINE

*

INPUT #FUNCTION #PARM

*

DECIDE FOR FIRST CONDITION

E FOR (with FIRST option)

ERR R R R R b b R R b b R e b R R e b b R e I b b R e S b b b e e b b Y

WHEN #FUNCTION = 'A' AND #PARM = 'X'

WRITE 'Function A with

parameter X selected.’

WHEN #fFUNCTION = 'B' AND #PARM = 'X'

WRITE 'Function B with

parameter X selected.’

WHEN #FUNCTION = 'C' THRU 'D'
WRITE 'Function C or D selected.’

WHEN NONE
REINPUT 'Please enter

a valid function.'

MARK *#FUNCTION

END-DECIDE

Statements

287

DECIDE FOR

*

END

Output of Program DECEXI:

#FUNCTION #PARM

After entering A and Y and pressing ENTER:

##FUNCTION A #PARM Y

Please enter a valid function.

Example 2 - DECIDE FOR with EVERY Option

** Example 'DECEX2': DECIDE FOR (with EVERY option)

P R e b i b b b b b i i b o B B b i b i b b b b L b i b o e b i b i i e b b b b b i b i e b e b b b i b i b b b b e b i b b b i
DEFINE DATA LOCAL

1 #FIELD1 (N5.4)

END-DEFINE

*

INPUT #FIELD1
*
DECIDE FOR EVERY CONDITION
WHEN #FIELD1 >= 0
WRITE 'f#FIELD1 is positive or zero.'
WHEN #FIELD1 <= 0
WRITE '#FIELD1 is negative or zero.'
WHEN FRAC(#FIELD1) =0
WRITE '#FIELD]1 has no decimal digits.'
WHEN ANY
WRITE 'Any of the above conditions is true.'
WHEN ALL
WRITE '4fFIELD1 is zero.'
WHEN NONE
IGNORE
END-DECIDE

*

END

288 Statements

DECIDE FOR

Output of Program DECEX2:

##FIELD1 42

After pressing ENTER:

Page 1 05-01-11 14:56:26

#IFIELDL is positive or zero.
#FIELDL has no decimal digits.
Any of the above conditions is true.

Statements 289

290

37 DECIDE ON

B DECIDE ON USBQE ... vvieeeeiiiie ettt ettt e et e ettt e e e e e e ettt e e e e a e e e et a e e e 292
® DECIDE ON Syntax DESCHPHON ©.vvvvviieeeiiiiitiiie et e e et e e e e 292
B DECIDE ON EXGMPIESveeiieeiitie ettt ettt e e et e e e e e neeeas 294

291

DECIDE ON

DECIDE ON
FIRST] [VALUE] opl
EVERY | [OF] SUBSTR
(op3,0p5,0p6)
op2 op2 }
{ VALUE{ SUBSTR } , [. { SUBSTR }] statement
(op4,0p7,0p8) * ., (op4,0p7,0p8)

[ANY [VALUE] statement...]
[ALL [VALUE] statement ...]
NONE [VALUE] statement ...
END-DECIDE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DECIDE FOR | IF | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

DECIDE ON Usage

The DECIDE ON statement is used to specify multiple actions to be performed depending on the
value (or values) contained in a variable.

] Note: If no action is to be performed under a certain condition, you must specify the state-

ment IGNORE in the corresponding clause of the DECIDE ON statement.

DECIDE ON Syntax Description

Operand Definition Table:

Operand| Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
opl S |A N [A|U|N|P|I|F|B |D|T|L| |G|O yes no
op2 Ccl|S |A A|UIN|P|I|F|B |D|T|L| |G|O yes no
op3 S |A AU B yes no
op4 Cci|S |A AU B yes no
opb C|S N|P|I| |B* yes no
opé C|S N|P|I| |B* yes no
op7 C IS NP|I| |B* yes no

292 Statements

DECIDE ON

Operand| Possible Structure

Possible Formats Referencing | Dynamic
Permitted |Definition

s Jcs [[|

| IN[Pl] B

L] yes | mo

* Format B of op5, op6, op7 and op8 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element

Description

FIRST/EVERY Processing of Values:
With one of these keywords, you indicate whether only the first or every value
that is found is to be processed.

opl Selection Field:

As opl or opZ you specify the name of the field whose content is to be checked.

VALUES op2 [[,opZ2]
[:op2]lstatement

VALUES Clause:

With this clause, you specify the value (0p?2) of the selection field, as well as the
statement (s) which are to be executed if the field contains that value.

You can specify one value, multiple values, or a range of values optionally
preceded by one or more values.

Multiple values must be separated from one another either by the input delimiter
character (as specified with the session parameter 1D) or by a comma. A comma
must not be used for this purpose, however, if the comma is defined as decimal
character (with the session parameter DC).

For a range of values, you specify the starting value and ending value of the
range, separated from each other by a colon.

SUBSTRING SUBSTRING Option:
Without the SUBSTRING option, the whole content of a field is checked. The
SUBSTRING option allows you to check only a certain part of an alphanumeric,
Unicode or binary field.
After the field name (0p3), you specify first the starting position (0p5) and then
the length (0p6) of the field portion to be checked.

SUBSTRING SUBSTRING Option:

(op4,o0p7,0p8)

After the field name (0p4), you specify first the starting position (0p/) and then
the length (0p8) of the field portion to be checked.

ANY statement

ANY Clause:

With ANY, you specify the statement (s) which are to be executed if any of the
values in the VALUES clause are found. These statements are to be executed in
addition to the statement specified in the VALUES clause.

Statements

293

DECIDE ON

Syntax Element Description

ALL statement ALL Clause:

With ALL, you specify the statement (s) which are to be executed if all of the
values in the VALUES clause are found. These statements are to be executed in
addition to the statement specified in the VALUES clause.

The ALL clause applies only if the keyword EVERY is specified.
NONE statement NONE Clause:

With NONE, you specify the statement (s) which are to be executed if none of
the specified values are found.

END-DECIDE End of DECIDE ON Statement:

The Natural reserved word END-DECIDE must be used to end the DECIDE ON
statement.

DECIDE ON Examples

= Example 1 - DECIDE ON with FIRST Option
= Example 2 - DECIDE ON with EVERY Option

Example 1 - DECIDE ON with FIRST Option

** Example 'DECEX3': DECIDE ON (with FIRST option)

R R R R R b R R e e b b e b e e I b R e i b b e b b R e i b i R e b b R e b b b e b R R e b b e S b b

*

SET KEY ALL
INPUT '"Enter any PF key' /
"and check result' /
S
DECIDE ON FIRST VALUE OF *PF-KEY
VALUE 'PF1’
WRITE 'PF1 key entered.’
VALUE 'PF2'
WRITE 'PF2 key entered.’
ANY VALUE
WRITE 'PF1 or PF2 key entered.'
NONE VALUE
WRITE 'Neither PF1 nor PF2 key entered.’
END-DECIDE

*

END

294 Statements

DECIDE ON

Output of Program DECEX3:

Enter any PF key
and check result

Output after pressing PF1:

Page 1 05-01-11 15:08:50

PF1 key entered.
PF1 or PF2 key entered.

Example 2 - DECIDE ON with EVERY Option

** Example 'DECEX4': DECIDE ON (with EVERY option)

P i B b b i B i i b e i b e i b b B i b e e b b o e B i i b B b o e b B e g B b e b i b e e
DEFINE DATA LOCAL

1 #FIELD (N1)

END-DEFINE

*

INPUT 'Enter any value between 1 and 9:' #FIELD (SG=0FF)
*
DECIDE ON EVERY VALUE OF #FIELD
VALUE 1 : 4
WRITE 'Content of #FIELD is 1-4'
VALUE 2 : 5
WRITE 'Content of #FIELD is 2-5'
ANY VALUE
WRITE 'Content of #FIELD is 1-5'
ALL VALUE
WRITE 'Content of #FIELD is 2-4'
NONE VALUE
WRITE 'Content of #FIELD is not 1-5'
END-DECIDE

*

END

Output of Program DECEX4:

ENTER ANY VALUE BETWEEN 1 AND 9: 4

Statements 295

DECIDE ON

After entering and confirming 4:

Page

Content
Content
Content
Content

1

of #FIELD
of #FIELD
of #fFIELD
of #FIELD

is
is
is
is

N — N =
1 (B 1

~ o o B~

05-01-11

15:11:45

296

Statements

38 DEFINE CLASS

B DEFINE CLASS USJE ... ettt ettt ettt et e e et e e 298
® DEFINE CLASS Syntax DESCIPHONvviieiiiiiie ettt e e 298

297

DEFINE CLASS

DEFINE CLASS class-name

local-data-area
USING { }
OBJECT parameter-data-area
local-data-definition..
local-data-area
USING
LOCAL parameter-data-area
local-data-definition..

INTERFACE USING
copycode

interface-statement
[property-statement] ..
[method-statement] ...
END-CLASS

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CREATE 0BJECT | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

DEFINE CLASS Usage

The DEFINE CLASS statement is used to specify a class from within a Natural class module. A
Natural class module consists of one DEFINE CLASS statement followed by an END statement.

DEFINE CLASS Syntax Description

Syntax Element Description

class-name Class Name:

This is the name that is used by clients to create objects of this class. The name
can be up to a maximum of 32 characters long. The name may contain periods:
this can be used to construct class names such as

company-name.application-name.class-name

Each part between the periods (...) must conform to the Naming Conventions for
User-Defined Variables.

298 Statements

DEFINE CLASS

Syntax Element

Description

If the class is planned to be used by clients written in different programming
languages, the class name should be chosen in a way that it does not conflict with
the naming conventions that apply in these languages.

0BJECT

OBJECT Clause:

This clause is used to define the object data. The syntax of the OBJECT clause is
the same as for the LOCAL clause of the DEFINE DATA statement.

For further information, see the description of the LOCAL clause of the DEFINE
DATA statement.

LOCAL

LOCAL Clause:

This clause is only used to include globally unique IDs (GUIDs) in the class
definition. GUIDs need only be defined if a class is to be registered with DCOM.
GUIDs are mostly defined in a local data area.

The syntax of the LOCAL clause is the same as for the LOCAL clause of the DEFINE
DATA statement.

For further information, see the description of the LOCAL clause of the DEFINE
DATA statement.

INTERFACE USING

INTERFACE USING Clause:

This clause is used to include copycode that contains INTERFACE statements.

copycode

Copycode:

The copycode used by the INTERFACE USING clause may contain one or more
INTERFACE statements.

interface-statement

INTERFACE Statement:

The INTERFACE statement is used to define methods and properties for a class.

property-statement

PROPERTY Statement:

The PROPERTY statement is used to assign an object data variable operand as the
implementation to a property, outside an interface definition.

method-statement

METHOD Statement:

The METHOD statement is used to assign a subprogram as the implementation to
a method, outside an interface definition.

END-CLASS End of DEFINE CLASS Statement:
The Natural reserved word END-CLASS must be used to end the DEFINE CLASS
statement.

Statements 299

300

VI DEFINE DATA

DEFINE DATA
[GLOBALUSING global-data-area[WITH block[.block]..]]

USING parameter-data-area

PARAMETER parameter-data-definition..
USING { Tocal-data-area }
LOCAL parameter-data-area

local-data-definition..
[INDEPENDENT [aiv-data-definition..]] ..

local-data-area

USING

CONTEXT parameter-data-area
context-data-definition..
USING { Tocal-data-area }

OBJECT parameter-data-area
local-data-definition..

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related topics in the Programming Guide: Use and Structure of DEFINE DATA Statement | Data Areas
| Storage Alignment

The DEFINE DATA documentation is organized under the following headings:
Function and Basic Syntax Rules
Data Definitions:

® Defining Global Data
® Defining Parameter Data

® Defining Local Data

301

DEFINE DATA

Defining Application-Independent Variables
Defining Context Variables for Natural RPC
Defining NaturalX Objects

Clauses and Options:

Variable Definition

View Definition

Redefinition

Array Dimension Definition
Initial-Value Definition
Initial/Constant Values for an Array

EM, HD, PD Parameters for Field/Variable

Examples: Examples of DEFINE DATA Statement Usage

302

Statements

39 Function and Basic Syntax Rules

B DEFINE DATA USBJE ...ttt ettt ekttt ettt et e e e et eeeneeas 304
= DEFINE DATA General Syntax RUIESccoiuiiieiiiiiiie it 304
= DEFINE DATA Programming MOGEScooiiiiiiiiiiie et 304

303

Function and Basic Syntax Rules

DEFINE DATA Usage

The DEFINE DATA statement offers a number of clauses to declare data definitions for use within
a Natural program, either by referencing predefined data definitions contained in a local data area
(LDA), global data area (GDA) or parameter data area (PDA), or by writing in-line definitions.

DEFINE DATA General Syntax Rules

® When a DEFINE DATA statement is used, it must be the first statement of the program/routine.

" An “empty” DEFINE DATA statement is not allowed; at least one clause (GLOBAL, PARAMETER,
LOCAL, INDEPENDENT, CONTEXT or OBJECT) must be speciﬁed.

" You can specify more than one clause. However, if the GLOBAL and the PARAMETER clauses are
used, GLOBAL must be the first clause of the statement and PARAMETER must follow GLOBAL (without
GLOBAL, PARAMETER comes first if used). All other clauses can be specified in any order.

® The Natural reserved word END-DEFINE must be used to end the DEFINE DATA statement.

DEFINE DATA Programming Modes

The DEFINE DATA statement is available in structured mode and in reporting mode. Differences
are marked accordingly in the DEFINE DATA statement description.

Generally, the following applies:

= Structured Mode
= Reporting Mode

Structured Mode

All variables to be used, except application-independent variables (AIVs), must be defined in
the DEFINE DATA statement; they must not be defined elsewhere in the program. If a DEFINE DATA
INDEPENDENT statement is used, AIVs must not be defined elsewhere in the program.

304 Statements

Function and Basic Syntax Rules

Reporting Mode

The DEFINE DATA statement is not mandatory since variables may be defined in the body of the
program. However, ifa DEFINE DATA LOCAL statement is used in reporting mode, variables, except
application-independent variables (AIVs), must not be defined elsewhere in the program; and if
a DEFINE DATA INDEPENDENT statement is used, application-independent variables (AIVs) must
not be defined elsewhere in the program.

Statements 305

306

40 Defining Global Data

B DEFINE DATA GLOBAL USJEveieiiieeiii ettt e 308
= DEFINE DATA GLOBAL SyntaX DEeSCHPHONc.vvviieiiiiii et 308

307

Defining Global Data

General syntax of DEFINE DATA GLOBAL:

DEFINE DATA

END-DEFINE

GLOBAL USING global-data-area[WITH block[.block..]]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

DEFINE DATA GLOBAL Usage

The DEFINE DATA GLOBAL statement is used to define data elements using a GDA (see Global Data

Area).

DEFINE DATA GLOBAL Syntax Description

Syntax Element

Description

USING
global-data-area

GDA Name:
Specify the name of a global data area (GDA) to be referenced.

A GDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA GLOBAL statement.

In contrast to an LDA, the data elements defined in a GDA can be referenced by
more than one Natural object.

For further information, see Global Data Area in the Programming Guide.

WITH block

Data Blocks:

To save data storage space, you can create a global data area with data blocks. Data
blocks can overlay one another during program execution, thereby saving storage
space.

The maximum number of block levels is 8 (including the master block).

For further information, see Data Blocks in the Programming Guide.

.block

Block(s) to be Used:

A single or multiple . b7 ock notations specify the block(s) which are used in the
program.

END-DEFINE

End of DEFINE DATA Statement:

308

Statements

Defining Global Data

Syntax Element Description

The Natural reserved word END-DEFINE must be used to end the DEFINE DATA
statement.

Statements 309

310

41 Defining Parameter Data

= DEFINE DATA PARAMETER USJEuvveiiieiiiii ettt 312
= DEFINE DATA PARAMETER RESHICHONSceiiiieiiiieii e 312
= DEFINE DATA PARAMETER Syntax DeSCrPHONvvieiiiiiieeiiiiie e 312

3N

Defining Parameter Data

General syntax of DEFINE DATA PARAMETER:

DEFINE DATA

PARAMETER

END-DEFINE

USING parameter-data-area

parameter-

data-definition..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

DEFINE DATA PARAMETER Usage

The DEFINE DATA PARAMETER statement is used to define the data elements that are to be used as
incoming parameters in a Natural subprogram, external subroutine or helproutine. These para-

meters can be defined within the statement itself (see Parameter Data Definition); or they can be
defined outside the program in a parameter data area (PDA), with the statement referencing that

data area.

DEFINE DATA PARAMETER Restrictions

® Parameter data elements must not be assigned initial or constant values, and they must not have
edit mask (EM), header (HD) or print mode (PM) definitions; see also EM, HD, PM Parameters for

Field/Variable.

® The parameter data area and the objects which reference it must be contained in the same library

(or in a steplib).

DEFINE DATA PARAMETER Syntax Description

Syntax Element

Description

USING parameter-data-area

Parameter Data Area (PDA) Name:

The name of the parameter-data-area (PDA) that contains data
elements which are used as parameters in a subprogram, external
subroutine or dialog.

parameter-data-definition

Parameter Data Definition:
Instead of using a PDA, you can define parameter data directly.

See Parameter Data Definition.

312

Statements

Defining Parameter Data

Syntax Element

Description

END-DEFINE

End of DEFINE DATA Statement:

The Natural reserved word END-DEF INE must be used to end the DEFINE
DATA statement.

Parameter Data Definition

For parameter data definition, the following syntax applies:

Tevel

group-name[(array-definition)]

redefinition

(format-Tlength[/array-definition])

A [BY VALUE
variable-namey (U [farray-definition]) DYNAMIC ¢ [RESULT]]
B [OPTIONAL]

[(array-definition)] HANDLE OF OBJECT

Syntax Element Description:

Syntax Element

Description

level

Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group which
has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only 1
field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a group,
no level numbers may be skipped.

group-name

Group Name:

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

® Naming Conventions for User-Defined Variables in Using Natural.

® Qualifying Data Structures in the Programming Guide.

array-definition

Array Dimension Definition:

Statements

313

Defining Parameter Data

Syntax Element

Description

Withan array-definition, you define the lower and upper bounds of dimensions
in an array-definition.

For further information, see Array Dimension Definition and Variable Arrays in a
Parameter Data Area.

redefinition

Redefinition:

A redefinitionmay be used to redefine a group or a single field/variable (that is
a scalar or an array). See Redefinition.

Note: Inaparameter-data-definition,aredefinition of groupsis only permitted
within a REDEFINE block.

variable-name

Variable Name:

The name to be assigned to the variable. Rules for Natural variable names apply. For
information on naming conventions for user-defined variables.

For further information, see Naming Conventions for User-Defined Variables in Using
Natural.

format-Tlength

Format/Length Definition:
The format and length of the field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

HANDLE OF OBJECT

Handle of Object:

Used in conjunction with NaturalX. A handle identifies a dialog element in code and
is stored in handle variables.

For further information, see NaturalX in the Programming Guide.

A, UorB Data Type:
Alphanumeric (A), Unicode (U) or binary (B) for dynamic variable.
DYNAMIC DYNAMIC Option:

A parameter may be defined as DYNAMIC. For further information on processing
dynamic variables, see Introduction to Dynamic Variables and Fields in the Programming
Guide.

Call Mode:

Depending on whether call-by-reference, call-by-value or call-by-value-result is used,
the appropriate transfer mechanism is applicable. For further information, see the
CALLNAT statement.

(without BY VALUE)

Call-by-Reference:

Call-by-reference is active by default when you omit the BY VALUE keywords. In this
case, a parameter is passed to a subprogram/subroutine/function by reference (that

314

Statements

Defining Parameter Data

Syntax Element

Description

is, via its address); therefore a field specified as parameter in a CALLNAT/PERFORM
statement must have the same format/length as the corresponding field in the invoked
subprogram/subroutine/function.

BY VALUE

Call-by-Value:

When you specify BY VALUE, a parameter is passed to a
subprogram/subroutine/function by value; that is, the actual parameter value (instead
of its address) is passed. Consequently, the field in the
subprogram/subroutine/function need not have the same format/length as the
parameter passed in the CALLNAT/PERFORM statement or in the function call. The
formats/lengths must only be data transfer compatible. For data transfer compatibility,
the Rules for Arithmetic Assignment and Data Transfer apply (see Programming Guide).

