
Natural

Statements

Version 9.3.1

February 2025

This document applies to Natural Version 9.3.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATUX-NNATSTATEMENTS-931-20250213

Table of Contents

Preface ... xix
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

I .. 5
2 Statements Grouped by Function ... 7

Database Access and Update ... 8
Arithmetic and Data Movement Operations ... 9
Loop Execution ... 10
Creation of Output Reports .. 10
Screen Generation for Interactive Processing .. 11
Processing of Logical Conditions ... 11
Invoking Programs and Routines .. 12
Functions .. 12
Program and Session Termination ... 12
Control of Work Files / PC Files ... 13
Component Based Programming ... 13
Memory Management Control for Dynamic Variables or X-Arrays 13
Natural Remote Procedure Call ... 14
Internet and XML ... 14
Miscellaneous ... 14
Reporting Mode Statements ... 15

3 Syntax Symbols and Operand Definition Tables .. 17
Syntax Symbols .. 18
Operand Definition Table ... 19

II Using Natural SQL Statements ... 23
4 Common Set and Extended Set ... 25
5 Basic Syntactical Items ... 27

Constants .. 28
Names ... 28
Parameters .. 32
Natural Formats and SQL Data Types ... 35

6 Natural View Concept ... 37
7 Scalar Expressions ... 39

Scalar Expression .. 40
Scalar Operator ... 40
Factor .. 41

8 Search Conditions .. 47
Search Condition .. 48
Predicate ... 48

9 Select Expressions .. 53
Selection ... 54

iii

Table Expression ... 55
10 Flexible SQL ... 61

Using Flexible SQL ... 62
Specifying Text Variables in Flexible SQL .. 63
ROW CHANGE Expression with Flexible SQL ... 65
OLAP Specification .. 65
Case Expression with Flexible SQL .. 70
Cast Expression with Flexible SQL .. 71
XML Functions with Flexible SQL ... 71
Scalar-Function and Column-Function (Aggregating) with Flexible
SQL ... 72

III Referenced Example Programs ... 75
11 Referenced Example Programs ... 77

ASSIGN .. 78
AT BREAK .. 79
AT END OF DATA ... 81
AT END OF PAGE .. 82
AT START OF DATA .. 82
AT TOP OF PAGE .. 84
DEFINE SUBROUTINE .. 85
FIND ... 86
FOR ... 88
HISTOGRAM ... 89
IF ... 89
PERFORM BREAK PROCESSING ... 91
READ .. 92
REPEAT .. 93
SORT ... 94
STORE .. 95
UPDATE ... 97
Example Programs for System Variables ... 98

IV ... 103
12 ACCEPT/REJECT ... 105

Function .. 106
Syntax Description ... 106
Processing of Multiple ACCEPT/REJECT Statements 107
Limit Notation .. 107
Examples .. 108

13 ADD ... 111
Function .. 112
Syntax 1 - ADD Statement without GIVING Clause 112
Syntax 2 - ADD Statement with GIVING Clause ... 113
Example .. 115

14 ASSIGN .. 117
15 AT BREAK ... 119

Statementsiv

Statements

Function .. 120
Syntax Description ... 121
Multiple Break Levels ... 122
Examples .. 123

16 AT END OF DATA ... 127
Function .. 128
Restrictions ... 129
Syntax Description ... 129
Example .. 130

17 AT END OF PAGE ... 133
Function .. 134
Syntax Description ... 136
Example .. 137

18 AT START OF DATA ... 141
Function .. 142
Syntax Description ... 143
Example .. 143

19 AT TOP OF PAGE .. 147
Function .. 148
Restriction ... 149
Syntax Description ... 149
Example .. 150

20 BACKOUT TRANSACTION ... 153
Function .. 154
Restriction ... 155
Database-Specific Considerations .. 155
Example .. 155

21 BEFORE BREAK PROCESSING .. 157
Function .. 158
Restrictions ... 159
Syntax Description ... 159
Example .. 160

22 CALL .. 161
Function .. 162
Syntax Description ... 162
Return Code ... 163
User Exits .. 163
INTERFACE4 .. 168

23 CALL FILE ... 181
Function .. 182
Restriction ... 182
Syntax Description ... 182
Example .. 183

24 CALL LOOP ... 185
Function .. 186

vStatements

Statements

Restriction ... 186
Syntax Description ... 187
Example .. 187

25 CALLDBPROC (SQL) .. 189
Function .. 190
Syntax Description ... 191
Example .. 192

26 CALLNAT .. 195
Function .. 196
Syntax Description ... 197
Parameter Transfer with Dynamic Variables ... 199
Examples .. 200

27 CLOSE CONVERSATION ... 203
Function .. 204
Syntax Description ... 204
Further Information and Examples .. 205

V ... 207
28 CLOSE PC FILE ... 209

Function .. 210
Syntax Description ... 210
Example .. 210

29 CLOSE PRINTER ... 213
Function .. 214
Syntax Description ... 214
Example .. 215

30 CLOSE WORK FILE .. 217
Function .. 218
Syntax Description ... 218
Example .. 219

31 COMMIT (SQL) ... 221
Function .. 222
Example .. 222

32 COMPRESS .. 223
Function .. 224
Syntax Description ... 224
Processing ... 228
Examples .. 229

33 COMPUTE ... 233
Function .. 234
Syntax Description ... 236
Result Precision of a Division ... 238
Examples .. 239

34 CREATE OBJECT ... 241
Function .. 242
Syntax Description ... 242

Statementsvi

Statements

35 DECIDE FOR ... 245
Function .. 246
Syntax Description ... 246
Examples .. 247

36 DECIDE ON ... 251
Function .. 252
Syntax Description ... 252
Examples .. 254

37 DEFINE CLASS .. 257
Function .. 258
Syntax Description ... 258

VI DEFINE DATA ... 261
38 Function and Basic Syntax Rules ... 263

Function .. 264
General Syntax Rules ... 264
Programming Modes .. 264

39 Defining Global Data ... 267
Function .. 268
Syntax Description ... 268

40 Defining Parameter Data ... 271
Function .. 272
Restrictions ... 272
Syntax Description ... 272

41 Defining Local Data ... 277
Function .. 278
Restriction ... 278
Syntax Description ... 278

42 Defining Application-Independent Variables ... 283
Function .. 284
Syntax Description ... 284

43 Defining Context Variables for Natural RPC .. 287
Function .. 288
Restrictions ... 289
Syntax Description ... 289

44 Defining NaturalX Objects ... 291
Function .. 292
Syntax Description ... 292

45 Variable Definition ... 295
Syntax Description ... 296

46 View Definition .. 299
Syntax Description ... 300

47 Redefinition .. 305
Restrictions ... 306
Syntax Description ... 306

48 Array Dimension Definition .. 309

viiStatements

Statements

Syntax Description ... 310
49 Initial-Value Definition .. 313

Restriction ... 314
Syntax Description ... 314

50 Initial/Constant Values for an Array ... 317
Restriction ... 318
Syntax Description ... 319

51 EM, HD, PM Parameters for Field/Variable .. 323
Syntax Description ... 324

52 Examples of DEFINE DATA Statement Usage .. 325
Example 1 - DEFINE DATA LOCAL (Local Data Definition) 326
Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization) 326
Example 3 - DEFINE DATA (View Definition, Array Redefinition) 330
Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas) 331
Example 5 - DEFINE DATA (Initialization) ... 332
Example 6 - DEFINE DATA (Variable Array) .. 332

VII .. 335
53 DEFINE FUNCTION ... 337

Function .. 338
Syntax Description ... 338
Examples .. 342

54 DEFINE PRINTER ... 345
Function .. 346
Syntax Description ... 346
Examples .. 348

55 DEFINE PROTOTYPE ... 351
Function .. 352
Syntax Description ... 353
Examples .. 356

56 DEFINE SUBROUTINE ... 359
Function .. 360
Restrictions ... 361
Syntax Description ... 362
Examples .. 362

57 DEFINE WINDOW .. 367
Function .. 368
Syntax Description ... 369
Protection of Input Fields in a Window ... 373
Invoking Different Windows ... 373
Example .. 373

58 DEFINE WORK FILE ... 375
Function .. 376
Syntax Description ... 376

VIII ... 381
59 DELETE .. 383

Statementsviii

Statements

Function .. 384
Restriction ... 384
Syntax Description ... 384
Database-Specific Considerations .. 385
Examples .. 385

60 DELETE (SQL) ... 387
Function .. 388
Syntax 1 - Searched DELETE .. 388
Syntax 2 - Positioned DELETE ... 389

61 DISPLAY .. 391
Function .. 392
Syntax Description ... 392
Defaults Applicable for a DISPLAY Statement .. 404
Examples .. 405

62 DIVIDE ... 413
Function .. 414
Syntax 1 - DIVIDE Statement without GIVING Clause 414
Syntax 2 - DIVIDE Statement with GIVING Clause 415
Syntax 3 - DIVIDE Statement with REMAINDER Clause 416
Example .. 417

63 DO/DOEND ... 419
Function .. 420
Restrictions ... 420
Example .. 421

64 DOWNLOAD PC FILE .. 423
Function .. 424
Syntax Description ... 424
Examples .. 425

65 EJECT ... 429
Function .. 430
Syntax Description ... 430
Processing ... 432
Example .. 432

66 END ... 435
Function .. 436
Syntax Description ... 436
Examples .. 437

67 END TRANSACTION ... 439
Function .. 440
Restriction ... 440
Syntax Description ... 441
Databases Affected ... 441
Database-Specific Considerations .. 442
Examples .. 442

68 ESCAPE .. 445

ixStatements

Statements

Function .. 446
Syntax Description ... 447
Example .. 448

69 EXAMINE .. 451
Syntax 1 - EXAMINE .. 452
Syntax 2 - EXAMINE TRANSLATE ... 460
Syntax 3 - EXAMINE for Unicode Graphemes .. 462
Examples .. 464

70 EXPAND .. 473
Function .. 474
Syntax Description ... 474

IX .. 479
71 FETCH ... 481

Function .. 482
Syntax Description ... 482
Example .. 484

72 FIND .. 487
Function .. 488
Restrictions ... 490
Syntax 1 - FIND Statement with Processing Loop ... 490
Syntax 2 - FIND Statement without Processing Loop 490
Syntax Description ... 491
Examples .. 512

73 FOR .. 523
Function .. 524
Syntax Description ... 524
Example .. 526

74 FORMAT .. 529
Function .. 530
Syntax Description ... 530
Applicable Parameters ... 531
Example .. 533

75 GET .. 535
Function .. 536
Restrictions ... 537
Syntax Description ... 537
Example .. 538

76 GET SAME ... 541
Function .. 542
Restrictions ... 542
Syntax Description ... 542
Example .. 543

77 GET TRANSACTION DATA ... 545
Function .. 546
Restriction ... 546

Statementsx

Statements

Syntax Description ... 547
Example .. 547

78 HISTOGRAM ... 549
Function .. 550
Restrictions ... 551
Syntax Description ... 551
System Variables Available with HISTOGRAM .. 556
Examples .. 557

79 IF .. 561
Function .. 562
Syntax Description ... 562
Example .. 563

80 IF SELECTION ... 565
Function .. 566
Syntax Description ... 566
Example .. 568

81 IGNORE ... 569
Function .. 570
Example .. 570

82 INCLUDE ... 571
Function .. 572
Syntax Description ... 572
Examples .. 573

X INPUT ... 579
83 INPUT Syntax 1 - Dynamic Screen Layout Specification 585

INPUT Syntax 1 - Description .. 586
Examples - Syntax 1 .. 595

84 INPUT Syntax 2 - Using Predefined Map Layout ... 599
INPUT USING MAP without Parameter List .. 600
INPUT Fields Defined in the Program ... 601
INPUT Syntax 2 - Description .. 601
Using the INPUT Statement in Non-Screen Modes 602
Processing Data from the Natural Stack .. 605
Using the INPUT Statement in Batch Mode .. 605

XI .. 607
85 INSERT (SQL) .. 609

Function .. 610
Syntax Description ... 610

86 INTERFACE ... 615
Function .. 616
Syntax Description ... 617

87 LIMIT ... 623
Function .. 624
Syntax Description ... 625
Examples .. 625

xiStatements

Statements

88 LOOP ... 627
Function .. 628
Restriction ... 628
Syntax Description ... 629
Examples .. 629

89 METHOD ... 631
Function .. 632
Syntax Description ... 632
Example .. 633

90 MOVE .. 637
Function .. 638
Syntax 1 - MOVE .. 638
Syntax 2 - MOVE SUBSTRING ... 640
Syntax 3 - MOVE BY NAME / POSITION ... 642
Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2) 643
Syntax 5 - MOVE EDITED (Edit Mask Specified with operand1) 644
Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED ... 645
Syntax 7 - MOVE NORMALIZED .. 646
Syntax 8 - MOVE ENCODED ... 648
Syntax 9 - MOVE ALL .. 650
Examples .. 653

91 MOVE INDEXED ... 659
92 MULTIPLY ... 661

Function .. 662
Syntax 1 - MULTIPLY Statement without GIVING Clause 662
Syntax 2 - MULTIPLY Statement with GIVING Clause 663
Example .. 664

93 NEWPAGE ... 667
Function .. 668
Syntax Description ... 668
Example .. 669

94 OBTAIN ... 673
Function .. 674
Restriction ... 674
Syntax Description ... 675
Examples .. 679

95 ON ERROR .. 681
Function .. 682
Restriction ... 682
Syntax Description ... 683
ON ERROR Processing within Objects on Different Levels 683
System Variables ... 684
Example .. 684

96 OPEN CONVERSATION ... 687
Function .. 688

Statementsxii

Statements

Syntax Description ... 688
Further Information and Examples .. 689

97 OPTIONS ... 691
Function .. 692
Processing of Multiple OPTIONS Statements .. 692

XII .. 693
98 PARSE XML ... 695

Function .. 696
Syntax Description ... 697
Examples .. 700

99 PASSW ... 705
Function .. 706
Syntax Description ... 706

100 PERFORM .. 709
Function .. 710
Syntax Description ... 710
Examples .. 713

101 PERFORM BREAK PROCESSING .. 717
Function .. 718
Syntax Description ... 718
Example .. 719

102 PRINT ... 721
Function .. 722
Syntax Description ... 723
Example .. 728

103 PROCESS .. 731
Function .. 732
Restriction ... 732
Syntax Description ... 732

104 PROCESS COMMAND ... 735
Function .. 737
Syntax Description ... 738
Examples .. 748

105 PROCESS PAGE ... 751
Function .. 752
Syntax 1 - PROCESS PAGE .. 752
Syntax 2 - PROCESS PAGE USING .. 755
Syntax 3 - PROCESS PAGE UPDATE .. 758
Syntax 4 - PROCESS PAGE MODAL ... 761
Examples .. 763

106 PROCESS SQL (SQL) ... 765
Function .. 766
Syntax Description ... 766
Entire Access Options ... 767
Examples .. 768

xiiiStatements

Statements

107 PROPERTY ... 769
Function .. 770
Syntax Description ... 770
Example .. 771

XIII ... 773
108 READ ... 775

Function .. 776
Syntax Description ... 777
System Variables Available with READ ... 788
Examples .. 788

109 READ RESULT SET (SQL) ... 797
Function .. 798
Syntax Description ... 798

110 READ WORK FILE .. 801
Function .. 802
Syntax 1 - READWORK FILE with Processing Loop 802
Syntax 2 - READ WORK FILE without Processing Loop 803
Syntax Description ... 803
Field Lengths .. 806
Variable Index Range ... 807
Handling of Large and Dynamic Variables .. 807
Handling of X-Arrays ... 808
Examples .. 808

111 READLOB .. 815
Function .. 816
Restrictions ... 816
Syntax Description ... 817
System Variables Available with READLOB ... 819
Functional Considerations ... 820
Examples .. 820

112 REDEFINE ... 823
Function .. 824
Restriction ... 824
Syntax Description ... 824
Examples .. 825

113 REDUCE ... 827
Function .. 828
Syntax Description ... 828

114 REINPUT ... 833
Function .. 834
Syntax Description ... 835
Examples .. 841

115 REJECT ... 845
116 RELEASE .. 847

Function .. 848

Statementsxiv

Statements

Syntax Description ... 848
Example .. 849

117 REPEAT .. 851
Function .. 852
Syntax Description ... 852
Examples .. 853

118 REQUEST DOCUMENT .. 857
Function .. 858
Syntax Description ... 859
Automatically Generated Headers ... 864
URL Encoding for Special Characters .. 865
HTTP Responses Redirected and Denied .. 867
Examples .. 868

119 RESET ... 871
Function .. 872
Syntax Description ... 872
Example .. 873

120 RESIZE ... 875
Function .. 876
Syntax Description ... 876

121 ROLLBACK (SQL) ... 881
Function .. 882
Consideration for Non-Natural Programs ... 882
Example .. 882

122 RETRY .. 883
Function .. 884
Restriction ... 884
Example .. 884

123 RUN ... 887
Function .. 888
Syntax Description ... 888
Dynamic Source Text Creation/Execution .. 889
Example .. 890

XIV ... 893
124 SELECT (SQL) .. 895

Function .. 896
Syntax 1 - Cursor-Oriented Selection ... 896
Syntax 2 - Non-Cursor Selection .. 897
Syntax Element Description ... 898
Join Queries .. 910

125 SEND METHOD .. 911
Function .. 912
Syntax Description ... 912
Example .. 915

126 SEPARATE ... 923

xvStatements

Statements

Function .. 924
Syntax Description ... 924
Rules and Operational Considerations .. 927
Examples .. 930

127 SET CONTROL .. 937
Function .. 938
Syntax Description ... 938
Examples .. 938

128 SET GLOBALS ... 941
Function .. 942
Syntax Description ... 942
Parameters .. 943
Example .. 944

129 SET KEY ... 945
Function .. 946
Syntax Description ... 946
Making Keys Program-Sensitive and Deactivating Keys 947
Assigning Commands/Programs ... 949
Assigning Input DATA ... 949
COMMAND OFF/ON .. 950
Assigning HELP ... 950
DYNAMIC Option ... 951
DISABLED Option ... 951
SET KEY Statements on Different Program Levels .. 952
Assigning Names ... 954
Example .. 955

130 SET TIME ... 957
Function .. 958
Example .. 958

131 SET WINDOW ... 961
Function .. 962
Syntax Description ... 962
Example .. 962

132 SKIP .. 963
Function .. 964
Syntax Description ... 964
Example .. 965

133 SORT .. 967
Function .. 968
Restrictions ... 969
Syntax Description ... 969
Three-Phase SORT Processing ... 972
Example .. 973
Using External Sort Programs .. 977

134 STACK .. 979

Statementsxvi

Statements

Function .. 980
Syntax Description ... 980
Example .. 983

135 STOP .. 985
Function .. 986
Example .. 986

XV .. 989
136 STORE .. 991

Function .. 992
Database-Specific Considerations .. 993
Syntax Description ... 993
Example .. 995

137 SUBTRACT .. 999
Function .. 1000
Syntax 1 - SUBTRACT Statement without GIVING Clause 1000
Syntax 2 - SUBTRACT Statement with GIVING Clause 1001
Example .. 1002

138 SUSPEND IDENTICAL SUPPRESS ... 1003
Function .. 1004
Syntax Description .. 1004
Examples ... 1004

139 TERMINATE .. 1009
Function .. 1010
Syntax Description .. 1010
Program Receiving Control after Termination ... 1011
Example .. 1011

140 UPDATE ... 1013
Function .. 1014
Restrictions ... 1015
Database-Specific Considerations .. 1015
Syntax Description .. 1015
Example .. 1016

141 UPDATE (SQL) ... 1019
Function .. 1020
Syntax 1 - Searched UPDATE ... 1020
Syntax 2 - Positioned UPDATE ... 1022
Examples ... 1023

142 UPDATELOB .. 1025
Function .. 1026
Restrictions ... 1026
Syntax Description .. 1027
System Variable Available with UPDATELOB ... 1028
Functional Considerations .. 1029
Examples ... 1029

143 UPLOAD PC FILE .. 1033

xviiStatements

Statements

Function .. 1034
Syntax Description .. 1035
Example .. 1036

144 WRITE .. 1037
Function .. 1038
Syntax 1 - Dynamic Formatting .. 1038
Syntax 2 - Using Predefined Form/Map ... 1046
Examples ... 1047

145 WRITE TITLE ... 1053
Function .. 1054
Restrictions ... 1055
Syntax Description .. 1055
Example .. 1059

146 WRITE TRAILER ... 1061
Function .. 1062
Restrictions ... 1063
Syntax Description .. 1063
Example .. 1067

147 WRITE WORK FILE ... 1069
Function .. 1070
Syntax Description .. 1070
External Representation of Fields ... 1072
Handling of Large and Dynamic Variables .. 1073
Example .. 1074

Statementsxviii

Statements

Preface

This document describes native Natural programming language (DML) statements and Natural
SQL statements. It is organized under the following headings:

Provides an overview of the Natural statements ordered by
functional groups.

Statements Grouped by Function

Information on the symbols that are used within the diagrams
that describe the syntax of Natural statements and on operand
definition tables.

Syntax Symbols and Operand
Definition Tables

Describes rules specific to using Natural SQL statements.Using Natural SQL Statements

Contains additional example programs that are referenced in the
Statements and System Variables documentation.

Referenced Example Programs

Related Topics:

See also the Programming Guide for statement usage related topics such as: User-Defined Variables
| Dynamic and Large Variables | User-Defined Constants | Report Specification | Text Notation | User
Comments | Rules for Arithmetic Assignment | Logical Condition Criteria | Function Call

Statements in Alphabetical Order:

S - ZP - RG - OD - FA - C

SELECT (SQL)PARSE XMLGETDECIDE FORACCEPT/REJECT
SEND METHODPASSWGET SAMEDECIDE ONADD
SEPARATEPERFORMGET

TRANSACTION
DATA

DEFINE CLASSASSIGN
SET CONTROLPERFORM BREAK

PROCESSING
DEFINE DATAAT BREAK

SET GLOBALSDEFINE FUNCTIONAT END OF DATA
SET KEYPRINTHISTOGRAMDEFINE PRINTERAT END OF PAGE
SET TIMEPROCESSIFDEFINE PROTOTYPEAT START OF DATA
SET WINDOWPROCESS COMMANDIF SELECTIONDEFINE

SUBROUTINE
AT TOP OF PAGE

SKIPPROCESS PAGEIGNOREBACKOUT
TRANSACTION SORTPROCESS

SQL (SQL)
INCLUDEDEFINE WINDOW

BEFORE BREAK
PROCESSING

STACKINPUTDEFINE WORK FILE
STOPPROPERTYINSERT (SQL)DELETE

CALL STOREREADINTERFACEDELETE (SQL)
CALL FILE SUBTRACTREAD RESULT SET

(SQL)
LIMITDISPLAY

CALL LOOP SUSPEND
IDENTICAL
SUPPRESS

LOOPDIVIDE
CALLDBPROC (SQL) READ WORK FILEMETHODDO/DOEND
CALLNAT READLOBMOVEDOWNLOAD PC FILE
CLOSE
CONVERSATION

TERMINATEREDEFINEMOVE INDEXEDEJECT
UPDATEREDUCEMULTIPLYEND

CLOSE PC FILE UPDATE (SQL)REINPUTNEWPAGEEND TRANSACTION
CLOSE PRINTER UPDATELOBREJECTOBTAINESCAPE

xix

S - ZP - RG - OD - FA - C

CLOSE WORK FILE UPLOAD PC FILERELEASEON ERROREXAMINE
COMMIT (SQL) WRITEREPEATOPEN

CONVERSATION
EXPAND

COMPRESS WRITE TITLEREQUEST DOCUMENTFETCH
COMPUTE WRITE TRAILERRESETOPTIONSFIND
CREATE OBJECT WRITE WORK FILERESIZEFOR

RETRYFORMAT
ROLLBACK (SQL)
RUN

Statementsxx

Preface

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Statements2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareGmbHproducts provide functionalitywith respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

3Statements

About this Documentation

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

I
■ 2 Statements Grouped by Function ... 7
■ 3 Syntax Symbols and Operand Definition Tables .. 17

5

6

2 Statements Grouped by Function

■ Database Access and Update ... 8
■ Arithmetic and Data Movement Operations .. 9
■ Loop Execution ... 10
■ Creation of Output Reports .. 10
■ Screen Generation for Interactive Processing .. 11
■ Processing of Logical Conditions .. 11
■ Invoking Programs and Routines .. 12
■ Functions ... 12
■ Program and Session Termination .. 12
■ Control of Work Files / PC Files .. 13
■ Component Based Programming .. 13
■ Memory Management Control for Dynamic Variables or X-Arrays .. 13
■ Natural Remote Procedure Call .. 14
■ Internet and XML ... 14
■ Miscellaneous ... 14
■ Reporting Mode Statements .. 15

7

Notes:

1. Certain statements can be used both in structured mode and in reporting mode, while others
can be used in reporting mode only. See Natural Programming Modes in the Programming Guide.

2. The statements DLOGOFF, DLOGON, SHOW, IMPORT and EXPORT are only available when Entire DB
is installed. For a description, see the Entire DB documentation.

Database Access and Update

The following types of statements are available:

■ Natural DML Statements
■ Natural SQL Statements

Natural DML Statements

The following Natural data manipulation language (DML) statements are used to access and ma-
nipulate information contained in a database.

Reads a database file in physical or logical sequence of records.READ

Selects records from a database file based on user-specified criteria.FIND

Reads the values of a database field.HISTOGRAM

Reads a recordwith a given ISN (internal sequence number) or RNO (record
number).

GET

Re-reads the record currently being processed.GET SAME

Accepts/reject records based on user-specified criteria.ACCEPT/REJECT

Provides password for access to a password-protected file.PASSW

Limits the number of executions of a READ, FIND or HISTOGRAM processing
loop.

LIMIT

Adds a new record to the database.STORE

Updates a record in the database.UPDATE

Deletes a record from the database.DELETE

Indicates the end of a logical transaction.END TRANSACTION

Backs out a partially completed logical transaction.BACKOUT TRANSACTION

Reads transactiondata storedwith apreviousEND TRANSACTION statement.GET TRANSACTION DATA

Attempts to re-read a record which is in hold status for another user.RETRY

Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT START OF DATA

Statements8

Statements Grouped by Function

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT END OF DATA

Specifies statements to be performed when the value of a control field
changes (break processing).

AT BREAK

Specifies statements to be performed before performing break processing.BEFORE BREAK PROCESSING

Immediately invokes break processing.PERFORM BREAK PROCESSING

Natural SQL Statements

In addition to the Natural DML statements, Natural also provides SQL statements for use in Nat-
ural programs that manipulate data on an SQL database.

The following Natural SQL statements are available:

Invokes a stored procedure of the SQLdatabase system towhichNatural is connected.CALLDBPROC

Indicates the end of a logical transaction and releases all data locked during the
transaction. All data modifications are committed and made permanent.

COMMIT

Deletes either rows in a table without using a cursor (“searched” DELETE) or rows in
a table to which a cursor is positioned (“positioned” DELETE).

DELETE

Adds one or more new rows to a table.INSERT

Issues SQL statements to the underlying database.PROCESS SQL

Reads a result set which was created by a stored procedure that was invoked by a
previous CALLDBPROC statement.

READ RESULT SET

Undoes all database modificationsmade since the beginning of the last recovery unit.ROLLBACK

Supports both the cursor-oriented selection that is used to retrieve an arbitrary number
of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row.

SELECT

Performs an update operation on either rows in a table without using a cursor
(“searched” UPDATE) or columns in a row towhich a cursor is positioned (“positioned”
UPDATE).

UPDATE

Arithmetic and Data Movement Operations

The following statements are used for arithmetic and data movement operations:

9Statements

Statements Grouped by Function

Performs arithmetic operations or assigns values to fields.COMPUTE

Adds two or more operands.ADD

Subtracts one or more operands from another operand.SUBTRACT

Multiplies two or more operands.MULTIPLY

Divides one operand into another.DIVIDE

Translates the characters contained in a field into upper-case or lower-case, or into
other characters.

EXAMINE TRANSLATE

Moves the value of an operand to one or more fields.MOVE

Moves multiple occurrences of a value to another field.MOVE ALL

Concatenates the value of two or more fields into a single field.COMPRESS

Separates the content of a field into two or more fields.SEPARATE

Scans a field for a specific value and replaces it, and/or counts how often it occurs.EXAMINE

Sets the value of a field to zero (if numeric) or blank (if alphanumeric), or to its
initial value.

RESET

Loop Execution

The following statements are related to the execution of processing loops:

Stops the execution of a processing loop.ESCAPE

Initiates a processing loop and controls the number of times the loop is to be processed.FOR

Initiates a processing loop (and terminates it based on a specified condition).REPEAT

Sorts records.SORT

Creation of Output Reports

The following statements are used for the creation of output reports:

Specifies output parameter settings.FORMAT

Specifies fields to be output in column form.DISPLAY

Specifies fields to be output in non-column form.WRITE / PRINT

Specifies text to be output at the top of each page of a report.WRITE TITLE

Specifies text to be output at the bottom of each page of a report.WRITE TRAILER

Specifies processing to be performedwhen a new output page is started.AT TOP OF PAGE

Specifies processing to be performed when the end of an output page
is reached.

AT END OF PAGE

Statements10

Statements Grouped by Function

Generates one or more blank lines in a report.SKIP

Causes a page advance without titles or headings.EJECT

Causes a page advance with titles and headings.NEWPAGE

Suspends identical suppression for a single record.SUSPEND IDENTICAL SUPPRESS

Allocates a report to a logical output destination.DEFINE PRINTER

Closes a printer.CLOSE PRINTER

Screen Generation for Interactive Processing

The following statements are used to create data screens (maps) for the purpose of interactive
processing of data:

Creates a formatted screen (map) for data display/ entry.INPUT

Re-executes an INPUT statement (if invalid data were entered in response to the
previous INPUT statement).

REINPUT

Specifies the size, position and attributes of a window.DEFINE WINDOW

Activates and de-activates a window.SET WINDOW

Creates a data mapping to a web rich GUI screen.PROCESS PAGE

Performs rich GUI I/O processing using an adapter object generated from a page
layout.

PROCESS PAGE USING

Re-executes a PROCESS PAGE statement.PROCESS PAGE UPDATE

Initiates a processing block and controls the lifetime of a rich GUI window.PROCESS PAGE MODAL

Processing of Logical Conditions

The following statements are used to control the execution of statements based on conditions de-
tected during the execution of a Natural program:

Performs statements depending on a logical condition.IF

Verifies that in a sequence of alphanumeric fields one and only one contains a value.IF SELECTION

Performs statements depending on logical conditions.DECIDE FOR

Performs statements depending on the contents of a variable.DECIDE ON

11Statements

Statements Grouped by Function

Invoking Programs and Routines

The following statements are used in conjunction with the execution of programs and routines:

Invokes a non-Natural program from a Natural program.CALL

Invokes a Natural subprogram.CALLNAT

Invokes a non-Natural program to read a record from a non-Adabas file.CALL FILE

Generates a processing loop containing a call to a non-Natural program.CALL LOOP

Defines a Natural subroutine.DEFINE SUBROUTINE

Stops the execution of a routine.ESCAPE

Invokes a Natural program.FETCH

Invokes a Natural subroutine.PERFORM

Invokes a command processor.PROCESS COMMAND

Compiles and executes a source program.RUN

Functions

The following Natural statements are used to create functions:

Creates functions which can be called instead of operands in Natural statements.
Functions are defined in Natural objects of type function.

DEFINE FUNCTION

Specifies the properties to be used for a function call.DEFINE PROTOTYPE

Used to call Natural objects of type function.Function Call

Program and Session Termination

The following Natural statements are used to terminate the execution of an application or to ter-
minate the Natural session.

Terminates the execution of an application.STOP

Terminates the Natural session.TERMINATE

Statements12

Statements Grouped by Function

Control of Work Files / PC Files

The followingNatural statements are used to read/write data to a physical sequential (non-Adabas)
work file:

Writes data to a work file.WRITE WORK FILE

Enables transfer data from a mainframe or a Linux platform to the PC.DOWNLOAD PC FILE

Reads data from a work file.READ WORK FILE

Enables transfer data from a PC to a mainframe or a Linux platform.UPLOAD PC FILE

Closes a work file.CLOSE WORK FILE

Closes a specific PC work file.CLOSE PC FILE

Assigns a file name to a work file.DEFINE WORK FILE

Component Based Programming

The following Natural statements are used in conjunction with component based programming:

Specifies a class from within a Natural class module.DEFINE CLASS

Creates an object (also known as an instance) of a given class.CREATE OBJECT

Invokes a method of an object.SEND METHOD

Defines an interface (a collection of methods and properties) for a certain feature of a
class.

INTERFACE

Assigns a subprogram as the implementation of amethod, outside an interface definition.METHOD

Assigns an object data variable as the implementation to a property, outside an interface
definition.

PROPERTY

Memory Management Control for Dynamic Variables or X-Arrays

Expands the allocated memory of dynamic variables to a given size or expands the number of
occurrences of X-arrays.

EXPAND

Reduces the size of a dynamic variable or the number of occurrences of X-arrays.REDUCE

Adjusts the size of a dynamic variableor the number of occurrences of X-arrays.RESIZE

13Statements

Statements Grouped by Function

Natural Remote Procedure Call

Allows the RPC Client to open a conversation and specify the remote
subprograms to be included in the conversation.

OPEN CONVERSATION

Allows the client to close conversations. You can close the current conversation,
another open conversation, or all open conversations.

