S software*

A SOFTWARE GMBH BRAND

NaturalONE

Code Generation

Version 9.3.2

February 2025

ADABAS & NATURAL

This document applies to NaturalONE Version 9.3.2 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 2009-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NBS-N1CODEGENERATION-932-20250213

Table of Contents

PTOACE ..t v
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3

I Release INOLESccoiiuiiiiiiiiiiiiii s 5
2 What's New in Version 9.3.2ccccociiiiiiiiiiiiiiiiiiiiicicccc e 7
Enhancementsccoouiiiiiiiiiiiiic 8

IT Using the Code Generation Componentc.ccooveiiiiiiiiiiiiiccccec e 9
B INtrodUCtiON ...ovviiiiiiiicc 11
Access the Code Generatorsccceoviiiiiiiiiiiiiiiiii 12

4 Create a REQUEST-DOCUMENT CHENtccoovvviiiiieeeeiiieeeeieeeeeeeeeeeeiee e 15
INtroductioncviiiiiiiiiiiiii 16

Generate the REQUEST-DOCUMENT Subprogramcccccceeviiiiiininnnnn. 16

User Exits for the REQUEST-DOCUMENT Subprogramcccccecuvenennn. 21

Define XML Substitution Characterscccccovviiiiiiiiiiiiiiiis 22

5 Create an Object-Maintenance Processccociiviiiiiiiiiiiiiniiiiiiiiicciceccee, 27
Generate the Object Maint Subprogramcccccoviiiiiiiiiiiii 28

User Exits for the Object Maint Subprogramccccceeveviiiiiiiiiincnieenen. 34

6 Create an Object-Browse Processc.cccoceeviiiiiiiiiiiiiniiicccc, 37
INtroductioncoooiiiiiiii 38

Generate the Object-Browse Subprogramccccceviiiiiiiiiiniiiiininn, 38

User Exits for the Object-Browse Subprogramccccooiiiiiiiiiiinn. 42

7 Create an Object Skeleton Subprogramcccccoeiiiiiiiiiiiiiiiiiiiicee 45
Generate the Object Skeleton Subprogramc.cccoviiiiiiiiiiiiiiii, 46

User Exits for the Object Skeleton Subprogramccocceeeiiiiiiiiiiniiiieennn. 51

8 Regenerate Subprograms and Associated Modulesccccocivviiiiiiinnnn. 53
Regenerate a Subprogram and Associated Modulesc..cccoccoiin. 54
Regenerate Multiple SUbprogramscccceiviiiiiiiiiiiiiiiiiie 55
Compare DIfferencesccoovviiiiiiiiiiiiiccccc 57

9 Set Preferencescccocuiiiiiiiiiiiiiiciccc 59

Set Code Generation Preferencesccccoccviiiiiiiiiiiiiiiiiiiiiiiicccc 60

Set Log@ing Preferencesccooouiiiiiiiiiiiiiiiiieeee e 61

Set Natural Preferencesccccoovuiiiiiiiiiiiiiiii 62

10 Customize the Code Generatorscccceeviiiiiiiiiiiiiiiii 67
Export the Supplied Templatescccceeviiiiiiiiiiiiiiiiiiiiiiccee 68
Customize a Supplied Templateccoooviiiiiiiiii 70

III Using Natural CONSIITUCEcoouiiiiiiiiiiiiiiiiiii e 73
11 INEPOAUCHION ..ttt e 75
Supplied Client Generation Wizardsc.coccoooiiiiiiiiiiiiiin 76
Requirementscoooviiiiiiiiiiiii 78

Perform Standard Actions on Natural Construct Resourcesc.cc.o.... 79

Use the Dependencies VIEWccccovviiiiiiiiiiiiiiiiiiiicicccicecccee e, 85

Code Generation

12 Natural Construct Generationcccccevviiiiiiiiiiiiiiiiii s 89
Access the Client Generation Wizardsc.ccocooiiiiiiiiiiiii, 90
Generate the Modules ..o 91
Common Wizard Specifications and Development Tasksccccoevenene 95
Example of Generating a Programcccccceeiiiiiiiiiniiiniiiiiiieciicccee 205
Regenerate Natural Construct-Generated Modulesccccoccooviiiiiin. 208

13 Natural Construct Administrationcccceviiiiiiiiiiiiiiii, 211
Create a New Client Generation Wizardccccocciviiiiiiiiiiiinin, 212
Download Natural Construct Resources to a Local Projectc...c........... 249
Modify an Existing Natural Construct Resourcec.ccccccooiiiiiiiiinninnn. 251
Create and Maintain a Natural Construct Modelc.coccooviiiiniin, 251
Create and Maintain a Code Frameccccocoviiiiiiiiiiiiiii, 255
Create and Maintain a Natural Construct Model Ulc.ccoccoviiiiinin. 262

14 Set Natural Construct Preferencescccccoceviiiiiiiiiiiiiiiiiiiiiicc, 275
Set Construct Preferencescoccooviviiiiiiiiiiiiiiicc 276
Set Installation Preferencesccccociiiiiiiiiiiiiiiii 278

... 281

15 Defining User EXitsc.ccooviiiiiiiiiiicccccec 283
INtroduction ..o 284
Define a User EXitcoccueiiiiiiiiiiiiiiiiiiciiccccceecee e 284

16 Using the Construct Runtime/Compile Time Modules in Non-Construct Server

ENVIFONIMENtSooiiiiiiiiiiiiii 297
Add the Construct Runtime Project ..., 298
Update the Construct Runtime Project to the Latest Version 299
Replace the Construct Runtime Project with the Latest Version 300
Exclude Modules from the Update or Replace Processcccccecuereuiennnne 300
Add Customized Modules to the Construct Runtime Project 301
Build the Construct Runtime Project in a non-Construct Server
ENvIronment ...t 302

17 Generating an Ajax Page for Generated Subprogramsc.ccccoccoeviiinnnnn. 305
Generate an Ajax Page for an Object-Browse Subprogramccccccceeeee. 306
Generate an Ajax Page for an Object-Maint Subprogramc.cccoeeni. 314
Generate an Ajax Main Program from an Adapter Fileccccccoeiiiis 322
Test the Generated Main Programcccccoeiiiiiiiiiiiiiiiiiiiiiiie 326
Regenerate the Main Programcccoocooiiiiiiiiii 328

Code Generation

Preface

Code Generation describes how to use the code generation components of NaturalONE to generate

Natural modules in Eclipse.

This documentation is intended for developers who are familiar with NaturalONE and want to
use the code generation components to create Natural subprograms and their corresponding data

areas locally.

Code Generation covers the following topics:

Release Notes

Contains information about this release of the Code Generation and
Natural Construct components for Natural ONE.

Using the Code Generation
Component

Describes how to use the Code Generation wizards to generate and
regenerate Natural subprograms and their associated modules.

Using Natural Construct

Describes how to use the Natural Construct client generation wizards
to generate and regenerate Natural Construct subprograms and their
associated modules. It also describes how to maintain Natural Construct
(for example, to define a new model, model user interface or code frame).

Note: You must have Natural Construct installed in a server environment

to use this component.

Defining User Exits

Describes the user exits generated by the code generation and Natural
Construct wizards, and how to define them.

Using the Construct
Runtime/Compile Time Modules
in Non-Construct Server
Environments

Describes the Construct runtime project for the client, which contains
all the required modules to eliminate compile and parsing errors caused
by missing Natural Construct resources.

Generating an Ajax Page for
Generated Subprograms

Describes how to generate an Ajax page for a subprogram generated by
either the Object-Browse-Subp or Object-Maint-Subp wizards.

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Code Generation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software GmbH products provide functionality with respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

Code Generation 3

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Release Notes

These Release Notes pertain to the Code Generation and Natural Construct components of
NaturalONE version 9.3. The following topics are covered:

What's New in Version 9.3.2

2 What's New in Version 9.3.2

B B N AN CIMBNES ...ttt e e e e

What's New in Version 9.3.2

This section describes the new features for the Code Generation and Natural Construct components
in version 9.3.2.

Enhancements

This section describes the new features for the Code Generation and Natural Construct components.
The following topics are covered:

= Downloading an Existing Library or Object from a Natural Server
Downloading an Existing Library or Object from a Natural Server

When you download resources from the Natural server and a resource already exists locally,
Natural Construct displays a warning. You can now choose to overwrite the command with the
Yes to All option or to skip downloading all the existing resources with the No to All option.

For more information about setting preferences for Natural Construct resources, see Set Construct
Preferences.

8 Code Generation

II Using the Code Generation Component

This part describes the Code Generation component supplied with NaturalONE. The following
topics are covered:

Introduction

Create a REQUEST-DOCUMENT Client

Create an Object-Maintenance Process

Create an Object-Browse Process

Create an Object Skeleton Subprogram
Regenerate Subprograms and Associated Modules
Set Preferences

Customize the Code Generators

10

3 Introduction

= Access the Code Generators

11

Introduction

This section describes the Code Generation component supplied with NaturalONE and how to
access the code generators. The Code Generation component provides wizards that generate the
following modules:

Modules Code Generator Description

REQUEST-DOCUMENT subprogram [REQUEST-DOCUMENT |Uses REQUEST DOCUMENT and PARSE

and corresponding parameter data |Client XML statements to call an external Web

areas service and interpret the response.

Object-maintenance subprogram and |Object Maint Updates all entities within a Natural

corresponding parameter data areas object.

Object-browse subprogram and Object Browse Provides the browse functionality for a

corresponding parameter data areas Natural object.

Object skeleton subprogram Object Skeleton Provides a starting point to create an
object subprogram.

The generated subprograms include a full range of user exits. For information about adding custom
code within user exits, see Defining User Exits.

] Notes:

1. Toinstall the code generators for NaturalONE, Designer > NaturalONE > Service Development
must be selected in the installation tree for the installer. NaturalONE > Service Development
is selected by default when you select Designer in the installation tree.

2. Although the modules are not generated by Natural Construct, the source code lines in the
editor are protected.

Access the Code Generators

| Note: The code generators must be initiated from an existing NaturalONE project in the

NaturalONE perspective.

~ To access the code generators

1 Open the context menu in the Project Explorer view for the NaturalONE project into which
you want to generate the modules.

Or:

Open the context menu in the Project Explorer view for the library into which you want to
generate the modules.

2 Select Code Generation.

12 Code Generation

Introduction

The code generators are displayed.

For information on using the client generation wizards for Natural Construct to generate
modules locally, see Using Natural Construct.

Code Generation 13

14

4 Create a REQUEST-DOCUMENT Client

B ntroductionooeeveiiiee

= Generate the REQUEST-DOCUMENT SUDPrOGramc.uveiiiieiiiieiiiieiiie e
= User Exits for the REQUEST-DOCUMENT SUDPIOGramovieiiiiiieeiiiiiee et

= Define XML Substitution Characters

15

Create a REQUEST-DOCUMENT Client

Introduction

The REQUEST-DOCUMENT Client code generator allows Natural to access Web services by
generating a REQUEST-DOCUMENT subprogram based on a Web service WSDL and XSD. In
addition, the generator creates a subprogram for each operation (method) in the WSDL and
parameter data areas (PDAs) containing parameters that represent the request and response portions
of the Web service operation.

The generated REQUEST-DOCUMENT subprogram uses Natural REQUEST DOCUMENT and
PARSE XML statements to call the Web service and interpret the response. The subprogram then
maps the input parameters to an XML file, which is sent to the Web service via a REQUEST
DOCUMENT statement. The response is verified and parsed in the REQUEST-DOCUMENT
subprogram and the data is placed into the appropriate output parameters of the PDA. In addition,
the generated error PDA informs users of any errors.

A wizard also performs a pre-analysis of the WSDL. If an associated operation requires more than
three dimensions, the operation will be disabled on the selection panel because Natural can only
handle up to three dimensions. The pre-analysis wizard also checks for cyclic types (a type that
is defined in the WSDL and then referenced by another type in the same WSDL). If a cyclic type
is found, all operations that reference it will also be disabled.

You can use a REQUEST-DOCUMENT subprogram to perform various functions, such as retrieve
the current exchange rate for orders, verify that a postal code and address match, or retrieve in-
ventory information from another application (within or outside the company). The generated
subprogram supports Unicode characters, binary arrays and complex structures (arrays of ANY,
detailed arrays, etc.).

Note: To use this feature, the Natural nucleus/profile must be set up to correctly handle

XML. For information, see Activate REQUEST DOCUMENT Statement and Activate PARSE
XML Statement in the Natural documentation.

Generate the REQUEST-DOCUMENT Subprogram

~ To generate a REQUEST-DOCUMENT subprogram and data areas

1 Open the context menu in the Project Explorer view for the NaturalONE project into which
you want to generate the modules.

Or:

Open the context menu in the Project Explorer view for the library into which you want to
generate the modules.

16 Code Generation

Create a REQUEST-DOCUMENT Client

2

Select Code Generation > New Request Document Client.

The Define Request Document Client Details panel is displayed. For example:

7= New Request Document Client

Define Request Document Client Details

Enter the target and source infarmation.

Matural karget
Froject: “ewProject
Folder:

Library:

Matural module prefix:

[]overwrite if exists

Source

WSOL location:
Refresh

@

C:iInetpublwwwrootiwsdlsi ALLTYPZ wsdl

- O]

N,
o)

Browse. ..

Browse. ..

Browse. ..

Browse, .,

ek =] I Firish] [Zancel

Using this panel, you can:

Task

Procedure

Select another NaturalONE project in
which to generate the
REQUEST-DOCUMENT client
modules.

Type the name of the project in Project or select Browse to
display a window listing the existing projects for selection. The
project must currently exist.

Select a folder in which to generate
the REQUEST-DOCUMENT client
modules.

Type the name of the folder in Folder or select Browse to display
a window listing the existing folders for selection. The folder
must currently exist within the selected Natural ONE project.

Note: This option allows you to generate modules into more

complex library structures (for example, "Natural-Libraries/my
Iibrary (MYLIB)/SRC"). When this option is not specified, the
modules will be generated into the basic library folder (for
example, "Natural-Libraries/MYLIB/SRC",
"Natural-Libraries/MYLIB/Subprograms", etc.).

Assign a prefix to the generated
Natural module names.

Type the prefix in Natural module prefix.

Several Natural modules are created during generation, such as
PDAs, subprogram(s), and LDA(s). This prefix will be used as

Code Generation

17

Create a REQUEST-DOCUMENT Client

Task Procedure

the first character in the module names to help identify them as
belonging to this REQUEST-DOCUMENT client.

Replace an existing subprogram with |Select Overwrite if exists.
the same name in the same library

with the one you are creating.

Type the location of the Natural library in which to generate the subprogram and associated
modules in Library.

The library must currently exist.
Or:
Select Browse to display a window listing the existing libraries for selection.

Note: The libraries listed for selection are based on the current project.

Type a valid WSDL path (HTTP location) in WSDL location.
Or:
Select Browse to display a window listing WSDL locations for selection.

The code generator will scan the selected WSDL file for each Web service operation and
generate a separate subprogram for each one.

Notes:

1. WSDLs that use SOAP RPC encoding (http://schemas.xmlsoap.org/soap/encoding) are not
supported. SOAP RPC encoding does not conform to the Web Service Interoperability
standards (WS-I). For more information, refer to http://www.ws-i.org/Profiles/BasicProfile-1.0-
2004-04-16.html#refinement16448072.

2. By default, Refresh is selected and the code generator will retrieve the operations defined
for the Web service. If you do not want the operations retrieved, deselect Refresh.

Select Finish to generate the REQUEST-DOCUMENT client with all default operations.
Or:
Select Next to select which operations to generate.

The wizard reads the specified WSDL, determines which operations it contains, and displays
the Select Web Services Operations panel, showing the operations defined for the Web service.
Each operation is represented by a line in a table. For this example, "C:\ Inetpub\ www-
root\wsdls\ ALLTYP2.wsdl" was used as the WSDL location:

18

Code Generation

Create a REQUEST-DOCUMENT Client

72 New Request Document Client

Select Web Service Dperations

Define the operations to generate and choose parameter opkions,

Decide which WaDL operations to generate:

Generake Operation Binding

| ALLTYPZ Soap

Subpraogran Erraris)
ALLTYPZZ2

[Select Al l l Deselect Al

[Juse Unicade instead of Alpha Fields For data areas

[Juse alternate Matural Format For web service decimal{double Fields I:I

@ o

] [Cancel

l

The Select Web Service Operations panel displays the following details for each operation:

® Whether a subprogram will be generated (yes)

® Which operation will be generated (ALLTYP2)

® Which binding will be used (SOAP)

® What the generated subprogram will be named (ALLTYP21)

Using this panel, you can:

Task

Procedure

Suppress the generation of one
or more operations.

Deselect the operation(s) in Generate and a REQUEST-DOCUMENT
subprogram will not be generated for that operation. A subprogram
will only be generated for each operation that is selected in Generate.

Note: A minimum of one operation must be selected.

Change the type of binding
used.

Select another type of binding in Binding.

Note: The wizard defaults to the binding that is appropriate for the

specified WSDL. We recommend that you do not change the default
binding.

Change the name of the
subprogram to be generated.

Type the new name in Subprogram.

Code Generation

19

Create a REQUEST-DOCUMENT Client

Task

Procedure

Select all operations.

Select Select All. This option allows you to quickly select all
operations.

Deselect all operations.

Select Deselect All. This option allows you to quickly deselect all
operations.

Note: A minimum of one operation must be selected.

Use Unicode format instead of
alphanumeric format for
variables in the data areas.

Select Use Unicode instead of Alpha fields for data areas. Select this
option if the Web service passes Unicode data. With Natural, this is
determined by whether the Natural server is configured to use
Unicode variables. If the Natural server is not configured to use

Unicode, do not select this option and the generator will generate a
REQUEST-DOCUMENT client that contains no Unicode variables.

Note: This option defaults to the value defined for the Generate

Unicode Dynamics option in the Preferences window for Natural.
For information, see Set Natural Preferences.

Generate data areas using an
alternate Natural format for
decimal or double Web service
fields.

Select Use alternate Natural format for Web service decimal/double
fields. Select this option if you want to generate data areas using an
alternate Natural format for Web service fields of type decimal or
double and then type the new format in the input field.

Note: If this option is not selected, the default Natural format will
be used (F8).

| Note: If desired, a Generation Progress window can be displayed during generation.

For information, see Set Code Generation Preferences.

6 Select Finish.

The subprogram is generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view (see User Exits for the REQUEST-
DOCUMENT Subprogram) and the generated modules are displayed in the Project Explorer.

For example:

5 BAB v ~

£ Lé ConstruckRunkime- =natural-runtime (63
= Lé MNewProject-=ibmz.eur.ad.sag-7323 (1) *
+)-[= .settings
= (& Matural-Libraries *
=& DEMOTEST *
- &
§__§ ALLTYPZ.MAN ™%
{8 ALLTYP21 NG ~%
ZE ALLTYPENSA ~%
ZE ALLTYPALNSA Ao
W= natural
W=l .project

20

Code Generation

Create a REQUEST-DOCUMENT Client

The generated subprogram is displayed in the editor view. For example:

f ALLTYP2LNEN 32 S
® % »Natural Source Header 0000000)

FEILG
o EFILG
FEILG
FEILG
FEILG
FEILG
FEILG

*
*
*
*
*
*
*
*
*
*
*

FEILG
FEILG

GENERATOR: REQUEIT-DOCUMENT VERITION: 5.3.3
METHOD: ALLTYFPZ

Generate Tnicode Dynamics:

W3DL: C:% Inetpub’ wwwrooth wsdlsh ALLTYPZ . wsdl

CUSTOM DECIMAL FORMAT: NS

DE3C3(1): Zubmits a Reguest and Parses the ML bhased on a given W3DL for
DEZC3(2): the method

o o o o o o o o o o o ol o o o ol o o o ol o o o o o o o
Program : ALLTYPZ1

System : DEMOTEST

Title : Reguest Document based on a W3DL

Generated: Mon Nowv 18 12:359:41 EST 2013

Function : Submits a Regquest and Parses the XML based on a given

W3DL for the method

S0LP Aotion:
ALLTYFZ

History

DEFINE EXIT CHANGE-HIZTORY
END-EXIT

R e R R R R R R R R R e
=~ DEFINE DATA
PARAMETEER USING ALLTYPA1
= PARAMETEER w

7 Save the generated module.

At this point, you can:

® Define user exits for the subprogram. For information, see Defining User Exits.

® Use the NaturalONE Testing option to test the subprogram. For information, see Test a
Subprogram Directly in Application Testing.

® Use NaturalONE functionality to upload the generated subprogram to the server.

User Exits

for the REQUEST-DOCUMENT Subprogram

The Outline view for the REQUEST-DOCUMENT subprogram displays the available user exits.

For example:

Code Generation 21

Create a REQUEST-DOCUMENT Client

o= Outline 52 x = O
#E3D 5

EMD-DEFIME

+ DEFIME SUBROUTINE IMITIALIZATIONS
EMD-SUBROUTIME

+ DEFIME SUBROUTINE PARSE-XML
EMD-SUBROUTIME
DEFIME SUBROUTINE PROCESS-ALPHA-LMNICODE-FIELD
EMD-SUBROUTIME

+ DEFIME SUBROUTINE PROCESS-DATE-FIELD
EMD-SUBROUTIME
DEFIME SUBROUTINE PROCESS-LOGICAL-FIELD
EMD-SUBROUTIME

+ DEFIME SUBROUTIME PROCESS-TIME-FIELD
EMD-SUBROUTIME

+ DEFIME SUBROUTIMNE REQUEST-DOCUMENT
EMD-SUBROUTIME

+ DEFIME SUBROUTINE SUBSTITUTION
EMD-SUBROUTIME

+ DEFIME SUBROUTINE REYERSE-SLIBSTITUTION
EMD-SUBROUTIME

You can use these exits to define additional processing.

Notes:

1. All user exits are empty when generated.

2. For information about adding custom code within user exits, see Defining User Exits.

Define XML Substitution Characters

The generated REQUEST-DOCUMENT subprogram translates special characters (such as xml
tags) in and out of the data it passes. To determine the substitutions for these characters, the RE-
QUEST-DOCUMENT subprogram uses the CDXMLSU2 subprogram and CDRDOCA2 parameter
data area (PDA) in the SYSTEM library. The REQUEST-DOCUMENT subprogram calls COXMLSU2
to set up the XML substitution characters. Both of these modules are shipped with the Construct
runtime project.

. Note: For information about adding this project, see Add the Construct Runtime Project.

The following example shows CDXMLSU?2 in the editor view:

22 Code Generation

Create a REQUEST-DOCUMENT Client

I covmLsUZ. SN 53 =0
® ¢ »Natural Source Header 0000000 ~
*#*5AG GENERATOR: C3T-3HELL VERSIC: 5.3.1.10

= ®*3AG TITLE: C3T EZML substitution mod

*#*ZLG SYSTEM: CS53RT

#FZLG DESCE (1) : This C3T module is used to substitute EZMNL reserved

*FZLG DE3C3(2): characters found in the xml data

**3AG PROGRAM-TYFE: N

**3LG PARAMETER-NLME (1) : CDRDOCAZ

oo o o o o ol o o ol ol o ol ol O o o el ol ol o O ol o e ol ol i o ol o o ol o

* Program @ CDEML3UE

SysStem : CS53RT

Title 1 C3T EZML substitution mod

Generated: May 17,2011 at 09:59:05 by 3AG

Function : This C3T module is used to substitute ZNL reserwved
characters found in the Xml data

o # % % %

* History
**3AG DEFINE EXIT CHAWNGE-HISTORY
* Changed on Hay 13,2011 by CHND3HE for release
L
*
L
**3LAG END-EXIT
L e e i ol i
DEFINE DATL
**3AG EXIT POINT PARAMETER-DATA
DPARAMETER USING CDRDOCAZ
LOCAL USING C3ASTD
LoCAL USING CSLRCODE /* Message return codes
= LOCAL
01 HPROGRALM [L8)
**3AG DEFINE EXIT LOCAL-DATAE
= LOCAL
01 #DOUBLE-QUOTE (A1)
01 HMAX-REPLACEMENTS (I2) COMNIT <G> /% CUITCHMIZE: adjust tehle size
**3LAG END-EXIT
END-DEFINE
PROG. /% to allow escape from routine.

| <

() Tip: Within the editor, you can quickly find locations that must be changed by searching
for "/* CUSTOMIZE".

To change settings for the XML substitution characters, use the GENERATE-CODE user exit. For
example:

Code Generation 23

Create a REQUEST-DOCUMENT Client

e COMLSUZ MSM 53 = O

*#3hG DEFINE EXTTReAdiayyyEdeie)ilis -
F%% New Subprogram CDEXMLEUE.

EEZIZE ARRAY #REPLACEMENT-TAELE TO (1:#MAX-REFPLACEMENTS)

* Determine double fquotes in based on platform

H#DOUELE-QUOTE := 'L

IF #DOUELE-QUOTE < '0' THEN J* Letters LT nunbers

HDOUBLE-QUOTE := H'7F' /% EECDIC

ELSE

HDOUBLE-QUOTE := H'Z2' /% LASCII

END-IF
*

* zetup =search and replace strings
* note & must be first bhecause of & substitution
A% CUSTOMIZE:

HSEARCH-STRING (1) := '&'
H#REPLACE-STRING (1) := 'gamp:!'
BSEARCH-STRING(Z) := ™'
#REPLACE-STRING (2] := 's&apos:
HSEARCH-STRING(3) := #DOUBLE-QUOTE
#REPLACE-STRING (3] := '":
HSEARCH-STRING () := '<!
#REPLACE-SITRING (4] := '<:
HSEARCH-STRING(5) := '3!
#REPLACE-SITRING (5] := '>:

**3LG END-EXIT
* W

In this example, the LOCAL-DATA user exit defines the Natural format for the f{DOUBLE-QUOTE
and #MAX-REPLACEMENTS values and the size of the #fREPLACEMENT-TABLE array. The
GENERATE-CODE user exit resizes the #fREPLACEMENT-TABLE array and defines the logic and
substitution values for #DOUBLE-QUOTE.

This section covers the following topics:

= Add XML Substitution Characters
= Modify XML Substitution Characters
= Delete XML Substitution Characters

Add XML Substitution Characters

> To add xml substitution characters

1 Select and open CDXMLSU2 in the Construct runtime project.

2 Increase the size of the fMAX-REPLACEMENTS value for the fREPLACEMENT-TABLE array
by "n" in the LOCAL-DATA user exit, where "n" is the number of substitution characters you
are adding.

3 Assign the #$SEARCH-STRING and #REPLACE-STRING values and indexes for each substi-
tution character you are adding.

4 Stow the CDXMLSU2 subprogram in the SYSTEM library.

24 Code Generation

Create a REQUEST-DOCUMENT Client

Modify XML Substitution Characters

~ To modify xml substitution characters

1
2

Select and open CDXMLSU2 in the Construct runtime project.

Change the #SEARCH-STRING and #REPLACE-STRING values and indexes for each substi-
tution character you are modifying.

Stow the CDXMLSU2 subprogram in the SYSTEM library.

Delete XML Substitution Characters

> To delete xml substitution characters

Select and open CDXMLSU2 in the Construct runtime project.

Decrease the size of the fMAX-REPLACEMENTS value for the fREPLACEMENT-TABLE
array by "n" in the LOCAL-DATA user exit, where "n" is the number of substitution characters
you are deleting.

Delete the #SEARCH-STRING and #REPLACE-STRING values and indexes for each substitu-
tion character you are deleting.

Stow the CDXMLSU2 subprogram in the SYSTEM library.

Code Generation 25

26

5 Create an Object-Maintenance Process

= Generate the Object Maint Subprogram

= User Exits for the Object Maint Subprogram

27

Create an Object-Maintenance Process

This section describes the Object Maint code generator, which creates a subprogram that maintains
complex data objects and updates all entities within an object. The generator also creates the local

and parameter data areas.

Generate the Object Maint Subprogram

~ To generate an object-maintenance subprogram and data areas

1 Open the context menu in the Project Explorer view for the NaturalONE project into which

you want to generate the modules.

Or:

Open the context menu in the Project Explorer view for the library into which you want to

generate the modules.

2 Select Code Generation > New Object Maint.

The Define Object Maint Details panel is displayed. For example:

7= New Object Maint

Define Object Maint Details

Enter the specifications for the Object Maint,

Specifications

- B)X]

Froject: | “ewProject

| [Brnwse...]

Folder: |

| [Brnwse...]

Library: |

| [Brnwse...]

Marne: |

Description: | This madule is used Far ..,

Ohiject Maint File

DOn:

| [Brnwse...]

@

Zancel

28

Code Generation

Create an Object-Maintenance Process

3 Type the location of the Natural library in which to generate the subprogram and associated
modules in Library.

The library must currently exist.
Or:
Select Browse to display a window listing the existing libraries for selection.

Note: The libraries listed for selection are based on the current project.

4 Type the name of the object maint subprogram in Name.

5 Select the DDM for the object maint subprogram in DDM.

Tip: The DDMs are typically located in the SYSTEM library.

Using this panel, you can:

Task Procedure

Select another Natural ONE project | Type the name of the project in Project or select Browse to display
in which to generate the object a window listing the existing projects for selection. The project
maint modules. must currently exist.

Select a folder in which to generate | Type the name of the folder in Folder or select Browse to display
the object-maintenance modules. |a window listing the existing folders for selection. The folder must
currently exist within the selected NaturalONE project.

Note: This option allows you to generate modules into more

complex library structures (for example, "Natural-Libraries/my
Iibrary (MYLIB)/SRC"). When this option is not specified, the
modules will be generated into the basic library folder (for example,
"Natural-Libraries/MYLIB/SRC",
"Natural-Libraries/MYLIB/Subprograms", etc.).

Provide a description of the object | Type a brief description in Description.
maint subprogram.

6 Select Finish to generate the object maint subprogram and associated modules with the default
values.

Or:
Select Next to change the default specification values.

The Change Defaults panel is displayed. For example:

Code Generation 29

Create an Object-Maintenance Process

Change Defaults
“hange the defaults if required.

Cibject Maink parameters

72 New Object Maint |Z|@@

N

Obiject description: | Obiject Maintenance

Object name: | mrvoEDM1

Primary key: | CLISTOMER-MUMBER

@ ’ = Back ” Mext = H Finish H

Cancel]

This panel displays the default specification values for the subprogram to be generated. Using

this panel, you can:

Task

Procedure

Change the description of the subprogram to be
generated.

Type the description in Object description.

Change the name of the object.

Type the name in Object name.

Change the primary key field used for maintenance
operations.

Select the field in Primary key.

7 Select Finish to generate the object maint subprogram and associated modules.

Or:

Select Next to change the default parameter values.

The Change Advanced Defaults panel is displayed. For example:

30

Code Generation

Create an Object-Maintenance Process

72 New Object Maint

Change Advanced Defaults

hange the advanced defaulks if reguired.

Advanced Object Maint parameters

Objeck PDA: | MY QBDML

Objeck LDA: | MY OBLML

Restricted PDA: | MYOERM1

Daka locking parameters
Hash locking

Hold Field: |

H Cancel]

This panel displays the default parameter values for the subprogram to be generated. Using

this panel, you can:

Task

Procedure

Change the name of the parameter data area
(PDA) for the object.

Type the name in Object PDA.

Change the name of the local data area
(LDA) for the object.

Type the name in Object LDA.

Note: The local data area is only required when the

hash-locking option is used for record locking.

Change the name of the restricted parameter
data area (PDA) for the object.

Type the name in Restricted PDA.

Use a hold field to lock data for maintenance
operations.

Select the hold field in Hold field. For more information,
see Record-Locking Options.

Note: By default, the hash-locking mechanism is used to

lock data. If you select a hold field, the Hash locking field
is automatically deselected.

] Note: If desired, a Generation Progress window can be displayed during generation.

For information, see Set Code Generation Preferences.

8 Select Finish.

Code Generation

31

Create an Object-Maintenance Process

The subprogram is generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view (see User Exits for the Object Maint
Subprogram) and the generated modules are displayed in the Project Explorer. For example:

SR-SE: e
= bé MewProject- =daef.hg. sag-7307 (1)
= .settings
=& Matural-Libraries
- MYLIB
& erp
& Res
= spe
ZE MYOBDMI MSA ~%
MYCBIM, SN ~%
3 MYOBLMLNSL %
2E mvosPMLNSA ~%

These modules are:

Module Description

MYOBDM1.NSA |Parameter data area for the object maint subprogram
MYOBJM.NSN |Object maint subprogram
MYOBLM1.NSL |Local data area for the object maint subprogram

MYOBPM1.NSA |Restricted parameter data area for the object maint subprogram

The subprogram is displayed in the editor view. For example:

(R MvoBIM.NGN. E2 =0

»Natural Source Header 0000000 il
S ®F3AG GENERATOR: OBJECT-MAINT-MN1 WERSION: 5.3.1
FH5ALG OBJECT-DESC: Obhject Maintenance
*H*IAG OBJECT-MAME: MYOEDM1
®**3AG OBJECT-PDA: MYOBDMI
**3AG BEITRICTED-FPDA: MYOEFPM1
FESAG HASH-LOCEING: X
**ZAG OBJECT-LDA: MYOELM1
#%34G CONFINED KEY FPREFIX: O
#*¥3LG DDM: /WNewProject/Natural-Libraries/3¥3TEMN/SRC/NCIT-C11.M3D
**3AG PRIME-EEY: CUITOMER-NUMEEER
*HEIAG USE-MEG-NR: X
*H5ALG DESCE (1) : This module is used for
e o o o o o o o o o
* Program @ MYOBJM
Zystem : MY¥LIE =
Title : Object Maintenance Subprogratn
Generated: Mon MNowv 30 15:43:27 E3T 2009
Function : This module is used for

0oo

R I

9 Save the subprogram and associated modules.

32 Code Generation

Create an Object-Maintenance Process

At this point, you can:

® Define user exits for the subprogram. For information, see Defining User Exits.

® Use the Natural ONE Testing option to test the subprogram. For information, see Test a
Subprogram Directly in Application Testing.

® Use NaturalONE functionality to upload the generated subprogram to the server.

Record-Locking Options

In a client/server environment, data retrieved for maintenance is not locked initially. Instead, the
object maint subprogram retrieves the data again and locks it prior to updating, storing, or deleting
data from the database.

To ensure changes are not overwritten by another user during this process, the subprogram must
determine whether the data has changed since the initial retrieval. To do this, the object maint
subprogram has two record-locking options:

® Hash-locking

This method is the most reliable. The subprogram retrieves the initial data and hashes it to a
number. When it retrieves the data to lock it, the subprogram hashes it to a number again. Lo-
gical variables are stored in alphanumeric format in the local data area to process the hashed
values. All data must hash to the same value as when it was requested. If it does, data has not
changed and the changes are allowed.

" Timestamp

The timestamp (or counter) method is the traditional record-locking mechanism. This method
assumes that every time data changes, the timestamp also changes. This method is more efficient
than the hash-locking method because the subprogram only has to check one field, but this as-
sumption can be incorrect when the file is not maintained by an Object Maint-generated subpro-
gram (for example, a programmer-coded subprogram may not change the timestamp when
data is modified).

If the file is not normally maintained through an Object Maint-generated subprogram, the hash-
locking option should be used. If the file is only maintained through an Object Maint-generated

subprogram, the timestamp option should be used (as it is more efficient). For more information,
see Natural Construct Object Models.

Code Generation 33

Create an Object-Maintenance Process

User Exits for the Object Maint Subprogram

The Outline view for the object-maintenance subprogram displays the available user exits. For
example:

34 Code Generation

Create an Object-Maintenance Process

EE Qutling &3 w O
+| =g 340G DEFIME EXIT CHAMGE-HISTORY
1 FSAGE END-EXIT
**340 DEFIME EXIT PARAMETER-DATA
#HSAG END-EXIT
**340 DEFIMNE EXIT EXTEMDED-RI-YIEWS
#HSAG END-EXIT
**340 DEFIME EXIT LOCAL-DATA
#HSAG END-EXIT
**3450 DEFIME EXIT START-OF-PROGRAM
#HSAG END-EXIT
**340 DEFIME EXIT USER-DEFIMED-FUMCTIONS
#HSAG END-EXIT
**345 DEFIME EXIT BEFORE-ET
#HSAG END-EXIT
**345 DEFIME EXIT BEFORE-ET-PRIOCESSING
#HSAG END-EXIT
**345 DEFIME EXIT AFTER-ET-PROCESSING
#HSAG END-EXIT
**340 DEFIME EXIT PROCESS-ERROR-MESSAGE
#HSAG END-EXIT
**340 DEFIME EXIT ERROR-MESSAGE-FDAS
#HSAG END-EXIT
**345 DEFIME EXIT EMD-OF-PROGRAM
#HSAG END-EXIT
**345 DEFIME EXIT BEFORE-STORE
#HSAG END-EXIT
**340 DEFIME EXIT AFTER-STORE
#HSAG END-EXIT
**34G DEFIME EXIT AFTER-GET
#HSAG END-EXIT
**340 DEFIME EXIT AFTER-INIT
#HSAG END-EXIT
**340 DEFIME EXIT UPDATE-EDITS
#HSAG END-EXIT
**340 DEFIME EXIT DELETE-EDITS
#HSAG END-EXIT
**345 DEFIME EXIT AFTER-GET-EDITS
#HSAG END-EXIT
**345 DEFIME EXIT EXTEMDED-RI-CHECKS
#HSAG END-EXIT
**340 DEFIME EXIT ADJUST-OBIECT-ID-IN-M3G
#HSAG END-EXIT
**340 DEFIME EXIT AFTER-UPDATE
#HSAG END-EXIT
**345 DEFIME EXIT BEFORE-DELETE
#HSAG END-EXIT
**345 DEFIME EXIT OVERRIDE-MIMIMLURN
#HSAG END-EXIT
**34G DEFIME EXIT OVERRIDE-MARIMIIM
#HSAG END-EXIT
**345 DEFIME EXIT MISCELLAMEDIIS-SUBROUTIMES
#HSAG END-EXIT

You can use these exits to define additional processing.

Notes:

Code Generation 35

Create an Object-Maintenance Process

1. All user exits are empty when generated.

2. For information about adding custom code within user exits, see Defining User Exits.

36 Code Generation

6 Create an Object-Browse Process

= ntroductioncoooiiiiii
= Generate the Object-Browse Subprogram

= User Exits for the Object-Browse Subprogram

37

Create an Object-Browse Process

Introduction

The Object-Browse code generator creates the browse subprogram for an object, as well as three
parameter data areas:

Data Area Description

Object PDA Defines the returned row data.
Object key PDA |Defines the search key values.

Restricted PDA |Contains private data used internally by the browse object to maintain context.

Generate the Object-Browse Subprogram

~ To generate an object-browse subprogram and data areas

1 Open the context menu in the Project Explorer view for the NaturalONE project into which
you want to generate the modules.

Or:

Open the context menu in the Project Explorer view for the library into which you want to
generate the modules.

2 Select Code Generation > New Object Browse.

The Define Object Browse Details panel is displayed. For example:

38 Code Generation

Create an Object-Browse Process

7= New Object Browse |._||'E|fg|
Define Object Browse Details £r
Enter the specifications For the Object Browse,
. -

Specifications

Project: | MewProject | Browse... |
Folder: | | Browse... |
Ubrary: | | Browse... |
Mame: | |

Description: | This module is used For ...

Ohject Browse File

DO | lBerse... l

®

3 Type the location of the Natural library in which to generate the subprogram and associated
modules in Library.

The library must currently exist.
Or:
Select Browse to display a window listing the existing libraries for selection.

| Note: The libraries listed for selection are based on the current project.

4 Type the name of the object-browse subprogram in Name.

5 Select the DDM for the object-browse subprogram in DDM.

¢ Tip: The DDMs are typically located in the SYSTEM library.

Using this panel, you can:

Code Generation 39

Create an Object-Browse Process

Task

Procedure

Select another NaturalONE project
in which to generate the
object-browse modules.

Type the name of the project in Project or select Browse to display
a window listing the existing projects for selection. The project
must currently exist.

Select a folder in which to generate
the object-browse modules.

Type the name of the folder in Folder or select Browse to display
a window listing the existing folders for selection. The folder must
currently exist within the selected Natural ONE project.

Note: This option allows you to generate modules into more

complex library structures (for example, "Natural-Libraries/my
Tibrary (MYLIB)/SRC"). When this option is not specified, the
modules will be generated into the basic library folder (for
example, "Natural-Libraries/MYLIB/SRC",
"Natural-Libraries/MYLIB/Subprograms", etc.).

Change or provide a description of

the object-browse subprogram.

Type a brief description in Description.

Select Next.

The Change Defaults panel is displayed. For example:

— =]
= New Business Service

Change Defaults
Change the defaults if required.

Ohiject Browse component names

ibject description:

Object PDA: MYERD&1
Object key PDA: MYERKAL
Restricted PDA: MYBRPAL

Ohiject Browse Unique ey
Primary key:

- B

o

Cancel

This panel displays the default specification values for the subprogram to be generated. Using

this panel, you can:

40

Code Generation

Create an Object-Browse Process

Task Procedure

Provide a description of the subprogram to be| Type the description in Object description.

generated.

Change the name of the object PDA. Type the name in Object PDA.
Change the name of the object key PDA. Type the name in Object key PDA.
Change the name of the restricted PDA. Type the name in Restricted PDA.

Define the primary key field used for browse |Select the field in Primary key.
operations.
Note: This option is only available when the primary
key is not known (for example, DB2 files). For Adabas
files, the primary key is the ISN.

7 Select Finish.

When generation is complete, the available user exits are displayed in the Outline view (see
User Exits for the Object-Browse Subprogram) and the generated modules are displayed in
the Project Explorer. For example:

‘f{? 1'1-: =

B g MewProject- =daef.hq.sag-7307 (1)
+ = settings
+ [Business-Services
=& Matural-Libraries
=& MYLIB
E Err
& Res
=@ spe
2£ MvoBDALNSA ~%
JEn MYOBIB.NSN ~%
2¥ mvoskaL NSA %
25 MYOBPAT MSE ~%

These modules are:

Module Description

MYOBDA1.NSA |Object PDA

MYOBJB.NSN |Object-browse subprogram
MYOBKA1.NSA |Object key PDA
MYOBPA1.NSA |Restricted PDA

The subprogram is displayed in the editor view. For example:

Code Generation 41

Create an Object-Browse Process

MYOBIBNSM 5
®# »Natural Source Header 0000000
= **53ALG GENERATOR: OBJECT-EROWIE-N1 WERSICHN: 5.3.1

F**IZLG OBJECT-DEZZ: Chject Erowse

**3LG OBJECT-MNAME: MYOEBJE

**ZAG ROW-PDA-IMAME: MYCOEDAL

*FIAG DDM: /NewProject/MNatural-Libraries/3V3ITEN/SRC/HNCST-CUI . NID
FEZLAG UIE-M3IG-NR: X

**E3AG KEV-PDL-MAME: MYVCOBEL]

**3AG RESTRICTED-PDA-IAME: MYCOEPAL

**E3AG DESCE (1) : This module is used for

*HEZAG HISTOGRAMIL1) : X

**EAG PHYSICALAL-KEY(1,1): CUSTOMER-NUMEER

*HEZAG HISTOGRAMIZ) : X

**EAG PHYSICAL-KEY(2,1): BUSINEIS-NLME

*HZAG HISTOGRAMIZ) : X

**EAG PHYSICLL-KEY(3,1): CUSTOMER-WAREHOUSE-ID
*HEZAG HISTOGRAMI4) : X

**EAG PHYSICAL-KEY(4,1): CUSTOMER-TIMESTALMP

ol o o il il il

* Prograem @ MYOBJE

* Zystem : MYLIE

* Title : Ohiject Browse Subprogratm

* Generated: Tue Dec 05 16:24:03 EIT zZ002
* Function : This mwodule is used for

Save the subprogram and associated modules.

At this point, you can:

=0

|l

oo

* Define user exits for the subprogram. For information, see Defining User Exits.

® Use the NaturalONE Testing option to test the subprogram. For information, see Test a

Subprogram Directly in Application Testing.

® Use NaturalONE functionality to upload the generated subprogram to the server.

User Exits for the Object-Browse Subprogram

The Outline view for the object-browse subprogram displays the available user exits. For example:

42

Code Generation

Create an Object-Browse Process

0= outline &2 w - O
+| S **SAG DEFIMNE EXIT CHAMGE-HISTORY
u F*3AG END-EXIT
w1 "*SAG DEFIME EXIT PARAMETER-DATA
u F*3AG END-EXIT
1 "*SAG DEFIME EXIT LOCAL-DATA
u F*3AG END-EXIT
w1 "*SAG DEFIME EXIT START-OF-PROGRAM
u F*3AG END-EXIT
w1 "*SAGE DEFIME EXIT END-OF-PROGRAM
u F*3AG END-EXIT
3 "*SAGE DEFIME EXIT ADDITIOMAL-INITIALIZATIONS
u F*3AG END-EXIT
w1 "*SAGE DEFIME EXIT BEFORE-ROMW-A3STGNMENT
u F*3AG END-EXIT
w1 "*SAG DEFIME EXIT AFTER-ROW-ASSIGMMENT
u F*3AG END-EXIT

You can use these exits to define additional processing.

] Notes:

1. All user exits are empty when generated.

2. For information about adding custom code within user exits, see Defining User Exits.

Code Generation 43

44

7 Create an Object Skeleton Subprogram

= Generate the Object Skeleton Subprogram

= User Exits for the Object Skeleton Subprogram

45

Create an Object Skeleton Subprogram

Generate the Object Skeleton Subprogram

~ To generate an object skeleton subprogram

1 Open the context menu in the Project Explorer view for the NaturalONE project into which
you want to generate the module.

Or:

Open the context menu in the Project Explorer view for the library into which you want to
generate the module.

2 Select Code Generation > New Object Skeleton.

The Define Object Skeleton Details panel is displayed. For example:

7= New Object Skeleton |;|@|Pg|
Define Dbject Skeleton Details Tk
Enter the specifications For the skeleton subprogramm,
. -
Praject: | :\JewPrDject | lBerse... l
Folder: | | lBerse... l
Library: | | lBerse... l
Mame: | |

Description: | This module is used For .

®

3 Type the location of the Natural library in which to generate the subprogram and associated
modules in Library.

The library must currently exist.

Or:

Select Browse to display a window listing the existing libraries for selection.

46 Code Generation

Create an Object Skeleton Subprogram

| Note: The libraries listed for selection are based on the current project.

4 Type the name of the subprogram in Name.

Using this panel, you can:

Task

Procedure

Select another NaturalONE
project in which to generate the
subprogram.

Type the name of the project in Project or select Browse to display
a window listing the existing projects for selection. The project must
currently exist.

Select a folder in which to
generate the subprogram.

Type the name of the folder in Folder or select Browse to display a
window listing the existing folders for selection. The folder must
currently exist within the selected Natural ONE project.

Note: This option allows you to generate modules into more complex

library structures (for example, "Natural-Libraries/my Tibrary
(MYLIB)/SRC"). When this option is not specified, modules will be
generated into the basic library folder (for example,
"Natural-Libraries/MYLIB/SRC",
"Natural-Libraries/MYLIB/Subprograms", etc.).

Change or provide a description
of the subprogram.

Type a brief description in Description.

5 Select Next.

The Enter the Subprogram Parameters panel is displayed. For example:

Code Generation

47

Create an Object Skeleton Subprogram

7= New Object Skeleton
Enter the Subprogram Parameters
Enter the parameters For vour skeleton subprogram,

Subprogran parameters:

01 #INPUTS

02 INPUT-FIELD {A20)

01 #OUTPUTS

02 OUTPUT-FIELD (A20)

01 #INPUTS-QUTPUTS

02 INPUT-OUTPUT-FIELD {A20)
01 #5TATE

02 STATE-FIELD (AZ20)

(2 [< Back][Mext = H Finish H Cancel]

Use this panel to define input/output and state parameters for the subprogram to be generated.

Type the parameters for your subprogram in Subprogram parameters.

Select Finish to generate the subprogram with the DEFAULT method.
Or:
Select Next to define other methods.

The Enter the Subprogram Methods panel is displayed. For example:

48

Code Generation

Create an Object Skeleton Subprogram

7= New Object Skeleton

Enter the Subprogram Parameters

Enter the parameters For vour skeleton subprogram,

Subprogran parameters:

01 #INPUTS

02 INPUT-FIELD {A20)

01 #OUTPUTS

02 OUTPUT-FIELD (A20)

01 #INPUTS-QUTPUTS

02 INPUT-OUTPUT-FIELD {A20)
01 #5TATE

02 STATE-FIELD (AZ20)

2 [< Back][Mext = H Finish H Cancel]

This panel displays the default methods for the subprogram to be generated. Using this panel,

you can:

Task Procedure

Add a method to the subprogram. For information, see Add a Method.

Remove a method from the subprogram. |Select the method in the Method list and select Remove.

8 Select Finish.

When generation is complete, the available user exits are displayed in the Outline view (see
User Exits for the Object Skeleton Subprogram.) and the generated modules are displayed
in the Project Explorer. For example:

2% H& 7
= 9 MewProject- =daef.hg.sag-7307 (1)
(= .settings
(= Business-Services
=@ Matural-Libraries
=& MyLIE
2 Ern
& Res

The subprogram is displayed in the editor view. For example:

Code Generation 49

Create an Object Skeleton Subprogram

ik mrvoBIS. s 52 =0
®# »Natural Source Header 0000000 -
*%#34G GENERATOR: OBJECT-SKELETON-I1 WERSICH: 5.1.2

= ®%3AhG DEZC3(1): This module is used for
**S3AG METHOD-MALME (1): DEFAULT

Sl o o o o o o o o

* Progrsam @ MYORJS

* Bystem : MYLIE

% Title : Object Skeleton Subprogram

* Generated: Mon MNow 08 13:02:53 E3T 2010

* Function : This module is used for

@ —
+*

*

* History
= ®*3AG DEFINE EXIT CHANGE-HIZITORY
*%*34G END-EEIT
o o o o o o o o o o o ol o o o o o ol o ol o ol o ol o o ol o o o o o
“ DEFINE DATAL FPARAMETER
= ®**3ALG DEFINE EXIT PARAMETEERS
=01 #INPUTS
02 INPUT-FIELD (AZ0)
- 01 #OUTPUTS

9 Save the subprogram.
At this point, you can:

* Define user exits for the subprogram. For information, see Defining User Exits.