BY VALUE allows you, for example, to increase the length of a field in a
subprogram/subroutine/function (if this should become necessary due to an
enhancement of the subprogram/subroutine) without having to adjust any of the
objects that invoke the subprogram/subroutine/function.

Example of BY VALUE:

* Program * Subroutine SUBRO1
DEFINE DATA LOCAL DEFINE DATA PARAMETER
1 fFIELDA (P5) 1 #FIELDB (P9) BY VALUE
END-DEFINE

END-DEFINE

CALLNAT 'SUBRO1' #FIELDA...

BY VALUE RESULT

Call-by-Value-Result:

While BY VALUE applies to a parameter passed to a subprogram/subroutine/function,
BY VALUE RESULT causes the parameter to be passed by value in both directions;
that is, the actual parameter value is passed from the invoking object to the
subprogram/subroutine/function and, on return to the invoking object, the actual
parameter value is passed from the subprogram/subroutine/function back to the
invoking object.

With BY VALUE RESULT, the formats/lengths of the fields concerned must be data
transfer compatible in both directions.

OPTIONAL

Optional Parameters:

For a parameter defined without OPTIONAL (default), a value must be passed from
the invoking object.

For a parameter defined with OPTIONAL, a value can, but need not be passed from
the invoking object to this parameter.

In the invoking object, the notation X is used to indicate parameters which are
skipped, that is, for which no values are passed.

Statements

315

Defining Parameter Data

Syntax Element Description

With the SPECIFIED option you can find out at run time whether an optional
parameter has been defined or not.

| Note: See also Matching Format Specification of Array Dimensions in the Programming Guide.

316 Statements

42 Defining Local Data

B DEFINE DATA LOCAL USBJE ... ettt 318
L =140) O URPUPPPPPRRR 318
= DEFINE DATA LOCAL Syntax DESCHPHONcvveiieeiiiiit et 318

317

Defining Local Data

General syntax of DEFINE DATA LOCAL:

DEFINE DATA

local-data-area
USING { }
LOCAL parameter-data-area
local-data-definition..
END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

DEFINE DATA LOCAL Usage

The DEFINE DATA LOCAL statementis used to define the data elements that are to be used exclusively
by a single Natural module in an application. These elements or fields can be defined in different
ways:

= either within the DEFINE DATA LOCAL statement itself, using the Jocal-data-definitionsyntax
(see Local Data Definition)

® or outside the program in a separate LDA (Local Data Area) or PDA (Parameter Data Area), with
the DEFINE DATA LOCAL USING statement referencing that data area.

Restriction

The LDA and the objects which reference it must be contained in the same library (or in a steplib).

DEFINE DATA LOCAL Syntax Description

Syntax Element Description

Tocal-data-area LDA Name:
Specify the name of the local data area (LDA) to be referenced.

An LDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA LOCAL statement.

You may reference more than one data area; in that case you have to repeat
the reserved words LOCAL and USING, for example:

318 Statements

Defining Local Data

Syntax Element

Description

DEFINE DATA LOCAL
LOCAL USING DATX_L
LOCAL USING DATX_P

END-DEFINE ;

For further information, see also Defining Fields in a Separate Data Area and Local
Data Area, Example 2 in the Programming Guide.

parameter-data-area

PDA Name:
Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCAL may also be a

parameter data area (PDA). By using a PDA as an LDA you can avoid the extra
effort of creating an LDA that has the same structure as the PDA.

A PDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA LOCAL statement.

For further information, see Parameter Data Area in the Programming Guide.

local-data-definition

Local Data Definition:

For information on how to define elements or fields within the statement itself,
that is, without using an LDA or PDA, see the section Local Data Definition
below.

END-DEFINE

End of DEFINE DATA Statement:

The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Local Data Definition

Local data can be defined directly. For local data definition, the following syntax applies:

group-name [(array-definition)]
variable-definition
view-definition

redefinition

Tevel

For further information, see

® Example 1 - DEFINE DATA LOCAL (Local Data Definition)
® Defining Fields within a DEFINE DATA Statement in the Programming Guide

® Local Data Area, Example 1 in the Programming Guide

Statements

319

Defining Local Data

Syntax Element Description for Local Data Definition:

Syntax Element Description

level Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading
zero is optional) used in conjunction with field grouping. Fields assigned a level
number of 02 or greater are considered to be a part of the immediately preceding
group which has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only
1 field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a
group, no level numbers may be skipped.

A view-definition must always be defined at Level 1.

group-name Group Name:

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

® Naming Conventions for User-Defined Variables in Using Natural.

® Qualifying Data Structures in the Programming Guide.

array-definition Array Dimension Definition:

With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition.

See Array Dimension Definition.

variable-definition|Variable Definition:

A variable-definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

See Variable Definition.

view-definition View Definition:

A view-definitionisused to define a view as derived from a data definition
module (DDM).

See View Definition.

redefinition Redefinition:

320 Statements

Defining Local Data

Syntax Element

Description

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

See Redefinition.

Statements

321

322

43 Defining Application-Independent Variables

= DEFINE DATA INDEPENDENT USAQEcouiiiiiiieiiiieiiie et 324
= DEFINE DATA INDEPENDENT Syntax DESCIPHONoeiiiiiiiiiiiiiieiie e 324

323

Defining Application-Independent Variables

General syntax of DEFINE DATA INDEPENDENT:

DEFINE DATA
INDEPENDENT [aiv-data-definition..]
END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

DEFINE DATA INDEPENDENT Usage

The DEFINE DATA INDEPENDENT statement is used to define application-independent variables
(AIVs).

An application-independent variable is referenced by its name, and its content is shared by all
Natural objects executed within one application that refer to that name. The variable is allocated
by the first executed Natural object that references this variable and is deallocated by the LOGON
command or a RELEASE VARIABLES statement.

The optional INIT clause is evaluated in each executed Natural object that contains this clause (not
only in the Natural object that allocates the variable).

| Note: Inan RPC server, application-independent variables (AlVs) are not deallocated impli-

citly, but stay active across RPC requests, because different clients may have access to the
same variables on the RPC server. This means they must be deallocated explicitly using the
RELEASE VARIABLES statement. See Application-Independent Variables in the Natural RPC
(Remote Procedure Call) documentation.

DEFINE DATA INDEPENDENT Syntax Description

Syntax Element Description

aiv-data-definition |AIV Data Definition:

The DEFINE DATA INDEPENDENT statement can be used to define a single or
multiple application-independent variables (AIVs). For each AlV, the syntax
shown in AIV Data Definition applies.

END-DEFINE End of DEFINE DATA Statement:

The Natural reserved word END-DEFINE must be used toend the DEFINE DATA
statement.

324 Statements

Defining Application-Independent Variables

AIV Data Definition

variable-definition
level
redefinition

Syntax Element Description:

Syntax Element Description

Tevel Level Number:

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

variable-definition|Variable Definition

A variable definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The name of an application-independent variable must start with a plus

(+) character.

redefinition Redefinition:

With a redefinition, you can partition an application-independent variable
into one or more subfields.

For further information, see Redefinition.

The subfields resulting from the redefinition must not be application-independent
variables; that is, their name must not start with a plus sign (+). These fields are
treated as local variables.

| Note: The first character of the name must be a plus (+). Rules for Natural variable names

apply, see Naming Conventions for User-Defined Variables in Using Natural.

Statements 325

326

44 Defining Context Variables for Natural RPC

® DEFINE DATA CONTEXT USBJEeeiiiiiiiiie ettt 328
= DEFINE DATA CONTEXT RESFCHONSeeiiiieiiiiieiiee et 329
= DEFINE DATA CONTEXT Syntax DESCHPHONcciiiiiieiiiiiiee i 329

327

Defining Context Variables for Natural RPC

General syntax of DEFINE DATA CONTEXT:

DEFINE DATA

USING { Tocal-data-area }
parameter-data-area
CONTEXT
context-data-definition ..
END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Belongs to Function Group: Natural Remote Procedure Call

DEFINE DATA CONTEXT Usage

The DEFINE DATA CONTEXT statement is used in conjunction with the Natural RPC (Remote Pro-
cedure Call). It is used to define variables known as context variables, which are meant to be
available to multiple remote subprograms within one conversation, without having to explicitly
pass the variables as parameters with the corresponding CALLNAT statements.

A context variable is referenced by its name, and its content is shared by all Natural objects executed
in one conversation that refer to that name. The variable is allocated by the first executed Natural
object that contains the definition of the variable and is deallocated when the conversation ends.

A context variable is not shared with subprograms that are called within the conversation. If such
a subprogram or one of its callees references a context variable, a separate storage area is allocated
for this variable.

Context variables can also be used in a non-conversational CALLNAT. In this case, the context variables
only exist during a single invocation of this CALLNAT. The variable is allocated when the remote
subprogram is started and deallocated when it ends. The content is shared by all Natural objects
except subprograms executed by this non-conversational CALLNAT.

The optional INIT clause is evaluated in each executed Natural object that contains this clause (not
only in the Natural object that allocates the variable). This is different to the way the INIT works
for global variables.

For further information, see Defining a Conversation Context in the Natural RPC (Remote Procedure
Call) documentation.

328 Statements

Defining Context Variables for Natural RPC

DEFINE DATA CONTEXT Restrictions

A context variable must be defined at Level 01. Other levels are only used in a redefinition.

DEFINE DATA CONTEXT Syntax Description

Syntax Element

Description

USING Tocal-data-area

LDA Name:

A local data area (LDA) contains data elements which are to be used in a
single Natural module. You may reference more than one data area; in that
case you have to repeat the reserved words CONTEXT and USING, for example:

DEFINE DATA
CONTEXT USING DATX_L
CONTEXT USING DATX_P

END-DEFINE ;

For further information, see Defining Fields in a Separate Data Area in the
Programming Guide.

USING
parameter-data-area

PDA Name:

A parameter data area contains data elements which are used as parameters
in a subprogram, external subroutine or dialog.

context-data-definition

Context Data Definition:

Context data can be defined directly within a program or routine. For context
data definition, the syntax shown below applies.

END-DEFINE End of DEFINE DATA Statement:
The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Context Data Definition

Context data can be defined directly within a program or routine. For context data definition, the

following syntax applies:

Statements

329

Defining Context Variables for Natural RPC

level {

variable-definition }

redefinition

For further information, see Defining Fields within a DEFINE DATA Statement in the Programming

Guide.

Syntax Element

Description

level

Level Number:

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

variable-definition

Variable Definition:

Avariable-definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The CONSTANT clause must not be used in this context

redefinition

Redefinition:

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

For further information, see Redefinition.

| Note: The fields resulting from the redefinition are not considered a context variable. These

fields are treated as local variables.

330

Statements

45 Defining NaturalX Objects

= DEFINE DATA OBJECT Usage

= DEFINE DATA OBJECT Syntax Description

331

Defining NaturalX Objects

General syntax of DEFINE

DATA OBJECT:

DEFINE DATA

USING {
OBJECT

END-DEFINE

local-data-definition..

JTocal-data-area }
parameter-data-area

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

DEFINE DATA OBJECT Usage

The DEFINE DATA OBJECT statement is used in a subprogram or class in conjunction with NaturalX.

DEFINE DATA OBJECT Syntax Description

Syntax Element

Description

USING Tocal-data-area

LDA Name:

Alocal data area (LDA) contains data elements which are to be used in a single
Natural module. You may reference more than one data area; in that case you
have to repeat the reserved words 0BJECT and USING, for example:

DEFINE DATA
OBJECT USING DATX_L
OBJECT USING DATX_P

END-DEFINE ;

For further information, see also Defining Fields in a Separate Data Area in the
Programming Guide.

USING
parameter-data-area

PDA Name:

A data area defined with DEFINE DATA OBJECT may be a parameter data area
(PDA). By using a PDA as an object data area you can avoid the extra effort of
creating an object data area that has the same structure as the PDA.

local-data-definition

Local Data Definition:

Data can also be defined directly using the syntax shown in Local Data
Definition in the section Defining Local Data.

END-DEFINE

End of DEFINE DATA Statement:

332

Statements

Defining NaturalX Objects

Syntax Element

Description

The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Statements

333

334

46 Variable Definition

= Variable Definition Syntax DeSCIIPHONviiiiiiii e 336

335

Variable Definition

{ sca]ar-deffnition}
array-definition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The variable-definitionoptionisused to define a single field/variable that may be single-valued
(scalar-definition) or multi-valued (array-definition).

scalar-definition

(format-Tlength)

A
TANT
variable-name § ({ U}) DYNAMIC [{?’(j?? : }init—definition [emhdpm]
B

HANDLE OF OBJECT

array-definition

(format-length/array-definition)

A
variable-name ({ U } /array-definition) DYNAMIC
B

(array-definition) HANDLE OF OBJECT

} array-init-definition | [

Variable Definition Syntax Description

Syntax Element Description

variable-name Variable Name:

The name to be assigned to the variable. Rules for Natural variable names
apply. With DEFINE DATA INDEPENDENT, the variable name must begin with
a plus character (+).

For information on naming conventions for user-defined variables, see Naming
Conventions for User-Defined Variables in Using Natural.

format-length Format/Length Definition:

For information on format/length definition of user-defined variables, see
Format and Length of User-Defined Variables in the Programming Guide.

HANDLE OF OBJECT Handle of Object:

Used in conjunction with NaturalX. A handle identifies a dialog element in
code and is stored in handle variables.

336 Statements

Variable Definition

Syntax Element

Description

For further information, see NaturalX in the Programming Guide.

A, UorB

Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.

array-definition

Array Dimension Definition:

With an array-definitionyou define the lower and upper bounds of
dimensions in an array-definition.

For further information, see Array Dimension Definition.

DYNAMIC DYNAMIC Option:

A field may be defined as DYNAMIC.

For more information on processing dynamic variables, see Introduction to

Dynamic Variables and Fields.

CONSTANT CONSTANT Option:

The variable/array is to be treated as a named constant. The constant value(s)

assigned will be used each time the variable/array is referenced. The value(s)

assigned cannot be modified during program execution.

See also Field Definitions, User-Defined Constants, Defining Named Constants in

the Programming Guide.

Note:

1. For reasons of internal handling, it is not allowed to mix variable definitions
and constant definitions within one group definition; that is, a group may
contain either variables only or constants only.

2. The CONSTANT clause must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT. The CONSTANT option cannot be used with
X-arrays.

3. The CONSTANT option must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT.

INIT INIT Option:

The variable/array is to be assigned an initial value. This value will also be
used when this variable/array is referenced in a RESET INITIAL statement.

If no INIT specification is supplied, a field will be initialized with a default
initial value depending on its format (see table Default Initial Values below).

For further information, see Field Definitions, Initial Values in the Programming
Guide.

Statements

337

Variable Definition

Syntax Element

Description

With DEFINE DATA INDEPENDENT and DEFINE DATA CONTEXT, the INIT
clause is evaluated in each executed Natural object that contains this clause
(not only in the Natural object that allocates the variable). This is different to
the way the INIT works for global variables.

The INIT option cannot be used with X-arrays.

init-definition Initial-Value Definition:

With the init-definitionoption, you define the initial/constant values for
a variable. See Initial-Value Definition.

array-init-definition|Initial/Constant Values for an Array:

The array is to be assigned an initial value. This value will also be used when
this array is referenced in a RESET INITIAL statement.

Withan array-init-definition, you define the initial/constant values for
an array.

For further information, see Initial/Constant Values for an Array.

emhdpm

EM, HD, PM Parameters for Field/Variable:

With this option, additional parameters to be in effect for a field/variable may
be defined.

For further information, see EM, HD, PM Parameters for Field/Variable.

Default Initial Values

The following table shows the default initial values that are provided with the various formats:

Format Default Initial Value
B,ELN,P 0

AU (blank)

L FALSE

D D' !

T T'00:00:00'"

C (AD=D)

Object Handle|NULL-HANDLE

Fields declared as DYNAMIC do not have any initial value because their field length is zero by default.

338

Statements

47 View Definition

= View Definition Syntax DESCIIPHONvviiiiiiiii e 340

339

View Definition

view-name VIEW[OF] ddm-name

([format-Tengthl[/array-definition])

) [emhdpm]

DYNAMIC

ddm-field A
o { v

Tevel [/array-definition]

redefinition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The view-definition option is used to define a data view as derived from a data definition
module (DDM).

| Note: Ina parameter data area, view-definitionisnot permitted.

For further information, see Accessing Data in an Adabas Database in the Programming Guide and
particularly the following topics:

® Data Definition Modules - DDMs
® Database Arrays
® Defining a Database View

View Definition Syntax Description

Syntax Element Description

view-name View Name:
The name to be assigned to the view.

Rules for Natural variable names apply; see Naming Conventions for User-Defined
Variables in Using Natural.

VIEW [OF] DDM Name:
ddm-name

The name of the data definition module (DDM) from which the view is to be taken.

level Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group which
has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only one
field) by using the group name. With certain statements (CALL, CALLNAT, RESET,

340 Statements

View Definition

Syntax Element

Description

WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a group,
no level numbers may be skipped.

ddm-field

DDM Field Name:
The name of a field to be taken from the DDM.

When you define a view for a HI STOGRAM statement, the view must contain only the
descriptor for which HISTOGRAM is to be executed.

redefinition

Redefinition:

A redefinitionmay be used to redefine a group, a view, a DDM field or a single
field/variable (that is a scalar or an array).

For further information, see Redefinition.

format-length

Format/Length Definition:
Format and length of the field. If omitted, these are taken from the DDM.

In structured mode, the definition of format and length (if supplied) must be the
same as those in the DDM.

In reporting mode, the definition of format and length (if supplied) must be
type-compatible with those in the DDM.

A, U orB

Data Type:
Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.
Note:

1. For Adabas on mainframe computers, format U is available for LA fields (length
<=16381 bytes), but not for LB fields (length: <=1 GB).

2. Format B is not available with Adabas.

array-definition

Array Definition:

Depending on the programming mode used, arrays (periodic-group fields,
multiple-value fields) may have to contain information about their occurrences.

For further information, see Array Definition in a View below.

emhdpm EM, HD, PM Parameters for Field/Variable:
With this option, additional parameters to be in effect for a field/variable may be
defined. See EM, HD, PM Parameters for Field/Variable.

DYNAMIC DYNAMIC Option:

Statements

341

View Definition

Syntax Element Description

Defines a view field as DYNAMIC.

For further information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields in the Programming Guide.

Array Definition in a View

Depending on the programming mode used, arrays (periodic-group fields, multiple-value fields)
may have to contain information about their occurrences.

Structured Mode
If a field is used in a view that represents an array, the following applies:
® An index value must be specified for MU/PE fields
® When no format/length specification is supplied, the values are taken from the DDM.

® When a format/length specification is supplied, it must be the same as in the DDM.

Database-Specific Considerations in Structured Mode:

Adabas: | 1f MU/PE fields (defined in a DDM) are to be used inside a view, these fields must include an
array index specification. For an MU field or ordinary PE field, you specify a one-dimensional
index range, e.g. (1:10). For an MU field inside a PE group, you specify a two-dimensional
index range, e.g. (1:10,1:5).

Examples of Structured Mode:

DEFINE DATA LOCAL
1 EMPI VIEW OF EMPLOYEES
2 NAME(A20)
2 ADDRESS-LINECA20 / 1:2)

1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(1:2)

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINEC(2)

1 4K (14)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

342 Statements

View Definition

Reporting Mode
In this mode, the same rules are valid as for structured mode, however, there are two exceptions:

" Anindex value needs not be supplied. In this case, the index range for the missing dimensions
is set to (1:1).

® The format/length specification may differ from the specification in the DDM. Then the
definition of format and length must be type-compatible with those in the DDM.

Examples:

DEFINE DATA LOCAL
1 EMPI VIEW OF EMPLOYEES
2 NAME(A30)
2 ADDRESS-LINE(A35 / 5:10)

1 EMPZ2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(A40) /* ADDRESS LINE (1:1) IS ASSUMED

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE /* ADDRESS LINE (1:1) IS ASSUMED

1 4K (I4)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

Statements 343

344

48 Redefinition

® Redefinition RESHCHONS ..ot 346
= Redefinition Syntax DESCPONooiiiiiiiiiiii e 346

345

Redefinition

rgroup [(array-definition)]
REDEFINE field-name ‘ Tevel ‘ rfield(format-length[/array-definition])]]
FILLER nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The redefinitionoptionisused to redefine a group, a view, a DDM field or a single field/variable
(that is a scalar or an array).