CLOSE CONVERSATION

Defines variables known as context variables, which are meant to be available
to multiple remote subprograms within one conversation, without having to

DEFINE DATA CONTEXT

explicitly pass the variables as parameters with the corresponding CALLNAT
statements.

See also the section Natural Statements Involved in the Natural RPC (Remote Procedure Call) docu-
mentation.

Internet and XML

Allows you to parse XML documents from a Natural program.PARSE

Allows you to access an external system.REQUEST DOCUMENT

Miscellaneous

Defines the data elements which are to be used in a Natural program or routine.DEFINE DATA

Indicates the end of the source code of a Natural program or routine.END

Incorporates Natural copycode at compilation.INCLUDE

Intercepts runtime errorswhichwould otherwise result in aNatural errormessage, followed
by the termination of the Natural program.

ON ERROR

Deletes the contents of the Natural stack; releases sets of ISN sets retained via a FIND
statement; releases Natural global variables.

RELEASE

Performs a Natural terminal command from within a Natural program.SET CONTROL

Assigns functions to terminal keys.SET KEY

Sets values for session parameters.SET GLOBALS

Establishes a point-in-time reference for a *TIMD system variable.SET TIME

Places data and/or commands into the Natural stack.STACK

Statements14

Statements Grouped by Function

Reporting Mode Statements

The following statements are for reporting mode only:

Closes a processing loop.LOOP

Specify a group of statements to be executed based on a logical condition.DO/DOEND

Causes one or more fields to be read from a file.OBTAIN

Redefines a field.REDEFINE

The following statements can be used both in structured mode and in reporting mode, however,
the statement structure and, with some of them, the functionality is different:

Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT START OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT END OF DATA

Specifies statements to be performed when the value of a control field
changes (break processing).

AT BREAK

Specifies processing to be performed when a new output page is started.AT TOP OF PAGE

Specifies processing to be performed when the end of an output page is
reached.

AT END OF PAGE

Specifies statements to be performed before performing break processing.BEFORE BREAK PROCESSING

Generates a processing loop containing a call to a non-Natural program.CALL LOOP

Invokes a non-Natural program to read a record from a non-Adabas file.CALL FILE

Performs arithmetic operations or assigns values to fields.COMPUTE

Defines a Natural subroutine.DEFINE SUBROUTINE

Stops the execution of a processing loop.ESCAPE

Selects records from a database file based on user-specified criteria.FIND

Re-reads the record currently being processed.GET SAME

Reads the values of a database field.HISTOGRAM

Performs statements depending on a logical condition.IF

Verifies that in a sequence of alphanumeric fields one and only one contains
a value.

IF SELECTION

Intercepts runtime errors which would otherwise result in a Natural error
message, followed by the termination of the Natural program.

ON ERROR

Reads a database file in physical or logical sequence of records.READ

Reads data from a work file.READ WORK FILE

Initiates a processing loop (and terminates it based on a specified condition).REPEAT

15Statements

Statements Grouped by Function

Sorts records.SORT

Adds a new record to the database.STORE

Updates a record in the database.UPDATE

Enables transfer data from a PC to a mainframe or a Linux platform.UPLOAD PC FILE

Statements16

Statements Grouped by Function

3 Syntax Symbols and Operand Definition Tables

■ Syntax Symbols .. 18
■ Operand Definition Table .. 19

17

Syntax Symbols

The following symbols are usedwithin the diagrams that describe the syntax ofNatural statements:

DescriptionSyntax Symbol

Upper-case non-italic letters indicate that the term is either a Natural keyword or a
Natural reserved word that must be entered exactly as specified.

ABCDEF

If an optional term in upper-case letters is completely underlined (not a hyperlink!),
this indicates that the term is the default value. If you omit the term, the underlined
value applies.

ABCDEF

If a term in upper-case letters is partially underlined (not a hyperlink!), this indicates
that the underlined portion is an acceptable abbreviation of the term.

ABCDEF

Letters in italics are used to represent variable information. You must supply a valid
value when specifying this term.

Note: In place of statement or statements, youmust supply one or several suitable
statements, depending on the situation. If you do not want to supply a specific
statement, you may insert the IGNORE statement.

abcdef

Elements contained within square brackets are optional.

If the square brackets contain several lines stacked one above the other, each line is an
optional alternative. You may choose at most one of the alternatives.

[]

If the braces contain several lines stacked one above the other, each line is an alternative.
You must choose exactly one of the alternatives.

{ }

The vertical bar separates alternatives.|

A term preceding an ellipsis may optionally be repeated. A number after the ellipsis
indicates how many times the term may be repeated.

If the termpreceding the ellipsis is an expression enclosed in square brackets or braces,
the ellipsis applies to the entire bracketed expression.

...

A term preceding a comma-ellipsis may optionally be repeated; if it is repeated, the
repetitionsmust be separated by commas. A number after the comma-ellipsis indicates
how many times the term may be repeated.

If the term preceding the comma-ellipsis is an expression enclosed in square brackets
or braces, the comma-ellipsis applies to the entire bracketed expression.

,...

A term preceding a colon-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by colons. A number after the colon-ellipsis indicates
how many times the term may be repeated.

If the term preceding the colon-ellipsis is an expression enclosed in square brackets or
braces, the colon-ellipsis applies to the entire bracketed expression.

:...

Statements18

Syntax Symbols and Operand Definition Tables

DescriptionSyntax Symbol

All other symbols except those defined in this tablemust be entered exactly as specified.

Exception: The SQL scalar concatenation operator is represented by two vertical bars
that must be entered literally as they appear in the syntax definition.

Other symbols

(except [] { } |
... ,... :...)

Example:

operand1 [operand2]WRITE [USING] FORM
MAP

■ WRITE, USING, MAP and FORM are Natural keywords which you must enter as specified.
■ operand1 and operand2 are user-supplied variables forwhich you specify the names of the objects
you wish to deal with.

■ The braces indicate that you must choose whether to specify either FORM or MAP; however, you
must specify one of the two.

■ The square brackets indicate that USING and operand2 are optional elements which you can, but
need not, specify.

■ The ellipsis indicates that you may specify operand2 several times.

Operand Definition Table

Whenever one or more operands appear in the syntax of a Natural statement, the following table
is provided:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yes/noyes/noOCLTDBFIPNUAEN/MGASCoperand1

This table provides the following information on each operand:

Possible Structure

Indicates the structure which the operand may take:

19Statements

Syntax Symbols and Operand Definition Tables

Constant.C

Single occurrence (scalar; that is, a field/variable which is neither an array nor a group).S

Array.A

Group.G

Natural system variable:N/M

All system variables can be used.N

Only modifiable system variables can be used. For information on
whether the content of a system variable is modifiable or not, see
the Natural System Variables documentation.

M

Arithmetic expressions.E

Possible Formats

Indicates the format which the operand may take:

Alphanumeric (ASCII code page)A

Alphanumeric (Unicode)U

Numeric unpackedN

Packed numericP

IntegerI

Floating pointF

BinaryB

DateD

TimeT

LogicalL

Attribute controlC

HANDLE OF OBJECTO

Referencing Permitted

Indicates whether the operand may be referenced or not, using a statement label or the source
code line number.

Statements20

Syntax Symbols and Operand Definition Tables

Dynamic Definition

Indicates whether the field may be dynamically defined within the body of the program. This is
possible in reporting mode only.

21Statements

Syntax Symbols and Operand Definition Tables

22

II Using Natural SQL Statements

In addition to the native Natural DML statements, Natural provides Natural SQL statements for
use in Natural programs that maintain data contained in an SQL or SQL-compliant database.

This chapter describes the special syntax rules and conventions that apply when using Natural
SQL statements.

Common Set and Extended Set

Basic Syntactical Items

Natural View Concept

Scalar Expressions

Search Conditions

Select Expressions

Flexible SQL

Overview of Natural SQL Statements:

CALLDBPROC | COMMIT | DELETE | INSERT | PROCESS SQL | READ RESULT SET | ROLLBACK
| SELECT | UPDATE

23

24

4 Common Set and Extended Set

The SQL statements available within the Natural programming language comprise two different
syntax sets:

■ Common Set
The Common Set basically corresponds to the standard SQL syntax definitions and is provided
for each SQL-compliant database system supported byNatural. TheCommon Set is valid against
all SQL databases.

■ Extended Set
The Extended Set, in addition, provides special enhancements to the Common Set to support
specific features of the supported database systems. Currently, the Extended Set is partly
available and is valid against Db2 databases only.

The Natural SQL statements documentation mainly describes the Natural SQL Common Set. The
statement syntax adheres as far as possible to the syntax described in the relevant literature on
SQL; please, refer to this literature for further details.

25

26

5 Basic Syntactical Items

■ Constants .. 28
■ Names .. 28
■ Parameters .. 32
■ Natural Formats and SQL Data Types ... 35

27

This chapter describes basic syntactical items, which are referenced within the individual SQL
statement descriptions.

Constants

The constants used in the syntactical descriptions of the Natural SQL statements are:

The item constant refers to either a Natural constant or an SQL datetime constant.constant

The item integer always represents an integer constant.integer

Note: If the character for decimal point notation (session parameter DC) is set to a comma
(,), any specified numeric constant must not be followed directly by a comma, but must be
separated from it by a blank character; otherwise an error or wrong results occur.

Valid Syntax:Invalid Syntax:

VALUES (1 ,'A')VALUES (1,'A') leads to a syntax error.

VALUES (1 ,2 ,3)VALUES (1,2,3) leads to wrong results.

SQL Datetime Constants

An SQL datetime constant is a character string constant of a particular format that specifies one
of the following:

Specifies an SQL date constant, for example: DATE '2013-15-01'.DATE string-constant

Specifies an SQL time constant, for example: TIME '10:30:15'.TIME string-constant

Specifies an SQL time stamp constant, for example: TIMESTAMP
'2014-15-01 10:20:15.123456'.

TIMESTAMP string-constant

For information on the valid string-constant formats, refer to IBM'sDb2 SQL reference information.

Names

The names used in the syntactical descriptions of the Natural SQL statements are:

■ authorization-identifier
■ ddm-name
■ view-name
■ column-name
■ location-name

Statements28

Basic Syntactical Items

■ table-name
■ correlation-name

authorization-identifier

The item authorization-identifier, which is also called creator name, is used to qualify database
tables and views. See also authorization-identifier under table-name below.

ddm-name

The item ddm-name always refers to the name of aNatural data definitionmodule (DDM) as created
with the Natural DDM Services.

view-name

The item view-name always refers to the name of a Natural view as defined in the DEFINE DATA
statement.

column-name

The item column-name always refers to the name of a physical database column.

location-name

The item location-name always denotes the location of the table. Specification of location-name
is optional and belongs to the SQL Extended Set.

table-name

The item table-name in this section is used to reference both SQL base tables and SQL viewed
tables.

Syntax of item table-name:

[[location-name.]authorization-identifier.]ddm-name

Syntax Element Description:

29Statements

Basic Syntactical Items

DescriptionSyntax Element

A Natural data definition module (DDM) must have been created for a
table to be used. The name of such a DDMmust be the same as the
corresponding database table name or view name.

ddm-name

This optional item specifies the location of the table to be accessed.location-name

There are two ways of specifying the authorization-identifier of a
database table or view.

One way corresponds to the standard SQL syntax, in which the
authorization-identifier is separated from the table nameby aperiod.

authorization-identifier

Using this form, the name of the DDMmust be the same as the name of
the database table without the authorization-identifier.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF PERSONNEL

02 NAME
02 AGE

END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL.PERSONNEL

...

Alternatively, you can define the authorization-identifier as part
of the DDM name. The DDM name then consists of the
authorization-identifier and the database table name separated by
a hyphen (-). The hyphen between the authorization-identifier and
the table name is converted internally into a period.

Note: This form of DDM name can also be used with a FIND or READ
statement, because it conforms to theDDMnaming conventions applicable
to these statements.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 NAME
02 AGE

END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL-PERSONNEL

...

If the authorization-identifier has been specified neither explicitly
nor within the DDM name, it is determined by the SQL database system.

Statements30

Basic Syntactical Items

DescriptionSyntax Element

In addition to being used in SELECT statements, table names can also be
specified in DELETE, INSERT and UPDATE statements.

Examples:

...
DELETE FROM SQL.PERSONNEL
WHERE AGE IS NULL
...

...
INSERT INTO SQL.PERSONNEL (NAME,AGE)
VALUES ('ADKINSON',35)

...

...
UPDATE SQL.PERSONNEL
SET SALARY = SALARY * 1.1
WHERE AGE > 30
...

correlation-name

The item correlation-name represents an alias name for a table-name. It can be used to qualify
column names; it also serves to implicitly qualify fields in a Natural view when used with the
INTO clause of the SELECT statement.

Example:

DEFINE DATA LOCAL
01 PERS-NAME (A20)
01 EMPL-NAME (A20)
01 AGE (I2)
END-DEFINE
...
SELECT X.NAME , Y.NAME , X.AGE

INTO PERS-NAME , EMPL-NAME , AGE
FROM SQL-PERSONNEL X , SQL-EMPLOYEES Y
WHERE X.AGE = Y.AGE

END-SELECT
...

Although in most cases the use of correlation-names is not necessary, they may help to make
the statement clearer.

31Statements

Basic Syntactical Items

Parameters

Syntax of item parameter:

[:] host-variable [INDICATOR [:] host-variable] [LINDICATOR [:] host-variable]

Syntax Element Description:

DescriptionSyntax Element

A host-variable is a Natural user-defined variable (no system variable) which is
referenced in an SQL statement. It can be either an individual field or defined as part of
a Natural view.

When defined as a receiving field (for example, in the INTO clause), a host-variable
identifies a variable to which a value is assigned by the database system.

host-variable

When defined as a sending field (for example, in the WHERE clause), a host-variable
specifies a value to be passed from the program to the database system.

See also Natural Formats and SQL Data Types.

Colon:[:]

To comply with SQL standards, a host-variable can also be prefixed by a colon (:).
When used with flexible SQL, host-variablesmust be qualified by colons.

Example:

SELECT NAME INTO :#NAME FROM PERSONNEL
WHERE AGE = :VALUE

The colon is always required if the variable name is identical to an SQL reserved word.
In a context in which either a host-variable or a column can be referenced, the use of
a name without a colon is interpreted as a reference to a column.

INDICATOR Clause:

The INDICATOR clause is an optional feature to distinguish between a “null” value (that
is, no value at all) and the actual values 0 or “blank”.

INDICATOR

When specified with a receiving host-variable (target field), the INDICATOR
host-variable (null indicator field) serves to find outwhether a column to be retrieved
is “null”.

Example:

Statements32

Basic Syntactical Items

DescriptionSyntax Element

DEFINE DATA LOCAL
1 NAME (A20)
1 NAMEIND (I2)
END-DEFINE
SELECT *
INTO NAME INDICATOR NAMEIND

...

In this example, NAME represents the receiving host-variable and NAMEIND the null
indicator field.

If a null indicator field has been specified and the column to be retrieved is null, the value
of the null indicator field is negative and the target field is set to 0 or “blank” depending
on its data type. Otherwise, the value of the null indicator field is greater than or equal
to 0.

When specified with a sending host-variable (source field), the null indicator field is
used to designate a null value for this field.

Example:

DEFINE DATA LOCAL
1 NAME (A20)
1 NAMEIND (I2)
UPDATE ...
SET NAME = :NAME INDICATOR :NAMEIND
WHERE ...

In this example, :NAME represents the sending host-variable and :NAMEIND the null
indicator field. By entering a negative value as input for the null indicator field, a null
value is assigned to a database column.

An INDICATOR host-variable is of format/length I2.

LINDICATOR Clause:LINDICATOR

The LINDICATOR clause is an optional featurewhich is used to support columns of varying
lengths, for example, VARCHAR or LONG VARCHAR type.

When specified with a receiving host-variable (target field), the LINDICATOR
host-variable (length indicator field) contains the number of characters actually
returned by the database into the target field. The target field is always padded with
blanks.

If the VARCHAR or LONG VARCHAR column contains more characters than fit in the target
field, the length indicator field is set to the length actually returned (that is, the length of
the target field) and the null indicator field (if specified) is set to the total length of this
column.

Example

33Statements

Basic Syntactical Items

DescriptionSyntax Element

DEFINE DATA LOCAL
1 ADDRESSLIND (I2)
1 ADDRESS (A50/1:6)
END-DEFINE
SELECT *
INTO :ADDRESS(*) LINDICATOR :ADDRESSLIND
...

In this example, :ADDRESS(*) represents the target field which receives the first 300
bytes (if available) of the addressed VARCHAR or LONG VARCHAR column, and
:ADDRESSLIND represents the length indicator field which contains the number of
characters actually returned.

When specified with a sending host-variable (source field), the length indicator field
specifies the number of characters of the source field which are to be passed to the
database.

Example:

DEFINE DATA LOCAL
1 NAMELIND (I2)
1 NAME (A20)
1 AGE (I2)
END-DEFINE
MOVE 4 TO NAMELIND
MOVE 'ABC%' TO NAME
SELECT AGE
INTO :AGE

WHERE NAME LIKE :NAME LINDICATOR :NAMELIND
...

A LINDICATOR host-variable is of format/length I2 or I4. For performance reasons,
it should be specified immediately before the corresponding target or source field;
otherwise, the field is copied to the temporary storage at runtime.

If the LINDICATOR field is defined as an I2 field, the SQL data type VARCHAR is used for
sending or receiving the corresponding column. If the LINDICATOR host-variable is
specified as I4, a large object data type (CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to its real
length. The LINDICATOR field and *LENGTH are set to this length. In case of a fixed length
field, the column is read up to the defined length. In both cases, the field is written up to
the value defined in the LINDICATOR field.

Let a fixed length field be definedwith a LINDICATOR field specified as I2. If the VARCHAR
column contains more characters than fit into this fixed length field, the length indicator
field is set to the length actually returned and the null indicator field (if specified) is set
to the total length of this column (retrieval). This is not possible for fixed length fields
greater than or equal to 32 KB (length does not fit into null indicator field).

Statements34

Basic Syntactical Items

Natural Formats and SQL Data Types

The Natural data format of a host-variable is converted to an SQL data type according to the fol-
lowing table:

SQL Data TypeNatural Format/Length

CHAR (n)An

SMALLINTB2

INTB4

CHAR (n)Bn; n not equal to 2 or 4

REALF4

DOUBLE PRECISIONF8

SMALLINTI2

INTI4

NUMERIC (nn+m,m)Nnn.m

NUMERIC (nn+m,m)Pnn.m

TIMET

DATED

GRAPHIC (n)Gn; for view fields only

Natural does not checkwhether the converted SQLdata type is compatible to the database column.
Except for fields of format N, no data conversion is done.

In addition, the following extensions to standardNatural formats are available with Natural SQL:

■ Aone-dimensional array of formatA can be used to support alphanumeric columns longer than
253 bytes. This array must be defined beginning with index 1 and can only be referenced by
using an asterisk (*) as the index. The corresponding SQL data type is CHAR (n), where n is the
total number of bytes in the array.

■ Aspecial host-variable indicated by the keyword LINDICATOR can be used to support variable-
length columns. The corresponding SQL data type is VARCHAR (n); see also the LINDICATOR
clause.

■ The Natural formats date (D) and time (T) can be usedwith Entire Access andwill be converted
into the corresponding database-dependent formats (see the Entire Access documentation for
details)

A sending field specified as one-dimensional array without a LINDICATOR field is converted into
the SQL data type VARCHAR. The length is the total number of bytes in the array, not taking into
account trailing blanks.

35Statements

Basic Syntactical Items

36

6 Natural View Concept

Some Natural SQL statements also support the use of Natural views.

A Natural view can be specified instead of a parameter list, where each field of the view - except
group fields, redefining fields and fields prefixed with L@ or N@- corresponds to one parameter
(host variable).

Fields with names prefixed with L@ or N@ can only exist with corresponding master fields; that is,
fields of the same name, where:

■ L@ fields are converted into LINDICATOR fields,
■ N@ fields are converted into INDICATOR fields.

L@ fields should have been specified at view definition, immediately before the master fields to
which they apply.

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 PERSID (I4)
02 NAME (A20)
02 N@NAME (I2) /* null indicator of NAME
02 L@ADDRESS (I2) /* length indicator of ADDRESS
02 ADDRESS (A50/1:6)
02 N@ADDRESS (I2) /* null indicator of ADDRESS

01 #PERSID (I4)
END-DEFINE

...
SELECT *

INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE PERSID = #PERSID
...

END-SELECT

37

The above example is equivalent to the following one:

...
SELECT *

INTO PERSID,
NAME INDICATOR N@NAME,
ADDRESS(*)INDICATOR N@ADDRESS LINDICATOR L@ADDRESS

FROM SQL-PERSONNEL
WHERE PERSID = #PERSID

...
END-SELECT

Note: When accessing VARCHAR data types with Natural for Windows or Natural for Linux
and Cloud, there must be a corresponding length indicator variable in the view.

Statements38

Natural View Concept

7 Scalar Expressions

■ Scalar Expression ... 40
■ Scalar Operator .. 40
■ Factor ... 41

39

factor+
(scalar-expression)-

scalar-expression scalar-operator scalar-expression

Scalar Expression

A scalar-expression consists of a factor or other scalar expressions including scalar operators.

Concerning reference priority, scalar expressions behave as follows:

■ When a non-qualified variable name is specified in a scalar expression, the first approach is to
resolve the variable name as column name of the referenced table.

■ If no columnwith the specified name is available in the referenced table, Natural tries to resolve
this variable as a Natural user-defined variable (host variable).

Scalar Operator

+

-

*

/

| |

CONCAT

A scalar-operator can be any of the operators listed above. The minus (-) and slash (/) operators
must be separated by at least one blank from preceding operators.

Statements40

Scalar Expressions

Factor

Common Set Syntax:

atom
column-reference
aggregate-function
special-register

Extended Set Syntax:

atom
column-reference
aggregate-function
special-register
scalar-function
length-stringunit
labeled-duration

A factor can consist of one of the items listed in the above diagram and described in the text below.

Atom

parameter
constant

An atom can be either a parameter or a constant.

Column Reference

column-name
table-name.
correlation-name.

A column-reference is a column name optionally qualified by either a table-name or a
correlation-name (see also the section Basic Syntactical Items). Qualified names are often
clearer than unqualified names and sometimes they are essential.

Note: A table name in this context must not be qualified explicitly with an authorization
identifier. Use a correlation name instead if you need a qualified table name.

41Statements

Scalar Expressions

If a column is referenced by a table-name or correlation-name, it must be contained in the cor-
responding table. If neither a table-name nor a correlation-name is specified, the respective
column must be in one of the tables specified in the FROM clause (see Table Expression).

Aggregate Function

COUNT
(*)
(DISTINCT column-reference)

(DISTINCT column-reference)
AVG

([ALL] scalar-expression)
MAX
MIN
SUM

SQL provides a number of special functions to enhance its basic retrieval power. The so-called
SQL aggregate functions currently available and supported by Natural are:

gives the average of the values in a columnAVG

gives the number of values in a columnCOUNT

gives the highest value in a columnMAX

gives the lowest value in a columnMIN

gives the sum of the values in a columnSUM

Apart from COUNT(*), each of these functions operates on the collection of scalar values in an ar-
gument (that is, a single column or a scalar-expression) and produces a scalar value as its result.

Example:

DEFINE DATA LOCAL
1 AVGAGE (I2)
END-DEFINE
...
SELECT AVG (AGE)

INTO AVGAGE
FROM SQL-PERSONNEL
...

DISTINCT

In general, the argument can optionally be preceded by the keyword DISTINCT to eliminate redund-
ant duplicate values before the function is applied.

If DISTINCT is specified, the argumentmust be the name of a single column; if DISTINCT is omitted,
the argument can consist of a general scalar-expression.

Statements42

Scalar Expressions

DISTINCT is not allowed with the special function COUNT(*), which is provided to count all rows
without eliminating any duplicates.

Special Register

special-register

USER

With the exception of USER, the following special registers do not conform to standard SQL. They
are specific to Db2 and belong to the Natural SQL Extended Set:

CURRENT DATE
CURRENT_DATE
CURRENT TIME
CURRENT_TIME
CURRENT TIMESTAMP
CURRENT CLIENT_ACCTNG
CLIENT ACCTNG
CURRENT CLIENT_APPLNAME
CLIENT APPLNAME
CURRENT CLIENT_USERID
CLIENT USERID
CURRENT CLIENT_WRKSTNNAME
CLIENT WRKSTNNAME
CURRENT DEGREE
CURRENT TIMEZONE
CURRENT SERVER
CURRENT_TIMEZONE
CURRENT_SERVER
SESSION_USER
CURRENT_PATH
CURRENT SCHEMA
CURRENT DECFLOAT ROUNDING MODE
CURRENT LOCK TIMEOUT
CURRENT PACKAGE PATH
CURRENT REFRESH AGE
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION ↩

A reference to a special-register returns a scalar value.

43Statements

Scalar Expressions

Scalar Function

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions.

Scalar functions are specific to Db2 and belong to the Natural SQL Extended Set.

The scalar functions Natural for Db2 supports are listed below:

COALESCE
DATE
TIME
TIMESTAMP
VALUE

Each scalar function is followed by one or more scalar expressions in parentheses. The number of
scalar expressions depends upon the scalar function.Multiple scalar expressionsmust be separated
from one another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE VALUE(NAME, CITY) = 'VIZAG'

...

Length of String Unit

length-stringunit

Specifies the unit used for the length of a string. Commonly used for SQL scalar string functions.
The supported length of string units are listed below:

OCTETS
CODEUNITS16
CODEUNITS32

where OCTETS specifies that the length is expressed in bytes, CODEUNITS16 specifies that the length
is expressed in 16-bit UTF-16 code units, and CODEUNITS32 specifies that the length is expressed
in 32-bit UTF-32 code units.

Statements44

Scalar Expressions

Labeled Duration

labeled-duration

scalar-expression

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

A labeled-duration denotes a specific unit of time as expressed by a number which can be an
expression followed by one of the duration keywords.

labeled-duration does not conform to standard SQL, and is therefore supported by the Natural
SQL Extended Set only.

45Statements

Scalar Expressions

46

8 Search Conditions

■ Search Condition ... 48
■ Predicate ... 48

47

predicate
[NOT]

(search-condition)

search-condition
AND

search-condition
OR

Search Condition

A search-condition can consist of a simple predicate or multiple search-conditions. Multiple
search-conditions are combined with the Boolean operators AND, OR and NOT, and can contain
parentheses if required to indicate a desired order of evaluation.

Example

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
...
SELECT *

INTO NAME, AGE
FROM SQL-PERSONNEL
WHERE AGE = 32 AND NAME > 'K'

END-SELECT
...

Predicate

scalar-expression
scalar-expression
comparison subquery

scalar-expression [NOT] BETWEEN scalar-expression AND scalar-expression

column-reference [NOT] LIKE atom

column-reference IS [NOT] NULL

subquery
scalar-expression
[NOT] IN (atom,)

subquery
scalar-expression
comparison

ALL
ANY
SOME

EXISTS subquery

Statements48

Search Conditions

XMLEXISTS (xquery-expression-constant{BY REF|PASSING xquery-argument, })

A predicate specifies a condition that can be “true”, “false” or “unknown”.

In a search-condition, a predicate can consist of a simple or complex comparison operation or
other kinds of conditions.

Example:

SELECT NAME, AGE
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE AGE BETWEEN 20 AND 30

0R AGE IN (32, 34, 36)
AND NAME LIKE '%er'
...

Note: The percent sign (%) may conflict with Natural terminal commands. If so, you must
define a terminal command control character different from %; see Changing the Terminal
Command Control Character in the Terminal Commands documentation.

The individual predicates are explained in the following topics (for further information on predic-
ates, please refer to the relevant literature). According to the syntax above, they are called as follows:

■ Comparison Predicate
■ BETWEEN Predicate
■ LIKE Predicate
■ NULL Predicate
■ IN Predicate
■ Quantified Predicate
■ EXISTS Predicate
■ XMLEXISTS Predicate

Comparison Predicate

{scalar-expression comparison scalar-expression}

A comparison predicate compares two values or a set of values with another set of values.

In the syntax diagram above, comparison can be one of the following operators:

49Statements

Search Conditions

equal to=

less than<

greater than>

less than or equal to<=

greater than or equal to>=

not equal to<>

See information on scalar-expression.

Subquery

(select-expression)

A subquery is a select-expression that is nested inside another such expression.

Example:

DEFINE DATA LOCAL
1 #NAME (A20)
1 #PERSNR (I4)
END-DEFINE
...
SELECT NAME, PERSNR

INTO #NAME, #PERSNR
FROM SQL-PERSONNEL
WHERE PERSNR IN

(SELECT PERSNR
FROM SQL-AUTOMOBILES
WHERE COLOR = 'black')
...

END-SELECT

For further information, see Select Expressions.

BETWEEN Predicate

scalar-expression [NOT] BETWEEN scalar-expression AND scalar-expression

A BETWEEN predicate compares a value with a range of values.

See information on scalar-expression.

Statements50

Search Conditions

LIKE Predicate

column-reference [NOT] LIKE atom

A LIKE predicate searches for strings that have a certain pattern.

See information on column-reference and atom.

NULL Predicate

IS [NOT] NULL

column-reference ISNULL

NOTNULL

A NULL predicate tests for null values.

See information on column-reference.

IN Predicate

subquery
scalar-expression [NOT] IN

(atom)

An IN predicate compares a value or a set of values with a collection of values.

See information on scalar-expression and atom.

See information on subquery.

Quantified Predicate

subquery

ALL

scalar-expression comparison ANY

SOME

A quantified predicate compares a value or a set of values with a collection of values.

See information on scalar-expression, comparison and subquery.

51Statements

Search Conditions

EXISTS Predicate

EXISTS subquery

An EXISTS predicate tests for the existence of certain rows.

The EXISTS predicate evaluates to true only if the result of evaluating the subquery is not empty;
that is, if there exists at least one record (row) in the FROM table of the subquery satisfying the search
condition of the WHERE clause of this subquery.

Example of EXISTS:

DEFINE DATA LOCAL
1 #NAME (A20)
END-DEFINE
...
SELECT NAME

INTO #NAME
FROM SQL-PERSONNEL
WHERE EXISTS

(SELECT *
FROM SQL-EMPLOYEES
WHERE PERSNR > 1000

AND NAME < 'L')
...

END-SELECT
...

See information on subquery.

XMLEXISTS Predicate

)
BY REF

XMLEXISTS (xquery-expression-constant
PASSING xquery-argument,...

xquery-argument

xquery-context-item-expression

xquery-context-item-expression AS identifier

The XMLEXISTS predicate belongs to the Natural SQL Extended Set.

The XMLEXISTS predicate tests whether an XPATH expression returns a sequence of one or more
items. For further information, see the IBM Db2 XML Guide.

Statements52

Search Conditions

9 Select Expressions

■ Selection ... 54
■ Table Expression ... 55

53

SELECT selection table-expression

A select-expression specifies a result table. It is used in the following Natural SQL statements:
INSERT | SELECT | UPDATE

Selection

scalar-expression [[AS] correlation-name],ALL
*DISTINCT

A selection specifies the columns of the result set tables to be selected.

Syntax Element Description:

DescriptionSyntax Element

Elimination of Duplicate Rows:ALL|DISTINCT

Duplicate rows are not automatically eliminated from the result of a
select-expression. To request this, specify the keyword DISTINCT.

The alternative to DISTINCT is ALL. ALL is assumed if neither is specified.

Scalar Expression:scalar-expression

Instead of, or as well as, simple column names, a selection can also include general
scalar expressions containing scalar operators and scalar functions which provide
computed values (see also the section Scalar Expressions).

Example:

SELECT NAME, 65 - AGE
FROM SQL-PERSONNEL
...

The optional keyword AS introduces a correlation-name for a column.AS

Correlation Name:

A correlation-name can be assigned to a scalar-expression as an alias name
for a result column.

correlation-name

The correlation-name need not be unique. If no correlation-name is specified
for a result column, the corresponding column-namewill be used (if the result
column is derived from a column name; if not, the result table will have no name).
The name of a result column may be used, for example, as column name in the
ORDER BY clause of a SELECT statement.

Asterisk Notation:*

Statements54

Select Expressions

DescriptionSyntax Element

All columns of the result table are selected.

Example:

SELECT *
FROM SQL-PERSONNEL, SQL-AUTOMOBILES
...

Table Expression

from-clause [where-clause]

[group-by-clause] [having-clause]

[order-by-clause] [fetch-first-clause]

The table-expression specifies fromwhere and according towhat criteria rows are to be selected.

The following topics are covered below:

■ FROM Clause
■ Table Reference
■ WHERE Clause
■ GROUP BY Clause
■ HAVING Clause
■ ORDER BY Clause
■ FETCH FIRST Clause
■ Examples of Table Expressions

FROM Clause

FROM table-reference,…

This clause specifies from which tables the result set is built.

55Statements

Select Expressions

Table Reference

table-name [[AS] correlation-name]
subquery [AS] correlation-name
joined-table

The tables specified in the FROM clause must contain the column fields used in the selection list.

You can either specify a single table or produce an intermediate table resulting from a subquery
or a “join” operation (see below).

Since various tables (that is, DDMs) can be addressed in one FROM clause and since a
table-expression can contain several FROM clauses if subqueries are specified, the database ID
(DBID) of the first DDM specified in the first FROM clause of the whole expression is used to
identify the underlying database involved.