® Use the NaturalONE Testing option to test the subprogram. For information, see Test a
Subprogram Directly in Application Testing.

® Use NaturalONE functionality to upload the generated subprogram to the server.

Add a Method

~ To add a method to the subprogram

1 Select Add.

The Method details section is displayed. For example:

50 Code Generation

Create an Object Skeleton Subprogram

72 New Object Skeleton

Enter the Subprogram Metho

ds

Method

@

Add

DEFALLT

Method details

- B

Marne: | method1

Descripkion: |

Finish | |

Cancel

)

By default, method1 is displayed in the Method section.

2 Type the name of the new method in Name.

3 Type a brief description of the method in Description.

User Exits for the Object Skeleton Subprogram

The Outline view for the object skeleton subprogram displays the available user exits. For example:

0= outine &2
5% **SAG DEFINE EXIT CHAMGE-HISTORY
53 **5aG END-EXIT

=i **SAG DEFINE EXIT PARAMETERS
53 **5aG END-EXIT

|S3¢ **SAG DEFIME EXIT START-OF-PROGRAM

53¢ **Sia END-EXIT
=& **SAG DEFINE EXIT METHOD-DEFALLT
53¢ **Sia END-EXIT
=4 **SAG DEFINE EXIT END-OF-PROGRAM
53¢ **Sia END-EXIT

BEE

You can use these exits to define additional processing.

J Notes:

Code Generation

51

Create an Object Skeleton Subprogram

1. All user exits are empty when generated.

2. For information about adding custom code within user exits, see Defining User Exits.

52 Code Generation

8 Regenerate Subprograms and Associated Modules

= Regenerate a Subprogram and Associated MOAUIESvvviiiieiiiiiiiiii e
= Regenerate MUltiple SUDPrOGIamMSo.vviiieiiii e e e s

= Compare Differences

53

Regenerate Subprograms and Associated Modules

You can regenerate any subprogram that was generated using a supplied code generator, as well
as all data areas, associated subprograms, and user exits that were generated with the subprogram.
You can also select more than one project, folder, or object to regenerate multiple modules.

Regenerate a Subprogram and Associated Modules

There are two methods of regenerating a subprogram, which are represented by two context menu
options:

Regenerate

The selected subprogram and all associated modules are regenerated without showing the
generator panels.
Regeneration using Wizard

The first wizard panel is displayed. You can edit the settings and select Finish on the last panel
to regenerate the selected subprogram and all associated modules.

~ To regenerate a subprogram and associated modules

Open the context menu for the subprogram in the Project Explorer.

Select Code Generation > Regenerate.

The selected subprogram and all associated modules are regenerated without displaying the
wizard panel(s).

Or:
Select Code Generation > Regenerate Using Wizard.

The code generator reads the subprogram specifications and displays the wizard panels,
which are the same as those displayed when the subprogram was first generated.

Note: For information on the specification panels, see the section describing that code

generator.

After selecting Finish, the Generation Progress window is displayed, indicating the results
of the regeneration. For example:

54

Code Generation

Regenerate Subprograms and Associated Modules

— =
& Generation Progress

=% G@enerating

Itern Status
~ AZIPCOLE.MSL Same
~ AZIPCODE.NSH Differert
BZIPCOAE.NSA Same
~ AZIPCOLLMSL Same
AZIPCODL.MNSN Different
~ AZIPCOAL.NSA Same
BZIPCOLZ.MSL Same
AZIPCODZ.MNSN Differert
BZIPCOAZ.NSA Same
~ ADISTALC.MSL Same
ADISTAMC.MSN Different
~ ADISTAAC.NSA Same

Generation Succeadead

Save H Zancel][Dekails ==]

If any of the Natural modules have changed since the subprogram was first generated, the
compare option is enabled when you select the module. For information, see Compare Differ-
ences.

| Note: The Generation Progress window is only displayed when the option s set in the

Preferences window. For information, see Set Code Generation Preferences.

3 Select Save to save the regenerated subprogram and associated modules.

You can now upload all modules to the server using standard Natural ONE functionality.

Regenerate Multiple Subprograms

This section describes how to regenerate more than one subprogram and associated modules.

~ To regenerate multiple subprograms

1 Open the context menu for the subprograms in the Project Explorer.

You can select one or more projects, libraries, or individual subprograms using standard se-
lection techniques.

2 Select Regenerate.

Code Generation 55

Regenerate Subprograms and Associated Modules

3

First, a progress window is displayed as the wizard locates and loads the regeneratable objects.
Next, a selection window is displayed to choose the objects you want to regenerate. For ex-

ample:

L
= Regenerate

Regenerate resources

Seleck the resources to be regenerated,

Filker

Marne: |

Generataor I0: |

Mame Generator
ZIPCODELLMSM REQUEST-DOCUMENT
ZIPCODEZ.MaN REQUEST-DOCUMENT
ZIPCODES.MSM REQUEST-DOCUMENT
ZIPCODE4. N3N REQUEST-DOCUMENT
ZIPCODES.MSM REQUEST-DOCUMENT
ZIPCODET.MSN REQUEST-DOCUMENT

l Select Al l ’Deselect all

@j Finish] [Cancel
Using this panel, you can:
Task Procedure

Filter the list of resources for selection.

Type a prefix in Filter. For example, if you type "ZIP",
only the resources beginning with ZIP are selected.

Use a different code generator to regenerate
the resource.

Type the generator ID in Generator ID.

Deselect all resources.

Select Deselect All.

Select Finish.

The Generation Progress window is displayed, showing the progress of the generation process.
For example:

56

Code Generation

Regenerate Subprograms and Associated Modules

- =
= Generation Progress

= f'aenerating

Tkem Skatus -~
+ ZIPCODES.MSH M
+ ZIPCODAS MNSA Mew
+ ZIPCODES.MSH M
+ ZIPCODAG NSA Mew
+ ZIPCODET.MSH M
+ ZIPCODAT MNSA Mew
" DISTANCZ.MSH M
+ DISTANAZ MG Mew
+ ZIPCODES.MSH M
+ ZIPCODAS MNSA Mew
+ ZIPCODES.MSH M
+ ZIPCODAG NSA Mew v

«-- PREGEN CUQTPR.

Cancel] [Details == l

Compare Differences

The Generation Progress window displays the results of regeneration. If the generated modules
have changed since the previous generation, Different is displayed in the Status column and you
can display a window in which you can compare the regenerated code with the original.

] Note: You cannot compare two modules that are identical.

~ To compare the regeneration differences

1 Select the module for which you want to compare the differences.

2 Select Compare.

The Compare Generation window is displayed. For example:

Code Generation 57

Regenerate Subprograms and Associated Modules

ompare Generation

Text Compare L7l g A W 4 B
Generated Criginal (AZIPCCOD1 . MNSN)

* rMatural ZSource Header 000000 * FWNatural Source Header 000000 -
¥ Mode 3 * Mode 3 O
* :CP * :CP

* <MNatural Source Header * <Natural Source Header

**3AG GENERLATOR: REQUEST-DOCUMENT **3AF GENERATOR: REQUEST-DOCUTMENT

**3AG PREFIZ: A **3AG PREFIZ: A

*FEZLG WEDL: http://wyw.jasongaylord.com/ wvebi **EAG WEDL: http://www. jasongaylord.coms
**#SAG DE3C3(1): Zubmics a Request and Parse; *#*SAG DE3C3(1): Submits a Request and P:
**#34G DESC3(2): he method **34G DESCS (2] : he method

e e e i e i e e i S i i i e e e i e e e i e i e e e e e e e e e e i e i e i

¥ Program : AZIPCOD1 * Program : AZIPCOD1

¥ System : MYLIE * System : MYLIE

+* Title : Request Document based on a W3] * Titcle : Fegquest Document based on :

* Generated: Tue Now 24 14:31:56 EST 2009 '—'* Generated: Tue MNowv 24 12:16:10 EST 20C

¥ Function : Subits @ Request ahd Parses * Function : Submits a Request and Parse

* W3DL for the method * W3IDL for the method b
< > < >

This window displays the results of the new (Generated) and previous (Original) generation
and indicates the differences.

3 Decide what to do about the differences.

4 Select Commit to save the changes.

58 Code Generation

9 Set Preferences

B Set Code GENeration PrefErENCESooiiiie e e
B Set LOGiNG PrEfErBNCESeiiiiiiiiee ittt

= Set Natural Preferences

59

Set Preferences

Set Code Generation Preferences

This section describes how to set common generation preferences for Code Generation.

~ To set Code Generation preferences

1 Select Preferences on the Window menu.

The Preferences window is displayed.
2 Expand the Software AG root node.

3 Select Code Generation.

The Code Generation preferences are displayed. For example:

= Preferences |Z|@@
v

| | Code Generation fe=101
-G | A~
A:tnera General settings for code generation.
Data Managemment [JEnable custam templates
Help Cuskom templates: | E: f'Workspaces/Pat/Matur alONESZ) . naturalonef/custom-templates! | ’ Browse, .,
Install{Update
lava [Display generation dislog after generating
Java EE Display generation dialog after regenerating

Java Persiskence
JavaSeript
Plug-in Developent
Repoart Design
Run/Debug
SErver
= Software A5
Ajax Developer
Business Services

Code Generation

Logging

Matural
Canstruct Z [Restore Defaults] [apply]
Cﬁj [Ok l ’ Cancel]

Using this window, you can:

Task Procedure

Enable customized templates and select |Select Enable custom templates and use Browse to select
the folder containing the templates. the root folder for custom templates (by default, the
custom-templates folder).

Note: Do not change the underlying folder structure for

the root folder or the code generator will not be able to find
the custom templates.

60 Code Generation

Set Preferences

Task Procedure

Display the Generation Progress window |Select Display generation dialog after generating.
after generation.

Not display the Generation Progress Deselect Display generation dialog after regenerating.
window after regeneration.

4 Select OK to save the preferences.

Set Logging Preferences

This section describes how to set preferences for logging.

~ To set logging preferences

1 Select Preferences on the Window menu.

The Preferences window is displayed.
2 Expand the Software AG root node.
3 Select Code Generation > Logging.

The Logging preferences are displayed. For example:

& Preferences O x
|t;.-pefi|tertext Logging (=T - 8
malven " General settings
ylyn
Oomph Logdj2 configuration file: | Browse...
Plug-in Development e WARN o
Report Design -
Run/Debug Matural Console Logger settings
Server [] Append to Natural console
v Software AG

R Pattern: | [Fed{HH:mm:ss.555}][%e-5p] [%ac{ 1}] %am%n
Ajax Developer

Business Services

w Code Generation

Legging
Matural
Construct
Entirex e - :
Restore Defaults Apply
< > 3 3
':?:' g 243 Q' Apply and Close Cancel

Using this window, you can:

Code Generation 61

Set Preferences

Task

Procedure

Assign log4j2 configuration file to use for

logging.

Select Browse and search for the log4j 2 configuration
file, e.g. log4j2.xml.

Change the log level.

Select the logger level in Level. The logger levels are:

= OFF
FATAL
ERROR
WARN
INFO
DEBUG
TRACE
= ALL

See the Apache Log4j 2 documentation for more
information.

Not append the Code Generation console
view to the NaturalONE Console view.

Deselect Append to Natural console.

Change the log pattern to format the logging
information.

Type the pattern in Pattern.

Select OK to save the preferences.

Set Natural Preferences

This section describes how to set preferences for Natural.

~ To set Natural preferences

1

Select Preferences on the Window menu.

The Preferences window is displayed.
Expand the Software AG root node.

Select Code Generation > Natural.

The Natural preferences are displayed. For example:

62

Code Generation

Set Preferences

-

& Preferences
type filter text

> Domph -
> Plug-in Development

Remote Systems

Report Design

Run/Debug
Server

a4 Software AG

» Ajax Developer

Business Services

4 Code Generation
Logging
Matural

. Construct

EntireX

Matural

Predict Description

Request Document
Testing

UDDI Registries =
Web Services Stack

> Team

Terminal
Validation

> Velocity UI

- Web

Web Services
. XML

« [b

|:’?::I @j

= ==
Natural 7 rw
General settings for Matural code generation.

Predict settings
[7] Check Predict for any metadata (if available)

Include relationships (if Predict available)

Create periodic occurrences at the group level

[T Include C* variables in view

When not found in Predict, periedic group (PE) occurrences: 10

When not found in Predict, multiple value (MU) occurrences: 15

[Allow lowercase search key values for Object Browse
Request Document settings
Maximum number of fields: 250
[] Generate Unicode dynamics
Object maintenance settings
[C] Allow GetByISN
Database settings
[¥] When an SQL database type is found, generate for DB2
Construct model settings
Default value used for parameter 'SYSTEM':

’Restore Defaults-] ’ Apply]
[Apply and Closel [Cancel l

Using this window, you can:

Task Procedure
Check Predict for additional |Select Check Predict for additional metadata.
metadata.

Note: If this option is selected, three options in the Predict Settings

section are disabled. If this option is not selected, use these options to
simulate the Predict data.

Include relationship data
from Predict (if available on
the server).

Select Include relationships.

Note:

1. To enable this option, select Check Predict for additional metadata.

2. Currently, relationships for DB2 objects are not processed.

Code Generation

63

Set Preferences

Task

Procedure

3. The defined field names in the related Predict files have to be unique.
Otherwise the generated LDAs and PDAs cannot be stowed
successfully. For further information please refer to Qualifying Data
Structures in the Programming Guide provided under Natural Language
for Windows.

Suppress the creation of
periodic occurrences at the
group level.

Deselect Create periodic occurrences at the group level.

For example, a DDM containing a periodic group (PE) named INCOME
with four occurrences can be represented as follows:

= Ata group level
For example:

2 INCOME (1:4)
3 SALARY (P5)
3 CURRENCY (A3)

® Not at a group level
For example:

2 INCOME
3 SALARY(P5/4)
3 CURRENCY (A3/4)

Include all C* variables in the
View.

Select Include C* variables in view.

If this option is selected, the C* variables are generated into the code to
determine the number of occurrences of a periodic group. For example:

2 C*INCOME
2 INCOME
3 SALARY(P5/4)
3 CURRENCY (A3/4)

Change the maximum
number of occurrences for a
periodic group when not
found in Predict.

Type the number in When not found in Predict, periodic group (PE)
occurrences.

The number of occurrences of a periodic group is not stored with the
DDM and the maximum number of occurrences could be too large to
use. To solve this problem, you can define the maximum number of PE
occurrences in this field.

Note: If Check Predict for additional metadata is not selected, or if 0

is returned from Predict, the value in this field will be used.

64

Code Generation

Set Preferences

Task

Procedure

Change the maximum
number of occurrences for a
multiple-valued field when
not found in Predict.

Type the number in When not found in Predict, multiple value (MU)
occurrences.

The number of occurrences of a multiple-valued field is not stored with
the DDM and the maximum number of occurrences may be too large
to use. To solve this problem, you can define the maximum number of
MU occurrences in this field.

Note: If Check Predict for additional metadata is not selected, or if 0

is returned from Predict, the value in this field will be used.

Allow search keys to be
entered in lower case for an
object-browse subprogram.

Select Allow lowercase search key values for Object Browse.

By default, the object browse subprogram will convert the starting
values for all supplied alphanumeric key components to upper case. If
this option is selected, the ALLOW-LOWER-CASE option is generated
for all keys and the input values can include lower case characters. For
example, if the database contains both upper case and lower case values
for the BUSINESS-NAME field (for example, iXpress and IBM) and you
select this option, either lower case or upper case input values can be
used in a search (for example, "I*" for iXpress and "I*" for IBM).

Change the maximum
number of fields generated for
a REQUEST-DOCUMENT
subprogram.

Type a new number in Maximum number of fields.

A REQUEST-DOCUMENT subprogram can generate a large amount
of code, which may cause memory errors. To avoid this, you can use
this option to place restrictions on the REQUEST-DOCUMENT Client
code generator.

Generate the dynamics to
support Unicode fields.

Select Generate Unicode dynamics.

This option allows the REQUEST-DOCUMENT subprogram to send
and receive Unicode data.

Note: The Natural server must be configured for Unicode.

Allow the GetByISN option
for an Object Maint
subprogram.

Select Allow GetByISN.

This option is available for Adabas files. If this option is selected, data
can be retrieved using the ISN. Although extra code is generated,
performance speed will be enhanced.

Suppress the generation of
DB2 code for SQL database

types.

Deselect When an SQL database type is found, generate for DB2.

Construct model settings

Can be used to change the default name to be used for standard
parameter SYSTEM.

Enter a different default name to be used for parameter SYSTEM.

Note: The following description refers to the generation of a new

Construct model on the NaturalONE client based on Construct installed

Code Generation

65

Set Preferences

Task Procedure

on the Natural server as described in section Access the Client
Generation Wizards.

By default, the library name which is specified in the client generation
wizards, e.g. as described in section Generate the Modules is used for
the standard parameter SYSTEM.

The system name must be alphanumeric and not exceed 32 characters
in length.

The combination of the module name and system name is used as a key
to access help information for the generated module.

4 Select OK to save the preferences.

66 Code Generation

10 Customize the Code Generators

= Export the Supplied Templates ..

= Customize a Supplied Template

67

Customize the Code Generators

The code generators supplied with Natural ONE use Velocity templates, which are embedded in
the jar file created during the build process. To customize the templates, you can copy the embed-
ded templates from the .jar file to your custom-templates folder and modify the template there.

Velocity will check this folder first for the template. If it exists, it will be used by the code generator.

Export the Supplied Templates

~ To export the supplied templates

1 Select Export on the File menu.

The Export window is displayed.
2 Expand the Software AG root node.

3 Select Code Generation Templates.

For example:

7= Export

Select

Select an expart destination:

- B

= General

= EX

= Java

= lavaEE

= Plug-in Development
= RunjDebug

== Software AG

Code Generation Templates
Export User Interface Component
= Team
(= web
= Weh Services
(= =ML

@

Zancel

68

Code Generation

Customize the Code Generators

4 Select Next.

The Select Templates for Export panel is displayed. For example:

7= Export Templates |Z|@@

Select Templates for Export
Browse For a barget folder and select which templates bo export,
[-
Target Folder: | E:Wwaorkspaces MaturalOMNESZ) . naturalonecustom-templates, | [Browse...]
[} ommon Termplates

[] object Browse Subprograrn
[] obiject Maink Subpragram
[] object Skeletan Subpragram
[request Document Client

@

This panel displays the default target folder for the templates, as well as the templates available
for export.

] Note: You can change the default target folder in the Preferences window for Code
Generation. For information, see Set Code Generation Preferences.

5 Select the templates you want to export.

* To select all templates in a template node, select the node (for example, if you select the
Common Templates root node, all templates within that node will be selected).

* To select individual templates, expand a template root node and select the template.

For example:

Code Generation 69

Customize the Code Generators

7= Export Templates

Select Templates for Export

Browse for a target Folder and select which templates to export,

Tarqget Folder: |E:,I'Wnrkspaces,l'NaturaIONEEZ,l'.naturalnne,l'custnm-templates,l’ |

- B

m }

[]

Commaon Templates

[] patasreaHeader, vm

[InlineFileview. v

[] InlineFileviewssithDescripkars, vm

[MaduleHeader vm

[MadulesaGLines. wm

[WFNDatasreaHeader vm

[WFhHeader vm
[] Object Browse Subprogram
[] object Maint Subpragram
[] Object Skeleton Subpragram
[request Document Client

©

Zancel

6 Select Finish.

The templates are exported to the selected target folder.

1 Note: You cannot change the functionality of the internal Java code, you can only

modify the templates.

Customize a Supplied Template

~ To customize a template

1 Select the template in the custom-templates > cst folder.

For example:

70

Code Generation

Customize the Code Generators

=]

X

File Edit ‘“iew Fawvorites Tools Help :f
@ Back = () lm‘f P) szarch ‘ [17:‘ Folders -
Address |E| ! SoftwareAGinaturalons) Custom Templates)cst vl Go
Falders * Mame Size Type Date Modified
(B Deskiop | [Chobject File Folder 11{2042009 2:45 PM
53 My Documerts | [CIRequestDocument File: Foldzr 11/20/2009 2:45 PM
= :’l My Computer CCESCAPE.vm LKE %MFil= 11/20§2009 2:45 PM
b 314 Floppy (A1) COPDA_M.vm ZKE ¥MFile 11/202009 2:45 i
(= “e® Laocal Disk () COUMSGL, v 7EE WMFile 112052009 2:45 PM
= £ Softwaress Cl--GTRT. vm 2KE WM File 11/20/2009 Z:45 PM
I CentraSite_PluginsCnly DatasreaHeader.vm 1KE W%MFile 11/20/2009 2:45 PM
E] COMMman InlineFileYiew, vm IKE WM File 11/20§2009 2:45 PM
IC3) eclipse InlineFileYiewwwithDescriptars.vm 3KE WM File 11/2002009 2:45 PM
| install MaduleHeader, vm 2KB WM File 11/20§2009 2:45 PM
15 jvm ModuleSAGLInes vm LKE %M File 11/20/2009 Z:45 PM
= I naturalone MFMDataAreaHeader . wm 1KE %MFil= 11/20§2009 2:45 PM
E] apache-tomcat MFMHeader,vm LKE YMFile 11/20§2009 2:45 PM
= IC3) Custom Templates
25
[£5) object
£ RequestDocument
v

] Note: Custom templates are stored in the folder specified in the Preferences window

for Code Generation. For information, see Set Code Generation Preferences.

2 Open the template you want to modify.

For example:

B CCESCAPE - Notepad
File Edit Faormat Wiew Help

Fparse("cst /NFNHeader.wm")
IF MSE-INFO, #dh(IMsE NE '

ESCAPE ROUTIME IMMEDIATE
EMD-IF

OR MSG-IMFO. #dh(IMSG-NR ME O

3 Modity the template.
4 Save the changes.

Code Generation 71

72

I I I Using Natural Construct

This part describes the Natural Construct component supplied with NaturalONE. The following
topics are covered:

Introduction
Natural Construct Generation
Natural Construct Administration

Set Natural Construct Preferences

73

74

11 Introduction

= Supplied Client GENEration WIZAIASuuuiuuuiiiiiiieiiiiiiiiiiiiiitaaea e sebeaaebaasasaseseesaeaesanes 76
L o[V =T 11T LGP PPSPPPPPP 78
= Perform Standard Actions on Natural Construct RESOUICESvvviiieiiiiiiiiiiec e 79
B Use the DEPENdENCIES VIEWuiiiiiiiiei ettt e e e ee e e e e e 85

75

Introduction

The Natural Construct component for NaturalONE provides access from Eclipse to Natural
Construct on the server. This access includes the modeling functionality in the SYSCST library, as
well as Eclipse wizards corresponding to a subset of the most common Natural Construct models
in your server installation. The Eclipse wizards collect the model specifications and pass this in-
formation to the Natural server to generate the code, which is then returned to the local project
that was selected as the target on a wizard panel.

This type of code generation is different from the local, non-server based generation implemented
using Velocity templates (for example, REQUEST-DOCUMENT Client, Object Maint, Object
Browse, and Object Skeleton; see Using the Code Generation Component). The Natural Construct
component allows you to use Natural Construct models on the server in NaturalONE, as well as
create Eclipse wizards for them (including customized ones).

) Note: To install the Natural Construct component for NaturalONE, Designer > NaturalONE

> Natural Construct must be selected in the installation tree for the installer. NaturalONE
> Natural Construct is selected by default when you select Designer in the installation tree.

Supplied Client Generation Wizards

The Natural Construct component for Natural ONE supplies client generation wizards for the
following Natural Construct models on the server:

Model Generates For Information

BATCH Batch programs can be generated |Batch Wizard
for large volumes of output, routed
to a printer or a terminal.

BROWSE Browse program that reads a file in | Browse/Browse-Select Wizards
logical order and displays record
values on the screen.

BROWSE-SELECT Browse-select program that reads a|Browse/Browse-Select Wizards
file in logical order, displays record
values on the screen, and allows the
user to specify which set of
commands are executed.

BROWSE-SELECT-HELPR Browse-select helproutine that Browse/Browse-Select Wizards
enables the user to select a field
value from a list of valid values.

BROWSE-SELECT-SUBP Browse-select subprogram that is |Browse/Browse-Select Wizards
invoked as a sub-function of another
program. For example, you can use
a browse-select subprogram to
perform the Browse action for a
maintenance program, in which

76 Code Generation

Introduction

Model

Generates

For Information

case, the maintenance program
invokes the subprogram without
disturbing the current state of the
panel.

BROWSE-SUBP

Browse subprogram that is invoked
as a sub-function of another
program.

Browse/Browse-Select Wizards

DRIVER

Driver program that executes a
helproutine or subprogram for
testing purposes.

Driver Wizard

MAINT

Maintenance program that

maintains a file using a unique key
and, optionally, a related secondary
file. The Maint wizard generates the
code necessary to scroll through the
MUY/PE fields of a primary file or the
records of a secondary file.

Maint Wizard

MENU

Menu program that presents users
with several choices in the form of
a menu. The user enters a code for
one of the choices to invoke a
predefined function.

Menu Wizard

OBJECT-BROWSE-DIALOG

Object-browse dialog component of
an object-maintenance process that
works with the object-browse
subprogram to provide the browse
functionality for a Natural object.

Object-Browse-Dialog Wizard

OBJECT-BROWSE-SELECT-SUBP

Object-browse-select subprogram
and corresponding parameter data
areas that provide the browse
functionality for a Natural object.
This model is similar to the
OBJECT-BROWSE-SUBP model,
except the generated
object-browse-select subprogram
can accommodate a client/server
environment and a subprogram
proxy can be used to access the
generated code as a business service.

Object-Browse-Select-Subp
Wizard

OBJECT-BROWSE-SUBP

Object-browse subprogram and
corresponding parameter data areas
that provide the browse
functionality for a Natural object.

Object-Browse-Subp Wizard

OBJECT-MAINT-DIALOG

Object-maintenance dialog
component of an object-maintenance

Object-Maint-Dialog Wizard

Code Generation

77

Introduction

Model

Generates

For Information

process. The dialog component
(Natural program) communicates
with the user and invokes methods
(data actions) implemented by the
object-maintenance subprogram.

OBJECT-MAINT-ENHANCED-SUBP

Object-maintenance subprogram
and corresponding parameter data
areas that update all entities within
a Natural object. Similar to the
Object-Maint-Subp wizard, the main
difference between these wizards is
that the
Object-Maint-Enhanced-Subp
wizard will generate large fields in
the object PDA as dynamic fields.

Object-Maint-Enhanced-Subp
Wizard

OBJECT-MAINT-SUBP

Object-maintenance subprogram
and corresponding parameter data
areas that update all entities within
a Natural object.

Object-Maint-Subp Wizard

QUIT

Quit program that releases resources
used by an application. It displays
a confirmation window that
overlays the host panel and gives
users the option of quitting an
application entirely or resuming
where they left off.

Quit Wizard

STARTUP

Startup program (often named
Menu) that initializes global
variables and invokes the main
menu program.

Startup Wizard

Requirements

To use the Natural Construct code generation features in Natural ONE, the following requirements

must be met:

® Your NaturalONE environment must be mapped to a server in the Natural Server view that
contains a version of Natural Construct 5.3, service pack 8 or higher.

® Projects in your workspace must be connected to the server containing Natural Construct; projects
mapped to the local Natural runtime environment cannot be used to generate Natural Construct

modules.

78

Code Generation

Introduction

The target Natural project must be configured to a remote environment. If you select a Natural
project that is mapped to a local environment, an error will be displayed. When you change the
target project to a valid remote project, the clear subprogram will be called using the connection

settings for the valid project.

® The Natural >Runtime setting in the Properties window for the project must point to the Nat-
ural Server connection containing the Natural Construct installation. For example:

7= Properties for NewProject

Resource
Builders
=) Watural
Parser
Runkime
Steplibs
Praject Facets
Project References
Refackoring History
RunfDebug Settings
Server
Task Tags
Validation

@

Runtime

() Use local Makural runkime

() Use Matural server |

Matural server connection

Host nane: | daef.hqg.sag
Part number: | 7307

Hosk type: |

Startup

Session parameters: | profile=bds3
User ID: | PURIISR
Password: |

Lirnits

Processing loop limit number (LT | 39399339

Apply

OF

] [Cancel

l

Perform Standard Actions on Natural Construct Resources

You can use the Natural Server view to copy/paste, delete, or move Natural Construct resources
on the server. The action will be performed in the mapped environment for the selected node(s).

This section covers the following topics:

= Perform Actions on Code Frames

Code Generation

79

Introduction

= Perform Actions on Models

Perform Actions on Code Frames

~ To perform actions on one or more code frames

1 Open the context menu for the code frame(s) in the Natural Server view.

For example:

L] L}
= MNatural Server 53 - | =5

i@i
1]
0O

= "JT: daef .hg.sag-7307
= [Construck
=-[= Code-Frames
._ﬁ C--BANS 7
Ek c-Bang|
s C-BVES | T add to existing Project. ..

s C--Dimr

Eh c-pomg Move...

[k C--HDGw =) Copy Chrl+C
s C--HDG9| 3¢ Delete Delete
s c-pwor

‘_ﬁ CA-CED Properties

ke Ca-GMY

[k CRAa hd

2 Select one of the actions listed.

The available actions are:

Action |Description

Move |Removes the selected code frame(s) from the current mapped environment and adds it to a
target mapped environment. For information, see Move a Code Frame.

Copy |Copies the selected code frame(s) to the clipboard in anticipation of a Paste action. For
information, see Copy a Code Frame.

Delete |Removes the selected code frame(s) from the current mapped environment. For information,
see Delete a Code Frame.

80 Code Generation

Introduction

Move a Code Frame

This section describes how to move one or more code frame(s) from the current mapped environ-
ment to a target mapped environment.

| Note: A code frame cannot be moved within the same mapped environment.

~> To move one or more code frames

1 Open the context menu for the code frame(s) in the Natural Server view.

2 Select Move.

The Move Objects window is displayed. For example:

12 Move Objects E|
Choose destination For C--BakS:

T daef.hg.sag-7307
+ [=H 16Mz hg.sag-7323

Cancel

This window lists the connection nodes for the available mapped environments.

3 Expand the connection node for the environment into which you want to move the code
frame(s).

4 Select the Construct or Code-Frames root node.

5 Select OK.

A progress window is displayed while the code frame(s) is removed from the current mapped
environment and copied to the target mapped environment.

Copy a Code Frame

This section describes how to copy one or more code frames to the clipboard and then paste the
frame(s) into a target mapped environment.

> To copy one or more code frames

1 Open the context menu for the code frame(s) in the Natural Server view.

2 Select Copy.

Code Generation 81

Introduction

3 Open the context menu for the Construct or Code-Frames root node into which you want to
copy the code frame(s).

4 Select Paste.

The frame(s) is copied to the target mapped environment.
Delete a Code Frame

This section describes how to remove one or more code frames from the current mapped environ-
ment.

> To delete one or more code frames

1 Open the context menu for the code frame(s) in the Natural Server view.

2 Select Delete.

A confirmation window is displayed to confirm the action.

3 Select Yes.

The frame(s) is removed from the current mapped environment.

Perform Actions on Models

> To perform actions on one or more Natural Construct models

1 Open the context menu for the model(s) in the Natural Server view.

For example:

82 Code Generation

Introduction

=H Natural Server ©2 - | =H

= =M dasf.hq.sag-7307
== Conskruct

4= Code-Frames

== Models

H

S\ = EEEEEEEE = =

BATICH

BROWSE L 3P

BROWSE
BR.OWSE Mawe,.,
BRCWSE 1= Copy
BUSIMES ¥ Delete
C5T-CLE

ZST-Dnin] Properties
CST-FRAME
CST-MCDIFY
C5T-MODIFY-332
CST-PAMEL

CST-PDA
CST-POSTGEN
C5T-PREGEM
CoT-PROCEY

CST-READ

CST-SAVE

2 Select one of the actions listed.

The available actions are:

=8

Chrl+C

Delete

Action

Description

Move

Removes the selected Construct model from the current mapped environment and adds it to

a target mapped environment. For information, see Move a Construct Model.

Copy

Copies the selected model(s) to the clipboard in anticipation of a Paste action. For information,
see Copy a Construct Model.

Delete

Removes the selected model(s) from the current mapped environment. For information, see
Delete a Construct Model.

Move a Construct Model

This section describes how to move one or more model(s) from the Models root node in the current

mapped environment to a target mapped environment.

| Note: A Construct model cannot be moved within the same mapped environment.

> To move one or more Construct models

1 Open the context menu for the model(s) in the Natural Server view.

Code Generation

83

Introduction

2 Select Move.
The Move Objects window is displayed. For example:
7= Move Objects g|
Choose destination for BROWSE:
i daef.hg.5ag-7307
+ = 1BMz.hq.sa0-7323
This window lists the connection nodes for the available mapped environments.
3 Expand the connection node for the environment into which you want to move the model(s).
4 Select the Construct or Models root node into which you want to move the model(s).
5 Select OK.
A progress window is displayed while the model(s) is removed from the current mapped
environment and copied to the target mapped environment.
Copy a Construct Model

This section describes how to copy one or more models to the clipboard and then paste the model(s)
into a target mapped environment.

~ To copy one or more Construct models

1
2

Open the context menu for the model(s) in the Natural Server view.
Select Copy.

Open the context menu for the Construct or Models root node into which you want to copy
the model(s).

Select Paste.

The model(s) is copied to the target mapped environment.

84

Code Generation

Introduction

Delete a Construct Model

This section describes how to remove one or more models from the current domain.

> To delete one or more Construct models

1 Open the context menu for the model(s) in the Natural Server view.

2 Select Delete.

A confirmation window is displayed to confirm the action.

3 Select Yes.

The model(s) is removed from the current mapped environment.

Use the Dependencies View

When a Construct resource (for example, a Construct model, code frame, etc.) is open in the editor,
the Dependencies view displays dependencies between that resource and other Construct resources
and/or Natural resources. This section describes the child nodes contributed to the view by the
Construct-related resources. The following topics are covered:

= Construct Resources
= Related Natural Resources

] Notes:

1. Select % to sort the resources alphabetically.
2. Select 4 to export a textual representation of the visible nodes in the view to a file.

3. When a supporting resource cannot be found locally using the project steplib chain and project
references, "<Unknown>" is displayed with the name of the resource (see above). If the unknown
module(s) is not shipped with the Construct runtime project, either manually download it from
the server or create it locally. If the module(s) is shipped with the Construct runtime project,
add the project. For information, see Add the Construct Runtime Project.

4. For more information about the Dependencies view, see the description of the source editor
in Using Natural ONE.

Code Generation 85

Introduction

Construct Resources

When a Construct resource is open in the editor, the root node displays the name of the resource.

In caller mode (&), child nodes are contributed to the Dependencies view for each resource that
depends on that Construct resource. For example, when a code frame is open in the editor, the
child nodes display any Construct models or other code frames that depend on that code frame:

?—E Dependencies &2 o | 8a| %% ed T O

=l s CSCAS
M BROWSE-SUEP

Ms, BROWSE-HELPR

My, BROMWSE

In this example, three Construct models (BROWSE-SUBP, BROWSE-HELPR, and BROWSE) depend
on the CSCAS code frame.

In callee mode (")), Construct and Natural nodes are contributed to the view for each resource
the Construct resource depends on. For example, when a Construct model is open in the editor,
the child nodes will display any code frames, PDAs, subprograms and Construct models that this

model depends on. For example:

Po Dependendies &2 - | x| Y% ed T O
= My BROWSE
2E C53:CUSCPDA {NewProjectt
HER <Unknown > WCNSCMA
+-fiEB C53:0USCPS {NewProject}
#-[Eh CSCC9
[l C53:CUSCME {MewProject}
+-§EE C53:CUSCT {NewProject}
4k cscas
HEB <Unknown = WENSCMG
- C53:CUSCR {NewProject}
HEp <Unknown = WoNsCMC
= Ji C53:0US-D {MewProject}
- §[h C53:0USCMA {MewProject)
+-§FR C53:CU5C5 {NewProject}
- C53CUSCPR {NewPraject
+-fER C53:0USCuAL {NewProject:
- C53:CUSCMG {NewPraject}
+- [l C53:0USCC {NewProject)
HEE <Unknown = WCNSCMB
+-§[Fh C53:0USCMC {MewProject}

In this example, the Construct model named BROWSE depends on two code frames (CSCC9 and
CSCAS8), a PDA named CUSCPDA in the C53 library and many subprograms.

86 Code Generation

Introduction

Related Natural Resources

When a Natural subprogram is open in the editor, the root node displays the name of the subpro-

gram, as well as the name of the library in which it is located. In caller mode (“m), child nodes are
contributed to the Dependencies view for each Construct-related resource that depends on this
subprogram (such as a Construct model, code frames, etc.). For example:

?—E Dependencies i3 o | Se| %[ed T 8

= | DEMOTEST:MPRODN
+- B2 DEMOTEST:MPRODD
+-§iFf DEMOTEST:MPRODY
[DEMO:Praduct.vl. 1.1

In callee mode ("), a Construct model node is contributed to the view if the subprogram was
generated by a Construct model. For example:

?—E Dependencies i3 o | %a %[ed T 8

= i DEMOTEST:MPRODN

2 DEMOTEST:MPRODNA
DEMGTEST:MPRODNR,
SWSTEM:CDACEDZ {ConstructRuntinme}
DEMOTEST:COPDA-M {AjaxProject}
DEMOTEST:MPRODNMP
O SYSTEM:NCST-PRODUCT
0% SYSTEM:NCST-ORDER-LINES
UE <Unknown = 1U5R4011M
L?J SY¥STEMCCESCAPE {ConstructRuntime}
L?J SYSTEM:CCDBCALZ {ConstructRuntime}
M. oRIECT-MAINT-SUER

4
LY

Oy [T [T [
RARKARKARA

m

Code Generation 87

88

12 Natural Construct Generation

= Access the Client Generation WIzZardsc.vveiiiiioioiii e 90
B Generate the MOGUIESoiiiiiiii e e e e e e e e e eneeee s 91
= Common Wizard Specifications and Development TasKScooourrieiiiiiiiiiiiie e 95
= Example of Generating @ Programoooiiiiiiioii e 205
= Regenerate Natural Construct-Generated MOAUIEScoiviviiiiiiii e 208

89

Natural Construct Generation

This section describes how to use the Natural Construct client generation wizards to generate
Natural modules, as well as how to define user exits for additional processing that is preserved
during regeneration.

Access the Client Generation Wizards

] Notes:

1. When you have defined customized modules on the server side, downloaded them and generated
anew Construct model Ul on the client side, the customized models will also appear in the list
of the available Construct models. For details see Create and Maintain a Natural Construct
Model UI.

2. When using the function New Using Construct Model for a customized model, the models
must have defined a Stream and Validate subprogram. Otherwise the module generation on
the server side will fail.

3. The following description refers to the generation of a new Construct model on the NaturalONE
client based on Construct installed on the Natural server.

~ To access the client generation wizards

1 Open the context menu in the Project Explorer view for the NaturalONE project in which
you want to generate the modules.

Or:

Open the context menu in the Project Explorer view for the library in which you want to
generate the modules.

| Note: You can also access the wizards using standard NaturalONE functionality (i.e.,

through the File menu or using the New toolbar option.

2 Select Code Generation > New Using Construct Model.
A list of the supplied client generation wizards is displayed.

| Note: The list of wizards displayed in this menu is based on which Construct version

is installed on the target server. For example, Construct V8.2 wizards will not be
available if the project is attached to a Construct V5.3 server.

3 Select the wizard you want to use.

The Progress Information window is displayed, indicating progress as the model specification
PDA is initialized by the model's clear subprogram on the server to set the model defaults

90 Code Generation

Natural Construct Generation

(the same process initiated when you enter "NCSTG" from a character-based Natural connec-
tion). For example:

Progress Information

i J Initializing Construck model specification. ..

Cancel

The clear subprogram will only be called when all the following conditions are true:

® The selected target project is valid and connected to a remote Natural environment.
® The generation mode is set to "New" (not regeneration).

*® The clear subprogram has never been called or the last successful call to the clear subprogram
targeted a different project.

Generate the Modules

When initialization is complete, the first specification panel for the selected client generation
wizard is displayed. For example:

Code Generation 91

Natural Construct Generation

W' New BROWSE-SELECT =3
Specify Standard Parameters W
Enter setkings For the standard parameters,
= -
Targek
Project: | MewProject | [Browse...]
Folder: | | | [Browse...]
Libraty: | | [Browse...]
Module: | |
Details

Global data area: | ZDEDA |

With block: | |

Title: | Browse Select ... |
This program is used ko browse the ...

Description:

Headings

First heading: | |

Second heading: | |

® (o]

The module parameters are grouped by topic and Browse buttons are available when selecting
existing resources. After specifying the first parameter on a panel, messages are displayed indic-
ating the next required parameter. The Next button will only be enabled when all required para-
meters have been specified on the current panel have been specified; the Finish button will only
be enabled when all required parameters have been specified for the current wizard.

~ To generate a module

1 Specify all required parameters and any optional parameters on the first panel for the selected
wizard.

2 Select Next.
Or:
Select Finish.

The generation process begins. By default, progress is detailed in messages displayed near
the bottom of the panel. Once generation is complete, the code is downloaded to the client.

92 Code Generation

Natural Construct Generation

The generated source is displayed in the editor and the available user exits are displayed in
the Outline view.

3 Save the generated module(s).
4 Use standard NaturalONE functionality to upload the generated module(s) to the server.

The following table lists the supplied Natural Construct client generation wizards and where you
can find information on the specification parameters for each wizard:

Wizard Information

BATCH Batch Wizard

BROWSE Browse/Browse-Select Wizards
BROWSE-SELECT Browse/Browse-Select Wizards
BROWSE-SELECT-HELPR Browse/Browse-Select Wizards
BROWSE-SELECT-SUBP Browse/Browse-Select Wizards
BROWSE-SUBP Browse/Browse-Select Wizards
DRIVER Driver Wizard

MAINT Maint Wizard

MENU Menu Wizard
OBJECT-BROWSE-DIALOG Object-Browse-Dialog Wizard
OBJECT-BROWSE-SELECT-SUBP Object-Browse-Select-Subp Wizard
OBJECT-BROWSE-SUBP Object-Browse-Subp Wizard
OBJECT-MAINT-DIALOG Object-Maint-Dialog Wizard
OBJECT-MAINT-ENHANCED-SUBP | Object-Maint-Enhanced-Subp Wizard
OBJECT-MAINT-SUBP Object-Maint-Subp Wizard

QUIT Quit Wizard

STARTUP Startup Wizard

J Notes:

1. During generation, the wizard determines whether the Construct runtime project is available
locally, and if it is not, prompts you to add it. For information, see Add the Construct Runtime
Project.

2. To change the default generation options and/or set other generation options, see Generation
Options.

3. If the generated module is a subprogram, you can test it using the NaturalONE Testing option.
For information, see Test a Subprogram Directly in Application Testing.

4. For information about adding custom code within user exits, see Defining User Exits.

Code Generation 93

Natural Construct Generation

Generation Options

In addition to the standard navigation buttons available at the bottom of the wizard panels, an
Options button is available to define generation options.

~ To define generation options

1 Select Options on the wizard specification panel.
The Generation Options window is displayed. For example:
IN* Generation Options
Display generation skatus messages
|:| Display generation status messages as kext
[Jinclude embedded statements in generated code
[[ol4 l l Cancel
Using this window, you can:
Task Procedure
Disable the display of generation status|Deselect Display generation status messages. The generation
messages. status messages indicate which module is being invoked at
each stage of the generation process.
Display the generation status messages |Select Display generation status messages as text. By default,
as text (for example, "starting" and the messages are displayed with arrows "-->" (starting) and
"ending"). "<--" (ending).
Write embedded statements to the Select Include embedded statements in generated code.
source buffer as part of the generated |Embedded statements indicate where the lines of code being
module. written originated and the name of the code frame, generation
subprogram, or sample subprogram that produced the code.
2 Select OK to save the generation options.
94 Code Generation

Natural Construct Generation

Common Wizard Specifications and Development Tasks

The specification parameters listed on the wizard panels correspond with those on panels for the
Natural Construct models on the server. This section describes the common specifications for the
Natural Construct wizards and how to perform common development tasks.

D Notes:

1. For an example of using a client generation wizard to generate a module, see Example of Gen-
erating a Program.

2. For information about specific parameters for the wizards, see the applicable model in the
Natural Construct Generation guide.

This section covers the following topics:

= Batch Wizard

= Browse/Browse-Select Wizards

= Driver Wizard

= Maint Wizard

= Menu Wizard

= Object-Browse-Dialog Wizard

= Object-Browse-Select-Subp Wizard
= Object-Browse-Subp Wizard

= Object-Maint-Dialog Wizard

= Object-Maint-Enhanced-Subp Wizard
= Object-Maint-Subp Wizard

= Quit Wizard

= Startup Wizard

= Change the Dynamic Attribute Characters
= Change the Window Settings

= Select a Message Number

= Specify Common Parameters

= Specify International Parameters

= Specify Screen Parameters

Code Generation 95

Natural Construct Generation

= Specify Standard Parameters
Batch Wizard

This section describes the specification parameters for the Batch wizard. With the Batch Wizard,
batch programs can be generated. Commonly, these can produce large volumes of output, which
the programs route to a printer or a terminal.

A batch program uses a primary key value to read the contents of a primary file in logical order.
The primary key value can be a descriptor, superdescriptor, or subdescriptor, and does not have
to be unique. These programs differ from online programs as they usually read or update large
volumes of data and produce multiple reports. For multiple files, you can use the Batch model
(which supports as many as two secondary files and two tertiary files). After selecting the files to
use in your batch program, you can select additional, related files by indicating the Predict rela-
tionships to be process. File views returned from Predict can be used to create a report layout.
Data read from the program can be written to four different reports, each of which may have a
different format. To view the specifications for a sample batch program, refer to the NCOREP
program in the Natural Construct demo system.

The Batch wizard provides the following pages:

= Specify Standard Parameters

= Specify Report Heading Parameters

= Specify Basic Program Structure

= Specify Additional Parameters

= Specify Parameters for Primary file

= Specify Parameters for Secondary file (1)
= Specify Parameters for Secondary file (2)
m Specify Parameters for Tertiary file (1)

= Specify Parameters for Tertiary file (2)

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked.

For information about these parameters, see Specify Standard Parameters.

96 Code Generation

Natural Construct Generation

I New BATCH O *
. 1

Specify Standard Parameters N
Enter settings for the standard parameters,

Target

Project: | BIZDEMO | Browse..

Folder: | /BIZDEMO | Browse..

Library: | BIZDEMO | Browse..

Module: | BATCHT

Details

Global data area: |

Withblock: | |
Titles | Batch ... |
Description:

@' Options... < Back Einish Cancel

Specify Report Heading Parameters

This panel is divided into two sections:

Use the upper section to enter report headings and indicate where they will appear on the report.
Use the lower section to set up general formats for each report.

Panel reference

Field Description

Report Headings |Headings for up to eight reports.

Printer Printer file number for the corresponding report (see the Printer Name field description).
If you type an asterisk (*) in the Printer field for a heading, the heading is displayed on
all reports.

On Line Line on which the heading is displayed. Type "1" for a first heading, "2" for a second

heading, etc.

Printer Name

Where the output of the report is directed. The printer file numbers specify the following
destinations:

® (0) Output to terminal screen

® (1) Output to first report

® (2) Output to second report

® (3) Output to third report

Code Generation

97

Natural Construct Generation

Field Description
Type the report name in the appropriate field. The name is used to set up a Natural
DEFINE PRINTER statement. If this field is left blank, the name defaults to the printer
file number (0, 1, 2, or 3).

LS Line size. The number of characters that fit on one line on the report (default values are
displayed).

PS Page size. The number of lines per page (default values are displayed).

zr Zero printing. If this field is marked (by default), fields containing zeroes are printed on
the report. If this field is not marked, zeroes are suppressed.

IS Identical suppress. If this field is marked, identical entries on consecutive lines will not
be printed on the report.

ES Empty line suppression. If this field is marked, empty lines will not be printed on the

report.

Form or Map

Name of the form or map layout used to build the report headings.

The following example shows the specification panel for the Report Heading Parameters:

I New BATCH

Specify Report Heading Parameters N
Enter settings for the repert headings.

Report Headings

Heading

1 HEADER1

Printer Line Add...

= 1
Delete

Edit...

Printer Settings

MNo. Mame

L PS5 P15 ES Form or Map

0 Terminal Screen O O I:I Browse...
1 [z e | O O [] Brows.
2| [z e | O O [] Brows.
3| [z e | O O [] Brows.
'i?:' Options... < Back Mext > Finish Cancel

98

Code Generation

Natural Construct Generation

Specify Basic Program Structure

Use this panel to specify the basic structure of the batch program. Four different program blocks

are available:

® INPUT statement for initial parameters

= REPEAT loop

® INPUT statement that prompts for a start and end range of primary key values within the RE-

PEAT loop

® END TRANSACTION statement for updates

Panel reference

Field

Description

Initial input section

Add initial input section with
additional input parameters

If this field is marked, parameters are input at the beginning of the program
(before any files are read). Specify the parameters on the Additional
Parameters panel.

use this map for initial input

Name of the external map the program uses to input the parameters.

Repeated input loop section

Activate repeated input loop

If this field is marked, a REPEAT loop reads the primary file for multiple
ranges of records. By default, you can enter a single range of primary key
values at the beginning of the program (after any additional input

parameters). If you mark this field, primary key ranges will be continually
input until the specified termination string is reached in the input stream.

Termination string for repeated
loops

Termination string indicating when the program terminates. If you specified
a map name in the INPUT USING MAP field (see above), you can use the
#TERMINATED-STRING variable (modifiable, format A3) to input the
termination string value.

Read input range

If this field is marked, the generated batch program reads only a portion
of the file each time the REPEAT loop executes.

use this map for start and end
range

Name of the external map the program uses to input the parameters. To
specify a map name, use the #INPUT1.primary key variable to indicate
the beginning of the range and the #INPUT2.primary key variable to
indicate the end of the range ($INPUT1.ORDER-NUMBER, for example).