See also Redefining Fields in the Programming Guide.

Redefinition Restrictions

" A redefinition of a view or a DDM field is not applicable to a parameter-data-definition.

® Handles, X-arrays and dynamic variables cannot be redefined and cannot be contained in a re-
definition clause.

® A group that contains a handle, X-array or a dynamic variable can only be redefined up to - but
not including or beyond - the element in question.

Redefinition Syntax Description

Syntax Element Description

field-name Name of Field to be Redefined:

The name of the group, view, DDM field or single field that is being redefined.
level Level Number of Field being Redefined:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group,
which has been assigned a lower level number.

rgroup Name of Resulting Group:
The name of the group resulting from the redefinition.

Note: Ina redefinitionwithina view-definition, the name of rgroup must

be different from any field name in the underlying DDM.

rfield Name of Resulting Field:

The name of the field resulting from the redefinition.

346 Statements

Redefinition

Syntax Element

Description

Note: Ina redefinitionwithina view-definition, the name of rfieldmust

be different from any field name in the underlying DDM.

format-length

Format/Length of Resulting Field:

The format and length of the resulting field (rf7e/d).

array-definition

Array Dimension Definition:

Withan array-definition, youdefine the lower and upper bounds of dimensions
in an array-definition.

For further information, see Array Dimension Definition.

FILLER nX

Filler Byte Definition:

With this notation, you define n filler bytes - that is, segments which are not to be
used - in the field that is being redefined.

The definition of trailing filler bytes is optional.

Examples of REDEFINE Usage

Example 1:

DEFINE DATA LOCAL

01 #VAR1
01 fFVAR2

(A15)

02 #VAR2A (N4.1) INIT <0>

02 #fVAR2B (P6.2) INIT <0>
01 REDEFINE #VAR?

02 #VAR2RD (A10)

END-DEFINE

Example 2:

DEFINE DATA LOCAL
01 MYVIEW VIEW OF STAFF

02 NAME

02 BIRTH

02 REDEFINE BIRTH
03 BIRTH-YEAR (N4)
03 BIRTH-MONTH (N2)
03 BIRTH-DAY (N2)

END-DEFINE

Statements

347

Redefinition

Example 3:

DEFINE DATA LOCAL
1 #FIELD (Al2)
1 REDEFINE #FIELD
2 #RFIELD1 (A2)
2 FILLER 2X
2 #RFIELD2 (A2)
2 FILLER 4X
2 #fRFIELD3 (A2)
END-DEFINE

348

Statements

49 Array Dimension Definition

= Syntax Description of Array Dimension Definitioncoooiiiiiiii 350

349

Array Dimension Definition

{[bound:] bound},... 3

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The array-dimension-definitionoptionisused to define the lower and upper bound of a dimen-
sion in an array definition.

You can define up to 3 dimensions for an array.

Syntax Description of Array Dimension Definition

Syntax Element | Description

bound Lower/Upper Bound:
A bound can be one of the following:

" anumeric integer constant;

® apreviously defined named constant;

® (for database arrays) a previously defined user-defined variable; or

® an asterisk (*) defines an extensible bound, otherwise known as an X-array (eXtensible

array).

If only one bound is specified, the value represents the upper bound and the lower bound
is assumed to be 1.

X-Arrays

If at least one bound in at least one dimension of an array is specified as extensible, that array is
then called an X-array (eXtensible array). Only one bound (either upper or lower) may be extensible
in any one dimension, but not both. Multi-dimensional arrays may have a mixture of constant and
extensible bounds, for example: #fa(1:100, 1:*).

Example:

DEFINE DATA LOCAL

1 JARRAY1(I4/1:10)

1 #fARRAY2(14/10)

1 #X-ARRAY3(I4/1:%)

1 #X-ARRAY4(I4/*,1:5)

1 #FX-ARRAY5(I4/*:10)

1 #X-ARRAY6(I14/1:10,100:*,*:1000)
END-DEFINE

In the following table you can see the bounds of the arrays in the above program more clearly.

350 Statements

Array Dimension Definition

Dimension 1 Dimension 2 Dimension 3

Lower bound |Upper bound | Lower bound |Upper bound | Lower bound | Upper bound
#FARRAYL |1 10 - - - -
#FARRAY2 |1 10 - - - -
#FX-ARRAY3 |1 eXtensible |- - - -
#FX-ARRAY4 |1 eXtensible |1 5 - -
##X - ARRAY5 |eXtensible |10 - - - -
##X-ARRAY6 |1 10 100 eXtensible |eXtensible |1000

Examples of array definitions:

fFARRAY2(14/10)
##X-ARRAY4(I4/*,1:5)

##X-ARRAY6(14/1:10,100:*,*:1000)

/* a one-dimensional array with 10 occurrences (1:10)

/* a two-dimensional array

Variable Arrays in a Parameter Data Area

In a parameter data area, you may specify an array with a variable number of occurrences. This

is done with the index notation 1:V.

Example 1: #ARRO1 (A5/1:V)

Example 2: ##ARR02 (I12/1:V,1:V)

A parameter array which contains a variable index notation 1 : V can only be redefined in the length

of

/* a three-dimensional array

" its elementary field length, if the 1:V index is right-most; for example:

#ARR(A6/1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:3,1:V) can be redefined up to a length of 6 bytes

* the product of the right-most fixed occurrences and the elementary field length; for example:

#FARR(A6/1:V,1:2) can be redefined up to a length of 2*6 = 12 bytes
#ARR(A6/1:V,1:3,1:2) can be redefined up to a length of 3*2%6 = 36 bytes
#ARR(A6/1:2,1:V,1:3) can be redefined up to a length of 36 = 18 bytes

A variable index notation 1:V cannot be used within a redefinition.

Example:

Statements

Array Dimension Definition

DEFINE DATA PARAMETER
1 #/ARR(AG/1:V)
1 REDEFINE #ARR
2 {#fR-ARR(A1/1:V) /* (1:V) is not allowed in a REDEFINE block
END-DEFINE

As the number of occurrences is not known at compilation time, it must not be referenced with
the index notation (*) in the statements INPUT, WRITE, READ WORK FILE, WRITE WORK FILE. Index
notation (*) may be applied either to all dimensions or to none.

Valid examples:

#ARROL (%)

#FARR02 (*,%)
#FARRO1 (1)

#ARRO2 (5,#FFIELDX)
##ARR02 (1,1:3)

Invalid example:

#ARRAYY (1,*) /* not allowed

To avoid runtime errors, the maximum number of occurrences of such an array should be passed
to the subprogram/subroutine/function via another parameter. Alternatively, you may use the
system variable *0CCURRENCE.

] Notes:

1. If a parameter data area that contains an index 1:V is used as a local data area (that is, specified
ina DEFINE DATA LOCAL statement), a variable named V must have been defined as CONSTANT.

2. In a dialog, an index 1:V cannot be used in conjunction with BY VALUE.

352 Statements

50 Initial-Value Definition

m Restrictions with Initial-Valug Definitionooomroi e 354
= Syntax Description of Initial-Valug DEfinitioncooiiiiiiiiiii e 354

353

Initial-Value Definition

{ FULL LENGTH
LENGTH n

{ constant

} {character-string>

>
system-variable }

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The init-definitionoption is used to define the initial/constant values for a variable.

) Note: If, inthe variable-definitionoption, the keyword INIT was used for the initializa-

tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONST was used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Field Definitions, Initial Values in the Programming Guide.

Restrictions with Initial-Value Definition

For a redefined field, an init-definitionis not permitted.

Syntax Description of Initial-Value Definition

Syntax Element

Description

{constant>

Constant Value Option:

The constant value with which the variable is to be initialized; or the constant value
to be assigned to the field.

For further information, see User-Defined Constants in the Programming Guide.

{system-variable>

System Variable Option:

The initial value for a variable may also be the value of a Natural system variable,
for example:

DEFINE DATA LOCAL
1 MYDATE (D) INIT <*DATX>
END-DEFINE

Note: When the variable is referenced ina RESET INITIAL statement, the system

variable is evaluated again; that is, it will be reset not to the value it contained
when program execution started but to the value it contains when the RESET
INITIAL statement is executed.

354

Statements

Initial-Value Definition

Syntax Element

Description

FULL LENGTH
{character-string>

LENGTH n
{character-string>

Character String Option for Alphanumeric/Unicode Variables:

For a variable of the Natural data format A or U, a character-string (for
example, 'ABC ') can be used as an initial value which fills all or part of the variable
field.

A character-stringisa constant of the Natural data format A or U as described
in Alphanumeric Constants and Unicode Constants in the Programming Guide.

FULL LENGTH Option:

With the FULL LENGTH option, a particular character-stringis repeatedly
moved to the specified field until the field is completely filled. In the following
example, the entire field is filled with asterisks:

DEFINE DATA LOCAL
1 #FIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE

LENGTH Option:

With the LENGTH 1 option, a particular character-stringis repeatedly moved
to the specified field until the first n positions of the field are filled. n must be a
numeric constant. In the following example, the first four positions of the field are
filled with exclamation marks:

DEFINE DATA LOCAL
1 #FIELD (A25) INIT LENGTH 4 <'I'>
END-DEFINE

Statements

355

356

51 Initial/Constant Values for an Array

= Restrictions for Initial/Constant Values for an Arrayooovvioiiiiii e 358
= Syntax Description of Initial/Constant Values for an Arrayccoooviviiiiiieiiiiiiiiieeec e 359

357

Initial/Constant Values for an Array

For selected occurrences:

{ FULL LENGTH

LENGTH 1 }<character—str7ng, - >

index[:index] | .
[({ v }3)] [constant]

system-variable

For all occurrences:

FULL LENGTH .
{LENGTH " } <character-string>

ALL
{ constant }

system-variable

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
The array-init-definition option is used to define the initial/constant values for an array.

) Note: If, inthe variable-definitionoption, the keyword INIT was used for the initializa-

tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONST was used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Field Definitions in the Programming Guide, particularly the following sections:

" Initial Values

® User-Defined Constants

Restrictions for Initial/Constant Values for an Array

For a redefined field, an array-init-definitionis not permitted.

358 Statements

Initial/Constant Values for an Array

Syntax Description of Initial/Constant Values for an Array

Syntax Element Description
ALL ALL Option:
All occurrences of the array are initialized with the same value.
The ALL option cannot be combined with any other initialization definitions.
index Index Option:
The array occurrences specified by 7ndex are initialized.
If a single index or an index range is used, you can only specify a unique value
(constantor system-variable) which is assigned to all occurrences.
Examples:
DEFINE DATA LOCAL
1 #FLDL (A4/1:4) INIT (1:3) <'A'> /* A fills occurrences <
(1:3)
1 #/FLD2 (A4/1:4) INIT (*) <'B'> /* B fills all occurrences
1 #FLD3 (A4/1:2,1:4) INIT (2,3) <'C'> /* C fills occurrence <
(2,3)
END-DEFINE
v Index Notation V:
The special index notation V is used to fill a consecutive sequence of array
occurrences with individual values (constant or system-variable).
You can specify the V notation for one dimension of an array only. The number of
values provided must not exceed the number of occurrences of the specified
dimension.
You can omit the V notation for a one-dimensional array because the V index is
then used by default.
Example showing which values fill which occurrences when V is used:
DEFINE DATA LOCAL
1 #FLD4 (A4/1:3) INIT (V) <'A','B'> /* A fills (1) B <
fills (2)
1 #FLD5 (A4/1:2,1:3) INIT (1,V) <'C','D'> /* C, D fill <
(1,1:2)
(2,V) <'"F','G","H'> /* F, G, H fill <
(2,1:3)
END-DEFINE
Statements 359

Initial/Constant Values for an Array

Syntax Element

Description

constant

Constant Value Option:
The constant (value) with which the array is to be initialized.
Occurrences for which no values are specified, are initialized with a default value.

In a list of consecutive occurrences, you can skip single occurrences by specifying
commas (,) only. However, you must end the list with a particular value for the
last occurrence.

For further information, see User-Defined Constants in the Programming Guide.

Note: Multiple constant values/system variables must be separated either by the

input delimiter character (as specified with the session parameter 1D) or by a
comma. If numbers are provided in the value list and a comma is defined as the
decimal character (with the session parameter DC), either separate the comma from
the value with an extra blank character or use the input delimiter character.

Example with I1D=; and DC=, delimiter settings:

DEFINE DATA LOCAL

1 ffFLD1 (A4/1:3) INIT <'A',,'C">
1 ffNUM1 (N4,2/1:3) INIT <1 , 2, 3>
1 4INUM2 (N4,2/1:3) INIT <1;2;3>
END-DEFINE

system-variable

System Variable Option:
The initial value for an array can also be the value of a Natural system variable.

See also the Note for constant.

FULL LENGTH
{character-string>

LENGTH n
{character-string>

Character String Option for Alphanumeric/Unicode Variables:

For a variable of the Natural data format A or U, a character-string (for

example, 'ABC ') can be used as an initial value which fills all or part of the variable
field.

A character-stringisa constant of the Natural data format A or U as described
in Alphanumeric Constants and Unicode Constants in the Programming Guide.

FULL LENGTH Option:

With the FULL LENGTH option, a particular character-stringis repeatedly
moved to the specified array occurrence until the occurrence is completely filled.

LENGTH Option:

With the LENGTH n option, a particular character-stringis repeatedly moved
to the specified array occurrence until the first 1 positions of the occurrence are
filled.

360

Statements

Initial/Constant Values for an Array

Syntax Element Description

Example showing which values fill which occurrences:

DEFINE DATA LOCAL
1 #FLD1 (A6/1:3) INIT ALL FULL LENGTH <'X'> /% XXXXXX in all

PR}
occ.
1 #FLD2 (A6/1:3) INIT ALL LENGTH 5 <'NO'> /* NONON in all <
occ.
1 #FLD3 (A6/1:3) INIT (1:2) LENGTH 4 <'AB'> /* ABAB in occ <
(1:2)

1 ##FLD4 (A6/1:3) INIT (V) FULL LENGTH <'X','Y'>/* XXXXXX in occ. <«
(1),

/* YYYYYY in occ. <
(2)
END-DEFINE

Within one array-init-definition, only FULL LENGTH or LENGTH n can be
specified; both notations must not be mixed.

| Note: For further example definitions of assigning initial values to arrays, see Example 2 -
DEFINE DATA (Array Definition/Initialization).

Statements 361

362

52 EM, HD, PM Parameters for Field/Variable

= Syntax Description of EM, HD, PM Parameters for Field/Variableccccoiiiiiiieeee 364

363

EM, HD, PM Parameters for Field/Variable

(EM=value
EMU=value

] [HD="text'] [PM=value])

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The emhdpm option is used to define additional parameters to be in effect for a field/variable.

| Note: If for a database field you specify neither an edit mask (EM= or EMU=) nor a header

(HD=), the default edit mask and default header as defined in the data definition module

(DDM) will be used. However, if you specify one of the two, the other's default from the
DDM will not be used.

Syntax Description of EM, HD, PM Parameters for Field/Variable

Syntax Element

Description

EM=value

Edit Mask:

The EM parameter may be used to define an edit mask used when the field is displayed with
an I/O statement.

For further information, see the session parameter EM in the Parameter Reference.

EMU=value

Unicode Edit Mask:

The EMU parameter may be used to define a Unicode edit mask used when the field is
displayed with an I/O statement.

For further information, see the session parameter EMU in the Parameter Reference.

HD="'text'

Header Definition:

The HD parameter may be used to define the header to be used as the default header for the
field.

For further information, see the session parameter HD in the Parameter Reference.

PM=value

Print Mode:

The PM parameter may be used to set the print mode, which indicates how fields are to be
output.

For further information, see the session parameter PM in the Parameter Reference.

364

Statements

53 Examples of DEFINE DATA Statement Usage

= Example 1 - DEFINE DATA LOCAL (Local Data Definition)cuvveeiiiirieniiiiieeiie e 366
= Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization)cccoeiiiiiiiiiiiicce e, 366
= Example 3 - DEFINE DATA (View Definition, Array Redefinition)ccovveiiiieii 370
= Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas)ccooveeiiiiiiiiniiiiiiiicce, 371
= Example 5 - DEFINE DATA (INtialization)oeeeiiiiiiiiiiiie e 372
= Example 6 - DEFINE DATA (Variable ArTay)ooooiiiiiiiiiiii et 372

365

Examples of DEFINE DATA Statement Usage

The following topics are covered:

Example 1 - DEFINE DATA LOCAL (Local Data Definition)

** Example 'DDAEX1': DEFINE DATA
P b i i b b b i e i b i b i b i b b e b i b e b i i g i o b o i e i g b e b i i g i b e b i o b i b i i b i i b b e
DEFINE DATA LOCAL
1 {f'VAR1 (A15)
1 #fVAR2

2 #/VAR2A (N4.1) INIT <1111>

2 ffVAR2B (N6.2) INIT <222222>
1 REDEFINE #VAR2

2 {#/VAR2C (A2)

2 J#/VAR2D (A2)

2 #VAR2E (A6)

END-DEFINE
*
WRITE NOTITLE '=" #fVAR2A / '=' #VAR2B /
"=' ff'VAR2C / '=" ffVAR2D / '=' ffVAR2E
*
END

Output of Program DDAEX1:

#FVAR2A: 1111.0
##VAR2B: 222222.00
#fVAR2C: 11

##VAR2D: 11

#FVAR2E: 022222

Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization)

** EXAMPLE 'DDAEX2': DEFINE DATA (array definition/initialization)

R R e i b S b b e b b e e b e b o b e e b e e b e e e e e e e e b e b e e b e e b e e e b e S i e b o S

DEFINE DATA LOCAL
* %
1 #A01 (A5/1:4) INIT
1 #A02 (A5/1:4) INIT (V)
(4)
1 JfA03 (A5/1:4) INIT (*)
#A04 (A5/1:4) INIT (2)
(3)
1 #A05 (A5/1:4) INIT (2:3)
(4)
1 #A06 (A5/1:4) INIT (*)

—
AN ANAANANAANA A AN
X O > O W > O > >

366

Statements

Examples of DEFINE DATA Statement Usage

1 ##A13
1 #A14

1 #A20
1 #A21

1 #A22
1 #A23

1 #FA30
1 #A31
1 ##A32

* %

INIT ALL

LENGTH
LENGTH
LENGTH
LENGTH
LENGTH

LENGTH <
LENGTH <,
LENGTH <!
LENGTH <
LENGTH <

<
ALL FULL LENGTH <'
ALL LENGTH 2 <

1 #B01
1 #B02
1 #B03

1 ##B04
1 #B05

END-DE

**

(A5/1:2,1:4) INIT (2,
(A5/1:2,1:4) INIT

(A5/1:

(A5/1:
(A5/1:

FINE

:4) INIT

(1,
(1,
(2,
(1,
(1,
(v,

V)
*)
2)
3)

1:2)

4)
1)

o %)

,*)
,*)
,*)
V)
V)
%)
o)

.4)

AN AN AN AN AN AN AN

<IZ|

>

< > < X T W X< >

a =5

FULL LENGTH
FULL LENGTH
LENGTH 2

FULL
FULL
FULL
FULL
FULL

LENGTH
LENGTH
LENGTH
LENGTH
LENGTH

AN AN AN AN AN AN AN

N < ><rm >N N N

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
SKIP 1
WRITE
WRITE
WRITE
WRITE
WRITE

7X " (1)
(AD=V)
(AD=V)
(AD=V)
(AD=V)
(AD=V)
(AD=V)

(AD=V)
(AD=V)
(AD=V)
(AD=V)
(AD=V)

(

2) (3)
#FA0L (*)

" fA02 (%)

#A03(*)
fFAQ4 (*)
##A05 (*)
FA06 (*)

#FAL0(*)
FFALL(*)
#AL2 (%)
FFAL3(*)
FFALA(*)

(4)"

