S software~

A SOFTWARE GMBH BRAND

Natural

Statements

Version 9.3.1

February 2025

ADABAS & NATURAL

This document applies to Natural Version 9.3.1 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATUX-NNATSTATEMENTS-931-20250213

Table of Contents

PTOACE ..ot xix
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
L e e 5
2 Statements Grouped by FUNCtionc.cceciiiiiiiiiiiiiiiiiccccce e 7
Database Access and Updatecoceiviiiiiiiiiiiiiiiiiiiiii, 8
Arithmetic and Data Movement Operationsccccocveviiiiiiiniiiiiices 9
Loop EXeCUtiONcoviiiiiiiiiiiiiii 10
Creation of Output Reportsccoovviiiiiiiiiiiiii 10
Screen Generation for Interactive Processingccccoceevviiiiiiniiiiiinicnncnns 11
Processing of Logical Conditionsccceeieiiiiiiiiiiiiiiciicce, 11
Invoking Programs and Routinesccocceiiviiiiiiiiiniiiiniie, 12
FUNCHONS ..o 12
Program and Session Terminationc.cccocieiiiiiiiiiiiiii 12
Control of Work Files / PC Filescccccooviiiiiiiiiiiiiiiiiccc 13
Component Based Programmingccccoceeiiiiiiiiiiiiniciiccccccccc 13
Memory Management Control for Dynamic Variables or X-Arrays 13
Natural Remote Procedure Callcccociiiiiiiiiiiiiiiiiii 14
Internet and XML ... 14
MiSCellaneousccuiiiiiiiiiiiiiic 14
Reporting Mode Statementsc.ocoooiiiiiiiiiiiii 15

3 Syntax Symbols and Operand Definition Tablescccccccoiviiiiniiniinninnn, 17
Syntax Symbolsccooiiiiiiiiiii 18
Operand Definition Tableccccooiiiiiiiiiiiiiiiiiccece e 19

IT Using Natural SQL Statementsccccovvuiiiiiiiiiiiiiiiiiiiiiicce 23
4 Common Set and Extended Set ... 25
5 Basic Syntactical Itemscccoooiiiiiiiiiiiiiiiiiii 27
CONSLANTS ...ooviiiiiiicciic 28
INAINES ..ot 28
Parametersoccoiiiiiiiiiiii 32
Natural Formats and SQL Data Typesccccoocviiiiiiiiiiiiiiiiiiiciccc, 35

6 Natural View COonceptccccovvuiiiiiiiiiiiiiiiiiiiicc 37
7 Scalar EXPIeSSIONSccviiiiiiiiiiiciccicic e 39
Scalar EXPIreSsioncccccciioiiiiiiiiiiiiiiiiiiic e 40
Scalar OPeratorc.cocveviiiiiiiiccce 40
FaCtOT «oviiiiiiicce 41

8 Search Conditionscoccviiiiiiiiiiiiiiiie et 47
Search Conditionccccooviiiiiiiiiiiii 48
Predicate ..o 48

9 Select EXPIeSSIONSccuveiiiuiiiiieiccicciecte e 53
SEIECHON ..o 54

Statements

Table EXPIressionccccciiiiiiiiiiiiiiiiiiiiiiciccic 55
10 FIeXIbIe SQLuueiiiieeeeececee s nnnnnnnnnnnnn 61
Using Flexible SQLcccoiiiiiiiiiiiiiiiiiiiiiiicicccc e 62
Specifying Text Variables in Flexible SQLc..cccoccoiiiiiii 63
ROW CHANGE Expression with Flexible SQLcccccccovviiiiinniiniinnnnn. 65
OLAP Specificationcccovveiiiiiiiiiiiiicciccicc e 65
Case Expression with Flexible SQLccccccooiiiiiiiiiiiiiiiiiciccecce 70
Cast Expression with Flexible SQLccccoccoiiiiiiiiiiiiiiiiiie 71
XML Functions with Flexible SQL ..o, 71
Scalar-Function and Column-Function (Aggregating) with Flexible
SQL e 72
III Referenced Example Programscccccooouiiiiiiiiiiiiiiiiiiiiiiciccceee e 75
11 Referenced Example Programsccccoceiiiiiiiiiiiiciiiicicciccccece e 77
ASSIGN L. 78
AT BREAK ..ottt 79
AT END OF DATA ..ottt 81
AT END OF PAGEccoiiiiiiiiiiiiiic 82
AT START OF DATA ...t 82
AT TOP OF PAGEcooiiiiiiiiiiiiiiiiiici e 84
DEFINE SUBROUTINEcc.cooiiiiiiiiiiiiiiiicicccccceeie e 85
FIND oo 86
FOR o 88
HISTOGRAM ..ottt 89
LF e 89
PERFORM BREAK PROCESSINGccccooiiiiiiiiiiiiiiiiiiicicciccecicceeseci e 91
READ .ot 92
REPEAT ..ot 93
SORT ... 94
STORE ..ot 95
UPDATE ..o 97
Example Programs for System Variablescccccoooiiiiiiiiiiiiniiniiniens 98
IV et 103
12 ACCEPT/REJECToiiiiiiiiiiiiiiiiiiiccc s 105
FUNCHON ..o 106
Syntax Descriptioncccooiiiiiiiiiiiiii 106
Processing of Multiple ACCEPT/REJECT Statementsccccccoeeeuiiiiiincnns 107
Limit NOtationcccooiiiiiiiiiiiiii 107
EXamMPLES ..eoiiiiiiiiiiee e 108
13 ADD i e 111
FUNCHON oo 112
Syntax 1 - ADD Statement without GIVING Clausecccccceeviviiininnnnnn. 112
Syntax 2 - ADD Statement with GIVING Clauseccccccooviiiiiiiiininnn 113
EXamMPLe ..o 115
14 ASSIGN ..ot 117
15 AT BREAK ...oiiiiiiiiiiiiiicc e 119

Statements

Statements

FUNCHON ..o 120
Syntax Descriptioncccooiiiiiiiiiiiic 121
Multiple Break Levelsccccoviiiiiiiiiiiiiiiiiiiiiiiii, 122
EXAMPIES ...oooiiiiiiiici 123

16 AT END OF DATA ...t 127
FUNCHON ..o 128
ReSIICHONS .ovvviiiiiiciic e 129
Syntax Descriptioncccovviiiiiiiiiiiiii 129
EXAMPIE ..ooviiiiiiiic 130

17 AT END OF PAGEooiiiiiiiiiiiiicce s 133
FUNCHON .o 134
Syntax Descriptionccccoviiiiiiiiiiiiiiiii 136
Exampleoooiiiiiiiiiiii 137

18 AT START OF DATA ...ccoviiiiiiiiieeec s 141
FUNCHON ..o 142
Syntax Descriptioncccooiiiiiiiiiiii 143
EXamPle ...ooiiiiiiiii 143

19 AT TOP OF PAGEccoiiiiiiiiiiiiiiiiiccciicc e 147
FUNCHON .o 148
ReSIICHON v 149
Syntax Descriptioncccooiiiiiiiiiiii 149
EXamPle ..ooooiiiiiiiiiiii 150

20 BACKOUT TRANSACTIONc.ooiiiiiiiiiiiiiiiiiicciccec e 153
FUNCHON ..o 154
ReSIICHON .o 155
Database-Specific Considerationsccccceeceeiiiiiiiiniiiiiiiniieciciccee 155
EXamplecoooiiiiiiiiiiii 155

21 BEFORE BREAK PROCESSINGcccooviiiiiiiiiiiiiiiiciccccc e 157
FUNCHON ..o 158
ReSIICHONS ..o 159
Syntax Descriptionccccoiviiiiiiiiiiiiiiiii 159
Example ...c.oooiiiiiiiiiii 160

22 CALL oo 161
FUNCHON ..o 162
Syntax Descriptioncccooiiiiiiiiiiiii 162
Return Codecooiiiiiiiiiiiiii 163
USET EXItS wooiiuiiiiiiiiiciiiccicc 163
INTERFACEZ ...ttt 168

23 CALL FILE ...ooiiiiiiiiiiiiii e 181
FUNCHON oo 182
RESEIICHON ..o 182
Syntax Descriptioncccooiiiiiiiiiii 182
EXamMPLe ..o 183

24 CALL LOOPoviiiiiiiiiiiiiiici i 185
FUNCHON .o 186
Statements v

Statements

ReSIICHON ..o 186
Syntax Descriptioncccooviiiiiiiiiiiiic 187
EXamPle ..o.oooiiiiiiiiiiii 187

25 CALLDBPROC (SQL) ..eviiiiiiiiiiiiiiiciicciccec e 189
FUNCHON .o 190
Syntax Descriptioncccooiiiiiiiiiiiii 191
EXaMPLE ..o 192

26 CALLNAT ...ttt 195
FUNCHON oo 196
Syntax Descriptionccccovviiiiiiiiiiiiiiii 197
Parameter Transfer with Dynamic Variablesc.cccoooiiiiiiiii, 199
EXamMPLES ..coiiiiiiiiiici 200

27 CLOSE CONVERSATIONcoooiiiiiiiiiiiiiiiiciiiciic e 203
FUNCHON .o 204
Syntax Descriptioncccoviiiiiiiiiiiiiii 204
Further Information and Examplesccccoooiiiiiiii 205
OO OSSOSO 207
28 CLOSE PC FILE ..ottt 209
FUNCHON .o 210
Syntax Descriptioncccoiiiiiiiiiiiiiii 210
EXAMPIE ..o 210

29 CLOSE PRINTERcooiiiiiiiiiiiiiiiiiccccc i 213
FUNCHON .o 214
Syntax Descriptionccccoviiiiiiiiiiiiiiiiii 214
EXampleoooiiiiiiiiiiii 215

30 CLOSE WORK FILEcooiiiiiiiiiiiiiiiiiiiiciccicc e 217
FUNCHON ..o 218
Syntax Descriptioncccooiiiiiiiiiiiii 218
EXamPIe ...ooiiiiiiiiii 219

31 COMMIT (SQL) w.eiiiiiiiiiiiiiiiiic e 221
FUNCHON oo 222
EXample ...c.oooiiiiiiiiiii 222

32 COMPRESSooiiiiiiiiiiiiicc e 223
FUNCHON ..o 224
Syntax Descriptioncccooiiiiiiiiiiiiii 224
PIOCESSING ..ccvvvviiiiiiiiiiiciic 228
EXAMPIES ...oooiiiiiiiiiiicc 229

B3 COMPUTE ...ttt 233
FUNCHON ..ot 234
Syntax Descriptioncccoiiiiiiiiiii 236
Result Precision of @ DivisSionc.cccoviiiiiiiiiiiiiii 238
EXAMPIES ...oooiiiiiiiiiiic 239

34 CREATE OBJECTooiiiiiiiiiiiiicceecetc et 241
FUNCHON ..o 242
Syntax Descriptioncccccoiiiiiiiiiiiiiiiii 242

vi Statements

Statements

35 DECIDE FOR ..ottt 245
FUNCHON oo 246
Syntax Descriptionccccoiviiiiiiiiiiiiiiii 246
EXAMPIES ...oooiiiiiiiici 247

36 DECIDE ONooiiiiiiiiiiiiiiiiccecc e 251
FUNCHON ..o 252
Syntax Descriptionccccoviiiiiiiiiiiiiiiiii 252
EXamplescooiiiiiiiiiiiiii 254

37 DEFINE CLASSooiiiiiii s 257
FUNCHON ..o 258
Syntax Descriptionoccooiiiiiiiiiiiii 258

VIDEFINE DATA ...ttt 261

38 Function and Basic Syntax Rules ..o 263
FUNCHON .o 264
General Syntax Rulescccocoiiiiiiiiiiiiii 264
Programming Modesccooiiiiiiiiiiiii 264

39 Defining Global Datacccceeuiiiiiiiiiiiiiiiiiiiicciccc 267
FUNCHON ..o 268
Syntax Descriptionccccovviiiiiiiiiiiiiiii 268

40 Defining Parameter Datac.ccccoviiiiiiiiiiiiiiiiiii e, 271
FUNCHON .o 272
ReSIICHONS ..ovviiiiiiiiiii 272
Syntax Descriptioncccooiiiiiiiiiiiii 272

41 Defining Local Datacccoooiiiiiiiiiiiiiiiiiiiiiiccc e 277
FUNCHON ..o 278
ReSIICHON .t 278
Syntax Descriptionccccoiiiiiiiiiiiiiiiiii 278

42 Defining Application-Independent Variablesccccocoovininiiiniiiinnn. 283
FUNCHON ..o 284
Syntax Descriptionccoooiiiiiiiiiiiii 284

43 Defining Context Variables for Natural RPCc.ccccccoiiiiiiiiiiiiiiiniiieen. 287
FUNCHON ..o 288
ReSIICHONS .ovveiiiiiiciiiccec 289
Syntax Descriptionccccoviiiiiiiiiiiiiiiii 289

44 Defining NaturalX Objectsccocoeviiiiiiiiiii e 291
FUNCHON ..o 292
Syntax Descriptionccoooiiiiiiiiiiiii 292

45 Variable Definitioncccccoiviiiiiiiiiiiiii 295
Syntax Descriptionccccoviiiiiiiiiiiiiiii 296

46 View Definitionccoiiiiiiiiiiiiiiiiiiii 299
Syntax Descriptioncccoviiiiiiiiiiiiiiiiii 300

47 Redefinitionccoiiiiiiiiiiiiiiiiici 305
ReSIICHONS .ovviiiiiiicii 306
Syntax Descriptionc.coouiiiiiiiiiiiiii 306

48 Array Dimension Definitionccocoiiiiiiiiiiiiiiiiiiiiiccc e, 309

Statements Vii

Statements

Syntax Descriptionccooiiiiiiiiiiiiii 310

49 Initial-Value Definitioncccceriiiiiiiiiiiiieiiie e 313
RESIICHON ..o 314
Syntax Descriptioncccooiiiiiiiiiiii 314

50 Initial/Constant Values for an Arrayccccoccevviiiiiniiiiiiniiiiciccceceeeee, 317
ReStIICHON ..o 318
Syntax Descriptionccccoviiiiiiiiiiiiiiiiiii 319

51 EM, HD, PM Parameters for Field/Variablecccooovivivieiiiiiiiiiiiiieeiiiiieeeeennnn, 323
Syntax Descriptioncccoiiiiiiiiiiiiii 324

52 Examples of DEFINE DATA Statement Usagecccccceeviiiiiiiiiiiiiiiniiineenn. 325
Example 1 - DEFINE DATA LOCAL (Local Data Definition)c............ 326
Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization) 326
Example 3 - DEFINE DATA (View Definition, Array Redefinition) 330
Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas) 331
Example 5 - DEFINE DATA (Initialization)ccccovviiiiiiiiiiiiniiiiie 332
Example 6 - DEFINE DATA (Variable Array)cccocooviiiiiniiiiiiiiiicicns 332

VL s 335
53 DEFINE FUNCTIONc.coiiiiiiiiiiiiiiiiiiecie e 337
FUNCHON ..o 338
Syntax Descriptioncccoiiiiiiiiiiiiiii 338
EXamPlesoooiiiiiiiii 342

54 DEFINE PRINTERccccooiiiiiiiiiiiiiiiiiiiiicccc e 345
FUNCHON ..o 346
Syntax Descriptionccccoviiiiiiiiiiiiiiiiii 346
EXAMPIES ...oooiiiiiiiiciicc 348

55 DEFINE PROTOTYPEcccccoiiiiiiiiiiiiiiiiiccc s 351
FUNCHON ..o 352
Syntax Descriptioncccooiiiiiiiiiiiii 353
EXamPIesoooiiiiiiiiiiiic 356

56 DEFINE SUBROUTINEccccooiiiiiiiiiiiiiiiiiiiiicccece e 359
FUNCHON ..o 360
REStIICHONS ..ooiiiiiiiiiiiiiiiii i 361
Syntax Descriptioncccccoviiiiiiiiiiiiiiiiiiiii 362
EXamplescooiiiiiiiiiiiiii 362

57 DEFINE WINDOWcciiiiiiiiiiiiiiiiiieic e 367
FUNCHON ..o 368
Syntax Descriptionccocoiiiiiiiiiiiii 369
Protection of Input Fields in @ Windowcccccooiiiiiiiiiiiiiini, 373
Invoking Different WIndowscccociiiiiiiiiiiiiiiiii 373
EXample ...c.oooiiiiiiiii 373

58 DEFINE WORK FILEccccoiiiiiiiiiiiiiiiiiiiiiiiic e 375
FUNCHON ..o 376
Syntax Descriptioncccccovviiiiiiiiiiiiiiiiii 376

VIIL oo 381
SIDELETE ..ottt 383

viii Statements

Statements

FUNCHON ..o 384
ReSIICHON ..t 384
Syntax Descriptionccccoiviiiiiiiiiiiiiiii 384
Database-Specific Considerationsc.coccoeieviiiiiiiiiiiiicicccce 385
EXamPLES ...ooiiiiiiiiiiici 385

60 DELETE (SQL) ..ttt 387
FUNCHON ..o 388
Syntax 1 - Searched DELETEccccocciiiiiiiiiiiiiiiiiiiecc, 388
Syntax 2 - Positioned DELETEc.cccooiiiiiiiiicc 389

61 DISPLAY ..ot 391
FUNCHON .o 392
Syntax Descriptionccccoviiiiiiiiiiiiiiiii 392
Defaults Applicable for a DISPLAY Statementc.ccccoooviviiiiiiiiiiiinnnn, 404
EXaMPIESooviiiiiiii 405

62 DIVIDE ..ottt 413
FUNCHON .o 414
Syntax 1 - DIVIDE Statement without GIVING Clausecccccoecveenienen. 414
Syntax 2 - DIVIDE Statement with GIVING Clauseccccocciviiininnnn. 415
Syntax 3 - DIVIDE Statement with REMAINDER Clauseccccccceeeenneee. 416
EXampleoooiiiiiiiiiii 417

63 DO/DOENDoooiiiiiiiiiiiiiiciccc s 419
FUNCHON ..o 420
ReSIICHONS ..oevviiiiiiiiiccce 420
EXamPIe .o 421

64 DOWNLOAD PC FILEcoooiiiiiiiiiiiiiiiiiiiicicciecccec e 423
FUNCHON ..o 424
Syntax Descriptionccccoiiiiiiiiiiiiiiiiii 424
EXAMPIES ...oooiiiiiiiiiiicc 425

65 EJECT oo 429
FUNCHON .o 430
Syntax Descriptionccccoiviiiiiiiiiiiiiiiii 430
PrOCESSINGoooviiiiiiiiieic 432
EXample ..oc.oooiiiiii 432

06 END ..o 435
FUNCHON .o 436
Syntax Descriptioncccccovviiiiiiiiiiiiiiiii 436
EXAMPIES ...oooiiiiiiiiciiccc 437

67 END TRANSACTIONccoiiiiiiiiiiiiiiiiii i 439
FUNCHON ..o 440
ReSIICHON .. 440
Syntax Descriptioncccoviiiiiiiiiiiiiiiiii 441
Databases Affectedcccooviiiiiiiiiiii 441
Database-Specific Considerationsccccceeciiiiiiiiiiiiiiiiiiiiiciccec 442
EXAMPIES ...oooiiiiiiiiciicicc 442

B8 ESCAPE ..ot 445
Statements iX

Statements

FUNCHON ..ooiiiiiiiii e 446
Syntax Descriptioncccooviiiiiiiiiiiiic 447
EXamPle ..o.oooiiiiiiiiiiii 448

69 EXAMINEcooiiiiiii 451
Syntax 1 - EXAMINEccoooiiiiiiiiiii 452
Syntax 2 - EXAMINE TRANSLATEccccocciiiiiiiiiiiiiiiiiiiicccecee 460
Syntax 3 - EXAMINE for Unicode Graphemescccccceeveiiiiiniiinienicnnnen. 462
EXamplescooiiiiiiiiiiiiii 464

70 EXPAND L..ooiiiiiiiicc s 473
FUNCHON ..o 474
Syntax Descriptionoccooiiiiiiiiiiiii 474
.. 479
71 FETCH oo 481
FUNCHON .o 482
Syntax Descriptioncccoviiiiiiiiiiiiiii 482
EXAMPIE ..coviiiiiiii 484

T2 FIND oo 487
FUNCHON ..o 488
ReSIICHONS ..ovvviiiiiiciiccc 490
Syntax 1 - FIND Statement with Processing LoOpcccocveviiiiiiiiiiinicnnnns 490
Syntax 2 - FIND Statement without Processing Loopccccccoeeveviiiininnnn 490
Syntax Descriptioncccccoviiiiiiiiiiiiiiii 491
EXAMPIES ...oooiiiiiiiiii 512

73 FOR oo s 523
FUNCHON ..o 524
Syntax Descriptionccccoviiiiiiiiiiiiiiiii 524
EXamplecoooiiiiiiiiiiii 526

74 FORMATooiiiiiiiic e 529
FUNCHON ..o 530
Syntax Descriptionccoooiiiiiiiiiiiiiiii 530
Applicable Parametersccccoooiiiiiiiiiiiiiiiiniiiiicic 531
EXample ...c.oooiiiiiiiiiii 533

75 GET oo 535
FUNCHON ..o 536
ReSIICHONS ..t 537
Syntax Descriptioncccccovviiiiiiiiiiiiiiiii 537
EXAMPIE ..coviiiiiiiiic 538

76 GET SAME ..ot 541
FUNCHON ..ot 542
ReSIICHONS .vvviiiiiiiiic e 542
Syntax Descriptionccccoviiiiiiiiiiiiiiiiii 542
EXAMPIE ..coviiiiiicic 543

77 GET TRANSACTION DATA ...cooiiiiiiiieeteceeee e 545
FUNCHON ..o 546
ReSIICHON ..ot 546

Statements

Statements

Syntax Descriptioncccoiiiiiiiiiiiiiii 547
EXxample ...c.oooiiiiii 547

78 HISTOGRAMooiiiiiiiiiiiiiicicccccc e 549
FUNCHON .o 550
ReSIICHONS .ovviiiiiiiciiccc 551
Syntax Descriptionccoooiiiiiiiiiiiiii 551
System Variables Available with HISTOGRAMcccccooiiiiiiiiiiiniiiicnnene 556
EXamplescooiiiiiiiiiiiiii 557
TOIF oo 561
FUNCHON ..o 562
Syntax Descriptionoccooiiiiiiiiiiiii 562
EXaMPLe ..o 563

80 IF SELECTIONooiiiiiiiiiiiiiiiiiiiciic e 565
FUNCHON .o 566
Syntax Descriptionccccoviiiiiiiiiiiiiiii 566
EXAMPIE ..coviiiiiiic 568

8L IGINOREoooiiiiiiiiiiiicc s 569
FUNCHON ..o 570
EXaMPLE ..o 570

82 INCLUDEoiiiiiiiiiiii s 571
FUNCHON .o 572
Syntax Descriptionccccoiiiiiiiiiiiiiiiiii 572
EXAMPIES ...oooiiiiiiici 573
XINPUT e 579
83 INPUT Syntax 1 - Dynamic Screen Layout Specificationcccccccevvrnnnnnnen. 585
INPUT Syntax 1 - Descriptionccccocouiiiiiiiiiiiiiiiiiiiiiiiiicciicccccee e 586
Examples - Syntax 1cccoooiiiiiiiiiiiiiiiiiiiii 595

84 INPUT Syntax 2 - Using Predefined Map Layoutcccoocveviiiiiiiiiiininnnne. 599
INPUT USING MAP without Parameter Listcccoceiiiiiiiiiinniiinnnn. 600
INPUT Fields Defined in the Programcccocooviiiiiiiiiiiiniiice 601
INPUT Syntax 2 - Descriptionccccoccuiiiiiiiiiiiiiiiiiiiciicicccicccee 601
Using the INPUT Statement in Non-Screen Modescccoccooviiiiininnn. 602
Processing Data from the Natural Stackccccociiiiiiiiiiii 605
Using the INPUT Statement in Batch Modeccccoociiiiiiiiiiiniin, 605

XL e 607
85 INSERT (SQL) ..ottt 609
FUNCHON .o 610
Syntax Descriptioncccccoviiiiiiiiiiiiiiiii 610

86 INTERFACEcoiiiiiiiiiiiii s 615
FUNCHON oo 616
Syntax Descriptioncccoviiiiiiiiiiiiiiiiii 617

87 LIMIT oo s 623
FUNCHON ..o 624
Syntax Descriptionc.coouiiiiiiiiiiiiii 625
EXaMPLES ..o 625

Statements Xi

Statements

B8 LOOP ... s 627
FUNCHON .o 628
ReSIICHON ..o 628
Syntax Descriptioncccooiiiiiiiiiiii 629
EXamPLES ...ooiiiiiiiiiiici 629

89 METHOD ..ot 631
FUNCHON oo 632
Syntax Descriptioncccoiviiiiiiiiiiiiii 632
EXAMPIE ..ceviiiiiici 633

90 MOVE ... s 637
FUNCHON .o 638
Syntax 1 - MOVE ... 638
Syntax 2 - MOVE SUBSTRINGcccccciviiiiiiiiiiiiiiiiiiic 640
Syntax 3 - MOVE BY NAME / POSITIONcccccccciiiiiiiiiiiiiiiiiiiiiiciice 642
Syntax 4 - MOVE EDITED (Edit Mask Specified with operand?) 643
Syntax 5 - MOVE EDITED (Edit Mask Specified with operandl) 644
Syntax 6 - MOVE LEFT / RIGHT JUSTIFIEDc..ccccocvoiiiiiiniiiiiiiiicices 645
Syntax 7 - MOVE NORMALIZEDccccociiiiiiiiiiiiiiiiiiccccci 646
Syntax 8 - MOVE ENCODEDccccooiiiiiiiiiiiiiiicccccc 648
Syntax 9 - MOVE ALLcoooiiiiiiiiii 650
EXaMPIESooviiiiiiii 653

91 MOVE INDEXEDcooiiiiiiiiiiiiiiiiiciccic e 659

92 MULTIPLY ..ottt 661
FUNCHON ..o 662
Syntax 1 - MULTIPLY Statement without GIVING Clausec.cccceueee. 662
Syntax 2 - MULTIPLY Statement with GIVING Clausecc.cccccueeinnnnne. 663
EXamplecoooiiiiiiiiiiii 664

O3 NEWPAGE ...t 667
FUNCHON ..o 668
Syntax Descriptionccoooiiiiiiiiiiiiiiii 668
EXamMPLe .o 669

94 OBTAINooiiiiiiii s 673
FUNCHON ..o 674
ReSETICHON ..t 674
Syntax Descriptioncccooiiiiiiiiiiiiii 675
EXamPlesoooiiiiiiiiiii 679

95 ON ERRORooiiiiiiiiiiiiiiii i 681
FUNCHON .o 682
REStIICHON .ot 682
Syntax Descriptioncccoiiiiiiiiiii 683
ON ERROR Processing within Objects on Different Levels 683
System Variables ... 684
EXamMPLe ..o 684

96 OPEN CONVERSATIONccciiiiiiiiiiiiiiiiiiiiiccicce s 687
FUNCHON .o 688

Xii Statements

Statements

Syntax Descriptioncccoiiiiiiiiiiiiiii 688
Further Information and Examplesc..cccocoiiiiiiiiiiiiiicc, 689

97 OPTIONS ..ottt 691
FUNCHON .o 692
Processing of Multiple OPTIONS Statementscccccccevvciiiiiiiiiiniincennn. 692

XIL e 693
98 PARSE XMLooiiiiiiiiiiiiicccc 695
FUNCHON ..o 696
Syntax Descriptioncccoviiiiiiiiiiiiii 697
EXamPIesoooiiiiiiiiiiiiicc 700

99 PASSW ... 705
FUNCHON .o 706
Syntax Descriptionc.cooiiiiiiiiiiiiiii 706

100 PERFORMoooiiiiiiiiiiiiiicccccce et 709
FUNCHON ..o 710
Syntax Descriptioncccooiiiiiiiiiiii 710
EXamPIesoooiiiiiiiiiiiic 713

101 PERFORM BREAK PROCESSINGcccccoviiiiiiiiiiiiiiiiiiccecicce 717
FUNCHON .o 718
Syntax Descriptioncocoiiiiiiiiiiiiiiii 718
EXample ...c.oooiiiiii 719

TO2 PRINT ..ot 721
FUNCHON .o 722
Syntax Descriptionccccoviiiiiiiiiiiiiiiiii 723
EXampleooooiiiiiiiiiii 728

103 PROCESS ...ttt 731
FUNCHON ..o 732
ReSIICHON v 732
Syntax Descriptioncccccovviiiiiiiiiiiiiiii 732

104 PROCESS COMMANDcccoiiiiiiiiiiiiiiiiicicciccc s 735
FUNCHON oo 737
Syntax Descriptionc.oocuiiiiiiiiiiiiii 738
EXampPlesoooiiiiiiii 748

105 PROCESS PAGEoouiiiiiiiiic e 751
FUNCHON .o 752
Syntax 1 - PROCESS PAGEccccooiiiiiiiiiiiiiiic 752
Syntax 2 - PROCESS PAGE USINGccccoviiiiiiiiiiiiiiiinccn 755
Syntax 3 - PROCESS PAGE UPDATEccccoocoiiiiiiiiiiiiiccccce 758
Syntax 4 - PROCESS PAGE MODALcccccovoiiiiiiiiiiiiiiiiiciccieccce 761
EXamPIESoooviiiiiiiic 763

106 PROCESS SQL (SQL) ..cuviiiiiiiiiieiiieiieeiceie e 765
FUNCHON .o 766
Syntax Descriptioncccccoviiiiiiiiiiiiiiiiii 766
Entire Access OPtionsccooooiiiiiiiiiiiii 767
EXaMPLES ..o 768
Statements xiii

Statements

XIII

107 PROPERTY ...oooiiiiiiiiiiiiiii e 769
FUNCHON .o 770
Syntax Descriptioncccoviiiiiiiiiiiiiiiii 770
EXAMPIE ..coviiiiii 771

... 773

108 READ ...ooiiiiiiiiiiiicic s 775
FUNCHON oo 776
Syntax Descriptioncccoiviiiiiiiiiiiiii 777
System Variables Available with READccoccoiiiiiii 788
EXamPIesoooiiiiiiiiiiiiicc 788

109 READ RESULT SET (SQL) ..coovviiiiiiiiiiiiiiiiiiiiiiciccicc e 797
FUNCHON .o 798
Syntax Descriptionc.cooiiiiiiiiiiiiiii 798

110 READ WORK FILEccooiiiiiiiiiiiiiiiiccccccc e 801
FUNCHON ..o 802
Syntax 1 - READ WORK FILE with Processing LoOpcccoceeiiiiiiiinnennnns 802
Syntax 2 - READ WORK FILE without Processing Loopcccccccceeviinnen. 803
Syntax Descriptionccoooiiiiiiiiiiiiii 803
Field Lengthscoccoiiiiiiiiiiiiiicee e 806
Variable Index Rangecccccooviiiiiiiiiiiiiiiiiii 807
Handling of Large and Dynamic Variablesc.cccocooinininiiiinnnn. 807
Handling of X-ATTaysccccoiviiiiiiiiiiiiiiiiiiii e 808
EXAMPIES ...oooiiiiiiiiii 808

111 READLOB ..ottt 815
FUNCHON ..o 816
RESIICHONS .ovvviiiiiiciiccec e 816
Syntax Descriptionccccoiiiiiiiiiiiiiiiii 817
System Variables Available with READLOBccooooiiii, 819
Functional Considerationscccoeiiiiiiiiiiiiiiiiicc, 820
EXAMPIES ...oooiiiiiiiiciic 820

112 REDEFINEooiiiiiiiiiiiiiccc et 823
FUNCHON ..o 824
ReSIICHON .ot 824
Syntax Descriptionccccoiiiiiiiiiiiiiiii 824
EXAMPIESooiiiiiiiici 825

TIBREDUCE ..ottt 827
FUNCHON .o 828
Syntax Descriptioncccccovviiiiiiiiiiiiiiiiii 828

114 REINPUT ...ooiiiiiiiiiiiiii s 833
FUNCHON oo 834
Syntax Descriptionccccoviiiiiiiiiiiiiiiiii 835
EXAMPIES ...oooiiiiiiiiiiic 841

TIS REJECT ittt 845

116 RELEASEc.ooiiiiiiiiiiiiiicic s 847
FUNCHON .o 848

Xiv

Statements

Statements

Syntax Descriptioncccoiiiiiiiiiiiiiii 848
EXxample ...c.oooiiiiii 849

117 REPEAT ..ottt 851
FUNCHON .o 852
Syntax Descriptionccccccovviiiiiiiiiiiiiiiii 852
EXAMPIES ...oooiiiiiiiiiciiec 853

118 REQUEST DOCUMENTcooiiiiiiiiiiiiiiiiieiiccceicceec e 857
FUNCHON ..o 858
Syntax Descriptioncccoviiiiiiiiiiiiii 859
Automatically Generated Headerscccooviiiiiiiiiiiiiiiinii, 864
URL Encoding for Special Charactersc.ccccooeeviiiiiiiiiiiiicccecs 865
HTTP Responses Redirected and Deniedccccccoeviiiiiiiiiiiiiniiiniinn, 867
EXAMPIES ...oooviiiiiiiiiiccc 868

TI9 RESET ..ottt 871
FUNCHON ..o 872
Syntax Descriptioncccooiiiiiiiiiiii 872
EXamPle ...ooiiiiiiiii 873

120 RESIZE ...ooiiiiiiiiiiii s 875
FUNCHON .o 876
Syntax Descriptioncocoiiiiiiiiiiiiiiii 876

121 ROLLBACK (SQL) .eviiiiiiiiiiiiiiiieeeiceet e 881
FUNCHON ..o 882
Consideration for Non-Natural Programsc.ccccoecoiviiiiiiiiiicniiiiicnn, 882
EXamPIe .o 882

122 RETRY oo 883
FUNCHON ..o 884
RESETICHON ...t 884
EXAMPIE ..coviiiiiiei 884

123 RUN oo 887
FUNCHON .o 888
Syntax Descriptionccccoiviiiiiiiiiiiiiiiii 888
Dynamic Source Text Creation/Executionccccoeeviviiiiiiiiiiiiniiiinininn. 889
EXaMPIe ..ot 890

XIV s 893
124 SELECT (SQL) eviiiiiiiiiiiiieicc e 895
FUNCHON ..o 896
Syntax 1 - Cursor-Oriented Selectionc.ccovieiiiiiiiiiiini, 896
Syntax 2 - Non-Cursor Selectioncccoeciiviiiiiiiiiiiiiiiiiicieccceccee 897
Syntax Element Descriptionccccociviiiiiiiiiiiiiiiiiiiiiic 898

JOIN QUETIES ettt e e e ettt e e e e e e et eee e e e e e e e e 910

125 SEND METHODooiiiiiiiiiiiiiicccccc s 911
FUNCHON .o 912
Syntax Descriptioncccccoviiiiiiiiiiiiiiiiii 912
EXample ...c.oooiiiiiiiiiii 915

126 SEPARATEoooiiiiiiiiiiicece s 923
Statements XV

Statements

FUNCHON ..ooiiiiiiiii e 924
Syntax Descriptioncccooviiiiiiiiiiiiic 924
Rules and Operational Considerationscccccoceveiiiiiiiiiiiiiiiiiniiiicinee 927
EXAMPIES ...oooiiiiiiiiiic 930
127 SET CONTROLoooiiiiiiiiiiiecc s 937
FUNCHON ..o 938
Syntax Descriptionccccoviiiiiiiiiiiiiiiiiii 938
EXamplescooiiiiiiiiiiiiii 938
128 SET GLOBALSooiiiiiiiiiiccicece e 941
FUNCHON ..o 942
Syntax Descriptionoccooiiiiiiiiiiiii 942
Parametersoooiiiiiiiiiii 943
Exampleoooiiiiiiiiiiii 944
129 SET KEY oottt 945
FUNCHON ..o 946
Syntax Descriptioncccooiiiiiiiiiiiii 946
Making Keys Program-Sensitive and Deactivating Keyscccccccceiiiin. 947
Assigning Commands/Programsccocueiiiiiiiiiiieiciicnecccccee, 949
Assigning Input DATA ... 949
COMMAND OFF/ONccoiiiiiiiiiiiiiiiiiiiiiiccieeci s 950
Assigning HELD ... 950
DYNAMIC OPtiOn ..cocvviiiiiiiiiiiiiiiiiiiiciicicec e 951
DISABLED OPHonc..cocuiiiiiiiiiiiiiiiiiiicciiccciccc e 951
SET KEY Statements on Different Program Levelsccccoccooviviiinnnn. 952
AsSigning NAMEScoooiiiiiiiiiiiiic 954
EXQMPLE ..o 955
130 SET TIME ...oooiiiiii e 957
FUNCHON oo 958
EXamPIe ...ooiiiiiiiiii 958
131 SET WINDOW ...ooiiiiiiiiiiiiiicc s 961
FUNCHON oo 962
Syntax Descriptionccoooiiiiiiiiiiiiiii 962
EXample ..oc.oooiiiiii 962
132 SKIP et 963
FUNCHON .o 964
Syntax Descriptioncccccovviiiiiiiiiiiiiiiii 964
EXAMPIE ..coviiiiiiiiic 965
133 SORT ..t s 967
FUNCHON ..ot 968
ReSIICHONS .vvviiiiiiiiic e 969
Syntax Descriptionccccoviiiiiiiiiiiiiiiiii 969
Three-Phase SORT Processingcccovuevuiiiiiiiciiiiiiiciiececeee e 972
EXamMPLe ..o 973
Using External Sort Programscccccooviiiiiiiiiiiiniicccccccc 977
134 STACK .o 979

XVi Statements

Statements

FUNCHON ..o 980
Syntax Descriptioncccooiiiiiiiiiiiic 980
EXamPle ..o.oooiiiiiiiiiiii 983

135 STOP ... 985
FUNCHON ..o 986
EXampleoooiiiiiiiiiii 986

XV s 989
136 STORE ...ttt 991
FUNCHON oo 992
Database-Specific Considerationsccccoeeuiiiiiiiiiiiiiiiiiiiiiie 993
Syntax Descriptionoccooiiiiiiiiiiiii 993
EXaMPLe ..o 995

137 SUBTRACT ...ooiiiiiiiiiiiicicc e 999
FUNCHON .o 1000
Syntax 1 - SUBTRACT Statement without GIVING Clausecc.c...... 1000
Syntax 2 - SUBTRACT Statement with GIVING Clausec..ccccoceeienin. 1001
EXample ...ocooiiiiiiiiii 1002

138 SUSPEND IDENTICAL SUPPRESScccooiiiiiiiiiiiiiiiiiiiiicciccciec 1003
FUNCHON oo 1004
Syntax Descriptionccoccviiiiiiiiiiiiiii 1004
EXAMPIES ..o 1004

139 TERMINATEoooiiiiiiiiiiiiiiic e 1009
FUNCHON ..o 1010
Syntax Descriptionccccceiiiiiiiiiiiiiiiiii 1010
Program Receiving Control after Terminationc.ccccoooeiiiiiiinns 1011
EXamMPLe ..o 1011

140 UPDATE ...t 1013
FUNCHON ..eviiiic 1014
ReSIICHONS ..oocvviiiiiiiiiicc 1015
Database-Specific Considerationscccoceeiiiiiiiiiiiniiiicccc, 1015
Syntax Descriptionccccceiiiiiiiiiiiiiiiiiii 1015
Exampleccoooiiiiiiiiiii 1016

141 UPDATE (SQL) w.oviiiiiiiiiiiciiiicc i 1019
FUNCHON ..o 1020
Syntax 1 - Searched UPDATEc.ccooiiiiiiiiic, 1020
Syntax 2 - Positioned UPDATEcccccociiiiiiiiiiiiiiiiiicccen 1022
EXAMPIES ..ot 1023

142 UPDATELOBccuiiiiiiiiiiiiiiciicccc s 1025
FUNCHON ..ooiiiiiiiii 1026
ReSIICHONS ..ooeviiiiiiiiiiiccc 1026
Syntax Descriptioncccciiiiiiiiiiiiiiiiii 1027
System Variable Available with UPDATELOBcccoooiiiiii 1028
Functional Considerationscccocoviiiiiiiiiiiiiiiiiccccn 1029
EXAMPIES ..ot 1029

143 UPLOAD PC FILEccoiiiiiiiiiiiiiiiiiciiccc s 1033
Statements XVii

Statements

FUNCHON ..o 1034
Syntax Descriptioncccooiiiiiiiiiiii 1035
EXamplecoooiiiiiiiiii 1036

144 WRITE ...ooiiiiiiiiiii e 1037
FUNCHON .ooiiii 1038
Syntax 1 - Dynamic Formattingc.ccccoiviiiiiiii, 1038
Syntax 2 - Using Predefined Form/Mapcccccocveviiiiiiiiiiiiiniiiiiciicces 1046
EXampPlesooviiiiiiiiiiiiiiii 1047

145 WRITE TITLEcooiiiiiiiiiiiiiii s 1053
FUNCHON .o 1054
ReStIICHONS ..ooeviiiiiiiiiiic 1055
Syntax Descriptioncccceiiiiiiiiiiiiiiiiiiii 1055
Exampleccooooviiiiiiiiii 1059

146 WRITE TRAILERc.cccoiiiiiiiiiiiiiiiiiicicic e 1061
FUNCHON ..o 1062
ReSEIICHONS ..ooeviiiiiiiiiiiccccc 1063
Syntax Descriptioncccoceiiiiiiiiiiiiiiiiii 1063
EXAMPIE ..ot 1067

147 WRITE WORK FILEccociiiiiiiiiiiiiiiiciccc e 1069
FUNCHON ..ooiiiiiiiii 1070
Syntax Descriptionccoooiiiiiiiiiii 1070
External Representation of Fieldsccccoociiiiiiiiiiiiiiiiiiiis 1072
Handling of Large and Dynamic Variablescccoccooiiiniinn, 1073
EXamPle ..oooiiiiiiiiii e 1074

Xviii Statements

Preface

This document describes native Natural programming language (DML) statements and Natural
SQL statements. It is organized under the following headings:

Statements Grouped by Function

Provides an overview of the Natural statements ordered by
functional groups.

Definition Tables

Syntax Symbols and Operand

Information on the symbols that are used within the diagrams
that describe the syntax of Natural statements and on operand
definition tables.

Using Natural SQL Statements

Describes rules specific to using Natural SQL statements.

Referenced Example Programs

Contains additional example programs that are referenced in the
Statements and System Variables documentation.

Related Topics:

See also the Programming Guide for statement usage related topics such as: User-Defined Variables
| Dynamic and Large Variables | User-Defined Constants | Report Specification | Text Notation | User
Comments | Rules for Arithmetic Assignment | Logical Condition Criteria | Function Call

Statements in Alphabetical Order:

A-C D-F G-0 P-R S-Z
ACCEPT/REJECT DECIDE FOR GET PARSE XML SELECT (SQL)
ADD DECIDE ON GET SAME PASSW SEND METHOD
ASSIGN DEFINE CLASS GET PERFORM SEPARATE

AT BREAK DEFINE DATA TRANSACTION PERFORM BREAK SET CONTROL
AT END OF DATA DEFINE FUNCTION |[DATA PROCESSING SET GLOBALS
AT END OF PAGE DEFINE PRINTER [HISTOGRAM PRINT SET KEY

AT START OF DATA |DEFINE PROTOTYPE|IF PROCESS SET TIME

AT TOP OF PAGE DEFINE IF SELECTION [PROCESS COMMAND |SET WINDOW
BACKOUT SUBROUTINE IGNORE PROCESS PAGE SKIP
TRANSACTION DEFINE WINDOW INCLUDE PROCESS SORT

BEFORE BREAK DEFINE WORK FILE|INPUT SQL (SQL) STACK
PROCESSING DELETE INSERT (SQL) |PROPERTY STOP

CALL DELETE (SQL) INTERFACE READ STORE

CALL FILE DISPLAY LIMIT READ RESULT SET [SUBTRACT
CALL LOOP DIVIDE LOOP (SQL) SUSPEND
CALLDBPROC (SQL) [DO/DOEND METHOD READ WORK FILE |[IDENTICAL
CALLNAT DOWNLOAD PC FILE|MOVE READLOB SUPPRESS
CLOSE EJECT MOVE INDEXED |REDEFINE TERMINATE
CONVERSATION END MULTIPLY REDUCE UPDATE
CLOSE PC FILE END TRANSACTION |NEWPAGE REINPUT UPDATE (SQL)
CLOSE PRINTER ESCAPE OBTAIN REJECT UPDATELOB

XiX

Preface

A-C

ROLLBACK (SQL)
RUN

D-F G-0 P-R S-Z
CLOSE WORK FILE |EXAMINE ON ERROR RELEASE UPLOAD PC FILE
COMMIT (SQL) EXPAND OPEN REPEAT WRITE
COMPRESS FETCH CONVERSATION |REQUEST DOCUMENT|WRITE TITLE
COMPUTE FIND OPTIONS RESET WRITE TRAILER
CREATE OBJECT FOR RESIZE WRITE WORK FILE
FORMAT RETRY

XX

Statements

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Statements

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software GmbH products provide functionality with respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

Statements 3

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

|

= 2 Statements Grouped by Function

= 3 Syntax Symbols and Operand Definition Tablescccuvvviiiiiiiiiiiie e 17

2 Statements Grouped by Function

m Database ACCESS N UPUALEiiiiiiiiiiiii e 8
= Arithmetic and Data Movement OPErationscooiiiuuiiiiiiee it 9
B 100D EXECULION ...ttt 10
m Creation Of OUIPUE REPOTS ..ottt e e e ae e e e 10
= Screen Generation for INteractive ProCESSINGvvvvviiiiiiii i 1
= Processing of LOGICal CONAIIONSouuriiiiiiiii e 11
= [nvoking Programs and ROULINESuueuieiiiiiiiiiiiiiiiiiiiiiieiiisiiaeeseeeeses s nnssnnsnnnnnenes 12
LI 12101 o OO PP PTPPPPPPRRR 12
= Program and SesSion TErMINALIONoiuiiiiiiiiiii et 12
m Control Of WOrK FileS / PC FlES ... 13
= Component Based Programmingo.uueieoiuiire ettt 13
= Memory Management Control for Dynamic Variables 0r X-AITayscccvuvviiieeieiiiiiiiiiiee e 13
m Natural Remote Procedure Calloooiiiiiiiii e e e 14
B NEErNEt AN XML ..ottt e e e e e e e 14
B MISCRIANEOUS ... e 14
= Reporting Mode STAEMENTSviiiiiiii s 15

Statements Grouped by Function

) Notes:

1. Certain statements can be used both in structured mode and in reporting mode, while others

can be used in reporting m

ode only. See Natural Programming Modes in the Programming Guide.

2. The statements DLOGOFF, DLOGON, SHOW, IMPORT and EXPORT are only available when Entire DB
is installed. For a description, see the Entire DB documentation.

Database Access and Update

The following types of statements are available:

= Natural DML Statements
= Natural SQL Statements

Natural DML Statements

The following Natural data manipulation language (DML) statements are used to access and ma-
nipulate information contained in a database.

READ Reads a database file in physical or logical sequence of records.

FIND Selects records from a database file based on user-specified criteria.

HISTOGRAM Reads the values of a database field.

GET Reads a record with a given ISN (internal sequence number) or RNO (record
number).

GET SAME Re-reads the record currently being processed.

ACCEPT/REJECT Accepts/reject records based on user-specified criteria.

PASSW Provides password for access to a password-protected file.

LIMIT Limits the number of executions of a READ, FIND or HISTOGRAM processing
loop.

STORE Adds a new record to the database.

UPDATE Updates a record in the database.

DELETE Deletes a record from the database.

END TRANSACTION Indicates the end of a logical transaction.

BACKOUT TRANSACTION Backs out a partially completed logical transaction.

GET TRANSACTION DATA Reads transaction data stored with a previous END TRANSACTION statement.

RETRY Attempts to re-read a record which is in hold status for another user.

AT START OF DATA Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

Statements

Statements Grouped by Function

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

BEFORE BREAK PROCESSING |Specifies statements to be performed before performing break processing.

PERFORM BREAK PROCESSING|Immediately invokes break processing.

Natural SQL Statements

In addition to the Natural DML statements, Natural also provides SQL statements for use in Nat-
ural programs that manipulate data on an SQL database.

The following Natural SQL statements are available:

CALLDBPROC Invokes a stored procedure of the SQL database system to which Natural is connected.

COMMIT Indicates the end of a logical transaction and releases all data locked during the
transaction. All data modifications are committed and made permanent.

DELETE Deletes either rows in a table without using a cursor (“searched” DELETE) or rows in
a table to which a cursor is positioned (“positioned” DELETE).

INSERT Adds one or more new rows to a table.

PROCESS SQL

Issues SQL statements to the underlying database.

READ RESULT SET

Reads a result set which was created by a stored procedure that was invoked by a
previous CALLDBPROC statement.

ROLLBACK Undoes all database modifications made since the beginning of the last recovery unit.

SELECT Supports both the cursor-oriented selection that is used to retrieve an arbitrary number
of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row.

UPDATE Performs an update operation on either rows in a table without using a cursor

(“searched” UPDATE) or columns in a row to which a cursor is positioned (“positioned”
UPDATE).

Arithmetic and Data Movement Operations

The following statements are used for arithmetic and data movement operations:

Statements

Statements Grouped by Function

COMPUTE Performs arithmetic operations or assigns values to fields.
ADD Adds two or more operands.

SUBTRACT Subtracts one or more operands from another operand.
MULTIPLY Multiplies two or more operands.

DIVIDE Divides one operand into another.

EXAMINE TRANSLATE |Translates the characters contained in a field into upper-case or lower-case, or into
other characters.

MOVE Moves the value of an operand to one or more fields.

MOVE ALL Moves multiple occurrences of a value to another field.

COMPRESS Concatenates the value of two or more fields into a single field.

SEPARATE Separates the content of a field into two or more fields.

EXAMINE Scans a field for a specific value and replaces it, and/or counts how often it occurs.
RESET Sets the value of a field to zero (if numeric) or blank (if alphanumeric), or to its

initial value.

Loop Execution

The following statements are related to the execution of processing loops:

ESCAPE |Stops the execution of a processing loop.

FOR Initiates a processing loop and controls the number of times the loop is to be processed.

REPEAT |Initiates a processing loop (and terminates it based on a specified condition).

SORT |Sorts records.

Creation of Output Reports

The following statements are used for the creation of output reports:

FORMAT Specifies output parameter settings.

DISPLAY Specifies fields to be output in column form.

WRITE/PRINT Specifies fields to be output in non-column form.

WRITE TITLE Specifies text to be output at the top of each page of a report.

WRITE TRAILER Specifies text to be output at the bottom of each page of a report.

AT TOP OF PAGE Specifies processing to be performed when a new output page is started.

AT END OF PAGE Specifies processing to be performed when the end of an output page
is reached.

10 Statements

Statements Grouped by Function

SKIP Generates one or more blank lines in a report.
EJECT Causes a page advance without titles or headings.
NEWPAGE Causes a page advance with titles and headings.
SUSPEND IDENTICAL SUPPRESS|Suspends identical suppression for a single record.
DEFINE PRINTER Allocates a report to a logical output destination.
CLOSE PRINTER Closes a printer.

Screen Generation for Interactive Processing

The following statements are used to create data screens (maps) for the purpose of interactive
processing of data:

INPUT Creates a formatted screen (map) for data display/ entry.

REINPUT Re-executes an INPUT statement (if invalid data were entered in response to the
previous INPUT statement).

DEFINE WINDOW Specifies the size, position and attributes of a window.
SET WINDOW Activates and de-activates a window.
PROCESS PAGE Creates a data mapping to a web rich GUI screen.

PROCESS PAGE USING |Performs rich GUII/O processing using an adapter object generated from a page
layout.

PROCESS PAGE UPDATE |Re-executes a PROCESS PAGE statement.
PROCESS PAGE MODAL |Initiates a processing block and controls the lifetime of a rich GUI window.

Processing of Logical Conditions

The following statements are used to control the execution of statements based on conditions de-
tected during the execution of a Natural program:

IF Performs statements depending on a logical condition.

IF SELECTION |Verifies that in a sequence of alphanumeric fields one and only one contains a value.

DECIDE FOR |Performs statements depending on logical conditions.

DECIDE ON Performs statements depending on the contents of a variable.

Statements 11

Statements Grouped by Function

Invoking Programs and Routines

The following statements are used in conjunction with the execution of programs and routines:

CALL Invokes a non-Natural program from a Natural program.

CALLNAT Invokes a Natural subprogram.

CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.
CALL LOOP Generates a processing loop containing a call to a non-Natural program.

DEFINE SUBROUTINE |Defines a Natural subroutine.

ESCAPE Stops the execution of a routine.
FETCH Invokes a Natural program.
PERFORM Invokes a Natural subroutine.

PROCESS COMMAND |Invokes a command processor.

RUN Compiles and executes a source program.

Functions

The following Natural statements are used to create functions:

DEFINE FUNCTION |Creates functions which can be called instead of operands in Natural statements.
Functions are defined in Natural objects of type function.

DEFINE PROTOTYPE |Specifies the properties to be used for a function call.

Function Call Used to call Natural objects of type function.

Program and Session Termination

The following Natural statements are used to terminate the execution of an application or to ter-
minate the Natural session.

STOP Terminates the execution of an application.

TERMINATE |Terminates the Natural session.

12 Statements

Statements Grouped by Function

Control of Work Files / PC Files

The following Natural statements are used to read/write data to a physical sequential (non-Adabas)
work file:

WRITE WORK FILE |Writes data to a work file.

DOWNLOAD PC FILE|Enables transfer data from a mainframe or a Linux platform to the PC.
READ WORK FILE |Reads data from a work file.

UPLOAD PC FILE |Enables transfer data from a PC to a mainframe or a Linux platform.
CLOSE WORK FILE |Closes a work file.

CLOSE PC FILE Closes a specific PC work file.

DEFINE WORK FILE|Assigns a file name to a work file.

Component Based Programming

The following Natural statements are used in conjunction with component based programming:

DEFINE CLASS |Specifies a class from within a Natural class module.

CREATE OBJECT|Creates an object (also known as an instance) of a given class.
SEND METHOD |Invokes a method of an object.

INTERFACE Defines an interface (a collection of methods and properties) for a certain feature of a
class.

METHOD Assigns a subprogram as the implementation of a method, outside an interface definition.

PROPERTY Assigns an object data variable as the implementation to a property, outside an interface
definition.

Memory Management Control for Dynamic Variables or X-Arrays

EXPAND |Expands the allocated memory of dynamic variables to a given size or expands the number of
occurrences of X-arrays.

REDUCE |Reduces the size of a dynamic variable or the number of occurrences of X-arrays.

RESIZE |Adjusts the size of a dynamic variableor the number of occurrences of X-arrays.

Statements 13

Statements Grouped by Function

Natural Remote Procedure Call

OPEN CONVERSATION |Allows the RPC Client to open a conversation and specify the remote

subprograms to be included in the conversation.

CLOSE CONVERSATION |Allows the client to close conversations. You can close the current conversation,

another open conversation, or all open conversations.

DEFINE DATA CONTEXT [Defines variables known as context variables, which are meant to be available

to multiple remote subprograms within one conversation, without having to
explicitly pass the variables as parameters with the corresponding CALLNAT
statements.

See also the section Natural Statements Involved in the Natural RPC (Remote Procedure Call) docu-

mentation.

Internet and XML

PARSE

Allows you to parse XML documents from a Natural program.

REQUEST DOCUMENT |Allows you to access an external system.

Miscellaneous

DEFINE DATA

Defines the data elements which are to be used in a Natural program or routine.

END

Indicates the end of the source code of a Natural program or routine.

INCLUDE Incorporates Natural copycode at compilation.

ON ERROR Intercepts runtime errors which would otherwise result in a Natural error message, followed
by the termination of the Natural program.

RELEASE Deletes the contents of the Natural stack; releases sets of ISN sets retained viaa FIND

statement; releases Natural global variables.

SET CONTROL

Performs a Natural terminal command from within a Natural program.

SET KEY Assigns functions to terminal keys.

SET GLOBALS |Sets values for session parameters.

SET TIME Establishes a point-in-time reference for a *TIMD system variable.

STACK Places data and/or commands into the Natural stack.

14 Statements

Statements Grouped by Function

Reporting Mode Statements

The following statements are for reporting mode only:

LOOP Closes a processing loop.

DO/DOEND|Specify a group of statements to be executed based on a logical condition.

OBTAIN [Causes one or more fields to be read from a file.

REDEFINE|Redefines a field.

The following statements can be used both in structured mode and in reporting mode, however,
the statement structure and, with some of them, the functionality is different:

AT START OF DATA

Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

AT TOP OF PAGE

Specifies processing to be performed when a new output page is started.

AT END OF PAGE

Specifies processing to be performed when the end of an output page is
reached.

BEFORE BREAK PROCESSING

Specifies statements to be performed before performing break processing.

CALL LOOP Generates a processing loop containing a call to a non-Natural program.
CALL FILE Invokes a non-Natural program to read a record from a non-Adabeas file.
COMPUTE Performs arithmetic operations or assigns values to fields.

DEFINE SUBROUTINE Defines a Natural subroutine.

ESCAPE Stops the execution of a processing loop.

FIND Selects records from a database file based on user-specified criteria.

GET SAME Re-reads the record currently being processed.

HISTOGRAM Reads the values of a database field.

IF Performs statements depending on a logical condition.

IF SELECTION

Verifies that in a sequence of alphanumeric fields one and only one contains
a value.

ON ERROR Intercepts runtime errors which would otherwise result in a Natural error
message, followed by the termination of the Natural program.

READ Reads a database file in physical or logical sequence of records.

READ WORK FILE Reads data from a work file.

REPEAT Initiates a processing loop (and terminates it based on a specified condition).

Statements 15

Statements Grouped by Function

SORT Sorts records.
STORE Adds a new record to the database.
UPDATE Updates a record in the database.

UPLOAD PC FILE

Enables transfer data from a PC to a mainframe or a Linux platform.

16

Statements

3 Syntax Symbols and Operand Definition Tables

B SYNEAX SYMDOIS .
= Operand Definition Tableuvviiiiii i

17

Syntax Symbols and Operand Definition Tables

Syntax Symbols

The following symbols are used within the diagrams that describe the syntax of Natural statements:

Syntax Symbol

Description

ABCDEF

Upper-case non-italic letters indicate that the term is either a Natural keyword or a
Natural reserved word that must be entered exactly as specified.

ABCDEF

If an optional term in upper-case letters is completely underlined (not a hyperlink!),
this indicates that the term is the default value. If you omit the term, the underlined
value applies.

If a term in upper-case letters is partially underlined (not a hyperlink!), this indicates
that the underlined portion is an acceptable abbreviation of the term.

Letters in italics are used to represent variable information. You must supply a valid
value when specifying this term.

Note: Inplaceof statementor statements, you must supply one or several suitable

statements, depending on the situation. If you do not want to supply a specific
statement, you may insert the IGNORE statement.

Elements contained within square brackets are optional.

If the square brackets contain several lines stacked one above the other, each line is an
optional alternative. You may choose at most one of the alternatives.

If the braces contain several lines stacked one above the other, each line is an alternative.
You must choose exactly one of the alternatives.

The vertical bar separates alternatives.

A term preceding an ellipsis may optionally be repeated. A number after the ellipsis
indicates how many times the term may be repeated.

If the term preceding the ellipsis is an expression enclosed in square brackets or braces,
the ellipsis applies to the entire bracketed expression.

A term preceding a comma-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by commas. A number after the comma-ellipsis indicates
how many times the term may be repeated.

If the term preceding the comma-ellipsis is an expression enclosed in square brackets
or braces, the comma-ellipsis applies to the entire bracketed expression.

A term preceding a colon-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by colons. A number after the colon-ellipsis indicates
how many times the term may be repeated.

If the term preceding the colon-ellipsis is an expression enclosed in square brackets or
braces, the colon-ellipsis applies to the entire bracketed expression.

18

Statements

Syntax Symbols and Operand Definition Tables

Syntax Symbol Description

Other symbols All other symbols except those defined in this table must be entered exactly as specified.

(except[1 { !}

Exception: The SQL scalar concatenation operator is represented by two vertical bars
..) |that must be entered literally as they appear in the syntax definition.

Example:

WRITE [USING] {

FORM

MAP } operandl [operand? ...]

WRITE, USING, MAP and FORM are Natural keywords which you must enter as specified.

operandl and operand?Z are user-supplied variables for which you specify the names of the objects
you wish to deal with.

The braces indicate that you must choose whether to specity either FORM or MAP; however, you
must specify one of the two.

The square brackets indicate that USING and operand? are optional elements which you can, but
need not, specify.

The ellipsis indicates that you may specify operandZ? several times.

Operand Definition Table

Whenever one or more operands appear in the syntax of a Natural statement, the following table
is provided:

Operand Possible Structure Possible Formats Referencing [Dynamic Definition
Permitted
operand1|C s |A|G|N/M|E |A|UIN|P|1[F[B|D|T|L|C| O] yes/no yes/no

This table provides the following information on each operand:

Possible Structure

Indicates the structure which the operand may take:

Statements 19

Syntax Symbols and Operand Definition Tables

C |Constant.

S |Single occurrence (scalar; that is, a field/variable which is neither an array nor a group).
A Array.

G |Group.

NIM | Natural system variable:

N All system variables can be used.

M Only modifiable system variables can be used. For information on
whether the content of a system variable is modifiable or not, see
the Natural System Variables documentation.

E

Arithmetic expressions.

Possible Formats

Indicates the format which the operand may take:

Alphanumeric (ASCII code page)

Alphanumeric (Unicode)

Numeric unpacked

o =Z c >

Packed numeric

Integer

Floating point

Binary

Date

Time

Logical

Attribute control

ol O r - O o m

HANDLE OF OBJECT

Referencing Permitted

Indicates whether the operand may be referenced or not, using a statement label or the source
code line number.

20

Statements

Syntax Symbols and Operand Definition Tables

Dynamic Definition

Indicates whether the field may be dynamically defined within the body of the program. This is
possible in reporting mode only.

Statements 21

22

I I Using Natural SQL Statements

In addition to the native Natural DML statements, Natural provides Natural SQL statements for
use in Natural programs that maintain data contained in an SQL or SQL-compliant database.

This chapter describes the special syntax rules and conventions that apply when using Natural
SQL statements.

Common Set and Extended Set
Basic Syntactical Items
Natural View Concept

Scalar Expressions

Search Conditions

Select Expressions

Flexible SQL

Overview of Natural SQL Statements:

CALLDBPROC | COMMIT | DELETE | INSERT | PROCESS SQL | READ RESULT SET | ROLLBACK
| SELECT | UPDATE

23

24

4 Common Set and Extended Set

The SQL statements available within the Natural programming language comprise two different
syntax sets:

® Common Set
The Common Set basically corresponds to the standard SQL syntax definitions and is provided
for each SQL-compliant database system supported by Natural. The Common Set is valid against
all SQL databases.

® Extended Set
The Extended Set, in addition, provides special enhancements to the Common Set to support
specific features of the supported database systems. Currently, the Extended Set is partly
available and is valid against Db2 databases only.

The Natural SQL statements documentation mainly describes the Natural SQL Common Set. The
statement syntax adheres as far as possible to the syntax described in the relevant literature on
SQL; please, refer to this literature for further details.

25

26

5 Basic Syntactical ltems

ParAMELELS ...
Natural Formats and SQL Data TYPESc..uuviiiiiiiii i

27

Basic Syntactical Items

This chapter describes basic syntactical items, which are referenced within the individual SQL
statement descriptions.

Constants

The constants used in the syntactical descriptions of the Natural SQL statements are:

constant |Theitem constant refers to either a Natural constant or an SQL datetime constant.

integer |Theitem 7nteger always represents an integer constant.

| Note: If the character for decimal point notation (session parameter DC) is set to a comma

(,), any specified numeric constant must not be followed directly by a comma, but must be
separated from it by a blank character; otherwise an error or wrong results occur.

Invalid Syntax: Valid Syntax:

VALUES (1,'A") leads to a syntax error. [VALUES (1 ,"'A")

VALUES (1,2,3) leads to wrong results.|VALUES (1 ,2 ,3)

SQL Datetime Constants

An SQL datetime constant is a character string constant of a particular format that specifies one
of the following:

DATE string-constant Specifies an SQL date constant, for example: DATE '2013-15-01".

TIME string-constant Specifies an SQL time constant, for example: TIME '10:30:15".

TIMESTAMP string-constant|Specifies an SQL time stamp constant, for example: TIMESTAMP
'2014-15-01 10:20:15.123456".

For information on the valid string-constant formats, refer to IBM's Db2 SQL reference information.

Names

The names used in the syntactical descriptions of the Natural SQL statements are:

= authorization-identifier
= ddm-name

= view-name

= column-name

= |ocation-name

28 Statements

Basic Syntactical ltems

= fable-name
= correlation-name

authorization-identifier

Theitem authorization-identifier, whichis also called creator name, is used to qualify database
tables and views. See also authorization-identifier under table-name below.

ddm-name

The item ddm-name always refers to the name of a Natural data definition module (DDM) as created
with the Natural DDM Services.

view-name

The item view-name always refers to the name of a Natural view as defined in the DEFINE DATA
statement.

column-name
The item column-name always refers to the name of a physical database column.
location-name

The item Tocation-name always denotes the location of the table. Specification of location-name
is optional and belongs to the SOL Extended Set.

table-name

The item table-name in this section is used to reference both SQL base tables and SQL viewed
tables.

Syntax of item table-name:

[[Tocation-name]Jauthorization-identifier.Jddm-name

Syntax Element Description:

Statements 29

Basic Syntactical Items

Syntax Element

Description

ddm-name

A Natural data definition module (DDM) must have been created for a
table to be used. The name of such a DDM must be the same as the
corresponding database table name or view name.

location-name

This optional item specifies the location of the table to be accessed.

authorization-identifier

There are two ways of specifying the authorization-identifierofa
database table or view.

One way corresponds to the standard SQL syntax, in which the
authorization-identifierisseparated from the table name by a period.
Using this form, the name of the DDM must be the same as the name of
the database table without the authorization-identifier.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF PERSONNEL
02 NAME
02 AGE
END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL.PERSONNEL

Alternatively, you can define the authorization-identifier as part
of the DDM name. The DDM name then consists of the
authorization-identifierand the database table name separated by
a hyphen (-). The hyphen between the authorization-identifierand
the table name is converted internally into a period.

Note: This form of DDM name can also be used with a FIND or READ

statement, because it conforms to the DDM naming conventions applicable
to these statements.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
02 NAME
02 AGE
END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL-PERSONNEL

If the authorization-identifierhas been specified neither explicitly

nor within the DDM name, it is determined by the SQL database system.

30

Statements

Basic Syntactical ltems

Syntax Element

Description

In addition to being used in SELECT statements, table names can also be
specified in DELETE, INSERT and UPDATE statements.

Examples:

DELETE FROM SQL.PERSONNEL
WHERE AGE IS NULL

INSERT INTO SQL.PERSONNEL (NAME,AGE)
VALUES ("ADKINSON',35)

UPDATE SQL.PERSONNEL
SET SALARY = SALARY * 1.1
WHERE AGE > 30

correlation-name

The item correlation-name represents an alias name for a table-name. It can be used to qualify
column names; it also serves to implicitly qualify fields in a Natural view when used with the
INTO clause of the SELECT statement.

Example:

DEFINE DATA LOCAL

01 PERS-NAME (A20)
01 EMPL-NAME (A20)
01 AGE (I2)
END-DEFINE

SELECT X.NAME , Y.NAME , X.AGE
INTO PERS-NAME , EMPL-NAME , AGE

FROM SQL-PERSONNEL X
WHERE X.AGE = Y.AGE
END-SELECT

, SQL-EMPLOYEES Y

Although in most cases the use of correlation-names is not necessary, they may help to make

the statement clearer.

Statements

31

Basic Syntactical Items

Parameters

Syntax of item parameter:

[:1 host-variable[INDICATORI[:]1 host-variable][LINDICATORI[:]1 host-variable]

Syntax Element Description:

Syntax Element

Description

host-variable

A host-variableis a Natural user-defined variable (no system variable) which is
referenced in an SQL statement. It can be either an individual field or defined as part of
a Natural view.

When defined as a receiving field (for example, in the INTO clause), a host-variable
identifies a variable to which a value is assigned by the database system.

When defined as a sending field (for example, in the WHERE clause), a host-variable
specifies a value to be passed from the program to the database system.

See also Natural Formats and SQL Data Types.

L:] Colon:
To comply with SQL standards, a host-variable can also be prefixed by a colon (:).
When used with flexible SQL, host-variables must be qualified by colons.
Example:
SELECT NAME INTO :#fNAME FROM PERSONNEL
WHERE AGE = :VALUE
The colon is always required if the variable name is identical to an SQL reserved word.
In a context in which either a host-variable or a column can be referenced, the use of
a name without a colon is interpreted as a reference to a column.

INDICATOR INDICATOR Clause:
The INDICATOR clause is an optional feature to distinguish between a “null” value (that
is, no value at all) and the actual values 0 or “blank”.
When specified with a receiving host-variable (target field), the INDICATOR
host-variable (nullindicator field) serves to find out whether a column to be retrieved
is “null”.
Example:

32 Statements

Basic Syntactical ltems

Syntax Element |Description
DEFINE DATA LOCAL
1 NAME (A20)
1 NAMEIND (I2)
END-DEFINE
SELECT *

INTO NAME INDICATOR NAMEIND

In this example, NAME represents the receiving host-variable and NAMEIND the null
indicator field.

If a null indicator field has been specified and the column to be retrieved is null, the value
of the null indicator field is negative and the target field is set to 0 or “blank” depending
on its data type. Otherwise, the value of the null indicator field is greater than or equal
to 0.

When specified with a sending host-variable (source field), the null indicator field is
used to designate a null value for this field.

Example:

DEFINE DATA LOCAL

1 NAME (A20)

1 NAMEIND (I2)

UPDATE ...

SET NAME = :NAME INDICATOR :NAMEIND
WHERE ...

In this example, : NAME represents the sending host-variableand :NAMEIND the null
indicator field. By entering a negative value as input for the null indicator field, a null
value is assigned to a database column.

An INDICATOR host-variableis of format/length I2.

LINDICATOR

LINDICATOR Clause:

The LINDICATOR clause is an optional feature which is used to support columns of varying
lengths, for example, VARCHAR or LONG VARCHAR type.

When specified with a receiving host-variab]le (target field), the LINDICATOR
host-variable (length indicator field) contains the number of characters actually

returned by the database into the target field. The target field is always padded with
blanks.

If the VARCHAR or LONG VARCHAR column contains more characters than fit in the target
field, the length indicator field is set to the length actually returned (that is, the length of
the target field) and the null indicator field (if specified) is set to the total length of this
column.

Example

Statements

33

Basic Syntactical Items

Syntax Element

Description

DEFINE DATA LOCAL
1 ADDRESSLIND (I2)
1 ADDRESS (A50/1:6)
END-DEFINE
SELECT *
INTO :ADDRESS(*) LINDICATOR :ADDRESSLIND

In this example, : ADDRESS (*) represents the target field which receives the first 300
bytes (if available) of the addressed VARCHAR or LONG VARCHAR column, and
:ADDRESSLIND represents the length indicator field which contains the number of
characters actually returned.

When specified with a sending host-variable (source field), the length indicator field
specifies the number of characters of the source field which are to be passed to the
database.

Example:

DEFINE DATA LOCAL
1 NAMELIND (I2)

1 NAME (A20)
1 AGE (I2)
END-DEFINE
MOVE 4 TO NAMELIND
MOVE 'ABC%' TO NAME
SELECT AGE

INTO :AGE

WHERE NAME LIKE :NAME LINDICATOR :NAMELIND

A LINDICATOR host-variableis of format/length 12 or 14. For performance reasons,
it should be specified immediately before the corresponding target or source field;
otherwise, the field is copied to the temporary storage at runtime.

If the LINDICATOR field is defined as an 12 field, the SQL data type VARCHAR is used for
sending or receiving the corresponding column. If the LINDICATOR host-variableis
specified as 14, a large object data type (CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to its real
length. The LINDICATOR field and *LENGTH are set to this length. In case of a fixed length
field, the column is read up to the defined length. In both cases, the field is written up to
the value defined in the LINDICATOR field.

Let a fixed length field be defined witha LINDICATOR field specified as I2. If the VARCHAR
column contains more characters than fit into this fixed length field, the length indicator
field is set to the length actually returned and the null indicator field (if specified) is set
to the total length of this column (retrieval). This is not possible for fixed length fields
greater than or equal to 32 KB (length does not fit into null indicator field).

34

Statements

Basic Syntactical ltems

Natural Formats and SQL Data Types

The Natural data format of a host-variable is converted to an SQL data type according to the fol-

lowing table:

Natural Format/Length SQL Data Type

An CHAR (n)

B2 SMALLINT

B4 INT

Bn; nnot equal to 2 or 4|CHAR (n)

F4 REAL

F8 DOUBLE PRECISION
12 SMALLINT

14 INT

Nnn.m NUMERIC C(nn+m,m)
Pnn.m NUMERIC C(nn+m,m)
T TIME

D DATE

Gn; for view fields only

GRAPHIC (n)

Natural does not check whether the converted SQL data type is compatible to the database column.

Except for fields of format N, no data conversion is done.

In addition, the following extensions to standard Natural formats are available with Natural SQL:

® A one-dimensional array of format A can be used to support alphanumeric columns longer than
253 bytes. This array must be defined beginning with index 1 and can only be referenced by
using an asterisk (*) as the index. The corresponding SQL data type is CHAR (n), where n is the
total number of bytes in the array.

" Aspecial host-variableindicated by the keyword LINDICATOR can be used to support variable-
length columns. The corresponding SQL data type is VARCHAR (n); see also the LINDICATOR

clause.

® The Natural formats date (D) and time (T) can be used with Entire Access and will be converted
into the corresponding database-dependent formats (see the Entire Access documentation for

details)

A sending field specified as one-dimensional array without a LINDICATOR field is converted into
the SQL data type VARCHAR. The length is the total number of bytes in the array, not taking into
account trailing blanks.

Statements

35

36

6 Natural View Concept

Some Natural SQL statements also support the use of Natural views.

A Natural view can be specified instead of a parameter list, where each field of the view - except
group fields, redefining fields and fields prefixed with L@ or N@- corresponds to one parameter
(host variable).

Fields with names prefixed with L@ or N@ can only exist with corresponding master fields; that is,
fields of the same name, where:

" | @ fields are converted into LINDICATOR fields,
= N@ fields are converted into INDICATOR fields.

L@ fields should have been specified at view definition, immediately before the master fields to
which they apply.

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 PERSID (I14)
02 NAME (A20)
02 N@NAME (12) /* null indicator of NAME
02 L@ADDRESS (I2) /* length indicator of ADDRESS
02 ADDRESS (A50/1:6)
02 N@ADDRESS (I2) /* null indicator of ADDRESS
01 #PERSID (I14)
END-DEFINE
SELECT *

INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE PERSID = {fPERSID

END-SELECT

37

Natural View Concept

The above example is equivalent to the following one:

SELECT *
INTO PERSID,
NAME INDICATOR N@NAME,

ADDRESS(*)INDICATOR N@ADDRESS LINDICATOR L@ADDRESS
FROM SQL-PERSONNEL
WHERE PERSID = #PERSID

END-SELECT

| Note: When accessing VARCHAR data types with Natural for Windows or Natural for Linux
and Cloud, there must be a corresponding length indicator variable in the view.

38 Statements

7 Scalar Expressions

B SCAIAT EXPIESSION ..eiiiieeiti ittt e ettt e oottt e e e e e ettt e e e e e et e et e e e et aaeea e e
T 1 T O oL = (o] USRS SO UPPP PRSP

39

Scalar Expressions

+

{ factor }
(scalar-expression)

scalar-expression scalar-operator scalar-expression

Scalar Expression

A scalar-expression consists of a factor or other scalar expressions including scalar operators.
Concerning reference priority, scalar expressions behave as follows:

® When a non-qualified variable name is specified in a scalar expression, the first approach is to
resolve the variable name as column name of the referenced table.

® If no column with the specified name is available in the referenced table, Natural tries to resolve
this variable as a Natural user-defined variable (host variable).

Scalar Operator

/
|

CONCAT

A scalar-operator canbe any of the operators listed above. The minus (-) and slash (/) operators
must be separated by at least one blank from preceding operators.

40 Statements

Scalar Expressions

Factor

Common Set Syntax:

atom
column-reference
aggregate-function
special-register

Extended Set Syntax:

atom
column-reference
aggregate-function
special-register
scalar-function
length-stringunit
labeled-duration

A factor can consist of one of the items listed in the above diagram and described in the text below.

Atom

{ parameter }
constant

An atom can be either a parameter or a constant.

Column Reference

table-name.
correlation-name.

column-name

A column-referenceis a column name optionally qualified by either a tab7e-name or a
correlation-name (see also the section Basic Syntactical Items). Qualified names are often
clearer than unqualified names and sometimes they are essential.

] Note: A table name in this context must not be qualified explicitly with an authorization
identifier. Use a correlation name instead if you need a qualified table name.

Statements 41

Scalar Expressions

If a column is referenced by a table-name or correlation-name, it must be contained in the cor-
responding table. If neither a table-name nor a correlation-name is specified, the respective
column must be in one of the tables specified in the FROM clause (see Table Expression).

Aggregate Function
COUNT { ¢) }
(DISTINCT column-reference)

AVG

MAX { (DISTINCT co7umn—reference)}
MIN ([ALL] scalar-expression)

SUM

SQL provides a number of special functions to enhance its basic retrieval power. The so-called
SQL aggregate functions currently available and supported by Natural are:

AVG gives the average of the values in a column

COUNT |gives the number of values in a column

MAX gives the highest value in a column
MIN gives the lowest value in a column
SUM gives the sum of the values in a column

Apart from COUNT (*), each of these functions operates on the collection of scalar values in an ar-
gument (that is, a single columnora scalar-expression)and produces a scalar value as its result.

Example:

DEFINE DATA LOCAL
1 AVGAGE (I2)
END-DEFINE

SELECT AVG (AGE)
INTO AVGAGE
FROM SQL-PERSONNEL
DISTINCT

In general, the argument can optionally be preceded by the keyword DISTINCT to eliminate redund-
ant duplicate values before the function is applied.

If DISTINCT is specified, the argument must be the name of a single column; if DISTINCT is omitted,
the argument can consist of a general scalar-expression.

42 Statements

Scalar Expressions

DISTINCT is not allowed with the special function COUNT (*), which is provided to count all rows
without eliminating any duplicates.

Special Register

special-register

USER

With the exception of USER, the following special registers do not conform to standard SQL. They
are specific to Db2 and belong to the Natural SQL Extended Set:

CURRENT DATE

CURRENT_DATE

CURRENT TIME

CURRENT_TIME

CURRENT TIMESTAMP

CURRENT CLIENT_ACCTNG
CLIENT ACCTNG

CURRENT CLIENT_APPLNAME
CLIENT APPLNAME

CURRENT CLIENT_USERID
CLIENT USERID

CURRENT CLIENT_WRKSTNNAME
CLIENT WRKSTNNAME

CURRENT DEGREE

CURRENT TIMEZONE

CURRENT SERVER
CURRENT_TIMEZONE
CURRENT_SERVER
SESSTON_USER

CURRENT_PATH

CURRENT SCHEMA

CURRENT DECFLOAT ROUNDING MODE
CURRENT LOCK TIMEOUT
CURRENT PACKAGE PATH
CURRENT REFRESH AGE
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION <

A reference to a special-register returns a scalar value.