Note: The primary key is the key of the primary file used in the batch

program.

End transaction section

Perform ET peridocally

Mark this field to build a batch update program. An ET (END
TRANSACTION) statement will be performed periodically to release
records and update the database.

Code Generation

99

Natural Construct Generation

Field Description

Number of primary records ... |If youmarked the Perform ET field, specify the number of primary records

before every ET to process before issuing an ET statement.

The following example shows the specification panel for the Batch Program Structure:

I New BATCH O *®

Specify Basic Program Structure N

Define the basic program structure,

Initial input sectien
(] Add initial input secticn with additonal input parameters

Use this map for the inital input: Browse...

Repeated input loocp section
Activate repeated input loop

Termination string for repeated loop: | FIN

(] Read input range (#INPUT1 and #INPUT2)

Use this map to prompt for start and end range: Browse...

End Transaction section
[]Perform ET periodically

Murnber of primary records to process before every ET: 0

L) Options... < Back Finish Cancel

Specify Additional Parameters

Use this panel to specify the names of up to eight fields to input into the batch program, in addition
to the range of key values for reading the primary file. These field names can be input either once
at the beginning of the batch program or each time a new key range is specified. You can specify

any field; the field does not have to be in the Predict file definition.

100

Code Generation

Natural Construct Generation

Panel reference

Field Description

Field Name Name(s) of the additional input field(s).

Format Natural format and length. In the first portion of this field, type the code for the format of
the corresponding field.
Format Type the desired field length.

Initial INPUT |If the Additional inputs field on the Program Structure panel is marked, this field is available
for modification. To apply the corresponding field name to the entire file, mark this field.

Repeat INPUT |If the Multiple inputs field on the Program Structure panel is marked, this field is available
for modification. To apply the field name to the specified input range, mark this field.

The following example shows the specification panel for the Batch model, the Additional Para-
meters panel:

MNew BATCH O ¥
(]

Specify Additional Parameters N

Define additional parameters which can be used in the initial input or repeated input loop.

Mo, Field name Format Length Initial input ~ Repeat input

O

1 | FELDT ||A

<
=

I

2| |

<

[FE)
L4

s
L4

o
L4

-
<

oo
L4

@' Options... < Back Einish Cancel

Code Generation 101

Natural Construct Generation

Specify Parameters for Primary file

Use this panel to specify the primary file and indicate which Predict relationships the batch program
will use. If you want to define secondary and tertiary files you can navigate with the Next Button
to the corresponding pages.

Panel reference

Field

Description

Predict parameters

Primary view

View name driving the batch program. The specified view must be defined in Predict.

The primary file type can be Adabas, DB2, VSAM, or sequential.

Natural (DDM)

Name of the data definition module (DDM) for the primary file. All fields in the primary
file must be in the specified DDM.

This field defaults to the name of the primary file, so you only need to specify a DDM if
it is different from the primary file name.

Primary key

Key used to read the file in logical (rather than physical) sequence and to control scrolling.
The key must be defined as a descriptor, superdescriptor, or subdescriptor in the Predict
file definition. If the specified key does not exist in the corresponding Predict file, a message
indicates that the Key field was not found in the file.

Note: The primary key name is not applicable when the primary file is a sequential work
file.

Predict Relationships

Select all

If this field is marked, the generated program performs file lookups (joins) on all files
related to the primary file in Predict, mark this field. In each relationship, the cardinality
of the primary file must be N or CN, while the cardinality of the related file must be 1 or
C.

The update constraint type must be R (restricted update), and the delete constraint type
can be blank or R. Only type N (Natural Construct) relationships are processed.

In the generated batch program, the relationship name is used as the view name. Specify
the related file name when selecting fields in the WRITE-FIELDS user exit. To avoid having
to make manual changes after generating your user exit, change the related file name to
the relationship name before generation. The generated fields will then have the correct
prefix.

Note: For DB2 users, type R (referential constraint) relationships are also processed.

Select specific

Names of up to four Predict relationships for the specified primary file.

The following example shows the Primary File Parameters panel:

102

Code Generation

Natural Construct Generation

I New BATCH O *®

Specify Parameters for Primary File N

Enter parameter settings for primary file.

Predict parameters

Primary view: | NCST-CUSTOMER | | Browse...
Matural DDM: | |
Primary key: | CUSTOMER-NUMBER | | Browse...

Predict Relationships

Mumber 1: |

| Browse...
Mumber 2: | | Browse...
Mumber 3: | | Browse...
Mumber 4: | | Browse...

@' Options... < Back Mext = Cancel

Specify Parameters for Secondary file (1)

You can specify a secondary file, which will be logically coupled (joined) to the primary file in
your batch program. The secondary file must be normally related to the primary file with cardin-
ality 1:N.

Panel reference

Field Description

Predict parameters

Secondary view |Name of the secondary view, which must be defined in Predict.

The secondary file type can be Adabas, DB2, VSAM, or sequential.

Natural (DDM) |Name of the data definition module (DDM) for the secondary file. All fields in the
secondary file must be in this DDM.

This field defaults to the name of the secondary file, so you only need to enter a DDM if
it is different from the secondary file name.

Secondary key |Name of the scrolling key used to read the secondary file in logical rather than physical
sequence. This key must be defined as a descriptor, superdescriptor, or subdescriptor in
the Predict file definition.

Code Generation 103

Natural Construct Generation

Field

Description

Note: The secondary key is not applicable when the secondary file is a sequential work
file.

Related by field

Name of the primary key used to couple the primary and secondary files.

Predict Relationships

Select all

If this field is marked, the generated program performs file lookups (joins) on all files
related to the secondary file in Predict. In each relationship, the cardinality of the secondary
file must be N or CN. The cardinality of the related file must be 1 or C. The update
constraint type must be R (restricted update). The delete constraint type can be blank or
R. Only type N (Natural Construct) relationships are processed.

Within the generated batch program, the relationship name is used as the view name.
Specify the related file name when selecting fields in the WRITE-FIELDS user exits. To
avoid having to make manual changes after generating the user exit, change the related
file name to the corresponding relationship name before generation. The generated fields
will then have the correct prefix value.

Note: For DB2 users, type R (referential constraint) relationships are also processed.

Select specific

Names of up to four Predict relationships for the specified secondary file.

The following example shows the Specify Paramaeters For Secondary File (1) panel:

[New BATCH O *®
. . 1
Specify Parameters For Secondary File (1) N
Enter parameter settings for secondary file (1),
Predict parameters
Secondary view: | NCST-ORDER-LINES | iBrowse...
Matural DDM: | |
Secondary key: | | Browse...
Related by field: | CUSTOMER-NUMBER | | Browse..
Predict Relationships
[]Select All
MNumber 1: | | Browse...
Number 2: | | Browse...
MNumber 3: | | Browse...
Number 4: | | Browse...
@' Options... < Back Mext = Cancel

104

Code Generation

Natural Construct Generation

Specify Paramete

You can specify

rs for Secondary file (2)

a secondary file, which will be logically coupled (joined) to the primary file in

your batch program. The secondary file must be normally related to the primary file with cardin-

ality 1:N.

Panel reference

Field

Description

Predict parameters

Secondary view

Name of the secondary view, which must be defined in Predict. The secondary file type
can be Adabas, DB2, VSAM, or sequential.

Natural (DDM)

Name of the data definition module (DDM) for the secondary file. All fields in the
secondary file must be in this DDM.

This field defaults to the name of the secondary file, so you only need to enter a DDM if
it is different from the secondary file name.

Secondary key

Name of the scrolling key used to read the secondary file in logical rather than physical
sequence. This key must be defined as a descriptor, superdescriptor, or subdescriptor in
the Predict file definition.

Note: The secondary key is not applicable when the secondary file is a sequential work
file.

Related by field

Name of the primary key used to couple the primary and secondary files.

Predict Relations

hips

Select all

If this field is marked, the generated program performs file lookups (joins) on all files
related to the secondary file in Predict. In each relationship, the cardinality of the secondary
file must be N or CN. The cardinality of the related file must be 1 or C. The update
constraint type must be R (restricted update). The delete constraint type can be blank or
R. Only type N (Natural Construct) relationships are processed.

Within the generated batch program, the relationship name is used as the view name.
Specify the related file name when selecting fields in the WRITE-FIELDS user exits. To
avoid having to make manual changes after generating the user exit, change the related
file name to the corresponding relationship name before generation. The generated fields
will then have the correct prefix value.

Note: For DB2 users, type R (referential constraint) relationships are also processed.

Select specific

Names of up to four Predict relationships for the specified secondary file.

The following example shows the Specify Paramaeters For Secondary File (2) panel:

Code Generation

105

Natural Construct Generation

I New BATCH O *®

Specify Parameters For Secondary File (2) N

Enter parameter settings for secondary file (2).

Predict parameters

Secondary view: | | Browse...
Matural DDM: | |
Secondary key: | | Browse...
Related by field: | CUSTOMER-NUMBER | | Browse...
Predict Relationships

[select All

Mumber 1: | | Browse...
Mumber 2: | | Browse...
Mumber 3: | | Browse...
Mumber 4: | | Browse...

@' Options... < Back Mext = Cancel

Specify Parameters for Tertiary file (1)

On this panel you can define a tertiary file, which will be logically coupled (joined) to the first
secondary file.

Panel reference

Field Description

Predict parameters

Tertiary file name |Name of the tertiary view, which must be defined in Predict. The tertiary file type can
be Adabas, DB2, VSAM, or sequential.

Natural (DDM) |Name of the data definition module (DDM) for the tertiary file. All fields in the secondary
file must be in this DDM.

This field defaults to the name of the tertiary file, so you only need to enter a DDM if
it is different from the tertiary file name.

Tertiary key name |Name of the scrolling key used to read the tertiary file in logical rather than physical
sequence. This key must be defined as a descriptor, superdescriptor, or subdescriptor
in the Predict file definition.

Note: The tertiary key is not applicable when the tertiary file is a sequential work file.

106 Code Generation

Natural Construct Generation

Field

Description

Related by field

Name of the secondary key used to couple the secondary and tertiary files.

Predict Relationshi

ps

Select all

If this field is marked, the generated program performs file lookups (joins) on all files
related to the tertiary file in Predict. In each relationship, the cardinality of the tertiary
file must be N or CN. The cardinality of the related file must be 1 or C. The update
constraint type must be R (restricted update). The delete constraint type can be blank
or R. Only type N (Natural Construct) relationships are processed.

Within the generated batch program, the relationship name is used as the view name.
Specify the related file name when selecting fields in the WRITE-FIELDS user exits. To
avoid having to make manual changes after generating the user exit, change the related
file name to the corresponding relationship name before generation. The generated
fields will then have the correct prefix value.

Note: For DB2 users, type R (referential constraint) relationships are also processed.

Select specific

Names of up to four Predict relationships for the specified tertiary file.

The following example shows the Specify Paramaeters For Tertiary File (1) panel:

[New BATCH O *®
. . . 1
Specify Parameters For Tertiary File (1) N
Enter parameter settings for tertiary file (1),
Predict parameters
Tertiary file name: | | | Browse...
Matural DDM: | |
Tertiary key name: | | Browse...
Related by field: | | Browse...
Predict Relationships
[]Select All
MNumber 1: | | Browse...
Number 2: | | Browse...
MNumber 3: | | Browse...
Number 4: | | Browse...
@' Options... < Back Mext = Cancel

Code Generation

107

Natural Construct Generation

Specify Parameters for Tertiary file (2)

On this panel you can define a tertiary file, which will be logically coupled (joined) to the second

secondary file.

Panel reference

Field

Description

Predict parameters

Tertiary file name

Name of the tertiary view, which must be defined in Predict. The tertiary file type can
be Adabas, DB2, VSAM, or sequential.

Natural (DDM)

Name of the data definition module (DDM) for the tertiary file. All fields in the secondary
file must be in this DDM.

This field defaults to the name of the tertiary file, so you only need to enter a DDM if
it is different from the tertiary file name.

Tertiary key name

Name of the scrolling key used to read the tertiary file in logical rather than physical
sequence. This key must be defined as a descriptor, superdescriptor, or subdescriptor
in the Predict file definition.

Note: The tertiary key is not applicable when the tertiary file is a sequential work file.

Related by field |Name of the secondary key used to couple the secondary and tertiary files.
Predict Relationships
Select all If this field is marked, the generated program performs file lookups (joins) on all files

related to the tertiary file in Predict. In each relationship, the cardinality of the tertiary
file must be N or CN. The cardinality of the related file must be 1 or C. The update
constraint type must be R (restricted update). The delete constraint type can be blank
or R. Only type N (Natural Construct) relationships are processed.

Within the generated batch program, the relationship name is used as the view name.
Specify the related file name when selecting fields in the WRITE-FIELDS user exits. To
avoid having to make manual changes after generating the user exit, change the related
file name to the corresponding relationship name before generation. The generated
fields will then have the correct prefix value.

Note: For DB2 users, type R (referential constraint) relationships are also processed.

Select specific

Names of up to four Predict relationships for the specified tertiary file.

The following example shows the Specify Paramaeters For Tertiary File (2) panel:

108

Code Generation

Natural Construct Generation

I New BATCH O *®

Specify Parameters For Tertiary File (2) N
Enter parameter settings for tertiary file (2).

Predict parameters

Tertiary file name: | | Browse...
Matural DDM: | |

Tertiary key name: | | Browse...
Related by field: | | Browse...
Predict Relationships

[select All

Mumber 1: | | Browse...
Mumber 2: | | Browse...
Mumber 3: | | Browse...
Mumber 4: | | Browse...

® Options... < Back Mext > Cancel

Browse/Browse-Select Wizards

This section describes the specification parameters for the Browse and Browse-Select series of
wizards. The following topics are covered:

= Specify Standard Parameters

= Specify Additional Parameters

= Specify Map Details

= Specify Field Details

= Specify Restriction Parameters

= Specify Prefix Helproutine Parameters

= Specify #ACTION Parameters

= Specify Additional Subprogram Parameters

| Note: The Browse-Select series of wizards is used for screen examples throughout this section.

Code Generation 109

Natural Construct Generation

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
all Browse and Browse-Select wizards. For information about these parameters, see Specify
Standard Parameters.

After specifying the standard parameters, select Next to display the Specify Additional Parameters
panel. For example:

IN' New BROWSE-SELECT

Specify Additional Parameters e
Enter settings for additional parameters,
e -]

Predick parameters

Predict view: | | [Brnwse...]

Matural DDM: | |

Program wiew: | |

Primary kes: | | [Brnwse...]

Scrolling paranieters

Horizonkal panels: IZI
Baclward scroll pages:

Support paramekers
[Jwildcard suppart [JExpart data support
[IHardcopy support [] window support

Key parameters

Iinirmum ke walue: | |

Maximum key value: | |

Commaon Parameters. ..] [Windnw Parameters. ..

@j [Ophions. .. H < Bark

110 Code Generation

Natural Construct Generation

Specify Additional Parameters

- To specify additional parameters

1

2 Define the following parameters:

Parameter Description

Predict view |Name of the Predict view used by the generated browse module. Either type the name
or select Browse to display the available views for selection. The view must be defined

in Predict.

Primary key |Name of the primary key by which scrolling takes place. Either type the name or select
Browse to display the available primary keys for selection. This key must be defined as
a descriptor, superdescriptor, or subdescriptor in the Predict file definition. Keys
containing MUs (multiple-valued fields) and PEs (periodic groups) are supported. If

this key does not exist in the corresponding Predict file, a message is displayed.

Note: For DB2 users, add the combination of fields as a superdescriptor in Predict if you

want to use more than one field to determine the sort sequence of the records being
browsed.

Optionally, you can:

Task Procedure

Define the name of the data
definition module (DDM)

corresponding to the primary
file.

Type the DDM name in Natural DDM. If this field is not specified,
the DDM name defaults to the primary file name. The Predict
definition of the primary file determines which fields are included
in the DEFINE DATA section of your generated code. The format of
the generated code in the DEFINE DATA section has the following
structure:

1 Primary-file-name VIEW OF Data-definition-module
2 fields pulled from Predict of Primary-file-name

Define the name of the view for
the primary file for the
generated module.

Type the primary file view name in Program view. This view must
be defined in the LOCAL-DATA user exit or a local data area (LDA).

If this field is not specified, a view is generated containing all fields
in the Predict view. The MAX.OCCURS value in Predict determines
how many occurrences of MU/PE fields are included on the panel.

Change the number of panels
used for the generated module.

Type the number of panels in Horizontal panels. The default is 1
panel.

Change the maximum number
of pages the generated module
can scroll.

Type the maximum number of pages in Backward scroll pages. The
default is 10, which indicates that users can scroll forward and
backward within a 10-page range. If they scroll forward 11 pages,
page 1 is forced out of the range and they cannot scroll back to it.

Code Generation

M

Natural Construct Generation

Task

Procedure

Note: A Natural Construct-generated browse module does not allow

backward scrolling over data that has not been previously scrolled
through in a forward direction.

Enable wildcard processing in
the generated module.

Select Wildcard support. Numeric key values are input into an
alphanumeric field, which allows the user to enter "*", ">", or "<"

Enable records to be exported to
a work file in addition to, or
instead of, the screen.

Select Export data support. The work file can then be used in other
environments and on other platforms (for example, in a PC
spreadsheet application). To write data from the generated report to
a work file, select the EXPORT-DATA user exit and define the
parameters to export to the work file. The work file number and
delimiter character (used to delimit fields on the report) can be
customized for your site.

Note: If you select this field and do not define the EXPORT-DATA

user exit, a default WRITE WORK FILE statement that includes all
fields in the view will be generated.

Enable the hardcopy facility in
the generated module.

Select Hardcopy support.

Enable the module output to be
displayed in a window, rather
than a panel.

Select Window support. By default, the window size is adjusted to
its content. The window is placed on the screen so that the field from
which the user invoked it remains visible.

Define a starting value for the
browse.

Type the starting value in Minimum key value. The combination of
the minimum and maximum key values creates a logical window
within the file. The program will not browse before or after these
values.

The minimum key value must be a constant. The specified constant
is placed into a variable called #MIN-KEY-VALUE, which can be
overridden in the START-OF-PROGRAM user exit.

Define an ending value for the
browse.

Type the ending value in Maximum key value. The maximum key
value must be a constant and greater than or equal to the minimum
key value. The specified constant is placed into a variable called
#MAX-KEY-VALUE, which can be overridden in the
START-OF-PROGRAM exit.

Note: You can set the minimum and maximum values as variables

within user exit code. For example, if the first three characters of
personnel ID represent the department code, you can restrict the
browse to a specific department based on where the browse was
called from or who was calling it. To do this, use the
START-OF-PROGRAM user exit to look up and retrieve the current
user's department code (assuming it is stored) and then use this
information to populate a variable that overrides the
#MIN-KEY-VALUE and #MAX-KEY-VALUE values (created when
constants are populated through the specifications). If Smith belongs
to department 555, for example, you can populate the minimum value

12

Code Generation

Natural Construct Generation

Task Procedure

with 555 and the maximum value with 55599999 to retrieve all data
for department 555.

Define common parameters for |Select Common Parameters. For information, see Specify Common
the generated module, such as |Parameters.

support for direct command
processing, message numbers,
and password checking.

Define window parameters for |Select Window Parameters. For information, see Change the Window
the generated module. Settings.

Select generation options for the|Select Options. For information, see Generation Options.
module(s).

3 Select Finish.

The module is generated using the current specifications. When generation is complete, the
available user exits are displayed in the Outline view.

Or:
Select Next.

The Specify Map Details panel is displayed. For example:

Code Generation 113

Natural Construct Generation

W New BROWSE-SELECT =3
Specify Map Details [
Enter the information For either an external or an inkernal map. m

[-

External map parameters

Inpuk using map: | | [Browse. 00]

Reserved input lines: D

Internal map parameters
() Single prompt () Multiple prompks

Internal map non-key figlds

FieldWName | Formak Length | Field Prompt

@j ’Optinns... H < Back ” Mext = ” Finish H Cancel

Specify Map Details
Optionally, you can define details for either an external or internal map.
~ To specify map details

1 Define the following optional parameters:

Parameter Description

Input using map |Name of the layout map used for the generated module. Either type the name or
select Browse to display the available maps for selection. If a map is specified, it
should be a short map that is displayed at the bottom of the panel. The CDLAYSC1
layout map is supplied for Browse models. If you do not specify a layout map,
Natural Construct places the input fields sequentially at the bottom of the panel.

The map is included as part of the END OF PAGE processing to input values that
control scrolling. The map must adhere to the following conventions:

114 Code Generation

Natural Construct Generation

Parameter

Description

® The map definition includes the #SCR-CV control variable.

= The #KEY-CV control variable is defined for all input fields that are part of the
browse key.

® The input fields used to reposition the browse key, as well as any additional input
fields, are defined within the #INPUT structure in the global data area (GDA) for
the browse module.

When more than one horizontal panel is required, use a different map for each
panel. Include an asterisk (*) in the map name (for example, MYMAP*) and the
asterisk will be replaced by the panel number during generation (for example,
MYMAP1, MYMAP2, MYMAP3). If more than nine horizontal panels are used, the
map name cannot exceed six bytes.

To support an action/selection column for browse-select modules, include the

column on the map as an array called #ACTIONS. Attach the #ACTION-CV control
variable to #ACTIONS. To display a list of available actions on the generated panel,
include the CDDIALDA.#KD-LINE1 and CDDIALDA .#KD-LINE2 variables on the

map.

Reserved input

Number of lines reserved for input prompts (typically 1, 2, or 3).

lines

Single prompt |Enables/disables a single prompt to be displayed for all fields (for example, Date:
____)- This option applies when the key is a superdescriptor or redefined in Predict.

Multiple prompts|Enables/disables one prompt to be displayed for each field (for example, Year:

Month:__Day:__). This option applies when the key is a superdescriptor or redefined
in Predict.

Internal map

non-key fields

Up to eight additional input fields for the browse module. For information, see
Specify Field Details.

2 Select Finish.

The module is generated using the current specifications. When generation is complete, the
available user exits are displayed in the Outline view.

Or:

Select Next.

The following panel is displayed:

Code Generation

15

Natural Construct Generation

Wizard

Panel Displayed

Browse

Specify Restriction Parameters

Browse-Helpr and Browse-Subp

Specify Additional Subprogram Parameters

Browse-Select, Browse-Select-Helpr, and
Browse-Select-Subp

Specify #ACTION Parameters

Specify Field Details

Optionally, you can specify up to eight additional input fields for a browse module. These fields
are displayed at the bottom of the generated panel and allow the user to display more information.
For example, you can create an additional input field called Detail (format L) to display additional
record details. Users can select the Detail field to display the information.

| Note: The additional input fields do not have to be in the Predict file definition.

This section covers the following topics:

= Add a Non-Key Field
= Delete a Non-Key Field
= Edit a Non-Key Field

Add a Non-Key Field

~ To add a non-key field

1 Select Add on the Specify Map Details panel.

The Specify Field Details window is displayed. For example:

116

Code Generation

Natural Construct Generation

72 Add Field =13
Specify Field Details -
Enter details about the non-kesy input Field, m

Required Figld pararmeters

Field name: |

Matural Farmat: “ | length: |0

Array indexes on generated panel

Starting occurrence: | O

Ending oceurrence: | 0

Prompt pararneters
Prompk texkt:

Prompt off: []

Field placement
Panel number: |0 Maoke: Displayed on every panel when not specified,

Mew line:]

Additional attributes

Session parameters:

Ok] [Zancel

2 Define the following parameters for the additional field:

Parameter Description

Field name Name of the additional input field.

Natural format/length |Natural format and length for the field.

Starting occurrence |Starting occurrence of an array variable to place on the generated panel.

Note: The Starting and Ending occurrence values define the range of

occurrences of an array variable to place on the panel. If you specify a range
with different first and last values, a single prompt precedes all elements in
the range. (For multiple prompts, specify each occurrence separately.)

Ending occurrence Ending occurrence of an array variable to place on the generated panel.

Prompt text Text displayed for the field on the generated browse panel. Intensified text
must be enclosed within angle (<>) brackets (or whatever attribute character
is set for intensify).If you do not specify a field prompt, Natural Construct
creates a prompt using the internal name of the input field.

Prompt off Enables/disables the display of the prompt text.

Dynamic Attributes |Change the default dynamic attribute characters. For information, see Change
the Dynamic Attribute Characters.

Code Generation 117

Natural Construct Generation

Parameter Description

Panel number Panel number for the field for the first dimension. If a panel number is not
specified, the prompt is displayed on all panels.

New line Enables/disables the display of the input field on a new line.

Session parameters |One or more session parameters for the additional input field, such as Attribute
Definition (AD) or Edit Mask (EM). For example:

AD=I SG=0N EM='>'"X HE='HELPR'

3 Select OK to add the field.
Delete a Non-Key Field
~ To delete a non-key field
1 Select the field you want to delete on the Specify Map Details panel.
2 Select Delete.
The field is removed from the Internal map non-key fields table.
Edit a Non-Key Field
~ To edit a non-key field
1 Select the field you want to edit on the Specify Map Details panel.
2 Select Edit.
Or:
Double-click on the row in the Internal map non-key fields section.
The Specify Field Details window is displayed, showing the current settings for the field.
3 Edit the field settings.
4 Select OK to save the changes.

118

Code Generation

Natural Construct Generation

Specify Restriction Parameters

For a browse program, you can optionally limit the generated module to only browse records
prefixed by a global variable. If the prefix is a department code, for example, you can restrict the
browse to only those orders prefixed by a particular department code by setting the value of the
code as a function of a user ID and storing the value in the global data area.

For a browse helproutine or subprogram, you can limit the browse by passing the prefix portion
of the key. To display only the lines for a particular order, for example, you can pass the order
number (N6) to the subprogram and enter "N6" in the Natural format field on the Specify Addi-
tional Subprogram Parameters panel. On the Specify Restriction Parameters panel, mark the
Restrict browse with prefix field and enter "6" in the Number of characters (bytes) field.

The following example displays the Specify Restriction Parameters panel for the Browse-Select
wizard:

W' New BROWSE-SELECT =03

Specify Restriction Parameters [e
Enter settings For the restrickion parameters,

Prefix options
[CJRestrict browse with prefix

Murber of characters (bytes): |0

Murber of components: a
Field name: |
() Pratect prefix (") Suppress prefix

Prefix helprouting parameters

Helproutine Parameter Marme

'@:‘ Options. .. H = Back Firish H Cancel

~ To specify restriction parameters

1 Define the following optional parameters:

Code Generation 119

Natural Construct Generation

Parameter

Description

Restrict browse with
prefix

Enables/disables the restriction of the browse by prefix. When this option is
selected, the browse is limited to values for which the primary key is prefixed
by or equal to the specified value.

Note: If you select this option, you must also specify either the number of

characters or number of components to use as the prefix and provide a field
name.

Number of
characters (bytes)

Number of bytes of the primary key to use as the prefix..

Note: You can specify either the number of characters or the number of

components, but not both.

Number of
components

Number of compound key components to use as the prefix. You can then use
the Prefix helproutine parameters options to assign the helproutine parameters.

Note: You can specify either the number of characters or the number of

components, but not both.

Field name

Name of the field containing the prefix value. The value must be a valid Natural
field name.

When generating a browse helproutine or subprogram, the prefix portion of the
key is assumed to be equal to #PDA-KEY (i.e., the value of the key passed to the
helproutine or subprogram). To override this default:

1. Enter the name of a variable in Field name.

2. Define the variable in the LOCAL-DATA user exit.

3. Assign a value to the field in the ASSIGN-PREFIX-VALUE user exit.

The assigned value (instead of #PDA-KEY) will then be used as the value for
the prefix portion of the key.

Protect prefix

Enables/disables the protection of the prefix portion of the primary key for the
input field. When this option is selected, the prefix is displayed but cannot be
changed.

Note: To use this option, the primary key must be a superdescriptor, a compound
IMS key, or redefined in Predict.

Suppress prefix

Enables/disables the display of the prefix portion of the primary key. When this
option is selected, the prefix portion of the primary key is not displayed.

Note: To use this option, the primary key must be a superdescriptor, a compound
IMS key, or redefined in Predict.

Helproutine
parameters

Up to two restriction helproutine parameters. For information, see Specify Prefix
Helproutine Parameters.

Note: This option only applies when Number of components is specified.

120

Code Generation

Natural Construct Generation

2 Select Finish.

The modules are generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

3 Save the generated modules.
At this point, you can:

® Use the NaturalONE Testing option to test a subprogram. For information, see Test a Sub-
program Directly in Application Testing.

® Define user exits for the subprogram. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Specify Prefix Helproutine Parameters

When Number of components is specified on the Specify Restriction Parameters panel, you can
optionally attach a helproutine to the prefix of the primary key. This section covers the following
topics:

= Add a Prefix Helproutine Parameter
= Delete a Prefix Helproutine Parameter
= Edit a Prefix Helproutine Parameter

Add a Prefix Helproutine Parameter

~ To add a prefix helproutine parameter

1 Select Add on the Specify Restriction Parameters panel.

The Add Prefix Helproutine Parameters window is displayed. For example:

7= ndd Prefix Helproutine |._|@|PX|
Add Prefix Helproutine Parameters -
Enter settings For the prefix helprouting parameters.,
e -]
Helproutine: | | | [Browse...]
Patameter name: | |
OF] [Cancel

Code Generation 121

Natural Construct Generation

2 Define the following parameters for the additional field:

Parameter Description

Helproutine Name of the helproutine for the prefix. To attach a helproutine to the prefix of the
primary key, enter the name of the helproutine in this field. You can specify a
helproutine for each component.

Parameter name | Parameter for the helproutine for each component. Define the help parameters in
the LOCAL-DATA user exit.

3 Select OK to add the helproutine.

Delete a Prefix Helproutine Parameter

~ To delete a prefix helproutine parameter

1 Select the helproutine you want to delete on the Specify Restriction Parameters panel.

2 Select Delete.

The helproutine is removed from the Prefix helproutine parameters table.

Edit a Prefix Helproutine Parameter

~ To edit a prefix helproutine parameter
1 Select the helproutine you want to delete on the Specify Restriction Parameters panel.

2 Select Edit.

The Edit Prefix Helproutine window is displayed, showing the current settings for the hel-
proutine.

Or:

Double-click on the row in the Prefix helproutine parameters section.
3 Edit the helproutine settings.
4 Select OK to save the changes.

122 Code Generation

Natural Construct Generation

Specify #ACTION Parameters

For Browse-Select, Browse-Select-Helpr, and Browse-Select-Subp wizards, theSpecify #ACTION
Parameters panel is displayed after the Specify Map Details panel. This panel defines the charac-

teristics of the action/selection field. For example:

W' New BROWSE-SELECT

[N

FACTION pararneters
Action Format: |A | Length: |1 w Tokal action lines: |14 W
Starting line: 7w [multiple screen lines

Starting calurim: |3 W [add action as PF-key

Actions supported

[Jadd [JBrowse clear [pisplay
[T mModify [T mext [Jrurge [Jcopy
CJRecall [Jreplace [5elect [oetail
[IFarmer

Screen lavauk

Field heading lines: 1
Undetline headings: Yes W
Blank lines after headings: | 1

Input key lines: 1

- O

Specify #ACTION Parameters =
Enter settings For the #ACTION parameters,

-

@:l [Optinns... H < Back][Mexk = H Finish H Cancel

> To specify #ACTION parameters

1 Define the following optional parameters:

Parameter Description

Action format/length

Natural format and length of the action/selection field. The default is A1.

Total action lines

lines.

Total number of action lines displayed on the generated panel. This number
corresponds to the maximum number of database records. The default is 14

Code Generation

123

Natural Construct Generation

Parameter Description

Starting line Line number on which the action column begins. This number corresponds
to the first line containing database information (after the panel and field
heading lines). The default is 7.

Multiple screen lines Determines whether each record requires more than one line. For example:

Address: Number-Street
City, Province
Country, Postal Code

Starting column Number of the column in which the action/selection fields are displayed
(when not using an external map). This number determines the placement
of the action/selection entries. The default is 3.

Add action as PF-key |Enables a PF-key for the Add action (by default, PF4).

When generating a browse-select panel, you must decide how users will
add records to a file: by entering "A" in the Action field or by pressing an
Add PF-key. The first method is effective when adding records to existing
files containing one or more records; the second method allows the user to
select the Add PF-key while the cursor is positioned anywhere on the screen
and add a record to an empty file.

Actions supported Actions enabled for the generated browse-select panel. By default, no actions
are supported.

Screen layout The parameters in this section are used to build the screen layout when not
using a predefined map.

Field heading lines Number of field heading lines. The default is one line.

Underline headings Determines whether field headings are displayed with a line under them.

By default, field headings are underlined.

Blank lines after headings|Number of blank lines between the field headings and the data region. The
default is one line.

Input key lines Number of lines reserved at the bottom of the panel for input keys and
additional fields. The default is one for input keys, plus the number of lines
for additional input fields that begin on new lines.

Note: Do not include the Direct Command line in the calculation of this

value.

2 Select Finish.

The module is generated using the current specifications. When generation is complete, the
available user exits are displayed in the Outline view.

Or:
3 Select Next.

The following panel is displayed:

124 Code Generation

Natural Construct Generation

Wizard

Panel Displayed

Browse-Select

Specify Restriction Parameters

Browse-Select-Helpr or Browse-Select-Subp

Specify Additional Subprogram Parameters

Specify Additional Subprogram Parameters

The Specify Additional Subprogram Parameters panel is displayed after the Specify Map Details
panel for Browse-Helpr and Browse-Subp wizards and after the Specify #ACTION Parameters
panel for Browse-Select-Helpr and Browse-Select-Subp wizards.

When generating a helproutine, the following information is displayed on the Specify Additional

Subprogram Parameters panel:

' New BROWSE-SELECT-HELPR

Specify Additional Subprogram Parameters

Enter settings for additional subprogram parameters,

Civerride parameters
Field name: #PDA-KEY

Matural Format: | length: |0

Mote: Format and length defaulks to PERSOMMNEL-ID keyw.

Component parameters

- B

-j >

[N -

Field name:

Matural Format: | length: |0

Array index 1; | 0

Array index 2 | 0

Arrayindex 3 |0

@j [Options. .. ” < Back ” Mext = H Finish H Cancel]

When generating a subprogram, the following information is displayed on the Specify Additional

Subprogram Parameters panel:

Code Generation

125

Natural Construct Generation

IN" New BROWSE-SELECT-SUBP

Specify Additional Subprogram Parameters

Enter settings for additional subprogram parameters,

Overtide parameters
Field narne: #FDA-KEY

Matural Farmat: w length: | 0

Mote: Farmat and length defaults to PERSOMMEL-ID key.

'@:‘ [Options...][< Back][Next = H Finish l[Cancel]

Use this panel to override the format and/or length of the passed parameter or pass an additional
parameter to the helproutine. The key for the browse-select may differ from the key for the calling
program. If the key differs, indicate the format and length of the passed key on this panel. Also
indicate the name of any additional helproutine parameter, as well as its format and length.

Use the top portion of this panel to specify the format and length of the help field (if it is different
from that of the primary browse key).

When generating a helproutine, use the bottom portion of this panel to specify additional paramet-
ers. If no additional parameters are specified, the generated helproutine only has one parameter
(#PDA-KEY), which contains the contents of the input field to which the helproutine is attached.
If the helproutine changes the value of #PDA-KEY, the altered value is displayed in the input field
when the helproutine returns control to the INPUT statement.

~ To specify additional subprogram parameters

1 Define the following parameters:

Parameter Description

Field name Name of the primary key. By default, #’DA-KEY is displayed.

Natural format and length|Natural format and length of the passed field (if it is different from that
of the key being browsed). This format becomes the format for the
#PDA-KEY field.

Component parameters

Field name Name of the additional parameter.

Natural format and length |Natural format and length of the additional parameter. Any valid
combination of format, length, and decimal positions under Natural is
allowed.

Array index 1, 2, and 3 Array dimensions. To declare the additional parameter as an array, enter
the array dimensions in the 1, 2, and 3 fields.

126 Code Generation

Natural Construct Generation

2 Select Finish.

The module is generated using the current specifications. When generation is complete, the
available user exits are displayed in the Outline view.

Or:
Select Next.

The Specify Restriction Parameters panel is displayed. For information, see Specify Restriction
Parameters.

Driver Wizard

This section describes the specification parameters for the Driver wizard. This wizard generates
a module that executes a helproutine or subprogram for testing purposes. The Driver wizard
generates an INPUT statement — you supply the parameters to execute the helproutine or subpro-
gram. The wizard also generates headings and PF-key names according to the value of *Language.

This section covers the following topics:
= Specify Standard Parameters

) Notes:

1. If Natural Construct does not find SYSERR text for the specified value of *Language at generation
time, it uses the English text.

2. Because X-arrays must be materialized before they can be used in an INPUT statement, the
Driver wizard materializes all X-arrays to one dimension. If other dimensions are required,
manual changes must be made.

Specify Standard Parameters

The Specify Standard Parameters panel is the only specification panel for the Driver wizard.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Driver.

Code Generation 127

Natural Construct Generation

The Specify Standard Parameters panel is displayed. For example:

W' New DRIVER =13
Specify Standard Parameters =
Enter settings for the driver program,
[-
Target
Project: | MewProject | [Browse...]
Falder: | | | [Browse...]
Library: | | [Brnwse...]
Module: | |
Deetails
Title: Driwver Praogram

Driver prograrm Far ...

Description:

Module ko call: | | [Browse...]

Desired rows: Mote: For OBIECT-BROWSE® models anly.

® (omome]

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters.

3 Define the following parameter:

Parameter Description

Module to call|Name of the helproutine or subprogram you want to execute using this driver program.
Either type the name or select Browse to display the available modules for selection.
A compiled version of the module must exist in the current library or in the steplib
chain.

Optionally, you can:

128 Code Generation

Natural Construct Generation

Task Procedure

Change the number of rows Type the new number in Desired rows. By default, three rows are
defined in the row array in the |defined.

generated data PDA.

Note: This option is used when calling object browse subprograms

generated using the supplied client generation wizard for
NaturalONE (i.e., object-browse-n1). The wizard uses X-array
technology at runtime to determine how many rows to generate in
the data PDA.

Select Finish.

The driver program is generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

Save the generated module.
At this point, you can:

= Define user exits for the driver program. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Maint Wizard

Natural Construct provides two alternatives to generate a maintenance process:

1.

Use the Maint wizard. This wizard creates fast prototypes or simple maintenance processes
that are temporary. The process is faster to implement because you need only create one or two
Natural objects: the maintenance program generated by the Maint wizard and, optionally, a
map. Conversely, because dialog and data are combined, the generated maintenance program
is not as easy to modify as the subprograms generated by the Object wizards.

Use the Object wizards: Object-Maint-Subp or Object-Maint-Enhanced-Subp (which also
generates the object PDA and restricted PDA) and, optionally, the Object-Maint-Dialog wizard.
These wizards generate all the functionality needed for application development at the produc-
tion level. The separation of dialog and data makes future changes to the maintenance process
easier to implement.

The differences between the code generated by the two wizards include:

Code Generation 129

Natural Construct Generation

Maint Wizard Object Wizards

Maintains one or two levels of files: primary and Maintain up to four levels of files: primary,
secondary. secondary, tertiary, and quaternary.
Supports one scrolling region. Support multiple scrolling regions.

Does not support a link between scrolling regions on |Support a link between scrolling regions on
multiple panels. multiple panels.

Does not provide automatic cursor repositioning after | Provide automatic cursor repositioning after an
an error. (This functionality is available within user |error.
exits.)

This section describes the Maint wizard, which generates a program that maintains a file using a
unique key and, optionally, a related secondary file. The Maint wizard generates the code necessary
to maintain all the fields for an object, as well as scroll through the MU/PE fields of a primary file
or the records of a secondary file. The following topics are covered:

= Specify Standard Parameters
= Specify Additional Parameters
= Specify Additional Input Parameters
= Specify Secondary File Parameters

| Note: By default, a maintenance program generated using the Maint wizard prompts users

to press the Enter key to confirm a Purge action. If you specify a confirmation key other
than Enter, the program will force confirmation of Add, Modify, and Purge actions. For a
description of how to change the confirmation key, see Confirmation Key Setup, Natural
Construct Generation.

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
most wizards.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Maint.

The Specify Standard Parameters panel is displayed. For example:

130 Code Generation

Natural Construct Generation

N New MAINT

Specify Standard Parameters

Enter the settings For the standard parameters,

Target
Project: | NewProject | |Browse... |
Folder: || | |Browse... |
Library: | | |Browse... |
Module: | |

Destails

Global data area: | CDGDA |

With block: | |

Title: | Maintain, . |
This program is used to maintain the. ...

Descripkion:

Headings

First heading: | |

Second heading: | |

®

For information about these parameters, see Specify Standard Parameters. After specifying
the standard parameters, select Next to display the Specify Additional Parameters panel.
For example:

Code Generation 131

Natural Construct Generation

IN" New MAINT

Specify Additional Parameters e
Enter the settings For additional parameters,

Predick parameters

Predict view: | | | |Browse... |
Matural DOM: | |

Primary key: | | |Browse... |

Log file name: | | |Browse... |
Matural DOM: | |

Record description: |

Input pararneters

Input using map: | | ’Browse. 00 l

Iinirmum ke walue: | |

Maximum key value: | |

(single prompt () Mulkiple prompts

Comrnon Patameters. ..

@) ’Optinns... H < Back, l

Use this panel to define additional parameters for your maintenance program.

Specify Additional Parameters

> To specify additional parameters

1 Define the following parameters:

Parameter Description

Predict view |Name of the Predict view used by the generated browse module. Either type the name
or select Browse to display the available views for selection. The view must be defined

in Predict.

132 Code Generation

Natural Construct Generation

Parameter Description

Primary key

browsed.

Name of the primary key by which scrolling takes place. Either type the name or select
Browse to display the available primary keys for selection. This key must be defined as
a descriptor, superdescriptor, or subdescriptor in the Predict file definition. Keys
containing MUs (multiple-valued fields) and PEs (periodic groups) are supported. If
this key does not exist in the corresponding Predict file, a message is displayed.

Note: For DB2 users, add the combination of fields as a superdescriptor in Predict if you

want to use more than one field to determine the sort sequence of the records being

Optionally, you can:

Task

Procedure

Define the name of the data
definition module (DDM)
corresponding to the primary file.

Type the DDM name in Natural DDM. If this field is not specified,
the DDM name defaults to the primary file name. The Predict
definition of the primary file determines which fields are included
in the DEFINE DATA section of your generated code. The format
of the generated code in the DEFINE DATA section has the
following structure:

1 Primary-file-name VIEW OF Data-definition-module
2 fields pulled from Predict of Primary-file-name

Provide the name of a log file to
perform update logging for the
generated maintenance program.

Type a view name in Log file name or select Browse to display the
available views for selection. All fields in the primary file that have
matching fields in the log file are written to the log records. Other
fields, such as LOG-DATE and LOG-USER, must also appear in the
log view.

Define the name of the data
definition module (DDM)
corresponding to the log file
(when it is not the same as the log
file name).

Type the DDM name in Natural DDM. If this field is not specified,
the DDM name defaults to the log file name. The update log file
must be a view of the log file DDM.

Provide a description of the record
to be used in messages.

Type the description used in messages in Record description. By
default, "Record" is displayed and messages are displayed in the
form: "Record not found" and "Record displayed".

Provide the name of the layout
map used for the generated
maintenance program.

Type the name of the map in Input using map or select Browse to
display the available maps for selection.

Define a starting value for the
browse.

Type the starting value in Minimum key value. The combination
of the minimum and maximum key values creates a logical window
within the file. The program will not browse before or after these
values.

Code Generation

133

Natural Construct Generation

2

Task

Procedure

The minimum key value must be a constant. The specified constant
is placed into a variable called #MIN-KEY-VALUE, which can be
overridden in the START-OF-PROGRAM user exit.

Define an ending value for the
browse.

Type the ending value in Maximum key value. The maximum key
value must be a constant and greater than or equal to the minimum
key value. The specified constant is placed into a variable called
#MAX-KEY-VALUE, which can be overridden in the
START-OF-PROGRAM exit.

Note: You can set the minimum and maximum values as variables

within user exit code. For example, if the first three characters of
personnel ID represent the department code, you can restrict the
browse to a specific department based on where the browse was
called from or who was calling it. To do this, use the
START-OF-PROGRAM user exit to look up and retrieve the current
user's department code (assuming it is stored) and then use this
information to populate a variable that overrides the
#MIN-KEY-VALUE and #MAX-KEY-VALUE values (created when
constants are populated through the specifications). If Smith belongs
to department 555, for example, you can populate the minimum
value with 555 and the maximum value with 55599999 to retrieve
all data for department 555.

Display a single prompt for all
fields on the generated panel.

Select Single prompt. This option enables/disables a single prompt
to be displayed for all fields (for example, Date: ____)-Itapplies
when the key is a superdescriptor or redefined in Predict.

Display multiple prompts for all
fields on the generated panel.

Select Multiple prompts. This option enables/disables one prompt
to be displayed for each field (for example, Year:___ Month:__
Day:__). It applies when the key is a superdescriptor or redefined
in Predict.

Define common parameters for
the generated module, such as
support for direct command
processing, message numbers, and
password checking.

Select Common Parameters. For information, see Specify Common
Parameters.

Select generation options for the
module(s).

Select Options. For information, see Generation Options.

Select Next.

The Specify Additional Input Parameters panel is displayed. For example:

134

Code Generation

Natural Construct Generation

Specify Additional Input Parameters

Enter the settings for any additional input parameters,

Mark cursor Field:

[]Push-button suppark

Ackion paramekers

E

m

[N -

Action Field length: 1 |w»

[¥]add Browse:
Clear Display

[w] Modify [] Met

Purge [Jrecal

[IFarmer

@:l [Options. .] [< Back][Next =] [Finish l [Cancel]

Use this panel to define any additional input parameters for your maintenance program.

Specify Additional Input Parameters

1

~ To specify additional input parameters

Define any or none of the additional parameters.

Using this panel, you can:

Task

Procedure

Define the field marked by default on
the generated maintenance panel when
an error occurs.

Type the name in Mark cursor field. To avoid ambiguity, fully
qualify the field name with a structure name.

Present actions as cursor-sensitive
push buttons.

Select Push-button support. Users can press the Tab key to
move from action to action. For more information about
implementing actions as push buttons, see the description of
the #KD-LINES(*¥) variable in Variables You Can Use with a Maint
Model Map, Natural Construct Generation.

Change the length of the field used for
#ACTION names. By default, the field

is 1 character in length.

Select another length in Action field length (possible lengths
are 1, 2, or 3). For example, to use "DI" for the Display action,
select "2" in this field.

Code Generation

135

Natural Construct Generation

Task Procedure

Change the default actions generated |Select or deselect any of the following actions:

for the maintenance program. By ‘
default, all actions except Recall and |" Add (add a record to the file)

Former are selected. ® Clear (clear the specified record values from the panel)
= Display (display the specified record)

= Modify (modify the specified record)

= Next (display the next record in the file)

B Purge (removes the specified record from the file)

" Recall (recall the values for the last record cleared from the
panel following a Display, Modify, or Purge action)

= Former (display the contents of the record having the next
lower primary key value from the current key value; if no
lower value exists, the Start of Datamessageis displayed)

Provide the name of the module used |Select Browse for the Browse action field and select the name

to perform the Browse action. of the module.
Select generation options for the Select Options. For information, see Generation Options.
module(s).

2 Select Finish.

The maintenance program is generated using the current specifications. When generation is
complete, the available user exits are displayed in the Outline view.

Or:
Select Next.

The Specify Secondary File Parameters panel is displayed. For example:

136 Code Generation

Natural Construct Generation

Specify Secondary File Parameters

Enter the settings for the secondary file parameters,

acreen lavouk

Harizontal panels:
Scrollable records: E
Scrall lines per screen: E

Secondary file details

W' New MAINT =13

m

[]

Secondary view: |

| [Browse...]

Makural DOM: |

Secondary key: |

| [Browse...]

Related key parameters
() Related kevs must match

() Use primary key as prefix

Line number as suffix
Matural Format: length: III
) Remove empty lines

() Save empty lines

Redefine or superdescriptor as suffix
O Force unigueness

7 Allows duplicates

C?:I [Options... ” < Back]

Finish H Cancel]

Use this panel to define secondary parameters when the program maintains two files, periodic
groups (PEs), multiple-valued fields (MUs), or uses more than one panel of input data.

Specify Secondary File Parameters

~ To specify secondary file parameters

1 Define any or none of the secondary file parameters.

Using this panel, you can:

Code Generation

137

Natural Construct Generation

Task

Procedure

Define the number of panels required
to specify all data in the view. By
default, "1" is displayed.

Type the number of panels in Horizontal panels. (The view
may involve either one or two files.) The #PANEL value ranges
from 1 to the number specified in this field. This option is used
in conjunction with the Input using map field.

Define the maximum number of
secondary file records that can be read
or saved. By default, "0" is displayed.

Type the number of secondary file records in Scrollable
records. If scrolling MU/PE fields in the primary file is
supported, this value represents the highest value that may
be scrolled.

Note:

1. This value does not affect the number of MU/PE occurrences
obtained; the MAX-OCCURS value in Predict determines
this number.

2. If this option is specified, you must provide the name of a
layout map in Input using map on the Specify Additional
Parameters panel.

Define the number of MU/PE elements
or secondary file records that can be
displayed on the panel at one time. By
default, "0" is displayed.

Type the number of elements or records in Scroll lines per
screen.

Note: If this option is specified, you must provide the name

of alayout map in Input using map on the Specify Additional
Parameters panel.

Specify the name of a Predict view that
is coupled with the primary file for the
maintenance program.

Type the name of the file in Secondary view or select Browse
to display a window listing the existing files for selection. A
file definition for the file must exist in Predict.

If you specify a secondary view, you must also specify the
maximum number of secondary file records that can be read
or saved in Scrollable records, the number of scroll lines per
panel in Scroll lines per screen, and select a secondary key
in Secondary key.

Specify the name of the DDM (data
definition module) for the secondary
file.

Type the name of the DDM in Natural DDM. All fields in the
secondary file must be in this DDM.

Note: If you do not specify a secondary file DDV, this field

defaults to the value in the Secondary view field.