AV VRS

I”ICI>
‘,'F|>

AV VERVS

Statements

367

Examples of DEFINE DATA Statement Usage

SKIP 1

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
SKIP 1

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
SKIP 1

**

#A20(*)
fFA21(*)
##A22(*)
fFA23(*)

FA30(*)
FFA31(*)
fFA32(*)

WRITE 6X '(1,

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
SKIP 1

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)

**

(

1,2) (1,3) (1,4)
#B01(2,
#B02(2,
#B03(2,
#B04 (2,
##B05(2,

#BOL(1,*)
#B02(1,*)
#B0O3(1,*)
#B04(1,*)
##BO5(1,*)

#B10(1,*)
#B11(1,*)
#B12(1,*)
#B13(1,*)
#B14(1,*)
#B15(1,*)

2X
2X
2X
2X
2X

2X
2X
2X
2X
2X
2X

#B10(2,
#B11(2,
#B12(2,
#B13(2,
#B14(2,
#B15(2,

(2,1) (2,2) (2,3) (2,4)"

*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)

END

368

Statements

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX2:

Fage 1

h |

r L L
(1) 2y (3) (4]

#a01:. A E D
#a0z:. A E D
#4032 A A A A
#4004 E C

#A05: X i D
#ane: X X C i
falo. EEXEX

#411: EEEEE DDDDD
#412. AkALL PRERR

#2413 EEEEE

#h14; EEEEX

thz0. Ah

#4271 EB CCo
$a22: iX XX
$a23: EB DD
ta3n: Z Z zZ zZ

a3l ZZZZZ
gazz. ZZ ZZ iz iz

(1,13 (1.2 (1.3) (1,45 (2,13 (2.2) (2.3) (2.4}

¥BO1: A B D
¥BO2: X B X X 17

#¥BO3: X i i

¥BO4: Al A2

¥BOS: X X X X i i i i
#¥B10: Z z z z z z z z
¥B11:

¥B12:

#¥Bl13: ZZ ZZ ZZ ZZ

¥B1l4: AAAAR CCCce EEEEE FFFFF

¥B15: YTYYYY YYVVY YYVYY ZZE7F

Statements 369

Examples of DEFINE DATA Statement Usage

Example 3 - DEFINE DATA (View Definition, Array Redefinition)

** Example 'DDAEX3': DEFINE DATA (view definition, array redefinition)

R R R R R R e b R R b b e b e e I b R e i b b e e b e i b R e b b R e i b b S b R R e i b b e b b

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE

*

—

FFARRAY (A75/1:4)
1 REDEFINE {fARRAY
2 #ALINE (A25/1:4,1:3)

1 #X (N2) INIT <1>
1 Y (N2) INIT <1>
END-DEFINE

*

FORMAT PS=20

LIMIT 5
FIND EMPLOY-VIEW WITH NAME = "'SMITH'
MOVE NAME TO F#ALINE (4X,4Y)

MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO fFALINE (#X+3,4Y)
IF #Y =3
RESET INITIAL #Y
PERFORM PRINT
ELSE
ADD 1 TO fY
END-IF
AT END OF DATA
PERFORM PRINT
END-ENDDATA
END-FIND
*
DEFINE SUBROUTINE PRINT
WRITE NOTITLE (AD=0I1) #ARRAY(*)
RESET #ARRAY (*)
SKIP 1
END-SUBROUTINE

*

END

370

Statements

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX3:

SMITH SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
MILWAUKEE MONTERREY

554349 877-4563 994-2260

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963

Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas)

** Example 'DDAEX4': DEFINE DATA (global and local data area definition)
KAk hkhkhkhkhkhkhkhhkhkhkhkhkhhkhhhkhkkhhkhkhkhkhkhkhhhhkhhkhkhhkhkhhkhhhkkhkhhkhhkhkhkhhkhhkhkhhkhhhkhkkhkhkkhhkhkhkxk
DEFINE DATA
GLOBAL
USING DDAEX4G
LOCAL
1 #fFIELD1 (A10)
1 #FIELD2 (N5)
END-DEFINE
*
MOVE 'HELLO' TO #FIELDI
MOVE 123 TO #FIELD2

*

CALLNAT 'DDAEX4N' ffFIELD1 #FIELD2

*

END

Global Data Area DDAEX4G Used by Program DDAEX4:

1 GLOBAL-FIELD A 10

Subprogram DDAEX4N Called by Program DDAEX4:

% Example 'DDAEX4N': DEFINE DATA PARAMETER (called by DDAEX4)

P b i B i b b b i b e o i b i b i b i b i e g b b i b e b S i g i b o b i i g b g i e g i i g i b b o o b i . i i b i b b b
DEFINE DATA

PARAMETER

1 ffFIELDA (A10)

1 ff/FIELDB (N5)

END-DEFINE

*

WRITE '=' #FIELDA '=' #FIELDB

END

Statements 371

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX4:

Page 1 05-01-12 08:55:53

##FIELDA: HELLO ##FIELDB: 123

Example 5 - DEFINE DATA (Initialization)

% Example 'DDAEX5': DEFINE DATA (initialization)
P R b i B b b o I i e o i b o b b e b b i b i b i b e b o b o b b b b e b o e g e b b b i o b b b i e b i b b b o
DEFINE DATA LOCAL
1 #START-DATE (D) INIT <*DATX>
1 ffUNDERLINE (A50) INIT FULL LENGTH <'_'>
1 #/SCALE (A65) INIT LENGTH 65 <'....+..../">
END-DEFINE
*
WRITE NOTITLE #START-DATE (DF=L)
/ fFUNDERLINE
/ FSCALE
END

Output of Program DDAEXG5:

2005-01-12

B R T A Uy A A AV PN AP PP AP

Example 6 - DEFINE DATA (Variable Array)

** Example 'DDAEX6': DEFINE DATA (variable array with (1:V))

KAk A hkkhhkhkhkhhkhhkhkhhkhkhhkhrhhkhkhhkhkhkhkhkhhkhhhkhhkhkhkhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkkhkhkhrhhkhkhkhkhkhhkhkhkxkx
DEFINE DATA LOCAL

1 #tARRAY (A1/1:10)

1 #MAX-ARR (P3)

END-DEFINE

*

fFARRAY (1) := 'R’
FFARRAY (2) := 'E'
fFARRAY (3) := 'D'
#IMAX-ARR := 4

*

WRITE FARRAY (*)

*

CALLNAT 'DDAEX6N' #FARRAY(1:4) #MAX-ARR

*

372 Statements

Examples of DEFINE DATA Statement Usage

WRITE FFARRAY (*)

*
*

#IMAX - ARR =5

*

CALLNAT 'DDAEX6N' #FARRAY(1:5) #MAX-ARR

*

WRITE #FARRAY (*)

*

END

Subprogram DDAEX6N Called by Program DDAEXé6:

** Example 'DDAEX6N': DEFINE DATA (variable array with (1:V))
khkhkkhkkhkhkhkhhkhkhhkhkhkhkhkhhkhhhkhkhhkhhkhkhkhhhhkhkhhkhhkhkhkhhkhhhkhkhhkhhkhkhkhkhkhhhkhkhkhhhkhkhhkhhhkhkhkixk
DEFINE DATA

PARAMETER

1 #STRING (A1/1:V)

1 #MAX (P3)

END-DEFINE

*

IF #IMAX = 4
MOVE 'B' TO #STRING (1)
MOVE 'L' TO #STRING (2)
MOVE 'U' TO #STRING (3)
MOVE 'E' TO #STRING (4)

END-IF

*

IF #IMAX = 5

MOVE 'W' TO #STRING (1)
MOVE 'H' TO #STRING (2)
MOVE 'I' TO #STRING (3)
MOVE 'T' TO #STRING (4)
MOVE '"E' TO #STRING (5)
END-IF
END

Output of Program DDAEX4:

Page 1 05-01-12 09:06:43

= W O
I r— m
— C O
— m
m

Statements 373

374

VII

54 DEFINE FUNCTION ...ttt

55 DEFINE PRINTER

56 DEFINE PROTOTYPE ...t
57 DEFINE SUBROUTINE ...

58 DEFINE WINDOW

59 DEFINE WORK FILE ...

375

376

54 DEFINE FUNCTION

B DEFINE FUNCTION USAGE ... ettt ettt ettt e s 378
= DEFINE FUNCTION Syntax DESCPHONeeeiiiiiieeiiiie ettt 378
® DEFINE FUNCTION EXGMPIES ...ttt ettt e e e 382

377

DEFINE FUNCTION

DEFINE FUNCTION function-name
[return-data-definition]
[function-data-definition]
statement. ..

END-FUNCTION

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE PROTOTYPE

DEFINE FUNCTION Usage

The DEFINE FUNCTION statement is used to define a function which is stored as a Natural object
of the type function. A function object may contain only one DEFINE FUNCTION statement.

The DEFINE FUNCTION statement defines the function name, the parameters, the local and applica-
tion-independent variables, the function result and the statements forming the operation logic.
These statements are executed when the function is called.

For further information, see the following sections in the Programming Guide:

® Natural object type Function

® Function Call

DEFINE FUNCTION Syntax Description

Syntax Element Description

function-name Function Name:

function-name is the name of the function to be called. It must comply
with the naming conventions for user-defined variables described in the
Using Natural documentation.

function-nameisnotnecessarily the same as the name of the stored object
that contains the function definition.

You may not use the same function name twice in one library.

return-data-definition |Return Data Definition Clause:

For details on this clause, see Return Data Definition.

function-data-definition|Function Data Definition Clause:

378 Statements

DEFINE FUNCTION

Syntax Element

Description

For details on this clause, see Function Data Definition.

statement. ..

Statement(s) to be Executed:

Defines the operation section which is executed when the function is called.
It forms the function logic.

END-FUNCTION

End of DEFINE FUNCTION Statement:

The Natural reserved word END-FUNCTION must be used to terminate the
DEFINE FUNCTION statement.

Return Data Definition

RETURNS
[variable-name]

(format-Tlength[/array-definition])
[(array-definition)] HANDLE OF OBJECT By

A VALUE]
(‘ U] [/array-definition]) DYNAMIC

B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the result value returned by the function.

Syntax Element Description:

Syntax Element

Description

variable-name

Return Value Name:

Optionally, you may specify a name which is used to access the return field within
the function coding. If no such name is specified, the function name is used instead.

format-length

Format/Length Definition:
The format and length of the result field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

array-definition

Array Dimension Definition:

With array-definition, you define the lower and upper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, see DEFINE DATA statement, Array Dimension Definition.

HANDLE OF OBJECT

Handle of Object:

Used in conjunction with NaturalX.

Statements

379

DEFINE FUNCTION

Syntax Element

Description

For further information, see NaturalX in the Programming Guide.

A, UorB

Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.

DYNAMIC

Dynamic Variable:
The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic Variables
and Fields in the Programming Guide.

BY VALUE

BY VALUE Option:

If BY VALUE is specified, the format/length of the “sending” field (defined inside the
return-data-definition clause) and the “receiving” field (which receives the result at
the place where the function is called) must only be transfer compatible.

The format/length of the “receiving” field is either

® defined via an explicit (IR=) clause in the function call; or
= defined with a DEFINE PROTOTYPE statement; or

= taken over from the RETURNS field of the function object, which must already exist.

For data transfer compatibility the rules outlined in Rules for Arithmetic Assignment
and Data Transfer in the Programming Guide apply.

If BY VALUE is not specified, the format and length of the “receiving” field must
exactly match the characteristics of the “sending” field.

Function Data Definition

DEFINE DATA

PARAMETER

LOCAL

END-DEFINE

[INDEPENDENT aiv-data-definition..]

USING parameter-data-area }

parameter-data-definition..

USING { Tocal-data-area }
parameter-data-area

local-data-definition...

The function-data-definition clause defines the parameters which are to be provided when
the function is called, and the data fields used by the function, such as local and application-inde-
pendent variables. A global data area (GDA) cannot be referenced inside the function definition.

380

Statements

DEFINE FUNCTION

Syntax Element Description:

Syntax Element

Description

PARAMETER USING
parameter-data-area

PDA Name:

Specify the name of the parameter data area (PDA) that contains data
elements which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

PARAMETER
parameter-data-definition

Parameter Data Definition:

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Parameter Data Definition in the DEFINE DATA statement
description.

LOCAL USING
local-data-area

LDA Name:
Specify the name of the local data area (LDA) to be referenced.

See also Defining Local Data in the DEFINE DATA statement description.

LOCAL USING
parameter-data-area

PDA Name:
Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCAL may also be a

parameter data area (PDA). By using a PDA as an LDA you can avoid
the extra effort of creating an LDA that has the same structure as the PDA.

See also Defining Local Data in the DEFINE DATA statement description.

LOCAL
local-data-definition

Local Data Definition:

For information on how to define elements or fields within the statement
itself, that is, without using an LDA or PDA, see the section Local Data
Definition in the DEFINE DATA statement description.

INDEPENDENT
aiv-data-definition

AIV Data Definition:

Can be used to define a single or multiple application-independent
variables (AIVs).

See Defining Application-Independent Variables in the DEFINE DATA
statement description.

END-DEFINE End of Clause:
The Natural reserved word END-DEFINE must be used to end the
function-data-definition clause.

Statements 381

DEFINE FUNCTION

DEFINE FUNCTION Examples

= Example 1 - DEFINE FUNCTION
= Example 2 - DEFINE FUNCTION with Result Value Array

Example 1 - DEFINE FUNCTION

** Example 'DFUEX1': DEFINE FUNCTION
khkhkkhkkhhkhkhkhkhkhhkhkhkhkkhkhhkhhkhkhkhhkhhkhkhhkhhhkhkhhkhhkhkhkhhkhhhkhkhhkhhkhkhkhhkhhkhkhkhkhhhkhkhhkhhhkhkhkixkx
DEFINE FUNCTION F{#FIRST-CHAR

RETURNS RESULT (A1)

DEFINE DATA PARAMETER

1 #fPARM (A10)

END-DEFINE

/*

#IRESULT := {FPARM /* First character as return value.
END-FUNCTION

*

END

The function F#FIRST-CHAR is used in the example program DPTEX?2 in library SYSEXSYN. See Ex-
amples in the DEFINE PROTOTYPE statement description.

Example 2 - DEFINE FUNCTION with Result Value Array

** Example 'DFUEX2': DEFINE FUNCTION
Sk ok ok o o ok ok ok ok ok kR Kk ok o o ok ok ok ok ok ok ok ok ko ko o ok o o ok ok ok ok ok ok ok ko ko ok ok ok o o ok ok ok ok ok ok ko ok o ok ok ok ok o ok ok ok
DEFINE FUNCTION F#FACTOR

RETURNS (I2/1:3)

DEFINE DATA PARAMETER

1 #VALUE (I2)

END-DEFINE

/*

FFACTOR(1) := #VALUE * 1

F#FACTOR(2) := #VALUE * 2

FFACTOR(3) := #VALUE * 3

/*
END-FUNCTION

*

END

The function F#FACTOR is used in the example program DPTEX1 in library SYSEXSYN. See Examples
in the DEFINE PROTOTYPE statement description.

382 Statements

55 DEFINE PRINTER

B DEFINE PRINTER USBGEiiiiiviieeeiiiit ettt ettt e ettt e e et a e e et e e e s ennaae s 384
® DEFINE PRINTER Syntax DESCrPHONviieiiiiieeeiiiii et 384
® Printer Name under z/OS Batch, TSO and SEIVETovvviiiie e 388
B Printer Name UNAEr CICS ... 391
m Printer Name Under COMPIETEuvviiiiiee e 392
= Printer Name under Com-plete/SMARTS ... 392
= Printer Names under Natural Advanced Facilitiesoouriiiiiiii e 392
= Printer Name for Additional Reports and Remote Destinationscccvvvviiiiieiiiiiiiece e 393
® DEFINE PRINTER EXGMPIES ...ttt 393

383

DEFINE PRINTER

DEFINE PRINTER ([Togical-printer-name=]n)

[OUTPUT operandI]

PROFILE operandz
CODEPAGE operand2
FORMS operand2
NAME operand?
DISP operandz
CLASS operand?
COPIES operand3
PRTY operand4

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

DEFINE PRINTER Usage

The DEFINE PRINTER statement is used to assign a symbolic name to a report number and to control
the allocation of a report to a logical destination. This provides you with additional flexibility
when creating output for various logical print queues.

When this statement is executed and the specified printer is already open, the statement will im-
plicitly cause that printer to be closed. To explicitly close a printer, however, you should use the
CLOSE PRINTER statement.

For further information on the DEFINE PRINTER statement, see Unicode and Code Page Support in
the Natural Programming Language, section Statements.

DEFINE PRINTER Syntax Description

Operand Definition Table:

384 Statements

DEFINE PRINTER

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl |C |S AU yes no

operandz |C |S AU yes no

operand3 |C |S N yes no

operand4 |C |S N|P|I yes no

Syntax Element Description:

Syntax Element

Description

(n)

Printer Number:

All print files to be used during a session must be preassigned to an access
method by means of subparameter AM (Type of Access Method) of profile
parameter PRINT or automatically by definition in the JCL (with AM=STD only).

The printer number 1 may be a value in the range of 0 - 31. This is the number
alsotobeusedina DISPLAY /WRITE or CLOSE PRINTER statement.

Printer number 0 indicates the hardcopy printer. Some access methods do not
support the hardcopy printer, for example, AM=PC.

logical-printer-name

Logical Printer Name:

Optionally you can assign a logical name /ogical-printer-name to printer
n. This name can be used for the rep notationina DISPLAY / WRITE statement.

Naming conventions for Togical-printer-name are the same as for
user-defined variables. Multiple logical names may be assigned to the same
printer number. Unlike the value of the OUTPUT operand (see below),
Togical-printer-nameisevaluated at compile time and therefore independent
of the program control flow.

QUTPUT operandl

Printer Name:
As operandl you can specify one of the following:

B the printer name within the online spooling system,
B the print file name to be assigned to the printer number,
B the name of an additional printer, or

® aremote JES printer.
See also Printer Name for Additional Reports and Remote Destinations

The 8-byte logical printer name can be defined initially by keyword subparameter
DEST of profile parameter PRINT. Its default value depends on the access method
type and may be overwritten by operandl.

Statements

385

DEFINE PRINTER

Syntax Element

Description

operandl can be 1 to 253 characters long. If operand1 is a variable, its length
must be at least 8 bytes. You can specify either a printer or a logical or physical
data set name. The possible format depends on the operating system environment
and the access method defined by keyword subparameter AM of profile parameter
PRINT for this printer number.

If the specified name is already defined for a different printer number and this
printer is unused; that is, in closed state, the print output will be routed to this
printer if keyword subparameter ROUTE=0N of profile parameter PRINT was
specified for the specified printer number. If no printer name matches with
operandl, the unused printer with the highest number is used and its name
will be overwritten by operandI. Print routing is not visible to the user by
means of the SYSFILE command.

Information on operating-system- or TP-monitor-dependent printer naming
conventions is included in the following sections:

® Printer Name under z/OS Batch, TSO and Server

® Printer Name under CICS

® Printer Name under Com-plete

® Printer Name under Com-plete/ SMARTS

® Printer Name under Natural Advanced Facilities

® Printer Name for Additional Reports and Remote Destinations

With the following clauses, you can provide printing control information to be
interpreted by the spooling system of the TP monitor or operating system
respectively. You can specify one or more of these clauses, but each of them
only once.

PROFILE operand?

Name of Printer Control Characters Table:

With the PROFILE clause, you specify the name of a printer control characters
table as operandZ. The maximum length is 8 bytes.

You define the printer control characters table by the profile parameter CCTAB
(Printer Escape Sequence Definition).

Note: With Natural Advanced Facilities, the printer control characters table

can be maintained online as described in the Natural Advanced Facilities
documentation.

CODEPAGE operand?

Name of Codepage:

CODEPAGE denotes the name (format/length: A64) of a codepage as specified in
the NATCONFG module.

CODEPAGE is ignored if it does not apply to the respective OUTPUT destination.

386

Statements

DEFINE PRINTER

Spooling System Parameters

With the following clauses, you can provide values for parameters of the TP monitor's spooling
system. The default value of these clauses can be set with the corresponding keyword subparameters
of profile parameter PRINT. See PRINT Keyword Subparameters for DEFINE PRINTER Statement in
the Parameter Reference.