Statements 43

Scalar Expressions

Scalar Function

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions.

Scalar functions are specific to Db2 and belong to the Natural SQL Extended Set.

The scalar functions Natural for Db2 supports are listed below:

COALESCE
DATE

TIME
TIMESTAMP
VALUE

Each scalar function is followed by one or more scalar expressions in parentheses. The number of
scalar expressions depends upon the scalar function. Multiple scalar expressions must be separated
from one another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE VALUE(NAME, CITY) = 'VIZAG'

Length of String Unit

length-stringunit

Specifies the unit used for the length of a string. Commonly used for SQL scalar string functions.
The supported length of string units are listed below:

OCTETS
CODEUNITSI6
CODEUNITS32

where O0CTETS specifies that the length is expressed in bytes, CODEUNITS16 specifies that the length
is expressed in 16-bit UTF-16 code units, and CODEUNITS32 specifies that the length is expressed
in 32-bit UTF-32 code units.

44 Statements

Scalar Expressions

Labeled Duration

labeled-duration

YEAR

YEARS

MONTH
MONTHS

DAY

DAYS

HOUR

HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

scalar-expression

A Tabeled-duration denotes a specific unit of time as expressed by a number which can be an
expression followed by one of the duration keywords.

labeled-duration does not conform to standard SQL, and is therefore supported by the Natural
SQL Extended Set only.

Statements 45

46

8

Search Conditions

B S RANCN CONGIION .ottt

= Predicate

47

Search Conditions

predicate
[NOT] .
(search-condition)
AND
search-condition { oR } search-condition

Search Condition

A search-conditioncan consist of a simple predicate or multiple search-conditions. Multiple
search-conditions are combined with the Boolean operators AND, OR and NOT, and can contain
parentheses if required to indicate a desired order of evaluation.

Example

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
SELECT *

INTO NAME, AGE

FROM SQL-PERSONNEL
WHERE AGE = 32 AND NAME > 'K’

END-SELECT
Predicate
. scalar-expression
scalar-expression
comparison subquery

scalar-expression [NOT]BETWEEN scalar-expression AND scalar-expression
column-reference [NOT] LIKE atom
column-reference IS[NOT] NULL

. subquery
scalar-expression
[NOT] IN ‘ (atom, ...)]
scalar-expression ALL
comparison { ANY } subquery
SOME

EXISTS subquery

48 Statements

Search Conditions

XMLEXISTS (xquery-expression-constant{BY REFIPASSING xquery-argument,..})

A predicate specifies a condition that can be “true”, “false” or “unknown”.

Ina search-condition,a predicate can consist of a simple or complex comparison operation or
other kinds of conditions.

Example:

SELECT NAME, AGE
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE AGE BETWEEN 20 AND 30
OR AGE IN (32, 34, 36)
AND NAME LIKE 'Zer'

| Note: The percent sign (%) may conflict with Natural terminal commands. If so, you must

define a terminal command control character different from %; see Changing the Terminal
Command Control Character in the Terminal Commands documentation.

The individual predicates are explained in the following topics (for further information on predic-
ates, please refer to the relevant literature). According to the syntax above, they are called as follows:

= Comparison Predicate
= BETWEEN Predicate
= | |KE Predicate

= NULL Predicate

= |N Predicate

= Quantified Predicate

= EXISTS Predicate

= XMLEXISTS Predicate

Comparison Predicate

{scalar-expression comparison scalar-expression}

A comparison predicate compares two values or a set of values with another set of values.

In the syntax diagram above, comparison can be one of the following operators:

Statements 49

Search Conditions

equal to

less than

V| A

greater than

<= |less than or equal to

>= |greater than or equal to

<> |notequal to

See information on scalar-expression.

Subquery

(select-expression)

A subqueryisa select-expression that is nested inside another such expression.

Example:

DEFINE DATA LOCAL
1 fINAME (A20)
1 #fPERSNR (14)
END-DEFINE

SELECT NAME, PERSNR
INTO #NAME, #PERSNR
FROM SQL-PERSONNEL
WHERE PERSNR IN
(SELECT PERSNR
FROM SQL-AUTOMOBILES
WHERE COLOR = 'black')

END-SELECT

For further information, see Select Expressions.

BETWEEN Predicate

scalar-expression|[NOT] BETWEEN scalar-expression AND scalar-expression

A BETWEEN predicate compares a value with a range of values.

See information on scalar-expression.

50 Statements

Search Conditions

LIKE Predicate

column-reference[NOT] LIKE atom

A LIKE predicate searches for strings that have a certain pattern.

See information on column-reference and atom.

NULL Predicate

ISNOT]NULL
column-reference ‘ ISNULL]
NOTNULL

A NULL predicate tests for null values.

See information on column-reference.

IN Predicate

subquery .. }

scalar-expression[NOT] IN {
(atom)

An IN predicate compares a value or a set of values with a collection of values.
See information on scalar-expressionand atom.

See information on subquery.

Quantified Predicate
ALL
scalar-expression comparison ‘ ANY] subquery
SOME

A quantified predicate compares a value or a set of values with a collection of values.

See information on scalar-expression, comparisonand subquery.

Statements 51

Search Conditions

EXISTS Predicate

EXISTS subquery

An EXISTS predicate tests for the existence of certain rows.

The EXISTS predicate evaluates to true only if the result of evaluating the subquery is not empty;
that is, if there exists at least one record (row) in the FROM table of the subquery satisfying the search
condition of the WHERE clause of this subquery.

Example of EXISTS:

DEFINE DATA LOCAL
1 fINAME (A20)
END-DEFINE

SELECT NAME
INTO fENAME
FROM SQL-PERSONNEL
WHERE EXISTS
(SELECT *
FROM SQL-EMPLOYEES
WHERE PERSNR > 1000
AND NAME < 'L")

END-SELECT

See information on subquery.

XMLEXISTS Predicate

BY REF
XMLEXISTS (xquery-expression-constant [)
PASSING xquery-argument,...

xquery-argument

{ xquery-context-item-expression }

xquery-context-item-expressionAS identifier

The XMLEXISTS predicate belongs to the Natural SQL Extended Set.

The XMLEXISTS predicate tests whether an XPATH expression returns a sequence of one or more
items. For further information, see the IBM Db2 XML Guide.

52 Statements

9 Select Expressions

= Selection

= Table Expression

53

Select Expressions

SELECT selection table-expression

A select-expression specifies a result table. It is used in the following Natural SQL statements:
INSERT | SELECT | UPDATE

Selection

DISTINCT *

[ALL] { scalar-expression [[AS] correlation-name], ... }

A selection specifies the columns of the result set tables to be selected.

Syntax Element Description:

Syntax Element Description

ALL|DISTINCT Elimination of Duplicate Rows:

Duplicate rows are not automatically eliminated from the result of a
select-expression. To request this, specify the keyword DISTINCT.

The alternative to DISTINCT is ALL. ALL is assumed if neither is specified.

scalar-expression|Scalar Expression:

Instead of, or as well as, simple column names, a selection can also include general
scalar expressions containing scalar operators and scalar functions which provide
computed values (see also the section Scalar Expressions).

Example:

SELECT NAME, 65 - AGE
FROM SQL-PERSONNEL

AS The optional keyword AS introduces a correlation-name for a column.

correlation-name |Correlation Name:

A correlation-name canbe assignedtoa scalar-expressionasan alias name
for a result column.

The correlation-nameneed notbeunique.Ifno correlation-nameis specified
for a result column, the corresponding column-name will be used (if the result
column is derived from a column name; if not, the result table will have no name).
The name of a result column may be used, for example, as column name in the
ORDER BY clause of a SELECT statement.

* Asterisk Notation:

54 Statements

Select Expressions

Syntax Element Description

All columns of the result table are selected.

Example:

SELECT *

FROM SQL-PERSONNEL, SQL-AUTOMOBILES

Table Expression

from-clause [where-clause]
[group-by-clause][having-clause]

[order-by-clause][fetch-first-clause]

The table-expressionspecifies from where and according to what criteria rows are to be selected.

The following topics are covered below:

= FROM Clause

= Table Reference

= WHERE Clause

= GROUP BY Clause

= HAVING Clause

= ORDER BY Clause

= FETCH FIRST Clause

= Examples of Table Expressions

FROM Clause

FROM table-reference,...

This clause specifies from which tables the result set is built.

Statements

95

Select Expressions

Table Reference

table-name [[AS] correlation-name]
subquery[AS] correlation-name
Jjoined-table

The tables specified in the FROM clause must contain the column fields used in the selection list.

You can either specify a single table or produce an intermediate table resulting from a subquery
or a “join” operation (see below).

Since various tables (that is, DDMs) can be addressed in one FROM clause and since a
table-expression can contain several FROM clauses if subqueries are specified, the database ID
(DBID) of the first DDM specified in the first FROM clause of the whole expression is used to
identify the underlying database involved.

Optionally, a correlation-clause can be assigned to a table-name. For a subquery, a
correlation-clause must be assigned.

Joined Table

INNER
LEFT [OUTER] .. L
table-reference RIGHT [OUTER] JOIN table-referenceON join-condition

FULL [OUTER]

(Joined-table)

A joined-table specifies an intermediate table resulting from a “join” operation.

The “join” can be an INNER, LEFT OUTER, RIGHT OUTER or FULL OUTER JOIN.If you do not specify
anything, INNER applies.

Multiple “join” operations can be nested; that is, the tables which create the intermediate result
table can themselves be intermediate result tables of a “join” operation or a subquery; and the
latter, in turn, can also have a joined-table or another subguery in its FROM clause.

56 Statements

Select Expressions

Join Condition

For INNER, LEFT OUTER, and RIGHT OUTER joins:

‘search-condition

For FULL OUTER joins:

‘fu77—join—express7‘on= full-join-expression[AND ..]

Full Join Expression

‘ column-name

{ VALUE
COALESCE

} (column-name , ...

Within a join-expressiononly column-names and the scalar-function VALUE (or its synonym
COALESCE) are allowed.

See details on column-name.

WHERE Clause

[WHERE search-condition] ‘

The WHERE clause is used to specify the selection criteria (search-condition) for the rows to be
selected.

Example:

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
SELECT =
INTO NAME, AGE
FROM SQL-PERSONNEL

WHERE AGE = 32
END-SELECT

For further information, see Search Conditions.

Statements 57

Select Expressions

GROUP BY Clause

[GROUP BY column-reference,...]

The GROUP BY clause rearranges the table represented by the FROM clause into groups in a way that
all rows within each group have the same value for the GROUP BY columns.

Each column-referencein the selection list must be either a GROUP BY column or specified within
an aggregate-function. Aggregate functions are applied to the individual groups (not to the entire
table). The result table contains as many rows as groups.

For further information, see Column Reference and Aggregate Function.

Example:

DEFINE DATA LOCAL

1 #AGE (I2)
1 #NUMBER (I2)
END-DEFINE

SELECT AGE , COUNT(*)
INTO #fAGE, #NUMBER
FROM SQL-PERSONNEL
GROUP BY AGE

If the GROUP BY clause is preceded by a WHERE clause, all rows that do not satisfy the WHERE clause
are excluded before any grouping is done.

HAVING Clause

‘[HAVING search-condition]

If the HAVING clause is specified, the GROUP BY clause should also be specified.

Just as the WHERE clause is used to exclude rows from a result table, the HAVING clause is used to
exclude groups and therefore also based on a search-condition. Scalar expressions in a HAVING
clause must be single-valued per group.

For further information, see Scalar Expressions and Search Conditions.

Example:

58 Statements

Select Expressions

DEFINE DATA LOCAL
1 fFNAME (A20)
1 #fAVGAGE (I2)
1 JINUMBER (I2)
END-DEFINE

SELECT NAME, AVG(AGE), COUNT(*)
INTO #NAME, fAVGAGE, #NUMBER
FROM SQL-PERSONNEL
GROUP BY NAME
HAVING COUNT(*) > 1

ORDER BY Clause

ASC]

sort-key [DESC

ORDER BY
INPUT SEQUENCE

ORDER OF table-designator

sort-key
column-name
‘ integer ’
sort-key-expression
FETCH FIRST Clause
1 ROWS
FETCH FIRST { integer } { ROU } ONLY l

Examples of Table Expressions
Example 1:

DEFINE DATA LOCAL

01 #NAME (A20)
01 #FIRSTNAME (A15)
01 ftAGE (I2)
END-DEFINE

SELECT NAME, FIRSTNAME, AGE
INTO #fNAME, #FIRSTNAME, #AGE

Statements

59

Select Expressions

FROM SQL-PERSONNEL
WHERE NAME IS NOT NULL
AND AGE > 20

DISPLAY {ffNAME #fFIRSTNAME #fAGE
END-SELECT

END
Example 2:

DEFINE DATA LOCAL
01 #COUNT (I4)

END-DEFINE

SELECT SINGLE COUNT(*) INTO #COUNT FROM SQL-PERSONNEL

60 Statements

10 Flexible SQL

B USING FIBXIDIE SQIL ... 62
= Specifying Text Variables in Flexible SQLccoiiiiiii e 63
= ROW CHANGE Expression with Flexible SQLcooiiiiiiiie e 65
B OLAP SPECITICALION ...ttt e e e e e e e 65
= Case Expression With FIEXIDIE SQLvvrieiiii e s 70
= Cast Expression with Flexible SQL ... 71
= XML Functions with FIEXIbIe SQLeiiiiiiiiii e 71
= Scalar-Function and Column-Function (Aggregating) with Flexible SQLcccooiiiiiiiiiiiieceee 72

61

Flexible SQL

The so-called “Flexible SQL”, which is a further possibility of issuing SQL statements, enables you
to use arbitrary SQL syntax.

Using Flexible SQL

In addition to the SQL syntax described in the previous sections, flexible SQL enables you to use
arbitrary SQL syntax.

Characters << and >>

Flexible SQL is enclosed in << and >> characters. It can include arbitrary SQL text and host variables.
Within flexible SQL, host variables must be prefixed by a colon (:).

The flexible SQL string can cover several statement lines. Comments are possible, too (see also the
statement PROCESS SQL).

Flexible SQL can be used as a replacement for any of the following syntactical SQL items:

= atom
® column-reference
® scalar-expression

® predicate

Flexible SQL can also be used between the clauses of a select expression:

SELECT selection

KL ool >
INTO ...
FROM ...

N D 4
WHERE ...

N D 4
GROUP BY ...
N D 4
HAVING ...
NG 4
ORDER BY ...
KL ool >

| Note: The SQL text used in flexible SQL is not recognized by the Natural compiler. The
SQL text (with replaced host variables) is simply copied into the SQL string passed to the
database system. Syntax errors in flexible SQL are detected at runtime when the database
executes the corresponding statement.

62 Statements

Flexible SQL

Example 1

SELECT NAME

FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) >> = << MONTH (CURRENT_DATE) >>

Example 2:

SELECT NAME

FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) = MONTH (CURRENT_DATE) >>

Example 3:

SELECT NAME

FROM SQL-EMPLOYEES
WHERE SALARY > 50000
<< INTERSECT
SELECT NAME
FROM SQL-EMPLOYEES
WHERE DEPT = '"DEPT1O0'

>>

Specifying Text Variables in Flexible SQL

Within flexible SQL, you can also specify so-called “text variables”.

<<:T:host-variable[LINDICATOR:host-variable]>>

The syntax items are described below:

A text variable is a host-variab]le prefixed by : T:. It must be in alphanumeric format.

At runtime, a text variable within an SQL statement will be replaced by its contents that is,
the text string contained in the text variable will be inserted into the SQL string.

After the replacement, trailing blanks will be removed from the inserted text string.

You have to make sure yourself that the content of a text variable results in a syntactically
correct SQL string. In particular, the content of a text variable must not contain
host-variables.

A statement containing a text variable will always be executed in dynamic SQL mode.

LINDICATOR

LINDICATOR Option:

Statements

63

Flexible SQL

(thatis, a host-variable prefixed by colon).

The length indicator variable has to be of format/length I2.

into the SQL string.

negative or 0, nothing will be inserted.

See general information on host-variable.

The text variable can be followed by the keyword LINDICATOR and a length indicator variable

If no LINDICATOR variable is specified, the entire content of the text variable will be inserted

If you specify a LINDICATOR variable, only the first n characters (n being the value of the
LINDICATOR variable) of the text variable content will be inserted into the SQL string. If the
number in the LINDICATOR variable is greater than the length of the text variable content,
the entire text variable content will be inserted. If the number in the LINDICATOR variable is

Example Using Text Variable

DEFINE DATA LOCAL

01 TEXTVAR (A200)

01 TABLES VIEW OF SYSIBM-SYSTABLES
02 NAME
02 CREATOR

END-DEFINE

*

MOVE 'WHERE NAME > "'SYS'' AND CREATOR = ''SYSIBM''' TO TEXTVAR
*
SELECT * INTO VIEW TABLES
FROM SYSIBM-SYSTABLES
<K :T:TEXTVAR >>
DISPLAY TABLES
END-SELECT

*

END

The generated SQL statement will look as follows:

SELECT NAME, CREATOR FROM SYSIBM.SYSTABLES:T: FOR FETCH ONLY

The executed SQL statement will look as follows:

SELECT TABNAME, CREATOR FROM SYSIBM.SYSTABLES

WHERE TABNAME > 'SYS' AND CREATOR = 'SYSIBM'

64

Statements

Flexible SQL

ROW CHANGE Expression with Flexible SQL

‘<<ROW CHANGE TOKEN FOR table-designator>> ‘

A ROW CHANGE expression returns a token that represents the last change to a row.

TOKEN Specifies a token of type BIGINT that represents a relative point in the
modification sequence of a row.

FOR table-designator|ldentifies the table in which the expression is referenced. table-designator
has to be a valid Natural SQL DDM.

Example Using Row Change Expression with Flexible SQL:

DEFINE DATA LOCAL
01 TEXTVAR (A200)
01 TABLES VIEW OF SYSIBM-SYSTABLES
02 NAME
02 CREATOR
END-DEFINE
*
SELECT << ROW CHANGE TOKEN FOR SYSTABLES >>
INTO TEXTVAR
FROM SYSIBM-SYSTABLES
DISPLAY TEXTVAR
END-SELECT

*

END

OLAP Specification

ordered-0LAP-specification
numbering-specification
aggregation-specification

Statements 65

Flexible SQL

ordered-0LAP-specification

CUME_DIST ()

PERCENT_RANK ()

RANKCC) OVER

DENSE_RANK () [(window-partition-clause]
NTILE (num-tile) window-order-clause)
lag-function

lead-function

lag-function

'"RESPECT NULLS'
LAG (expression [, offset [, default [, { } 11)

"IGNORE NULLS'

lead-function

'"RESPECT NULLS'
LEAD (expression [, offset [, default [, { } 11)

"IGNORE NULLS'

numbering-specification

ROW_NUMBER () OVER([window—part1t10n—clause][window—order—clauseh‘

aggregation-specification

aggregate-function
OVER ([window-partition-clause])

OLAP-column-function
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED }
FOLLOWING
window-aggregation-group-clause

window-order-clause {

66

Statements

Flexible SQL

aggregate-function

AVG function
CORRELATION function
COUNT function
COUNT_BIG function
COVARIANCE function
MAX function

MIN function

STDDEV function

SUM function
VARIANCE function

OLAP-column-function

first-value-function
last-value-function

nth-value-function

ratio-to-report-function

first-value-function

FIRST_VALUE (expression [, {

"RESPECT NULLS'

"IGNORE NULLS'

|

last-value-function

LAST_VALUE (expression [, {

'RESPECT NULLS'

"IGNORE NULLS'

}

nth-value-function

NTH_VALUE (expression , nth-row)

Statements

67

Flexible SQL

ratio-to-report-function

RATIO_TO_REPORT (expression)\

window-aggregation-group-clause

{ ROWS } ‘ group-start]
group-between

RANGE
group-end

group-start

unsigned-constant PRECEDING

‘ UNBOUNDED PRECEDING]
CURRENT ROW

group-between

‘BETWEENgroup—bound-lANDgroup—bound-Z

group-bound-1

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-bound-2

UNBOUNDED FOLLOWING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-end

{ UNBOUNDED FOLLOWING }
unsigned-constant FOLLOWING

68 Statements

Flexible SQL

window-partition-clause

PARTITION BY partitioning-expression,..

window-order-clause
ASC
NULLS LAST
ORDER BY ASC NULLS FIRST |
{sort-key-expression DESC o
DESC NULLS FIRST
DESC NULLS LAST
RANK Specifies that the rank of a row is defined as 1 plus the number of rows that strictly precede
the row.
DENSE_RANK |Specifies that the rank of a row is defined as 1 plus the number of preceding rows that are
distinct with respect to the ordering.
ROW_NUMBER |Specifies that a sequential row number is computed for the row that is defined by the

ordering, starting with 1 for the first row.

PARTITION BY

Defines the partition within which the OLAP operation is applied.

ORDER BY Defines the ordering of rows within a partition that is used to determine the value of the
OLAP specification.

ASC Specifies that the values of sort-key-expression are used in ascending order.

DESC Specifies that the values of sort-key-expression are used in descending order.

NULLS_FIRST

Specifies that the window ordering considers null values before all non-null values in the
sort order.

NULLS LAST

Specifies that the window ordering considers null values after all non-null values in the
sort order.

Example:

Display the ranking of employees that have a total salary of more than $30,000, in order by last

name.

SELECT EMPNO,

LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,

<<KRANK() OVER(CORDER BY SALARY+BONUS DESC) AS RANK_SALARY>>
FROM DSN8910-EMP WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME;

Statements

69

Flexible SQL

Case Expression with Flexible SQL

case-expression

searched-when-clause
<< CASE } [

ELSE { NULL }] END >>

. scalar-expression
simple-when-clause

A case-expressiondoes not conform to standard SQL and is therefore supported by the Natural
SQL Extended Set only.

Searched WHEN Clause

WHEN search-condition THEN { .
scalar-expression

NULL }

A Searched When Clause does not conform to standard SQL and is therefore supported by the
Natural SOL Extended Set only.

See details on search-condition.

Simple WHEN Clause

scalar-expression

LL
scalar-expression { WHEN scalar-expression THEN { Nu }}."

A Simple WHEN Clause does not conform to standard SQL and is therefore supported by the Nat-
ural SQL Extended Set only.

Example:

DEFINE DATA LOCAL

1 VWA VIEW OF NAT-D00O1

2 1D

2 NAME

2 CITY

01 #RES1 (A8)

01 #fCASE (I4) INITKO>
END-DEFINE

SELECT CITY,

<<

CASE SUBSTR(CITY,1,1)

WHEN 'V' THEN "Administration'
WHEN 'D' THEN "Accounting'

70 Statements

Flexible SQL

WHEN "K' THEN 'Operations'

END

>>

INTO VWA.CITY , {fRES1
FROM NAT-D0001

WRITE VWA.CITY #RESL
END-SELECT

END

Cast Expression with Flexible SQL

cast-expression

’<<CAST (scalar-expressionAS data-type) >>‘

A CAST expression does not conform to standard SQL and is therefore supported by the Natural

SQL Extended Set only.

Example:

DEFINE DATA LOCAL

1 VWA VIEW OF NAT-DOO1
2 1D

2 NAME

2 CITY

01 #RES1 (I4)
END-DEFINE

SELECT

<< CAST (ID AS INTEGER)
>>

INTO #fRES1

FROM NAT-D001 WHERE ID =1

WRITE #RES1
END-SELECT
END

XML Functions with Flexible SQL

XML-Functions

Any available XML functions must be treated with flexible SQL if those functions have their own
specific keyword or syntax, if you are using the AS keyword and order by statement or any specific
statement recognized by SQL. You must place the symbol of the flexible SQL within that stated

Statements

7"

Flexible SQL

portion. Additionally, between the left parathesis and the left arrow symbol of flexible SQL, you
must leave a space or you receive a compiler error.

Example:

DEFINE DATA LOCAL

D033412A VIEW OF NATQA-D033412A

NAME

YEARS_OF_SERVICE

ANNUAL_LEAVE

TIME_IN

2 BACKGROUND

END-DEFINE

SELECT XMLSERTALIZE(C <<CONTENT XMLELEMENT>>(<<KNAME "Annual Leave">>,XMLATTRIBUTES(«
<<ANNUAL_LEAVE AS "al1">>),XMLAGG(XMLELEMENT(<<NAME "name">>,NAME)<<ORDER BY NAME>>) «
)<<AS CLOB(110)>>) INTO #XMLSERIALIZE

FROM NATQA-D033412A

GROUP BY ANNUAL_LEAVE

END-SELECT

END

NN

Scalar-Function and Column-Function (Aggregating) with Flexible SQL

Scalar-functionsand column-functions are only supported with their proper syntax, as stated
in the section Scalar Expression. After the function name, within the left and right parentheses
between the scalar expressions, there must be a comma. Therefore, not putting a comma between
one scalar expression and another is restricted.

Any additional usage of keywords or any SQL statements within the parentheses, which is not
recognized as a scalar expression with or without a comma, must be included with the flexible
SQL to make it work.

Additionally, between the left parathesis and the left arrow symbol of flexible SQL you must leave
a space or you receive a compiler error.

Example:

DEFINE DATA LOCAL

01 V1 VIEW OF DSN8910-EMP
02 EMPNO

02 FIRSTNME

02 LASTNAME

02 SALARY

02 BONUS

01 M1 (I4)

END-DEFINE

M1 := 10000

72 Statements

Flexible SQL

SELECT * INTO VIEW V1

FROM DSN8910-EMP

WHERE SALARY > GREATEST(CAST(<<:M1 AS INTEGER>>))
DISPLAY V1

END-SELECT

ENDEND

Statements 73

74

I11

Referenced Example Programs

75

76

11 Referenced Example Programs

B ASSIGN e e 78
B AT BREAK L.t 79
B AT END OF DAT A Lottt ettt e et e e et e e et e e et e s 81
B AT END OF PAGE ...t 82
B AT START OF DATA Lttt 82
B AT TOP OF PAGE ...ttt 84
B DEFINE SUBROUTINE ...t 85
B TN D et e et 86
LI O PP P PP PP RPPPR PP 88
B HISTOGRAM L.ttt 89
L | O TP U PO U P PP TPUP PRI 89
= PERFORM BREAK PROCESSING ...ttt 91
B R E A D et e ettt 92
B R E P E A s 93
LT PSPPSR PUTUPPPRPPPPPRN 94
B S T O R E e e 95
B P D AT E e 97
= Example Programs for System Variablesoooiiiiiiiiii 98

77

Referenced Example Programs

This chapter contains additional example programs that are referenced in the Natural statements
and system variables reference documentation. All these examples are contained in the library

SYSEXSYN.

Note: Generally, the example programs shown in the statement descriptions are written in

structured mode. For statements where the reporting-mode syntax differs considerably
from the structured-mode syntax, references to equivalent reporting-mode examples are
also provided. The example programs are available in source-code form in the Natural library
SYSEXSYN. Further example programs of using Natural statements are documented in the
section Referenced Example Programs in the Programming Guide. These example programs are
provided in the Natural library SYSEXPG. Ask your Natural administrator about the availab-
ility of these libraries at your site. The example programs use data from the files EMPLOYEES

and VEHICLES, which are supplied by Software AG for demonstration purposes.

ASSIGN

The following example is referenced in the ASSIGN/COMPUTE statement description:

ASGEXIR - ASSIGN (reporting mode)

** Example "ASGEXIR': ASSIGN (reporting mode)

R R R R B B b e b R B R I e R e e R e e b e I b e B e i e b e e b e b b e e b e b S e e S e b b S e e b o 4

RESET #A (N3)

#B (A6)

##C (N0.3)

#D (N0O.5)

#/E (N1.3)

##F (N5)

#G (A25)

#H (A3/1:3)
*
ffA = 5
#B = "ABC'
ffc = .45
#D = #/E = -0.12345
ASSIGN ROUNDED #F = 199.999
#G = 'HELLO"
*

fiH (1) "UVW'
ffH (3) = "XYZ'
*

END

Output of Program AEDEX1R:

WRITE NOTITLE '=' #A
WRITE '=' #B

WRITE '=' #C

WRITE '=' #D / '=' {tE
WRITE '=" #F

WRITE '=" #G

WRITE '=' #H (1:3)

78

Statements

Referenced Example Programs

A 5

##B: ABC

#C: .450

#D: -.12345

#E: -0.123

JEF - 200

#G: HELLO

JH: UVW XYZ
AT BREAK

The following examples are referenced in the AT BREAK statement description:

ATBEXIR - AT BREAK (reporting mode)

** Example "ATBEXIR': AT BREAK (reporting mode)

khkkkhkkhkhkhkhkkhkhhhkkhkkhhhhkhkkhhhhhkkhkkhhhhkhkkhhhhkhkkhhhhhkhkhhhhkkhkhhhhkkhkkhhhkhkkhkhhhrhkkhhhhrkkhhrrtkk

*

LIMIT 10
READ EMPLOYEES BY CITY

AT BREAK OF CITY DO

SKIP 1

DOEND

/*

DISPLAY NOTITLE CITY (IS=0ON) COUNTRY (IS=0N) NAME
LOOP
END

Output of Program ATBEX1R:

CITY COUNTRY NAME
ATKEN USA SENKO
AIX EN OTHE F GODEFROY
AJACCIO CANALE
ALBERTSLUND DK PLOUG
ALBUQUERQUE USA HAMMOND
ROLLING
FREEMAN
LINCOLN
ALFRETON UK GOLDBERG

Statements 79

Referenced Example Programs

ALICANTE

ATBEX5R - AT BREAK statement with multiple break levels (reporting mode)

** Example "ATBEX5R': AT BREAK (multiple break Tevels) (reporting mode)

R R R R R b b R b e S b e I b R e i b e b S e i i b R e i R b S e b R R e b b e S b b

E

RESET LEAVE-DUE-L (N4)

*

LIMIT 5

FIND EMPLOYEES WITH CITY =
SORTED BY CITY DEPT

MOVE LEAVE-DUE TO LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME LEAVE-DUE-L

AT BREAK OF DEPT
WRITE NOTITLE /

T*DEPT OLD(DEPT) T*LEAVE-DUE-L SUM(CLEAVE-DUE-L) /

AT BREAK OF CITY
WRITE NOTITLE

T*CITY OLD(CCITY) T*LEAVE-DUE-L SUM(LEAVE-DUE-L) //

LOOP

*

END

Output of Program ATBEX5R:

CITY DEPARTMENT
CODE
PHILADELPHIA MGMT30
MGMT30
TECH10
TECH10
PHILADELPHIA
PITTSBURGH MGMT10
MGMT10
PITTSBURGH

GOMEZ

"PHILADELPHIA" OR =

WOLF-TERROINE
MACKARNESS

BUSH
NETTLEFOLDS

FLETCHER

"PITTSBURGH'

LEAVE-DUE-L

11
27

38

39
24

63

101

34

34

34

80

Statements

Referenced Example Programs

AT END OF DATA

The following example is referenced in the AT END OF DATA statement description:

AEDEXIR - AT END OF DATA (reporting mode)

** Example '"AEDEXIR': AT END OF DATA (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S

LIMIT 5
EMP. FIND EMPLOYEES WITH CITY = "STUTTGART'
IF NO RECORDS FOUND
ENTER
DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)
/%
AT END OF DATA DO
IF *COUNTER (EMP.) = 0 DO
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM
DOEND
WRITE NOTITLE / "SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X "MINIMUM:' MIN(CSALARY(1)) CURR-CODE (1)
/ 7X "AVERAGE:' AVER(SALARY (1)) CURR-CODE (1)

DOEND
LOOP
END

Output of Program AEDEX1R:

PERSONNEL NAME FIRST-NAME ANNUAL
ID SALARY
11100328 BERGHAUS ROSE 70800
11100329 BARTHEL PETER 42000
11300313 AECKERLE SUSANNE 55200
11300316 KANTE GABRIELE 61200
11500304 KLUGE ELKE 49200

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

CURRENCY
CODE

DM
DM
DM
DM
DM

Statements

81

Referenced Example Programs

AT END OF PAGE

The following example is referenced in the AT END OF PAGE statement description:

AEPEXIR - AT END OF PAGE (reporting mode)

** Example '"AEPEXIR': AT END OF PAGE (reporting mode)
RRA R R B R R R e e b b R e b b e e b b e b b e e i b b S e b b S e b i R e e b b R e b b S e e b b R e b b e b b S
FORMAT PS=10
LIMIT 10
READ EMPLOYEES BY PERSONNEL-ID FROM '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS

NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*
AT END OF PAGE DO
WRITE / 28T "AVERAGE SALARY: ..." AVER(SALARY (1)) CURR-CODE (1)

DOEND

/*
LOOP
END

Output of Program AEPEX1R:

NAME CURRENT SALARY CURRENCY
POSITION CODE

CREMER ANALYST 34000 USD

MARKUSH TRAINEE 22000 USD

GEE MANAGER 39500 USD

KUNEY DBA 40200 USD

NEEDHAM PROGRAMMER 32500 USD

JACKSON PROGRAMMER 33000 USD
AVERAGE SALARY: ... 33533 USD

AT START OF DATA

The following example is referenced in the AT START 0F DATA statement description:

82 Statements

Referenced Example Programs

ASDEXIR - AT START OF DATA (reporting mode)

** Example '"ASDEXIR': AT START OF DATA (reporting mode)

R R R e e b b S b b e b b S b b e b e S b S b S S b S b e b e b S b b S b S b b e b b S b b e b b b Y

RESET #CITY (A20) #CNTL (A1)

*

REPEAT
INPUT "ENTER VALUE FOR CITY' #CITY
/*
IF #CITY = ' ' OR= "END' DO
STOP
DOEND

FIND EMPLOYEES WITH CITY = #CITY
IF NO RECORDS FOUND DO
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE
DOEND
/%
AT START OF DATA DO
INPUT (AD=0) 'RECORDS FOUND' *NUMBER //
"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=A)
IF #CNTL NE 'D' DO
ESCAPE BOTTOM
DOEND
DOEND
/*
DISPLAY NAME FIRST-NAME
LOOP
LOOP
END

Output of Program ASDEX1R:

ENTER VALUE FOR CITY PARIS

After entering and confirming city name:

RECORDS FOUND 26
ENTER 'D' TO DISPLAY RECORDS D

After entering and confirming D:

Statements

83

Referenced Example Programs

NAME FIRST-NAME
MATZIERE ELISABETH
MARX JEAN-MARTE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS
CENSTER BERNARD
DuC JEAN-PAUL
CAHN RAYMOND
MAZUY ROBERT
FAURIE HENRI
VALLY ALAIN
BRETON JEAN-MARTE
GIGLEUX JACQUES
KORAB-BRZOZOWSKI BOGDAN
XOLIN CHRISTIAN
LEGRIS ROGER
VVVV
AT TOP OF PAGE

The following example is referenced in the AT TOP OF PAGE statement description:

ATPEXIR - AT TOP OF PAGE (reporting mode)

** Example "ATPEXIR': AT TOP OF PAGE (reporting mode)

R R R R B b e b b e R e b b e R e i e b e B e b e I e e e B e e b e e b e b e b e e b e e b e b e b e b e b e e b 4

*

FORMAT PS=15

LIMIT 15

*

READ EMPLOYEES BY NAME STARTING FROM 'L
DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER "-" (78)

/%
AT TOP OF PAGE DO
WRITE 'BEGINNING NAME:' NAME

DOEND
/*
AT END OF PAGE DO
SKIP 1
WRITE "ENDING NAME: " NAME

84

Statements

Referenced Example Programs

DOEND
LOOP
END

DEFINE SUBROUTINE

The following example is referenced in the DEFINE SUBROUTINE statement description:

DSREXIR - DEFINE SUBROUTINE (reporting mode)

** Example 'DSREXIR': DEFINE SUBROUTINE (reporting mode)
P e b b b i B i S e B i b b e b B b b i i b b b o b b b b i S B b i g B b o i b i o S b b b o i
RESET #ARRAY-ALL (A300)

X (N2) Y (N2)
REDEFINE #fARRAY-ALL (FARRAY (A75/1:4))

JFARRAY-ALL (#ALINE (A25/1:4,1:3))

*
FORMAT PS=20
LIMIT 5

*

MOVE 1 TO #X Y
*
FIND EMPLOYEES WITH NAME = 'SMITH'
OBTAIN ADDRESS-LINE (1:2)
/*
MOVE NAME TO F#ALINE (HX,4HY)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #FALINE (#X+3,4Y)
IF #Y = 3 DO
MOVE 1 TO #Y
PERFORM PRINT
DOEND
ELSE DO
ADD 1 TO fY
DOEND
AT END OF DATA DO
PERFORM PRINT
DOEND
LOOP
*
DEFINE SUBROUTINE PRINT
WRITE NOTITLE (AD=0I1) #ARRAY(*)
RESET #ARRAY (*)
SKIP 1
RETURN

*

END

Statements 85

Referenced Example Programs

Output of Program AEDEX1R:

SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD
MILWAUKEE

554349 877-4563

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963

FIND

14100 ESWORTHY RD.
MONTERREY

The following examples are referenced in the FIND statement description:

FNDFIR - FIND statement with FIRST option (reporting mode)

** Example "FNDFIR': FIND FIRST

R R R b R R b b R b e b S e I b R R i b e i b R e i b i R e i b R e i b b i b R R e i b b e b b

*

FIND FIRST EMPLOYEES WITH CITY = 'DERBY'

*

WRITE NOTITLE "TOTAL RECORDS SELECTED:' *NUMBER

SKIP 2

WRITE '***FIRST PERSON SELECTED***'
'NAME : " NAME /
"DEPARTMENT: " DEPT /
'JoB TITLE: ' JOB-TITLE

*

END

Output of Program FNDFIR:

TOTAL RECORDS SELECTED: 141

FIRST PERSON SELECTED

NAME : DEAKIN
DEPARTMENT: SALEO1
JOB TITLE: SALES ACCOUNTANT

86

Statements

Referenced Example Programs

FNDNUM - FIND statement with NUMBER option (reporting mode)

** Example "FNDNUM': FIND NUMBER

R R e b S b S b e b b e b e b e b b e e b e e b e S e e e S e e b e e b e e b S e b e e i b e b e e b o S

RESET #BIRTH (D)

*

MOVE EDITED '19500101" TO #BIRTH (EM=YYYYMMDD)
*
FIND NUMBER EMPLOYEES WITH CITY = 'MADRID'
WHERE BIRTH LT #BIRTH
*
WRITE NOTITLE 'TOTAL RECORDS SELECTED: " *NUMBER
/ "TOTAL BORN BEFORE 1 JAN 1950: ' *COUNTER

*

END

Output of Program FNDNUM:

TOTAL RECORDS SELECTED: 41
TOTAL BORN BEFORE 1 JAN 1950: 16

FNDUNQ - FIND statement with UNIQUE option (reporting mode)

** Example 'FNDUNQ': FIND UNIQUE

R R R b e b e b e b e R e b b e b b e e B e b e e e e e e I (e e b e b e b e e b e b e b e e b S b e b e e b o 4
RESET #NAME (A20)
*

*

INPUT "ENTER EMPLOYEE NAME: ' #NAME
IF #NAME = ' '
STOP

*

FIND UNIQUE EMPLOYEES WITH NAME = #NAME

*

DISPLAY NOTITLE NAME FIRST-NAME JOB-TITLE
*
ON ERROR DO
WRITE 'NAME EITHER NOT UNIQUE OR DOES NOT EXIST'
FETCH 'FNDUNQ®
DOEND

*

END

Output of Program FNDUNQ:

Statements 87

Referenced Example Programs

ENTER EMPLOYEE NAME: HEURTEBISE

After entering and confirming name HEURTEBISE:

NAME FIRST-NAME CURRENT
POSITION
HEURTEBISE MICHEL CONTROLEUR DE GESTION

FOR

The following example is referenced in the FOR statement description:

FOREXIR - FOR (reporting mode)

** fxample 'FOREX1R': FOR (reporting mode)
R R R b R e e b b e b b e b S S b b S e b b S e i S e b b e b S e b b S S e b S S e b b e e b b e e
RESET #FINDEX (I1)
#ROOT (N2.7)

*
FOR #INDEX 1 TO 5

COMPUTE #RO0OT = SQRT (#INDEX)

WRITE NOTITLE '=' ffINDEX 3X '=" #R0OOT
LOOP
*
SKIP 1
FOR ffINDEX 1 TO 5 STEP 2

COMPUTE #ROOT = SQRT (#INDEX)

WRITE '=" #fINDEX 3X '=' {fROOT
LOOP

*

END

Output of Program FOREX1R:

FFINDEX : 1 {#ROOT: 1.0000000
FFINDEX : 2 ffROOT: 1.4142135
FFINDEX : 3 #ROOT: 1.7320508
JFINDEX : 4 #ROOT: 2.0000000
F#FINDEX : 5 #ROOT: 2.2360679
FFINDEX : 1 {#ROOT: 1.0000000
FFINDEX : 3 #ROOT: 1.7320508
FFINDEX : 5 #ROOT: 2.2360679

88

Statements

Referenced Example Programs

HISTOGRAM

The following example is referenced in the HISTOGRAM statement description:

HSTEX1R - HISTOGRAM (reporting mode)

** Example "HSTEXIR': HISTOGRAM (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S
*

LIMIT 8
HISTOGRAM EMPLOYEES CITY STARTING FROM 'M'
DISPLAY NOTITLE CITY

"NUMBER OF/PERSONS' *NUMBER *COUNTER
LOOP

*

END

Output of Program HSTEX1R:

CITY NUMBER OF CNT
PERSONS

MADISON

MADRID 4
MAILLY LE CAMP

MAMERS

MANSFIELD

MARSETLLE

MATLOCK

MELBOURNE

N RN E W
O N O OB W

IF

The following example is referenced in the IF statement description:

Statements 89

Referenced Example Programs

IFEX1R - IF (reporting mode)

**% Example 'IFEXIR':

RO R b e b S b S b e b o b e b e b e b b e e b e e b e e e e e S e e b e e b e e b e e b e e i b e b e e o S

RESET #BIRTH (D)

*

MOVE EDITED '19450101°

IF (reporting mode)

SUSPEND IDENTICAL SUPPRESS

LIMIT 20

*

FND. FIND EMPLOYEES WITH CITY
SORTED BY NAME BIRTH

IF SALARY (1) LT 40000

WRITE NOTITLE ‘'****x!

ELSE DO

IF BIRTH GT #BIRTH DO

FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID (FND.)

DISPLAY (IS=0ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8)

LOOP
DOEND
DOEND
LOOP
END

Output of Program IFEXIR:

NAME

BAECKER

*xxHx BECKER
BLOEMER

FALTER

peasieasas [FALTER
ks GROTHE
FxxAk HETLBROCK
*xx%*x HESCHMANN
HUCH

*FxxHA KICKSTEIN
FrkAAk KLEENE
FxxAEE KRAMER

1956-01-05

1979-11-07
1954-05-23

1952-09-12

NAME 30X

TO #BIRTH (EM=YYYYMMDD)

"FRANKFURT'

ANNUAL MAKE
SALARY

74400 BMW

45200 FIAT
70800 FORD

67200 MERCEDES

"SALARY LT 40000'

SALARY

SALARY
SALARY
SALARY
SALARY

SALARY
SALARY
SALARY

LT

LT
LT
LT
LT

LT
LT
LT

40000

40000
40000
40000
40000

40000
40000
40000

90

Statements

Referenced Example Programs

PERFORM BREAK PROCESSING

The following example is referenced in the PERFORM BREAK PROCESSING statement description:

PBPEXIR - PERFORM BREAK PROCESSING (reporting mode)

** Example 'PBPEXIR': PERFORM BREAK PROCESSING (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S

RESET #LINE (N2) #INDEX (N2)
*
MOVE 1 TO #LINE
FOR #INDEX 1 TO 18
PERFORM BREAK PROCESSING
/*
AT BREAK OF #fINDEX /1/ DO
WRITE NOTITLE / 'PLEASE COMPLETE LINES 1-9 ABOVE' /
MOVE 1 TO #LINE
DOEND
/*
WRITE NOTITLE '_" (64) '=' #LINE
ADD 1 TO #LINE
LOOP
END

Output of Program PBPEX1R:

FFLINE:
JFLINE:
JFLINE:
JFLINE:
JFLINE:
FLINE:
JFLINE:
FLINE:
JFLINE:

O 0O N o o B wnmMn -

PLEASE COMPLETE LINES 1-9 ABOVE

JFLINE:
#FLINE:
JFLINE:
fFLINE:
JFLINE:
JFLINE :
#FLINE:
JFLINE:
#FLINE:

W 00 N O O B WM

PLEASE COMPLETE LINES 1-9 ABOVE

Statements 91

Referenced Example Programs

READ

The following example is referenced in the READ statement description:

REAEXIR - READ (reporting mode)

** Example 'REAEXIR': READ (reporting mode)

RRA R R B R R R e e b b R e b b e e b b e b b e e i b b S e b b S e b i R e e b b R e b b S e e b b R e b b e b b S

LIMIT 3

*

WRITE 'READ IN PHYSICAL SEQUENCE'
READ EMPLOYEES IN PHYSICAL SEQUENCE
DISPLAY NOTITLE PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / '"READ IN ISN SEQUENCE'

READ EMPLOYEES BY ISN STARTING FROM 1 ENDING AT 3
DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / '"READ IN NAME SEQUENCE'

READ EMPLOYEES BY NAME

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / 'READ IN NAME SEQUENCE STARTING FROM "'M""'
READ EMPLOYEES BY NAME STARTING FROM 'M’
DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

END

Output of Program REAEX1R:

PERSONNEL NAME
ID

READ IN PHYSICAL SEQUENCE
50005800 ADAM

50005600 MORENO

50005500 BLOND

READ IN ISN SEQUENCE
50005800 ADAM
50005600 MORENO
50005500 BLOND

READ IN NAME SEQUENCE

92

Statements

Referenced Example Programs

60008339 ABELLAN 478 1
30000231 ACHIESON 878
50005800 ADAM 1 3

READ IN NAME SEQUENCE STARTING FROM 'M'

30008125 MACDONALD 923 1
20028700 MACKARNESS 765

40000045 MADSEN 508 3
REPEAT

The following examples are referenced in the REPEAT statement description:

RPTEXIR - REPEAT (reporting mode)

** Example 'RPTEXIR': REPEAT (reporting mode)

khkkkhkkhkhkhkhkkhkhhhkkhkkhhhhkhkkhhhhhkkhkkhhhhkhkkhhhhkhkkhhhhhkhkhhhhkkhkhhhhkkhkkhhhkhkkhkhhhrhkkhhhhrkkhhrrtkk

RESET #PERS-NR (A8)
*
REPEAT
INPUT 'ENTER A PERSONNEL NUMBER:' #PERS-NR
IF #fPERS-NR = '
ESCAPE BOTTOM
FIND EMPLOYEES WITH PERSONNEL-ID = #PERS-NR
IF NO RECORD FOUND
REINPUT 'NO RECORD FOUND'
DISPLAY NOTITLE NAME
LOOP
LOOP

*

END

Output of Program RPTEX1R:

ENTER A PERSONNEL NUMBER:

RPTEX2R - REPEAT with WHILE and UNTIL option (reporting mode)

** Example 'RPTEX2R': REPEAT (with WHILE and UNTIL option)

R R b i b S b b e b b e e b e b b e e e e b e e e e e e e e b e b e b e e b e e b e e i b e b e e b i S
RESET #X (I1) Y (I1)

*

*

REPEAT WHILE #X <= 5
ADD 1 TO #X
WRITE NOTITLE '=' #X
LOOP

*

Statements

93

Referenced Example Programs

SKIP 3

REPEAT
ADD 1 TO #
WRITE '=' 4y
UNTIL #Y =6

LOOP

*

END

Output of Program RPTEX2R:

X
X
X
X
X
X

D OB~ W N

7Y
7Y
7Y
Y -
Y
Y -

D OB~ W

SORT

The following example is referenced in the SORT statement description:

SRTEXIR - SORT (reporting mode)

**% Example '"SRTEXIR': SORT (reporting mode)
khkkkhkhkkhkhkkhhkkhhkhhkkhkhkhhkkhkhkhhkkhhkhhkkhkhkhhkkhhkhhkhkhkhhkhhkhhkhrkhhkhkhkhhkhkrkhhkhrkhhkhkrkhhkhrkhhkhkrkhkrkhxk
RESET #AVG (P11) #TOTAL-TOTAL (P11) #TOTAL-SALARY (P11)

JFAVER-PERCENT (N3.2)

*

LIMIT 3

FIND EMPLOYEES WITH CITY =

OBTAIN SALARY(1:2)
COMPUTE #TOTAL-SALARY

/*

SORT BY PERSONNEL-ID USING #TOTAL-SALARY SALARY(*) CURR-CODE
GIVE AVER(#TOTAL-SALARY)

/%
AT START OF DATA DO

SALARY (1) + SALARY (2)
ACCEPT IF #TOTAL-SALARY GT O

94

Statements

Referenced Example Programs

WRITE NOTITLE '*" (40)
"AVG CUMULATIVE SALARY:' *AVER (#TOTAL-SALARY) /
MOVE *AVER (#TOTAL-SALARY) TO #AVG
DOEND
COMPUTE ROUNDED ffAVER-PERCENT = #TOTAL-SALARY / #AVG * 100
ADD #TOTAL-SALARY TO #TOTAL-TOTAL
/*
DISPLAY NOTITLE PERSONNEL-ID SALARY (1) SALARY (2)
#fTOTAL-SALARY CURR-CODE (1)
"PERCENT/OF/AVER' #fAVER-PERCENT
AT END OF DATA
WRITE / '*' (40) 'TOTAL SALARIES PAID: " #TOTAL-TOTAL
LOOP

*

END

Output of Program SRTEX1R:

PERSONNEL ANNUAL ANNUAL #fTOTAL-SALARY CURRENCY PERCENT

ID SALARY SALARY CODE OF

AVER

Kok ok kkokkkkkkkokkkkkkkkkkkkkkkkkkxkkkkkkxk% AVG CUMULATIVE SALARY : 44633
20000100 31000 29400 60400 USD 135.30
20019200 18000 17100 35100 USD 78.60
20020400 20000 18400 38400 USD 86.00
Kok kok ok kk ok ok ok k ok ok k ok k ok kk ok ok kkkkkkkkkkkkxkkkkx TOTAL SALARIES PAID: 133900
STORE

The following example is referenced in the STORE statement description:

STOEXIR - STORE (reporting mode)

** Example 'STOEXIR': STORE (reporting mode)

**

**% CAUTION: Executing this example will modify the database records!

R R R o R R b b R b b e b e e I b R e i b b e i b R e i b i R e I b R e i i b e b R e i b b e b b

RESET #PERSONNEL-ID (A8)

#ENAME (A20)
#FIRST-NAME (Al15)
#BIRTH-D (D)

#IMAR-STAT (A1)
#BIRTH (A8)
FCITY (A20)

Statements

95

Referenced Example Programs

*

##COUNTRY (A3)
fFCONF (A1)
REPEAT
INPUT "ENTER A PERSONNEL ID AND NAME (OR ''END'' TO END)"' //
"PERSONNEL-ID : ' #PERSONNEL-ID //
"NAME : ' {INAME /
"FIRST-NAME : ' #FIRST-NAME
/*
/* VALIDATE ENTERED DATA
/*
IF #PERSONNEL-ID = "END' OR #NAME = 'END'
STOP
IF ##NAME = '

REINPUT WITH TEXT '"ENTER A LAST-NAME' MARK 2 AND SOUND ALARM

IF #fFIRST-NAME = ' '

REINPUT WITH TEXT "ENTER A FIRST-NAME' MARK 3 AND SOUND ALARM

/*
/* ENSURE PERSON IS NOT ALREADY ON FILE
/*
FIND NUMBER EMPLOYEES WITH PERSONNEL-ID = {PERSONNEL-ID
IF *NUMBER > 0
REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS'
MARK 1 AND SOUND ALARM
MOVE 'N' TO #CONF

/*

/* GET FURTHER INFORMATION

/*

INPUT
"ADDITIONAL PERSONNEL DATA' /117
"PERSONNEL-ID :' #fPERSONNEL-ID (AD=I0) /
"NAME ' fENAME (AD=I0) /
"FIRST-NAME ;' #fFIRST-NAME (AD=I0Q) ///
"MARITAL STATUS ' #IMAR-STAT /
"DATE OF BIRTH (YYYYMMDD) :' #BIRTH /
"CITY 2 JICITY /
"COUNTRY (3 CHARACTERS) ' JICOUNTRY //
"ADD THIS RECORD (Y/N) ;' JFCONF (AD=M)

/*

/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
/*
IF NOT (#MAR-STAT = 'S' OR = 'M' OR = 'D' OR = 'W")
REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -
"M=MARRIED D=DIVORCED W=WIDOWED' MARK 1
IF NOT (#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
REINPUT TEXT 'ENTER CORRECT DATE' MARK 2
IF #CITY = '
REINPUT TEXT 'ENTER A CITY NAME' MARK 3
IF #COUNTRY = ' '
REINPUT TEXT 'ENTER A COUNTRY CODE' MARK 4
IF NOT (#CONF = 'N' OR= 'Y")
REINPUT TEXT 'ENTER Y (YES) OR N (NO)' MARK 5

96

Statements

Referenced Example Programs

IF #CONF = 'N'
ESCAPE TOP
/*
/* ADD THE RECORD
/*
MOVE EDITED #BIRTH TO #BIRTH-D (EM=YYYYMMDD)
/*
STORE RECORD IN EMPLOYEES
WITH PERSONNEL-ID = #PERSONNEL-ID

NAME = {NAME
FIRST-NAME = {fFIRST-NAME
MAR-STAT = JMAR-STAT
BIRTH = #BIRTH-D
CITY = {fCITY
COUNTRY = JfCOUNTRY
END OF TRANSACTION
/*
WRITE NOTITLE 'RECORD HAS BEEN ADDED'
/*
LOOP
END
UPDATE

The following example is referenced in the UPDATE statement description:

UPDEXIR - UPDATE (reporting mode)

** Example 'UPDEXIR': UPDATE (reporting mode)

**

**% CAUTION: Executing this example will modify the database records!

R R R R R R R b e b e S R R i R e R e b R e i R b e b R R e i S b e S b b 4

RESET #NAME (A20)
*
INPUT "ENTER A NAME:' #NAME (AD=M)
IF #NAME = ' '

STOP
*
FIND EMPLOYEES WITH NAME = #NAME

IF NO RECORDS FOUND

REINPUT WITH 'NO RECORDS FOUND' MARK 1

/%

INPUT 'NAME: " NAME (AD=0) /
"FIRST NAME:' FIRST-NAME (AD=M) /
"CITY: " CITY (AD=M)

/*

UPDATE USING SAME RECORD

/*

END TRANSACTION

Statements 97

Referenced Example Programs

/*
LOOP
*

END

Output of Program UPDEX1R:

ENTER A NAME:

Example Programs for System Variables

The following examples are referenced in the *0CCURRENCE system variable description:

OCC1P - System Variable *OCCURRENCE

** Example 'OCCIP': *OCCURRENCE

R R R R R R R b e R R b b e e e e S R b b e e e e e R R i e e e e e e R i o e e e e S e b b e e e e e
DEFINE DATA LOCAL

1 #N1 (N7/1:10)

1 #N2 (N7/1:10,1:10)

1 #N3 (N7/1:10,1:10,1:10)

END-DEFINE

*

CALLNAT "OCCIN' 4NL1(*) #N2(1:2,1:4) 4#N3(1:6,1:7,1:8)

*

END

Subprogram 0CC1N Called by Program 0CC1P:

** Example 'OCCIN': *OCCURRENCE (called by 0CC1P)
Khkhkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkhhkkhhkhhkkhhkhhkhhkhhkkhhkhhkhhkhhkkhhkkhhkhhkhkkhhkhhkkhkkhxk
DEFINE DATA

PARAMETER

1 PARML (N7/1:V)

1 PARM2 (N7/1:V,1:V)

1 PARM3 (N7/1:V,1:V,1:V)

LOCAL

1 f0CC2 (14/1:2)

1 #0CC3 (14/1:3)

1 40CC1 (14)

END-DEFINE

*

MOVE *0CC(PARM1) TO #0CC1

MOVE *0CC(PARM2,*) TO #0CC2(*)

MOVE *OCC(PARM3,*) TO #0CC3(*)

*

DISPLAY #f0CC1 #0CC2(*) #0CC3(*)

DISPLAY *0CC(PARM1,*) *0CC(PARM2,*) *0CC(PARM3,*)

98

Statements

Referenced Example Programs

*

NEWPAGE

*

WRITE NOHDR

'Occurrences

/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences

*

END

of
of
of
of
of
of

of

LW = =

Output of Program 0CC1P - Page 1:

. parameter:
. parameter:
. parameter:
. parameter:
. parameter:
. parameter:

. parameter:

*0CC(PARMI)

*0CC(PARMI, 1)
*0CC(PARMI, *)
*0CC(PARMZ,1)
0CC(PARMZ,)
*0CC(PARM3,1)
*0CC(PARM3,3)
*0CC(PARM3, *)

*0CC(PARMZ,2)

*0CC(PARM3,2)

Page 1 05-01-18 10:21:30
##0CC1 ##0CC2 ##0CC3
10 2 6
4 7
8
10 2 6
4 7
8
Output of Program 0CC1P - Page 2:
Page 2 05-01-18 10:21:30
Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 2. parameter: 2 4
Occurrences of 2. parameter: 2 4
Occurrences of 3. parameter: 6 7 8
Occurrences of 3. parameter: 6 7 8
Statements 99

Referenced Example Programs

OCC2P - System Variable *OCCURRENCE

** Example '0CCZ2P': *OCCURRENCE

RO R b e b S b S b e b o b e b e b e b b e e b e e b e e e e e S e e b e e b e e b e e b e e i b e b e e o S

DEFINE DATA LOCAL
1 4N (N7/1:10)
1 41 (I4)
END-DEFINE
*
FOR #I=1 TO 10
MOVE #I TO #N(#I)
END-FOR

*

WRITE 'Passing occurrences 1:5'

CALLNAT "OCC2N" #N(1:5)

*

WRITE 'Passing occurrences 5:10°'

CALLNAT "OCC2N' #N(5:10)

*

END

Subprogram 0CC2N Called by Program 0CC2P:

** Example 'OCC2N': *OCCURRENCE (called by 0CC2P)

R R R b R R e I b R R e S b b e e b b S e e b b e e b b e e b b i S b b R e I b b R e e b b b e e b R e S b b i e e b b Y

DEFINE DATA

PARAMETER

1 #FARR (N7/1:V)

LOCAL

11 (N7)

END-DEFINE

*

FOR I=1 TO *0CC(#ARR)
DISPLAY #ARR(I)

END-FOR

*

END

Output of Program 0CC2P:

Page 1

Passing occurrences 1:5

o1 B~ W N

Passing occurrences 5:10

o1

05-01-18

10:33:03

100

Statements

Referenced Example Programs

O O 0

Statements 101

102

IV

B 2 ACCEPT/REJECT ..o 105
BB ADD e 111
B4 ASSIGN e 117
B I8 AT BREAK ..o 119
B A6 AT END OF DATA .o 127
AT ATEND OF PAGE ... 133
B 18 AT START OF DATA L.t 141
B IO AT TOP OF PAGE ... 147
m 20 BACKOUT TRANSACTION ...ttt 153
® 21 BEFORE BREAK PROCESSINGoiiiiiiiiiiie e 157
B 22 CALL s 161
B 23 CALL FILE ..o 181
B 24 CALL LOOP ...t 185
B 25 CALLDBPROC (SQL) ..ttt 189
B 20 CALLN AT e 195
B 27 CLOSE CONVERSATION ...ttt 203

103

104

12 ACCEPT/REJECT

LI V1ot o PSP PPPPUR PP 106
B SYNEAX DESCIIPHON ...ttt e e e s 106
= Processing of Multiple ACCEPT/REJECT Statementscuvviiiiiiiiiieiiiec e 107
B LIMIENOLAHION ..o e 107
B XAMIDIES L.ttt 108

105

ACCEPT/REJECT

{ ACCEPT

} [IF] Togical-condition
REJECT

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION |
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | HISTOGRAM | GET | GET SAME |
GET TRANSACTION DATA | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The statements ACCEPT and REJECT are used for accepting/rejecting a record based on user-specified
logical criterion. The ACCEPT/REJECT statement may be used in conjunction with statements which
read data records in a processing loop (FIND, READ, HISTOGRAM, CALL FILE, SORT or READ WORK
FILE). The criterion is evaluated after the record has been selected/read.

Whenever an ACCEPT/REJECT statement is encountered for processing, it will internally refer to the
innermost currently active processing loop initiated with one of the above mentioned statements.

When ACCEPT/REJECT statements are placed in a subroutine, in case of a record reject, the sub-
routine(s) entered in the processing loop will automatically be terminated and processing will
continue with the next record of the innermost currently active processing loop.

Syntax Description

Syntax Element Description

IF IF Clause:

An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read
with a FIND, READ, or HISTOGRAM statement. The logical condition criteria are
evaluated after the record has been read and after record processing has started.

lTogical-condition|Logical Condition Criterion:
The basic criterion is a relational expression. Multiple relational expressions may
be combined with logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

106 Statements

ACCEPT/REJECT

Syntax Element Description

The fields used to specify the logical criterion may be database fields or user-defined
variables. For additional information on logical conditions, see Logical Condition
Criteria in the Programming Guide.

Note: When ACCEPT/REJECT is used with a HI STOGRAM statement, only the database
field specified in the HI STOGRAM statement may be used as a logical criterion.

Processing of Multiple ACCEPT/REJECT Statements

Normally, only one ACCEPT or REJECT statement is required in a single processing loop. If more
than one ACCEPT/REJECT is specified consecutively, the following conditions apply:

® If consecutive ACCEPT and REJECT statements are contained in the same processing loop, they
are processed in the specified order.

® If an ACCEPT condition is satisfied, the record will be accepted and consecutive ACCEPT/REJECT
statements will be ignored.

® If a REJECT condition is satisfied, the record will be rejected and consecutive ACCEPT/REJECT
statements will be ignored.

= If the processing continues to the last ACCEPT/REJECT statement, the last statement will determine
whether the record is accepted or rejected.

If other statements are interleaved between multiple ACCEPT/REJECT statements, each ACCEPT/REJECT
will be handled independently.

Limit Notation

If a LIMIT statement or other limit notation has been specified for a processing loop containing an
ACCEPT or REJECT statement, each record processed is counted against the limit regardless of
whether or not the record is accepted or rejected.

Statements 107

ACCEPT/REJECT

Examples

= Example 1 - ACCEPT
= Example 2 - ACCEPT / REJECT

Example 1 - ACCEPT

** Example "ACREX1': ACCEPT

R R R B b R R e I b b R e e b b e e b e e b b e e i b R S e b b S e B b b R e I b b b b S e I b R e b b b e b b b S 4

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 SEX
2 MAR-STAT

END-DEFINE

*

LIMIT 50

READ EMPLOY-VIEW

ACCEPT IF SEX='M"' AND MAR-STAT =
WRITE NOTITLE '=" NAME '=' SEX 5X '=

END-READ
END

Output of Program ACREX1:

NAME: MORENO
NAME: VAUZELLE
NAME: BATLLET
NAME: HEURTEBISE
NAME: LION
NAME: DEZELUS
NAME: BOYER
NAME: BROUSSE
NAME: DROMARD
NAME: DUC
NAME: BEGUERIE
NAME: FOREST
NAME: GEORGES

(S IV IV RN BNV IV RN Vo RNV I Vo RN Vo RN BN Vo RN V)
Mm rm rm rmoreorermeormeorme e rmormeorm

>X X X X X X X X X X X X X

'S'

T

MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL

' MAR-STAT

STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:

(S I o RV R Vo RV RV I R Ve R RN Vo I Ve BN)

108

Statements

ACCEPT/REJECT

Example 2 - ACCEPT / REJECT

** Example 'ACREX2': ACCEPT/REJECT

R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1)
*
1 ffPROC-COUNT (N8) INIT <0>
END-DEFINE
*
EMP. FIND EMPLOY-VIEW WITH NAME = 'JACKSON'
WRITE NOTITLE *COUNTER NAME FIRST-NAME 'SALARY:' SALARY(1)
/*
ACCEPT IF SALARY (1) LT 50000
WRITE *COUNTER 'ACCEPTED FOR FURTHER PROCESSING'
/*
REJECT IF SALARY (1) GT 30000
WRITE *COUNTER 'NOT REJECTED'
/*
ADD 1 TO #PROC-COUNT
END-FIND
*
SKIP 2
WRITE NOTITLE 'TOTAL PERSONS FOUND ' *NUMBER (EMP.) /
"TOTAL PERSONS SELECTED' #PROC-COUNT
END

Output of Program ACREX2:

1 JACKSON CLAUDE SALARY:
1 ACCEPTED FOR FURTHER PROCESSING
2 JACKSON FORTUNA SALARY:
2 ACCEPTED FOR FURTHER PROCESSING
3 JACKSON CHARLIE SALARY :
3 ACCEPTED FOR FURTHER PROCESSING
3 NOT REJECTED

TOTAL PERSONS FOUND 3

TOTAL PERSONS SELECTED 1

33000

36000

23000

Statements

109

110

13 ADD

LI V1ot o PSP PPPPUR PP 112
= Syntax 1 - ADD Statement without GIVING ClaUuSEccooiiiiiiiiiiiiec it 112
= Syntax 2 - ADD Statement With GIVING CIAUSEcccoiiiiiiiiiiiiee e 113
L 11T o] (- PSPPSR 115

M

ADD

Related Statements: COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
| SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The ADD statement is used to add two or more operands.

This statements has two different syntax structures.

J Notes:

1. At the time the ADD statement is executed, each operand used in the arithmetic operation must
contain a valid value.

2. For additions involving arrays, see also the section Arithmetic Operations with Arrays.

3. As for the formats of the operands, see also the section Performance Considerations for Mixed
Formats.

Syntax 1 - ADD Statement without GIVING Clause

(arithmetic-expression)

ADD [ROUNDED] {
operandl

} .. 10 operand?

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 1):

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandl|C|S |[A| |N N|P|I|F| |D|T yes no

operandZ| |S |A| M N|P|I|F| |D|T yes yes

Syntax Element Description:

112 Statements

ADD

Syntax Element

Description:

arithmetic-expression

See Arithmetic Expression in the COMPUTE statement.

operandl TO operand?

Operands:

operandl and operand? are summands. The result is stored in operand?
(result field). Hence, the statement is equivalent to:

operand? := operand? + operandl + ...
ROUNDED ROUNDED Option:
If the keyword ROUNDED is used, the result will be rounded.
For information on rounding, see Rules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.
Example:

The statement

ADD #A(*) TO #B(*)

ADD S TO #R
ADD #S #T TO #R
ADD #FA(*) TO #R

equivalent to COMPUTE #B(*)

FFACX) + 1B (*)

equivalent to COMPUTE #R = ##S + {R
equivalent to COMPUTE #R := S + #T + 4R
equivalent to COMPUTE #R = fFAC*) + R

Syntax 2 - ADD Statement with GIVING Clause

ADD [ROUNDED] {

(arithmetic-expression)
operandl

} .. GIVING operand?

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 2):

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C|S |A NP|I|F| |D|T yes no

operandz| |S |A A|UIN|P|I|F(B*|D|T yes yes

* Format B of operand? may be used only with a length of less than or equal to 4.

Syntax Element Description:

Statements

13

ADD

Syntax Element Description:

arithmetic-expression See Arithmetic Expression in the COMPUTE statement.

operandl GIVING operandZ |Operands:

operandl is a summand. operandZ is only used to receive the result of
the operation; it is not included in the addition. Hence, the statement is
equivalent to:

operand? := operandl + ...

ROUNDED ROUNDED Option:
If the keyword ROUNDED is used, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

| Note: If Syntax 2 is used, the following applies: Only the (operandl) field(s) left of the

keyword GIVING are the terms of the addition, the field right of the keyword GIVING
(operand?)isjust used to receive the result value. If just a single (operandi) field is supplied,
the ADD operation turns into an assignment.

Example:

The statement

ADD #S GIVING #R is equivalent to COMPUTE #R := #S
ADD #S #T GIVING #R is equivalent to COMPUTE #R := #S + #T

ADD #A(*) 0 GIVING #R 1is equivalent to COMPUTE #R := #A(*) + 0
which is a legal operation, due to the rules defined
in Arithmetic Operations with Arrays

ADD #A(*) GIVING #R is equivalent to COMPUTE #R := #A(*)
which is an illegal operation, due to the rules
defined in Assignment Operations with Arrays

114 Statements

ADD

Example

** Example '"ADDEX1': ADD

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

DEFINE DATA LOCAL

1 #A (P2)

1 4B (P1.1)

1 #C (P1)

1 #fDATE (D)

1 JARRAY1 (P5/1:4,1:4) INIT (2,*) <5>

1 #fARRAY2 (P5/1:4,1:4) INIT (4,*) <10>

END-DEFINE

*

ADD +5 -2 -1 GIVING #A

WRITE NOTITLE 'ADD +5 -2 -1 GIVING #A' 15X '=' #A

*

ADD .231 3.6 GIVING #B

WRITE / 'ADD .231 3.6 GIVING #B' 15X '=' #B

*

ADD ROUNDED 2.9 3.8 GIVING #C

WRITE / "ADD ROUNDED 2.9 3.8 GIVING #C' 8X '=' #C

S

MOVE *DATX TO #DATE

ADD 7 TO {#fDATE

WRITE / "CURRENT DATE:" *DATX (DF=L) 13X
"CURRENT DATE + 7:' #DATE (DF=L)

*

WRITE / "JFARRAY1 AND #fARRAY2 BEFORE ADDITION'
/ '=" #IARRAY1 (2,*) '=' #fARRAY2 (4,*)

ADD #fARRAY1 (2,*) TO #fARRAY2 (4,*)

WRITE / "{FARRAY1 AND #fARRAY2 AFTER ADDITION'
/ '='" #ARRAY1 (2,*) '=' #fARRAY2 (4,*)

*

END

Output of Program ADDEXI:

ADD +5 -2 -1 GIVING #A A 2

ADD .231 3.6 GIVING #B #B: 3.8

ADD ROUNDED 2.9 3.8 GIVING #C #C: 7

CURRENT DATE: 2005-01-10 CURRENT DATE + 7: 2005-01-17

##ARRAY1 AND #fARRAY2 BEFORE ADDITION
fFARRAY1: 5 5 S 5 JFARRAY2: 10 10 10

10

Statements

15

ADD

F#FARRAY1 AND #ARRAY2 AFTER ADDITION
#FARRAY1 : 5 5 5 5 JFARRAYZ: 15 15 15 15

116 Statements

14 ASSIGN

See the statement COMPUTE.

"7

118

15 AT BREAK

B FUNCHON .ttt e e 120
B SYNEAX DESCIIPHON ...ttt e e e s 121
B MUHIPIE BrEaK LEVEIS ...ttt 122
L e 11T PSR RUPPPPPRR 123

19

AT BREAK

Structured Mode Syntax

[AT] BREAK [(r)] [OF] operandl[/n/]
statement ...
END-BREAK

Reporting Mode Syntax

[AT] BREAK [(r)] [OF] operandI[/n/]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION
| BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The AT BREAK statement is used to cause the execution of one or more statements whenever a
change in value of a control field occurs. It is used in conjunction with automatic break processing
and is available with the following statements: FIND, READ, HISTOGRAM, SORT, READ WORK FILE.

The automatic break processing works as follows: Immediately after a record was read by the
processing loop, the control field is checked. If a value change is detected in comparison to the
previous record, the statements included in the AT BREAK statement block are executed. This does
not apply to the very first record in the processing loop. In addition, when the processing loop is
terminated (as reading of records is complete or due to an ESCAPE BOTTOM statement), a final exe-
cution of the statements in the AT BREAK statement block is triggered.

For further information, see Automatic Break Processing in the Programming Guide.

An AT BREAK statement block is only executed if the object which contains the statement is active
at the time when the break condition occurs.

It is possible to initiate a new processing loop within an AT BREAK condition. This loop must also
be closed within the same AT BREAK condition.

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

120 Statements

AT BREAK

Natural system functions may be used in conjunction with an AT BREAK statement, see Natural
System Functions for Use in Processing Loops in the System Functions documentation and Example of
System Functions with AT BREAK Statement in the Programming Guide.

For further information, see also the section AT BREAK Statement in the Programming Guide. It
covers topics such as:

= Control Break Based on a Database Field
® Control Break Based on a User-Defined Variable

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operand1| |s | | | |AJUN|P[1[F[BD|T|L]]] yes no

Syntax Element Description:

Syntax Element Description

(r) Reference Notation:

By default, the final AT BREAK condition (for loop termination) is always related to the
outermost active processing loop initiated with a FIND, READ, READ WORK FILE,
HISTOGRAM or SORT statement.

With the notation (1) you can relate the final break condition of an AT BREAK statement
to another specific currently open processing loop (that is, the loop in which the AT
BREAK statement is located or any outer loop).

Example:

READ ...
FIND ...
FIND ...
AT BREAK ...
FIND ...
END-FIND
END-BREAK
END-FIND
END-FIND
END-READ

Statements 121

AT BREAK

Syntax Element

Description

In this example, the final AT BREAK condition is related to the READ loop initiated in
line 0120. It would be possible to have it related to one of the FIND loops initiated in
line 0130 and 0140, but not to the one initiated in line 0160.

If (r) is specified for a break hierarchy, it must be specified with the first AT BREAK
statement and applies also to all AT BREAK statements which follow.

operandl

Control Field:

The field used as the break control field is usually a database field. If a user-defined
variable is used, it must be initialized prior to the evaluation of automatic break
processing (see BEFORE BREAK PROCESSING statement). A specific occurrence of an
array can also be used as a control field.

/n/

Notation /n/:

The notation /n/ may be used to indicate that only the first 1 positions (counting from
left to right) of the control field are to be checked for a change in value. This notation
can only be used with operands of format A, B, N or P.

A control break occurs when the value of the control field changes, or when all records
in the processing loop for which the AT BREAK statement applies have been processed.

statement ...

Statement(s) to be Executed at Break Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

END-BREAK

statement
DO statement
DOEND

End of AT BREAK Statement:

In structured mode, the Natural reserved word END-BREAK must be used to end the
AT BREAK statement.

In reporting mode, use the DO ... DOEND statements to supply one or several suitable
statements, depending on the situation, and to end the AT BREAK statement. If you
specify only a single statement, you can omit the DO ... DOEND statements. With
respect to good coding practice, this is not recommended.

Multiple Break Levels

Multiple AT BREAK statements may be specified within a processing loop within the same program
module. If multiple BREAK statements are specified for the same processing loop, they form a
hierarchy of break levels independent of whether they are specified consecutively or interspersed
within other statements. The first AT BREAK statement represents the lowest control break level,
and each additional AT BREAK statement represents the next higher control break level.

Every processing loop in a loop hierarchy may have its own break hierarchy attached.

122

Statements

AT BREAK

Example:
Structured Mode: Reporting Mode:
FIND ... FIND ...
AT BREAK AT BREAK
DO
END-BREAK
AT BREAK DOEND
ce AT BREAK
END-BREAK DO
AT BREAK ce
DOEND
END-BREAK
END-FIND

A change in the value of a control field in a break level causes break processing to be activated for
that break level and all lower break levels, regardless of the values of the control fields for the
lower break levels.

For easier program maintenance, it is recommended to specify multiple breaks consecutively.

See also Example 3 below and the section Multiple Control Break Levels in the Programming Guide.

Examples

This section covers the following topics:

= Example 1 - AT BREAK
= Example 2 - AT BREAK Using /n/ Notation
= Example 3 - AT BREAK with Multiple Break Levels

For further examples of AT BREAK, see Natural System Functions for Use in Processing Loops, Examples
ATBEX3 and ATBEX4.

Statements 123

AT BREAK

Example 1 - AT BREAK

** Example 'ATBEX1S': AT BREAK (structured mode)

R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 COUNTRY

2 NAME
END-DEFINE

*

LIMIT 10

READ EMPLOY-VIEW BY CITY

AT BREAK OF CITY
SKIP 1
END-BREAK

DISPLAY NOTITLE CITY (IS=0ON) COUNTRY (IS=0N) NAME

END-READ

*

END

Output of Program ATBEX1S:

ATKEN

AIX EN OTHE

AJACCIO

ALBERTSLUND

ALBUQUERQUE

ALFRETON

ALICANTE

Equivalent reporting-mode example: ATBEX1R.

COUNTRY

DK

USA

UK

E

SENKO
GODEFROY
CANALE
PLOUG
HAMMOND
ROLLING
FREEMAN
LINCOLN
GOLDBERG

GOMEZ

124

Statements

AT BREAK

Example 2 - AT BREAK Using /n/ Notation

** Example 'ATBEX2': AT BREAK (with /n/ notation)
R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 DEPT

2 NAME
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY DEPT STARTING FROM ‘A’
AT BREAK OF DEPT /4/

SKIP 1

END-BREAK

DISPLAY NOTITLE DEPT NAME
END-READ

*

END

Output of Program ATBEX2:

DEPARTMENT NAME
CODE
ADMAO1 JENSEN
ADMAO1 PETERSEN
ADMAO1 MORTENSEN
ADMAO1 MADSEN
ADMAO1 BUHL
ADMAO?2 HERMANSEN
ADMAO2 PLOUG
ADMAO?2 HANSEN
COMPO1 HEURTEBISE
COMPO1 TANCHOU

Example 3 - AT BREAK with Multiple Break Levels

** Example '"ATBEX5S': AT BREAK (multiple break levels) (structured mode)
R R R o R R b b i b e b e I b R i b e i b e b i R e i R i b S e b R R i b b e S b b 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 DEPT

2 NAME

2 LEAVE-DUE
1 #LEAVE-DUE-L (N4)
END-DEFINE

Statements 125

AT BREAK

*

LIMIT 5
FIND EMPLOY-VIEW WITH CITY = "PHILADELPHIA" OR = 'PITTSBURGH'
SORTED BY CITY DEPT
MOVE LEAVE-DUE TO #LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME #LEAVE-DUE-L
/*
AT BREAK OF DEPT
WRITE NOTITLE /
T*DEPT OLD(DEPT) T*#fLEAVE-DUE-L SUM(#fLEAVE-DUE-L) /
END-BREAK
AT BREAK OF CITY
WRITE NOTITLE
T*CITY OLD(CITY) T*{fLEAVE-DUE-L SUM({LEAVE-DUE-L) //
END-BREAK
END-FIND

*

END

Output of Program ATBEX5:

CITY DEPARTMENT NAME ##LEAVE-DUE-L
CODE

PHILADELPHIA MGMT30 WOLF-TERROINE 11
MACKARNESS 27

MGMT30 38

TECHIO BUSH 39

NETTLEFOLDS 24

TECH10 63

PHILADELPHIA 101
PITTSBURGH MGMT10 FLETCHER 34
MGMT10 34

PITTSBURGH 34

Equivalent reporting-mode example: ATBEX5R.