Specify the name of the key in the
secondary file that is related to the key
in the primary file.

Type the name of the key in Secondary key or select Browse
to display a window listing the existing keys for selection. The
key can be a descriptor, superdescriptor, or subdescriptor.

Specify that the secondary file key must
be identical to the primary file key.

Select Related keys must match.

Specify that the key of the primary file
is a prefix of the secondary file key

Select Use primary key as prefix. If the primary file key is a
prefix of the secondary file key, specify how the relationship
between the two files is established by using either the Line

138

Code Generation

Natural Construct Generation

Task

Procedure

(secondary file records are always
displayed in the secondary key order).

number as suffix options (Remove empty lines and Save
empty lines) or the Redefine or superdescriptor as suffix
options (Force uniqueness and Allow duplicates). The biggest
difference between the two options is that for the Line number
as suffix options, you do not need to enter the suffix value for
the secondary key. Because the suffix value is a line number,
the suffix is determined during each update session within
the generated program. For all four options, the secondary
file key can be either a descriptor or a superdescriptor.

Note: The secondary key suffix may consist of one or more

distinct fields that determine the sort sequence of the
secondary file records. If this is the case, define a
superdescriptor in Predict containing the fields that relate the
secondary file to the primary file, followed by the fields that
determine the sort order of the secondary records.

Specify the Natural format and length
of the line number (N4, 12, for example).

Select the format in Natural format and type the length in
length. The generated program assumes the secondary file
key is made up of the primary file key value, plus a line
number. The value of the suffix can be displayed on the panel,
but cannot be modified.

Specify that the suffix components of
the secondary file keys are renumbered
(starting at 1) after an occurrence of the
view is saved.

Select Remove empty lines.

Specify that the suffix components of
the secondary file keys are not
renumbered after an occurrence of the
view is saved.

Select Save empty lines.

Use the redefinition of the secondary
key field in Predict to determine the
suffix (when the secondary key suffix
is more than a line number).

Select Force uniqueness. The secondary key suffixes for each
secondary file record should be modifiable when displayed
on the map. The generated program also ensures a unique
secondary file key. If the secondary key is a superdescriptor,
place the trailing fields (beyond the primary key length) on
the map.

Specify that the generated program
does not check the secondary key for
duplicates.

Select Allow duplicates.

Select generation options for the
module(s).

Select Options. For information, see Generation Options.

Select Finish.

The maintenance program is generated using the current specifications. When generation is
complete, the available user exits are displayed in the Outline view.

Code Generation

139

Natural Construct Generation

3 Save the generated module.
At this point, you can:

® Define user exits for the maintenance program. For information, see Defining User Exits.
® Use the NaturalONE functionality to test the program.

® Use NaturalONE functionality to upload the generated program to the server.

Menu Wizard

This section describes the specification parameters for the Menu wizard. This wizard generates a
program that presents users with several choices in the form of a menu. The user enters a code
for one of the choices to invoke a predefined function. You can also include additional fields on
a menu, which may or may not require input.

This section covers the following topics:

= Specify Standard Parameters

= Specify Additional Parameters

= Define Menu Details

= Define Optional Input Parameters

Specify Standard Parameters

> To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Menu.

The Specify Standard Parameters panel is displayed. For example:

140 Code Generation

Natural Construct Generation

W' New MENU
Specify Standard Parameters *
Enter the settings For the standard parameters, m
= -
Targek
Project: | MewProject | lBerse... l
Folder: | | | lBerse... l
Library: | | lBerse... l
Module: | |
Details

Global data area: | CDGDA |

with block; | |

Title: | Menu ... |
This menu ...

Description:

Headings

Firsk heading: | |

Second heading: | |

Additional pararmeters

D Direct command processing
[Message numbers
[JPassward check.

@

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters. For information about the Additional parameters options, see
Specify Common Parameters.

After specifying the standard parameters, select Next to display the Specify Additional
Parameters panel. For example:

Code Generation 141

Natural Construct Generation

W' New MENU - B
Specify Additional Parameters =
Enter the settings For additional parameters,
e -]
Map lawout: | [Brnwse...]
Menu Items

Code Function/Descripkion Prograrn Marme

Optional Input Parameters

Prompt Narie Format Size

@:' Ophions. .. H < Back ” Mexk = H Finish H Cancel

Use this panel to define parameters for the menu, such as the name of a map layout, the available
codes and functions, and the names of the programs to FETCH (if entering a menu code invokes

a program). Optionally, you can link up to four additional parameters to their associated menu
functions.

¢ Tip: Although a map layout is not required for a menu program, it can give a consistent,
tailored appearance to your applications.

142 Code Generation

Natural Construct Generation

Specify Additional Parameters

- To specify additional parameters

1 Select Add for Menu items.

The Add Row window is displayed. For information, see Add a Row of Menu Items.

Optionally, you can:

Task

Procedure

Provide the name of the layout map used for
the generated menu program.

Type the name of the map in Map layout or select
Browse to display the available maps for selection (NSM
file extension).

Link up to four additional parameters to their
associated menu functions.

Select Add for Optional input parameters. For
information, see Define Optional Input Parameters.

2 Select Finish.

The menu program is generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

3 Save the generated module.

At this point, you can:

® Define user exits for the menu program. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Define Menu Details

This section describes how to define details for each row on your menu. The following topics are

covered:

= Add a Row of Menu Iltems
= Delete a Row of Menu ltems

Code Generation

143

Natural Construct Generation

= Edit a Row of Menu ltems

Add a Row of Menu Items

~ To add a row of menu items
1 Select Add for the Menu items table on the Specify Additional Parameters panel.

Add Row window is displayed. For example:

- BEX

Row Details [
Enter row details m

e -1

Menu item

Code:

Description:

Program name: Browse,..

[0] 9 l[Cancel]

2 Define the following parameters for the menu row:

Field Description

Code One or two-character code users must enter to invoke the menu function.

Description |Function code descriptions displayed on the generated menu. If you are not using a layout
map, you must provide a description for all codes specified in the Code field. The
descriptions can be up to 45 characters in length.

Optionally, you can:

Task Procedure

Provide the name of a program to Type the name of the program in Program name or select
FETCH (if entering a menu code Browse to display the available programs for selection (.NSP
invokes a program). file extension).

Note: If the menu function does not invoke a program, this
field must be blank.

3 Select OK to add the row.

4 Perform steps 1, 2, and 3 until all menu rows have been added.

144 Code Generation

Natural Construct Generation

Delete a Row of Menu Items

> To delete a row of menu items

Select the menu option you want to delete in Menu items on the Specify Additional Paramet-
ers panel.

Select Delete.

The row is removed from the Menu items table.

Edit a Row of Menu Items

> To edit a row of menu items

3
4

Select the menu option you want to edit in Menu items on the Specify Additional Parameters
panel.

Select Edit.
Or:
Double-click on the row in the Menu items table.

The Edit Row window is displayed, showing the current settings for the panel.
Edit the row settings.
Select OK to save the changes.

Define Optional Input Parameters

This section describes how to define optional input parameters, as well as how to link up to four
parameters to their associated menu functions. (The majority of the menus will not use this feature.)
The following topics are covered:

= Add an Optional Input Parameter
= Delete an Optional Input Parameter

Code Generation 145

Natural Construct Generation

= Edit an Optional Input Parameter

Add an Optional Input Parameter

~ To add an optional input parameter

1 Select Add for the Optional input parameters table on the Specify Additional Parameters
panel.

Add Optional Parameter window is displayed. For example:

7= Add Optional Parameter, |:.®

Optional Parameter *
Enter input pararmeter details

Parameter information

Prompk: | |

Mame: |

Format: |

Size: | 0

Link ko menuy lines
Enter O For optional or R for Required Far each menu line that needs this parameter

tne 1 | v|
lnez: | v|
lne 3 | v|
line 4 | v|
Line5: | v|
lne6: | v|
lne7: | v|
lnes: | v|
lned: | v|
Line 10: | v|
Line 11: | v|
Line 12: | v|

ok || cancel |

2 Define the following fields for the optional parameter:

146 Code Generation

Natural Construct Generation

Field Description

Prompt|Prompt displayed on the menu for the parameter.

Name |Name of a Natural internal variable to associate with the prompt. This variable checks the
Required/Optional field to ensure that valid data is entered.

Format |Single-character alphabetical abbreviation for the Natural format of the specified variable
(for example, N).

Size Numeric length of the prompt.

Optionally, you can:

Task Procedure

Provide the names of menu functions |Type the name of the field in Line 1 and select "R" (required)
to be linked to the additional field. or "O" (optional). This link will provide a cross reference
between the optional parameter and the menu functions.

3 Select OK to add the parameter.

Delete an Optional Input Parameter

~ To delete an optional input parameter

1 Select the parameter you want to delete in Optional input parameters on the Specify Addi-
tional Parameters panel.

2 Select Delete.

The row is removed from the Optional input parameters table.

Edit an Optional Input Parameter

~ To edit an optional input parameter

1 Select the parameter you want to edit in Optional input parameters on the Specify Additional
Parameters panel.

2 Select Edit.
Or:
Double-click on the row in the Optional input parameters table.

The Edit Optional Parameter window is displayed, showing the current settings for the
parameter.

3 Edit the parameter settings.

Code Generation 147

Natural Construct Generation

4 Select OK to save the changes.
Object-Browse-Dialog Wizard

This section describes the specification parameters for the Object-Browse-Dialog wizard. This
wizard generates a character-based user interface to use with object-browse subprograms.

Because a browse module can be transformed into an object-browse subprogram and object-browse
dialog program, and because the browse module has different PF-keys and actions and contains
both Ul and data access, you must consider how the Object-Browse-Dialog wizard works with a
transformed object-browse subprogram versus one that was not transformed. If a browse module
was transformed, the object-browse dialog program was generated automatically and there is no
need to create one (but you can regenerate the dialog program). To differentiate between the two
types in this section, these modules are referred to as a transformed object-browse dialog program
versus an object-browse dialog program.

This section covers the following topics:

= Specify Standard Parameters
= Specify Additional Parameters
= Specify Specific Parameters

| Note: For more information, refer to Object-Browse-Dialog Model, Natural Construct Object
Models.

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
all Object-Browse wizards.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Object-Browse-Dialog,.

The Specify Standard Parameters panel is displayed. For example:

148 Code Generation

Natural Construct Generation

W' New OBJECT-BROWSE-DIALOG

Specify Standard Parameters

Enter setkings For the standard parameters,

Targek

- B

Project: | MewProject

| [Browse...]

Folder: | |

| [Browse...]

Libraty: |

| [Browse...]

Module: |

Details

Title: | Ohject Browse Dialog For

Description:

This dialog is used For the object browse ...

Headings

Firsk heading: |

Second heading: |

Miscellaneous parameters

] Do not populate first input screen

’International Parameters. ..]

@ (oms]

[] =enerate page title {when not on input map)

Zancel

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters. Optionally, you can use this panel to:

Task

Procedure

Suppress the population of fields
with default data on the first
input screen.

Select Do not populate first input screen. This option indicates
whether default data is automatically entered into fields on the first
input screen. It can be used to provide consistency between Natural
Construct-generated browse and object-browse modules. By default,
the first input screen is not populated for a transformed
object-browse dialog program and is populated for a generated
object-browse dialog program.

Generate a page title when it is
not on the input map.

Select Generate a page title (when not on input map). This option
indicates whether to automatically code the page title when a map
isnot being used. By default, the page title is coded for a transformed

Code Generation

149

Natural Construct Generation

Task

Procedure

object-browse dialog program and is not coded for a generated
object-browse dialog program.

Define the language in which to
display text on the generated
panel(s).

Select International Parameters. For information, see Specify
International Parameters.

Select Next.

The Specify Additional Parameters panel is displayed. For example:

IN" News OBJECT-BROWSE-DIALOG

Specify Additional Parameters

-
Enter settings for the related object-browse subprogram, m

-
Object-browse subpragram parameters

Ohiject-browse subp: || | [Browse... |
Ohiject PDA: [| [Browse... |
Key PDA: [| [Browse... |
Ohiject LDA; [| [Browse... |
Tnput key: [| [Browse... |
Prompt [| [Browse... |

Screen Parameters,..

@j [Optinns... H = Back]

Zancel

Use this panel to define parameters for the related object-browse subprogram and, optionally,
to define screen parameters. The generated object-browse dialog uses this subprogram to re-

trieve records for display.

150

Code Generation

Natural Construct Generation

Specify Additional Parameters

- To specify additional parameters

1

Type the name of the subprogram used to retrieve records for display in Object-browse subp
or select Browse to display the available subprograms for selection.

Type the name of the logical key by which scrolling takes place in Input key or select Browse
to display the available logical keys for selection.

The specified key must be defined in the key PDA. For a transformed object-browse dialog
program, the input key begins with A- (Ascending). To preserve the browse ascending and
descending functionality, two keys are generated for the primary browse key: one that begins
with A- and another that begins with D- (Descending). To expose this functionality to the end
user, variables must be set in the START-OF-PROGRAM user exit.

Optionally, you can define the following parameters:

Parameter Description

Object PDA Object parameter data area (PDA) used by the specified object-browse subprogram.
By default, the wizard will determine the name of the PDA based on the subprogram
name. Alternatively, you can type the name or select Browse to display the available
data areas for selection (.NSA file extension).

Key PDA Name of the key PDA used by the specified object-browse subprogram. The key
PDA is comprised of all fields that are components of the logical keys supported
by the subprogram. By default, the wizard will determine the name of the PDA
based on the subprogram name. Alternatively, you can type the name or select
Browse to display the available data areas for selection (.NSA file extension).

Object LDA Name of the object local data area (LDA) used by the generated dialog program.
The object LDA contains the default field headings used when generating user exits.
Either type the name or select Browse to display the available data areas for selection
(.NSL file extension).

Prompt Field name displayed for the input key on the generated panel. If a field name is
not provided, the default name will be used. Either type the name or select Browse
to display the available SYSERR numbers for selection. For information, see Select
a Message Number.

Screen Specify the language used to display text on the generated panels. See Specify Screen
Parameters Parameters.
Select Finish.

The modules are generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

Or:

Code Generation 151

Natural Construct Generation

Select Next.

The Specify Specific Parameters panel is displayed. For example:

W' New OBJECT-BROWSE-DIALOG

Specify Specific Parameters

Enter setkings For the specific parameters,

acreen lavouk

Records displaved: 0
Matural format:

Harizontal panels: 1
Backward scroll pages: | 10

Input parameters

Input using map: | |

Miscellaneous parameters
[]Export data support

Window Parameters. ..

“ | lengthy |0

D Use BROWSE-SELECT actions

@:l [Options... ” < Back.]

Browse. ..

[Report data support

Finish H Cancel]

Use this panel to define the screen layout, map name, and support for exporting records to a
work file or printer. You can also use this panel to change the style of actions used and the

window settings.

Specify Specific Parameters

~ To specify specific parameters

1 Define the following optional parameters:

Parameter Description

Records displayed Number of records displayed on the screen at one time (by default, the
generated dialog program displays 10 records at one time).

Natural format/length Natural format and length for the selection column (for example, Al).

Horizontal panels Number of horizontal panels used for the generated dialog program
(by default, one panel is used).

152

Code Generation

Natural Construct Generation

Parameter Description

Backward scroll pages Maximum number of scroll pages within which users can scroll forward
and backward (by default, 10 scroll pages).

Input using map Name of the layout map used by the generated dialog program. Either
type the name or select Browse to display the available maps for
selection (.INSM file extension).

Export data support If this option is selected, records are exported to a work file (instead of
the screen).

Report data support If this option is selected, records are exported to a local printer (instead
of the screen).

Use BROWSE-SELECT If this option is selected, the generated dialog program uses the same

actions actions as those used by a BROWSE-SELECT-generated module.

Note: This option is only relevant for transformed object-browse dialog

programs and is not modifiable by this wizard.

Window Parameters Specify window parameters. For information, see Change the Window
Settings.

2 Select Finish.

The modules are generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

3 Save the generated modules.
At this point, you can:

® Define user exits for the dialog program. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Object-Browse-Select-Subp Wizard

This section describes the specification parameters for the Object-Browse-Select-Subp wizard. This
wizard generates a subprogram similar in functionality to a subprogram generated by the Browse-
Select-Subp model. Both subprograms allow users to update multiple rows at one time. The primary
difference between the two is that an object-browse-select subprogram can accommodate a cli-
ent/server environment and you can use a subprogram proxy to access the generated code as a
business service.

This section covers the following topics:

= Specify Standard Parameters

Code Generation 153

Natural Construct Generation

= Specify Additional Parameters

| Note: For more information, refer to Object-Browse-Select-Subp Model, Natural Construct Object
Models.

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
all Object-Browse wizards.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Object-Browse-Select-Subp.

The Specify Standard Parameters panel is displayed. For example:

154 Code Generation

Natural Construct Generation

W' New OBJECT-BROWSE-SELECT-SUBP =13
Specify Standard Parameters =
Enter settings for the standard parameters,
e -]
Target
Praject: | MewProjectd | [Brnwse...]
Folder: | /DEMOTEST | |Browse... |
Library: | DEMOTEST | |Browse... |
Module: | |
Dekails
Title: | Object Browse Select ...

This subprogram is used ko encapsulate data accessfor |,

Descripkion:

Zibject subprogram names

Obiject browse subpragrarm: | | [Browse...]
Ohiject maint subprogrann: | | [Browse...]
Time

Scrolling paranieters

Skatic occurrences: | 20 | DA | | lBerse... l DGenerate

[Imessage numbers

® (o)

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters.

3 Define the following parameters:

Parameter Description

Object-browse|Name of the subprogram used to browse this object. Either type the name of the
subprogram or select Browse to display the available subprograms for selection.

Note: The object-browse subprogram must be available in the current library.

Code Generation 155

Natural Construct Generation

Parameter Description

PDA

Generate.

Name of the parameter data area associated with the static occurrences value for
scrolling parameters. By default, the PDA name contains the first five characters of the
module name and the number of static occurrences (for example, BCUSTS20). Either
type the name or select Browse to display the available data areas for selection.

Note: To generate the PDA, in addition to the object-browse-select subprogram, select

Optionally, you can:

Task

Procedure

Define an object-maintenance
subprogram that will be used to
maintain the object.

Type the name of the object-maint subprogram in Object-maint or
select Browse to display a window listing the existing subprograms
for selection. The subprogram must currently exist.

The object-maintenance subprogram cannot process intra-object
relationships. This allows the data presented to the client to be
manageable and all data to be modifiable.

Note: If you use an object-maint and an object-browse subprogram,

both subprograms must use the same primary file.

Restrict the generation of code
to time how long a business
service takes to execute.

De-select Time.

By default, this option is selected and code is generated to time how
long a business service takes to execute. The result is returned in the
business service message.

Change the number of rows
processed and sent across the
network at one time (by default,
20, unless the rows are
extremely large).

Type the new number in Static occurrences. The PDA (parameter
data area) associated with the static occurrences hard codes this value
(which is used to identify the V value in the object-browse
subprogram) in the object-browse-select subprogram.

To identify the number of occurrences in this PDA, the default PDA
name contains the first five characters of the module name and the
number of static occurrences (for example, "BCUSTS20" when the
static occurrences value is "20").

Note: If you change the number of static occurrences, you should

also change this number in the name of the default PDA.

Use message numbers for all
REINPUT and INPUT messages.

Select Use message numbers. When this option is selected, message
numbers rather than message text will be used for all REINPUT and
INPUT messages.

Note: Use the same technique consistently throughout your

application, since passing messages between modules using different
techniques will not always produce the desired results.

156

Code Generation

Natural Construct Generation

4 Select Next.

The Specify Additional Parameters panel is displayed. For example:

W' New OBJECT-BROWSE-SELECT-SUBP
Specify Additional Parameters [
Change the method names, if desired, m

Method parameters

Method Mame Count Browse Key Mame
1 FindByCustomerMumber false CUSTOMER-NUMEBER
2 FindByBusinesshame false BUSINESS-MAME

3 FindByCustomerwarehou.., False CUSTOMER-WAREHOUSE-ID

Refresh Default Methods

@:l [Options...][< Back] [Firish l[Cancel]

This panel displays the names of the methods and browse keys used to determine the sort
order for records returned by the object-browse subprogram (specified on the first wizard
panel).

Specify Additional Parameters

Use this panel to rename the default methods, if desired.

> To rename the default methods

1 Select the method you want to rename in the Method parameters section.

2 Select Edit.

The Edit Method Name window is displayed. For example:

Code Generation 157

Natural Construct Generation

72 Edit Method Name |._|E|E|
Define New Method Name [
Type a new name For the method, m

[-

Method parameters

Method name: | FindEwiustomeryarehouseld |

Erowse key name: | CUSTOMER-WAREHOUSE-ID |

Counk:

Ok H Cancel l

3 Change the name of the method in Method name.
4 Select OK.

The new name is displayed in the Method parameters section.

5 Select Finish.

The modules are generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

6 Save the generated modules.
At this point, you can:

® Use the NaturalONE Testing option to test a subprogram. For information, see Test a Sub-
program Directly in Application Testing.

® Define user exits for the subprogram. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Object-Browse-Subp Wizard

This section describes the specification parameters for the Object-Browse-Subp wizard. This wizard
generates the browse subprogram for an object, as well as three parameter data areas:

® Object PDA (defines the returned row data)
® Key PDA (defines the search key values)

" Restricted PDA (defines private data used internally by the browse object to maintain context)
This section covers the following topics:

= Specify Standard Parameters
= Specify Additional Parameters

158 Code Generation

Natural Construct Generation

= Specify Key Details
= Specify Logical Key Components

| Note: For more information, refer to Object-Browse-Subp Model, Natural Construct Object
Models.

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
all Object-Browse wizards.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Object-Browse-Subp.

The Specify Standard Parameters panel is displayed. For example:

Code Generation 159

Natural Construct Generation

W' New OBJECT-BROWSE-SUBP

Specify Standard Parameters

Targek

Enter setkings For the standard parameters,

Project: | MewProject

| [Browse...]

Falder: |

| [Browse...]

Libraty: |

| [Browse...]

Module: |

Details

Title: | Ohject Browse ..,

Description:

This subpragram is used to encapsulate data access for ..,

[Juse message numbers

[Generate with %-array

® (o]

Cancel

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters. Optionally, you can:

Task

Procedure

Use message numbers for all
REINPUT and INPUT
messages.

Select Use message numbers. When this option is selected, message
numbers rather than message text will be used for all REINPUT and
INPUT messages.

Note: Use the same technique consistently throughout your

application, since passing messages between modules using different
techniques will not always produce the desired results.

Generate the object (row) PDA
with X-array support.

Select Generate with X-array. When this option is selected, the object
PDA will be generated with (1:*) declarations instead of (1:V) for
top-level rows; any arrays nested within top-level rows will be
generated as defined in Predict.

Select Next.

The Specify Additional Parameters panel is displayed. For example:

160

Code Generation

Natural Construct Generation

W' New OBJECT-BROWSE-SUBP

Specify Additional Parameters

Predict parameters

Enter settings For the additional parameters,

- B

Predick wigw: |

Makural DOM: |

Program view: |

Logical keys

Logical Mame

Key(s)

Histogram Limit

Prefix

Refresh Default Kevs

PL& parameters

Object PDA: |

Key PDA: |

Restricted PDA: |

@

[Options... ”

< Back]

| [Brnwse...] DGenerate
| [Brnwse...] DGenerate

| [Brnwse...] DGenerate

Cancel

Specify Additional Parameters

~ To specify additional parameters

1 Define the following parameters:

Use this panel to define additional parameters for your object-browse subprogram.

Parameter |Description Required/Optional/Conditional
Predict Name of the Predict view used by the generated subprogram. |[Required
view The view must be defined in Predict. Either type the name or
select Browse to display the available views for selection.
Natural Name of the data definition module (DDM) corresponding |Optional
DDM to the primary file. If this field is not specified, the DDM name
defaults to the primary file name. The Predict definition of
the primary file determines which fields are included in the
DEFINE DATA section of the generated code. The format of

Code Generation

161

Natural Construct Generation

Parameter

Description

Required/Optional/Conditional

the generated code in the DEFINE DATA section has the
following structure:

1 primary-file-name VIEW <
OF data-definition-module

2 fields pulled from Predict <
of primary-file-name

Program
view

View name of the primary file for the generated subprogram.
This view must be defined in the LOCAL-DATA user exit or
a local data area (LDA).

If this field is not specified, a view is generated containing all
fields in the Predict view. The MAX.OCCURS value in Predict
determines how many occurrences of MU/PE fields are
included on the panel.

Optional

Logical
keys

Up to six logical keys to determine the sort order for records
returned by the object-browse subprogram. For information,
see Specify Key Details.

Optional

Refresh
Default
Keys

Retrieves the default key parameters for the specified Predict
view and lists them in the Logical keys table.

Optional

Object
PDA

Object parameter data area (PDA) that defines the rows
returned to the object-browse subprogram and the columns
within each row. Either type the name or select Browse to
display the available PDAs for selection. Alternatively, you
can select Generate to have the data area generated by the
wizard.

The generated object PDA contains one column for each field
defined in the specified Predict view (as well as additional
columns). You can remove any fields that are not components
of the primary key.

Note: When creating a new specification, this field is filled in

by default with the first five bytes of the subprogram name,
plus the suffix "ROW".

Required

Key PDA

Key PDA that contains all of the components contained in the
logical keys, as well as a unique ID field. Either type the name
or select Browse to display the available PDAs for selection.
Alternatively, you can select Generate to have the data area

generated by the wizard.

Note: When creating a new specification, this field is filled in

by default with the first five bytes of the subprogram name,
plus the suffix "KEY".

Required

162

Code Generation

Natural Construct Generation

Parameter |Description Required/Optional/Conditional

Restricted |Restricted PDA that stores data, such as the last sort key, the|Required
PDA last starting value, the last row returned, etc. so that the next
set of consecutive records is returned to the caller. Either type
the name or select Browse to display the available PDAs for
selection. Alternatively, you can select Generate to have the
data area generated by the wizard.

Note:

1. The contents of this data area should not be altered by the
calling module.

2. When creating a new specification, this field is filled in by
default with the first five bytes of the subprogram name,
plus the suffix "PRI".

2 Select Finish.
The modules are generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

3 Save the generated modules.
At this point, you can:

= Use the NaturalONE Testing option to test a subprogram. For information, see Test a Sub-
program Directly in Application Testing.

* Define user exits for the subprogram. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Specify Key Details

Optionally, you can specify up to six logical keys to determine the sort order for records returned
by the object-browse subprogram. The calling program indicates the sort order by assigning CD-
BRPDA.SORT-KEY. If a sort key value is not assigned, the first logical key is used as the default.

The logical key names can map to as many as five components. If a logical key contains only one
component, the logical key name is optional. If you do not specify a logical key name, this field
defaults to the name of the key component.

If the key field contains MU or PE fields, the rows returned also contain an index value that
identifies which occurrence of the MU/PE field satisfies the Read condition.

This section covers the following topics:

Code Generation 163

Natural Construct Generation

= Add a Logical Key
= Delete a Logical Key
= Edit a Logical Key

Add a Logical Key

~ To add a logical key
1 Select Add on the Specify Additional Parameters panel.

The Specify Key Details window is displayed. For example:

¥= hdd Logical Key, |Z|@|E|
Specify Key Details ke
when using a kew, enter details about the key Field,
[-

Key field parameters

Logical name: | | |

Limit components: |] |

Prefix components: |] |

D Histogram support

Key Component Cescending

oK l l Cancel

2 Define the following parameters for the additional key field:

Parameter Description

Logical name Name of the logical key for which you are defining details.

Limit components |Number of components of a superdescriptor (compound key) to use in the logical
key. Use this option when the relational database table contains a superdescriptor
with many components.

To restrict the number of components, specify the limit in this field. For example,
to use the first two components of the superdescriptor, enter "2".

Tip: Using fewer components in the key may make accessing the key more efficient.

Prefix components |Prefix to use for components of a superdescriptor (compound key), which
optimizes the generated SELECT statements when browsing by compound keys

164 Code Generation

Natural Construct Generation

Parameter Description

that have many components. You can use this option to define a browse object
that requires specific values as the leading components.

Note: When browsing Adabas or VSAM files by a single superdescriptor, efficiency

is not affected by specifying prefix key components.

Histogram support|If this parameter is selected, the object-browse subprogram contains an additional
histogram version of one or more logical key values. This allows the calling
program to request a histogram be returned. Rather than returning all of the
predefined columns for the object-browse subprogram, only the specific key
column is returned along with a count of the number of records containing the
key value.

Note: This option is only allowed when the associated key has one key component.

Key Component |Up to five components for a logical key that maps to more than one component.
For information, see Specify Logical Key Components.

3 Select OK to add the field.

Delete a Logical Key

~ To delete a logical key

1 Select the field you want to delete on the Specify Additional Parameters panel.
2 Select Delete.

The key is removed from the Logical keys table.

Edit a Logical Key

~ To edit a logical key

—_

Select the field you want to edit on the Specify Additional Parameters panel.
2 Select Edit.

Or:
Double-click on the row in the Key Component section.

The Specify Field Details window is displayed, showing the current settings for the field.
3 Edit the field settings.
4 Select OK to save the changes.

Code Generation 165

Natural Construct Generation

Specify Logical Key Components

Optionally, you can add up to five components for a logical key that maps to more than one

component.

~ To add a logical key component

1 Select Add on the Specify Additional Parameters panel.

The Specify Logical Key Components window is displayed. For example:

T2 Add Key Components

Specify Logical Key Components

Select components For the logical key,

Key component parareters

- B

Key companent | |

| ’Browse...l

[Jpescending

OF

] [Cancel

2 Define the following parameters for the key component:

166

Code Generation

Natural Construct Generation

Parameter |Description

Key Type the name of the key component in Key component or select Browse to display a
component |list of components for selection. For example:

7= Select CST-EMPLOYEES field

Desctiptars only

Desc Sequence Type Level Field Mame Format = Length
| 100 1 PERSOMMEL-ID A

] 400 2 MAME A

| 00 1 BIRTH M

] 1100 2 CITY A

| 1700 1 DEPT A

] 1500 1 JOB-TITLE A

| 2900 MU 1 LANG A

] 3000 PH 1 PHOMETIC-MAME A

| 3100 P 1 LEAVE-LEFT B

] 3200 SE 1 DEPARTMENT A

| 3300 P 1 DEPT-PERSCOM A

] 3400 P 1 CURREMCY-SALARY A

it H Zancel]

You can specify either one superdescriptor or multiple individual descriptors.

Note: To display all fields, deselect Descriptors only.

Descending |Indicates whether key component values are listed in ascending or descending sequence
in the generated subprogram. To have the key component values listed in descending
sequence, select this parameter. Otherwise, values are sorted in ascending sequence.

Note: For Adabas and VSAM files, all components of a logical key must use the same

sort order.

3 Select OK to save the settings.
Object-Maint-Dialog Wizard

This section describes the specification parameters for the Object-Maint-Dialog wizard. This wizard
generates a character-based user interface (Natural program) for an object-maintenance process.
The dialog component communicates with the user and invokes methods (data actions) implemen-
ted by the object-maintenance subprogram. To generate a complete maintenance process using
Natural Construct’s object-oriented approach, use this wizard in conjunction with the Object-
Maint-Subp or Object-Maint-Enhanced-Subp wizard (which also generates the object PDA and
restricted PDA).

This section covers the following topics:

Code Generation 167

Natural Construct Generation

= Specify Standard Parameters

= Specify Additional Parameters

= Specify Input Maps for Horizontal Panels
= Define Horizontal Panel Details

= Define Scroll Region Details

| Note: For more information, refer to Object-Maint-Dialog Model, Natural Construct Object
Models.

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
all Object-Maint wizards.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Object-Maint-Dialog.

The Specify Standard Parameters panel is displayed. For example:

168 Code Generation

Natural Construct Generation

W' News OBJECT-MAINT-DIALOG

Specify Standard Parameters =
Enter the settings for the standard parameters,
[-
Target
Project: | MewProject | [Browse...]
Falder: | | | [Browse...]
Library: | | [Brnwse...]
Module: | |
Deetails

Global daka area: | anleinti} |

With block: | |

Title: | Object Dislag. .. |
This program is used to mainkain the. ..

Description:

Headings

First heading: | |

Second heading: | |

Comrnon Patameters. ..

®

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters. Optionally, you can:

Task Procedure

Define common parameters, such as support for direct|Select Common Parameters. For information,
command processing, message numbers, and password |see Specify Common Parameters.
checking.

3 Select Next.

The Specify Additional Parameters panel is displayed. For example:

Code Generation 169

Natural Construct Generation

W' New OBJECT-MAINT-DIALOG

Specify Additional Parameters

Enter the settings Faor the related object maintenance subprogramm,

Object-maint subprogram: | |

#ACTION Field length: 1 |w»

Actions supported

Clear Display Modify Mext
Purge []Farmer

Miscellaneous parameters

[window suppart

[]Push-button suppark

Mark cursor Field:

window Parameters.. .

@:l [Options...][< Back.]

| I@
N

Browse. ..

Add Browse:

Zancel

Use this panel to define parameters for the related object-maint subprogram and, optionally,

to define screen parameters.

Specify Additional Parameters

~ To specify additional parameters

1 Define the following parameters:

Field Description

Object maint
subprogram

Name of the subprogram invoked by the generated dialog program. The specified
subprogram must exist in the current library. Name of the object-maintenance
subprogram used by the generated dialog program. Either type the name or select
Browse to display the available subprograms for selection.

must be selected.

The available actions are:

#ACTION field Length of the action field. By default, the length is "1" and all action fields except
length Former are marked. If you do not want the generated dialog program to perform
a particular action, deselect the corresponding action field. At least one action

170

Code Generation

Natural Construct Generation

Field

Description

= Add (adds the specified object)

= Browse (name of the generated subprogram that supports the Browse action;
either type the name or select Browse to display the available subprograms
for selection)

® Clear (clears the specified field values from the panel)
= Display (displays the specified object)
® Modify (modifies the specified object)

" Next (displays the contents of the record having the next higher primary key
value from the current key value)

= Purge (removes the specified object)

® Former (displays the contents of the record having the next lower primary key
value from the current key value)

Note:

1. To add user-defined actions, see Add an Action, Natural Construct Generation.

2. When generating an object-maintenance dialog program, this feature works
together with two user exits. For information about these exits, see
SELECT-ADDITIONAL-ACTIONS and ADD-ACTION-PROCESSING, Natural
Construct Generation.

Window support

Indicates whether the output from the generated object-maintenance dialog
program is displayed in a window instead of on a panel.

Push button support

Indicates whether actions can be selected by cursor.

Mark cursor field

Name of the field on the map where the cursor is automatically placed by the
generated dialog program.

Window Parameters

Change the default window parameters. For information, see Change the Window
Settings.

2 Select Next.

The Specify Input Map(s) for Horizontal Panel(s) panel is displayed. For example:

Code Generation

171

Natural Construct Generation

IN' New OBJECT-MAINT-DIALOG

Specify Input Map(s) for Horizontal Panel(s)
Select Add to add details about the horizontal panel(s).

Harizontal panel details

&dd Hovizankal ... | Input Map

1

@j [thions...]| < Back | [Finish][Cancel]

Use this panel to define horizontal panels and layout maps and, optionally, add scroll regions
for the horizontal panels.

Specify Input Maps for Horizontal Panels

By default, the generated dialog program uses one panel and you must specify a layout map for
that panel.

~ To specify the layout map for panel 1
1 Select the "1" row in Add Horizontal.

The Delete and Edit buttons are enabled.
2 Select Edit.

The Define Horizontal Panel Details window is displayed. For information, see Define Ho-
rizontal Panel Details.

172 Code Generation

Natural Construct Generation

) Note: You can also use the Define Horizontal Panel Details window to add additional
horizontal panels. For information, see Add a Horizontal Panel.

Either type the name of the layout map in Map or select Browse to display a list of available
maps for selection.

The Specify Input Maps for Horizontal Panels panel is redisplayed, showing the name of
the layout map in Input Map for panel 1.

Select Finish.

The modules are generated using the current specifications. When generation is complete,

the available user exits are displayed in the Outline view.

Save the generated modules.
At this point, you can:

® Define user exits for the dialog program. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Define Horizontal Panel Details

Optionally, you specify up to nine horizontal panels for the generated dialog (you must specify
a minimum of one panel). If more than one panel is specified, the left and right PF-keys are activated
in the generated program to allow left and right scrolling between panels.

This section covers the following topics:

= Add a Horizontal Panel
= Delete a Horizontal Panel
= Edit a Horizontal Panel

Add a Horizontal Panel

~ To add a horizontal panel

Select Add on the Specify Input Maps for Horizontal Panels panel.

Define Horizontal Panel Details window is displayed. For example:

Code Generation 173

Natural Construct Generation

T= Add Horizontal Panel

Define Horizontal Panel Details

Enter details about the panel,

Map: | |

| [Browse...]

Depth occurrences: | o |

acroll region details

acroll Region

Total Dccurrences Screen Coourrences Scroll with Panel

Moke: The index used For each scrolling region is #ARRAYN where nis the number of the scroll region,

OF] [Cancel

2 Define the following parameters for the horizontal panel:

Field Description

Map Name of the layout map used for the corresponding panel. Either type the name of
the layout map or select Browse to display a list of available maps for selection.

Depth To create a scroll region with a third dimension, specify the maximum depth

occurrences occurrences value. For example, for a calendar with the months and days forming

the first two dimensions (horizontal and vertical) and the year forming the third
dimension (depth), you can specify "3" to scroll up to three yearly tables of calendar
months and days, and within each yearly table, scroll vertically through the days.

The Depth occurrences value applies to the 3rd dimension on a panel, which means
that it applies to all 3-dimension arrays on the map when using the #DEPTH index
variable.

To allow the value of the #DEPTH variable to be changed, you can either place the
#NEXT-DEPTH (P3) variable on the specified map or use PF-keys that you process
in the AFTER-INPUT user exit.

Scroll region
details

Information for up to four vertical scroll regions for each horizontal panel. To define
a scroll region, select Add. For information, see Define Scroll Region Details.

3 Select OK to add the panel.

174

Code Generation

Natural Construct Generation

Delete a Horizontal Panel

~ To delete a horizontal panel

1 Select the panel you want to delete on the Specify Input Maps for Horizontal Panels panel.
2 Select Delete.

The panel is removed from the Scroll region details table.

Edit a Horizontal Panel

~ To edit a horizontal panel

1 Select the panel you want to edit on the Specify Input Maps for Horizontal Panels panel.
2 Select Edit.

Or:
Double-click on the row in the Scroll region details table.

The Define Horizontal Panel Details window is displayed, showing the current settings for
the panel.

3 Edit the panel settings.
4 Select OK to save the changes.

Define Scroll Region Details

Optionally, you can define up to four vertical scroll regions (consisting of vertical arrays) for each
horizontal panel. Scroll regions are only required for array fields. For example, assume you have
an array field called #YEAR and each occurrence contains one month, but there is only enough
space on the screen to display three months. In this case, a scroll region with a screen occurrences
value of "3" is required.

In addition to scrolling through the months, you may also want to display the revenue for each
month and have the revenue data change when the month changes. To do this, the starting index
for #YEAR and #REVENUE must be the same. For example, assume the following;:

FFYEAR (A4/12)
##REVENUE (N5.1/12)

On the specified layout map, there should be three occurrences of both #YEAR and #REVENUE.
For example, if these fields are in the first scroll region, use #ARRAY1 as the starting index for
both fields. The object-maint dialog program will generate the appropriate code based on the
values defined for the scroll region (for example, top left and bottom right). If the cursor is in the

Code Generation 175

Natural Construct Generation

area defined by the upper left and bottom right coordinates, then #ARRAY1 will be incremented
appropriately when the forward or backward PF-keys are selected.

¢ Tip: You can think of a two-dimensional (2D) array as a collection of many one-dimensional

(1D) arrays. And you can think of a fixed instance of a third dimension of a three-dimen-
sional (3D) array as a 2D array. Therefore, a vertical scroll region on a generated panel can
consist of 1D, 2D, or 3D arrays.

This section covers the following topics:

= Add a Scroll Region
= Delete a Scroll Region
= Edit a Scroll Region

Add a Scroll Region

] Note: If you add scroll regions, the specified map should contain array fields that match
the specified values.

~ To add a scroll region
1 Select Add on the Define Horizontal Panel Details panel.

Define Scroll Region Details window is displayed. For example:

& Add Scroll Region =13
_Ar"':\-

Define Scroll Region Details 3
Enter details about the scrall region.

[N -]

Total occurrences: | o |

SCreen oCCUrrences: | o |

Scroll with panel: | a |

acroll region location

Top left Line: | a

Colurn: | a

Bottom right Line: | a

Colurnn: | a

Ok H Cancel]

2 Define the following parameters for the scroll region:

176 Code Generation

Natural Construct Generation

Field

Description

Total occurrences

Total number of scrollable lines required for the scroll region. This value applies
when the generated dialog program includes a line scroll feature to scroll:

= Records in a secondary or tertiary file

= Multiple-valued fields (MUs)

® Periodic groups (PEs)

The generated program ensures that the values assigned to the array index

values (#ARRAY1 through # ARRAY4) do not exceed the total occurrences value
for each array.

Screen occurrences

Total number of lines displayed on the panel at one time (used when the Total
occurrences value is specified).

Scroll with panel

Panel number to force a particular starting from value for a scroll region on a
panel (so it has the same value as another panel). Each panel maintains its own
current values for #fARRAY n, where nis 1, 2, 3, or 4.

Scroll region location

Top left

Location of the top left corner of the scroll region. A scroll region is always
rectangular and is defined by specifying the panel coordinates of the top left
and bottom right corners. Users can press the bkwrd and frwrd PF-keys to
position the scroll regions backward and forward.

The values for the top left corner are:
® Line

Starting line number (vertical axis).

= Column

Starting column number (horizontal axis).

Scroll region location

Bottom right

Location of the bottom right corner of the scroll region. These values are:
® Line

Ending line number (vertical axis).

= Column

Ending column number (horizontal axis).

3 Select OK to add the scroll region.

Code Generation

177

Natural Construct Generation

Delete a Scroll Region

~ To delete a scroll region

1 Select the scroll region you want to delete on the Define Horizontal Panel Details panel.

2 Select Delete.

The scroll region is removed from the Scroll region details table.

Edit a Scroll Region

~ To edit a scroll region

1 Select the scroll region you want to edit on the Define Horizontal Panel Details panel.

2 Select Edit.
Or:
Double-click on the row in the Scroll region details table.

The Define Scroll Region Details window is displayed, showing the current settings for the
panel.

3 Edit the scroll region settings.
4 Select OK to save the changes.

Object-Maint-Enhanced-Subp Wizard

This section describes the Object-Maint-Enhanced-Subp wizard, which generates an object-main-
tenance subprogram and corresponding PDAs. The generated subprogram updates all entities
within an object and contains a full range of integrity checks (as defined by Predict relationships)
and object semantics (in the form of Predict automatic rules or object manipulation within user
exits). This wizard is similar to the Object-Maint-Subp wizard. The main difference between these
wizards is that the Object-Maint-Enhanced-Subp wizard can generate large fields in the object
PDA as dynamic fields. This allows long fields to occupy only the space required to pass the data
to the database view. For example, one customer may require 1000 characters for delivery instruc-
tions and another customer only requires 50 characters. In the first case, 1000 characters will be
placed in the parameter data area (PDA) and in the second case only 50 characters will be placed
in the PDA.

The Object-Maint-Enhanced-Subp wizard allows you to take advantage of larger field sizes
available in Natural and in the databases. In the past, an alphanumeric field in Natural was restric-
ted to a length of 253 characters. To accommodate larger fields, you had to create an array of strings
with a length of less than 254 characters each. This meant that words in a note, for example, may
have been split across strings. Using this wizard, you can specify larger string sizes in the files

178 Code Generation

Natural Construct Generation

and in Natural to allow the entire note to fit in one string. The wizard can also generate code to
truncate trailing blanks, which can needlessly increase the amount of data going into the PDA,
and generate an error message when a user enters data into a field that is longer than what the
database expects.

This section covers the following topics:

= Specify Standard Parameters

= Specify Additional Parameters

= Specify Input Parameters

= PROCESS-TRUNCATION-ROUTINE User Exit

] Notes:

1. For more information about creating an object-maintenance process, refer to Design Methodology,
Natural Construct Generation.

2. For information about the standard user exits, refer to User Exits for the Generation Models, Nat-
ural Construct Generation.

3. Forinformation about the User Exit editor, refer to User Exit Editor, Natural Construct Generation.
Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
all Object-Maint wizards.

| Note: To access this wizard, the specified project must be mapped to a version 8.2 or higher

server environment.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Object-Maint-Enhanced-Subp.

The Specify Standard Parameters panel is displayed. For example:

Code Generation 179

Natural Construct Generation

N New OBJECT-MAINT-ENHANCED-SUBP =t

Specify Standard Parameters

Enter settings for the standard parameters,

= -
Target
Praject: | MewPraject | [Brnwse...]
Folder: | | | [Brnwse...]
Library: | | [Brnwse...]
Module: | |
Deetails
Title: | Object ...

This subprogram is used ko perform object maintenance for...
Descripkion:

Miscellaneous parameters
Use hash-locking method

[Juse message numbers

Drvnamic Field parameters

Return errors when data is truncated

[]=enerate with large object (LO) fields

@ (ooee..]

Generate dynamic fields when length is greater than:

Zancel

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters. The Miscellaneous parameters are identical to those for the
Object-Maint-Subp wizard. For information about these fields, see Object-Maint-Subp Wizard.

Optionally, you can:

Task

Procedure

Generate dynamic fields into the
object PDA when the size of the
source field is larger than the
number of characters specified in
the Generate dynamic fields
when length is greater than nnn
field.

Select Generate dynamic fields when length is greater than nnn,
where nnnis a number less than 1000 and 0 indicates the data PDA
contains the same lengths as the DDM. For example, if the specified
cutoff length is 50 and a field is defined in the DDM as alphanumeric
100, an (A) DYNAMIC field will be generated into the object PDA
instead of an (A100).

Note:

180

Code Generation

Natural Construct Generation

Task

Procedure

1. If the cutoff length is "0", the field sizes in the PDA will be the
same as those in the DDM.

2. If a field is affected by the cutoff length, it may not be part of a
redefined field.

3. If the cutoff length is a negative number, the length is converted
to a positive value (for example, "-10" is converted to "10").

Return an error message when
the data in a dynamic field is
larger than its source database
field and the data will be
truncated by the subprogram (i.e.,
dynamic fields in the PDA but
not in the file view).

Select Return errors when data is truncated to have the generated
maintenance subprogram return an error message when data is
truncated.

For example, you may have a text field with a variable length for
descriptive information that you want to set to 1000 characters. Since
a dynamic field can handle more than 1000 characters, you must
decide what happens if the user enters more. One option is to let
the user enter whatever they want and the subprogram will truncate
any data over the limit when it stores it in the database. Another
option is to generate error messages when the user exceeds the limit
and/or to stop the processing.

When the subprogram is generated with the truncation option,
Construct will provide error messages and a user exit to define how
to handle the error. Within this user exit, Construct generates a list
of all affected fields (i.e., are dynamic fields in the PDA but not in
the file view) and allows you to change the value for
##RETURN-CODE or add an ESCAPE ROUTINE to continue with
processing when an error occurs.

Note: Truncation errors and messages are processed in the

PROCESS-TRUNCATION-ROUTINE user exit. For information, see
PROCESS-TRUNCATION-ROUTINE User Exit.

Maintain large object (LO) fields
with the generated maintenance
subprogram.

Select Generate with large object (LO) fields.

Select Next.

The Specify Additional Parameters panel is displayed. For example:

Code Generation

181

Natural Construct Generation

IN' New OB.JECT-MAINT-ENHANCED-SUBP |_|

BX

Specify Additional Parameters -
Enter setkings for additional parameters,
= -
Predict parameters
Predick wiew:
Primary key:
Hald Field:
PDA details
Object PDA:
Restricted PDd:
LDA details
Object LDA: Mote: Generated when the hash-locking option is selected.
o
® (o]

Use this panel to define additional parameters for your object-maint-enhanced subprogram.
Specify Additional Parameters

The fields on this panel are identical to the fields on the Specify Additional Parameters panel for
the Object-Maint-Subp wizard. The only difference is that the Generate options have been removed
for the Object PDA and Restricted PDA fields. These parameter data areas will always be generated
or regenerated with the Object-Maint-Enhanced-Subp wizard, since the field definitions may
change when dynamic fields are processed.

~ To define additional parameters

1 Specify the additional parameters for the object-maint-enhanced subprogram.

For more information, see Specify Additional Parameters.

2 Select Next.

The Specify Input Parameters panel is displayed. For example:

182 Code Generation

Natural Construct Generation

W' New OBJECT-MAINT-ENHANCED-SUBP

Specify Input Parameters =
Enter setkings For any additional input parameters,

Object details

Description: | | |

Marne: | |

Miscellaneous parameters

Loq File suffix: | Mext action prefix: Cl

@:l [Options...][< Back] [Firish l[Cancel]

Use this panel to define additional input parameters for your object-maint-enhanced subpro-
gram.

Specify Input Parameters

The fields on this panel are identical to the fields on the Specify Input Parameters panel for the
Object-Maint-Subp wizard.

~ To define additional input parameters

1

Specify the additional input parameters for the object-maint-enhanced subprogram.

For more information, see Specify Input Parameters.

Select Finish.

The modules are generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

Save the generated modules.
At this point, you can:

® Use the Natural ONE Testing option to test the subprogram. For information, see Test a
Subprogram Directly in Application Testing.

® Define user exits for the subprogram. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Code Generation 183

Natural Construct Generation

PROCESS-TRUNCATION-ROUTINE User Exit

This user exit can be used in the generated subprogram to define truncation routines and error
messages for dynamic fields. It is a Conditional exit and available when the PDA for the subprogram
contains dynamic fields in the object PDA that represent fixed-length fields in the database.