Optionally, a correlation-clause can be assigned to a table-name. For a subquery, a
correlation-clausemust be assigned.

Joined Table

JOIN table-reference ON join-conditiontable-reference

INNER
LEFT [OUTER]
RIGHT [OUTER]
FULL [OUTER]

(joined-table)

A joined-table specifies an intermediate table resulting from a “join” operation.

The “join” can be an INNER, LEFT OUTER, RIGHT OUTER or FULL OUTER JOIN. If you do not specify
anything, INNER applies.

Multiple “join” operations can be nested; that is, the tables which create the intermediate result
table can themselves be intermediate result tables of a “join” operation or a subquery; and the
latter, in turn, can also have a joined-table or another subquery in its FROM clause.

Statements56

Select Expressions

Join Condition

For INNER, LEFT OUTER, and RIGHT OUTER joins:

search-condition

For FULL OUTER joins:

full-join-expression = full-join-expression [AND]

Full Join Expression

column-name

(column-name ,)VALUE
COALESCE

Within a join-expression only column-names and the scalar-function VALUE (or its synonym
COALESCE) are allowed.

See details on column-name.

WHERE Clause

[WHERE search-condition]

The WHERE clause is used to specify the selection criteria (search-condition) for the rows to be
selected.

Example:

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
...
SELECT *

INTO NAME, AGE
FROM SQL-PERSONNEL
WHERE AGE = 32

END-SELECT
...

For further information, see Search Conditions.

57Statements

Select Expressions

GROUP BY Clause

[GROUP BY column-reference,]

The GROUP BY clause rearranges the table represented by the FROM clause into groups in a way that
all rows within each group have the same value for the GROUP BY columns.

Each column-reference in the selection list must be either a GROUP BY column or specified within
an aggregate-function. Aggregate functions are applied to the individual groups (not to the entire
table). The result table contains as many rows as groups.

For further information, see Column Reference and Aggregate Function.

Example:

DEFINE DATA LOCAL
1 #AGE (I2)
1 #NUMBER (I2)
END-DEFINE
...
SELECT AGE , COUNT(*)

INTO #AGE, #NUMBER
FROM SQL-PERSONNEL
GROUP BY AGE
...

If the GROUP BY clause is preceded by a WHERE clause, all rows that do not satisfy the WHERE clause
are excluded before any grouping is done.

HAVING Clause

[HAVING search-condition]

If the HAVING clause is specified, the GROUP BY clause should also be specified.

Just as the WHERE clause is used to exclude rows from a result table, the HAVING clause is used to
exclude groups and therefore also based on a search-condition. Scalar expressions in a HAVING
clause must be single-valued per group.

For further information, see Scalar Expressions and Search Conditions.

Example:

Statements58

Select Expressions

DEFINE DATA LOCAL
1 #NAME (A20)
1 #AVGAGE (I2)
1 #NUMBER (I2)
END-DEFINE
...
SELECT NAME, AVG(AGE), COUNT(*)

INTO #NAME, #AVGAGE, #NUMBER
FROM SQL-PERSONNEL
GROUP BY NAME
HAVING COUNT(*) > 1
...

ORDER BY Clause

,sort-key

ORDER BY

ASC
DESC

INPUT SEQUENCE

ORDER OF table-designator

sort-key

column-name

integer

sort-key-expression

FETCH FIRST Clause

ONLY
ROWS
ROW

1
integer

FETCH FIRST

Examples of Table Expressions

Example 1:

DEFINE DATA LOCAL
01 #NAME (A20)
01 #FIRSTNAME (A15)
01 #AGE (I2)
...
END-DEFINE
...
SELECT NAME, FIRSTNAME, AGE

INTO #NAME, #FIRSTNAME, #AGE

59Statements

Select Expressions

FROM SQL-PERSONNEL
WHERE NAME IS NOT NULL
AND AGE > 20

...
DISPLAY #NAME #FIRSTNAME #AGE

END-SELECT
...
END

Example 2:

DEFINE DATA LOCAL
01 #COUNT (I4)
...
END-DEFINE
...
SELECT SINGLE COUNT(*) INTO #COUNT FROM SQL-PERSONNEL
...

Statements60

Select Expressions

10 Flexible SQL

■ Using Flexible SQL .. 62
■ Specifying Text Variables in Flexible SQL ... 63
■ ROW CHANGE Expression with Flexible SQL ... 65
■ OLAP Specification .. 65
■ Case Expression with Flexible SQL ... 70
■ Cast Expression with Flexible SQL ... 71
■ XML Functions with Flexible SQL ... 71
■ Scalar-Function and Column-Function (Aggregating) with Flexible SQL .. 72

61

The so-called “Flexible SQL”, which is a further possibility of issuing SQL statements, enables you
to use arbitrary SQL syntax.

Using Flexible SQL

In addition to the SQL syntax described in the previous sections, flexible SQL enables you to use
arbitrary SQL syntax.

Characters << and >>

Flexible SQL is enclosed in << and >> characters. It can include arbitrary SQL text and host variables.
Within flexible SQL, host variables must be prefixed by a colon (:).

The flexible SQL string can cover several statement lines. Comments are possible, too (see also the
statement PROCESS SQL).

Flexible SQL can be used as a replacement for any of the following syntactical SQL items:

■ atom

■ column-reference

■ scalar-expression

■ predicate

Flexible SQL can also be used between the clauses of a select expression:

SELECT selection
<< ... >>
INTO ...
FROM ...
<< ... >>
WHERE ...
<< ... >>
GROUP BY ...
<< ... >>
HAVING ...
<< ... >>
ORDER BY ...
<< ... >>

Note: The SQL text used in flexible SQL is not recognized by the Natural compiler. The
SQL text (with replaced host variables) is simply copied into the SQL string passed to the
database system. Syntax errors in flexible SQL are detected at runtime when the database
executes the corresponding statement.

Statements62

Flexible SQL

Example 1

SELECT NAME
FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) >> = << MONTH (CURRENT_DATE) >>

Example 2:

SELECT NAME
FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) = MONTH (CURRENT_DATE) >>

Example 3:

SELECT NAME
FROM SQL-EMPLOYEES
WHERE SALARY > 50000
<< INTERSECT

SELECT NAME
FROM SQL-EMPLOYEES
WHERE DEPT = 'DEPT10'

>>

Specifying Text Variables in Flexible SQL

Within flexible SQL, you can also specify so-called “text variables”.

<<:T:host-variable [LINDICATOR:host-variable]>>

The syntax items are described below:

A text variable is a host-variable prefixed by :T:. It must be in alphanumeric format.:T:

At runtime, a text variable within an SQL statement will be replaced by its contents that is,
the text string contained in the text variable will be inserted into the SQL string.

After the replacement, trailing blanks will be removed from the inserted text string.

You have to make sure yourself that the content of a text variable results in a syntactically
correct SQL string. In particular, the content of a text variable must not contain
host-variables.

A statement containing a text variable will always be executed in dynamic SQL mode.

LINDICATOR Option:LINDICATOR

63Statements

Flexible SQL

The text variable can be followed by the keyword LINDICATOR and a length indicator variable
(that is, a host-variable prefixed by colon).

The length indicator variable has to be of format/length I2.

If no LINDICATOR variable is specified, the entire content of the text variable will be inserted
into the SQL string.

If you specify a LINDICATOR variable, only the first n characters (n being the value of the
LINDICATOR variable) of the text variable content will be inserted into the SQL string. If the
number in the LINDICATOR variable is greater than the length of the text variable content,
the entire text variable content will be inserted. If the number in the LINDICATOR variable is
negative or 0, nothing will be inserted.

See general information on host-variable.

Example Using Text Variable

DEFINE DATA LOCAL
01 TEXTVAR (A200)
01 TABLES VIEW OF SYSIBM-SYSTABLES

02 NAME
02 CREATOR

END-DEFINE
*
MOVE 'WHERE NAME > ''SYS'' AND CREATOR = ''SYSIBM''' TO TEXTVAR
*
SELECT * INTO VIEW TABLES

FROM SYSIBM-SYSTABLES
<< :T:TEXTVAR >>
DISPLAY TABLES

END-SELECT
*
END

The generated SQL statement will look as follows:

SELECT NAME, CREATOR FROM SYSIBM.SYSTABLES:T: FOR FETCH ONLY

The executed SQL statement will look as follows:

SELECT TABNAME, CREATOR FROM SYSIBM.SYSTABLES
WHERE TABNAME > 'SYS' AND CREATOR = 'SYSIBM'

Statements64

Flexible SQL

ROW CHANGE Expression with Flexible SQL

<<ROW CHANGE TOKEN FOR table-designator>>

A ROW CHANGE expression returns a token that represents the last change to a row.

Specifies a token of type BIGINT that represents a relative point in the
modification sequence of a row.

TOKEN

Identifies the table in which the expression is referenced. table-designator
has to be a valid Natural SQL DDM.

FOR table-designator

Example Using Row Change Expression with Flexible SQL:

DEFINE DATA LOCAL
01 TEXTVAR (A200)
01 TABLES VIEW OF SYSIBM-SYSTABLES

02 NAME
02 CREATOR

END-DEFINE
*
SELECT << ROW CHANGE TOKEN FOR SYSTABLES >>
INTO TEXTVAR
FROM SYSIBM-SYSTABLES
DISPLAY TEXTVAR

END-SELECT
*

END

OLAP Specification

ordered-OLAP-specification
numbering-specification
aggregation-specification

65Statements

Flexible SQL

ordered-OLAP-specification

OVER
([window-partition-clause]
window-order-clause)

CUME_DIST ()

PERCENT_RANK ()

RANK ()

DENSE_RANK ()

NTILE (num-tile)

lag-function

lead-function

lag-function

]]])
'RESPECT NULLS'

LAG (expression [, offset [, default [,
'IGNORE NULLS'

lead-function

]]])
'RESPECT NULLS'

LEAD (expression [, offset [, default [,
'IGNORE NULLS'

numbering-specification

ROW_NUMBER () OVER ([window-partition-clause] [window-order-clause])

aggregation-specification

OVER ([window-partition-clause])
aggregate-function

OLAP-column-function

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

window-order-clause

RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED
FOLLOWING
window-aggregation-group-clause

Statements66

Flexible SQL

aggregate-function

AVG function

CORRELATION function

COUNT function

COUNT_BIG function

COVARIANCE function

MAX function

MIN function

STDDEV function

SUM function

VARIANCE function

OLAP-column-function

first-value-function

last-value-function

nth-value-function

ratio-to-report-function

first-value-function

])
'RESPECT NULLS'

FIRST_VALUE (expression [,
'IGNORE NULLS'

last-value-function

])
'RESPECT NULLS'

LAST_VALUE (expression [,
'IGNORE NULLS'

nth-value-function

, nth-row)NTH_VALUE (expression

67Statements

Flexible SQL

ratio-to-report-function

RATIO_TO_REPORT (expression)

window-aggregation-group-clause

group-start
ROWS

group-between
RANGE

group-end

group-start

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
CURRENT ROW

group-between

BETWEEN group-bound-1 AND group-bound-2

group-bound-1

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-bound-2

UNBOUNDED FOLLOWING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-end

UNBOUNDED FOLLOWING
unsigned-constant FOLLOWING

Statements68

Flexible SQL

window-partition-clause

PARTITION BY partitioning-expression,...

window-order-clause

},...

ASC

ORDER BY
{sort-key-expression

NULLS LAST

ASC NULLS FIRST

DESC

DESC NULLS FIRST

DESC NULLS LAST

Specifies that the rank of a row is defined as 1 plus the number of rows that strictly precede
the row.

RANK

Specifies that the rank of a row is defined as 1 plus the number of preceding rows that are
distinct with respect to the ordering.

DENSE_RANK

Specifies that a sequential row number is computed for the row that is defined by the
ordering, starting with 1 for the first row.

ROW_NUMBER

Defines the partition within which the OLAP operation is applied.PARTITION BY

Defines the ordering of rows within a partition that is used to determine the value of the
OLAP specification.

ORDER BY

Specifies that the values of sort-key-expression are used in ascending order.ASC

Specifies that the values of sort-key-expression are used in descending order.DESC

Specifies that the window ordering considers null values before all non-null values in the
sort order.

NULLS_FIRST

Specifies that the window ordering considers null values after all non-null values in the
sort order.

NULLS LAST

Example:

Display the ranking of employees that have a total salary of more than $30,000, in order by last
name.

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
<<RANK() OVER(ORDER BY SALARY+BONUS DESC) AS RANK_SALARY>>
FROM DSN8910-EMP WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME;

69Statements

Flexible SQL

Case Expression with Flexible SQL

case-expression

END >>ELSE<< CASE NULL
searched-when-clause

scalar-expression
simple-when-clause

A case-expression does not conform to standard SQL and is therefore supported by the Natural
SQL Extended Set only.

Searched WHEN Clause

WHEN search-condition THEN
NULL
scalar-expression

A Searched When Clause does not conform to standard SQL and is therefore supported by the
Natural SQL Extended Set only.

See details on search-condition.

Simple WHEN Clause

WHEN scalar-expression THENscalar-expression
NULL
scalar-expression

A Simple WHEN Clause does not conform to standard SQL and is therefore supported by the Nat-
ural SQL Extended Set only.

Example:

DEFINE DATA LOCAL
1 VWA VIEW OF NAT-D0001
2 ID
2 NAME
2 CITY
01 #RES1 (A8)
01 #CASE (I4) INIT<0>
END-DEFINE
SELECT CITY,
<<
CASE SUBSTR(CITY,1,1)
WHEN 'V' THEN 'Administration'
WHEN 'D' THEN 'Accounting'

Statements70

Flexible SQL

WHEN 'K' THEN 'Operations'
END
>>
INTO VWA.CITY , #RES1
FROM NAT-D0001
WRITE VWA.CITY #RES1
END-SELECT
END

Cast Expression with Flexible SQL

cast-expression

<<CAST (scalar-expression AS data-type) >>

A CAST expression does not conform to standard SQL and is therefore supported by the Natural
SQL Extended Set only.

Example:

DEFINE DATA LOCAL
1 VWA VIEW OF NAT-D001
2 ID
2 NAME
2 CITY
01 #RES1 (I4)
END-DEFINE
SELECT
<< CAST (ID AS INTEGER)
>>
INTO #RES1
FROM NAT-D001 WHERE ID = 1
WRITE #RES1
END-SELECT
END

XML Functions with Flexible SQL

XML-Functions

Any available XML functions must be treated with flexible SQL if those functions have their own
specific keyword or syntax, if you are using the AS keyword and order by statement or any specific
statement recognized by SQL. You must place the symbol of the flexible SQL within that stated

71Statements

Flexible SQL

portion. Additionally, between the left parathesis and the left arrow symbol of flexible SQL, you
must leave a space or you receive a compiler error.

Example:

DEFINE DATA LOCAL
1 D033412A VIEW OF NATQA-D033412A
2 NAME
2 YEARS_OF_SERVICE
2 ANNUAL_LEAVE
2 TIME_IN
2 BACKGROUND
END-DEFINE
SELECT XMLSERIALIZE(<<CONTENT XMLELEMENT>>(<<NAME "Annual Leave">>,XMLATTRIBUTES(↩
<<ANNUAL_LEAVE AS "al">>),XMLAGG(XMLELEMENT(<<NAME "name">>,NAME)<<ORDER BY NAME>>) ↩
)<<AS CLOB(110)>>) INTO #XMLSERIALIZE
FROM NATQA-D033412A
GROUP BY ANNUAL_LEAVE
END-SELECT
END

Scalar-Function and Column-Function (Aggregating) with Flexible SQL

Scalar-functions and column-functions are only supported with their proper syntax, as stated
in the section Scalar Expression. After the function name, within the left and right parentheses
between the scalar expressions, there must be a comma. Therefore, not putting a comma between
one scalar expression and another is restricted.

Any additional usage of keywords or any SQL statements within the parentheses, which is not
recognized as a scalar expression with or without a comma, must be included with the flexible
SQL to make it work.

Additionally, between the left parathesis and the left arrow symbol of flexible SQL youmust leave
a space or you receive a compiler error.

Example:

DEFINE DATA LOCAL
01 V1 VIEW OF DSN8910-EMP
02 EMPNO
02 FIRSTNME
02 LASTNAME
02 SALARY
02 BONUS
01 M1 (I4)
END-DEFINE
M1 := 10000

Statements72

Flexible SQL

SELECT * INTO VIEW V1
FROM DSN8910-EMP
WHERE SALARY > GREATEST(CAST(<<:M1 AS INTEGER>>))
DISPLAY V1
END-SELECT
ENDEND

73Statements

Flexible SQL

74

III Referenced Example Programs

75

76

11 Referenced Example Programs

■ ASSIGN .. 78
■ AT BREAK ... 79
■ AT END OF DATA ... 81
■ AT END OF PAGE ... 82
■ AT START OF DATA .. 82
■ AT TOP OF PAGE ... 84
■ DEFINE SUBROUTINE .. 85
■ FIND ... 86
■ FOR ... 88
■ HISTOGRAM ... 89
■ IF ... 89
■ PERFORM BREAK PROCESSING ... 91
■ READ ... 92
■ REPEAT .. 93
■ SORT ... 94
■ STORE ... 95
■ UPDATE .. 97
■ Example Programs for System Variables .. 98

77

This chapter contains additional example programs that are referenced in the Natural statements
and system variables reference documentation. All these examples are contained in the library
SYSEXSYN.

Note: Generally, the example programs shown in the statement descriptions are written in
structured mode. For statements where the reporting-mode syntax differs considerably
from the structured-mode syntax, references to equivalent reporting-mode examples are
also provided. The example programs are available in source-code form in theNatural library
SYSEXSYN. Further example programs of using Natural statements are documented in the
sectionReferenced Example Programs in the Programming Guide. These example programs are
provided in theNatural library SYSEXPG. Ask yourNatural administrator about the availab-
ility of these libraries at your site. The example programs use data from the files EMPLOYEES
and VEHICLES, which are supplied by Software AG for demonstration purposes.

ASSIGN

The following example is referenced in the ASSIGN/COMPUTE statement description:

ASGEX1R - ASSIGN (reporting mode)

** Example 'ASGEX1R': ASSIGN (reporting mode)
**
RESET #A (N3)

#B (A6)
#C (N0.3)
#D (N0.5)
#E (N1.3)
#F (N5)
#G (A25)
#H (A3/1:3)

*
#A = 5 WRITE NOTITLE '=' #A
#B = 'ABC' WRITE '=' #B
#C = .45 WRITE '=' #C
#D = #E = -0.12345 WRITE '=' #D / '=' #E
ASSIGN ROUNDED #F = 199.999 WRITE '=' #F
#G = 'HELLO' WRITE '=' #G
*
#H (1) = 'UVW'
#H (3) = 'XYZ' WRITE '=' #H (1:3)
*
END

Output of Program AEDEX1R:

Statements78

Referenced Example Programs

#A: 5
#B: ABC
#C: .450
#D: -.12345
#E: -0.123
#F: 200
#G: HELLO
#H: UVW XYZ

AT BREAK

The following examples are referenced in the AT BREAK statement description:

ATBEX1R - AT BREAK (reporting mode)

** Example 'ATBEX1R': AT BREAK (reporting mode)
**
*
LIMIT 10
READ EMPLOYEES BY CITY

AT BREAK OF CITY DO
SKIP 1

DOEND
/*
DISPLAY NOTITLE CITY (IS=ON) COUNTRY (IS=ON) NAME

LOOP
END

Output of Program ATBEX1R:

CITY COUNTRY NAME
-------------------- ------- --------------------

AIKEN USA SENKO

AIX EN OTHE F GODEFROY

AJACCIO CANALE

ALBERTSLUND DK PLOUG

ALBUQUERQUE USA HAMMOND
ROLLING
FREEMAN
LINCOLN

ALFRETON UK GOLDBERG

79Statements

Referenced Example Programs

ALICANTE E GOMEZ

ATBEX5R - AT BREAK statement with multiple break levels (reporting mode)

** Example 'ATBEX5R': AT BREAK (multiple break levels) (reporting mode)
**
RESET LEAVE-DUE-L (N4)
*
LIMIT 5
FIND EMPLOYEES WITH CITY = 'PHILADELPHIA' OR = 'PITTSBURGH'

SORTED BY CITY DEPT
MOVE LEAVE-DUE TO LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME LEAVE-DUE-L
AT BREAK OF DEPT

WRITE NOTITLE /
T*DEPT OLD(DEPT) T*LEAVE-DUE-L SUM(LEAVE-DUE-L) /

AT BREAK OF CITY
WRITE NOTITLE

T*CITY OLD(CITY) T*LEAVE-DUE-L SUM(LEAVE-DUE-L) //
LOOP
*
END

Output of Program ATBEX5R:

CITY DEPARTMENT NAME LEAVE-DUE-L
CODE

-------------------- ---------- -------------------- -----------

PHILADELPHIA MGMT30 WOLF-TERROINE 11
MACKARNESS 27

MGMT30 38

TECH10 BUSH 39
NETTLEFOLDS 24

TECH10 63

PHILADELPHIA 101

PITTSBURGH MGMT10 FLETCHER 34

MGMT10 34

PITTSBURGH 34

Statements80

Referenced Example Programs

AT END OF DATA

The following example is referenced in the AT END OF DATA statement description:

AEDEX1R - AT END OF DATA (reporting mode)

** Example 'AEDEX1R': AT END OF DATA (reporting mode)
**
LIMIT 5
EMP. FIND EMPLOYEES WITH CITY = 'STUTTGART'

IF NO RECORDS FOUND
ENTER

DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)

/*
AT END OF DATA DO

IF *COUNTER (EMP.) = 0 DO
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM

DOEND
WRITE NOTITLE / 'SALARY STATISTICS:'

/ 7X 'MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X 'MINIMUM:' MIN(SALARY(1)) CURR-CODE (1)
/ 7X 'AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)

DOEND
LOOP
END

Output of Program AEDEX1R:

PERSONNEL NAME FIRST-NAME ANNUAL CURRENCY
ID SALARY CODE

--------- -------------------- -------------------- ---------- --------

11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:
MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

81Statements

Referenced Example Programs

AT END OF PAGE

The following example is referenced in the AT END OF PAGE statement description:

AEPEX1R - AT END OF PAGE (reporting mode)

** Example 'AEPEX1R': AT END OF PAGE (reporting mode)
**
FORMAT PS=10
LIMIT 10
READ EMPLOYEES BY PERSONNEL-ID FROM '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)

/*
AT END OF PAGE DO

WRITE / 28T 'AVERAGE SALARY: ...' AVER(SALARY(1)) CURR-CODE (1)
DOEND
/*

LOOP
END

Output of Program AEPEX1R:

NAME CURRENT SALARY CURRENCY
POSITION CODE

-------------------- ------------------------- ---------- --------

CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

AVERAGE SALARY: ... 33533 USD

AT START OF DATA

The following example is referenced in the AT START OF DATA statement description:

Statements82

Referenced Example Programs

ASDEX1R - AT START OF DATA (reporting mode)

** Example 'ASDEX1R': AT START OF DATA (reporting mode)

RESET #CITY (A20) #CNTL (A1)
*
REPEAT

INPUT 'ENTER VALUE FOR CITY' #CITY
/*
IF #CITY = ' ' OR= 'END' DO

STOP
DOEND
FIND EMPLOYEES WITH CITY = #CITY

IF NO RECORDS FOUND DO
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE

DOEND
/*
AT START OF DATA DO
INPUT (AD=O) 'RECORDS FOUND' *NUMBER //

'ENTER ''D'' TO DISPLAY RECORDS' #CNTL (AD=A)
IF #CNTL NE 'D' DO

ESCAPE BOTTOM
DOEND

DOEND
/*
DISPLAY NAME FIRST-NAME

LOOP
LOOP
END

Output of Program ASDEX1R:

ENTER VALUE FOR CITY PARIS

After entering and confirming city name:

RECORDS FOUND 26

ENTER 'D' TO DISPLAY RECORDS D

After entering and confirming D:

83Statements

Referenced Example Programs

NAME FIRST-NAME
-------------------- --------------------

MAIZIERE ELISABETH
MARX JEAN-MARIE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS
CENSIER BERNARD
DUC JEAN-PAUL
CAHN RAYMOND
MAZUY ROBERT
FAURIE HENRI
VALLY ALAIN
BRETON JEAN-MARIE
GIGLEUX JACQUES
KORAB-BRZOZOWSKI BOGDAN
XOLIN CHRISTIAN
LEGRIS ROGER
VVVV

AT TOP OF PAGE

The following example is referenced in the AT TOP OF PAGE statement description:

ATPEX1R - AT TOP OF PAGE (reporting mode)

** Example 'ATPEX1R': AT TOP OF PAGE (reporting mode)
**
*
FORMAT PS=15
LIMIT 15
*
READ EMPLOYEES BY NAME STARTING FROM 'L'

DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER '-' (78)
/*
AT TOP OF PAGE DO

WRITE 'BEGINNING NAME:' NAME
DOEND
/*
AT END OF PAGE DO

SKIP 1
WRITE 'ENDING NAME: ' NAME

Statements84

Referenced Example Programs

DOEND
LOOP
END

DEFINE SUBROUTINE

The following example is referenced in the DEFINE SUBROUTINE statement description:

DSREX1R - DEFINE SUBROUTINE (reporting mode)

** Example 'DSREX1R': DEFINE SUBROUTINE (reporting mode)
**
RESET #ARRAY-ALL (A300)

#X (N2) #Y (N2)
REDEFINE #ARRAY-ALL (#ARRAY (A75/1:4))

#ARRAY-ALL (#ALINE (A25/1:4,1:3))
*
FORMAT PS=20
LIMIT 5
*
MOVE 1 TO #X #Y
*
FIND EMPLOYEES WITH NAME = 'SMITH'

OBTAIN ADDRESS-LINE (1:2)
/*
MOVE NAME TO #ALINE (#X,#Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #ALINE (#X+3,#Y)
IF #Y = 3 DO

MOVE 1 TO #Y
PERFORM PRINT

DOEND
ELSE DO

ADD 1 TO #Y
DOEND
AT END OF DATA DO

PERFORM PRINT
DOEND

LOOP
*
DEFINE SUBROUTINE PRINT

WRITE NOTITLE (AD=OI) #ARRAY(*)
RESET #ARRAY(*)
SKIP 1

RETURN
*
END

85Statements

Referenced Example Programs

Output of Program AEDEX1R:

SMITH SMITH SMITH
ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.

MILWAUKEE MONTERREY
554349 877-4563 994-2260

SMITH SMITH
5 HAWTHORN 13002 NEW ARDEN COUR
OAK BROOK SILVER SPRING
150-9351 639-8963

FIND

The following examples are referenced in the FIND statement description:

FNDFIR - FIND statement with FIRST option (reporting mode)

** Example 'FNDFIR': FIND FIRST
**
*
FIND FIRST EMPLOYEES WITH CITY = 'DERBY'
*
WRITE NOTITLE 'TOTAL RECORDS SELECTED:' *NUMBER
SKIP 2
WRITE '***FIRST PERSON SELECTED***' //

'NAME: ' NAME /
'DEPARTMENT:' DEPT /
'JOB TITLE: ' JOB-TITLE

*
END

Output of Program FNDFIR:

TOTAL RECORDS SELECTED: 141

FIRST PERSON SELECTED

NAME: DEAKIN
DEPARTMENT: SALE01
JOB TITLE: SALES ACCOUNTANT

Statements86

Referenced Example Programs

FNDNUM - FIND statement with NUMBER option (reporting mode)

** Example 'FNDNUM': FIND NUMBER
**
RESET #BIRTH (D)
*
MOVE EDITED '19500101' TO #BIRTH (EM=YYYYMMDD)
*
FIND NUMBER EMPLOYEES WITH CITY = 'MADRID'

WHERE BIRTH LT #BIRTH
*
WRITE NOTITLE 'TOTAL RECORDS SELECTED: ' *NUMBER

/ 'TOTAL BORN BEFORE 1 JAN 1950: ' *COUNTER
*
END

Output of Program FNDNUM:

TOTAL RECORDS SELECTED: 41
TOTAL BORN BEFORE 1 JAN 1950: 16

FNDUNQ - FIND statement with UNIQUE option (reporting mode)

** Example 'FNDUNQ': FIND UNIQUE
**
RESET #NAME (A20)
*
*
INPUT 'ENTER EMPLOYEE NAME: ' #NAME
IF #NAME = ' '

STOP
*
FIND UNIQUE EMPLOYEES WITH NAME = #NAME
*
DISPLAY NOTITLE NAME FIRST-NAME JOB-TITLE
*
ON ERROR DO

WRITE 'NAME EITHER NOT UNIQUE OR DOES NOT EXIST'
FETCH 'FNDUNQ'

DOEND
*
END

Output of Program FNDUNQ:

87Statements

Referenced Example Programs

ENTER EMPLOYEE NAME: HEURTEBISE

After entering and confirming name HEURTEBISE:

NAME FIRST-NAME CURRENT
POSITION

-------------------- -------------------- -------------------------

HEURTEBISE MICHEL CONTROLEUR DE GESTION

FOR

The following example is referenced in the FOR statement description:

FOREX1R - FOR (reporting mode)

** Example 'FOREX1R': FOR (reporting mode)
**
RESET #INDEX (I1)

#ROOT (N2.7)
*
FOR #INDEX 1 TO 5

COMPUTE #ROOT = SQRT (#INDEX)
WRITE NOTITLE '=' #INDEX 3X '=' #ROOT

LOOP
*
SKIP 1
FOR #INDEX 1 TO 5 STEP 2

COMPUTE #ROOT = SQRT (#INDEX)
WRITE '=' #INDEX 3X '=' #ROOT

LOOP
*
END

Output of Program FOREX1R:

#INDEX: 1 #ROOT: 1.0000000
#INDEX: 2 #ROOT: 1.4142135
#INDEX: 3 #ROOT: 1.7320508
#INDEX: 4 #ROOT: 2.0000000
#INDEX: 5 #ROOT: 2.2360679

#INDEX: 1 #ROOT: 1.0000000
#INDEX: 3 #ROOT: 1.7320508
#INDEX: 5 #ROOT: 2.2360679

Statements88

Referenced Example Programs

HISTOGRAM

The following example is referenced in the HISTOGRAM statement description:

HSTEX1R - HISTOGRAM (reporting mode)

** Example 'HSTEX1R': HISTOGRAM (reporting mode)
**
*
LIMIT 8
HISTOGRAM EMPLOYEES CITY STARTING FROM 'M'
DISPLAY NOTITLE CITY

'NUMBER OF/PERSONS' *NUMBER *COUNTER
LOOP
*
END

Output of Program HSTEX1R:

CITY NUMBER OF CNT
PERSONS

-------------------- ----------- -----------

MADISON 3 1
MADRID 41 2
MAILLY LE CAMP 1 3
MAMERS 1 4
MANSFIELD 4 5
MARSEILLE 2 6
MATLOCK 1 7
MELBOURNE 2 8

IF

The following example is referenced in the IF statement description:

89Statements

Referenced Example Programs

IFEX1R - IF (reporting mode)

** Example 'IFEX1R': IF (reporting mode)
**
RESET #BIRTH (D)
*
MOVE EDITED '19450101' TO #BIRTH (EM=YYYYMMDD)
SUSPEND IDENTICAL SUPPRESS
LIMIT 20
*
FND. FIND EMPLOYEES WITH CITY = 'FRANKFURT'

SORTED BY NAME BIRTH
IF SALARY (1) LT 40000

WRITE NOTITLE '*****' NAME 30X 'SALARY LT 40000'
ELSE DO

IF BIRTH GT #BIRTH DO
FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID (FND.)

DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8)

LOOP
DOEND

DOEND
LOOP
END

Output of Program IFEX1R:

NAME DATE ANNUAL MAKE
OF SALARY

BIRTH
-------------------- ---------- ---------- --------

BAECKER 1956-01-05 74400 BMW
***** BECKER SALARY LT 40000
BLOEMER 1979-11-07 45200 FIAT
FALTER 1954-05-23 70800 FORD
***** FALTER SALARY LT 40000
***** GROTHE SALARY LT 40000
***** HEILBROCK SALARY LT 40000
***** HESCHMANN SALARY LT 40000
HUCH 1952-09-12 67200 MERCEDES
***** KICKSTEIN SALARY LT 40000
***** KLEENE SALARY LT 40000
***** KRAMER SALARY LT 40000

Statements90

Referenced Example Programs

PERFORM BREAK PROCESSING

The following example is referenced in the PERFORM BREAK PROCESSING statement description:

PBPEX1R - PERFORM BREAK PROCESSING (reporting mode)

** Example 'PBPEX1R': PERFORM BREAK PROCESSING (reporting mode)
**
RESET #LINE (N2) #INDEX (N2)
*
MOVE 1 TO #LINE
FOR #INDEX 1 TO 18

PERFORM BREAK PROCESSING
/*
AT BREAK OF #INDEX /1/ DO

WRITE NOTITLE / 'PLEASE COMPLETE LINES 1-9 ABOVE' /
MOVE 1 TO #LINE

DOEND
/*
WRITE NOTITLE '_' (64) '=' #LINE
ADD 1 TO #LINE

LOOP
END

Output of Program PBPEX1R:

__ #LINE: 1
__ #LINE: 2
__ #LINE: 3
__ #LINE: 4
__ #LINE: 5
__ #LINE: 6
__ #LINE: 7
__ #LINE: 8
__ #LINE: 9

PLEASE COMPLETE LINES 1-9 ABOVE

__ #LINE: 1
__ #LINE: 2
__ #LINE: 3
__ #LINE: 4
__ #LINE: 5
__ #LINE: 6
__ #LINE: 7
__ #LINE: 8
__ #LINE: 9

PLEASE COMPLETE LINES 1-9 ABOVE

91Statements

Referenced Example Programs

READ

The following example is referenced in the READ statement description:

REAEX1R - READ (reporting mode)

** Example 'REAEX1R': READ (reporting mode)
**
LIMIT 3
*
WRITE 'READ IN PHYSICAL SEQUENCE'
READ EMPLOYEES IN PHYSICAL SEQUENCE

DISPLAY NOTITLE PERSONNEL-ID NAME *ISN *COUNTER
LOOP
*
WRITE / 'READ IN ISN SEQUENCE'
READ EMPLOYEES BY ISN STARTING FROM 1 ENDING AT 3

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
LOOP
*
WRITE / 'READ IN NAME SEQUENCE'
READ EMPLOYEES BY NAME

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
LOOP
*
WRITE / 'READ IN NAME SEQUENCE STARTING FROM ''M'''
READ EMPLOYEES BY NAME STARTING FROM 'M'

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
LOOP
*
END

Output of Program REAEX1R:

PERSONNEL NAME ISN CNT
ID

--------- -------------------- ----------- -----------

READ IN PHYSICAL SEQUENCE
50005800 ADAM 1 1
50005600 MORENO 2 2
50005500 BLOND 3 3

READ IN ISN SEQUENCE
50005800 ADAM 1 1
50005600 MORENO 2 2
50005500 BLOND 3 3

READ IN NAME SEQUENCE

Statements92

Referenced Example Programs

60008339 ABELLAN 478 1
30000231 ACHIESON 878 2
50005800 ADAM 1 3

READ IN NAME SEQUENCE STARTING FROM 'M'
30008125 MACDONALD 923 1
20028700 MACKARNESS 765 2
40000045 MADSEN 508 3

REPEAT

The following examples are referenced in the REPEAT statement description:

RPTEX1R - REPEAT (reporting mode)

** Example 'RPTEX1R': REPEAT (reporting mode)
**
RESET #PERS-NR (A8)
*
REPEAT

INPUT 'ENTER A PERSONNEL NUMBER:' #PERS-NR
IF #PERS-NR = ' '

ESCAPE BOTTOM
FIND EMPLOYEES WITH PERSONNEL-ID = #PERS-NR

IF NO RECORD FOUND
REINPUT 'NO RECORD FOUND'

DISPLAY NOTITLE NAME
LOOP

LOOP
*
END

Output of Program RPTEX1R:

ENTER A PERSONNEL NUMBER:

RPTEX2R - REPEAT with WHILE and UNTIL option (reporting mode)

** Example 'RPTEX2R': REPEAT (with WHILE and UNTIL option)
**
RESET #X (I1) #Y (I1)
*
*
REPEAT WHILE #X <= 5

ADD 1 TO #X
WRITE NOTITLE '=' #X

LOOP
*

93Statements

Referenced Example Programs

SKIP 3
REPEAT

ADD 1 TO #Y
WRITE '=' #Y
UNTIL #Y = 6

LOOP
*
END

Output of Program RPTEX2R:

#X: 1
#X: 2
#X: 3
#X: 4
#X: 5
#X: 6

#Y: 1
#Y: 2
#Y: 3
#Y: 4
#Y: 5
#Y: 6

SORT

The following example is referenced in the SORT statement description:

SRTEX1R - SORT (reporting mode)

** Example 'SRTEX1R': SORT (reporting mode)
**
RESET #AVG (P11) #TOTAL-TOTAL (P11) #TOTAL-SALARY (P11)

#AVER-PERCENT (N3.2)
*
LIMIT 3
FIND EMPLOYEES WITH CITY = 'BOSTON'

OBTAIN SALARY(1:2)
COMPUTE #TOTAL-SALARY = SALARY (1) + SALARY (2)
ACCEPT IF #TOTAL-SALARY GT 0
/*
SORT BY PERSONNEL-ID USING #TOTAL-SALARY SALARY(*) CURR-CODE

GIVE AVER(#TOTAL-SALARY)
/*
AT START OF DATA DO

Statements94

Referenced Example Programs

WRITE NOTITLE '*' (40)
'AVG CUMULATIVE SALARY:' *AVER (#TOTAL-SALARY) /

MOVE *AVER (#TOTAL-SALARY) TO #AVG
DOEND
COMPUTE ROUNDED #AVER-PERCENT = #TOTAL-SALARY / #AVG * 100
ADD #TOTAL-SALARY TO #TOTAL-TOTAL
/*
DISPLAY NOTITLE PERSONNEL-ID SALARY (1) SALARY (2)

#TOTAL-SALARY CURR-CODE (1)
'PERCENT/OF/AVER' #AVER-PERCENT

AT END OF DATA
WRITE / '*' (40) 'TOTAL SALARIES PAID: ' #TOTAL-TOTAL

LOOP
*
END

Output of Program SRTEX1R:

PERSONNEL ANNUAL ANNUAL #TOTAL-SALARY CURRENCY PERCENT
ID SALARY SALARY CODE OF

AVER
--------- ---------- ---------- ------------- -------- -------

** AVG CUMULATIVE SALARY: 44633

20000100 31000 29400 60400 USD 135.30
20019200 18000 17100 35100 USD 78.60
20020400 20000 18400 38400 USD 86.00

** TOTAL SALARIES PAID: 133900

STORE

The following example is referenced in the STORE statement description:

STOEX1R - STORE (reporting mode)

** Example 'STOEX1R': STORE (reporting mode)
**
** CAUTION: Executing this example will modify the database records!
**
RESET #PERSONNEL-ID (A8)

#NAME (A20)
#FIRST-NAME (A15)
#BIRTH-D (D)
#MAR-STAT (A1)
#BIRTH (A8)
#CITY (A20)

95Statements

Referenced Example Programs

#COUNTRY (A3)
#CONF (A1)

*
REPEAT

INPUT 'ENTER A PERSONNEL ID AND NAME (OR ''END'' TO END)' //
'PERSONNEL-ID : ' #PERSONNEL-ID //
'NAME : ' #NAME /
'FIRST-NAME : ' #FIRST-NAME

/*
/* VALIDATE ENTERED DATA
/*
IF #PERSONNEL-ID = 'END' OR #NAME = 'END'

STOP
IF #NAME = ' '

REINPUT WITH TEXT 'ENTER A LAST-NAME' MARK 2 AND SOUND ALARM
IF #FIRST-NAME = ' '

REINPUT WITH TEXT 'ENTER A FIRST-NAME' MARK 3 AND SOUND ALARM
/*
/* ENSURE PERSON IS NOT ALREADY ON FILE
/*
FIND NUMBER EMPLOYEES WITH PERSONNEL-ID = #PERSONNEL-ID
IF *NUMBER > 0

REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS'
MARK 1 AND SOUND ALARM

MOVE 'N' TO #CONF
/*
/* GET FURTHER INFORMATION
/*
INPUT

'ADDITIONAL PERSONNEL DATA' ////
'PERSONNEL-ID :' #PERSONNEL-ID (AD=IO) /
'NAME :' #NAME (AD=IO) /
'FIRST-NAME :' #FIRST-NAME (AD=IO) ///
'MARITAL STATUS :' #MAR-STAT /
'DATE OF BIRTH (YYYYMMDD) :' #BIRTH /
'CITY :' #CITY /
'COUNTRY (3 CHARACTERS) :' #COUNTRY //
'ADD THIS RECORD (Y/N) :' #CONF (AD=M)

/*
/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
/*
IF NOT (#MAR-STAT = 'S' OR = 'M' OR = 'D' OR = 'W')

REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -
'M=MARRIED D=DIVORCED W=WIDOWED' MARK 1

IF NOT (#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
REINPUT TEXT 'ENTER CORRECT DATE' MARK 2

IF #CITY = ' '
REINPUT TEXT 'ENTER A CITY NAME' MARK 3

IF #COUNTRY = ' '
REINPUT TEXT 'ENTER A COUNTRY CODE' MARK 4

IF NOT (#CONF = 'N' OR= 'Y')
REINPUT TEXT 'ENTER Y (YES) OR N (NO)' MARK 5

Statements96

Referenced Example Programs

IF #CONF = 'N'
ESCAPE TOP

/*
/* ADD THE RECORD
/*
MOVE EDITED #BIRTH TO #BIRTH-D (EM=YYYYMMDD)
/*
STORE RECORD IN EMPLOYEES

WITH PERSONNEL-ID = #PERSONNEL-ID
NAME = #NAME
FIRST-NAME = #FIRST-NAME
MAR-STAT = #MAR-STAT
BIRTH = #BIRTH-D
CITY = #CITY
COUNTRY = #COUNTRY

END OF TRANSACTION
/*
WRITE NOTITLE 'RECORD HAS BEEN ADDED'
/*

LOOP
END

UPDATE

The following example is referenced in the UPDATE statement description:

UPDEX1R - UPDATE (reporting mode)

** Example 'UPDEX1R': UPDATE (reporting mode)
**
** CAUTION: Executing this example will modify the database records!
**
RESET #NAME (A20)
*
INPUT 'ENTER A NAME:' #NAME (AD=M)
IF #NAME = ' '

STOP
*
FIND EMPLOYEES WITH NAME = #NAME

IF NO RECORDS FOUND
REINPUT WITH 'NO RECORDS FOUND' MARK 1

/*
INPUT 'NAME: ' NAME (AD=O) /

'FIRST NAME:' FIRST-NAME (AD=M) /
'CITY: ' CITY (AD=M)

/*
UPDATE USING SAME RECORD
/*
END TRANSACTION

97Statements

Referenced Example Programs

/*
LOOP
*
END

Output of Program UPDEX1R:

ENTER A NAME:

Example Programs for System Variables

The following examples are referenced in the *OCCURRENCE system variable description:

OCC1P - System Variable *OCCURRENCE

** Example 'OCC1P': *OCCURRENCE
**
DEFINE DATA LOCAL
1 #N1 (N7/1:10)
1 #N2 (N7/1:10,1:10)
1 #N3 (N7/1:10,1:10,1:10)
END-DEFINE
*
CALLNAT 'OCC1N' #N1(*) #N2(1:2,1:4) #N3(1:6,1:7,1:8)
*
END

Subprogram OCC1N Called by Program OCC1P:

** Example 'OCC1N': *OCCURRENCE (called by OCC1P)
**
DEFINE DATA
PARAMETER
1 PARM1 (N7/1:V)
1 PARM2 (N7/1:V,1:V)
1 PARM3 (N7/1:V,1:V,1:V)
LOCAL
1 #OCC2 (I4/1:2)
1 #OCC3 (I4/1:3)
1 #OCC1 (I4)
END-DEFINE
*
MOVE *OCC(PARM1) TO #OCC1
MOVE *OCC(PARM2,*) TO #OCC2(*)
MOVE *OCC(PARM3,*) TO #OCC3(*)
*
DISPLAY #OCC1 #OCC2(*) #OCC3(*)
DISPLAY *OCC(PARM1,*) *OCC(PARM2,*) *OCC(PARM3,*)

Statements98

Referenced Example Programs

*
NEWPAGE
*
WRITE NOHDR

'Occurrences of 1. parameter:' *OCC(PARM1)
/ 'Occurrences of 1. parameter:' *OCC(PARM1,1)
/ 'Occurrences of 1. parameter:' *OCC(PARM1,*)
/ 'Occurrences of 2. parameter:' *OCC(PARM2,1) *OCC(PARM2,2)
/ 'Occurrences of 2. parameter:' *OCC(PARM2,*)
/ 'Occurrences of 3. parameter:' *OCC(PARM3,1) *OCC(PARM3,2)

*OCC(PARM3,3)
/ 'Occurrences of 3. parameter:' *OCC(PARM3,*)

*
END

Output of Program OCC1P - Page 1:

Page 1 05-01-18 10:21:30

#OCC1 #OCC2 #OCC3
----------- ----------- -----------

10 2 6
4 7

8
10 2 6

4 7
8

Output of Program OCC1P - Page 2:

Page 2 05-01-18 10:21:30

Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 2. parameter: 2 4
Occurrences of 2. parameter: 2 4
Occurrences of 3. parameter: 6 7 8
Occurrences of 3. parameter: 6 7 8

99Statements

Referenced Example Programs

OCC2P - System Variable *OCCURRENCE

** Example 'OCC2P': *OCCURRENCE
**
DEFINE DATA LOCAL
1 #N (N7/1:10)
1 #I (I4)
END-DEFINE
*
FOR #I=1 TO 10

MOVE #I TO #N(#I)
END-FOR
*
WRITE 'Passing occurrences 1:5'
CALLNAT 'OCC2N' #N(1:5)
*
WRITE 'Passing occurrences 5:10'
CALLNAT 'OCC2N' #N(5:10)
*
END

Subprogram OCC2N Called by Program OCC2P:

** Example 'OCC2N': *OCCURRENCE (called by OCC2P)
**
DEFINE DATA
PARAMETER
1 #ARR (N7/1:V)
LOCAL
1 I (N7)
END-DEFINE
*
FOR I=1 TO *OCC(#ARR)

DISPLAY #ARR(I)
END-FOR
*
END

Output of Program OCC2P:

Page 1 05-01-18 10:33:03

Passing occurrences 1:5
1
2
3
4
5

Passing occurrences 5:10
5
6

Statements100

Referenced Example Programs

7
8
9
10

101Statements

Referenced Example Programs

102

IV
■ 12 ACCEPT/REJECT ... 105
■ 13 ADD ... 111
■ 14 ASSIGN .. 117
■ 15 AT BREAK ... 119
■ 16 AT END OF DATA .. 127
■ 17 AT END OF PAGE ... 133
■ 18 AT START OF DATA .. 141
■ 19 AT TOP OF PAGE ... 147
■ 20 BACKOUT TRANSACTION ... 153
■ 21 BEFORE BREAK PROCESSING .. 157
■ 22 CALL .. 161
■ 23 CALL FILE ... 181
■ 24 CALL LOOP ... 185
■ 25 CALLDBPROC (SQL) ... 189
■ 26 CALLNAT .. 195
■ 27 CLOSE CONVERSATION ... 203

103

104

12 ACCEPT/REJECT

■ Function .. 106
■ Syntax Description ... 106
■ Processing of Multiple ACCEPT/REJECT Statements ... 107
■ Limit Notation .. 107
■ Examples ... 108

105

[IF] logical-condition
ACCEPT

REJECT

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION |
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | HISTOGRAM | GET | GET SAME |
GET TRANSACTION DATA | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The statements ACCEPT and REJECT are used for accepting/rejecting a record based on user-specified
logical criterion. The ACCEPT/REJECT statement may be used in conjunctionwith statements which
read data records in a processing loop (FIND, READ, HISTOGRAM, CALL FILE, SORT or READ WORK
FILE). The criterion is evaluated after the record has been selected/read.

Whenever an ACCEPT/REJECT statement is encountered for processing, it will internally refer to the
innermost currently active processing loop initiated with one of the above mentioned statements.

When ACCEPT/REJECT statements are placed in a subroutine, in case of a record reject, the sub-
routine(s) entered in the processing loop will automatically be terminated and processing will
continue with the next record of the innermost currently active processing loop.

Syntax Description

DescriptionSyntax Element

IF Clause:IF
An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read
with a FIND, READ, or HISTOGRAM statement. The logical condition criteria are
evaluated after the record has been read and after record processing has started.

Logical Condition Criterion:logical-condition
The basic criterion is a relational expression. Multiple relational expressions may
be combined with logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

Statements106

ACCEPT/REJECT

DescriptionSyntax Element

The fields used to specify the logical criterionmay be database fields or user-defined
variables. For additional information on logical conditions, see Logical Condition
Criteria in the Programming Guide.

Note: When ACCEPT/REJECT is usedwith a HISTOGRAM statement, only the database
field specified in the HISTOGRAM statement may be used as a logical criterion.

Processing of Multiple ACCEPT/REJECT Statements

Normally, only one ACCEPT or REJECT statement is required in a single processing loop. If more
than one ACCEPT/REJECT is specified consecutively, the following conditions apply:

■ If consecutive ACCEPT and REJECT statements are contained in the same processing loop, they
are processed in the specified order.

■ If an ACCEPT condition is satisfied, the record will be accepted and consecutive ACCEPT/REJECT
statements will be ignored.

■ If a REJECT condition is satisfied, the record will be rejected and consecutive ACCEPT/REJECT
statements will be ignored.

■ If the processing continues to the last ACCEPT/REJECT statement, the last statementwill determine
whether the record is accepted or rejected.

If other statements are interleaved betweenmultiple ACCEPT/REJECT statements, each ACCEPT/REJECT
will be handled independently.

Limit Notation

If a LIMIT statement or other limit notation has been specified for a processing loop containing an
ACCEPT or REJECT statement, each record processed is counted against the limit regardless of
whether or not the record is accepted or rejected.

107Statements

ACCEPT/REJECT

Examples

■ Example 1 - ACCEPT
■ Example 2 - ACCEPT / REJECT

Example 1 - ACCEPT

** Example 'ACREX1': ACCEPT
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 SEX
2 MAR-STAT

END-DEFINE
*
LIMIT 50
READ EMPLOY-VIEW

ACCEPT IF SEX='M' AND MAR-STAT = 'S'
WRITE NOTITLE '=' NAME '=' SEX 5X '=' MAR-STAT

END-READ
END

Output of Program ACREX1:

NAME: MORENO S E X: M MARITAL STATUS: S
NAME: VAUZELLE S E X: M MARITAL STATUS: S
NAME: BAILLET S E X: M MARITAL STATUS: S
NAME: HEURTEBISE S E X: M MARITAL STATUS: S
NAME: LION S E X: M MARITAL STATUS: S
NAME: DEZELUS S E X: M MARITAL STATUS: S
NAME: BOYER S E X: M MARITAL STATUS: S
NAME: BROUSSE S E X: M MARITAL STATUS: S
NAME: DROMARD S E X: M MARITAL STATUS: S
NAME: DUC S E X: M MARITAL STATUS: S
NAME: BEGUERIE S E X: M MARITAL STATUS: S
NAME: FOREST S E X: M MARITAL STATUS: S
NAME: GEORGES S E X: M MARITAL STATUS: S

Statements108

ACCEPT/REJECT

Example 2 - ACCEPT / REJECT

** Example 'ACREX2': ACCEPT/REJECT
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1)

*
1 #PROC-COUNT (N8) INIT <0>
END-DEFINE
*
EMP. FIND EMPLOY-VIEW WITH NAME = 'JACKSON'

WRITE NOTITLE *COUNTER NAME FIRST-NAME 'SALARY:' SALARY(1)
/*
ACCEPT IF SALARY (1) LT 50000
WRITE *COUNTER 'ACCEPTED FOR FURTHER PROCESSING'
/*
REJECT IF SALARY (1) GT 30000
WRITE *COUNTER 'NOT REJECTED'
/*
ADD 1 TO #PROC-COUNT

END-FIND
*
SKIP 2
WRITE NOTITLE 'TOTAL PERSONS FOUND ' *NUMBER (EMP.) /

'TOTAL PERSONS SELECTED' #PROC-COUNT
END

Output of Program ACREX2:

1 JACKSON CLAUDE SALARY: 33000
1 ACCEPTED FOR FURTHER PROCESSING
2 JACKSON FORTUNA SALARY: 36000
2 ACCEPTED FOR FURTHER PROCESSING
3 JACKSON CHARLIE SALARY: 23000
3 ACCEPTED FOR FURTHER PROCESSING
3 NOT REJECTED

TOTAL PERSONS FOUND 3
TOTAL PERSONS SELECTED 1

109Statements

ACCEPT/REJECT

110

13 ADD

■ Function .. 112
■ Syntax 1 - ADD Statement without GIVING Clause ... 112
■ Syntax 2 - ADD Statement with GIVING Clause ... 113
■ Example .. 115

111

Related Statements: COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
| SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The ADD statement is used to add two or more operands.

This statements has two different syntax structures.

Notes:

1. At the time the ADD statement is executed, each operand used in the arithmetic operation must
contain a valid value.

2. For additions involving arrays, see also the section Arithmetic Operations with Arrays.

3. As for the formats of the operands, see also the section Performance Considerations for Mixed
Formats.

Syntax 1 - ADD Statement without GIVING Clause

TO operand2ADD [ROUNDED] (arithmetic-expression)
operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 1):

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesTDFIPNNASCoperand1

yesyesTDFIPNMASoperand2

Syntax Element Description:

Statements112

ADD

Description:Syntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1 TO operand2

operand1 and operand2 are summands. The result is stored in operand2
(result field). Hence, the statement is equivalent to:

operand2 := operand2 + operand1 + ...

ROUNDED Option:

If the keyword ROUNDED is used, the result will be rounded.

For information on rounding, seeRules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.

ROUNDED

Example:

The statement

ADD #A(*) TO #B(*) is equivalent to COMPUTE #B(*) := #A(*) + #B(*)
ADD #S TO #R is equivalent to COMPUTE #R := #S + #R
ADD #S #T TO #R is equivalent to COMPUTE #R := #S + #T + #R
ADD #A(*) TO #R is equivalent to COMPUTE #R := #A(*) + #R

Syntax 2 - ADD Statement with GIVING Clause

GIVING operand2ADD [ROUNDED] (arithmetic-expression)
operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 2):

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesTDFIPNNASCoperand1

yesyesTDB*FIPNUAMASoperand2

* Format B of operand2may be used only with a length of less than or equal to 4.

Syntax Element Description:

113Statements

ADD

Description:Syntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1 GIVING operand2

operand1 is a summand. operand2 is only used to receive the result of
the operation; it is not included in the addition. Hence, the statement is
equivalent to:

operand2 := operand1 + ...

ROUNDED Option:

If the keyword ROUNDED is used, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

ROUNDED

Note: If Syntax 2 is used, the following applies: Only the (operand1) field(s) left of the
keyword GIVING are the terms of the addition, the field right of the keyword GIVING
(operand2) is just used to receive the result value. If just a single (operand1) field is supplied,
the ADD operation turns into an assignment.

Example:

The statement

ADD #S GIVING #R is equivalent to COMPUTE #R := #S

ADD #S #T GIVING #R is equivalent to COMPUTE #R := #S + #T

ADD #A(*) 0 GIVING #R is equivalent to COMPUTE #R := #A(*) + 0
which is a legal operation, due to the rules defined
in Arithmetic Operations with Arrays

ADD #A(*) GIVING #R is equivalent to COMPUTE #R := #A(*)
which is an illegal operation, due to the rules
defined in Assignment Operations with Arrays

Statements114

ADD

Example

** Example 'ADDEX1': ADD
**
DEFINE DATA LOCAL
1 #A (P2)
1 #B (P1.1)
1 #C (P1)
1 #DATE (D)
1 #ARRAY1 (P5/1:4,1:4) INIT (2,*) <5>
1 #ARRAY2 (P5/1:4,1:4) INIT (4,*) <10>
END-DEFINE
*
ADD +5 -2 -1 GIVING #A
WRITE NOTITLE 'ADD +5 -2 -1 GIVING #A' 15X '=' #A
*
ADD .231 3.6 GIVING #B
WRITE / 'ADD .231 3.6 GIVING #B' 15X '=' #B
*
ADD ROUNDED 2.9 3.8 GIVING #C
WRITE / 'ADD ROUNDED 2.9 3.8 GIVING #C' 8X '=' #C
*
MOVE *DATX TO #DATE
ADD 7 TO #DATE
WRITE / 'CURRENT DATE:' *DATX (DF=L) 13X

'CURRENT DATE + 7:' #DATE (DF=L)
*
WRITE / '#ARRAY1 AND #ARRAY2 BEFORE ADDITION'

/ '=' #ARRAY1 (2,*) '=' #ARRAY2 (4,*)
ADD #ARRAY1 (2,*) TO #ARRAY2 (4,*)
WRITE / '#ARRAY1 AND #ARRAY2 AFTER ADDITION'

/ '=' #ARRAY1 (2,*) '=' #ARRAY2 (4,*)
*
END

Output of Program ADDEX1:

ADD +5 -2 -1 GIVING #A #A: 2

ADD .231 3.6 GIVING #B #B: 3.8

ADD ROUNDED 2.9 3.8 GIVING #C #C: 7

CURRENT DATE: 2005-01-10 CURRENT DATE + 7: 2005-01-17

#ARRAY1 AND #ARRAY2 BEFORE ADDITION
#ARRAY1: 5 5 5 5 #ARRAY2: 10 10 10 10

115Statements

ADD

#ARRAY1 AND #ARRAY2 AFTER ADDITION
#ARRAY1: 5 5 5 5 #ARRAY2: 15 15 15 15

Statements116

ADD

14 ASSIGN

See the statement COMPUTE.

117

118

15 AT BREAK

■ Function .. 120
■ Syntax Description ... 121
■ Multiple Break Levels ... 122
■ Examples ... 123

119

Structured Mode Syntax

[AT] BREAK [(r)] [OF] operand1 [/n/]

statement

END-BREAK

Reporting Mode Syntax

[AT] BREAK [(r)] [OF] operand1 [/n/]

statement

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION
| BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The AT BREAK statement is used to cause the execution of one or more statements whenever a
change in value of a control field occurs. It is used in conjunctionwith automatic break processing
and is available with the following statements: FIND, READ, HISTOGRAM, SORT, READ WORK FILE.

The automatic break processing works as follows: Immediately after a record was read by the
processing loop, the control field is checked. If a value change is detected in comparison to the
previous record, the statements included in the AT BREAK statement block are executed. This does
not apply to the very first record in the processing loop. In addition, when the processing loop is
terminated (as reading of records is complete or due to an ESCAPE BOTTOM statement), a final exe-
cution of the statements in the AT BREAK statement block is triggered.

For further information, see Automatic Break Processing in the Programming Guide.

An AT BREAK statement block is only executed if the object which contains the statement is active
at the time when the break condition occurs.

It is possible to initiate a new processing loop within an AT BREAK condition. This loop must also
be closed within the same AT BREAK condition.

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

Statements120

AT BREAK

Natural system functions may be used in conjunction with an AT BREAK statement, see Natural
System Functions for Use in Processing Loops in the System Functions documentation and Example of
System Functions with AT BREAK Statement in the Programming Guide.

For further information, see also the section AT BREAK Statement in the Programming Guide. It
covers topics such as:

■ Control Break Based on a Database Field
■ Control Break Based on a User-Defined Variable

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesLTDBFIPNUASoperand1

Syntax Element Description:

DescriptionSyntax Element

Reference Notation:(r)
By default, the final AT BREAK condition (for loop termination) is always related to the
outermost active processing loop initiated with a FIND, READ, READ WORK FILE,
HISTOGRAM or SORT statement.

With the notation (r) you can relate the final break condition of an AT BREAK statement
to another specific currently open processing loop (that is, the loop in which the AT
BREAK statement is located or any outer loop).

Example:

...
READ ...

FIND ...
FIND ...
AT BREAK ...

FIND ...
END-FIND

END-BREAK
END-FIND

END-FIND
END-READ
...

121Statements

AT BREAK

DescriptionSyntax Element

In this example, the final AT BREAK condition is related to the READ loop initiated in
line 0120. It would be possible to have it related to one of the FIND loops initiated in
line 0130 and 0140, but not to the one initiated in line 0160.

If (r) is specified for a break hierarchy, it must be specified with the first AT BREAK
statement and applies also to all AT BREAK statements which follow.

Control Field:operand1
The field used as the break control field is usually a database field. If a user-defined
variable is used, it must be initialized prior to the evaluation of automatic break
processing (see BEFORE BREAK PROCESSING statement). A specific occurrence of an
array can also be used as a control field.

Notation /n/:/n/
The notation /n/may be used to indicate that only the first n positions (counting from
left to right) of the control field are to be checked for a change in value. This notation
can only be used with operands of format A, B, N or P.

A control break occurs when the value of the control field changes, or when all records
in the processing loop for which the AT BREAK statement applies have been processed.

Statement(s) to be Executed at Break Condition:statement ...

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

End of AT BREAK Statement:END-BREAK

In structured mode, the Natural reserved word END-BREAKmust be used to end the
AT BREAK statement.

statement
DO statement
... DOEND

In reportingmode, use the DO ... DOEND statements to supply one or several suitable
statements, depending on the situation, and to end the AT BREAK statement. If you
specify only a single statement, you can omit the DO ... DOEND statements. With
respect to good coding practice, this is not recommended.

Multiple Break Levels

Multiple AT BREAK statementsmay be specifiedwithin a processing loopwithin the same program
module. If multiple BREAK statements are specified for the same processing loop, they form a
hierarchy of break levels independent of whether they are specified consecutively or interspersed
within other statements. The first AT BREAK statement represents the lowest control break level,
and each additional AT BREAK statement represents the next higher control break level.

Every processing loop in a loop hierarchy may have its own break hierarchy attached.

Statements122

AT BREAK

Example:

Reporting Mode:Structured Mode:

FIND ...
AT BREAK

DO
...
DOEND

AT BREAK
DO
...
DOEND

...

FIND ...
AT BREAK
...
END-BREAK
AT BREAK
...
END-BREAK
AT BREAK
...
END-BREAK

END-FIND
...

A change in the value of a control field in a break level causes break processing to be activated for
that break level and all lower break levels, regardless of the values of the control fields for the
lower break levels.

For easier program maintenance, it is recommended to specify multiple breaks consecutively.

See also Example 3 below and the sectionMultiple Control Break Levels in the Programming Guide.

Examples

This section covers the following topics:

■ Example 1 - AT BREAK
■ Example 2 - AT BREAK Using /n/ Notation
■ Example 3 - AT BREAK with Multiple Break Levels

For further examples of AT BREAK, seeNatural System Functions for Use in Processing Loops, Examples
ATBEX3 and ATBEX4.

123Statements

AT BREAK

Example 1 - AT BREAK

** Example 'ATBEX1S': AT BREAK (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 COUNTRY
2 NAME

END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY CITY
AT BREAK OF CITY

SKIP 1
END-BREAK
DISPLAY NOTITLE CITY (IS=ON) COUNTRY (IS=ON) NAME

END-READ
*
END

Output of Program ATBEX1S:

CITY COUNTRY NAME
-------------------- ------- --------------------

AIKEN USA SENKO

AIX EN OTHE F GODEFROY

AJACCIO CANALE

ALBERTSLUND DK PLOUG

ALBUQUERQUE USA HAMMOND
ROLLING
FREEMAN
LINCOLN

ALFRETON UK GOLDBERG

ALICANTE E GOMEZ

Equivalent reporting-mode example: ATBEX1R.

Statements124

AT BREAK

Example 2 - AT BREAK Using /n/ Notation

** Example 'ATBEX2': AT BREAK (with /n/ notation)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 DEPT
2 NAME

END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY DEPT STARTING FROM 'A'
AT BREAK OF DEPT /4/

SKIP 1
END-BREAK
DISPLAY NOTITLE DEPT NAME

END-READ
*
END

Output of Program ATBEX2:

DEPARTMENT NAME
CODE

---------- --------------------

ADMA01 JENSEN
ADMA01 PETERSEN
ADMA01 MORTENSEN
ADMA01 MADSEN
ADMA01 BUHL
ADMA02 HERMANSEN
ADMA02 PLOUG
ADMA02 HANSEN

COMP01 HEURTEBISE
COMP01 TANCHOU

Example 3 - AT BREAK with Multiple Break Levels

** Example 'ATBEX5S': AT BREAK (multiple break levels) (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 DEPT
2 NAME
2 LEAVE-DUE

1 #LEAVE-DUE-L (N4)
END-DEFINE

125Statements

AT BREAK

*
LIMIT 5
FIND EMPLOY-VIEW WITH CITY = 'PHILADELPHIA' OR = 'PITTSBURGH'

SORTED BY CITY DEPT
MOVE LEAVE-DUE TO #LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME #LEAVE-DUE-L
/*

AT BREAK OF DEPT
WRITE NOTITLE /

T*DEPT OLD(DEPT) T*#LEAVE-DUE-L SUM(#LEAVE-DUE-L) /
END-BREAK
AT BREAK OF CITY

WRITE NOTITLE
T*CITY OLD(CITY) T*#LEAVE-DUE-L SUM(#LEAVE-DUE-L) //

END-BREAK
END-FIND
*
END

Output of Program ATBEX5:

CITY DEPARTMENT NAME #LEAVE-DUE-L
CODE

-------------------- ---------- -------------------- ------------

PHILADELPHIA MGMT30 WOLF-TERROINE 11
MACKARNESS 27

MGMT30 38

TECH10 BUSH 39
NETTLEFOLDS 24

TECH10 63

PHILADELPHIA 101

PITTSBURGH MGMT10 FLETCHER 34

MGMT10 34

PITTSBURGH 34

Equivalent reporting-mode example: ATBEX5R.

Statements126

AT BREAK

16 AT END OF DATA

■ Function .. 128
■ Restrictions .. 129
■ Syntax Description ... 129
■ Example .. 130

127

Structured Mode Syntax

[AT] END [OF] DATA [(r)]

statement

END-ENDDATA

Reporting Mode Syntax

[AT] END [OF] DATA [(r)]

statement

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | BACKOUT TRANSACTION |
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION
DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The AT END OF DATA statement is used to specify processing to be performed when all records
selected for a database processing loop have been processed.

This section covers the following topics:

■ Processing
■ Values of Database Fields
■ Positioning
■ System Functions

See also AT START/END OF DATA Statements in the Programming Guide.