126 Statements

16 AT END OF DATA

LI V1ot o PSP PPPPUR PP 128
LI =1 (47 o PSPPSR 129
B SYNEAX DESCIIPHON ...ttt e e 129
L 11T o] (- PSPPSR 130

127

AT END OF DATA

Structured Mode Syntax

[AT] END [OF] DATA [(r)]
statement ...
END-ENDDATA

Reporting Mode Syntax

[AT] END [OF] DATA [(r)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | BACKOUT TRANSACTION |
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION
DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The AT END OF DATA statement is used to specify processing to be performed when all records
selected for a database processing loop have been processed.

This section covers the following topics:

= Processing

= Values of Database Fields
= Positioning

= System Functions

See also AT START/END OF DATA Statements in the Programming Guide.

128 Statements

AT END OF DATA

Processing

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Values of Database Fields

When the AT END OF DATA condition for the processing loop occurs, all database fields contain
the data from the last record processed.

Positioning

This statement must be specified within the same program module which contains the loop creating
statement.

System Functions

Natural system functions may be used in conjunction with an AT END OF DATA statement as de-
scribed in Using System Functions in Processing Loops in the System Functions documentation.

Restrictions

* This statement can only be used in a processing loop that has been initiated with one of the
following statements: FIND, READ, READ WORK FILE, HISTOGRAM or SORT.

® It may be used only once per processing loop.

= It is not evaluated if the processing loop referenced for END OF DATA processing is not entered.

Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:
An AT END OF DATA statement may be related to a specific active processing
loop by using the notation (r).

If this notation is not used, the AT END OF DATA statement will be related to
the outermost active database processing loop.

statement ... Statement(s) to be Executed at End of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

Statements 129

AT END OF DATA

DO statement ... DOEND

Syntax Element Description
END-ENDDATA End of AT END OF DATA Statement:
Statement ...

toend the AT END OF DATA statement.

recommended.

In structured mode, the Natural reserved word END-ENDDATA must be used

Inreporting mode, use the DO ... DOEND statements to supply one or several

suitable statements, depending on the situation, and to end the AT END OF

DATA statement. If you specify only a single statement, you can omit the DO
DOEND statements. With respect to good coding practice, this is not

Example

** Example '"AEDEX1S': AT END OF DATA

R R R o R R b b R b e b R e I b R i b b e o S e b i R e i R i i b b e b R R e i b b e i b b 4

DEFINE DATA LOCAL

1

EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID

2 NAME

2 FIRST-NAME

2 SALARY (1)

2 CURR-CODE (1)

END-DEFINE

*

LIMIT 5
EMP. FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'

IF NO RECORDS FOUND
ENTER
END-NOREC
DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)
/*
AT END OF DATA
IF *COUNTER (EMP.) = 0
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM
END-IF
WRITE NOTITLE / "SALARY STATISTICS:'
/ 7X '"MAXIMUM:' MAX(SALARY(1)) CURR-CODE
/ 7X 'MINIMUM:' MIN(SALARY(1)) CURR-CODE
/ 7X "AVERAGE:' AVER(SALARY(1)) CURR-CODE
END-ENDDATA
/%

END-FIND

*

END

(1)
(1)
(1)

130

Statements

AT END OF DATA

See also Natural System Functions for Use in Processing Loops in the System Functions documentation.

Output of Program AEDEX1S:

PERSONNEL NAME FIRST-NAME ANNUAL ~ CURRENCY
ID SALARY CODE
11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

Equivalent reporting-mode example: AEDEXIR.

Statements 131

132

17 AT END OF PAGE

B FUNCHON .ttt e e 134
B SYNEAX DESCIIPHON ...ttt e e e s 136
LI 1oL OSSPSR 137

133

AT END OF PAGE

Structured Mode Syntax

[AT] END [OF] PAGE [(rep)]
statement ...
END-ENDPAGE

Reporting Mode Syntax

[AT] END [OF] PAGE [(rep)]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

Function

The AT END OF PAGE statement is used to specify processing that is to be performed when an end-
of-page condition is detected (see session parameter PS in the Parameter Reference). An end-of-page
condition may also occur as a result of a SKIP or NEWPAGE statement, but not as a result of an EJECT
or INPUT statement.

See also the following sections in the Programming Guide:

" Report Format and Control

" Report Specification - (rep) Notation
® Layout of an Output Page

® AT END OF PAGE Statement

134 Statements

AT END OF PAGE

Processing

An AT END OF PAGE statement block is only executed if the object which contains the statement
block is active at the time when the end-of-page condition occurs.

An AT END OF PAGE statement must not be placed within an inline subroutine.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Logical Page Size

The end-of-page check is performed after the processing of a DISPLAY or WRITE statement is com-
pleted. Therefore, if a DISPLAY or WRITE statement produces multiple lines of output, overflow of
the physical page may occur before an end-of-page condition is detected.

Alogical page size (session parameter PS) which is less than the physical page size must be specified
to ensure that information printed by an AT END OF PAGE statement appears on the same physical
page as the title.

Last-Page Handling

Within a main program, an end-of-page condition is activated when the execution of the main
program terminates via ESCAPE, STOP or END.

Within a subroutine, an end-of-page condition is not activated when the execution of the subroutine
terminates via ESCAPE-ROUTINE, RETURN or END-SUBROUTINE.

System Functions

Natural system functions may be used in conjunction with an AT END OF PAGE statement as de-
scribed in the section Using System Functions in Processing Loops in the System Functions document-
ation.

If a system function is to be used within an AT END OF PAGE statement block, the GIVE SYSTEM
FUNCTIONS clause must be specified in the corresponding DISPLAY statement.

Statements 135

AT END OF PAGE

INPUT Statement with AT END OF PAGE

If an INPUT statement is specified withinan AT END OF PAGE statement block, no new page operation
is performed. The page size (session parameter PS) must be reduced to a value that allows the
lines created by the INPUT statement to appear on the same physical page.

See also:

= Split Screen Feature of INPUT Statement
® Example 2 - AT END OF PAGE with INPUT Statement

Syntax Description

Syntax Element Description

(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for
which the AT END OF PAGE statement is applicable. A value in the range 0 -
31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the AT END OF PAGE statement will apply to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

statement Statement(s) to be Executed at End of Page Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Example below.

END-ENDPAGE End of AT END OF PAGE Statement:
Séa timin t . In structured mode, the Natural reserved word END-ENDPAGE must be used to
SLALeMent - lend the AT END OF PAGE statement.
DOEND
In reporting mode, use the D0 ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF PAGE
statement. If you specify only a single statement, you can omitthe DO ... DOEND

statements. With respect to good coding practice, this is not recommended.

136 Statements

AT END OF PAGE

Example

= Example 1 - AT END OF PAGE
= Example 2 - AT END OF PAGE with INPUT Statement

Example 1 - AT END OF PAGE

** Example "AEPEX1S': AT END OF PAGE (structured mode)
KA KRR AR A AR AR R AR A AR A AR AR R AR A AR A AR AR KR AR KA KA AR AR KA KR KA KA AR AR KA A AR A A KA AR ARk AK
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
FORMAT PS=10
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000°
DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*

AT END OF PAGE

WRITE / 28T 'AVERAGE SALARY: ..." AVER(SALARY(1)) CURR-CODE (1)
END-ENDPAGE

END-READ
*
END

See also Natural System Functions for Use in Processing Loops.

Output of Program AEPEX1S:

NAME CURRENT SALARY CURRENCY
POSITION CODE
CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

Statements 137

AT END OF PAGE

AVERAGE SALARY: ... 33533 USD

Equivalent reporting-mode example: AEPEX1R.

Example 2 - AT END OF PAGE with INPUT Statement

** Example 'AEPEX2': AT END OF PAGE (with INPUT)

R R B b R R e e b b R e e b b e e b b e e b b e e i b b e e b b S e b b R e I b b R e b b e e b R e i b b e e b b b S 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 POST-CODE
2 CITY
*
1 #START-NAME (A20)
END-DEFINE

*

FORMAT PS=21
*
REPEAT
READ (15) EMPLOY-VIEW BY NAME = #START-NAME
DISPLAY NOTITLE NAME FIRST-NAME POST-CODE CITY
END-READ
NEWPAGE
/*
AT END OF PAGE
MOVE NAME TO #START-NAME

INPUT / "-" (79)
/ 10T 'Reposition to name ==>'
fFSTART-NAME (AD=MI) '(''.'' to exit)"
IF #START-NAME = '.'
STOP
END-IF
END-ENDPAGE
/*
END-REPEAT

END

Output of Program AEPEX2S:

NAME FIRST-NAME POSTAL

ADDRESS
ABELLAN KEPA 28014

ACHIESON ROBERT DE3 4TR
ADAM SIMONE 89300
ADKINSON JEFF 11201
ADKINSON PHYLLIS 90211

MADRID

DERBY

JOIGNY
BROOKLYN
BEVERLEY HILLS

138

Statements

AT END OF PAGE

ADKINSON HAZEL 20760 GAITHERSBURG
ADKINSON DAVID 27514 CHAPEL HILL
ADKINSON CHARLIE 21730 LEXINGTON
ADKTNSON MARTHA 17010 FRAMINGHAM
ADKINSON TIMMIE 17300 BEDFORD
ADKTINSON BOB 66044 LAWRENCE
AECKERLE SUSANNE 7000 STUTTGART
AFANASSTEV PHILIP 39401 HATTIESBURG
AFANASSTEV ROSE 60201 EVANSTON
AHL FLEMMING 2300 SUNDBY
Reposition to name ==> AHL (".' to exit)
Statements 139

140

18 AT START OF DATA

= Function

= Syntax Description

= Example

141

AT START OF DATA

Structured Mode Syntax

[AT] START [OF] DATA[(n)]
statement ...
END-START

Reporting Mode Syntax

[AT] START [OF] DATA [(n)]
{ statement }
DO statement... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT END OF DATA | BACKOUT TRANSACTION | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The statement AT START OF DATA is used to perform processing immediately after the first of a
set of records is read for a processing loop that has been initiated by one of the following statements:
READ, FIND, HISTOGRAM, SORT or READ WORK FILE.

See also AT START/END OF DATA Statements in the Programming Guide.
Processing

If the loop-initiating statement contains a WHERE clause, the at-start-of-data condition will be true
when the first record is read which meets both the basic search and the WHERE criteria.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

142 Statements

AT START OF DATA

Value of Database Fields

All database fields contain the values of the record which caused the at-start-of-data condition to
be true (that is, the first record of the set of records to be processed).

Positioning

This statement must be positioned within a processing loop, and it may be used only once per
processing loop.

Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:

An AT START OF DATA statement may be related to a specific outer active
processing loop by using the notation (r). If this notation is not used, the
statement is related to the outermost active processing loop.

statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-START End of AT START OF DATA Statement:

statement ...
DO statement ... DOEND

In structured mode, the Natural reserved word END-START must be used to
end the AT START OF DATA statement.

In reporting mode, use the D0 ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT START
OF DATA statement. If you specify only a single statement, you can omit the
DO ... DOEND statements. With respect to good coding practice, this is not
recommended.

Example

** Example 'ASDEX1S': AT START OF DATA (structured mode)
RRAR R b R R e b b R e b b e e b b e e b b e b b b S e b b S S b R e b b e e b b i e e b R e B b b e e b b Y
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY

*

1 J)ICNTL (A1) INIT <" '>

Statements 143

AT START OF DATA

1 #CITY (A20) INIT <' '>

END-DEFINE
*
REPEAT
INPUT 'ENTER VALUE FOR CITY' #CITY
IF #CITY = ' ' OR = 'END'
STOP
END-IF

FIND EMPLOY-VIEW WITH CITY = #CITY
IF NO RECORDS FOUND
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE BOTTOM
END-NOREC
/*
AT START OF DATA
INPUT (AD=0) 'RECORDS FOUND' *NUMBER //

"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=A)

IF #CNTL NE 'D'
ESCAPE BOTTOM
END-IF
END-START
/*
DISPLAY NAME FIRST-NAME
END-FIND
END-REPEAT
END

Output of Program ASDEX1S:

ENTER VALUE FOR CITY PARIS

After entering and confirming name of city:

RECORDS FOUND 26

ENTER 'D' TO DISPLAY RECORDS D

Records displayed:

NAME FIRST-NAME
MATZTERE ELISABETH
MARX JEAN-MARIE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS
144

Statements

AT START OF DATA

CENSTER
DUC
CAHN
MAZUY
FAURIE
VALLY
BRETON
GIGLEUX
KORAB-BRZOZOWSKI
XOLIN
LEGRIS
VVVV

Equivalent reporting-mode example: ASDEXIR.

BERNARD
JEAN-PAUL
RAYMOND
ROBERT
HENRI
ALAIN
JEAN-MARIE
JACQUES
BOGDAN
CHRISTIAN
ROGER

Statements

145

146

19 AT TOP OF PAGE

LI V1ot o PSP PPPPUR PP 148
L =140) O URPUPPPPPRRR 149
B SYNEAX DESCIIPHON ...ttt e e 149
L 11T o] (- PSPPSR 150

147

AT TOP OF PAGE

Structured Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
statement ...
END-TOPPAGE

Reporting Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

Function

The statement AT TOP OF PAGE is used to specify processing which is to be performed when a
new page is started.

See also the following sections in the Programming Guide:

" Report Format and Control

Report Specification - (rep) Notation

Layout of an Output Page
AT TOP OF PAGE Statement

148 Statements

AT TOP OF PAGE

Processing

A new page is started when the internal line counter exceeds the page size set with the session
parameter PS (page size for Natural reports), or when a NEWPAGE statement is executed. Either of
these events cause a top-of-page condition to be true. An EJECT statement causes a new page to
be started but does not cause a top-of-page condition.

An AT TOP OF PAGE statement block is only executed when the object which contains the statement
is active at the time when the top-of-page condition occurs.

Any output created as a result of AT TOP 0F PAGE processing will appear following the title line
with an intervening blank line.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Restriction

An AT TOP OF PAGE statement must not be placed within an inline subroutine.

Syntax Description

Syntax Element Description

(rep) Report Specification:
The notation (rep) may be used to specify the identification of the report for
which the AT TOP OF PAGE statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the AT TOP OF PAGE statement applies to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

Statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-TOPPAGE End of AT TOP OF PAGE Statement:
[5) Sa timin t. t . In structured mode, the Natural reserved word END-TOPPAGE must be used to
DOEIjDa ement .. end the AT TOP OF PAGE statement.

Statements 149

AT TOP OF PAGE

Syntax Element Description

In reporting mode, use the DO . ..

DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT TOP 0F

PAGE statement. If you specify only a single statement, you can omit the DO . ..
DOEND statements. With respect to good coding practice, this is not recommended.

Example

** Example 'ATPEX1S': AT TOP OF PAGE (structured mode)

R R R o R R b b R b i b e b R R i b b e b S e b i R e i i S e b b e e b R e i b b e S b b i 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
2 DEPT
END-DEFINE
*
FORMAT PS=15
LIMIT 15
READ EMPLOY-VIEW BY NAME STARTING FROM 'L
DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER '-' (78)
/*
AT TOP OF PAGE
WRITE 'BEGINNING NAME:' NAME
END-TOPPAGE
/*
AT END OF PAGE
SKIP 1
WRITE 'ENDING NAME: ' NAME
END- ENDPAGE
END-READ
END

Output of Program ATPEX1S:

EMPLOYEE REPORT

BEGINNING NAME: LAFON

NAME FIRST-NAME CITY
LAFON CHRISTIANE PARIS
LANDMANN HARRY ESCHBORN
LANE JACQUELINE DERBY

DEPARTMENT
CODE

VENT18
MARK29
MGMTO2

150

Statements

AT TOP OF PAGE

LANKATILLEKE
LANNON
LANNON
LARSEN
LARSEN

ENDING NAME:

Equivalent reporting-mode example: ATPEX1R.

LARSEN

LALITH
BOB
LESLIE
CARL
MOGENS

FRANKFURT
LINCOLN
SEATTLE
FARUM
VEMMELEV

PROD22
SALE20
SALE30
SYSAO1
SYSAOQ2

Statements

151

152

20 BACKOUT TRANSACTION

LI V1ot o PSP PPPPUR PP 154
L =140) O URPUPPPPPRRR 155
= Database-Specific CONSIABIALIONScuuiiieiiiiie e 155
L 11T o] (- PSPPSR 155

153

BACKOUT TRANSACTION

BACKOUT [TRANSACTION]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The BACKOUT TRANSACTION statement is used to back out all database updates performed during
the current logical transaction. This statement also releases all records held during the transaction.

The statement is executed only if a database transaction under control of Natural has taken place.
For which databases the statement is executed depends on the setting of the profile parameter ET
(execution of END/BACKOUT TRANSACTION statements):

" If ET=0FF, the statement is executed only for the database affected by the transaction.

= If ET=0N, the statement is executed for all databases that have been referenced since the last exe-
cution of a BACKOUT TRANSACTION or END TRANSACTION statement.

Backout Transaction Issued by Natural

If the user interrupts the current Natural operation with a terminal command (command %% or
CLEAR key), Natural issues a BACKOUT TRANSACTION statement.

See also the terminal command %% in the Terminal Commands documentation.
Additional Information

For additional information on the use of the transaction backout feature, see the sections Database
Update - Transaction Processing and Backing Out a Transaction in the Programming Guide.

154 Statements

BACKOUT TRANSACTION

Restriction

This statement is not available with Entire System Server.

Database-Specific Considerations

SQL Databases |As most SQL databases close all cursors when a logical unit of work ends, a BACKOUT
TRANSACTION statement must not be placed within a database modification loop; instead,
it has to be placed after such a loop.

XML Databases|A BACKOUT TRANSACTION statement must not be placed within a database modification
loop; instead, it has to be placed after such a loop.

Example

** Example '"BOTEX1': BACKOUT TRANSACTION

* %

**% CAUTION: Executing this example will modify the database records!
khkkhkhkhkhkkhkhkhhkhkkhkhkhhhkhkkhkhkhhkhhkkhkhhhhkkhkhkhhhkhkhhhhhkhkhkhhhkhkhkhkhhhhkhkhhrhkkhkhkhhkhkkhkhkhrkkkhkhkrkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 DEPT

2 LEAVE-DUE

2 LEAVE-TAKEN
*
1 {#fDEPT (A6)
1 #fRESP (A3)
END-DEFINE
*
LIMIT 3
INPUT 'DEPARTMENT TO BE UPDATED:"' #fDEPT
IF #fDEPT = ' '

STOP
END-IF
*
FIND EMPLOY-VIEW WITH DEPT = 4DEPT

IF NO RECORDS FOUND

REINPUT 'NO RECORDS FOUND'

END-NOREC
INPUT 'NAME: " NAME (AD=0) /
"LEAVE DUE: ' LEAVE-DUE (AD=M) /

"LEAVE TAKEN:" LEAVE-TAKEN (AD=M)

Statements 155

BACKOUT TRANSACTION

UPDATE
END-FIND
*
INPUT 'UPDATE TO BE PERFORMED? YES/NO:' #RESP
DECIDE ON FIRST #RESP
VALUE 'YES"
END TRANSACTION
VALUE "NO'
BACKOUT TRANSACTION
NONE
REINPUT 'PLEASE ENTER YES OR NO'
END-DECIDE

*

END

Output of Program BOTEX1:

DEPARTMENT TO BE UPDATED: MGMT30

Result for department MGMT30:

NAME : POREE
LEAVE DUE: 45
LEAVE TAKEN: 31

Confirmation query:

UPDATE TO BE PERFORMED YES/NO: NO

156 Statements

21 BEFORE BREAK PROCESSING

LI V1ot o PSP PPPPUR PP 158
LI =1 (47 o PSPPSR 159
B SYNEAX DESCIIPHON ...ttt e e 159
L 11T o] (- PSPPSR 160

157

BEFORE BREAK PROCESSING

Structured Mode Syntax

BEFORE [BREAK] [PROCESSING]
statement ...
END-BEFORE

Reporting Mode Syntax

BEFORE [BREAK] [PROCESSING]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION | HISTOGRAM
| LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The BEFORE BREAK PROCESSING statement may be used in conjunction with automatic break pro-
cessing to perform processing;:

" before the value of the break control field is checked;

" before the statements specified with an AT BREAK statement are executed;

" before Natural system functions are evaluated.

This statement is most often used to initialize or compute values of user-defined variables which
are to be used in break processing (see AT BREAK statement).

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

See also the following sections in the Programming Guide:

= Control Breaks
® BEFORE BREAK PROCESSING Statement
® Example of BEFORE BREAK PROCESSING Statement

158 Statements

BEFORE BREAK PROCESSING

Restrictions

® The BEFORE BREAK PROCESSING statement may only be used with a processing loop that has
been initiated with one of the following statements:

® FIND

® READ

® HISTOGRAM

® SORT

® READ WORK FILE

It may be placed anywhere within the processing loop and is always related to the processing

loop in which it is contained. Only one BEFORE BREAK PROCESSING statement may be specified
per processing loop.

® The BEFORE BREAK PROCESSING statement must not be used in conjunction with the statement
PERFORM BREAK PROCESSING.

Syntax Description

Syntax Element Description

statement. .. Statement(s) for Break Processing;:
In place of statement, you must supply one or several suitable statements,
depending on the situation.

For an example of a statement, see Example below.

If no break processing is to be performed (that is, no AT BREAK statement is
specified for the processing loop), any statements specified with a BEFORE
BREAK PROCESSING statement will not be executed.

END-BEFORE End of BEFORE BREAK PROCESSING Statement:

statement ...
DO statement ... DOEND

In structured mode, the Natural reserved word END-BEFORE must be used
to end the BEFORE BREAK PROCESSING statement.

Inreporting mode, usethe DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the BEFORE BREAK
PROCESSING statement. If you specify only a single statement, you can omit
the DO ... DOEND statements. With respect to good coding practice, this is

not recommended.

Statements 159

BEFORE BREAK PROCESSING

Example

**

**

DE
1

*

1
EN
*
LI
RE

B

EN
EN

Example 'BBPEX1': BEFORE BREAK PROCESSING
ko o o o o ook ok ok ko ok o o ok ok ok ok ok ok ok ko ok ko o o ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok o ok ok ok
FINE DATA LOCAL
EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 SALARY (1)
2 BONUS (1,1)

#FINCOME (P11)
D-DEFINE

MIT 7
AD EMPLOY-VIEW BY CITY = 'L’
/%
EFORE BREAK PROCESSING
COMPUTE #fINCOME = SALARY (1) + BONUS (1,1)
END-BEFORE
/%
AT BREAK OF CITY
WRITE NOTITLE 'AVERAGE INCOME FOR' OLD (CITY) 20X AVER(#INCOME) /
END-BREAK
/*
DISPLAY CITY 'NAME' NAME 'SALARY' SALARY (1) 'BONUS' BONUS (1,1)
D-READ
D

Output of Program BBPEX1:

CITY NAME SALARY BONUS

LA BASSEE HULOT 165000 70000

AVERAGE INCOME FOR LA BASSEE 235000
LA CHAPELLE ST LUC GUILLARD 124100 23000

LA CHAPELLE ST LUC BERGE 198500 50000

LA CHAPELLE ST LUC POLETTE 124090 23000

LA CHAPELLE ST LUC DELAUNEY 115000 23000

LA CHAPELLE ST LUC SCHECK 125600 23000

LA CHAPELLE ST LUC KREEBS 184550 50000

AVERAGE INCOME FOR LA CHAPELLE ST LUC 177306
160 Statements

22 CALL

L 3 To1 (1o T 162
B SYNEAX DESCIIPHON ...ttt e e e s 162
L =Y (04 T O o [T 163
B U SBE EXItS v e 163
B INTERFACES ... 168

161

CALL

CALL[INTERFACE4] operandl [[USING] operand?...128]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL statement is used to call an external program or function written in another standard
programming language from a Natural program and then return to the next statement after the
CALL statement.

The called program or function may be written in any programming language which supports a

standard CALL interface. Multiple CALL statements to one or more external program or functions
may be specified.

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C |S A yes no

operand2|C |S |A |G A|U|N|P|I|F|B|D|T|L|C|G yes yes

Syntax Element Description:

Syntax Element Description

INTERFACE4 Interface Usage:
The optional keyword INTERFACE4 specifies the type of the interface that is used for
the call of the external program. See the section INTERFACE4 below.

operandl Name of Called Function:

The name of the function to be called (operandI) can be specified as a constant or - if
different functions are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 32. A function name must be placed left-justified in the variable.

[USING] Parameters to be Passed:
operand?

162 Statements

CALL

Syntax Element Description

The CALL statement may contain up to 128 parameters (operand?). One address is
passed in the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user
wishes to specify the beginning address of a group, the first field of the group must be
specified.

Note: If an application-independent variable (AIV) or context variable is passed as a

parameter to a user exit, the following restriction applies: if the user exit invokes a
Natural subprogram which creates a new AIV or context variable, the parameter is
invalid after the return from the subprogram. This is true regardless of whether the
new AIV/context variable is created by the subprogram itself or by another object
invoked directly or indirectly by the subprogram.

Return Code

The condition code of any called function may be obtained by using the Natural system function
RET (Return Code Function).

Example:

RESET #RETURN(B4)
CALL 'PROGI'
IF RET ('PROG1') > #RETURN
WRITE '"ERROR OCCURRED IN PROGRAMI'
END-IF

User Exits

User exits are needed to make external functions available and to access operating-system interfaces
that are not available to Natural.

The user exits can be placed either in a shared library and thus linked dynamically, or in a library
that is linked statically to the Natural nucleus.

Notes:

1. If you want to use user exits in a CALL statement, User-defined libraries must be set in the In-
stallation Assignments of the Local Configuration File. Refer to Installation Assignments in the

Statements 163

CALL

section Local Configuration File of the Overview of Configuration File Parameters in the Configuration
Utility documentation.

2. If you want to specify several libraries, you have to separate the names with a colon, for example
userlibl:userlib2:userlib3.

If they are placed in shared libraries, it is not necessary to relink Natural whenever a user exit is
modified. This makes the development and testing of user exits a lot easier. This feature is available
under all operating systems that support shared libraries. Under all operating systemes, it is possible
to place user exits in a library that is linked to the Natural nucleus; that is, to statically link the
user exits with the Natural prelinked object natraw.o.

A user exit is added to Natural in three steps:
1. A jump table has to be created that allows Natural to associate the name of a function invoked
by a CALL statement with the address of the function.

2. The functions that were put into the jump table must be written.

3. In the case of a dynamic link, the shared library that contains the user exits has to be rebuilt. In
the case of a static link, the jump table and the external functions must be linked together with
the prelinked Natural nucleus, to produce an executable Natural nucleus that supports the ex-
ternal functions.

The following topics are covered below:

= Step 1 - Defining the Jump Table

= Step 2 - Writing the External Functions
= Step 3 - Compiling and Linking

= How to Build a Shared Library

= How to Generate a Static Nucleus

= Example Programs

Step 1 - Defining the Jump Table

A sample of a jump table - jumptab.c - can be found in the directory:

<install-dir>natural/samples/sysexuex

164 Statements

CALL

Step 2 - Writing the External Functions

Each function has three parameters and returns a long integer. A function prototype should be as
follows:

NATFCT myadd (nparm, parmptr, parmdec)

WORD nparm;
BYTE **parmptr;
FINFO *parmdec;

nparm |16 bit unsigned short value, containing the total number of transferred operands (operand2).

parmptr|Array of pointers, pointing to the transferred operands.

parmdec |Array of field information for each transferred operand.

The data type FINFO is defined as follows:

typedef struct f

unsigned char TypeVar; /* type of variable &y
unsigned char pbh?; /* if type == ('D', 'N', 'P" or 'T") ==)
/% total num of digits &Y/

/* else Y

union { J% unused oy
unsigned char pb[2]; /* if type == ('D', 'N', 'P" or 'T') => */
unsigned short 1field; f pb[0] = #fdig before.dec.point */

b flen; /% pb[1] = #fdig after.dec.point */
/* else =)

[1field = length of field &y

} FINFO;

Next, the module containing the external functions must be written. A sample function - mycadd.c
- can be found in the directory:

<install-dir>/natural/samples/sysexuex
Step 3 - Compiling and Linking

The file natuser.h, which is included by the sample program, is delivered with Natural. It contains
declarations for the data types BYTE, WORD and the FINFO structure, that is, the description of
the internal representation of each passed parameter.

* In the case of dynamically linked user exits, the shared library containing the user exits has to
be rebuilt.

® In the case of statically linked user exits, the Natural nucleus has to be relinked.

Statements 165

CALL

For these purposes, it is strongly recommended to use the sample makefiles supplied by Software
AG, as they already contain the necessary compiler and linker parameters. The sample makefiles
can be found in the directory:

<install-dir>natural/samples/sysexuex

For further information, see the following sections and the explanations in the makefiles themselves.

How to Build a Shared Library

1.

From the example directory, which is contained in <install-dir>/natural/samples/sysexuex,
copy the following files into your work directory:

® Makedyn

" jumptab.c

" ncuxinit.c

Copy the C source files which contain your user exits into the same work directory.

Edit the file jumptab.c to include the names and function pointers for your user exits. To do so,
you add in Section 2 the external declarations of your user exits, and in Section 3 you add the
name/function-pointer pairs for your user exits.

. Edit the makefile as follows:

" Specify the names of the object files containing the user exits in the following line:
USEROBJS =

= Specify the name of the resulting shared library in the following line:
USERLIB =

® If you need to include private header files, specify the directories containing them in the fol-
lowing line:

INCDIR =
To remove all unneeded files, issue the command:

make -f Makedyn clean

To compile and link your shared library, issue the command:

166 Statements

CALL

make -f Makedyn 1ib

How to Generate a Static Nucleus

1. From the example directory, which is contained in <instalT-dir>/natural/samples/sysexuex,
copy the following files into your work directory:

" Makefile
= jumptab.c
2. Copy the C source files which contain your user exits into the same work directory.

3. Edit the file jumptab.c to include the names and function pointers for your user exits. To do so,
you add in Section 2 the external declarations of your user exits, and in Section 3 you add the
name/function-pointer pairs for your user exits.

4. Edit the makefile as follows:

" Specify the names of the object files containing the user exits in the following line:
USEROBJS = <

= If you need to include private header files, specify the directories containing them in the fol-
lowing line:

INCDIR =

5. Issue the command make to get information about further processing options.
Example:

See the sample user exit function in <install-dir>/natural/samples/sysexuex.
Example Programs

After successful compilation and linking, the external programs can be invoked from a Natural
program. Corresponding Natural example programs are provided in the library SYSEXUEX.

Statements 167

CALL

INTERFACE4

The keyword INTERFACE4 specifies the type of the interface that is used for the call of the external
program. This keyword is optional. If this keyword is specified, the interface, which is defined as
INTERFACE4, is used for the call of the external program.

The following table lists the differences between the CALL statement used with INTERFACE4 and
the one used without INTERFACE4:

CALL statement without keyword |CALL statement with keyword
INTERFACE4 INTERFACE4

Number of parameters possible 128 32767

Maximum data size of one parameter |65535 1GB

Retrieve array information no yes

Support of large and dynamic operands |no yes

Parameter access via API no yes

The following topics are covered below:

= [INTERFACE4 - External 3GL Program Interface
= QOperand Structure for INTERFACE4

= INTERFACE4 - Parameter Access

= Exported Functions

INTERFACE4 - External 3GL Program Interface

The interface of the external 3GL program is defined as follows, when INTERFACE4 is specified
with the Natural CALL statement:

NATFCT functionname (numparm, parmhandle, traditional)

USR_WORD|numparm; 16 bit unsigned short value, containing the total number of transferred
operands (operand?).

void *parmhandle; |Pointer to the parameter passing structure.

void *traditional; |Check for interface type (if it is not a NULL pointer it is the traditional CALL
interface).

168 Statements

CALL

Operand Structure for INTERFACE4

The operand structure of INTERFACE4 isnamed parameter_descriptionandis defined as follows.
The structure is delivered with the header file natuser.h.

struct parameter_description
void * |address Address of the parameter data, not aligned, realloc() and
free() are not allowed.
int format Field data format: NCXR_TYPE_ALPHA, etc. (natuser.h).
int Tength Length (before decimal point, if applicable).
int precision Length after decimal point (if applicable).
int byte_length Length of field in bytes int dimension number of dimensions (0
to IF4_MAX_DIM).
int dimensions Number of dimensions (0 to IF4_MAX_DIM).
int length_all Total data length of array in bytes.
int flags Several flag bits combined by bitwise OR operation, meaning:
IF4_FLG_PROTECTED: The parameter is write-protected.
IF4_FLG_DYNAMIC: The parameter is a dynamic
variable.
IF4_FLG_NOT_CONTIGUOUS: The array elements are not
contiguous (have spaces between
them).
IF4_FLG_ATIV: The parameter is an
application-independent variable.
IF4_FLG_DYNVAR: The parameter is a dynamic
variable.
IF4_FLG_XARRAY: The parameter is an X-array.
IF4_FLG_LBVAR_O: The lower bound of dimension 0
is variable.
IF4_FLG_UBVAR_O: The upper bound of dimension 0
is variable.
IF4_FLG_LBVAR_I: The lower bound of dimension 1
is variable.
IF4_FLG_UBVAR_I: The upper bound of dimension 1
is variable.
IF4_FLG_LBVAR_Z: The lower bound of dimension 2
is variable.
IF4_FLG_UBVAR_Z: The upper bound of dimension 2
is variable.
int occurrences[IF4_MAX_DIM] |Array occurrences in each dimension.
int indexfactors[IF4_MAX_DIM]|Array index factors for each dimension.
Statements 169

CALL

void * [dynp Reserved for internal use.

void * |[pops Reserved for internal use.

The address element is null for arrays of dynamic variables and for X-arrays. In these cases, the
array data cannot be accessed as a whole, but must be accessed through the parameter access
functions described below.

For arrays with fixed bounds of variables with fixed length, the array contents can be accessed
directly using the address element. In these cases the address of an array element (i,j k) is computed
as follows (especially if the array elements are not contiguous):

elementaddress = address + i * indexfactors[0] + j * indexfactors[1l] + k * <
indexfactors[2]

If the array has less than 3 dimensions, leave out the last terms.
INTERFACE4 - Parameter Access

A set of functions is available to be used for the access of the parameters. The process flow is as
follows:

® The 3GL program is called via the CALL statement with the INTERFACE4 option, and the parameters
are passed to the 3GL program as described above.

® The 3GL program can now use the exported functions of Natural, to retrieve either the parameter
data itself, or information about the parameter, such as format, length, array information, etc.

® The exported functions can also be used to pass back parameter data.

There are also functions to create and initialize a new parameter set in order to call arbitrary sub-
programs from a 3GL program. With this technique a parameter access is guaranteed to avoid
memory overwrites done by the 3GL program. (Natural's data is safe: memory overwrites within
the 3GL program's data are still possible).

Exported Functions

The following topics are covered below:

= Get Parameter Information

= Get Parameter Data

= Write Back Operand Data

= Create, Initialize and Delete a Parameter Set
= Create Parameter Set

= Delete Parameter Set

Initialize a Scalar of a Static Data Type
Initialize an Array of a Static Data Type
Initialize a Scalar of a Dynamic Data Type
Initialize an Array of a Dynamic Data Type

170 Statements

CALL

= Resize an X-array Parameter
Get Parameter Information

This function is used by the 3GL program to receive all necessary information from any parameter.
This information is returned in the struct parameter_description, whichis documented above.

Prototype:

int ncxr_get_parm_info (int parmnum, void *parmhandle, struct parameter_description «
*descr);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list.
Range: 0 ... numparm-1.
parmhand]le |Pointer to the internal parameter structure
descr Addressof a struct parameter_description
return Return Value: Information:
0 OK
-1 Illegal parameter number.
-2 Internal error.
-7 Interface version conflict.

Get Parameter Data

This function is used by the 3GL program to get the data from any parameter.

Natural identifies the parameter by the given parameter number and writes the parameter data
to the given buffer address with the given buffer size.

If the parameter data is longer than the given buffer size, Natural will truncate the data to the
given length. The external 3GL program can make use of the function ncxr_get_parm_info, to
request the length of the parameter data.

There are two functions to get parameter data: ncxr_get_parm gets the whole parameter (even if
the parameter is an array), whereas ncxr_get_parm_array gets the specified array element.

If no memory of the indicated size is allocated for “buffer” by the 3GL program (dynamically or
statically), results of the operation are unpredictable. Natural will only check for a null pointer.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Statements 171

CALL

Prototypes:

int ncxr_get_parm(int parmnum, void *parmhandle, int buffer_length, void *buffer)

int ncxr_get_parm_array(int parmnum, void *parmhandle, int buffer_length, void <
*pbuffer, int *indexes)

This function is identical to ncxr_get_parm, except that the indexes for each dimension can be
specified. The indexes for unused dimensions should be specified as 0.

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.
parmhandle Pointer to the internal parameter structure
buffer_length|Length of the buffer, where the requested data has to be written to
buffer Address of buffer, where the requested data has to be written to. This buffer should be
aligned to allow easy access to 12/14/F4/F8 variables.
indexes Array with index information
return Return Value: Information:
<0 Error during retrieval of the information:
-1 Illegal parameter number.
-2 Internal error.
-3 Data has been truncated.
-4 Data is not an array.
-7 Interface version conflict.
-100 Index for dimension 0 is out of range.
-101 Index for dimension 1 is out of range.
-102 Index for dimension 2 is out of range.
0 Successful operation.
>0 Successful operation, but the data was only this
number of bytes long (buffer was longer than the
data).

172 Statements

CALL

Write Back Operand Data

These functions are used by the 3GL program to write back the data to any parameter. Natural
identifies the parameter by the given parameter number and writes the parameter data from the
given buffer address with the given buffer size to the parameter data. If the parameter data is
shorter than the given buffer size, the data will be truncated to the parameters data length, that
is, the rest of the buffer will be ignored. If the parameter data is longer than the given buffer size,
the data will be copied only to the given buffer length, the rest of the parameter stays untouched.
This applies to arrays in the same way. For dynamic variables as parameters, the parameter is
resized to the given buffer length.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_put_parm (int parmnum, void *parmhandle,
int buffer_length, void *buffer);
int ncxr_put_parm_array (int parmnum, void *parmhandle,
int buffer_length, void *buffer,
int *indexes);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.
parmhandle Pointer to the internal parameter structure.
buffer_length|Length of the data to be copied back to the address of buffer, where the data comes from.
indexes Index information
return Return Value: Information:
<0 Error during copying of the information:
-1 Illegal parameter number.
-2 Internal error.
-3 Too much data has been given. The copy back was done
with parameter length.
-4 Parameter is not an array.
-5 Parameter is protected (constant or AD=0).
-6 Dynamic variable could not be resized due to an “out of
memory” condition.
-7 Interface version conflict.
-13 The given buffer includes an incomplete Unicode character.
-100 Index for dimension 0 is out of range.

Statements 173

CALL

-101 Index for dimension 1 is out of range.

-102 Index for dimension 2 is out of range.

0 Successful operation.

>0 Successful operation, but the parameter was this number
of bytes long (length of parameter greater than given
length).

Create, Initialize and Delete a Parameter Set

If a 3GL program wants to call a Natural subprogram, it needs to build a parameter set that cor-
responds to the parameters the subprogram expects. The function ncxr_create_parmis used to
create a set of parameters to be passed with a call to ncxr_if_cal1nat. The set of parameters created
is represented by an opaque parameter handle, like the parameter set that is passed to the 3GL
program with the CALL INTERFACE4 statement. Thus, the newly created parameter set can be ma-
nipulated with functions ncxr_put_parm* and ncxr_get_parm* as described above.

The newly created parameter set is not yet initialized after having called the function
ncxr_create_parm. Anindividual parameter is initialized to a specific data type by a set of
ncxr_parm_init* functions described below. The functions ncxr_put_parm* and ncxr_get_parm*
are then used to access the contents of each individual parameter. After the caller has finished
with the parameter set, they must delete the parameter handle. Thus, a typical sequence in creating
and using a set of parameters for a subprogram to be called through ncxr_if4_callnat will be:

ncxr_create_parm
ncxr_init_ parm*
ncxr_init_ parm*

ncxr_put_ parm*
ncxr_put_ parm*

ncxr_get_parm_info*
ncxr_get_parm_info*

nexr_if4_callnat

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_get_ parm*
ncxr_get_ parm*

ncxr_delete_parm

174 Statements

CALL

Create Parameter Set

The function ncxr_create_parmis used to create a set of parameters to be passed with a call to
ncxr_if_callnat.

Prototype:
int ncxr_create_parm(int parmnum, void** pparmhandle)

Parameter Description:

parmnum Number of parameters to be created.
pparmhand]e |Pointer to the created parameter handle.
return Return Value: Information:
<0 Error:
-1 Illegal parameter count.
-2 Internal error.
-6 Out of memory condition.
0 Successful operation.

Delete Parameter Set

The function ncxr_delete_parmis used to delete a set of parameters that was created with
ncxr_create_parm.

Prototype:

int ncxr_delete_parm(void* parmhandle)

Parameter Description:

parmhand]le |Pointer to the parameter handle to be deleted.
return Return Value: Information:

<0 Error:

-2 Internal error.

0 Successful operation.

Statements 175

CALL

Initialize a Scalar of a Static Data Type

Prototype:

int ncxr_init_parm_s(int parmnum, void *parmhandle,
char format, int Tength, int precision, int flags);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhand]le |Pointer to the parameter handle.

format Format of the parameter.

Tength Length of the parameter.

precision |Precision of the parameter.

flags IFA_FLG_PROTECTED

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
0 Successful operation.

Initialize an Array of a Static Data Type

Prototype:

int ncxr_init_parm_sa(int parmnum, void *parmhandle,
char format, int Tength, int precision,
int dim, int *occ, int flags);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhand]e [Pointer to the parameter handle.

format Format of the parameter.

Tength Length of the parameter.

precision [Precision of the parameter.

176 Statements

CALL

IF4_FLG_PROTECTED
IFA_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_?
IFA_FLG_UBVAR_?

dim Dimension of the array.
occ Number of occurrences per dimension.
flags A combination of the flags

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.

Initialize a Scalar of a Dynamic Data Type

Prototype:

int ncxr_init_parm_d(int parmnum, void *parmhandle,

char format, int flags);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 numparm-1.
parmhand]le |Pointer to the parameter handle.
format Format of the parameter.
flags IF4_FLG_PROTECTED
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
Statements 177

CALL

-8 Invalid format.

0 Successful operation.

Initialize an Array of a Dynamic Data Type

Prototype:

int ncxr_init_parm_da(int parmnum, void *parmhandle,
char format, int dim, int *occ, int flags);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhand]le |Pointer to the parameter handle.

format Format of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.
flags A combination of the flags

IF4_FLG_PROTECTED
IFA_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_?
IFA_FLG_UBVAR_Z

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.

178 Statements

CALL

Resize an X-array Parameter

Prototype:

int ncxr_resize_parm_array(int parmnum, void *parmhandle, int *occ);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.
parmhand] e |Pointer to the parameter handle.
occ New number of occurrences per dimension.
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-12 Operand is not resizable (in one of the specified
dimensions).
0 Successful operation.

All function prototypes are declared in the file natuser.h.

Statements 179

180

23 CALL FILE

LI V1ot o PSP PPPPUR PP 182
L =140) O URPUPPPPPRRR 182
B SYNEAX DESCIIPHON ...ttt e e 182
L 11T o] (- PSPPSR 183

181

CALL FILE

Structured Mode Syntax

CALL FILE'program-name' operandl operand2
statement ...
END-FILE

Reporting Mode Syntax

CALL FILE'program-name' operandl operand?
statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL FILE statement is used to call a non-Natural program which reads a record from a non-
Adabas file and returns the record to the Natural program for processing.

Restriction

The statements AT BREAK, AT START OF DATAand AT END OF DATA mustnotbe used withina CALL
FILE processing loop.

Syntax Description

Operand Definition Table:

182 Statements

CALL FILE

Operand | Possible Structure Possible Formats Referencing Dynamic Definition
Permitted

operandl A AUNPIFBDTLC yes yes

operandZ A |G AUNPIFBDTLC yes yes

Syntax Element Description:

Syntax Element Description

"program-name' |Program to be Called:
The name of the non-Natural program to be called.

operandl Control Field:
operandl is used to provide control information.

operand? Record Area:
operandZ defines the record area.
The format of the record to be read can be described using field definitions (or FILLER
nX) entries following the name of the first field in the record. The fields used to define
the record format must not have been previously defined in the Natural program. This
ensures that fields are allocated in the contiguous storage by Natural.

statement ... |Processing Loop:
The CALL FILE statement initiates a processing loop which must be terminated with
an ESCAPE or STOP statement. More than one ESCAPE statement may be specified to
escape from a CALL FILE loop based on different conditions.

END-FILE End of CALL FILE Statement:

LooP In structured mode, the Natural reserved keyword END- FILE must be used to end the
CALL FILE statement.
In reporting mode, the Natural statement LOOP isused to end the CALL FILE statement.

Example

Calling Program:

** Example 'CFIEX1':

CALL FILE

R R R R e R b e b b R b e b i e R e i e R e e b e I e S e e B e e b e e b e b e b e e b e b e b e e i e b e S e e b o 4

DEFINE DATA LOCAL
1 #fCONTROL (A3)

1 ffRECORD
2 A (A10)
2 B (N3.2)
2 #FILLL (A3)
2 {tC (P3.1)
END-DEFINE
*
Statements 183

CALL FILE

CALL FILE "USER1" #fCONTROL #RECORD
IF #CONTROL = "END'
ESCAPE BOTTOM
END-IF
END-FILE

/*****************************

/* ... PROCESS RECORD ...

/*****************************

END

The byte layout of the record passed by the called program to the Natural program in the above

example is as follows:

CONTROL #A 1B FILLER 4C
(A3) (A10) (N3.2) 3X (P3.1)

XXX XXXXXXXXXX XXXXX XXX XXX

Called COBOL Program:

ID DIVISION.
PROGRAM-ID. USERI.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT USRFILE ASSIGN UT-S-FILEUSR.

DATA DIVISION.
FILE SECTION.

FD USRFILE RECORDING F LABEL RECORD OMITTED

DATA RECORD DATA-IN.
01 DATA-IN PIC X(80).
LINKAGE SECTION.
01 CONTROL-FIELD PIC XXX.
01 RECORD-IN PIC X(21).

PROCEDURE DIVISION USING CONTROL-FIELD RECORD-IN.

BEGIN.
GO TO FILE-OPEN.
FILE-OPEN.
OPEN INPUT USRFILE
MOVE SPACES TO CONTROL-FIELD.

ALTER BEGIN TO PROCEED TO FILE-READ.

FILE-READ.
READ USRFILE INTO RECORD-IN
AT END

MOVE '"END' TO CONTROL-FIELD

CLOSE USRFILE

ALTER BEGIN TO PROCEED TO FILE-OPEN.

GOBACK.

184

Statements

24 CALL LOOP

LI V1ot o PSP PPPPUR PP 186
L =140) O URPUPPPPPRRR 186
B SYNEAX DESCIIPHON ...ttt e e 187
L 11T o] (- PSPPSR 187

185

CALL LOOP

Structured Mode Syntax

CALL LOOP operandl [operandZ]..A40
statement ...
END-LOOP

Reporting Mode Syntax

CALL LOOP operandl [operandZ]...40
statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL FILE | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL LOOP statement is used to generate a processing loop that contains a call to a non-Natural
program.

Unlike the CALL statement, the CALL LOOP statement results in a processing loop which is used to
repeatedly call the non-Natural program. See the CALL statement for a detailed description of the
CALL processing.

Restriction

The statements AT BREAK, AT START OF DATAand AT END OF DATA must notbe used withina CALL
LOOP processing loop.

186 Statements

CALL LOOP

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl|C (S A yes no

operandZ|C |S |A |G A|UIN|P|I|F|B|D|T|L|C yes yes

Syntax Element Description:

Syntax Element Description

operandl Program to be Called:

The name of the non-Natural program to be called can be specified as a constant or -
if different programs are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 32. A program name must be placed left-justified in the variable.

operand? Parameters:

The CALL LOOP statement can have a maximum of 40 parameters. The parameter list
is constructed as described for the CALL statement. Fields used in the parameter list
may be initially defined in the CALL LOOP statement itself or may have been previously
defined.

statement ... |Processing Loop:
The CALL LOOP statement initiates a processing loop which must be terminated with
an ESCAPE statement.

END-LOOP End of CALL LOOP Statement:
LOOP

In structured mode, the Natural reserved word END-LOOP must be used to end the
CALL LOOP statement.

In reporting mode, the Natural statement LOOP is used to end the CALL LOOP statement.

Example

DEFINE DATA LOCAL

1 PARAMETER1 (A10)

END-DEFINE

CALL LOOP 'ABC' PARAMETER1L
IF PARAMETERI = "END'

ESCAPE BOTTOM

END-IF

END-LOOP

END

Statements 187

188

25 cavoerroc (SQL)

B FUNCHON .ttt e e 190
B SYNEAX DESCIIPHON ...ttt e e e s 191
LI 1oL OSSPSR 192

189

CALLDBPROC (SQL)

CALLDBPROC dbproc ddm-name

M
[USING] parameter AD=‘ 0 ’ ’
A

[RESULT SETS result-set...]
[GIVING sqTcode]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The CALLDBPROC statement is used to invoke a stored procedure of the SQL database system to
which Natural is connected.

The stored procedure can be either a Natural subprogram (only available when executed from
Db2 for z/OS) or a program written in another programming language.

In addition to the passing of parameters between the invoking object and the stored procedure,
CALLDBPROC supports “result sets”; these make it possible to return a larger amount of data from
the stored procedure to the invoking object than would be possible via parameters.

The result sets are “temporary result tables” which are created by the stored procedure and which
can be read and processed by the invoking object via a READ RESULT SET statement.

] Note: In general, the invoking of a stored procedure could be compared with the invoking
of a Natural subprogram: when the CALLDBPROC statement is executed, control is passed to
the stored procedure; after processing of the stored procedure, control is returned to the
invoking object and processing continues with the statement following the CALLDBPROC
statement.

190 Statements

CALLDBPROC (SQL)

Syntax Description

Syntax
Element

Description

dbproc

Stored Procedure to be Invoked:

As dbproc you specify the name of the stored procedure to be invoked. The name can be
specified either as an alphanumeric variable or as a constant (enclosed in apostrophes).

The name must adhere to the rules for stored procedure names of the target database system.

If the stored procedure is a Natural subprogram, the actual procedure name must not be
longer than 8 characters.

ddm-name

Name of a Natural Data Definition Module:

The name of a DDM must be specified to provide the “address” of the database which executes
the stored procedure. For further information, see ddm-name.

LUSING]
parameter

Parameter(s) to be Passed:

As parameter, you can specify parameters which are passed from the invoking object to the
stored procedure. A parameter can be

® a host-variable (optionally with INDICATOR and LINDICATOR clauses),
B a constant, or

= the keyword NULL.

See further details on host-variable.

AD=

Attribute Definition:

If parameterisa host-variable, you can mark it as follows:

AD=0 Non-modifiable, see session parameter AD=0.

(Corresponding procedure notation in Db2 for
z/OS: TN.)

AD=M Modifiable, see session parameter AD=M.

(Corresponding procedure notation in Db2 for
z/OS: INOUT.)

AD=A For input only, see session parameter AD=A.

(Corresponding procedure notation in Db2 for
z/OS: 0UT.)

If parameter is a constant, AD cannot be explicitly specified. For constants, AD=0 always
applies.

Statements

191

CALLDBPROC (SQL)

Syntax Description

Element

RESULT Field for Result-Set Locator Variable:

SETS

result-set|As result-set you specify a field in which a result-set locator is to be returned.
A result set has to be a variable of format/length I4.
The value of a result set variable is merely a number which identifies the result set and which
can be referenced in a subsequent READ RESULT SET statement.
The sequence of the result - set values correspond to the sequence of the result sets returned
by the stored procedure.
The contents of the result sets can be processed by a subsequent READ RESULT SET statement.
If no result set is returned, the corresponding result-set variable will contain 0.
Only one result set can be specified.

GIVING GIVING sqicode Option:

sglcode
This option may be used to obtain the SQLCODE of the SQL CALL statement invoking the
stored procedure.
If this option is specified and the SQLCODE of the stored procedure is not 0, no Natural error
message will be issued. In this case, the action to be taken in reaction to the SQLCODE value
has to be coded in the invoking Natural object.
The sqlcode field has to be a variable of format/length 4.
If the GIVING sqg/code option is omitted, a Natural error message will be issued if the
SQLCODE of the stored procedure is not 0.

Example

The following example shows a Natural program that calls the stored procedure DEMO_PROC to
retrieve all names of table PERSON that belong to a given range.

Three parameter fields are passed to DEMO_PROC: the first and second parameters pass starting and
ending values of the range of names to the stored procedure, and the third parameter receives a
name that meets the criterion.

In this example, the names are returned in a result set that is processed using the READ RESULT
SET statement.

192

Statements

CALLDBPROC (SQL)

DEFINE DATA LOCAL
1 PERSON VIEW OF DEMO-PERSON
2 PERSON_ID

2 LAST_NAME

#BEGIN (A2) INIT <'AB'>
FEND (A2) INIT <'DE'>
#FRESPONSE (14)

#RESULT (I4)

#INAME (A20)

ND-DEFINE

M = = =

CALLDBPROC 'DEMO_PROC' DEMO-PERSON #BEGIN (AD=0) #END (AD=0) #NAME (AD=A)
RESULT SETS {RESULT
GIVING #RESPONSE

READ RESULT SET #RESULT INTO #fNAME FROM DEMO-PERSON
GIVING #RESPONSE
DISPLAY {NAME
END-RESULT

END

Statements 193

194

26 CALLNAT

B FUNCHON .ttt e e 196
B SYNEAX DESCIIPHON ...ttt e e e s 197
= Parameter Transfer with Dynamic Variables ... 199
L e 11T PSR RUPPPPPRR 200

195

CALLNAT

M
operandZ2 (AD= ‘ 0 ’)

CALLNAT operandl [USING] A

nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALLNAT statement is used to invoke a Natural subprogram for execution. (A Natural subpro-
gram can only be invoked via a CALLNAT statement; it cannot be executed by itself.)

When the CALLNAT statement is executed, the execution of the invoking object (that is, the object
containing the CALLNAT statement) will be suspended and the invoked subprogram will be executed.
The execution of the subprogram continues until either its END statement is reached or processing
of the subprogram is stopped by an ESCAPE ROUTINE statement being executed. In either case,
processing of the invoking object will then continue with the statement following the CALLNAT
statement.

) Notes:

1. A subprogram can in turn invoke other subprograms.

2. A subprogram has no access to the global data area used by the invoking object. If a subprogram
in turn invokes a subroutine or helproutine, it can establish its own global data area to be shared
with the subroutine/helproutine.

196 Statements

CALLNAT

Syntax Description

Operand Definition Table:

Operand |Possible Structure Possible Formats Referencing |Dynamic Definition
Permitted

operandI|C |S A yes no

operand2|C |S |A |G A|UN|P|I|F|B|D|T|L|C|G|O yes yes

Syntax Element Description:

Syntax
Element

Description

operandl

Subprogram to be Invoked:

As operandl, you specify the name of the subprogram to be invoked. The name may be specified
either as a constant of 1 to 32 characters, or - if different subprograms are to be called dependent
on program logic - as an alphanumeric variable of length 1 to 8.

The subprogram name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different subprograms for the
processing of input, depending on the language in which input is provided.

operand?

Parameters:

If parameters are passed to the subprogram, the structure of the parameter list must be defined
inaDEFINE DATA PARAMETER statement. The parameters specified with the CALLNAT statement
are the only data available to the subprogram from the invoking object.

By default, the parameters are passed by reference, that is, the data are transferred via address
parameters, the parameter values themselves are not moved. However, it is also possible to
pass parameters by value, that is, pass the actual parameter values. To do so, you define these
fieldsinthe DEFINE DATA PARAMETER statement of the subprogram with the option BY VALUE
or BY VALUE RESULT (see parameter-data-definitionin the description of the DEFINE
DATA statement).

= If parameters are passed by reference, the following applies: The sequence, format and length
of the parameters in the invoking object must match exactly the sequence, format and length
of the DEFINE DATA PARAMETER structure in the invoked subprogram. The names of the
variables in the invoking object and the invoked subprogram may be different.

If parameters are passed by value, the following applies: The sequence of the parameters in
the invoking object must match exactly the sequence in the DEFINE DATA PARAMETER
structure of the invoked subprogram. Formats and lengths of the variables in the invoking
object and the subprogram may be different; however, they have to be data transfer compatible;

see the corresponding table in the section Rules for Arithmetic Assignments, Data Transfer in

Statements

197

CALLNAT

Syntax
Element

Description

the Programming Guide. The names of the variables in the invoking object and the subprogram
may be different. If parameter values that have been modified in the subprogram are to be
passed back to the invoking object, you have to define these fields with BY VALUE RESULT.
When BY VALUE is specified without RESULT, it is not possible to pass modified parameter
values back to the invoking object (regardless of the AD specification; see also below).

Note: With BY VALUE, an internal copy of the parameter values is created. The subprogram

accesses this copy and can modify it, but this will not affect the original parameter values in
the invoking object. With BY VALUE RESULT, an internal copy is likewise created, however,
after termination of the subprogram, the original parameter values are overwritten by the
(modified) values of the copy.

For both ways of passing parameters, the following applies:

If a group is specified as operand?Z, the individual fields contained in that group are passed to
the subprogram; that is, for each of these fields a corresponding field must be defined in the
subprogram's parameter data area.

In the parameter data area of the invoked subprogram, a redefinition of groups is only permitted
within a REDEFINE block.

If an array is passed, its number of dimensions and occurrences in the subprogram's parameter
data area must be the same as in the CALLNAT parameter list.

Note: If multiple occurrences of an array that is defined as part of an indexed group are passed

with the CALLNAT statement, the corresponding fields in the subprogram's parameter data area
must not be redefined, as this would lead to the wrong addresses being passed.

When the option PCHECK of the COMPOPT command is set to ON, the compiler will check the
number, format, length and array index bounds of the parameters that are specified ina CALLNAT
statement. Also, the OPTIONAL feature of the DEFINE DATA PARAMETER statement is considered
in the parameter check.

Note: Numeric constant parameters are internally represented in packed form (format P). For

further information see the Programming Guide > Numeric Constants.

AD=

Attribute Definition:

If operand?Zis a variable, you can mark it in one of the following ways:

AD=0 Non-modifiable, see session parameter AD=0.

Note: Internally, AD=0 is processed in the same
way as BY VALUE (see
parameter-data-definitionin the
description of the DEFINE DATA statement).

AD=M Modifiable, see session parameter AD=M.

This is the default setting.

198

Statements

CALLNAT

Syntax Description
Element

AD=A Input only, see session parameter AD=A.

If operandZis a constant, AD cannot be explicitly specified. For constants AD=0 always applies.
nX Parameters to be Skipped:

With the notation X you can specify that the next n parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the
next 11 parameters no values are passed to the subprogram. The possible range of values for 1
is1 - 409¢6.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the
subprogram's DEFINE DATA PARAMETER statement. OPTIONAL means that a value can - but
need not - be passed from the invoking object to such a parameter.

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
A call by reference is possible because the value space of a dynamic variable is contiguous. A call
by value causes an assignment with the variable definition of the caller as the source operand and
the parameter definition as the destination operand. In addition, a call by value result causes the
movement to change to the opposite direction. When using a call-by-reference, both definitions
must be DYNAMIC. If only one of them is DYNAMIC, a runtime error is raised. In case of a call by value
(result) all combinations are possible.

The following table illustrates the valid combinations of statically and dynamically defined variables
of the caller, and statically and dynamically defined parameters concerning the parameter transfer.

Call By Reference

operand? of caller|Parameter definition
Static Dynamic

Static yes no

Dynamic no yes

The formats of the dynamic variables A or B must match.

Statements

199

CALLNAT

Call by Value (Result)

operand? of caller|Parameter definition
Static Dynamic

Static yes yes

Dynamic yes yes

| Note: When using static/dynamic or dynamic/static definitions, a value truncation may

occur according to the data transfer rules of the appropriate assignments.

Examples

= Example 1
= Example 2

Example 1
Calling Program:

** Example "CNTEX1': CALLNAT

R R b b e b b e b b e b b e b S b e e I e e b e b e e e B e e B e e b e b e b e e b e i e b e b e B i b e b e e b i 4
DEFINE DATA LOCAL

1 #FIELDI (N6)

1 #/FTELD2 (A20)

1 #fFIELD3 (A10)

END-DEFINE

*

CALLNAT 'CNTEXIN' #FIELD1 (AD=M) #FIELD2 (AD=0) #FIELD3 'P4 TEXT'

*

WRITE '=' #FIELD1 '=" #FIELD2 '=' #FIELD3

*

END

Called Subprogram CNTEXIN:

** Example 'CNTEXIN': CALLNAT (called by CNTEX1)

R R R R B b B R R b b i b S B e i b b b b S b b e e e b b b e b b b i e i b b e e b b b e i S b b b e b b
DEFINE DATA PARAMETER

1 #FIELDA (N6)

1 #FIELDB (A20)

1 #FIELDC (A10)

1 #FIELDD (A7)

END-DEFINE

*
*

200 Statements

CALLNAT

JIFIELDA := 4711

*

#FIELDB := 'HALLO'
*

##FIELDC := 'ABC'

*

WRITE '=' #FIELDA '=' #FIELDB '=' #FIELDC '=' #FIELDD
*

END

Example 2

Calling Program:

** Example 'CNTEX2': CALLNAT
Khkhkkhhkkhhkhhkkhhkkhhkkhhkhhkhhhhkhhhhkhhhhkhhhhhhhhkhhkhhkhhkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhrkhrkhkrkhrk
DEFINE DATA LOCAL

1 #ARRAYL (N4/1:10,1:10)

1 #NUM (N2)

END-DEFINE

*
*
CALLNAT '"CNTEX2N' #fARRAY1 (2:5,%*)
*
FOR #NUM 1 TO 10

WRITE #NUM #FARRAYI(#NUM,1:10)
END-FOR

*

END

Called Subprogram CNTEX2N:

** Example 'CNTEX2N': CALLNAT (called by CNTEX2)

R R R o R R b b R b e b e S b R R i b b e i b e i b R e i b R i i b b e b R R e i b b e b i 4
DEFINE DATA

PARAMETER

1 #FARRAY (N4/1:4,1:10)

LOCAL

11 (I2)

END-DEFINE

*

*

FOR I 1 10
F#ARRAY (1,1) :=1
#FARRAY (2,1) := 100 + I
#FARRAY (3,1) := 200 + I
FFARRAY (4,1) := 300 + I
END-FOR

*

END

Statements 201

202

27 CLOSE CONVERSATION

B FUNCHON .ttt e e 204
B SYNEAX DESCIIPHON ...ttt e e e s 204
= Further Information and EXamPIESooiiiiiiiee s 205

203

CLOSE CONVERSATION

operandl ...]

CLOSE CONVERSATION ‘ *CONVID

ALL

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE DATA CONTEXT | OPEN CONVERSATION

Belongs to Function Group: Natural Remote Procedure Call

Function

The statement CLOSE CONVERSATION is used in conjunction with the Natural RPC (Remote Procedure
Call). It allows the client to close conversations. You can close the current conversation, another
open conversation, or all open conversations.

] Note: Alogon to another library does not automatically close conversations.

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted Dynamic Definition

operandl

‘S ‘A ’ I yes no

Syntax Element Description:

Syntax Element|Description

operandl Identifier of Conversation to be Closed:
To close a specific open conversation, specify its ID as operand]I.
operandl must be a variable of format/length 14.

*CONVID Closing the Current Conversation:
To close the current conversation, specify *CONVID.
The ID of the current conversation is determined by the value of the system variable *CONVID.

ALL Closing All Open Conversations:
To close all open conversations, specify ALL.

204 Statements

CLOSE CONVERSATION

Further Information and Examples

See the following sections in the Natural RPC (Remote Procedure Call) documentation:

® Natural RPC Operation in Conversational Mode
® Using a Conversational RPC

Statements 205

206

V

B 28 CLOSE PC FILE ovooovooeoeeoeeece oo eeeeeese e eeee e ee e s e e s s s e se s 209
B 29 CLOSE PRINTERooveoeoveeeeeeoeeeeeeeeeeeeeeeeseee e et seeeese e es et eese e s e ee e e s s 213
B 30 CLOSE WORK FILEvvooeveoeeeeeeeeeeeeee e eeeeeseee e s s e ee e s e e es e 217
B 31 COMMIT (SQL) oo eeee e ee e s e et e et ee e e e ee e 221
B 32 COMPRESS ...t eee et eeee et e e et e et e 223
B 33 COMPUTE ... eeeee et ee et e et e et e et 233
B 34 CREATE OBUECT ..ottt ee e e e es e 241
B 35 DECIDE FORvvcooeveoeeeeeoeeeeoeeeeeeeeeeeeeeseese e se e s e ee s e e e se e e s s e se e es e ee e 245
B 36 DECIDE ON ...ooveoeeeeeeeeee e eee oo e e et e oo et e e s es et 251
B 37 DEFINE CLASS ..ot eee ettt 257

207

208

28 CLOSE PC FILE

B FUNCHON .ttt e e 210
B SYNEAX DESCIIPHON ...ttt e e e s 210
LI 1oL OSSPSR 210

209

CLOSE PC FILE

PC
CLOSE { } [FILE] work-file-number
WORK

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DOWNLOAD PC FILE | UPLOAD PC FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The statement CLOSE PC FILE is used to close a specific PC work file. It allows you to explicitly
specify in a program that a PC work file is to be closed.

A work file is also closed automatically when command mode is reached.

See also the Natural Connection and Entire Connection documentation.

Syntax Description

Syntax Element Description

work-file-number |The work-file-number is the number of the PC work file to be closed.

This number must correspond to one of the work file numbers for the PC as defined
to Natural.

Example

The following program demonstrates the use of the CLOSE PC FILE statement.

** Example 'PCCLEX1': CLOSE PC FILE

* %

** NOTE: Example requires that Natural Connection is installed.

KAk kA hkkhkhkhhkkhhkhhkkhhkhhkkhkhkhhkkhhkhhkhkhkhhkkhrkhhkkhkrkhhkhrkhhkhrkhhkhkhkhhkhrkhhkhrkhhkhrkhhkhrkhhrkhkrkhrkhxk
DEFINE DATA LOCAL

01 W-DAT (A40)

01 REC-NUM (N3)

01 I (P3)

END-DEFINE

*

REPEAT

210 Statements

CLOSE PC FILE

UPLOAD PC FILE 7 ONCE W-DAT /* Data upload
AT END OF FILE
ESCAPE BOTTOM
END-ENDFILE
INPUT 'Processing file' W-DAT (AD=0)
/ "Enter record number to display' REC-NUM
IF REC-NUM = 0
STOP
END-IF
FOR I =1 TO REC-NUM
UPLOAD PC FILE 7 ONCE W-DAT
AT END OF FILE
WRITE 'Max. record number reached, last record is'
ESCAPE BOTTOM
END-ENDFILE
END-FOR
I =1 -1
WRITE 'Record' I ':' W-DAT
CLOSE PC FILE 7 /* Close PC file 7
END-REPEAT
END

Output of Program PCCLEX1:

When you run the program, a window appears in which you specify the name of the PC file from
which the data is to be uploaded. The data is then uploaded from the PC. At the end of each loop,
the PC file is closed.

Statements 211

212

29 CLOSE PRINTER

B FUNCHON .ttt e e 214
B SYNEAX DESCIIPHON ...ttt e e e s 214
LI 1oL OSSPSR 215

213

CLOSE PRINTER

logical-printer-name
CLOSE PRINTER { (109 P) }

(printer-number)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE IDEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The CLOSE PRINTER statement is used to close a specific printer. With this statement, you explicitly
specify in a program that a printer is to be closed.

A printer is also closed automatically in one of the following cases:

® when a DEFINE PRINTER statement in which the same printer is defined again is executed;

® when command mode is reached.

Syntax Description

Syntax Element Description

Togical-printer-name|Logical Printer Name:

With the /ogical-printer-name you specify which printer is to be closed.
The name is the same as in the corresponding DEFINE PRINTER statement in
which you defined the printer.

Naming conventions for the Togical-printer-name are the same as for
user-defined variables, see Naming Conventions for User-Defined Variables in Using
Natural.

printer-number Printer Number:

Alternatively to the Togical-printer-name, you may define the
printer-number to specify which printer is to be closed.

The printer-number may be a number in the range from 0 - 31. This is the
number also to be used ina DISPLAY /WRITE or DEFINE PRINTER statement.

Printer number 0 indicates the hardcopy printer.

214 Statements

CLOSE PRINTER

Example

** Example 'CLPEX1': CLOSE PRINTER
R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 BIRTH
*
1 #1-NAME (A20)
END-DEFINE

*

DEFINE PRINTER (PRTO1=1)

*

REPEAT
INPUT "SELECT PERSON' #I-NAME
IF #I-NAME = " '
STOP
END-IF
FIND EMP-VIEW WITH NAME = 4I-NAME
WRITE (PRTO1) "NAME :' NAME "," FIRST-NAME
/ "PERSONNEL-ID :' PERSONNEL-ID
/ "BIRTH :' BIRTH (EM=YYYY-MM-DD)
END-FIND
/*
CLOSE PRINTER (PRTO1)
/*
END-REPEAT
END

Statements 215

216

30 CLOSE WORK FILE

B FUNCHON .ttt e e 218
B SYNEAX DESCIIPHON ...ttt e e e s 218
LI 1oL OSSPSR 219

217

CLOSE WORK FILE

CLOSE WORKI[FILE] work-file-number

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DEFINE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The statement CLOSE WORK FILE is used to close a specific work file. It allows you to explicitly
specify in a program that a work file is to be closed.

A work file is closed automatically:

® When command mode is reached.
® When an end-of-file condition occurs during the execution of a READ WORK FILE statement.

" Before a DEFINE WORK FILE statement is executed which assigns another file to the work file
number concerned.

Syntax Description

Syntax Element Description

work-file-number |Work File Number:
The work file number (as defined to Natural) to be used.

The work file number is either

® a numeric constant in the value range 1:32 or

® anumeric variable of type (B/N/P/I) defined with a CONST clause which assigning
a value in range (1:32). Variable is a scalar (non-array) without precision digits
for type (N/P), length in between 1-4 for type (B), and no redefinition field.

218 Statements

CLOSE WORK FILE

Example

** Example 'CWFEX1': CLOSE WORK FILE

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

DEFINE DATA LOCAL
1 W-DAT (A20)
1 REC-NUM (N3)
11 (P3)
END-DEFINE
*
REPEAT
READ WORK FILE 1 ONCE W-DAT
/%
AT END OF FILE
ESCAPE BOTTOM
END-ENDFILE

/* READ MASTER RECORD

INPUT 'PROCESSING FILE' W-DAT (AD=0)
/ "ENTER RECORDNUMBER TO DISPLAY' REC-NUM

IF REC-NUM = 0
STOP
END-IF
FOR' I =1 TO REC-NUM
/%
READ WORK FILE 1 ONCE W-DAT
/*
AT END OF FILE

WRITE '"RECORD-NUMBER TOO HIGH,

ESCAPE BOTTOM
END-ENDFILE
END-FOR
I =1 -1
WRITE '"RECORD" I ":' W-DAT
/*
CLOSE WORK FILE 1
/*
END-REPEAT
END

LAST RECORD IS'

Statements

219

220

31

COMMIT (SQL)

= Function
= Example

221

COMMIT (SQL)

Belongs to Function Group: Database Access and Update

Function

The SQL COMMIT statement corresponds to the END TRANSACTION statement. It indicates the end of
a logical transaction and releases all data locked during the transaction. All data modifications
are committed and made permanent.

& Important: As all cursors are closed when a logical unit of work ends, a COMMIT statement

must not be placed within a database modification loop; instead, it has to be placed outside
such a loop or after the outermost loop of nested loops.

Example

DELETE FROM SQL-PERSONNEL WHERE NAME = "SMITH'
COMMIT

222 Statements

32 COMPRESS

B FUNCHON .ttt e e 224
B SYNEAX DESCIIPHON ...ttt e e e s 224
L o (0o o OO U TR PUPPPPPRRR 228
L e 11T PSR RUPPPPPRR 229

223

COMPRESS

COMPRESS [NUMERIC] [FULL]

{ operandl [(parameter)]
SUBSTRING (operandl,operand3,operand4) [(parameter)]

operandZ
INTO { SUBSTRING

LEAVING [SPACE]
LEAVING NO [SPACE]
WITH[ALL] [DELIMITERS] [operand7]

(operandz,operandb,operandé6)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ASSIGN | COMPUTE | EXAMINE | MOVE | MOVE ALL | SEPARATE

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The COMPRESS statement is used to transfer (combine) the contents of one or more operands into

a single field.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S |A |G |N |[A|U|N|PI|F|B|D|T|L| |G|O yes no
operand?2 S A|U B yes yes
operand3 |C |S N|P|I| (B yes no
operand4 |C |S N|P|I| [B yes no
operand5 |C |S N|P|I| |B yes no
operand6 |C |S N|P|I| [B yes no
operand/7 |C |S A|U B yes no

" Format B of operand3, operand4, operands and operandé may be used only with a length of less

than or equal to 4.

224

Statements

COMPRESS

Syntax Element Description:

Syntax Description
Element
NUMERIC Handling of Sign Characters:
This option determines how sign characters and decimal characters are to be handled:
Without NUMERIC, decimal points and signs in numeric source values are suppressed before
the values are transferred. For example:
COMPRESS -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: 123*123
With NUMERIC, decimal points and signs in numeric source values are also transferred to the
target field.
For floating point source values, decimal points and signs are transferred, regardless of
whether NUMERIC has been specified or not.
Example 1:
COMPRESS NUMERIC -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: -123%1.23
Example 2:
COMPRESS NUMERIC 'ABC' -0056.00 -0056.10 -0056.01
INTO #fTARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*-56*-56.1%-56.01
Example 3:
COMPRESS NUMERIC FULL 'ABC' -0056.00 -0056.10 -0056.01
INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*-0056.00*-0056.10*-0056.01
FULL Handling of Source Field Values:
Without FULL, the following are removed from the source fields before the values are
transferred:
B Jeading zeros before the decimal point for fields of format N, P or I
® trailing zeros after the decimal point for fields of format N or P
® trailing blanks for fields of format A
® and leading binary zeros for fields of format B
For a numeric source field containing all zeros, one zero will be transferred. For example:
Statements 225

COMPRESS

Syntax
Element

Description

COMPRESS 'ABC ' 001 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*1

With FULL, the values of the source fields in their actual lengths will be transferred to the
target field. In other words:

B Jeading zeros before the decimal point for fields of format N, P or I

B trailing zeros after the decimal point for fields of format N or P

B and trailing blanks for fields of format A

B Jeading binary zeros for fields of format B

are displayed as entered. For example:

COMPRESS FULL 'ABC ' 001 INTO #TARGET WITH DELIMITER '=*'
Content of #TARGET is: ABC *001

operandl

Source Fields:
As operandl, you specify the fields whose contents are to be transferred.

Note: If operandl is not of format A or B, its content is converted into alphanumeric

representation before it is transferred. If necessary, the alphanumeric representation is
truncated.

Using operandl without an explicit Edit Mask, a ...

- Time variable (format T) is transferred only with the time component, not the date
component.

- Logical variable (format L) with value <false> is represented by a blank and value <true> is
represented by char "X".

operand?

Target Field:
As operandZ, you specify the field which is to receive the values of the source fields.

If the target field is of format U (Unicode) and if a source field of format B is involved, the
length of the sending binary field must be even.

LEAVING
SPACE

Values in Target Field Separated by a Blank:

If you use the COMPRESS statement without any further options, or if you specify LEAVING
SPACE (which also applies by default), the values in the target field will be separated from
one another by a blank.

LEAVING NO
SPACE

Values in Target Field Not Separated:
If you specify LEAVING NO SPACE, the values in the target field will not be separated from
one another by a blank or any other character.

parameter

Print Mode/Date Format/Edit Mask Parameters:
As parameter, you can specify the session parameters PM, DF, EM, or EMU:

226

Statements

COMPRESS

Syntax Description
Element

PM=I In order to support languages whose writing
direction is from right to left, you can specify PM=1
so as to transfer the value of operandl in inverse
(right-to-left) direction to operandZ. For example,
as a result of the following statements, the content
of ##B would be ZYXABC:

MOVE 'XYZ' TO #A

COMPRESS #fA (PM=I) 'ABC'

INTO #B LEAVING NO SPACE

Any trailing blanks in operand1I will be removed
(except if FULL is specified), then the value is
reversed character by character and transferred
to operand?.

DF If operandl is a date variable, you can specify
the session parameter DF as parameter for this
variable.

EM= Edit Mask:

For details on edit masks, see the session
parameter EM in the Parameter Reference. The EM
parameter cannot be applied for group operands
or when the SUBSTRING option is used.

EMU= Unicode Edit Mask:

For details on Unicode edit masks, see the session
parameter EMU in the Parameter Reference. The
EMU parameter cannot be applied for group
operands or when the SUBSTRING option is used.
SUBSTRING |SUBSTRING Option:
(operandl, |If operandl is of alphanumeric (A), Unicode (U) or binary (B) format, you can use the
operand3, |SUBSTRING option to transfer only a certain part of a source field. After the field name
operand4) |(operandl)you specify first the starting position (operand3) and then the length (operand4)
of the field portion to be transferred.
INTO INTO Clause:
SUBSTRING
(operand?, Also, you can use the SUBSTRING option in the INTO clause to transfer source values into a
operands, certain part of the target field.
d
operando) In both cases, the use of the SUBSTRING option in a COMPRESS statement corresponds to that
in a MOVE statement. See the MOVE statement for details on the SUBSTRING option.
WITH Input Delimiter Character:
DELIMITERS

If you wish the values in the target field to be separated from one another by a specific
character, you use the DELIMITERS option.

Statements

227

COMPRESS

Syntax Description
Element

If you specify WITH DELIMITERS without operand/, the values will be separated by the
input delimiter character as defined with the session parameter 1D.

WITH Specific Delimiter Character:

DELIMITERS|If you specify WITH DELIMITERS operand/, the values will be separated by the character
operand/ |specified with operand/. operand/ must be a single character. If operand/ is a variable, it
must be of format/length (A1) or (B1).

If the target field is of format A or B, the format/length of the delimiter has to be (A1), (B1)
or (U1).

If the target field is of format U (Unicode), the format/length of the delimiter has to be (A1),
(B2) or (U1).

WITH ALL |Handling of Delimiters:

Without ALL, a delimiter is placed in the target field only between values actually transferred.
For example:

COMPRESS 'A' ' ' 'C" ' ' INTO #TARGET WITH DELIMITERS '*'
Content of #TARGET is: A*C

With ALL, a delimiter is also placed in the target field for each blank value that is not actually
transferred. This means that the number of delimiters in the target field corresponds to the
number of source fields minus 1. This may be useful, for example, if the content of the target
field is to be separated again with a subsequent SEPARATE statement. For example:

COMPRESS "A" ' ' 'C' ' ' INTO #TARGET WITH ALL DELIMITERS '*'
Content of #TARGET is: A**(C*

Processing

A destination field of format B is handled like a destination field of format A.

The COMPRESS operation terminates when either all operands have been processed or the target
field (operand?) is filled.

If the target field contains more positions than all operands combined, all remaining positions of
operand2 will be filled with blanks. If the target field is shorter, the value will be truncated.

If operand?Zis a dynamic variable, the COMPRESS operation terminates when all source operands
have been processed. No truncation will be performed. The length of operand? after the COMPRESS
operation will correspond to the combined length of the source operands. The current length of
a dynamic variable can be ascertained by using the system variable *LENGTH.