When you select the PROCESS-TRUNCATION-ROUTINE user exit, the following code is generated
into the exit:

Module ModName <

Title Object

> > + ABS: X X-Y: _ S 5 L 1
AT oo+ L2 3 A s BT

0010 DEFINE EXIT PROCESS-TRUNCATION-ROUTINE

0020 /* Start of PROCESS-TRUNCATION-ROUTINE user exit

0030 /* note that the JHRETURN-CODE can be changed or

0040 /* ESCAPE ROUTINE can be added so that one doesn't stop the program.

0050 END-EXIT ©

To allow processing to continue when a truncation error occurs, you can change the value for
##RETURN-CODE or add an ESCAPE ROUTINE.

Object-Maint-Subp Wizard

This section describes the Object-Maint-Subp wizard, which generates a subprogram that maintains
complex data objects. The subprogram updates all entities within an object and contains a full
range of integrity checks (as defined by Predict relationships) and object semantics (in the form
of Predict automatic rules or object manipulation within user exits).

This section covers the following topics:

= Specify Standard Parameters
= Specify Additional Parameters
= Specify Input Parameters

] Notes:

1. For information about the Object-Maint-Subp model, refer to Object-Maint-Subp Model, Natural
Construct Object Models.

2. For more information about creating an object-maintenance process, refer to Design Methodology,
Natural Construct Generation.

184 Code Generation

Natural Construct Generation

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when the wizard is invoked; it is similar for
all Object-Maint wizards.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Object-Maint-Subp.

The Specify Standard Parameters panel is displayed. For example:

N New OBJECT-MAINT-SUBP M=1E3
Specify Standard Parameters =
Enter setkings for the standard parameters,
[-
Target
Project: | MewProject | [Browse...]
Folder: | | [Browse...]
Library: | | [Browse...]
Module: | |
Deetails
Title: | object ...

This subprogram is used to perform object maintenance For...

Description:

Miscellaneous parameters
Use hash-locking method

[use message numbers

\
@

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters. Optionally, you can:

Code Generation 185

Natural Construct Generation

Task

Procedure

Use the hash-locking method of
optimistic record locking (instead of
the timestamp method).

Select Use hash-locking method. When this method is selected,
the Hold field parameter is disabled on the second specification
panel and the Object LDA parameter is enabled. To enable the
Hold field, deselect Use hash-locking method.

Use message numbers for all
REINPUT and INPUT messages
(instead of message text).

Select Use message numbers. When this option is selected,
message numbers rather than message text will be used for all
REINPUT and INPUT messages.

Note: Use the same technique consistently throughout your

application, since passing messages between modules using
different techniques will not always produce the desired results.

Select Next.

The Specify Additional Parameters panel is displayed. For example:

' New OBJECT-MAINT-SUBP

Specify Additional Parameters

Enter settings For additional parameters,

Predict parameters

Predick wigw:
Primary kew:
Hold Field:

PD4, details
Cibject PDA:

Restricked PDa:

LD details
Cibject LD Moke: Generated when the hash-locking option is selected,
3
@) [Options. .. l l < Back

- B

Browse. ..

Browse. ..

II rs

[=enerate
[=enerate

Use this panel to define additional parameters for your object-maintenance subprogram.

186

Code Generation

Natural Construct Generation

Specify Additional Parameters

- To specify additional parameters

1 Define the following parameters:

Parameter

Description

Predict view

Name of the Predict view used by the generated subprogram. The view must be defined
in Predict. Either type the name or select Browse to display the available views for
selection.

Primary key

Name of the key in Predict for the primary file. This key becomes the primary key to
access the view for maintenance. The key can be a descriptor, superdescriptor, or
subdescriptor. If the key does not exist in the specified Predict file, an error message
is displayed.

Note: When Predict is used and the primary key is specified in the file, this parameter

is not required.

Hold field

Name of the field used to logically protect the record against intervening update or
delete actions. Because an object-maintenance subprogram does not use the
record-holding facilities of the DBMS to lock records during a GET operation, a hold
field must exist in the primary file for the object. Valid data types are:

= T*TIMX

A10*TIME

B8 *TIMESTMP

N7 *TIMN

A26 *TIMX (DB2 time stamp format)

If the format is none of the above, it must be numeric.

Note: This field is enabled when the timestamp method for record locking is selected

on the Specify Standard Parameters panel (i.e., the Use hash-locking method option
is not selected).

Object PDA

Name of the object parameter data area (PDA) that defines the rows returned to the
object-maint subprogram and the columns within each row. Either type the name or
select Browse to display the available PDAs for selection. Alternatively, you can select
Generate to have the data area generated by the wizard.

The generated object PDA contains one column for each field defined in the specified
Predict view (as well as additional columns). You can remove any fields that are not
components of the primary key.

Note: When creating a new specification, this field is filled in by default with the first
five bytes of the subprogram name, plus the suffix "/ROW".

Restricted
PDA

Name of the restricted PDA that stores data, such as the last sort key, the last starting
value, the last row returned, etc. so that the next set of consecutive records is returned

Code Generation

187

Natural Construct Generation

Parameter Description

to the caller. Either type the name or select Browse to display the available PDAs for
selection. Alternatively, you can select Generate to have the data area generated by
the wizard.

Note:

1. The contents of this data area should not be altered by the calling module.

2. When creating a new specification, this field is filled in by default with the first five
bytes of the subprogram name, plus the suffix "PRI".

Generate Indicates whether an existing object PDA or restricted PDA is regenerated. Regeneration
is required when fields have changed in the file. If the PDAs do not exist, they will be
automatically generated by the wizard.

Object LDA |Name of the object local data area generated for the object-maintenance subprogram.

Note: This field is enabled when the Use hash-locking method option for record

locking is selected on the Specify Standard Parameters panel.

2 Select Next.

The Specify Input Parameters panel is displayed. For example:

1" New OBJECT-MAINT-SUBP =3
Specify Input Parameters [
Enter setkings For any additional input parameters, m
[N -

Object details

Description: |

Marne: |

Miscellaneous parameters

Log File suffix; | Mesck ackion prefix: I:I

@:l [Options... ” < Back] [Finish H Cancel]

Use this panel to define additional input parameters for your object-maintenance subprogram.

188 Code Generation

Natural Construct Generation

Specify Input Parameters

~ To specify input parameters

1 Define the following parameters:

Parameter Description

Description |Object description used in messages. If you specify "Person", for example, messages are
displayed as "Person not found" and "Person displayed".

Name Name of the level 1 structure used to qualify the fields in the object PDA. (It is easier to
identify the source of these attributes when the PDA name is used for this purpose.) The
object name should be kept to a reasonable length.

Note: The object name cannot match the name of a file included in the object, nor any
field in the object.

Log file If you want to log objects, you have to create a log file corresponding to each entity

suffix within the object. The name of the log file is the name of the object file concatenated with

the suffix specified here. For example, if the object consists of the NCST-ORDER-HEADER
and NCST-ORDER-LINES entities and you specify "-LOG", the log file names are
NCST-ORDER-HEADER-LOG and NCST-ORDER-LINES-LOG.

The following fields are required in the log file that corresponds to the header entity in
the object:

= LOG-TIME

Assigned with *TIMX for T format or *TIMN for N7 format.

= LOG-DATE
Assigned with *DATX for D format or *DATN for N8 format. (If LOG-TIME has an
embedded date, such as *TIMX, this field is not required.)

= LOG-TID

Assigned with *INIT-ID.
® LOG-USER

Assigned with *INIT-USER.
= LOG-ACTION
Assigned with the #ADD, #MODIFY, or #PURGE log action codes, which are defined

in the CDACTLOG local data area. You can initialize the values for these log action
codes within CDACTLOG to suit your environment.

In the log files corresponding to the sub-entities in the object, only the LOG-ACTION
field is required.

Code Generation

189

Natural Construct Generation

Parameter Description

Note: For relational databases, use the underscore (_) character instead of the dash (-)
for the log field names (LOG_TIME, LOG_DATE, LOG_TID, LOG_USER, LOG_ACTION).
Next action |If the primary key is compound or redefined into various components, supply a value

prefix to limit the number of prefixed components confined on the Next action. This allows
the subprogram to maintain objects with a common prefix value.

For example, if the primary key is made up of Company + Account + Division and you
do not want the Next action to span the Division values, specify "2". Specify "1" if the
Next action is to be limited to the current Company value.

2 Select Finish.

The modules are generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

3 Save the generated modules.
At this point, you can:

® Use the NaturalONE Testing option to test the subprogram. For information, see Test a
Subprogram Directly in Application Testing.

® Define user exits for the subprogram. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Quit Wizard

This section describes the specification parameters for the Quit wizard. This wizard generates a
quit program that releases resources used by an application. It displays a confirmation window
that overlays the host panel and gives users the option of quitting an application entirely or resum-
ing where they left off. The name of the quit program is assigned to the DIALOG-INFO.##QUIT
global variable in a Natural Construct-generated startup program.

Specify Standard Parameters

This section describes the Specify Standard Parameters panel for the Quit wizard. This panel is
the only specification panel for the wizard.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

190 Code Generation

Natural Construct Generation

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Quit.

The Specify Standard Parameters panel is displayed. For example:

W' New QUIT =13
Specify Standard Parameters W
Enter the settings Far the quit program,
[~ -
Targek
Project: | MewProject | lBerse... l
Folder: | | lBerse... l
Library: | | lBerse... l
Module: | |
Cietails

Global data area: | |

with block; | |

Title: | Terminate ... |
This is the kermination program For DEMOTEST ...

Description:

Additional pararmeters

Input using map: | | lBerse... l

Application name: | Application name ... |

[CJuse message numbers

[] Terminate Matural

® [omose]

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters. Optionally, you can use this panel to:

Code Generation 191

Natural Construct Generation

Task Procedure

Provide the name of the layout map |Type the name of the map in Input using map or select Browse
used for the generated quit program. |to display the available maps for selection.

Provide a name for the application |Type the name in Application name.
that will be used in confirmation

messages.
Use message numbers for all Select Use message numbers. When this option is selected,
REINPUT and INPUT messages. message numbers rather than message text will be used for all

REINPUT and INPUT messages.

Note: Use the same technique consistently throughout your

application, since passing messages between modules using
different techniques will not always produce the desired results.

Have the quit program issue a Natural|Select Terminate Natural. By default, the generated quit
terminate command. program:

= Restores the default Natural error trapping

= Sets the window size to the physical panel size

Releases the Natural stack

Backs out all outstanding database updates

Issues a Natural STOP command

3 Select Finish.

The quit program is generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

4 Save the generated module.
At this point, you can:

® Define user exits for the quit program. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

192 Code Generation

Natural Construct Generation

Startup Wizard

This section describes the specification parameters for the Startup wizard, which generates a
startup program for an application. These programs (often named Menu) initialize global variables
and invoke the main menu program.

This section covers the following topics:

= Specify Standard Parameters
Specify Standard Parameters

This section describes the Specify Standard Parameters panel for the Startup wizard. This panel
is the only specification panel for the wizard.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want
to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate
the modules.

2 Select Code Generation > New Using Construct Model > Startup.

The Specify Standard Parameters panel is displayed. For example:

Code Generation 193

Natural Construct Generation

N News STARTUP

- B

Specify Standard Parameters =r
Enter settings for the skartup program,
[-
Target
Project: | MewProject | [Browse...]
Falder: | | | [Browse...]
Library: | | [Brnwse...]
Module: | |
Deetails
Global daka area: | anleinti} | [Browse...]
With block: | |
Title: | DEMOTEST Startup |
This is the main startup program for DEMOTEST
Descripkion:
Specific parameters
Main menu prograrn: | | [Browse...]
Quik prograrm: | | [Browse...]

Command processor: |

@ (omm]

[]Errar transaction pracessing

Zancel

Many of the parameters on this panel are common to most wizards. For information, see
Specify Standard Parameters.

3 Define the following parameters:

Parameter

Description

Main menu program

Name of the program invoked by the startup program. This is usually the first
panel displayed when a user issues the Natural MENU command.

Quit program

Name of the program invoked when a user ends a session.

Tip: If no special cleanup is required when the program terminates, you can

use the CD-QUIT program supplied with Natural Construct.

Optionally, you can:

194

Code Generation

Natural Construct Generation

Task Procedure

Provide the name of a Natural command Type the name in Command processor. The specified
processor to process commands entered on the |command processor must have been created using

direct command line. the Natural SYSNCP systems utility.

Assign Natural Construct’s default error Select Error transaction processing. For information
transaction program (CDERRTA) to the about “ERRORTA, see the Natural documentation.

*ERRORTA system variable.

4 Select Finish.

The startup program is generated using the current specifications. When generation is complete,
the available user exits are displayed in the Outline view.

5 Save the generated module.
At this point, you can:

® Define user exits for the startup program. For information, see Defining User Exits.

® Use NaturalONE functionality to upload all generated modules to the server.

Change the Dynamic Attribute Characters

This section describes the Specify the Dynamic Attribute Parameters window, which allows you
to define up to four attributes, one of which must be the return to default display attribute (Default
return field).

Notes:

1. To use some of the attributes listed in this window, special hardware is required.

2. For a description of the attributes and valid parameters for the fields, see the applicable Natural
documentation.

3. Avoid using terminal control, alphabetic, and numeric characters when defining dynamic at-
tributes.

4. If you are using Com-Plete, or cross-generating applications to run on a platform where Com-
Plete is in use, also avoid using stacking characters.

~ To change the dynamic attribute characters

1 Select Dynamic Attributes.

The Specify the Dynamic Attribute Parameters window is displayed. For example:

Code Generation 195

Natural Construct Generation

= Dynamic Attributes |-_|@|E|
Specify the Dynamic Attribute Parameters -m_‘"

Specify up to 4 atbribuke codes, one of which must

be the return ko normal display (Default return Figld), - i

Color settings

Inktensify: < | Blue: Italic:
Green: Wihite: Pinik:
Red: Turguoise; ellow:

Default return: | =

Special hardware

Reverse video: Underline: Blinking:

Far example, if vou specify the $ character in the Blue field and use the
% character in frant of a field prompt, the field is displaved in blue on
the generated panel.

o4 l [Zancel

2 Define up to four dynamic attributes, one of which must be the return to default display at-
tribute (Default return field).

3 Select OK to save the settings.
Change the Window Settings
This section describes the Specify Window Parameters window, which defines window parameters

such as the height, width and position of the generated window, as well as whether it has a frame
or not.

~ To change the window settings

1 Select Window Parameters.

The Specify Window Parameters window is displayed. For example:

196 Code Generation

Natural Construct Generation

— =
= Window Parameters

Specify Window Parameters

Enter settings For the window parameters,

Window size
Height: | 0 width: | 0

Window position

Ling: a Caolumn: |0

[]Frame off

Ok] [Zancel

2 Define the following parameters:

Parameter |Description

Height |Number of lines the window will span.

Width |Number of columns the window will span.

Line Number of lines from the top of the panel to the top of the window.

Column |Number of columns from the left side of the panel to the left side of the window. The line
and column values form the top left corner of the window.

Frame off | Determines whether the window is displayed with or without a border. Select this option
to display the window without a border (frame).

Title Title used for the window.

3
4 Select OK to save the settings.

Select a Message Number

This section describes the Select Message Number window, which displays the available SYSERR
numbers for selection.

> To select a SYSERR number

1 Select Browse for Prompt on the Specify Additional Parameters panel.

The Select Message Number window is displayed. For example:

Code Generation 197

Natural Construct Generation

= Select Message Number |Z|@@

Message number: |

Language: 1

Library: CSTAPPL

Murnber Text ~
2 User:1:does nok exist

3 Mo matching conversation Found For:l:

4 APL: Mo Funckion possible after ECC

5 Partner finished the conversation

& APL: Last message not Found

7 Service: 112/ 3:nok regiskered

a Mo related bexck For error number; 1152

a Conversation Found For:l:- no message

13 ATTR: Value For keyword koo long

15 ATTR: Maximum possible number of clients reached
16 MSOME entry is already Free

18 ATTR: Maximum possible number of servers reached
20 Access Failed due to User error in the API

21 Access Failed due to Error in Attribute File

22 Access Failed due to Error in User Exits

23 ATTR: Unknown kesord received in the attribute File
26 ATTR: Zero walue For kesword is not valid

27 ATTR: Value For keyword is ouk of valid range

za ATTR: Invealid walue Found For a keyword

31 APL: Walue: 1ifor WAIT parameter is invalid

33 ATTR: Error during the opening of the Attribute File w

OF] [Cancel

This window displays the available SYSERR numbers for selection.

2 Define the following parameters:

Parameter

Description

Message number

Number of the SYSERR listing in the specified library (by default, "1"). To display

a different SYSERR listing, type a new number and select " to display the SYSERR
numbers in the specified library, beginning at the new number.

Library

Name of the library containing the SYSERR numbers (by default, "CSTAPPL"). To

change the library, type a new library name and select " to display the SYSERR
numbers in the specified library.

Language

Code for the language number (by default, "1" for English). To change the language,

type a new language code and select % to display the SYSERR numbers in the
specified language.

More

Displays additional SYSERR numbers (when more than 100 numbers are available).
To display the next 100 SYSERR numbers, select More. Once all numbers have been

displayed, the button is disabled.

Select the SYSERR number you want to use in the table.

198

Code Generation

Natural Construct Generation

4 Select OK.
Specify Common Parameters

This section describes the Specify Common Parameters window, which defines common paramet-
ers such as support for direct command processing, message numbers, or password checking.

~ To define common parameters

1 Select Common Parameters.

The Specify Common Parameters window is displayed. For example:

- R —
= Common Parameters |_- |El§|
Specify Common Parameters —
Seleck the common parameters,
o i

D Direct command processing
[Message numbers
[JPassword checking

o4 l [Zancel

2 Select one or more of the following options:

Option Description

Direct command Select this option to enable direct command processing.

processing

Message numbers Select this option to use message numbers rather than message text for all

REINPUT and INPUT messages.

Note: Use the same technique consistently throughout your application,

since passing messages between modules using different techniques will
not always produce the desired results.

Password checking Select this option to enable password checking. To include password
checking, you must also set up a password file. For information, see Set
Up a Password File.

3 Select OK to save the settings.

Code Generation 199

Natural Construct Generation

Set Up a Password File

You can specify password checking for many of the generated modules. Natural Construct builds
the mechanism for password checking into your modules by including the CCPASSW copycode
member. Within this copycode, the CDPASSW subprogram is invoked and passed the module
and library names.

To include password checking, you must set up a password file. The file is keyed on the module
name used to catalog the module and the library name used to generate the module.

The password file can be a view of any file with Natural-Construct-Password as the data definition
module (DDM) name. The view must contain the following fields:

Field Format

PASSWORD-KEY | A40 (32-character library name, plus an 8-character module name)
PASSWORD A8 (8-character password)

When a user attempts to invoke the module, the CDPASSW subprogram reads the password file.
If the module/library name combination exists in the file and does not have a password, the user
can invoke the module. If the module/library name combination exists and has a password, the
user must enter the correct password before the module is invoked. If a user enters five incorrect
passwords, execution is aborted.

If you specify password checking, you must modify the CDPASSW subprogram to include a valid
password view and any final processing you want to perform and then catalog the modified
subprogram. For more specific password checking, you can modify the CCPASSW copycode
member (to call a different subprogram) or modify the CDPASSW subprogram (to refine your
security standards).

Specify International Parameters
This section describes the Specify International Parameters window, which defines the language

used to display text on generated panels. You can define international parameters for modules
generated using the Object-Browse-Dialog and user exit models.

~ To specify international parameters

1 Select International Parameters.

The Specify International Parameters window is displayed. For example:

200 Code Generation

Natural Construct Generation

[Message numbers
D Construck prompts

Generation language

— - —
@ International Parameters | E |@®

Specify International Parameters

Select the international parameters,

Language numbet | 1

Model library: | csTapRL |

Application library: | CSTARPL |

[Jcursar translation

Translation LD

| [Brnwse...

| [Brnwse...

| [Brnwse...

| [Brnwse...

| [Brnwse...

[0] 9 l[Cancel]

Define the following parameters:

Parameter

Description

Message numbers

Type of messages used. When this option is selected, the generated code uses
message numbers rather than message text.

Construct prompts

Type of prompts used. When this option is selected, the model generates Natural
Construct-style prompts (for example, 1 of 2).

Language number

Code for the language used when generating message text. The default is 1
(English).

Model library Name of the SYSERR message library used to retrieve common message text. The
default is CSTAPPL.
Application library | Name of the SYSERR library used to retrieve message text for user-defined SYSERR

references. This parameter is only applicable to modules generated using the
Object-Browse-Dialog wizard. If you do not specify an application library, the
Model library value is used.

Cursor translation

When this option is selected, the generated code supports cursor-sensitive
translation (users can modify or translate panel text dynamically in translation
mode).

Translation LDAs

Names of the translation local data areas (LDAs) used by generated modules.
You can specify up to five translation LDAs. Either type the name or select Browse
to display the available data areas for selection.

Code Generation

201

Natural Construct Generation

3 Select OK to save the settings.

Specify Screen Parameters

This section describes the Specify Screen Parameters window, which defines how information is
displayed on the generated screen.

~ To specify screen parameters

1 Select Screen Parameters.

The Specify Screen Parameters window is displayed. For example:

-
= Screen Parameters

Specify Screen Parameters

Heading details
Screen header lines: 2
Blank lines after headings: | 0

Underline headings

Record display details

Murber of lines record: 1

Input line details
Murber of input lines: | 1

Position

@' Eakkom {:} Top

[
Enter settings for the screen parameters, m

- B

Field heading lines: | 1

Starting column: | O

o4 l [Zancel

2 Define the following parameters:

Parameter

Description

Screen header lines

Number of screen heading lines displayed on the generated screen (by
default, two panels).

Field heading lines

Number of field heading lines displayed on the generated screen (by default,
one line is reserved for each field heading line).

Blank lines after headings

Number of blank lines inserted after the field heading lines. For example,
if you specify "1", one blank line is inserted below each field heading line.

Underline headings

Indicates whether field headings are underlined. By default, this option is
marked and field headings are underlined on the generated screen.

202

Code Generation

Natural Construct Generation

Parameter

Description

Number of lines/record

Number of screen lines required to display each record and its attributes
(by default, one line is reserved for each record).

Starting column

Number of the screen column in which the selection column begins.

Number of input lines

Number of screen lines required to display the input keys (by default, one
line is reserved for each input key).

Position Bottom

Indicates whether the input key lines are displayed at the bottom of the
generated screen (by default, this option is selected and the input key lines
are displayed at the bottom).

Position Top

Indicates whether the input key lines are displayed at the top of the
generated screen. To have the input key lines displayed at the top of the
screen, select this option.

3 Select OK to save the settings.

Specify Standard Parameters

The Specify Standard Parameters panel is displayed when a wizard is invoked; it is similar for
all wizards. This section describes parameters on this panel that are common to multiple wizards.
For information about parameters that are specific to individual wizards, see the applicable wizard

section.

~ To specify standard parameters

1 Open the context menu in the Project Explorer for the Natural ONE project in which you want

to generate the modules.

Or:

Open the context menu in the Project Explorer for the library in which you want to generate

the modules.

2 Select Code Generation > New Using Construct Model > WizardName.

The Specify Standard Parameters panel for the selected wizard is displayed. The following
example shows the panel for the Browse-Select wizard:

Code Generation

203

Natural Construct Generation

W New BROWSE-SELECT =3
Specify Standard Parameters =r
Enter settings for the standard parameters,
[-
Target
Project: | MewProject | [Browse...]
Falder: | | | [Browse...]
Library: | | [Brnwse...]
Module: | |
Deetails
Global daka area: | anleinti} |
With block: | |
Title: | Browse Select ... |
This program is used to browse the ...
Description:
Headings

First heading: |

Second heading: |

\
©

3 Define the following parameters:

Parameter Description

Library Name of the library in which to store the generated modules. Either type the name
or select Browse to display the available libraries for selection.

Module Name of the module to be generated. This name must follow standard Natural
naming conventions.

Global data area|Name of the global data area (GDA) used by the module to be generated. To allow
inter-program communication, generated modules require a small number of global
variables. The supplied CDGDA global data area contains the global variables
required to test a generated module. Before creating a new application, copy this
GDA from the SYSTEM library and rename it to match your naming conventions.
Then add any additional global variables your application may require.

Title Title for the module to be generated. You can customize the title for your application.

Description Brief description of what the generated module will do. This field is used internally
for documentation purposes.

204 Code Generation

Natural Construct Generation

Parameter Description
First heading |First heading displayed on the generated panel. This heading is centered at the top
of the generated panel and intensified.

Optionally, you can:

Task

Procedure

Define a different Natural ONE
project in which to generate the
module(s).

Type the name of the project in Project or select Browse to display
a window listing the existing projects for selection. The project must
currently exist.

Define a folder in which to
generate the module(s).

Type the name of the folder in Folder or select Browse to display
a window listing the existing folders for selection. The folder must
currently exist within the selected Natural ONE project.

Note: This option allows you to generate modules into more

complex library structures (for example, "Natural-Libraries/my
Tibrary (MYLIB)/SRC"). When this option is not specified, the
modules will be generated into the basic library folder (for example,
"Natural-Libraries/MYLIB/SRC",
"Natural-Libraries/MYLIB/Subprograms", etc.).

Define a GDA block for use with
the specified GDA.

Type the name of the GDA block in With block. You need only
specify the lowest level block name; the corresponding path name
is determined automatically. For more information about GDA
blocks, see the Natural documentation.

Define a second heading for
display on the generated panel(s).

Type the heading in Second heading. This heading is centered
under the first heading and intensified.

Select generation options for the
module(s).

Select Options. For information, see Generation Options.

Select Next.

The next panel for the specified wizard is displayed. For information, see the applicable

wizard section.

Example of Generating a Program

This section provides an example of using the QUIT wizard to generate a quit program.

~ To generate a quit program

1 Open the context menu in the Project Explorer view for the NaturalONE project into which
you want to generate the quit program.

Code Generation 205

Natural Construct Generation

Or:

Open the context menu in the Project Explorer view for the library into which you want to

generate the quit program.

2 Select Code Generation > New Using Construct Model > QUIT.

First the Progress Information window is displayed, showing progress as the model specific-

ations are initialized, and then the wizard panel is displayed. For example:

N Mew QUIT;

Specify Standard Parameters

Enter the settings Far the quit program,

Targek

Project: | MewProject

| ’Browse...l

Folder: |

| ’Browse...l

Library: |

| ’Browse...l

Module: |

Dietails

Global data area: |

with block; |

Title: | Terminate ...

Description:

This is the kermination program For DEMOTEST ...

Additional pararmeters

Input using map: |

| ’Browse...l

Application name: | Application name ...

[CJuse message numbers

[] Terminate Matural

@ (oms]

Zancel

The names of the project and library from which this panel was invoked are displayed (you

can change these if desired).
3 Type "MYQUIT" in Module.
4 Type "CDGDA" in Global data area.

The CDGDA global data area contains the global variables required to test a generated module.

206

Code Generation

Natural Construct Generation

5

Select Finish.

The generation progress is displayed at the bottom of the panel. For example:

<-- SUBP CU--M3G
[]

@

When generation is complete, the quit program is displayed in the Project Explorer. For ex-
ample:

g H88 7
= .naturalone
(= .settings
(= Construct
(=@ Matural-Libraries *
=& MEWLIE *
= Ern
& res
= sRC *
CE R OUIT SR Aok

The quit program is also displayed in the editor. For example:

Code Generation 207

Natural Construct Generation

EE pMyouT Msp E2 =5

#k *Natural Source Header 000000 AN
**SLG GEMERLTOR: QUIT VERSION: 5.3.1.9

*%34G TITLE: Terminate ...

**3ALG IVSTEM: MNEUWLIE

**3LG GDA: CDGDA

wFESALG DEICE(1): This is the termination progrssn for DEMOTEST ... E

FFSLG APPLICATICON-IAME: Application name ...
o ol o o ol o o

* Progratm @0 MYQUIT

* System : MNEWLIE =
* Title : Terminate ... =
* Generated: Febh 25,2011 at 16:25:35 by FPUWRUSR

* Function @ This is the terwmination prograwm for DEMOTEST ...

W =
* =
o =
* History -
**3LG EXIT POINT CHAMNGE-HIZTORY

o ol o o ol o o E
DEFINE DALTL

GLOBAL TSING CLDGDA B
LOCAL USING CDENVIRA /* Used to capture/restore previous environment. -
LOCAL UIING CDFLIPA /* Used to change the ED lines.

LOCAL USING CDEEYLDA /* Used to set function keys + their alias. -
LOCAL UIING CDQTTXL /* Text used by the Quit model. H
LOCAL TSING CDDIALDA /% Common local data. =]
LOCAL

01 #APPLICATION-MNAME (R25) INIT <'Application name ...'>

01 HCOMMENT-TZT1 (478) =
01 HCOMMENT-TXETZ [(A7E) -
01 #LAST-OEJECT (AS) F% Chject which initiated guirt.

01 HLAST-FF-EEY (44)

01 #RESUME-PF-KEY(A4)

01 HQUIT-INDEZ(F3) f% Index of guit key in CDEEYLDA table.

01 #USE-STANDARD-QUIT-KEY (L)

**ZLG EXIT POINT LOCAL-DATRE B
END-DEF IMNE

- =
FORMALT KD=0M w

At this point, you can define additional processing within user exits. User exit code is preserved
during regeneration. For information, see Defining User Exits.

Regenerate Natural Construct-Generated Modules

You can regenerate any module that was generated using a Natural Construct or client generation
wizard. You can also select more than one project, folder, or object to regenerate multiple modules.
When regenerating multiple modules, a selection window is first displayed to select the resources
to be regenerated.

~ To regenerate Natural Construct-generated modules

1 Open the context menu for one or more projects, folders, or modules in the Project Explorer.

208 Code Generation

Natural Construct Generation

You can use standard selection techniques.

2 Select Code Generation > Regenerate Using Wizard.

The model PDA is uploaded to the mainframe to be populated and then downloaded to the
local Eclipse environment to populate the PDA values before displaying the first wizard
specification panel. You can then edit the specifications and select Finish.

Or:
Select Code Generation > Regenerate.

A progress window is displayed as the wizard locates and loads the regeneratable resources.
Next, a selection window is displayed to choose the resources you want to regenerate. For
example:

7= Regenerate |:|@| g|

Regenerate resources | T
Select the resources to be regenerated,
. =1
Filker
Marne: |
Generator I0:
Mame Generatar
ACUSTM.MSM OBJECT-EROWSE-SLEP
AORDMMNSM OBIECT-BROWSE-SUEP
APRODD.MSM OBJECT-EROWSE-DIALDG
APRODM.MSM OBIECT-BROWSE-SUEP
Ay HN SN OBJECT-EROWSE-SLEP

[Select Al] [Deselect Al

Finish l l Cancel
Using this panel, you can:
Task Procedure
Filter the list of resources for selection. Type a prefix in Filter. For example, if you type "AP",

only the resources beginning with AP are selected.

Use a different code generator to regenerate |Type the generator ID in Generator ID.
the resource.

Deselect all resources. Select Deselect All.

Code Generation 209

Natural Construct Generation

After selecting the resources, select Finish. The modules are generated without displaying
the wizard panels.

When regenerating a resource that was generated using a Natural Construct client generation
wizard, the following process occurs:

1. The original generated source code is uploaded to the Natural server.

This allows the **SAG lines to be parsed into the model PDA (and user exits to be processed
later).

The Read program is executed to populate the model PDA.

The generation process begins, using the downloaded model PDA data.

User exits are merged on the server.

AR

All generated modules are downloaded from the server to the client.

210 Code Generation

13 Natural Construct Administration

= Create a New Client Generation WIizardccoooiiiiiiiiii it 212
= Download Natural Construct Resources to a Local Projectcccvieiiiiiiiiiiiiie e 249
= Modify an Existing Natural CONStruCt RESOUICEcciviiiiiiiiiiiee e 251
= Create and Maintain a Natural Construct Modeloiiiiiiii e 251
= Create and Maintain @ COAE FrAMEuveeiicccc ettt en e e s s e 255
= Create and Maintain a Natural Construct Model Uluuuimiuiiiiiiiiiiiiiiiiiiii i 262

211

Natural Construct Administration

This section describes how to use NaturalONE functionality to create and maintain Natural
Construct resources.

| Note: If you have customized any of the supplied modules on the server, you can either

add them to the current project or add them to the downloaded Construct runtime project
(which will overwrite the supplied modules). For more information, see Add Customized
Modules to the Construct Runtime Project.

Create a New Client Generation Wizard

The most significant difference between Natural Construct in NaturalONE and on the server is
the user interface. Instead of entering "NCSTG" and invoking the Modify server subprogram
panels, a local wizard is used. This wizard is created using the model record file (.cstmdl extension),
the model PDA, customizable XML files for the model Ul file (.cstmdlui extension) and any reusable
dialog Ul files (.cstmdldg extension) or page Ul files (.cstmdlpg extension), and a wizard engine.
The engine calls the clear subprogram (called before the wizard is invoked and used to set defaults)
or read subprogram (used to read the specifications for regeneration) on the server, displays the
user interface and populates the PDA with data from the interface, and then calls the validation
subprogram on the server to validate the user input. The model record data is identical to the data
on the Natural server and must exist in the local environment. The wizard uses this data to determ-
ine the model PDA and clear, validate, and read subprograms for the model.

~ To create a new client generation wizard

1 Download the model record from the server installation.

] Note: For information on downloading the model record and PDA from the server, see

Download Natural Construct Resources to a Local Project.

2 Use the model record to determine the name of the model PDA.
3 Download the model PDA from the SYSCST library.
4 Create the model Ul file and, optionally, the reusable page UI and dialog Ul files.

These files include the main model Ul file to map the user interface to the model PDA (.cstm-
dlui extension), as well as any reusable dialog Ul files (.cstmdldg extension) or page Ul files
(.cstmdlpg extension).

This section describes how to create a client generation wizard for a model that has not been im-
plemented locally. The following topics are covered:

= User Interface (Ul) File Examples
= Page Node
= Dialog Node

212 Code Generation

Natural Construct Administration

= |tem Node

= GUI Controls

= Add a Tool Tip

= Set Up a Server Call

= Bind Data to GUI Controls

= Error Handling Tips for Field Names
= Generate NATdoc Documentation

User Interface (Ul) File Examples

This section describes the user interface (Ul) files used in the client generation framework. The
following topics are covered:

= Model Ul File
= Reusable Dialog and Page Ul Files

Model Ul File

This section describes the model Ul file (.cstmdlui extension). In the same way the model panels
on the server relate to the model PDA, this file connects the client user interface with the model
parameter data area (PDA) and/or specifications. On the client, these relationships are created
using document nodes that associate the model PDA via the pda: keyword. or specs: keyword
when the required input is not found in the model PDA. This information is then used during the
generation process.

The following example illustrates the model Ul file (.cstmdlui extension) for the supplied STARTUP
wizard:

<model name="STARTUP" constructID="STARTUP" category="Construct">
<version major="5" minor="3" release="1" />
<description>Startup Model</description>
<pages>
<page id="StartupPage" title="Specify Standard Parameters">
<description>Enter settings for the startup program.</description>
<layout class="gridLayout" columns="3" />
<children>
<group text="Target ">
<layoutData class="gridLayoutData" horizontalSpan="3"
grabExcessHorizontalSpace="true" />
<Tayout class="gridLayout" columns="3" />
<{children>
<l-- PROJECT -->
<label text="Project:" />
<text id="ProjectTextText" text="{specs:project}"
default="selection:project">
<{layoutData class="gridLayoutData"
horizontalSpan="1" <«
grabExcessHorizontalSpace="true" />
</text>

Code Generation 213

Natural Construct Administration

<cstBrowseProject />
<!-- LIBRARY -->
{label text="Library:" />
{text id="LibraryText" text="{specs:library}"
default="selection:library">
{layoutData class="gridlLayoutData"
grabExcessHorizontalSpace="true" />
</text>
<cstBrowselLibrary />
<!-- MODULE -->
{label text="Module:" />
{text id="ModuleText" text="{specs:module}">
<layoutData class="gridlLayoutData"
grabkExcessHorizontalSpace="true" />
</text>
<label></Tabel>
</children>
</group>
<group text="Details ">
<TayoutData class="gridlLayoutData" horizontalSpan="3"
grabExcessHorizontalSpace="true" />
{layout class="gridLayout" columns="3" />
<children>
<I-- GDA -->
<Tabel text="Global data area:" />
{text id="ModuleText" text="{pda:CUSTPDA.{PDAX-GDA}"
default="CDGDA">
{layoutData class="gridlLayoutData"
grabExcessHorizontalSpace="true" />
{/text>
<cstBrowseNaturalObject text="Browse..."
resultType="BrowseResults.NAME" <«
filekExtension="NSG"
result="{pda:CUSTPDA.#PDAX-GDA}" />
<!-- GDA with block -->
<label text="With block:" />
{text id="GdaWithBlockText" <
text="{pda:CUSTPDA.#PDAX-GDA-BLOCK}">
{layoutData class="gridLayoutData"
grabExcessHorizontalSpace="true" />
<{/text>
{label text="" />
== TITLE ==>
{label text="Title:" />
<text id="TitleText" text="{specs:title}" «
default="Startup Program.">
{layoutData class="gridLayoutData"
grabExcessHorizontalSpace="true" />
</text>
{label text="" />
<!-- DESCRIPTION -->
<label text="Description:" />

214 Code Generation

Natural Construct Administration

<cstMulti id="DescriptionText" <
text="{pda:CUSTPDA.{PDAX-DESCS}"
default="This is the main startup program <
D
{layoutData class="gridLayoutData"
horizontalSpan="1" verticalAlignment="4" <
heightHint="60" />
</estMulti>
<label></Tabel>
</children>
</group>
<l-- Group for SPECIFIC PARAMETERS -->
<group text="Specific parameters ">
<layoutData class="gridLayoutData" horizontalSpan="3"
grabExcessHorizontalSpace="true" />
{layout class="gridLayout" columns="3" />
<children>
<!-- MAIN MENU PROGRAM -->
<label text="Main menu program:" />
<{text id="ModuleText" <
text="{pda:CUSTPDA.#PDAX-MAIN-MENU-PROGRAM} ">
<layoutData class="gridlLayoutData"
horizontalSpan="1" <
grabExcessHorizontalSpace="true" />
</text>
<cstBrowseNaturalObject text="Browse..."
resultType="BrowseResults.NAME" <«
fileExtension="NSP"
result="{pda:CUSTPDA.#PDAX-MAIN-MENU-PROGRAM}" <«
/>
<I-- QUIT PROGRAM -->
<label text="Quit program:" />
<{text id="ModuleText" <«
text="{pda:CUSTPDA.#PDAX-QUIT-PROGRAM}">
<layoutData class="gridlLayoutData"
horizontalSpan="1" <
grabExcessHorizontalSpace="true" />
</text>
{cstBrowseNaturalObject text="Browse..."
resultType="BrowseResults.NAME" <«
fileExtension="NSP"
result="{pda:CUSTPDA.#PDAX-QUIT-PROGRAM}" />
<!-- COMMAND PROCESS -->
<{label text="Command processor:" />
<text id="CommandText" <«
text="{pda:CUSTPDA.#PDAX-PROCESSOR}">
<{layoutData class="gridlLayoutData"
horizontalSpan="1" <«
grabkExcessHorizontalSpace="true" />
</text>
<button style="SWT.CHECK" text="Error transaction «
processing"

Code Generation 215

Natural Construct Administration

selection="{pda:CUSTPDA.#PDAX-ERROR-TA}">
<layoutData class="gridlLayoutData"
horizontalSpan="3" <«
grabExcessHorizontalSpace="true" />
</button>
</children>
</group>
</children>
</page>
</pages>
</model>

Reusable Dialog and Page Ul Files

The Natural Construct client generation framework supports reusable dialogs and pages. The
dialog UI or page Ul code can be created once as a separate file and then included in multiple
model Ul files. In this way, changes to the page or dialog UI code will be automatically reflected
in any client generation wizard that includes that page or dialog Ul file.

Model Ul File

The following example illustrates a model Ul file (.cstmdlui extension) for MYMODEL, which
includes reusable page and dialog Ul files:

<model name="MYMODEL" constructID="MODELA" category="Construct">
<version major="5" minor="3" release="1" />
<description> This model demonstrates reusable page/dialogs.
</description>
<{pages>
<page id="Pagel" title="Pagel title">
<description>Enter settings for this non-reusable <«
page.</description>
<children>
. Ul nodes go here ...

<cstDialogButton id="button" text="Show a dialog...">
<dialog include="MyReusableDialog">
<replacements>
{stringReplacement <«
target="%DIALOG_PDA_NAMEZ%"
replacement="NEWPDA" />
</replacements>
</dialog>
</cstDialogButton>

. more UI nodes go here ...
</children>
</page>
<{page include="MyReusablePage">
<replacements>
{stringReplacement target="%PAGE_PDA_NAMEZ%"

216 Code Generation

Natural Construct Administration

replacement="NEWPDA" />
<{/replacements>
</page>
</pages>
</model>

Dialog Ul File
The following example illustrates the reusable dialog Ul file (.cstmdldg extension) for MYMODEL:

<modelUIDialog>
<dialog windowTitle="My Dialog" title="My dialog title" message="My dialog <«
message.">
<children>
<putton style="SWT.CHECK" text="My button"
selection="{pda:%DIALOG_PDA_NAME%.#PDA-BOOLEAN-FIELD}">
</button>

. more UI nodes go here ..

</children>
</dialog>
</modelUIDialog>

Page Ul File
The following example illustrates a reusable page Ul file (.cstmdlpg extension) for MYMODEL:

<modelUIPage>
<page id="Page2" title="Page2 title">
<description>Enter settings for this reusable page.</description>
<children>
{text id="MyText" text="{pda:%PAGE_PDA_NAME%.#fPDA-FIELD}" <
required="true" />

. UI nodes go here ...

<cstDialogButton id="button" text="Show a dialog...">
<dialog include="MyReusableDialog">
<replacements>
<{stringReplacement target="%DIALOG_PDA_NAME%"
replacement="NEWPDA" />
</replacements>
</dialog>
</cstDialogButton>

. more UI nodes go here ..
</children>

</page>
</modelUIPage>

Code Generation 217

Natural Construct Administration

Page Node

The page node represents a page displayed through the wizard. Within this node, child nodes
represent SWT GUI controls. This section describes the elements and attributes you can define
within the page node:

= Description

= HelplD

= D

= |nclude

= Qptional

= Replacements
= Title

Description

When defined, this attribute provides a brief description of the page. For example:

page id="StartupPage" title="Specify Standard Parameters">
{description>Enter settings for the startup program.</description>

HelpID

When defined, this attribute enables the help button on the page and links the Eclipse help system
to the applicable help ID. For example:

<page id="StParms" title="Specify Standard Parameters" helpID="StParmsHelpID">
ID

This attribute defines the name of the page. For example:

page id="StartupPage" title="Specify Standard Parameters">
Include

When defined, this attribute defines the name of a reusable page used by the model. For example:

<page include="MyReusablePage">

218 Code Generation

Natural Construct Administration

Optional

When defined as true, this attribute disables validation for the page; if the remaining pages are
also defined as optional, the Finish button will be enabled. For example:

<page id="2" title="TWO" optional ="true">
By default, a page is not optional (i.e., it is mandatory).

Tip: To allow users to select Finish when only optional pages remain, group all optional
pages together at the end of the XML file.

Replacements

When defined, this element defines nested stringReplacement elements that allow simple string
replacements to be performed (for example, PDA bindings) for a reusable page. For example:

<replacements>
{stringReplacement target="pda:MYPDA" replacement="pda:MYPDA2" />
</replacements>

In this example, all occurrences of "pda:MYPDA" in the reusable page will be replaced with
"pda:MYPDA2" when a client generation wizard imports and uses the page.

Title
This attribute defines the title displayed on the page.
Dialog Node

The dialog node represents a dialog that will be displayed to a user. For example:

<dialog windowTitle="Edit Row" title="Row Details" message="Enter row details">
{children>
<label text="&Code:" />
<text 1d="Oms11" text="{pda:CUMNPDA.#PDA-CODE}">
<layoutData class="gridLayoutData" horizontalSpan="2"
grabExcessHorizontalSpace="false">
</TayoutData>
</text>
<{label text="&Function:" />
<text id="0msl12" text="{pda:CUMNPDA.#PDAX-FUNCTIONS}">
<layoutData class="gridlLayoutData" horizontalSpan="2"
grabExcessHorizontalSpace="true">
</TayoutData>
</text>
<label text="&Program name:" />
<text 1d="0msb13" text="{pda:CUMNPDA.#PDA-PROGRAM-NAME}">
<layoutData class="gridLayoutData" horizontalSpan="1"
grabExcessHorizontalSpace="false" />

Code Generation 219

Natural Construct Administration

{style type="naturalObject" />
</text>
<cstBrowseNaturalObject text="Browse..."
fileExtension="NSP" result="{pda:CUMNPDA.#PDA-PROGRAM-NAME}">
</cstBrowseNaturalObject>
</children>
</dialog>

This node is similar to the page node; any XML control that can be defined for a page can also be
defined for a dialog; in addition, any stringReplacement can be defined for a reusable dialog. The
following attributes are defined within the dialog node:

Attribute Description

include Name of a reusable dialog (only used when the dialog parent node is cstDialogButton). For
information, see Reusable Dialog and Page UI Files.

message Banner text displayed on the dialog.

title Title displayed on the dialog.

windowTit1e|Internal name used for the dialog.

| Note: If you do not select OK to close the edit window, the edits will not be applied (i.e.,
the values in the table will not change).

Iltem Node

The item node represents a value/display combination to map between the text displayed on a
GUI control and the actual underlying value. For example:

<items>
<item value="1" display="Winter"/>
<item value="2" display="Spring"/>
<item value="3" display="Summer"/>
<item value="4" display="Fall"/>
</items>

The following attributes are defined within the item node:

Attribute |Description

value |Value that will be saved internally.

dispTlay |Value that will be displayed on the page.

220 Code Generation

Natural Construct Administration

GUI Controls

GUI controls are represented by nodes in the client generation framework and are used to bind
user input from the interface to associated fields in the model PDA or specifications. Before the
first specification panel is displayed, the model's clear subprogram on the server is invoked and
typically populates default values in the PDA. These default values will be presented to the user
(unless they have been overridden at the XML node level).

All controls have the following traits in common:

® Any property of an SWT (Standard Widget Toolkit) control can be modified with an attribute
in the XML file. The XML attribute in the XML must map to a Get/Set method in the correspond-
ing SWT control.

= All controls have an ID attribute. Whenever there is an error with a control, the ID attribute will
be displayed to assist in diagnosing the problem. Although there is no checking for duplicate
ID attributes, it is highly recommended that each control have a unique ID.

= All controls support the tool tip option, which provides information about its use.

| Note: For more information, see Bind Data to GUI Controls and Default Properties Applied
to GUI Controls.

This section covers the following topics:

= Button

= Combo

= Composite
cstCombo
cstDeriveServerButton
cstDialogButton
cstRadioGroup
cstTable

dateTime

= Group

= | abel

= Text Box

= Multi-Line Text Box

Code Generation 221

Natural Construct Administration

= Browse Button Controls

Button

This GUI control is a button the user can select to initiate an action.

Attributes

Attribute Description

style An SWT constant indicating the style of the button. For example, SWT.CHECK
will create a check box.

text Text displayed on the button.

selection Boolean binding value indicating whether the button is selected or not. If the
button is a check box, this attribute indicates whether the button is marked or
not.

onWidgetSelected|Link to an event to be handled.

Example

<button style="SWT.CHECK" text="Check" selection="{pda:CUSTPDA.#PDAX-ERROR-TA}"/>

In this example, the value of the checked box (either true or false) will be placed in the #PDAX-
ERROR-TA Boolean field in the CUSTPDA parameter data area for the STARTUP model.

Combo

This GUI control is a drop-down list that allows the user to either enter text or select a value from
a list of available choices.

Attributes

Attribute | Description

text |Binding property used to bind the text property for the combo box to an underlying field.

values|A list of items to display in the combo box, separated by commas.

Example

<combo id="myCombo" text="{pda:levell.selection}" values="A,B,C,D" />

In this example, the user will be able to select A, B, C, or D as an input value for the specified
PDA field. The field cannot be blank.

| Note: If this is not a required field, add a 5th entry to represent a blank (for example,
values=",A,B,C,D").

222 Code Generation

Natural Construct Administration

Composite
This GUI control is an invisible control that hosts other controls.

Child Nodes

Node Description

layout |Defines settings for the layout strategy to use.

children|Defines the child controls.

Example

<composite>
<layout class="gridLayout" columns="2" />
<children>
<{Tabel text="Array 1" />
{text text="{pda:levell.Array(1)}" />
<{label text="Array 2" />
{text text="{pda:Tlevell.Array(2)}" />
</children>
</composite>

When the number of columns are defined for a table, the cells are filled from left to right and
top to bottom. In this example, there will be 2 columns and 2 rows where the first row is ARRAY

1 and the data is in array(1).

cstCombo

This section describes the cstCombo control. This control is similar to the combo control, exce
it allows one value to be displayed on a panel and a second, different value to be stored in the
PDA.

Attributes
Attribute Description
value Bound field that stores the value of the combo box.

defaultValue|Value to use when the bound field is not set.

pt

Code Generation

223

Natural Construct Administration

Child Nodes

Node

Description

item

For information, see Item Node.

Set Default Values

Unless otherwise specified, the default value is the first item in the list. When a blank is not
acceptable, you can provide a default value. For example:

<cstCombo value="{pda:#INPUT.VALUE}"

{tems>

<item value="1" display="Ontario"/>
<item value="2" display="Quebec"/>

<{/items>

</cstCombo>

When a blank is acceptable, you can provide an item for blanks. For example:

<cstCombo value="{pda:#INPUT.VALUE}">

<dtems>

<item value="" display=""/>
<item value="1" display="Ontario"/>
<item value="2" display="Quebec"/>

{/items>

</cstCombo>

Note: The value attribute is used, as opposed to the text attribute, to ensure that the

number (for example, "1") goes into the PDA, while the text in display (for example,
"Ontario") is displayed on the wizard panel.

cstDeriveServerButton

This section describes the cstDeriveServerButton control, which calls a subprogram to derive data

from the server.

model PDA or derive values from the server, see Set Up a Server Call. For example, you
can use this control if I wanted to start my first browse row on line 3 and there are 2 lines
of input how many rows could I fit on the screen...the number 3 and 2 the user enters in
and the button goes off and calculates the number of rows that fit on the screen) values for

Note: For information on using the cstDeriveServerButton control to refresh defaults in the

the model PDA,

224

defaultValue="1">

Code Generation

Natural Construct Administration

Attributes
Attribute Description
style An SWT constant indicating the style of the button. For example, SWT.PUSH will
create a button.
text Text displayed on the button

serverCallID|CallID for the server call that defines how the data from the proxy PDA (the fields on
the server) gets populated into the model PDA (the fields on the client) and vice versa.
For more information, see Set Up a Server Call.