When a printer is closed, all options are reset to their default values. If the definitions are not clear
in a Natural environment, Software AG recommends to set them in each module using DEFINE

PRINTER statement.

Syntax Element Description:

Syntax Element

Description

FORMS operand?

Form:
Maximum length of operand: 8 bytes.

The default value of this clause can be set with subparameter FORMS of profile
parameter PRINT.

NAME operandZ

Listname:
Maximum length of operand: 8 bytes.

The default value of this clause can be set with subparameter NAME of profile parameter
PRINT.

DISP operand?

Disposition:
Maximum length of operand: 4 bytes.
For the DISP clause, the possible values for operandZare DEL, HOLD, KEEP and LEAV.

The default value of this clause can be set with keyword subparameter DI SP of profile
parameter PRINT. If the DISP clause is omitted (or incorrectly specified), DEL applies
by default.

CLASS operand?

Spool Class:
Maximum length of operand: 1 byte.

The default value of this clause can be set with keyword subparameter CLASS of
profile parameter PRINT.

COPIES operand3

Number of Copies:
operand3 must be an integer value.

The default value of this clause can be set with keyword subparameter COPIES of
profile parameter PRINT.

PRTY operand4

Listing Priority:

Statements

387

DEFINE PRINTER

Syntax Element Description

Possible values: 1 - 255. operand4 must be an integer value.

The default value of this clause can be set with keyword subparameter PRTY of profile
parameter PRINT.

Printer Name under z/OS Batch, TSO and Server

This section covers the following topics:

= | ogical Data Set Names

= Physical Data Set Names

= HFS File

= JES Spool File Class

= NULLFILE

= Allocation and De-Allocation of Data Sets
= Print Files in Server Environments

For a printer number that is defined with access method AM=STD, you can use operand] to specify
a logical or a physical data set name to be assigned to that printer number.

operandl can be 1 to 253 characters long and can be one of the following;:

® alogical data set name (DD name, 1 to 8 characters);

" a physical data set name of a cataloged data set (1 to 44 characters), or a physical data set
member name (1 to 44 characters for the data set name, plus 1 to 8 characters in parentheses for
the member name);

" a path name and member name of an HFS file (1 to 253 characters) in an MVS Linux Services
environment;

® a]JES spool file class;
® NULLFILE (to indicate a dummy data set).

Logical Data Set Names

For example:

388 Statements

DEFINE PRINTER

DEFINE PRINTER (21) OUTPUT 'SYSPRINT'

The specified data set with DD-name SYSPRINT must have been allocated before the DEFINE
PRINTER statement is executed. For further information, see Allocation and De-Allocation of Data
Sets.

The allocation can be done via JCL, CLIST (TSO) or dynamic allocation (SVC 99). For dynamic al-
location you can use the application programming interface USR2021N in library SYSEXT.

The data set name specified in the DEFINE PRINTER statement overrides the name specified with
the keyword subparameter DEST of profile parameter PRINT.

Optionally, the data set name may be prefixed by DDN= to indicate that it is a DD-name and to
avoid name conflicts with additional reports. For example:

DEFINE PRINTER (22) OUTPUT 'DDN=SOURCE'
Physical Data Set Names
For example:

DEFINE PRINTER (23) OUTPUT 'TEST.PRINT.FILE'

The specified data set must exist in cataloged form. When the DEFINE PRINTER statement is executed,
the data set is allocated dynamically by SVC 99 with the current DD-name and JCL option DISP=SHR.
For further information, see Allocation and De-Allocation of Data Sets.

If the data set name is 8 characters or shorter and does not contain a period (.), it might be misin-
terpreted as a DD-name. To avoid this, prefix the name with DSN=. For example:

DEFINE PRINTER (22) OUTPUT 'DSN=PRINTXYZ'

If the data set is a PDS member, you specify the PDS member name (1 to 8 characters) in parentheses
after the data set name (1 to 44 characters). For example:

DEFINE PRINTER (4) QUTPUT 'TEST.PRINT.PDS(TESTL)'

If the specified member does not exist, a new member of that name will be created.

Statements 389

DEFINE PRINTER

HFS File

For example:

DEFINE PRINTER (14) OUTPUT '/u/nat/rec/test.txt'

The specified path name must exist. When the DEFINE PRINTER statement is executed, the HFS
file is allocated dynamically. If the specified member does not exist, a new member of that name
will be created.

For the dynamic allocation of the data set, the following z/OS path options are used:

PATHOPTS=(OCREAT,OTRUNC, ORDWR)
PATHMODE=(SIRUSR,SIWUSR, SIRGRP,SIWGRP)
FILEDATA=TEXT

When an HFS file is closed, it is automatically de-allocated by z/OS (regardless of the setting of
keyword subparameter FREE of profile parameter PRINT).

JES Spool File Class

To create a JES spool data set, you specify SYSOUT=x (where x is the desired spool file class). For
the default spool file class, you specify SYSOUT=*.

Examples:

DEFINE PRINTER (10) QUTPUT 'SYSOUT=A"
DEFINE PRINTER (12) OQUTPUT 'SYSQUT=*"

To specify additional parameters for the dynamic allocation, use application programming interface
USR2021N in library SYSEXT instead of the DEFINE PRINTER statement.

NULLFILE
To allocate a dummy data set, you specify NULLFILE as operandI:

DEFINE PRINTER (n) OUTPUT 'NULLFILE

This corresponds to the JCL definition:

390 Statements

DEFINE PRINTER

// DD-name DD DUMMY
Allocation and De-Allocation of Data Sets

When the DEFINE PRINTER statement is executed and a physical data set name, HFS file, spool file
class or dummy data set has been specified, the corresponding data set is allocated dynamically.
If the logical print file is already open, it will be closed automatically, except when the keyword
subparameter CLOSE=FIN (Time of Closure) of profile parameter PRINT has been specified, in which
case an error will be issued. Moreover, an existing data set allocated with the same current DD-
name is automatically de-allocated before the new data set is allocated.

To avoid unnecessary overhead by unsuccessful premature opening of print files not yet allocated
at the start of the program, print files should be defined with keyword subparameter 0PEN=ACC
(open at first access) of profile parameter PRINT.

In the case of an HFS file, or a print file defined with the keyword subparameter FREE=0N of profile
parameter PRINT, the print file is automatically de-allocated as soon as it has been closed.

As an alternative for the dynamic allocation and de-allocation of data sets, the application pro-
gramming interface USR2021N in library SYSEXT is provided. This API also allows you to specify
additional parameters for dynamic allocation.

Print Files in Server Environments

In server environments, errors may occur if multiple Natural sessions attempt to allocate or open
a data set with the same DD-name. To avoid this, you either specify the print file with keyword
subparameter DEST=* of profile parameter PRINT, or you specify OUTPUT '*'inthe DEFINE PRINTER
statement; Natural then generates a unique DD-name at the physical data set allocation when the
first DEFINE PRINTER statement for that print file is executed.

All print files whose DD-names begin with CM are shared by all sessions in a server environment.
A shared print file is opened by the first session, and is physically closed when the server is ter-
minated. For further information, see the section Natural as a Server in the Operations documentation.

Printer Name under CICS

For a printer number defined with the access method AM=CICS, operandI can be a transient data
or temporary storage queue name (1 to 8 characters), depending on keyword subparameter TYPE
of profile parameter PRINT for the printer. For TYPE=TD (transient data), only the first 4 characters
of operandl are honored and the transient data destination must be predefined to CICS.

For further information, see also Natural Print and Work Files under CICS (in the TP Monitor Interfaces
documentation).

Statements 391

DEFINE PRINTER

Printer Name under Com-plete

With AM=COMP, a valid printer number (TID) or a logical printer name can be assigned. For example:

DEFINE PRINTER (1) QUTPUT '11°'
DEFINE PRINTER (2) QUTPUT 'Pl02'

Printer Name under Com-plete/SMARTS

With AM=SMARTS, any printer name can be assigned. For example:

DEFINE PRINTER (14) OUTPUT '/nat/path/printer'
DEFINE PRINTER (14) OUTPUT '/nat/path/printer/file/'
DEFINE PRINTER (14) OUTPUT 'printer'

It depends on the MOUNT_FS parameter of SMARTS whether the file is located on a SMARTS portable
file system or on the native file system. The first element of the path (/nat/) determines the target
file system.

If the string is terminated with a slash (/), the last element is taken as the name of the print file.
Otherwise, the name of the file is generated from the User1D and a sequence number. If the string
does not start with a slash, the path of the file is taken from the environment variable
$NAT_PRINT_ROOT.

The specified path name must exist. When the DEFINE PRINTER statement is executed, the file is
allocated dynamically. If the specified member does not exist, a new member of that name will
be created.

Printer Names under Natural Advanced Facilities

For Natural Advanced Facilities users, the name of any predefined logical printer profile can be
specified. This logical printer profile needs not belong to the currently active user profile. It may
be any logical printer profile defined on the NATSPOOL file. It will be active only for the duration

of the Natural program which contains the DEFINE PRINTER statement. For further information,

see the Natural Advanced Facilities documentation.

392 Statements

DEFINE PRINTER

Printer Name for Additional Reports and Remote Destinations

Additional reports and remote print destinations can be assigned by default with the following

names:
Report Function
BROADCST |Output message line to a TP monitor terminal. Same function as MESSAGE (see below), except
that under Com-plete, the message is not sent to the desired terminal until no transactions are
active on that terminal.
CCONTROL |CCONTROL is the name of a special printer control table associated to the printer n-1; it must
not be modified. For further information, refer to Printer-Advance Control Characters (in the
Operations documentation).
CONNECT |Output into a Con-nect folder.
Note for Natural installation: The NATPCNT module of Natural must be linked to the Natural
nucleus.
DUMMY Output to be deleted.
HARDCOPY |Output to the current hardcopy device.
INCORE Output into the NSPF incore database.
INFOLINE [Output to the Natural infoline. For details on the infoline, see the Natural terminal command
%X,
MESSAGE |Output message line to a TP monitor terminal. The first 8 bytes of a message must contain the
target terminal ID. TSO require the user ID instead of the terminal ID. An example program
MSGSW is supplied in the library SYSEXTP.
SOURCE Output to the Natural source area.
WORKPOOL [Output into the Natural ISPF workpool.

Printing Data in a Remote JES Environment

You can use the write-to-spool file feature (see the Operations documentation) to route data through
aremote JESnode and send it to a user or print it on a device defined in the remote JES environment.

DEFINE PRINTER Examples

= Example 1 - Printer Name Definition for Com-plete
= Example 2 - Printer Name Definition for Batch Environment
= Example 3 - Print Output to Infoline

Statements

393

DEFINE PRINTER

= Example 4 - Using a Session with Predefined Printer

Example 1 - Printer Name Definition for Com-plete

/* PRINTER NAME DEFINITION FOR COM-PLETE
*

DEFINE PRINTER (1) OUTPUT 'TID100'

WRITE (1) 'PRINTED ON PRINTER TID100'
END

Example 2 - Printer Name Definition for Batch Environment

/* QUTPUT ON "SYSPRINT' (FOR BATCH ENVIRONMENTS)

*

DEFINE PRINTER (REPORT1 = 1) OUTPUT "SYSPRINT'

WRITE (REPORTI) "REPORT 1 PRINTED ON PRINTER SYSPRINT'

*

/* OUTPUT TO DEFAULT PRINTER DESTINATION

/* DEFINED WITH PROFILE PARAMETER 'PRINT', SUBPARAMETER 'DEST'
*

DEFINE PRINTER (REPORTZ = 2)

WRITE (REPORT2) "REPORT PRINTED TO DESTINATION'

Example 3 - Print Output to Infoline

** Example 'DPIEX1': DEFINE PRINTER

R R R b R R b R R e b b e e b b e e b b R e i b b e b b S e b b R e e b b R e i b b b e e b R e b b e b b b o

*

SET CONTROL "XI+' /* SWITCH INFOLINE MODE ON
SET CONTROL "XT' /* INFOLINE TOP

*

DEFINE PRINTER (1) OUTPUT 'INFOLINE®

WRITE (1) "EXECUTING' *PROGRAM 'BY' *INIT-USER
WRITE 'TEST OUTPUT'

EJECT /* FORCE PHYSICAL I/0

*

SET CONTROL "X' /* SWITCH BACK TO NORMAL
*

END

394

Statements

DEFINE PRINTER

Output of Program DPIEX1:

EXECUTING DPIEX1 BY HTR

Page 1 05-01-13 14:54:33
TEST QUTPUT

Example 4 - Using a Session with Predefined Printer

** Example 'DPREX1': DEFINE PRINTER
Sk ok ok o o o o ok ok kK ko ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ko ko ko ok ok ok ok ok
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
END-DEFINE

*

* USE SESSION WITH DEFINED PRINTER 1
*
DEFINE PRINTER (INVOICE-LIST=1) OUTPUT 'OUTQL"
LIMIT 5
READ EMPL-VIEW BY NAME
WRITE (INVOICE-LIST) NAME
END-READ

*

END

Statements 395

396

56 DEFINE PROTOTYPE

B DEFINE PROTOTYPE USBJE ... iveieiitieeeiiie ettt ettt 398
= DEFINE PROTOTYPE Syntax DESCHIPHONccoviiiieiiiiii ittt 399
® DEFINE PROTOTYPE EXAMPIESveeeiiieeiiie ettt 402

397

DEFINE PROTOTYPE

DEFINE [[FOR] rototype-name
PROTOTYPE VARIABLE P 7P
UNKNOWN

[return-data-definition]
[parameter-definition]
same-as-clause

USING FUNCTIONI[DEFINITION [OF]I
function-name

END-PROTOTYPE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE FUNCTION

DEFINE PROTOTYPE Usage

The DEFINE PROTOTYPE statement is used to specify the properties for calling a function including

the following;:

" the parameters to be passed in the function call,

*® the result value to be returned by the function call, and

" whether the function is called with the function name defined in the DEFINE FUNCTION statement,
or with an alphanumeric variable that contains the function name.

This information is used to resolve a function call within a Natural object at compile time.

A DEFINE PROTOTYPE statement is only needed for a function call if any of the following is true:

* The specified function name is an alphanumeric variable which contains the name of the function
to be called at execution time.

" An (IR=) clause is not specified in the function call and a cataloged object of the called function
is not available.

® The parameters provided in the function call are to be validated and the cataloged object of the
called function is not available.

The DEFINE PROTOTYPE statement can be included in a copycode object if the function is to be
called from multiple objects.

For further information, see the following sections in the Programming Guide:

® Natural object type Function

398 Statements

DEFINE PROTOTYPE

= Function Call

DEFINE PROTOTYPE Syntax Description

Syntax Element

Description

[VARTABLE]
prototype-name

Prototype Name:
prototype-name is either of the following:

= the name of the prototype whose parameter and result field definitions
are to be used. This name typically matches the function-name in the
DEFINE FUNCTION statement of the referenced function;

® the name of an alphanumeric field specified as function-namein a
function call if the keyword VARIABLE is specified. This field must contain
the name of the function to be called at execution time.

An array index expression must not be specified with the field name.

UNKNOWN

UNKNOWN Option:

The keyword UNKNOWN specifies that the function interface is currently
undefined. In this case, the cataloged object (if available) will not be used to
extract the function result and the parameter description. When a function
call is embedded in a Natural statement, this requires to give the result layout
explicitly with an (IR=) clause. In addition, parameters provided in the
function call are not checked.

return-data-definition

See Return Data Definition below.

parameter-definition

See Parameter Definition below.

same-as-clause

See SAME AS Clause below.

USING FUNCTION
[DEFINITION [OF1]
function-name

USING FUNCTION Clause:

function-name is the name of an existing cataloged object of the type
function. The parameters and the result field definitions of this function are
used to resolve the function call.

END-PROTOTYPE

End of DEFINE PROTOTYPE Statement:

The Natural reserved word END-PROTOTYPE must be used to terminate the
DEFINE PROTOTYPE statement.

Statements

399

DEFINE PROTOTYPE

Return Data Definition

(format-length[/array-definition])
RETURNS [(array-definition)] HANDLE OF OBJECT
[variable-name] A
(‘ U ’ [J/array-definition]) DYNAMIC
B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the return value.

When no return data definition is specified, a function call can only be used within a statement if
an explicit (IR=) clause is provided. If such a clause is missing, the function can only be called as
a statement, but not in place of an operand within a statement.

Syntax Element Description:

Syntax Element Description

variable-name Return Value Name:

The optional variable-namehasno meaning. It is just there to have a syntax structure
similar to the Return Data Definition clause of the DEFINE FUNCTION statement.

format-length Format/Length Definition:
The format and length of the result field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

array-definition|Array Dimension Definition:

With array-definition, you define the lower and upper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, see Array Dimension Definition in the description of the
DEFINE DATA statement.

HANDLE OF OBJECT|Handle of Object:

Used in conjunction with NaturalX.

A,UorB Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.
DYNAMIC Dynamic Variable:

The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic Variables
and Fields in the Programming Guide.

400 Statements

DEFINE PROTOTYPE

Parameter Definition

DEFINE DATA
PARAMETER UNKNOWN

{ PARAMETER [

END-DEFINE

USING parameter-data-area

parameter-data-definition] }

The parameter-definition clause defines the parameters which are to be provided in a function
call. This definition layout is checked against the parameters given in a function call. If this clause
is omitted, this declares the function as free of parameters. In this case, every attempt to provide
parameters in the function call is rejected.

The identifiers used to name the parameter fields have no meaning. They are just there to have a
syntax structure similar to the DEFINE DATA PARAMETER syntax.

Syntax Element Description:

Syntax Element

Description

PARAMETER UNKNOWN

UNKNOWN Option:

With this option, no parameter is specified and the parameter check in
the function call is disabled. As a consequence, any number of parameters
in the function call will be accepted.

USING parameter-data-area

PDA Name:

The name of the parameter-data-area that contains data elements
which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

parameter-data-definition

Parameter Data Definition:

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Parameter Data Definition in the DEFINE DATA statement
description.

END-DEFINE End of Clause:
The Natural reserved word END-DEFINE must be used to end the
parameter-definition clause.

Statements 401

DEFINE PROTOTYPE

SAME AS Clause

SAME AS [PROTOTYPE] prototype-name

With the SAME AS clause you can use the parameter and result field definitions of another prototype
which has been defined before in the same Natural object.

DEFINE PROTOTYPE Examples

= Example 1 - DEFINE PROTOTYPE with a Defined Function Name
= Example 2 - DEFINE PROTOTYPE with a Variable Function Name

Example 1 - DEFINE PROTOTYPE with a Defined Function Name

This is a prototype definition for a function named F#FACTOR where the prototype -name corresponds
to the function-name specified in the referenced DEFINE FUNCTION statement. The result returned
by the function is of format (12/1:3), and a single parameter of format (I12) is required.

** Example 'DPTEX1': DEFINE PROTOTYPE and function call
RRA R R b R R e I b b e S b b e e b b e b b R e b b e e b b S e b b R e e b b R e b b S e b b R e b R e e b b b S
DEFINE DATA LOCAL

1 #INUM (12)
END-DEFINE
*
DEFINE PROTOTYPE F#FACTOR

RETURNS (I2/1:3)

DEFINE DATA PARAMETER

1 JVALUE (I2)

END-DEFINE

END-PROTOTYPE

*

#INUM = 3

*

WRITE 'Function call:" F{FACTOR(<#NUM>) (*)

*

END

The function F#FACTOR is defined in the example function DFUEX2 in library SYSEXSYN. See Examples
in the DEFINE FUNCTION statement description.

402 Statements

DEFINE PROTOTYPE

Output of Program DPTEX1:

Function call: 3 6 9

Example 2 - DEFINE PROTOTYPE with a Variable Function Name

Due to the keyword VARIABLE, this prototype specifies a function call where the referenced
prototype-nameis an alphanumeric variable which contains the function name at execution time.