228 Statements

COMPRESS

Examples

This section covers the following topics:

= Example 1 - Compress

= Example 2 - Compress Leaving No Space
= Example 3 - Compress with Delimiter

= Example 4 - Compress with Edit Mask EM

Example 1 - Compress

** Example 'CMPEX1': COMPRESS
Ak kAhkhkhhkkkhhhhkhkkhhhhkhkkhhhhkkhkhhhhkkhkkhhhhkkkhhhhhkhhhhhkkhkhhhhkkhkkhhkhhkhkhhhrrhkkhhrhkkhhrrktkk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
*
1 #COMPRESSED-NAME (A20)
END-DEFINE
*
LIMIT 4
READ EMPLOY-VIEW BY NAME
COMPRESS FIRST-NAME MIDDLE-I NAME INTO #COMPRESSED-NAME
DISPLAY NOTITLE
FIRST-NAME MIDDLE-1 NAME 5X #COMPRESSED-NAME
END-READ

*

END

Output of Program CMPEXI:

FIRST-NAME MIDDLE-I NAME #fFCOMPRESSED-NAME
KEPA ABELLAN KEPA ABELLAN
ROBERT W ACHIESON ROBERT W ACHIESON
SIMONE ADAM SIMONE ADAM
JEFF H ADKINSON JEFF H ADKINSON

Statements

229

COMPRESS

Example 2 - Compress Leaving No Space

** Example 'CMPEX2': COMPRESS (with LEAVING NO SPACE)
R R R R B R R B R R R R R R R e R e e i e I e b e e b e b S e e b e e S e i e b o 4
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CURR-CODE (1)
2 SALARY (1)
*
1 #CCSALARY (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY
LEAVING NO SPACE
DISPLAY NOTITLE
NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY
END-READ

*

END

Output of Program CMPEX2:

NAME CURRENCY ANNUAL fFCCSALARY
CODE SALARY
ABELLAN PTA 1450000 PTA1450000
ACHIESON UKL 11300 UKL11300
ADAM FRA 159980 FRA159980
ADKINSON UsD 34500 USD34500

Example 3 - Compress with Delimiter

** Example 'CMPEX3': COMPRESS (with delimiter)
ok ok ok ok o ok ok ok ok ok kK ko ok o o ok ok o ok ok ok ok ok ko ok ok o o ok o o ok ok ok ok ok ok ok Rk ok o ok ok ok o ok ok ok ok ok ok ok ko ok ko ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CURR-CODE (1)
2 SALARY (1)
*
1 #CCSALARY (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

230

Statements

COMPRESS

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY
WITH DELIMITER '*'
DISPLAY NOTITLE NAME CURR-CODE (1) SALARY (1) 5X ffCCSALARY
END-READ

*

END

Output of Program CMPEX3:

NAME CURRENCY ~ ANNUAL #FCCSALARY
CODE SALARY
ABELLAN PTA 1450000 PTA*1450000
ACHIESON UKL 11300 UKL*11300
ADAM FRA 159980 FRA*159980
ADKINSON UsD 34500 USD*34500

Example 4 - Compress with Edit Mask EM

** Example 'CMPEX4': COMPRESS (with edit mask EM)

R R R o R R b b i b e b e I b R i b e i b e b i R e i R i b S e b R R i b b e S b b 4

DEFINE DATA LOCAL

1 #A10 (A10) INIT <'ABCDEF'>

1 #14 (14) INIT <-123>

1 4T (T) INIT <E'2021-11-22 10:24:36'>
1 4L (L) INIT <TRUE>

1 #fRESULT (A70)

END-DEFINE

*

COMPRESS '#A:' {#AL0 (EM=X_X_X)

"J14: 4§14 (EM=-9997)

T 4T (EM=YYYY-MM-DD_HH:1I1I)

L L (EM=FALSE/TRUE) INTO #fRESULT
PRINT #RESULT
END

Output of Program CMPEX4:

#FA: A_B_C #I4: -0123 #T: 2021-11-22_10:24 {fL: TRUE

Statements 231

232

33 COMPUTE

L 3 To1 (1o T 234
B SYNEAX DESCIIPHON ...ttt e e e s 236
B ResUlt Precision 0f @ DIVISIONoiiiiiiii ettt et 238
L e 11T PSR RUPPPPPRR 239

233

COMPUTE

Structured Mode Syntax

arithmetic-expression
operandZ

SUBSTRING
(operand2,operand3,operand4)

{COMPUTE}

ASSTGN {operandl

[ROUNDED] ‘
=} ...

arithmetic-expression
{operandl operand?
=}.. SUBSTRING
(operand2,operand3,operand4)
Reporting Mode Syntax
arithmetic-expression
COMPUTE o operand?2
[{ ASSTGN } [ROUNDED]] {operandl[:]=} .. SUBSTRING
(operandZ,operand3,operand4)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ADD | COMPRESS | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The COMPUTE statement is used to perform an arithmetic or assignment operation.

A COMPUTE statement with multiple target operands (operandl) is identical to the corresponding
individual COMPUTE statements if the source operand (operand?) is not an arithmetic expression.

##TARGETL := #fTARGET2 := #SOURCE

is identical to

#FTARGETL := #SOURCE
#TARGET2 := #SOURCE

Example:

234 Statements

COMPUTE

DEFINE DATA LOCAL

1 JFARRAY(I4/1:3) INIT <3,0,9>
1 #INDEX(I4)

1 #RESULT(I4)

END-DEFINE

*

FINDEX := 1

*

FINDEX := /* #INDEX is 3
#RESULT := /* #RESULT is 9
HHARRAY (#FINDEX)

*

JFINDEX := 2

*

#FINDEX := /* f#FINDEX is O

JFARRAY (3) := /* returns runtime error NAT1316
JFARRAY (FINDEX)

END

If the source operand is an arithmetic expression, the expression is evaluated and its result is stored
in a temporary variable. Then the temporary variable is assigned to the target operands.

#TARGET1 := #TARGET2 := #SOURCE1 + 1
is identical to

#FTEMP := #fSOURCE1 + 1

#TARGET1 := #TEMP

#TARGET2 := HTEMP

Example:

DEFINE DATA LOCAL

1 #ARRAY (I4/1:3) INIT <2, 0, 9
1 ffINDEX(I4)

1 fRESULT(I4)

END-DEFINE

S

FFINDEX := 1

*

FINDEX := /* FINDEX is 3
#RESULT := /* {RESULT s 3
#ARRAY (INDEX) + 1

*

J#FINDEX := 2

*

#FINDEX := /* J/INDEX is 0
FARRAY (3) := /* returns run time error NAT1316
#FARRAY (##INDEX)

END

For further information, see Rules for Arithmetic Assignment in the Programming Guide and particu-
larly the following sections:

Statements 235

COMPUTE

= Arithmetic Operations with Arrays

® Data Transfer (for information on data transfer compatibility and the rules for data transfer)

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl S|A| M| |A|UIN|P|I|FB |D|T|L|C|G|O yes yes
operandZ |C|S |A| |N|E |A|UN|PI|FIB |D|T|L|C|G|O yes no
operand3 |C|S NP |I| |B* yes no
operand4 |C|S N|P|I| |B* yes no

*If operand3or operand4 is a binary variable, it may be used only with a length of less than or
equal to 4.

Syntax Element Description:

Syntax Element Description

COMPUTE | ASSIGN [:]= Usage of Keywords:

This statement may be issued in short form by omitting the statement
keyword COMPUTE (or ASSIGN).

In structured mode, when the statement keyword COMPUTE (or ASSIGN)
is omitted, the equal sign (=) must be preceded by a colon (:).

However, when the ROUNDED option is used, the statement keyword
COMPUTE (or ASSIGN) must be specified.

ROUNDED ROUNDED Option:

If you specify the keyword ROUNDED, the value will be rounded before
it is assigned to operand1l.

For information on rounding, see Rules for Arithmetic Assignments, Field
Truncation and Field Rounding in the Programming Guide.

operandl Result Field:
operandl will contain the result of the arithmetic/assignment operation.

For the precision of the result, see Precision of Results of Arithmetic
Operations in the Programming Guide.

If operandlis a database field, the field in the database is not updated.

236 Statements

COMPUTE

Syntax Element

Description

If operandl is a dynamic variable, it is filled with exactly the data and
length of operandZ or the length of the result of the arithmetic-operation,
including trailing blanks. The current length of a dynamic variable can
be obtained by using the system variable *LENGTH.

For general information on dynamic variables, see Using Dynamic and
Large Variables.

arithmetic-expression

Arithmetic Expression:

An arithmetic expression consists of one or more constants, database
fields, and user-defined variables.

Natural mathematical functions (described in the System Functions
documentation) may also be used as arithmetic operands.

Operands used in an arithmetic expression must be defined with format
N,BLED,orT

As for the formats of the operands, see also Performance Considerations
for Mixed Formats in the Programming Guide.

The following connecting operators may be used:

Operator: Symbol:
Parentheses)
Exponentiation *x
Multiplication *
Division

Addition +
Subtraction -

Each operator should be preceded and followed by at least one blank
so as to avoid any conflict with a variable name that contains any of the
above characters.

The processing order of arithmetic operations is:

1. Parentheses

2. Exponentiation

3. Multiplication/division (left to right as detected)
4. Addition/subtraction (left to right as detected)

operand?

Source Field:

operandZis the source field. If operandl is of format C, operandZ may
also be specified as an attribute constant.

See User-Defined Constants in the Programming Guide.

Statements

237

COMPUTE

Syntax Element

Description

SUBSTRING
(operandZ,operand3,operand4)

SUBSTRING Option:
Without the substring option, the whole content of operandZis moved.

If operandl and operandZ are of alphanumeric, Unicode or binary
format, you may use the SUBSTRING option to assign a certain part of
operandZto operandl.

After the field name (operand?) in the SUBSTRING clause, you specify
the starting position (operand3) and then the length (operand4) of the
field portion to be moved.

For example, to assign the 3rd to 6th position of field #8 to field #A, you
would specify:

ffA := SUBSTRING(#B,3,4)

If you omit operand3, the starting position is assumed to be 1. If you
omit operand4, thelength is assumed to range from the starting position
to the end of the field.

Note: ASSIGN with the SUBSTRING option is a byte-by-byte assignment

(that is, the rules described under Rules for Arithmetic Assignment in the
Programming Guide do not apply).

See also MOVE SUBSTRING.

Result Precision of a Division

The precision (number of decimal positions) of the result of a division in a COMPUTE statement is
determined by the precision of either the first operand (dividend) or the first result field, whichever

is greater.

For a division of integer operands, however, the following applies: For a division of two integer
constants, the precision of the result is determined by the precision of the first result field; however,
if at least one of the two integer operands is a variable, the result is also of integer format (that is,
without decimal positions, regardless of the precision of the result field).

238

Statements

COMPUTE

Examples

= Example 1 - ASSIGN Statement
= Example 2 - COMPUTE Statement

Example 1 - ASSIGN Statement

** Example "ASGEX1S': ASSIGN (structured mode)

R R R B b R R e I b b R e e b b e e b b S e b b e e i b b e e b b S e b b R e I b b b b S e b R e b b b e b b b e 4

DEFINE DATA LOCAL

1

| b b e

1

17
1B
#C
1D
f+HE
1FF
#G
1FH

(N3)
(AG)
(NO.3)
(NO.5)
(N1.3)
(N5)
(A25)
(A3/1:3)

END-DEFINE

*

ASSIGN ftA
ASSIGN #B
ASSIGN #C

5
"ABC'
.45

ASSIGN #D = #f/E = -0.12345
ASSIGN ROUNDED #F = 199.999

#G := "HELLO"'
#H (1) := "UVW'
fiH (3) = 'XYZ'

*

END

Output of Program ASGEX1S:

A
1#B:
f#tC:
#D:
ftE
JFF:
G
1 :

5

ABC
.450

-.12345
-0.123

200
HELLO
UVIW XYZ

WRITE NOTITLE '=" A
WRITE '=' #B

WRITE '=' #C

WRITE '=' #D / '=' {tE
WRITE '=' #F

WRITE '=' #G

WRITE '=' #H (1:3)

Equivalent reporting-mode example: ASGEXIR.

Statements

239

COMPUTE

Example 2 - COMPUTE Statement

** Example 'CPTEX1': COMPUTE

R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 SALARY (1:2)

*

1 #A (P4)

1 4B (N3.4)
1 #C (N3.4)
1 #CUM-SALARY (P10)
1 #I (P2)
END-DEFINE

*

COMPUTE #A =3 * 2 + 4 / 2 - 1

WRITE NOTITLE 'COMPUTE #A =3 * 2 + 4 / 2 - 1"

*

COMPUTE ROUNDED #B = 3 -4 / 2 * .89

WRITE 'COMPUTE ROUNDED #B = 3 -4 / 2 * .89' 5X

*

COMPUTE #fC = SQRT (iB)

WRITE 'COMPUTE #C = SQRT (#B)' 18X '=' #C

*

LIMIT 1

READ EMPLOY-VIEW BY PERSONNEL-ID STARTING FROM
WRITE / 'CURRENT SALARY: ' 4X SALARY (1)

/ "PREVIOUS SALARY:' 4X SALARY (2)
FOR #I =1 T0 2
COMPUTE #CUM-SALARY = #fCUM-SALARY + SALARY
END-FOR
WRITE '"CUMULATIVE SALARY:' {#CUM-SALARY
END-READ

*

END

Output of Program CPTEX1:

COMPUTE #f/A =3 * 2 + 4 / 2 - 1 fFA:
COMPUTE ROUNDED #B =3 -4 / 2 * .89 1B
COMPUTE #C = SQRT (#B) #C:
CURRENT SALARY: 34000
PREVIOUS SALARY: 32300
CUMULATIVE SALARY: 66300

10X "=" #fA

'=' §B

'20017000"

(1)

1.2200
1.1045

240

Statements

34 CREATE OBJECT

= Function

= Syntax Description

241

CREATE OBJECT

CREATE OBJECT operandl OF [CLASS] operand2
[GIVING operand3]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE CLASS | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The CREATE OBJECT statement is used to create an instance of a class.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats |Referencing | Dynamic Definition
Permitted

operandl S O no no

operand? |C |S A yes no

operand3 S N I yes no

Syntax Element Description:

Syntax Element Description

operandl Object Handle:

operand]l contains the value NULL-HANDLE.

operandl must be defined as an object handle (HANDLE OF OBJECT). The object
handle is filled when the object is successfully created. When not successfully returned,

OF CLASS Class-Name:
operand?

the DEFINE CLASS statement.

operandZis the name of the class of which the object is to be created. For classes that
are not registered as DCOM classes, it must contain the class name defined in the
DEFINE CLASS statement. For classes that are registered as DCOM classes, it must
contain either the ProgID of the class or the class GUID. For Natural classes that are
registered as DCOM classes, the ProgID corresponds to the class name specified in

242

Statements

CREATE OBJECT

Syntax Element

Description

CREATE OBJECT #01 OF CLASS "Employee" or

CREATE OBJECT #01 OF CLASS "653BCFE0-84DA-11D0-BEB3-10005A66D231"

GIVING operand3

GIVING Clause:

If this clause is specified, operand3 contains either the Natural message number if

an error occurred, Or zero on success.

If this clause is not specified, Natural run time error processing is triggered if an error

occurs.

Statements

243

244

35 DECIDE FOR

B FUNCHON .ttt e e 246
B SYNEAX DESCIIPHON ...ttt e e e s 246
L e 01T OO SR PUPPPPPRRR 247

245

DECIDE FOR

{ FIRST
EVERY

DECIDE FOR

[WHEN ANY statement..]
[WHEN ALL statement ..]
WHEN NONE statement..
END-DECIDE

{WHEN Togical-condition statement..}..

} CONDITION

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE ON | IF | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The DECIDE FOR statement is used to decide for one or more actions depending on multiple condi-

tions (cases).

] Note: If no action is to be performed under a certain condition, you must specify the state-

ment IGNORE in the corresponding clause of the DECIDE FOR statement.

Syntax Description

Syntax Element

Description

FIRST CONDITION

Processing of First Condition Only:
Only the first true condition is to be processed.

See also Example 1.

EVERY CONDITION

Processing of Every Condition:
Every true condition is to be processed.

See also Example 2.

WHEN Togical-condition
Statement

Logical Condition(s) to be Processed:
With this clause, you specify the logical condition(s) to be processed.

See the section Logical Condition Criteria in the Programming Guide.

WHEN ANY statement

WHEN ANY Clause:

246

Statements

DECIDE FOR

Syntax Element

Description

With WHEN ANY, you can specify the statement(s) to be executed when
any of the logical conditions are true.

WHEN ALL statement

WHEN ALL Clause:

With WHEN ALL, you can specify the statement (s) to be executed when
all logical conditions are true.

This clause is applicable only if EVERY has been specified.

WHEN NONE statement

WHEN NONE Clause:

With WHEN NONE, you specify the statement(s) to be executed when none
of the logical conditions are true.

END-DECIDE End of DECIDE FOR Statement:
The Natural reserved word END-DECIDE must be used toend the DECIDE
FOR statement.

Examples

= Example 1 - DECIDE FOR with FIRST Option
= Example 2 - DECIDE FOR with EVERY Option

Example 1 - DECIDE FOR with FIRST Option

** Example 'DECEX1': DECID
R R R R B b 4
DEFINE DATA LOCAL

1 #FUNCTION (A1)

1 #PARM (A1)
END-DEFINE

*

INPUT #FUNCTION #PARM

*

DECIDE FOR FIRST CONDITION

E FOR (with FIRST option)

ERR R R R R b b R R b b R e b R R e b b R e I b b R e S b b b e e b b Y

WHEN #FUNCTION = 'A' AND #PARM = 'X'

WRITE 'Function A with

parameter X selected.’

WHEN #fFUNCTION = 'B' AND #PARM = 'X'

WRITE 'Function B with

parameter X selected.’

WHEN #FUNCTION = 'C' THRU 'D'
WRITE 'Function C or D selected.’

WHEN NONE
REINPUT 'Please enter

a valid function.'

MARK *#FUNCTION

END-DECIDE

Statements

247

DECIDE FOR

*

END

Output of Program DECEXI:

#FUNCTION #PARM

After entering A and Y and pressing ENTER:

##FUNCTION A #PARM Y

Please enter a valid function.

Example 2 - DECIDE FOR with EVERY Option

** Example 'DECEX2': DECIDE FOR (with EVERY option)

P R e b i b b b b b i i b o B B b i b i b b b b L b i b o e b i b i i e b b b b b i b i e b e b b b i b i b b b b e b i b b b i
DEFINE DATA LOCAL

1 #FIELD1 (N5.4)

END-DEFINE

*

INPUT #FIELD1
*
DECIDE FOR EVERY CONDITION
WHEN #FIELD1 >= 0
WRITE 'f#FIELD1 is positive or zero.'
WHEN #FIELD1 <= 0
WRITE '#FIELD1 is negative or zero.'
WHEN FRAC(#FIELD1) =0
WRITE '#FIELD]1 has no decimal digits.'
WHEN ANY
WRITE 'Any of the above conditions is true.'
WHEN ALL
WRITE '4fFIELD1 is zero.'
WHEN NONE
IGNORE
END-DECIDE

*

END

248 Statements

DECIDE FOR

Output of Program DECEX2:

##FIELD1 42

After pressing ENTER:

Page 1 05-01-11 14:56:26

#IFIELDL is positive or zero.
#FIELDL has no decimal digits.
Any of the above conditions is true.

Statements 249

250

36 DECIDE ON

B FUNCHON .ttt e e 252
B SYNEAX DESCIIPHON ...ttt e e e s 252
L e 01T OO SR PUPPPPPRRR 254

251

DECIDE ON

DECIDE ON
FIRST] [VALUE] opl
EVERY | [OF] SUBSTR
(op3,0p5,0p6)
op2 op2 }
{ VALUE{ SUBSTR } , [. { SUBSTR }] statement
(op4,0p7,0p8) * ., (op4,0p7,0p8)

[ANY [VALUE] statement...]
[ALL [VALUE] statement ...]
NONE [VALUE] statement ...
END-DECIDE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DECIDE FOR | IF | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The DECIDE ON statement is used to specify multiple actions to be performed depending on the
value (or values) contained in a variable.

] Note: If no action is to be performed under a certain condition, you must specify the state-

ment IGNORE in the corresponding clause of the DECIDE ON statement.

Syntax Description

Operand Definition Table:

Operand| Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
opl S |A N [A|U|N|P|I|F|B |D|T|L| |G|O yes no
op2 Ccl|S |A A|UIN|P|I|F|B |D|T|L| |G|O yes no
op3 S |A AU B yes no
op4 C|S |A AU B yes no
opb C|S N|P|I| |B* yes no
opé C|S N|P|I| |B* yes no
op7 C IS NP|I| |B* yes no

252 Statements

DECIDE ON

Operand| Possible Structure

Possible Formats Referencing | Dynamic
Permitted |Definition

s Jcs [[|

| IN[Pl] B

L] yes | mo

* Format B of op5, op6, op7 and op8 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element

Description

FIRST/EVERY Processing of Values:
With one of these keywords, you indicate whether only the first or every value
that is found is to be processed.

opl Selection Field:

As opl or opZ you specify the name of the field whose content is to be checked.

VALUES op2 [[,opZ2]
[:op2]lstatement

VALUES Clause:

With this clause, you specify the value (0p?2) of the selection field, as well as the
statement (s) which are to be executed if the field contains that value.

You can specify one value, multiple values, or a range of values optionally
preceded by one or more values.

Multiple values must be separated from one another either by the input delimiter
character (as specified with the session parameter 1D) or by a comma. A comma
must not be used for this purpose, however, if the comma is defined as decimal
character (with the session parameter DC).

For a range of values, you specify the starting value and ending value of the
range, separated from each other by a colon.

SUBSTRING SUBSTRING Option:
Without the SUBSTRING option, the whole content of a field is checked. The
SUBSTRING option allows you to check only a certain part of an alphanumeric,
Unicode or binary field.
After the field name (0p3), you specify first the starting position (0p5) and then
the length (0p6) of the field portion to be checked.

SUBSTRING SUBSTRING Option:

(op4,o0p7,0p8)

After the field name (0p4), you specify first the starting position (0p/) and then
the length (0p8) of the field portion to be checked.

ANY statement

ANY Clause:

With ANY, you specify the statement (s) which are to be executed if any of the
values in the VALUES clause are found. These statements are to be executed in
addition to the statement specified in the VALUES clause.

Statements

253

DECIDE ON

Syntax Element Description

ALL statement ALL Clause:

With ALL, you specify the statement (s) which are to be executed if all of the
values in the VALUES clause are found. These statements are to be executed in
addition to the statement specified in the VALUES clause.

The ALL clause applies only if the keyword EVERY is specified.
NONE statement NONE Clause:

With NONE, you specify the statement (s) which are to be executed if none of
the specified values are found.

END-DECIDE End of DECIDE ON Statement:

The Natural reserved word END-DECIDE must be used to end the DECIDE ON
statement.

Examples

= Example 1 - DECIDE ON with FIRST Option
= Example 2 - DECIDE ON with EVERY Option

Example 1 - DECIDE ON with FIRST Option

** Example 'DECEX3': DECIDE ON (with FIRST option)

R R R R R b R R e e b b e b e e I b R e i b b e b b R e i b i R e b b R e b b b e b R R e b b e S b b

*

SET KEY ALL
INPUT '"Enter any PF key' /
"and check result' /
S
DECIDE ON FIRST VALUE OF *PF-KEY
VALUE 'PF1’
WRITE 'PF1 key entered.’
VALUE 'PF2'
WRITE 'PF2 key entered.’
ANY VALUE
WRITE 'PF1 or PF2 key entered.'
NONE VALUE
WRITE 'Neither PF1 nor PF2 key entered.’
END-DECIDE

*

END

254 Statements

DECIDE ON

Output of Program DECEX3:

Enter any PF key
and check result

Output after pressing PF1:

Page 1 05-01-11 15:08:50

PF1 key entered.
PF1 or PF2 key entered.

Example 2 - DECIDE ON with EVERY Option

** Example 'DECEX4': DECIDE ON (with EVERY option)

P i B b b i B i i b e i b e i b b B i b e e b b o e B i i b B b o e b B e g B b e b i b e e
DEFINE DATA LOCAL

1 #FIELD (N1)

END-DEFINE

*

INPUT 'Enter any value between 1 and 9:' #FIELD (SG=0FF)
*
DECIDE ON EVERY VALUE OF #FIELD
VALUE 1 : 4
WRITE 'Content of #FIELD is 1-4'
VALUE 2 : 5
WRITE 'Content of #FIELD is 2-5'
ANY VALUE
WRITE 'Content of #FIELD is 1-5'
ALL VALUE
WRITE 'Content of #FIELD is 2-4'
NONE VALUE
WRITE 'Content of #FIELD is not 1-5'
END-DECIDE

*

END

Output of Program DECEX4:

ENTER ANY VALUE BETWEEN 1 AND 9: 4

Statements 255

DECIDE ON

After entering and confirming 4:

Page

Content
Content
Content
Content

1

of #FIELD
of #FIELD
of #fFIELD
of #FIELD

is
is
is
is

N — N =
1 (B 1

~ o o B~

05-01-11

15:11:45

256

Statements

37 DEFINE CLASS

B FUNCHON .ttt e e 258
B SYNEAX DESCIIPHON ...ttt e e e s 258

257

DEFINE CLASS

DEFINE CLASS class-name

O0BJECT

LOCAL

INTERFACE USING
copycode

interface-statement
[property-statement] ..

[method-statement] ..

END-CLASS

lTocal-data-area
USING
parameter-data-area

local-data-definition..
local-data-area }

USING{
parameter-data-area

local-data-definition..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CREATE 0BJECT | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The DEFINE CLASS statement is used to specify a class from within a Natural class module. A
Natural class module consists of one DEFINE CLASS statement followed by an END statement.

Syntax Description

Syntax Element

Description

class-name

Class Name:

This is the name that is used by clients to create objects of this class. The name
can be up to a maximum of 32 characters long. The name may contain periods:
this can be used to construct class names such as

company-name.application-name.class-name

Each part between the periods (...) must conform to the Naming Conventions for
User-Defined Variables.

258

Statements

DEFINE CLASS

Syntax Element

Description

If the class is planned to be used by clients written in different programming
languages, the class name should be chosen in a way that it does not conflict with
the naming conventions that apply in these languages.

0BJECT

OBJECT Clause:

This clause is used to define the object data. The syntax of the OBJECT clause is
the same as for the LOCAL clause of the DEFINE DATA statement.

For further information, see the description of the LOCAL clause of the DEFINE
DATA statement.

LOCAL

LOCAL Clause:

This clause is only used to include globally unique IDs (GUIDs) in the class
definition. GUIDs need only be defined if a class is to be registered with DCOM.
GUIDs are mostly defined in a local data area.

The syntax of the LOCAL clause is the same as for the LOCAL clause of the DEFINE
DATA statement.

For further information, see the description of the LOCAL clause of the DEFINE
DATA statement.

INTERFACE USING

INTERFACE USING Clause:

This clause is used to include copycode that contains INTERFACE statements.

copycode

Copycode:

The copycode used by the INTERFACE USING clause may contain one or more
INTERFACE statements.

interface-statement

INTERFACE Statement:

The INTERFACE statement is used to define methods and properties for a class.

property-statement

PROPERTY Statement:

The PROPERTY statement is used to assign an object data variable operand as the
implementation to a property, outside an interface definition.

method-statement

METHOD Statement:

The METHOD statement is used to assign a subprogram as the implementation to
a method, outside an interface definition.

END-CLASS End of DEFINE CLASS Statement:
The Natural reserved word END-CLASS must be used to end the DEFINE CLASS
statement.

Statements 259

260

VI DEFINE DATA

DEFINE DATA
[GLOBALUSING global-data-area[WITH block[.block]..]]

USING parameter-data-area

PARAMETER parameter-data-definition..
USING { Tocal-data-area }
LOCAL parameter-data-area

local-data-definition..
[INDEPENDENT [aiv-data-definition..]] ..

local-data-area

USING

CONTEXT parameter-data-area
context-data-definition..
USING { Tocal-data-area }

OBJECT parameter-data-area
local-data-definition..

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related topics in the Programming Guide: Use and Structure of DEFINE DATA Statement | Data Areas
The DEFINE DATA documentation is organized under the following headings:

® Function and Basic Syntax Rules

Data Definitions:

® Defining Global Data
® Defining Parameter Data

® Defining Local Data

261

DEFINE DATA

® Defining Application-Independent Variables
® Defining Context Variables for Natural RPC
® Defining NaturalX Objects

Clauses and Options:

® Variable Definition

® View Definition

® Redefinition

® Array Dimension Definition

® Initial-Value Definition

® Initial/Constant Values for an Array

= EM, HD, PD Parameters for Field/Variable
Examples:

® Examples of DEFINE DATA Statement Usage

262

Statements

38 Function and Basic Syntax Rules

LI V1ot o PSP PPPPUR PP 264
B GENEral SYNTAX RUIESviiiiiiiiiit e e a e 264
B Programming MOGEScooiiiiiii ettt 264

263

Function and Basic Syntax Rules

Function

The DEFINE DATA statement offers a number of clauses to declare data definitions for use within
a Natural program, either by referencing predefined data definitions contained in a local data area
(LDA), global data area (GDA) or parameter data area (PDA), or by writing in-line definitions.

General Syntax Rules

® When a DEFINE DATA statement is used, it must be the first statement of the program/routine.

" An “empty” DEFINE DATA statement is not allowed; at least one clause (GLOBAL, PARAMETER,
LOCAL, INDEPENDENT, CONTEXT or OBJECT) must be speciﬁed.

" You can specify more than one clause. However, if the GLOBAL and the PARAMETER clauses are
used, GLOBAL must be the first clause of the statement and PARAMETER must follow GLOBAL (without
GLOBAL, PARAMETER comes first if used). All other clauses can be specified in any order.

® The Natural reserved word END-DEFINE must be used to end the DEFINE DATA statement.

Programming Modes

The DEFINE DATA statement is available in structured mode and in reporting mode. Differences
are marked accordingly in the DEFINE DATA statement description.

Generally, the following applies:

= Structured Mode
= Reporting Mode

Structured Mode

All variables to be used, except application-independent variables (AIVs), must be defined in
the DEFINE DATA statement; they must not be defined elsewhere in the program. If a DEFINE DATA
INDEPENDENT statement is used, AIVs must not be defined elsewhere in the program.

264 Statements

Function and Basic Syntax Rules

Reporting Mode

The DEFINE DATA statement is not mandatory since variables may be defined in the body of the
program. However, ifa DEFINE DATA LOCAL statement is used in reporting mode, variables, except
application-independent variables (AIVs), must not be defined elsewhere in the program; and if
a DEFINE DATA INDEPENDENT statement is used, application-independent variables (AIVs) must
not be defined elsewhere in the program.

Statements 265

266

39 Defining Global Data

B FUNCHON .ttt e e 268
B SYNEAX DESCIIPHON ...ttt e e e s 268

267

Defining Global Data

General syntax of DEFINE DATA GLOBAL:

DEFINE DATA

END-DEFINE

GLOBAL USING global-data-area[WITH block[.block..]]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA GLOBAL statement is used to define data elements using a GDA (see Global Data

Area).

Syntax Description

Syntax Element

Description

USING
global-data-area

GDA Name:
Specify the name of a global data area (GDA) to be referenced.

A GDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA GLOBAL statement.

In contrast to an LDA, the data elements defined in a GDA can be referenced by
more than one Natural object.

For further information, see Global Data Area in the Programming Guide.

WITH block

Data Blocks:

To save data storage space, you can create a global data area with data blocks. Data
blocks can overlay one another during program execution, thereby saving storage
space.

The maximum number of block levels is 8 (including the master block).

For further information, see Data Blocks in the Programming Guide.

.block

Block(s) to be Used:

A single or multiple . b7 ock notations specify the block(s) which are used in the
program.

END-DEFINE

End of DEFINE DATA Statement:

268

Statements

Defining Global Data

Syntax Element Description

The Natural reserved word END-DEFINE must be used to end the DEFINE DATA
statement.

Statements 269

270

40 Defining Parameter Data

B UN G 0N et 272
B RSO ONS v ittt ettt e 272
B SYNEAX DESCIIPHON ...ttt e e 272

271

Defining Parameter Data

General syntax of DEFINE DATA PARAMETER:

DEFINE DATA

PARAMETER

END-DEFINE

USING parameter-data-area

parameter-

data-definition..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA PARAMETER statement is used to define the data elements that are to be used as
incoming parameters in a Natural subprogram, external subroutine, helproutine or function. These
parameters can be defined within the statement itself (see Parameter Data Definition); or they

can be defined outside the program in a parameter data area (PDA), with the statement referencing

that data area.

Restrictions

® Parameter data elements must not be assigned initial or constant values, and they must not have
edit mask (EM), header (HD) or print mode (PM) definitions; see also EM, HD, PM Parameters for

Field/Variable.

® The parameter data area and the objects which reference it must be contained in the same library

(or in a steplib).

Syntax Description

Syntax Element

Description

USING parameter-data-area

Parameter Data Area (PDA) Name:

The name of the parameter-data-area (PDA) that contains data
elements which are used as parameters in a subprogram, external
subroutine or dialog.

parameter-data-definition

Parameter Data Definition:
Instead of using a PDA, you can define parameter data directly.

See Parameter Data Definition.

272

Statements

Defining Parameter Data

Syntax Element

Description

END-DEFINE

End of DEFINE DATA Statement:

The Natural reserved word END-DEF INE must be used to end the DEFINE
DATA statement.

Parameter Data Definition

For parameter data definition, the following syntax applies:

Tevel

group-name[(array-definition)]

redefinition

(format-Tlength[/array-definition])

A [BY VALUE
variable-namey (U [farray-definition]) DYNAMIC ¢ [RESULT]]
B [OPTIONAL]

[(array-definition)] HANDLE OF OBJECT

Syntax Element Description:

Syntax Element

Description

level

Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group which
has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only 1
field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a group,
no level numbers may be skipped.

group-name

Group Name:

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

® Naming Conventions for User-Defined Variables in Using Natural.

® Qualifying Data Structures in the Programming Guide.

array-definition

Array Dimension Definition:

Statements

273

Defining Parameter Data

Syntax Element

Description

Withan array-definition, you define the lower and upper bounds of dimensions
in an array-definition.

For further information, see Array Dimension Definition and Variable Arrays in a
Parameter Data Area.

redefinition

Redefinition:

A redefinitionmay be used to redefine a group or a single field/variable (that is
a scalar or an array). See Redefinition.

Note: Inaparameter-data-definition,aredefinition of groupsis only permitted
within a REDEFINE block.

variable-name

Variable Name:

The name to be assigned to the variable. Rules for Natural variable names apply. For
information on naming conventions for user-defined variables.

For further information, see Naming Conventions for User-Defined Variables in Using
Natural.

format-Tlength

Format/Length Definition:
The format and length of the field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

HANDLE OF OBJECT

Handle of Object:

Used in conjunction with NaturalX. A handle identifies a dialog element in code and
is stored in handle variables.

For further information, see NaturalX in the Programming Guide.

A, UorB Data Type:
Alphanumeric (A), Unicode (U) or binary (B) for dynamic variable.
DYNAMIC DYNAMIC Option:

A parameter may be defined as DYNAMIC. For further information on processing
dynamic variables, see Introduction to Dynamic Variables and Fields in the Programming
Guide.

Call Mode:

Depending on whether call-by-reference, call-by-value or call-by-value-result is used,
the appropriate transfer mechanism is applicable. For further information, see the
CALLNAT statement.

(without BY VALUE)

Call-by-Reference:

Call-by-reference is active by default when you omit the BY VALUE keywords. In this
case, a parameter is passed to a subprogram/subroutine/function by reference (that

274

Statements

Defining Parameter Data

Syntax Element

Description

is, via its address); therefore a field specified as parameter in a CALLNAT/PERFORM
statement must have the same format/length as the corresponding field in the invoked
subprogram/subroutine/function.

BY VALUE

Call-by-Value:

When you specify BY VALUE, a parameter is passed to a
subprogram/subroutine/function by value; that is, the actual parameter value (instead
of its address) is passed. Consequently, the field in the
subprogram/subroutine/function need not have the same format/length as the
parameter passed in the CALLNAT/PERFORM statement or in the function call. The
formats/lengths must only be data transfer compatible. For data transfer compatibility,
the Rules for Arithmetic Assignment and Data Transfer apply (see Programming Guide).

BY VALUE allows you, for example, to increase the length of a field in a
subprogram/subroutine/function (if this should become necessary due to an
enhancement of the subprogram/subroutine) without having to adjust any of the
objects that invoke the subprogram/subroutine/function.

Example of BY VALUE:

* Program * Subroutine SUBRO1
DEFINE DATA LOCAL DEFINE DATA PARAMETER
1 fFIELDA (P5) 1 #FIELDB (P9) BY VALUE
END-DEFINE

END-DEFINE

CALLNAT 'SUBRO1' #FIELDA...

BY VALUE RESULT

Call-by-Value-Result:

While BY VALUE applies to a parameter passed to a subprogram/subroutine/function,
BY VALUE RESULT causes the parameter to be passed by value in both directions;
that is, the actual parameter value is passed from the invoking object to the
subprogram/subroutine/function and, on return to the invoking object, the actual
parameter value is passed from the subprogram/subroutine/function back to the
invoking object.

With BY VALUE RESULT, the formats/lengths of the fields concerned must be data
transfer compatible in both directions.

OPTIONAL

Optional Parameters:

For a parameter defined without OPTIONAL (default), a value must be passed from
the invoking object.

For a parameter defined with OPTIONAL, a value can, but need not be passed from
the invoking object to this parameter.

In the invoking object, the notation X is used to indicate parameters which are
skipped, that is, for which no values are passed.

Statements

275

Defining Parameter Data

Syntax Element Description

With the SPECIFIED option you can find out at run time whether an optional
parameter has been defined or not.

276 Statements

41 Defining Local Data

B UN G 0N et 278
B R BT 0N ettt ettt e e 278
B SYNEAX DESCIIPHON ...ttt e e 278

277

Defining Local Data

General syntax of DEFINE DATA LOCAL:

DEFINE DATA

local-data-area
USING { }
LOCAL parameter-data-area
local-data-definition..
END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA LOCAL statementis used to define the data elements that are to be used exclusively
by a single Natural module in an application. These elements or fields can be defined in different
ways:

= either within the DEFINE DATA LOCAL statement itself, using the Jocal-data-definitionsyntax
(see Local Data Definition)

® or outside the program in a separate LDA (Local Data Area) or PDA (Parameter Data Area), with
the DEFINE DATA LOCAL USING statement referencing that data area.

Restriction

The LDA and the objects which reference it must be contained in the same library (or in a steplib).

Syntax Description

Syntax Element Description

Tocal-data-area LDA Name:
Specify the name of the local data area (LDA) to be referenced.

An LDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA LOCAL statement.

You may reference more than one data area; in that case you have to repeat
the reserved words LOCAL and USING, for example:

278 Statements

Defining Local Data

Syntax Element

Description

DEFINE DATA LOCAL
LOCAL USING DATX_L
LOCAL USING DATX_P

END-DEFINE ;

For further information, see also Defining Fields in a Separate Data Area and Local
Data Area, Example 2 in the Programming Guide.

parameter-data-area

PDA Name:
Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCAL may also be a

parameter data area (PDA). By using a PDA as an LDA you can avoid the extra
effort of creating an LDA that has the same structure as the PDA.

A PDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA LOCAL statement.

For further information, see Parameter Data Area in the Programming Guide.

local-data-definition

Local Data Definition:

For information on how to define elements or fields within the statement itself,
that is, without using an LDA or PDA, see the section Local Data Definition
below.

END-DEFINE

End of DEFINE DATA Statement:

The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Local Data Definition

Local data can be defined directly. For local data definition, the following syntax applies:

group-name [(array-definition)]
variable-definition
view-definition

level

redefinition

For further information, see

® Example 1 - DEFINE DATA LOCAL (Local Data Definition)
® Defining Fields within a DEFINE DATA Statement in the Programming Guide

® Local Data Area, Example 1 in the Programming Guide

Statements

279

Defining Local Data

Syntax Element Description for Local Data Definition:

Syntax Element Description

level Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading
zero is optional) used in conjunction with field grouping. Fields assigned a level
number of 02 or greater are considered to be a part of the immediately preceding
group which has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only
1 field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a
group, no level numbers may be skipped.

A view-definition must always be defined at Level 1.

group-name Group Name:

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

® Naming Conventions for User-Defined Variables in Using Natural.

® Qualifying Data Structures in the Programming Guide.

array-definition Array Dimension Definition:

With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition.

See Array Dimension Definition.

variable-definition|Variable Definition:

A variable-definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

See Variable Definition.

view-definition View Definition:

A view-definitionisused to define a view as derived from a data definition
module (DDM).

See View Definition.

redefinition Redefinition:

280 Statements

Defining Local Data

Syntax Element

Description

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

See Redefinition.

Statements

281

282

42 Defining Application-Independent Variables

LI V1ot o PSP PPPPUR PP 284
B SYNEAX DESCIIPHON ...ttt e e e s 284

283

Defining Application-Independent Variables

General syntax of DEFINE DATA INDEPENDENT:

DEFINE DATA
INDEPENDENT [aiv-data-definition..]
END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Function

The DEFINE DATA INDEPENDENT statement is used to define application-independent variables
(AIVs).

An application-independent variable is referenced by its name, and its content is shared by all
Natural objects executed within one application that refer to that name. The variable is allocated
by the first executed Natural object that references this variable and is deallocated by the LOGON
command or a RELEASE VARIABLES statement.

The optional INIT clause is evaluated in each executed Natural object that contains this clause (not
only in the Natural object that allocates the variable).

| Note: Inan RPC server, application-independent variables (AlVs) are not deallocated impli-

citly, but stay active across RPC requests, because different clients may have access to the
same variables on the RPC server. This means they must be deallocated explicitly using the
RELEASE VARIABLES statement. See Application-Independent Variables in the Natural RPC
(Remote Procedure Call) documentation.

Syntax Description

Syntax Element Description

aiv-data-definition |AIV Data Definition:

The DEFINE DATA INDEPENDENT statement can be used to define a single or
multiple application-independent variables (AIVs). For each AlV, the syntax
shown in AIV Data Definition applies.

END-DEFINE End of DEFINE DATA Statement:

The Natural reserved word END-DEFINE must be used toend the DEFINE DATA
statement.

284 Statements

Defining Application-Independent Variables

AIV Data Definition

variable-definition
level
redefinition

Syntax Element Description:

Syntax Element Description

Tevel Level Number:

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

variable-definition|Variable Definition

A variable definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The name of an application-independent variable must start with a plus

(+) character.

redefinition Redefinition:

With a redefinition, you can partition an application-independent variable
into one or more subfields.

For further information, see Redefinition.

The subfields resulting from the redefinition must not be application-independent
variables; that is, their name must not start with a plus sign (+). These fields are
treated as local variables.

| Note: The first character of the name must be a plus (+). Rules for Natural variable names

apply, see Naming Conventions for User-Defined Variables in Using Natural.

Statements 285

286

43 Defining Context Variables for Natural RPC

L 3 To1 (1o T 288
B RSl ONS L. 289
B SYNEAX DESCIIPHON ...ttt e e 289

287

Defining Context Variables for Natural RPC

General syntax of DEFINE DATA CONTEXT:

DEFINE DATA

USING { Tocal-data-area }
parameter-data-area
CONTEXT
context-data-definition ..
END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Belongs to Function Group: Natural Remote Procedure Call

Function

The DEFINE DATA CONTEXT statement is used in conjunction with the Natural RPC (Remote Pro-
cedure Call). It is used to define variables known as context variables, which are meant to be
available to multiple remote subprograms within one conversation, without having to explicitly
pass the variables as parameters with the corresponding CALLNAT statements.

A context variable is referenced by its name, and its content is shared by all Natural objects executed
in one conversation that refer to that name. The variable is allocated by the first executed Natural
object that contains the definition of the variable and is deallocated when the conversation ends.

A context variable is not shared with subprograms that are called within the conversation. If such
a subprogram or one of its callees references a context variable, a separate storage area is allocated
for this variable.

Context variables can also be used in a non-conversational CALLNAT. In this case, the context variables
only exist during a single invocation of this CALLNAT. The variable is allocated when the remote
subprogram is started and deallocated when it ends. The content is shared by all Natural objects
except subprograms executed by this non-conversational CALLNAT.

The optional INIT clause is evaluated in each executed Natural object that contains this clause (not
only in the Natural object that allocates the variable). This is different to the way the INIT works
for global variables.

For further information, see Defining a Conversation Context in the Natural RPC (Remote Procedure
Call) documentation.

288 Statements

Defining Context Variables for Natural RPC

Restrictions

A context variable must be defined at Level 01. Other levels are only used in a redefinition.

Syntax Description

Syntax Element

Description

USING Tocal-data-area

LDA Name:

A local data area (LDA) contains data elements which are to be used in a
single Natural module. You may reference more than one data area; in that
case you have to repeat the reserved words CONTEXT and USING, for example:

DEFINE DATA
CONTEXT USING DATX_L
CONTEXT USING DATX_P

END-DEFINE ;

For further information, see Defining Fields in a Separate Data Area in the
Programming Guide.

USING
parameter-data-area

PDA Name:

A parameter data area contains data elements which are used as parameters
in a subprogram, external subroutine or dialog.

context-data-definition

Context Data Definition:

Context data can be defined directly within a program or routine. For context
data definition, the syntax shown below applies.

END-DEFINE End of DEFINE DATA Statement:
The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Context Data Definition

Context data can be defined directly within a program or routine. For context data definition, the

following syntax applies:

Statements

289

Defining Context Variables for Natural RPC

level {

variable-definition }

redefinition

For further information, see Defining Fields within a DEFINE DATA Statement in the Programming

Guide.

Syntax Element

Description

level

Level Number:

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

variable-definition

Variable Definition:

Avariable-definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The CONSTANT clause must not be used in this context

redefinition

Redefinition:

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

For further information, see Redefinition.

| Note: The fields resulting from the redefinition are not considered a context variable. These

fields are treated as local variables.

290

Statements

44 Defining NaturalX Objects

= Function

= Syntax Description

291

Defining NaturalX Objects

General syntax of DEFINE

DATA OBJECT:

DEFINE DATA

USING {
0BJECT

END-DEFINE

local-data-definition..

JTocal-data-area }
parameter-data-area

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA OBJECT statement is used in a subprogram or class in conjunction with NaturalX.

Syntax Description

Syntax Element

Description

USING Tocal-data-area

LDA Name:

Alocal data area (LDA) contains data elements which are to be used in a single
Natural module. You may reference more than one data area; in that case you
have to repeat the reserved words 0BJECT and USING, for example:

DEFINE DATA
OBJECT USING DATX_L
OBJECT USING DATX_P

END-DEFINE ;

For further information, see also Defining Fields in a Separate Data Area in the
Programming Guide.

USING
parameter-data-area

PDA Name:

A data area defined with DEFINE DATA OBJECT may be a parameter data area
(PDA). By using a PDA as an object data area you can avoid the extra effort of
creating an object data area that has the same structure as the PDA.

local-data-definition

Local Data Definition:

Data can also be defined directly using the syntax shown in Local Data
Definition in the section Defining Local Data.

END-DEFINE

End of DEFINE DATA Statement:

292

Statements

Defining NaturalX Objects

Syntax Element

Description

The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Statements

293

294

45 Variable Definition

B SYNEAX DESCIIPHON &ttt e ettt e e e e e et e e e e e e e e e e 296

295

Variable Definition

{ sca7ar-def7'n7't7'0n}
array-definition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The variable-definitionoptionisused to define a single field/variable that may be single-valued
(scalar-definition) or multi-valued (array-definition).

scalar-definition

(format-Tlength)

A
TANT
variable-name § ({ U}) DYNAMIC [{?’(j?? : }init—definition [emhdpm]
B

HANDLE OF OBJECT

array-definition

(format-length/array-definition)

A
variable-name ({ U } /array-definition) DYNAMIC [{ }array-fnit—deffnftfon [

B
(array-definition) HANDLE OF OBJECT

Syntax Description

Syntax Element Description

variable-name Variable Name:

The name to be assigned to the variable. Rules for Natural variable names
apply. With DEFINE DATA INDEPENDENT, the variable name must begin with
a plus character (+).

For information on naming conventions for user-defined variables, see Naming
Conventions for User-Defined Variables in Using Natural.

format-length Format/Length Definition:

For information on format/length definition of user-defined variables, see
Format and Length of User-Defined Variables in the Programming Guide.

HANDLE OF OBJECT Handle of Object:

Used in conjunction with NaturalX. A handle identifies a dialog element in
code and is stored in handle variables.

296 Statements

Variable Definition

Syntax Element

Description

For further information, see NaturalX in the Programming Guide.

A, UorB

Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.

array-definition

Array Dimension Definition:

With an array-definitionyou define the lower and upper bounds of
dimensions in an array-definition.

For further information, see Array Dimension Definition.

DYNAMIC DYNAMIC Option:

A field may be defined as DYNAMIC.

For more information on processing dynamic variables, see Introduction to

Dynamic Variables and Fields.

CONSTANT CONSTANT Option:

The variable/array is to be treated as a named constant. The constant value(s)

assigned will be used each time the variable/array is referenced. The value(s)

assigned cannot be modified during program execution.

See also Field Definitions, User-Defined Constants, Defining Named Constants in

the Programming Guide.

Note:

1. For reasons of internal handling, it is not allowed to mix variable definitions
and constant definitions within one group definition; that is, a group may
contain either variables only or constants only.

2. The CONSTANT clause must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT. The CONSTANT option cannot be used with
X-arrays.

3. The CONSTANT option must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT.

INIT INIT Option:

The variable/array is to be assigned an initial value. This value will also be
used when this variable/array is referenced in a RESET INITIAL statement.

If no INIT specification is supplied, a field will be initialized with a default
initial value depending on its format (see table Default Initial Values below).

For further information, see Field Definitions, Initial Values in the Programming
Guide.

Statements

297

Variable Definition

Syntax Element

Description

With DEFINE DATA INDEPENDENT and DEFINE DATA CONTEXT, the INIT
clause is evaluated in each executed Natural object that contains this clause
(not only in the Natural object that allocates the variable). This is different to
the way the INIT works for global variables.

The INIT option cannot be used with X-arrays.

init-definition Initial-Value Definition:

With the init-definitionoption, you define the initial/constant values for
a variable. See Initial-Value Definition.

array-init-definition|Initial/Constant Values for an Array:

The array is to be assigned an initial value. This value will also be used when
this array is referenced in a RESET INITIAL statement.

Withan array-init-definition, you define the initial/constant values for
an array.

For further information, see Initial/Constant Values for an Array.

emhdpm

EM, HD, PM Parameters for Field/Variable:

With this option, additional parameters to be in effect for a field/variable may
be defined.

For further information, see EM, HD, PM Parameters for Field/Variable.

Default Initial Values

The following table shows the default initial values that are provided with the various formats:

Format Default Initial Value
B,ELN,P 0

AU (blank)

L FALSE

D D' !

T T'00:00:00'"

C (AD=D)

Object Handle|NULL-HANDLE

Fields declared as DYNAMIC do not have any initial value because their field length is zero by default.

298

Statements

46 View Definition

B SYNEAX DESCIIPHON ...ttt 300

299

View Definition

view-name VIEW[OF] ddm-name

([format-Tengthl[/array-definition])

) [emhdpm]

DYNAMIC

ddm-field A
o { v

Tevel [/array-definition]

redefinition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The view-definition option is used to define a data view as derived from a data definition
module (DDM).

| Note: Ina parameter data area, view-definitionisnot permitted.

For further information, see Accessing Data in an Adabas Database in the Programming Guide and
particularly the following topics:

® Data Definition Modules - DDMs
® Database Arrays
® Defining a Database View

Syntax Description

Syntax Element Description

view-name View Name:
The name to be assigned to the view.

Rules for Natural variable names apply; see Naming Conventions for User-Defined
Variables in Using Natural.

VIEW [OF] DDM Name:
ddm-name

The name of the data definition module (DDM) from which the view is to be taken.

level Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group which
has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only one
field) by using the group name. With certain statements (CALL, CALLNAT, RESET,

300 Statements

View Definition

Syntax Element

Description

WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a group,
no level numbers may be skipped.

ddm-field

DDM Field Name:
The name of a field to be taken from the DDM.

When you define a view for a HI STOGRAM statement, the view must contain only the
descriptor for which HISTOGRAM is to be executed.

redefinition

Redefinition:

A redefinitionmay be used to redefine a group, a view, a DDM field or a single
field/variable (that is a scalar or an array).

For further information, see Redefinition.

format-length

Format/Length Definition:
Format and length of the field. If omitted, these are taken from the DDM.

In structured mode, the definition of format and length (if supplied) must be the
same as those in the DDM.

In reporting mode, the definition of format and length (if supplied) must be
type-compatible with those in the DDM.

A, U orB

Data Type:
Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.
Note:

1. For Adabas on mainframe computers, format U is available for LA fields (length
<=16381 bytes), but not for LB fields (length: <=1 GB).

2. Format B is not available with Adabas.

array-definition

Array Definition:

Depending on the programming mode used, arrays (periodic-group fields,
multiple-value fields) may have to contain information about their occurrences.

For further information, see Array Definition in a View below.

emhdpm EM, HD, PM Parameters for Field/Variable:
With this option, additional parameters to be in effect for a field/variable may be
defined. See EM, HD, PM Parameters for Field/Variable.

DYNAMIC DYNAMIC Option:

Statements

301

View Definition

Syntax Element Description

Defines a view field as DYNAMIC.

For further information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields in the Programming Guide.

Array Definition in a View

Depending on the programming mode used, arrays (periodic-group fields, multiple-value fields)
may have to contain information about their occurrences.

Structured Mode

If a field is used in a view that represents an array, the following applies:

® An index value must be specified for MU/PE fields

® When no format/length specification is supplied, the values are taken from the DDM.

® When a format/length specification is supplied, it must be the same as in the DDM.

Database-Specific Considerations in Structured Mode:

Adabas: | 1f MU/PE fields (defined in a DDM) are to be used inside a view, these fields must include an
array index specification. For an MU field or ordinary PE field, you specify a one-dimensional
index range, e.g. (1:10). For an MU field inside a PE group, you specify a two-dimensional

index range, e.g. (1:10,1:5).

Tamino: [DDM definition allowed not allowed
A(*:X2) A(*:Y2) Y2=<X2 A g%)
ACY1:Y2) Y2>Y1 ACY1:*)
Y2=<X2 A(Z:7+Y) Y>=0
ACX1:*) ACYL:*) YI>=X1 A g%)
ACYL:Y2) Y2>=X1, Y1>=X1 A(*:Y2)
ACZ:Z+Y) Y>=0
A(X1:X2) ACY1:Y2) Y2<Y1 A g%)
ACZ:Z+Y) 0=<Y>=X2-X1+1 ACYL:*)
A(*:Y2)

302

Statements

View Definition

Examples of Structured Mode:

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES
2 NAME(AZ20)
2 ADDRESS-LINE(A20 / 1:2)

1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(1:2)

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(2)

1 4K (I4)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

Reporting Mode
In this mode, the same rules are valid as for structured mode, however, there are two exceptions:

® Anindex value needs not be supplied. In this case, the index range for the missing dimensions
is set to (1:1).

* The format/length specification may differ from the specification in the DDM. Then the
definition of format and length must be type-compatible with those in the DDM.

Examples:

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES
2 NAME(A30)
2 ADDRESS-LINE(A35 / 5:10)

1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(A40) /* ADDRESS LINE (1:1) IS ASSUMED

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE /* ADDRESS LINE (I1:1) IS ASSUMED

1 K (14)

1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)

Statements 303

View Definition

END-DEFINE
END

304 Statements

47 Redefinition

B RESHICHONS .ttt et 306
B SYNEAX DESCIIPHON ...ttt e e e s 306

305

Redefinition

rgroup [(array-definition)]
REDEFINE field-name ‘ Tevel ‘ rfield(format-length[/array-definition])]]
FILLER nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The redefinitionoptionisused to redefine a group, a view, a DDM field or a single field/variable
(that is a scalar or an array).

See also Redefining Fields in the Programming Guide.

Restrictions

" A redefinition of a view or a DDM field is not applicable to a parameter-data-definition.

® Handles, X-arrays and dynamic variables cannot be redefined and cannot be contained in a re-
definition clause.

® A group that contains a handle, X-array or a dynamic variable can only be redefined up to - but
not including or beyond - the element in question.

Syntax Description

Syntax Element Description

field-name Name of Field to be Redefined:

The name of the group, view, DDM field or single field that is being redefined.
level Level Number of Field being Redefined:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group,
which has been assigned a lower level number.

rgroup Name of Resulting Group:
The name of the group resulting from the redefinition.

Note: Ina redefinitionwithina view-definition, the name of rgroup must

be different from any field name in the underlying DDM.

rfield Name of Resulting Field:

The name of the field resulting from the redefinition.

306 Statements

Redefinition

Syntax Element

Description

Note: Ina redefinitionwithina view-definition, the name of rfieldmust

be different from any field name in the underlying DDM.

format-length

Format/Length of Resulting Field:

The format and length of the resulting field (rf7e/d).

array-definition

Array Dimension Definition:

Withan array-definition, youdefine the lower and upper bounds of dimensions
in an array-definition.

For further information, see Array Dimension Definition.

FILLER nX

Filler Byte Definition:

With this notation, you define n filler bytes - that is, segments which are not to be
used - in the field that is being redefined.

The definition of trailing filler bytes is optional.

Examples of REDEFINE Usage

Example 1:

DEFINE DATA LOCAL

01 #VAR1
01 fFVAR2

(A15)

02 #VAR2A (N4.1) INIT <0>

02 #fVAR2B (P6.2) INIT <0>
01 REDEFINE #VAR?

02 #VAR2RD (A10)

END-DEFINE

Example 2:

DEFINE DATA LOCAL
01 MYVIEW VIEW OF STAFF

02 NAME

02 BIRTH

02 REDEFINE BIRTH
03 BIRTH-YEAR (N4)
03 BIRTH-MONTH (N2)
03 BIRTH-DAY (N2)

END-DEFINE

Statements

307

Redefinition

Example 3:

DEFINE DATA LOCAL
1 #FIELD (Al2)
1 REDEFINE #FIELD
2 #RFIELD1 (A2)
2 FILLER 2X
2 #RFIELD2 (A2)
2 FILLER 4X
2 #fRFIELD3 (A2)
END-DEFINE

308

Statements

48 Array Dimension Definition

B SYNEAX DESCIIPHON &ttt e ettt e e e e e et e e e e e e e e e e 310

309

Array Dimension Definition

{[bound:] bound},... 3

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The array-dimension-definitionoptionisused to define the lower and upper bound of a dimen-
sion in an array definition.

You can define up to 3 dimensions for an array.

Syntax Description

Syntax Element | Description

bound Lower/Upper Bound:
A bound can be one of the following:

" anumeric integer constant;

® apreviously defined named constant;

® (for database arrays) a previously defined user-defined variable; or

® an asterisk (*) defines an extensible bound, otherwise known as an X-array (eXtensible

array).

If only one bound is specified, the value represents the upper bound and the lower bound
is assumed to be 1.

X-Arrays

If at least one bound in at least one dimension of an array is specified as extensible, that array is
then called an X-array (eXtensible array). Only one bound (either upper or lower) may be extensible
in any one dimension, but not both. Multi-dimensional arrays may have a mixture of constant and
extensible bounds, for example: #fa(1:100, 1:*).

Example:

DEFINE DATA LOCAL

1 JARRAY1(I4/1:10)

1 #fARRAY2(14/10)

1 #FX-ARRAY3(I4/1:%)

1 #X-ARRAY4(I4/*,1:5)

1 #FX-ARRAY5(I4/*:10)

1 #X-ARRAY6(I14/1:10,100:*,*:1000)
END-DEFINE

In the following table you can see the bounds of the arrays in the above program more clearly.

310 Statements

Array Dimension Definition

Dimension 1 Dimension 2 Dimension 3

Lower bound |Upper bound | Lower bound |Upper bound | Lower bound | Upper bound
#FARRAYL |1 10 - - - -
#FARRAY2 |1 10 - - - -
#FX-ARRAY3 |1 eXtensible |- - - -
#FX-ARRAY4 |1 eXtensible |1 5 - -
##X - ARRAY5 |eXtensible |10 - - - -
##X-ARRAY6 |1 10 100 eXtensible |eXtensible |1000

Examples of array definitions:

fFARRAY2(14/10)
##X-ARRAY4(I4/*,1:5)

##X-ARRAY6(14/1:10,100:*,*:1000)

/* a one-dimensional array with 10 occurrences (1:10)

/* a two-dimensional array

Variable Arrays in a Parameter Data Area

In a parameter data area, you may specify an array with a variable number of occurrences. This

is done with the index notation 1:V.

Example 1: #ARRO1 (A5/1:V)

Example 2: ##ARR02 (I12/1:V,1:V)

A parameter array which contains a variable index notation 1 : V can only be redefined in the length

of

/* a three-dimensional array

" its elementary field length, if the 1:V index is right-most; for example:

#ARR(A6/1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:3,1:V) can be redefined up to a length of 6 bytes

* the product of the right-most fixed occurrences and the elementary field length; for example:

#FARR(A6/1:V,1:2) can be redefined up to a length of 2*6 = 12 bytes
#ARR(A6/1:V,1:3,1:2) can be redefined up to a length of 3*2%6 = 36 bytes
#ARR(A6/1:2,1:V,1:3) can be redefined up to a length of 36 = 18 bytes

A variable index notation 1:V cannot be used within a redefinition.

Example:

Statements

Array Dimension Definition

DEFINE DATA PARAMETER
1 #/ARR(AG/1:V)
1 REDEFINE #ARR
2 {#fR-ARR(A1/1:V) /* (1:V) is not allowed in a REDEFINE block
END-DEFINE

As the number of occurrences is not known at compilation time, it must not be referenced with
the index notation (*) in the statements INPUT, WRITE, READ WORK FILE, WRITE WORK FILE. Index
notation (*) may be applied either to all dimensions or to none.

Valid examples:

#ARROL (%)

#FARR02 (*,%)
#FARRO1 (1)

#ARRO2 (5,#FFIELDX)
##ARR02 (1,1:3)

Invalid example:

#ARRAYY (1,*) /* not allowed

To avoid runtime errors, the maximum number of occurrences of such an array should be passed
to the subprogram/subroutine/function via another parameter. Alternatively, you may use the
system variable *0CCURRENCE.

] Notes:

1. If a parameter data area that contains an index 1:V is used as a local data area (that is, specified
ina DEFINE DATA LOCAL statement), a variable named V must have been defined as CONSTANT.

2. In a dialog, an index 1:V cannot be used in conjunction with BY VALUE.

312 Statements

49 Initial-Value Definition

B RESHTICHION e 314
B SYNEAX DESCIIPHON ...ttt e e e s 314

313

Initial-Value Definition

{ FULL LENGTH
LENGTH n

{ constant

} {character-string>

>
system-variable }

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The init-definitionoption is used to define the initial/constant values for a variable.

) Note: If, inthe variable-definitionoption, the keyword INIT was used for the initializa-

tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONST was used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Field Definitions, Initial Values in the Programming Guide.

Restriction

For a redefined field, an init-definitionis not permitted.

Syntax Description

Syntax Element

Description

{constant>

Constant Value Option:

The constant value with which the variable is to be initialized; or the constant value
to be assigned to the field.

For further information, see User-Defined Constants in the Programming Guide.

{system-variable>

System Variable Option:

The initial value for a variable may also be the value of a Natural system variable,
for example:

DEFINE DATA LOCAL
1 MYDATE (D) INIT <*DATX>
END-DEFINE

Note: When the variable is referenced ina RESET INITIAL statement, the system

variable is evaluated again; that is, it will be reset not to the value it contained
when program execution started but to the value it contains when the RESET
INITIAL statement is executed.

314

Statements

Initial-Value Definition

Syntax Element

Description

FULL LENGTH
{character-string>

LENGTH n
{character-string>

Character String Option for Alphanumeric/Unicode Variables:

For a variable of the Natural data format A or U, a character-string (for
example, 'ABC ') can be used as an initial value which fills all or part of the variable
field.

A character-stringisa constant of the Natural data format A or U as described
in Alphanumeric Constants and Unicode Constants in the Programming Guide.

FULL LENGTH Option:

With the FULL LENGTH option, a particular character-stringis repeatedly
moved to the specified field until the field is completely filled. In the following
example, the entire field is filled with asterisks:

DEFINE DATA LOCAL
1 #FIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE

LENGTH Option:

With the LENGTH 1 option, a particular character-stringis repeatedly moved
to the specified field until the first n positions of the field are filled. n must be a
numeric constant. In the following example, the first four positions of the field are
filled with exclamation marks:

DEFINE DATA LOCAL
1 #FIELD (A25) INIT LENGTH 4 <'I'>
END-DEFINE

Statements

315

316

50 Initial/Constant Values for an Array

B RESHTICHION e 318
B SYNEAX DESCIIPHON ...ttt e e e s 319

317

Initial/Constant Values for an Array

For selected occurrences:

FULL LENGTH
{ v 6 }<character—str7’ng, - >
.) LENGTH n
[({ mdex[:mdex]} C]
v -3 [constant] .
system-variable

For all occurrences:

FULL LENGTH .
{LENGTH " } <character-string>

ALL
{ constant }

system-variable

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
The array-init-definition option is used to define the initial/constant values for an array.

J Note: If, inthe variable-definitionoption, the keyword INIT was used for the initializa-

tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONST was used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Field Definitions in the Programming Guide, particularly the following sections:

" Initial Values

® User-Defined Constants

Restriction

For a redefined field, an array-init-definitionis not permitted.

318 Statements

Initial/Constant Values for an Array

Syntax Description

Syntax Element Description
ALL ALL Option:
All occurrences of the array are initialized with the same value.
The ALL option cannot be combined with any other initialization definitions.
index Index Option:
The array occurrences specified by 7ndex are initialized.
If a single index or an index range is used, you can only specify a unique value
(constantor system-variable) which is assigned to all occurrences.
Examples:
DEFINE DATA LOCAL
1 #FLDL (A4/1:4) INIT (1:3) <'A'> /* A fills occurrences <
(1:3)
1 #/FLD2 (A4/1:4) INIT (*) <'B'> /* B fills all occurrences
1 #FLD3 (A4/1:2,1:4) INIT (2,3) <'C'> /* C fills occurrence <
(2,3)
END-DEFINE
v Index Notation V:
The special index notation V is used to fill a consecutive sequence of array
occurrences with individual values (constant or system-variable).
You can specify the V notation for one dimension of an array only. The number of
values provided must not exceed the number of occurrences of the specified
dimension.
You can omit the V notation for a one-dimensional array because the V index is
then used by default.
Example showing which values fill which occurrences when V is used:
DEFINE DATA LOCAL
1 #FLD4 (A4/1:3) INIT (V) <'A','B'> /* A fills (1) B <
fills (2)
1 #fFLD5 (A4/1:2,1:3) INIT (1,V) <'C','D'> /* C, D fill <
(1,1:2)
(2,V) <'F",'G",'"H'> /* F, G, H fill «
(2,1:3)
END-DEFINE
Statements 319

Initial/Constant Values for an Array

Syntax Element

Description

constant

Constant Value Option:
The constant (value) with which the array is to be initialized.
Occurrences for which no values are specified, are initialized with a default value.

In a list of consecutive occurrences, you can skip single occurrences by specifying
commas (,) only. However, you must end the list with a particular value for the
last occurrence.

For further information, see User-Defined Constants in the Programming Guide.

Note: Multiple constant values/system variables must be separated either by the

input delimiter character (as specified with the session parameter 1D) or by a
comma. If numbers are provided in the value list and a comma is defined as the
decimal character (with the session parameter DC), either separate the comma from
the value with an extra blank character or use the input delimiter character.

Example with I1D=; and DC=, delimiter settings:

DEFINE DATA LOCAL

1 ffFLD1 (A4/1:3) INIT <'A',,'C">
1 ffNUM1 (N4,2/1:3) INIT <1 , 2, 3>
1 4INUM2 (N4,2/1:3) INIT <1;2;3>
END-DEFINE

system-variable

System Variable Option:
The initial value for an array can also be the value of a Natural system variable.

See also the Note for constant.

FULL LENGTH
{character-string>

LENGTH n
{character-string>

Character String Option for Alphanumeric/Unicode Variables:

For a variable of the Natural data format A or U, a character-string (for

example, 'ABC ') can be used as an initial value which fills all or part of the variable
field.

A character-stringisa constant of the Natural data format A or U as described
in Alphanumeric Constants and Unicode Constants in the Programming Guide.

FULL LENGTH Option:

With the FULL LENGTH option, a particular character-stringis repeatedly
moved to the specified array occurrence until the occurrence is completely filled.

LENGTH Option:

With the LENGTH n option, a particular character-stringis repeatedly moved
to the specified array occurrence until the first 1 positions of the occurrence are
filled.

320

Statements

Initial/Constant Values for an Array

Syntax Element Description

Example showing which values fill which occurrences:

DEFINE DATA LOCAL
1 #FLD1 (A6/1:3) INIT ALL FULL LENGTH <'X'> /% XXXXXX in all

PR}
occ.
1 #FLD2 (A6/1:3) INIT ALL LENGTH 5 <'NO'> /* NONON in all <
occ.
1 #FLD3 (A6/1:3) INIT (1:2) LENGTH 4 <'AB'> /* ABAB in occ <
(1:2)

1 ##FLD4 (A6/1:3) INIT (V) FULL LENGTH <'X','Y'>/* XXXXXX in occ. <«
(1),

/* YYYYYY in occ. <
(2)
END-DEFINE

Within one array-init-definition, only FULL LENGTH or LENGTH n can be
specified; both notations must not be mixed.

| Note: For further example definitions of assigning initial values to arrays, see Example 2 -
DEFINE DATA (Array Definition/Initialization).

Statements 321

322

51 EM, HD, PM Parameters for Field/Variable

B SYNEAX DESCIIPHON &ttt e ettt e e e e e et e e e e e e e e e e 324

323

EM, HD, PM Parameters for Field/Variable

(EM=value
EMU=value

] [HD='text'] [PM=value])

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The emhdpm option is used to define additional parameters to be in effect for a field/variable.

| Note: If for a database field you specify neither an edit mask (EM= or EMU=) nor a header

(HD=), the default edit mask and default header as defined in the data definition module

(DDM) will be used. However, if you specify one of the two, the other's default from the
DDM will not be used.

Syntax Description

Syntax Element

Description

EM=value

Edit Mask:

The EM parameter may be used to define an edit mask used when the field is displayed with
an I/O statement.

For further information, see the session parameter EM in the Parameter Reference.

EMU=value

Unicode Edit Mask:

The EMU parameter may be used to define a Unicode edit mask used when the field is
displayed with an I/O statement.

For further information, see the session parameter EMU in the Parameter Reference.

HD="'text'

Header Definition:

The HD parameter may be used to define the header to be used as the default header for the
field.

For further information, see the session parameter HD in the Parameter Reference.

PM=value

Print Mode:

The PM parameter may be used to set the print mode, which indicates how fields are to be
output.

For further information, see the session parameter PM in the Parameter Reference.

324

Statements

52 Examples of DEFINE DATA Statement Usage

= Example 1 - DEFINE DATA LOCAL (Local Data Definition)cuvveeiiiirieniiiiieeiie e 326
= Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization)cccoeiiiiiiiiiiiicce e, 326
= Example 3 - DEFINE DATA (View Definition, Array Redefinition)ccovveiiiieii 330
= Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas)ccooveeiiiiiiiiniiiiiiiicce, 331
= Example 5 - DEFINE DATA (INtialization)oeeeiiiiiiiiiiiie e 332
= Example 6 - DEFINE DATA (Variable ArTay)ooooiiiiiiiiiiii et 332

325

Examples of DEFINE DATA Statement Usage

The following topics are covered:

Example 1 - DEFINE DATA LOCAL (Local Data Definition)

** Example 'DDAEX1': DEFINE DATA
P b i i b b b i e i b i b i b i b b e b i b e b i i g i o b o i e i g b e b i i g i b e b i o b i b i i b i i b b e
DEFINE DATA LOCAL
1 {f'VAR1 (A15)
1 #fVAR2

2 #/VAR2A (N4.1) INIT <1111>

2 ffVAR2B (N6.2) INIT <222222>
1 REDEFINE #VAR2

2 {#/VAR2C (A2)

2 J#/VAR2D (A2)

2 #VAR2E (A6)

END-DEFINE
*
WRITE NOTITLE '=" #fVAR2A / '=' #VAR2B /
"=' ff'VAR2C / '=" ffVAR2D / '=' ffVAR2E
*
END

Output of Program DDAEX1:

#FVAR2A: 1111.0
##VAR2B: 222222.00
#fVAR2C: 11

##VAR2D: 11

#FVAR2E: 022222

Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization)

** EXAMPLE 'DDAEX2': DEFINE DATA (array definition/initialization)

R R e i b S b b e b b e e b e b o b e e b e e b e e e e e e e e b e b e e b e e b e e e b e S i e b o S

DEFINE DATA LOCAL
* %
1 #A01 (A5/1:4) INIT
1 #A02 (A5/1:4) INIT (V)
(4)
1 JfA03 (A5/1:4) INIT (*)
#A04 (A5/1:4) INIT (2)
(3)
1 #A05 (A5/1:4) INIT (2:3)
(4)
1 #A06 (A5/1:4) INIT (*)

—
AN ANAANANAANA A AN
X O > O W > O > >

326

Statements

Examples of DEFINE DATA Statement Usage

1 ##A13
1 #A14

1 #A20
1 #A21

1 #A22
1 #A23

1 #FA30
1 #A31
1 ##A32

* %

INIT ALL

LENGTH
LENGTH
LENGTH
LENGTH
LENGTH

LENGTH <
LENGTH <,
LENGTH <!
LENGTH <
LENGTH <

<
ALL FULL LENGTH <'
ALL LENGTH 2 <

1 #B01
1 #B02
1 #B03

1 ##B04
1 #B05

END-DE

**

(A5/1:2,1:4) INIT (2,
(A5/1:2,1:4) INIT

(A5/1:

(A5/1:
(A5/1:

FINE

:4) INIT

(1,
(1,
(2,
(1,
(1,
(v,

V)
*)
2)
3)

1:2)

4)
1)

o %)

,*)
,*)
,*)
V)
V)
%)
o)

.4)

AN AN AN AN AN AN AN

<IZ|

>

< > < X T W X< >

a =5

FULL LENGTH
FULL LENGTH
LENGTH 2

FULL
FULL
FULL
FULL
FULL

LENGTH
LENGTH
LENGTH
LENGTH
LENGTH

AN AN AN AN AN AN AN

N < ><rm >N N N

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
SKIP 1
WRITE
WRITE
WRITE
WRITE
WRITE

7X " (1)
(AD=V)
(AD=V)
(AD=V)
(AD=V)
(AD=V)
(AD=V)

(AD=V)
(AD=V)
(AD=V)
(AD=V)
(AD=V)

(

2) (3)
#FA0L (*)

" fA02 (%)

#A03(*)
fFAQ4 (*)
##A05 (*)
FA06 (*)

#FAL0(*)
FFALL(*)
#AL2 (%)
FFAL3(*)
FFALA(*)

(4)"

AV VRS

I”ICI>
‘,'F|>

AV VERVS

Statements

327

Examples of DEFINE DATA Statement Usage

SKIP 1

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
SKIP 1

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
SKIP 1

**

#A20(*)
fFA21(*)
##A22(*)
fFA23(*)

FA30(*)
FFA31(*)
fFA32(*)

WRITE 6X '(1,

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
SKIP 1

WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)
WRITE (AD=V)

**

(

1,2) (1,3) (1,4)
#B01(2,
#B02(2,
#B03(2,
#B04 (2,
##B05(2,

#BOL(1,*)
#B02(1,*)
#B0O3(1,*)
#B04(1,*)
##BO5(1,*)

#B10(1,*)
#B11(1,*)
#B12(1,*)
#B13(1,*)
#B14(1,*)
#B15(1,*)

2X
2X
2X
2X
2X

2X
2X
2X
2X
2X
2X

#B10(2,
#B11(2,
#B12(2,
#B13(2,
#B14(2,
#B15(2,

(2,1) (2,2) (2,3) (2,4)"

*)
*)
*)
*)
*)

*)
*)
*)
*)
*)
*)

END

328

Statements

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX2:

Fage 1

h |

r L L
(1) 2y (3) (4]

#a01:. A E D
#a0z:. A E D
#4032 A A A A
#4004 E C

#A05: X i D
#ane: X X C i
falo. EEXEX

#411: EEEEE DDDDD
#412. AkALL PRERR

#2413 EEEEE

#h14; EEEEX

thz0. Ah

#4271 EB CCo
$a22: iX XX
$a23: EB DD
ta3n: Z Z zZ zZ

a3l ZZZZZ
gazz. ZZ ZZ iz iz

(1,13 (1.2 (1.3) (1,45 (2,13 (2.2) (2.3) (2.4}

¥BO1: A B D
¥BO2: X B X X 17

#¥BO3: X i i

¥BO4: Al A2

¥BOS: X X X X i i i i
#¥B10: Z z z z z z z z
¥B11:

¥B12:

#¥Bl13: ZZ ZZ ZZ ZZ

¥B1l4: AAAAR CCCce EEEEE FFFFF

¥B15: YTYYYY YYVVY YYVYY ZZE7F

Statements 329

Examples of DEFINE DATA Statement Usage

Example 3 - DEFINE DATA (View Definition, Array Redefinition)

** Example 'DDAEX3': DEFINE DATA (view definition, array redefinition)

R R R R R R e b R R b b e b e e I b R e i b b e e b e i b R e b b R e i b b S b R R e i b b e b b

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE

*

—

FFARRAY (A75/1:4)
1 REDEFINE {fARRAY
2 #ALINE (A25/1:4,1:3)

1 #X (N2) INIT <1>
1 Y (N2) INIT <1>
END-DEFINE

*

FORMAT PS=20

LIMIT 5
FIND EMPLOY-VIEW WITH NAME = "'SMITH'
MOVE NAME TO F#ALINE (4X,4Y)

MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO fFALINE (#X+3,4Y)
IF #Y =3
RESET INITIAL #Y
PERFORM PRINT
ELSE
ADD 1 TO fY
END-IF
AT END OF DATA
PERFORM PRINT
END-ENDDATA
END-FIND
*
DEFINE SUBROUTINE PRINT
WRITE NOTITLE (AD=0I1) #ARRAY(*)
RESET #ARRAY (*)
SKIP 1
END-SUBROUTINE

*

END

330

Statements

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX3:

SMITH SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
MILWAUKEE MONTERREY

554349 877-4563 994-2260

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963

Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas)

** Example 'DDAEX4': DEFINE DATA (global and local data area definition)
KAk hkhkhkhkhkhkhkhhkhkhkhkhkhhkhhhkhkkhhkhkhkhkhkhkhhhhkhhkhkhhkhkhhkhhhkkhkhhkhhkhkhkhhkhhkhkhhkhhhkhkkhkhkkhhkhkhkxk
DEFINE DATA
GLOBAL
USING DDAEX4G
LOCAL
1 #fFIELD1 (A10)
1 #FIELD2 (N5)
END-DEFINE
*
MOVE 'HELLO' TO #FIELDI
MOVE 123 TO #FIELD2

*

CALLNAT 'DDAEX4N' ffFIELD1 #FIELD2

*

END

Global Data Area DDAEX4G Used by Program DDAEX4:

1 GLOBAL-FIELD A 10

Subprogram DDAEX4N Called by Program DDAEX4:

% Example 'DDAEX4N': DEFINE DATA PARAMETER (called by DDAEX4)

P b i B i b b b i b e o i b i b i b i b i e g b b i b e b S i g i b o b i i g b g i e g i i g i b b o o b i . i i b i b b b
DEFINE DATA

PARAMETER

1 ffFIELDA (A10)

1 ff/FIELDB (N5)

END-DEFINE

*

WRITE '=' #FIELDA '=' #FIELDB

END

Statements 331

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX4:

Page 1 05-01-12 08:55:53

##FIELDA: HELLO ##FIELDB: 123

Example 5 - DEFINE DATA (Initialization)

% Example 'DDAEX5': DEFINE DATA (initialization)
P R b i B b b o I i e o i b o b b e b b i b i b i b e b o b o b b b b e b o e g e b b b i o b b b i e b i b b b o
DEFINE DATA LOCAL
1 #START-DATE (D) INIT <*DATX>
1 ffUNDERLINE (A50) INIT FULL LENGTH <'_'>
1 #/SCALE (A65) INIT LENGTH 65 <'....+..../">
END-DEFINE
*
WRITE NOTITLE #START-DATE (DF=L)
/ fFUNDERLINE
/ FSCALE
END

Output of Program DDAEXG5:

2005-01-12

B R T A Uy A A AV PN AP PP AP

Example 6 - DEFINE DATA (Variable Array)

** Example 'DDAEX6': DEFINE DATA (variable array with (1:V))

KAk A hkkhhkhkhkhhkhhkhkhhkhkhhkhrhhkhkhhkhkhkhkhkhhkhhhkhhkhkhkhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkkhkhkhrhhkhkhkhkhkhhkhkhkxkx
DEFINE DATA LOCAL

1 #tARRAY (A1/1:10)

1 #MAX-ARR (P3)

END-DEFINE

*

fFARRAY (1) := 'R’
FFARRAY (2) := 'E'
fFARRAY (3) := 'D'
#IMAX-ARR := 4

*

WRITE FARRAY (*)

*

CALLNAT 'DDAEX6N' #FARRAY(1:4) #MAX-ARR

*

332 Statements

Examples of DEFINE DATA Statement Usage

WRITE FFARRAY (*)

*
*

#IMAX - ARR =5

*

CALLNAT 'DDAEX6N' #FARRAY(1:5) #MAX-ARR

*

WRITE #FARRAY (*)

*

END

Subprogram DDAEX6N Called by Program DDAEXé6:

** Example 'DDAEX6N': DEFINE DATA (variable array with (1:V))
khkhkkhkkhkhkhkhhkhkhhkhkhkhkhkhhkhhhkhkhhkhhkhkhkhhhhkhkhhkhhkhkhkhhkhhhkhkhhkhhkhkhkhkhkhhhkhkhkhhhkhkhhkhhhkhkhkixk
DEFINE DATA

PARAMETER

1 #STRING (A1/1:V)

1 #MAX (P3)

END-DEFINE

*

IF #IMAX = 4
MOVE 'B' TO #STRING (1)
MOVE 'L' TO #STRING (2)
MOVE 'U' TO #STRING (3)
MOVE 'E' TO #STRING (4)

END-IF

*

IF #IMAX = 5

MOVE 'W' TO #STRING (1)
MOVE 'H' TO #STRING (2)
MOVE 'I' TO #STRING (3)
MOVE 'T' TO #STRING (4)
MOVE '"E' TO #STRING (5)
END-IF
END

Output of Program DDAEX4:

Page 1 05-01-12 09:06:43

= W O
I r— m
— C O
— m
m

Statements 333

334

VII

83 DEFINE FUNCTION ...ttt

54 DEFINE PRINTER

55 DEFINE PROTOTYPE ...
56 DEFINE SUBROUTINE ...

57 DEFINE WINDOW

58 DEFINE WORK FILE ...

335

336

53 DEFINE FUNCTION

B FUNCHON .ttt e e 338
B SYNEAX DESCIIPHON ...ttt e e e s 338
L e 01T OO SR PUPPPPPRRR 342

337

DEFINE FUNCTION

DEFINE FUNCTION function-name
[return-data-definition]
[function-data-definition]
statement. ..