Example
<cstDeriveServerButton style="SWT.PUSH"

text="Refresh Default Methods" serverCallID="Default_Methods">
{/cstDeriveServerButton>

cstDialogButton

This section describes the cstDialogButton control, which displays a custom dialog when selected.

Attributes

Attribute | Description

text |Text displayed on the button.

Child Nodes

Node |Description

dialog|For information, see Dialog Node.

Example

<cstDialogButton id="button" text="Display Options...">
<dialog windowTitle="Display Options" title="Display Options"
message="Select options for display">
<{children>
<label text="&0Option Code:" />
<text id="Oms11" text="{PDA:#INPUT.VALUE}">
</text>
</children>
</dialog>
</cstDialogButton>

Code Generation 225

Natural Construct Administration

cstRadioGroup

This section describes the cstRadioGroup control, which creates a group box containing radio
buttons (one radio button for each item child node).

Attributes
Attribute Description
value Bound field that stores the value of the group box.

defaultValue|Value to use when the bound field is not set.

orientation |Alignment of the radio buttons. Valid values are horizontal or vertical (the default).

text Text displayed on the group box.

Child Nodes

Node | Description

item |For information, see Item Node.

Example

{cstRadioGroup value="{pda:#INPUT.VALUE}" text="Province" defaultValue="2" «
orientation="horizontal">
<items>
<item value="1" display="Ontario"/>
<item value="2" display="Quebec"/>
</items>
</cstRadioGroup>

cstTable

This section describes the cstTable control, which provides a table (grid) for an array.

] Notes:

1. The bindings in a dialog do not include the array index. The selected row will be added to the
table when the Edit button is selected.

2. You can create a table that uses multi dimensions of an array. For an example of this function-
ality, see the Object-Browse-Subp wizard.

226 Code Generation

Natural Construct Administration

Attributes

Attribute Description

countField Name of the field that stores the actual count of rows (©f field). If the count
field is not specified, the table will use the number of elements declared in
the array as the row count. For example, A (A10/1:10) will have 10 rows
displayed in the table.

editOnly When this attribute is set to true, the rows in cstTable can only be edited (i.e.,
the Add and Delete buttons will be disabled). By default, rows in cstTable
can be added, deleted, and edited.

maxRows Maximum number of rows displayed for the table. By default, this number
is the upper bound of the array field.

numberColumnDisplay|Column header for the row number column; the default is "#".

numberColumnWidth |Column width; the default is 25 pixels.

Cascading Deletes
If the first dimension of an array is defined as a Group field and the second dimension is
defined as a group under the first dimension, cstTable will automatically cascade deletes to
the second dimension. In the following example, if Parent-Row(5) is deleted, Child-Row/(5,%)
will be deleted as well:

01 Parent-Row (1:10)
02 Field2 (A10)
02 Field3 (A10)
02 Child-Row (1:5)
03 Childl (A10)
03 Child2 (A10)

Nested Array Indexes
You can nest array indexes within a table. For example, you can create a table on one dialog
that contains the first dimension of an array and pass the indexes for a second and third dimen-
sion to a second table in another dialog. For example:

<statement display="DREW" id="DREW" velocityTemplate="ESCAPE.vm">
<{pages>
<page id="Start" title="ESCAPE statement">
<description>Enter statement options</description>
<{layout class="gridLayout" columns="1" />
<children>
<cstTable>
{layoutData class="gridLayoutData" <
horizontalSpan="1"grabExcessHorizontalSpace="true" />
<columns>
<column fieldName="A" display="A" width="75" <
/>
<column fieldName="B" display="B" width="50" «
/>
</columns>

Code Generation 227

Natural Construct Administration

<dialog>
<Tayout class="gridLayout" columns="2" />
<children>
{label text="A:" />
{text text="{pda:A}">
{layoutData «
class="gridlLayoutData" horizontalSpan="1"grabExcessHorizontalSpace="true" />
{/text>
{label text="B:" />
{text text="{pda:B}">
{layoutData <
class="gridlLayoutData" horizontalSpan="1"grabExcessHorizontalSpace="true" />
<{/text>
<label text="C(n,1):" />
{text text="{pda:C(1)}">
<lTayoutData <
class="gridLayoutData" horizontalSpan="1"grabExcessHorizontalSpace="true" />
</text>
<label text="C(n,2):" />
{text text="{pda:C(2)}">
{layoutData «
class="gridlLayoutData" horizontalSpan="1"grabExcessHorizontalSpace="true" />

</text>
</children>
</dialog>
{/cstTable>
</children>
</page>

</pages>

<{pda>

<I[CDATATL

01 Groupl(1:3)
02 A (A) DYNAMIC
02 B (A) DYNAMIC
02 Group2 (1:2)
03 C (A) DYNAMIC
03 D (A) DYNAMICII>
</pda>
</statement>

In this example, the user selected the second row of the table for editing and the first index (2)
is populated; the C field will be generated as C(2,1) and C(2,2).

Group a Nested Table
You can group a nested table, which allows you to place a border around the table and provide
a title for the group. For example:

<group text="Window location">
<layoutData class="gridLayoutData"horizontalSpan="2" <«
grabkExcessHorizontalSpace="true" />
<{children>
<cstTable id="table">

228 Code Generation

Natural Construct Administration

<layoutData class="gridlLayoutData"horizontalSpan="3" <«

grabExcessHorizontalSpace="true"grabExcessVerticalSpace="true" <«
horizontalAlignment="SWT.FILL"verticalAlignment="SWT.FILL" />

<columns>
<column <«

fieldName="CUOMPDA.#PDAX-SCROLL-LINE"display="Line" width="150" />

<column «

fieldName="CUOMPDA.#PDAX-SCROLL-COL"display="Column" width="150" />

</columns>
{/cstTable>

</children>

</group>

Child Nodes

columns

This node defines attributes for a column within the cstTable control. These attributes are:

Attribute Description
fieldName|Name of the field in the PDA to which the column is bound.
display |Heading used for the column.
width Width of the column. The default is 25 pixels.
bTankTest|Used to detect empty rows within a table. A row is considered empty when all the flagged
columns for the row are empty. By default, all columns within a row are flagged as being
part of the blank test. To un-flag a column, set the blankTest attribute to "false".
A field within a specific row/column is considered empty using the following rules for
the value:
® Numeric fields (INPF): zero (0, 0.0, 00.00, etc.)
® Any other field is blank when its string representation is blank or only contains
whitespace (", " ", "<tab>", etc.)
In the following example, only the first column is used to determine whether a row is
empty:
{cstTable>
<columns>
<column fieldName="A" display="A" width="75" />
<column fieldName="B" display="B" width="50" blankTest="false"/>
<column fieldName="C" display="C" width="50" blankTest="false" />
</columns>
</cstTable>
dialog

For information, see Dialog Node.

Code Generation

229

Natural Construct Administration

Example
The following example illustrates a cstTable control for the supplied Menu wizard:

{cstTable id="table" countField="CUMNPDA.#PDA-TOTAL-MENU-LINES">
<layoutData class="gridLayoutData" horizontalSpan="3"
grabExcessHorizontalSpace="true" grabExcessVerticalSpace="true"
horizontalATignment="SWT.FILL" verticalAlignment="SWT.FILL" />
<columns>
<column fieldName="CUMNPDA.#PDA-CODE" display="Code" width="100" />
<column fieldName="CUMNPDA.#PDAX-FUNCTIONS" display="Function"
width="100" />
<column fieldName="CUMNPDA.#PDA-PROGRAM-NAME" display="Program Name"
width="100" />
</columns>
<{dialog windowTitle="Edit Row" title="Row Details" message="Enter row details">

<children>
<label text="&Code:" />
<text id="Oms11" text="{pda:CUMNPDA.#PDA-CODE}">
<layoutData class="gridLayoutData" horizontalSpan="2"
grabExcessHorizontalSpace="false"
>
</TayoutData>
</text>
<label text="&Function:" />
<text id="Omsl12" text="{pda:CUMNPDA.#PDAX-FUNCTIONS}">
<layoutData class="gridLayoutData" horizontalSpan="2"
grabExcessHorizontalSpace="true"
>
</TayoutData>
</text>
<label text="&Program name:" />
<text 1d="Omsb13" text="{pda:CUMNPDA.#PDA-PROGRAM-NAME}">
<layoutData class="gridLayoutData" horizontalSpan="1"
grabExcessHorizontalSpace="false" />
{style type="naturalObject" />
<{/text>
{cstBrowseNaturalObject text="Browse..."
fileExtension="NSP" result="{pda:CUMNPDA.#PDA-PROGRAM-NAME}"
>
</cstBrowseNaturalObject>
</children>
</dialog>
</cstTable>

230 Code Generation

Natural Construct Administration

dateTime

This GUI control is an edit control that accepts a date and/or time, and optionally presents a drop-
down calendar (depending on the SWT style). For information, see:

Class DateTime.

Attributes

Attribute | Description

value |Binding value indicating the location in which to store and retrieve the date value.

Example

<dateTime style="SWT.DATE \| SWT.DROP_DOWN \| SWT.BORDER " «
value="{pda:levell.date}"/>

In this example, the user is restricted to only entering a date; this value will go into the specified
field in the model PDA.

Group

This GUI control is a rectangular border/frame that groups related controls and has a group
heading on its border.

Attributes

Attribute | Description

text |Text displayed on the group box border.

Child Nodes

Node Description

layout |Settings for the layout strategy to use.

children|Node under which the child controls are placed.

Example

<group text="Arrays">
<layout class="gridLayout" columns="2" />
<children>
{label text="Array 1" />
{text text="{pda:levell.Array(1)}" />
<lTabel text="Array 2" />
{text text="{pda:Tlevell.Array(2)}" />
</children>
</group>

Code Generation 231

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/widgets/DateTime.html

Natural Construct Administration

| Note: For more examples of group boxes, such as the target group, see the startup.xml

example in Model UI File.

Label

This GUI control is an SWT (Standard Widget Toolkit) label used to display text.

| Note: A label control does not receive focus nor generate input events.

Attributes

Attribute | Description

text |Text displayed for the label.

Example

<label text="Library:" />

In this example, the label is used as the prompt for the Library input field. For more examples
of labels, see the startup.xml example in Model UI File.

Text Box

This GUI control is a text box that allows users to input a single line of text. The text control can

also be read-only.

| Note: As text fields have no description, define a label control to describe their purpose.

Attributes
Attribute Description
text Binding property indicating how to bind the text in a text box to an underlying data
source. For example:
<{text id="LibraryText" text="{specs:library}" required="false">
default Default value shown when the text box is first displayed.
required Boolean value indicating whether the text box must be defined. When this attribute is

set to true, an error message will be displayed and the user will not be allowed to
navigate off the page until the text is filled in.

displayName

When the required attribute is set to true and the field is blank, this name will be
displayed as the field name in the error message. For example:

"<{displayName> cannot be blank"

232

Code Generation

Natural Construct Administration

Attribute Description
Note: If displayName has not been specified, the control ID will be used as the field
name in the error message.
SWTstyle Indicates the Eclipse (SWT) style for the text box, such as scroll bars or multi-line. The
following example binds a non-array field to a multi-line text box with scroll bars:
{text text="{pda:LOGICAL-CONDITION}" id="condition"
SWTstyle="SWT.MULTI | SWT.BORDER | SWT.V_SCROLL | <
SWT.H_SCROLL">
<TayoutData class="gridLayoutData"
grabExcessHorizontalSpace="true" heightHint="40" />
</text>
Child Nodes
style

The style node allows you to specify the style of the text box. The valid styles are:

Style

Description

maxLength

Maximum number of characters the text box will accept. For example:

<text id="ModuleText" text="{specs:Module}">
<{style maxLength="20"/>
</text>

case

"o

Converts the user input into a particular case. The valid values are: "upper”, "lower",
or "mixed" (no conversion takes place). For example:

{text id="ModuleText" text="{specs:Module}">
{style case="upper"/>
</text>

numbersOnly

Boolean value indicating whether only numbers 0-9 will be accepted. For example:

<text id="ModuleText" text="{specs:Module}">
<style numbersOnly="true" />
</text>

Note: Signs (+/-) cannot be used.

numericOnly

Boolean value indicating whether only numeric keys will be accepted. For example:

{text id="ModuleText" text="{specs:Module}">
<style numericOnly="true" />
</text>

Note: Signs (+/-) can be used.

Code Generation

233

Natural Construct Administration

Multi-Line Text Box

Style

Description

type

Value indicating a combination of styles. Possible values are "naturalObject" and
"naturalFieldName". For example:

{text id="ModuleText" text="{specs:Module}">
{style type="naturalObject”/>
</text>

This GUI control is a multi-line text box that can be bound to an array of string fields.

Attributes
Attribute Description
text Binding property indicating how to bind the text in a text box to an underlying data
source. For example:
<cstMulti id="LibraryText" text="{specs:library}" required="false">
default Default value shown when the text box is first displayed.
required Boolean value indicating whether the text box must be defined. When this attribute is

set to true, an error message will be displayed and the user will not be allowed to
navigate off the page until the text is filled in.

displayName

When the required attribute is set to true and the field is blank, this name will be
displayed as the field name in the error message. For example:

"<{displayName> cannot be blank"

Note: If displayName has not been specified, the control ID will be used as the field

name in the error message.

Example

{cstMulti id="DescriptionText" text="{pda:CUSTPDA.#PDAX-DESCS}" required="true">

In this example, #PDAX-DESCS is an array in CUSTPDA.

234

Code Generation

Natural Construct Administration

Browse Button Controls

This section describes the standard Browse button controls, which are used in combination with
the edit field (text box) controls whenever an existing object is referenced within a wizard. The
edit field is used to enter the name of an existing object; the Browse button is used to browse and
select the object from a list of all possible choices.

The standard Browse button controls are:

Message Number
This button displays a dialog to select a message number. The selected message text is stored
in the location indicated by the result attribute.

By default, cstBrowseMessage creates a Browse button that, when selected, will search the
Natural SYSERR library on the server and return all error messages associated with the Natural
Construct application library (CSTAPPL). The user can search for messages in other languages
or libraries by changing the input values, or can start browsing at a different error number.
The user can then select a message to populate the location specified in the result attribute.

Attributes

Attribute |Description

result |Binding attribute indicating where to store the selected message text. If no view or Cancel
is selected, the bound field will not change from its previous value.

Example
<cstBrowseMessage result="{pda:Tevell.Module}"/>

Natural Library
This button displays a dialog to select a Natural library in the local environment. The button
is bound to the ModelSpecs library property.

Attributes

Attribute Description

allowDefault|Boolean value indicating whether the ModelSpecs library value should be set based
on the current user selection in the Eclipse environment. For example, if the user selects
a Natural library (or descendant of the library), that library name can be used as the
default value.

Example

<cstBrowselLibrary allowDefault="true"/>

| Note: Since all generated code must be stored in a Natural library, you can define this

node to use the current user library as the default library.

Code Generation 235

Natural Construct Administration

Natural Object
This button displays a dialog to select one or more Natural objects in the local environment.
The list of modules can be restricted to a specified module type. The selected value is used to
populate the location specified by the result attribute.

Attributes

Attribute Description

fileExtension |File extension used to limit the available selections.

result Binding attribute indicating where to store the user selection.

Module Types and Extensions

Module Type |Extension

DDM NSD
GDA NSG
Helproutine |NSH
LDA NSL

Map NSM
PDA NSA

Program NSP
Subprogram |NSN
Text NST

Example

{cstBrowseNaturalObject text="Select PDA" fileExtension="NSA" «
result="{pda:levell.PDA}" />

This example illustrates a Browse button for PDA files.

Natural Project
This button displays a dialog to select a Natural project. The selected project is stored in the
location indicated by the ModelSpecs project property.

236 Code Generation

Natural Construct Administration

Attributes

Attribute Description

allowDefault|Boolean value indicating whether the ModelSpecs project value should be set based
on the user selection in the Eclipse environment. For example, if the user selects a

Natural project (or descendant of the project), that name can be used as the default
value.

Example

<cstBrowseProject allowDefault="true"/>

In this example, the name of the current Natural project is used to populate the project name
in the model specifications.

Predict Field

This button displays a dialog to browse all the fields in a DDM and select a field from the

previously selected Predict view. The selected field is stored in the location indicated by the
result attribute.

Attributes
Attribute Description
autoClear Clears the bound result when the associated view value changes. This will prevent

a view from not containing the desired field.

descriptorsOnly |Attribute indicating whether the Descriptors only field on the field selection panel
is selected by default and only descriptor fields will be displayed. When true, the
Descriptors only field is selected by default; when false or not specified, the
Descriptors only field is not selected.

result Binding attribute indicating where to store the selected Predict field. If no field or
Cancel is selected, the bound field will not change from its previous value.
view Binding attribute indicating the view for which to list fields.
Example

<cstBrowsePredictField autoClear="true"
view="{pda:CUBOPDA.{#PDAX-PRIME-FILE}" «

result="{pda:CUBOPDA.#PDAX-PHYSICAL-KEY(1,1)}"
descriptorsOnly="true"/>

Predict View

This button displays a dialog to select a Predict view. The selected view is stored in the location
indicated by the result attribute.

Code Generation 237

Natural Construct Administration

Attributes

Attribute |Description

result |Binding attribute indicating where to store the selected Predict view. If no view or Cancel
is selected, the bound field will not change from its previous value.

Example

<cstBrowsePredictView result="{pda:levell.#PDAX-PRIME-FILE}"/>

Add a Tool Tip

A tool tip provides information about using a control when the cursor is moved over the control.
Al SWT controls have a tool tip text property and all XML control nodes support the tool tip option.
For example:

{text 1d="MyTextID” toolTipText="Tool tip «
text" displayName="displayName" required="true" text="{pda:Mypda.MyField}”/>

Set Up a Server Call

While the wizard's clear subprogram provides default values for the model PDA when the wizard
is started, values that the user specifies, such as the file name, can be used to derive more inform-
ation. The derived information, however, requires a server call, which can be made when a wizard
panel is left (onLeave) or entered (onEnter) or via a button. For example, after the user selects Next
on a wizard panel, a subprogram can be called to fill in the appropriate values on the subsequent
panel. This is particularly useful when input data on the first panel (for example, the name of the
object-browse subprogram or file) is required to derive data for the second screen.

This section describes the two methods used to set values on wizard panels:

= Set Values Whenever a Panel is Entered or Left
= Set Values Whenever a Button is Selected

Set Values Whenever a Panel is Entered or Left

A subprogram can be called whenever a wizard panel is left (onLeave) or entered (onEnter) to
provide values for the model PDA. For obvious reasons, the onEnter event will never be called
on the first page. Similarly, the onLeave event will never be called on the last page. In all cases,
the server call must be defined.

This section covers the following topics:

= Definitions
= Server Calls
= Field Mappings

238 Code Generation

Natural Construct Administration

= onlLeave and onEnter Events

Definitions

Term Description

Model PDA |Parameter data area associated with the model; it contains fields used for the user interface
(i.e., the PDA specified in the .cstmdl file for the model).

Proxy Subprogram on the server that is used to serialize data for any subprogram that was not
generated by the CST-PROXY model.

Proxy PDA |Parameter data area associated with the subprogram called by the proxy subprogram,; it
contains fields used to input data into the model PDA fields.

Server Calls

The onEnter and onLeave events and the cstDeriveServerButton control call serverCalls, which
are defined as child nodes within the model node in the XML.

Attribute Description

id Unique identifier of the server call. This ID is used to identify which server call to invoke from
an onLeave or onEnter event or button control, which in turn identifies which subprogram
proxy to execute on the server.

pdas A comma-delimited list of client text files that represents the definitions found in the PDA for
the subprogram the proxy calls.

proxyName |The name of the proxy subprogram to invoke on the server.

The following example illustrates a serverCall to provide default methods for the Object-Browse-
Select-Subp wizard:

<model name="0BJECT-BROWSE-SELECT-SUBP" constructID="0BJECT-BROWSE-SELECT-SUBP"
category="Construct"
>
<{serverCalls>
<serverCall id="Default_Methods" pdas="WTCBUDEF-inlinePDA,CSASTD"
proxyName="WTPBUDEF">
>

where:

" WTPBUDEF is a proxy subprogram (generated with the CST-PROXY model) used to access the
WTCBUDEF subprogram.

WTCBUDEEF has the following parameters:

DEFINE DATA
PARAMETER
01 #INPUTS

Code Generation 239

Natural Construct Administration

02 #fOBJECT-BROWSE (A8)
01 #fOUTPUTS
02 #METHOD-MAPPING (1:15)
03 #BROWSE-KEY (A32)
03 #BROWSE-COUNT (L)
03 #METHOD-NAME (A32)
02 #fMETHOD-MAPPING-COUNT (N2)
PARAMETER USING CSASTD
LOCAL USING CUBUPDA
END-DEFINE

® CSASTDis a .NSA file on the client that contains the parameter data area (PDA) definitions for
the CSASTD PDA (standard messaging parameters used by all models). It passes messages
between subprograms and is typically used for error handling.

® W TCBUDEF-inlinePDA is a .NSA file on the client that contains all the other variables:

01 #fINPUTS
02 #fOBJECT-BROWSE (A8)
01 #fOUTPUTS
02 #METHOD-MAPPING (1:15)
03 #BROWSE-KEY (A32)
03 #BROWSE-COUNT (L)
03 #fMETHOD-NAME (A32)
02 #METHOD-MAPPING-COUNT (N2)

In the serverCall example, the pdas attribute defines both .NSA files above. For example:
pdas="WTCBUDEF-inTinePDA,CSASTD"

Field Mappings

Each server call can have one or more field mappings. Field mappings define how data is copied
from and to the model and proxy PDAs. The attributes for the field mappings are:

Attribute Description

modelField|Name of the field in the model PDA to be copied.
proxyField|Name of the field in the proxy PDA to be copied.

direction |Determines when the field will be copied. Valid values are:
" in

Field will be copied from the model PDA to the proxy PDA before the call to the server is
made (for example, the name of the object-browse subprogram used by an
Object-Browse-Select-Subp wizard).

 out

240 Code Generation

Natural Construct Administration

Attribute Description

Field will be copied from the proxy PDA to the model PDA immediately after the server
call is made (for example, the methods derived from the object-browse subprogram).

" in_out

Field will be copied from the model PDA to the proxy PDA before the server call and from
the proxy PDA to the model PDA after the server call.

The following example illustrates the field mappings for the serverCalls example above:

<serverCall id="Default_Methods" pdas="DefaultMethods,CSASTD"
proxyName="WTPBUDEF">
<mappings>
<mapField modelField="CUBUPDA.#PDAX-OBJECT-BROWSE"
proxyField="#INPUTS.#f0BJECT-BROWSE" direction="1in" />
<mapField modelField="CUBUPDA.#PDAX-BROWSE-KEY" <
proxyField="#0UTPUTS.#BROWSE-KEY"
direction="out" />
<mapField modelField="CUBUPDA.#PDAX-BROWSE-COUNT"
proxyField="#fOUTPUTS.#BROWSE-COUNT" direction="out" />
<mapField modelField="CUBUPDA.#PDAX-METHOD-NAME"
proxyField="#0UTPUTS.#METHOD-NAME" direction="out" />
</mappings>

The following example illustrates a sample of code from the .cstmdlui file for the Object-Browse-
Select-Subp wizard:

<model name="0BJECT-BROWSE-SELECT-SUBP" constructID="0BJECT-BROWSE-SELECT-SUBP"
category="Construct">
<serverCalls>
<serverCall id="Default_Methods" pdas="DefaultMethods,CSASTD"
proxyName="WTPBUDEF">
<mappings>
<mapField modelField="CUBUPDA.#PDAX-0BJECT-BROWSE"
proxyField="#INPUTS.#0BJECT-BROWSE" direction="in" />
<mapField modelField="CUBUPDA.#PDAX-BROWSE-KEY" <«
proxyField="#0UTPUTS.#BROWSE-KEY"
direction="out" />
<mapField modelField="CUBUPDA.{#PDAX-BROWSE-COUNT"
proxyField="#0UTPUTS.#BROWSE-COUNT" direction="out" />
<mapField modelField="CUBUPDA.#PDAX-METHOD-NAME"
proxyField="#0UTPUTS.#METHOD-NAME" direction="in_out" />
<mapField modelField="CUBUPDA.#PDA-METHOD-MAPPING-COUNT"
proxyField="#0UTPUTS.#METHOD-MAPPING-COUNT" <
direction="out" />
</mappings>
</serverCall>
</serverCalls
<onleave serverCallID="Default_Methods" schedule="FIELD_CHANGED"
fieldNames="CUBUPDA.#PDAX-0OBJECT-BROWSE" />

Code Generation 241

Natural Construct Administration

onlLeave and onEnter Events

Once the server call has been defined, it can be connected to:

® The Next button via the onLeave event
= The Back button via the onEnter event
= A user-defined button via the cstDeriveServerButton control

To eliminate unnecessary calls to the server, the onLeave and onEnter events contain a schedule
attribute that can be set to only call the server when required.

. Note: This option is not available for the cstDeriveServerButton control, as it is assumed

that a server call will always be required when this button is selected.
When navigating from one page to another (i.e., by selecting Next), the order of events are:

1. Current page onLeave event.

® Copy the contents of the model PDA to the proxy PDA using the input mappings.

" Issue a CALLNAT statement to the server.

= Copy the contents of the proxy PDA to the model PDA using the output mappings.
2. Next page onEnter event.

® Copy the contents of the model PDA to the proxy PDA using the input mappings.

" Issue a CALLNAT statement to the server.

® Copy the contents of the proxy PDA to the model PDA using the output mappings.
3. Show next page.

| Note: Selecting Back on the wizard page has no effect; onLeave and onEnter are only invoked
when Next is selected.

The onLeave and onEnter events are defined as child nodes within the page node in the XML.
These events specify which subprogram will be called whenever the page is entered or left. The
attributes for these events are:

Attribute Description

serverCallID|CallID for the server call that defines how the data from the proxy PDA (the fields on the
server) gets populated into the model PDA (the fields on the client) and vice versa.

schedule Determines when the CALLNAT will be issued. Values are "ALWAYS",
"FIELD_CHANGED", "FIRST_TIME_ONLY".

Note: This functionality does not apply to a button.

242 Code Generation

Natural Construct Administration

Attribute Description

fieldNames |Whenscheduleissetto"FIELD_CHANGED", this attribute provides a comma-delimited
list of fields in the PDA that the user may have changed. If the user does change one of
the fields, the subprogram will be called.

The following example illustrates the onLeave event:

<page id="StdParms" title="Specify Standard Parameters"
helpID="com.softwareag.naturalone.gen.doc.code.2acgwl00"
>
<description>Enter settings for the standard parameters.
</description>
<onlLeave serverCallID="Default_Methods" schedule="FIELD_CHANGED"
fieldNames="CUBUPDA.#PDAX-0OBJECT-BROWSE" />

When the user selects Next on the wizard panel, the subprogram (identified by the serverCallID
attribute) retrieves the method names, key names, and count.

Set Values Whenever a Button is Selected

Server data can be derived using the cstDeriveServerButton control in the client generation
framework. When the user selects this button on a wizard panel, the appropriate subprogram is
called to derive data from the server. Use this GUI control whenever user input is required.

The following example creates a button called Refresh Default Methods:

<cstDeriveServerButton style="SWT.PUSH"
text="Refresh Default Methods" serverCallID="Default_Methods">
{/cstDeriveServerButton>

Whenever the user selects Refresh Default Methods on the wizard panel, the subprogram (iden-
tified by the serverCal11D attribute) is called to retrieve the method names, key names, and count.

Note: For more information, see cstDeriveServerButton.

Bind Data to GUI Controls

Within the XML file for a client generation wizard, certain nodes represent the GUI controls to be
created for the screen. To allow data from the parameter data area (pda) or specification (specs)
object to be bound to a GUI control, you can specify what data and which default values to display
for the control.

Notes:

1. To ensure consistency within the defaulting methods used on the client and the server, set the
default values for the PDA in the model's clear subprogram on the server. The clear subprogram

Code Generation 243

Natural Construct Administration

is invoked before the first panel of the wizard is displayed, so typically there is no need to set
default values in the XML file for the client generation wizard.

2. The standard Eclipse SWT controls are used; you can set any property for a control that has a
corresponding Set/Get method. To determine which properties are available, refer to the Eclipse
documentation.

The following example illustrates how to bind the Mypda.MyField PDA field to a text box control:
<text 1d="MyTextID” text="{pda:Mypda.MyField}”/>

In this example, text="{pda:Mypda.MyField}” indicates that the text property for the GUI control
is bound to the PDA field called Mypda.MyField, where Mypda is the level 1 structure within the
model PDA and MygField is typically a #PDAX field name within the model PDA. Any changes
to the GUI will be automatically reflected in the underlying PDA field.

| Note: For this example, the GUI control must have a text property. If not, an error is dis-

played.
The notation to bind data to a GUI control is:
<sourcey:<binding>[=<default>]
where:

" source is the pda or specs keyword

" binding is the name of a field or property with which to bind

] Notes:

1. When binding to a specs object, the field or property must have a corresponding Set/Get
method.

2. The field name is typically fully qualified (i.e., Tevell.fieldName.
" default is the default value to display for a field.

The default value (typically set in the model's clear subprogram on the server) has two possible
notations: one for the current selection and one for data settings on the dialog.

| Note: If the default value is set in the model's clear subprogram, the =<default> notation

is not required in the XML; if the =<default>notation is specified, this value will override
the value set in the clear subprogram.
This section covers the following topics:

= Use Logical Data to Enable or Disable Controls
= Qverride Default Values

244 Code Generation

Natural Construct Administration

= Separate Default Attributes for GUI Controls
= Default Properties Applied to GUI Controls
= Default Selection Notation

= Default Dialog Settings Notation

= Examples of Binding Notations

Use Logical Data to Enable or Disable Controls

You can bind a control property to a logical field in a parameter data area (PDA).

Example
Assume the following PDA settings:

01 FIELDS
02 LOGICAL (L)
02 TEXT (A) DYNAMIC

And the following syntax:

<text text="{pda:Tlevell.TEXT}" enabled = "!{pda:Tevell.LOGICAL}"/>

In this example, when the LOGICAL field is true, the enabled property for the text control will
be false (i.e., the text field will be disabled).

Override Default Values

Although default values for the PDA are typically set by the model's clear subprogram on the
server, they can be overridden on the client by a value from cache or by directly assigning a value.
If more than one method is used, the value taken is the last one assigned in the following order:

1. From the model's clear subprogram on the server.
2. From the dialog: notation.

3. From the direct assignment of the default value.

Separate Default Attributes for GUI Controls

Some GUI controls have a separate default attribute, which can be expressed as:
{text text="{pda:MY.FIELD=A}"/>

or
{text text="{pda:MY_FIELD} default=“A"/>

The GUI controls with separate default attributes are: combo box, button, text box, and multiline
text box.

Code Generation 245

Natural Construct Administration

Default Properties Applied to GUI Controls

The following table describes which properties the default attribute applies to each GUI control:

GUI Control |Default Property
Button Selected
Check box |Selected

Combo box

Text

Text box

Text

Default Selection Notation

When a wizard is started from the Project Explorer, an item is usually selected in the view. De-
pending on which item is selected, you can set default values for GUI controls. For example, the
name of a Natural library on the wizard panels can be defaulted to the name of the library selected
in the view.

] Note:

If the default value cannot be determined, the value will not be set for the control.

The notation to define the default value for a view selection is:

<source>:<binding>=selection:<selection Type>

where selection Type is the default value to display for the field. The selection types are:

Selection Type | Default Value

natProject |Name of the selected Natural project.

project Name of the selected project.

container Name of the selected container (package).

file Name of the selected file.

library Name of the selected Natural library.

extension |Name of the selected file with the specified extension. To define this default value, add the
following notation:
extension=NSN
where NSN is the extension used for the selected file. The selected file must contain the
specified file extension.

For example, the following notation defines a checkbox that is bound and defaulted to unchecked:

<putton style="SWT.CHECK” selected="{pda:Tevell.MyBoolean}”

default="false”/>

246

Code Generation

Natural Construct Administration

Default Dialog Settings Notation

Data a user has previously specified for a GUI control can be saved and then reloaded as a default
value for the control, which eliminates the need for users to enter repetitive information. Each
piece of saved data is stored as a key value pair, where both the key and the value are strings. The
notation is:

{source>:<binding>=dialog:<key>
where key contains the default value to display for the field.

For example, the following notation defines a text box that is bound and defaulted to the
My.Dialog.Key dialog setting:

<text id="MyText” text="{pda:levell.MyField}” enabled="{pda:/evell.MyBoolean}” <«
default="{dialog:My.Dialog.Key}”/>

Examples of Binding Notations

The following table illustrates examples of binding notations:

Example Will bind the GUI control to:

pda:INPUT.NAME="FRED" A PDA field called INPUT.NAME with a default value
of FRED.

specs:project=selection:project The project property for the specs object and use the

selected project name as the default value.

specs:module=selection.extension="NSN" |The module property for the specs object and use the
selected file for the default value when its extension is
.NSN.

pda:INPUT.PREFIX=dialog:"My.Dialog.KEY"|A PDA field called INPUT.PREFIX and use the value
stored in My.Dialog.KEY in the dialog settings as the
default value (i.e., the last value entered in this field
when the wizard was last invoked).

Error Handling Tips for Field Names

When the validation subprogram for a client generation wizard returns a field in error, the field-
MatchHint attribute can be used to provide a "hint" to "match" the error field to one or more re-
defined fields. This allows for the scenario where a field is redefined and the wrong field is returned.
You can also match multiple fields by separating each one with a comma. For example:

<text id="Predict view is required" required="true"
text="{pda:CUSCPDA.#PDAX-PRIME-FILE}" <
fieldMatchHint="FIELDS.DUMMY_BEFORE_REAL_FIELD,CUSCPDA.#PDAX-PFILE">

Code Generation 247

Natural Construct Administration

Note: Although the fieldMatchHint applies to all bindable controls, do not use the field-

MatchHint attribute with buttons. Typically, buttons are associated with a text box and focus
should be set on the text box instead of the button.

When errors are encountered, the following search order is used to find the bound field corres-
ponding to the field in error:

= Field match with index
= Field match without index

" Field match with hint
Generate NATdoc Documentation

If the NATdoc option is enabled in the supplied CSXDEFLT subprogram, the code generated by
the client generation wizards will include a user exit containing the name of the author, as well

as the date and time the module was generated. Once this exit has been added to the module, it
must be manually maintained. For example:

**SAG DEFINE EXIT NAT-DOCS
/** :author PWRUSR -- Generated Feb 14,2011 at 10:09:17
**SAG END-EXIT

In addition, NATdoc comments will be added to the external PDAs. For example:

DEFINE DATA
PARAMETER USING ACUSTK /** :in /* Search key values
PARAMETER USING ACUSTD /** :out /* Returned row data
PARAMETER USING ACUSTP /** :inout /* Restricted data
PARAMETER USING CDBRPDA /** :inout /* Generic browse object parms
PARAMETER USING CDPDA-M /** :out /* Msg info ©

The runtime modules on the client also contain external PDAs containing NATdoc comments. For
example:

DEFINE DATA PARAMETER

/* >Natural Source Header 000000

/* :Mode S

/3 oGP

/* <Natural Source Header

1 CDHASHA /** used in object maint to calculate hash value
2 #fFUNC (I4) /** :inout not required
2 #CTX (B156) /** :inout not required
2 JfTEXT (A) DYNAMIC /** :in data to be hashed

END-DEFINE

NATdoc documentation can then use this information to generate documentation based on your
selection. For example, you can generate NATdoc documentation for all the modules in a library.

248 Code Generation

Natural Construct Administration

) Notes:

1. For information about CSXDEFLT, refer to Code Generation > Using Natural Construct > Natural
Construct Administration > Create a New Client Generation Wizard > Enable NATdoc Generation.

2. For information about NATdoc, see Using Natural ONE > Generating API Documentation with
NATdoc.

Download Natural Construct Resources to a Local Project

To create a new client generation wizard or customize an existing model or code frame, you must
download the resources from the server.

~ To download Construct resources to your local project

1 Locate the Natural Construct installation on the server.

] Note: Natural Construct must be installed on the server.

2 Open the context menu for the Construct root node.
Or:

Expand the root node and select one or more model and/or code frame nodes or files using
standard selection techniques.

| Note: Children of the selected nodes are automatically included in the download (for

example, selecting the Models root node will download all models from the server).

3 Select Add to existing Project.

For example:

Code Generation 249

Natural Construct Administration

=H Natural Server 53 = | =5 = =08

= Eﬁ daef.hq.5ag-7307
[Business-Services
== Canstruct
= Code-Frames
== Models
[Ms BATCH

|

23l = Map
M. BROWSE-H
Ms BROWSE-S sking Project. ..
M BROWSE-S .
M BROWSE-: Properties
M. BROWSE-SUBP
{Ms BUSIMESS-OBIECT-SUPER-MODEL
M. CST-CLEAR

| £

A list of available projects is displayed.

4 Select the project into which you want to download the models (or code frames).

For example:

7= fdd Construct resources to existi... |Z||E|E|

Select Project:
| |

1= CanstructRunkime
N

® Ok] [Cancel

5 Select OK.

A progress window is displayed as the model record is downloaded from the Natural Server
view to the local project in the Project Explorer. Expand the Construct root node to display
the downloaded resources. For example:

250 Code Generation

Natural Construct Administration

= <§D =

h:*" ConstructRuntime- =natural-runtime (1)
= bé MewProject- =daef.hg.sag-7307 (1)

(= .metadata

= .naturalone

= settings

(= [Construct

(== Code-Frames

Yiodels
{Ms BROWSE. cstmd|
(& Matural-Libraries

W natural

W=l project

Modify an Existing Natural Construct Resource

This section describes how to modify an existing Natural Construct resource from your server
installation, such as a model or code frame, in the Eclipse environment. To modify existing models
and/or code frames:

* Download the resource from your Natural Construct installation on the server to your local
environment. For information, see Download Natural Construct Resources to a Local Project.

® Modify the resource as desired. For information, see Modify an Existing Model, Modify an Ex-
isting Code Frame, or Modify an Existing Model UI.

® Upload the modified resource to the server using standard NaturalONE functionality.

Create and Maintain a Natural Construct Model

This section describes how to create and maintain a Natural Construct model. The following topics
are covered:

= Create a New Model
= Modify an Existing Model Record

() Tip: For deeper details on Natural Construct modeling, go to https:/documentation.soft-

wareag.com/ and find the documentation of Natural Business Services > Natural Construct
Administration and Modeling.

Code Generation 251

https://documentation.softwareag.com/
https://documentation.softwareag.com/

Natural Construct Administration

Create a New Model

> To create a new Natural Construct model

1 Open the context menu in the Project Explorer for the NaturalONE project into which you
want to generate the model.

Or:

Open the context menu in the Project Explorer for the Construct root node or Construct >
Models node into which you want to generate the model.

2 Select Code Generation > New Construct Model.

The Define model details panel is displayed. For example:

7= New Construct Model

Define model details —
Enter the settings for & new Construck model,
- a
Project: | MewProject
Model details
Marmne:
Description:
o

] Note: To change the name of the project, type the name of a new project in Project or
select Browse to display the available projects for selection.

3 Type the name of the new model Ul file in Name.
4 Type a brief description of the model in Description.

5 Select Finish.

The new model file is listed in the Project Explorer and displayed in the editor. For example:

252 Code Generation

Natural Construct Administration

Qverview

+ General Information

Model: | NEWMODEL |
Based on model: | | [Browse, ..]
Description: This is & new model,
PDA name: | | [Browse...] Status window: | Y|
Programming mode ! |Structured v| Comment indicatars: | | | | |
Type: | v| Programming language: |Natural v|
Code frame(s): [Bromes]
Remove
Up
Cran
~ User Interface Information
Modify server: Modify client:
Browse,.. Browse, .,
Remove Remove
Up Up
Do Diown

w Subprogram Information

Clear: | | B Post-generation: | | D
et | (BETI B
Pre-generation: | | B Document: | | E]
Yalidate: | | B Strearn: | | D

Overview | XML

6 Specify the parameters for the new model.

For more information on these parameters go to https://documentation.softwareag.com/and
find the documentation of Natural Business Services > Natural Construct Administration and
Modeling > Creating New Models.

7 Create the model Ul file (.cstmdlui extension), as well as any reusable dialog Ul files (.cstmdldg
extension) or page Ul files (.cstmdlpg extension).

For information, see Create a New Client Generation Wizard..

] Note: You can only create the XML file after the PDA has been downloaded from the
server. For information, see Download Natural Construct Resources to a Local Project.

Code Generation 253

https://documentation.softwareag.com/

Natural Construct Administration

8 Upload the new model to your Natural Construct installation on the server.

Modify an Existing Model Record

A model is comprised of the following components:

® Model record file (.cstmdl extension)

® One or more XML files to define the user interface.

For example, the model Ul file (.cstmdlui extension) and any reusable dialog Ul files (.cstmdldg

extension) or page Ul files (.cstmdlpg extension).

" Model PDA

¢ Tip: Tomodify the model PDA, first download the model record and determine the name

of the PDA. Once you know the name, you can download the PDA from the SYSCST
library on the server, modify it in the local editor, and then upload it to the SYSCST library.

® Code frames

® Subprograms

This section describes how to modify a Natural Construct model record in the local environment.

~ To modify an existing model record

1 Download the model record from the Natural Server view.

For information, see Download Natural Construct Resources to a Local Project.

2 Expand the Construct > Models root node in the Project Explorer.

For example:

= <E{> =

£ L:ﬂ ConstructRuntime- =nakural-runtime (1)
= Lé MewProject- >dasf.hg.sag-7307 (1)

H-[= .metadata

*-[= .naturalone

+ = settings

=|-[=> Construct

+-[= Code-Frames

jodels
M, BROWSE. cstrd|
+- (@ Matural-Libraries
W= natural
W=l project

3 Open the model file (.cstmdl extension) in the editor.

4 Modify the model record as desired.

254

Code Generation

Natural Construct Administration

For information about the editor, see Create a New Model.
5 Save the model record changes.

6 Upload the model record to the Natural Construct server installation using standard
NaturalONE functionality.

Create and Maintain a Code Frame

This section describes how to create and maintain a code frame. The following topics are covered:

= Create a New Code Frame
= Modify an Existing Code Frame
= \iew a Code Frame in the Outline View

Create a New Code Frame

This section describes how to create a new code frame. The following topics are covered:

= Use the Code Frame Editor
= Create the Code Frame

Use the Code Frame Editor

To create a new code frame, use the NaturalONE code frame editor to replicate the code frame
data defined in the standard editor on the server. The NaturalONE code frame editor uses a
combination of special $ variables and line text to represent the server editor columns and input
boxes (for example, type codes, condition codes, description input box, etc.).

The editor allows three types of code frame lines:

Line Description Text Color

$D:n |Contains a description of the code frame, where 1 is a description of up |Blue
to 45 characters (equivalent to the description line on the server).
Maximum of one $D line per code frame.

$U:n |Contains details about user exits included within the code frame Green
(equivalent to the user exit edit window on the server), where:

= $U:R R (User exit required when a value is specified after :R)

" $U:G n (Generate as subroutine when a value is specified after :G)
= $U:S SAMP (Sample subprogram SAMP)

= $U:U GUISAMP (GUI sample subprogram .. GUISAMP)

= $U:L n (Default user exit code that requires one $U:L line for each
default line)

Code Generation 255

Natural Construct Administration

Line Description Text Color
{$C:n} |Contains text and optional fields, where { } indicates optional fields and: | Black (inserted directly
{$T:n} into the generated
TEXT |® $C:n, where n indicates the condition code level in the editor on the program, based on the
server. Valid condition code levels are: $C: value)
= 1-9 .
Blue (represents logic,
Indicates a new condition for this level. The conditions are Boolean [such as user exit names,
combinations of the condition constants specified for the generator. |Subprogram/parameter
If the condition specified on the line is True, all subsequent code ~|names, boolean values,
with quotation marks (") is included in the generated program. |etc., and will not be
inserted directly into the
Tip: Every $C:n is equivalent to starting another IF statement. generated program)
n $C:”
Indicates that text on this line is a continuation of the previous block
of code and subject to the last condition specified.
= $C:blank
Indicates that the corresponding line is constant text and is included
unconditionally.
= $T:n, where n indicates the line type in the editor on the server. Valid
line types are:
= N
Indicates a subprogram (the text on this line must follow the format:
Subprogram:name {Parameter:name}, where { } indicates a
parameter is not required (similar to code frames on the server).
= U
Indicates a user exit
= F
Indicates a nested code frame
m ¥
Indicates a comment line within the code frame, which will not be
generated into code
=B
Indicates a blank line
=X
Indicates a conditional user exit. The line must also contain a
corresponding $C:n entry to be valid.
= TEXT represents the code frame logic and maps to columns 1-72 in
the standard editor on the server (maximum 72 characters).
256 Code Generation

Natural Construct Administration

The following example illustrates the CBDBPAY code frame defined in the local code frame editor:

Ek CBDBPAY.cstframe 22 =5
§D:0bject Browse Dialog Frocess Actions
*
o o o o o o o o ol o o o o ol o o o o ol o ol o o o
DEFINE SUBROUTINE PROCESS-ACTICHS
o o o o o o o o ol o o o o ol o o o o ol o ol o o o
1?
$C:1 CALLNAT-SUEPROGRALMS
jcam RESET #CALLNAT-SUEFROGRALM(*)
sc:" *
$T:U BEFORE-PROCESS-ACTICNS
$U:R O
*
* Perform action.
DECIDE ON FIRST VALUE OF #ACTION-INDEX
§T:N Subprogram: CUEDGLA Parameter: USER-ACTICN

ANY
A3SIGN #FORWARD = FALIE
NONE
IGHORE
END-DECIDE
$T:U AFTER-PROCESS-ACTICONS
§UR O

*

END-SUBROUTINE /* PROCEZS-ACTIONS

For more information on creating and editing code frames go to https://documentation.software-
ag.com/ and find the documentation of Natural Business Services > Natural Construct Administration
and Modeling > Using the Code Frame Editor.

Create the Code Frame

> To create a new code frame

1 Open the context menu in the Project Explorer for the NaturalONE project into which you
want to generate the code frame.

Or:

Open the context menu in the Project Explorer for the Construct root node or Construct >
Code-Frames node into which you want to generate the code frame.

2 Select Code Generation > New Code Frame.

The Define code frame details panel is displayed. For example:

Code Generation 257

https://documentation.softwareag.com/
https://documentation.softwareag.com/

Natural Construct Administration

7= New Code Frame

Define code frame details =
Enter the settings for & new code Frame.

Project: | MewProject | [Browse...]

Code frame details

Mame; |

Drescription: | |

©

| Note: To change the name of the project, type the name of a new project in Project or

select Browse to display the available projects for selection.

Type the name of the new code frame in Name.
Type a brief description of the code frame in Description.

Select Finish.

The new code frame is displayed in the editor. For example:

$D:This i= a code frame.

Define the new code frame.

For information, see Use the Code Frame Editor.

Save the specifications for the code frame.

You can now upload the new code frame to your Natural Construct installation on the server.

258

Code Generation

Natural Construct Administration

Modify an Existing Code Frame

This section describes how to modify a Natural Construct code frame in the local environment.

~ To modify an existing code frame

1 Download the code frame from the Natural Server view.

For information, see Download Natural Construct Resources to a Local Project.

2 Expand the Construct > Code-Frames root node in the Project Explorer.

For example:

= <'==={> =
4] g CanstructRuntime- =natural-runtime {1}
= Lé MNewProject- >daef,hg.sag-7307 (1)
#-[= metadata
+-[= .naturalone
+-[= settings

--BAND. cstframe
|Ea, C--BYE9.cstframe
[Ek, C--DCMI9. cstframe
[k, C--DCMO9 cstrame
[Ek, C--HDGEWS. cstframe
#-[= Models
#-[E Matural-Libraries
WEl natural
W=l project

3 Open the code frame file (.cstframe extension) in the editor.

For example:

|2k, C--BAND.cstframe &2 =g

$D:Standard hanner
e e i i e e e e e e i e e e e e e e e e e e e i e

* Program : &GEN-PROGRAM
+ 3ystemn : ESTITEM
* Title : &TITLE

§T:N Subprogram: CU--BANG Parameter: MATURALL
¥ Function : &DESCE(1)

* SDESCS (2)
* SDESCS (3)
* SDESCS (4)

* History

$T:7 CHANGE-HISTORY

§I:R O

S CU--GELN

jU: U CU--GEAN

e i o e o ol o o o

4 Modify the code frame as desired.

Code Generation 259

Natural Construct Administration

For information about the editor, see Introduction.
5 Save the code frame changes.

6 Upload the code frame to the Natural Construct server installation using standard NaturalONE
functionality.

View a Code Frame in the Outline View

When editing a code frame in the code frame editor, the Outline view displays the main code
frame editor statements (Condition code lines, Type code lines, User exit lines, etc.) in a tree form,
using the condition codes to determine the parent/child relationships.