**% Example 'DPTEX2': DEFINE PROTOTYPE and function call
KA A kA kA A hkhhkh kA hkhkhkhhkhhhkhkhhkhhhkhkhkhAhhhkhhkhkhhkhkhhkhrhhkhkhkhkhhhkhkhhkhhkhkkhhkhrhhkhkhkhkhhhkhkhkxkx
DEFINE DATA LOCAL

1 JINAME (A20)

1 #)TEXT (A10)
END-DEFINE
*
DEFINE PROTOTYPE VARIABLE #NAME

RETURNS #RETURN (A1)

DEFINE DATA PARAMETER

1 #IN (A10)

END-DEFINE
END-PROTOTYPE
*
#NAME ¢
#TEXT

*

WRITE 'First character:' #NAME(<#TEXT>)

*

END

"F#fFIRST-CHAR'
"ABCDEFGHIJ'

The function F#FIRST-CHAR is defined in the example function DFUEX1 in library SYSEXSYN. See
Examples in the DEFINE FUNCTION statement description.

Output of Program DPTEX2:

First character: A

Statements 403

404

57 DEFINE SUBROUTINE

® DEFINE SUBROUTINE USBGEveeieiiiiiii ettt ettt 406
= DEFINE SUBROUTINE RESHICHONSeiiiiiiiiiie ettt 407
= DEFINE SUBROUTINE Syntax DESCHPLONceeiiiiiieeiiiiiee ettt 408
® DEFINE SUBROUTINE EXAMPIES ...ttt 408

405

DEFINE SUBROUTINE

DEFINE [SUBROUTINE] subroutine-name
statement ...
END-SUBROUTINE

{ RETURN (reporting mode only) }

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

DEFINE SUBROUTINE Usage

The DEFINE SUBROUTINE statementis used to define a Natural subroutine. A subroutine is invoked
with a PERFORM statement.

Inline/External Subroutines

A subroutine may be defined within the object which contains the PERFORM statement that invokes
the subroutine (inline subroutine); or it may be defined external to the object that contains the
PERFORM statement (external subroutine). An inline subroutine may be defined before or after the
first PERFORM statement which references it.

| Note: Although the structuring of a program function into multiple external subroutines

is recommended for achieving a clear program structure, please note that a subroutine
should always contain a larger function block because the invocation of the external sub-
routine represents an additional overhead as compared with inline code or subroutines.

Data Available in a Subroutine

Inline Subroutines

No explicit parameters can be passed from the invoking program via the PERFORM statement to an
internal subroutine.

An inline subroutine has access to the currently established global data area as well as to the local
data area used by the invoking program.

External Subroutines

An external subroutine has access to the currently established global data area. In addition, para-
meters can be passed directly with the PERFORM statement from the invoking object to the external
subroutine; thus, you may reduce the size of the global data area.

406 Statements

DEFINE SUBROUTINE

An external subroutine has no access to the local data area defined in the calling program; however,
an external subroutine may have its own local data area.

DEFINE SUBROUTINE Restrictions

" Any processing loop initiated within a subroutine must be closed before END-SUBROUTINE is is-
sued.

® An inline subroutine must not contain another DEFINE SUBROUTINE statement (see Example 1
below).

" An external subroutine (that is, an object of type subroutine) must not contain more than one
DEFINE SUBROUTINE statement block (see Example 2 below). However, an external DEFINE
SUBROUTINE block may contain further inline subroutines (see Example 1 below).

" You may not use the name of an external subroutine twice in one library.
Example 1

The following construction is possible in an object of type subroutine, but not in any other object
(where SUBRO1 would be considered an inline subroutine):

DEFINE SUBROUTINE SUBRO1

PERFORM SUBROZ
PERFORM SUBRO3

DEFINE SUBROUTINE SUBRO2
/* inline subroutine...
END-SUBROUTINE

DEFINE SUBROUTINE SUBRO3
/* inline subroutine...
END-SUBROUTINE
END-SUBROUTINE
END

Example 2 (invalid):

The following construction is not allowed in an object of type subroutine:

Statements 407

DEFINE SUBROUTINE

DEFINE SUBROUTINE SUBROL

END-SUBROUTINE

DEFINE SUBROUTINE SUBROZ

END-SUBROUTINE
END

DEFINE SUBROUTINE Syntax Description

Syntax Element

Description

subroutine-name

Name of Subroutine:

For a subroutine name (maximum 32 characters), the same naming conventions apply
as for user-defined variables; see Naming Conventions for User-Defined Variables in the
Using Natural documentation.

The subroutine name is independent of the name of the module in which the
subroutine is defined (it may but need not be the same).

statement

Statement(s) to be Executed:
In place of statement, youmust supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

END-SUBROUTINE
RETURN

End of DEFINE SUBROUTINE Statement:
In structured mode, the subroutine definition is terminated with END-SUBROUTINE.

In reporting mode, RETURN or END- SUBROUTINE can be used to terminate a subroutine.

DEFINE SUBROUTINE Examples

= Example 1 - Define Subroutine

408

Statements

DEFINE SUBROUTINE

= Example 2 - Sample Structure for External Subroutine Using GDA Fields

Example 1 - Define Subroutine

** Example 'DSREX1S': DEFINE SUBROUTINE (structured mode)

R R R R R b b R b e b e I b R R i b e b e i b i R e i R b b S b R R e i b b e S b b

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE
*
1 JFARRAY (A75/1:4)
1 REDEFINE #fARRAY
2 ffALINE (A25/1:4,1:3)

1 #X (N2) INIT <1>
1 gy (N2) INIT <1>
END-DEFINE

*

FORMAT PS=20
LIMIT 5

FIND EMPLOY-VIEW WITH NAME =
MOVE NAME TO F#ALINE (4X,4Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO fFALINE (#X+2,#Y)
MOVE PHONE TO fFALINE (#X+3,4Y)

IF #Y =3
RESET INITIAL #Y
PERFORM PRINT
ELSE
ADD 1 TO fY
END-IF
AT END OF DATA
PERFORM PRINT
END-ENDDATA
END-FIND

*

DEFINE SUBROUTINE PRINT

WRITE NOTITLE (AD=0I) FFARRAY(*)

RESET #ARRAY (*)
SKIP 1
END-SUBROUTINE

*

END

Statements

409

DEFINE SUBROUTINE

Output of Program DSREX1S:

SMITH SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
MILWAUKEE MONTERREY

554349 877-4563 994-2260

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963

Equivalent reporting-mode example: DSREX1R.

Example 2 - Sample Structure for External Subroutine Using GDA Fields

** Example 'DSREX2': DEFINE SUBROUTINE (using GDA fields)
B S b S b b S b S S B S S
DEFINE DATA
GLOBAL
USING DSREX2G
END-DEFINE

*

INPUT '"Enter value in GDA field"' GDA-FIELDI

*

* Call external subroutine in DSREX2S

*

PERFORM DSREX2-SUB

*

END

Global Data Area DSREX2G Used by Program DSREX2:

1 GDA-FIELDI A 2

Subroutine DSREX2S Called by Program DSREX2:

** Example 'DSREX2S': SUBROUTINE (external subroutine using global data)
R R R B b R e e b b e S b b e e b S b b e S b b S e b b S e b b S e b b S e b b S S e b b e e b b e e b b b S
DEFINE DATA
GLOBAL

USING DSREX2G
END-DEFINE

*

DEFINE SUBROUTINE DSREXZ-SUB

*

WRITE "IN SUBROUTINE' *PROGRAM '=' GDA-FIELDI

*

END-SUBROUTINE

410

Statements

DEFINE SUBROUTINE

END

Statements 411

412

58 DEFINE WINDOW

B DEFINE WINDOW USBQJEvveeiiiie ettt etttk e e e e e 414
m DEFINE WINDOW Syntax DESCPHONveeeeiiiie ettt e e 415
= Protection of Input Fields in @ WINAOWooiiiiiii e 419
= |nvoking Different WINAOWScoiiiiiiiiiii e 419
® DEFINE WINDOW EXMPIE ...ttt 419

413

DEFINE WINDOW

DEFINE WINDOW window-name

AUTO
SIZE QUARTER ’
operandl * operand?
CURSOR
TOP LEFT
BASE
BOTTOM RIGHT
operand3/ operand4

[REVERSED [(CD=background-colonr]l]
[TITLE operand5]

[WINDOW
CONTROL { }
SCREEN
ON][(CD=frame-color osition-clause
[e {0]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: INPUT | REINPUT | SET WINDOW

Belongs to Function Group: Screen Generation for Interactive Processing

DEFINE WINDOW Usage

The DEFINE WINDOW statement is used to specify the size, position and attributes of a window.

A window is that segment of a logical page, built by a program, which is displayed on the terminal
screen. There is always a window present, although you may not be aware of its existence: unless
specified differently, the size of the window is identical to the physical size of your terminal screen.

A DEFINE WINDOW statement does not activate a window; this is done with a SET WINDOW statement
or with the WINDOW clause of an INPUT statement.

See also Windows in the Screen Design section of Designing Application User Interfaces in the Program-
ming Guide.

J Note: There is always only one Natural window, that is, the most recent window. Any
previous windows may still be visible on the screen, but are no longer active and are ignored
by Natural. You may enter input only in the most recent window. If there is not enough
space to enter input, the window size must be adjusted first.

414 Statements

DEFINE WINDOW

DEFINE WINDOW Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S N|P|I yes no
operand2 |C |S N|P|I yes no
operand3 |C |S N|P|I yes no
operand4 |C |S N|P|I yes no
operand5 |C |S A|U yes no

Syntax Element Description:

Syntax Element

Description

window-name

The window-name identifies the window. The name may be up to 32 characters
long. For a window name, the same naming conventions apply as for user-defined
variables, see Naming Conventions for User-Defined Variables in the Using Natural
documentation.

SIZE

With the SIZE clause, you specify the size of the window.

Note: On mainframe computers, Natural requires additional columns for so-called

attribute bytes to be able to display data on the screen (on other platforms, such
attribute bytes are not needed). Consequently, on mainframe computers the screen
area overlaid by a window is wider, and the size of the page segment visible inside
a window is smaller than on other platforms.

Example: Assume a window whose size is defined as SIZE 5 * 15 (that is, with
a width of 15 columns):

B On mainframe computers, the screen area overlaid by the window is 16 columns;
the size of what is visible inside the window is 14 columns without frame, and
10 columns with frame respectively.

® On other platforms, the screen area overlaid by the window is 15 columns; the
size of what is visible inside the window is 15 columns without frame, and 13
columns with frame respectively.

SIZE AUTO

The size of the window is determined automatically by Natural at runtime. The size
is determined by the data generated into the window as follows:

= The number of window lines will be the number of INPUT lines generated (plus
possibly the PE-key lines, message line, and infoline/statistics line).

® The number of window columns is determined by the longest INPUT line: Natural
scans, starting from the ends of the lines, for the rightmost significant byte in a

Statements

415

DEFINE WINDOW

Syntax Element

Description

line. This may cause an input-only or modifiable field (AD=A or AD=M) to be
truncated; to avoid this, you either put a single-character text string after such a
field or explicitly set the window size with the following:

SIZE operandl *
operand?

If you omit the SI/ZE clause, SIZE AUTO applies by default.

Note: The title is not part of the window data. Therefore, if the window size has

been determined as described above and the title is longer than the window, it will
be truncated.

SIZE QUARTER

The size of the window will be one quarter of the physical screen.

SIZE operandl *
operand?

The size of the window will be 1 lines by 1 columns. The number of lines is
determined by operand1l, the number of columns by operandZ. Neither of the two
operands must contain decimal digits.

If the window is FRAMED, the specified size will be inclusive of the frame.
The minimum possible window size is:

= without frame: 2 lines by 10 columns,

= with frame: 4 lines by 13 columns.

The maximum possible window size is the size of the physical screen.

BASE

With the BASE clause, you determine the position of the window on the physical
screen. If you omit the BASE clause, BASE CURSOR applies by default.

BASE CURSOR

Places the top left corner of the window at the current cursor position. The cursor
position is the physical position of the cursor on the screen. If the size of the window
makes it impossible to place the window at the cursor position, Natural automatically
places the window as close as possible to the desired position.

BASE TOP/BOTTOM

Places the window at the top-left, bottom-left, top-right, or bottom-right corner

LEFT/RIGHT respectively of the physical screen.

BASE This places the top left corner of the window at the specified line/column of the

operand3/operand4|physical screen. The line number is determined by operand3, the column number
by operand4. Neither of the two operands must contain decimal digits.
If the size of the window makes it impossible to place the window at the specified
position, you will get an error message.

REVERSED REVERSED will cause the window to be displayed in reverse video (if the screen

used supports this feature; if it does not, REVERSED will be ignored).

REVERSED CD=
background-color

This will cause the window to be displayed in reverse video and the background
of the window in the specified color (if the screen used supports these features; if
it does not, the respective specification will be ignored).

416

Statements

DEFINE WINDOW

Syntax Element

Description

For information on valid color codes, see session parameter CD in the Parameter
Reference.

TITLE operand5

With the TITLE clause, you may specify a heading for the window. The specified
title (operandb) will be displayed centered in the top frame-line of the window.
The title can be specified either as a text constant (in apostrophes) or as the content
of a user-defined variable. If the title is longer than the window, it will be truncated.
The title is only displayed if the window is FRAMED; if FRAMED OFF is specified for
the window, the TITLE clause will be ignored.

Note: If the title contains trailing blanks, these will be removed. If the first character
of the title is a blank, one blank will automatically be appended to the title.

CONTROL

With the CONTROL clause, you determine whether the PF-key lines, the message line
and the statistics line are displayed in the window or on the full physical screen.

CONTROL WINDOW

CONTROL WINDOW causes the lines to be displayed inside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

CONTROL SCREEN

CONTROL SCREEN causes the lines to be displayed on the full physical screen outside
the window.

FRAMED

By default, that is, if you omit the FRAMED clause, the window is framed.

The top and bottom frame lines are cursor-sensitive: where applicable, you can page
forward, backward, left or right within the window by simply placing the cursor
over the appropriate symbol (<, -, +, or >; see position-clause below) and then
pressing ENTER. If no symbols are displayed, you can page backward and forward
within the window by placing the cursor in the top frame line (for backward
positioning) or bottom frame line (for forward positioning) and then pressing ENTER.

Note: If the window size is smaller than 4 lines by 12 (or 13 on mainframe

computers) columns, the frame will not be visible.

FRAMED OFF

If you specify FRAMED OFF, the framing and everything attached to the frame
(window title and position information) will be switched off.

FRAMED
(CD=frame-color)

This causes the frame of the window to be displayed in the specified color (if the
screen used is a color screen; if it is not, the color specification will be ignored).

For information on valid color codes, see session parameter CD (in the Parameter
Reference).

Note: In Natural for Windows, this specification is ignored.

position-clause

The POSITION clause is only evaluated on mainframe computers; on all other
platforms it is ignored. For details, refer to Position Clause below.

Statements

417

DEFINE WINDOW

POSITION Clause

The POSITION clause is only evaluated on mainframe computers; on all other platforms it is ignored.

SYMBOL

POSITION

0P LEFT
[AUTO] [SHORT]
BOTTOM RIGHT
LEFT
TEXT [MORE] []
RIGHT
OFF

The POSITION clause causes information on the position of the window on the logical page to be

displayed in the frame of the window. This applies only if the logical page is larger than the win-
dow; if it is not, the POSITION clause will be ignored. The position information indicates in which
directions the logical page extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

Syntax Element Description:

Syntax Element

Description

POSITION SYMBOL

Causes the position information to be displayed in form of symbols: More: < -
+ >. The information is displayed in the top and/or bottom frame line.

TOP/BOTTOM Determines whether the position information is displayed in the top or bottom
frame line.

AUTO Is only applicable if the logical page is fully visible in the window as far as its
horizontal size is concerned, that is, if only a minus sign character (-) and/or a
plus sign character (+) are to be displayed. In this case, AUT0 automatically switches
from the symbols to the words Top, Bottom and More respectively.

SHORT Causes the word More : before the symbols < - + > to be suppressed.

LEFT/RIGHT Determines whether the position information is displayed in the left or right part

of the frame line.

POSITION TEXT

Causes the position information to be displayed in text form. The information is
displayed in the top and/or bottom frame line with the words More,Top and
Bottom. The text is language-dependent and may also be displayed in another
language if the language code is set accordingly.

POSITION TEXT MORE

Suppresses the words Top and Bottom and only displays the word More where
applicable, i.e., in the top or bottom frame line or both.

LEFT/RIGHT

Determines whether the position information is displayed in the left or right part
of the top frame line.

POSITION OFF

Causes the position information to be suppressed; no position information will
be displayed.

418

Statements

DEFINE WINDOW

Protection of Input Fields in a Window

The following rules apply to input fields (with AD=A or AD=M) which are not entirely within the
window:

® Input fields whose beginning is not inside the window are always made protected.

* Input fields which begin inside and end outside the window are only made protected if the
values they contain cannot be displayed completely in the window. Please note that in this case
itis decisive whether the value length, not the field length, exceeds the window size. Filler characters
(as specified with the profile parameter FC) do not count as part of the value.

If you wish to access input fields thus protected, you have to adjust the window size accordingly
so that the beginning of the field/end of the value is within the window.

Invoking Different Windows

ADEFINE WINDOW statement must not be placed within a logical condition statement block. To invoke
different windows depending on a condition, use different SET WINDOW statements (or INPUT
statements with a WINDOW clause respectively) in a condition.

DEFINE WINDOW Example

** Example 'DWDEX1': DEFINE WINDOW

ko o e ok o ek ok o ook o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL

01 #I (P3)

END-DEFINE

*

SET KEY PF1l='%W<<' PF2="%W>>"' PF4="%W--' PF5="'%W++"
*
DEFINE WINDOW WIND1
SIZE QUARTER
BASE TOP RIGHT
FRAMED ON POSITION SYMBOL AUTO
*
SET WINDOW 'WINDI'
FOR #I = 1 TO 10
WRITE 25X #I 'THIS IS SOME LONG TEXT' #I
END-FOR

*

END

Statements 419

DEFINE WINDOW

Output of Program DWDEX1:

pocooocococoooooa More W+ A
>r ! Page !
A1 coFocoolooootoocoloccaToooodoo U

0010 ** Example 'DWDEX1': DEFINE WIND ! 1 THIS !

0020 R R R R R R B b R B R R b e e b S b b b e b 4 I 2 THIS l

0030 DEFINE DATA LOCAL ! 3 THIS !

0040 01 #I (P3) ! 4 THIS !

0050 END-DEFINE ! 5 THIS !

0060 * ! 6 THIS !

0070 SET KEY PF1='%W<<" PF2="%W>>"' PF ! 7 THIS !

0080 * ! MORE !

0090 DEFINE WINDOW WIND1 foscccscscccossccssosssssccoacscaasoss 4

0100 SIZE QUARTER

0110 BASE TOP RIGHT

0120 FRAMED ON POSITION SYMBOL AUTO

0130 *

0140 SET WINDOW 'WINDL'

0150 FOR #I = 1 TO 10

0160 WRITE 25X #I 'THIS IS SOME LONG TEXT' #I

0170 END-FOR

0180 *

0190 END

0200

s 1 1 2 23 3 1 4 S 19 L1

420 Statements

59 DEFINE WORK FILE

B DEFINE WORK FILE USAQEcvviiieeiiiit ettt e a e naa e e e 422
m DEFINE WORK FILE Syntax DESCHPON ..ottt 422
= Work File Name under z/OS Batch, TSO and SEIVETuoiiiiiiiiiiiee e 424
m Work File Name Under CICSi e e 427
= Work File Name under Com-plete/SMARTSoviiiiiiiiiii e 427

421

DEFINE WORK FILE

operandl [TYPE operand?]

DEFINE WORK FILE work-fﬂe-number{ TYPE operand?

} [ATTRIBUTES {operand3}...]

M Note: The elements shown in square brackets [...] are optional, however, at least one of
them must be specified with this statement.

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CLOSE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files /| PC Files

DEFINE WORK FILE Usage

The statement DEFINE WORK FILE is used to assign a file name to a Natural work file number
within a Natural application. This allows you to make or change work file assignments dynamically
within a Natural session or overwrite work file assignments made at another level.

When this statement is executed and the specified work file is already open, the statement will
implicitly close the work file.

All work files to be used during a session must be preassigned to an access method by means of
keyword subparameter AM of profile parameter WORK or automatically by definition in the JCL.