END-FUNCTION

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE PROTOTYPE

Function

The DEFINE FUNCTION statement is used to define a function which is stored as a Natural object
of the type function. A function object may contain only one DEFINE FUNCTION statement.

The DEFINE FUNCTION statement defines the function name, the parameters, the local and applica-
tion-independent variables, the function result and the statements forming the operation logic.
These statements are executed when the function is called.

For further information, see the following sections in the Programming Guide:

® Natural object type Function

® Function Call

Syntax Description

Syntax Element Description

function-name Function Name:

function-name is the name of the function to be called. It must comply
with the naming conventions for user-defined variables described in the
Using Natural documentation.

function-nameisnotnecessarily the same as the name of the stored object
that contains the function definition.

You may not use the same function name twice in one library.

return-data-definition |Return Data Definition Clause:

For details on this clause, see Return Data Definition.

function-data-definition|Function Data Definition Clause:

338 Statements

DEFINE FUNCTION

Syntax Element Description

For details on this clause, see Function Data Definition.

statement. .. Statement(s) to be Executed:

Defines the operation section which is executed when the function is called.
It forms the function logic.

END-FUNCTION End of DEFINE FUNCTION Statement:

The Natural reserved word END-FUNCTION must be used to terminate the
DEFINE FUNCTION statement.

Return Data Definition

(format-Tlength[/array-definition])
o dialog-element-type
RETURNS [(array-definition)] HANDLE OF{ OBJECT } [BY
[variable-name] A VALUE]
(‘ U] [farray-definition]) DYNAMIC
B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the result value returned by the function.

Syntax Element Description:

Syntax Element Description

variable-name Return Value Name:

Optionally, you may specify a name which is used to access the return field within
the function coding. If no such name is specified, the function name is used
instead.

format-Tlength Format/Length Definition:
The format and length of the result field.

For information on format/length definition of user-defined variables, see Format
and Length of User-Defined Variables in the Programming Guide.

array-definition Array Dimension Definition:

With array-definition, youdefine the lower and upper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, see DEF INE DATA statement, Array Dimension Definition.

HANDLE OF Dialog Element Type:
dialog-element-type

Statements 339

DEFINE FUNCTION

Syntax Element

Description

The type of dialog element. Its possible values are the values of the TYPE attribute.

HANDLE OF OBJECT

Handle of Object:
Used in conjunction with NaturalX.

For further information, see NaturalX in the Programming Guide.

A, UorB

Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.

DYNAMIC

Dynamic Variable:
The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields in the Programming Guide.

BY VALUE

BY VALUE Option:

If BY VALUE is specified, the format/length of the “sending” field (defined inside
the return-data-definition clause) and the “receiving” field (which receives the
result at the place where the function is called) must only be transfer compatible.

The format/length of the “receiving” field is either

® defined via an explicit (I1R=) clause in the function call; or
® defined with a DEFINE PROTOTYPE statement; or
® taken over from the RETURNS field of the function object, which must already

exist.

For data transfer compatibility the rules outlined in Rules for Arithmetic Assignment
and Data Transfer in the Programming Guide apply.

If BY VALUE is not specified, the format and length of the “receiving” field must
exactly match the characteristics of the “sending” field.

Function Data Definition

DEFINE DATA

PARAMETER {

LOCAL ‘

[INDEPENDENT aiv-data-definition..]

USING parameter-data-area }

parameter-data-definition..

USING { local-data-area }
parameter-data-area

local-data-definition...

340

Statements

DEFINE FUNCTION

END-DEFINE

The function-data-definition clause defines the parameters which are to be provided when
the function is called, and the data fields used by the function, such as local and application-inde-
pendent variables. A global data area (GDA) cannot be referenced inside the function definition.

Syntax Element Description:

Syntax Element

Description

PARAMETER USING
parameter-data-area

PDA Name:

Specify the name of the parameter data area (PDA) that contains data
elements which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

PARAMETER
parameter-data-definition

Parameter Data Definition:

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Parameter Data Definition in the DEFINE DATA statement
description.

LOCAL USING
local-data-area

LDA Name:
Specify the name of the local data area (LDA) to be referenced.

See also Defining Local Data in the DEFINE DATA statement description.

LOCAL USING
parameter-data-area

PDA Name:
Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCAL may also be a

parameter data area (PDA). By using a PDA as an LDA you can avoid
the extra effort of creating an LDA that has the same structure as the PDA.

See also Defining Local Data in the DEFINE DATA statement description.

LOCAL
local-data-definition

Local Data Definition:

For information on how to define elements or fields within the statement
itself, that is, without using an LDA or PDA, see the section Local Data
Definition in the DEFINE DATA statement description.

INDEPENDENT
aiv-data-definition

AIV Data Definition:

Can be used to define a single or multiple application-independent
variables (AIVs).

See Defining Application-Independent Variables in the DEFINE DATA
statement description.

Statements

341

DEFINE FUNCTION

Syntax Element Description

END-DEFINE End of Clause:

The Natural reserved word END-DEFINE must be used to end the
function-data-definition clause.

Examples

= Example 1 - DEFINE FUNCTION
= Example 2 - DEFINE FUNCTION with Result Value Array

Example 1 - DEFINE FUNCTION

**% Example 'DFUEX1': DEFINE FUNCTION
KA A kA kA hkhhkhhkhhhhkhhkrhhhkhhkhkhhkhkhhAhhhkhhkhkhhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkhhkhrhhkhkhhkkhhkhkhkkxk
DEFINE FUNCTION F#FIRST-CHAR

RETURNS RESULT (A1)

DEFINE DATA PARAMETER

1 {#fPARM (A10)

END-DEFINE

/*

F#RESULT := PARM /* First character as return value.
END-FUNCTION

*

END

The function F#FIRST-CHAR is used in the example program DPTEX2 in library SYSEXSYN. See Ex-
amples in the DEFINE PROTOTYPE statement description.

Example 2 - DEFINE FUNCTION with Result Value Array

** Example 'DFUEX2': DEFINE FUNCTION
Sk ok o o o o o ok ok ok ok kK Kk o ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ko ko ko ok ok ok ok ok
DEFINE FUNCTION F#FACTOR

RETURNS (I2/1:3)

DEFINE DATA PARAMETER

1 #fVALUE (I2)

END-DEFINE

/*

F#FACTOR(L) := #VALUE * 1

FFACTOR(2) := #VALUE * 2

F#FACTOR(3) := #VALUE * 3

/*
END-FUNCTION

*

END

342 Statements

DEFINE FUNCTION

The function F#FACTOR is used in the example program DPTEX1 in library SYSEXSYN. See Examples
in the DEFINE PROTOTYPE statement description.

Statements 343

344

54 DEFINE PRINTER

B FUNCHON .ttt e e 346
B SYNEAX DESCIIPHON ...ttt e e e s 346
L e 01T OO SR PUPPPPPRRR 348

345

DEFINE PRINTER

DEFINE PRINTER([Togical-printer-name=]n)
[OUTPUT operandI]
PROFILE operand?

DISP operandz
COPIES operand3

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

Function

The DEFINE PRINTER statement is used to assign a symbolic name to a report number and to control
the allocation of a report to a logical destination. This provides you with additional flexibility
when creating output for various logical print queues.

When this statement is executed and the specified printer is already open, the statement will im-
plicitly cause that printer to be closed. To explicitly close a printer, however, you should use the
CLOSE PRINTER statement.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition
operandl |C |S A yes no
operandz |C |S A yes no

Syntax Element Description:

346 Statements

DEFINE PRINTER

Syntax Element

Description

(n)

Printer Number (Report Number):

The report number 1 may be a value in the range of 0 - 31. This is the number
alsotobeusedina DISPLAY /WRITE or CLOSE PRINTER statement.

Report number 0 indicates the output channel of the main report. Only output
statements such as PRINT, WRITE or DISPLAY are affected. The INPUT statement
is not affected.

logical-printer-name

Logical Printer Name:

Optionally you can assign a logical name 7ogical-printer-name to printer
n. This name can be used for the rep notationina DISPLAY / WRITE statement.

Naming conventions for /ogical-printer-name are the same as for
user-defined variables. Multiple logical names may be assigned to the same
printer number. Unlike the value of the OUTPUT operand (see below),
Togical-printer-nameisevaluated at compile time and therefore independent
of the program control flow.

QUTPUT operandl

Printer Name:

If operandlis a variable, its format/length must be A8 or one of the following.
The name must be specified as LPTnn, where nnmay be a number in the range
of I - 31.See also Example 1.

Note: If the output data written to a report is to be sent to an Entire Connection

terminal and then be written to an NCD file on a PC, one of the printer names
LPTnn (where nnis a number in the range of 1 - 31) must be specified as
operandl.

Note: The device assignments of logical printer LPTnn must be set in the

Configuration Utility; see Device/Report Assignments. As Device Destination
of the Physical Output Device, the value E (send data to an Entire Connection
terminal) must be specified.

Additional reports can be assigned with the following names:

Report Function
DUMMY Output to be deleted.
INFOLINE Output to the Natural infoline. For details

on the infoline, see the Natural terminal
command %X in the Terminal Commands
documentation. See also Example 2.

SOURCE Output to the Natural source area.

NOM Output to Entire Output Management. Refer
to the Entire Output Management
documentation for details.

PROFILE operand?

Name of Printer Control Characters Table:

Statements

347

DEFINE PRINTER

Syntax Element Description

With the PROFILE clause, you specify as operandZ the name of a printer control
characters table. The maximum length allowed for operandZis 8.

Such a table is defined in the global configuration file. See Printer Profiles in the
Configuration Utility documentation for details on how to set printer profiles.

DISP operandz Disposition:

Maximum length of operand: 4 bytes.

Possible values for operand?:

DEL The temporary spool file is deleted after its content has
been printed. This is the default value.
KEEP The temporary spool file is not deleted after its content has
been printed.
HOLD The temporary spool file is neither deleted nor printed.
COPIES operand3 Number of Copies:

operand3 must be an integer value.

Examples

= Example 1 - Printer Name Definition
= Example 2 - Print Output to Infoline

Example 1 - Printer Name Definition

/* PRINTER NAME DEFINED FOR WINDOWS

*

DEFINE PRINTER (REPORT1 = 1) OUTPUT 'LPT1'

WRITE (REPORT1) 'REPORT 1 PRINTED ON PRINTER LPT1'
END

Example 2 - Print Output to Infoline

** Example 'DPIEX1': DEFINE PRINTER

R R R R R b R R i b i I b e S R R e i b e i b e b b R e i R e b b e e b R R e i b b e b b
*

SET CONTROL 'XI+' /* SWITCH INFOLINE MODE ON
SET CONTROL "XT' /* INFOLINE TOP

*

DEFINE PRINTER (1) QUTPUT 'INFOLINE'

WRITE (1) "EXECUTING' *PROGRAM 'BY' *INIT-USER
WRITE 'TEST OUTPUT'

348 Statements

DEFINE PRINTER

EJECT /* FORCE PHYSICAL I/0

*

SET CONTROL "X' /* SWITCH BACK TO NORMAL
*

END

Output of Program DPIEX1:

EXECUTING DPIEX1 BY HTR
Page 1 05-01-13 14:54:33

TEST QUTPUT

Statements 349

350

55

DEFINE PROTOTYPE
B FUNCHON .ttt e e 352
B SYNEAX DESCIIPHON ...ttt e e e s 353
L e 01T OO SR PUPPPPPRRR 356

351

DEFINE PROTOTYPE

DEFINE [[FOR] rototype-name
PROTOTYPE VARIABLE P 7P
UNKNOWN

[return-data-definition]
[parameter-definition]
same-as-clause

USING FUNCTIONI[DEFINITIONI[OFII
function-name

END-PROTOTYPE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE FUNCTION

Function

The DEFINE PROTOTYPE statement is used to specify the properties for calling a function including

the following;:

" the parameters to be passed in the function call,

*® the result value to be returned by the function call, and

" whether the function is called with the function name defined in the DEFINE FUNCTION statement,
or with an alphanumeric variable that contains the function name.

This information is used to resolve a function call within a Natural object at compile time.

A DEFINE PROTOTYPE statement is only needed for a function call if any of the following is true:

* The specified function name is an alphanumeric variable which contains the name of the function
to be called at execution time.

" An (IR=) clause is not specified in the function call and a cataloged object of the called function
is not available.

® The parameters provided in the function call are to be validated and the cataloged object of the
called function is not available.

The DEFINE PROTOTYPE statement can be included in a copycode object if the function is to be
called from multiple objects.

For further information, see the following sections in the Programming Guide:

® Natural object type Function

352 Statements

DEFINE PROTOTYPE

= Function Call

Syntax Description

Syntax Element

Description

[VARTABLE]
prototype-name

Prototype Name:
prototype-name is either of the following:

B the name of the prototype whose parameter and result field definitions
are to be used. This name typically matches the function-name in the
DEFINE FUNCTION statement of the referenced function;

® the name of an alphanumeric field specified as function-namein a
function call if the keyword VARIABLE is specified. This field must contain
the name of the function to be called at execution time.

An array index expression must not be specified with the field name.

UNKNOWN

UNKNOWN Option:

The keyword UNKNOWN specifies that the function interface is currently
undefined. In this case, the cataloged object (if available) will not be used to
extract the function result and the parameter description. When a function
call is embedded in a Natural statement, this requires to give the result layout
explicitly with an (IR=) clause. In addition, parameters provided in the
function call are not checked.

return-data-definition

See Return Data Definition below.

parameter-definition

See Parameter Definition below.

same-as-clause

See SAME AS Clause below.

USING FUNCTION
[DEFINITION [OF1]
function-name

USING FUNCTION Clause:

function-name is the name of an existing cataloged object of the type
function. The parameters and the result field definitions of this function are
used to resolve the function call.

END-PROTOTYPE

End of DEFINE PROTOTYPE Statement:

The Natural reserved word END-PROTOTY PE must be used to terminate the
DEFINE PROTOTYPE statement.

Statements

353

DEFINE PROTOTYPE

Return Data Definition

(format-length[/array-definition])
RETURNS [(array-definition)] HANDLE OF OBJECT
[variable-name] A
(‘ U ’ [J/array-definition]) DYNAMIC
B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the return value.

When no return data definition is specified, a function call can only be used within a statement if
an explicit (IR=) clause is provided. If such a clause is missing, the function can only be called as
a statement, but not in place of an operand within a statement.

Syntax Element Description:

Syntax Element Description

variable-name Return Value Name:

The optional variable-namehasno meaning. It is just there to have a syntax structure
similar to the Return Data Definition clause of the DEFINE FUNCTION statement.

format-length Format/Length Definition:
The format and length of the result field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

array-definition|Array Dimension Definition:

With array-definition, you define the lower and upper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, see Array Dimension Definition in the description of the
DEFINE DATA statement.

HANDLE OF OBJECT|Handle of Object:

Used in conjunction with NaturalX.

A,UorB Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.
DYNAMIC Dynamic Variable:

The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic Variables
and Fields in the Programming Guide.

354 Statements

DEFINE PROTOTYPE

Parameter Definition

DEFINE DATA
PARAMETER UNKNOWN

{ PARAMETER [

END-DEFINE

USING parameter-data-area

parameter-data-definition] }

The parameter-definition clause defines the parameters which are to be provided in a function
call. This definition layout is checked against the parameters given in a function call. If this clause
is omitted, this declares the function as free of parameters. In this case, every attempt to provide
parameters in the function call is rejected.

The identifiers used to name the parameter fields have no meaning. They are just there to have a
syntax structure similar to the DEFINE DATA PARAMETER syntax.

Syntax Element Description:

Syntax Element

Description

PARAMETER UNKNOWN

UNKNOWN Option:

With this option, no parameter is specified and the parameter check in
the function call is disabled. As a consequence, any number of parameters
in the function call will be accepted.

USING parameter-data-area

PDA Name:

The name of the parameter-data-area that contains data elements
which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

parameter-data-definition

Parameter Data Definition:

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Parameter Data Definition in the DEFINE DATA statement
description.

END-DEFINE End of Clause:
The Natural reserved word END-DEFINE must be used to end the
parameter-definition clause.

Statements 355

DEFINE PROTOTYPE

SAME AS Clause

SAME AS [PROTOTYPE] prototype-name

With the SAME AS clause you can use the parameter and result field definitions of another prototype
which has been defined before in the same Natural object.

Examples

= Example 1 - DEFINE PROTOTYPE with a Defined Function Name
= Example 2 - DEFINE PROTOTYPE with a Variable Function Name

Example 1 - DEFINE PROTOTYPE with a Defined Function Name

This is a prototype definition for a function named F#FACTOR where the prototype -name corresponds
to the function-name specified in the referenced DEFINE FUNCTION statement. The result returned
by the function is of format (12/1:3), and a single parameter of format (I12) is required.

** Example 'DPTEX1': DEFINE PROTOTYPE and function call
RRA R R b R R e I b b e S b b e e b b e b b R e b b e e b b S e b b R e e b b R e b b S e b b R e b R e e b b b S
DEFINE DATA LOCAL

1 #INUM (12)
END-DEFINE
*
DEFINE PROTOTYPE F#FACTOR

RETURNS (I2/1:3)

DEFINE DATA PARAMETER

1 JVALUE (I2)

END-DEFINE

END-PROTOTYPE

*

#INUM = 3

*

WRITE 'Function call:" F{FACTOR(<#NUM>) (*)

*

END

The function F#FACTOR is defined in the example function DFUEX2 in library SYSEXSYN. See Examples
in the DEFINE FUNCTION statement description.

356 Statements

DEFINE PROTOTYPE

Output of Program DPTEX1:

Function call: 3 6 9

Example 2 - DEFINE PROTOTYPE with a Variable Function Name

Due to the keyword VARIABLE, this prototype specifies a function call where the referenced
prototype-nameis an alphanumeric variable which contains the function name at execution time.

**% Example 'DPTEX2': DEFINE PROTOTYPE and function call
KA A kA kA A hkhhkh kA hkhkhkhhkhhhkhkhhkhhhkhkhkhAhhhkhhkhkhhkhkhhkhrhhkhkhkhkhhhkhkhhkhhkhkkhhkhrhhkhkhkhkhhhkhkhkxkx
DEFINE DATA LOCAL

1 JINAME (A20)

1 #)TEXT (A10)
END-DEFINE
*
DEFINE PROTOTYPE VARIABLE #NAME

RETURNS #RETURN (A1)

DEFINE DATA PARAMETER

1 #IN (A10)

END-DEFINE
END-PROTOTYPE
*
#NAME ¢
#TEXT

*

WRITE 'First character:' #NAME(<#TEXT>)

*

END

"F#fFIRST-CHAR'
"ABCDEFGHIJ'

The function F#FIRST-CHAR is defined in the example function DFUEX1 in library SYSEXSYN. See
Examples in the DEFINE FUNCTION statement description.

Output of Program DPTEX2:

First character: A

Statements 357

358

56 DEFINE SUBROUTINE

LI V1ot o PSP PPPPUR PP 360
LI =1 (47 o PSPPSR 361
B SYNEAX DESCIIPHON ...ttt e e 362
L e 11T PSR RUPPPPPRR 362

359

DEFINE SUBROUTINE

DEFINE [SUBROUTINE] subroutine-name
statement ...
{ END-SUBROUTINE (structured mode only) }

RETURN (reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The DEFINE SUBROUTINE statementis used to define a Natural subroutine. A subroutine is invoked
with a PERFORM statement.

Inline/External Subroutines

A subroutine may be defined within the object which contains the PERFORM statement that invokes
the subroutine (inline subroutine); or it may be defined external to the object that contains the
PERFORM statement (external subroutine). An inline subroutine may be defined before or after the
first PERFORM statement which references it.

| Note: Although the structuring of a program function into multiple external subroutines

is recommended for achieving a clear program structure, please note that a subroutine
should always contain a larger function block because the invocation of the external sub-
routine represents an additional overhead as compared with inline code or subroutines.

Data Available in a Subroutine

Inline Subroutines

No explicit parameters can be passed from the invoking program via the PERFORM statement to an
internal subroutine.

An inline subroutine has access to the currently established global data area as well as to the local
data area used by the invoking program.

External Subroutines

An external subroutine has access to the currently established global data area. In addition, para-
meters can be passed directly with the PERFORM statement from the invoking object to the external
subroutine; thus, you may reduce the size of the global data area.

360 Statements

DEFINE SUBROUTINE

An external subroutine has no access to the local data area defined in the calling program; however,
an external subroutine may have its own local data area.

Restrictions

" Any processing loop initiated within a subroutine must be closed before END-SUBROUTINE is is-
sued.

® An inline subroutine must not contain another DEFINE SUBROUTINE statement (see Example 1
below).

" An external subroutine (that is, an object of type subroutine) must not contain more than one
DEFINE SUBROUTINE statement block (see Example 2 below). However, an external DEFINE
SUBROUTINE block may contain further inline subroutines (see Example 1 below).

" You may not use the name of an external subroutine twice in one library.
Example 1

The following construction is possible in an object of type subroutine, but not in any other object
(where SUBRO1 would be considered an inline subroutine):

DEFINE SUBROUTINE SUBRO1

PERFORM SUBROZ
PERFORM SUBRO3

DEFINE SUBROUTINE SUBRO2
/* inline subroutine...
END-SUBROUTINE

DEFINE SUBROUTINE SUBRO3
/* inline subroutine...
END-SUBROUTINE
END-SUBROUTINE
END

Example 2 (invalid):

The following construction is not allowed in an object of type subroutine:

Statements 361

DEFINE SUBROUTINE

DEFINE SUBROUTINE SUBROL

END-SUBROUTINE

DEFINE SUBROUTINE SUBROZ

END-SUBROUTINE
END

Syntax Description

Syntax Element

Description

subroutine-name

Name of Subroutine:

For a subroutine name (maximum 32 characters), the same naming conventions apply
as for user-defined variables; see Naming Conventions for User-Defined Variables in the
Using Natural documentation.

The subroutine name is independent of the name of the module in which the
subroutine is defined (it may but need not be the same).

statement

Statement(s) to be Executed:
In place of statement, youmust supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

END-SUBROUTINE
RETURN

End of DEFINE SUBROUTINE Statement:

In structured mode, the subroutine definition is terminated with END-SUBROUTINE.

In reporting mode, RETURN may be used to terminate a subroutine.

Examples

= Example 1 -

Define Subroutine

362

Statements

DEFINE SUBROUTINE

= Example 2 - Sample Structure for External Subroutine Using GDA Fields

Example 1 - Define Subroutine

** Example 'DSREX1S': DEFINE SUBROUTINE (structured mode)

R R R R R b b R b e b e I b R R i b e b e i b i R e i R b b S b R R e i b b e S b b

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE
*
1 JFARRAY (A75/1:4)
1 REDEFINE #fARRAY
2 ffALINE (A25/1:4,1:3)

1 #X (N2) INIT <1>
1 gy (N2) INIT <1>
END-DEFINE

*

FORMAT PS=20
LIMIT 5

FIND EMPLOY-VIEW WITH NAME =
MOVE NAME TO F#ALINE (4X,4Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO fFALINE (#X+2,#Y)
MOVE PHONE TO fFALINE (#X+3,4Y)

IF #Y =3
RESET INITIAL #Y
PERFORM PRINT
ELSE
ADD 1 TO fY
END-IF
AT END OF DATA
PERFORM PRINT
END-ENDDATA
END-FIND

*

DEFINE SUBROUTINE PRINT

WRITE NOTITLE (AD=0I) FFARRAY(*)

RESET #ARRAY (*)
SKIP 1
END-SUBROUTINE

*

END

Statements

363

DEFINE SUBROUTINE

Output of Program DSREX1S:

SMITH SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
MILWAUKEE MONTERREY

554349 877-4563 994-2260

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963

Equivalent reporting-mode example: DSREX1R.

Example 2 - Sample Structure for External Subroutine Using GDA Fields

** Example 'DSREX2': DEFINE SUBROUTINE (using GDA fields)
B S b S b b S b S S B S S
DEFINE DATA
GLOBAL
USING DSREX2G
END-DEFINE

*

INPUT '"Enter value in GDA field"' GDA-FIELDI

*

* Call external subroutine in DSREX2S

*

PERFORM DSREX2-SUB

*

END

Global Data Area DSREX2G Used by Program DSREX2:

1 GDA-FIELDI A 2

Subroutine DSREX2S Called by Program DSREX2:

** Example 'DSREX2S': SUBROUTINE (external subroutine using global data)
R R R B b R e e b b e S b b e e b S b b e S b b S e b b S e b b S e b b S e b b S S e b b e e b b e e b b b S
DEFINE DATA
GLOBAL

USING DSREX2G
END-DEFINE

*

DEFINE SUBROUTINE DSREXZ-SUB

*

WRITE "IN SUBROUTINE' *PROGRAM '=' GDA-FIELDI

*

END-SUBROUTINE

364

Statements

DEFINE SUBROUTINE

END

Statements 365

366

57 DEFINE WINDOW

B FUNCHON .ttt e e 368
B SYNEAX DESCIIPHON ...ttt e e e s 369
= Protection of Input Fields in @ WINAOWooiiiiiii e 373
= |nvoking Different WINAOWScoiiiiiiiiiii e 373
B EXAMIPIE 1o 373

367

DEFINE WINDOW

DEFINE WINDOW window-name

AUTO
SIZE QUARTER ’
operandl * operand?
CURSOR
TOP LEFT
BASE
BOTTOM RIGHT
operand3/ operand4

[REVERSED [(CD=background-colonr]l]
[TITLE operand5]

[WINDOW
CONTROL { }
SCREEN
ON][(CD=frame-color osition-clause
[e {0]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: INPUT | REINPUT | SET WINDOW

Belongs to Function Group: Screen Generation for Interactive Processing

Function

The DEFINE WINDOW statement is used to specify the size, position and attributes of a window.

A window is that segment of a logical page, built by a program, which is displayed on the terminal
screen. There is always a window present, although you may not be aware of its existence: unless
specified differently, the size of the window is identical to the physical size of your terminal screen.

A DEFINE WINDOW statement does not activate a window; this is done with a SET WINDOW statement
or with the WINDOW clause of an INPUT statement.

J Note: There is always only one Natural window, that is, the most recent window. Any
previous windows may still be visible on the screen, but are no longer active and are ignored
by Natural. You may enter input only in the most recent window. If there is not enough
space to enter input, the window size must be adjusted first.

368 Statements

DEFINE WINDOW

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S N|P|I yes no
operand2 |C |S N|P|I yes no
operand3 |C |S N|P|I yes no
operand4 |C |S N|P|I yes no
operand5 |C |S AU yes no
Syntax Element Description:
Syntax Element Description
window-name The window-name identifies the window. The name may be up to 32 characters

long. For a window name, the same naming conventions apply as for user-defined
variables, see Naming Conventions for User-Defined Variables in the Using Natural
documentation.

SIZE With the SIZE clause, you specify the size of the window.

Note: On mainframe computers, Natural requires additional columns for so-called

attribute bytes to be able to display data on the screen (on other platforms, such
attribute bytes are not needed). Consequently, on mainframe computers the screen
area overlaid by a window is wider, and the size of the page segment visible inside
a window is smaller than on other platforms.

Example: Assume a window whose size is defined as SIZE 5 * 15 (that is, with
a width of 15 columns):

B On mainframe computers, the screen area overlaid by the window is 16 columns;
the size of what is visible inside the window is 14 columns without frame, and
10 columns with frame respectively.

® On other platforms, the screen area overlaid by the window is 15 columns; the
size of what is visible inside the window is 15 columns without frame, and 13
columns with frame respectively.

SIZE AUTO The size of the window is determined automatically by Natural at runtime. The size
is determined by the data generated into the window as follows:

= The number of window lines will be the number of INPUT lines generated (plus
possibly the PE-key lines, message line, and infoline/statistics line).

® The number of window columns is determined by the longest INPUT line: Natural
scans, starting from the ends of the lines, for the rightmost significant byte in a

Statements 369

DEFINE WINDOW

Syntax Element

Description

line. This may cause an input-only or modifiable field (AD=A or AD=M) to be
truncated; to avoid this, you either put a single-character text string after such a
field or explicitly set the window size with the following:

SIZE operandl *
operand?

If you omit the SI/ZE clause, SIZE AUTO applies by default.

Note: The title is not part of the window data. Therefore, if the window size has

been determined as described above and the title is longer than the window, it will
be truncated.

SIZE QUARTER

The size of the window will be one quarter of the physical screen.

SIZE operandl *
operand?

The size of the window will be 1 lines by 1 columns. The number of lines is
determined by operand1l, the number of columns by operandZ. Neither of the two
operands must contain decimal digits.

If the window is FRAMED, the specified size will be inclusive of the frame.
The minimum possible window size is:

= without frame: 2 lines by 10 columns,

= with frame: 4 lines by 13 columns.

The maximum possible window size is the size of the physical screen.

BASE

With the BASE clause, you determine the position of the window on the physical
screen. If you omit the BASE clause, BASE CURSOR applies by default.

BASE CURSOR

Places the top left corner of the window at the current cursor position. The cursor
position is the physical position of the cursor on the screen. If the size of the window
makes it impossible to place the window at the cursor position, Natural automatically
places the window as close as possible to the desired position.

BASE TOP/BOTTOM

Places the window at the top-left, bottom-left, top-right, or bottom-right corner

LEFT/RIGHT respectively of the physical screen.

BASE This places the top left corner of the window at the specified line/column of the

operand3/operand4|physical screen. The line number is determined by operand3, the column number
by operand4. Neither of the two operands must contain decimal digits.
If the size of the window makes it impossible to place the window at the specified
position, you will get an error message.

REVERSED REVERSED will cause the window to be displayed in reverse video (if the screen

used supports this feature; if it does not, REVERSED will be ignored).

REVERSED CD=
background-color

This will cause the window to be displayed in reverse video and the background
of the window in the specified color (if the screen used supports these features; if
it does not, the respective specification will be ignored).

370

Statements

DEFINE WINDOW

Syntax Element

Description

For information on valid color codes, see session parameter CD in the Parameter
Reference.

TITLE operand5

With the TITLE clause, you may specify a heading for the window. The specified
title (operandb) will be displayed centered in the top frame-line of the window.
The title can be specified either as a text constant (in apostrophes) or as the content
of a user-defined variable. If the title is longer than the window, it will be truncated.
The title is only displayed if the window is FRAMED; if FRAMED OFF is specified for
the window, the TITLE clause will be ignored.

Note: If the title contains trailing blanks, these will be removed. If the first character
of the title is a blank, one blank will automatically be appended to the title.

CONTROL

With the CONTROL clause, you determine whether the PF-key lines, the message line
and the statistics line are displayed in the window or on the full physical screen.

CONTROL WINDOW

CONTROL WINDOW causes the lines to be displayed inside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

CONTROL SCREEN

CONTROL SCREEN causes the lines to be displayed on the full physical screen outside
the window.

FRAMED

By default, that is, if you omit the FRAMED clause, the window is framed.

The top and bottom frame lines are cursor-sensitive: where applicable, you can page
forward, backward, left or right within the window by simply placing the cursor
over the appropriate symbol (<, -, +, or >; see position-clause below) and then
pressing ENTER. If no symbols are displayed, you can page backward and forward
within the window by placing the cursor in the top frame line (for backward
positioning) or bottom frame line (for forward positioning) and then pressing ENTER.

Note: If the window size is smaller than 4 lines by 12 (or 13 on mainframe

computers) columns, the frame will not be visible.

FRAMED OFF

If you specify FRAMED OFF, the framing and everything attached to the frame
(window title and position information) will be switched off.

FRAMED
(CD=frame-color)

This causes the frame of the window to be displayed in the specified color (if the
screen used is a color screen; if it is not, the color specification will be ignored).

For information on valid color codes, see session parameter CD (in the Parameter
Reference).

Note: In Natural for Windows, this specification is ignored.

position-clause

The POSITION clause is only evaluated on mainframe computers; on all other
platforms it is ignored. For details, refer to Position Clause below.

Statements

371

DEFINE WINDOW

POSITION Clause

The POSITION clause is only evaluated on mainframe computers; on all other platforms it is ignored.

SYMBOL

POSITION

0P LEFT
[AUTO] [SHORT]
BOTTOM RIGHT
LEFT
TEXT [MORE] []
RIGHT
OFF

The POSITION clause causes information on the position of the window on the logical page to be

displayed in the frame of the window. This applies only if the logical page is larger than the win-
dow; if it is not, the POSITION clause will be ignored. The position information indicates in which
directions the logical page extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

Syntax Element Description:

Syntax Element

Description

POSITION SYMBOL

Causes the position information to be displayed in form of symbols: More: < -
+ >. The information is displayed in the top and/or bottom frame line.

TOP/BOTTOM Determines whether the position information is displayed in the top or bottom
frame line.

AUTO Is only applicable if the logical page is fully visible in the window as far as its
horizontal size is concerned, that is, if only a minus sign character (-) and/or a
plus sign character (+) are to be displayed. In this case, AUT0 automatically switches
from the symbols to the words Top, Bottom and More respectively.

SHORT Causes the word More : before the symbols < - + > to be suppressed.

LEFT/RIGHT Determines whether the position information is displayed in the left or right part

of the frame line.

POSITION TEXT

Causes the position information to be displayed in text form. The information is
displayed in the top and/or bottom frame line with the words More,Top and
Bottom. The text is language-dependent and may also be displayed in another
language if the language code is set accordingly.

POSITION TEXT MORE

Suppresses the words Top and Bottom and only displays the word More where
applicable, i.e., in the top or bottom frame line or both.

LEFT/RIGHT

Determines whether the position information is displayed in the left or right part
of the top frame line.

POSITION OFF

Causes the position information to be suppressed; no position information will
be displayed.

372

Statements

DEFINE WINDOW

Protection of Input Fields in a Window

The following rules apply to input fields (with AD=A or AD=M) which are not entirely within the
window:

® Input fields whose beginning is not inside the window are always made protected.

* Input fields which begin inside and end outside the window are only made protected if the
values they contain cannot be displayed completely in the window. Please note that in this case
itis decisive whether the value length, not the field length, exceeds the window size. Filler characters
(as specified with the profile parameter FC) do not count as part of the value.

If you wish to access input fields thus protected, you have to adjust the window size accordingly
so that the beginning of the field/end of the value is within the window.

Invoking Different Windows

ADEFINE WINDOW statement must not be placed within a logical condition statement block. To invoke
different windows depending on a condition, use different SET WINDOW statements (or INPUT
statements with a WINDOW clause respectively) in a condition.

Example

** Example 'DWDEX1': DEFINE WINDOW

ko o e ok o ek ok o ook o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL

01 #I (P3)

END-DEFINE

*

SET KEY PF1l='%W<<' PF2="%W>>"' PF4="%W--' PF5="'%W++"
*
DEFINE WINDOW WIND1
SIZE QUARTER
BASE TOP RIGHT
FRAMED ON POSITION SYMBOL AUTO
*
SET WINDOW 'WINDI'
FOR #I = 1 TO 10
WRITE 25X #I 'THIS IS SOME LONG TEXT' #I
END-FOR

*

END

Statements 373

DEFINE WINDOW

Output of Program DWDEX1:

pocooocococoooooa More W+ A
>r ! Page !
A1 coFocoolooootoocoloccaToooodoo U

0010 ** Example 'DWDEX1': DEFINE WIND ! 1 THIS !

0020 R R R R R R B b R B R R b e e b S b b b e b 4 I 2 THIS l

0030 DEFINE DATA LOCAL ! 3 THIS !

0040 01 #I (P3) ! 4 THIS !

0050 END-DEFINE ! 5 THIS !

0060 * ! 6 THIS |

0070 SET KEY PF1='%W<<" PF2="%W>>"' PF ! 7 THIS !

0080 * I MORE !

0090 DEFINE WINDOW WIND1 foscccscscccossccssosssssccoacscaasoss 4

0100 SIZE QUARTER

0110 BASE TOP RIGHT

0120 FRAMED ON POSITION SYMBOL AUTO

0130 *

0140 SET WINDOW 'WIND1'

0150 FOR #I =1 TO 10

0160 WRITE 25X #I 'THIS IS SOME LONG TEXT' #I

0170 END-FOR

0180 *

0190 END

0200

4 1 4 2 L3 3 4 4 S 19 L1

374 Statements

58 DEFINE WORK FILE

B FUNCHON .ttt e e 376
B SYNEAX DESCIIPHON ...ttt e e e s 376

375

DEFINE WORK FILE

operandl [TYPE operand?]

TYPE operand? } [ATTRIBUTES {operand3}..]

DEFINE WORK FILE work-file-number {

J Note: The elements shown in square brackets [...] are optional, however, at least one of

them must be specified with this statement.
For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CLOSE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files /| PC Files

Function

The statement DEFINE WORK FILE is used to assign a file name to a Natural work file number
within a Natural application. This allows you to make or change work file assignments dynamically
within a Natural session or overwrite work file assignments made at another level. See also Work
Files in the Operations documentation.

When this statement is executed and the specified work file is already open, the statement will
implicitly close the work file.

] Note: For Unicode and code page support on Windows and Linux platforms, see Work Files
and Print Files in the Unicode and Code Page Support documentation.

Syntax Description

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing | Dynamic Definition
Permitted

operandl |C |S AU yes no

operand2 |C |S A|U yes no

operand3 |C |S AU yes no

d Note: If a format U operand is specified in Unicode (UTF-16), it is converted to session code
page characters before it is evaluated.

Syntax Element Description:

376 Statements

DEFINE WORK FILE

Syntax Element

Description

work-file-number

Work File Number:
The work file number is to be specified.
The work file number is either

" a numeric constant in the value range (1:32) or

® anumeric variable of type (B/N/P/I) defined with a CONST clause assigning a value
in range (1:32). Variable is a scalar (non-array) without precision digits for type
(N/P), length in between 1-4 for type (B), and no redefinition field.

This is the number to be used ina WRITE WORK FILE, READ WORK FILE or CLOSE
WORK FILE statement.

operandl

Work File Name:
operand] is the name of the work file.

The file name (operandl) may contain environment variables. It is possible to use
physical work file names. If a file with the specified name does not exist, it will be
created.

If operand1lisnotspecified, the value of operand1 is determined by taking the work
file name stored with the Configuration Utility in the parameter file for the
corresponding work file number.

Note: If operandI is not specified, the behavior of Natural for Mainframes and

Natural for Windows/Linux is different.

TYPE operand?

TYPE Clause:

operandZ specifies the type of work file. See also Handling of Large and Dynamic
Variables in the description of the WRITE WORK FILE statement.

The value of operandZis handled in a case insensitive way and must be enclosed in
quotes or provided in an alphanumeric variable.

DEFAULT Determines the file type from the extension.
Format: Depends on the work file type.

Note: The file type TRANSFER cannot be determined

by the work file type DEFAULT. You must explicitly
define TRANSFER as the file type you wish to use.

TRANSFER Is used to transfer data to and from a PC with Entire
Connection or NaturalONE.

This work file type represents a data connection between
a Natural session on Linux and an Entire Connection
terminal or NaturalONE on a PC.

Format: ENTIRE CONNECTION

Statements

377

DEFINE WORK FILE

Syntax Element Description
Note:
1. This work file type cannot be used in conjunction
with the ATTRIBUTES Clause.
2. This work file type is not available under Windows.
SAG Format: binary
ASCII Files in ASCII are “text” files with records terminated

by [a carriage return] line feed.

Format: ASCII

ASCIT-COMPRESSED

Is a file in ASCII format, with the exception that all
trailing blanks are removed.

Format: ASCII

ENTIRECONNECTION

With this work file type, you can read and write (using
the statements READ and WRITE, for example) directly

from/to a work file in Entire Connection format on the
local disc.

Format: ENTIRE CONNECTION

Note: This work file type is available on PCs and on

Linux. No transfer to PC is possible. The Entire
Connection terminal is not used in this process.

UNFORMATTED

A completely unformatted file. No formatting
information is written (neither for fields nor for records).

Format: UNFORMATTED

PORTABLE

Files which can handle dynamic variables exactly and
can also be transported: for example, from a Little
Endian machine to a Big Endian machine, and vice
versa.

Format: PORTABLE

CsSv

Comma-separated values. Each record is written to one
line in the file. By default, a header is not written. The
default character which is used to separate the data
fields is a semicolon (;).

For further information, see Work Files in the
Configuration Utility documentation.

ATTRIBUTES
{operand3}. ..

ATTRIBUTES Clause:

operand3 specifies a work file attribute.

Several attributes separated by a comma or a blank can be specified, for example:

378

Statements

DEFINE WORK FILE

Syntax Element

Description

DEFINE WORK FILE ATTRIBUTES '"APPEND,KEEP'

If multiple values for the same attribute type are specified, the last value is taken, for
example:

DEFINE WORK FILE ATTRIBUTES "APPEND,NOAPPEND'
In this case, NOAPPEND will be taken.

Example for BOM/NOBOM usage:

DEFINE WORK FILE 11 'x.tmp' ATTRIBUTES 'BOM'

S

* write work file with BOM

*

DEFINE WORK FILE 11 'x.tmp' ATTRIBUTES 'NOBOM'
*

* write work file without BOM

Note: If operand3is omitted, the corresponding value defined in the parameter file,

as created by the Configuration Utility, is implicitly used.

The following is an overview of the attribute types and their possible values:

Append Mode:

NOAPPEND Deactivates the append mode. The file is rewritten from
the start. This is the default value.

APPEND Activates the append mode. In this mode, new records
are added at the end of the file.

Keep/Delete File after Work File Close:

DELETE The work file is deleted after a close work file operation.

KEEP The work file is kept after a close work file operation.
This is the default value.

Write Byte Order Mark (BOM):

BOM A byte order mark is written in front of the work file
data.

Only available for the work file types which write code
page data: ASCII, ASCIT-COMPRESSED, UNFORMATTED
and CSV. For these work file types, the attribute BOM can
only be set, if the code page UTF-8 is defined for the
work file (see the description of the TYPE clause).

If a work file of another type is written or a code page
other than UTF-8 is defined, the specification of the
attribute BOM is ignored during runtime.

Statements

379

DEFINE WORK FILE

Syntax Element Description
See also Work Files and Print Files on Windows and Linux
Platforms in the Unicode and Code Page Support
documentation.
NOBOM No byte order mark is written in front of the work file

data. This is the default value.

Remove/Keep Carriage Return:

KEEPCR

Carriage return characters are kept when reading an
ASCII work file.

This attribute is only relevant for ASCII work files. If a
work file of another type than ASCI I or
ASCIT-COMPRESSED is read, the specification of the
attribute KEEPCR is ignored during runtime.

Caution: Use KEEPCR with care. ASCII format is only

recommended for alphanumeric data. Binary data
should not be processed with ASCII work files. When
you use KEEPCR, the work file record may include
carriage return characters.

The use of KEEPCR only makes sense when reading
ASCII work files which have been written on Linux. It
does not make sense to use KEEPCR with ASCII work
files which have been written on Windows.

REMOVECR

Carriage return characters are removed when reading
an ASCII work file. This is the default value.

This attribute is only relevant for ASCII work files. If a
work file of another type than ASCI I or
ASCIT-COMPRESSED is read, the specification of the
attribute REMOVECR is ignored during runtime.

380

Statements

VIII

B 5O DELETE .vvoovvooeveceeeeseeeeseeeeseeeeeeeesseee e e e st eee s e e s e ee s e st s e e e e e et et et 383
B 60 DELETE (SQL) . vvververeeeeeeeeeseeeeeeeeeeeeeseeeeesseeesseseeseeese e esseeeeeseeseeeeses e ee st esese s es e 387
B BT DISPLAY ..o e eee et e ettt ettt 391
B B2 DIVIDE ..ottt e ettt ettt 413
B 63 DOMDOEND ... eeeeee et eeese e e et e e e e e ettt 419
B 64 DOWNLOAD PC FILE ... eeeeeeeeeeeeee e s s e s e e eseee e 423
B85 EJECT v eeeee e e et s e ettt et 429
B BB END cvooooeeeoeeco e et ettt et et ettt et 435
B 67 END TRANSACTION ..ot eeeee oo e e e e s e e ees e ee s e eee e eeseeeeeeeee e 439
B B8 ESCAPE ...t eee ettt ettt 445
B B9 EXAMINE ...ttt e e ee et e et e et 451
B 70 EXPAND ...t e ettt ettt 473

381

382

59 DELETE

LI V1ot o PSP PPPPUR PP 384
L =140) O URPUPPPPPRRR 384
B SYNEAX DESCIIPHON ...ttt e e 384
= Database-Specific CONSIABIAtIONSeiieiii et e e e e e 385
B XAMIDIES L.ttt 385

383

DELETE

DELETE [RECORD] [IN][STATEMENT][()]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The DELETE statement is used to delete a record from a database.
Hold Status

The use of the DELETE statement causes each record selected in the corresponding FIND or READ
statement to be placed in exclusive hold.

Record hold logic is explained in the section Database Update - Transaction Processing (in the Pro-
gramming Guide).

Restriction

A DELETE statement cannot be specified in the same statement line asa FIND, READ, or GET statement.

Syntax Description

Syntax Element|Description

(r) Statement Reference:

The notation (r) is used to reference the statement which was used to select/read the record
to be deleted.

If no statement reference is specified, the DELETE statement will reference the innermost
active processing loop in which a database record was selected/read.

384 Statements

DELETE

Database-Specific Considerations

SQL Databases |The DELFTFE statement is used to delete a row from the database table. It corresponds with
the SQL statement DELETE WHERE CURRENT OF CURSOR-NAME, thatis, only the row which
was read last can be deleted.

With most SQL databases, a row that was read witha FIND SORTED BY or READ LOGICAL
statement cannot be deleted.

XML Databases | The DE L ETE statement is used to delete an XML object from a database. For XML databases,
this implies that only the record which was read last can be deleted.

Examples

= Example 1
= Example 2

Example 1
In this example, all records with the name ALDEN are deleted.

** Example 'DELEX1': DELETE

* %
* %
CAUTION: Executing this example will modify the database records!
R i b b i i b B B i i i e e S i e i b i i i g b e i b b e b e i i g b o e b e e b b B e i b b i b e e g
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = 'ALDEN'

/*

DELETE

END TRANSACTION

/*

AT END OF DATA

WRITE NOTITLE *NUMBER 'RECORDS DELETED'

END-ENDDATA
END-FIND
END

Statements 385

DELETE

Example 2

If no records are found in the VEHICLES file for the person named ALDEN, the EMPLOYEE record
for ALDEN is deleted.

** Example 'DELEX2': DELETE

* %
* %
CAUTION: Executing this example will modify the database records!
khkhkkhkhhkhkhhkhkhhkhkhhkkhkhhkhhhkhkhhkhkhkhkhkhkhhhhkhhkhkhhkhkhhkhhhkhkhhkhhhkhkhhkhhhkkhkhkhhhkhkhhkkhhkhkhikxkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
END-DEFINE
*
EMPL. FIND EMPLOY-VIEW WITH NAME = "ALDEN'
/*
VEHC. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMPL.)
IF NO RECORDS FOUND

/*
DELETE (EMPL.)
/*
END TRANSACTION
END-NOREC
END-FIND
/%
END-FIND
END

386 Statements

60 oeem (SQL)

LI V1ot o PSP PPPPUR PP 388
B Syntax 1 - SEarched DELETEociiiiiiiiiiiiiie e et e e e 388
m Syntax 2 - PoSIIONEd DELETEooiiiiiiiei e 389

387

DELETE (SQL)

Belongs to Function Group: Database Access and Update

Function

The SQL DELETE statement is used to delete either rows in a table without using a cursor (“searched”
DELETE) or rows in a table to which a cursor is positioned (“positioned” DELETE).

Two different structures are possible.

Syntax 1 - Searched DELETE

The “searched” DELETE statement is a stand-alone statement not related to any SELECT statement.
With a single statement you can delete zero, one, multiple or all rows of a table. The rows to be
deleted are determined by a search-condition thatis applied to the table. Optionally, the table
name can be assigned a correlation-name.

| Note: The number of rows that have actually been deleted with a “searched” DELETE can
be ascertained by using the system variable *ROWCOUNT; see System Variables documentation.

Common Set Syntax:

DELETE FROM table-name[correlation-name] [WHERE search-condition]

Extended Set Syntax:

DELETE FROM table-name[correlation-name]
[WHERE search-condition]

RR
WITH ‘ RS ’ [QUERYNO 7nteger]
CS

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description:

388 Statements

DELETE (SQL)

Syntax Element

Description

FROM table-name

FROM Clause:

Specifies the table from which the rows are to be deleted.

correlation-name

Correlation Name:

Optional. The table name can be assigned a correlation-name.

WHERE
search-condition

WHERE Clause:
Specifies the selection criteria for the rows to be deleted.

If no WHERE clause is specified, the entire table is deleted.

WITH

WITH Isolation Level Clause:

Enables the explicit specification of the isolation level used when locating the row
to be deleted.

This clause belongs to the SQL Extended Set.

It is only valid against Db2 databases. When used against other databases, it will
cause runtime errors.

CS Cursor Stability

RR Repeatable Read

RS Read Stability
QUERYNO 7nteger |QUERYNO Clause:

This clause belongs to the SOL Extended Set.

This clause is not currently supported and will be ignored.

Syntax 2 - Positioned DELETE

The “positioned” DELETE statement always refers to a cursor within a database loop. Therefore
the table referenced by a positioned DELETE statement must be the same as the one referenced by
the corresponding SELECT statement, otherwise an error message is returned. A positioned DELETE
cannot be used with a non-cursor selection.

The functionality of the positioned DELETE statement corresponds to that of the “native” Natural

DELETE statement.

Statements

389

DELETE (SQL)

‘DELETE FROM table-name WHERE CURRENT OF CURSOR[(nr)]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description:

Syntax Element

Description

CURRENT OF

FROM table-name WHERE

CURSOR

FROM Clause:

This clause specifies the table from which the rows are to be deleted.

(r)

Statement Reference:

The (r) notation is used to reference the statement which was used to select
the row to be deleted. If no statement reference is specified, the DELETE
statement is related to the innermost active processing loop in which a database
record was selected.

FOR ROW ...

OF ROWSET

FOR ROW ... OF ROWSET Clause:
This clause belongs to the SOL Extended Set.

The optional FOR ROW ... OF ROWSET clause for positioned SQL DELETE
statements specifies which row of the current rowset has to be deleted. It should
only be specified if the DELETE statement is related toa SELECT statement which
uses rowset positioning and which has column arrays in its INTO clause, see
into-clause. If this clause is omitted, all rows of the current rowset are deleted.

390

Statements

61 DISPLAY

B FUNCHON .ttt e e 392
B SYNEAX DESCIIPHON ...ttt e e e s 392
= Defaults Applicable for a DISPLAY Statementoeiiiiiiiiii e 404
L e 11T PSR RUPPPPPRR 405

391

DISPLAY

DISPLAY [(rep)] [options]{[/...] [output-format] output-element} ..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER EJECT
| FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The DISPLAY statement is used to specify the fields to be output on a report in column format. A
column is created for each field and a field header is placed over the column.

] Note: The statements WRITE and PRINT can be used to produce output in free (non-column)

format.

See also the following topics (in the Programming Guide):

Report Format and Control
= Statements DISPLAY and WRITE

Index Notation for Multiple-Value Fields and Periodic Groups

Column Headers

Layout of an Output Page

Syntax Description

Syntax Element Description

(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for which
the DISPLAY statement is applicable.

As report identification, a value in the range 0 - 31 or a logical name which has been
assigned using the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the statement will apply to the first report (Report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to the PC,
see Example 8.

392 Statements

DISPLAY

Syntax Element

Description

For information on how to control the format of an output report created with Natural,
see Report Format and Control in the Programming Guide.

options

Display Options:

For details, see Display Options below.

output-format

Output Format Definitions:

For details, see Output Format Definitions below.

Line Advance - Slash Notation:

When specified within a text element, a slash (/) causes a line advance for the text
displayed.

When specified between output elements, it causes the output element specified by the
slash (/) to be placed vertically within the same column. The header for this column
will be constructed by placing the headers of the vertically displayed elements vertically
above the column.

See also the following topics in the Programming Guide:

= Line Advance - Slash Notation
® Example 1 - Line Advance in DISPLAY Statement
= Suppressing Column Headers - Slash Notation

output-element

Output Element:

For details, see Output Element below.

Display Options

[NOTITLE] [NOHDR]

[AND][GIVE] [SYSTEM] FUNCTIONS [(statement-parameters)]

Syntax Element Description:

Syntax Element

Description

NOTITLE

Default Page Title Suppression:

By default, Natural generates a single title line for each page resulting from a
DISPLAY statement. This title contains the page number, the time of day, and
the date. Time of day is set at the beginning of the program execution or at the
beginning of the job (batch mode). The default title line may be overridden by
using a WRITE TITLE statement, or it may be suppressed by specifying the
keyword NOTITLE in the DISPLAY statement.

Examples:

Statements

393

DISPLAY

Syntax Element

Description

= Default title will be produced:

DISPLAY NAME
= User title will be produced:

DISPLAY NAME WRITE TITLE 'user-title’
® No title will be produced:

DISPLAY NOTITLE NAME

Note: Ifthe NOTITLE optionisused, itappliestoall DISPLAY, PRINT and WRITE

statements within the same object which write data to the same report.

NOHDR

Column Headers:

Column headers are produced for each field specified in the DISPLAY statement
using the following rules:

® The header text may be explicitly specified in the DISPLAY statement before
the field name. For example:

DISPLAY '"EMPLOYEE' NAME 'SALARY' SALARY

® If you do not specify an explicit header for a field, the header as defined in
the DEFINE DATA statement will be used.

= [If for a database field no header is defined in the DEFINE DATA statement,
the default header as defined in the DDM will be used.

" If no default header is defined in the DDM, the field name will be used as
header.

= [If for a user-defined variable no header is defined in the DEFINE DATA
statement, the variable name will be used as header. See also the DEFINE
DATA statement for header definition.

DISPLAY NAME SALARY #NEW-SALARY

® Natural always underlines column headings and generates one blank line
between the underlining and the data being displayed.

= If there are multiple DISPLAY statements in a program, the first DISPLAY
statement determines the column header(s) to be used; this is evaluated at
compilation time.

Column Header Suppression:

To suppress the column header for a single field

394

Statements

DISPLAY

Syntax Element

Description

" Specify the following characters (apostrophe-slash-apostrophe) before the
field name:

’/l
For example:

DISPLAY '/' NAME 'SALARY' SALARY

To suppress all column headers

® Specify the keyword NOHDR:

DISPLAY NOHDR NAME SALARY

Note:

1. NOHDR only takes effect for the first DISPLAY statement, as subsequent
DISPLAY statements cannot create column headers anyhow.

2. If both NOTITLE and NOHDR are used, they must be specified in the following
order: DISPLAY NOTITLE NOHDR NAME SALARY

GIVE SYSTEM
FUNCTIONS

Natural System Function Usage:

The GIVE SYSTEM FUNCTIONS clause is used to make available the following
Natural system functions: AVER, COUNT, MAX, MIN, NAVER, NCOUNT, NMIN, SUM,
TOTAL. These are evaluated when the DISPLAY statement containing the GIVE
SYSTEM FUNCTIONS clause is executed.

These functions may then be referred to in a statement executed as a result of
an end-of-page condition.

Note:

1. Only one DISPLAY statement per report may containa GIVE SYSTEM
FUNCTIONS clause. When system functions are evaluated from a DISPLAY
statement, they are evaluated on a page basis, which means that all functions
(except TOTAL) are reset to zero when a new page is initiated.

2. When system functions are used within a DISPLAY statement within a
subroutine, the end-of-page processing must occur within the same routine.

3. In place of the keyword GIVE, the keyword GIVING may be used.

See also Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS
Clause.

statement-parameters

Parameter Definition at Statement Level:

Statements

395

DISPLAY

Syntax Element

Description

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the DISPLAY statement.

Each parameter specified will override the corresponding parameter previously
specified in a GLOBALS command, SET GLOBALS (Reporting Mode only) or
FORMAT statement.

If more than one parameter is specified, they must be separated by one or more
blanks from one another. Each parameter specification must not be split between
two statement lines.

Note: The parameter settings applied here will only be regarded for variable

fields, but they have no effect on text-constants. If you would like to set field
attributes for a text-constant, they have to be set explicitly for this element, see
Parameter Definition at Element (Field) Level.

See also:

® List of Parameters
® Example of Parameter Usage at Statement and Element (Field) Level

® Example 7 - DISPLAY Statement Using Parameters on Statement/Element
Level

List of Parameters

The following parameters can be specified with the DISPLAY statement

Parameter Name |Explanation Specification possible at statement level (S), at element
level (E) or both (SE)

AD Attribute Definition SE

AL Alphanumeric Length for Output SE

CD Color Definition SE

cv Control Variable SE

DF Date Format SE

DL Display Length for Output SE

DY Dynamic Attributes SE

EM Edit Mask SE

EMU Unicode Edit Mask

ES Empty Line Suppression

FC Filler Character SE

FL Floating Point Mantissa Length SE

GC Filler Character for Group Headers SE
396 Statements

DISPLAY

Parameter Name |Explanation Specification possible at statement level (S), at element
level (E) or both (SE)
HC Header Centering SE
HW Heading Width SE
IC Insertion Character SE
ICU Unicode Insertion Character SE
IS Identical Suppress SE
LC Leading Characters SE
LCU Unicode Leading Characters SE
LS Line Size
MC Multiple-Value Field Count
MP Maximum Number of Pages of a Report
NL Numeric Length for Output SE
PC Periodic Group Count S
PM Print Mode SE
PS Page Size S
SF Spacing Factor SE
SG Sign Position SE
TC Trailing Characters SE
TCU Unicode Trailing Characters SE
ucC Underlining Character SE
ZP Zero Printing SE

The individual parameters are described in the Parameter Reference (session parameters).

See also the following topics in the Programming Guide:

= Centering of Column Headers - HC Parameter

® Width of Column Headers - HW Parameter

= Filler Characters for Headers - Parameters FC and GC

® Underlining Character for Titles and Headers - UC Parameter

Statements

397

DISPLAY

Example of Parameter Usage at Statement and Element (Field) Level

DEFINE DATA LOCAL

1 VARI (A4) INIT <'1234'>
END-DEFINE

*

DISPLAY NOHDR 'Text'
DISPLAY NOHDR (AD=U) 'Text'
DISPLAY NOHDR 'Text' (AD=U)
DISPLAY NOHDR 'Text' (AD=U)
END

Output Format Definitions

/%

/*

/%
=" VARI A
=" VARI /*
=" VARL (AD=U)/*
=" VARI /*

Qutput
Produced

nX
nT

x/y [{'text‘ }
T*field-name "c'(n)

P*field-name

VERTICALLY AS {
[CAPTIONED]

[HORIZONTALLY]

[(attributes)]]

"text' [(attributes)] [CAPTIONED]

}] [/

Field Positioning Notations

Syntax Element Description

nX Column Spacing:

Example:

DISPLAY NAME 5X SALARY

See also:

This notation inserts 1 spaces between columns.

® Example 1 - DISPLAY Statement Using nX and nT Notation (below)

® Column Spacing - SF Parameter and nX Notation (in the Programming Guide)

nT Tab Setting:

positioning is not permitted.

The nT notation causes positioning (tabulation) to display position 1. Backward

398

Statements

DISPLAY

Syntax Element

Description

In the following example, NAME is displayed beginning in position 25, and SALARY
beginning in position 50:

DISPLAY 25T NAME 50T SALARY
See also:

® Example 1 - DISPLAY Statement Using nX and nT Notation (below)
= Tab Setting - nT Notation (in the Programming Guide)

Xy

x/y Positioning:

The X/ y notation causes the next element to be placed x lines below the output of the
last statement, beginning in column y. y must not be zero. Backward positioning is not
permitted.

T*field-name

Field Related Positioning:

The T* notation is used to position to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

P*field-name

Field and Line Related Positioning;:

The P* notation is used to position to a specific print position and line of a field used in
aprevious DISPLAY statement. It is most often used in conjunction with vertical display
mode. Backward positioning is not permitted.

See also:

® Example 3 - DISPLAY Statement Using P* Notation (below)
® ‘Tab Notation P*field (in the Programming Guide)

Override Column Heading Assignment

Syntax Element|Description

"text' Text Assignment:
A If placed immediately before a field, the text enclosed by single quotes overrides the column
heading.

The slash character '/ ' before a field causes the header for the field to be suppressed.

Statements

399

DISPLAY

Syntax Element | Description

DISPLAY "EMPLOYEE' NAME "MARITAL/STATUS' MAR-STAT

If multiple ' text' elements are specified before a field name, the last ' text' element will
be used as the column header and the other text elements will be placed before the value of
the field within the column.

See also:

® Define Your Own Column Headers (in the Programming Guide)
= ‘Text Notation, Defining a Text to Be Used with a Statement (in the Programming Guide)
® Example 4 - DISPLAY Statement Using 'text’, 'c(n)’ and Attribute Notation (below)

"c¢'(n) Character Repetition:

The character enclosed by single quotes is displayed n times immediately before the field
value. For example:

DISPLAY '*' (5) '=" NAME

results in

*kkxkxx SMITH
See also:

= ‘Text Notation, Defining a Character to Be Displayed n Times before a Field Value (in the
Programming Guide)

® Example 4 - DISPLAY Statement Using 'text’, 'c(n)’ and Attribute Notation (below)

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

AD=ad-value...
CD=cd-value
PM=pm-value ...

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

400 Statements

DISPLAY

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-value without preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IRE will be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-vaiue
or ad-value with a value preceded by CD= or AD=.

Vertical/Horizontal Display

The VERT clause may be used to cause multiple field values to be positioned underneath one an-
other in the same column. In vertical mode, a new column may be initiated by specifying the
keyword VERT or HORIZ.

The column heading in vertical mode is controlled using the entry or entries specified with the AS
clause as described below.

Syntax Element Description

VERTICALLY DISPLAY VERT without AS Clause:
Vertical column orientation. No column heading is produced if the AS clause is
omitted.

DISPLAY VERT NAME SALARY

For an example, see DISPLAY VERT without AS Clause in the Programming Guide.

AS "text' DISPLAY VERT AS 'text' Clause:
Vertical column orientation. If AS ' text' is specified, the text enclosed by single
quotes is used as the column heading.

For an example, see DISPLAY VERT AS "text’in the Programming Guide.

The slash character / in the character string of ' text' will cause multiple lines of
column headings.

DISPLAY VERT AS 'LAST/NAME' NAME

Statements 401

DISPLAY

Syntax Element Description
AS "text' DISPLAY VERT AS 'text' CAPTIONED Clause:
CAPTIONED Vertical column orientation. If AS " text" CAPTIONED is specified, ' text' isused

as the column heading and the standard heading text or field name is inserted
immediately before the field value in each detail display line.

DISPLAY VERT AS 'PERSONS/SELECTED' CAPTIONED NAME FIRST-NAME

For an example, see DISPLAY VERT AS "text’ CAPTIONED in the Programming
Guide.

AS CAPTIONED DISPLAY VERT AS CAPTIONED Clause:

Vertical column orientation. If AS CAPTIONED is specified, the standard heading
text for the field (either heading text or the field name) will be used as the column
heading.

DISPLAY VERT AS CAPTIONED NAME FIRST-NAME

HORIZONTALLY DISPLAY HORIZ Clause:
Horizontal column orientation. This is the default display mode.

Vertical and horizontal column orientation may be intermixed by using the respective keyword.

To suspend vertical display for a single output element, you may place a dash (-) in front of the
element. For example:

DISPLAY VERT NAME - FIRST-NAME SALARY

In the above example, FIRST-NAME will be output horizontally next to NAME, while SALARY will be
output vertically again, i.e. below NAME.

The standard display mode is horizontal. A column is constructed for each field to be displayed.
Column headings are obtained and used by Natural according to the following priority:

1. heading ' text' supplied in the DISPLAY statement;
2. the default heading defined in the DDM (database fields), or the name of a user-defined variable;
3. the field name as defined in the DDM (if no heading text was defined for the database field).

For group names, a group heading is produced for the entire group. When specifying a group,
only the heading for the entire group may be overridden by a user-specified heading.

The maximum number of column header lines is 15.

Line size overflow is not permitted for output resulting from a DISPLAY statement. If a line overflow
occurs, an error message is issued.

For more information about vertical/horizontal display usage, see:

402 Statements

DISPLAY

® Example 5 - DISPLAY Statement Using Horizontal Display
® Example 6 - DISPLAY Statement Using Vertical and Horizontal Display
® DISPLAY VERT AS CAPTIONED and HORIZ (in the Programming Guide)

Output Element

{ "text' [(attributes)] }
"c'(n) [(attributes)]
nx ['="]1{operandl [(parameters)]}
nT

x/y

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted
operandl S |A |G |N |A|N|P|T[F[B|D|T|L|[G|O] yes no

Syntax Element Description

Syntax Element |Description

nX Column Spacing;

This is the same as under Output Format Definitions (see above).

nT Tab Setting:

This is the same as under Output Format Definitions (see above).

x/y x/y Positioning:

This is the same as under Output Format Definitions (see above).

"text' Text Assignment:

This is the same as under Output Format Definitions (see above).

"c¢'(n) Character Repetition:

This is the same as under Output Format Definitions (see above).

Statements 403

DISPLAY

Syntax Element |Description

"text"' '=' |If "text' '='isplaced immediately before the field, text is output immediately before
the field value. This applies analogously with "¢ (n) '=".

A C ' (”) A — '
DISPLAY ‘"x**x*' '=' NAME

attributes |Output Attributes:
This is the same as under Output Attributes (see above).

operandl The field to be displayed.

parameters |Parameter Definition at Element (Field) Level:

One or more parameters, enclosed within parentheses, may be specified at element (field)
level, that is, immediately after operandl. Each parameter specified in this manner will
override the corresponding parameter previously specified at statement level or in a
GLOBALS command, SET GLOBALS (in Reporting Mode only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be placed between each
entry. An entry must not be split between two statement lines.

See also:

B List of Parameters

® Example of Parameter Usage at Statement and Element (Field) Level

Defaults Applicable for a DISPLAY Statement

The following defaults are applicable for a DISPLAY statement:

* Report Width
The width of the report defaults to the value set when Natural is installed. This default value
isnormally 132 in batch mode or the line length of the terminal in TP mode. It may be overridden
with the session parameter LS. In TP mode, line size (LS) and page size (PS) parameters are set
by Natural based on the physical characteristics of the terminal type in use.

® Terminal Screen Output
When the DISPLAY output is displayed on a terminal (emulation) screen, the output begins in
physical Column 2 (because Column 1 must be reserved for possible use as an attribute position
on a 3270-type terminal).

® Printout on Paper
When the DISPLAY outputis printed on paper, the printout begins in the leftmost column (Column

1).

404

Statements

DISPLAY

® Spacing Factor
The default spacing factor between elements is one position. There is a minimum of one space
between columns (reserved for terminal attributes). This default may be overridden with the
session parameter SF.

* Field Output
The length of the field or the field heading, whichever is greater, determines the column width
for the report (unless the HW parameter is used).

= If the field is longer than the heading, the heading will be centered over the column unless
the HC=L or HC=R parameter is used to produce a left-justified or right-justified heading.

® If the heading is longer than the field, the field will be left-justified under the heading.

® The values contained in the field are left-justified for alphanumeric fields and right-justified
for numeric fields.

® Numeric fields may be displayed left-justified by specifying AD=L.
® Alphanumeric fields may be displayed right-justified by specifying AD=R.

* Ina vertical display, the longest data value or heading among all fields determines the column
width (unless the HW parameter is used).

" Sign
One extra high-order print position is reserved for a sign when printing a numeric field. The
session parameter SG may be used to suppress the sign position.

® Page Overflow
Page overflow is checked before execution of a DISPLAY statement. No new page title or trailer
information is generated during the execution of a DISPLAY statement.

Examples

Example 1 - DISPLAY Statement Using nX and nT Notation

Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause
Example 3 - DISPLAY Statement Using P* Notation

Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation
Example 5 - DISPLAY Statement Using Horizontal Display

Example 6 - DISPLAY Statement Using Vertical and Horizontal Display

= Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level

Statements 405

DISPLAY

= Example 8 - Report Specification with Output File Defined to Natural as PC

Example 1 - DISPLAY Statement Using nX and nT Notation

** Example 'DISEX1': DISPLAY (with nX, nT notation)
R R R R R R b e e R R R b b e e e e e R R b b e e e e e R R e e e e e e R R e e e e S i b e e e e e
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE 5X NAME 50T JOB-TITLE
END-READ

*

END

Output of Program DISEX1:

NAME CURRENT
POSITION
ABELLAN MAQUINISTA
ACHIESON DATA BASE ADMINISTRATOR
ADAM CHEF DE SERVICE
ADKINSON PROGRAMMER

Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause

** Example 'DISEX2': DISPLAY (with GIVE SYSTEM FUNCTIONS)
RRA R R B b R R e I b b R e b b e e b b e b b e e b b b e e b b S e b b R e I b b R e b b S e e b e R e b b b e b b S
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-1ID
2 NAME
2 FIRST-NAME
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
LIMIT 15
FORMAT PS=15
*
READ EMPLOY-VIEW
DISPLAY GIVE SYSTEM FUNCTIONS
PERSONNEL-ID NAME FIRST-NAME SALARY (1) CURR-CODE (1)
AT END OF PAGE

406

Statements

DISPLAY

WRITE

END-READ

*

END

Output of Program DISEX2:

Page

PERSONNEL
ID

50005500
50005300
50004900
50004600
50004200
50004100
50003800
50006900
50007600

SALARY STA
MAX
MIN
AVE

/ "SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY (1))
/ 7X "MINIMUM:" MINCSALARY (1))
/ 7X "AVERAGE:' AVER(SALARY (1)) CURR-CODE (1)
END-ENDPAGE

BLOND
MAIZIERE
CAOUDAL
VERDIE
VAUZELLE
CHAPUIS
JOUSSELIN
BATLLET
MARX

TISTICS:
IMUM:
IMUM:
RAGE :

365700 FRA
159790 FRA
192414 FRA

FIRST-NAME

ALEXANDRE
ELISABETH
ALBERT
BERNARD
BERNARD
ROBERT
DANTEL
PATRICK
JEAN-MARTE

Example 3 - DISPLAY Statement Using P* Notation

** Example 'DISEX3': DISPLAY (with P* notation)

CURR-CODE (1)
CURR-CODE (1)

05-01-12

ANNUAL
SALARY

172000
166900
167350
170100
159790
169900
171990
188000
365700

CURRENCY
CODE

FRA
FRA
FRA
FRA
FRA
FRA
FRA
FRA
FRA

09:47:48

R R R e b e b e b b e R e b b e b e b e e I e b e e S e e e b e b (e e b e b e b e e b e b e b S b e b e b e b i e b o 4

DEFINE DAT

1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME

2 SALARY

2 BIRTH

2 CITY
END-DEFINE

*

LIMIT 2

READ EMPL-VIEW BY CITY FROM "N’
DISPLAY NOTITLE NAME CITY

SKIP 1

A LOCAL

(1)

VERT AS 'BIRTH/SALARY' BIRTH (EM=YYYY-MM-DD) SALARY (1)

AT BREAK OF CITY
DISPLAY P*SALARY (1) AVER(SALARY (1))

Statements

407

DISPLAY

SKIP 1
END-BREAK
END-READ
END

Output of Program DISEX3:

NAME CITY
WILCOX NASHVILLE
MORRISON NASHVILLE

BIRTH
SALARY

1970-01-01
38000

1949-07-10
36000

37000

Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation

** Example 'DISEX4': DISPLAY (with 'c(n)' notation and attribute)

R R R o R R b R R b b e b e e b R R R i b b e b b R e i b i R i b b R e i i b S b R R e i b b e S b b

DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 DEPT
2 LEAVE-DUE
2 NAME
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY DEPT FROM 'T'
IF LEAVE-DUE GT 40
DISPLAY NOTITLE
"EMPLOYEE' NAME

"LEAVE ACCUMULATED' LEAVE-DUE

'AT(10)(I)

ELSE
DISPLAY NAME LEAVE-DUE
END-IF
END-READ

*

END

/* OVERRIDE STANDARD HEADER
/* OVERRIDE STANDARD HEADER
/* DISPLAY 10 '*' INTENSIFIED

408

Statements

DISPLAY

Output of Program DISEX4:

EMPLOYEE LEAVE ACCUMULATED
LAVENDA 33
BOYER 33
CORREARD 45 * %k kkkk kKK
BOUVIER 19

Example 5 - DISPLAY Statement Using Horizontal Display

** Example 'DISEX5': DISPLAY (horizontal display)
AR A AR AR KR AR K AR A AR AR KA R KA KA A KA A KA KNI AR KA KA AR AR KA KRR A I A AR AR h A kA kA kA A kA hkkxK
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 SALARY (1:2)
2 CURR-CODE (1:2)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE NAME JOB-TITLE SALARY (1:2) CURR-CODE (1:2)
SKIP 1
END-READ

*

END

Output of Program DISEX5:

NAME CURRENT ANNUAL ~ CURRENCY
POSITION SALARY CODE
ABELLAN MAQUINISTA 1450000 PTA

1392000 PTA

ACHIESON DATA BASE ADMINISTRATOR 11300 UKL

10500 UKL

ADAM CHEF DE SERVICE 159980 FRA
0

ADKINSON PROGRAMMER 34500 USD

31700 USD

Statements 409

DISPLAY

Example 6 - DISPLAY Statement Using Vertical and Horizontal Display

** Example 'DISEX6': DISPLAY (vertical and horizontal display)
R R R R R R e e R R R R b e e e B e R e e e e e R e R e e e e e e R R R e e e e e e
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:2)
2 CURR-CODE (1:2)
END-DEFINE
*
LIMIT 1
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE VERT AS CAPTIONED
NAME CITY 'POSITION' JOB-TITLE
HORIZ 'SALARY' SALARY (1:2) 'CURRENCY' CURR-CODE (1:2)
/*
SKIP 1
END-READ
END

Output of Program DISEXé:

NAME SALARY CURRENCY
CITY
POSITION
ABELLAN 1450000 PTA
MADRID 1392000 PTA
MAQUINISTA

Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level

** Example 'DISEX7': DISPLAY (with parameters for statement/element)
Khkhkkhkhkkhkhkkhhkkhhkhhkkhkhkhhkkhkhkhhkkhkhkhhkhkhkhhkkhhkhhkkhkhkhhkhrkhhkhrkhhkhrkhhkhkrkhhkhrkhhkhkrkhhkhkrkhrkhkrkhkrkhxk
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 PERSONNEL-ID
2 TELEPHONE
3 AREA-CODE
3 PHONE
END-DEFINE
*
LIMIT 3
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE (AL=16 GC=+ NL=8 SF=3 UC==

410

Statements

DISPLAY

PERSONNEL-ID NAME TELEPHONE (LC=< TC=>)
END-READ
END

Output of Program DISEX7:

PERSONNEL NAME F++++++++++++++TELEPHON E+++++++++ :
ID
AREA TELEPHONE
CODE
60008339 ABELLAN <1 > <4356726 >
30000231 ACHTIESON <0332 > <523341 >
50005800 ADAM <1033 > <44864858 >

Example 8 - Report Specification with Output File Defined to Natural as PC

** Example 'PCDIEX1': DISPLAY and WRITE to PC

**

** NOTE: Example requires that Natural Connection is installed.
KhkhkAhhkkhhkhhkkhhkhhkkhhkhhkhkhkhhkkhhkhhkhhkhhkkhhkhhkhhkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhrkhkrkhrkhxk
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES

02 PERSONNEL-ID

02 NAME
02 CITY
END-DEFINE
S
FIND PERS WITH CITY = 'NEW YORK' /* Data selection
WRITE (7) TITLE LEFT 'List of employees in New York' /
DISPLAY (7) /* (7) designates the output file (here the PC).