The following example illustrates the CBUA9 code frame in the code frame editor:

CBUAS. cstframe &5 =0

FD:Ohject Erowse Select 3ubp define data area L
§T:F C--BAN?
LEFINE DATA
*
* Chject Browse 3Select data
PARLAMETER /% Rows
$T:N Subprogram: CUBUGEMN Parameter: ROW-PDA
$T:U PARAMETER-ROW
$UM:R O
03 EEXTRA-ROW-DATA
04 ROW-STATE (42)
$C:1 HASH-LOCEING
joom 04 ROW-HALSH (B20O)
04 ROW-ID (N5) /* for internal use; do not change
04 ROW-ERROR-DATA
05 ##ERROR-FIELD (A3Z2)
05 ##MIG-NE (N4)
05 ##M3G [ALLENGTH-OF-ROW-MESSAGE]
$T:U PARAMETER-DATAL

$U:R O

$U:L **PARAMETER USING FLL
PARAMETER USING CDEUFPDA /% Business service status data
PARAMETEE UZING CDEUINFO /* Business service message data

* Chject Browse data

PARBMETER USING sPRIVATE-PDA-NANE /* Internal
PARAMETER U3ING &KEY-PDA-NAME /% Heys

*
LOCAL USING &STATIC-OEJECT-FDA /% Static chject browse data
LOCAL USING CDERFDA /% Srandard

$C:1 OBJECT-MAINT
$C:" % Ohject Maint data

o LOCAL U3IING &OBJECT-FPDA /% Ohject

jcom LOCAL USING £RESTRICTED-PDA /* Internal

i LOCAL TIING CDAOEJZ /% Standard

$C:1 HASH-LOCEING

o LOCAL TIING CDHASHA /% Hash locking data

jcorm LOCAL TSING &0OBJECT-LDA /% Hash locking LDA for hash calculations -

The code frame is also displayed in the Outline view. For example:

260 Code Generation

Natural Construct Administration

EE OQutline &2 =8
[k c--BaN?
Eg_'g Subprogram: CUBUGER Parameter: ROW-PDA
#-[S3 PARAMETER-ROW
o HASH-LOCKING
#-[S50 PARAMETER-DATA
Yo OBIECT-MAINT
e HASH-LOCKING
o TIME-CALCULATION
e OBIECT-MAINT
#1530 LOCAL-DATA

Expand each node to display the data. For example:

5% outine 52 =0

Eﬁ_@ﬂ Subprogram: CUBUGEN Parameter: ROW-PDA
=[5 PARAMETER-ROW
— Required: O
o HASH-LOCKING
=[S PARAMETER-DATA
I Required: O
£ Code Line: **PARAMETER USINGPD&
Yo OBIECT-MAINT
e HASH-LOCKING
e TIME-CALCULATION
e OBIECT-MAINT
=[S LOCAL-DATA
I Required: O

When you select a node in the Outline view, the corresponding item is also highlighted in the
code frame editor. For example, if you select the "Subprogram: CUBUGEN Parameter: ROW-PDA"
node in the Outline view, the code frame editor will automatically highlight the "$C:" $T:N Sub-
program: CUBUGEN Parameter: ROW-PDA" line. Conversely, when you select an item in the
code frame editor, the corresponding node is highlighted in the Outline view.

The Outline view does not display all code frame lines in the editor. The following lines are dis-
played:
® Condition code statements that indicate different levels ($C:1-9).

® Type code statements that indicate subprograms ($T:N), code frames ($T:F), user exits ($T:U),
and conditional user exits ($T:X).

= User exit property statements that indicate user exit required ($U:R), generate as subroutine
($U:G), sample subprogram ($U:S), GUI sample subprogram ($U:U), and code frame lines ($U:L).

Code Generation 261

Natural Construct Administration

Create and Maintain a Natural Construct Model Ul

This section describes how to create and maintain the user interface (Ul) for a Natural Construct
model. The following topics are covered:

= Create a New Model Ul
= Create a New Dialog Ul
= Create a New Page Ul

Create a New Model Ul

This section describes how to generate and maintain a model Ul file. The following topics are
covered:

= Generate the Model Ul File
= Copy a Model Ul File

= Dependencies View

= Qutline View

= Modify an Existing Model Ul

Generate the Model Ul File

~ To generate a new Natural Construct model Ul file

1 Open the context menu in the Project Explorer for the Natural ONE project into which you
want to generate the model Ul file.

Or:

Open the context menu in the Project Explorer for the Construct root node or Construct >
Models node into which you want to generate the model Ul file.

2 Select Code Generation > New Construct Model UL

The Define Model UI Details panel is displayed. For example:

262 Code Generation

Natural Construct Administration

7= New: Construct Model Ul

Define Model UI Details [
Enter the settings for a new model UL file For a Matural Construct model,
=

e
-

Project: :\IewProject
fModel details
Marne: Telode!
Construct model:
Category: Other

[opy a Construct madel UI file

3

| Note: To change the name of the project in which to generate the model U, type the

name of a new project in Project or select Browse to display the available projects for
selection.

3 Type the name of the model Ul file in Name.

4 Type the name of the Construct model file (.cstmdl extension) for which you are creating the
interface model in Construct model.

Or:
Select Browse.

A selection window is displayed, listing the .cstmdl files for the standard models. Select the
name of the Construct model file for which you are creating the interface and select OK. The
file name is then displayed in Construct model.

| Note: Alternatively, you can copy a Natural Construct model Ul file and modify it to
suit your requirements. For information, see Copy a Model UI File.

5 Type the name of a category in Category.

Categories are used to sort models for selection.
6 Select Finish.
The XML file for the model is generated and a simplified representation of the file is displayed

in the editor. Each entry displayed in the Design tab corresponds to an entry in the XML file
for the model. For example:

Code Generation 263

Natural Construct Administration

|%| MyModelULcstmdlui £3

=08
H =

Content

_ 0O MOTE: O All controls below that are bound ko PO fields have a '~'in Front of the binding OO ta fo...

= 8] model
name
constructID
cakegary
[8] version
[8] description
[2] pages

Design | Source

MyModelll
MyModel
Other

This model is used for...

In this example, you can expand the version and pages nodes to view other nodes and contents:

|%] MyModelULcstmdlui £2

MNode
]

[
= [8] madel
name
constructID
cateqgary
= [8] version
rminar
majar
release
[8] description
= [g] pages
= [e] page
id
title
[&] layout
[&] children

Design | Source

=0
H =

Content
O MOTE: O Al controls below that are bound to PDA fields have a '~'in Front of the binding OO to fo...

MyModelll
MyModel
Other

1
1
1
This model is used for...

Sample Start Page
Sample Model Start

] Note: Any control listed in the Design tab that is bound to a PDA field has a "~" char-

acter preceding the binding, which forces the binding to be invalid when the field does
not exist in the PDA. To enable the binding, add the field definition to the PDA and

then delete the "~" character.

7 Select the Source tab.

The generated XML file (.cstmdlui extension) is displayed. For example:

264

Code Generation

Natural Construct Administration

%] MyModelULcstrdlui 22 =0
- - e
NOTE:
L1l controls below that are hound to PDAL fields hawve a '~'in front of the binding
to force the binding to be inwvalid because the field may not exist in the PDA.
To enable the binding add the field definition to the PDA and then delete the '~' characters.
01 FIELDS

0z Description (A100/1:4)
0z PDA (4) DYNAMIC

0z logical (L)

0z Date (D)

02 Time (T)

-
“ <model name="MyModelUI" constructID="MyModel™ category="Other™>
<verzion minor="1i" major="1" release="1" />
<description>This model is used for...</description:
= <pages>
= <page id="Sample Start Page"™ title="Sample Model Start™s
<layout class="gridLayout™ columns="3" />
= <childrens
<!—— PFroject label, text and hutton combination —->
<label text="Project:" />
= <text id="ProjectTextText"™ text="{specs:project} ™
<layoutData class="gridlayvoutData™ horizontaldpan="1"
grabExcessHorizontalSpace="truse"™ />

</ texts
<oatBrowseProject allowbefault="trus™ />
<!—— Library lakel, text and button combination -->

<label text="Library:" />

= <text id="LibraryText™ text="{specs:library}">
<layoutbata class="gridlavoutData™ horizontalSpan="i"
grabExcessHorizontalSpace="truse"™ />

</ texts

<ostBrovselibrary allowbefault="trus"/>

<label text="Module:r" />

<!—— Zample =simple text binding -->
= <text id="ModuleText" text="~{specs:Module] "> e

Design | Source

The default settings used to generate the file are based on the Construct model selected on
the Define Model Details panel.

8 Define the settings for the model Ul

For information, see Create a New Client Generation Wizard.
Copy a Model Ul File

This section describes how to create a new model Ul file from an existing model Ul file supplied
with NaturalONE and the Natural Construct plug-in. Using this method is a quick way to create
your own model Ul files by modifying existing files to suit your requirements. If the selected
model Ul file includes any reusable dialog or page Ul files that do not currently exist in the
workspace, these files will also be copied.

~ To copy a model Ul file

1 Select Copy a Construct model Ul file.

Code Generation 265

Natural Construct Administration

Construct model and Category are disabled and Construct model Ul file is enabled. For ex-

ample:

7= New: Construct Model Ul

Define Model UI Details
3 Construct model LT cannat: be blank,

Project: | NewProject

Model details

Marne: Tenlode!

Copy a Conskruct model UI File

Construct model UI file:

Browse. ..

Cancel

2 Type the path for a Natural Construct model Ul file (.cstmdlui extension) in Construct model

Ul file (for example, C:\folder\ fi7ename.cstmdlui).

Or:

Select Browse.

A selection window is displayed, listing the .cstmdlui files for the supplied models. Select the
file you want to copy and select Open. The location of the file is then displayed in Construct

model Ul file.

] Note: When this option is not selected, Construct model and Category are enabled and

must be specified.

Dependencies View

This view lists all modules referenced by the model Ul file you are creating, including the modules

shipped with the Construct runtime project. For example:

266

Code Generation

Natural Construct Administration

?—E Dependencies (3 - | ®= | laz e = 8

= M newrodel

=
=
+

=

I

=g

=

BROWSE

,-EI BROMWSE-STD-PARMS-PAGE

£ BROWSE-RESTRICTION-PARAM-PAGE
.'EI BROWSE-MAP-DETAILS-PAGE

! BROWSE-ADDITIONAL-PARAM-PAGE

In this example, NewModel was created by copying the Natural Construct Browse model Ul file
and the Dependencies view displays model Ul file, as well as the reusable pages used by that

model. Expand the nodes to view the dependencies. For example:

?—E Dependencies &3 = | Sg|%|l% e T O

- o [

= .t_-EI BROWSE-ADDITIONAL-PARAM-PAGE
I_'EI BROMWSE-COMMON-PARAM-DIALOG
.f_-E‘ BROMSE-WIN-PARM-DIALOG

[

L
M2

{TE <Unknown=:cUsCR
JT <Unknown=:CUSCvaL
IT <Urknown swChSCMA
ITE <Unknown=:CUSCMA
IT <Urknown=:CUsCS
ITE <Unknown=swonscma
JT <Unknown >wCRSCMC
Eﬁ_j <Unknown:CUS-D
JT <Unknown>:CUSCPR
IT1 <Urknowns:cuscT
{Tk <Unknown=:cUsCPS
2 <Unknown=:CUSCRDA
JT <Unknown>:CUSCMG
§T <Unknown>:cuscc
#- [k C50ca
#-[Eh, C5CAB
JT <Urknown s WCHSCME
{0 <Unknown=:cuscMC
IT8 <Unknown=:CUSCME

E_'EI BROWSE-STD-PARMS-PAGE

BROWSE-RESTRICTION-PARAM-PAGE
BROWSE-MAP-DETAILS-PAGE

M BROWSE-DYNAMIC-ATTR-DIALOG
M, BROWSE

If <Unknown> is displayed beside the name of a referenced module, the module is not available
within the current project or referenced locally. You must either create the module locally or
download it from the server. Any required compile/runtime modules are shipped in the Construct
runtime project.

J

Notes:

1. For more information about the Dependencies view, see the description of the source editor

in Using Natural ONE.

2. To reference modules in a local project, use the Properties window for the current project.

3. To download modules from the server, see Download Natural Construct Resources to a Local
Project.

Code Generation

267

Natural Construct Administration

4. To add the compile/runtime modules in the Construct runtime project, see Add the Construct
Runtime Project.

Outline View

The Outline view displays an outline of the settings defined in the Design tab. For example:

5% outline 52 = ¥ =0

MR rmode] name=BROWSE

Expand the model name node. For example:

EE Outline £3 = |

[8] description
=I-[e] pages
+-[8] page include=BROWSE-STD-PARMS-PAGE
+-[&] page include=BROWSE-ADDITIONAL-PARAM-PAGE
+-[€] page include=BROWSE-MAP-DETAILS-PAGE
+-[&] page include=BROWSE-RESTRICTION-PARAM-PAGE

The model Ul file in this example was copied from the BROWSE model Ul file, which included
several reusable pages.

| Note: For information about reusable pages, see Reusable Dialog and Page UI Files.

Modify an Existing Model Ul
This section describes how to modify an existing model Ul file.
~ To modify an existing model Ul file

1 Open the model Ul file (.cstmdlui extension) in the editor.
2 Modify the model Ul information as desired.

For information, see Create a New Client Generation Wizard.

3 Save the model UI changes.

268 Code Generation

Natural Construct Administration

Create a New Dialog Ul

This section describes how to create and maintain the user interface (UI) for a Natural Construct
dialog Ul file, a reusable file that can be included in multiple model Ul files. The following topics
are covered:

= Generate a Dialog Ul File
= Modify an Existing Dialog Ul

] Note: For more information, see Reusable Dialog and Page Ul Files.
Generate a Dialog Ul File

> To generate a new dialog Ul file

1 Open the context menu in the Project Explorer for the NaturalONE project into which you
want to generate the dialog UI file.

Or:

Open the context menu in the Project Explorer for the Construct root node or Construct >
Models node into which you want to generate the dialog Ul file.

2 Select Code Generation > New Construct Model UI Dialog.

The Define Dialog UI Details panel is displayed. For example:

7= New Construct Model Ul Dialog |._|E|FZ|
Define Dialog UI Details —
Enter the settings For a new dialog UI file For a Matural Construct model,
[N =1
Project: | MewProject | [Browse...]
Dialog details
Mame: | |
Title: | |
™
@

Code Generation 269

Natural Construct Administration

| Note: To change the name of the project in which to generate the dialog Ul file, type

the name of a new project in Project or select Browse to display the available projects
for selection.

Type the name of the new dialog UI file in Name.

Type a title for the dialog in Title.

Select Finish.

The XML file (.cstmdldg extension) for the reusable dialog is generated and a simplified rep-

resentation of the file is displayed in the editor in the Design tab. Each entry corresponds to
an entry in the .cstmdldg file. For example:

\%| my_dialog.cstmdldg 22 =0

Mode Cankent

= O modsliDislog |

[8] dialog

Design | Source

In this example, you can expand the dialog node to view the contents:

|X| my_dialog.cstmdldg £2 =8
=
Mode Content
= [e] modelUiDialog
= [e] dialog
title My Dialog

Design | Source

| Note: Any control listed in the Design tab that is bound to a PDA field has a "~" char-

acter preceding the binding, which forces the binding to be invalid when the field does
not exist in the PDA. To enable the binding, add the field definition to the PDA and
then delete the "~" character.

Select the Source tab.

The generated skeleton file is displayed. For example:

270

Code Generation

Natural Construct Administration

X| my_dialog,cstmdidg £3 =8

<mode lTIDialogs>
<dialoy title="My Dialog™ >
</modelUIDialogs

Design | Source

7 Define the settings for the dialog UL
For information, see Dialog Node.
Modify an Existing Dialog Ul

This section describes how to modify an existing dialog Ul file.

~ To modify an existing dialog Ul file

1
2

Open the dialog Ul file (.cstmdldg extension) in the editor.
Modify the dialog UI information as desired.

For information, see Dialog Node.

Save the dialog Ul changes.

Create a New Page Ul

This section describes how to create and maintain the user interface (UI) for a Natural Construct
page Ul file, a reusable file that can be included in multiple model Ul files. The following topics
are covered:

The following topics are covered:

= Generate a Page Ul File
= Modify an Existing Page Ul

Note: For more information, see Reusable Dialog and Page Ul Files.

Code Generation 271

Natural Construct Administration

Generate a Page Ul File

~ To generate a new page Ul file

1

AN U1 = W

Open the context menu in the Project Explorer for the NaturalONE project into which you
want to generate the page Ul file.

Or:

Open the context menu in the Project Explorer for the Construct root node or Construct >
Models node into which you want to generate the page Ul file.

Select Code Generation > New Construct Model Ul Page.

The Define Page Ul Details panel is displayed. For example:

7= New Construct Model Ul Page

Define Page UI Details =
Enter the settings for a new page LI file for a Natural Construct model.
= -
Project: | NewProject
Page details
Mame:
Title:
Drescription:
oy

| Note: To change the name of the project in which to generate the page Ul file, type the

name of a new project in Project or select Browse to display the available projects for
selection.

Type the name of the new page Ul file in Name.

Type a title for the page in Title.

Type a description of the page in Description.

Select Finish.

The XML file (.cstmdlpg extension) for the reusable page is generated and a simplified repres-

entation of the file is displayed in the editor in the Design tab. Each entry corresponds to an
entry in the .cstmdlpg file. For example:

272

Code Generation

Natural Construct Administration

|X| my_page.cstmdlpg £3 =0
[=

Mode Content

B O modslliFage .|

[8] page

Design | Source

In this example, you can expand the page node to view the contents. For example:

|X| my_page.cstmdlpg 22 =8
H
Mode Content
B [modellilPage I —
= [e] page

Litle My Page

optional false

[8] description This is my reusable page.

Design | Source

| Note: Any control listed in the Design tab that is bound to a PDA field has a "~" char-

acter preceding the binding, which forces the binding to be invalid when the field does
not exist in the PDA. To enable the binding, add the field definition to the PDA and
then delete the "~" character.

7 Select the Source tab.

The generated skeleton file is displayed. For example:

|X| my_page.cstmdlpg £3

= «<mode l1TIFage:
= <page title="My Dage™ optional="Ffalse™:
<description>This is my reusable page.</descriptions>
</ page
</ modelTIPage:

Design | Source

8 Define the settings for the page UL

For information, see Page Node.

Code Generation 273

Natural Construct Administration

Modify an Existing Page Ul

This section describes how to modify an existing page Ul file.

~ To modify an existing page Ul file

1 Open the page Ul file (.cstmdlpg extension) in the editor.
2 Modify the page Ul information as desired.

For information, see Page Node.

3 Save the page Ul changes.

274 Code Generation

14 Set Natural Construct Preferences

B Set CONSIUCE PrefErBNCES ... e 276
B Set INStAllAtioN PreferENCES .. .coovv e e e 278

275

Set Natural Construct Preferences

Set Construct Preferences

This section describes how to set preferences for Natural Construct resources.

~ To set Construct preferences

Select Preferences on the Window menu.

The Preferences window is displayed.

Select Software AG > Construct.

The Construct preferences are displayed. For example:

(0] B]] B B] - - - - -

General

Ank

CentraSite

Data Management

Help

InstallfUpdate

Java

Java EE

Java Persistence

JawaScript

Plug-in Developrient

Report Design

Run{Debug

Server

Software &G

Ajax Developer

Business Services

(=) Code Generation
Logging
Makural

nistallation
Enkirei
Matural
Predict Description and Generation
Request Document
Testing
UDDI Registries
Web Services Stack
Team
Walidation
web
Web Services
“ML

7= Preferences |:|@®
b4

Construct

General settings For Construct resources,

Construct model settings

f=1s

Root Folder: | E:\Softwarediadz

Browse

Generation settings

Check For existing resource on Matural server

Run code FormatterfStruct after generating

Download settings

Check for existing resource locally

when downloading a resource, the supporting resources can also be downloaded when they don't exist

lacally (mat & recursive download).

Auto download supporting resources from MNatural server

Clear subprogram caching
Save cache of Clear subpragram
Clear cache on Eclipse shutdown

Clear Cache Mow

Check For new version of the Construct runtime project

) Always
) Newer
(%) Prompt: (default)

[Restore Defaults] [Apply]

l [Cancel]

Using this window, you can:

276

Code Generation

Set Natural Construct Preferences

Task

Procedure

Select the root folder to use for
models.

Type or select the root folder in Root folder.

Disable the search for existing
resources on the Natural server while
generating new Construct resources.

Deselect Check for existing resource on Natural server.

By default, this preference is selected and the generation of a
new Construct resource will initiate a search for the resource on
the Natural server. If a resource exists on the server, a warning
is displayed and the user can either generate the resource locally
by selecting OK or cancel the generation of the resource by
selecting Cancel.

Disable the Struct functionality to
format code after generating (and
regenerating) using Construct.

Deselect Run code formatter/Struct after generating and
Construct-generated code will contain the original indentation
indicated in the code frames.

By default, this preference is selected and all Construct-generated
code is formatted using the Struct option.

Disable the search for existing
resources locally while downloading
resources from the server.

Deselect Check for existing resource locally.

By default, this preference is selected and the download of
Construct resources from the server will initiate a search for the
resources locally. If a resource exists locally, a warning is
displayed and the user can either continue the download process
by selecting Yes or Yes to All, which will overwrite the local
copy, or suppress the download by selecting No, No to All, or
Cancel.

Disable the automatic download of
supporting resources from the
Natural server when they do not
exist locally.

Deselect Auto download supporting resources from Natural
server.

By default, this preference is selected and the download of

Construct resources from the server will initiate a search for all
supporting resources locally. If a supporting resource (i.e., a code
frame or model) does not exist locally, it will also be downloaded.

Note: This setting does not apply to recursive download

operations.

Change options for the results of the
server call by the clear subprogram
when starting a client generation
wizard.

By default, the cache of the clear subprogram is saved (Save
cache of clear subprogram) and will be cleared when Eclipse is
shut down (Clear cache on Eclipse shutdown). This allows the
wizard to start faster on subsequent calls to the same clear
subprogram. To disable this functionality, deselect the options
in Clear subprogram caching.

Clear the cache of the clear
subprogram immediately.

Select Clear Cache Now.

Change whether the version
information for the Construct

By default, a prompt is displayed during startup, generation or
regeneration, asking whether you want to update the Construct

Code Generation

277

Set Natural Construct Preferences

Task Procedure

runtime project is checked or not and [runtime project if a newer version is available. Other options are
when it is checked. to:

" Always update when a newer version is available, select
Always.

® Never prompt or automatically update the project when a
newer version is available, select Never.

3 Select OK to save the preferences.

Set Installation Preferences

To function properly, certain Ul functions require a Natural Construct installation on the Natural
server. For example, the Construct root node in the Natural Server view can be used to download
Natural Construct resources from a Natural server to a local Natural project, but only when there
is a Natural Construct installation on the server. By default, these UI functions will be made visible
based on the installation of Natural Construct on the Natural server. To accomplish this, a server
call determines which products are installed on the server and the results are cached until Designer
shuts down, which allows for only one server call per host|port|session parameter. An option is
also provided to make these server calls and cache the results upon Designer startup (a server call
for each mapped server in the workspace).

~ To set installation preferences

1 Select Preferences on the Window menu.

The Preferences window is displayed.

2 Select Software AG > Construct > Installation.

The Preferences window for Installation options is displayed. For example:

278 Code Generation

Set Natural Construct Preferences

=
= Preferences

General

Ant

CentraSite

Daka Managerment
Help
InstallfUpdate
Java

Java EE

Installation
General settings For Matural Canstruct installation.

Server installation

Some U Functionality {e.q. context menus, Matural Server view nodes, etc.) requires a Matural Construct
inskallation on the Matural server to Function properly,

Check Matural server For product installation at startup

[#] Make LI Functionaliy visible based on product installation on the Natural server

Java Persistence
Javascript
Flug-in Development:
Report Design
RunfDebug
Server
Software AG
Ajax Developer
Business Services
Code Generation
[=)- Construct
Installation
Entirex
Matural
Predict Description and Generation
Reguest Docurment
Testing
UbDI Registries
WWeb Services Stack
Team
Yalidation
wieh
Web Services
AML

LN e e e e = e

[

R

()
Ly

[Restore Defaults] ’ Apply]

Lo

Cancel]

Using this window, you can:

Task

Procedure

Delay the server call to determine product
installation until required (just prior to UL
function visibility).

Deselect Check Natural server product installation
at startup.

Make all UI functions visible, even when Natural
Construct is not installed on the Natural server.

Deselect Make UI functionality visible based on
Natural server installation. No server calls will be
made to determine which products are installed on
the server.

3 Select OK to save the preferences.

Code Generation

279

280

IV

B 15 DEfiNING USEI EXIES ..ot 283
= 16 Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments 297
= 17 Generating an Ajax Page for Generated SUDPrOgramscccvvieiiiiriiiiiiiie e 305

281

282

15 Defining User Exits

B T OTUCH 0N et e, 284
B DEfiNE 8 USEI EXit ... et e e e 284

283

Defining User Exits

This section explains what a user exit is and how to select and define one in NaturalONE.

Introduction

By default, the generated source code is protected from editing and changes can only be made
within user exits, positions within the generated code where you can insert customized or special-
ized processing. Changes to the user exit code are always preserved upon subsequent regeneration
of the module. We recommend that you only add custom code within user exits.

@ Caution: Although it is not recommended, you can edit the protected lines in the generated
source code outside of the user exits. However, your changes will not be preserved upon
regeneration. For information about the protected lines in the generated source code, see
Using the Source Editor/Protected Lines in Sources Generated by Construct or Code Generation in
Using Natural ONE.

The code generation wizards provide a wide variety of user exits, which vary based on the type
of module you are generating. Some exits contain sample code or subprograms, while others
generate the **SAG DEFINE EXIT and **SAG END-EXIT tags only — you provide the actual code.
You can modify any user exit code generated into the edit buffer.

] Notes:

1. For information on the supplied user exits, refer to User Exits for the Generation Models, Natural
Construct Generation.

2. For information about the User Exit editor, refer to User Exit Editor, Natural Construct Generation.

3. If you require code to be inserted in the generated module where no user exit currently exists,
have your Natural Construct administrator recommend a suitable exit or add a new exit to the
wizard.

Define a User Exit

When a generated module is open in the Eclipse editor, all available user exits for the module are
displayed in the Outline view. This section covers the following topics:

= Access a User Exit

= Add Code to a User Exit
= Generate Sample

= Generate User Exit

= Clear Exit

284 Code Generation

Defining User Exits

= Modify Code in a User Exit

¥ Tip: If the user exits are not displayed in the Outline view, select 5/ on the toolbar.

Access a User Exit

> To access a user exit

1 Select the user exit in the Outline view.

2 Open the context menu for the user exit.

For example:

E= Outline 3 &l § = O
e **SAG EXIT POINT CHAM = * #===m>
&, “SAGEXITPOINTBULL ~ dd Code
By "*SAG EXIT POINT LOCA Generate 5ample
4 *SAG EXIT POINT START Generate User Exit...
4 **SAG EXIT POINT AFTEF Clear Exit
B4 *SAG EXIT POINT REJEC,
B4 *SAG EXIT POINT WRITE-FIELDS
4 **SAG EXIT POINT TOP-OF-PAGE
4 **SAG EXIT POINT BEFORE-INPUT
4 **SAG EXIT POINT BEFORE-STANDARD-KEY-CHECK
&4 *SAG EXIT POINT AFTER-INPUT
4 **SAG EXIT POINT END-OF-PROGRAM
4 **SAG EXIT POINT SET-PF-KEYS
4 *SAG EXIT POINT PROCESS-SELECTED-RECORD
B4 *SAG EXIT POINT EXTEND-SELECTION-TABLE
4 **SAG EXIT POINT MISCELLANEQUS-SUBROUTINES

3 Select one of the options listed.

The user exit is displayed in the editor view. For example:

Code Generation 285

Defining User Exits

I NEWERQW NS 53 = O
41* >Natural Source Header 000000 -~
*RSLG GEMERATOR: BROWSE-SUEP WERIICHN: 5.3.1.12

**34G TITLE: EBrowse ... -

®HILG IYITEM: NEWLIE

FEZLG DEICS (1) : This subprogram iz used To browse the

**5LG HEALDER1: First heading

#%FLAG DIRECT-COMMAND-PROCESS:

##ZAG PRIME-FILE: MNCST-WAREHOUSE

**ZLG PFILE: MCET-WAREHCUSE

#%#345 PRIME-KEY: WAREHOUZE-ID

FEGAG MAX-WINDOWS: 01

*EZAG MAX-PALGES: 10

®HEILG DYMAMIC-ATTRIBUTES: =<

Sl O o e ol O o o e e ol e e ol e o o o o o o
* Progratm : NEWBROW

System : NEWLIE

Title : Browse

Generated: Oct 5,2011 at 19:45:39 by PURUSE

Function : This subprogram is used to browse the

EE T T T)

* History

##34G EXIT POINT CHANGE-HISTORY

Lo o o o o o ol o ol ol o ol o O o o o o o o o o o o o o o o o ol ol ol o o o

DEFIMNE DATAL

PALRLMETER

01 H#PDAL-KEET |43} % drart/Recturned key.

PARALMETER USING CDSELPDA /% Zelection info

FPARAMETER UIING CDPDA-D /* Dialog info

PARAMETER UIING CDPDA-M /+ M=g info

PARALMETER USING CDPDA-F /% Misc pass info L

The **SAG EXIT POINT tagindicates that the exit does not exist and you must use the Outline
view to add code or generate sample code.

Add Code to a User Exit

To add code to a user exit

1 Open the context menu for the user exit.

2 Select Add Code.

The exit is displayed in the editor view. For example:

286 Code Generation

Defining User Exits

EWEROMW HSH 52

® % >Natural Source Header 000000(]
**34G GENERALATOR: EBROWSE-ZIUEFP VERSICON: 5.3.1.12
= *%¥3M5 TITLE: Braowse
FE3AG ZYETEM: NEWLIE
*#*Z4G DE3C3 (1) : Thi=s subprogram is used to browse the
454G HEADER1: First heading
FE3AG DIRECT-COMMAND-PROCESS:
**345 PRIME-FILE: WNC2T-TWAREHCOUSE
*#%34G PFILE: NC3T-WAREHOUZE
**34G PRIME-KEY: WAREHOUIE-ID
FEZAG MAE-WINDOWS: 01
*E3AG MAX-PAGES: 10
*EEZAG DYNAMIC-ATTRIEUTES: »<
b e i A i e e i i i i
* Program : NEWEROW
* S3ystem : NEWLIE
* Title : Browse
* Generated: Oct 55,2011 at 19:45:39 by FWRUSER
* Function : This subprogram is used to bhrowse the
*
*
+*

* History

*%5SAG DEFINE EXIT CHANGE-HISTORY

*#34G END-EXIT

ol o ol el ol e e e o e i el o ol e el ol ol ol o ol
= DEFINE DATA

PARAMETER

01 #PDA-EEV(A3) /¥ Start/Returned key.

PARAMETER USING CDSELPDLR /% Selection info

PARAMETER USING CDPDA-D /% Dialog info

FPARAMETEE USING CDPDA-M /% Msg info

I

| £

The **SAG DEFINE EXITand **SAG END-EXIT tagsindicate that the user exit exists, even when
there is currently no code in it, and you can define or modify the exit directly in the editor.

3 Move the cursor to the end of the **SAG DEFINE EXIT user-exit-name line.
4 Select Enter.

5 Add the code on the lines provided.

Generate Sample

> To add code to a user exit

1 Open the context menu for the user exit.

2 Select Generate Sample.

The **SAG DEFINE EXIT and **SAG END-EXIT lines are displayed with sample code. For ex-

ample:

Code Generation

287

Defining User Exits

{T *MEMIBR.OW.SH 53 =03
® # =Natural Source Header 0000000 ~
FHESALG GEMERATOR: BROWSE-3ZUEF WERSICN: 5.3.1.12

*%345% TITLE: Browse

*E3LAG ZYSTEM: MEWLIE

**ZAG DESCS (1) : This subprogram is used to browse the
**54% HEADER1l: First heading
**345% DIRECT-COMMAND-FPROCESS:
#%3h% PRIME-FILE: NC3T-WAREHOITZE
*¥53LhG PFILE: WCST-WAREHOUSE
**3h% PRIME-KEY: WAREHCOUSE-ID
FEGZAG MAX-WINDOWS: 01

*EILRG MAX-PAGES: 10

*E53AG DYMAMIC-ATTRIBUTES: <

o o o ol o o ol ol ol ol ol Ol ol o o o o o ol ol ol o ol o o o o

* Program @ NEWBROW

* System : NEWLIE
* Title : Browse
* Generated: Oct 5,2011 at 19:45:39 by PWRUSE
* Function : This subprogram is used to browse the
*
+*
*
* History
= *%*534G DEFINE EXIT CHANGE-HISTORT
* Changed on Dec 5,2011 by PWRUSE for release
o=
-
o

*%54G END-EXIT
I‘K*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*'8'1:'8'1:'8'1:'k‘k'k‘k'k‘k*‘k*‘k*‘k*‘k*‘k*‘k1:‘8‘*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k

= DEFINE DATL

= PARAMETER v

3 Move the cursor to the end of the **SAG DEFINE EXIT user-exit-name line.

4 Modify the sample code as required.
Generate User Exit

This context menu is enabled only for special user exits such as WRITE-FIELDS and LOCAL-
DATA. If you select this option, a dialog wizard that collects data for generating a user exit code
is displayed.

To use this functionality you need to install Natural Business Services version 8.2.2.6 or higher on
the NDV server.

= Generate a LOCAL-DATA User Exit

288 Code Generation

Defining User Exits

m Generate a WRITE-FIELDS User Exit

Generate a LOCAL-DATA User Exit

If you specify a program view name on a Browse, Browse-Select, or Object-Browse model specific-
ation wizard panel, you must define the view for the file as a LOCAL-DATA user exit.

~ To generate a Local-Data user exit

1 Open the context menu for the user exit.

2 Select Generate User Exit. The Generate LOCAL-DATA user exit dialog wizard is displayed.

& Generate LOCAL-DATA User Exit O X
Define the parameters for the LOCAL-DATA user exit N1
Parameters

[] Define Entire View of Primary File

View is Defined in Local Data Area

Using this widow, you can:

Field Description

Define Entire View of Primary File |[Mark this field to define the entire view of a primary file within
a user exit. You can then edit the sample code and delete the fields

you do not want.

View is Defined in Local Data Area |If the view is defined in a local data area (LDA), enter the name
of the LDA in this field.

3 Modity this wizard as desired.

4 Click Finish to generate the user exit contents.

Code Generation 289

Defining User Exits

| Note: If you are using the LOCAL-DATA user exit with a model that is not a Browse, Browse-
Select, or Object-Browse model, no wizard is displayed.

Generate a WRITE-FIELDS User Exit

The WRITE-FIELDS user exit offers the possibility to generate more complex user exit code based
on the contents of the #PANEL variable.

~ To generate a Write-Fields user exit

1 Open the context menu for the user exit.
2 Select Generate User Exit. The Generate WRITE-FIELDS user exit dialog wizard is displayed.

3 On the Select Predict Views page, you can select up to six Predict views. The Predict view
from the model is added by default.

& Generate WRITE-FIELDS User Exit O >
Select Predict Yiews N1
Select up to & Predict Views
Type Mame Fields Add
View EMPLOYEES Select R
EMove
I_lp
Down
'i?;' < Back Mext = Finish Cancel

The following fields and buttons are available on this wizard page:

290 Code Generation

Defining User Exits

Field/Button | Description

Name Shows name of the view.

Fields Choose Select to display a selection page from which you can select the fields or All to
select all the fields from the corresponding view.

Add Shows a list of all available Predict views and adds the view you have selected.

Remove |Removes the selected view.

Up Moves the selected view up.

Down Moves the selected view down.

4 Modify this wizard as desired.
5 Click Next >.

6 The Select Fields Page is displayed. It shows all fields from all Predict views whose Fields
parameter you have set to Select.

Select the fields to be used for the WRITE-FIELDS code.

If you select a group field, all children of the group will be selected.

Code Generation 291

Defining User Exits

& Generate WRITE-FIELDS User Exit O =
Select Fields from EMFLOYEES N1
All fields which can be selected for panels are listed.
Mame Type Level Descriptor Format Length 2
PERSOMMEL-ID 1 D A 4.0
FULL-MAME GR 1
FIRST-MAME 2 A 20.0
MIDDLE-I 2 A 1.0
MNAME 2 D A 20.0
[] MIDDLE-NAME 1 A 20.0
[] MAR-STAT 1 A 1.0
] sEX 1 A 1.0
BIRTH 1 D D
] FULL-ADDRESS GR 1
ADDRESS-LIME ML 2 A 20.0
CITY 2 D A 20.0
] ZIp 2 A 10.0
POST-CODE 2 A 10.0
1 COUNTRY 2 A 1 v
@) < Back Next > Finish Cancel
7 Click Next >.
8 The Enter Default Parameters page is displayed. On this wizard page you can specify the
statement type, size, and spacing of the report.
292 Code Generation

Defining User Exits

& Generate WRITE-FIELDS User Exit O >

Enter Default Parameters 1

General
Generate statement type
Leading blank colurmns

Columnn spacing factor

Window/Line width

Headings
Underline Headings

DISPLAY (1 panel) or WRITE (several panels) e

0 |
K |
| |

Blank lines after headings | 1

'r:?;' < Back Mext » Finish Cancel

The following fields and buttons are available on this wizard page:

Field/Button

Description

Generate statement type

Type of Natural statement (DISPLAY or WRITE) used for the report. By
default, DISPLAY is selected. If more than one panel is generated, but you
have selected DISPLAY, the code will, nevertheless, be created using WRITE
statements.

Leading blank columns

Number of blank columns preceding the report columns.

Column spacing factor

Number of spaces between fields on the report. The default is one space.

Window/Line width Number of columns used for the generated report. If this field is empty,
80 is used.
Underline Headings Tick this box to add or remove a line under headings. This field is selected

by default.

Blank lines after headings

Number of blank lines below the header to be displayed in the ready report.

9 Modity this wizard as desired.

10 Click Next >.

11 The Define the Appearance of the Report page appears. On this wizard page you can define
the layout of the WRITE-FIELDS panels.

Code Generation

293

Defining User Exits

£ Generate WRITE-FIELDS User Exit

Define the Appearance of the Report

Mumber of columns (line width) used for the generated report is: 80

OnPanel Panel(Order) Label Field Prompt Field Mame Format AlL= OCC S5G=0N AD=l EM=0ON (D Up
{Default 1(10) EMPLOYEES PERSONNEL/ID PERSOMNNEL-ID Ago]] " | Down
Default 1(20) EMPLOYEES First Name FIRST-NAME A200 [} [}
Default 1(30) EMPLOYEES Middle | MIDDLE-I A0 [} [}
Default 1(40) EMPLOYEES Name NAME A200 [}]
Default 1(50) EMPLOYEES DATE/OF/BIRTH BIRTH D [
Default 2(10) EMPLOVEES ADDRESS ADDRESS-LINE A20.0 8 &]
Default 2(20) EMPLOVEES City CITY A200 (] [
Default 2(30) EMPLOVEES POSTAL/ADDRESS POST-CODE A10.0]]
Default 2 (40) EMPLOYEES TELEPHOME PHOME AT50]]
Default 2(50) EMPLOYEES DEPARTMENT/CODE ~ DEPT ABO]]
Default 3(10) EMPLOYEES CURRENT/POSITION JOB-TITLE AZ5.0 [} [}
Default 3(20) EMPLOYEES LEAVE/START LEAVE-START N80 20 [} [}
Default 3(30) EMPLOYEES LEAVE/END LEAVE-END N80 20 [} [}

Note: Please select "Code Generation > Regenerate...” for this source after saving it with the user exit code!

< Back Mext > Cancel

The position of the fields is calculated automatically for any change affecting the field width,
field order, or the line width of the report.

If new fields are selected by going back to the Select Fields wizard page, these fields are added
at the end of the report.

The following fields and buttons are available on this wizard page:

Field/Button |Modifiable Description

On Panel X Pick either Default or All from the drop-down list. All displays the
field on all panels, and in such case the Panel value will be *. Default
displays the field on one panel, and this case the Panel value will be
the number of the panel where the field is located.

Panel(Order) Number of the panel and order on this panel where the corresponding
field will be displayed.

Label X Qualifier of the field. By default, the name of the view is selected.

Field Prompt|x Field names displayed on the report. The default headings in Predict
are displayed. Entering a slash (/) can split the header over several
rows.

Field Name The name of the field.

Format The format and length of the field.

AL= X To override the default length of the corresponding field, type the new
length in this field.

OocCcC depends on Number of occurrences of the corresponding field. If a fixed number

field is specified, that number is always displayed on the report (even if

some occurrences are empty).

294

Code Generation

Defining User Exits

Field/Button |Modifiable Description

SG=ON depends on Sign option. Check this box to include a sign option for the
field corresponding field (SG=ON) in the generated report.

AD=I X Check this box to intensify the corresponding field (AD=I).

EM=0ON depends on Check this box to use the Predict edit mask for the corresponding field
field (EM=ON).

CD X Select the color definition for the corresponding field from the

drop-down list.
Up Moves the selected field up.
Down Moves the selected field down.

12 Click Finish to generate the user exit.

Depending on the input values, this generation could also create code in the user exits BUILD-
REPORT-LOCAL-VARS and TOP-OF-PAGE.

Note: After creating the user exit code in the model source, you must save the source and

regenerate it. Regeneration can be achieved by selecting the menu Code Generation > Re-
generate... for the source.

Clear Exit

~ To clear code from an existing user exit

1 Open the context menu for the user exit in the Outline view.

2 Select Clear Exit.

All lines of code within the selected exit are deleted and the comment line that identifies the
insertion point for the exit within the editor is restored.

Modify Code in a User Exit

~ To modify code in a user exit

1 Select the user exit in the Outline view.

The user exit is displayed in the editor.

2 Modity and save the user exit.

Note: You can make changes to user exits equivalent to the Add Code and Clear Exit options

by modifying these lines in the editor view — without using the context menu for the
Outline view. If you do this, ensure you do not change the ** SAG comment lines.

Code Generation 295

296

16 Using the Construct Runtime/Compile Time Modules in

Non-Construct Server Environments

= Add the Construct RUNTIME PrOJECToouviiiiiiii e 298
= Update the Construct Runtime Project to the Latest VErSioncoooiviiiiiiiiiiiii e, 299
= Replace the Construct Runtime Project with the Latest Version ..., 300
= Exclude Modules from the Update or Replace PrOCESSovvveiiiiiieiiiiie e 300
= Add Customized Modules to the Construct Runtime Projectcoovvviiiiiiiiiiiiee e 301
= Build the Construct Runtime Project in a non-Construct Server Environment ..., 302

297

Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments

To avoid compile errors for Construct-generated modules in the server environment, Natural
Construct on the server is delivered with all the required runtime/compile time modules in the
SYSTEM library. Since these modules are combined with other modules and products in SYSTEM,
the Natural Construct component on the client delivers the required modules in the Construct
runtime project. The modules in this project will eliminate compile and parsing errors caused by
missing Natural Construct resources and will provide more detailed information in the Depend-
encies view. This project is available for use by both the client generation wizards and the Construct
generation wizards.

If uploading runtime modules to the server causes compile or runtime errors to existing server
modules, try regenerating the server modules to incorporate the changes in the uploaded runtime
modules. Likewise, if the compilation or execution of generated code results in errors on the
server, try rebuilding the Construct runtime project on the server to ensure that you are using the
most recent version of this project.

Add the Construct Runtime Project

When Natural code is generated by a Code Generation wizard, the wizard verifies whether the
required runtime/compile-time modules are available in the local environment. If they are not, a
window is displayed prompting you to add the Construct runtime project to your workspace. For
example:

72 Add Construct Runtime Project

Construct runtime project does nok exist, Would vaou like to add it to the
_"‘r/ workspace?

[[]Don't show this message again

Yes l l Mo]

If you select Yes, the project is added to the workspace and referenced from the current project.

You can also add the Construct runtime project to your workspace manually.

~ To add the Construct runtime project manually

1 Open the context menu for any node in the Project Explorer.

2 Select Code Generation > Construct Runtime > Add Runtime Project.

The project is added to the Project Explorer view. For example:

298 Code Generation

Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments

55 346 -

tructRuntime- =natural-runtime (&) *

= B Consl
+-[= settings
=@ Matural-Libraries *
+)-[= Action-Text (CSTACT) *
#-lazk Construck-Application-Texk (CSTAPPL) *
4k Construck-Runtime (SYSTEM) *
£ Construck-Runtime-Extension (SYSTEM)
4[> Message-Text (CSTMSGE) *
+)-[= PF-Key-Text (CSTPFK) *
+)-[Screen-Prompt-Text (CSTLDA) *
Lconskruck

Wel excludes
W= natural
W= paths
W=l . project
4] g natdocStandardPdas- =natural-runkime {13 *

The current version of the Construct runtime project is defined in the .construct file. For example:

=] .construck 23

construct.version=5.3.1.13
runtime.version=1

| Note: The information in the .construct file is used internally and should not be modified.

The local version information is compared to the version information delivered in the Construct
runtime project at startup and during generation and regeneration. If the version has changed on

the server, the local project will be updated.

Update the Construct Runtime Project to the Latest Version

This section describes how to update an existing Construct runtime project to the latest version
of the project. Updated modules in the shipped version are copied to the workspace (and overwrit-

ten when necessary).

(Caution: Any customizations of the Construct runtime project modules will be lost unless
you exclude the modules from the update processing. For information, see Exclude Modules
from the Update or Replace Process.

~ To update the Construct runtime project to the latest version

1 Open the context menu for the ConstructRuntime project in the Project Explorer.

2 Select Code Generation > Construct Runtime > Update to Latest Version.

Code Generation 299

Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments

Note: When the Construct runtime project is updated, the project modules are copied

to the SYSTEM library on the FUSER, but when the project is built, the project modules
are copied to the SYSTEM library on the FNAT.

Replace the Construct Runtime Project with the Latest Version

This section describes how to replace an existing Construct runtime project with the latest shipped
version of the project. All modules in the shipped version are copied to the workspace (and over-
written when necessary).

@ Caution: Any customizations of the Construct runtime project modules will be lost unless

you exclude the modules from the replace processing. For information, see Exclude Modules
from the Update or Replace Process.

~ To replace the Construct runtime project with the latest version

1 Open the context menu for the ConstructRuntime project in the Project Explorer.

2 Select Code Generation > Construct Runtime > Replace with Latest Version.

Exclude Modules from the Update or Replace Process

This section describes how to exclude (and subsequently include) Construct runtime project re-
sources from being overwritten during the update or replace process. You can use this functionality
to protect changes to these modules from being overwritten during the update or replace process.

. Notes:
1. Excluding a folder automatically excludes all its child folders and files.

2. You cannot exclude the Construct runtime project itself or the .construct file.

> To exclude modules in the Construct runtime project from the update or replace processing

1 Open the context menu for a Construct runtime resource in the Project Explorer.

2 Select Code Generation > Construct Runtime > Exclude.

The selected resource is added to the .construct-excludes file in the project. For example:

300 Code Generation

Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments

=& =

= H CanstructRuntime- =natural-runtime (&) *
4= .settings
=& Matural-Libraries *
[Action-Text (CSTACT) *
|z Construck-Application-Text (CSTAPPL) *
(& Construct-Runtime (SYSTEM) *
l&@ Construck-Runtime-Extension (SYSTEM)
(& Message-Text (CSTMSE) *
(& PF-Key-Text (CSTRRK) *
| Screen-Prompt-Texk (CSTLDA) *
Lcanstruck

T

R = O R S e S

.construct-excludes

We excudes

Wl natural

W= paths

W2l project
£ 9 natdocStandardPdas- =natural-runtime {13 *
4] B MewProject- =daef.hg.sag-7307 (6) *

Excluded resources will never be updated or replaced with the latest shipped version (triggered
automatically at startup, generation, regeneration or by selecting the Update to Latest Version
or Replace with Latest Version context menu actions).

Note: You can view the .construct-excludes file to determine which resources are cur-

rently excluded, but you should never modify the file manually.

~ To include modules in the Construct runtime project update or replace processing

1 Open the context menu for the excluded Construct runtime resource in the Project Explorer.

2 Select Code Generation > Construct Runtime > Include.

The selected resource is removed from the .construct-excludes file and will now be overwritten
during an update or replace process.

Add Customized Modules to the Construct Runtime Project

If you have customized any of the required modules on the server, you must add these customiz-
ations to the local Construct runtime project. This project is imported from an archived file called
ConstructRuntime.zip in the installation folder for the Natural Construct component.

~ To add customized modules to the Construct runtime project

1 Make a backup copy of the ConstructRuntime.zip file.
2 Import the ConstructRuntime.zip file into your workspace.

3 Open the zip file and copy the customized modules into the Construct runtime project.

Code Generation 301

Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments

4 Export the modified Construct runtime project from your workspace to the ConstructRuntime.zip
file.

Your customizations will overwrite the supplied Construct runtime project in the Natural
Construct installation folder.

The customized Construct runtime project now can be used as the basis for loading runtime projects
in a customized environment.

Build the Construct Runtime Project in a non-Construct Server Environment

The Construct runtime project allows Construct-generated modules to be compiled in NaturalONE
and executed in a non-Construct Natural server environment. If Natural Construct is installed on
the server (including the compiled version only), a Construct-generated application can be compiled
and/or executed on that server. If Natural Construct is not installed on the server (for example, in
a NaturalONE local server environment), a Construct-generated application can be compiled on
that server if the Construct runtime project has been installed.

The Construct runtime project is copied to the environment defined in the Properties window for
the project (for example, Projectname > Properties > Natural > Runtime).

For a Construct-generated application to compile in a NaturalONE local environment:

® The referenced application DDMs must be copied into the NaturalONE local environment.

® The Construct runtime project must be available in the workspace and referenced.

® The SYSTEM library must be in the steplib chain.

The runtime folder does not require a Construct physical file. If Construct help is being used, the

Construct physical file must be installed on the server and both the runtime and the CST-Help
folders should be updated on the server.

Notes:

1. To build the Construct runtime project, it must first be available locally. For information, see
Add the Construct Runtime Project.

2. If your non-Construct server environment is running on a mainframe, ensure that the ESIZE
value is a minimum of 120 during the build.

3. When the Construct runtime project is built, the project modules are copied to the SYSTEM
library on the FNAT, but when the project is updated, the project modules are copied to the
SYSTEM library on the FUSER.

302 Code Generation

Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments

~ To build the Construct runtime project in a non-Construct server environment

1 Open the context menu for the ConstructRuntime project in the Project Explorer.

2 Select Code Generation > Construct Runtime > Build Construct Runtime Project.

The Define the Build Details panel is displayed. For example:

7= Build Construct Runtime Project |:|@E|

Define the Build Details [T
Select the build options For the Conskruct runtime project.