Statements128

AT END OF DATA

Processing

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Values of Database Fields

When the AT END OF DATA condition for the processing loop occurs, all database fields contain
the data from the last record processed.

Positioning

This statementmust be specifiedwithin the sameprogrammodulewhich contains the loop creating
statement.

System Functions

Natural system functions may be used in conjunction with an AT END OF DATA statement as de-
scribed in Using System Functions in Processing Loops in the System Functions documentation.

Restrictions

■ This statement can only be used in a processing loop that has been initiated with one of the
following statements: FIND, READ, READ WORK FILE, HISTOGRAM or SORT.

■ It may be used only once per processing loop.
■ It is not evaluated if the processing loop referenced for END OF DATA processing is not entered.

Syntax Description

DescriptionSyntax Element

Reference to a Specific Processing Loop:(r)
An AT END OF DATA statement may be related to a specific active processing
loop by using the notation (r).

If this notation is not used, the AT END OF DATA statement will be related to
the outermost active database processing loop.

Statement(s) to be Executed at End of Data Condition:statement ...

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, seeExample below.

129Statements

AT END OF DATA

DescriptionSyntax Element

End of AT END OF DATA Statement:END-ENDDATA

In structured mode, the Natural reserved word END-ENDDATAmust be used
to end the AT END OF DATA statement.

statement ...
DO statement ... DOEND

In reportingmode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF
DATA statement. If you specify only a single statement, you can omit the DO
... DOEND statements. With respect to good coding practice, this is not
recommended.

Example

** Example 'AEDEX1S': AT END OF DATA
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE
*
LIMIT 5
EMP. FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'

IF NO RECORDS FOUND
ENTER

END-NOREC
DISPLAY PERSONNEL-ID NAME FIRST-NAME

SALARY (1) CURR-CODE (1)
/*
AT END OF DATA
IF *COUNTER (EMP.) = 0
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM

END-IF
WRITE NOTITLE / 'SALARY STATISTICS:'

/ 7X 'MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X 'MINIMUM:' MIN(SALARY(1)) CURR-CODE (1)
/ 7X 'AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)

END-ENDDATA
/*

END-FIND
*
END

Statements130

AT END OF DATA

See alsoNatural System Functions for Use in Processing Loops in the System Functions documentation.

Output of Program AEDEX1S:

PERSONNEL NAME FIRST-NAME ANNUAL CURRENCY
ID SALARY CODE

--------- -------------------- -------------------- ---------- --------

11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:
MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

Equivalent reporting-mode example: AEDEX1R.

131Statements

AT END OF DATA

132

17 AT END OF PAGE

■ Function .. 134
■ Syntax Description ... 136
■ Example .. 137

133

Structured Mode Syntax

[AT] END [OF] PAGE [(rep)]

statement

END-ENDPAGE

Reporting Mode Syntax

[AT] END [OF] PAGE [(rep)]

statement

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The AT END OF PAGE statement is used to specify processing that is to be performedwhen an end-
of-page condition is detected (see session parameter PS in the Parameter Reference). An end-of-page
conditionmay also occur as a result of a SKIP or NEWPAGE statement, but not as a result of an EJECT
or INPUT statement.

See also the following sections in the Programming Guide:

■ Report Format and Control
■ Report Specification - (rep) Notation
■ Layout of an Output Page
■ AT END OF PAGE Statement

Statements134

AT END OF PAGE

Processing

An AT END OF PAGE statement block is only executed if the object which contains the statement
block is active at the time when the end-of-page condition occurs.

An AT END OF PAGE statement must not be placed within an inline subroutine.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Logical Page Size

The end-of-page check is performed after the processing of a DISPLAY or WRITE statement is com-
pleted. Therefore, if a DISPLAY or WRITE statement produces multiple lines of output, overflow of
the physical page may occur before an end-of-page condition is detected.

A logical page size (session parameter PS) which is less than the physical page sizemust be specified
to ensure that information printed by an AT END OF PAGE statement appears on the same physical
page as the title.

Last-Page Handling

Within a main program, an end-of-page condition is activated when the execution of the main
program terminates via ESCAPE, STOP or END.

Within a subroutine, an end-of-page condition is not activatedwhen the execution of the subroutine
terminates via ESCAPE-ROUTINE, RETURN or END-SUBROUTINE.

System Functions

Natural system functions may be used in conjunction with an AT END OF PAGE statement as de-
scribed in the sectionUsing System Functions in Processing Loops in the System Functions document-
ation.

If a system function is to be used within an AT END OF PAGE statement block, the GIVE SYSTEM
FUNCTIONS clause must be specified in the corresponding DISPLAY statement.

135Statements

AT END OF PAGE

INPUT Statement with AT END OF PAGE

If an INPUT statement is specifiedwithin an AT END OF PAGE statement block, no newpage operation
is performed. The page size (session parameter PS) must be reduced to a value that allows the
lines created by the INPUT statement to appear on the same physical page.

See also:

■ Split Screen Feature of INPUT Statement
■ Example 2 - AT END OF PAGE with INPUT Statement

Syntax Description

DescriptionSyntax Element

Report Specification:(rep)
The notation (rep)may be used to specify the identification of the report for
which the AT END OF PAGE statement is applicable. A value in the range 0 -
31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the AT END OF PAGE statement will apply to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

Statement(s) to be Executed at End of Page Condition:statement

In structuredmode, youmust supply one or several suitable statements, depending
on the situation. For an example of a statement, see Example below.

End of AT END OF PAGE Statement:END-ENDPAGE

In structured mode, the Natural reserved word END-ENDPAGEmust be used to
end the AT END OF PAGE statement.

statement
DO statement ...
DOEND

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF PAGE
statement. If you specify only a single statement, you can omit the DO ... DOEND
statements. With respect to good coding practice, this is not recommended.

Statements136

AT END OF PAGE

Example

■ Example 1 - AT END OF PAGE
■ Example 2 - AT END OF PAGE with INPUT Statement

Example 1 - AT END OF PAGE

** Example 'AEPEX1S': AT END OF PAGE (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE
*
FORMAT PS=10
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)

/*

AT END OF PAGE
WRITE / 28T 'AVERAGE SALARY: ...' AVER(SALARY(1)) CURR-CODE (1)

END-ENDPAGE

END-READ
*
END

See also Natural System Functions for Use in Processing Loops.

Output of Program AEPEX1S:

NAME CURRENT SALARY CURRENCY
POSITION CODE

-------------------- ------------------------- ---------- --------

CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

137Statements

AT END OF PAGE

AVERAGE SALARY: ... 33533 USD

Equivalent reporting-mode example: AEPEX1R.

Example 2 - AT END OF PAGE with INPUT Statement

** Example 'AEPEX2': AT END OF PAGE (with INPUT)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 POST-CODE
2 CITY

*
1 #START-NAME (A20)
END-DEFINE
*
FORMAT PS=21
*
REPEAT

READ (15) EMPLOY-VIEW BY NAME = #START-NAME
DISPLAY NOTITLE NAME FIRST-NAME POST-CODE CITY

END-READ
NEWPAGE
/*

AT END OF PAGE
MOVE NAME TO #START-NAME
INPUT / '-' (79)

/ 10T 'Reposition to name ==>'
#START-NAME (AD=MI) '(''.'' to exit)'

IF #START-NAME = '.'
STOP

END-IF
END-ENDPAGE
/*

END-REPEAT
END

Output of Program AEPEX2S:

NAME FIRST-NAME POSTAL CITY
ADDRESS

-------------------- -------------------- ---------- --------------------

ABELLAN KEPA 28014 MADRID
ACHIESON ROBERT DE3 4TR DERBY
ADAM SIMONE 89300 JOIGNY
ADKINSON JEFF 11201 BROOKLYN
ADKINSON PHYLLIS 90211 BEVERLEY HILLS

Statements138

AT END OF PAGE

ADKINSON HAZEL 20760 GAITHERSBURG
ADKINSON DAVID 27514 CHAPEL HILL
ADKINSON CHARLIE 21730 LEXINGTON
ADKINSON MARTHA 17010 FRAMINGHAM
ADKINSON TIMMIE 17300 BEDFORD
ADKINSON BOB 66044 LAWRENCE
AECKERLE SUSANNE 7000 STUTTGART
AFANASSIEV PHILIP 39401 HATTIESBURG
AFANASSIEV ROSE 60201 EVANSTON
AHL FLEMMING 2300 SUNDBY

Reposition to name ==> AHL ('.' to exit)

139Statements

AT END OF PAGE

140

18 AT START OF DATA

■ Function .. 142
■ Syntax Description ... 143
■ Example .. 143

141

Structured Mode Syntax

[AT] START [OF] DATA [(r)]

statement

END-START

Reporting Mode Syntax

[AT] START [OF] DATA [(r)]

statement

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT END OF DATA | BACKOUT TRANSACTION | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The statement AT START OF DATA is used to perform processing immediately after the first of a
set of records is read for a processing loop that has been initiated by one of the following statements:
READ, FIND, HISTOGRAM, SORT or READ WORK FILE.

See also AT START/END OF DATA Statements in the Programming Guide.

Processing

If the loop-initiating statement contains a WHERE clause, the at-start-of-data condition will be true
when the first record is read which meets both the basic search and the WHERE criteria.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Statements142

AT START OF DATA

Value of Database Fields

All database fields contain the values of the record which caused the at-start-of-data condition to
be true (that is, the first record of the set of records to be processed).

Positioning

This statement must be positioned within a processing loop, and it may be used only once per
processing loop.

Syntax Description

DescriptionSyntax Element

Reference to a Specific Processing Loop:(r)
An AT START OF DATA statement may be related to a specific outer active
processing loop by using the notation (r). If this notation is not used, the
statement is related to the outermost active processing loop.

Statement(s) to be Executed at Start of Data Condition:statement ...

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, seeExample below.

End of AT START OF DATA Statement:END-START

In structured mode, the Natural reserved word END-STARTmust be used to
end the AT START OF DATA statement.

statement ...
DO statement ... DOEND

In reportingmode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT START
OF DATA statement. If you specify only a single statement, you can omit the
DO ... DOEND statements. With respect to good coding practice, this is not
recommended.

Example

** Example 'ASDEX1S': AT START OF DATA (structured mode)

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY

*
1 #CNTL (A1) INIT <' '>

143Statements

AT START OF DATA

1 #CITY (A20) INIT <' '>
END-DEFINE
*
REPEAT

INPUT 'ENTER VALUE FOR CITY' #CITY
IF #CITY = ' ' OR = 'END'

STOP
END-IF
FIND EMPLOY-VIEW WITH CITY = #CITY

IF NO RECORDS FOUND
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE BOTTOM

END-NOREC
/*

AT START OF DATA
INPUT (AD=O) 'RECORDS FOUND' *NUMBER //

'ENTER ''D'' TO DISPLAY RECORDS' #CNTL (AD=A)
IF #CNTL NE 'D'

ESCAPE BOTTOM
END-IF

END-START
/*
DISPLAY NAME FIRST-NAME

END-FIND
END-REPEAT
END

Output of Program ASDEX1S:

ENTER VALUE FOR CITY PARIS

After entering and confirming name of city:

RECORDS FOUND 26

ENTER 'D' TO DISPLAY RECORDS D

Records displayed:

NAME FIRST-NAME
-------------------- --------------------

MAIZIERE ELISABETH
MARX JEAN-MARIE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS

Statements144

AT START OF DATA

CENSIER BERNARD
DUC JEAN-PAUL
CAHN RAYMOND
MAZUY ROBERT
FAURIE HENRI
VALLY ALAIN
BRETON JEAN-MARIE
GIGLEUX JACQUES
KORAB-BRZOZOWSKI BOGDAN
XOLIN CHRISTIAN
LEGRIS ROGER
VVVV

Equivalent reporting-mode example: ASDEX1R.

145Statements

AT START OF DATA

146

19 AT TOP OF PAGE

■ Function .. 148
■ Restriction .. 149
■ Syntax Description ... 149
■ Example .. 150

147

Structured Mode Syntax

[AT] TOP [OF] PAGE [(rep)]

statement

END-TOPPAGE

Reporting Mode Syntax

[AT] TOP [OF] PAGE [(rep)]

statement

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The statement AT TOP OF PAGE is used to specify processing which is to be performed when a
new page is started.

See also the following sections in the Programming Guide:

■ Report Format and Control
■ Report Specification - (rep) Notation
■ Layout of an Output Page
■ AT TOP OF PAGE Statement

Statements148

AT TOP OF PAGE

Processing

A new page is started when the internal line counter exceeds the page size set with the session
parameter PS (page size for Natural reports), or when a NEWPAGE statement is executed. Either of
these events cause a top-of-page condition to be true. An EJECT statement causes a new page to
be started but does not cause a top-of-page condition.

An AT TOP OF PAGE statement block is only executedwhen the object which contains the statement
is active at the time when the top-of-page condition occurs.

Any output created as a result of AT TOP OF PAGE processing will appear following the title line
with an intervening blank line.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Restriction

An AT TOP OF PAGE statement must not be placed within an inline subroutine.

Syntax Description

DescriptionSyntax Element

Report Specification:(rep)
The notation (rep)may be used to specify the identification of the report for
which the AT TOP OF PAGE statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the AT TOP OF PAGE statement applies to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

Statement(s) to be Executed at Start of Data Condition:statement ...

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

End of AT TOP OF PAGE Statement:END-TOPPAGE

In structured mode, the Natural reserved word END-TOPPAGEmust be used to
end the AT TOP OF PAGE statement.

statement ...
DO statement ...
DOEND

149Statements

AT TOP OF PAGE

DescriptionSyntax Element

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT TOP OF
PAGE statement. If you specify only a single statement, you can omit the DO ...
DOEND statements.With respect to good coding practice, this is not recommended.

Example

** Example 'ATPEX1S': AT TOP OF PAGE (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 DEPT

END-DEFINE
*
FORMAT PS=15
LIMIT 15
READ EMPLOY-VIEW BY NAME STARTING FROM 'L'

DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER '-' (78)
/*

AT TOP OF PAGE
WRITE 'BEGINNING NAME:' NAME

END-TOPPAGE
/*
AT END OF PAGE

SKIP 1
WRITE 'ENDING NAME: ' NAME

END-ENDPAGE
END-READ
END

Output of Program ATPEX1S:

EMPLOYEE REPORT

BEGINNING NAME: LAFON

NAME FIRST-NAME CITY DEPARTMENT
CODE

-------------------- -------------------- -------------------- ----------

LAFON CHRISTIANE PARIS VENT18
LANDMANN HARRY ESCHBORN MARK29
LANE JACQUELINE DERBY MGMT02

Statements150

AT TOP OF PAGE

LANKATILLEKE LALITH FRANKFURT PROD22
LANNON BOB LINCOLN SALE20
LANNON LESLIE SEATTLE SALE30
LARSEN CARL FARUM SYSA01
LARSEN MOGENS VEMMELEV SYSA02

--

ENDING NAME: LARSEN

Equivalent reporting-mode example: ATPEX1R.

151Statements

AT TOP OF PAGE

152

20 BACKOUT TRANSACTION

■ Function .. 154
■ Restriction .. 155
■ Database-Specific Considerations ... 155
■ Example .. 155

153

BACKOUT [TRANSACTION]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The BACKOUT TRANSACTION statement is used to back out all database updates performed during
the current logical transaction. This statement also releases all records held during the transaction.

The statement is executed only if a database transaction under control of Natural has taken place.
For which databases the statement is executed depends on the setting of the profile parameter ET
(execution of END/BACKOUT TRANSACTION statements):

■ If ET=OFF, the statement is executed only for the database affected by the transaction.
■ If ET=ON, the statement is executed for all databases that have been referenced since the last exe-
cution of a BACKOUT TRANSACTION or END TRANSACTION statement.

Backout Transaction Issued by Natural

If the user interrupts the current Natural operation with a terminal command (command %% or
CLEAR key), Natural issues a BACKOUT TRANSACTION statement.

See also the terminal command %% in the Terminal Commands documentation.

Additional Information

For additional information on the use of the transaction backout feature, see the sectionsDatabase
Update - Transaction Processing and Backing Out a Transaction in the Programming Guide.

Statements154

BACKOUT TRANSACTION

Restriction

This statement is not available with Entire System Server.

Database-Specific Considerations

As most SQL databases close all cursors when a logical unit of work ends, a BACKOUT
TRANSACTION statementmust not be placedwithin a databasemodification loop; instead,
it has to be placed after such a loop.

SQL Databases

A BACKOUT TRANSACTION statement must not be placed within a database modification
loop; instead, it has to be placed after such a loop.

XML Databases

Example

** Example 'BOTEX1': BACKOUT TRANSACTION
**
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 DEPT
2 LEAVE-DUE
2 LEAVE-TAKEN

*
1 #DEPT (A6)
1 #RESP (A3)
END-DEFINE
*
LIMIT 3
INPUT 'DEPARTMENT TO BE UPDATED:' #DEPT
IF #DEPT = ' '

STOP
END-IF
*
FIND EMPLOY-VIEW WITH DEPT = #DEPT

IF NO RECORDS FOUND
REINPUT 'NO RECORDS FOUND'

END-NOREC
INPUT 'NAME: ' NAME (AD=O) /

'LEAVE DUE: ' LEAVE-DUE (AD=M) /
'LEAVE TAKEN:' LEAVE-TAKEN (AD=M)

155Statements

BACKOUT TRANSACTION

UPDATE
END-FIND
*
INPUT 'UPDATE TO BE PERFORMED? YES/NO:' #RESP
DECIDE ON FIRST #RESP

VALUE 'YES'
END TRANSACTION

VALUE 'NO'
BACKOUT TRANSACTION

NONE
REINPUT 'PLEASE ENTER YES OR NO'

END-DECIDE
*
END

Output of Program BOTEX1:

DEPARTMENT TO BE UPDATED: MGMT30

Result for department MGMT30:

NAME: POREE
LEAVE DUE: 45
LEAVE TAKEN: 31

Confirmation query:

UPDATE TO BE PERFORMED YES/NO: NO

Statements156

BACKOUT TRANSACTION

21 BEFORE BREAK PROCESSING

■ Function .. 158
■ Restrictions .. 159
■ Syntax Description ... 159
■ Example .. 160

157

Structured Mode Syntax

BEFORE [BREAK] [PROCESSING]

statement

END-BEFORE

Reporting Mode Syntax

BEFORE [BREAK] [PROCESSING]

statement

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION | HISTOGRAM
| LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The BEFORE BREAK PROCESSING statement may be used in conjunction with automatic break pro-
cessing to perform processing:

■ before the value of the break control field is checked;
■ before the statements specified with an AT BREAK statement are executed;
■ before Natural system functions are evaluated.

This statement is most often used to initialize or compute values of user-defined variables which
are to be used in break processing (see AT BREAK statement).

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

See also the following sections in the Programming Guide:

■ Control Breaks
■ BEFORE BREAK PROCESSING Statement
■ Example of BEFORE BREAK PROCESSING Statement

Statements158

BEFORE BREAK PROCESSING

Restrictions

■ The BEFORE BREAK PROCESSING statement may only be used with a processing loop that has
been initiated with one of the following statements:
■ FIND

■ READ

■ HISTOGRAM

■ SORT

■ READ WORK FILE

It may be placed anywhere within the processing loop and is always related to the processing
loop in which it is contained. Only one BEFORE BREAK PROCESSING statement may be specified
per processing loop.

■ The BEFORE BREAK PROCESSING statement must not be used in conjunction with the statement
PERFORM BREAK PROCESSING.

Syntax Description

DescriptionSyntax Element

Statement(s) for Break Processing:statement...
In place of statement, you must supply one or several suitable statements,
depending on the situation.

For an example of a statement, see Example below.

If no break processing is to be performed (that is, no AT BREAK statement is
specified for the processing loop), any statements specified with a BEFORE
BREAK PROCESSING statement will not be executed.

End of BEFORE BREAK PROCESSING Statement:END-BEFORE

In structured mode, the Natural reserved word END-BEFOREmust be used
to end the BEFORE BREAK PROCESSING statement.

statement ...
DO statement ... DOEND

In reportingmode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the BEFORE BREAK
PROCESSING statement. If you specify only a single statement, you can omit
the DO ... DOEND statements. With respect to good coding practice, this is
not recommended.

159Statements

BEFORE BREAK PROCESSING

Example

** Example 'BBPEX1': BEFORE BREAK PROCESSING
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 SALARY (1)
2 BONUS (1,1)

*
1 #INCOME (P11)
END-DEFINE
*
LIMIT 7
READ EMPLOY-VIEW BY CITY = 'L'

/*
BEFORE BREAK PROCESSING

COMPUTE #INCOME = SALARY (1) + BONUS (1,1)
END-BEFORE
/*
AT BREAK OF CITY

WRITE NOTITLE 'AVERAGE INCOME FOR' OLD (CITY) 20X AVER(#INCOME) /
END-BREAK
/*
DISPLAY CITY 'NAME' NAME 'SALARY' SALARY (1) 'BONUS' BONUS (1,1)

END-READ
END

Output of Program BBPEX1:

CITY NAME SALARY BONUS
-------------------- -------------------- ---------- ----------

LA BASSEE HULOT 165000 70000
AVERAGE INCOME FOR LA BASSEE 235000

LA CHAPELLE ST LUC GUILLARD 124100 23000
LA CHAPELLE ST LUC BERGE 198500 50000
LA CHAPELLE ST LUC POLETTE 124090 23000
LA CHAPELLE ST LUC DELAUNEY 115000 23000
LA CHAPELLE ST LUC SCHECK 125600 23000
LA CHAPELLE ST LUC KREEBS 184550 50000
AVERAGE INCOME FOR LA CHAPELLE ST LUC 177306

Statements160

BEFORE BREAK PROCESSING

22 CALL

■ Function .. 162
■ Syntax Description ... 162
■ Return Code ... 163
■ User Exits .. 163
■ INTERFACE4 ... 168

161

CALL [INTERFACE4] operand1 [[USING] operand2 ... 128]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL statement is used to call an external program or function written in another standard
programming language from a Natural program and then return to the next statement after the
CALL statement.

The called program or function may be written in any programming language which supports a
standard CALL interface. Multiple CALL statements to one or more external program or functions
may be specified.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

yesyesGCLTDBFIPNUAGASCoperand2

Syntax Element Description:

DescriptionSyntax Element

Interface Usage:INTERFACE4
The optional keyword INTERFACE4 specifies the type of the interface that is used for
the call of the external program. See the section INTERFACE4 below.

Name of Called Function:operand1

The name of the function to be called (operand1) can be specified as a constant or - if
different functions are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 32. A function name must be placed left-justified in the variable.

Parameters to be Passed:[USING]
operand2

Statements162

CALL

DescriptionSyntax Element

The CALL statement may contain up to 128 parameters (operand2). One address is
passed in the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user
wishes to specify the beginning address of a group, the first field of the group must be
specified.

Note: If an application-independent variable (AIV) or context variable is passed as a
parameter to a user exit, the following restriction applies: if the user exit invokes a
Natural subprogram which creates a new AIV or context variable, the parameter is
invalid after the return from the subprogram. This is true regardless of whether the
new AIV/context variable is created by the subprogram itself or by another object
invoked directly or indirectly by the subprogram.

Return Code

The condition code of any called function may be obtained by using the Natural system function
RET (Return Code Function).

Example:

...
RESET #RETURN(B4)
CALL 'PROG1'
IF RET ('PROG1') > #RETURN

WRITE 'ERROR OCCURRED IN PROGRAM1'
END-IF
...

User Exits

User exits are needed tomake external functions available and to access operating-system interfaces
that are not available to Natural.

The user exits can be placed either in a shared library and thus linked dynamically, or in a library
that is linked statically to the Natural nucleus.

Notes:

1. If you want to use user exits in a CALL statement, User-defined librariesmust be set in the In-
stallation Assignments of the Local Configuration File. Refer to Installation Assignments in the

163Statements

CALL

section Local Configuration File of theOverview of Configuration File Parameters in theConfiguration
Utility documentation.

2. If youwant to specify several libraries, you have to separate the nameswith a colon, for example
userlib1:userlib2:userlib3.

If they are placed in shared libraries, it is not necessary to relink Natural whenever a user exit is
modified. Thismakes the development and testing of user exits a lot easier. This feature is available
under all operating systems that support shared libraries. Under all operating systems, it is possible
to place user exits in a library that is linked to the Natural nucleus; that is, to statically link the
user exits with the Natural prelinked object natraw.o.

A user exit is added to Natural in three steps:

1. A jump table has to be created that allows Natural to associate the name of a function invoked
by a CALL statement with the address of the function.

2. The functions that were put into the jump table must be written.

3. In the case of a dynamic link, the shared library that contains the user exits has to be rebuilt. In
the case of a static link, the jump table and the external functions must be linked together with
the prelinked Natural nucleus, to produce an executable Natural nucleus that supports the ex-
ternal functions.

The following topics are covered below:

■ Step 1 - Defining the Jump Table
■ Step 2 - Writing the External Functions
■ Step 3 - Compiling and Linking
■ How to Build a Shared Library
■ How to Generate a Static Nucleus
■ Example Programs

Step 1 - Defining the Jump Table

A sample of a jump table - jumptab.c - can be found in the directory:

<install-dir>/natural/samples/sysexuex

Statements164

CALL

Step 2 - Writing the External Functions

Each function has three parameters and returns a long integer. A function prototype should be as
follows:

NATFCT myadd (nparm, parmptr, parmdec)

WORD nparm;
BYTE **parmptr;
FINFO *parmdec;

16 bit unsigned short value, containing the total number of transferred operands (operand2).nparm

Array of pointers, pointing to the transferred operands.parmptr

Array of field information for each transferred operand.parmdec

The data type FINFO is defined as follows:

typedef struct {
unsigned char TypeVar; /* type of variable */
unsigned char pb2; /* if type == ('D', 'N', 'P' or 'T') ==> */

/* total num of digits */
/* else */

union { /* unused */
unsigned char pb[2]; /* if type == ('D', 'N', 'P' or 'T') ==> */
unsigned short lfield; /* pb[0] = #dig before.dec.point */

} flen; /* pb[1] = #dig after.dec.point */
/* else */
/* lfield = length of field */

} FINFO;

Next, the module containing the external functions must be written. A sample function -mycadd.c
- can be found in the directory:

<install-dir>/natural/samples/sysexuex

Step 3 - Compiling and Linking

The file natuser.h, which is included by the sample program, is delivered with Natural. It contains
declarations for the data types BYTE, WORD and the FINFO structure, that is, the description of
the internal representation of each passed parameter.

■ In the case of dynamically linked user exits, the shared library containing the user exits has to
be rebuilt.

■ In the case of statically linked user exits, the Natural nucleus has to be relinked.

165Statements

CALL

For these purposes, it is strongly recommended to use the sample makefiles supplied by Software
AG, as they already contain the necessary compiler and linker parameters. The sample makefiles
can be found in the directory:

<install-dir>/natural/samples/sysexuex

For further information, see the following sections and the explanations in themakefiles themselves.

How to Build a Shared Library

1. From the example directory, which is contained in <install-dir>/natural/samples/sysexuex,
copy the following files into your work directory:
■ Makedyn
■ jumptab.c
■ ncuxinit.c

2. Copy the C source files which contain your user exits into the same work directory.

3. Edit the file jumptab.c to include the names and function pointers for your user exits. To do so,
you add in Section 2 the external declarations of your user exits, and in Section 3 you add the
name/function-pointer pairs for your user exits.

4. Edit the makefile as follows:
■ Specify the names of the object files containing the user exits in the following line:

USEROBJS =

■ Specify the name of the resulting shared library in the following line:

USERLIB =

■ If you need to include private header files, specify the directories containing them in the fol-
lowing line:

INCDIR =

5. To remove all unneeded files, issue the command:

make -f Makedyn clean

6. To compile and link your shared library, issue the command:

Statements166

CALL

make -f Makedyn lib

How to Generate a Static Nucleus

1. From the example directory, which is contained in <install-dir>/natural/samples/sysexuex,
copy the following files into your work directory:
■ Makefile
■ jumptab.c

2. Copy the C source files which contain your user exits into the same work directory.

3. Edit the file jumptab.c to include the names and function pointers for your user exits. To do so,
you add in Section 2 the external declarations of your user exits, and in Section 3 you add the
name/function-pointer pairs for your user exits.

4. Edit the makefile as follows:
■ Specify the names of the object files containing the user exits in the following line:

USEROBJS = ↩

■ If you need to include private header files, specify the directories containing them in the fol-
lowing line:

INCDIR =

5. Issue the command make to get information about further processing options.

Example:

See the sample user exit function in <install-dir>/natural/samples/sysexuex.

Example Programs

After successful compilation and linking, the external programs can be invoked from a Natural
program. Corresponding Natural example programs are provided in the library SYSEXUEX.

167Statements

CALL

INTERFACE4

The keyword INTERFACE4 specifies the type of the interface that is used for the call of the external
program. This keyword is optional. If this keyword is specified, the interface, which is defined as
INTERFACE4, is used for the call of the external program.

The following table lists the differences between the CALL statement used with INTERFACE4 and
the one used without INTERFACE4:

CALL statement with keyword
INTERFACE4

CALL statement without keyword
INTERFACE4

32767128Number of parameters possible

1 GB65535Maximum data size of one parameter

yesnoRetrieve array information

yesnoSupport of large and dynamic operands

yesnoParameter access via API

The following topics are covered below:

■ INTERFACE4 - External 3GL Program Interface
■ Operand Structure for INTERFACE4
■ INTERFACE4 - Parameter Access
■ Exported Functions

INTERFACE4 - External 3GL Program Interface

The interface of the external 3GL program is defined as follows, when INTERFACE4 is specified
with the Natural CALL statement:

NATFCT functionname (numparm, parmhandle, traditional)

16 bit unsigned short value, containing the total number of transferred
operands (operand2).

numparm;USR_WORD

Pointer to the parameter passing structure.*parmhandle;void

Check for interface type (if it is not a NULL pointer it is the traditional CALL
interface).

*traditional;void

Statements168

CALL

Operand Structure for INTERFACE4

The operand structure of INTERFACE4 is named parameter_description and is defined as follows.
The structure is delivered with the header file natuser.h.

struct parameter_description

Address of the parameter data, not aligned, realloc() and
free() are not allowed.

addressvoid *

Field data format: NCXR_TYPE_ALPHA, etc. (natuser.h).formatint

Length (before decimal point, if applicable).lengthint

Length after decimal point (if applicable).precisionint

Length of field in bytes int dimension number of dimensions (0
to IF4_MAX_DIM).

byte_lengthint

Number of dimensions (0 to IF4_MAX_DIM).dimensionsint

Total data length of array in bytes.length_allint

Several flag bits combined by bitwise OR operation, meaning:flagsint

The parameter iswrite-protected.IF4_FLG_PROTECTED:

The parameter is a dynamic
variable.

IF4_FLG_DYNAMIC:

The array elements are not
contiguous (have spaces between
them).

IF4_FLG_NOT_CONTIGUOUS:

The parameter is an
application-independent variable.

IF4_FLG_AIV:

The parameter is a dynamic
variable.

IF4_FLG_DYNVAR:

The parameter is an X-array.IF4_FLG_XARRAY:

The lower bound of dimension 0
is variable.

IF4_FLG_LBVAR_0:

The upper bound of dimension 0
is variable.

IF4_FLG_UBVAR_0:

The lower bound of dimension 1
is variable.

IF4_FLG_LBVAR_1:

The upper bound of dimension 1
is variable.

IF4_FLG_UBVAR_1:

The lower bound of dimension 2
is variable.

IF4_FLG_LBVAR_2:

The upper bound of dimension 2
is variable.

IF4_FLG_UBVAR_2:

Array occurrences in each dimension.occurrences[IF4_MAX_DIM]int

Array index factors for each dimension.indexfactors[IF4_MAX_DIM]int

169Statements

CALL

Reserved for internal use.dynpvoid *

Reserved for internal use.popsvoid *

The address element is null for arrays of dynamic variables and for X-arrays. In these cases, the
array data cannot be accessed as a whole, but must be accessed through the parameter access
functions described below.

For arrays with fixed bounds of variables with fixed length, the array contents can be accessed
directly using the address element. In these cases the address of an array element (i,j,k) is computed
as follows (especially if the array elements are not contiguous):

elementaddress = address + i * indexfactors[0] + j * indexfactors[1] + k * ↩
indexfactors[2]

If the array has less than 3 dimensions, leave out the last terms.

INTERFACE4 - Parameter Access

A set of functions is available to be used for the access of the parameters. The process flow is as
follows:

■ The 3GLprogram is called via the CALL statementwith the INTERFACE4 option, and the parameters
are passed to the 3GL program as described above.

■ The 3GLprogram can nowuse the exported functions ofNatural, to retrieve either the parameter
data itself, or information about the parameter, such as format, length, array information, etc.

■ The exported functions can also be used to pass back parameter data.

There are also functions to create and initialize a new parameter set in order to call arbitrary sub-
programs from a 3GL program. With this technique a parameter access is guaranteed to avoid
memory overwrites done by the 3GL program. (Natural's data is safe: memory overwrites within
the 3GL program's data are still possible).

Exported Functions

The following topics are covered below:

■ Get Parameter Information
■ Get Parameter Data
■ Write Back Operand Data
■ Create, Initialize and Delete a Parameter Set
■ Create Parameter Set
■ Delete Parameter Set
■ Initialize a Scalar of a Static Data Type
■ Initialize an Array of a Static Data Type
■ Initialize a Scalar of a Dynamic Data Type
■ Initialize an Array of a Dynamic Data Type

Statements170

CALL

■ Resize an X-array Parameter

Get Parameter Information

This function is used by the 3GLprogram to receive all necessary information from any parameter.
This information is returned in the struct parameter_description, which is documented above.