"Location' CITY
'Surname’ NAME
"ID' PERSONNEL-ID
END-FIND
END

Statements

411

412

62 DIVIDE

LI V1ot o PSP PPPPUR PP 414
= Syntax 1 - DIVIDE Statement without GIVING ClaUuSEoeiiiiiiiiiiiiiiiiiccececee e 414
= Syntax 2 - DIVIDE Statement with GIVING ClauSeccvvvviiiiiiiiiiiiiii e 415
= Syntax 3 - DIVIDE Statement with REMAINDER ClaUSeooiiiiiiiiiiiiiiiiiee e 416
B EXAMIPIE 1o 417

413

DIVIDE

Related Statements: ADD | COMPRESS | COMPUTE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET |
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The DIVIDE statement is used to divide an arithmetic expression or operand into two operands.

] Note: Concerning Division by Zero: If an attempt is made to use a divisor (operandI) which

is zero, either an error message or a result equal to zero will be returned; this depends on
the setting of the session parameter 7D (described in the Parameter Reference documentation).

Syntax 1 - DIVIDE Statement without GIVING Clause

(arithmetic-expression)

DIVIDE [ROUNDED] {
operandl

} INTO operandz

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols .

Operand Definition Table:

Operand Possible Structure ~ Possible Formats Referencing Dynamic Definition
Permitted

operandl |C |S |A N NPIF yes no

operand2 S |A M NPIF yes no

Syntax Element Description:

Syntax Element Description

arithmetic-expression|See Arithmetic Expression in the COMPUTE statement.

operandl INTO operandZ|Operands:

operandl is the divisor, operand? is the dividend. The result is stored in
operandZ (result field), hence the statement is equivalent to:

414 Statements

DIVIDE

Syntax Element

Description

operand? := operand? / operandl
Ifanarithmetic-expressionisused, operandZ mustnotbe an array range.

The number of decimal positions for the result of the division is evaluated from
the result field (that is, operand?).

For the precision of the result, see Rules for Arithmetic Assignments, Precision of|
Results of Arithmetic Operations in the Programming Guide.

ROUNDED

ROUNDED Option:
If you specify the keyword ROUNDED, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.

Syntax 2 - DIVIDE Statement with GIVING Clause

[ROUNDED]

DIVIDE {(arithmetic—expression)} INTO {(arfthmetic-expression)} GIVING
operandl

operand? operand3

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic

Permitted |Definition

operandl |C |S |A N N|PI|F yes no
operandz |C |S |A N NP |I|F yes no
operand3 S |A A|UIN|P|I|F|B* yes yes

* Format B of operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element

Description

arithmetic-expression

See Arithmetic Expression in the COMPUTE statement.

GIVING operand3

operandl INTO operandZ |Operands:

operandl is the divisor, operand? is the dividend.

The result of the division is stored in operand3, hence the statement is
equivalent to:

Statements

415

DIVIDE

Syntax Element

Description

operand3 := operand? / operandl

The number of decimal positions for the result of the division is evaluated
from the result field (that is, operand3).

For the precision of the result, see Rules for Arithmetic Assignments, Precision
of Results of Arithmetic Operations in the Programming Guide.

ROUNDED

ROUNDED Option:
If you specify the keyword ROUNDED, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

Syntax 3 - DIVIDE Statement with REMAINDER Clause

DIVIDE { operandl

(arithmetic-expression) } INTO { (arithmetic-expression) } [GIVING operand3]

operandZ? REMAINDER operand4

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Dynamic
Permitted Definition
operandl |C |S |A N NPI yes no
operandz |C |S |A N NPI yes no
operand3 S |A AUNPIFB* T yes yes
operand4 S |A AUNPIFB* T yes yes

* Format B of operand3 and operand4 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element Description
arithmetic-expression|See Arithmetic Expression in the COMPUTE statement.
operandl Operands:
operand?
operandl is the divisor, operand? is the dividend.
If the GIVING clause is not used, the result is stored in operand?.
416 Statements

DIVIDE

Syntax Element Description

If operand?is a constant or a non-modifiable Natural system variable, the
GIVING clause is required.

GIVING operand3 GIVING Clause:

If this clause is used, operand? will not be modified and the result will be
stored in operand3.

The number of decimal positions for the result of the division is evaluated from
the result field (that is, operandZ?ifno GIVING clause is used, or operand3 if
the GIVING clause is used).

For the precision of the result, see Rules for Arithmetic Assignments, Precision of|
Results of Arithmetic Operations (in the Programming Guide).

REMAINDER operand4 REMAINDER Clause:

The remainder of the division is placed into the field specified in operand4.

u If the GIVING clause is used, the statement is equivalent to:

operand3 := operand? / operandl
operand4 := operandZ - (operand3 * operandl)

None of the four operands may be an array range.

® If the GIVING clause is not used, the statement is equivalent to:

temporary := operand?
operand? := operand? / operandl
operand4 := temporary - (operand? * operandl)

where temporary is a temporary field with the same format/length as
operand?.

For each of these steps, the rules described in Precision of Results of Arithmetic
Operations in the Programming Guide apply.

Example

** Example 'DIVEX1': DIVIDE

Ak kAhkhkhkhkhkhkhhhkhkkhkhhhkhkhkhhhhkhkkhhhhkkhkkhhhhhkkhhhhhkhhhrhkkhkhhhhkkhkkhhhkhhkhhhrrhkkhhrhkkhhrrkkk

DEFINE DATA LOCAL

1

1
1
1
1
1

fFA
1B
#C
#D
fFHE
1+F

(N7) INIT <20>
(N7)

(N3.2)

(N1)

(N1) INIT <3>
(N1)

Statements 417

DIVIDE

END-DEFINE
*

DIVIDE 5 INTO
WRITE NOTITLE
*

RESET INITIAL
DIVIDE 5 INTO

fEA

"DIVIDE 5 INTO #A' 20X '=' #fA

1A
##A GIVING #B

WRITE 'DIVIDE 5 INTO #fA GIVING #B' 10X '=' #B

*

DIVIDE 3 INTO 3.10 GIVING #C

WRITE 'DIVIDE 3 INTO 3.10 GIVING #C' 8X '=' #C

*

DIVIDE 3 INTO 3.1 GIVING #D

WRITE 'DIVIDE 3 INTO 3.1 GIVING #D' 9X '=' #D

*

DIVIDE 2 INTO #E REMAINDER #F

WRITE 'DIVIDE 2 INTO #fE REMAINDER #F' 7X '=' #E '=' 4F
*

END

Output of Program DIVEX1:

DIVIDE 5 INTO #A A

DIVIDE 5 INTO #A GIVING #B #B:

DIVIDE 3 INTO 3.10 GIVING #C #C: 1.03
DIVIDE 3 INTO 3.1 GIVING #D #0: 1

DIVIDE 2 INTO #fE REMAINDER {tF #E: 1 #F: 1
418

Statements

63 DO/DOEND

B UN G 0N et 420
B RSO ONS v ittt ettt e 420
LI 1oL OSSPSR 421

419

DO/DOEND

DO statement .. DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Reporting Mode Statements

Function

The DO and DOEND statements are used in reporting mode to specify a group of statements to be
executed based on a logical condition as specified in any of the statements listed below.
® AT BREAK

= AT END OF DATA

= AT END OF PAGE

® AT START OF DATA

= AT TOP OF PAGE

® BEFORE BREAK PROCESSING

® FIND ... IF NO RECORDS FOUND

= IF

® TF SELECTION

® ON ERROR

® READ WORK FILE ... AT END OF FILE

] Note: If you specify a only single statement to be executed based on a logical condition, you

can omit the DO and DOEND statements. But with respect to good coding practice, you are
not recommended to do so.

Restrictions

® The DO and DOEND statements are only valid in reporting mode.

® WRITE TITLE, WRITE TRAILER, and the AT condition statements AT BREAK, AT END OF DATA, AT
END OF PAGE, AT START OF DATA, AT TOP OF PAGE are not permitted within a DO/DOEND statement
group.

® A loop-initiating statement may be used within a D0O/DOEND statement group provided that the
loop is closed prior to the DOEND statement.

420 Statements

DO/DOEND

Example

** Example 'DOEEX1': DO/DOEND

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

*

EMP. FIND EMPLOYEES WITH CITY = "MILWAUKEE'
VEH. FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID
IF NO RECORDS FOUND DO
ESCAPE
DOEND
DISPLAY PERSONNEL-ID (EMP.) NAME (EMP.)
SALARY (EMP.,1)
MAKE (VEH.) MAINT-COST (VEH.,1)
AT END OF DATA DO
WRITE NOTITLE
/ 10X "AVG SALARY:'
T*SALARY (1) AVER(SALARY (1))
/ 10X "AVG MAINTENANCE (ZERO VALUES EXCLUDED):'
T*MAINT-COST (1) NAVER(MAINT-COST (1))
DOEND
/%
LOOP
LOOP
END

Output of Program DOEEX1:

PERSONNEL NAME ANNUAL MAKE MAINT-COST
ID SALARY
20021100 JONES 31000 GENERAL MOTORS 140
20027800 LAWLER 29000 GENERAL MOTORS 0
20027800 LAWLER 29000 TOYOTA 86
20030600 NORDYKE 47000 FORD 194
AVG SALARY: 35666
AVG MAINTENANCE (ZERO VALUES EXCLUDED): 140

Statements 421

422

64 DOWNLOAD PC FILE

B FUNCHON .ttt e e 424
B SYNEAX DESCIIPHON ...ttt e e e s 424
L e 01T OO SR PUPPPPPRRR 425

423

DOWNLOAD PC FILE

{ DOWNLOAD} { PC } [FILE]

[VARIABLE] operandl
WRITE WORK work-fi]e—number‘ ’

SYNC }

COMMAND operand? { ASYNC

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CLOSE PC FILE | UPLOAD PC FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

This statement is used to transfer data from a Linux platform to the PC.

See also the Natural Connection and Entire Connection documentation

Syntax Description

Operand Definition Table:

Operand Possible Structure |Possible Formats Referencing | Dynamic Definition
Permitted

operandl |C |S |A |G A|UIN|P|I|F|B|D|T|L|C|yes no

operand?2 |C |S A yes yes

When using the work file types ENTIRECONNECTION or TRANSFER, operandl may neither be of Format
C, nor G.

Syntax Element Description:

Syntax Element Description

work-file-number|Work File Number:

The work file number to be used. This number must correspond to one of the work
file numbers for the PC as defined to Natural.

VARIABLE Variable Format:

The records in the PC file will be written in variable format. Note that variable records
cannot be converted to PC spreadsheet formats.

operandl Field Specification:

With operandl you specify the fields to be downloaded to the PC.

424 Statements

DOWNLOAD PC FILE

Syntax Element

Description

COMMAND

COMMAND Clause:

With the COMMAND clause, you can send PC commands (that is, any command that
can be entered in the command line of Entire Connection on the PC) from the
mainframe to the PC.

Entire Connection checks whether the command sent is valid or not. A command
that cannot be recognized by the PC is rejected. In this case, Natural issues the error
message that the downloaded command was rejected by the PC.

You can use the COMMAND clause, for example, to execute Entire Connection tasks
from the mainframe. If you have the task DIR which lists PC directory information,
you can initiate this directly out of your Natural program on the mainframe with the
following statement:

DOWNLOAD PC FILE 7 COMMAND 'DIR'

In Example 2 below, the COMMAND clause is used to define the name of the PC file that
is to receive the downloaded data. In this way, you can avoid prompting for the name
of the file.

operand?

COMMAND Specification:

With operandZ, you specify the DOS command or Entire Connection task that is to
be executed on the PC. operandZ must be an alphanumeric constant or variable.

SYNC

SYNC Option:

With SYNC, you specify that the PC returns control to Natural after executing and
terminating COMMAND. SYNC can be used, for example, to ensure that the command
SET PCFILE has been executed before a file transfer starts.

ASYNC

ASYNC Option:

With ASYNC, you specify that the PC immediately returns control to Natural, regardless

of whether the execution of COMMAND has terminated or not.

Examples

= Example 1 - Use of DOWNLOAD PC FILE Statement

Statements

425

DOWNLOAD PC FILE

= Example 2 - Use of COMMAND Clause

Example 1 - Use of DOWNLOAD PC FILE Statement

The following program demonstrates the use of the DOWNLOAD PC FILE statement. The data is first
selected and then downloaded to the PC by using Work File 7.

** Example 'PCDOEX1': DOWNLOAD PC FILE

**

** NOTE: Example requires that Natural Connection is installed.
KhkhkAhhkhhkhhkhhkhhkkhhkhhkhhkhhkhhhhkhhhhkhhkhhkhhkhhkhhkhhkhhkhhkhhhhkhrkhhkhrkhhkhkrkhhkhrkhrkhrkhrkhxk
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES
02 PERSONNEL-ID
02 NAME
02 CITY
END-DEFINE
*
FIND PERS WITH CITY = 'NEW YORK' /* Data selection
DOWNLOAD PC FILE 7 CITY NAME PERSONNEL-ID /* Data download
END-FIND
END

Output of Program PCDOEXI:

When you run the program, a window appears in which you specify the name of the PC file into
which the data is to be downloaded. The data is then downloaded to the PC.

Example 2 - Use of COMMAND Clause

The following program demonstrates the use of the COMMAND clause in the DOWNLOAD PC FILE

statement. The name of the receiving PC file is first defined. Then the data is selected and down-
loaded to this file.

** Example 'PCDOEX2': DOWNLOAD PC FILE

* %

** NOTE: Example requires that Natural Connection is installed.
P b i b b b i b i e b i b o b i g b i b e b i b g e g o b o i e i g b e b i i g i b e b o o b i b i e b i i b b
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES
02 PERSONNEL-ID

02 NAME

02 CITY
01 CMD (A80) /* Variable for transfer
END-DEFINE /* of the PC command

*

MOVE 'SET PCFILE 7 DOWN DATA PERS.NCD' TO CMD /* PC command to define

*

DOWNLOAD PC FILE 6 COMMAND CMD /* Command download

426 Statements

DOWNLOAD PC FILE

*

FIND PERS WITH CITY = 'NEW YORK" /* Data selection
DOWNLOAD PC FILE 7 CITY NAME PERSONNEL-ID /* Data download

END-FIND

END

] Note: The PC file number in two successive DOWNLOAD PC FILE statements must be different.

Output of Program PCDOEX2:

When you run the program, the data is downloaded to the PC file that was specified in the program.
A window does not appear.

Statements 427

428

65 EJECT

.................................... 430
O oo
VTR DESCTIDION oo
OB e
LI 1T o] (- PSSO PPPPPPRRRR

429

EJECT

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The EJECT statement may be used to control page advance/page ejection.

Syntax Description

Two different structures are possible for this statement.

= EJECT - Syntax 1
= EJECT - Syntax 2

For an explanation of the symbols used in the syntax diagrams below, see Syntax Symbols.

EJECT - Syntax 1

rep

Syntax Element Description:

Syntax Description
Element

EJECT |With Report Specification - Online and Batch Modes:

ON/OFF TEJECT OFF (re p) Causes no page advance (except as specified with Syntax
(rep) 2 of the EJECT statement) for the specified report to be
executed.
EJECT ON (rep) Causes page advances for the specified report to be
executed.
EJECT |Without Report Specification - Batch Mode only:
ON/OFF

Without report notation (rep), EJECT ON/OFF may be used in batch mode to control page
ejection between the output listings created during the execution of a program.

430 Statements

EJECT

Syntax Description
Element

EJECT ON Causes Natural to generate a page eject between the
source program listing, the output report and the
message

EXECUTION COMPLETED

. This is the default setting.

EJECT OFF Causes Natural to suppress page breaks between the
above output. EJECT OFF remains in effect until
revoked with a subsequent EJECT ON statement.

(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for which the EJECT
statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the EJECT statement will be applicable to the first report (Report 0).

For information on how to control the format of an output report created with Natural, see Report
Format and Control in the Programming Guide.

EJECT - Syntax 2

This form of the EJECT statement may be used to cause a page advance without a title or heading
line being generated on the next page and without TOP/END PAGE processing.

IF
EJECT [(rep)] [[WHEN] LESS [THAN] operandl [LINES][LEFT]]

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

operandl |C \s \ | \ ‘N‘P‘I‘ \ \ \ \ | | \ yes no

Syntax Element Description:

Statements 431

EJECT

Syntax Element Description

(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for which
the EJECT statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the
DEFINE PRINTER statement may be specified.

If (rep) is not specified, the EJECT statement will be applicable to the first report
(Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

IF LESS THAN IF LESS THAN ... LINES LEFT Clause:
operandl LINES
LEFT A page advance will be performed only when the current line for the page is greater

than the page size minus operand]. The value for operandl may be specified as
a numeric constant or as a variable.

Processing

The execution of an EJECT statement does not cause any statements used with an AT TOP 0F PAGE,
AT END OF PAGE,WRITE TITLEorWRITE TRAILER statement to be executed. It does not affect system
functions evaluated by DISPLAY GIVE SYSTEM FUNCTIONS.

EJECT causes a new physical page only. It causes the Natural system variable *LINE-COUNT to be
set to 1 but has no effect on the setting of the Natural system variable *PAGE - NUMBER.

Example

** Example 'EJTEX1': EJECT
R R o R R R R b I b e I b R i b b e b e b i R e i i R e i i b b S b b R e i b b e b b i 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 JOB-TITLE
END-DEFINE

*

FORMAT PS=15

LIMIT 9
READ EMPLOY-VIEW BY CITY
/%

AT START OF DATA

432 Statements

EJECT

EJECT
WRITE /// 20T "%" (29) /
20T "%%" 47T "%%'
20T "%%" 3X 'REPORT OF EMPLOYEES' 47T '"%%' /
20T "%%"' 3X ' SORTED BY CITY YATT %%/
20T "%%" 47T "Bh'/
20T "%' (29) /
EJECT
END-START
EJECT WHEN LESS THAN 3 LINES LEFT
/%

WRITE '*' (64)
DISPLAY NOTITLE NOHDR CITY NAME JOB-TITLE 5X *LINE-COUNT
WRITE '*' (64)

END-READ

END

Output of Program EJTEX1:

Bhhbllolololoh %k bbb bbb bbbl dddhh

%% %%
% REPORT OF EMPLOYEES %%
%% SORTED BY CITY %%
%% %%

bkl bbbl bbbl bllehlolhlblh
After pressing ENTER:

RR R b R R e b b b e e b R R e b S e b b b e i b b e b b e b b R e e i b b e e b b R e b b b e b b
ATKEN SENKO PROGRAMMER

RR AR b R R e b b b e S b b e e b b S e b b b e e b b e e e b b e b b S e e b b e e b b e b b b e i b b
khkkkhkkhkhkhkhkkhkhhkhkhkkhkhhhkhkhkhhhhkhkhhhhkkhkkhhhhkhkhhhhhkkhkkhhhhkhkkhhhhkhkhhrrkkhkhrrkkhkhikx
AIX EN OTHE GODEFROY COMPTABLE

R R R R R R R I R b R i b b b e b b R e S b R i b b R e b b i b b
R R R R e R b e R b e b e R e R R i R e e b e b e S e i e e e b e e b e e b e b e i e e i i 4
AJACCIO CANALE CONSULTANT

R R R e R b e R b e R e b e b e b e b e i b e e b e e B e e B e I e e e e b e e b e e b e b e b e e i i 4
R R B R b b e b R e b b e I b b e i b b e b e S b b R e i b b e b b R e b b b e i i b
ALBERTSLUND PLOUG KONTORASSISTENT

RR R b R e b b b R e b b R e b b e b b R e b b e e b e e b b R e i b b e b b R e b b b e e b b
Ak kkhkhkhkhkhkkhkkhhhkhkkhkhhkhkhkkhkkhhhhhkkhhhhkhkkhhhhhkkhhhhhkkhkhhhrhkhkkhhrhkhkhhrrkkhkhhrrkkhkhkikx

ALBUQUERQUE HAMMOND SECRETARY

khkkkhkkhkhkhkhkkhkhhhkkhkkhkhhhkhkkhkkhhhhkhkkhhhhkhkkhhhhkhkhhhhhkhkhhhrhkhkkhhrhkkhhrrkkhkhrirkkhkhkik

11

14

Statements

433

EJECT

After pressing ENTER:

RR R b R R e b b b e b R e b b e e b b R e b b e b b e e b b R e e b b e e b b e b b b e b b
ALBUQUERQUE ROLLING MANAGER

RR AR b R R e b b b R e S b b e e b b e e b R e b b e b b b e b I e e b b b e e b R R e e b b b e b b
khkkkhkkhkhkhkhkkhkhhhkkhkkhkhhhkhkkhkkhhhhkkhkkhhhhkkhkkhhhhkkhhhhhkhkhhhhkkhkhhrhkkhhrrkkhkhrrkkhkhkik
ALBUQUERQUE FREEMAN MANAGER

R R R R b R b R I b R b b e b R e b R i i b b R e b b i b
RRA R e b R R e b b b R e S b b e o b b S e b e S b b b e e b b S e b b I e e b b e e b R S e b b b e b b
ALBUQUERQUE LINCOLN ANALYST

R R R e R b R b e R e b e b e b e b e e b e e S e e B e b e S e b e o e B e b e I e e b e b e i e e i i 4
R R b R b b i b R e b e I b R e i b b e i b e b b R e i b b e b b R e b b b e i b b

ALFRETON GOLDBERG JUNIOR

RR R b R R b b b R e b R e b R e b b R e i b b e e b b e e b b R e e i b b e b b R e b b b e e b b

11

434

Statements

66 END

B FUNCHON .ttt e e 436
B SYNEAX DESCIIPHON ...ttt e e e s 436
L e 01T OO SR PUPPPPPRRR 437

435

END

L)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The END statement is used to mark the physical end of a Natural program. No symbols may follow
the END statement.

In reporting mode, any processing loop which is currently active (that is, which has not been closed
with a LOOP statement) is closed by the END statement.

Considerations for Program Execution

When an END statement is executed in a main program (that is, a program executing on Level 1),
final end-page processing is performed as well as final break processing for user-initiated breaks
(PERFORM BREAK PROCESSING) which have not been associated with a processing loop by specifying
a reference notation (r).

When an END statement is executed in a subprogram, or in a program invoked with FETCH RETURN,
control will be returned to the invoking program without any final processing.

Syntax Description

Syntax Element|Description

END Keyword:

The Natural reserved keyword END is normally used to mark the physical end of a Natural
program.

Period:

Instead of the Natural reserved keyword END, a period (.) may be used. It must be preceded
by at least one blank if other statements are contained in the same line.

436 Statements

END

Examples

For some typical examples, see Examples of DEFINE DATA Statement Usage.

Statements 437

438

67 END TRANSACTION

LI V1ot o PSP PPPPUR PP 440
B R BT ICEION vttt 440
B SYNEAX DESCIIPHON ...ttt e e 441
B Databases AffECIEAo 441
= Database-Specific CONSIABIALIONSviiiiiiieiiiii e 442
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 442

439

END TRANSACTION

END [OF] TRANSACTION [operandl ...]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | FIND | GET | GET SAME | GET TRANSACTION
DATA | FIND HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |

UPDATE

Belongs to Function Group: Database Access and Update

Function

The END TRANSACTION statement is used to indicate the end of a logical transaction. A logical
transaction is the smallest logical unit of work (as defined by the user) which must be performed
in its entirety to ensure that the information contained in the database is logically consistent.

Successful execution of an END TRANSACTION statement ensures that all updates performed during
the transaction have been or will be physically applied to the database regardless of subsequent
user, Natural, database or operating system interruption. Updates performed within a transaction
for which the END TRANSACTION statement has not been successfully completed will be backed out
automatically.

The END TRANSACTION statement also results in the release of all records placed in hold status
during the transaction.

The END TRANSACTION statement can be executed based upon a logical condition.

For further information, see the section Database Update - Transaction Processing (in the Programming
Guide).

Restriction

This statement cannot be used with Entire System Server.

440 Statements

END TRANSACTION

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted
operandl |C \s \ | ‘N A‘U‘N‘PMF‘B‘D‘T‘ ‘ ‘] yes no

Syntax Element Description:

Syntax Element | Description

operandl Storage of Transaction Data:

For a transaction applied to an Adabas database, you may also use this statement to store
transaction-related information. These transaction data must not exceed 2000 bytes. They
may be read with a GET TRANSACTION DATA statement.

The transaction data are written to the database specified with the profile parameter ETDB.

If the ETDB parameter is not specified, the transaction data are written to the database
specified with the profile parameter UDB, except on mainframe computers: here, they are
written to the database where the Natural Security system file (FSEC) is located (if FSEC is
not specified, it is considered to be identical to the Natural system file, FNAT; if Natural
Security is not installed, the transaction data are written to the database where FNAT is
located).

Note: END TRANSACTION cannot be used if operandl is a dynamic variable.

Databases Affected

An END TRANSACTION statement without transaction data (that is, without operandI) will only be
executed if a database transaction under control of Natural has taken place. Depending on the
setting of the Natural profile parameter ET, the statement will be executed only for the database
affected by the transaction (ET=0FF), or for all databases that have been referenced since the last
execution of a BACKOUT TRANSACTION or END TRANSACTION statement (ET=0N).

An END TRANSACTION statement w7 th transaction data (that is, with specifying operandI) will always
be executed and the transaction data be stored in a database as described in the following section.
It depends on the setting of the ET parameter (see above) for which other databases the END
TRANSACTION statement will be executed.

Statements 441

END TRANSACTION

Database-Specific Considerations

SQL Databases | As most SQL databases close all cursors when a logical unit of work ends, an END
TRANSACTION statement must not be placed within a database modification loop; instead,
it has to be placed after such a loop.

XML Databases | An END TRANSACTION statement must not be placed within a database modification loop;
instead, it has to be placed after such a loop.

Examples

= Example 1- END TRANSACTION
= Example 2 - END TRANSACTION with ET Data

Example 1 - END TRANSACTION

** Example "ETREX1': END TRANSACTION

**

** CAUTION: Executing this example will modify the database records!
khkhkkhkkhkhkhkhhkhkhhkhkhkhkkhkhhkhhkhkhkhhkhhkhkhkhkhhrhkhkhhhhhkhkhhkhhhkkhkhhkhhkhkhkhhkhhkhkhkhkhhhkhkhkhhkhhkhkhixk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 COUNTRY
END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'BOSTON'

ASSIGN COUNTRY = '"USA'

UPDATE

END TRANSACTION

/*

AT END OF DATA

WRITE NOTITLE *NUMBER 'RECORDS UPDATED'

END-ENDDATA

/*
END-FIND
END

442 Statements

END TRANSACTION

Output of Program ETREX1:

7 RECORDS UPDATED

Example 2 - END TRANSACTION with ET Data

** Example "ETREX2': END TRANSACTION (with ET data)

**

**% CAUTION: Executing this example will modify the database records!
KAk hkkhhkhkhkhkhkhhkhkhhkhkhhkhhhkhkhhkhkhkhkhkhkhhhhkhhkhkhkhkhkhhkhrhhkhkhhkhhkhkhkhhkhhkhkhhkhhhkhkhkhkkhhkhkhixk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 CITY
*
1 #fPERS-NR (A8) INIT <' '>
END-DEFINE
*
REPEAT
INPUT 'ENTER PERSONNEL NUMBER TO BE UPDATED:' #PERS-NR
IF #f/PERS-NR = " '
ESCAPE BOTTOM
END-IF
/*
FIND EMPLOY-VIEW PERSONNEL-ID = #fPERS-NR
INPUT (AD=M) NAME / FIRST-NAME / CITY
UPDATE
END TRANSACTION #PERS-NR
END-FIND
/*
END-REPEAT
END

Output of Program ETREX2:

ENTER PERSONNEL NUMBER TO BE UPDATED: 20027800

After entering and confirming the personnel number:

NAME LAWLER
FIRST-NAME SUNNY
CITY MILWAUKEE

Statements

443

444

68 ESCAPE

B FUNCHON .ttt e e 446
B SYNEAX DESCIIPHON ...ttt e e e s 447
LI 1oL OSSPSR 448

445

ESCAPE

Structured Mode Syntax

TOP [REPOSITION]
BOTTOM [(r)] [IMMEDIATE]

ESCAPE
ROUTINE [IMMEDIATE]
MODULE [IMMEDIATE]
Reporting Mode Syntax
TOP [REPOSITION]
BOTTOM [(r)] [IMMEDIATE]
ESCAPE

ROUTINE [IMMEDIATE]
MODULE [IMMEDIATE]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements:

® FIND | FOR | HISTOGRAM | PARSE XML | READ | READ RESULT SET (SQL)| READ WORK FILE I
READLOB | REPEAT | SORT

® CALL | CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | FETCH | PERFORM
Belongs to Function Group:

® Loop Execution

® Invoking Programs and Routines

Function

The ESCAPE statement is used to interrupt the linear flow of execution of a processing loop or a
routine.

With the keywords T0OP, BOTTOM and ROUTINE you indicate where processing is to continue when
the ESCAPE statement is encountered.

An ESCAPE TOP/BOTTOM statement, when encountered for processing, will internally refer to the
innermost active processing loop. The ESCAPE statement need not be physically placed within the
processing loop.

If an ESCAPE TOP/BOTTOM statement is placed in a routine (subroutine, subprogram, function, or
a program invoked with FETCH RETURN), the routine(s) entered during execution of the processing
loop will be terminated automatically.

446 Statements

ESCAPE

Additional Considerations

More than one ESCAPE statement may be contained within the same processing loop.

The execution of an ESCAPE statement may be based on a logical condition. If an ESCAPE statement
is encountered during processing of an AT END OF DATA, AT BREAK or AT END OF PAGE block, the
execution of the special condition block will be terminated and ESCAPE processing will continue

as required.

If an ESCAPE statement is encountered during processing of an if-no-records-found condition, no
loop-end processing will be performed (equivalent to ESCAPE IMMEDIATE).

Syntax Description

Syntax Element Description

ESCAPE TOP Top Option:
TOP indicates that processing is to continue at the top of the processing loop. This starts
the next repetition of the processing loop.

REPOSITION Top Reposition Option:

Whenan ESCAPE TOP REPOSITION statement is executed, Natural immediately continues
processing at the top of the active READ loop, using the current value of the search variable
as new start value.

At the same time, ESCAPE TOP REPOSITION resets the system variable *COUNTER to
zero.

ESCAPE TOP REPOSITION can be specified within a READ statement loop accessing an
Adabas database. The READ statement concerned must contain the option WITH
REPOSITION.

ESCAPE BOTTOM

Bottom Option:

BOTTOM indicates that processing is to continue with the first statement following the
processing loop. The loop is terminated and loop-end processing (final BREAK and END
DATA) is executed for all loops being terminated.

In reporting mode, ESCAPE BOTTOM is the default.

(r)

Statement Reference:

Notation (r): If BOTTOM is followed by a label or reference number, processing will
continue with the first statement following the processing loop identified by the label or
reference number.

A label or a reference number can only be specified if the ESCAPE BOTTOM statement is
physically placed within the referenced processing loop.

Statements

447

ESCAPE

Syntax Element

Description

IMMEDIATE Immediate Option:

If you specify the keyword IMMEDIATE, no loop-end processing will be performed.
ESCAPE Routine Option:
ROUTINE

This option indicates that the current Natural routine, which may have been invoked
viaa PERFORM, CALLNAT, FETCH RETURN, or as a main program, is to relinquish control.

In the case of a subroutine, processing will continue with the first statement after the
statement used to invoke the subroutine. In the case of a main program, Natural command
mode will be entered.

Allloops currently active within the routine will be terminated and loop-end processing
performed as well as final processing for user-initiated (PERFORM BREAK) processing. If
the program containing the ESCAPE ROUTINE is executed as a main program (Level 1),
final end-page processing is performed.

ESCAPE MODULE

Module Option:

This option indicates that the entire current program level, with all internal subroutines,
is to relinquish control. The control is then returned to the object of the former program
level. If ESCAPE MODULE isused in a hierarchy of internal subroutines, it allows to escape
all routines working at this level at once. If no internal subroutine is active, ESCAPE
MODULE has the same result as ESCAPE ROUTINE.

ESCAPE MODULE is only relevant in inline subroutines. In external subroutines,
subprograms and invoked programes, it has the same effect as ESCAPE ROUTINE.

As with ESCAPE ROUTINE, loop-end processing will be performed. However, if you
specify the keyword IMMEDIATE, no loop-end processing will be performed.

Example

** Example 'ESCEXI1': ESCAPE

R R R o R R b b R e b b e b e e I b R e i b e e b S e i b b R e b b R e i i b e b R R i b b e b b 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

NAME
AREA-CODE
PHONE

N N NN

*

FIRST-NAME

1 #CITY (A20) INIT <" '>

1 #CNTL (A1)
END-DEFINE

*

REPEAT

INIT <" '

448

Statements

ESCAPE

INPUT "ENTER VALUE FOR CITY: " #CITY
/ '"OR ''.'' TO TERMINATE
IF #CITY = '.°
ESCAPE BOTTOM
END-IF
/*
FND. FIND EMPLOY-VIEW WITH CITY = #CITY
/*

IF NO RECORDS FOUND
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM (FND.)
END-NOREC
AT START OF DATA

INPUT (AD=0) 'RECORDS FOUND:' *NUMBER //

"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=M)

IF #CNTL NE 'D"
ESCAPE BOTTOM (FND.)
END-IF
END-START
/*
DISPLAY NOTITLE NAME FIRST-NAME PHONE
END-FIND
END-REPEAT

Output of Program ESCEX1:

ENTER VALUE FOR CITY: PARIS
(OR ".' TO TERMINATE)

After entering and confirming city name:

RECORDS FOUND: 26
ENTER 'D' TO DISPLAY RECORDS D

Result after entering and confirming D:

NAME FIRST-NAME TELEPHONE
MATZTERE ELISABETH 46758304
MARX JEAN-MARIE 40738871
REIGNARD JACQUELINE 48472153
RENAUD MICHEL 46055008
REMOUE GERMATNE 36929371
LAVENDA SALOMON 40155905
BROUSSE GUY 37502323
GIORDA LOUIS 37497316
STECA FRANCOIS 40487413
Statements 449

ESCAPE

CENSTER
DUC
CAHN
MAZUY
FAURIE
VALLY
BRETON
GIGLEUX
KORAB-BRZOZOWSKI
XOLIN
LEGRIS
VVVV

BERNARD
JEAN-PAUL
RAYMOND
ROBERT
HENRI
ALAIN
JEAN-MARIE
JACQUES
BOGDAN
CHRISTIAN
ROGER

38070268
38065261
43723961
44286899
44341159
47326249
48467146
40477399
45288048
46060015
39341509

450

Statements

69 EXAMINE

B SYNEAX 1 - EXAMINE oo 452
m Syntax 2 - EXAMINE TRANSLATE ... 460
= Syntax 3 - EXAMINE for Unicode GraphemEeSueviiiiiiiiieeiiiiie e 462
L e 11T PSR RUPPPPPRR 464

451

EXAMINE

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | MOVE | MOVE ALL | MULTIPLY | RESET
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Syntax 1 - EXAMINE

EXAMINE [DIRECTION-cTausel

operandl

[FULL [VALUE [OF]]] { SUBSTRING
(operandl,operandZ,operand3)

[POSITION-clause]

[FOR][FULL [VALUE [OF]]] [PATTERN] operand4

[DELIMITERS-option]

DELETE-REPLACE-cTlause

GIVING-clause ’
DELETE-REPLACE-clause GIVING-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description - Syntax 1

The EXAMINE statement is used to inspect the content of an alphanumeric or binary field, or a range
of fields within an array, and to

return the number of how many times a search-pattern was found;

return the byte position where a search-pattern appears first;

return the significant content length of a field; that is, the field length without trailing blanks;
return the occurrence number (indices) of an array field, where a pattern was found first;
replace a pattern by another pattern;

delete a pattern.

Operand Definition Table:

452 Statements

EXAMINE

Operand Possible Structure Possible Formats Referencing| Dynamic
Permitted |Definition
operandl |C*|S |A AU B yes no
operandZ |C |S N|PI| |B* yes no
operand3 |C |S N|P|I| |B* yes no
operand4 |C |S [A* A|U B yes no

* operandI can only be a constant if the GIVING clause is used, but not if the DELETE/REPLACE clause

is used.

* operand4 can also be used as an array, see Search and Replace with Multiple Values.

* Format B of operand2 and operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element

Description

DIRECTION-clause

DIRECTION Clause:

This clause determines the search direction. For details, see DIRECTION Clause
below.

operandl

Field to be Examined:
operandl is the field whose content is to be examined.

If operandlisa DYNAMIC variable, a REPLACE operation may cause its length
to be increased or decreased; a DELETE operation may cause its length to be
set to zero. The current length of a DYNAMIC variable can be ascertained by
using the system variable *LENGTH.

POSITION-clause

POSITION Clause:

This clause may be used to specify a starting and ending position within
operandl (or the substring of operandI) for the examination. For details, see
POSITION Clause below.

operand4 Value to be Used for EXAMINE Operation:
operand4 is the value which is searched for in the examined field(s). You may
search for a single value or for multiple values.
For more information on operand4 and operand6, see operandb6, which is
used in the DELETE REPLACE Clause described below.

FULL FULL Option:
If FULL is specified for an operand, the entire value, including trailing blanks,
will be processed. If FULL is not specified, trailing blanks in the operand will
be ignored.

SUBSTRING SUBSTRING Option:

Statements 453

EXAMINE

Syntax Element

Description

Normally, the content of a field is examined from the beginning of the field to
the end or to the last non-blank character.

With the SUBSTRING option, you examine only a certain part of the field. After
the field name (operandI) in the SUBSTRING clause, you specify first the
starting position (operandZ) and then the length (operand3) of the field portion
to be examined.

For example, to examine the 5th to 12th position inclusive of a field #A, you
would specify:

EXAMINE SUBSTRING(#A,5,8).

Note:

1. If you omit operandZ, the starting position is assumed to be 1.

2. If you omit operand3, thelengthis assumed to be from the starting position
to the end of the field.

3. If SUBSTRING is used in conjunction with a DYNAMIC variable, the field
behaves like a fixed length variable; that is, the length (*LENGTH) does not
change as a result of the EXAMINE operation, regardless of whethera DELETE
or REPLACE operation was executed or not.

PATTERN

PATTERN Option:

If you wish to examine the field for a value which contains “wild characters”,
that is symbols for positions not to be examined, you use the PATTERN option.
operand4 may then include the following symbols for positions to be ignored:

® A period (.), question mark (?) or underscore (_) indicates a single position
that is not to be examined.

" An asterisk (¥) or a percent sign (%) indicates any number of positions not
to be examined.

Example: With PATTERN "NAT*AL" you could examine the field for any value
which contains NAT and AL no matter which and how many other characters
are between NAT and AL (this would include the values NATURAL and NATTONAL
as well as NATAL).

Note:

If you use a pattern that starts with an asterisk (*) or percent sign (%), the
following rule applies:

= All positions from the previous delimiter are not examined. If there is no
delimiter, all positions from the beginning of the string are not examined.

If you use a pattern that ends with an asterisk (*) or percent sign (%), the
following rule applies:

454

Statements

EXAMINE

Syntax Element

Description

= All positions to the next delimiter are not examined. If there is no delimiter,
all positions to the end of the string are not examined.

DELIMITERS-option DELIMITERS Option:

This option is used to scan for a value which exhibits delimiters. For details,
see DELIMITERS Option below.

DELETE-REPLACE-clause|DELETE REPLACE Clause:

The DELETE option of this clause is used to delete each search-value (operand4)
found in operandl, whereas the REPLACE option is used to replace each
search-value (operand4) found in operandl by the value specified in
operandé6. For details, see DELETE REPLACE Clause below.

GIVING-clause For details, see GIVING Clause below.

DIRECTION Clause

The direction clause determines the search direction.

DIRECTION ‘

BACKWARD

FORWARD]
operand8

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

operand8 |C

SRS yes no

Syntax Element Description:

Syntax Element

Description

FORWARD

Examine in Left-to-Right Direction:

If you specify FORWARD, the contents of the field are examined from left to right.

BACKWARD

Examine in Right-to-Left Direction:

If you specify BACKWARD, the contents of the field are examined from right to left.

operand8

Alternative Specification:

If you specify operand$, the search direction is determined by the contents of operands.
operand8 must be defined with format/length Al. If operand8 contains an F, then the
search direction is FORWARD, if operand8 contains a B, the search direction is BACKWARD. All
other values are invalid and are rejected at compile time if operand8is a constant, or at run
time if operand8is a variable.

Statements

455

EXAMINE

| Note: If the DIRECTION clause is not specified, the default direction is FORWARD.

POSITION Clause

The POSITION clause may be used to specify a starting and ending position within operandI (or
the substring of operandI) for the examination.

ENDING AT
[[STARTING] FROM [POSITION] operanddl { AU } [POSITION] operandl0
Operand Definition Table:
Operand Possible Structure | Possible Formats [Referencing| Dynamic Definition

Permitted

operand9 |C |S N|P|I yes no
operandl0 |C |S N|P|I yes no
Syntax Element Description:
Syntax Element Description
FROM operand9 Starting Position:

operand9isused to define the starting position for the examination.
ENDING AT / THRU operandl0 |Ending Position:

operandl0isused to define the ending position for the examination.

The starting position (operand9) and the ending position (operand10) are relative to operandI or
the substring of operandl, and both are processed.

The search is performed starting from the starting position and ending at the ending position.

If the starting and/or ending position are not specified, the default position value applies. This
value is determined by the search direction:

Direction |Default Starting Position Default Ending Position
FORWARD |1 (first character) length of operandl (last character)
BACKWARD|length of operandI (last character)|1 (first character)

| Note: If the search direction is FORWARD and the start position is greater than the end position,

or if the search direction is BACKWARD and the start position is less than the end position, no
search is performed.

456 Statements

EXAMINE

DELIMITERS Option

{ ABSOLUTE }
WITH [DELIMITERS] [operand5]

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operand5 |C ‘S ‘ | ‘ A‘U‘ ‘ ‘ ‘ |B| ‘ ‘ ‘ ‘ ‘ yes no

Syntax Element Description:

Syntax Element Description

ABSOLUTE Absolute Scan Option:

This is the default option. It results in an absolute scan of the field for the
specified value regardless of what other characters may surround the value.

WITH DELIMITERS WITH DELIMITERS Option:

This option is used to scan for a value which is delimited by blanks or by any
character that is neither a letter nor a numeric character.

WITH DELIMITERS Specific Delimiter Option:
operandb

This option is used to scan for a value which is delimited by the character or
any of the characters specified in operandb. If the search value was found at
the beginning or end of the examined field, only the right or left side has to be
delimited by one of the operand5 characters.

DELETE/REPLACE Clause
m { DELETE [FIRST] }
[REPLACE [FIRST] [WITH] [FULL [VALUE [OF]]] operandé

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operandé6 |C ‘S ‘A* ‘ A‘Ul | | IB‘ ‘ ‘ ‘ | | yes no

* operandé6 can also be used as an array, see Search and Replace with Multiple Values.

Syntax Element Description:

Statements 457

EXAMINE

Syntax Element | Description

DELETE DELETE Option:

This option is used to delete the first (or all) occurrence(s) of the search-value (operand4)
in the content of operandl.

REPLACE REPLACE Option:

This option is used to replace the first (or all) occurrence(s) of the search-value (operand4)
in operand1 by the replace value specified in operandé.

FIRST FIRST Option:

If you specify the keyword FIRST, only the first identical value will be deleted/replaced.

] Notes:

1. If the REPLACE operation results in more characters being generated than will fit into operandl,
you will receive an error message.

2. If operandl is a dynamic variable, a REPLACE operation may cause its length to be increased
or decreased; a DELETE operation may cause its length to be set to zero. The current length of a
dynamic variable can be ascertained by using the system variable *LENGTH. For general inform-
ation on dynamic variables, see Using Dynamic Variables.

Search and Replace with Multiple Values

The search (operand4) and replace value (operand6) may also be defined as array fields. This allows
to substitute multiple different patterns in the examined field (operandI), all with an unique
EXAMINE statement. It is not necessary to have the same number of occurrences for the search and
replace operand. All what is required is the transfer compatibility between these fields; that is,
operand4:=operand6 must be a valid operation; see Assignment Operations with Arrays in the Pro-
gramming Guide.

The operation logic for the multi-value search is as follows:
® The field to be examined (operandl) is passed through only a single time, either from left to

right for direction FORWARD or from right to left for direction BACKWARD.

® Beginning with the first position, the values in the search array (operand4) are tested for a match,
one after the other, starting with the array occurrence with the lowest index.

* If no search value was found, the comparison repeats on the next field position.

® If one of the searched patterns is detected in the examined field (operandI), itis substituted with
the value of the replace array (operand6), which overlays the matching pattern in operand4, if
a operand4:=operandé would be executed.

" After a pattern replacement was performed, the compare process continues with the first occur-
rence for the search array, immediately after the inserted value. This means, a replaced pattern
is skipped and may not be replaced a second time.

458 Statements

EXAMINE

Example:

This example shows an HTML translation for the characters less than (<), greater than (>), and

ampersand (&).

DEFINE DATA LOCAL

1 #HTML (A/1:3) DYNAMIC INIT <'&1t;','>"', '&'>
1 #fTAB (A/1:3) DYNAMIC INIT <'<','>",'&"'>

1 #DOC(A) DYNAMIC /* document to be replaced
END-DEFINE

#DOC := 'a<&1t;b&b>cégt;"

WRITE #DOC (AL=30) 'before’

/* Replace #D0OC using ffHTML to #TAB (n:1 replacement)
EXAMINE ~ #DOC FOR #HTML(*) REPLACE #TAB(*)

/* '&1t;" is replaced by '<'" (4:1 replacement)

/* '>"' is replaced by '>'" (4:1 replacement)

/* '&" is replaced by '&" (5:1 replacement)
WRITE #DOC (AL=30) 'after'

END

See also Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES.

GIVING Clause

GIVING[IN] operand7
[{ [GIVING] NUMBER[IN] operand7}]
[[GIVING] POSITION[IN] operand’]
[[GIVING] LENGTH [IN] operand7]
[[GIVING] INDEX [IN] operand7 ...3]

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

oversnd? | 5 | [| [NERIIIIIIIL v

Syntax Element Description:

Syntax Element Description

GIVING GIVING Clause:

If only the keyword GIVING is specified, this corresponds to GIVING NUMBER (default).

NUMBER GIVING NUMBER Clause:

found in the field (operandl) whose content is to be examined.

Is used to obtain information on how many times the search value (operand4) was

Statements

459

EXAMINE

Syntax Element

Description

POSITION

GIVING POSITION Clause:

Is used to obtain the byte position within operand1 (or the substring of operandl)
where the first value identical to operand4 was found.

LENGTH

GIVING LENGTH Clause:

Is used to obtain the remaining content length of operandI (or the substring of
operandl) after all delete/replace operations have been performed. Trailing blanks
are ignored.

operand7

Number of Occurrences:

The number of occurrences of the search-value. If the REPLACE FIRST or DELETE
FIRST option is also used, the number will not exceed 1.

INDEX operand’
.3

GIVING INDEX Clause:
This option is only applicable if the underlying field to be examined is an array field.

GIVING INDEX is used to obtain the array occurrence number (index) of operandl
in which the first search-value (operand4) was found.

operand/ must be specified as many times as there are dimensions in operandI
(maximum three times). operand/ will return 0 if the search-value is found in none
of the occurrences.

Note: If the index range of operandI includes the occurrence 0 (for example, 0:5),

a value of 0 in operand’ is ambiguous. In this case, an additional GIVING NUMBER
clause should be used to ascertain whether the search-value was actually found or
not.

Syntax 2 - EXAMINE TRANSLATE

EXAMINE{

operandl

TRANSLATE ‘

AND
SUBSTRING (operandl,operandZ,operand3) } [AND]
UPPER
INTO { } [CASE]
LOWER
USING[INVERTED] operand4

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

460

Statements

EXAMINE

Syntax Description - Syntax 2

The EXAMINE TRANSLATE statement is used to translate the characters contained in a field into upper-
case or lower-case, or into other characters.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl S |A A|U B yes no
operandZ |C |S N|P|I| |B* yes no
operand3 |C |S N|P|I| |B* yes no
operand4 S |A A|U B yes no

*Format B of operand? and operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element Description

EXAMINE operandl Complete Field Content Translation:

operandl is the field whose content is to be translated.

EXAMINE SUBSTRING Partial Field Content Translation:
operandl operand?
operand3 Normally, the entire content of a field is translated.

With the SUBSTRING option, you translate only a certain part of the field.
After the field name (operandl) in the SUBSTRING clause, you specify first
the starting position (operand?2) and then the length (operand3) of the field
portion to be examined.

For example, to translate the 5th to 12th position inclusive of a field #A, you
would specify:

EXAMINE SUBSTRING(#A,5,8) AND TRANSLATE ...

Note: If you omit operand?, the starting position is assumed to be 1. If you

omit operand3, the length is assumed to be from the starting position to
the end of the field.

TRANSLATE INTO UPPER Upper Case Translation:
CASE

The content of operandl will be translated into upper case.

TRANSLATE INTO LOWER Lower Case Translation:
CASE

The content of operandl will be translated into lower case.

TRANSLATE USING operand4|Translation Table:

Statements 461

EXAMINE

Syntax Element Description

operand4 is the translation table to be used for character translation. The
table must be of format/length A2, U2 or B2.

Note: If for a character to be translated more than one translation is defined

in the translation table, the last of these translations applies.

INVERTED INVERTED Option:

If you specify the keyword INVERTED, the translation table (operand4) will
be used inverted; that is, the translation direction will be reversed.

Syntax 3 - EXAMINE for Unicode Graphemes

EXAMINE [FULL { operandl }
[VALUE [OFIII SUBSTRING (operandl,operandZ, operand3)

[POSITION-clause]

CHARPOSITION operand4
CHARLENGTH operand5

‘ [GIVING] POSITIONI[IN] operand6 [GIVING] LENGTH [IN] operand7

CHARPOSITION operand4 CHARLENGTH operand5
[FOR]

[GIVING] POSITION[IN] operandé
[GIVING] LENGTH [IN] operand7

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description - Syntax 3

A “grapheme” is what a user normally thinks of as a character. In most cases, a UTF-16 code unit
(= U format character) is a grapheme, however, a grapheme can also consist of several code units.
Examples are: a sequence of a base character followed by combining characters or a surrogate
pair. For more information on graphemes and other Unicode terms, see The Unicode Standard at
http:/[www.unicode.org/.

The EXAMINE statement for U format operands in general operates on code units. However, with

the CHARPOSITION and CHARLENGTH clauses it is possible to obtain the starting position and length
(in terms of code units) of a graphemes sequence. The returned code unit values can then be used
in other statements/clauses which require code unit operands (for example, in a SUBSTRING clause).

For further information on this syntax of the EXAMINE statement, see also Unicode and Code Page
Support in the Natural Programming Language, section Statements, EXAMINE.

Operand Definition Table:

462 Statements

http://www.unicode.org/

EXAMINE

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S |A U yes no
operandZ |C |S N|P|I| |B* yes no
operand3 |C |S N|P|I| |B* yes no
operand4 |C |S N|P|I yes no
operand5 |C |S N|P|I yes no
operandé S N|P|I yes no
operand/ S N|P|I yes no

* Format B of operandz and operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element

Description

FULL

FULL Option:

If FULL is specified for an operand, the entire value, including trailing blanks, will
be processed. If FULL is not specified, trailing blanks in the operand will be ignored.

SUBSTRING operandl
operand? operand3

SUBSTRING Clause:

Normally, the content of a field is examined from the beginning of the field to the
end or to the last non-blank character.

With the SUBSTRING option, you examine only a certain part of the field. After the
field name (operandl) in the SUBSTRING clause, you specify first the starting
position (operand?Z) and then the length (operand3) of the field portion to be
examined. operandZ and operand3 are specified in terms of code units.

For example, to examine the 5th to 12th position inclusive of a field #A, you would
specify:

EXAMINE SUBSTRING (#A,5,8)

Note:

1. If you omit operandZ, the starting position is assumed to be 1.

2. If you omit operand3, the length is assumed to be from the starting position to
the end of the field.

3. If SUBSTRING is used in conjunction with a DYNAMIC variable, the field behaves
like a fixed length variable; that is, the length (*LENGTH) does not change as a
result of the EXAMINE operation, regardless of whether a DELETE or REPLACE
operation was executed or not.

POSITION-clause

POSITION Clause:

Statements

463

EXAMINE

Syntax Element

Description

FROM and THRU positions are given in terms of code units. For further information,
see POSITION Clause under Syntax 1.

CHARPOSITION CHARPOSITION Clause:

operand4
operand4 defines the starting position (in terms of Unicode graphemes) of the
grapheme sequence. The according position in terms of code units is returned in
operandb. This clause can be omitted if the CHARLENGTH clause is specified; in
this case the starting position 1 is assumed.

CHARLENGTH CHARLENGTH Clause:

operand5

operand5 defines the length (in terms of Unicode graphemes) of the grapheme
sequence. The length of the grapheme sequence in terms of code units is returned
in operand/. This clause can be omitted if the CHARPOSITION clause is specified;
in this case the length from the starting position up to the end of the string is
returned.

GIVING POSITION IN
operandé

GIVING POSITION Clause:

operandb receives the starting position (in terms of code units) of the grapheme
sequence defined by operand4and operand5.1f operandIhasless than operand4
graphemes, 0 is returned. This clause can be omitted if the GIVING LENGTH clause
is specified.

GIVING LENGTH IN
operand7

GIVING LENGTH Clause:

operand/ receives the length (in terms of code units) of the grapheme sequence
defined by operand4 and operand5.1f operandI has less than
operand4+operand5 graphemes, 0 is returned. This clause can be omitted if the
GIVING POSITION clause is specified.

] Notes:

1. Either the CHARPOSITION or the CHARLENGTH clause or both must be specified.

2. Either the GIVING POSITION or GIVING LENGTH clause or both must be specified.

Examples

= Example 1 - EXAMINE
= Example 2 - EXAMINE TRANSLATE
= Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES

464

Statements

EXAMINE

= Example 4 - EXAMINE for Unicode Graphemes

Example 1 - EXAMINE

** Example "EXMEX1': EXAMINE

ko o ok e ok ok ok ok ok ok ok ok ok ke ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL

1 JfTEXT (A45)

1 #ARRAY (A5/1:3)
1 A (A3)

1 #START (N2)

1 {FNUM (N2)

1 #INUMI (N2)

1 §NUM2 (N2)

1 #INUM3 (N2)

1 #P0OS (N2)

1 #fPOS1 (N2)

1 JILENG (N2)

1 #INDEX (N2)
END-DEFINE

*

MOVE 'ABC A BC .A. .B. .C. -A- -B- -C- " TO {fTEXT

*

WRITE / "EXAMPLE 1 (DELIMITER, GIVING NUMBER)'
WRITE NOTITLE '#TEXT: ' #TEXT
EXAMINE #fTEXT FOR 'A' GIVING NUMBER #NUM1
EXAMINE #TEXT FOR 'A' WITH DELIMITER GIVING NUMBER #NUM2
EXAMINE #fTEXT FOR 'A' WITH DELIMITER '.' GIVING NUMBER #NUM3
WRITE 'EXAMINE #TEXT FOR "A" ' 57T 'Number found:' #NUM1
WRITE 'EXAMINE #TEXT FOR "A" WITH DELIMITER' 57T 'Number found:' FNUM?2
WRITE 'EXAMINE #TEXT FOR "A" WITH DELIMITER "."'
57T 'Number found:' #NUM3

*

WRITE / '"EXAMPLE 2 (DELIMITER, REPLACE, GIVING NUMBER)'

WRITE '"EXAMINE #TEXT FOR "A"™ WITH DELIMITER "-" REPLACE WITH "*"'
WRITE 'Before:' #TEXT
EXAMINE #fTEXT FOR 'A' WITH DELIMITER '-' REPLACE WITH '=*'

GIVING NUMBER #NUM
WRITE 'After: ' #fTEXT 57T 'Number found:' #NUM

*
*

NEWPAGE

*

WRITE / '"EXAMPLE 3 (REPLACE, GIVING NUMBER)'

WRITE "EXAMINE #TEXT FOR " " REPLACE WITH "+"°
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR ' ' REPLACE WITH '+' GIVING NUMBER #NUM

WRITE 'After: ' #TEXT 57T 'Number found:' #NUM

*

WRITE / 'EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)'
WRITE 'EXAMINE FULL #TEXT FOR " " REPLACE WITH "+"'

Statements 465

EXAMINE

WRITE 'Before:' F#TEXT

EXAMINE FULL ffTEXT FOR ' ' REPLACE WITH '+' GIVING NUMBER #NUM
WRITE 'After: ' #TEXT 57T 'Number found:' #NUM

*

WRITE / "EXAMPLE 5 (DELETE, GIVING POSITION)'

WRITE 'EXAMINE #TEXT FOR "+" DELETE GIVING POSITION #POS"'
WRITE 'Before:' FTEXT

EXAMINE #TEXT FOR '+' DELETE GIVING POSITION #POS

WRITE 'After: ' #fTEXT 57T 'Position found:' #POS

*

WRITE / "EXAMPLE 6 (DELETE, GIVING LENGTH)'

WRITE 'EXAMINE #TEXT FOR "A" DELETE GIVING LENGTH FFLENG'
WRITE 'Before:' #TEXT

EXAMINE #TEXT FOR 'A' DELETE GIVING LENGTH #LENG

WRITE 'After: ' #fTEXT 57T 'Length found:' #LENG

*

*

NEWPAGE

*

MOVE 'ABC A B C AL 0B LG -A- -B- -C- ' TO #TEXT

*

WRITE / '"EXAMPLE 7 (PATTERN, REPLACE, GIVING NUMBER)'

WRITE 'EXAMINE #TEXT FOR ".A." AND REPLACE "x*x*"'

WRITE 'Before:' #fTEXT

EXAMINE ffTEXT FOR ".A.' AND REPLACE '***' GIVING NUMBER #NUM

WRITE 'After: ' #fTEXT 57T 'Number found:' #NUM

*

MOVE "ABC A B C AL 0B LC. -A- -B- -C- ' TO #TEXT

*

WRITE 'EXAMINE #TEXT FOR PATTERN ".A." AND REPLACE "***"'

WRITE 'Before:' #TEXT

EXAMINE #TEXT FOR PATTERN '.A."' AND REPLACE '***' GIVING NUMBER #NUM
WRITE 'After: ' #fTEXT 57T 'Number found:' #NUM

*

MOVE 'ABC ABC AL UB. LC. -A- -B- -C- ' TO HTEXT
*

#A =B C

##POS := 6

JLENG:= 25

*

WRITE / 'EXAMPLE 8 (SUBSTRING, REPLACE, GIVING POSITION)'
WRITE '#A := "B C" ; {fPOS := 6 ; fLENG:= 25 '
WRITE 'EXAMINE SUBSTRING(#TEXT,#POS,#LENG) FOR #fA AND REPLACE "#**="'
WRITE 'Before:' #TEXT
EXAMINE SUBSTRING(#TEXT,#POS,fLENG) FOR #A AND REPLACE '***’
GIVING POSITION #P0OS1
WRITE 'After: ' #TEXT 57T 'Position found:' #P0S1

*
*

NEWPAGE

*

MOVE "ABC A B C A 0B LC. -A- -B- -C- ' TO #TEXT

466 Statements

EXAMINE

*

WRITE / '"EXAMPLE 9 (DELETE, GIVING NUMBER, GIVING POSITION, '-

"GIVING LENGTH)'

WRITE "EXAMINE #TEXT FOR "." DELETE GIVING NUMBER

WRITE 30T 'GIVING POSITION #POS'
WRITE 30T 'GIVING LENGTH LENG"
WRITE 'Before:' #TEXT

EXAMINE #TEXT FOR '.' DELETE GIVING NUMBER #NUM
GIVING POSITION #POS
GIVING LENGTH {fLENG

WRITE "After: ' #fTEXT

WRITE 'Number found: ' #NUM
WRITE 'Position found:' #POS
WRITE 'Length found: ' #LENG

*
*

*

MOVE 'ABC ' TO #fARRAY (1)
MOVE '.A.B.' TO ffARRAY (2)
MOVE '-A-B-' TO #fARRAY (3)

*

WRITE / '"EXAMPLE 10 (GIVING NUMBER, GIVING POSITION,

WRITE 'fFARRAY(1):' #ARRAY(1)

WRITE 'fFARRAY(2):' FARRAY(2)

WRITE '#ARRAY(3):' #ARRAY(3)

WRITE 'EXAMINE #ARRAY(*) FOR "B" GIVING NUMBER

WRITE 27T 'GIVING POSITION #POS'

WRITE 27T 'GIVING INDEX FFINDEX"

EXAMINE FARRAY(*) FOR 'B' GIVING NUMBER #NUM
GIVING POSITION #POS

GIVING INDEX F#INDEX

WRITE 'Number found: ' #NUM
WRITE 'Position found:' #P0S
WRITE 'Index found: " JFINDEX
END

Output of Program EXMEX1:

EXAMPLE 1 (DELIMITER, GIVING NUMBER)

#fITEXT: ABC A B C AL .BL LG -A- -B-

EXAMINE #TEXT FOR "A’
EXAMINE #TEXT FOR 'A' WITH DELIMITER
EXAMINE #TEXT FOR 'A' WITH DELIMITER '.'

EXAMPLE 2 (DELIMITER, REPLACE, GIVING NUMBER)

EXAMINE #TEXT FOR 'A' WITH DELIMITER '-' REPLACE WITH
Before: ABC ABC A 0B LC. A= =[g=
After: ABC ABC .A. .B. .C. =%w= =[§=

EXAMPLE 3 (REPLACE, GIVING NUMBER)

FENUM"

Number
Number
Number

(N}

Number

GIVING INDEX)'

found:
found:
found:

found:

EXAMINE #TEXT FOR ' ' REPLACE WITH '+'
Before: ABC ABC A, .B. .C. =%= ==
Statements 467

EXAMINE

After: ABCH++A+B+CH+++ A .++.B.++.C.++++-*-++-B-++-C- Number found:

EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)

EXAMINE FULL #TEXT FOR ' ' REPLACE WITH '+

Before: ABCHHHA+BHCH+ A 4+ B.++.C +Ht-*-++-B-++-C-

After: ABCHHHA+B+CH++. A ++. B.++.C.4+++-*-++-B-++-C-+ Number found:

EXAMPLE 5 (DELETE, GIVING POSITION)
EXAMINE #TEXT FOR '+' DELETE GIVING POSITION #POS
Before: ABCH++A+B+CH++ A ++ B . ++ C.++++-%-++-B-++-C-+

After: ABCABC.A..B..C.-*--B--C- Position found:

EXAMPLE 6 (DELETE, GIVING LENGTH)
EXAMINE #TEXT FOR 'A' DELETE GIVING LENGTH #LENG
Before: ABCABC.A..B..C.-*--B--C-

After: BCBC...B..C.-*--B--C- Length found:
EXAMPLE 7 (PATTERN, REPLACE, GIVING NUMBER)

EXAMINE #TEXT FOR ".A.'" AND REPLACE '#**x*'

Before: ABC ABC .A. .B. .C. =A= =B= =C-=

After: ABC ABC w B, oCo -A- -B- -C- Number found:
EXAMINE #TEXT FOR PATTERN '.A.' AND REPLACE '***'

Before: ABC A B C AL B .C. =A= =B= =C-

After: ABC ***B C 2ol B .C. were =B= =C- Number found:

EXAMPLE 8 (SUBSTRING, REPLACE, GIVING POSITION)

#A := 'B C' ; #POS := 6 ; {LENG:= 25

EXAMINE SUBSTRING(#TEXT,#POS,#LENG) FOR #A AND REPLACE '#***'

Before: ABC A B C A, .B. .C. SASECBER

After: ABC A S .A. .B. .C. == == =(- Position found:

EXAMPLE 9 (DELETE, GIVING NUMBER, GIVING POSITION, GIVING LENGTH)
EXAMINE #TEXT FOR '.' DELETE GIVING NUMBER #NUM

GIVING POSITION #P0S

GIVING LENGTH 4LENG

Before: ABC A B C A, .B. .C. =A= =B= =C-
After: ABC ABC A B C =M= =B= =C-
Number found: 6

Position found: 15

Length found: 38

EXAMPLE 10 (GIVING NUMBER, GIVING POSITION, GIVING INDEX)
#FARRAY (1) : ABC
#FARRAY (2): .A.B.
#FARRAY (3): -A-B-
EXAMINE #ARRAY(*) FOR 'B' GIVING NUMBER {NUM
GIVING POSITION #POS
GIVING INDEX #FINDEX

Number found: 3
Position found: 2
Index found: 1
468 Statements

EXAMINE

Example 2 - EXAMINE TRANSLATE

** Example 'EXMEX2': EXAMINE TRANSLATE
R R R R R R R R R R R R R R R R e R e e i R e b e e b e e b e e S e e b e b S e e b o 4
DEFINE DATA LOCAL

1 #TEXT (A50)

1 #TAB (A2/1:10)

1 #POS (N2)

1 #LENG (N2)

END-DEFINE

*

MOVE 'ABC A B C AL 0B LG -A- -B- -C- ' TO #TEXT
*

MOVE 'AX' TO #TAB(1)

MOVE 'BY' TO #TAB(2)

MOVE 'CZ' TO #TAB(3)

*
*

WRITE NOTITLE / '"EXAMPLE 1 (WITH TRANSLATION TABLE)'
WRITE 'EXAMINE #TEXT TRANSLATE USING #TAB(*)'

WRITE 'Before:' #TEXT

EXAMINE ffTEXT TRANSLATE USING #TAB(*)

WRITE '"After: ' #TEXT

*

WRITE / '"EXAMPLE 2 (WITH INVERTED TRANSLATION TABLE)'
WRITE 'EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)'
WRITE 'Before:' #TEXT

EXAMINE #fTEXT TRANSLATE USING INVERTED #TAB(*)

WRITE 'After: ' fTEXT

*

#POS := 13

#LENG:= 15

*

WRITE / '"EXAMPLE 3 (WITH LOWER CASE TRANSLATION)'
WRITE '#P0S := 13 ; #LENG:= 15 '

WRITE 'EXAMINE SUBSTRING(#TEXT,#POS,#LENG) TRANSLATE INTO LOWER CASE'
WRITE 'Before:' #TEXT

EXAMINE SUBSTRING(HTEXT,#POS,#LENG) TRANSLATE INTO LOWER CASE
WRITE 'After: ' #TEXT

*

END

Statements 469

EXAMINE

Output of Program EXMEX2:

EXAMPLE 1 (WITH TRANSLATION TABLE)

EXAMINE TEXT TRANSLATE USING #TAB(*)

Before: ABC A B C A, .B. .C. == == ==
After: XYZ XY Z XeooouY. L. =KX= =Y= =l-

EXAMPLE 2 (WITH INVERTED TRANSLATION TABLE)

EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)
Before: XYZ XY Z KoY. L. -X- Y- -Z-
After: ABC A B C . B O -A- -B- -C-

EXAMPLE 3 (WITH LOWER CASE TRANSLATION)

#POS := 13 ; #LENG:= 15

EXAMINE SUBSTRING(#TEXT,#POS,#*LENG) TRANSLATE INTO LOWER CASE
Before: ABC A B C A, .B. .C. =A= =B= =C-

After: ABC ABC .a. .b. .c. -A- -B- -C-

Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES

* EXAMPLE '"EXMEX3': EXAMINE AND REPLACE WITH MULTIPLE VALUES

R R B b R R e I b b e S b b e e b b S e b b e e b b S e b b S S b b R e e b b S e e b b S e b b R e b b R e e b b b S

* This example shows a translation of the pattern

* "AA', 'Aa' and 'aA' into '++',
* 'BB', 'Bb' and 'bB' into '--' and
* 'CC', 'Cc'" and 'cC' into '**'",

R R R b R R e b R R e b b e e R e e b b R e i b e b b R e i b i R e b b R e i i b b e b R R e i b b e b b o

DEFINE DATA LOCAL

1 4SV (A2/1:3,1:3) INIT (1,V) <"AA','BB','CC'>
(2,V) <'Aa','Bb','Cc'>
(3,V) <'aA','bB",'cC'>

1 #fRV (A2/1:3) INIT GRS LR S

1 #STRING (A20) INIT <'"AAABbbbbBCCCcccCaaaA'>
1 4ENUM (N2)

END-DEFINE

*
*

WRITE NOTITLE / 'EXAMINE #STRING FOR #fSV(*,*) AND REPLACE WITH #RV(*)' /

*

WRITE 'Before:' #STRING /* shows "AAABbbbbBCCCcccCaaaA’
*
EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH #RV(*)
GIVING NUMBER 4NUM
*
WRITE '"After: ' #STRING /* shows TR = = [glh = = e g g
40T 'Number found:' #NUM

*

470

Statements

EXAMINE

Output of Program EXMEX3:

EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH #RV(*)

Before: AAABbbbbBCCCcccCaaaA
INFIEERE GFrA= S IDlD)= = w @G| Gl Number found: 7

Example 4 - EXAMINE for Unicode Graphemes

This example demonstrates the analysis of a Unicode string containing the characters & und 0.
Both characters are defined as base character followed by a combining character: 3 is coded with
U+0061 followed by U+0308, and U is coded with U+0075 followed by U+0308.

DEFINE DATA LOCAL

1 #U (U20)

1 #START (1I2)

1 #fPOS (I2)

1 ffLEN (I2)

END-DEFINE

#U := U'AB'-UH'00610308'-U'CD'-UH'00750308"'-U"'EF"
*

REPEAT
#FSTART := #START + 1
EXAMINE #U FOR CHARPOSITION #START
CHARLENGTH 1
GIVING POSITION IN #POS
LENGTH IN #LEN

INPUT (AD=0) MARK POSITION #P0OS IN FIELD *#U

' UNICODE-STRING:' #U (AD=MI)

/] CHARACTER NO.:' #START (EM=9)
/ 'STARTS AT BYTE POSITION:' #P0S (EM=9)
/! AND THE LENGTH IS:' #LEN (EM=9)

WHILE #POS NE O

END-REPEAT

END

Output:

Statements 471

EXAMINE

Mainframe Environments:

Windows and Linux Environments (with Natural Web 1/0
Interface):

UNICODE-STRING: ABa?CDu?EF

CHARACTER NO.: 1
STARTS AT BYTE POSITION: 1
AND THE LENGTH IS: 1

UNICODE-STRING: ABaCDUEF

CHARACTER NO. :
STARTS AT BYTE POSITION:
AND THE LENGTH IS: 1

—_

Press ENTER to continue.

Press ENTER to continue.

UNICODE-STRING: ABa?CDu?EF

CHARACTER NO.: 2
STARTS AT BYTE POSITION: 2
AND THE LENGTH IS: 1

UNICODE-STRING: ABA&CDUEF

CHARACTER NO. :
STARTS AT BYTE POSITION:
AND THE LENGTH IS:

= NN

Press ENTER to continue.

Press ENTER to continue.

Note that the character in position 3 is a combining character sequence and is two code units long.

UNICODE-STRING: ABa?CDu?EF

CHARACTER NO.: 3
STARTS AT BYTE POSITION: 3
AND THE LENGTH IS: 2

UNICODE-STRING: ABA&CDUEF

CHARACTER NO.: 3
STARTS AT BYTE POSITION: 3
AND THE LENGTH IS: 2

And so on.

And so on.

472

Statements

7 O EXPAND

B FUNCHON .ttt e e 474
B SYNEAX DESCIIPHON ...ttt e e e s 474

473

EXPAND

dynamic-clause

EXPAND { } [GIVING operand5]

array-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related statements: REDUCE | RESIZE

Belongs to Function Group: Memory Management Control for Dynamic Variables or X-Arrays

Function

The EXPAND statement is used to expand:

® the allocated length of a dynamic variable (dynamic-clause), or

® the number of occurrences of X-arrays (array-clause).
For further information, see the following sections in the Programming Guide:

® Using Dynamic Variables

= Allocating/Freeing Memory Space for a Dynamic Variable
" X-Arrays

= Storage Management of X-Group Arrays

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic
Permitted |Definition
operandl S |A A|U B no no
operand? |C|S I no no
operand3 A G A|UIN|P|I |[F|B|D|T|L|C|G|O yes no
operand4 |C|S N|P|I no no
operandb S 14 no yes

Syntax Element Description:

474 Statements

EXPAND

Syntax Element

Description

dynamic-clause

Dynamic Clause:

The EXPAND DYNAMIC VARIABLE statement expands the allocated length of a dynamic
variable (operandl) to the value specified with operandZ. For more information,
see Dynamic Clause below.

operandl Dynamic Variable:
operandl is the dynamic variable for which the size is to be expanded.
operandz Target Length of Dynamic Variable:

operand? is used to specify the length to which the dynamic variable is to be
expanded. The value specified must be a non-negative integer constant or a variable
of type integer.

array-clause

Array Clause:

The EXPAND ARRAY statement increases the number of occurrences of the X-array
(operand3) to the upper and lower bound specified with (dim[, dim[,dim]]). For
more information, see Array Clause below.

operand3 X-Array:
operand3is the X-array for which the number of occurrences may be increased. The
index notation of the array is optional. As index notation only the complete range
notation * is allowed for each dimension.

dim Dimension:

operand4 The lower and upper bound notation (operand4 or asterisk) to which the X-array

should be expanded is specified here. If the current value of the upper or lower bound
should be used, an asterisk (*) may be specified in place of operand4. For more
information, see Dimension below.

GIVING operand5

GIVING Clause:

If the GIVING clause is not specified, Natural runtime error processing is triggered if
an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if
an error occurred, or zero upon success.

Statements

475

EXPAND

Dynamic Clause

’[SIZE OF] DYNAMIC [VARIABLE] operandl TO operandZ?

The EXPAND DYNAMIC VARIABLE statement expands the allocated size of a dynamic variable (oper-
andI) to the value specified with operandz.

If operand?Z is less than the currently allocated length of operandi, the statement will be ignored
for this dynamic variable. The currently allocated length (*LENGTH) of the dynamic variable is not
modified.

Array Clause

[AND RESET] [OCCURRENCES OF] ARRAY operand3 TO (diml,diml[,dimll)

The EXPAND ARRAY statement increases the number of occurrences of the X-array (operand3) to the
upper and lower bound specified with T0 (dim [,dim[,dim]]).

The RESET option resets all occurrences of the expanded X-array to its default zero value. By default
(no RESET option), the actual values are kept and the expanded (new) occurrences are reset.

When using the EXPAND statement, it is only possible to increase the number of occurrences. If the
requested number is smaller than the currently allocated number of occurrences, it will simply be
ignored.

An upper or lower bound used in an EXPAND statement must be exactly the same as the correspond-
ing upper or lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #fa(I4/1:%)
1 ffg(1:*)

2 #ga(l4/1:%)

1 #i(id)
END-DEFINE

/* allocating #a(1:10)
EXPAND ARRAY #a TO (1:10) /* ffa is allocated 10
EXPAND ARRAY Hfa TO (*:10) /* occurrences.

/* allocating #fga(1:10,1:20)
EXPAND ARRAY g TO (1:10) /* 1st dimension is set to (1:10)
EXPAND ARRAY Hfga TO (*:*,1:20) /* 1st dimension is dependent and
/* therefore kept with (*:%*)
/* 2nd dimension is set to (1:20)

476 Statements

EXPAND

EXPAND ARRAY 4fa TO (5:10) /* This is rejected because the lower index
/* must be 1 or *
EXPAND ARRAY #fa TO (4i:10) /* This is rejected because the lower index

/* must be 1 or *

EXPAND ARRAY #fga TO (1:10,1:20) /* (1:10) for the 1st dimension is rejected
/* because the dimension is dependent and
/* must be specified with (*:*).

For further information, see the following topics in the Programming Guide:

= Storage Management of X-Arrays
= Storage Management of X-Group Arrays

Dimension

Each of the dimensions (d7m) specified in the Array Clause is defined using the following syntax:

*
‘{* F }]
operand4) ~ | operand4

The lower and upper bound notation (operand4 or asterisk) to which the X-array should be expan-
ded is specified here. If the current value of the upper or lower bound should be used, an asterisk
(*) may be specified in place of operand4. Instead of *:*, you may also specify a single asterisk.

The number of dimensions (d7m) must exactly match the defined number of dimensions of the X-
array (1,2 or 3).

If the number of occurrences for a specified dimension is less than the number of the currently
allocated occurrences, the number of occurrences is not changed for the corresponding dimension.

Statements 477

478

IX

B BT CH s 481
B T2 FIND Lo s 487
B 73 O R e 523
B 74 FORMAT s 529
B T G e 535
B 76 GET SAME ..o 541
® 77 GET TRANSACTION DATA ..ot 545
B 78 HISTOGRAM ...t 549
B T I s 561
B 80 IF SELECTION ..o 965
B BT IGNORE L. s 569
B B2 INCLUDE ... 571

479

480

71 FETCH

B FUNCHON .ttt e e 482
B SYNEAX DESCIIPHON ...ttt e e e s 482
LI 1oL OSSPSR 484

481

FETCH

REPEAT
FETCH [{ RETURN }] operandl [operandZ2 [(parameter)]] ..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE |
FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The FETCH statement is used to execute a Natural object program written as a main program. The
program to be loaded must have been previously stored in the Natural system file (cataloged or
stowed). Execution of the FETCH statement does not overwrite any source program in the Natural
source work area.

For Natural RPC: See Notes on Natural Statements on the Server (in the Natural RPC (Remote Procedure
Call) documentation).

Additional Considerations

In addition to the parameters passed explicitly with FETCH, the fetched program also has access
to the established global data area.

The FETCH statement may cause the internal execution of an END TRANSACTION statement based on
the setting of the Natural profile parameter 0PRB (Database Open/Close Processing) as set by the
Natural administrator. If a logical transaction is to span multiple Natural programs, the Natural
administrator should be consulted to ensure that the 0PRB parameter is set correctly.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl |C A yes no

operand? |C |S |A |G A|UIN|P|I|FB|D|T|L| |G yes yes

Syntax Element Description:

482 Statements

FETCH

Syntax
Element

Description

REPEAT

REPEAT Option:

The REPEAT option causes Natural to suppress the prompt for user input for each INPUT
statement issued during the execution of the FETCHed program. It may be used to send
information about the execution of the program to the terminal without the user having to
reply with ENTER.

RETURN

RETURN Option:

Without the specification of RETURN, the execution of the program issuing the FETCH statement
will be terminated immediately and the fetched program will be activated as a “main
program” (Level 1).

If a program is invoked with FETCH RETURN, the execution of the invoking program will be
suspended - not terminated - and the FETCHed program will be activated as a “subordinate
program” on a higher level. Control is returned to the invoking program when an END or
ESCAPE ROUTINE statement is encountered in the FETCHed program. Processing is continued
with the statement following the FETCH RETURN statement.

operandl

Program Name:

The name of the program module (maximum 8 characters) can be specified as an alphanumeric
constant or the content of an alphanumeric variable of length 1 to 8.