= -

CDinchude G0a files
[CExecute CYUSRCOP after successful build

‘Warning: Files in the Construct runtime project will overwrite any existing files with the same names in the local Matural runtime.

':?," Finish] [Cancel

3 Select Finish.
The Construct runtime project is built with all defaults.
Or:

Select one or more of the following options:

Option Description

Include GDA files Select this option to include all global data area files.

The wizard ignores any global data areas. To include them, select Include GDA
files.

Note: To ensure compatibility with existing compiled files, and to avoid GDA

timestamp errors, the Construct CDGDA global data area is also excluded by
default. If you want this file uploaded and compiled, edit the .excludes file in
the project. For more information on the .excludes file, see Using Natural ONE.

Execute CVUSRCOP |Select this option to execute the CVUSRCOP utility, which copies the Natural
after successful build |utility routines to the SYSTEM library after the Construct runtime project has

Code Generation 303

Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments

Option Description

been successfully built on the server. For more information, see Natural Business
Services Installation on Mainframes.

4 Select Finish.

The Construct runtime project is built with the selected options.

304 Code Generation

17 Generating an Ajax Page for Generated Subprograms

= Generate an Ajax Page for an Object-Browse SUbProgramccceoeiiiiiiiiiiiiiieeiiiiice e 306
= Generate an Ajax Page for an Object-Maint SUDProgramcoovviieiiiiiiieiiie e 314
= Generate an Ajax Main Program from an Adapter File ..o 322
= Test the Generated Main PrOgramcuviiioiiiiie e 326
= Regenerate the Main PrOGramvivieiiiiiiiiiieeee ettt e et e et et e et aa e aaaaaas 328

305

Generating an Ajax Page for Generated Subprograms

This section describes how to generate an Ajax page that takes advantage of the capabilities of a
subprogram generated by an Object-Browse-Subp wizard (Object-Browse-N1 or Object-Browse-
Subp) or an Object-Maint-Subp wizard (Object-Maint-N1 or Object-Maint-Subp). The following
files are generated:

" page layout (.xml extension)

® adapter (.NS8 extension)

® main program (.NSP extension)

Generate an Ajax Page for an Object-Browse Subprogram

This section describes how to generate an Ajax page for an Object-Browse subprogram. The fol-
lowing topics are covered:

= Access the Wizard
= Specify Source and Target Details
= Configure Column Details

Access the Wizard

The section describes how to access the Ajax Object-Browse Page wizard. Before accessing the
wizard, the following conditions must be met:

® The wizard must be started from a project that has been enabled for Ajax Developer.

" A user interface component must be available locally.

| Note: For more information about the generated files and general Ajax architecture, refer

to the Natural for Ajax documentation.

~ To access the Ajax Object-Browse Page wizard

1 Open the context menu in the Project Explorer for a subprogram that was generated by either
the Object-Browse-N1 or Object-Browse-Subp generator.

2 Select Code Generation > New Ajax Object-Browse Page.
For example:

The Specify Source and Target Details panel is displayed. For example:

306 Code Generation

Generating an Ajax Page for Generated Subprograms

W' New Ajax Object-Browse Page

Page lawout:
Adapher:

Main pragrar:

|/§H'I
Wi

Enter settings For the source and target Files,

Specify Source and Target Details -m =

Object-Browse subprogram: | “CUSTH
Compaonent_#&

Ajax target details

IJser interface component:

Maoke: The Ajax main program and adapter will be generated inko the 'DEMOTEST' library,

Cancel

Specify Source and Target Details

~ To specify source and target details

1 Define the following parameters:

Parameter

Description

Object-Browse
subprogram

Name of the Object-Browse-generated subprogram for which you are creating
the page. To change the name of the subprogram, either type the name of a
new subprogram in Object-Browse subprogram or select Browse to display
the available subprograms for selection.

User interface
component

Name of the user interface component for the page. Either type the name of
an existing component in User interface component or select Browse to display
the available components for selection.

Page layout

Name of the page layout file to be generated. This name must follow standard
xml naming conventions (do not include the .xml extension).

Tip: Avoid using spaces in the page name as it may cause problems during

generation.

Adapter

Name of the adapter file to be generated. This name must follow standard
Natural naming conventions (do not include the .NS8 extension).

Main program

Name of the main program file to be generated. This name must follow
standard Natural naming conventions (do not include the .NSP extension).

2 Select Finish.

Code Generation

307

Generating an Ajax Page for Generated Subprograms

The page is generated using all fields in the PDA, as well as all default column headings and

search keys.
Or:

Select Next.

The Configure Column Details panel is displayed. For example:

Y News Ajax Object-Browse Page

Configure Column Details

Select which Figlds will be included and edit the column headings.

Generate Heading

Cuskomer Mumber
Business Mame
Phone Mumber

M Strest

M Ciky

M Prowvince

I Poskal Code

5 Street

5 Ciby

5 Province

3 Postal Code
Conkack

Credit Rating

Credit Limit

Discount Percentage
Cuskomer Warehouse Id
Customer Timestamp
Counk

Unigue Id

HEEEEEEEEEEEEEEEEEE

Kevy
Yes
Yes

Yes

Yes

Field Mame

ACUSTD, CUSTOMER -MUMEBER.
ACUSTD,BUSIMESS-MAME
ACUSTD, PHOME-MNUMEBER
ACUSTD.M-STREET

ACUSTD M-CITY
ACUSTD.M-PROVINCE

ACUSTD, M-POSTAL-CODE
ACUSTD.S-5TREET

ACUSTD, S-CITY

ACUSTD. S-PROYIMNCE

ACUSTD, 5-POSTAL-CODE
ACUSTD.COMTACT
ACUSTD . CREDIT-RATING
ACUSTD CREDIT-LIMIT

ACUSTD, DISCOUNT-PERCENTAGE
ACUSTD, CUSTOMER.-WAREHOUSE-ID
ACUSTD CUSTOMER-TIMESTAMP
ACUSTD.COUNT

ACUSTD, UNIQUE-ID

’Select all l ’Deselect all

Finish] [Cancel

| Note: Array fields are not currently supported.

308

Code Generation

Generating an Ajax Page for Generated Subprograms

Configure Column Details

This panel allows you to select which fields are generated for the page and what column headings
will be displayed. The Key and Field Name columns show parameters that are read-only. "Yes"
in Key indicates that the corresponding field is used as a search key on the generated page; Field
Name displays the fully qualified name of each field in the PDA.

To configure column details

1 Define the following parameters:

Parameter | Description Required/Optional/Conditional

Generate | Indicates whether the corresponding field is generated or not. |Optional
To exclude a field, deselect Generate for that field. A minimum
of one field must be selected.

Heading |Heading displayed on the generated page for the corresponding |Optional
field. You can change this heading as desired.

2 Select Finish.

The page is generated using the selected fields, column headings and search keys. The gener-
ated main program (.NSP extension) file is displayed in the editor. For example:

[T customer_page.mil] CUSTADAP.NSE 1= cusTMaI.NSE BT =08
@ # >Natural Source Header 000000] i
#%3LG GENERATOR: AJAX-BROWSE-MAIN-PROGRAN VERSION: 5.2.3

= #¥545 AdapterMNawns: CUSTALADLP
FEAAG MainPrograulame: CUITHAIN B
*#*ZLG ObjectMNawme: LCTITH
®*3AG Pagelame: customer page
FEIAG UIComponent: Component L
**ZAG KEV-PDA-WAME: ACUSTE
**ZAG RESTRICTED-FDA-MNALME: ACUSTPE
**34G ROW-PDA-NAME: ACUITD
#*3AG COLUMN OBJECT: ACUSTD.CUSTCHER-NUMEER, true,Customer MNunber,true
#FZAG COLUMN OBJECT: ACUSTD.EBUSINESS-IAME, true,Business Name, true
#EFAG COLUMN_ OBJECT: ACUSTD.PHOME-WUMEER, true,Phone Nuwber,false
FEZAG COLUMN OBJECT: ACUSTD.M-3TREET,trus,M Street,false
®EFAG COLUMN_ OBJECT: ACUSTD.M-CITY,true,M City,false
FEZAG COLUMN OBJECT: ACUSTD.M-FPRCOVINCE, true,M Province,false
#*FAG COLUMN_ OBJECT: ACUSTD.M-POSTAL-CODE,true,M Postal Code,false
FEZAG COLUMN OBJECT: ACUSTD.S-STREET,trus,3 Street,false
#%FAG COLUMN_ OBJECT: LCUSTD.3-CITY,true,d City,false
#*ZAG COLUMN OEJECT: ACUSTD.3-FRCOVINCE, true,d Province,false
#%FAG COLUMN OBJECT: LCUSTD.3-POSTAL-CODE,true,3 Postal Code, false
®EIAG COLUMN_ OBJECT: ACUSTD.CONTACT,true,Contact,false
FFZAG COLUMN OBJECT: ACUSTD.CREDIT-RATING,true,Credit Rating, false
®EFAG COLUMN_ OBJECT: ACUSTD.CREDIT-LIMIT,true,Credit Limit,false
FEIAG COLUMM OBJECT: ACUSTD.DISCOUNT-PERCENTAGE, trus,Discount Percentage,false
®*3AG COLUMN_OBJECT: ACUSTD.CUSTCHMER-WAREHOUSE-ID, true,Customer Warehouse Id,true
FEIAG COLUMMN OBJECT: ACUSTD.CUSTOMNER-TIMEZTLNP,tcrus, Customer Timestsanp, false

£

Code Generation 309

Generating an Ajax Page for Generated Subprograms

The available user exits are displayed in the Outline view. For example:

EE Qutling &3 w O
4 P*SAG DEFINE EXIT CHAMGE-HISTORY | ~
1 FSAGE END-EXIT
F*3AG DEFIME EXIT LOCAL-DATA
1 FSAGE END-EXIT
u **34G DEFIME EXIT BEFORE-PROCESS-PAGE
1 FSAGE END-EXIT
**34G DEFIME EXIT AFTER-PROCESS-PAGE
1 FSAGE END-EXIT
**34G DEFIME EXIT BEFORE-EVEMT-nat:nat:page, end
1 FSAGE END-EXIT
u **34G DEFIME EXIT AFTER-EVEMT-nat:nat:page.end
1 FSAGE END-EXIT
**34G DEFIME EXIT BEFORE-EVEMT-nat: onlore
1 FSAGE END-EXIT
 **34G DEFIME EXIT AFTER-EVEMT-nat:oniare
1 FSAGE END-EXIT
**34G DEFIME EXIT BEFORE-EVEMT-nat:on3earch
1 FSAGE END-EXIT
u **34G DEFIME EXIT AFTER-EVEMT-nat:on3earch
1 FSAGE END-EXIT v

For every event in the page layout file, a BEFORE-EVENT and AFTER-EVENT user exit is
generated (for example, "BEFORE-EVENT-nat:nat:page.end" above). When you add an event
to the page layout file, a BEFORE-EVENT and AFTER-EVENT user exit is also generated.
Code within these exits is preserved during regeneration.

The generated adapter (.NS8 extension) and page layout (.xml extension) files are also displayed
in the editor. For example:

310

Code Generation

Generating an Ajax Page for Generated Subprograms

E cuskomer_page.xml I cusTapep.uss 52

*

o+ # =

+

*

*

>Natural Source Header 0000000 -
PLGE1l: FROTOTYPE ——— CREATED EY Application Designer ——- /#%<RO>>
FEOCESS PAGE USING ' HEEEEEEX' WITH

KEY.BUSINESS-MAME EKEY.CUITOMER-NUMEEER KEY.CUITOMER-WAREHOUSE-ID
MOREVIZSIELE SELCOMGMEZSAGE SESHORTMEZZAGE SETYPE SELRCHVIZSIELE
UI.BUSINESS-MAME (*) UIL.CCWTACT(*) UL.COUNT(*) UI.CREDIT-LIMIT(¥*)
UI.CREDIT-RATING(*) UI.CUSTOMER-MWUMEER(*) UI.CUSTOMER-TIMESTALMP(*)
UI.CUSTOMER-WAREHOUSE-ID (*) UI.DISCOUNT-PERCENTAGE (*) UIL.M-CITY(¥)
UI.M-POSTAL-CODE(*) UI.M-FPROVINCE(*) UI.M-STEEET(*) UI.PHOMNE-NUMEEER(™*)
UI.3-CITY¥(*) UI.3-POSTAL-CODE(*) UI.3-PRCVINCE(*) UI.Z-3TREET(¥*)
UI.UNIQUE-ID(*) UI,ROWCOUNT UI.3IZE UI.ASCENDING(*) UL.PROFNAME (*)
UI.TOPINDEX

DEFIMNE DATL PARAMETER

4% PLRAMETER

=}

1
L s sl i B o S G o R o)

KEY

BUSINEZS-MNAME (A30)
CUSTOMER-NUMEER (N5)
CUSTOMER-WAREHOUIE-ID (43)
MOREVIZSIELE (L)
JELONGMEZZLGE (A) DYNAMIC
SJESHORTHEZSAGE (L) DYNLMIC
SETYPE (i) DYNAMIC
SEARCHVIZIELE (L)

LN

UI-CUSTOMER_PAGE (1:7%)
BUSINEZ3-MNAME (A) DYNAMIC
CONTACT (A) DYNAMIC

COUNT (i) DYMAMIC
CEEDIT-LIMIT (L) DYINAMIC
CEEDIT-RATING (A) DVNAMIC
CUSTOMER-NUMEER (A) DYMALMIC w

The following example shows the generated page layout file displayed in the Layout tab.

Code Generation 311

Generating an Ajax Page for Generated Subprograms

75 customer_page.xml &2 Al CUSTADAP.NSE 12l cusTMAIM.NEP =04
Layout = Preview B || Controls
Page
- [@ natpage customer_pageBrowse ol —
) Title Bar
+] titlebar (customer_pag Al=
Title Section [Page Headsr

+ =] pagebody

E Page Body
Q statusbar {sbtype) customer_page Browse Search

Q Skatus Bar

Search Criteria Section Double Line Menu

_ <= Strip Selection
Customer Number: I:I BUEITEES Eme = Tab Strip Selection
Tab Selection
% Tirmer

[mer context
E *CI Conkext Parameter

Search Results Section

Co. B P MM ML ML S,

—
=

|[E] CI5 Sub Page

E Sub Page

E Open Popup Features
E Living Popup Features

Container
Controls

Grids/Traes

b Web 2.0/ Mazhup

< > 4 > Adwanced

Matural Extensions

=3|

=
s

1=

Warkplace
Lavyouk | sML

J Note: For more information about these files, refer to the Natural for Ajax documenta-

tion.

Select the XML tab to display the generated xml file. For example:

312 Code Generation

Generating an Ajax Page for Generated Subprograms

Ecustomer)age.xml x

I CUSTADAP NSE 1R cusTMaIM SR = O

1<?xml wersion="1.0" encoding="TUTF-5"2> A

Z <natpage Xmlns:

njx="http://www.softwareay. con/ nix/ njxMapConverter” natsinglebyte="trus" natsource

3 <titlebar nawe="customer pageBrowse” I3

4 <pagehodys-
5 <vdist height="10" />
3 <rowares name="Title ZSection"s
7 <tr>
=1 <label name="custower page Browse Search" />
9 </tr>
i0 <vdist height="5" />
11 </ rowarea>
1z <vdist height="10" />
13 <rowarea name="Search Criteria Section's
14 <vdist heigho="i0" /=
15 “itr
16 <label name="Customer Number:" />
17 <field datatype="I 5" maxlength="2Z0" wvalueprop="EEY.CUITOMER-NTMEER" width="100" />
15 <hdist width="10" /=
19 <label nsme="EBusiness Name:"™ />
Z0 <field datatype="string 30" maxlength="2Z0" valueprop="EEY.EUIINEII-MNALME™ width="100" />
z1 <hdist widch="10" />
2z <label name="Customer Warshouse Id:™ />
23 <field datatype="string 3" maxlength="Z0" wvalueprop="EEY.CUZTOMER-TWAREHOTIZE-ID™ width="10
4 <hdist width="10" />
Z5 <hdist widch="10" />
26 <button method="onSearch”™ namwe="Scarch™ wvisibleprop="SearchVisible™ />
27 <hdist widtch=r10" />
28 <fitrx>
z9 <vdist heigho="i0" /=
30 </ rowarea> v
< >
Layout | sML

The generated files are displayed in the Project Explorer. For example:

2% | BAB T

= '_;*‘- AjaxPraoject- =daef.hq.sag-7307 (1)

= .settings
(=& Matural-Libraries *
=& DEMOTEST *
= SR *

CUSTADAR MSE %%
CUSTMAIM.MSP %

= 9 User-Interface-Components

= g Component_A

(= multilanguage

= I_Elxml

[@ customer_page.xml
Q .Cisapplication
|X| ciseditorconfig.xml

Wzl onatural
W=l .project

3 Open the context menu in the Project Explorer for the generated main program and adapter

files.

4 Select NaturalONE > Update.

At this point, you can:

*® Test the main program. For information, see Test the Generated Main Program.

Code Generation

313

Generating an Ajax Page for Generated Subprograms

® Define user exits. For information, see Defining User Exits.

Generate an Ajax Page for an Object-Maint Subprogram

This section describes how to generate an Ajax page for an object-maintenance subprogram. The
following topics are covered:

= Access the Wizard
= Specify Source and Target Details
= Configure Field Details

Access the Wizard

The section describes how to access the Ajax Object-Maint Page wizard. Before accessing the
wizard, the following conditions must be met:

® The wizard must be started from a project that has been enabled for Ajax Developer.

" A user interface component must be available locally.

| Note: For more information about the generated files and general Ajax architecture, refer

to the Natural for Ajax documentation.

~ To access the Ajax Object-Maint Page wizard

1 Open the context menu for a subprogram that was generated by either the Object-Maint-N1
or Object-Maint-Subp generator.

2 Select Code Generation > New Ajax Object-Maint Page.

The Specify Source and Target Details panel is displayed. For example:

314 Code Generation

Generating an Ajax Page for Generated Subprograms

N News Ajax Object-Maint Page

Specify Source and Target Details =
Enter settings for the source and target files,

Ohbject-Maint subpragram; | MCUSTR

Ajax karget details

User interFace component: Browse, ..

Page layout:
Adapter:

Main prograrn:

Mote: The Ajax main program and adapter will be generated into the 'DEMOTEST' library.

-

Specify Source and Target Details

~ To specify source and target details

1 Define the following parameters:

Parameter Description Required/Optional/Conditional

Object-Maint | Name of the Object-Maint-Subp-generated subprogram |Required
subprogram for which you are creating the page. To change the name
of the subprogram, either type the name of a new
subprogram in Object-Maint subprogram or select
Browse to display the available subprograms for

selection.
User interface | Name of the user interface component for the page. Required
component Either type the name of an existing component in User

interface component or select Browse to display the
available components for selection.

Page layout Name of the page layout file to be generated. This name |Required
must follow standard xml naming conventions (do not
include the .xml extension).

Tip: Avoid using spaces in the page name as it may cause

problems during generation.

Adapter Name of the adapter file to be generated. This name must | Required
follow standard Natural naming conventions (do not
include the .NS8 extension).

Code Generation 315

Generating an Ajax Page for Generated Subprograms

Parameter Description

Required/Optional/Conditional

Main program |Name of the main program file to be generated. This
name must follow standard Natural naming conventions
(do not include the .NSP extension).

Required

Select Finish.

The page is generated using all fields in the PDA, as well as all default field labels.

Or:

Select Next.

The Configure Field Details panel is displayed. For example:

W' New Ajax Object-Maint Page

Configure Feld Details

Generate Label

Custarner Murnber
Business Marme
Phone Muriber

M Street

M City

M Province

M Postal Code

S Street

S City

2 Province

5 Postal Code
Contact

Credit R.ating

Credit Limit

Discounk Percentage
Customer Warehouse Id
Customer Timestarmp

[Select Al] [Deselect Al

Select which Fields will be included and edit the field labels,

@

Field Marme

CUSTOMER., CUSTOMER-MUMBER.
CUSTOMER., BUSINESS-MAME
CUSTOMER., PHOME-MUMEER.
CUSTOMER. M-STREET

CUSTOMER. M-CITY

CUSTOMER., M-PROYINCE
CUSTOMER., M-POSTAL-CCDE
CUSTOMER., 5-3TREET

CUSTOMER., S-CITY

CUSTOMER., 5-PROYIMNCE
CUSTOMER., 5-POSTAL-CODE
CUSTOMER, CONTACT

CUSTOMER., CREDIT-RATING
CUSTOMER, CREDIT-LIMIT
CUSTOMER., DISCOUNT-PERCEMTAGE
CUSTOMER., CUSTOMER-wWAREHOUS, ..
CUSTOMER., CUSTOMER-TIMESTAMP

Finish l l Cancel

] Note: Array fields are not currently supported.

316

Code Generation

Generating an Ajax Page for Generated Subprograms

Configure Field Details

This panel allows you to select which fields are generated for the page and what labels will be
displayed. The Field Name column displays the fully qualified name of each field in the PDA;
these parameters are read-only.

~ To configure field details

1 Define the following parameters:

Parameter | Description Required/Optional/Conditional

Generate |Indicates whether the corresponding field is generated or not. |Optional
To exclude a field, deselect Generate for that field. A minimum
of one field must be selected.

Label Label displayed on the generated page for the corresponding |Optional
field. You can change this label as desired.

2 Select Finish.

The page is generated using the selected fields, column headings and search keys. The gener-
ated main program (.NSP extension) file is displayed in the editor. For example:

Code Generation 317

Generating an Ajax Page for Generated Subprograms

|X] cusk_maink. xml Al CUSTADPT 1S3 CUSTMMP MNSP 23
® ¢ >Natural Source Header 0000000
*#*34G GENERATOR: AJAX-MATWT-MAIN-PROGRALM WERSION: 5.2.3
= ®*F3AG LdapterMName: CUITALDPT
FESAG MainProgramiame: CUSTHNP
*#*ZLG ChijectNamwe: MCUITH
TFIAG Pagelame: cust_maint
FESLG UICowponent: Component i
**ZLG GUI-FIELD: CUSTOMER.CUSTOMER-MNUMEER, true,Customer IMNunber
**ILG GUI-FIELD: CUSTOMER.EUSINESS-MAME, crus,Business Name
*#*ZLG GUI-FIELD: CUSTOMER.FPHONE-WNUMEER, true,Phone Nunber
**3LF GUI-FIELD: CUSTOMER.M-3ITREET,trus,M Streest
*#*3LG GUI-FIELD: CUSTOMER.M-CITY,trus,M City
**ZLG GUI-FIELD: CUSTOMER.M-PROVINCE, true,M Province
**ZLG GUI-FIELD: CUSTOMER.M-POSTAL-CODE,trus,M Postal Code
*#*3LG GUI-FIELD: CUITOMER.Z-3ITREET,true,3 Street
*#*Z3LG GUI-FIELD: CUSTOMER.3-CITY,true,3 City
*#*3LG GUI-FIELD: CUZTOMER.Z-PROVINCE, true,3 Prowvince
**ZLG GUI-FIELD: CUSTOMER.Z2-POSTAL-CODE,true,? Postal Code
**ZLG GUI-FIELD: CUSTOMER.CONTACT,true,Contact
**ZLG GUI-FIELD: CUITOMER.CREDIT-RATING,true,Credit Rating
*#*Z3LE GUI-FIELD: CUSTOMER.CREDIT-LIMIT,true,Credit Limit
FESAG GUI-FIELD: CUSTOMER.DISCOUNT-PERCENTAGE, true,Discount Percentage
*#*ZLG GUI-FIELD: CUSTOMER.CUITOMER-WAREHOUSE-ID, true,Customer Warehouse Id
**ZLG GUI-FIELD: CUSTOMER.CUITOMER-TIMESTAME, true,Customer Timestatp
S o O o o o o ol ol o i ol o i il o o o o o o o o
* Program : CUSTHHMFP
* Svstem : DEMOTERT
* Title 1 AJAYE main program for: MCOSTH
*
* Generated: Mon bdug 29 17:22:47 EDT 2011
* Function : This program invokes the Chject MALINT subprogram

The available user exits are displayed in the Outline view. For example:

5= outline 53

&=0

=3 #5415 DEFIME EXIT CHAMGE-HISTORY | e

53¢ **Sia END-EXIT

Zi **SAG DEFINE EXIT LOCAL-DATA

53¢ **Sia END-EXIT

=& **SAG DEFINE EXIT BEFORE-PROCESS-PAGE

53¢ **Sia END-EXIT

=& **SAG DEFINE EXIT AFTER-PROCESS-PAGE

53¢ **Sia END-EXIT

=3 "*SAG DEFINE EXIT BEFORE-EYEMT-nat:nat: page.end
53¢ **Sia END-EXIT

=3 "*SAG DEFIME EXIT AFTER-EYENT-nat:nat:page.end
53¢ **Sia END-EXIT

=i **SAG DEFINE EXIT BEFORE-EVEMT-nat:onadd

53¢ **Sia END-EXIT

=& **SAG DEFINE EXIT AFTER-EVENT-nat:onadd

53¢ **Sia END-EXIT

=i **SAG DEFINE EXIT BEFORE-EVEMT-nat:onDelete

53¢ **Sia END-EXIT

=i **SAG DEFINE EXIT AFTER-EVEMNT-nat:onDelete

|55 **SAG END-EXIT -

|

318

Code Generation

Generating an Ajax Page for Generated Subprograms

For every event in the page layout file, a BEFORE-EVENT and AFTER-EVENT user exit is
generated (for example, "BEFORE-EVENT-nat:nat:page.end" above). When you add an event
to the page layout file, a BEFORE-EVENT and AFTER-EVENT user exit is also generated.

Code within these exits is preserved during regeneration.

The generated adapter (.NS8 extension) and page layout (.xml extension) files are also displayed
in the editor. For example:

%] cusk_maint. xml ECUSTADPT.NSS 63

#+ # # # # % #+ x

»Natural Source Header 0000000

——— CREATED BY Application Designer ——— /*<ROs>
PROCEZZ PLGE UIING ' EEXXEXEL
ADDVIZIELE DELETEVIIIELE GETWISIELE NEXTVIZIELE FREVICUIVIZIIELE
SAVEVISIBLE SELONGMESZAGE SBESHORTHEISAGE SETYPE UI.BUIINESZ-NANE
TI.CONTACT TUI.CREEDIT-LIMIT UI.CREDIT-RATING UIL.CUSTOMER-NUMEER
TI.CUITOMER-TIMEITANF UI.CUITOMER-WAREHOUSE-ID UI.DISCOUNT-FERCENTAGE
TI.N-CITY UIL.M-PCSTAL-CODE UI.M-PROVINCE UI.M-STREET UI.PHONE-NUMEER
TI.3-CITY UIL.2-PCSTAL-CODE UI.S-PROVINCE UI.S-STREET

PAGEl: PROTOTYFE

DEFINE DATL PARAMETER
/% PARAMETER

1

L R B B O R R 1 T S

The following example shows the generated page layout file in the Layout tab.

ADDVISIBLE (L)
DELETEVISIELE (L)
GETVISIBLE (L)

MEXTVISIELE (L)
PREVIOUSVISIELE (L)
SAVEVISIBLE (L)
SELONGMESSAGE (A) DYNAMIC
SBSHORTMESSAGE (A) DYNAMIC
SETYPE (L) DYNAMIC

uI

XMLCUSTOMER

BUSINESS-NAME (L30)
CONTACT (A30)

CREDIT-LIMIT (P11.Z)
CREDIT-RATING (L3}
CUSTOMER-HUMEER (MS)
CUSTOMER-TIMESTALMP (T)
CUSTOMER-WAREHOUSE-ID (L3}
DISCOUNT-PERCENTAGE (P3.2)
M-CITY (A20)

Code Generation

319

Generating an Ajax Page for Generated Subprograms

2] cust_maint,xml 52 ol CUSTADPT.NSS 1 cusTMMP SR

Layout = Preview

- [@ natpage cust_maint Maint
+] titlebar {cust_maint M:

+] pagebody Title Section

L] statusbar (sbtype) cust_maint Maint Display

Data Display Section

Customer Nun|

Business Nam||

Phone Numbe||

IM Street: |

M City: |

I Province: |

I Postal CDdE|

S Street: |

5 City: |

S Province: |

S Postal CDde|

<

|>

|£

< |

|

=1

=
=

1=

Layaut | =ML

Controls

Page
1 Title Bar
E Page Header
E Page Body
Q Status Bar

Double Line Menu

= Strip Seleckion

=5 Tab Strip Selection
Tab Selection

Timer
[w1 Context
|:| #C1 Context Paramater

CI5 Sub Page

ﬂ Sub Page

D Open Popup Features
D Living Popup Features

Caontainer
Controlz
Grids/Trees
Web 2.0/ Mashup
Advanced
Matural Extensions
Workplace

D Note: For more information about these files, refer to the Natural for Ajax documenta-

tion.

Select the XML tab to display the generated xml file. For example:

320

Code Generation

Generating an Ajax Page for Generated Subprograms

2] cust_maint.xml 52 al CUSTADPT NSE =H cusTMMP. SR =a

1<?xml wversion="1.0" encoding="UTF-5"2> i
Z <natpage xwlns:njx="http:/ wyw. softwareay. com/ nix/ nixMapConverter™ natsinglebyte="trus" natsourc
3 <titlebar name="cust_maint Maint™ />

4 <pagehody:

5 <vdist height=ri0m" />

] <rowarea name="Title Zection'>

7 <vdist height="i0" /=

g <itr:

=] <label name="cust_mwaint Maint Display"” £

10 <hdist widch="10" />

11 <fitre

1z <vdist height="10" />

13 </rowareax

14 <vdist height="i0" /=

15 <rowares natme="Dats Display Section’s

1a “Lrx>

17 <label name="Customer Nunber:" nowrap="trus"” width="5%" />

18 <field datatype="N 5" maxlength="5" name="UI.XMLCUITOMER.CUSTOMER-NUMEER" njx:natname="0T

19 <ftrs

20 <vdist height="5" />

z1 <L

Z2 <label name="EBusiness Name:" nowrap="true" width="5%" /»

23 <field datatype="string 30" maxlength="30" nswme="TUI.ZNMLCTSTOMER.EUSINESS-NAME™ nix:natns

24 <ftre

zZ5 <vdist height="5" />

26 <tr>

27 <label nawe="Phone Nunber:" nowrap="trus™ width="5%" />

25 <field datatype="I 10" maxlength="10" nsme="0UI.ZXMLCUSTOMER. PHONE-INUMEER" njx:nathame="10I1

zg <ftre>

30 <vdist height="5" /> v
hS >

Layout | XML

The generated files are displayed in the Project Explorer. For example:

SRR 1
= "_;ﬂ AjaxProject- =daef . hq.sag-7307 (1)
(= .settings
= Matural-Libraries *
(=& DEMOTEST *
=@ shc *

LISTADPT.NSE %
AEE CUSTMMPMSP %%
=42 User-Interface-Campanents
= g Component_A
(= multilanguage
= |_£| =l
E' cust_maint, xml
Q .cisapplication
|¥| ciseditorconfig,xml
W= natural
W=l project

3 Open the context menu in the Project Explorer for the generated main program and adapter
files.

4 Select NaturalONE > Update.
At this point, you can:

® Test the main program. For information, see Test the Generated Main Program.

Code Generation 321

Generating an Ajax Page for Generated Subprograms

® Define user exits. For information, see Defining User Exits.

Generate an Ajax Main Program from an Adapter File

There are two ways to create an Ajax main program:

® Using standard Natural for Ajax functionality.

® Using the Ajax Main Program wizard and an existing adapter file ((NS8 extension). This wizard
creates a main program that is similar to the standard one, except it includes support for user
exits (for protected code) and regeneration when the Ajax UI changes (which allows the fields
on a page to be updated without overwriting the user interface logic).

This section describes how to use the Ajax Main Program wizard to generate a main program from
an adapter file, as well as how to regenerate the generated program.

~ To generate an Ajax main program from an adapter file

1 Open the context menu for the adapter file in the Project Explorer.

2 Select Code Generation > Generate Ajax Main Program.

The Specify Ajax Program Details panel is displayed. For example:

7= Generate Ajax Main Program |:|@|g|

Specify Ajax Program Details s
Define details about the Ajax main program,

e

Folder:s | [DEMOTEST

Library: | DEMOTEST

Mame:

L

Zancel

3 Type the name of the main program in Name.

322 Code Generation

Generating an Ajax Page for Generated Subprograms

Optionally, you can:

Task

Procedure

Select a folder in which to
generate the program.

Type the name of the folder in Folder or select Browse to display a window
listing the existing folders for selection. The folder must currently exist
within the selected Ajax project.

Note: This option allows you to generate modules into more complex
library structures (for example, "Natural-Libraries/my Tibrary
(MYLIB)/SRC"). When this option is not specified, the modules will be
generated into the basic library folder (for example,
"Natural-Libraries/MYLIB/SRC", "Natural-Libraries/MYLIB/Subprograms",
etc.).

Select a library in which to
generate the program.

Type the name of the library in Library or select Browse to display a
window listing the existing libraries for selection. The library must currently
exist.

Note: The libraries listed for selection are based on the current project.

Select Finish to generate the main program.

The generated main program is displayed in the editor view. For example:

Code Generation

323

Generating an Ajax Page for Generated Subprograms

1= cusTIRMP.NSE 22

+1* *Natural Source Header 0000000

*F340G GENERATOR: NJEXProgramsenerator VERIION: 5.2.4
= ¥EEAG adapter: CUITADLP.NIS

*FZ30G DEZCEZ (1) : WJX Programm Lo execute CUITALDAP.N3S

Gt e O O il e O e Ol O O e e O e e o

* Program : CUITJIEHNP

¥ System : DEMOTEST

* Title 1 Module

* Generated: Thu Febh 02 16:34:51 EST 201z

* Function : WNJX Progratn Lo execute CUSTLDAP.N3S
+*

*

+*

* History
= ¥%3AG DEFINE EXIT CHANGE-HISTORY

®RIAG END-EXIT
R R R R

“ DEFINE DATR LOCAL
/* PARAMETERS from parsed adapter
-1 EEY
Z BUSINEZIZ-NAME (430)
Z CUSTOMER-NUMEEER (M5)
Z CUSTOMER-WAREHOUSE-ID (A43)
MOREVISIELE (L)
SELONGMEISAGE (4) DYNAMIC
SBSHORTMESSAGE (L) DYNAMIC
SETYPE (i) DYNAMIC
SEARCHVISIBLE (L)
Ul
= 2 UI-CUSTOMER FAGE (1:¥)
3 BUSINEZZ-WNAME (&) DYNAMIC
3 CUSTOMER-WNUMEER (4) DYWAMIC
3 PHOWNE-NUMEEER (&) DYNAMIC
= 2 UI-CUSTOMER PAGEINFO
3 ROWCOUNT (I4)
3 SIZE (I4)
= 3 SORTPROPS (1: %)
4 ASCENDING (L)

R

The available user exits are displayed in the Outline view. For example:

324

Code Generation

Generating an Ajax Page for Generated Subprograms

0= outline 52 = b8
3 F*SAG DEFINE EXIT CHANGE-HISTORY
5 ¥*3A5 END-EXIT
5 F*5A5 DEFINE EXIT DEFINE-DATA,
5 ¥*3A5 END-EXIT
% F*5A5 DEFINE EXIT BEFORE-PROCESS-PAGE
5 ¥*3A5 END-EXIT
% F*5AG DEFINE EXIT AFTER-PROCESS-PAGE
5 ¥*3A5 END-EXIT
5 F*5AG DEFINE EXIT EYEMT-nat:page.end
5 ¥*3A5 END-EXIT
% F*5AG DEFINE EXIT EYEMT-onMare
5 ¥*3A5 END-EXIT
5 F*5A5 DEFINE EXIT EYEMT-onSearch
5 ¥*3A5 END-EXIT
5 F*SAG DEFINE EXIT EVEMT-UL UI-custamer_page. onCtrlSelect
5 ¥*3A5 END-EXIT
5 F*5A5 DEFINE EXIT EYEMT-UL UI-customer _page.onDeselectall
5 ¥*3A5 END-EXIT
5 F*5AG DEFINE EXIT EYEMT-UL UI-customer _page. onSelect
5 ¥*3A5 END-EXIT
3 F*5AG DEFINE EXIT EYEMT-UL UI-customer _page. onSelectal
5 ¥*3A5 END-EXIT
5 F*5A5 DEFINE EXIT EYEMT-UL UI-customer _page.onShiftSelect
5 ¥*3A5 END-EXIT
5 F*5AG DEFINE EXIT EYEMT-UL UI-customer _page.anSort
5 ¥*3A5 END-EXIT
3 F*5AG DEFINE EXIT EYEMT-UL UI-custamer _page. onTopindexChanged
5 ¥*3A5 END-EXIT
5 F*5AG DEFINE EXIT EYEMT-UL UI-customer _page. reactOnContextMenuR equest
5 ¥*3A5 END-EXIT
5 F*5AG DEFINE EXIT EYEMT-MOMNE-YALLE
5 ¥*3A5 END-EXIT
5 F*SAG DEFINE EXIT MISC-SUBROUTIMNES
5 ¥*3A5 END-EXIT

The generated program is also displayed in the Project Explorer. For example:

2% | BH8 7
= ',:ﬂ' AjaxProject-=daef.hg.sag-7307 (1)
+- (= sektings
=@ Matural-Libraries *
=& DEMOTEST *

W=l .matural
NEl project

5 Open the context menu for the generated main program in the Project Explorer.

6 Select NaturalONE > Update.
At this point, you can:

® Test the main program. For information, see Test the Generated Main Program.

Code Generation 325

Generating an Ajax Page for Generated Subprograms

® Define user exits. For information, see Defining User Exits.

Regenerate the Ajax Main Program

This section describes how to regenerate the main program file (INSP extension) that was generated
using the Ajax Main Program wizard.

~ To regenerate the main program

1
2

Open the context menu for the program in the Project Explorer.

Select Code Generation > Regenerate Using Wizard.

The Specify Ajax Program Details panel is displayed. After selecting Finish, the main program
is regenerated.

Or:
Select Code Generation > Regenerate.
The main program is regenerated without displaying the wizard panel.

Note: You can use standard selection techniques to select more than one file.

Test the Generated Main Program

~ To test the generated main program

1

Open the context menu in the Project Explorer view for the generated main program file
(.NSP extension).

Select Natural ONE > Execute.

The page is displayed in the editor. For example:

326

Code Generation

Generating an Ajax Page for Generated Subprograms

1=F cusTMATM,NSP = El}

customer_page Browse Search

Customer Number:Cl Business Name:|:| Customer YWarehouse Id:| | | Search |

[Customer Number @ [Business Name 2 [Phone Number @ [M Street o [M City @ [M Province @ [M Postal Code o [S Sulial

By default, the generated page displays row data in a table, where each field in the object
(row) PDA is a column. All search key fields are displayed at the top of the page.

3 Select Search.

The results of the search are displayed. For example:

1=E cusTMAIN SR

customer_page Browse Search

Customer Number:D Business Name:l:l Customer Warehouse Id:| | | Search |

[Customer Number @ [Business Name o [Phone Number o [M Street o [m city o [M province IS
50012 Acme Consulting 5196236850 280 Sheldon Drive Kitchener Ontario

s0004 Acme Resources 5196236850 280 Sheldon Drive Kitchener Ontario

S0o001 Acme Tools 5196236850 280 Sheldon Drive Kitchener Ortario

10009 Autoworks 51962326850 2280 Sheldon Drive Cambridge Ontario

511 AGAS (Canada) Inc, 6587000 1 Bay Street Toronto Ontario

911 AGAS (Canada) Inc, 6587000 1 Bay Street Toronto Ontario

10005 Cambridge Stereo & TV 51962322435 22901 Oak Walk Cambridge Ontario -

Code Generation 327

Generating an Ajax Page for Generated Subprograms

Regenerate the Main Program

This section describes how to regenerate the main program file (.INSP extension).

~ To regenerate the main program

1 Open the context menu for the main program in the Project Explorer.

2 Select Code Generation > Regenerate Using Wizard.
For information, see Regenerate Using Wizard.
Or:
Select Code Generation > Regenerate.

For information, see Regenerate.
Regenerate Using Wizard

Use this option when you want to make changes to the wizard parameters before regenerating
the Ajax page.

~ To regenerate using the wizard panel(s)

1 Select Code Generation > Regenerate Using Wizard.

The first specification panel for the wizard is displayed. For example:

328 Code Generation

Generating an Ajax Page for Generated Subprograms

7= Ajax Object-Browse Page

Specify Source and Target Details |
Enter settings For the source and target Files,
. =1

Object-Browse subprogram: | “CUSTH

Ajax target details

Iser interface component: | Component_a

Page layout: custamer_page []zenerate
Adapher: CIUSTADAP
Main pragrar: CUSTMAIN

Maoke: The Ajax main program and adapter will be generated inko the 'DEMOTEST' library,

@:‘ MNext =] [Firish l [Cancel

2 Edit the specifications as desired.

If the page layout file (.xml extension) has changed since the previous generation, you can
select Generate to regenerate the page layout file as well.

3 Select Finish to regenerate the main program, adapter and, optionally, the page layout files.

4 Open the context menu in the Project Explorer for the regenerated main program and adapter
files.

5 Select NaturalONE > Update.
Regenerate

Use this option when the object-browse or object-maintenance subprogram has changed and you
want to incorporate the changes in the Ajax page.

~ To regenerate without using the wizard panels
1 Select Code Generation > Regenerate.

| Note: You can use standard selection techniques to select more than one file.

The main program (.NSP) file is regenerated without displaying the wizard panels and the
Generation Progress window is displayed. For example:

Code Generation 329

Generating an Ajax Page for Generated Subprograms

— =
= Generation Progress

= f'aenerating

COX

Ikem
CUSTMAIN.NSP

Status
Different

Generation Succeeded

Save

I

Cancel

] [Details ==

Select Save to save the details.

Open the context menu in the Project Explorer for the regenerated file(s).

Select NaturalONE > Update.

330

Code Generation

	Code Generation
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Release Notes
	2 What's New in Version 9.3.2
	Enhancements
	Downloading an Existing Library or Object from a Natural Server

	II Using the Code Generation Component
	3 Introduction
	Access the Code Generators

	4 Create a REQUEST-DOCUMENT Client
	Introduction
	Generate the REQUEST-DOCUMENT Subprogram
	User Exits for the REQUEST-DOCUMENT Subprogram
	Define XML Substitution Characters
	Add XML Substitution Characters
	Modify XML Substitution Characters
	Delete XML Substitution Characters

	5 Create an Object-Maintenance Process
	Generate the Object Maint Subprogram
	Record-Locking Options

	User Exits for the Object Maint Subprogram

	6 Create an Object-Browse Process
	Introduction
	Generate the Object-Browse Subprogram
	User Exits for the Object-Browse Subprogram

	7 Create an Object Skeleton Subprogram
	Generate the Object Skeleton Subprogram
	Add a Method

	User Exits for the Object Skeleton Subprogram

	8 Regenerate Subprograms and Associated Modules
	Regenerate a Subprogram and Associated Modules
	Regenerate Multiple Subprograms
	Compare Differences

	9 Set Preferences
	Set Code Generation Preferences
	Set Logging Preferences
	Set Natural Preferences

	10 Customize the Code Generators
	Export the Supplied Templates
	Customize a Supplied Template

	III Using Natural Construct
	11 Introduction
	Supplied Client Generation Wizards
	Requirements
	Perform Standard Actions on Natural Construct Resources
	Perform Actions on Code Frames
	Move a Code Frame
	Copy a Code Frame
	Delete a Code Frame

	Perform Actions on Models
	Move a Construct Model
	Copy a Construct Model
	Delete a Construct Model

	Use the Dependencies View
	Construct Resources
	Related Natural Resources

	12 Natural Construct Generation
	Access the Client Generation Wizards
	Generate the Modules
	Generation Options

	Common Wizard Specifications and Development Tasks
	Batch Wizard
	Specify Standard Parameters
	Specify Report Heading Parameters
	Specify Basic Program Structure
	Specify Additional Parameters
	Specify Parameters for Primary file
	Specify Parameters for Secondary file (1)
	Specify Parameters for Secondary file (2)
	Specify Parameters for Tertiary file (1)
	Specify Parameters for Tertiary file (2)

	Browse/Browse-Select Wizards
	Specify Standard Parameters
	Specify Additional Parameters
	Specify Map Details
	Specify Field Details
	Add a Non-Key Field
	Delete a Non-Key Field
	Edit a Non-Key Field

	Specify Restriction Parameters
	Specify Prefix Helproutine Parameters
	Add a Prefix Helproutine Parameter
	Delete a Prefix Helproutine Parameter
	Edit a Prefix Helproutine Parameter

	Specify #ACTION Parameters
	Specify Additional Subprogram Parameters

	Driver Wizard
	Specify Standard Parameters

	Maint Wizard
	Specify Standard Parameters
	Specify Additional Parameters
	Specify Additional Input Parameters
	Specify Secondary File Parameters

	Menu Wizard
	Specify Standard Parameters
	Specify Additional Parameters
	Define Menu Details
	Add a Row of Menu Items
	Delete a Row of Menu Items
	Edit a Row of Menu Items

	Define Optional Input Parameters
	Add an Optional Input Parameter
	Delete an Optional Input Parameter
	Edit an Optional Input Parameter

	Object-Browse-Dialog Wizard
	Specify Standard Parameters
	Specify Additional Parameters
	Specify Specific Parameters

	Object-Browse-Select-Subp Wizard
	Specify Standard Parameters
	Specify Additional Parameters

	Object-Browse-Subp Wizard
	Specify Standard Parameters
	Specify Additional Parameters
	Specify Key Details
	Add a Logical Key
	Delete a Logical Key
	Edit a Logical Key

	Specify Logical Key Components

	Object-Maint-Dialog Wizard
	Specify Standard Parameters
	Specify Additional Parameters
	Specify Input Maps for Horizontal Panels
	Define Horizontal Panel Details
	Add a Horizontal Panel
	Delete a Horizontal Panel
	Edit a Horizontal Panel

	Define Scroll Region Details
	Add a Scroll Region
	Delete a Scroll Region
	Edit a Scroll Region

	Object-Maint-Enhanced-Subp Wizard
	Specify Standard Parameters
	Specify Additional Parameters
	Specify Input Parameters
	PROCESS-TRUNCATION-ROUTINE User Exit

	Object-Maint-Subp Wizard
	Specify Standard Parameters
	Specify Additional Parameters
	Specify Input Parameters

	Quit Wizard
	Specify Standard Parameters

	Startup Wizard
	Specify Standard Parameters

	Change the Dynamic Attribute Characters
	Change the Window Settings
	Select a Message Number
	Specify Common Parameters
	Set Up a Password File

	Specify International Parameters
	Specify Screen Parameters
	Specify Standard Parameters

	Example of Generating a Program
	Regenerate Natural Construct-Generated Modules

	13 Natural Construct Administration
	Create a New Client Generation Wizard
	User Interface (UI) File Examples
	Model UI File
	Reusable Dialog and Page UI Files

	Page Node
	Description
	HelpID
	ID
	Include
	Optional
	Replacements
	Title

	Dialog Node
	Item Node
	GUI Controls
	Button
	Combo
	Composite
	cstCombo
	cstDeriveServerButton
	cstDialogButton
	cstRadioGroup
	cstTable
	dateTime
	Group
	Label
	Text Box
	Multi-Line Text Box
	Browse Button Controls

	Add a Tool Tip
	Set Up a Server Call
	Set Values Whenever a Panel is Entered or Left
	Definitions
	Server Calls
	Field Mappings
	onLeave and onEnter Events

	Set Values Whenever a Button is Selected

	Bind Data to GUI Controls
	Use Logical Data to Enable or Disable Controls
	Override Default Values
	Separate Default Attributes for GUI Controls
	Default Properties Applied to GUI Controls
	Default Selection Notation
	Default Dialog Settings Notation
	Examples of Binding Notations

	Error Handling Tips for Field Names
	Generate NATdoc Documentation

	Download Natural Construct Resources to a Local Project
	Modify an Existing Natural Construct Resource
	Create and Maintain a Natural Construct Model
	Create a New Model
	Modify an Existing Model Record

	Create and Maintain a Code Frame
	Create a New Code Frame
	Use the Code Frame Editor
	Create the Code Frame

	Modify an Existing Code Frame
	View a Code Frame in the Outline View

	Create and Maintain a Natural Construct Model UI
	Create a New Model UI
	Generate the Model UI File
	Copy a Model UI File
	Dependencies View
	Outline View
	Modify an Existing Model UI

	Create a New Dialog UI
	Generate a Dialog UI File
	Modify an Existing Dialog UI

	Create a New Page UI
	Generate a Page UI File
	Modify an Existing Page UI

	14 Set Natural Construct Preferences
	Set Construct Preferences
	Set Installation Preferences

	IV
	15 Defining User Exits
	Introduction
	Define a User Exit
	Access a User Exit
	Add Code to a User Exit
	Generate Sample
	Generate User Exit
	Generate a LOCAL-DATA User Exit
	Generate a WRITE-FIELDS User Exit

	Clear Exit
	Modify Code in a User Exit

	16 Using the Construct Runtime/Compile Time Modules in Non-Construct Server Environments
	Add the Construct Runtime Project
	Update the Construct Runtime Project to the Latest Version
	Replace the Construct Runtime Project with the Latest Version
	Exclude Modules from the Update or Replace Process
	Add Customized Modules to the Construct Runtime Project
	Build the Construct Runtime Project in a non-Construct Server Environment

	17 Generating an Ajax Page for Generated Subprograms
	Generate an Ajax Page for an Object-Browse Subprogram
	Access the Wizard
	Specify Source and Target Details
	Configure Column Details

	Generate an Ajax Page for an Object-Maint Subprogram
	Access the Wizard
	Specify Source and Target Details
	Configure Field Details

	Generate an Ajax Main Program from an Adapter File
	Regenerate the Ajax Main Program

	Test the Generated Main Program
	Regenerate the Main Program
	Regenerate Using Wizard
	Regenerate