] Note: For Unicode and code page support on mainframe platforms, see Work Files and Print
Files in the Unicode and Code Page Support documentation.

DEFINE WORK FILE Syntax Description

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing | Dynamic Definition
Permitted

operandl |C |S AU yes no

operand? |C A|U yes no

operand3 |C |S AU yes no

Syntax Element Description:

422 Statements

DEFINE WORK FILE

Syntax Element

Description

work-file-number

Work File Number:
Specifies the work file number.

The work file number is either:

B a numeric constant in the value range 1:32 or
B a numeric variable of type B/N/P/I defined with a CONST clause which assigns a

value in range 1:32. Precision digits for type (N/P) are not allowed.

This is the number you useina WRITE WORK FILE, READ WORK FILE or CLOSE
WORK FILE statement.

operandl

Work File Name:
operand]l is the name of the work file.

As operandl you can specify the name of the data set to be assigned to the work file
number.

operandl canbe 1 to 253 characters long. You can specify either a logical or a physical
data set name. The possible format depends on the operating system environment
and the access method defined by keyword subparameter AM of profile parameter
WORK. Some access methods do not support a work file name as operandl, for
example, AM=COMP and AM=PC.

If operandl is not specified, the value of operandI is determined by taking the
current name specified with the previously performed DEFINE WORK FILE statement
for this work file number. If no previous DEFINE WORK FILE statement was
performed, the name is taken from the Natural parameter module.

Note: If operandI is not specified, the behavior of Natural for Mainframes and

Natural for Windows/Linux is different.

Information on operating-system- or TP-monitor-dependent work file naming
conventions is included in the following sections:

® Work File Name under z/OS Batch, TSO and Server

® Work File Name under CICS

= Work File Name under Com-plete/SMARTS

TYPE operandZ?

TYPE Clause:
operand?Z specifies the type of work file.

The value of operandZis handled in a case insensitive way and must be enclosed in
quotes or provided in an alphanumeric variable.

UNFORMATTED A completely unformatted file. No formatting
information is written (neither for fields nor
for records).

Statements

423

DEFINE WORK FILE

Syntax Element Description

UNFORMATTED treats a work file as a
byte-stream with no record boundaries. Note
that type UNFORMATTED will be rejected by
Entire Connection.

Format: UNFORMATTED

FORMATTED FORMATTED defines a regular record-oriented
work file, which is subject to the same
handling as in previous Natural versions.

ATTRIBUTES ATTRIBUTES Clause:

{operand3}...
This clause makes sense only in Natural for Open Systems; in Natural for Mainframes

it is ignored.

Examples:

DEFINE WORK FILE 17 ffFILE TYPE 'UNFORMATTED'
#fTYPE := 'FORMATTED'
DEFINE WORK FILE 18 #FILE TYPE #TYPE

Work File Name under z/OS Batch, TSO and Server

The following topics are covered:

= Work File Name - operand1
= Allocation and De-Allocation of Data Sets
= \Work Files in Server Environments

Work File Name - operand1

Under z/OS, for a work-file number that is defined with the access method AM=STD, operandl can
be:
® alogical data set name (DD name, 1 to 8 characters);

" aphysical data set name of a cataloged data set (1 to 44 characters) or a physical data set
member name;

" a path name and member name of an HFS file (1 to 253 characters) in an MVS Linux Services
environment;

® aJES spool file class;
" NULLFILE.

424 Statements

DEFINE WORK FILE

Logical Data
Set Names

Example:

DEFINE WORK FILE 21 'SYSOUTL'

The specified data set SYSOUT1 must have been allocated before the DEFINE WORK FILE
statement is executed.

The allocation can be done via JCL, CLIST (TCO) or dynamic allocation (SVC 99). For
dynamic allocation you can use the application programming interface USR2021N, which
is located in library SYSEXT.

The data set name specified in the DEFINE WORK FILE statement overrides the name
specified with keyword subparameter DEST of profile parameter WORK.

Optionally, the data set name may be prefixed by DDN= to indicate that it is a DD name.
For example:

DEFINE WORK FILE 22 'DDN=MYWORK'

Physical Data
Set Names

Example:

DEFINE WORK FILE 23 'TEST.WORK.FILE'

The specified data set must exist in cataloged form. When the DEFINE WORK FILE statement
is executed, the data set is allocated dynamically by SVC 99 with the current DD name and
option DISP=SHR.

If the data set name is 8 characters or shorter and does not contain a period (.), it might be
misinterpreted as a DD name. To avoid this, prefix the name with DSN=. For example:

DEFINE WORK FILE 22 'DSN=WORKXYZ'

If the data set is a PDS member, you specify the PDS member name (1 to 8 characters) in
parentheses after the data set name (1 to 44 characters). For example:

DEFINE WORK FILE 4 'TEST.WORK.PDS(TESTIL)'

If the specified member does not exist, a new member of that name will be created.

HFS Files

Example:

DEFINE WORK FILE 14 '/u/nat/rec/test.txt'

The specified path name must exist. When the DEFINE WORK FILE statement is executed,
the HFS file is allocated dynamically. If the specified member does not exist, a new member
of that name will be created.

For the dynamic allocation of the data set, the following z/OS path options are used:

Statements

425

DEFINE WORK FILE

PATHOPTS=(OCREAT,OTRUNC,ORDWR)
PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
FILEDATA=TEXT

When an HFS file is closed, it is automatically de-allocated by z/OS (regardless of the setting
of keyword subparameter FREE of profile parameter WORK).

To read an HFS file, you have to use the application programming interface USR2021N
(dynamic data set allocation) instead of the DEFINE WORK FILE statement, because of the
OTRUNC option. This option resets the HFS file at the first read access, which results in an

empty file.
JES Spool File |To create a JES spool data set, you specify SYSOUT=x (where x is the desired spool file
Class class). For the default spool file class, you specify SYSQUT=*.

Examples:

DEFINE WORK FILE 10 '"SYSOUT=A'
DEFINE WORK FILE 12 'SYSOUT=*'

To specify additional parameters for the dynamic allocation, use the application
programming interface USR2021N (dynamic data set allocation) in the library SYSEXT
instead of the DEFINE WORK FILE statement.

NULLFILE To indicate a dummy data set.

Allocation and De-Allocation of Data Sets

When the DEFINE WORK FILE statement is executed and a physical data set name, HFS file, spool
file class or dummy data set has been specified, the corresponding data set is allocated automatically.
If the logical file is already open, it will be closed automatically, except when the keyword sub-

parameter CLOSE=FIN of profile parameter WORK has been specified, in which case an error will be
issued. Moreover, an existing data set allocated with the same current DD name is automatically
de-allocated before the new data set is allocated. To avoid unnecessary overhead by unsuccessful
premature opening of work files not yet allocated at the start of the program, work files should

be defined with keyword subparameter OPEN=ACC (open at first access) of profile parameter WORK.

In the case of an HFS file, or a work file defined with keyword subparameter FREE=0N of profile
parameter WORK, the work file is automatically de-allocated as soon as it has been closed.

As an alternative for the dynamic allocation and de-allocation of data sets, the application pro-
gramming interface USR2021N (dynamic data set allocation) in the library SYSEXT is provided. This
API also allows you to specify additional parameters for dynamic allocation.

426 Statements

DEFINE WORK FILE

Work Files in Server Environments

In server environments, errors may occur if multiple Natural sessions attempt to allocate or open
a data set with the same DD name. To avoid this, you either specify the work file with keyword
subparameter DEST=* of profile parameter WORK, or you specify DEFINE WORK FILE '*'in your
program before the actual DEFINE WORK FILE statement. Natural then generates a unique DD
name at the physical data set allocation when the first DEFINE WORK FILE statement for that work
file is executed.

All work files whose DD names begin with CM are shared by all sessions in a server environment.
A shared work file opened for output by the first session is physically closed when the server is
terminated. A shared work file opened for input is physically closed when the last session closes
it, that is, when it receives an end-of-file condition. When a work file is read concurrently, one file
record is supplied to one READ WORK FILE statement only.

Work File Name under CICS

For a work-file number defined with access method AM=CICS, operandl can be a transient data or
temporary storage queue name (1 to 8 characters), depending on keyword subparameter TYPE of
profile parameter WORK for the work file. For TYPE=TD, only the first 4 characters of operandI are
honored and the transient data destination must be predefined to CICS.

For further information on work files, see Natural Print and Work Files under CICS in the TP Monitor
Interfaces documentation.

Work File Name under Com-plete/SMARTS

Under Com-plete with access method AM=SMARTS, PFS files are available. Any work file name can
be assigned, even if it has not been defined to Natural. For example:

DEFINE WORK (14) '/nat/path/workfile'
DEFINE WORK (14) 'workfile’

It depends on the MOUNT_FS parameter of SMARTS whether the file is located on a SMARTS portable
file system or on the native file system. The first element of the path (/nat/) determines the target
file system.

If the string does not start with a slash (/), the path of the file is taken from the environment variable
$NAT_WORK_ROOT.

Statements 427

DEFINE WORK FILE

The specified path name must exist. When the DEFINE WORK FILE statement is executed, the file
is allocated dynamically. If the specified member does not exist, a new member of that name will

be created.

428 Statements

VIII

B B0 DELETE .v.vovvoooveoeeeesseeseeeeseeeeeeeeesee e e e s e e e s s e ee e e st ee e ettt 431
B 61 DELETE (SQL) .vveerevereoeeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeseees e eee e e s e e eseseseeeesee e s e s eeese e s 435
B B2 DISPLAY ..o e eee et e ettt ettt ettt 441
B B3 DIVIDE ..ottt ettt ettt 463
B 64 DOMDOEND ... eeeee e oo e et eees e e e et e e e et ee et e et 469
B 65 DOWNLOAD PC FILEvecooveoeeeeeeeeeeeeeeeeeeeeeee e e e eesee e eseeeee e see e st e e e 473
B B8 EJECT v eeee e et s ettt et 479
B B7 END coooeoeeeeeece oo ettt ettt et ettt 485
B 68 END TRANSACTION ...oovvooeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeee s e e eee e e e eeee e et erees e 489
B B ESCAPE ...ttt ettt ettt 495
B 70 EXAMINE ..ottt 501
B 71 EXPAND ..ottt ettt 523

429

430

60 DELETE

B DELETE USAQE ...t ettt ettt 432
B DELETE RESIICHON ...eeeeeee ittt e et e e e e e et eeeeaae e 432
® DELETE Syntax DESCIPHONvveeeeeiiiiiee ettt ettt e e e e as 432
= DELETE Database-Specific CONSIAErAtioNScoiiiiiiiiiiiiie et e e 433
B DELETE EXAMPIES ©.vvvviviiiiiiiiiiiet ettt ettt ettt ettt et et et et ettt et e aaaaa et et e aaaaaaeataaeeees 433

431

DELETE

DELETE [RECORD] [IN][STATEMENT][()]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

DELETE Usage

The DELETE statement is used to delete a record from a database.
Hold Status

The use of the DELETE statement causes each record selected in the corresponding FIND or READ
statement to be placed in exclusive hold.

Record hold logic is explained in the section Database Update - Transaction Processing (in the Pro-
gramming Guide).

DELETE Restriction

A DELETE statement cannot be specified in the same statement line asa FIND, READ, or GET statement.

DELETE Syntax Description

Syntax Element|Description

(r) Statement Reference:

The notation (r) is used to reference the statement which was used to select/read the record
to be deleted.

If no statement reference is specified, the DELETE statement will reference the innermost
active processing loop in which a database record was selected/read.

432 Statements

DELETE

DELETE Database-Specific Considerations

VSAM Databases |The DELETE statement is not valid for VSAM entry-sequenced data sets (ESDS).

SQL Databases | The DELETE statementis used to delete a row from the database table. It corresponds with
the SQL statement DELETE WHERE CURRENT OF CURSOR-NAME, that is, only the row
which was read last can be deleted.

With most SQL databases, a row that was read witha FIND SORTED BY or READ LOGICAL
statement cannot be deleted.

DELETE Examples

= Example 1
= Example 2

Example 1
In this example, all records with the name ALDEN are deleted.

** Example 'DELEX1': DELETE

* %
* %
CAUTION: Executing this example will modify the database records!
khkkhkhkhkhkkhkhkhhkhkhkkhkhhhkhkkhkhhhhkhkhkhhhhkkhkhkhhhkhkhkhhhhhkhkhhhhkkhkhhhhhkhkhhhhkkhkhkhhkhkkhkhkhrkkkhkhkrkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = 'ALDEN'

/*

DELETE

END TRANSACTION

/*

AT END OF DATA

WRITE NOTITLE *NUMBER 'RECORDS DELETED'

END-ENDDATA
END-FIND
END

Statements 433

DELETE

Example 2

If no records are found in the VEHICLES file for the person named ALDEN, the EMPLOYEE record
for ALDEN is deleted.

** Example 'DELEX2': DELETE

* %
* %
CAUTION: Executing this example will modify the database records!
khkhkkhkhhkhkhhkhkhhkhkhhkkhkhhkhhhkhkhhkhkhkhkhkhkhhhhkhhkhkhhkhkhhkhhhkhkhhkhhhkhkhhkhhhkkhkhkhhhkhkhhkkhhkhkhikxkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
END-DEFINE
*
EMPL. FIND EMPLOY-VIEW WITH NAME = "ALDEN'
/*
VEHC. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMPL.)
IF NO RECORDS FOUND

/*
DELETE (EMPL.)
/*
END TRANSACTION
END-NOREC
END-FIND
/%
END-FIND
END

434 Statements

61 ok (sqL)

B DELETE (SQL) USAGE .. ieitiieeiiiitet ettt ettt ettt e e e 436
B Syntax 1 - SEarched DELETEociiiiiiiiiiiiiie e et e e e 436
m Syntax 2 - PoSIIONEd DELETEooiiiiiiiei e 438

435

DELETE (SQL)

Belongs to Function Group: Database Access and Update

See also DELETE - SQL in the Natural for Db2 part of the Database Management System Interfaces
documentation:

DELETE (SQL) Usage

The SQL DELETE statement is used to delete either rows in a table without using a cursor (“searched”
DELETE) or rows in a table to which a cursor is positioned (“positioned” DELETE).

Two different structures are possible.

Syntax 1 - Searched DELETE

The “searched” DELETE statement is a stand-alone statement not related to any SELECT statement.
With a single statement you can delete zero, one, multiple or all rows of a table. The rows to be
deleted are determined by a search-condition thatis applied to the table. Optionally, the table
name can be assigned a correlation-name.

| Note: The number of rows that have actually been deleted with a “searched” DELETE can
be ascertained by using the system variable *ROWCOUNT; see System Variables documentation.

Common Set Syntax:

DELETE FROM table-name[correlation-name] [WHERE search-condition]

Extended Set Syntax:

DELETE FROM table-name|[period-clause][correlation-name]
[include-columns [SET assignment-clausel]]

[WHERE search-condition]

[FETCH FIRST row-Timit]

RR
WITH ‘ RS] [SKIP LOCKED DATA][QUERYNO integer]
CS

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description:

436 Statements

DELETE (SQL)

Syntax Element

Description

FROM table-name

FROM Clause:

Specifies the table from which the rows are to be deleted.

period-clause

Period Clause:

Specifies that a period clause applies to the target of the update operation. For further
information, see Period Clause in the section Basic Syntactical Items.

correlation-name

Correlation Name:

Optional. The table name can be assigned a correlation-name.

include-columns

Include Columns Clause:

Optional. Specifies a set of columns that are included, along with the columns of
table-name, in the result table of the DELETE statement, when it is nested in the
FROM clause of a SELECT statement.

For further details, see include-columns.

SET
assignment-clause

SET Assignment Clause:

Introduces the assignment of values to the included columns of the
include-columns clause. See assignment clause of SQL UPDATE statement.

WHERE
search-condition

WHERE Clause:
Specifies the selection criteria for the rows to be deleted.

If no WHERE clause is specified, the entire table is deleted.

FETCH FIRST

FETCH FIRST Clause:
Limits the effects of the DELETE statement to a subset of qualifying rows.

It corresponds to the FETCH FIRST clause of the SELECT statement described in
FETCH FIRST row-limit.

WITH

WITH Isolation Level Clause:

Enables the explicit specification of the isolation level used when locating the row
to be deleted.

This clause belongs to the SOL Extended Set.

CS Cursor Stability

RR Repeatable Read

RS Read Stability
SKIP LOCKED DATA |SKIP LOCKED DATA Clause:

Specifies that rows are skipped when incompatible locks are held on the row by
other transactions.

QUERYNO 7integer

QUERYNO Clause:

Statements

437

DELETE (SQL)

Syntax Element Description

This clause belongs to the SOL Extended Set.

This clause explicitly specifies the number to be used in EXPLAIN output and trace
records for this statement. The number is used as QUERYNO column in the
PLAN_TABLE for the rows that contain information on this statement.

Syntax 2 - Positioned DELETE

The “positioned” DELETE statement always refers to a cursor within a database loop. Therefore
the table referenced by a positioned DELETE statement must be the same as the one referenced by
the corresponding SELECT statement, otherwise an error message is returned. A positioned DELETE
cannot be used with a non-cursor selection.

The functionality of the positioned DELETE statement corresponds to that of the “native” Natural
DELETE statement.

Common Set Syntax:

DELETE FROM table-name WHERE CURRENT OF CURSORT[(r)] ‘

Extended Set Syntax:

DELETE FROM table-name WHERE CURRENT OF
CURSOR [(M)]

[:(Jhost-variable

[FOR RON{ .
integer

} OF ROWSET]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description:

Syntax Element Description

FROM table-name WHERE|FROM Clause:

CURRENT OF CURSOR
This clause specifies the table from which the rows are to be deleted.

(r) Statement Reference:

The () notation is used to reference the statement which was used to select
the row to be deleted. If no statement reference is specified, the DELETE
statement is related to the innermost active processing loop in which a database
record was selected.

FOR ROW ... OF ROWSET|FOR ROW ... OF ROWSET Clause:

This clause belongs to the SOL Extended Set.

438 Statements

DELETE (SQL)

Syntax Element

Description

The optional FOR ROW ... OF ROWSET clause for positioned SQL DELETE
statements specifies which row of the current rowset has to be deleted. It should
only be specified if the DELETE statement is related toa SELECT statement which
uses rowset positioning and which has column arrays in its INTO clause, see
into-clause. If this clause is omitted, all rows of the current rowset are deleted.

Statements

439

440

62 DISPLAY

B DISPLAY USBJE ...ttt ettt h et E ettt as 442
B DISPLAY Syntax DESCHPONeeiiiiiie ittt ettt e e e e et e e e e e e e taeeee e 442
= Defaults Applicable for a DISPLAY Statementoeiiiiiiiiii e 454
B DISPLAY EXAMIPIES .ttt ettt e e ettt e e e e e et e e e e et e e e e e e 455

441

DISPLAY

DISPLAY [(rep)] [options]{[/...] [output-format] output-element} ..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER EJECT
| FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

DISPLAY Usage

The DISPLAY statement is used to specify the fields to be output on a report in column format. A
column is created for each field and a field header is placed over the column.

] Note: The statements WRITE and PRINT can be used to produce output in free (non-column)

format.

See also the following topics (in the Programming Guide):

Report Format and Control

= Statements DISPLAY and WRITE

Index Notation for Multiple-Value Fields and Periodic Groups

Column Headers

Layout of an Output Page

DISPLAY Syntax Description

Syntax Element Description

(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for which
the DISPLAY statement is applicable.

As report identification, a value in the range 0 - 31 or a logical name which has been
assigned using the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the statement will apply to the first report (Report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to the PC,
see Example 8.

442 Statements

DISPLAY

Syntax Element

Description

For information on how to control the format of an output report created with Natural,
see Report Format and Control in the Programming Guide.

options

Display Options:

For details, see Display Options below.

output-format

Output Format Definitions:

For details, see Output Format Definitions below.

Line Advance - Slash Notation:

When specified within a text element, a slash (/) causes a line advance for the text
displayed.

When specified between output elements, it causes the output element specified by the
slash (/) to be placed vertically within the same column. The header for this column
will be constructed by placing the headers of the vertically displayed elements vertically
above the column.