Natural will attempt to locate the program in the library currently active at the time the
FETCH statement is issued. If the program is not found, Natural will attempt to locate the
program in the steplibs. If the program is still not found, an error message will be issued.

The program name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different programs for the
processing of input, depending on the language in which input is provided.

operand?

Passing Parameter Fields:

The FETCH statement may also be used to pass parameter fields to the invoked program. A
parameter field may be defined with any format. The parameters are converted to a format
suitable for a corresponding INPUT field. All parameters are placed on the top of the Natural
stack.

The parameter fields can be read by the FETCHed program using an INPUT statement. The
first INPUT statement will result in the insertion of all parameter field values into the fields
specified in the INPUT statement. The INPUT statement must have the sign position
specification (session parameter SG=0N) for parameter fields defined with numeric format,
because each parameter field defined with numeric format in the FETCH statement will receive
a sign position if its value is negative.

If more parameters are passed than are read by the next INPUT statement, the extra parameters
are ignored. The number of parameters may be obtained with the Natural system variable
*DATA.

Statements

483

FETCH

Syntax Description
Element

content is passed, but not the date component.

Note: If operand?is a time variable (format T), only the time component of the variable

parameter |Date Format:

parameter for this variable.

If operand?is a date variable, you can specify the session parameter DF (Date Format) as

Example

Invoking Program:

** Example 'FETEX1': FETCH (with parameter)
Khkhkkhhkkhhkkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhkhkhhkhkhkhhkkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhkrkhhkhkrkhhkhkrkhhkhkrkhrkhkrkhkrkhxk
DEFINE DATA LOCAL
1 #fPNUM (N8)
1 #FNC (A1)
END-DEFINE
*
INPUT 10X "SELECTION MENU FOR EMPLOYEES SYSTEM' /
10X '-" (35) //
10X 'ADD (A)" /
10X 'UPDATE (u)y' /
10X 'DELETE (D))" /
10X 'STOP)" 7/
10X 'PLEASE ENTER FUNCTION: " #FNC ///
10X 'PERSONNEL NUMBER:"' #PNUM
*
DECIDE ON EVERY VALUE OF #FNC
VALUE "A', 'U', 'D'

IF #fPNUM = 0
REINPUT 'PLEASE ENTER A VALID NUMBER' MARK *{PNUM
END-TF
VALUE 'A'
FETCH 'FETEXAD' #PNUM
VALUE 'U'
FETCH 'FETEXUP' #PNUM
VALUE 'D'
FETCH "FETEXDE' #PNUM
VALUE '.'
STOP
NONE
REINPUT 'PLEASE ENTER A VALID FUNCTION' MARK *#FNC
END-DECIDE
*
END
484 Statements

FETCH

Invoked Program FETEXAD:

** Example 'FETEXAD': FETCH (called by FETEX1)

Sk ok o o o oo ok ok ok kK K Kk o ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok
DEFINE DATA LOCAL

1 #fPERS-NR (N8)

END-DEFINE

*

INPUT {fFPERS-NR

*

WRITE *PROGRAM 'Record added with personnel number:' #PERS-NR

*

END

Invoked Program FETEXUP:

** Example 'FETEXUP': FETCH (called by FETEX1)

KA A h A A A A A A A A AR A A AR AR AR A KA R Ak
DEFINE DATA LOCAL

1 ffPERS-NR (N8)

END-DEFINE

*

INPUT #PERS-NR

*

WRITE *PROGRAM 'Record updated with personnel number:' #PERS-NR

*

END

Invoked Program FETEXDE:

** Example 'FETEXDE': FETCH (called by FETEXI1)

Sk ok ok o o ok ok ok ok ok ko o o o ok o ok ok ok ok ok ko ko ok ok o ok ok ok ok ok ok ok ok ko ok o o ok o o ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL

1 #PERS-NR (N8)

END-DEFINE

*

INPUT #PERS-NR

*

WRITE *PROGRAM 'Record deleted with personnel number:' #PERS-NR

*

END

Statements

485

FETCH

Output of Program FETEX1:

SELECTION MENU FOR EMPLOYEES SYSTEM

ADD (A)
UPDATE (U)
DELETE (D)
STOP (.)

PLEASE ENTER FUNCTION: D

PERSONNEL NUMBER: 1150304

After entering and confirming function and personnel number:

Page 1 05-01-13 11:58:46

FETEXDE Record deleted with personnel number: 1150304

486 Statements

72 FIND

B FUNCHON .ttt e e 488
LI =1 (47 o PSPPSR 490
= Syntax 1 - FIND Statement with ProCessing LOOPvvvviiiiiiiieeeiiee e 490
= Syntax 2 - FIND Statement without Processing LOOPcuuviiiiiiiiiiiiiiiic e 490
B SYNEAX DESCIIPHON ©..vviiiiie e e e e e e e e e 491
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 512

487

FIND

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | GET | GET SAME | GET
TRANSACTION | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE
| UPDATE

Belongs to Function Group: Database Access and Update

Function

The FIND statement is used to select a set of records from the database based on search criteria
consisting of fields defined as descriptors (keys).

This statement causes a processing loop to be initiated and then executed for each record selected.
Each field in each record may be referenced within the processing loop. It is not necessary to issue
a READ statement following the FIND in order to reference the fields within each record selected.

See also the following sections in the Programming Guide:

® FIND Statement
® Loop Processing

" Referencing of Database Fields Using (r) Notation

Database-Specific Considerations

Database |Explanation

SQL FIND FIRST as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.
FIND UNIQUE is not permitted.
The SORTED BY clause corresponds with the SQL clause ORDER BY.

The basic search criteria for an SQL-database table may be specified in the same manner as for
an Adabas file. The term record used in this context corresponds with the SQL term “row”.

XML FIND FIRST, as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.

FIND UNIQUE is not permitted.

The basic search criteria for an XML-database may be specified in the same manner as for an
Adabas file. The term record used in this context corresponds with the XML term “XML object”.

488 Statements

FIND

System Variables Available with the FIND Statement

The Natural system variables *ISN, *NUMBER, and *COUNTER are automatically created for each FIND
statement issued. A reference number must be supplied if the system variable was referenced
outside the current processing loop or through a FIND UNIQUE, FIND FIRST, or FIND NUMBER
statement. The format/length of each of these system variables is P10; this format/length cannot
be changed.

System Variable |Availability/Usage

*ISN = Adabas

*ISN contains the Adabas internal sequence number (ISN) of the record currently being
processed.

*ISN is not available for the FIND NUMBER statement.

® Tamino

*ISN contains the XML object ID.
= SQL

*ISN is not available.

= Entire System Server

*ISN is not available.

*NUMBER See system variable *NUMBER in the System Variables documentation.

With Entire System Server, *NUMBER is not available.

*COUNTER The system variable *COUNTER contains the number of times the processing loop has been
entered.

See also Example 13 - Using System Variables with the FIND Statement.
Issuing Multiple FIND Statements

Multiple FIND statements may be issued to create nested loops whereby an inner loop is entered
for each record selected in the outer loop.

See also Example 14 - Multiple FIND Statements.

Statements 489

FIND

Restrictions

With Entire System Server, FIND NUMBER and FIND UNIQUE as well as the PASSWORD, CIPHER, COUPLED

and RETAIN clauses are not permitted.

Syntax 1 - FIND Statement with Processing Loop

(operandl)
[PASSWORD=0perand?]
[CIPHER=0perand3]
[WITH][[LIMIT] (operand4)] basic-search-criteria
[COUPLED-clause] ... 4/42
[STARTING WITH ISN=operand5]
[SORTED-BY-clause]
[RETAIN-clause]
[[IN] SHARED HOLD [MODE=option]]
[SKIP [RECORDS] IN HOLD]
[WHERE-clause]
[IF-NO-RECORDS-FOUND-cTause]
statement ...
END-FIND (structured mode only)

LOOP (reporting mode only)

FIND [{ ALL }] [MULTI-FETCH-clause] [RECORDS][IN][FILE] view-name

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax 2 - FIND Statement without Processing Loop

FIRST
FIND[‘ NUMBER] l [RECORDS] [IN] [FILE] view-name
UNIQUE

[PASSWORD=0perand?]

[CIPHER=0perand3]

[WITH][[LIMIT] (operand4)] basic-search-criteria
[COUPLED-clause].. 4/42

490

Statements

FIND

[SORTED-BY-clause] (only for FIND FIRST)
[RETAIN-clause]
[WHERE-cTause]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Dynamic
Permitted Definition
operandl |C |S NPI B* yes no
operandz |C |S A yes no
operand3 |C |S N yes no
operand4 |C |S NPI B* yes no
operandb |C |S NPI B* yes no

* Format B of operandl, operand4 and operand5 may be used only with a length of less than or
equal to 4.

Syntax Element Description:

Syntax Element Description

ALL/operandl Processing Limit:

The number of records to be processed from the selected set may be
limited by specifying operand1l (enclosed in parentheses, immediately
after the keyword FIND) - either as a numeric constant (in the range from
0 to 4294967295) or as the name of a numeric variable.

ALL may be optionally specified. It emphasizes that all selected records
are to be processed.

If you specify a limit with operandl, this limit applies to the FIND loop
being initiated. Records rejected for processing by the WHERE clause are
not counted against this limit.

Statements 491

FIND

Syntax Element

Description

FIND (5) IN EMPLOYEES WITH ...

MOVE 10 TO #CNT(N2)
FIND (#CNT) EMPLOYEES WITH ...

For this statement, the specified limit has priority over a limit set with
a LIMIT statement.

If a smaller limit is set with the LT parameter, the LT limit applies.

Note:

1. If you wish to process a 4-digit number of records, specify it with a
leading zero: (0n1nnn); because Natural interprets every 4-digit number
enclosed in parentheses as a line-number reference to a statement.

2. operandl has no influence on the size of an ISN set that is to be
retained by a RETAIN clause. operandl is evaluated when the FIND
loop is entered. If the value of operandl is modified within the FIND
loop, this does not affect the number of records processed.

FIND FIRST | FIND NUMBER |
FIND UNIQUE

FIND FIRST, FIND NUMBER, FIND UNIQUE Option:
These options are used

" to select the first record of a selected set (see FIND FIRST),

" to determine the number of records in a selected set (see FIND
NUMBER), or

® to ensure that only one record satisfies a selection criterion (see FIND
UNIQUE).

For a detailed description of these options, see below.

MULTI-FETCH-clause

MULTI-FETCH Clause:

For Adabas databases, Natural offersa MULTI - FETCH clause that allows
you to read more than one record per database access. For further
information, see MULTI-FETCH Clause.

view-name

View Name:

The name of a view as defined either within a DEFINE DATA block or
in a separate global or local data.

In reporting mode, view-name is the name of a DDM if no DEFINE
DATA LOCAL statement is used.

PASSWORD=operandZ?

PASSWORD Clause:

The PASSWORD clause applies only for Adabas databases. This clause is
not permitted with Entire System Server.

492

Statements

FIND

Syntax Element

Description

The PASSWORD clause is used to provide a password (operandZ?) when
reading/writing data from an Adabas file which is password protected.
If you require access to a password-protected file, contact the person

responsible for database security concerning password usage/assignment.

If the PASSWORD clause is omitted, the default password specified with
the PASSW statement applies.

The password value must not be changed during the execution of a
processing loop.

See also Example 1 - PASSWORD Clause.

CIPHER=o0perand3

CIPHER Clause:

The CIPHER clause only applies to Adabas databases. This clause is not
permitted with Entire System Server.

The CIPHER clause is used to provide a cipher key (operand3) when
retrieving data from Adabas files which are enciphered. If you require
access to an enciphered file, contact the person responsible for database
security concerning cipher key usage/assignment.

The cipher key may be specified as a numeric constant with 8 digits or
as a user-defined variable with format/length N8.

The value of the cipher key must not be changed during the processing
of a loop initiated by a FIND statement.

See also Example 2 - CIPHER Clause.

WITH LIMIT operand4
basic-search-criteria

WITH Clause:

The WITH clause is required. It is used to specify the
basic-search-criteria (see Search Criteria for Adabas Files)
consisting of key fields (descriptors) defined in the database.

The following database-specific consideration applies.

You may use Adabas descriptors, subdescriptors, superdescriptors,
hyperdescriptors, and phonetic descriptors within a WITH clause. A
non-descriptor (that is, a field marked in the DDM with N) can also be
specified.

The number of records to be selected as a result of a WITH clause may
be limited by specifying the keyword LIMIT together with a numeric
constant or a user-defined variable, enclosed within parentheses, which
contains the limit value (operand4, range from 1 to 4294967295). If
the number of records selected exceeds the limit, the program will be
terminated with an error message.

Statements

493

FIND

Syntax Element

Description

Note: If the limit is to be a 4-digit number, specify it with a leading zero

(Onnnn); because Natural interprets every 4-digit number enclosed in
parentheses as a line-number reference to a statement.

COUPLED-clause

COUPLED Clause:

This clause may be used to specify a search which involves the use of
the Adabas coupling facility. See COUPLED Clause.

STARTING WITH ISN=operand5

STARTING WITH Clause:

This clause may be used for repositioning within a FIND loop whose
processing has been interrupted. See STARTING WITH Clause.

SORTED-BY-clause

SORTED BY Clause:

This clause may be used to cause Adabas to sort the selected records
based on the sequence of one to three descriptors. See SORTED BY
Clause.

RETAIN-clause

RETAIN Clause:

This clause may be used to retain the result of an extensive search in
large files for further processing. See RETAIN Clause.

[LIN] SHARED HOLD
[MODE=option]]

SHARED HOLD Clause

Note: This clause can be used only for access to Adabas.

This clause can be used to place records being read in a “shared hold”
state. A record can be put in shared hold by many users at the same
time. As long as a record is in a shared hold state, it is protected from
being updated, because it cannot be set into an exclusive hold by parallel
users. This ensures data consistency for the record data, as no one can
update the record while it is being processed.

Especially if the same record is fetched with multiple statements to read
different MU/PE occurrences (GET SAME statement) or to browse over
a LOB field in a piecemeal technique (READLOB statement), the shared
hold state can guarantee data stability over this transaction without
blocking the record for other users.

Although such a hold state is an efficient way to protect read sequences,
itis a basic and important matter when to release the record again from
this “soft lock”. Since this question depends on individual application
aspects, different options can be selected with the MODE subclause.

MODE Option Hold Period Explanation
C Only at the moment of |Ensures only that the
reading the record. record version being
read has been committed
by the last user who
updated the record. This

494

Statements

FIND

Syntax Element

Description

option does not really set
a lock in hold state, but
checks only that the
record is not in exclusive
hold by another user at
time of read.

Q Until the next record in |Releases the record from
a sequence is read. shared hold when

= the next record is read
in the loop sequence
or

® the loop is terminated
or

® an END TRANSACTION
or BACKOUT
TRANSACTION is
executed.

Releases the record from
shared hold when a
logical transaction is
terminated with an END
TRANSACTION or
BACKOUT TRANSACTION
statement.

S Until the logical
transaction is
terminated.

MODE=Q and MODE=S ensure that the record being read cannot be updated
concurrently by other users until it has been released from hold again.

If the MODE subclause is not specified, MODE=C is the default.

See also Example 15 - SHARED HOLD Clause below.

SKIP RECORDS IN HOLD

SKIP RECORDS Clause:

Note: This clause can be used only for access to Adabas.

Whenever a record is going to be read with hold, a Natural error
NAT3145 (Adabas response code 145) might happen if the record is in
hold by another user at this time. This occurs if a shared hold is requested
and the record is in exclusive hold or if an exclusive hold is requested
and the record is in either exclusive or shared hold.

Although error NAT3145 is surely the right reaction to assure a “clean
data processing”, sometimes it might be useful if a record in hold could
be skipped. If it is alright that such a record will not be processed and
the loop processing should continue, the SKIP RECORDS clause should
be used.

Statements

495

FIND

Syntax Element Description

If the SKIP RECORDS clause is applied, Natural first tries to read the
record with hold.

If the record is already in hold and a Natural error NAT3145 would
occur,
® no error processing is initiated;

= the record (currently in hold by another user) is instantly re-fetched
without hold, but not processed in terms of the program logic;

® the record which comes next after the skipped record is read with
hold and the processing continues.

See also Example 16 - SKIP RECORDS Clause.

WHERE-cTause WHERE Clause:

This clause may be used to specify an additional selection criterion
(Togical-condition). See WHERE Clause.

IF-NO-RECORDS-FOUND-clause|IF NO RECORDS FOUND Clause:

This clause may be used to cause a processing loop initiated witha FIND
statement to be entered in the event that no records meet the selection
criteria specified in the WITH clause and the WHERE clause. See IF NO
RECORDS FOUND Clause.

END-FIND End of FIND Statement:
LOOP

In structured mode with processing loop, the Natural reserved keyword
END- FIND must be used to end the FIND statement.

In reporting mode with processing loop, the Natural statement L0OOP is
used to end the FIND statement.

FIND FIRST

The FIND FIRST statement may be used to select and process the first record which meets the WITH
and WHERE criteria.

For Adabas databases, the record processed will be the record with the lowest Adabas ISN from
the set of qualifying records.

This statement does not initiate a processing loop.
Restrictions with FIND FIRST

® FIND FIRST can only be used in reporting mode.

® FIND FIRST isnot available for SQL databases.

496 Statements

FIND

System Variables Available with FIND FIRST

The following Natural system variables are available with the FIND FIRST statement:

System Variable | Explanation

*ISN The system variable *I SN contains the Adabas ISN of the selected record. *I SN will be zero
if no record is found after the evaluation of the WI TH and WHERE criteria.

*ISN is not available with Entire System Server.

*NUMBER The system variable *NUMBER contains the number of records found after the evaluation of
the WITH criterion and before evaluation of any WHERE criteria. *NUMBER will be zero if no
record meets the WITH criterion.

*NUMBER is not available with Entire System Server.

*COUNTER The system variable *COUNTER contains 1 if a record was found; contains 0 if no record was
found.

Example of FIND FIRST Statement: See the program FNDFIR (reporting mode)
FIND NUMBER

The FIND NUMBER statement is used to determine the number of records which satisfy the WITH/WHERE
criteria specified. It does not result in the initiation of a processing loop and no data fields from the
database are made available.

| Note: Use of the WHERE clause may result in significant overhead.

Restrictions with FIND NUMBER

® The WHERE clause can only be used in reporting mode.

" FIND NUMBER is not available with Entire System Server.
System Variables Available with FIND NUMBER

The following Natural system variables are available with the FIND NUMBER statement:

System Variable |Explanation

*NUMBER The system variable *NUMBER contains the number of records found after the evaluation of
the WITH criterion.

*COUNTER The system variable *COUNTER contains the number of records found after the evaluation
of the WHERE criterion.

*COUNTER is only available if the FIND NUMBER statement contains a WHERE clause.

Example for FIND NUMBER: See the program FNDNUM (reporting mode).

Statements 497

FIND

FIND UNIQUE

The FIND UNIQUE statement may be used to ensure that only one record is selected for processing.
It does not result in the initiation of a processing loop. If a WHERE clause is specified, an automatic
internal processing loop is created to evaluate the WHERE clause.

If no records or more than one record satisfy the criteria, an error message will be issued. This
condition can be tested with the ON ERROR statement.

Restrictions with FIND UNIQUE

" FIND UNIQUE can only be used in reporting mode.
" FIND UNIQUE is not available with Entire System Server.

® For SQL databases, FIND UNIQUE cannot be used. (Exception: On mainframe computers, FIND
UNIQUE can be used for primary keys; however, this is only permitted for compatibility reasons
and should not be used.)

System Variables Available with FIND UNIQUE

System Variable | Explanation

*ISN The system variable *I SN contains the unique ISN number of the record, which itself must
be unique.
*NUMBER The system variable *NUMBER always contains 1 for a valid FIND UNIQUE execution.

*NUMBER may contain any other positive value (= 0 or >= 2) if an error has occurred. This
error condition may be used by the ON ERROR statement. *NUMBER is not allowed if the
WHERE clause is missing.

*COUNTER The system variable *COUNTER contains the number of records found after the evaluation
of the WHERE criterion. *COUNTER is not allowed if the WHERE clause is missing.

Example for FIND UNIQUE: See the Program FNDUNQ (reporting mode).
MULTI-FETCH Clause

| Note: This clause can only be used for Adabas databases.

ON
MULTI-FETCH OFF
[OFY multi-fetch-factor

| Note: [MULTI-FETCH OF multi-fetch-factor]issupported for database types ADA/ADAZ.

The default processing mode is applied; see profile parameter MFSET. The MULTI-FETCH
clause is ignored in case Adabas LA or large objects fields are used or a view size greater
than 64KB is defined.

498 Statements

FIND

For more information, see the section MULTI-FETCH Clause (Adabas) in the Programming Guide.

Search Criteria for Adabas Files

EQ

EQ -
i = OR |
1 Qescr7ptor value [‘ FQUAL ’ va uel
(1] EQUAL FQUAL TO .

EQUAL TO
THRU value[BUT NOT value[THRU value]]
EQ

EQUAL
EQUAL TO
NE

<>

NOT =

NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL
TO

LT

LESS THAN
2 <
descriptor [(7)] GE
GREATER
EQUAL

>=

NOT <

NOT LT

GT
GREATER
THAN

>

LE

LESS EQUAL
(=

NOT >

NOT GT

value

3 set-name

Operand Definition Table:

Statements 499

FIND

Operand Possible Structure Possible Formats Referencing| Dynamic
Permitted |Definition
descriptor A A|U|N|P|I|F|B|D|T|L no no
value C A|UIN|P|I|F|B|D|T|L yes no
set-name |C A no no

Syntax Element Description:

Syntax Element

Description

descriptor

Descriptor:

Adabas descriptor, subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor.
A field marked as non-descriptor in the DDM can also be specified.

(1)

Index Specification:

A descriptor contained within a periodic group may be specified with or without an index.
If no index is specified, the record will be selected if the value specified is located in any
occurrence. If an index is specified, the record is selected only if the value is located in the
occurrence specified by the index. The index specified must be a constant. An index range
must not be used.

No index must be specified for a descriptor which is a multiple-value field. The record will
be selected if the value is located in the record regardless of the position of the value.

value Search Value:
The formats of the descriptor and the search value must be compatible.
set-name Set Name:
Identifies a set of records previously selected with a F IND statement in which the RETAIN
clause was specified. The set referenced in a FIND must have been created from the same
physical Adabas file. set - name may be specified as a text constant (maximum 32 characters)
or as the content of an alphanumeric variable.
set-name cannot be used with Entire System Server.
See also:
® Example 3 - Basic Search Criteria in WITH Clause
® Example 4 - Basic Search Criteria with Multiple-Value Field
500 Statements

FIND

Search Criterion with Null Indicator

null-indicator ‘ EQ] value
EQUAL [TO]

Operand Definition Table:

Operand Possible Structure Possible Formats |Referencing| Dynamic Definition
Permitted

null-indicator S I no no

value C S N|P|I|F|B yes no

Syntax Element Description:

Syntax Element Description

null-indicator |The null indicator.

value Possible Values [Meaning
-1 The corresponding field contains no value.
0 The corresponding field does contain a value.

Connecting Search Criteria (for Adabas Files)

basic-search-criteriacan be combined using the Boolean operators AND, OR, and NOT. Par-
entheses may also be used to control the order of evaluation. The order of evaluation is as follows:
1. (): Parentheses

2. NOT: Negation (only for basic-search-criteria of form [2]).

3. AND: AND operation

4. OR: OR operation

basic-search-criteriamay be connected by logical operators to form a complex
search-expression. The syntax for such a complex search-expressionis as follows:

basic-search-criteria} { OR
(search-expression) AND

[NOT] {

}search—expression]

See also Example 5 - Various Samples of Complex Search Expression in WITH Clause.

Statements 501

FIND

Descriptor-Key Usage

Adabas users may use database fields which are defined as descriptors to construct basic search
criteria.

Subdescriptors, Superdescriptors, Hyperdescriptors and Phonetic Descriptors

With Adabas, subdescriptors, superdescriptors, hyperdescriptors and phonetic descriptors may
be used to construct search criteria.

" A subdescriptor is a descriptor formed from a portion of a field.

" A superdescriptor is a descriptor whose value is formed from one or more fields or portions of
fields.

® A hyperdescriptor is a descriptor which is formed using a user-defined algorithm.

" A phonetic descriptor is a descriptor which allows the user to perform a phonetic search on a
field (for example, a person's name). A phonetic search results in the return of all values which
sound similar to the search value.

Which fields may be used as descriptors, subdescriptors, superdescriptors, hyperdescriptors and
phonetic descriptors with which file is defined in the corresponding DDM.

Values for Subdescriptors, Superdescriptors, Phonetic Descriptors

Values used with these types of descriptors must be compatible with the internal format of the
descriptor. The internal format of a subdescriptor is the same as the format of the field from which
the subdescriptor is derived. The internal format of a superdescriptor is binary if all of the fields
from which it is derived are defined with numeric format; otherwise, the format is alphanumeric.
Phonetic descriptors always have alphanumeric format.

Values for subdescriptors and superdescriptors may be specified in the following ways:

® Numeric or hexadecimal constants may be specified. A hexadecimal constant must be used for
a value for a superdescriptor which has binary format (see above).

" Values in user-defined variable fields may be specified using the REDEFINE statement to select
the portions that form the subdescriptor or superdescriptor value.

502 Statements

FIND

Using Descriptors Contained within a Database Array

A descriptor which is contained within a database array may also be used in the construction of
basic search criterion. For Adabas databases, such a descriptor may be a multiple-value field or a
field contained within a periodic group.

A descriptor contained within a periodic group may be specified with or without an index. If no
index is specified, the record will be selected if the value specified is located in any occurrence. If
an index is specified, the record is selected only if the value is located in the occurrence specified
by the index. The index specified must be a constant. An index range must not be used.

No index must be specified for a descriptor which is a multiple-value field. The record will be se-
lected if the value is located in the record regardless of the position of the value.

See also Example 6 - Various Samples Using Database Arrays.
COUPLED Clause

This clause only applies to Adabas databases.

This clause is not permitted with Entire System Server.

{ SED } COUPLED [TO][FILE] view-name
EQ
VIA descriptorl = descriptor?
EQUAL [TO]
[WITH]
basic-search-criteria
Operand Definition Table:
Operand Possible Structure Possible Formats |Referencing | Dynamic Definition
Permitted
descriptorl S |A A|N|P| | |B no no
descriptor? S |A A|N|P| | |B no no

| Note: Without the VIA clause, the COUPLED clause may be specified up to 4 times; with the
VIA clause, it may be specified up to 42 times.

The COUPLED clause is used to specify a search which involves the use of the Adabas coupling fa-
cility. This facility permits database descriptors from different files to be specified in the search
criterion of a single FIND statement.

Statements 503

FIND

The same Adabas file must not be used in two different FIND COUPLED clauses within the same
FIND statement.

A set-name (see RETAIN Clause) must not be specified in the basic-search-criteria.

Database fields in a file specified within the COUPLED clause are not available for subsequent refer-

ence in the program unless another FIND or READ statement is issued separately against the coupled
file.

) Note: If the COUPLED clause is used, the main WITH clause may be omitted. If the main WITH
clause is omitted, the keywords AND/OR of the COUPLED clause must not be specified.

Physical Coupling without VIA Clause

The files used in a COUPLED clause without VIA must be physically coupled using the appropriate
Adabas utility (as described in the Adabas documentation).

See also Example 7 - Using Physically Coupled Files.

The reference to NAME in the DISPLAY statement of the above example is valid since this field is
contained in the EMPLOYEES file, whereas a reference to MAKE would be invalid since MAKE is contained
in the VEHICLES file, which was specified in the COUPLED clause.

In this example, records will be found only if EMPLOYEES and VEHICLES have been physically
coupled.

Logical Coupling - VIA Clause

The option VIA descriptorl = descriptorZallows you to logically couple multiple Adabas files
in a search query, where:

" descriptorlis a field from the first view.

" descriptor?is a field from the second view.
The two files need not be physically coupled in Adabas.

See also Example 8 - VIA Clause.

504 Statements

FIND

STARTING WITH Clause

This clause applies only to Adabas databases.

You can use this clause to specify as operand5 an Adabas ISN (internal sequence number) which
is to be used as a start value for the selection of records. operand5 must be in the range from 0 to
4294967295.

This clause may be used for repositioning within a F IND loop whose processing has been interrupted,
to easily determine the next record with which processing is to continue. This is particularly useful
if the next record cannot be identified uniquely by any of its descriptor values. It can also be useful
in a distributed client/server application where the reading of the records is performed by a server
program while further processing of the records is performed by a client program, and the records
are not processed all in one go, but in batches.

] Note: The start value actually used will not be the value of operand, but the next higher

value.
Example:
See the program FNDSISN in the library SYSEXSYN.

SORTED BY Clause

This clause only applies to Adabas, Tamino and SQL databases.

This clause is not permitted with Entire System Server.

SORTED [BY] descriptor.. 3 [DESCENDING] ‘

The SORTED BY clause is used to cause Adabas to sort the selected records based on the sequence
of one to three descriptors. The descriptors used for controlling the sort sequence may be different
from those used for selection.

By default, the records are sorted in ascending sequence of values; if you want them to be in des-
cending sequence, specify the keyword DESCENDING. The sort is performed using the Adabas in-
verted lists and does not result in any records being read.

| Note: The use of this clause may result in significant overhead if any descriptor used to

control the sort sequence contains a large number of values. This is because the entire value
list may have to be scanned until all selected records have been located in the list. When a
large number of records is to be sorted, you should use the SORT statement.

Adabas sort limits (see the ADARUN LS parameter in the Adabas documentation) are in effect when
the SORTED BY clause is used.

Statements 505

FIND

A descriptor which is contained in a periodic group must not be specified in the SORTED BY clause.
A multiple-value field (without an index) may be specified.

Non-descriptors may also be specified in the SORTED BY clause. However, this function is not
available on mainframes.

If the SORTED BY clause is used, the RETAIN clause must not be used.

See also Example 9 - SORTED BY Clause.
Considerations for Combined Use of STARTING WITH and SORTED BY Clauses

If both the STARTING WITH and the SORTED BY clause are used in the same FIND statement and the
underlying database is Adabas, the following should be considered.

With Adabas for Mainframes
On Adabas for Mainframes, the FIND statement is executed in the following steps:

1. All records matching the search criterion are gathered and put in ISN sequence.
2. The records are sorted by the descriptor specified in the SORTED BY clause.

3. The record whose ISN value is specified in the STARTING WITH clause is positioned in the “sorted-
by-descriptor” record list.

4. The records following the record found under Step 3 are returned in the FIND loop.
With Adabas for OpenSystems

On Adabas for OpenSystems (Linux and Cloud or Windows) the same statement is executed as
follows:
1. All records matching the search criterion are gathered and put in ISN sequence.

2. The record whose ISN value is specified in the STARTING WITH clause is positioned in the “sorted-
by-ISN” record list.

3. All records following the record found under Step 2 are sorted by the descriptor specified in
the SORTED BY clause and returned in the FIND loop.

Example:

If the following program is executed with Adabas for Mainframes and Adabas on Linux and
Cloud/Windows:

506 Statements

FIND

DEFINE DATA LOCAL
1 V1 VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
1 #ISN (I4)
END-DEFINE
FORMAT NL=5 SG=0FF PS=43 AL=15
*
PRINT "FIND" (I)
FIND V1 WITH NAME = 'B' THRU 'BALBIN'
RETAIN AS 'SETI1'
IF *COUNTER = 4 THEN

##ISN := *ISN
END-IF

DISPLAY *ISN V1
END-FIND

*

PRINT / 'FIND .. SORTED BY NAME' (I)
FIND V1 WITH 'SET1'
SORTED BY NAME
DISPLAY *ISN V1
END-FIND
*
PRINT / 'FIND .. STARTING WITH ISN = ' (I) #ISN (AD=I)
FIND V1 WITH 'SET1'
STARTING WITH ISN = #ISN
DISPLAY *ISN V1
END-FIND
*
PRINT / 'FIND .. STARTING WITH ISN = ' (I) #ISN (AD=I)
" .. SORTED BY NAME' (I)
FIND V1 WITH 'SET1'
STARTING WITH ISN = #ISN
SORTED BY NAME
DISPLAY *ISN V1
END-FIND
END

The result is as follows:

Results on Natural for Mainframes

FIND VI WITH NAME = 'B' THRU 'BALBIN'

12 BAILLET PATRICK LYS LEZ LANNOY
58 BAGAZJA MARJAN MONTHERME
351 BAECKER JOHANNES FRANKFURT
355 BAECKER KARL SINDELFINGEN
Statements 507

FIND

370
490
650
913

FIND ..

370
351
355

58

12
650
913
490

FIND ..

370
490
650
913

FIND ..

58
12
650
913
490

BACHMANN
BALBIN
BAKER
BAKER

BACHMANN
BAECKER
BAECKER
BAGAZJA
BAILLET
BAKER
BAKER
BALBIN

STARTING WITH
BACHMANN

BALBIN

BAKER

BAKER

STARTING WITH
BAGAZJA

BAILLET

BAKER

BAKER

BALBIN

SORTED BY NAME

HANS
ENRIQUE
SYLVIA
PAULINE

HANS
JOHANNES
KARL
MARJAN
PATRICK
SYLVIA
PAULINE
ENRIQUE

ISN = 355
HANS
ENRIQUE
SYLVIA
PAULINE

ISN = 355 ..

MARJAN
PATRICK
SYLVIA
PAULINE
ENRIQUE

Results on Natural for OpenSystems

FIND V1 WITH NAME =

12

58
351
355
370
490
650
913

FIND ..

370
351
355

58

12
650
913

BAILLET
BAGAZJA
BAECKER
BAECKER
BACHMANN
BALBIN
BAKER
BAKER

BACHMANN
BAECKER
BAECKER
BAGAZJA
BATLLET
BAKER
BAKER

SORTED BY NAME

FIRST-NAME

'B' THRU "BALBIN'

PATRICK
MARJAN
JOHANNES
KARL
HANS
ENRIQUE
SYLVIA
PAULINE

HANS
JOHANNES
KARL
MARJAN
PATRICK
SYLVIA
PAULINE

MUENCHEN
BARCELONA
0AK BROOK
DERBY

MUENCHEN
FRANKFURT
SINDELFINGEN
MONTHERME

LYS LEZ LANNOY
0AK BROOK
DERBY
BARCELONA

MUENCHEN
BARCELONA
0AK BROOK
DERBY

SORTED BY NAME

MONTHERME

LYS LEZ LANNOY
0AK BROOK
DERBY
BARCELONA

LYS LEZ LANNOQY
MONTHERME
FRANKFURT
SINDELFINGEN
MUENCHEN
BARCELONA

0AK BROOK
DERBY

MUENCHEN
FRANKFURT
SINDELFINGEN
MONTHERME

LYS LEZ LANNOY
0AK BROOK
DERBY

508

Statements

FIND

490 BALBIN ENRIQUE BARCELONA
FIND .. STARTING WITH ISN = 355

370 BACHMANN HANS MUENCHEN

490 BALBIN ENRIQUE BARCELONA

650 BAKER SYLVIA 0AK BROOK

913 BAKER PAULINE DERBY
FIND .. STARTING WITH ISN = 355 .. SORTED BY NAME

370 BACHMANN HANS MUENCHEN

650 BAKER SYLVIA 0AK BROOK

913 BAKER PAULINE DERBY

490 BALBIN ENRIQUE BARCELONA

A FIND statement with at most one of these options (SORTED BY or STARTING WITH ISN)always
returns the same records in the same sequence, regardless under which system the statement is
executed. If, however, both clauses are used together, the result returned depends on which
Adabas platform is used to serve the database statement.

Therefore, if a Natural program is intended to be used on multiple platforms, the combination of
a SORTED BY and STARTING WITH ISN clause in the same FIND statement should be avoided.

RETAIN Clause

This clause only applies to Adabas databases.

This clause is not permitted with Entire System Server.

RETAIN AS operand6

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

oversnds [c 5 | [[A[IIIIIIL e "

Syntax Element Description:

Syntax Element|Description

RETAIN AS |Retain Result:

By using the RETAIN clause, the result of an extensive search in large files can be retained
for further processing.

The selection is retained as an I SN-set in the Adabas work file. The set may be used in
subsequent FIND statements as a basic search criterion for further refinement of the set or
for further processing of the records.

Statements 509

FIND

Syntax Element | Description

The set created is file-specific and may only be used in another F IND statement that processes
the same file. The set may be referenced by any Natural program.

operandé Set Name:

The set name is used to identify the record set. It may be specified as an alphanumeric
constant or as the content of an alphanumeric user-defined variable. Duplicate set names
are not checked; consequently, if a duplicate set name is specified, the new set replaces the
old set.

See also Example 10 - RETAIN Clause.
Releasing Sets

There is no specific limit for the number of sets that can be retained or the number of ISNs in a
set. It is recommended that the minimum number of ISN sets needed at one time be defined. Sets
that are no longer needed should be released using the RELEASE SETS statement.

If they are not released with a RELEASE statement, retained sets exist until the end of the Natural
session, or until a logon to another library, when they are released automatically. A set created by
one program may be referenced by another program for processing or further refinement using

additional search criteria.

Updates by Other Users

The records identified by the ISNs in a retained set are not locked against access and/or update
by other users. Before you process records from the set, it is therefore useful to check whether the
original search criteria which were used to create the set are still valid: This check is done with
another FIND statement, using the set name in the WITH clause as a basic search criterion and spe-
cifying in a WHERE clause the original search criteria (that is, the basic search criteria as specified
in the WITH clause of the FIND statement which was used to create the set).

Restriction

If the RETAIN clause is used, the SORTED BY clause must not be used.

WHERE Clause

IWHERE logical-condition ‘

The WHERE clause may be used to specify an additional selection criterion (7ogical-condition)
which is evaluated after a value has been read and before any processing is performed on the value
(including the AT BREAK evaluation).

The syntax for a Togical-conditionis described in the section Logical Condition Criteria in the
Programming Guide.

510 Statements

FIND

If a processing limit is specified in a FIND statement containing a WHERE clause, records which are
rejected as a result of the WHERE clause are not counted against the limit. These records are, however,
counted against a global limit specified in the Natural session parameter LT, the GLOBALS command,
or LIMIT statement.

See also Example 11 - WHERE Clause.
IF NO RECORDS FOUND Clause

Structured Mode Syntax

IF NO [RECORDS] [FOUNDI

{ ENTER }
statement ...

END-NOREC

Reporting Mode Syntax

IF NO[RECORDS][FOUNDI]

ENTER
statement

DO statement ...DOEND

Syntax Element Description:

Syntax Element Description

IF NO RECORDS FOUND |IF NO RECORDS FOUND Clause:

The IF NO RECORDS FOUND clause may be used to cause a processing loop
initiated with a FIND statement to be entered in the event that no records meet
the selection criteria specified in the WITH clause and the WHERE clause.

If no records meet the specified WITH and WHERE criteria, the IF NO RECORDS
FOUND clause causes the FIND processing loop to be executed once with an
“empty” record.

If this is not desired, specify the statement ESCAPE BOTTOM within the IF NO
RECORDS FOUND clause.

ENTER Statement Execution:

statement ...
If one or more statements are specified withthe IF NO RECORDS FOUND clause,

the statements will be executed immediately before the processing loop is
entered.

If no statements are to be executed before entering the loop, the keyword ENTER
must be used.

Statements 511

FIND

Syntax Element

Description

END-NOREC

ENTER
Sstatement

DOEND

DO statement ...

End of IF NO RECORDS FOUND Clause:

In structured mode, the Natural reserved word END-NOREC must be used to
end the IF NO RECORDS FOUND clause.

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and toend the IF NO RECORDS
FOUND clause. If you specify only a single statement or the keyword ENTER (see
above), you can omit the D0 ... DOEND statements. With respect to good
coding practice, this is not recommended.

See also Example 12 - IF NO RECORDS FOUND Clause.

Database Values

Unless other value assignments are made in the statements accompanying an IF NO RECORDS
FOUND clause, Natural will reset to empty all database fields which reference the file specified in

the current loop.

Evaluation of System Functions

Natural system functions are evaluated once for the empty record that is created for processing
as a result of the IF NO RECORDS FOUND clause.

Restriction

This clause cannot be used with FIND FIRST, FIND NUMBER and FIND UNIQUE.

Examples

= Example 1 - PASSWORD Clause

= Example 2 - CIPHER Clause

= Example 3 - Basic Search Criteria in WITH Clause

= Example 4 - Basic Search Criteria with Multiple-Value Field

= Example 5 - Various Samples of Complex Search Expression in WITH Clause
= Example 6 - Various Samples of Using Database Arrays

= Example 7 - Using Physically Coupled Files

= Example 8 - VIA Clause

= Example 9 - SORTED BY Clause

= Example 10 - RETAIN Clause

= Example 11 - WHERE Clause

= Example 12 - IF NO RECORDS FOUND Clause

= Example 13 - Using System Variables with the FIND Statement
= Example 14 - Multiple FIND Statements

512

Statements

FIND

= Example 15 - SHARED HOLD Clause
= Example 16 - SKIP RECORDS Clause

See also the example for FIND NUMBER: program FNDNUM.

Example 1 - PASSWORD Clause

** Example 'FNDPWD': FIND (with PASSWORD clause)
KhkhkAhhkkhhkhhkkhhkhhkkhhkkhhkhhkhhkhhkhhkhhkhhkkhhkhhkhhkhhkhhkhhkhrkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhrkhxk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 PERSONNEL-ID
*
1 #fPASSWORD (A8)
END-DEFINE
*
INPUT 'ENTER PASSWORD FOR EMPLOYEE FILE:' #PASSWORD (AD=N)
LIMIT 2
*
FIND EMPLOY-VIEW PASSWORD = #PASSWORD

WITH NAME = 'SMITH'

DISPLAY NOTITLE NAME PERSONNEL-ID

END-FIND

*

END

Output of Program FNDPWD:

ENTER PASSWORD FOR EMPLOYEE FILE:

Example 2 - CIPHER Clause

** Example '"FNDCIP': FIND (with PASSWORD/CIPHER clause)
Sk ok o o o o o ok ok ko ko o o ok ok ok ok ok ok ok ok ko ok o ok ok ok ok ok ok ok ok ko ko ok o o o ok ok ok ok ok ok ko ko ko ok ok o ok ok ok
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 PERSONNEL-ID
*
1 #PASSWORD (A8)
1 #CIPHER (N8)
END-DEFINE
*
LIMIT 2
INPUT "ENTER PASSWORD FOR EMPLOYEE FILE: " #fPASSWORD (AD=N)
/ "ENTER CIPHER KEY FOR EMPLOYEE FILE: " #CIPHER (AD=N)

*

FIND EMPLOY-VIEW PASSWORD = #PASSWORD

Statements 513

FIND

CIPHER = #fCIPHER

WITH NAME = 'SMITH'

DISPLAY NOTITLE NAME PERSONNEL-ID
END-FIND

*

END Output of Program FNDCIP:

ENTER PASSWORD FOR EMPLOYEE FILE:
ENTER CIPHER KEY FOR EMPLOYEE FILE:

Example 3 - Basic Search Criteria in WITH Clause

FIND STAFF WITH NAME = 'SMITH'
FIND STAFF WITH CITY NE 'BOSTON'
FIND STAFF WITH BIRTH = 610803
FIND STAFF WITH BIRTH = 610803 THRU 610811
FIND STAFF WITH NAME = 'O HARA' OR = "JONES' OR = "JACKSON'
FIND STAFF WITH PERSONNEL-ID = 100082 THRU 100100
BUT NOT 100087 THRU 100095

Example 4 - Basic Search Criteria with Multiple-Value Field

When the descriptor used in the basic search criteria is a multiple-value field, basically four different
kinds of results can be obtained (the field MU-FIELD in the following examples is assumed to be a
multiple-value field):

FIND XYZ-VIEW WITH MU-FIELD = 'A’

This statement returns records in which at least one occurrence of MU-FIELD has the value A.

FIND XYZ-VIEW WITH MU-FIELD NOT EQUAL 'A’

This statement returns records in which at least one occurrence of MU-FIELD does not have the value
A

FIND XYZ-VIEW WITH NOT MU-FIELD NOT EQUAL ‘A’

This statement returns records in which every occurrence of MU-FIELD has the value A.

FIND XYZ-VIEW WITH NOT MU-FIELD = 'A'

This statement returns records in which none of the occurrences of MU-FIELD has the value A.

514 Statements

FIND

Example 5 - Various Samples of Complex Search Expression in WITH Clause

FIND STAFF WITH BIRTH LT 19770101 AND DEPT = 'DEPTO6'

FIND STAFF WITH JOB-TITLE = "CLERK TYPIST'
AND (BIRTH GT 19560101 OR LANG = 'SPANISH")

FIND STAFF WITH JOB-TITLE = 'CLERK TYPIST'
AND NOT (BIRTH GT 19560101 OR LANG = 'SPANISH")

FIND STAFF WITH DEPT = 'ABC' THRU 'DEF'
AND CITY = 'WASHINGTON' OR = 'LOS ANGELES'
AND BIRTH GT 19360101

FIND CARS WITH MAKE = 'VOLKSWAGEN'
AND COLOR = '"RED" OR = 'BLUE' OR = 'BLACK'

Example 6 - Various Samples of Using Database Arrays

The following examples assume that the field SALARY is a descriptor contained within a periodic
group, and the field LANG is a multiple-value field.

FIND EMPLOYEES WITH SALARY LT 20000

Results in a search of all occurrences of SALARY.

FIND EMPLOYEES WITH SALARY (1) LT 20000

Results in a search of the first occurrence only.

FIND EMPLOYEES WITH SALARY (1:4) LT 20000 /* dinvalid

A range specification must not be specified for a field within a periodic group used as a search
criterion.

FIND EMPLOYEES WITH LANG = 'FRENCH'

Results in a search of all values of LANG.

Statements 515

FIND

FIND EMPLOYEES WITH LANG (1) = "FRENCH' /* invalid

An index must not be specified for a multiple-value field used as a search criterion.

Example 7 - Using Physically Coupled Files

** Example 'FNDCPL': FIND (using coupled files)
** NOTE: Adabas files must be physically coupled when using the
il COUPLED clause without the VIA clause.
KA Ak A kA A Ak hkh kA Ak hkhkhhArhhkhkhhkhkhkhkhkhkhAhhhkhhkhkhhkhkhhkhrhhkhkhhkhkhhkhkhhkhhhkkhhkhhhkhkhkhkkhhkhkhixk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
1 VEHIC-VIEW VIEW OF VEHICLES
2 MAKE
END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'FRANKFURT'
AND COUPLED TO
VEHIC-VIEW WITH MAKE = 'VW'
DISPLAY NOTITLE NAME
END-FIND

*

END

Example 8 - VIA Clause

** Example 'FNDVIA': FIND (with VIA clause)
R R R R R R b e R R R b b e e e R R b b e e e e R R e e e e e e R R R e e e e e b e e e e e
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = "ADKINSON'
AND COUPLED TO VEHIC-VIEW
VIA PERSONNEL-ID = PERSONNEL-ID WITH MAKE = 'VOLVO'
DISPLAY PERSONNEL-ID NAME FIRST-NAME
END-FIND

*

END

516 Statements

FIND

Output of Program FNDVIA:

Page 1 05-01-17 13:18:22

PERSONNEL NAME FIRST-NAME
ID

20011000 ADKINSON BOB

Example 9 - SORTED BY Clause

** Example 'FNDSOR': FIND (with SORTED BY clause)
khkhkkhkhhkhkhhkhkhhkhkhhkhkhhkhhhkhkhhkhkhkhkhkhhkhhhkhhhkhhkhkhhkhhhkhkkhhkhhkhkhkhhkhhkhkhhkhhhkhkhhkkhhkhkhhkxkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 NAME

2 FIRST-NAME

2 PERSONNEL-ID
END-DEFINE
*
LIMIT 10
FIND EMPLOY-VIEW WITH CITY = 'FRANKFURT'

SORTED BY NAME PERSONNEL-ID

DISPLAY NOTITLE NAME (IS=0ON) FIRST-NAME PERSONNEL-ID
END-FIND

*

END

Output of Program FNDSOR:

NAME FIRST-NAME PERSONNEL
ID

BAECKER JOHANNES 11500345
BECKER HERMANN 11100311
BERGMANN HANS 11100301
BLAU SARAH 11100305
BLOEMER JOHANNES 11200312
DIEDRICHS HUBERT 11600301
DOLLINGER MARGA 11500322
FALTER CLAUDIA 11300311

HEIDE 11400311
FREI REINHILD 11500301

Statements 517

FIND

Example 10 - RETAIN Clause

** Example "RELEX1': FIND (with RETAIN clause and RELEASE statement)
KA KRR AR A AR AR KR AR A AR A AR AR R A R A AR A AR AR KA KR KA KA AR AR KA KA KA AR AR KA A AR A A KA AR A Kk LK
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 BIRTH
2 NAME
*
1 #BIRTH (D)
END-DEFINE

*

MOVE EDITED '19400101' TO #BIRTH (EM=YYYYMMDD)

*

FIND NUMBER EMPLOY-VIEW WITH BIRTH GT #BIRTH

RETAIN AS 'AGESET1'

IF *NUMBER = 0
STOP

END-IF

*

FIND EMPLOY-VIEW WITH "AGESET1" AND CITY = "NEW YORK'
DISPLAY NOTITLE NAME CITY BIRTH (EM=YYYY-MM-DD)

END-FIND

*

RELEASE SET 'AGESETL'

*

END
Output of Example 10:
NAME CITY DATE
OF
BIRTH
RUBIN NEW YORK 1945-10-27
WALLACE NEW YORK 1945-08-04

Example 11 - WHERE Clause

** Example 'FNDWHE': FIND (with WHERE clause)
khkhkkhkkhkhkhkhhkkhkhhkhkhkhkhkhhkhhhkhkhhkhhkhkhkhhhhhkhhhhkhkhkhhhhhkhkhhhhkhkhkhhhhkhkkhkhkhhhkhkhhkhkhhkhkhkxk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME

2 JOB-TITLE

2 CITY
END-DEFINE

518

Statements

FIND

*

FIND EMPLOY-VIEW WITH CITY = 'PARIS'
WHERE JOB-TITLE = 'INGENIEUR COMMERCIAL'
DISPLAY NOTITLE
CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND

*

END

Output of Program FNDWHE:

CITY CURRENT PERSONNEL NAME
POSITION ID

PARIS INGENIEUR COMMERCIAL 50007300 CAHN

PARIS INGENIEUR COMMERCIAL 50006500 MAZUY

PARIS INGENIEUR COMMERCIAL 50004700 FAURIE

PARIS INGENIEUR COMMERCIAL 50004400 VALLY

PARIS INGENIEUR COMMERCIAL 50002800 BRETON

PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX

PARIS INGENIEUR COMMERCIAL 50000400 KORAB-BRZOZOWSKI

Example 12 - IF NO RECORDS FOUND Clause

** Example 'FNDIFN': FIND (using IF NO RECORDS FOUND)
R R b b S b b e b b e b e b e b e b e e b e e b e e e b e e S e e b e b e b e e b i e b e e b i b e b e e b i S
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
END-DEFINE
*
LIMIT 15
EMP. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'
/*
VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)

IF NO RECORDS FOUND
MOVE '*** NO CAR ***' TO MAKE

END-NOREC

/*

DISPLAY NOTITLE
NAME (EMP.) (IS=ON)
FIRST-NAME (EMP.) (IS=0ON)
MAKE (VEH.)

END-FIND

Statements 519

FIND

/*
END-READ
END

Output of Program FNDIFN:

NAME FIRST-NAME
JONES VIRGINIA
MARSHA
ROBERT
LILLY
EDWARD
MARTHA
LAUREL
KEVIN
GREGORY
JOPER MANFRED
JOUSSELIN DANTEL
JUBE GABRIEL
JUNG ERNST
JUNKIN JEREMY
KAISER REINER

CHRYSLER
CHRYSLER
CHRYSLER
GENERAL MOTORS
FORD

MG

GENERAL MOTORS
GENERAL MOTORS
GENERAL MOTORS
DATSUN

FORD

x%%x NO CAR ***
RENAULT

x%%x NO CAR ***
x%% NO CAR ***
x%%x NO CAR ***
x%% NO CAR ***

Example 13 - Using System Variables with the FIND Statement

** Example 'FNDVAR': FIND (using *ISN, *NUMBER, *COUNTER)

khkkAhkkhkhkhkhkkhhhhkkhkkhhhhkhkhhhhhkhkhhhhkhkkhhhhkkhkkhhhhhkhkhhhhkhkhhhhkkhkkhhhkhkkhkhhhrhkkhhrhkkkhhrhkkk

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 CITY
END-DEFINE
*
LIMIT 3
FIND EMPLOY-VIEW WITH CITY = 'MADRID'
DISPLAY NOTITLE PERSONNEL-ID NAME
*ISN *NUMBER *COUNTER
END-FIND

*

END

520

Statements

FIND

Output of Program FNDVAR

PERSONNEL NAME ISN NMBR CNT

ID
60000114 DE JUAN 400 41 1
60000136 DE LA MADRID 401 41 2
60000209 PINERO 405 41 3

Example 14 - Multiple FIND Statements

In the following example, first all people named SMITH are selected from the EMPLOYEES file. Then
the PERSONNEL-ID from the EMPLOYEES file is used as the search key for an access to the VEHICLES
file.

** Example 'FNDMUL': FIND (with multiple files)
khkhkkhkkhkhkhkhhkkhkhhkhkhkhkkhkhhhhkhkhkhhkhhkhkhkhkhhrhhkhhhhkhkhkhkhkhhhkhkhhhhkhkhkhhkhhkhkhkhkhhhkhkhhkhhhkhkhixk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
END-DEFINE
*
LIMIT 15
EMP. FIND EMPLOY-VIEW WITH NAME = 'SMITH'
/*
VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = EMP.PERSONNEL-ID
IF NO RECORDS FOUND
MOVE '*** NO CAR ***' TO MAKE
END-NOREC
DISPLAY NOTITLE
EMP.NAME (IS=0N)
EMP.FIRST-NAME (IS=0N)
VEH.MAKE
END-FIND
END-FIND
END

Output of Program FNDMUL:

The resulting report shows the NAME and FIRST-NAME (obtained from the EMPLOYEES file) of all
people named SMITH as well as the MAKE of each car (obtained from the VEHICLES file) owned by
these people.

Statements 521

FIND

FIRST-NAME

GERHARD
SEYMOUR
MATILDA
ANN
TONI
MARTIN
THOMAS
SUNNY
MARK
LOUISE
MAXWELL

ELSA
CHARLY
LEE
FRANK

Example 15 - SHARED HOLD Clause

FIND EMPL-VIEW WITH NAME = ...

IN SHARED HOLD MODE=Q

GET EMPL-VIEW *ISN

END-FIND

Example 16 - SKIP RECORDS Clause

FIND EMPL-VIEW WITH NAME = ...
SKIP RECORDS IN HOLD

UPDATE
END TRANSACTION
END-FIND

ROVER

x%%x NO CAR ***
FORD

x%%x NO CAR ***
TOYOTA

*x%%x NO CAR ***
FORD

*%%x NO CAR ***
FORD

CHRYSLER
MERCEDES-BENZ
MERCEDES-BENZ
CHRYSLER
CHRYSLER

x%%x NO CAR ***
FORD

/* The record remains unchanged!

/* Record in shared hold until next record is read.

/* Records found are put in hold while reading.
/* Records already held by other users are
/* skipped to prevent error NAT3145.

522

Statements

73 FOR

B FUNCHON .ttt e e 524
B SYNEAX DESCIIPHON ...ttt e e e s 524
LI 1oL OSSPSR 526

523

FOR

FOR operandl

END-FOR
LOOP

[é]O: ’ opeifandZ . .
FROM (arithmetic-expression)
T0 } operand3
THRU (arithmetic-expression)
STEP ?gie":izgitic-expression)
statement ...

(structured mode only)

(reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: REPEAT | ESCAPE

Belongs to Function Group: Loop Execution

Function

The FOR statement is used to initiate a processing loop and to control the number of times the loop

is processed.

Consistency Check

Before the FOR loop is entered, the values of the operands are checked to ensure that they are

consistent (that is, the value of operand3 can be reached or exceeded by repeatedly adding operand4
to operand?). If the values are not consistent, the FOR loop is not entered (however, no error message
is output, except when the STEP value is zero).

Syntax Description

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing | Dynamic
Permitted |Definition
operandl S NP |I|F yes yes
operandz? C|S N NP |I|F yes no
arithmetic-expression S N|P|I|F no no
operand3 C|S N N|P|L|F yes no
524 Statements

FOR

Operand Possible Structure | Possible Formats |Referencing | Dynamic
Permitted |Definition
operand4 C ‘S ‘ | ‘N‘ ‘N‘PMF| ‘ ‘ ‘ ‘ ‘ ‘ yes no

Syntax Element Description:

Syntax Element

Description

operandl

operand?

Loop Control Variable (operandl) and Initial Setting (operand?):

operandl is used to control the number of times the processing loop is to
be executed. It may be a database field or a user-defined variable.

The value specified after the keyword FROM (operand?) is assigned to the
loop control variable field before the processing loop is entered for the first
time. This value is incremented (or decremented if the STEP value is negative)
using the value specified after the STEP keyword (operand4) each additional
time the loop is processed.

The loop control variable value may be referenced during the execution of
the processing loop and will contain the current value of the loop control
variable.

Note: The keywords [:]=, EQ or FROM can be omitted.

operand3

TO Value:

The processing loop is terminated when operand1 is greater than (or less
than if the initial value of the STEP value was negative) the value specified
for operand3.

Note: The keyword TO or TRU can be omitted.

STEP operand4

STEP Value:

The STEP value may be positive or negative. If a STEP value is not specified,
an increment of +1 is used.

The compare operation will be adjusted to “less than” or “greater than”
depending on the sign of the STEP value when the loop is entered for the
first time.

Note:

1. operand4 must not be zero.

2. The keyword STEP can be omitted.

(arithmetic-expression)

Arithmetic Expression:

In place of operandZz, operand3 or operand4, any arithmetic expression
may be specified.

Statements

525

FOR

Syntax Element

Description

Note:

1. The arithmetic expressions must be enclosed in parentheses.

2. The preceding keyword cannot be omitted.

For further information on arithmetic expressions, see
arithmetic-expressioninthe COMPUTE statement description.

END-FOR End of FOR Statement:

LOOP In structured mode, the Natural reserved word END - FOR must be used to
end the FOR statement.
In reporting mode, the Natural statement LOOP is used to end the FOR
statement.

Example

**% Example '"FOREXIS':

FOR (structured mode)

kkkkhkkhkhkhkhkkhkhhhkkhkkhkhhhkhkhkhhhhkhkhhhhkhkkhhhhhkhhhhhkhhhhhkkhkhhhhkkhkkhhhkhkhkkhhhrhkkhhhhrkhkhhrhrkkk

DEFINE DATA LOCAL
1 #INDEX (I1)
1 #fROOT (N2.7)

END-DEFINE

*

FOR ##INDEX 1 TO 5
COMPUTE #ROOT
WRITE NOTITLE

END-FOR

*

SKIP 1

FOR #INDEX 1 TO

= SQRT (#INDEX)
'=' #INDEX 3X '=' {R0O0OT

COMPUTE #ROOT = SQRT (#INDEX)

WRITE '=' #INDEX 3X

END-FOR

*

END

'=' #fROOT

526

Statements

FOR

Output of Program FOREX1S:

fFINDEX: 1 #ROOT: 1.0000000
#FINDEX : 2 {fROOT: 1.4142135
#FINDEX: 3 #ROOT: 1.7320508
#FINDEX : 4 {ROOT: 2.0000000
fFINDEX: 5 #ROOT: 2.2360679
fFINDEX: 1 #ROOT: 1.0000000
#FINDEX : 3 {fROOT: 1.7320508
FFINDEX : 5 #ROOT: 2.2360679

Equivalent reporting-mode example: FOREX1R.

Statements 527

528

74 FORMAT

B FUNCHON .ttt e e 530
B SYNEAX DESCIIPHON ...ttt e e e s 530
B APPlICADIE PAramMELErS e 531
L 11T o] (- PSPPSR 533

529

FORMAT

FORMAT [(rep)] parameter ..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The FORMAT statement is used to specify input and output parameter settings.

Settings specified with a FORMAT statement override (at compilation time) default settings in effect
for the session that have been set by a GLOBALS command, SET GLOBALS statement, or by the Nat-
ural administrator.

These settings may in turn be overridden by parameters specified in a DISPLAY, INPUT, PRINT,
WRITE, WRITE TITLE, or WRITE TRAILER statement.

The settings remain in effect until the end of a program or until another FORMAT statement is en-
countered.

A FORMAT statement does not generate any executable code in the Natural program. It is not executed
in dependence of the logical flow of a program. It is evaluated during program compilation in
order to set parameters for compiling DISPLAY, WRITE, PRINT and INPUT statements. The settings
defined with a FORMAT statement are applicable to all DISPLAY, WRITE, PRINT and INPUT statements
which follow.

Syntax Description

Syntax Description
Element
(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for which the
FORMAT statement is applicable.

A value in therange 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

530 Statements

FORMAT

Syntax Description

Element
If (rep) is not specified, the FORMAT statement will be applicable to the first report (Report
0).
For information on how to control the format of an output report created with Natural, see
Report Format and Control (in the Programming Guide).

parameter |Parameter(s):

The parameters can be specified in any order and must be separated by one or more spaces.
A single entry must not be split between two statement lines.

Field sensitive parameter settings applied here will only be regarded for variable fields used
inan INPUT, WRITE, DISPLAY or PRINT statement of the selected report. They do not apply
for text-constants used in any of the mentioned statements.

Example:

DEFINE DATA LOCAL

1 VARI (A4) INIT <'1234'> /% OQutput
END-DEFINE 1% Produced
FORMAT AD=U f® esscsssss
WRITE 'Text' VARI /% Text 1234
WRITE '"Text' (AD=U) VARI /% Text 1234
END

See also Applicable Parameters below.

Applicable Parameters

See the Parameter Reference for a detailed description of the session parameters which may be used.

Parameter | Description

AD Attribute Definition

AL Alphanumeric Length for Output
CD Color Definition

DF Date Format

DL Display Length for Output

EM Edit Mask

ES Empty Line Suppression

FC Filler Character

FL Floating Point Mantissa Length

GC Filler Character for Group Heading
Statements 531

FORMAT

Parameter | Description

HC Header Centering

HW Heading Width

IC Insertion Character

ICU Unicode Insertion Character

IpP Input Prompting Text

IS Identical Suppress

KD Key Definition

LC Leading Characters

LCU Unicode Leading Characters

LS Line Size

MC Multiple-Value Field Count (Can only be used in reporting mode.)
MP Maximum Number of Pages of a Report, see Note below.
MS Manual Skip

NL Numeric Length for Output

PC Periodic Group Count (Can only be used in reporting mode.)
PM Print Mode

PS Page Size, see Note below.

SF Spacing Factor

SG Sign Position

TC Trailing Characters

TCU Unicode Trailing Characters

uc Underlining Character

LP Zero Printing

| Note: The parameters MP and PS do not take effect for a specific I/O statement, but apply to

the complete output created for the report. If multiple settings for MP and PS are performed,
the last definition is used.

See also Underlining Character for Titles and Headers - UC Parameter (in the Programming Guide).

532

Statements

FORMAT

Example

** Example 'FMTEX1': FORMAT
khkhkkhkhhkhkhkhkhkhhkhkhhkhkhhkhhhkhkhhkhkhkhkhkhhhhhkhhkhkhhkhkhhkhhhkhkkhhhhkhkhkhhkdhkhkhhkhkhhkhkhhkkhhkhkhkixx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 POST-CODE
2 COUNTRY
END-DEFINE
*
FORMAT AL=7 /* Alpha-numeric field output length
FC=+ /* Filler character for field header
GC=* /* Filler character for group header
HC=L /* Header left justified
IC=<K /* Insert characters
IS=0N /* Identical suppress on
TC=>> /* Trailing character
UC== /* Underline character
ZP=0FF /* Zero print off
S
LIMIT 5
READ EMPLOY-VIEW BY NAME
DISPLAY NOTITLE
NAME 3X CITY 3X POST-CODE 3X COUNTRY
END-READ

*

END

Output of Program FMTEX1:

NAME+++++++ CITY+++++++ POSTAL+++++ COUNTRY++++
ADDRESS++++

<CABELLAN>> <<KMADRID >> <£28014 >> KB >
<CACHIESO>> <KDERBY >> <<KDE3 4TR>> KUK >>
<<ADAM >> <KJOIGNY >> <£89300 >> KF >
<<CADKINSO>> <<KBROOKLY>> <K11201 >> <KUSA>>
<<KBEVERLE>> <£90211 >>

Statements 533

534

75 GET

LI V1ot o PSP PPPPUR PP 536
LI =1 (47 o PSPPSR 537
B SYNEAX DESCIIPHON ...ttt e e 537
L 11T o] (- PSPPSR 538

535

GET

In structured mode and in reporting mode using a DEFINE DATA LOCAL statement, the following
syntax applies:

GET[IN][FILE] view-name
[PASSWORD=o0operandlI]
[CIPHER=0perand?]

[s] |

operand3 }
*ISN [(r)]

In reporting mode using no DEFINE DATA LOCAL statement, the following syntax applies:

GET [IN][FILE] ddm-name
[PASSWORD=o0operandI]
[CIPHER=0perand?]

operand3
*ISN [(r)]

[REg;QRDS] { } operand4 ...

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET SAME | GET
TRANSACTION | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE
| UPDATE

Belongs to Function Group: Database Access and Update

Function

The GET statement is used to read a record with a given Adabas Internal Sequence Number (ISN).
For XML databases, the GET statement is used to read an XML object with a given object ID.

The GET statement does not cause a processing loop to be initiated.

536 Statements

GET

Restrictions

" The GET statement cannot be used for SQL databases.

® The GET statement cannot be used with Entire System Server.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandl |C |S A yes no

operand? |C |S N no no

operand3 |C |S N N|P|I| |B* yes no

operand4 S |A A|NP|I|F|B |D|T|L yes yes

* Format B of operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element Description

view-name View Name:

In structured mode and in reporting mode usinga DEFINE DATA LOCAL statement,
the name of a view as defined either directly within a DEFINE DATA statement or
in a separate global or local data area.

ddm-name DDM Name:

In reporting mode usingno DEFINE DATA LOCAL statement, the name of the data
definition module (DDM) is referenced.

PASSWORD=operandl |PASSWORD Clause/CIPHER Clause:
CIPHER=o0perandZ?

These clauses are applicable only to Adabas databases.

The PASSWORD clause is used to provide a password when retrieving data from an
Adabeas file which is password protected.

The CIPHER clause is used to provide a cipher key when retrieving data from an
Adabas file which is enciphered.

See the statements FIND and PASSW for further information.

*ISN / operand3 Internal Sequence Number:

Statements 537

GET

Syntax Element

Description

The ISN must be provided either in the form of a numeric constant or user-defined
variable (operand3in the range from 1 to 4294967295), or via the Natural system
variable *ISN.

(r)

Statement Reference:

The notation (r) is used to specify the statement which contains the FIND or READ
statement used to initially read the record.

If (r) is not specified, the GET statement will be related to the innermost active
processing loop.

(r) may be specified as a reference statement number or as a statement label.

operand4 Reference to Database Fields:
In reporting mode, subsequent references to database fields that have been read
with a GET statement can contain the label or line number of the GET statement.
Example

** Example 'GETEX1':

GET

R R b b e b e b b e b e b e b b e e I e e b e e e e e e B e e b e b e b e e b S b e b e e b i b e b e e b i S

DEFINE DATA LOCAL

1 PERSONS VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 SALARY-INFO VIEW
2 NAME

2 CURR-CODE (1:1)
2 SALARY (1:1)

*

OF EMPLOYEES

1 #ISN-ARRAY (B4/1:10)

1 #LINE-NR (N2)
END-DEFINE

*

FORMAT PS=16

LIMIT 10

READ PERSONS BY NAME

MOVE *COUNTER TO
MOVE *ISN TO
DISPLAY #LINE-NR
/%

AT END OF PAGE

JFLINE-NR
fFISN-ARRAY (#LINE-NR)
PERSONNEL-ID NAME FIRST-NAME

INPUT / 'PLEASE SELECT LINE-NR FOR SALARY INFORMATION:' #LINE-NR
IF #LINE-NR = 1 THRU 10

GET SALARY-INFO ffISN-ARRAY (#LINE-NR)

WRITE / SALARY-INFO.NAME

538

Statements

GET

SALARY-INFO.SALARY

SALARY-INFO.CURR-CODE (1)

END-IF
END-ENDPAGE
/*

END-READ
END

Output of Program GETEX1:

Page 1

#FLINE-NR PERSONNEL

ID

60008339
30000231
50005800
20008800
20009800
20012700
20013800
20019600
20008600
20005700

O O OO O O & WM

—_

ABELLAN
ACHIESON
ADAM
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON

FIRST-NAME

KEPA
ROBERT
SIMONE
JEFF
PHYLLIS
HAZEL
DAVID
CHARLIE
MARTHA
TIMMIE

PLEASE SELECT LINE-NR FOR SALARY INFORMATION: 1

ABELLAN

1450000 PTA

05-01-13

13:17:42

Statements

539

540

76 GET SAME

LI V1ot o PSP PPPPUR PP 542
LI =1 (47 o PSPPSR 542
B SYNEAX DESCIIPHON ...ttt e e 542
L 11T o] (- PSPPSR 543

541

GET SAME

Structured Mode Syntax

‘GET SAME [(1)]

Reporting Mode Syntax

‘GET SAME [(r)] [operand] ..]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The GET SAME statement is used to re-read the record currently being processed. It is most frequently
used to obtain database array values (periodic groups or multiple-value fields) if the number and
range of existing or desired occurrences was not known when the record was initially read.

Restrictions

" GET SAME is only valid for Natural users who are using Adabas.
" GET SAME cannot be used with Entire System Server.

® An UPDATE or DELETE statement must not reference a GET SAME statement. These statements
should instead make reference to the FIND, READ or GET statement used to read the record initially.

Syntax Description

Operand Definition Table:

542 Statements

GET SAME

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operandl ‘s ‘A | ‘ A‘UWNqP“|B||““ no yes

Syntax Element Description:

Syntax Element | Description

(r) Statement Reference:

The notation (r) is used to specify the statement which contains the FIND or READ statement
used to initially read the record.

If (r) is not specified, the GET SAME statement will be related to the innermost active
processing loop.

(r) may be specified as a reference statement number or as a statement label.

operandl Fields to Be Made Available:

As operandl, you specify the field(s) to be made available as a result of the GET SAME
statement.

Note: operandI cannot be specified if the field is defined in a DEFINE DATA statement.

Example

** Example 'GSAEX1': GET SAME

AR A AR AR KR AR KA R A AR A A KA R KA KA A KA AR AR KA R KA KA AR AR KA KRR A I A A I ARk AR kA h kA kA A kA hkkxK

DEFINE DATA LOCAL

11 (P3)

1 POST-ADDRESS VIEW OF EMPLOYEES
2 FIRST-NAME

NAME

ADDRESS-LINE (I:1)

C*ADDRESS-LINE

POST-CODE

CITY

N NN NN

*

1 #NAME (A30)

END-DEFINE

*

FORMAT PS=20

MOVE 1 TO I

*

READ (10) POST-ADDRESS BY NAME
COMPRESS NAME FIRST-NAME INTO #NAME WITH DELIMITER ',
WRITE // 12T #NAME
WRITE / 12T ADDRESS-LINE (I.1)
/*

Statements 543

GET SAME

Output of Program GSAEX1:

544 Statements

77 GET TRANSACTION DATA

LI V1ot o PSP PPPPUR PP 546
L =140) O URPUPPPPPRRR 546
B SYNEAX DESCIIPHON ...ttt e e 547
L 11T o] (- PSPPSR 547

545

GET TRANSACTION DATA

GET TRANSACTION [DATA] operandl ...

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The GET TRANSACTION DATA statement is used to read the data saved with a previous END
TRANSACTION statement.

GET TRANSACTION DATA does not create a processing loop.
System Variable *ETID

The content of the Natural system variable *ETID identifies the transaction data to be retrieved
from the database.

No Transaction Data Stored

If the GET TRANSACTION DATA statement is issued and no transaction data are found, all fields
specified in the GET TRANSACTION DATA statement will be filled with blanks regardless of format
definition.

@ Caution: Make sure that arithmetic operations are not performed on “empty” transaction

data, because this would result in an abnormal termination of the program.

Restriction

The GET TRANSACTION DATA statement is only valid for transactions applied to Adabas databases.

546 Statements

GET TRANSACTION DATA

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operandl ‘S ‘ | ‘ A‘U‘N‘PMF‘B‘D‘T‘ ‘ H yes yes

Syntax Element Description:

Syntax Element | Description

operandl Field Specification:

The sequence, lengths, and formats of the fields used in the GET TRANSACTION DATA
statement must be identical to the sequence, lengths, and formats of the fields specified with
the corresponding END TRANSACTION statement.

Note: GET TRANSACTION DATA cannot be used if operand] is a dynamic variable.

Example

** Example 'GTREX1': GET TRANSACTION

**

** CAUTION: Executing this example will modify the database records!
khkhkhkkhkhkhkhhkhkhhkhkhhkkhkhhkhhkhkhkhhkhkhkhkhhhkhhhkhhkhhhkhkhhkhhhkhkkhhkhhkhkhhhkhhhkkhhkhrhkhkhhkhkhhkhkhixkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
NAME
FIRST-NAME
MIDDLE-1I
CITY

NN NN

*

1 #PERS-NR (A8) INIT <' '>
END-DEFINE
*
GET TRANSACTION DATA #PERS-NR
IF #PERS-NR NE '
WRITE 'LAST TRANSACTION PROCESSED FROM PREVIOUS SESSION' #PERS-NR
END-IF
*
REPEAT
/*
INPUT 10X 'ENTER PERSONNEL NUMBER TO BE UPDATED:' #PERS-NR
IF #PERS-NR = '

Statements 547

GET TRANSACTION DATA

STOP
END-IF
/*

FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PERS-NR

IF NO RECORDS FOUND
REINPUT 'NO RECORD FOUND'
END-NOREC
INPUT (AD=M) PERSONNEL-ID (AD=0)
/ NAME
/ FIRST-NAME
/ CITY
UPDATE
END TRANSACTION #fPERS-NR
END-FIND
/%
END-REPEAT
END

548

Statements

7 8 HISTOGRAM

LI V1ot o PSP PPPPUR PP 550
LI =1 (47 o PSPPSR 551
B SYNEAX DESCIIPHON ...ttt e e 551
= System Variables Available with HISTOGRAMooiiiiiiiiii e 556
B XAMIDIES L.ttt 557

549

HISTOGRAM

HISTOGRAM [ALL [IMULTI-FETCH-clausellmulti-fetch-factorl]

(operandl) [INI[FILE] view-name
[PASSWORD=o0perand?]

ASCENDING
DESCENDING
[Th] VARIABLE operand3 [SEQUENCE

DYNAMIC operand3

[VALUE][FORI[FIELD] operand4

[STARTING/ENDING-clause]

[WHERE Togical-condition]

statement ...

END-HISTOGRAM (structured mode only)

LOOP (reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION DATA | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The HISTOGRAM statement is used to read the values of a database field which is defined as a
descriptor, subdescriptor, or a superdescriptor. The values are read directly from the Adabas in-
verted lists. The HISTOGRAM statement causes a processing loop to be initiated but does not provide
access to any database fields other than the field specified in the HISTOGRAM statement.

See also the following sections in the Programming Guide:

" HISTOGRAM Statement
® Loop Processing
= Referencing of Database Fields Using (r) Notation

D Note: For SQL databases: HI STOGRAM returns the number of rows which have the same value

in a specific column.

550 Statements

HISTOGRAM

Restrictions

= This statement cannot be used with XML databases.

® This statement cannot be used with Entire System Server.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S NP|I| B* yes no
operandZ |C |S A yes no
operand3 S A yes no
operand4 S A| IN|P|I|F|B |D|T|L no no

* Format B of operandl may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element Description

operandl / ALL Number of Descriptor Values:

You can limit the number of descriptor values to be processed with the
HISTOGRAM statement by specifying operand1 - either as a numeric constant
(0 - 4294967295) or as a user-defined variable (containing an integer value).

ALL may optionally be specified to emphasize that all descriptor values are
to be processed.

For this statement, the specified limit has priority over a limit set witha LIMI T
statement.

If a smaller limit is set with the LT parameter (Limit for Processing Loops),
the LT limit applies.

Note: If you wish to process a 4-digit number of descriptor values, specify it

with aleading zero (0nnnn);because Natural interprets every 4-digit number
enclosed in parentheses as a line-number reference to a statement. operand1
is evaluated when the HISTOGRAM loop is entered. If the value of operandi
is modified within the HISTOGRAM loop, this does not affect the number of
values read.

Statements 551

HISTOGRAM

Syntax Element

Description

MULTI-FETCH-clause

MULTI-FETCH Clause:

See MULTI-FETCH Clause below.

view-name

View Name:

As view-name, you specify the name of a view, which is defined either within
a DEFINE DATA statement or in a separate global or local data area.

The view must not contain any other fields apart from the field used in the
HISTOGRAM statement (operand4).

If the field in the view is a periodic-group field or multiple-value field that
is defined with an index range, only the first occurrence of that range is filled
by the HISTOGRAM statement; all other occurrences are not affected by the
execution of the HI STOGRAM statement.

In reporting mode, view-name is the name of a DDM if no DEFINE DATA
LOCAL statement is used.

PASSWORD=operand?

PASSWORD Clause:

The PASSWORD clause is used to provide a password (operandZ?) when
retrieving data from an Adabas file which is password-protected. See the
statements FIND and PASSW for further information.

SEQUENCE

SEQUENCE Clause:
This clause can only be used for Adabas and SQL databases.

With this clause, you can determine whether the records are to be read in
ascending sequence or in descending sequence.

® The default sequence is ascending (which may, but need not, be explicitly
specified by using the keyword ASCENDING).

= If the records are to be read in descending sequence, you specify the
keyword DESCENDING.

= If, instead of determining it in advance, you want to have the option of
determining at runtime whether the records are to be read in ascending or
descending sequence, you either specify the keyword VARIABLE or
DYNAMIC, followed by a variable (operand3). operand3 has to be of
format/length A1 and can contain the value A (for “ascending”) or D (for
“descending”).

= Jf keyword VARIABLE is used, the reading direction (value of operand3)
is evaluated at start of the HI STOGRAM processing loop and remains same
until the loop is terminated, regardless if the operand3 field is altered
in the HISTOGRAM loop or not.

= If keyword DYNAMIC is used, the reading direction (value of operand3)
is evaluated before every record fetch in the HISTOGRAM processing loop
and may be changed from record to record. This allows to change the

552

Statements

HISTOGRAM

Syntax Element

Description

scroll sequence from ascending to descending (and vice versa) at any
place in the HISTOGRAM loop.

Examples of SEQUENCE clause:

® Example 2 - HISTOGRAM Statement with Records Read in Descending
Sequence

® Example 3 - HISTOGRAM Statement Using Variable Sequence

operand4

Descriptor:

As operand4, a descriptor, subdescriptor, superdescriptor or hyperdescriptor
may be specified.