Prototype:

int ncxr_get_parm_info (int parmnum, void *parmhandle, struct parameter_description ↩
*descr);

Parameter Description:

Ordinal number of the parameter. This identifies the parameter of the passed parameter list.
Range: 0 ... numparm-1.

parmnum

Pointer to the internal parameter structureparmhandle

Address of a struct parameter_descriptiondescr

Information:Return Value:return

OK0

Illegal parameter number.-1

Internal error.-2

Interface version conflict.-7

Get Parameter Data

This function is used by the 3GL program to get the data from any parameter.

Natural identifies the parameter by the given parameter number and writes the parameter data
to the given buffer address with the given buffer size.

If the parameter data is longer than the given buffer size, Natural will truncate the data to the
given length. The external 3GL program can make use of the function ncxr_get_parm_info, to
request the length of the parameter data.

There are two functions to get parameter data: ncxr_get_parm gets the whole parameter (even if
the parameter is an array), whereas ncxr_get_parm_array gets the specified array element.

If no memory of the indicated size is allocated for “buffer” by the 3GL program (dynamically or
statically), results of the operation are unpredictable. Natural will only check for a null pointer.

If data gets truncated for variables of the type I2/I4/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

171Statements

CALL

Prototypes:

int ncxr_get_parm(int parmnum, void *parmhandle, int buffer_length, void *buffer)

int ncxr_get_parm_array(int parmnum, void *parmhandle, int buffer_length, void ↩
*buffer, int *indexes)

This function is identical to ncxr_get_parm, except that the indexes for each dimension can be
specified. The indexes for unused dimensions should be specified as 0.

Parameter Description:

Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.

parmnum

Pointer to the internal parameter structureparmhandle

Length of the buffer, where the requested data has to be written tobuffer_length

Address of buffer, where the requested data has to be written to. This buffer should be
aligned to allow easy access to I2/I4/F4/F8 variables.

buffer

Array with index informationindexes

Information:Return Value:return

Error during retrieval of the information:< 0

Illegal parameter number.-1

Internal error.-2

Data has been truncated.-3

Data is not an array.-4

Interface version conflict.-7

Index for dimension 0 is out of range.-100

Index for dimension 1 is out of range.-101

Index for dimension 2 is out of range.-102

Successful operation.0

Successful operation, but the data was only this
number of bytes long (buffer was longer than the
data).

> 0

Statements172

CALL

Write Back Operand Data

These functions are used by the 3GL program to write back the data to any parameter. Natural
identifies the parameter by the given parameter number and writes the parameter data from the
given buffer address with the given buffer size to the parameter data. If the parameter data is
shorter than the given buffer size, the data will be truncated to the parameters data length, that
is, the rest of the buffer will be ignored. If the parameter data is longer than the given buffer size,
the data will be copied only to the given buffer length, the rest of the parameter stays untouched.
This applies to arrays in the same way. For dynamic variables as parameters, the parameter is
resized to the given buffer length.

If data gets truncated for variables of the type I2/I4/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_put_parm (int parmnum, void *parmhandle,
int buffer_length, void *buffer);

int ncxr_put_parm_array (int parmnum, void *parmhandle,
int buffer_length, void *buffer,

int *indexes);

Parameter Description:

Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.

parmnum

Pointer to the internal parameter structure.parmhandle

Length of the data to be copied back to the address of buffer, where the data comes from.buffer_length

Index informationindexes

return Information:Return Value:

Error during copying of the information:< 0

Illegal parameter number.-1

Internal error.-2

Too much data has been given. The copy back was done
with parameter length.

-3

Parameter is not an array.-4

Parameter is protected (constant or AD=O).-5

Dynamic variable could not be resized due to an “out of
memory” condition.

-6

Interface version conflict.-7

The given buffer includes an incompleteUnicode character.-13

Index for dimension 0 is out of range.-100

173Statements

CALL

Index for dimension 1 is out of range.-101

Index for dimension 2 is out of range.-102

Successful operation.0

Successful operation, but the parameter was this number
of bytes long (length of parameter greater than given
length).

> 0

Create, Initialize and Delete a Parameter Set

If a 3GL program wants to call a Natural subprogram, it needs to build a parameter set that cor-
responds to the parameters the subprogram expects. The function ncxr_create_parm is used to
create a set of parameters to be passedwith a call to ncxr_if_callnat. The set of parameters created
is represented by an opaque parameter handle, like the parameter set that is passed to the 3GL
program with the CALL INTERFACE4 statement. Thus, the newly created parameter set can be ma-
nipulated with functions ncxr_put_parm* and ncxr_get_parm* as described above.

The newly created parameter set is not yet initialized after having called the function
ncxr_create_parm. An individual parameter is initialized to a specific data type by a set of
ncxr_parm_init* functions described below. The functions ncxr_put_parm* and ncxr_get_parm*
are then used to access the contents of each individual parameter. After the caller has finished
with the parameter set, theymust delete the parameter handle. Thus, a typical sequence in creating
and using a set of parameters for a subprogram to be called through ncxr_if4_callnatwill be:

ncxr_create_parm
ncxr_init_ parm*
ncxr_init_ parm*
...
ncxr_put_ parm*
ncxr_put_ parm*
...
ncxr_get_parm_info*
ncxr_get_parm_info*
...
ncxr_if4_callnat
...
ncxr_get_parm_info*
ncxr_get_parm_info*
...
ncxr_get_ parm*
ncxr_get_ parm*
...
ncxr_delete_parm

Statements174

CALL

Create Parameter Set

The function ncxr_create_parm is used to create a set of parameters to be passed with a call to
ncxr_if_callnat.

Prototype:

int ncxr_create_parm(int parmnum, void** pparmhandle)

Parameter Description:

Number of parameters to be created.parmnum

Pointer to the created parameter handle.pparmhandle

Information:Return Value:return

Error:< 0

Illegal parameter count.-1

Internal error.-2

Out of memory condition.-6

Successful operation.0

Delete Parameter Set

The function ncxr_delete_parm is used to delete a set of parameters that was created with
ncxr_create_parm.

Prototype:

int ncxr_delete_parm(void* parmhandle)

Parameter Description:

Pointer to the parameter handle to be deleted.parmhandle

Information:Return Value:return

Error:< 0

Internal error.-2

Successful operation.0

175Statements

CALL

Initialize a Scalar of a Static Data Type

Prototype:

int ncxr_init_parm_s(int parmnum, void *parmhandle,
char format, int length, int precision, int flags);

Parameter Description:

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmnum

Pointer to the parameter handle.parmhandle

Format of the parameter.format

Length of the parameter.length

Precision of the parameter.precision

IF4_FLG_PROTECTEDflags

Information:Return Value:return

Error:< 0

Invalid parameter number.-1

Internal error.-2

Out of memory condition.-6

Invalid format.-8

Invalid length or precision.-9

Successful operation.0

Initialize an Array of a Static Data Type

Prototype:

int ncxr_init_parm_sa(int parmnum, void *parmhandle,
char format, int length, int precision,
int dim, int *occ, int flags);

Parameter Description:

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmnum

Pointer to the parameter handle.parmhandle

Format of the parameter.format

Length of the parameter.length

Precision of the parameter.precision

Statements176

CALL

Dimension of the array.dim

Number of occurrences per dimension.occ

A combination of the flagsflags

IF4_FLG_PROTECTED
IF4_FLG_LBVAR_0
IF4_FLG_UBVAR_0
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_2
IF4_FLG_UBVAR_2

Information:Return Value:return

Error:< 0

Invalid parameter number.-1

Internal error.-2

Out of memory condition.-6

Invalid format.-8

Invalid length or precision.-9

Invalid dimension count.-10

Invalid combination of variable bounds.-11

Successful operation.0

Initialize a Scalar of a Dynamic Data Type

Prototype:

int ncxr_init_parm_d(int parmnum, void *parmhandle,
char format, int flags);

Parameter Description:

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmnum

Pointer to the parameter handle.parmhandle

Format of the parameter.format

IF4_FLG_PROTECTEDflags

Information:Return Value:return

Error:< 0

Invalid parameter number.-1

Internal error.-2

Out of memory condition.-6

177Statements

CALL

Invalid format.-8

Successful operation.0

Initialize an Array of a Dynamic Data Type

Prototype:

int ncxr_init_parm_da(int parmnum, void *parmhandle,
char format, int dim, int *occ, int flags);

Parameter Description:

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmnum

Pointer to the parameter handle.parmhandle

Format of the parameter.format

Dimension of the array.dim

Number of occurrences per dimension.occ

A combination of the flagsflags

IF4_FLG_PROTECTED
IF4_FLG_LBVAR_0
IF4_FLG_UBVAR_0
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_2
IF4_FLG_UBVAR_2

Information:Return Value:return

Error:< 0

Invalid parameter number.-1

Internal error.-2

Out of memory condition.-6

Invalid format.-8

Invalid dimension count.-10

Invalid combination of variable bounds.-11

Successful operation.0

Statements178

CALL

Resize an X-array Parameter

Prototype:

int ncxr_resize_parm_array(int parmnum, void *parmhandle, int *occ);

Parameter Description:

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmnum

Pointer to the parameter handle.parmhandle

New number of occurrences per dimension.occ

Information:Return Value:return

Error:< 0

Invalid parameter number.-1

Internal error.-2

Out of memory condition.-6

Operand is not resizable (in one of the specified
dimensions).

-12

Successful operation.0

All function prototypes are declared in the file natuser.h.

179Statements

CALL

180

23 CALL FILE

■ Function .. 182
■ Restriction .. 182
■ Syntax Description ... 182
■ Example .. 183

181

Structured Mode Syntax

CALL FILE 'program-name' operand1 operand2

statement

END-FILE

Reporting Mode Syntax

CALL FILE 'program-name' operand1 operand2

statement

LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL FILE statement is used to call a non-Natural programwhich reads a record from a non-
Adabas file and returns the record to the Natural program for processing.

Restriction

The statements AT BREAK, AT START OF DATA and AT END OF DATAmust not be usedwithin a CALL
FILE processing loop.

Syntax Description

Operand Definition Table:

Statements182

CALL FILE

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesCLTDBFIPNUAASoperand1

yesyesCLTDBFIPNUAGASoperand2

Syntax Element Description:

DescriptionSyntax Element

Program to be Called:'program-name'
The name of the non-Natural program to be called.

Control Field:operand1
operand1 is used to provide control information.

Record Area:operand2
operand2 defines the record area.

The format of the record to be read can be described using field definitions (or FILLER
nX) entries following the name of the first field in the record. The fields used to define
the record format must not have been previously defined in the Natural program. This
ensures that fields are allocated in the contiguous storage by Natural.

Processing Loop:statement ...
The CALL FILE statement initiates a processing loop which must be terminated with
an ESCAPE or STOP statement. More than one ESCAPE statement may be specified to
escape from a CALL FILE loop based on different conditions.

End of CALL FILE Statement:END-FILE

In structured mode, the Natural reserved keyword END-FILEmust be used to end the
CALL FILE statement.

LOOP

In reportingmode, theNatural statement LOOP is used to end the CALL FILE statement.

Example

Calling Program:

** Example 'CFIEX1': CALL FILE
**
DEFINE DATA LOCAL
1 #CONTROL (A3)
1 #RECORD

2 #A (A10)
2 #B (N3.2)
2 #FILL1 (A3)
2 #C (P3.1)

END-DEFINE
*

183Statements

CALL FILE

CALL FILE 'USER1' #CONTROL #RECORD
IF #CONTROL = 'END'

ESCAPE BOTTOM
END-IF

END-FILE
/*****************************
/* ... PROCESS RECORD ...
/*****************************
END

The byte layout of the record passed by the called program to the Natural program in the above
example is as follows:

CONTROL #A #B FILLER #C
(A3) (A10) (N3.2) 3X (P3.1)

xxx xxxxxxxxxx xxxxx xxx xxx

Called COBOL Program:

ID DIVISION.
PROGRAM-ID. USER1.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT USRFILE ASSIGN UT-S-FILEUSR.
DATA DIVISION.
FILE SECTION.
FD USRFILE RECORDING F LABEL RECORD OMITTED

DATA RECORD DATA-IN.
01 DATA-IN PIC X(80).
LINKAGE SECTION.
01 CONTROL-FIELD PIC XXX.
01 RECORD-IN PIC X(21).
PROCEDURE DIVISION USING CONTROL-FIELD RECORD-IN.
BEGIN.

GO TO FILE-OPEN.
FILE-OPEN.

OPEN INPUT USRFILE
MOVE SPACES TO CONTROL-FIELD.
ALTER BEGIN TO PROCEED TO FILE-READ.

FILE-READ.
READ USRFILE INTO RECORD-IN

AT END
MOVE 'END' TO CONTROL-FIELD
CLOSE USRFILE
ALTER BEGIN TO PROCEED TO FILE-OPEN.

GOBACK.

Statements184

CALL FILE

24 CALL LOOP

■ Function .. 186
■ Restriction .. 186
■ Syntax Description ... 187
■ Example .. 187

185

Structured Mode Syntax

CALL LOOP operand1 [operand2] ...40

statement

END-LOOP

Reporting Mode Syntax

CALL LOOP operand1 [operand2] ...40

statement

LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL LOOP statement is used to generate a processing loop that contains a call to a non-Natural
program.

Unlike the CALL statement, the CALL LOOP statement results in a processing loop which is used to
repeatedly call the non-Natural program. See the CALL statement for a detailed description of the
CALL processing.

Restriction

The statements AT BREAK, AT START OF DATA and AT END OF DATAmust not be usedwithin a CALL
LOOP processing loop.

Statements186

CALL LOOP

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

yesyesCLTDBFIPNUAGASCoperand2

Syntax Element Description:

DescriptionSyntax Element

Program to be Called:operand1
The name of the non-Natural program to be called can be specified as a constant or -
if different programs are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 32. A program namemust be placed left-justified in the variable.

Parameters:operand2
The CALL LOOP statement can have a maximum of 40 parameters. The parameter list
is constructed as described for the CALL statement. Fields used in the parameter list
may be initially defined in the CALL LOOP statement itself ormay have been previously
defined.

Processing Loop:statement ...
The CALL LOOP statement initiates a processing loop which must be terminated with
an ESCAPE statement.

End of CALL LOOP Statement:END-LOOP

In structured mode, the Natural reserved word END-LOOPmust be used to end the
CALL LOOP statement.

LOOP

In reportingmode, theNatural statement LOOP is used to end the CALL LOOP statement.

Example

DEFINE DATA LOCAL
1 PARAMETER1 (A10)
END-DEFINE
CALL LOOP 'ABC' PARAMETER1

IF PARAMETER1 = 'END'
ESCAPE BOTTOM

END-IF
END-LOOP
END

187Statements

CALL LOOP

188

25 CALLDBPROC (SQL)

■ Function .. 190
■ Syntax Description ... 191
■ Example .. 192

189

CALLDBPROC dbproc ddm-name

M

OAD=parameter[USING]

A

[RESULT SETS result-set]

[GIVING sqlcode]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The CALLDBPROC statement is used to invoke a stored procedure of the SQL database system to
which Natural is connected.

The stored procedure can be either a Natural subprogram (only available when executed from
Db2 for z/OS) or a program written in another programming language.

In addition to the passing of parameters between the invoking object and the stored procedure,
CALLDBPROC supports “result sets”; these make it possible to return a larger amount of data from
the stored procedure to the invoking object than would be possible via parameters.

The result sets are “temporary result tables” which are created by the stored procedure andwhich
can be read and processed by the invoking object via a READ RESULT SET statement.

Note: In general, the invoking of a stored procedure could be compared with the invoking
of a Natural subprogram: when the CALLDBPROC statement is executed, control is passed to
the stored procedure; after processing of the stored procedure, control is returned to the
invoking object and processing continues with the statement following the CALLDBPROC
statement.

Statements190

CALLDBPROC (SQL)

Syntax Description

DescriptionSyntax
Element

Stored Procedure to be Invoked:dbproc

As dbproc you specify the name of the stored procedure to be invoked. The name can be
specified either as an alphanumeric variable or as a constant (enclosed in apostrophes).

The namemust adhere to the rules for stored procedure names of the target database system.

If the stored procedure is a Natural subprogram, the actual procedure name must not be
longer than 8 characters.

Name of a Natural Data Definition Module:ddm-name

The name of aDDMmust be specified to provide the “address” of the databasewhich executes
the stored procedure. For further information, see ddm-name.

Parameter(s) to be Passed:[USING]
parameter

As parameter, you can specify parameters which are passed from the invoking object to the
stored procedure. A parameter can be

■ a host-variable (optionally with INDICATOR and LINDICATOR clauses),
■ a constant, or
■ the keyword NULL.

See further details on host-variable.

Attribute Definition:AD=

If parameter is a host-variable, you can mark it as follows:

Non-modifiable, see session parameter AD=O.AD=O

(Corresponding procedure notation in Db2 for
z/OS: IN.)

Modifiable, see session parameter AD=M.AD=M

(Corresponding procedure notation in Db2 for
z/OS: INOUT.)

For input only, see session parameter AD=A.AD=A

(Corresponding procedure notation in Db2 for
z/OS: OUT.)

If parameter is a constant, AD cannot be explicitly specified. For constants, AD=O always
applies.

191Statements

CALLDBPROC (SQL)

DescriptionSyntax
Element

Field for Result-Set Locator Variable:RESULT
SETS
result-set As result-set you specify a field in which a result-set locator is to be returned.

A result set has to be a variable of format/length I4.

The value of a result set variable is merely a numberwhich identifies the result set andwhich
can be referenced in a subsequent READ RESULT SET statement.

The sequence of the result-set values correspond to the sequence of the result sets returned
by the stored procedure.

The contents of the result sets can be processed by a subsequent READ RESULT SET statement.

If no result set is returned, the corresponding result-set variable will contain 0.

Only one result set can be specified.

GIVING sqlcode Option:GIVING
sqlcode

This option may be used to obtain the SQLCODE of the SQL CALL statement invoking the
stored procedure.

If this option is specified and the SQLCODEof the stored procedure is not 0, noNatural error
message will be issued. In this case, the action to be taken in reaction to the SQLCODE value
has to be coded in the invoking Natural object.

The sqlcode field has to be a variable of format/length I4.

If the GIVING sqlcode option is omitted, a Natural error message will be issued if the
SQLCODE of the stored procedure is not 0.

Example

The following example shows a Natural program that calls the stored procedure DEMO_PROC to
retrieve all names of table PERSON that belong to a given range.

Three parameter fields are passed to DEMO_PROC: the first and second parameters pass starting and
ending values of the range of names to the stored procedure, and the third parameter receives a
name that meets the criterion.

In this example, the names are returned in a result set that is processed using the READ RESULT
SET statement.

Statements192

CALLDBPROC (SQL)

DEFINE DATA LOCAL
1 PERSON VIEW OF DEMO-PERSON

2 PERSON_ID
2 LAST_NAME

1 #BEGIN (A2) INIT <'AB'>
1 #END (A2) INIT <'DE'>
1 #RESPONSE (I4)
1 #RESULT (I4)
1 #NAME (A20)
END-DEFINE

...

CALLDBPROC 'DEMO_PROC' DEMO-PERSON #BEGIN (AD=O) #END (AD=O) #NAME (AD=A)
RESULT SETS #RESULT
GIVING #RESPONSE

READ RESULT SET #RESULT INTO #NAME FROM DEMO-PERSON
GIVING #RESPONSE

DISPLAY #NAME
END-RESULT

...

END

193Statements

CALLDBPROC (SQL)

194

26 CALLNAT

■ Function .. 196
■ Syntax Description ... 197
■ Parameter Transfer with Dynamic Variables .. 199
■ Examples ... 200

195

M

)O(AD=operand2
[USING]CALLNAT operand1

A

nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALLNAT statement is used to invoke a Natural subprogram for execution. (A Natural subpro-
gram can only be invoked via a CALLNAT statement; it cannot be executed by itself.)

When the CALLNAT statement is executed, the execution of the invoking object (that is, the object
containing the CALLNAT statement)will be suspended and the invoked subprogramwill be executed.
The execution of the subprogram continues until either its END statement is reached or processing
of the subprogram is stopped by an ESCAPE ROUTINE statement being executed. In either case,
processing of the invoking object will then continue with the statement following the CALLNAT
statement.

Notes:

1. A subprogram can in turn invoke other subprograms.

2. A subprogramhas no access to the global data area used by the invoking object. If a subprogram
in turn invokes a subroutine or helproutine, it can establish its own global data area to be shared
with the subroutine/helproutine.

Statements196

CALLNAT

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

yesyesOGCLTDBFIPNUAGASCoperand2

Syntax Element Description:

DescriptionSyntax
Element

Subprogram to be Invoked:operand1

As operand1, you specify the name of the subprogram to be invoked. The namemay be specified
either as a constant of 1 to 32 characters, or - if different subprograms are to be called dependent
on program logic - as an alphanumeric variable of length 1 to 8.

The subprogram name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different subprograms for the
processing of input, depending on the language in which input is provided.

Parameters:operand2

If parameters are passed to the subprogram, the structure of the parameter list must be defined
in a DEFINE DATA PARAMETER statement. The parameters specifiedwith the CALLNAT statement
are the only data available to the subprogram from the invoking object.

By default, the parameters are passed by reference, that is, the data are transferred via address
parameters, the parameter values themselves are not moved. However, it is also possible to
pass parameters by value, that is, pass the actual parameter values. To do so, you define these
fields in the DEFINE DATA PARAMETER statement of the subprogramwith the option BY VALUE
or BY VALUE RESULT (see parameter-data-definition in the description of the DEFINE
DATA statement).

■ If parameters are passed by reference, the following applies: The sequence, format and length
of the parameters in the invoking object must match exactly the sequence, format and length
of the DEFINE DATA PARAMETER structure in the invoked subprogram. The names of the
variables in the invoking object and the invoked subprogram may be different.

■ If parameters are passed by value, the following applies: The sequence of the parameters in
the invoking object must match exactly the sequence in the DEFINE DATA PARAMETER
structure of the invoked subprogram. Formats and lengths of the variables in the invoking
object and the subprogrammaybe different; however, they have to be data transfer compatible;
see the corresponding table in the section Rules for Arithmetic Assignments, Data Transfer in

197Statements

CALLNAT

DescriptionSyntax
Element

the ProgrammingGuide. The names of the variables in the invoking object and the subprogram
may be different. If parameter values that have been modified in the subprogram are to be
passed back to the invoking object, you have to define these fields with BY VALUE RESULT.
When BY VALUE is specified without RESULT, it is not possible to pass modified parameter
values back to the invoking object (regardless of the AD specification; see also below).

Note: With BY VALUE, an internal copy of the parameter values is created. The subprogram
accesses this copy and can modify it, but this will not affect the original parameter values in
the invoking object. With BY VALUE RESULT, an internal copy is likewise created, however,
after termination of the subprogram, the original parameter values are overwritten by the
(modified) values of the copy.

For both ways of passing parameters, the following applies:

If a group is specified as operand2, the individual fields contained in that group are passed to
the subprogram; that is, for each of these fields a corresponding field must be defined in the
subprogram's parameter data area.

In the parameter data area of the invoked subprogram, a redefinition of groups is only permitted
within a REDEFINE block.

If an array is passed, its number of dimensions and occurrences in the subprogram's parameter
data area must be the same as in the CALLNAT parameter list.

Note: If multiple occurrences of an array that is defined as part of an indexed group are passed
with the CALLNAT statement, the corresponding fields in the subprogram's parameter data area
must not be redefined, as this would lead to the wrong addresses being passed.

When the option PCHECK of the COMPOPT command is set to ON, the compiler will check the
number, format, length and array index bounds of the parameters that are specified in a CALLNAT
statement. Also, the OPTIONAL feature of the DEFINE DATA PARAMETER statement is considered
in the parameter check.

Note: Numeric constant parameters are internally represented in packed form (format P). For
further information see the Programming Guide > Numeric Constants.

Attribute Definition:AD=

If operand2 is a variable, you can mark it in one of the following ways:

Non-modifiable, see session parameter AD=O.AD=O

Note: Internally, AD=O is processed in the same
way as BY VALUE (see
parameter-data-definition in the
description of the DEFINE DATA statement).

Modifiable, see session parameter AD=M.AD=M

This is the default setting.

Statements198

CALLNAT

DescriptionSyntax
Element

Input only, see session parameter AD=A.AD=A

If operand2 is a constant, AD cannot be explicitly specified. For constants AD=O always applies.

Parameters to be Skipped:nX

With the notation nX you can specify that the next n parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the
next n parameters no values are passed to the subprogram. The possible range of values for n
is 1 - 4096.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the
subprogram's DEFINE DATA PARAMETER statement. OPTIONALmeans that a value can - but
need not - be passed from the invoking object to such a parameter.

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
A call by reference is possible because the value space of a dynamic variable is contiguous. A call
by value causes an assignment with the variable definition of the caller as the source operand and
the parameter definition as the destination operand. In addition, a call by value result causes the
movement to change to the opposite direction. When using a call-by-reference, both definitions
must be DYNAMIC. If only one of them is DYNAMIC, a runtime error is raised. In case of a call by value
(result) all combinations are possible.

The following table illustrates the valid combinations of statically anddynamically defined variables
of the caller, and statically and dynamically defined parameters concerning the parameter transfer.

Call By Reference

Parameter definitionoperand2 of caller

DynamicStatic

noyesStatic

yesnoDynamic

The formats of the dynamic variables A or B must match.

199Statements

CALLNAT

Call by Value (Result)

Parameter definitionoperand2 of caller

DynamicStatic

yesyesStatic

yesyesDynamic

Note: When using static/dynamic or dynamic/static definitions, a value truncation may
occur according to the data transfer rules of the appropriate assignments.

Examples

■ Example 1
■ Example 2

Example 1

Calling Program:

** Example 'CNTEX1': CALLNAT
**
DEFINE DATA LOCAL
1 #FIELD1 (N6)
1 #FIELD2 (A20)
1 #FIELD3 (A10)
END-DEFINE
*
CALLNAT 'CNTEX1N' #FIELD1 (AD=M) #FIELD2 (AD=O) #FIELD3 'P4 TEXT'
*
WRITE '=' #FIELD1 '=' #FIELD2 '=' #FIELD3
*
END

Called Subprogram CNTEX1N:

** Example 'CNTEX1N': CALLNAT (called by CNTEX1)
**
DEFINE DATA PARAMETER
1 #FIELDA (N6)
1 #FIELDB (A20)
1 #FIELDC (A10)
1 #FIELDD (A7)
END-DEFINE
*
*

Statements200

CALLNAT

#FIELDA := 4711
*
#FIELDB := 'HALLO'
*
#FIELDC := 'ABC'
*
WRITE '=' #FIELDA '=' #FIELDB '=' #FIELDC '=' #FIELDD
*
END

Example 2

Calling Program:

** Example 'CNTEX2': CALLNAT
**
DEFINE DATA LOCAL
1 #ARRAY1 (N4/1:10,1:10)
1 #NUM (N2)
END-DEFINE
*
*
CALLNAT 'CNTEX2N' #ARRAY1 (2:5,*)
*
FOR #NUM 1 TO 10

WRITE #NUM #ARRAY1(#NUM,1:10)
END-FOR
*
END

Called Subprogram CNTEX2N:

** Example 'CNTEX2N': CALLNAT (called by CNTEX2)
**
DEFINE DATA
PARAMETER
1 #ARRAY (N4/1:4,1:10)
LOCAL
1 I (I2)
END-DEFINE
*
*
FOR I 1 10

#ARRAY(1,I) := I
#ARRAY(2,I) := 100 + I
#ARRAY(3,I) := 200 + I
#ARRAY(4,I) := 300 + I

END-FOR
*
END

201Statements

CALLNAT

202

27 CLOSE CONVERSATION

■ Function .. 204
■ Syntax Description ... 204
■ Further Information and Examples .. 205

203

operand1

*CONVIDCLOSE CONVERSATION

ALL

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE DATA CONTEXT | OPEN CONVERSATION

Belongs to Function Group: Natural Remote Procedure Call

Function

The statement CLOSE CONVERSATION is used in conjunctionwith theNatural RPC (Remote Procedure
Call). It allows the client to close conversations. You can close the current conversation, another
open conversation, or all open conversations.

Note: A logon to another library does not automatically close conversations.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesIASoperand1

Syntax Element Description:

DescriptionSyntax Element

Identifier of Conversation to be Closed:operand1

To close a specific open conversation, specify its ID as operand1.

operand1must be a variable of format/length I4.

Closing the Current Conversation:*CONVID

To close the current conversation, specify *CONVID.

The ID of the current conversation is determined by the value of the systemvariable *CONVID.

Closing All Open Conversations:ALL

To close all open conversations, specify ALL.

Statements204

CLOSE CONVERSATION

Further Information and Examples

See the following sections in the Natural RPC (Remote Procedure Call) documentation:

■ Natural RPC Operation in Conversational Mode
■ Using a Conversational RPC

205Statements

CLOSE CONVERSATION

206

V
■ 28 CLOSE PC FILE ... 209
■ 29 CLOSE PRINTER .. 213
■ 30 CLOSE WORK FILE .. 217
■ 31 COMMIT (SQL) ... 221
■ 32 COMPRESS ... 223
■ 33 COMPUTE ... 233
■ 34 CREATE OBJECT ... 241
■ 35 DECIDE FOR ... 245
■ 36 DECIDE ON ... 251
■ 37 DEFINE CLASS .. 257

207

208

28 CLOSE PC FILE

■ Function .. 210
■ Syntax Description ... 210
■ Example .. 210

209

[FILE] work-file-number
PC

CLOSE
WORK

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DOWNLOAD PC FILE | UPLOAD PC FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The statement CLOSE PC FILE is used to close a specific PC work file. It allows you to explicitly
specify in a program that a PC work file is to be closed.

A work file is also closed automatically when command mode is reached.

See also the Natural Connection and Entire Connection documentation.

Syntax Description

DescriptionSyntax Element

The work-file-number is the number of the PC work file to be closed.work-file-number

This numbermust correspond to one of the work file numbers for the PC as defined
to Natural.

Example

The following program demonstrates the use of the CLOSE PC FILE statement.

** Example 'PCCLEX1': CLOSE PC FILE
**
** NOTE: Example requires that Natural Connection is installed.
**
DEFINE DATA LOCAL
01 W-DAT (A40)
01 REC-NUM (N3)
01 I (P3)
END-DEFINE
*
REPEAT

Statements210

CLOSE PC FILE

UPLOAD PC FILE 7 ONCE W-DAT /* Data upload
AT END OF FILE

ESCAPE BOTTOM
END-ENDFILE
INPUT 'Processing file' W-DAT (AD=O)

/ 'Enter record number to display' REC-NUM
IF REC-NUM = 0

STOP
END-IF
FOR I = 1 TO REC-NUM

UPLOAD PC FILE 7 ONCE W-DAT
AT END OF FILE
WRITE 'Max. record number reached, last record is'
ESCAPE BOTTOM

END-ENDFILE
END-FOR
I := I - 1
WRITE 'Record' I ':' W-DAT

CLOSE PC FILE 7 /* Close PC file 7
END-REPEAT
END

Output of Program PCCLEX1:

When you run the program, a window appears in which you specify the name of the PC file from
which the data is to be uploaded. The data is then uploaded from the PC. At the end of each loop,
the PC file is closed.

211Statements

CLOSE PC FILE

212

29 CLOSE PRINTER

■ Function .. 214
■ Syntax Description ... 214
■ Example .. 215

213

(logical-printer-name)
CLOSE PRINTER

(printer-number)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE |DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The CLOSE PRINTER statement is used to close a specific printer.With this statement, you explicitly
specify in a program that a printer is to be closed.

A printer is also closed automatically in one of the following cases:

■ when a DEFINE PRINTER statement in which the same printer is defined again is executed;
■ when command mode is reached.

Syntax Description

DescriptionSyntax Element

Logical Printer Name:logical-printer-name

With the logical-printer-name you specify which printer is to be closed.
The name is the same as in the corresponding DEFINE PRINTER statement in
which you defined the printer.

Naming conventions for the logical-printer-name are the same as for
user-defined variables, seeNaming Conventions for User-Defined Variables inUsing
Natural.

Printer Number:printer-number

Alternatively to the logical-printer-name, you may define the
printer-number to specify which printer is to be closed.

The printer-numbermay be a number in the range from 0 - 31. This is the
number also to be used in a DISPLAY / WRITE or DEFINE PRINTER statement.

Printer number 0 indicates the hardcopy printer.

Statements214

CLOSE PRINTER

Example

** Example 'CLPEX1': CLOSE PRINTER
**
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 BIRTH

*
1 #I-NAME (A20)
END-DEFINE
*
DEFINE PRINTER (PRT01=1)
*
REPEAT

INPUT 'SELECT PERSON' #I-NAME
IF #I-NAME = ' '

STOP
END-IF
FIND EMP-VIEW WITH NAME = #I-NAME

WRITE (PRT01) 'NAME :' NAME ',' FIRST-NAME
/ 'PERSONNEL-ID :' PERSONNEL-ID
/ 'BIRTH :' BIRTH (EM=YYYY-MM-DD)

END-FIND
/*
CLOSE PRINTER (PRT01)
/*

END-REPEAT
END

215Statements

CLOSE PRINTER

216

30 CLOSE WORK FILE

■ Function .. 218
■ Syntax Description ... 218
■ Example .. 219

217

CLOSE WORK [FILE] work-file-number

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The statement CLOSE WORK FILE is used to close a specific work file. It allows you to explicitly
specify in a program that a work file is to be closed.