See also the following topics in the Programming Guide:

= Line Advance - Slash Notation
® Example 1 - Line Advance in DISPLAY Statement
= Suppressing Column Headers - Slash Notation

output-element

Output Element:

For details, see Output Element below.

Display Options

[NOTITLE] [NOHDR]

[AND][GIVE] [SYSTEM] FUNCTIONS [(statement-parameters)]

Syntax Element Description:

Syntax Element

Description

NOTITLE

Default Page Title Suppression:

By default, Natural generates a single title line for each page resulting from a
DISPLAY statement. This title contains the page number, the time of day, and
the date. Time of day is set at the beginning of the program execution (TP mode)
or at the beginning of the job (batch mode). The default title line may be
overridden by using a WRITE TITLE statement, or it may be suppressed by
specifying the keyword NOTITLE in the DISPLAY statement.

Examples:

Statements

443

DISPLAY

Syntax Element

Description

= Default title will be produced:

DISPLAY NAME
= User title will be produced:

DISPLAY NAME WRITE TITLE 'user-title’
® No title will be produced:

DISPLAY NOTITLE NAME

Note: Ifthe NOTITLE optionisused, itappliestoall DISPLAY, PRINT and WRITE

statements within the same object which write data to the same report.

NOHDR

Column Headers:

Column headers are produced for each field specified in the DISPLAY statement
using the following rules:

® The header text may be explicitly specified in the DISPLAY statement before
the field name. For example:

DISPLAY '"EMPLOYEE' NAME 'SALARY' SALARY

® If you do not specify an explicit header for a field, the header as defined in
the DEFINE DATA statement will be used.

= [If for a database field no header is defined in the DEFINE DATA statement,
the default header as defined in the DDM will be used.

" If no default header is defined in the DDM, the field name will be used as
header.

= [If for a user-defined variable no header is defined in the DEFINE DATA
statement, the variable name will be used as header. See also the DEFINE
DATA statement for header definition.

DISPLAY NAME SALARY #NEW-SALARY

® Natural always underlines column headings and generates one blank line
between the underlining and the data being displayed.

= If there are multiple DISPLAY statements in a program, the first DISPLAY
statement determines the column header(s) to be used; this is evaluated at
compilation time.

Column Header Suppression:

To suppress the column header for a single field

444

Statements

DISPLAY

Syntax Element

Description

Specify the following characters (apostrophe-slash-apostrophe) before the field
name:

l/l
For example:
DISPLAY '/' NAME 'SALARY' SALARY

To suppress all column headers

Specify the keyword NOHDR:

DISPLAY NOHDR NAME SALARY

Note:

1. NOHDR only takes effect for the first DISPLAY statement, as subsequent
DISPLAY statements cannot create column headers anyhow.

2. If both NOTITLE and NOHDR are used, they must be specified in the following
order: DISPLAY NOTITLE NOHDR NAME SALARY

GIVE SYSTEM
FUNCTIONS

Natural System Function Usage:

The GIVE SYSTEM FUNCTIONS clause is used to make available the following
Natural system functions: AVER, COUNT, MAX, MIN, NAVER, NCOUNT, NMIN, SUM,
TOTAL. These are evaluated when the DISPLAY statement containing the GIVE
SYSTEM FUNCTIONS clause is executed.

These functions may then be referred to in a statement executed as a result of
an end-of-page condition.

Note:

1. Only one DISPLAY statement per report may containa GIVE SYSTEM
FUNCTIONS clause. When system functions are evaluated from a DISPLAY
statement, they are evaluated on a page basis, which means that all functions
(except TOTAL) are reset to zero when a new page is initiated.

2. When system functions are used within a DISPLAY statement within a
subroutine, the end-of-page processing must occur within the same routine.

3. In place of the keyword GIVE, the keyword GIVING may be used.

See also Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS
Clause.

statement-parameters

Parameter Definition at Statement Level:

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the DISPLAY statement.

Statements

445

DISPLAY

Syntax Element

Description

Each parameter specified will override the corresponding parameter previously
specified in a GLOBALS command, SET GLOBALS (Reporting Mode only) or
FORMAT statement.

If more than one parameter is specified, they must be separated by one or more
blanks from one another. Each parameter specification must not be split between
two statement lines.

Note: The parameter settings applied here will only be regarded for variable

fields, but they have no effect on text-constants. If you would like to set field
attributes for a text-constant, they have to be set explicitly for this element, see
Parameter Definition at Element (Field) Level.

See also:

® List of Parameters
® Example of Parameter Usage at Statement and Element (Field) Level

® Example 7 - DISPLAY Statement Using Parameters on Statement/Element
Level

List of Parameters

The following parameters can be specified with the DISPLAY statement

Parameter Name |Explanation Specification possible at statement level (S), at element
level (E) or both (SE)
AD Attribute Definition SE
AL Alphanumeric Length for Output SE
BX Box Definition SE
CD Color Definition SE
cv Control Variable SE
DF Date Format SE
DL Display Length for Output SE
DY Dynamic Attributes SE
EM Edit Mask SE
EMU Unicode Edit Mask
ES Empty Line Suppression
FC Filler Character SE
FL Floating Point Mantissa Length SE
GC Filler Character for Group Headers SE
HC Header Centering SE
446 Statements

DISPLAY

Parameter Name |Explanation Specification possible at statement level (S), at element
level (E) or both (SE)
HW Heading Width SE
IC Insertion Character SE
ICU Unicode Insertion Character SE
IS Identical Suppress SE
LC Leading Characters SE
LCU Unicode Leading Characters SE
LS Line Size
MC Multiple-Value Field Count
MP Maximum Number of Pages of a Report
NL Numeric Length for Output SE
PC Periodic Group Count S
PM Print Mode SE
PS Page Size S
SF Spacing Factor SE
SG Sign Position SE
TC Trailing Characters SE
TCU Unicode Trailing Characters SE
uc Underlining Character SE
ZP Zero Printing SE

The individual parameters are described in the Parameter Reference (session parameters).

See also the following topics in the Programming Guide:

= Centering of Column Headers - HC Parameter

® Width of Column Headers - HW Parameter

® Filler Characters for Headers - Parameters FC and GC

® Underlining Character for Titles and Headers - UC Parameter

Statements

447

DISPLAY

Example of Parameter Usage at Statement and Element (Field) Level

DEFINE DATA LOCAL

1 VARI (A4) INIT <'1234'> /% Output

END-DEFINE /% Produced

* /* _________
DISPLAY NOHDR '"Text' ‘=" VARI /% Text 1234
DISPLAY NOHDR (PM=I) "Text' =" VARI /% Text 4321
DISPLAY NOHDR '"Text' (PM=I) '=' VARI (PM=I)/* txeT 4321
DISPLAY NOHDR "Text' (PM=I) '=' VARI s txeT 1234

END

Output Format Definitions

nX
nT
xly "text'
[(attributes)]
T*field-name "c'(n)
P*field-name
"text' [(attributes)] [CAPTIONED]
VERTICALLY { } [/..]
[CAPTIONED]
[HORIZONTALLY]

Field Positioning Notations

Syntax Element

Description

nx

Column Spacing;:
This notation inserts 1 spaces between columns.n must not be zero.

Example:

DISPLAY NAME 5X SALARY
See also:

® Example 1 - DISPLAY Statement Using nX and nT Notation (below)

" Column Spacing - SF Parameter and nX Notation (in the Programming Guide)

nT

Tab Setting:

The nT notation causes positioning (tabulation) to display position 1. Backward

positioning is not permitted.

448

Statements

DISPLAY

Syntax Element

Description

In the following example, NAME is displayed beginning in position 25, and SALARY
beginning in position 50:

DISPLAY 25T NAME 50T SALARY
See also:

® Example 1 - DISPLAY Statement Using nX and nT Notation (below)
= Tab Setting - nT Notation (in the Programming Guide)

Xy

x/y Positioning:

The X/ y notation causes the next element to be placed x lines below the output of the
last statement, beginning in column y. y must not be zero. Backward positioning is not
permitted.

T*field-name

Field Related Positioning:

The T* notation is used to position to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

P*field-name

Field and Line Related Positioning;:

The P* notation is used to position to a specific print position and line of a field used in
aprevious DISPLAY statement. It is most often used in conjunction with vertical display
mode. Backward positioning is not permitted.

See also:

® Example 3 - DISPLAY Statement Using P* Notation (below)
® ‘Iab Notation P*field (in the Programming Guide)

Override Column Heading Assignment

Syntax Element|Description

"text' Text Assignment:
A If placed immediately before a field, the text enclosed by single quotes overrides the column
heading.

The slash character '/ ' before a field causes the header for the field to be suppressed.

Statements

449

DISPLAY

Syntax Element | Description

DISPLAY "EMPLOYEE' NAME "MARITAL/STATUS' MAR-STAT

If multiple ' text' elements are specified before a field name, the last ' text' element will
be used as the column header and the other text elements will be placed before the value of
the field within the column.

See also:

® Define Your Own Column Headers (in the Programming Guide)
= ‘Text Notation, Defining a Text to Be Used with a Statement (in the Programming Guide)
® Example 4 - DISPLAY Statement Using 'text’, 'c(n)’ and Attribute Notation (below)

"c¢'(n) Character Repetition:

The character enclosed by single quotes is displayed n times immediately before the field
value. For example:

DISPLAY '*' (5) '=" NAME

results in

*kkxkxx SMITH
See also:

= ‘Text Notation, Defining a Character to Be Displayed n Times before a Field Value (in the
Programming Guide)

® Example 4 - DISPLAY Statement Using 'text’, 'c(n)’ and Attribute Notation (below)

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

AD=ad-value..
BX=bx-value...
CD=cd-value

PM=pm-value..

ad-value
cd-value

Where:

ad-value, bx-value, cd-value and pm-value denote the possible values of the corresponding
session parameters AD, BX, CD and PM described in the relevant sections of the Parameter Reference
documentation.

450 Statements

DISPLAY

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-value without preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IRE will be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-vaiue
or ad-value with a value preceded by CD= or AD=.

Vertical/Horizontal Display

The VERT clause may be used to cause multiple field values to be positioned underneath one an-
other in the same column. In vertical mode, a new column may be initiated by specifying the
keyword VERT or HORIZ.

The column heading in vertical mode is controlled using the entry or entries specified with the AS
clause as described below.

Syntax Element Description

VERTICALLY DISPLAY VERT without AS Clause:
Vertical column orientation. No column heading is produced if the AS clause is
omitted.

DISPLAY VERT NAME SALARY

For an example, see DISPLAY VERT without AS Clause in the Programming Guide.

AS "text' DISPLAY VERT AS 'text' Clause:
Vertical column orientation. If AS ' text' is specified, the text enclosed by single
quotes is used as the column heading.

For an example, see DISPLAY VERT AS "text’in the Programming Guide.

The slash character / in the character string of ' text' will cause multiple lines of
column headings.

DISPLAY VERT AS 'LAST/NAME' NAME

Statements 451

DISPLAY

Syntax Element Description
AS "text' DISPLAY VERT AS 'text' CAPTIONED Clause:
CAPTIONED Vertical column orientation. If AS " text" CAPTIONED is specified, ' text' isused

as the column heading and the standard heading text or field name is inserted
immediately before the field value in each detail display line.

DISPLAY VERT AS 'PERSONS/SELECTED' CAPTIONED NAME FIRST-NAME

For an example, see DISPLAY VERT AS "text’ CAPTIONED in the Programming
Guide.

AS CAPTIONED DISPLAY VERT AS CAPTIONED Clause:

Vertical column orientation. If AS CAPTIONED is specified, the standard heading
text for the field (either heading text or the field name) will be used as the column
heading.

DISPLAY VERT AS CAPTIONED NAME FIRST-NAME

HORIZONTALLY DISPLAY HORIZ Clause:
Horizontal column orientation. This is the default display mode.

Vertical and horizontal column orientation may be intermixed by using the respective keyword.

To suspend vertical display for a single output element, you may place a dash (-) in front of the
element. For example:

DISPLAY VERT NAME - FIRST-NAME SALARY

In the above example, FIRST-NAME will be output horizontally next to NAME, while SALARY will be
output vertically again, i.e. below NAME.

The standard display mode is horizontal. A column is constructed for each field to be displayed.
Column headings are obtained and used by Natural according to the following priority:

1. heading ' text' supplied in the DISPLAY statement;
2. the default heading defined in the DDM (database fields), or the name of a user-defined variable;
3. the field name as defined in the DDM (if no heading text was defined for the database field).

For group names, a group heading is produced for the entire group. When specifying a group,
only the heading for the entire group may be overridden by a user-specified heading.

The maximum number of column header lines is 15.

Line size overflow is not permitted for output resulting from a DISPLAY statement. If a line overflow
occurs, an error message is issued.

For more information about vertical/horizontal display usage, see:

452 Statements

DISPLAY

® Example 5 - DISPLAY Statement Using Horizontal Display
® Example 6 - DISPLAY Statement Using Vertical and Horizontal Display
® DISPLAY VERT AS CAPTIONED and HORIZ (in the Programming Guide)

Output Element

{ "text' [(attributes)] }
"c'(n) [(attributes)]
nx ['="]1{operandl [(parameters)]}
nT

x/y

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted
operandl S |A |G |N |A|N|P|T[F[B|D|T|L|[G|O] yes no

Syntax Element Description

Syntax Element |Description

nX Column Spacing;

This is the same as under Output Format Definitions (see above).

nT Tab Setting:

This is the same as under Output Format Definitions (see above).

x/y x/y Positioning:

This is the same as under Output Format Definitions (see above).

"text' Text Assignment:

This is the same as under Output Format Definitions (see above).

"c¢'(n) Character Repetition:

This is the same as under Output Format Definitions (see above).

Statements 453

DISPLAY

Syntax Element |Description

"text"' '=' |If "text' '='isplaced immediately before the field, text is output immediately before
the field value. This applies analogously with "¢ (n) '=".

A C ' (”) A — '
DISPLAY ‘"x**x*' '=' NAME

attributes |Output Attributes:
This is the same as under Output Attributes (see above).

operandl The field to be displayed.

parameters |Parameter Definition at Element (Field) Level:

One or more parameters, enclosed within parentheses, may be specified at element (field)
level, that is, immediately after operandl. Each parameter specified in this manner will
override the corresponding parameter previously specified at statement level or in a
GLOBALS command, SET GLOBALS (in Reporting Mode only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be placed between each
entry. An entry must not be split between two statement lines.

See also:

B List of Parameters

® Example of Parameter Usage at Statement and Element (Field) Level

Defaults Applicable for a DISPLAY Statement

The following defaults are applicable for a DISPLAY statement:

* Report Width
The width of the report defaults to the value set when Natural is installed. This default value
isnormally 132 in batch mode or the line length of the terminal in TP mode. It may be overridden
with the session parameter LS. In TP mode, line size (LS) and page size (PS) parameters are set
by Natural based on the physical characteristics of the terminal type in use.

® Terminal Screen Output
When the DISPLAY output is displayed on a terminal (emulation) screen, the output begins in
physical Column 2 (because Column 1 must be reserved for possible use as an attribute position
on a 3270-type terminal).

® Printout on Paper
When the DISPLAY outputis printed on paper, the printout begins in the leftmost column (Column

1).

454

Statements

DISPLAY

® Spacing Factor
The default spacing factor between elements is one position. There is a minimum of one space
between columns (reserved for terminal attributes). This default may be overridden with the
session parameter SF.

* Field Output
The length of the field or the field heading, whichever is greater, determines the column width
for the report (unless the HW parameter is used).

= If the field is longer than the heading, the heading will be centered over the column unless
the HC=L or HC=R parameter is used to produce a left-justified or right-justified heading.

® If the heading is longer than the field, the field will be left-justified under the heading.

® The values contained in the field are left-justified for alphanumeric fields and right-justified
for numeric fields.

® Numeric fields may be displayed left-justified by specifying AD=L.
® Alphanumeric fields may be displayed right-justified by specifying AD=R.

* Ina vertical display, the longest data value or heading among all fields determines the column
width (unless the HW parameter is used).

" Sign
One extra high-order print position is reserved for a sign when printing a numeric field. The
session parameter SG may be used to suppress the sign position.

® Page Overflow
Page overflow is checked before execution of a DISPLAY statement. No new page title or trailer
information is generated during the execution of a DISPLAY statement.

DISPLAY Examples

Example 1 - DISPLAY Statement Using nX and nT Notation

Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause
Example 3 - DISPLAY Statement Using P* Notation

Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation
Example 5 - DISPLAY Statement Using Horizontal Display

Example 6 - DISPLAY Statement Using Vertical and Horizontal Display

= Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level

Statements 455

DISPLAY

= Example 8 - Report Specification with Output File Defined to Natural as PC

Example 1 - DISPLAY Statement Using nX and nT Notation

** Example 'DISEX1': DISPLAY (with nX, nT notation)
R R R R R R b e e R R R b b e e e e e R R b b e e e e e R R e e e e e e R R e e e e S i b e e e e e
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE 5X NAME 50T JOB-TITLE
END-READ

*

END

Output of Program DISEX1:

NAME CURRENT
POSITION
ABELLAN MAQUINISTA
ACHIESON DATA BASE ADMINISTRATOR
ADAM CHEF DE SERVICE
ADKINSON PROGRAMMER

Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause

** Example 'DISEX2': DISPLAY (with GIVE SYSTEM FUNCTIONS)
RRA R R B b R R e I b b R e b b e e b b e b b e e b b b e e b b S e b b R e I b b R e b b S e e b e R e b b b e b b S
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-1ID
2 NAME
2 FIRST-NAME
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
LIMIT 15
FORMAT PS=15
*
READ EMPLOY-VIEW
DISPLAY GIVE SYSTEM FUNCTIONS
PERSONNEL-ID NAME FIRST-NAME SALARY (1) CURR-CODE (1)
AT END OF PAGE

456

Statements

DISPLAY

WRITE

END-READ

*

END

Output of Program DISEX2:

Page

PERSONNEL
ID

50005500
50005300
50004900
50004600
50004200
50004100
50003800
50006900
50007600

SALARY STA
MAX
MIN
AVE

/ "SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY (1))
/ 7X "MINIMUM:" MINCSALARY (1))
/ 7X "AVERAGE:' AVER(SALARY (1)) CURR-CODE (1)
END-ENDPAGE

BLOND
MAIZIERE
CAOUDAL
VERDIE
VAUZELLE
CHAPUIS
JOUSSELIN
BATLLET
MARX

TISTICS:
IMUM:
IMUM:
RAGE :

365700 FRA
159790 FRA
192414 FRA

FIRST-NAME

ALEXANDRE
ELISABETH
ALBERT
BERNARD
BERNARD
ROBERT
DANTEL
PATRICK
JEAN-MARTE

Example 3 - DISPLAY Statement Using P* Notation

** Example 'DISEX3': DISPLAY (with P* notation)

CURR-CODE (1)
CURR-CODE (1)

05-01-12

ANNUAL
SALARY

172000
166900
167350
170100
159790
169900
171990
188000
365700

CURRENCY
CODE

FRA
FRA
FRA
FRA
FRA
FRA
FRA
FRA
FRA

09:47:48

R R R e b e b e b b e R e b b e b e b e e I e b e e S e e e b e b (e e b e b e b e e b e b e b S b e b e b e b i e b o 4

DEFINE DAT

1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME

2 SALARY

2 BIRTH

2 CITY
END-DEFINE

*

LIMIT 2

READ EMPL-VIEW BY CITY FROM "N’
DISPLAY NOTITLE NAME CITY

SKIP 1

A LOCAL

(1)

VERT AS 'BIRTH/SALARY' BIRTH (EM=YYYY-MM-DD) SALARY (1)

AT BREAK OF CITY
DISPLAY P*SALARY (1) AVER(SALARY (1))

Statements

457

DISPLAY

SKIP 1
END-BREAK
END-READ
END

Output of Program DISEX3:

NAME CITY
WILCOX NASHVILLE
MORRISON NASHVILLE

BIRTH
SALARY

1970-01-01
38000

1949-07-10
36000

37000

Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation

** Example 'DISEX4': DISPLAY (with 'c(n)' notation and attribute)

R R R o R R b R R b b e b e e b R R R i b b e b b R e i b i R i b b R e i i b S b R R e i b b e S b b

DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 DEPT