A descriptor contained within a periodic group may be specified with or
without an index. If no index is specified, the descriptor will be selected if
the value specified is located in any occurrence. If an index is specified, the
descriptor will be selected only if the value is located in the occurrence
specified by the index. The index specified must be a constant. An index range
must not be used.

For a descriptor which is a multiple-value field an index must not be specified;
the descriptor will be selected if the value is located in the record regardless
of the position of the value.

STARTING-ENDING-clause

STARTING/ENDING Clause:

Starting and ending values may be specified using the keywords STARTING
and ENDING (or THRU) followed by a constant or a user-defined variable
representing the value with which processing is to begin/end.

For further information, see Specifying Starting/Ending Values below.

WHERE Togical-condition

WHERE Clause:

The WHERE clause may be used to specify an additional selection criteria
(Togical-condition)which is evaluated after a value has been read and
before any processing is performed on the value (including the AT BREAK
evaluation).

The descriptor specified in the WHERE clause must be the same descriptor
referenced in the HI STOGRAM statement. No other fields from the selected file
are available for processing with a HISTOGRAM statement.

The syntax for a Togical-conditionis described in the section Logical
Condition Criteria (in the Programming Guide).

END-HISTOGRAM

LOOP

End of HISTOGRAM Statement:

In structured mode, the Natural reserved word END-HISTOGRAM must be
used to end the HISTOGRAM statement.

Statements

553

HISTOGRAM

Syntax Element Description

In reporting mode, the Natural statement LOOP must be used to end the
HISTOGRAM statement.

MULTI-FETCH Clause

| Note: This clause can only be used for Adabas databases.

ON
MULTI-FETCH OFF
[OFf multi-fetch-factor

| Note: [MULTI-FETCH OF multi-fetch-factor]issupported for database types ADA/ADAZ.

The default processing mode is applied; see profile parameter MFSET. The MULTI-FETCH
clause is ignored in case Adabas LA or large objects fields are used or a view size greater
than 64KB is defined.

For more information, see the section MULTI-FETCH Clause (Adabas) in the Programming Guide.
Specifying Starting/Ending Values

Starting and ending values may be specified using the keywords STARTING and ENDING (or THRU)
followed by a constant or a user-defined variable representing the value with which processing
is to begin/end.

If a starting value is specified and the value is not present, the next higher value is used as the
starting value. If no higher value is present, the HISTOGRAM loop will not be entered.

If an ending value is specified, values will be read up to and including the ending value.

Hexadecimal constants may be specified as a starting or ending value for descriptors of format A
or B.

Syntax Option 1:

THRU

WITH
STARTING VALUES] operand5
[[][FROM][Iop] [[ENDINGAT

] operand6]

Syntax Option 2:

554 Statements

HISTOGRAM

[STARTING] [\/Fdég;] [VALUES] operand5 TO operandé
Syntax Option 3:
<
LT
LESS THAN
>
GT
GREATER THAN
<: operandb
LE
LESS EQUAL
S=
GE
GREATER EQUAL

| Note: If the comparators of Diagram 3 are used, the options ENDING AT, THRU and TO may

not

be used. These comparators are also valid for the READ statement.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operand5 |C A|UIN|P|I D|T|L yes no

operand6 |C |S A|UIN|P|I|F|B|D|T|L yes no

Syntax Element Description:

Syntax Element Description

STARTING
ENDI
| TO

FROM |STARTING FROM / ENDING AT Clauses:

NG AT
The STARTING FROMand ENDING AT clauses are used to limit reading to a user-specified

range of values.

The STARTING FROM clause (= or £EQ or EQUAL TO or [STARTING] FROM) determines
the starting value for the read operation. If a starting value is specified, reading will
begin with the value specified. If the starting value does not exist, the next higher (or
lower for a DESCENDING read) value will be returned. If no higher (or lower for
DESCENDING) value exists, the HI STOGRAM loop will not be entered.

Statements

955

HISTOGRAM

Syntax Element Description

In order to limit the values to an end-value, you may specify an ENDING AT clause with
the terms THRU, ENDING AT or T0, that imply an inclusive range. Whenever the descriptor
field exceeds the end-value specified, an automatic loop termination is performed.
Although the basic functionality of the TO, THRU and ENDING AT keywords looks quite
similar, internally they differ in how they work.

THRU | ENDING |THRU/ENDING AT Option:
AT

If THRU or ENDING AT is used, only the start-value is supplied to the database, but the
end-value check is performed by the Natural runtime system, after the value is returned
by the database.

The THRU and ENDING AT options can be used for all databases which support the
HISTOGRAM statements.

T0 Range:

If the keyword TO0 is used, both the start-value and the end-value are sent to the database
and Natural does not perform checks for value ranges. If the end-value is exceeded, the
database reacts in the same way as when “end-of-file” is reached and the database loop
is exited. Since the complete range checking is done by the database, the lower-value
(of the range) is always supplied in the start-value and the higher-value filled into the
end-value, regardless whether you are browsing in ASCENDING or in DESCENDING order.

| Note: The result of READ/HISTOGRAM THRU/ENDING AT might differ from the result of

READ/HISTOGRAM TO if Natural and the accessed database reside on different platforms with
different collating sequences.

System Variables Available with HISTOGRAM

The Natural system variables *ISN, *NUMBER, and *COUNTER are available with the HISTOGRAM
statement.

*NUMBER and *ISN are only set after the evaluation of the WHERE clause. They must not be used in
the logical condition of the WHERE clause.

System Variable | Explanation

*NUMBER The system variable *NUMBER contains the number of database records that contain the last
value read.

For SQL databases, see *“NUMBER for SQL Databases in the System Variables documentation.

*ISN The system variable *I SN contains the number of the occurrence in which the descriptor
value last read is contained. *I SN will contain 0 if the descriptor is not contained within a
periodic group.

* 1SN is not available for SQL databases.

556 Statements

HISTOGRAM

System Variable | Explanation

*COUNTER The system variable *COUNTER contains a count of the total number of values which have
been read (after evaluation of the WHERE clause).

Examples

= Example 1 - HISTOGRAM Statement
= Example 2 - HISTOGRAM Statement with Records Read in Descending Sequence
= Example 3 - HISTOGRAM Statement Using Variable Sequence

Example 1 - HISTOGRAM Statement

** Example '"HSTEX1S': HISTOGRAM (structured mode)
AR R AR AR KR AR A AR A AR A AR AR KA KA A KA AR AR KA KK A KA AR AR KA KA R A AR AR R A kA * kA KA A kA Kk kK
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
END-DEFINE
*
LIMIT 8
HISTOGRAM EMPLOY-VIEW CITY STARTING FROM 'M’

DISPLAY NOTITLE

CITY '"NUMBER OF/PERSONS' *NUMBER *COUNTER

END-HISTOGRAM

*

END

Output of Program HSTEX1S:

CITY NUMBER OF CNT
PERSONS

MADISON

MADRID 4
MAILLY LE CAMP

MAMERS

MANSFIELD

MARSETLLE

MATLOCK

MELBOURNE

N NS E W
QO N O O B W N

Equivalent reporting-mode example: HSTEX1R.

Statements 557

HISTOGRAM

Example 2 - HISTOGRAM Statement with Records Read in Descending Sequence

** Example "HSTDSCND': HISTOGRAM (with DESCENDING)

R R R R R R R R b b e e R e e R R b I e R e b e i b b b R b i b b B b i b b b b b b Y

DEFINE DATA LOCAL

1 EMPL VIEW OF EMPLOYEES
2 NAME

END-DEFINE

*

HISTOGRAM (10) EMPL IN DESCENDING SEQUENCE FOR NAME FROM 'Z77'
DISPLAY NAME *NUMBER

END-HISTOGRAM

END

Output of Program HSTDSCND:

Page 1 05-01-13 13:41:03

ZINN

YOT

YNCLAN

YATES

YALCIN
YACKX-COLTEAU
XOLIN

WYLLIS
WULFRING
WRIGHT

— PN — e

Example 3 - HISTOGRAM Statement Using Variable Sequence

** Example "HSTVSEQ': HISTOGRAM (with VARIABLE SEQUENCE)
ok o ok ok ok ok ok ko ok o ok ok K o ok ok ok ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok
DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES
2 NAME
*
1 #DIR (A1)
1 ##STARTVAL (A20)
END-DEFINE

*

SET KEY PF3 PF7 PF8

*

MOVE '"ADKINSON' TO #STARTVAL

*

HISTOGRAM (9) EMPL FOR NAME FROM #STARTVAL
WRITE NAME *NUMBER

558 Statements

HISTOGRAM

IF *COUNTER = 5
MOVE NAME TO #STARTVAL
END-IF
END-HISTOGRAM

*

#DIR = 'A’

*

REPEAT

HISTOGRAM EMPL IN VARIABLE #DIR SEQUENCE
FOR NAME FROM #STARTVAL

MOVE NAME TO #STARTVAL
INPUT NO ERASE

(IP=0FF AD=0)
15/01 NAME *NUMBER

// 'Direction:' #DIR

// 'Press PF3 to stop'

PF7 to go step back'

PF8 to go step forward'

ENTER to continue in that direction'

/ '
/ '
/ '
/*

IF *PF-KEY = 'PF7' AND #fDIR

MOVE 'D' TO #DIR
ESCAPE BOTTOM
END-IF

IF *PF-KEY = 'PF8' AND #fDIR

MOVE 'A' TO #DIR
ESCAPE BOTTOM
END-IF
IF *PF-KEY =
STOP
END-IF
END-HISTOGRAM
] *
IF *COUNTER(0250) = 0
STOP
END-IF
END-REPEAT
END

"PF3’

Output of Program HSTVSEQ:

Page 1

ADKINSON
AECKERLE
AFANASSTEV
AHL

AKROYD
ALEMAN
ALESTIA
ALEXANDER
ALLEGRE

— Ol = = = = N

IAI

IDI

05-01-13

13:50:31

Statements

559

HISTOGRAM

After pressing ENTER:

560 Statements

79

B FUNCHON oo

& SYK DESCHIDON oo o

e 562
... 563

561

IF

Structured Mode Syntax

IF Togical-condition
[THEN] statement ...
[ELSE statement ...]

END-IF

Reporting Mode Syntax

IF Togical-condition
statement

[THEN]
DO statement ...DOEND
statement

[s | B
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DECIDE FOR | DECIDE ON | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The IF statement is used to control execution of a statement or group of statements based on a
logical condition.

] Note: Ifno action is to be performed in case the condition is met, you must specify the
statement IGNORE in the THEN clause.

Syntax Description

Syntax Element Description

IF Togical-condition |Logical Condition Criterion:

The logical condition which is used to determine whether the statement or
statements specified with the IF statement are to be executed.

Examples:

562 Statements

Syntax Element Description

IF #A = 48

IF LEAVE-TAKEN GT 30

IF #SALARY(1) * 1.15 GT 5000

IF SALARY (4) = 5000 THRU 6000

IF DEPT = '"AIO" OR = '"A20' OR = "A30'

For further information, see the section Logical Condition Criteria (in the
Programming Guide).

THEN statement THEN Clause:

In the THEN clause, you specify the statement(s) to be executed if the logical
condition is true.

ELSE statement ELSE Clause:

In the ELSE clause, you specify the statement(s) to be executed if the logical
condition is not true.

END-IF END of IF Statement:

statement
DO statement ... DOEND

In structured mode, the Natural reserved word END - I F must be used to end
the IF statement.

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the clauses and
the IF statement. If you specify only a single statement, you can omit the DO

. DOEND statements. With respect to good coding practice, this is not
recommended.

Example

** Example 'IFEX1S': IF (structured mode)
RRA R R B b R e I b b e S b b e e b b e e b b e e b b e e b b S e b b R e e b b b b S S e b b S e b b e e b b b S S 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID

2 NAME

2 FIRST-NAME
2 SALARY (1)
2 BIRTH

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

*

1 #BIRTH (D)

END-DEFINE

*

MOVE EDITED '19450101' TO #BIRTH (EM=YYYYMMDD)

Statements 563

SUSPEND IDENTICAL SUPPRESS
LIMIT 20
*
FND. FIND EMPLOY-VIEW WITH CITY = 'FRANKFURT'
SORTED BY NAME BIRTH
IF SALARY (1) LT 40000
WRITE NOTITLE '*****' NAME 30X 'SALARY LT 40000’
ELSE
IF BIRTH GT #BIRTH

FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND.)

DISPLAY (IS=ON)
NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8)
END-FIND
END-IF
END-IF
END-FIND
END

Output of Program IFEX1S:

NAME DATE ANNUAL MAKE
OF SALARY
BIRTH
BAECKER 1956-01-05 74400 BMW
et BECKER
BLOEMER 1979-11-07 45200 FIAT
FALTER 1954-05-23 70800 FORD

FHkAE FALTER

xxx GROTHE

FxxkAk HETLBROCK

*xxxx HESCHMANN

HUCH 1952-09-12 67200 MERCEDES
*xxxx KICKSTEIN

FxxAE KLEENE

FxEkEx KRAMER

Equivalent reporting-mode example: IFEX1R.

SALARY

SALARY
SALARY
SALARY
SALARY

SALARY
SALARY
SALARY

LT

LT
LT
LT
LT

LT
LT
LT

40000

40000
40000
40000
40000

40000
40000
40000

564

Statements

80 IF SELECTION

B FUNCHON .ttt e e 566
B SYNEAX DESCIIPHON ...ttt e e e s 566
LI 1oL OSSPSR 568

565

IF SELECTION

Structured Mode Syntax

IF SELECTION[NOT UNIQUEI[INI[FIELDSI operandI ...
[THEN] statement...

[ELSE statement...]

END-IF

Reporting Mode Syntax

IF SELECTIONI[NOT UNIQUEIINIFIELDSII operandl...
statement
[THEN] { }
DO statement... DOEND
statement
[ELSE { }]
DO statement... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DECIDE FOR | DECIDE ON | IF

Belongs to Function Group: Processing of Logical Conditions

Function

The IF SELECTION statement is used to verify that in a sequence of alphanumeric fields one and
only one contains a value.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

oversnat | 5 [| ATl s E

Syntax Element Description:

566 Statements

IF SELECTION

Syntax Element

Description

operandl

Selection Field(s):
As operandl you specify the fields which are to be checked.

If you specify an attribute control variable (Format C), it is considered to contain
a value if its status has been changed to MODIFIED.

Note: To check if a specific attribute control variable has been assigned the status

MODIFIED, use the MODIFIED option of, for example, an I F statement. This enables
you to check that exactly one field was modified.

THEN statement ...

THEN Clause:

The statement(s) specified in the THEN clause will be executed if one of the
following conditions is true:

= None of the fields specified in operandl contains a value.

= More than one of the fields specified in operandI contains a value.

This statement is generally used to verify that a terminal user has entered only
one function in response to a map displayed via an INPUT statement.

Note: If no action is to be performed if one of the conditions is met, you specify
the statement IGNORE in the THEN clause.

ELSE statement ...

ELSE Clause:

In the ELSE clause, you specify the statement(s) to be executed if exactly one field
contains a value.

END-IF

statement ...

DO statement ...

DOEND

End of IF SELECTION Statement:

In structured mode, the Natural reserved word END - I F must be used to end the
IF SELECTION statement.

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the clauses and the
IF SELECTION statement. If you specify only a single statement, you can omit

the DO ... DOEND statements. With respect to good coding practice, this is not
recommended.

Statements

567

IF SELECTION

Example

** Example 'IFSEL': IF SELECTION
khkkkhkhhkhkhhkhkhhhkhhkhkhhkhhhkhkhhkhhkhkhkhhkhhhkhhhhhkhkhhkhhhkhkkhhkhhkhkhhhkhhkhkhhkhrhhkhkhhkkhhkhkhkixkx
DEFINE DATA LOCAL
1 A (A1)
1 4B (A1)
END-DEFINE
S
INPUT 'Select one function:' //
9X 'Function A:' A
9X 'Function B:' #B

*
IF SELECTION NOT UNIQUE #A #B

REINPUT 'Please enter one function only.'
END-IF
*
IF #A NE ' '

WRITE "Function A selected.’
END-IF
IF #B NE ' '

WRITE 'Function B selected.'
END-IF

*

END

Output of Program IFSEL:

Select one function:
Function A: Function B:

After selecting and confirming function A:

Page 1 05-01-17 11:04:07

Function A selected.

568 Statements

81 IGNORE

I TV 0 o110 OO TP 570
B EXAMPIE oo 570

569

IGNORE

‘IGNORE

Function

The IGNORE statement is an “empty” statement which itself does not perform any function.

During the development phase of an application, you can insert IGNORE temporarily within state-
ment blocks in which one or more statements are required, but which you intend to code later (for
example, within AT BREAK or AT START OF DATA /AT END OF DATA). This allows you to continue
programming in another part of the application without the as yet incomplete statement block
leading to an error.

The IGNORE statement must also be used in condition statements, such as IF or DECIDE FOR, if no
function is to be performed in the case of a condition being met.

Example

AT TOP OF PAGE
IGNORE /* top-of-page processing still to be coded
END-TOPPAGE

570 Statements

82 INCLUDE

B FUNCHON .ttt e e 572
B SYNEAX DESCIIPHON ...ttt e e e s 572
L e 01T OO SR PUPPPPPRRR 573

571

INCLUDE

INCLUDE copycode-name [operandI]... 99

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The INCLUDE statement is used to include source lines from an external object of type copycode
into another object at compilation.

The INCLUDE statement is evaluated at compilation time. The source lines of the copycode will not
be physically included in the source of the program that contains the INCLUDE statement, but they
will be included during the program compilation and thus in the resulting object module.

@ Caution: A source code line which contains an INCLUDE statement must not contain any
other statement.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operanat [C| | | | |APL[IITII]]] no no

Syntax Element Description:

Syntax Element [Description

copycode-name|Copycode Name:
As copycode-name you specify the name of the copycode whose source is to be included.

copycode-name may contain an ampersand (&); at compile time, this character will be
replaced by the one-character code corresponding to the current value of the Natural
system variable * LANGUAGE. This feature allows the use of multilingual copycode names.

The object you specify must be of the type copycode. The copycode must be contained
either in the same library as the program which contains the INCLUDE statement or in
the respective steplib (the default steplib is SYSTEM).

When the source of a copycode is modified, all programs using that copycode must be
compiled again to reflect the changed source in their object codes.

The source code of the copycode must consist of syntactically complete statements.

operandl Insert Values for Dynamic Insertion:

572 Statements

INCLUDE

Syntax Element

Description

You can dynamically insert values in the copycode which is included. These values are
specified with operandl.

In the copycode, the values are referenced with the following notation:

&n&

That is, you mark the position where a value is to be inserted with &n&. n is the sequential
number of each value passed with the INCLUDE statement. For example, &3& would refer
to the third value specified with the statement.

For every &n& notation in the copycode you must specify a value in the INCLUDE statement.
For example, if the copycode contains &5&, operandl must be specified at least five times.

You may write one copy code parameter (&n&) after another without blanks (that is,
818&28&3&). This method is used to concatenate multiple copy code parameters to a
source.

A string may follow one or several copy code parameters without a blank (thatis, &1&abc
or &1&&28&abc). This method is used to concatenate a string to multiple copy code
parameters.

Note: Because &n& is a valid part of an identifier, this notation may not be used as a copy

code parameter substitution in other positions described above (i.e. abc&1& or
&1&abc&24). In other words, a string may only come after copy code parameters, not
before or between.

Values that are specified in the INCLUDE statement but not referenced in the copycode
will be ignored.

Examples

= Example 1 - INCLUDE Statement Including Copycode
= Example 2 - INCLUDE Statement Including Copycode with Parameters
= Example 3 - INCLUDE Statement Using Nested Copycodes

Statements

573

INCLUDE

= Example 4 - INCLUDE Statement with Concatenated Parameters in Copycode
Example 1 - INCLUDE Statement Including Copycode

Program containing the INCLUDE statement:

** Example "INCEX1': INCLUDE (include copycode)

R R R b e b e b e b e b e b b e b b e e S e e b e e e e e e b e e b e b e b S e b e e i e e b i b e S e e b i 4
*

WRITE 'Before copycode'

*

INCLUDE INCEXIC

*

WRITE "After copycode'

*

END

Copycode INCEXIC to be included:

** Example "INCEX1C': INCLUDE (copycode used by INCEX1)

khkkkhkkhkhkhkhkkhkhhhkhkkhkhhhkhkhhhhhkkhkhhhhkhkkhhhhkhkkhhhhhkhkhhhhkkhkhhhhkkhkkhhhkhkhkhhhrhkkhhhhkkhhrrkkk
*

WRITE 'Inside copycode'

Output of Program INCEXI:

Page 1 05-01-25 16:26:36

Before copycode
Inside copycode
After copycode

Example 2 - INCLUDE Statement Including Copycode with Parameters

Program INCEX2 containing the INCLUDE statement:

** Example 'INCEX2': INCLUDE (include copycode with parameters)
R R R R b b R R e b i b S b e i e b b b e S b b b e S b b S S i b b i e e b b e S b b e i S b b b e b b b
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
END-DEFINE

*
*

INCLUDE INCEX2C "EMPL-VIEW' "NAME' '''ARCHER''' "'20' '''BAILLET"'"'

*

END

574 Statements

INCLUDE

Copycode INCEX2C to be included:

** Example "INCEX2C': INCLUDE (copycode used by INCEX2)

R R e b S b S b e b b e b e b e b b e e b e e b e S e e e S e e b e e b e e b S e b e e i b e b e e b o S

* Transferred parameters from INCEXZ:
*

* &1& : EMPL-VIEW

* &2& : NAME

* &3& : '"ARCHER'

* 48 : 20

* &5& : 'BATLLET'

*

*

READ (&4&) &l& BY &2& = &3&
DISPLAY &2&

IF &2& = &b&
WRITE 5X 'LAST RECORD FOUND' &Z2&
STOP
END-IF
END-READ

Statements above will be completed to:

READ (20) EMPL-VIEW BY NAME = "ARCHER'
DISPLAY NAME
IF NAME = 'BAILLET'
WRITE 5X 'LAST RECORD FOUND' NAME
STOP
END-IF
END-READ

Ok o o X o %k X %

Output of Program INCEX2:

Page 1 05-01-25 16:30:43

ARCHER
ARCONADA
ARCONADA
ARNOLD
ASTIER
ATHERTON
ATHERTON
ATHERTON
AUBERT
BACHMANN
BAECKER
BAECKER
BAGAZJA

Statements 575

INCLUDE

BATLLET
LAST RECORD FOUND BATLLET

Example 3 - INCLUDE Statement Using Nested Copycodes
Program containing INCLUDE statement:

** Example 'INCEX3': INCLUDE (using nested copycodes)
khkhkhkkhkhkhkhkhkhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhkhkhhhkhkhhhkhhkhkhhkhhhkhkkhhkhhkhkhkhhkdhhkhhkhhhkhkhhkhkhhkhkhikxkx
DEFINE DATA LOCAL

1 #A (I4)

END-DEFINE

*

MOVE 123 TO A

WRITE 'Program INCEX3 ' '="' {A

*

INCLUDE INCEX31C '#fA' '5" /* source line is #fA := 5
*

*

MOVE 300 TO #fA

WRITE 'Program INCEX3 ' '="' {A

*

INCLUDE INCEX32C "''f#A''* '''20''' /* source line is #A := 20
*

WRITE 'Program INCEX3 ' '=' #A

END

Copycode INCEX31C to be included:

** Example 'INCEX31C': INCLUDE (copycode used by INCEX3)

RRA R R B b R R e I b b R e S b b e e b b e b b e e b b e e b b S e b R R e e b R e e b b S S e b b R e b b e e B b b S 4

* Transferred parameters from INCEX3:
*

* &1& : A

* &2& @ b

*

*

&1& := &2&

*

WRITE 'Copycode INCEX31C' '=' &l&

576

Statements

INCLUDE

Copycode INCEX32C to be included:

** Example "INCEX32C': INCLUDE (copycode used by INCEX3)

R R e b S b S b e b b e b e b e b b e e b e e b e S e e e S e e b e e b e e b S e b e e i b e b e e b o S

Transferred parameters from INCEX3:

*

*

* &1& AT
* &2& : '20"
*
*

WRITE 'Copycode INCEX32C' &1& &2&
*
INCLUDE INCEX31C &l& &2&

Output of Program INCEX3:

Page 1 05-01-25 16:35:36
Program INCEX3 #fA: 123

Copycode INCEX31C fA: 5

Program INCEX3 A : 300

Copycode INCEX32C fA 20

Copycode INCEX31C ffA: 20

Program INCEX3 {fA: 20

Example 4 - INCLUDE Statement with Concatenated Parameters in Copycode

Program containing INCLUDE statement:

** Example "INCEX4': INCLUDE (with concatenated parameters in copycode)

R R R R R b R R b e b R e I R R i i e R e b R e i R e b e b R e i I b e S b b

DEFINE DATA LOCAL

1 #GROUP

2 ABC(A10) INIT <'1234567890'>
END-DEFINE
*
INCLUDE INCEX4C '#GROUP.' "ABC' 'AB'
*
END

Statements 577

INCLUDE

Copycode INCEX4C to be included:

**% Example "INCEX4C':

INCLUDE (copycode used by INCEX4)

Ak kAhkhkhhkkkhhhkhkkhkkhhhhkhkhkhhhhkkhkkhhhhkkhkkhhhhhkkhkhhhhkkhhhrhkkhkhhhhkkhkkhhhhkhkkhhhrhkkhhrhkkhirritkk

Transferred parameters from INCEX4:

*

*

* &1& : #fGROUP.

* 828 : ABC

* 438 : AB

*

*

WRITE '=' 828
WRITE '=' &1&ABC
WRITE '=' &1&&2&
WRITE '=' &18&38C

/*
/*
/*
/*

Output of Program INCEX4:

Page

ABC:
ABC:
ABC:
ABC:

1

1234567890
1234567890
1234567890
1234567890

"ABC'

"#GROUP. ' ABC

"#GROUP.
"#FGROUP . '

"ABC'
"AB" C

results
results
results
results

into ABC

into #fGROUP.ABC
into ##GROUP.ABC
into #GROUP.ABC

05-01-25 16:37:59

578

Statements

X INPUT

The syntax is described separately. See:

® INPUT Syntax 1 - Dynamic Screen Layout Specification
® INPUT Syntax 2 - Using Predefined Map Layout

Related Statements: DEFINE WINDOW | REINPUT | SET WINDOW

Belongs to Function Group: Screen Generation for Interactive Processing

Function

The INPUT statement is used in interactive mode to create a formatted screen or map for data entry.

It may also be used in conjunction with the Natural stack (see the STACK statement) and to provide
user data for programs being executed in batch mode.

For Natural RPC: See Notes on Natural Statements on the Server in the Natural RPC (Remote Procedure
Call) documentation.

Input Modes

The INPUT statement may be used in screen, forms, or keyword/delimiter mode. Screen mode is
generally used with video terminals/screens. Forms mode may be used with TTY terminals. De-
limiter mode is used with TTY terminals, and also in batch mode. The default mode is screen
mode.

You can change the input mode with the session parameter IM.

579

INPUT

Screen Mode

In screen mode, execution of the INPUT statement results in the display of a screen according to
the fields and positioning notation specified. The message line of the screen is used by Natural
for error messages. The position of the message line (top or bottom of screen) may be controlled
by the terminal command %M. The terminal user may position to specific fields using the various
tabulation keys.

As Natural allows for screen window processing, the layout of the logical screen map may be
larger (theoretically 250 characters per line and 250 lines, but limited by the internal screen buffer)
than the physical screen size.

The windowing terminal command %W may be used to modify logical and physical window position
and size (see the terminal command %W for details of window handling).

For input fields (AD=A or AD=M) that are not fully displayed on the physical screen, the following
rules apply:
* Input fields whose beginning is not inside the window are always made protected.

* Input fields which begin inside and end outside the window are only made protected if the
values they contain cannot be displayed completely in the window. Please note that in this case
it is decisive whether the value length, not the field length, exceeds the window size. Filler
characters (as specified with the profile parameter FC or session parameter AD) do not count as
part of the value.

® Before an input field thus protected can be accessed and processed, the window size must be
adjusted so as to fully display the field or value respectively (see the terminal command %W).

Non-Screen Modes

The INPUT statement may be used for an operation on line-oriented devices or for the processing
of batch input from sequential files.

The same map layouts as defined for screen mode operation can also be processed in non-screen
mode.

Forms mode and keyword/delimiter mode are also available to process the input either by simu-
lating the screen layout in line mode or by just processing the data without any map layout.

See also:

® Using the INPUT Statement in Non-Screen Modes
® Using the INPUT Statement in Batch Mode
® Processing Data from the Natural Stack

580 Statements

INPUT

Entering Data in Response to an INPUT Statement

Data for an alphanumeric field must be entered left-justified. Any character, including a blank, is
meaningful. The data are assigned one character per byte to the internal field. Data entered for an
alphanumeric field are not validated.

Lower and upper case translation are controlled by the terminal commands %L and %U as well as
the attributes AD=T and AD=W.

Data for a numeric field may be placed anywhere in the input field. Leading and/or trailing blanks,
leading zeros, a leading sign and one decimal point are permitted. Natural adjusts the value ac-
cording to the internal definition of the field. If SG=0FF is specified, Natural does not assume or
allocate a position for a sign position. Data for a field defined with format P must be entered in
decimal form. Natural will convert decimal to packed wherever necessary. A field containing all
blanks is interpreted as a zero value. Data for a numeric field are validated by Natural to ensure
that the value consists only of leading and/or trailing blanks, an optional leading sign, an optional
decimal point, and numeric characters. If no decimal point is entered, it is assumed to be to the
right of the value entered.

Data for a binary field must be entered for all positions (two characters per byte). Only valid
hexadecimal characters (0 - 9, A - F) may be used. A blank (H'20" in ASCII or H'40" in EBCDIC re-
spectively) is valid and is converted to binary zeros. Data for a binary field are validated by Nat-
ural for hexadecimal characters.

Data for format L fields may be entered as blank (false) or non-blank (true).

Data for format F, D, and T are entered according to the rules stated for F, D, and T constants.
Numeric Edit Mask Free Mode

Within a field element, you may format the representation of the field content with an edit mask.
The edit mask is used for two purposes:

" to build the layout for displaying the field on the screen;
® when a string has been modified and ENTER has been pressed, to extract the field data from the

string entered.

The advantage of improving the format of the field data displayed with additional insert characters
may actually be a disadvantage, because a new data value entered has to perfectly match the
format of the edit mask.

Statements 581

INPUT

Example:

SET GLOBALS ID=; DC=,
RESET N (N7,3)
INPUT N (AD=M EM=Z'.'ZZ7'.'777,999EUR)

END
Output value |is displayed as: | Input value |[must be entered as: |leads to an input error if entered as:
0 ,000EUR |1 1,000EUR 1
1EUR
01,000EUR
1234 1.234,000EUR |1234567 |1.234.567,000EUR |1234567
1.234.567
1.234.567EUR
0,123 ,123EUR |1,234 1,234EUR 1,234

Another option for entering numeric fields with the edit mask is to use an alternative INPUT mode,
which is called the edit mask free mode. When activated (either at session startup with the profile
parameter EMFM or in a running Natural session via the terminal command %FM+), all or some of
the edit mask insert characters may be left out from input.

However, when a contiguous string of insertion characters appears in the edit mask (like EUR in
the example below), you may only supply or leave out the string completely. The number of op-
tional or mandatory digits (edit-mask character 7 and 9) to be supplied is not affected.

Example with Edit Mask Free Mode activated:

SET GLOBALS ID=; DC=,

SET CONTROL 'FM+' /* activate numeric Edit Mask Free Mode
RESET N (N7,3)

INPUT N (AD=M EM=Z'.'ZZ7'.'Z7Z7,999EUR)

END

Input value |can be entered as: |leads to an error if entered as:

1 1 1EUR
1,0

001
1,00EUR
0.001
1,EUR

1234567 (1234567 1.234.567EUR
1.234.567
1234.567
1234567,0
1.234.567,0
1.234.567,EUR

582 Statements

INPUT

Input value |can be entered as: |leads to an error if entered as:

1.234.567,0EUR
1.234.567,000EUR

1,234 1,234 1,234EU
1,234EUR
001,234
0.001,234EUR
00001,234EUR

| Note: The edit mask free mode applies only for INPUT, but is ignored in a MOVE EDITED

statement.

SB - Selection Box

Selection boxes in an INPUT statement are available on mainframe computers only. On Windows,
selection boxes may be defined in the map editor only. On Linux, selection boxes cannot be defined
and are ignored, if they are imported from a Windows or mainframe environment.

Selection boxes can be attached to input fields. They are a comfortable alternative to help routines
attached to fields, since you can code a selection box direct in your program. You do not need an
extra program as with help routines.

For more information, see the session parameter SB in the Parameter Reference.

Error Correction

If the value entered in an input field does not correspond to the format or edit mask of the field,
Natural displays an error message (without terminating the program execution) and positions the
cursor in the field in error. The user may then enter a valid value, whereupon processing continues.

Split-Screen Feature

In general, each INPUT statement generates a new page (or terminal screen) of output. Any INPUT
statement which is specified within an AT END OF PAGE statement will not produce a new screen.
This feature allows for the creation of a split screen where the upper portion of the screen may be
used to display multiple lines and the lower portion can be used to create an input map for com-
munication. The profile parameter PS (page size) should be used, eitherina SET GLOBALS or FORMAT
statement, to set the logical page size to ensure that the input map is built on the same physical
screen.

Statements 583

INPUT

The first INPUT line will be placed after the last displayed line. If the NO ERASE option is used, the
first INPUT line will be placed at the top of the page.

System Variables with the INPUT Statement

For information on relevant system variables, see the section Input/Output Related System Variables
in the System Variables documentation.

584 Statements

83 INPUT Syntax 1 - Dynamic Screen Layout Specification

B INPUT Syntax 1 - DESCHIPHON ..ottt 586
B EXAMPIES = SYNIAX T oot e s 595

585

INPUT Syntax 1 - Dynamic Screen Layout Specification

This form of the INPUT statement is used to create a layout of an INPUT screen, or to create an INPUT
data layout which is to be read in batch mode from a sequential input file.

INPUT [WINDOW='window-name'][NO ERASE]
[(statement-parameters)]
[WITH-TEXT-option]

[MARK-option]
[ALARM-option]

{ ze?;) } [Cattributes)]
nX
nT
x/y v *IN
/ [o] *oUT operandl [(parameter)]
- *QUTIN

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

INPUT Syntax 1 - Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted
operandl| |s |A |G |N |A|UIN[P[I[F[B|D|T|L| [G]| yes yes

Syntax Element Description:

Syntax Element Description

INPUT INPUT WINDOW='window-name' Option:
WINDOW="window-name'
With this option, you indicate that the INPUT statement is to be executed for the

specified window. The specified window must be defined ina DEFINE WINDOW
statement; see Example 2 - INPUT Statement with DEFINE WINDOW
Statement.

The specified window is only active for the duration of that INPUT statement,
and is automatically deactivated when the INPUT statement has been executed.

See also the statements DEFINE WINDOW and SET WINDOW.
NO ERASE NO ERASE Option:

586 Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

Syntax Element

Description

This option causes a screen map of an INPUT statement to be overlaid onto an
existing screen without erasing the screen contents.

Screen as used here refers to a logical screen rather than a physical screen.

All unprotected fields that existed on the screen are converted to protected
(display only) fields. The old data remain on the screen until the new layout is
displayed. If a field from the new screen content partially overlays an existing
field, the one character before the new field and the next character in the existing
field will be replaced by a blank.

Statement-parameters

Statement Parameter(s):

One or more parameters, enclosed within parentheses, may be specified
immediately after the INPUT statement or an element being displayed.

For a list of parameters that can be specified with the INPUT statement, refer to
the section Statement Parameters.

Each parameter specified in this manner will override any previous parameter
specified in a GLOBALS command, SET GLOBALS or FORMAT statement. If more
than one parameter is specified, one or more blanks must be present between
each entry. An entry may not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields,
but they have no effect on text-constants. If you would like to set field attributes
for a text-constant, they have to be set explicitly for this element.

Example:

DEFINE DATA LOCAL

1 VARI (A4) INIT <'1234'> A Qutput
END-DEFINE e Produced
* /* _________
INPUT "Text' VARI 7 Text 1234
INPUT (AD=U) "Text' VARI /* Text 1234
INPUT "Text' (AD=U) VARIT (AD=U) /* Text 1234
INPUT ‘Text' (AD=U) VARI /% Text 1234
END

Examples of using parameters at the statement and element level are provided
below.

WITH TEXT-option

WITH TEXT Option:
This option is used to provide text which is to be displayed in the message line;
see WITH TEXT Option below.

MARK-option

MARK Option:

See the section MARK Option below.

ALARM-option

Alarm Option:

Statements

587

INPUT Syntax 1 - Dynamic Screen Layout Specification

Syntax Element

Description

See the section Alarm Option below.

Other syntax elements (X,
nT, x/y, operandl, etc.)

Field Positioning, Text Specification, Attribute Assignment:

See the section Field Positioning, Text Specification, Attribute Assignment

below.

Statement Parameters

Parameters that can be specified with the INPUT statement Specification (S = at statement level, E = at element

level)

AD Attribute Definition SE
AL Alphanumeric Length for Output SE
CD Color Definition SE
cv Control Variable SE
DF Date Format SE
DL Display Length for Output SE
DY Dynamic Attributes SE
EM Edit Mask SE
EMU Unicode Edit Mask E
FL Floating Point Mantissa Length SE
HE Helproutine SE
IP Input Prompting Text SE
LS Line Size S
MC Multiple-Value Field Count

MS Manual Skip

NL Numeric Length for Output SE
PC Periodic Group Count S
PM Print Mode - SE
PS Page Size

SB Selection Box

SG Sign Position SE
ZP Zero Printing SE

" The PM session parameter may not be specified for text constants.

" The PS session parameter setting is not considered if the number of occurrences of an array exceeds

the PS value.

The individual session parameters are described in the Parameter Reference.

588

Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

WITH TEXT Option

* operandl

[WITH] TEXT { operand?

} [(attributes)][,operand3]..7

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandl |C |S N|P|I| |B* yes yes

operandZ |C |S A yes yes

operand3 |C |S AIN|P|I|FB |D|T|L yes yes

* Format B of operandl may be used only with a length of less than or equal to 4.

WITH TEXT is used to provide text which is to be displayed in the message line. This is usually a
message indicating what action should be taken to process the screen or to correct an error.

Syntax Element Description:

Syntax Element |Description

operandl Message Text Number:

operandl represents the number of a message text that is to be retrieved from a Natural
message file.

You can retrieve either user-defined messages or Natural system messages:

= If you specify a positive value of up to four digits (for example: 954), you will retrieve
user-defined messages.

= If you specify a negative value of up to four digits (for example: - 954), you will retrieve
Natural system messages.

See also Example 4 - WITH TEXT Options in the description of the REINPUT statement.
operandZ? Message Text:

operandZ represents the message to be placed in the message line.

See also Example 4 - WITH TEXT Options in the description of the REINPUT statement.
attributes |Output Attributes:

It is possible to assign various output attributes for operandl/ 2. These attributes and the
syntax that may be used are described in the section Output Attributes below.

operand3 Dynamic Replacement of Message Text:

operand3 represents a numeric or text constant or the name of a variable.

Statements 589

INPUT Syntax 1 - Dynamic Screen Layout Specification

Syntax Element |Description

The values provided are used to replace parts of a message text that are either specified
with operandl or operand?.

The notation : n: is used within the message text as a reference to operand3 contents,
where n represents the operand3 occurrence (1 -7).

See also Example 4 - WITH TEXT Options in the description of the REINPUT statement.

Note: Multiple specifications of operand3 must be separated from each other by a comma.

If the comma is used as a decimal character (as defined with the session parameter DC) and
numeric constants are specified as operand3, put blanks before and after the comma so
that it cannot be misinterpreted as a decimal character. Alternatively, multiple specifications
of operand3 can be separated by the input delimiter character (as defined with the session
parameter 1D); however, this is not possible in the case of D=/ (slash), because the slash
has a different meaning in the INPUT statement syntax.

Leading zeros or trailing blanks will be removed from the field value before it is displayed
in a message.

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

AD=ad-value...
CD=cd-value
PM=pm-value ..

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-value without preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IRE will be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-vaiue
or ad-value with a value preceded by CD= or AD=.

590 Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

MARK Option

With the MARK option, you can cause the cursor to be placed at any non-protected field on screen.
In addition, you can specify the position of the cursor within that field. By default, that is, when
the MARK option is omitted, the cursor is placed at the beginning of the first non-protected field.

MARK [POSITION operand4[IN]][FIELD] { ‘fioldname

operandl }

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing| Dynamic Definition
Permitted

operand4 |C |S N|P|I yes yes

operandl |C |S |A N|P|I yes yes

Syntax Element Description:

Syntax Element | Description

operandl Field Reference Number:
operandl specifies the number of the field where the cursor is to be positioned in.

Each field attribute AD=A or AD=M (that is, non-protected field) specified in an INPUT statement
is assigned a field reference number, beginning with 1.

*fieldname |Field Name for Referencing:

Instead of the field reference number, the field name may be used to position to a field, using
the * f7eldname notation.

operand4 Cursor Position within Referenced Field:

With MARK POSITION, you can have the cursor placed at a specific position - as specified
with operand4 - within a field specified with operandI or * fieldname.

operand4 must not contain decimal digits.

Examples:

MARK #fNUMBER /* Field number
MARK 3 /* Third map field
MARK *#fFIELD1 /* Map field

MARK POSITION 3 IN #NUMBER /* Third character in field number

See also Example 3 - INPUT Statement with MARK POSITION Option at the end of this section.

Statements 591

INPUT Syntax 1 - Dynamic Screen Layout Specification

ALARM Option

This option causes the sound alarm feature of the terminal to be activated when the INPUT statement
is executed. The appropriate hardware must be available to be able to use this feature.

[AND] [SOUND] ALARM

Default Prompting Text

Unless the session parameter IP (input prompting) is set to IP=0FF, the field name of the field
used in an INPUT statement will be displayed preceding the field value (forms mode) or as a
prompting keyword to select the field (keyword/delimiter mode). This default field name may be
overridden by specifying eithera ' text' element (which replaces the default name) or ' - ' (which
suppresses the display of the default field name) immediately preceding the field name.

Field Positioning, Text Specification, Attribute Assignment

Several notations are available for field positioning, attribute assignment, and text creation.

Syntax Element Description:

Syntax Element |Description

nXx Insert Option:

This option causes n spaces to be inserted between fields.

nT Tabulator Option:

This option causes positioning (tabulation) to print position n.

x/y Positioning Option:

Places the next element on line x, beginning in column y. y must not be zero. Backward
positioning in the same line is not permitted.

"text' Write Protection:

Causes text to be displayed write protected; see also Text Notation, Defining a Text to Be
Used with a Statement.

c' (n) Character Repetition:

Identical to ' text', except that the character c is displayed n times. n mustbe 1 - 132;
see also Text Notation, Defining a Character to Be Displayed n Times before a Field Value.

attributes |Display Attributes:

Attributes to be used for display. See Attributes below.

- Minus Sign:

When placed before a field, ' - ' suppresses the generation of a field name as prompting
text.

592 Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

Syntax Element

Description

Note: Any text string before a field will replace the field name as prompting text.

Equal Sign:

When placed before a field, '=" results in the display of the field heading followed by the
field contents.

l/l

Slash Sign:

When placed between fields or text elements, '/ ' causes positioning to the beginning of
the next print line.

The contents of fields may be specified for input, output only, and output for modification
using the attribute settings AD=A, AD=0, and AD=M respectively. The default is AD=A. All
fields specified with AD=A (input only) or AD=M (output for modification) will create
unprotected fields on the screen. A value for such a field may be entered by the user. For
TTY devices, output for modification fields will occupy twice the size of the field (one for
output, one for input) so that a new value may be entered. An input field (with AD=A or
AD=M) specified as non-displayable will always start on a new line on a TTY device.

Example:

INPUT #A (AD=A) #fB (AD=0) #C (AD=M)
#fA is an input field which is unprotected, i.e., a value is to be entered for the field.

1B is a field which is to be displayed write-protected, that is, no value may be entered for
the field.

#fC is a field whose current value is to be displayed, and the value may be modified by
entering a new value for the field.

*IN, *0UT
and *OUTIN

Field Attribute Definition:
Equivalent to the attributes AD=A, AD=0, AD=M respectively.

Note: If a non-modifiable system variable is used in an INPUT statement, the value will

be displayed as an output-only field AD=0 or *OUT attribute.

operandl

Field(s) to be Used:

operandl represents the field to be used. Database fields or user-defined variables may
be specified.

Natural directly maps the content of each field from the data area to the INPUT statement,
no move operation is necessary.

When the content of a database field is modified as a result of INPUT processing, only the
value as contained in the data area is modified. Appropriate database UPDATE / STORE
statements must be used to change the content of the database.

When the name of a group of database fields is referenced in an INPUT statement, all fields
belonging to that group will be individually used as input fields.

Statements

593

INPUT Syntax 1 - Dynamic Screen Layout Specification

Syntax Element

Description

When reference is made to a range of occurrences within an array, all occurrences are
individually processed as input fields, but no prompting text will be created for each
individual occurrence, only for the first one.

On mainframe computers, arrays with ranges that allow to vary the number of occurrences
at execution time may not be specified.

parameter(s)

Parameter(s):

One or more parameters, enclosed within parentheses, may be specified immediately after
operandl (see table and example below).

Each parameter specified will override any previous parameter specified in a GLOBALS
command, SET GLOBALS (in Reporting Mode) or FORMAT statement. If more than one
parameter is specified, they must be separated by one or more blanks from one another.
Each parameter specification must not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields, but they
have no effect on text constants. If you would like to set field attributes for a text-constant,
they have to be set explicitly for this element.

For information on the individual parameters, see the table in the section Statement
Parameters.

Note: The session parameter EM will be referenced dynamically in the DDM if an edit

mask is defined for a database field. Edit masks may be specified for output and input
fields. When an edit mask is defined for an input field, the data for the field must be entered
according to the edit mask specification.

Attributes

The following attributes may be used:

[AD=]

_ << C = = O O w

BL
GR
NE
[CD=] { PI [PM=]
RE
TU
YE
2 3

= —~= O O

1. Display attributes; see the session parameter AD (in the Parameter Reference).

2. Color attributes; see the session parameter CD (in the Parameter Reference).

3. Print mode attributes; see the session parameter PM (in the Parameter Reference).

594

Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

Examples - Syntax 1

= Example 1 - INPUT Statement
= Example 2 - INPUT Statement with DEFINE WINDOW Statement
= Example 3 - INPUT Statement with MARK POSITION Option

Example 1 - INPUT Statement

** Example 'IPTEX1': INPUT
KA KA A A A A Ak A AR A A A A A A A Ak kA A A Ak A kA kA A Ak h kA bk Ak h kA Ak hkhhkhkhhkhkhhkhhhkkhhkhrhkhkhkhkhkhrhhkhkhkxk
DEFINE DATA LOCAL
1 #fENC (AL)
END-DEFINE
*
INPUT 10X 'SELECTION MENU FOR EMPLOYEES SYSTEM' /
10X '-" (35) //
10X "ADD (A)' /
10X "UPDATE (u)' /
10X 'DELETE (D)" /
10X 'STOP)" //
10X "PLEASE ENTER FUNCTION: ' #FNC
*
DECIDE ON EVERY VALUE OF #FNC
VALUE 'A' /* invoke the object containing the add function here
WRITE '"Add function selected.'
VALUE 'U' /* invoke the object containing the update function here
WRITE 'Update function selected.'
VALUE 'D' /* invoke the object containing the delete function here
WRITE 'Delete function selected.'
VALUE ".'
STOP
NONE
REINPUT 'Please enter a valid function.' MARK *#FNC
END-DECIDE

*

END

Output of Program IPTEX1:

SELECTION MENU FOR EMPLOYEES SYSTEM

ADD (A)
UPDATE (U)
DELETE (D)
STOP (.)

PLEASE ENTER FUNCTION:

Statements 595

INPUT Syntax 1 - Dynamic Screen Layout Specification

Example 2 - INPUT Statement with DEFINE WINDOW Statement

** Example 'INPEX1': INPUT (with DEFINE WINDOW statement)
R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S
DEFINE DATA LOCAL
1 #STRING (A15)
END-DEFINE
*
DEFINE WINDOW WIND1

SIZE 10 * 40

BASE 5 / 10

FRAMED ON POSITION TEXT
*
INPUT WINDOW='"WIND1'

"PLEASE ENTER HERE:' / #STRING

*

END

Output of Program INPEXI:

PLEASE ENTER HERE:
#STRING

Example 3 - INPUT Statement with MARK POSITION Option

** Example 'INPEX2': INPUT (with POSITION)

Sk ok ok o o ok ok ok ok ok ko ok o o ok ok ok ok ok ok ok ko ko ok o ok ok ok ok ok ok ok ok ko ko ok o o o ok ok ok ok ok ok ko ok ok ok ok ok o ok ok ok
DEFINE DATA LOCAL

1 #START (A30)

END-DEFINE

*

ASSIGN #START = "EXAM_'
*

INPUT (AD=M) MARK POSITION 5 IN *#START
/ "PLEASE COMPLETE START VALUE FOR SEARCH'
/ 5X {fSTART

END

596 Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

Output of Program INPEX2:

PLEASE COMPLETE START VALUE FOR SEARCH
##START EXAML]

Statements 597

598

84 INPUT Syntax 2 - Using Predefined Map Layout

= [NPUT USING MAP without Parameter LiStccueiiiiiiiiiiiii e 600
= [NPUT Fields Defined in the Programcouveiioiiiiii et 601
B INPUT Syntax 2 - DESCHIPHONeiiiiiee ittt 601
= Using the INPUT Statement in Non-Screen MOGEScoiiiiiiiiiiiiiiciii e 602
= Processing Data from the Natural STackoooiiiiiiii e 605
= Using the INPUT Statement in Batch MOdEcooiiiiiiiii e 605

599

INPUT Syntax 2 - Using Predefined Map Layout

This form of the INPUT statement is used to perform input processing using a map layout that has
been created using the Natural map editor.

Map layouts can be used in two ways:

" the program does not provide a parameter list;

* the program does provide a parameter list (operandl).

INPUT [WINDOW="window-name "1 [WITH-TEXT-option]
[MARK-option]
[ALARM-option]
[USING] MAP map-name [NO ERASE]

operandl ...
NO PARAMETER

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

INPUT USING MAP without Parameter List

The following requirements must be met when INPUT USING MAP is used without parameter list:

The map -name must be specified as an alphanumeric constant (up to 8 characters).

The map used in this manner must have been created prior to the compilation of the program
which references the map.

The names of the fields to be processed are taken dynamically from the map source definition
at compilation time. The field names used in both program and map must be identical.

All fields to be referenced in the INPUT statement must be accessible at that point.

In structured mode, fields must have been previously defined (database fields must be properly
referenced to processing loops or views).

In reporting mode, user-defined variables may be newly defined in the map.

When the map layout is changed, the programs using the map need not be recataloged. However,
when array structures or names, formats/lengths of fields are changed, or fields are added/deleted
in the map, the programs using the map must be recataloged.

The map source must be available at program compilation; otherwise the INPUT USING MAP

statement cannot be compiled.

| Note: If you wish to compile the program even if the map is not yet available, specify NO
PARAMETER: the INPUT USING MAP can then be compiled even if the map is not yet available.

600 Statements

INPUT Syntax 2 - Using Predefined Map Layout

INPUT Fields Defined in the Program

By specifying the names of the fields to be processed within the program (operandl), itis possible
to have the names of the fields in the program differ from the names of the fields in the map.

The sequence of fields in the program must match the map sequence. Please note that the map
editor sorts the fields as specified in the map in alphabetical order by field name. For more inform-
ation, see the map editor description in your Natural Editors documentation.

When the layout of the map is changed, the program using the map need not be recataloged.
However, when field names, field formats/lengths, or array structures in the map are changed or
fields are added or deleted in the map, the program must be recataloged.

A check is made at execution time to ensure that the format and length of the fields as specified
in the program match the fields as specified in the map. If both layouts do not agree, an error
message is produced.

INPUT Syntax 2 - Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

map-name |C |S A|U yes no

operandl S |A A|U|NP|I|FB|D|T|L|C yes yes

Syntax Element Description:

Syntax Element Description

INPUT INPUT WINDOW='window-name' Option:
WINDOW="window-name'
This option is described under Syntax 1 of the INPUT statement.

WITH WITH TEXT/MARK/ALARM Options:
TEXT/MARK/ALARM-options

These options are described under Syntax 1 of the INPUT statement; see
WITH TEXT Option, MARK Option, ALARM Option.

USING MAP map-name USING MAP Clause:

USING MAP invokes a map definition which has been previously stored in
a Natural system file using the map editor.

Statements 601

INPUT Syntax 2 - Using Predefined Map Layout

Syntax Element

Description

The map -name may be a 1- to 8-character alphanumeric constant or
user-defined variable. If a variable is used, it must have been previously
defined. The map name may contain an ampersand (&); at execution time,
this character will be replaced by the one-character code corresponding to
the current value of the Natural system variable *LANGUAGE. This feature
allows the use of multi-lingual maps.

The execution of the INPUT statement causes the corresponding map to
replace the current contents of the screen, unless the NO ERASE option is
specified, in which case the map will overlay the current contents of the
screen.

NO ERASE NO ERASE Option:
This option is described under Syntax 1 of the INPUT statement; see NO
ERASE.

operandl Field Specification:

A list of database fields and/or user-defined variables. The fields must agree
in number, sequence, format, length and (for arrays) number of occurrences
with the fields in the referenced map; otherwise, an error occurs.

When the content of a database field is modified as a result of INPUT
processing, only the value as contained in the data area is modified.
Appropriate database UPDATE / STORE statements must be used to change
the content of the database.

Using the INPUT Statement in Non-Screen Modes

You can change the input mode with the session parameter IM.

Forms Mode

In forms mode (profile/session parameter IM=F), Natural will display all output text of the map
layout on the terminal field by field according to the positioning parameters. This permits the user
to enter data on a field by field basis. When all data are entered, the hardcopy output is produced
exactly as it would have appeared on the screen.

In forms mode, entering %R permits the operator to retype the entire form in case of an error. The
input is processed as in the first execution of the INPUT statement.

602

Statements

INPUT Syntax 2 - Using Predefined Map Layout

Keyword/Delimiter Mode

In keyword/delimiter mode (profile/session parameter IM=D), data can be entered using keywords
or positional input values.

General Validation Rules
Data entered in keyword/delimiter mode are validated as for screen mode. An error message
will be returned if an attempt is made to enter more characters than defined for a field.

If the INPUT statement is to be processed in keyword/delimiter mode on a buffered (3270-type)
terminal or a workstation, all data to be assigned to one INPUT statement must be entered on
one screen. ENTER is only to be used when all data to the INPUT statement have been entered.

Keyword Input
Using keyword input, the terminal operator may enter data for the individual fields using the
prompting text that, in forms mode, would have been displayed before the value as a keyword
to identify the field. The keyword must be followed by the input assign character (IA parameter),
followed immediately by the data. Any spaces following the assign character are taken as data
up to the delimiter character (ID parameter). A delimiter character is not required after the last
data element. Keyword data for the different fields may be entered in any order separated by
the delimiter character. If the operator types in a keyword which is not defined in the INPUT
statement, an error message will be returned. Data need not be entered for all input fields.
Fields for which no data are entered are set to blank for alphanumeric fields and zero for nu-
meric and hexadecimal fields.

A keyword and the corresponding input field must be on the same logical line. If their aggregate
length exceeds the line size, adjust the line size (LS parameter) accordingly so that keyword
and field fit onto one line.

Indexed Input
Using indexed input, the terminal operator may enter data for the individual input fields using
their ordinal values prefixed with a percent character (%). This index specification must be
followed by the input assign character (IA parameter), followed immediately by the data.

Indexed data for the different fields may be entered in any order separated by the delimiter
character (1D parameter). If the specified ordinal value does not correspond to that of any ex-
isting input field, an error message will be returned. Data need not be entered for all input
fields. Fields for which no data are entered are set to blank for alphanumeric fields and zero
for numeric and hexadecimal fields.

Positional Input
Using positional value input, the terminal operator enters only data for all input fields separated
by the currently defined input delimiter character (ID parameter). The sequence of fields for
input must correspond to the sequence of the fields in the INPUT statement.

The user may switch from positional to keyword input by entering a number of values in po-
sitional input separated by the delimiter character and then switching to keyword mode for
selected fields by specifying keywords in front of the values.

Statements 603

INPUT Syntax 2 - Using Predefined Map Layout

After a keyword has been used to position to a field, any non-keyword input following the
keyword will be processed as positional input to be assigned to fields following the previously
selected field in the INPUT statement.

Example of Keyword, Indexed and Positional Input
If you execute the following program

FEE Program PGM1 *x*x**
DEFINE DATA LOCAL

1 #F1 (A10)

1 #F2 (A10)

1 #F3 (A10)

END-DEFINE
INPUT (IP=ON) / 'FLD1' {#F1
/ 'FLD2' #F2
/ 'FLD3' {#F3
WRITE 'FLD1' #F1
/ 'FLD2"' #F2
/ 'FLD3" #F3
END

from the command line with any of the following commands, assuming the comma (.,) is used
as the delimiter character

PGM1 FLD1=AA,FLD3=CC keyword input

PGM1 %1=AA,%3=CC indexed input

PGM1 AA,,CC positional input

PENIL (A LD positional input combined with keyword

PEIL (A FLDZ=, ([positional input combined with keyword

PEIIL G, D= combined positional and indexed input

you will always receive the following output

FLD1 AA
FLDZ2
FLD3 CC

604 Statements

INPUT Syntax 2 - Using Predefined Map Layout

Processing Data from the Natural Stack

Data elements that have been placed in the Natural stack via a FETCH, RUN or STACK statement will
be processed by the next INPUT statement encountered for execution.

The INPUT statement will process the data in keyword/delimiter mode as described above.

If data elements are not available to fill all input fields, fields will be filled with blank/zero depend-
ing on the field format. If more data elements are specified than input fields exist, the remaining
data are ignored.

When a field is filled with data from the stack, the field attributes do not apply to the data.

The Natural system variable *DATA may be referenced to determine the number of data elements
currently available in the Natural stack.

Using the INPUT Statement in Batch Mode

The following topics are covered below:

= |n Batch Forms Mode
= |n Batch Keyword/Delimiter Mode

In Batch Forms Mode

A data record is read for each line containing one or more AD=A and/or AD=M fields, and the data
contained in the record are assigned to the appropriate field (or fields).

Input data fields are assumed to be contiguous. Unless the delimiter character is used, input data
must be entered in the exact length according to the internal definition of the field. For numeric
fields, space must be allowed for a sign (if SG=0N) and decimal point when appropriate.

Data may optionally be entered using the delimiter character to separate the values of the individual
fields. In this case, data need not be entered in the exact number of positions according to the in-
ternal definition but are processed from left to right beginning in position 1. The rules for data
entry are the same as described under Entering Data in Response to an INPUT Statement. In ad-
dition, the assign character may be used to skip a field.

Statements 605

INPUT Syntax 2 - Using Predefined Map Layout

In Batch Keyword/Delimiter Mode

Keyword/delimiter mode, when used in batch mode, functions the same as keyword/delimiter
mode as used for stack input.

606 Statements

X1

B 85 INSERT (SQL) .-vvvevveeeveseeeeseeeeessssesseseesseeeeseeesseseeee s eseeeesseseeese s e s eese s ees e eeeseeees e 609
B 86 INTERFACEveooeveeeeeeeeeeceeeeeeeee e e e eeee st ee e ee e e e e et e et es e 615
B 87 LIMIT oot e et e et ettt ettt 623
B B8 LOOP ..ot e e ettt ettt et 627
B BI METHOD ...ttt ettt ettt 631
B 00 MOVE .ot e et e ettt ettt 637
B Q1 MOVE INDEXED ... eeeeeeeeeee e eee e s e eee et se e 659
B 02 MULTIPLY oot s e st et 661
B O3 NEWPAGE «.....oveooeeeeeee et ees e s et s e st e ettt 667
B0 OBTAIN ettt e ettt ettt 673
B 05 ON ERRORvoooeecoeeeeeeeeeeeeeeeeeee e et e e e e s e e e ee e e ee et et e e ee e e et 681
B 96 OPEN CONVERSATION w......vcooveeeeeeeseeeeseeeeeeeeeee e eeeeeee e eeeeee e e eseee e 687
B 7 OPTIONS ..ot e s ee e et et e e e e e ee s e s st ee et ee e 691

607

608

85 INserT (SQL)

B FUNCHON .ttt e e 610
B SYNEAX DESCIIPHON ...ttt e e e s 610

609

INSERT (SQL)

Common Set Syntax:

INSERT INTO table-name {

(*) [VALUES-cTlause] }
[(column-T11ist)] VALUE-LIST

Extended Set Syntax:

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The SQL INSERT statement is used to add one or more new rows to a table.

Syntax Description

Syntax Element

Description

INTO table-name

INTO Clause:
In the INTO clause, the table is specified into which the new rows are to be inserted.

See further information on table-name.

column-1ist

Column List:

Syntax:

column-name. ..

In the column-17st, one or more column-names can be specified, which are to be
supplied with values in the row currently inserted.

If a column-11ist is specified, the sequence of the columns must match with the
sequence of the values either specified inthe 7nsert-item-17st or contained in the
specified view (see below).

If the column-117st is omitted, the values in the insert-item-717st orin the
specified view are inserted according to an implicit list of all the columns in the order
they exist in the table.

VALUES-clause

Values Clause:
With the VALUES clause, you insert a single row into the table.

See VALUES Clause below.

610

Statements

INSERT (SQL)

VALUES Clause

With the VALUES clause, you insert a single row into the table. Depending on whether an asterisk
(*) ora column-1ist has been specified, the VALUES clause can take one of the following forms:

VALUES Clause with Preceding Asterisk Notation

‘VALUES (VIEW view-name)

If asterisk notation is specified, a view must be specified in the VALUES clause. With the field values
of this view, a new row is inserted into the specified table using the field names of the view as
column names of the row.

VALUES Clause with Preceding Column List

VALUES ({ VIEW view-name })

insert-item-1ist

If a column-11ist is specified and a view is referenced in the VALUES clause, the number of items
specified in the column list must correspond to the number of fields defined in the view within
the VALUE-LIST.

If no column-11ist is specified, the fields defined in the view are inserted according to an implicit
list of all the columns in the order they exist in the specified table.

VALUE-LIST

Common Set Syntax:

(VIEW view-name) } }
{ VALUES{ (Tnsert-item-1ist)

Extended Set Syntax:
(VIEW view-name) }
VALUES { (insert-item-1ist)
RR
select—expression[WITH { RS }]
CS

Syntax Description:

Statements 611

INSERT (SQL)

Syntax Element

Description

VIEW view-name

View Name:

With the field values of this view, a new row is inserted into the specified table
using the field names of the view as column names of the row.

insert-item-1ist

INSERT Single Row:

In the insert-item-117st, you can specify one or more values to be assigned to
the columns specified in the column-17st. The sequence of the specified values
must match the sequence of the columns.

If no column-17st is specified, the values in the insert-item-17st are inserted
according to an implicit list of all the columns in the order they exist in the table.

The values to be specified in the insert-item-17ist canbe constants,
parameters, special-registersor NULL.

See the section Basic Syntactical Items for information on view-name, constant and
parameter. See also the information on special-register.

If the value NUL L has been assigned, this means that the addressed field is to receive
no value (not even the value 0 or “blank”).

Example - INSERT Single Row:

INSERT INTO SQL-PERSONNEL (NAME,AGE)
VALUES ("ADKINSON',35)

select-expression

INSERT Multiple Rows:
This clause belongs to the SOL Extended Set.

Witha select-expression, youinsert multiplerows into a table. The
select-expressionisevaluated and each row of the result table is treated as if
the values in this row were specified as values in a VALUES Clause of a single-row
INSERT operation.

For further information, see Select Expressions.

Example - Insert Multiple Rows:

612

Statements

INSERT (SQL)

Syntax Element

Description

INSERT INTO SQL-RETIREE (NAME,AGE,SEX)
SELECT LASTNAME, AGE, SEX
FROM SQL-EMPLOYEES
WHERE AGE > 60

Note: The number of rows that have actually been inserted can be ascertained by
using the system variable *ROWCOUNT.

WITH RR/RS/CS

WITH Isolation Level Clause:
This clause belongs to the SOL Extended Set.

This clause allows the explicit specification of the isolation level used when locating
the rows to be inserted. It is only valid against Db2 databases. When used against
other databases, it will cause runtime errors.

CS Cursor Stability
RR Repeatable Read
RS Read Stability

Statements

613

614

86 INTERFACE

B FUNCHON .ttt e e 616
B SYNEAX DESCIIPHON ...ttt e e e s 617

615

INTERFACE

INTERFACE interface-name
[EXTERNAL]

[ID interface-GUID]
[property-definition]
[method-definition]
END-INTERFACE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CREATE OBJECT | DEFINE CLASS | INTERFACE | METHOD | PROPERTY | SEND
METHOD

Belongs to Function Group: Component Based Programming

Function

In component-based programming, an interface is a collection of methods and properties that
belong together semantically and represent a certain feature of a class.

You can define one or several interfaces for a class. Defining several interfaces allows you to
structure/group methods according to what they do, for example, you put all methods that deal
with persistency (load, store, update) in one interface and put other methods in other interfaces.

The INTERFACE statement is used to define an interface. It may only be used in a Natural class
module and can be defined as follows:

® withina DEFINE CLASS statement. This form is used when the interface is only to be implemented
in one class, or

® ina copycode which is included by the INTERFACE USING clause of the DEFINE CLASS statement.
This form is used when the interface is to be implemented in more than one class.

The properties and methods that are associated with the interface are defined by the property and
method definitions.

616 Statements

INTERFACE

Syntax Description

Syntax Element

Description

interface-name

Interface Name:

This is the name to be assigned to the interface. The interface name can be up to
a maximum of 32 characters long and must conform to the Natural naming
conventions for user-defined variables; see Naming Conventions for User-Defined
Variables in the Using Natural documentation. It must be unique per class and
different from the class name.

If the interface is planned to be used by clients written in different programming
languages, the interface name should be chosen in a way that it does not conflict
with the naming conventions that apply in these languages.

EXTERNAL

EXTERNAL Clause:

This clause is used to indicate that this interface is implemented by the class, but
which is originally defined in a different class. The clause is only relevant if the
class is to be registered with DCOM. Interfaces with the EXTERNAL clause are
ignored when the class is registered with DCOM. It is assumed that the interface
is registered by the class that originally defines it.

ID interface-GUID

ID Clause:

This clause is used to assign a globally unique ID to the interface. The
interface-GUIDis the name of a GUID defined in a data area that is included
by the LOCAL clause. The interface-GUIDis a (named) alpha constant. A GUID
must be assigned to an interface if the class is to be registered with DCOM.

property-definition

Property Definition:

The property definition is used to define a property of the interface. See Property
Definition below.

method-definition

Method Definition:

The method definition is used to define a method for the interface. See Method
Definition below.

END-INTERFACE

End of INTERFACE Statement:

The Natural reserved word END- INTERFACE mustbe used to end the INTERFACE
statement.

Statements

617

INTERFACE

Property Definition

The property definition is used to define a property of the interface.

PROPERTY property-name
[(format-Tength/array-definition)]
[ID dispatch-ID]

[READONLY]

[IS operand]

END-PROPERTY

Properties are attributes of an object that can be accessed by clients. An object that represents an
employee might for example have a Name property and a Department property. Retrieving or
changing the name or department of the employee by accessing her Name or Department property
is much simpler for a client than calling one method that returns the value and another method
that changes the value.

Each property needs a variable in the object data area of the class to store its value - this is referred
to as the object data variable. The property definition is used to make this variable accessible to
clients. The property definition defines the name and format of the property and connects it to
the object data variable. In the simplest case, the property takes the name and format of the object
data variable itself. It is also possible to override the name and format within certain limits.

Syntax Element Description:

Syntax Element Description

property-name Property Name:

This is the name to be assigned to the property. The property name
can contain up to a maximum of 32 characters and must conform
to the Natural naming conventions for user variables; see Naming
Conventions for User-Defined Variables in the Using Natural
documentation.

If the property is planned to be used by clients written in different
programming languages, the property name should be chosen in
a way that it does not conflict with the naming conventions that
apply in these languages.

format-length/array-definition|format-length/array-definition Option:

This option defines the format of the property as it will be seen by
clients.

If format-length/array-definitionisomitted, the
format-length and array-definition will be taken from the object
data variable assigned in the IS clause.

618 Statements

INTERFACE

Syntax Element

Description

If format-Tlength/array-definitionis specified, it must be
data transfer-compatible both to and from the format of the object
data variable specified in operandin the IS clause. In the case of
a READONLY property, the data transfer-compatibility needs to hold
only in one direction: with the object data variable as source
operand and the property as destination operand. If an
array-definition is specified, it must be equal in dimensions,
occurrences per dimension, lower bounds and upper bounds to
the array definition of the corresponding object data variable. This
is expressed by specifying an asterisk for each dimension.

ID dispatch-1D

ID Clause:

The 1D clause is used to assign a specific numeric identifier to a
property. This identifier (d7spatch-1D)is only relevant if the class
is to be registered with DCOM.

Normally, Natural automatically assigns a dispatch ID to a
property. It is only necessary to explicitly define a specific dispatch
ID for a property if the property belongs to an interface with the
EXTERNAL clause. (This is an interface that shall be implemented
in this class, but which is originally defined in a different class.) In
this case the dispatch IDs to be used are usually dictated by the
original implementation of the interface.

The dispatch-1Dis a positive, non-zero constant of format I4.

READONLY

READONLY Option:

If the keyword READONLY is specified, the value of the property
can only be read and not set. The format of the object data variable
specified in operandin the IS clause must be data
transfer-compatible to the format specified in
format-Tlength/array-definition.Itdoesnothave tobe data
transfer-compatible in the inverse direction.

If the keyword READONLY is omitted, the property value can be
both read and set.

IS operand

IS Clause:

The operandinthe IS clause assigns an object data variable as the
place to store the property value. The assigned object data variable
may not be a group. The variable is referenced in normal operand
syntax. This means, if the object data variable is an array, it must
be referenced with index notation. Only the full index range
notation and asterisk notation is allowed.

The IS clause should not be used if the INTERFACE statement will
be included from a copycode member and reused in several classes.
If you want to reuse the INTERFACE statement, you must assign

Statements

619

INTERFACE

Syntax Element Description

the object data variable in a PROPERTY statement outside the
INTERFACE statement.

If the IS clause is omitted, the property is connected to the object
data variable with the same name as the property. If a variable with
this name is not defined or if it is a group, a syntax error results.

END-PROPERTY End of Interface Property Definition:

The Natural reserved word END-PROPERTY must be used to end
the interface PROPERTY definition.

Examples

Let the object data area contain the following data definitions:

1 Salary(p7.2)
1 SalaryHistory(p7.2/1:10)

Then the following property definitions are allowed:

property Salary
end-property
property Pay is Salary
end-property
property Pay(P7.2) is Salary
end-property
property Pay(N7.2) is Salary
end-property
property SalaryHistory
end-property
property O0l1dPay is SalaryHistory(*)
end-property
property 01dPay is SalaryHistory(1:10)
end-property
property 01dPay(P7.2/*) is SalaryHistory(1:10)
end-property
property O01dPay(N7.2/*) is SalaryHistory(*)
end-property

The following property definitions are not allowed:

620 Statements

INTERFACE

/* Not data transfer-compatible. */
property Pay(L) is Salary

end-property

/* Not data transfer-compatible. */
property 01dPay(L/*) is SalaryHistory(*)

end-property

/* Not data transfer-compatible. */
property 01dPay(L/1:10) is SalaryHistory(1:10)

end-property
/* Assigns an

array to a scalar. */

property 01dPay(P7.2) is SalaryHistory(1:10)

end-property
/* Takes only

a sub-array. */

property 01dPay(P7.2/3:5) is SalaryHistory(*)

end-property
/* Index speci

fication omitted in ODA variable SalaryHistory. */

property Ol1dPay is SalaryHistory

end-property
/* Only asteri

sk notation allowed in property format specification. */

property 01dPay(P7.2/1:10) is SalaryHistory(*)

end-property

Method Definition

The method definition is used to define a method for the interface.

[ID dispatch-1ID]

END-METHOD

METHOD method-name

[IS subprogram-name]

PARAMETER {

USING parameter-data-area }]

data-definition..

To make the interface reusable in different classes, include the interface definition from a copycode
and define the subprogram after the interface definition with a METHOD statement. Then you can
implement the method differently in different classes.

Syntax Element Description:

Syntax Element

Description

method-name

Method Name:

This is the name to be assigned to the method. The method name can contain a
maximum of up to 32 characters and must conform to the Natural naming conventions;
see Naming Conventions for User-Defined Variables in the Using Natural documentation.
It must be unique per interface.

Statements

621

INTERFACE

Syntax Element

Description

If the method is planned to be used by clients written in different programming
languages, the method name should be chosen in a way that it does not conflict with
the naming conventions that apply in these languages.

ID dispatch-1D

ID Clause:

The ID clause is used to assign a specific numeric identifier to a method. This identifier
(the so-called dispatch ID) is only relevant if the class is to be registered with DCOM.

Normally, Natural automatically assigns a dispatch ID to a method. It is only necessary
to explicitly define a specific dispatch ID for a method if the method belongs to an
interface with the EXTERNAL clause. (This is an interface that shall be implemented in
this class, but which is originally defined in a different class.) In this case, the dispatch
IDs to be used are usually dictated by the original implementation of the interface.

The dispatch ID is a positive, non-zero constant of format I4.

IS
subprogram-name

IS Clause:

This clause can be used to specify the name of the subprogram that implements the
method. The name of the subprogram consists of up to 8 characters. The default is
method-name (if the IS clause is not specified).

PARAMETER

PARAMETER Clause:

The PARAMETER clause specifies the parameters of the method, and has the same syntax
as the PARAMETER clause of the DEFINE DATA statement.

The parameters must match the parameters which are later used in the implementation
of the subprogram. This is ensured best by using a parameter data area.

Parameters that are marked BY VALUE in the parameter data area are input parameters
of the method.

Parameters which are not marked BY VALUE are passed “by reference” and are
input/output parameters. This is the default.

The first parameter that is marked BY VALUE RESULT is returned as the return value
for the method. If more than one parameter is marked in this way, the others will be
treated as input/output parameters.

END-METHOD

End of Method Definition:

The Natural reserved word END-METHOD must be used to end the METHOD definition
for the interface.

622

Statements

87 LIMIT

B FUNCHON .ttt e e 624
B SYNEAX DESCIIPHON ...ttt e e e s 625
625

L e 01T OO SR PUPPPPPRRR

623

LIMIT

LIMIT n

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION | HISTOGRAM | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The LIMIT statement is used to limit the number of iterations of a processing loop initiated with
a FIND, READ, or HISTOGRAM statement.

The limit remains in effect for all subsequent processing loops in the program until it is overridden
by another LIMIT statement.

The LIMIT statement does not apply to individual statements in which a limit is explicitly specified
(for example, FIND (n) ...).

If the limit is reached, processing stops and a message is displayed; see also the session parameter
LE which determines the reaction when the limit for the processing loop is exceeded.

If no LIMIT statement is specified, the default global limit defined with the Natural profile para-
meter LT during Natural installation will be used.

Record Counting

To determine whether a processing loop has reached the limit, each record read in the loop is
counted against the limit. If the processing loop has reached the limit, the following will apply:

" A record that is rejected because of criteria specified in a FIND or READ statement WHERE clause
is not counted against the limit.

" A record that is rejected as a result of an ACCEPT/REJECT statement is counted against the limit.

624 Statements

LIMIT

Syntax Description

Syntax Element | Description

LIMIT n Limit Specification:

The limit n must be specified as a numeric constant in the range from 0 - 4294967295
(leading zeros are optional).

The processing loop is not entered if the limit is set to zero.

Examples

= Example 1 - LIMIT Statement
= Example 2 - LIMIT Statement (Valid for Two Database Loops)

Example 1 - LIMIT Statement

** Example 'LMTEX1': LIMIT
R R R R R b R R b I b R e I R R R i b e S b R e b R e i R i i b b e b R R e i b b e b 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 CITY
END-DEFINE

*

LIMIT 4
*
READ EMPLOY-VIEW BY NAME STARTING FROM 'BAKER'
DISPLAY NOTITLE
NAME PERSONNEL-ID CITY *COUNTER
END-READ

*

END

Statements 625

LIMIT

Output of Program LMTEX1:

NAME PERSONNEL CITY CNT
ID
BAKER 20016700 O0AK BROOK 1
BAKER 30008042 DERBY 2
BALBIN 60000110 BARCELONA 3
BALL 30021845 DERBY 4

Example 2 - LIMIT Statement (Valid for Two Database Loops)

** Example 'LMTEX2': LIMIT (valid for two database Toops)
R R R R B B R e R b S e i e b b b b S b b e e e b b b S b i e I i b e e i b e i S b b b b e b b Y
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
END-DEFINE

*

LIMIT 3
*
FIND EMPLOY-VIEW WITH NAME > "A'
READ EMPLOY-VIEW BY NAME STARTING FROM 'BAKER'
DISPLAY NOTITLE 'CNT(0100)' *COUNTER(C0100)
"CNT(0110)" *COUNTER(OI10)
END-READ
END-FIND

*

END

Output of Program LMTEX2:

CNT(0100) CNT(0110)

W W wmMNDMNDMN = ==
WM E WM = W

626

Statements

88 Loop

LI V1ot o PSP PPPPUR PP 628
L =140) O URPUPPPPPRRR 628
B SYNEAX DESCIIPHON ...ttt e e 629
L e 11T PSR RUPPPPPRR 629

627

LOOP

[CLOSE] LOOP [()]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Reporting Mode Statements

Function

The LOOP statement is used to close a processing loop. It causes processing of the current pass
through the loop to be terminated and control to be returned to the beginning of the processing
loop.

When the processing loop for which the LO0P statement is issued is terminated (that is, when all
records have been processed or iterations have been performed), execution continues with the
statement after the LOOP statement.

The LOOP statement is used with the following statements: CALL FILE, CALL LOOP, FIND, FOR,
HISTOGRAM, PARSE XML, READ, READ RESULT SET (SQL), READ WORK FILE, REPEAT, SELECT (SQL),
SORT, UPLOAD PC FILE.

Database Variable References

A LOOP statement, in addition to closing a processing loop, will eliminate all field references to
FIND, FIND FIRST, FIND UNIQUE, READ and GET statements contained within the loop.

A field within a view may be referenced outside the processing loop by using the view name as
a qualifier.

Restriction

® This statement is for reporting mode only.

" A LOOP statement may not be specified based on a conditional statement such as IF or AT BREAK.

628 Statements

LOOP

Syntax Description

Syntax Element | Description

LOOP (r) Statement Reference Notation:

The LOOP statement may be specified with a statement label or reference number (notation
(), in which case all inner loops up to and including the loop initiated by the statement
referenced will be closed. If no statement reference is specified, the innermost active
processing loop will be closed.

) Notes:

1. Inreporting mode, any processing loop which is currently active, that is, which has not explicitly
been closed with a LOOP statement, will be closed automatically by an END statement.

2. You can omit the LOOP statement. But with respect to good coding practice, you are not recom-
mended to do so.

Examples

Example 1

FIND ...
REA