A work file is closed automatically:

■ When command mode is reached.
■ When an end-of-file condition occurs during the execution of a READ WORK FILE statement.
■ Before a DEFINE WORK FILE statement is executed which assigns another file to the work file
number concerned.

Syntax Description

DescriptionSyntax Element

Work File Number:work-file-number
The work file number (as defined to Natural) to be used.

The work file number is either

■ a numeric constant in the value range 1:32 or
■ a numeric variable of type (B/N/P/I) definedwith a CONST clausewhich assigning
a value in range (1:32). Variable is a scalar (non-array) without precision digits
for type (N/P), length in between 1-4 for type (B), and no redefinition field.

Statements218

CLOSE WORK FILE

Example

** Example 'CWFEX1': CLOSE WORK FILE
**
DEFINE DATA LOCAL
1 W-DAT (A20)
1 REC-NUM (N3)
1 I (P3)
END-DEFINE
*
REPEAT

READ WORK FILE 1 ONCE W-DAT /* READ MASTER RECORD
/*
AT END OF FILE

ESCAPE BOTTOM
END-ENDFILE
INPUT 'PROCESSING FILE' W-DAT (AD=O)

/ 'ENTER RECORDNUMBER TO DISPLAY' REC-NUM
IF REC-NUM = 0

STOP
END-IF

FOR I = 1 TO REC-NUM
/*
READ WORK FILE 1 ONCE W-DAT
/*
AT END OF FILE
WRITE 'RECORD-NUMBER TOO HIGH, LAST RECORD IS'
ESCAPE BOTTOM

END-ENDFILE
END-FOR
I := I - 1
WRITE 'RECORD' I ':' W-DAT
/*
CLOSE WORK FILE 1
/*

END-REPEAT
END

219Statements

CLOSE WORK FILE

220

31 COMMIT (SQL)

■ Function .. 222
■ Example .. 222

221

COMMIT

Belongs to Function Group: Database Access and Update

Function

The SQL COMMIT statement corresponds to the END TRANSACTION statement. It indicates the end of
a logical transaction and releases all data locked during the transaction. All data modifications
are committed and made permanent.

Important: As all cursors are closed when a logical unit of work ends, a COMMIT statement
must not be placed within a database modification loop; instead, it has to be placed outside
such a loop or after the outermost loop of nested loops.

Example

...
DELETE FROM SQL-PERSONNEL WHERE NAME = 'SMITH'
COMMIT
...

Statements222

COMMIT (SQL)

32 COMPRESS

■ Function .. 224
■ Syntax Description ... 224
■ Processing ... 228
■ Examples ... 229

223

COMPRESS [NUMERIC] [FULL]

operand1 [(parameter)]

SUBSTRING (operand1,operand3,operand4) [(parameter)]

operand2

INTO SUBSTRING
(operand2,operand5,operand6)

LEAVING [SPACE]

LEAVING NO [SPACE]

WITH [ALL] [DELIMITERS] [operand7]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ASSIGN | COMPUTE | EXAMINE | MOVE | MOVE ALL | SEPARATE

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The COMPRESS statement is used to transfer (combine) the contents of one or more operands into
a single field.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGLTDBFIPNUANGASCoperand1

yesyesBUASoperand2

noyesB*IPNSCoperand3

noyesB*IPNSCoperand4

noyesB*IPNSCoperand5

noyesB*IPNSCoperand6

noyesBUASCoperand7

* Format B of operand3, operand4, operand5 and operand6may be used only with a length of less
than or equal to 4.

Statements224

COMPRESS

Syntax Element Description:

DescriptionSyntax
Element

Handling of Sign Characters:NUMERIC

This option determines how sign characters and decimal characters are to be handled:

Without NUMERIC, decimal points and signs in numeric source values are suppressed before
the values are transferred. For example:

COMPRESS -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: 123*123

With NUMERIC, decimal points and signs in numeric source values are also transferred to the
target field.

For floating point source values, decimal points and signs are transferred, regardless of
whether NUMERIC has been specified or not.

Example 1:

COMPRESS NUMERIC -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: -123*1.23

Example 2:

COMPRESS NUMERIC 'ABC' -0056.00 -0056.10 -0056.01
INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*-56*-56.1*-56.01

Example 3:

COMPRESS NUMERIC FULL 'ABC' -0056.00 -0056.10 -0056.01
INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*-0056.00*-0056.10*-0056.01

Handling of Source Field Values:

Without FULL, the following are removed from the source fields before the values are
transferred:

FULL

■ leading zeros before the decimal point for fields of format N, P or I
■ trailing zeros after the decimal point for fields of format N or P
■ trailing blanks for fields of format A
■ and leading binary zeros for fields of format B

For a numeric source field containing all zeros, one zero will be transferred. For example:

225Statements

COMPRESS

DescriptionSyntax
Element

COMPRESS 'ABC ' 001 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC*1

With FULL, the values of the source fields in their actual lengths will be transferred to the
target field. In other words:

■ leading zeros before the decimal point for fields of format N, P or I
■ trailing zeros after the decimal point for fields of format N or P
■ and trailing blanks for fields of format A
■ leading binary zeros for fields of format B

are displayed as entered. For example:

COMPRESS FULL 'ABC ' 001 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC *001

Source Fields:

As operand1, you specify the fields whose contents are to be transferred.

Note: If operand1 is not of format A or B, its content is converted into alphanumeric
representation before it is transferred. If necessary, the alphanumeric representation is
truncated.

operand1

Using operand1without an explicit Edit Mask, a ...

- Time variable (format T) is transferred only with the time component, not the date
component.
- Logical variable (format L) with value <false> is represented by a blank and value <true> is
represented by char "X".

Target Field:operand2

As operand2, you specify the field which is to receive the values of the source fields.

If the target field is of format U (Unicode) and if a source field of format B is involved, the
length of the sending binary field must be even.

Values in Target Field Separated by a Blank:LEAVING
SPACE If you use the COMPRESS statement without any further options, or if you specify LEAVING

SPACE (which also applies by default), the values in the target field will be separated from
one another by a blank.

Values in Target Field Not Separated:LEAVING NO
SPACE If you specify LEAVING NO SPACE, the values in the target field will not be separated from

one another by a blank or any other character.

Print Mode/Date Format/Edit Mask Parameters:parameter
As parameter, you can specify the session parameters PM, DF, EM, or EMU:

Statements226

COMPRESS

DescriptionSyntax
Element

In order to support languages whose writing
direction is from right to left, you can specify PM=I

PM=I

so as to transfer the value of operand1 in inverse
(right-to-left) direction to operand2. For example,
as a result of the following statements, the content
of #Bwould be ZYXABC:

MOVE 'XYZ' TO #A
COMPRESS #A (PM=I) 'ABC'
INTO #B LEAVING NO SPACE

Any trailing blanks in operand1will be removed
(except if FULL is specified), then the value is
reversed character by character and transferred
to operand2.

If operand1 is a date variable, you can specify
the session parameter DF as parameter for this
variable.

DF

Edit Mask:EM=
For details on edit masks, see the session
parameter EM in the Parameter Reference. The EM
parameter cannot be applied for group operands
or when the SUBSTRING option is used.

Unicode Edit Mask:EMU=
For details onUnicode edit masks, see the session
parameter EMU in the Parameter Reference. The
EMU parameter cannot be applied for group
operands or when the SUBSTRING option is used.

SUBSTRING Option:SUBSTRING
(operand1, If operand1 is of alphanumeric (A), Unicode (U) or binary (B) format, you can use the

SUBSTRING option to transfer only a certain part of a source field. After the field nameoperand3,
operand4) (operand1) you specify first the starting position (operand3) and then the length (operand4)

of the field portion to be transferred.

INTO Clause:INTO
SUBSTRING

Also, you can use the SUBSTRING option in the INTO clause to transfer source values into a
certain part of the target field.

(operand2,
operand5,
operand6)

In both cases, the use of the SUBSTRING option in a COMPRESS statement corresponds to that
in a MOVE statement. See the MOVE statement for details on the SUBSTRING option.

Input Delimiter Character:WITH
DELIMITERS

If you wish the values in the target field to be separated from one another by a specific
character, you use the DELIMITERS option.

227Statements

COMPRESS

DescriptionSyntax
Element

If you specify WITH DELIMITERSwithout operand7, the values will be separated by the
input delimiter character as defined with the session parameter ID.

Specific Delimiter Character:WITH
DELIMITERS
operand7

If you specify WITH DELIMITERS operand7, the values will be separated by the character
specified with operand7. operand7must be a single character. If operand7 is a variable, it
must be of format/length (A1) or (B1).

If the target field is of format A or B, the format/length of the delimiter has to be (A1), (B1)
or (U1).

If the target field is of format U (Unicode), the format/length of the delimiter has to be (A1),
(B2) or (U1).

Handling of Delimiters:WITH ALL

Without ALL, a delimiter is placed in the target field only between values actually transferred.
For example:

COMPRESS 'A' ' ' 'C' ' ' INTO #TARGET WITH DELIMITERS '*'
Content of #TARGET is: A*C

With ALL, a delimiter is also placed in the target field for each blank value that is not actually
transferred. This means that the number of delimiters in the target field corresponds to the
number of source fields minus 1. This may be useful, for example, if the content of the target
field is to be separated again with a subsequent SEPARATE statement. For example:

COMPRESS 'A' ' ' 'C' ' ' INTO #TARGET WITH ALL DELIMITERS '*'
Content of #TARGET is: A**C*

Processing

A destination field of format B is handled like a destination field of format A.

The COMPRESS operation terminates when either all operands have been processed or the target
field (operand2) is filled.

If the target field contains more positions than all operands combined, all remaining positions of
operand2will be filled with blanks. If the target field is shorter, the value will be truncated.

If operand2 is a dynamic variable, the COMPRESS operation terminates when all source operands
have been processed. No truncation will be performed. The length of operand2 after the COMPRESS
operation will correspond to the combined length of the source operands. The current length of
a dynamic variable can be ascertained by using the system variable *LENGTH.

Statements228

COMPRESS

Examples

This section covers the following topics:

■ Example 1 - Compress
■ Example 2 - Compress Leaving No Space
■ Example 3 - Compress with Delimiter
■ Example 4 - Compress with Edit Mask EM

Example 1 - Compress

** Example 'CMPEX1': COMPRESS
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 MIDDLE-I

*
1 #COMPRESSED-NAME (A20)
END-DEFINE
*
LIMIT 4
READ EMPLOY-VIEW BY NAME

COMPRESS FIRST-NAME MIDDLE-I NAME INTO #COMPRESSED-NAME
DISPLAY NOTITLE

FIRST-NAME MIDDLE-I NAME 5X #COMPRESSED-NAME
END-READ
*
END

Output of Program CMPEX1:

FIRST-NAME MIDDLE-I NAME #COMPRESSED-NAME
-------------------- -------- -------------------- --------------------

KEPA ABELLAN KEPA ABELLAN
ROBERT W ACHIESON ROBERT W ACHIESON
SIMONE ADAM SIMONE ADAM
JEFF H ADKINSON JEFF H ADKINSON

229Statements

COMPRESS

Example 2 - Compress Leaving No Space

** Example 'CMPEX2': COMPRESS (with LEAVING NO SPACE)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CURR-CODE (1)
2 SALARY (1)

*
1 #CCSALARY (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY
LEAVING NO SPACE

DISPLAY NOTITLE
NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY

END-READ
*
END

Output of Program CMPEX2:

NAME CURRENCY ANNUAL #CCSALARY
CODE SALARY

-------------------- -------- ---------- --------------------

ABELLAN PTA 1450000 PTA1450000
ACHIESON UKL 11300 UKL11300
ADAM FRA 159980 FRA159980
ADKINSON USD 34500 USD34500

Example 3 - Compress with Delimiter

** Example 'CMPEX3': COMPRESS (with delimiter)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CURR-CODE (1)
2 SALARY (1)

*
1 #CCSALARY (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

Statements230

COMPRESS

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY
WITH DELIMITER '*'

DISPLAY NOTITLE NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY
END-READ
*
END

Output of Program CMPEX3:

NAME CURRENCY ANNUAL #CCSALARY
CODE SALARY

-------------------- -------- ---------- --------------------

ABELLAN PTA 1450000 PTA*1450000
ACHIESON UKL 11300 UKL*11300
ADAM FRA 159980 FRA*159980
ADKINSON USD 34500 USD*34500

Example 4 - Compress with Edit Mask EM

** Example 'CMPEX4': COMPRESS (with edit mask EM)
**
DEFINE DATA LOCAL
1 #A10 (A10) INIT <'ABCDEF'>
1 #I4 (I4) INIT <-123>
1 #T (T) INIT <E'2021-11-22 10:24:36'>
1 #L (L) INIT <TRUE>
1 #RESULT (A70)
END-DEFINE
*
COMPRESS '#A:' #A10 (EM=X_X_X)

'#I4:' #I4 (EM=-999Z)
'#T:' #T (EM=YYYY-MM-DD_HH:II)
'#L:' #L (EM=FALSE/TRUE) INTO #RESULT

PRINT #RESULT
END

Output of Program CMPEX4:

#A: A_B_C #I4: -0123 #T: 2021-11-22_10:24 #L: TRUE

231Statements

COMPRESS

232

33 COMPUTE

■ Function .. 234
■ Syntax Description ... 236
■ Result Precision of a Division ... 238
■ Examples ... 239

233

Structured Mode Syntax

[ROUNDED]
{operand1
[:]= } ...

arithmetic-expression
COMPUTE operand2
ASSIGN SUBSTRING

(operand2,operand3,operand4)

{operand1
:= } ...

arithmetic-expression
operand2
SUBSTRING
(operand2,operand3,operand4)

Reporting Mode Syntax

{operand1 [:]= }[ROUNDED]

arithmetic-expression
COMPUTE operand2
ASSIGN SUBSTRING

(operand2,operand3,operand4)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ADD | COMPRESS | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET |
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The COMPUTE statement is used to perform an arithmetic or assignment operation.

A COMPUTE statement with multiple target operands (operand1) is identical to the corresponding
individual COMPUTE statements if the source operand (operand2) is not an arithmetic expression.

#TARGET1 := #TARGET2 := #SOURCE

is identical to

#TARGET1 := #SOURCE
#TARGET2 := #SOURCE

Example:

Statements234

COMPUTE

DEFINE DATA LOCAL
1 #ARRAY(I4/1:3) INIT <3,0,9>
1 #INDEX(I4)
1 #RESULT(I4)
END-DEFINE
*
#INDEX := 1
*
#INDEX := /* #INDEX is 3
#RESULT := /* #RESULT is 9
#ARRAY(#INDEX)
*
#INDEX := 2
*
#INDEX := /* #INDEX is 0
#ARRAY(3) := /* returns runtime error NAT1316
#ARRAY(#INDEX)
END

If the source operand is an arithmetic expression, the expression is evaluated and its result is stored
in a temporary variable. Then the temporary variable is assigned to the target operands.

#TARGET1 := #TARGET2 := #SOURCE1 + 1
is identical to
#TEMP := #SOURCE1 + 1
#TARGET1 := #TEMP
#TARGET2 := #TEMP

Example:

DEFINE DATA LOCAL
1 #ARRAY(I4/1:3) INIT <2, 0, 9>
1 #INDEX(I4)
1 #RESULT(I4)
END-DEFINE
*
#INDEX := 1
*
#INDEX := /* #INDEX is 3
#RESULT := /* #RESULT is 3
#ARRAY(#INDEX) + 1
*
#INDEX := 2
*
#INDEX := /* #INDEX is 0
#ARRAY(3) := /* returns run time error NAT1316
#ARRAY(#INDEX)
END

For further information, see Rules for Arithmetic Assignment in the Programming Guide and particu-
larly the following sections:

235Statements

COMPUTE

■ Arithmetic Operations with Arrays
■ Data Transfer (for information on data transfer compatibility and the rules for data transfer)

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

yesyesOGCLTDBFIPNUAMASoperand1

noyesOGCLTDBFIPNUAENASCoperand2

noyesB*IPNSCoperand3

noyesB*IPNSCoperand4

* If operand3 or operand4 is a binary variable, it may be used only with a length of less than or
equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Usage of Keywords:COMPUTE | ASSIGN [:]=

This statement may be issued in short form by omitting the statement
keyword COMPUTE (or ASSIGN).

In structuredmode,when the statement keyword COMPUTE (or ASSIGN)
is omitted, the equal sign (=) must be preceded by a colon (:).

However, when the ROUNDED option is used, the statement keyword
COMPUTE (or ASSIGN) must be specified.

ROUNDED Option:ROUNDED

If you specify the keyword ROUNDED, the value will be rounded before
it is assigned to operand1.

For information on rounding, see Rules for Arithmetic Assignments, Field
Truncation and Field Rounding in the Programming Guide.

Result Field:operand1

operand1will contain the result of the arithmetic/assignment operation.

For the precision of the result, see Precision of Results of Arithmetic
Operations in the Programming Guide.

If operand1 is a database field, the field in the database is not updated.

Statements236

COMPUTE

DescriptionSyntax Element

If operand1 is a dynamic variable, it is filled with exactly the data and
length of operand2 or the length of the result of the arithmetic-operation,
including trailing blanks. The current length of a dynamic variable can
be obtained by using the system variable *LENGTH.

For general information on dynamic variables, see Using Dynamic and
Large Variables.

Arithmetic Expression:arithmetic-expression

An arithmetic expression consists of one or more constants, database
fields, and user-defined variables.

Natural mathematical functions (described in the System Functions
documentation) may also be used as arithmetic operands.

Operands used in an arithmetic expressionmust be definedwith format
N, P, I, F, D, or T.

As for the formats of the operands, see also Performance Considerations
for Mixed Formats in the Programming Guide.

The following connecting operators may be used:

Symbol:Operator:

()Parentheses

**Exponentiation

*Multiplication

/Division

+Addition

-Subtraction

Each operator should be preceded and followed by at least one blank
so as to avoid any conflict with a variable name that contains any of the
above characters.

The processing order of arithmetic operations is:

1. Parentheses

2. Exponentiation

3. Multiplication/division (left to right as detected)

4. Addition/subtraction (left to right as detected)

Source Field:operand2

operand2 is the source field. If operand1 is of format C, operand2may
also be specified as an attribute constant.

See User-Defined Constants in the Programming Guide.

237Statements

COMPUTE

DescriptionSyntax Element

SUBSTRING Option:SUBSTRING
(operand2,operand3,operand4)

Without the substring option, thewhole content of operand2 is moved.

If operand1 and operand2 are of alphanumeric, Unicode or binary
format, you may use the SUBSTRING option to assign a certain part of
operand2 to operand1.

After the field name (operand2) in the SUBSTRING clause, you specify
the starting position (operand3) and then the length (operand4) of the
field portion to be moved.

For example, to assign the 3rd to 6th position of field #B to field #A, you
would specify:

#A := SUBSTRING(#B,3,4)

If you omit operand3, the starting position is assumed to be 1. If you
omit operand4, the length is assumed to range from the starting position
to the end of the field.

Note: ASSIGNwith the SUBSTRING option is a byte-by-byte assignment
(that is, the rules described under Rules for Arithmetic Assignment in the
Programming Guide do not apply).

See also MOVE SUBSTRING.

Result Precision of a Division

The precision (number of decimal positions) of the result of a division in a COMPUTE statement is
determined by the precision of either the first operand (dividend) or the first result field, whichever
is greater.

For a division of integer operands, however, the following applies: For a division of two integer
constants, the precision of the result is determined by the precision of the first result field; however,
if at least one of the two integer operands is a variable, the result is also of integer format (that is,
without decimal positions, regardless of the precision of the result field).

Statements238

COMPUTE

Examples

■ Example 1 - ASSIGN Statement
■ Example 2 - COMPUTE Statement

Example 1 - ASSIGN Statement

** Example 'ASGEX1S': ASSIGN (structured mode)
**
DEFINE DATA LOCAL
1 #A (N3)
1 #B (A6)
1 #C (N0.3)
1 #D (N0.5)
1 #E (N1.3)
1 #F (N5)
1 #G (A25)
1 #H (A3/1:3)
END-DEFINE
*
ASSIGN #A = 5 WRITE NOTITLE '=' #A
ASSIGN #B = 'ABC' WRITE '=' #B
ASSIGN #C = .45 WRITE '=' #C
ASSIGN #D = #E = -0.12345 WRITE '=' #D / '=' #E
ASSIGN ROUNDED #F = 199.999 WRITE '=' #F
#G := 'HELLO' WRITE '=' #G
#H (1) := 'UVW'
#H (3) := 'XYZ' WRITE '=' #H (1:3)
*
END

Output of Program ASGEX1S:

#A: 5
#B: ABC
#C: .450
#D: -.12345
#E: -0.123
#F: 200
#G: HELLO
#H: UVW XYZ

Equivalent reporting-mode example: ASGEX1R.

239Statements

COMPUTE

Example 2 - COMPUTE Statement

** Example 'CPTEX1': COMPUTE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 SALARY (1:2)

*
1 #A (P4)
1 #B (N3.4)
1 #C (N3.4)
1 #CUM-SALARY (P10)
1 #I (P2)
END-DEFINE
*
COMPUTE #A = 3 * 2 + 4 / 2 - 1
WRITE NOTITLE 'COMPUTE #A = 3 * 2 + 4 / 2 - 1' 10X '=' #A
*
COMPUTE ROUNDED #B = 3 -4 / 2 * .89
WRITE 'COMPUTE ROUNDED #B = 3 -4 / 2 * .89' 5X '=' #B
*
COMPUTE #C = SQRT (#B)
WRITE 'COMPUTE #C = SQRT (#B)' 18X '=' #C
*
LIMIT 1
READ EMPLOY-VIEW BY PERSONNEL-ID STARTING FROM '20017000'

WRITE / 'CURRENT SALARY: ' 4X SALARY (1)
/ 'PREVIOUS SALARY:' 4X SALARY (2)

FOR #I = 1 TO 2
COMPUTE #CUM-SALARY = #CUM-SALARY + SALARY (#I)

END-FOR
WRITE 'CUMULATIVE SALARY:' #CUM-SALARY

END-READ
*
END

Output of Program CPTEX1:

COMPUTE #A = 3 * 2 + 4 / 2 - 1 #A: 7
COMPUTE ROUNDED #B = 3 -4 / 2 * .89 #B: 1.2200
COMPUTE #C = SQRT (#B) #C: 1.1045

CURRENT SALARY: 34000
PREVIOUS SALARY: 32300
CUMULATIVE SALARY: 66300

Statements240

COMPUTE

34 CREATE OBJECT

■ Function .. 242
■ Syntax Description ... 242

241

CREATE OBJECT operand1 OF [CLASS] operand2

[GIVING operand3]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE CLASS | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The CREATE OBJECT statement is used to create an instance of a class.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

nonoOSoperand1

noyesASCoperand2

noyesINSoperand3

Syntax Element Description:

DescriptionSyntax Element

Object Handle:operand1

operand1must be defined as an object handle (HANDLE OF OBJECT). The object
handle is filledwhen the object is successfully created.Whennot successfully returned,
operand1 contains the value NULL-HANDLE.

Class-Name:OF CLASS
operand2

operand2 is the name of the class of which the object is to be created. For classes that
are not registered as DCOM classes, it must contain the class name defined in the
DEFINE CLASS statement. For classes that are registered as DCOM classes, it must
contain either the ProgID of the class or the class GUID. For Natural classes that are
registered as DCOM classes, the ProgID corresponds to the class name specified in
the DEFINE CLASS statement.

Statements242

CREATE OBJECT

DescriptionSyntax Element

CREATE OBJECT #O1 OF CLASS "Employee" or
CREATE OBJECT #O1 OF CLASS "653BCFE0-84DA-11D0-BEB3-10005A66D231"

GIVING Clause:

If this clause is specified, operand3 contains either the Natural message number if
an error occurred, or zero on success.

If this clause is not specified,Natural run time error processing is triggered if an error
occurs.

GIVING operand3

243Statements

CREATE OBJECT

244

35 DECIDE FOR

■ Function .. 246
■ Syntax Description ... 246
■ Examples ... 247

245

CONDITION
FIRST

DECIDE FOR
EVERY

{WHEN logical-condition statement }

[WHEN ANY statement]

[WHEN ALL statement]

WHEN NONE statement

END-DECIDE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE ON | IF | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The DECIDE FOR statement is used to decide for one or more actions depending onmultiple condi-
tions (cases).

Note: If no action is to be performed under a certain condition, you must specify the state-
ment IGNORE in the corresponding clause of the DECIDE FOR statement.

Syntax Description

DescriptionSyntax Element

Processing of First Condition Only:FIRST CONDITION

Only the first true condition is to be processed.

See also Example 1.

Processing of Every Condition:EVERY CONDITION

Every true condition is to be processed.

See also Example 2.

Logical Condition(s) to be Processed:WHEN logical-condition
statement

With this clause, you specify the logical condition(s) to be processed.

See the section Logical Condition Criteria in the Programming Guide.

WHEN ANY Clause:WHEN ANY statement

Statements246

DECIDE FOR

DescriptionSyntax Element

With WHEN ANY, you can specify the statement(s) to be executed when
any of the logical conditions are true.

WHEN ALL Clause:WHEN ALL statement

With WHEN ALL, you can specify the statement (s) to be executed when
all logical conditions are true.

This clause is applicable only if EVERY has been specified.

WHEN NONE Clause:WHEN NONE statement

With WHEN NONE, you specify the statement(s) to be executedwhen none
of the logical conditions are true.

End of DECIDE FOR Statement:END-DECIDE

TheNatural reservedword END-DECIDEmust be used to end the DECIDE
FOR statement.

Examples

■ Example 1 - DECIDE FOR with FIRST Option
■ Example 2 - DECIDE FOR with EVERY Option

Example 1 - DECIDE FOR with FIRST Option

** Example 'DECEX1': DECIDE FOR (with FIRST option)
**
DEFINE DATA LOCAL
1 #FUNCTION (A1)
1 #PARM (A1)
END-DEFINE
*
INPUT #FUNCTION #PARM
*
DECIDE FOR FIRST CONDITION

WHEN #FUNCTION = 'A' AND #PARM = 'X'
WRITE 'Function A with parameter X selected.'

WHEN #FUNCTION = 'B' AND #PARM = 'X'
WRITE 'Function B with parameter X selected.'

WHEN #FUNCTION = 'C' THRU 'D'
WRITE 'Function C or D selected.'

WHEN NONE
REINPUT 'Please enter a valid function.'

MARK *#FUNCTION
END-DECIDE

247Statements

DECIDE FOR

*
END

Output of Program DECEX1:

#FUNCTION #PARM

After entering A and Y and pressing ENTER:

#FUNCTION A #PARM Y

Please enter a valid function.

Example 2 - DECIDE FOR with EVERY Option

** Example 'DECEX2': DECIDE FOR (with EVERY option)
**
DEFINE DATA LOCAL
1 #FIELD1 (N5.4)
END-DEFINE
*
INPUT #FIELD1
*
DECIDE FOR EVERY CONDITION

WHEN #FIELD1 >= 0
WRITE '#FIELD1 is positive or zero.'

WHEN #FIELD1 <= 0
WRITE '#FIELD1 is negative or zero.'

WHEN FRAC(#FIELD1) = 0
WRITE '#FIELD1 has no decimal digits.'

WHEN ANY
WRITE 'Any of the above conditions is true.'

WHEN ALL
WRITE '#FIELD1 is zero.'

WHEN NONE
IGNORE

END-DECIDE
*
END

Statements248

DECIDE FOR

Output of Program DECEX2:

#FIELD1 42

After pressing ENTER:

Page 1 05-01-11 14:56:26

#FIELD1 is positive or zero.
#FIELD1 has no decimal digits.
Any of the above conditions is true.

249Statements

DECIDE FOR

250

36 DECIDE ON

■ Function .. 252
■ Syntax Description ... 252
■ Examples ... 254

251

DECIDE ON

[VALUE]
[OF]

op1
FIRST

SUBSTR
(op3,op5,op6)EVERY

statement
:VALUE

op2 op2
SUBSTR
(op4,op7,op8)

SUBSTR
(op4,op7,op8)

,

[ANY [VALUE] statement]

[ALL [VALUE] statement]

NONE [VALUE] statement

END-DECIDE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE FOR | IF | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The DECIDE ON statement is used to specify multiple actions to be performed depending on the
value (or values) contained in a variable.

Note: If no action is to be performed under a certain condition, you must specify the state-
ment IGNORE in the corresponding clause of the DECIDE ON statement.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGLTDBFIPNUANASop1

noyesOGLTDBFIPNUAASCop2

noyesBUAASop3

noyesBUAASCop4

noyesB *IPNSCop5

noyesB *IPNSCop6

noyesB *IPNSCop7

Statements252

DECIDE ON

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesB *IPNSCop8

* Format B of op5, op6, op7 and op8may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Processing of Values:FIRST/EVERY

With one of these keywords, you indicate whether only the first or every value
that is found is to be processed.

Selection Field:op1

As op1 or op2 you specify the name of the field whose content is to be checked.

VALUES Clause:VALUES op2 [[,op2]
... [:op2]statement
... With this clause, you specify the value (op2) of the selection field, as well as the

statement(s)which are to be executed if the field contains that value.

You can specify one value, multiple values, or a range of values optionally
preceded by one or more values.

Multiple valuesmust be separated fromone another either by the input delimiter
character (as specified with the session parameter ID) or by a comma. A comma
must not be used for this purpose, however, if the comma is defined as decimal
character (with the session parameter DC).

For a range of values, you specify the starting value and ending value of the
range, separated from each other by a colon.

SUBSTRING Option:SUBSTRING

Without the SUBSTRING option, the whole content of a field is checked. The
SUBSTRING option allows you to check only a certain part of an alphanumeric,
Unicode or binary field.

After the field name (op3), you specify first the starting position (op5) and then
the length (op6) of the field portion to be checked.

SUBSTRING Option:SUBSTRING
(op4,op7,op8)

After the field name (op4), you specify first the starting position (op7) and then
the length (op8) of the field portion to be checked.

ANY Clause:ANY statement

With ANY, you specify the statement(s)which are to be executed if any of the
values in the VALUES clause are found. These statements are to be executed in
addition to the statement specified in the VALUES clause.

253Statements

DECIDE ON

DescriptionSyntax Element

ALL Clause:ALL statement

With ALL, you specify the statement(s)which are to be executed if all of the
values in the VALUES clause are found. These statements are to be executed in
addition to the statement specified in the VALUES clause.

The ALL clause applies only if the keyword EVERY is specified.

NONE Clause:NONE statement

With NONE, you specify the statement(s)which are to be executed if none of
the specified values are found.

End of DECIDE ON Statement:END-DECIDE

The Natural reserved word END-DECIDEmust be used to end the DECIDE ON
statement.

Examples

■ Example 1 - DECIDE ON with FIRST Option
■ Example 2 - DECIDE ON with EVERY Option

Example 1 - DECIDE ON with FIRST Option

** Example 'DECEX3': DECIDE ON (with FIRST option)
**
*
SET KEY ALL
INPUT 'Enter any PF key' /

'and check result' /
*
DECIDE ON FIRST VALUE OF *PF-KEY

VALUE 'PF1'
WRITE 'PF1 key entered.'

VALUE 'PF2'
WRITE 'PF2 key entered.'

ANY VALUE
WRITE 'PF1 or PF2 key entered.'

NONE VALUE
WRITE 'Neither PF1 nor PF2 key entered.'

END-DECIDE
*
END

Statements254

DECIDE ON

Output of Program DECEX3:

Enter any PF key
and check result

Output after pressing PF1:

Page 1 05-01-11 15:08:50

PF1 key entered.
PF1 or PF2 key entered.

Example 2 - DECIDE ON with EVERY Option

** Example 'DECEX4': DECIDE ON (with EVERY option)
**
DEFINE DATA LOCAL
1 #FIELD (N1)
END-DEFINE
*
INPUT 'Enter any value between 1 and 9:' #FIELD (SG=OFF)
*
DECIDE ON EVERY VALUE OF #FIELD

VALUE 1 : 4
WRITE 'Content of #FIELD is 1-4'

VALUE 2 : 5
WRITE 'Content of #FIELD is 2-5'

ANY VALUE
WRITE 'Content of #FIELD is 1-5'

ALL VALUE
WRITE 'Content of #FIELD is 2-4'

NONE VALUE
WRITE 'Content of #FIELD is not 1-5'
END-DECIDE

*
END

Output of Program DECEX4:

ENTER ANY VALUE BETWEEN 1 AND 9: 4

255Statements

DECIDE ON

After entering and confirming 4:

Page 1 05-01-11 15:11:45

Content of #FIELD is 1-4
Content of #FIELD is 2-5
Content of #FIELD is 1-5
Content of #FIELD is 2-4

Statements256

DECIDE ON

37 DEFINE CLASS

■ Function .. 258
■ Syntax Description ... 258

257

DEFINE CLASS class-name

local-data-area
USING

OBJECT parameter-data-area

local-data-definition

local-data-area
USING

LOCAL parameter-data-area

local-data-definition

INTERFACE USING
copycode

interface-statement

[property-statement]

[method-statement]

END-CLASS

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CREATE OBJECT | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The DEFINE CLASS statement is used to specify a class from within a Natural class module. A
Natural class module consists of one DEFINE CLASS statement followed by an END statement.

Syntax Description

DescriptionSyntax Element

Class Name:class-name

This is the name that is used by clients to create objects of this class. The name
can be up to a maximum of 32 characters long. The name may contain periods:
this can be used to construct class names such as

company-name.application-name.class-name

Each part between the periods (...) must conform to the Naming Conventions for
User-Defined Variables.

Statements258

DEFINE CLASS

DescriptionSyntax Element

If the class is planned to be used by clients written in different programming
languages, the class name should be chosen in away that it does not conflict with
the naming conventions that apply in these languages.

OBJECT Clause:OBJECT

This clause is used to define the object data. The syntax of the OBJECT clause is
the same as for the LOCAL clause of the DEFINE DATA statement.

For further information, see the description of the LOCAL clause of the DEFINE
DATA statement.

LOCAL Clause:LOCAL

This clause is only used to include globally unique IDs (GUIDs) in the class
definition. GUIDs need only be defined if a class is to be registered with DCOM.
GUIDs are mostly defined in a local data area.

The syntax of the LOCAL clause is the same as for the LOCAL clause of the DEFINE
DATA statement.

For further information, see the description of the LOCAL clause of the DEFINE
DATA statement.

INTERFACE USING Clause:INTERFACE USING

This clause is used to include copycode that contains INTERFACE statements.

Copycode:copycode

The copycode used by the INTERFACE USING clause may contain one or more
INTERFACE statements.

INTERFACE Statement:interface-statement

The INTERFACE statement is used to define methods and properties for a class.

PROPERTY Statement:property-statement

The PROPERTY statement is used to assign an object data variable operand as the
implementation to a property, outside an interface definition.

METHOD Statement:method-statement

The METHOD statement is used to assign a subprogram as the implementation to
a method, outside an interface definition.

End of DEFINE CLASS Statement:END-CLASS

The Natural reserved word END-CLASSmust be used to end the DEFINE CLASS
statement.

259Statements

DEFINE CLASS

260

VI DEFINE DATA

DEFINE DATA

[GLOBAL USING global-data-area [WITH block [.block]]]

PARAMETER
USING parameter-data-area
parameter-data-definition

USING
LOCAL

local-data-area
parameter-data-area

local-data-definition

[INDEPENDENT [aiv-data-definition]]

USING
CONTEXT

local-data-area
parameter-data-area

context-data-definition

USING
OBJECT

local-data-area
parameter-data-area

local-data-definition

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related topics in the Programming Guide:Use and Structure of DEFINEDATA Statement |Data Areas

The DEFINE DATA documentation is organized under the following headings:

■ Function and Basic Syntax Rules

Data Definitions:

■ Defining Global Data
■ Defining Parameter Data
■ Defining Local Data

261

■ Defining Application-Independent Variables
■ Defining Context Variables for Natural RPC
■ Defining NaturalX Objects

Clauses and Options:

■ Variable Definition
■ View Definition
■ Redefinition
■ Array Dimension Definition
■ Initial-Value Definition
■ Initial/Constant Values for an Array
■ EM, HD, PD Parameters for Field/Variable

Examples:

■ Examples of DEFINE DATA Statement Usage

Statements262

DEFINE DATA

38 Function and Basic Syntax Rules

■ Function .. 264
■ General Syntax Rules ... 264
■ Programming Modes .. 264

263

Function

The DEFINE DATA statement offers a number of clauses to declare data definitions for use within
aNatural program, either by referencing predefined data definitions contained in a local data area
(LDA), global data area (GDA) or parameter data area (PDA), or by writing in-line definitions.

General Syntax Rules

■ When a DEFINE DATA statement is used, it must be the first statement of the program/routine.
■ An “empty” DEFINE DATA statement is not allowed; at least one clause (GLOBAL, PARAMETER,
LOCAL, INDEPENDENT, CONTEXT or OBJECT) must be specified.

■ You can specify more than one clause. However, if the GLOBAL and the PARAMETER clauses are
used, GLOBALmust be the first clause of the statement and PARAMETERmust follow GLOBAL (without
GLOBAL, PARAMETER comes first if used). All other clauses can be specified in any order.

■ The Natural reserved word END-DEFINEmust be used to end the DEFINE DATA statement.

Programming Modes

The DEFINE DATA statement is available in structured mode and in reporting mode. Differences
are marked accordingly in the DEFINE DATA statement description.

Generally, the following applies:

■ Structured Mode
■ Reporting Mode

Structured Mode

All variables to be used, except application-independent variables (AIVs), must be defined in
the DEFINE DATA statement; they must not be defined elsewhere in the program. If a DEFINE DATA
INDEPENDENT statement is used, AIVs must not be defined elsewhere in the program.

Statements264

Function and Basic Syntax Rules

Reporting Mode

The DEFINE DATA statement is not mandatory since variables may be defined in the body of the
program.However, if a DEFINE DATA LOCAL statement is used in reportingmode, variables, except
application-independent variables (AIVs), must not be defined elsewhere in the program; and if
a DEFINE DATA INDEPENDENT statement is used, application-independent variables (AIVs) must
not be defined elsewhere in the program.

265Statements

Function and Basic Syntax Rules

266

39 Defining Global Data

■ Function .. 268
■ Syntax Description ... 268

267

General syntax of DEFINE DATA GLOBAL:

DEFINE DATA

GLOBAL USING global-data-area [WITH block[.block...]]

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA GLOBAL statement is used to define data elements using a GDA (see Global Data
Area).

Syntax Description

DescriptionSyntax Element

GDA Name:USING
global-data-area

Specify the name of a global data area (GDA) to be referenced.

A GDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA GLOBAL statement.

In contrast to an LDA, the data elements defined in a GDA can be referenced by
more than one Natural object.

For further information, see Global Data Area in the Programming Guide.

Data Blocks:WITH block

To save data storage space, you can create a global data area with data blocks. Data
blocks can overlay one another during program execution, thereby saving storage
space.

The maximum number of block levels is 8 (including the master block).

For further information, see Data Blocks in the Programming Guide.

Block(s) to be Used:.block

A single or multiple .block notations specify the block(s) which are used in the
program.

End of DEFINE DATA Statement:END-DEFINE

Statements268

Defining Global Data

DescriptionSyntax Element

The Natural reserved word END-DEFINEmust be used to end the DEFINE DATA
statement.

269Statements

Defining Global Data

270

40 Defining Parameter Data

■ Function .. 272
■ Restrictions .. 272
■ Syntax Description ... 272

271

General syntax of DEFINE DATA PARAMETER:

DEFINE DATA

USING parameter-data-area
PARAMETER

parameter-data-definition

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA PARAMETER statement is used to define the data elements that are to be used as
incoming parameters in aNatural subprogram, external subroutine, helproutine or function. These
parameters can be defined within the statement itself (see Parameter Data Definition); or they
can be defined outside the program in a parameter data area (PDA),with the statement referencing
that data area.

Restrictions

■ Parameter data elementsmust not be assigned initial or constant values, and theymust not have
edit mask (EM), header (HD) or print mode (PM) definitions; see also EM, HD, PM Parameters for
Field/Variable.

■ The parameter data area and the objectswhich reference itmust be contained in the same library
(or in a steplib).

Syntax Description

DescriptionSyntax Element

Parameter Data Area (PDA) Name:USING parameter-data-area

The name of the parameter-data-area (PDA) that contains data
elements which are used as parameters in a subprogram, external
subroutine or dialog.

Parameter Data Definition:parameter-data-definition

Instead of using a PDA, you can define parameter data directly.

See Parameter Data Definition.

Statements272

Defining Parameter Data

DescriptionSyntax Element

End of DEFINE DATA Statement:END-DEFINE

TheNatural reservedword END-DEFINEmust be used to end the DEFINE
DATA statement.

Parameter Data Definition

For parameter data definition, the following syntax applies:

group-name [(array-definition)]

level

redefinition

[BY VALUE
[RESULT]]
[OPTIONAL]

(format-length[/array-definition])

variable-name DYNAMIC[/array-definition])(
A
U
B

[(array-definition)] HANDLE OF OBJECT

Syntax Element Description:

DescriptionSyntax Element

Level Number:level

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding groupwhich
has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only 1
field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A groupmay consist of other groups.When assigning the level numbers for a group,
no level numbers may be skipped.

Group Name:group-name

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

■ Naming Conventions for User-Defined Variables in Using Natural.
■ Qualifying Data Structures in the Programming Guide.

Array Dimension Definition:array-definition

273Statements

Defining Parameter Data

DescriptionSyntax Element

With an array-definition, you define the lower and upper bounds of dimensions
in an array-definition.

For further information, see Array Dimension Definition and Variable Arrays in a
Parameter Data Area.

Redefinition:redefinition

A redefinitionmay be used to redefine a group or a single field/variable (that is
a scalar or an array). See Redefinition.

Note: In a parameter-data-definition, a redefinition of groups is only permitted
within a REDEFINE block.

Variable Name:variable-name

The name to be assigned to the variable. Rules for Natural variable names apply. For
information on naming conventions for user-defined variables.

For further information, see Naming Conventions for User-Defined Variables in Using
Natural.

Format/Length Definition:format-length

The format and length of the field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

Handle of Object:HANDLE OF OBJECT

Used in conjunction with NaturalX. A handle identifies a dialog element in code and
is stored in handle variables.

For further information, see NaturalX in the Programming Guide.

Data Type:A, U or B

Alphanumeric (A), Unicode (U) or binary (B) for dynamic variable.

DYNAMIC Option:DYNAMIC

A parameter may be defined as DYNAMIC. For further information on processing
dynamic variables, see Introduction to Dynamic Variables and Fields in the Programming
Guide.

Call Mode:

Depending onwhether call-by-reference, call-by-value or call-by-value-result is used,
the appropriate transfer mechanism is applicable. For further information, see the
CALLNAT statement.

Call-by-Reference:(without BY VALUE)

Call-by-reference is active by default when you omit the BY VALUE keywords. In this
case, a parameter is passed to a subprogram/subroutine/function by reference (that

Statements274

Defining Parameter Data

DescriptionSyntax Element

is, via its address); therefore a field specified as parameter in a CALLNAT/PERFORM
statementmust have the same format/length as the corresponding field in the invoked
subprogram/subroutine/function.

Call-by-Value:BY VALUE

When you specify BY VALUE, a parameter is passed to a
subprogram/subroutine/function by value; that is, the actual parameter value (instead
of its address) is passed. Consequently, the field in the
subprogram/subroutine/function need not have the same format/length as the
parameter passed in the CALLNAT/PERFORM statement or in the function call. The
formats/lengthsmust only be data transfer compatible. For data transfer compatibility,
the Rules for Arithmetic Assignment and Data Transfer apply (see Programming Guide).

BY VALUE allows you, for example, to increase the length of a field in a
subprogram/subroutine/function (if this should become necessary due to an
enhancement of the subprogram/subroutine) without having to adjust any of the
objects that invoke the subprogram/subroutine/function.

Example of BY VALUE:

* Subroutine SUBR01
DEFINE DATA PARAMETER
1 #FIELDB (P9) BY VALUE
END-DEFINE
...

* Program
DEFINE DATA LOCAL
1 #FIELDA (P5)
...
END-DEFINE
...
CALLNAT 'SUBR01' #FIELDA...

Call-by-Value-Result:BY VALUE RESULT

While BY VALUE applies to a parameter passed to a subprogram/subroutine/function,
BY VALUE RESULT causes the parameter to be passed by value in both directions;
that is, the actual parameter value is passed from the invoking object to the
subprogram/subroutine/function and, on return to the invoking object, the actual
parameter value is passed from the subprogram/subroutine/function back to the
invoking object.

With BY VALUE RESULT, the formats/lengths of the fields concerned must be data
transfer compatible in both directions.

Optional Parameters:OPTIONAL

For a parameter defined without OPTIONAL (default), a value must be passed from
the invoking object.

For a parameter defined with OPTIONAL, a value can, but need not be passed from
the invoking object to this parameter.

In the invoking object, the notation nX is used to indicate parameters which are
skipped, that is, for which no values are passed.

275Statements

Defining Parameter Data

DescriptionSyntax Element

With the SPECIFIED option you can find out at run time whether an optional
parameter has been defined or not.

Statements276

Defining Parameter Data

41 Defining Local Data

■ Function .. 278
■ Restriction .. 278
■ Syntax Description ... 278

277

General syntax of DEFINE DATA LOCAL:

DEFINE DATA

local-data-area
USING

LOCAL parameter-data-area

local-data-definition

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA LOCAL statement is used to define the data elements that are to be used exclusively
by a single Natural module in an application. These elements or fields can be defined in different
ways:

■ eitherwithin the DEFINE DATA LOCAL statement itself, using the local-data-definition syntax
(see Local Data Definition)

■ or outside the program in a separate LDA (Local Data Area) or PDA (Parameter Data Area), with
the DEFINE DATA LOCAL USING statement referencing that data area.

Restriction

The LDA and the objects which reference it must be contained in the same library (or in a steplib).

Syntax Description

DescriptionSyntax Element

LDA Name:local-data-area

Specify the name of the local data area (LDA) to be referenced.

An LDA is createdwith the source editor. It contains predefined data elements
which can be included in the DEFINE DATA LOCAL statement.

You may reference more than one data area; in that case you have to repeat
the reserved words LOCAL and USING, for example:

Statements278

Defining Local Data

DescriptionSyntax Element

DEFINE DATA LOCAL
LOCAL USING DATX_L
LOCAL USING DATX_P

...
END-DEFINE ;

For further information, see alsoDefining Fields in a Separate Data Area and Local
Data Area, Example 2 in the Programming Guide.

PDA Name:parameter-data-area

Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCALmay also be a
parameter data area (PDA). By using a PDA as an LDAyou can avoid the extra
effort of creating an LDA that has the same structure as the PDA.

A PDA is created with the source editor. It contains predefined data elements
which can be included in the DEFINE DATA LOCAL statement.

For further information, see Parameter Data Area in the Programming Guide.

Local Data Definition:local-data-definition

For information on how to define elements or fieldswithin the statement itself,
that is, without using an LDA or PDA, see the section Local Data Definition
below.

End of DEFINE DATA Statement:END-DEFINE

The Natural reserved word END-DEFINEmust be used to end the DEFINE
DATA statement.

Local Data Definition

Local data can be defined directly. For local data definition, the following syntax applies:

level

group-name [(array-definition)]
variable-definition
view-definition
redefinition

For further information, see

■ Example 1 - DEFINE DATA LOCAL (Local Data Definition)
■ Defining Fields within a DEFINE DATA Statement in the Programming Guide
■ Local Data Area, Example 1 in the Programming Guide

279Statements

Defining Local Data

Syntax Element Description for Local Data Definition:

DescriptionSyntax Element

Level Number:level

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading
zero is optional) used in conjunction with field grouping. Fields assigned a level
number of 02 or greater are considered to be a part of the immediately preceding
group which has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only
1 field) by using the group name.With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), youmay specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a
group, no level numbers may be skipped.

A view-definition must always be defined at Level 1.

Group Name:group-name

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

■ Naming Conventions for User-Defined Variables in Using Natural.
■ Qualifying Data Structures in the Programming Guide.

Array Dimension Definition:array-definition

With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition.

See Array Dimension Definition.

Variable Definition:variable-definition

A variable-definition is used to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

See Variable Definition.

View Definition:view-definition

A view-definition is used to define a view as derived from a data definition
module (DDM).

See View Definition.

Redefinition:redefinition

Statements280

Defining Local Data

DescriptionSyntax Element

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

See Redefinition.

281Statements

Defining Local Data

282

42 Defining Application-Independent Variables

■ Function .. 284
■ Syntax Description ... 284

283

General syntax of DEFINE DATA INDEPENDENT:

DEFINE DATA

INDEPENDENT [aiv-data-definition ...]

END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Function

The DEFINE DATA INDEPENDENT statement is used to define application-independent variables
(AIVs).

An application-independent variable is referenced by its name, and its content is shared by all
Natural objects executed within one application that refer to that name. The variable is allocated
by the first executed Natural object that references this variable and is deallocated by the LOGON
command or a RELEASE VARIABLES statement.

The optional INIT clause is evaluated in each executedNatural object that contains this clause (not
only in the Natural object that allocates the variable).

Note: In an RPC server, application-independent variables (AIVs) are not deallocated impli-
citly, but stay active across RPC requests, because different clients may have access to the
same variables on the RPC server. This means they must be deallocated explicitly using the
RELEASE VARIABLES statement. See Application-Independent Variables in the Natural RPC
(Remote Procedure Call) documentation.

Syntax Description

DescriptionSyntax Element

AIV Data Definition:aiv-data-definition

The DEFINE DATA INDEPENDENT statement can be used to define a single or
multiple application-independent variables (AIVs). For each AIV, the syntax
shown in AIV Data Definition applies.

End of DEFINE DATA Statement:END-DEFINE

TheNatural reservedword END-DEFINEmust be used to end the DEFINE DATA
statement.

Statements284

Defining Application-Independent Variables

AIV Data Definition

variable-definition
level

redefinition

Syntax Element Description:

DescriptionSyntax Element

Level Number:level

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

Variable Definitionvariable-definition

A variable definition is used to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The name of an application-independent variable must start with a plus
(+) character.

Redefinition:redefinition

With a redefinition, you can partition an application-independent variable
into one or more subfields.

For further information, see Redefinition.

The subfields resulting from the redefinitionmust not be application-independent
variables; that is, their name must not start with a plus sign (+). These fields are
treated as local variables.

Note: The first character of the name must be a plus (+). Rules for Natural variable names
apply, see Naming Conventions for User-Defined Variables in Using Natural.

285Statements

Defining Application-Independent Variables

286

43 Defining Context Variables for Natural RPC

■ Function .. 288
■ Restrictions .. 289
■ Syntax Description ... 289

287

General syntax of DEFINE DATA CONTEXT:

DEFINE DATA

USING

CONTEXT

local-data-area
parameter-data-area

context-data-definition

END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Belongs to Function Group: Natural Remote Procedure Call

Function

The DEFINE DATA CONTEXT statement is used in conjunction with the Natural RPC (Remote Pro-
cedure Call). It is used to define variables known as context variables, which are meant to be
available to multiple remote subprograms within one conversation, without having to explicitly
pass the variables as parameters with the corresponding CALLNAT statements.

A context variable is referenced by its name, and its content is shared by all Natural objects executed
in one conversation that refer to that name. The variable is allocated by the first executed Natural
object that contains the definition of the variable and is deallocated when the conversation ends.

A context variable is not shared with subprograms that are called within the conversation. If such
a subprogram or one of its callees references a context variable, a separate storage area is allocated
for this variable.

Context variables can also be used in a non-conversational CALLNAT. In this case, the context variables
only exist during a single invocation of this CALLNAT. The variable is allocated when the remote
subprogram is started and deallocated when it ends. The content is shared by all Natural objects
except subprograms executed by this non-conversational CALLNAT.

The optional INIT clause is evaluated in each executedNatural object that contains this clause (not
only in the Natural object that allocates the variable). This is different to the way the INITworks
for global variables.

For further information, see Defining a Conversation Context in the Natural RPC (Remote Procedure
Call) documentation.

Statements288

Defining Context Variables for Natural RPC

Restrictions

A context variable must be defined at Level 01. Other levels are only used in a redefinition.

Syntax Description

DescriptionSyntax Element

LDA Name:USING local-data-area

A local data area (LDA) contains data elements which are to be used in a
single Natural module. You may reference more than one data area; in that
case youhave to repeat the reservedwordsCONTEXT and USING, for example:

DEFINE DATA
CONTEXT USING DATX_L
CONTEXT USING DATX_P

...
END-DEFINE ;

For further information, see Defining Fields in a Separate Data Area in the
Programming Guide.

PDA Name:USING
parameter-data-area

Aparameter data area contains data elementswhich are used as parameters
in a subprogram, external subroutine or dialog.

Context Data Definition:context-data-definition

Context data can be defineddirectlywithin a programor routine. For context
data definition, the syntax shown below applies.

End of DEFINE DATA Statement:END-DEFINE

The Natural reserved word END-DEFINEmust be used to end the DEFINE
DATA statement.

Context Data Definition

Context data can be defined directly within a program or routine. For context data definition, the
following syntax applies:

289Statements

Defining Context Variables for Natural RPC

variable-definition
level

redefinition

For further information, see Defining Fields within a DEFINE DATA Statement in the Programming
Guide.

DescriptionSyntax Element

Level Number:level

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

Variable Definition:variable-definition

A variable-definition is used to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The CONSTANT clause must not be used in this context

Redefinition:redefinition

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

For further information, see Redefinition.

Note: The fields resulting from the redefinition are not considered a context variable. These
fields are treated as local variables.

Statements290

Defining Context Variables for Natural RPC

44 Defining NaturalX Objects

■ Function .. 292
■ Syntax Description ... 292

291

General syntax of DEFINE DATA OBJECT:

DEFINE DATA

USING
OBJECT

local-data-area
parameter-data-area

local-data-definition

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA OBJECT statement is used in a subprogramor class in conjunctionwithNaturalX.

Syntax Description

DescriptionSyntax Element

LDA Name:USING local-data-area

A local data area (LDA) contains data elementswhich are to be used in a single
Natural module. You may reference more than one data area; in that case you
have to repeat the reserved words OBJECT and USING, for example:

DEFINE DATA
OBJECT USING DATX_L
OBJECT USING DATX_P

...
END-DEFINE ;

For further information, see also Defining Fields in a Separate Data Area in the
Programming Guide.

PDA Name:USING
parameter-data-area

Adata area definedwith DEFINE DATA OBJECTmay be a parameter data area
(PDA). By using a PDA as an object data area you can avoid the extra effort of
creating an object data area that has the same structure as the PDA.

Local Data Definition:local-data-definition

Data can also be defined directly using the syntax shown in Local Data
Definition in the section Defining Local Data.

End of DEFINE DATA Statement:END-DEFINE

Statements292

Defining NaturalX Objects

DescriptionSyntax Element

The Natural reserved word END-DEFINEmust be used to end the DEFINE
DATA statement.

293Statements

Defining NaturalX Objects

294

45 Variable Definition

■ Syntax Description ... 296

295

scalar-definition
array-definition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The variable-definition option is used to define a single field/variable thatmay be single-valued
(scalar-definition) or multi-valued (array-definition).

scalar-definition

[emhdpm]init-definition

(format-length)

variable-name
CONSTANT
INIT

DYNAMIC)(
A
U
B

HANDLE OF OBJECT

array-definition

[emhdpm]array-init-definition

(format-length/array-definition)

variable-name
CONSTANT
INIT

DYNAMIC/array-definition)(
A
U
B

(array-definition) HANDLE OF OBJECT

Syntax Description

DescriptionSyntax Element

Variable Name:variable-name

The name to be assigned to the variable. Rules for Natural variable names
apply. With DEFINE DATA INDEPENDENT, the variable namemust begin with
a plus character (+).

For information on naming conventions for user-defined variables, seeNaming
Conventions for User-Defined Variables in Using Natural.

Format/Length Definition:format-length

For information on format/length definition of user-defined variables, see
Format and Length of User-Defined Variables in the Programming Guide.

Handle of Object:HANDLE OF OBJECT

Used in conjunction with NaturalX. A handle identifies a dialog element in
code and is stored in handle variables.

Statements296

Variable Definition

DescriptionSyntax Element

For further information, see NaturalX in the Programming Guide.

Data Type:A, U or B

Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.

Array Dimension Definition:array-definition

With an array-definition you define the lower and upper bounds of
dimensions in an array-definition.

For further information, see Array Dimension Definition.

DYNAMIC Option:DYNAMIC

A field may be defined as DYNAMIC.

For more information on processing dynamic variables, see Introduction to
Dynamic Variables and Fields.

CONSTANT Option:CONSTANT

The variable/array is to be treated as a named constant. The constant value(s)
assigned will be used each time the variable/array is referenced. The value(s)
assigned cannot be modified during program execution.

See also Field Definitions, User-Defined Constants, Defining Named Constants in
the Programming Guide.

Note:

1. For reasons of internal handling, it is not allowed tomix variable definitions
and constant definitions within one group definition; that is, a group may
contain either variables only or constants only.

2. The CONSTANT clause must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT. The CONSTANT option cannot be used with
X-arrays.

3. The CONSTANT option must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT.

INIT Option:INIT

The variable/array is to be assigned an initial value. This value will also be
used when this variable/array is referenced in a RESET INITIAL statement.

If no INIT specification is supplied, a field will be initialized with a default
initial value depending on its format (see table Default Initial Values below).

For further information, see Field Definitions, Initial Values in the Programming
Guide.

297Statements

Variable Definition

DescriptionSyntax Element

With DEFINE DATA INDEPENDENT and DEFINE DATA CONTEXT, the INIT
clause is evaluated in each executed Natural object that contains this clause
(not only in the Natural object that allocates the variable). This is different to
the way the INITworks for global variables.
The INIT option cannot be used with X-arrays.

Initial-Value Definition:init-definition

With the init-definition option, you define the initial/constant values for
a variable. See Initial-Value Definition.

Initial/Constant Values for an Array:array-init-definition

The array is to be assigned an initial value. This value will also be used when
this array is referenced in a RESET INITIAL statement.

With an array-init-definition, you define the initial/constant values for
an array.

For further information, see Initial/Constant Values for an Array.

EM, HD, PM Parameters for Field/Variable:emhdpm

With this option, additional parameters to be in effect for a field/variable may
be defined.

For further information, see EM, HD, PM Parameters for Field/Variable.

Default Initial Values

The following table shows the default initial values that are provided with the various formats:

Default Initial ValueFormat

0B, F, I, N, P

(blank)A, U

FALSEL

D' 'D

T'00:00:00'T

(AD=D)C

NULL-HANDLEObject Handle

Fields declared as DYNAMIC do not have any initial value because their field length is zero by default.

Statements298

Variable Definition

46 View Definition

■ Syntax Description ... 300

299

view-name VIEW [OF] ddm-name

[emhdpm]

([format-length][/array-definition])

ddm-field
level

)
DYNAMIC

[/array-definition](
A
U
B

redefinition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The view-definition option is used to define a data view as derived from a data definition
module (DDM).

Note: In a parameter data area, view-definition is not permitted.

For further information, see Accessing Data in an Adabas Database in the Programming Guide and
particularly the following topics:

■ Data Definition Modules - DDMs
■ Database Arrays
■ Defining a Database View

Syntax Description

DescriptionSyntax Element

View Name:view-name

The name to be assigned to the view.

Rules for Natural variable names apply; see Naming Conventions for User-Defined
Variables in Using Natural.

DDMName:VIEW [OF]
ddm-name

The name of the data definition module (DDM) from which the view is to be taken.

Level Number:level

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding groupwhich
has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only one
field) by using the group name. With certain statements (CALL, CALLNAT, RESET,

Statements300

View Definition

DescriptionSyntax Element

WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A groupmay consist of other groups.When assigning the level numbers for a group,
no level numbers may be skipped.

DDM Field Name:ddm-field

The name of a field to be taken from the DDM.

When you define a view for a HISTOGRAM statement, the viewmust contain only the
descriptor for which HISTOGRAM is to be executed.

Redefinition:redefinition

A redefinitionmay be used to redefine a group, a view, a DDM field or a single
field/variable (that is a scalar or an array).

For further information, see Redefinition.

Format/Length Definition:format-length

Format and length of the field. If omitted, these are taken from the DDM.

In structured mode, the definition of format and length (if supplied) must be the
same as those in the DDM.

In reporting mode, the definition of format and length (if supplied) must be
type-compatible with those in the DDM.

Data Type:A, U or B

Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.

Note:

1. For Adabas on mainframe computers, format U is available for LA fields (length
<= 16381 bytes), but not for LB fields (length: <= 1 GB).

2. Format B is not available with Adabas.

Array Definition:array-definition

Depending on the programming mode used, arrays (periodic-group fields,
multiple-value fields) may have to contain information about their occurrences.

For further information, see Array Definition in a View below.

EM, HD, PM Parameters for Field/Variable:emhdpm

With this option, additional parameters to be in effect for a field/variable may be
defined. See EM, HD, PM Parameters for Field/Variable.

DYNAMIC Option:DYNAMIC

301Statements

View Definition

DescriptionSyntax Element

Defines a view field as DYNAMIC.

For further information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields in the Programming Guide.

Array Definition in a View

Depending on the programming mode used, arrays (periodic-group fields, multiple-value fields)
may have to contain information about their occurrences.

Structured Mode
If a field is used in a view that represents an array, the following applies:
■ An index value must be specified for MU/PE fields
■ When no format/length specification is supplied, the values are taken from the DDM.
■ When a format/length specification is supplied, it must be the same as in the DDM.

Database-Specific Considerations in Structured Mode:

If MU/PE fields (defined in a DDM) are to be used inside a view, these fields must include an
array index specification. For anMU field or ordinary PE field, you specify a one-dimensional

Adabas:

index range, e.g. (1:10). For an MU field inside a PE group, you specify a two-dimensional
index range, e.g. (1:10,1:5).

not allowedallowedDDM definitionTamino:

A(*:*)
A(Y1:*)

A(*:Y2) Y2=<X2
A(Y1:Y2) Y2>Y1
Y2=<X2 A(Z:Z+Y) Y>=0

A(*:X2)

A(*:*)
A(*:Y2)

A(Y1:*) Y1>=X1
A(Y1:Y2) Y2>=X1, Y1>=X1
A(Z:Z+Y) Y>=0

A(X1:*)

A(*:*)
A(Y1:*)
A(*:Y2)

A(Y1:Y2) Y2<Y1
A(Z:Z+Y) 0=<Y>=X2-X1+1

A(X1:X2)

Statements302

View Definition

Examples of Structured Mode:

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES

2 NAME(A20)
2 ADDRESS-LINE(A20 / 1:2)

1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(1:2)

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(2)

1 #K (I4)
1 EMP4 VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE(#K:#K+1)

END-DEFINE
END

Reporting Mode
In thismode, the same rules are valid as for structuredmode, however, there are two exceptions:
■ An index value needs not be supplied. In this case, the index range for themissing dimensions
is set to (1:1).

■ The format/length specification may differ from the specification in the DDM. Then the
definition of format and length must be type-compatible with those in the DDM.

Examples:

DEFINE DATA LOCAL
1 EMP1 VIEW OF EMPLOYEES

2 NAME(A30)
2 ADDRESS-LINE(A35 / 5:10)

1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(A40) /* ADDRESS LINE (1:1) IS ASSUMED

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE /* ADDRESS LINE (1:1) IS ASSUMED

1 #K (I4)
1 EMP4 VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE(#K:#K+1)

303Statements

View Definition

END-DEFINE
END

Statements304

View Definition

47 Redefinition

■ Restrictions .. 306
■ Syntax Description ... 306

305

rgroup [(array-definition)]

levelREDEFINE field-name rfield (format-length [/array-definition])

FILLER nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The redefinition option is used to redefine a group, a view, a DDMfield or a single field/variable
(that is a scalar or an array).

See also Redefining Fields in the Programming Guide.

Restrictions

■ A redefinition of a view or a DDM field is not applicable to a parameter-data-definition.
■ Handles, X-arrays and dynamic variables cannot be redefined and cannot be contained in a re-
definition clause.

■ A group that contains a handle, X-array or a dynamic variable can only be redefined up to - but
not including or beyond - the element in question.

Syntax Description

DescriptionSyntax Element

Name of Field to be Redefined:field-name

The name of the group, view, DDM field or single field that is being redefined.

Level Number of Field being Redefined:level

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group,
which has been assigned a lower level number.

Name of Resulting Group:rgroup

The name of the group resulting from the redefinition.

Note: In a redefinitionwithin a view-definition, the name of rgroupmust
be different from any field name in the underlying DDM.

Name of Resulting Field:rfield

The name of the field resulting from the redefinition.

Statements306

Redefinition

DescriptionSyntax Element

Note: In a redefinitionwithin a view-definition, the name of rfieldmust
be different from any field name in the underlying DDM.

Format/Length of Resulting Field:format-length

The format and length of the resulting field (rfield).

Array Dimension Definition:array-definition

With an array-definition, you define the lower andupper bounds of dimensions
in an array-definition.

For further information, see Array Dimension Definition.

Filler Byte Definition:FILLER nX

With this notation, you define n filler bytes - that is, segments which are not to be
used - in the field that is being redefined.

The definition of trailing filler bytes is optional.

Examples of REDEFINE Usage

Example 1:

DEFINE DATA LOCAL
01 #VAR1 (A15)
01 #VAR2

02 #VAR2A (N4.1) INIT <0>
02 #VAR2B (P6.2) INIT <0>

01 REDEFINE #VAR2
02 #VAR2RD (A10)

END-DEFINE
...

Example 2:

DEFINE DATA LOCAL
01 MYVIEW VIEW OF STAFF

02 NAME
02 BIRTH
02 REDEFINE BIRTH

03 BIRTH-YEAR (N4)
03 BIRTH-MONTH (N2)
03 BIRTH-DAY (N2)

END-DEFINE
...

307Statements

Redefinition

Example 3:

DEFINE DATA LOCAL
1 #FIELD (A12)
1 REDEFINE #FIELD

2 #RFIELD1 (A2)
2 FILLER 2X
2 #RFIELD2 (A2)
2 FILLER 4X
2 #RFIELD3 (A2)

END-DEFINE
...

Statements308

Redefinition

48 Array Dimension Definition

■ Syntax Description ... 310

309

{[bound:] bound}, 3

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The array-dimension-definition option is used to define the lower and upper bound of a dimen-
sion in an array definition.

You can define up to 3 dimensions for an array.

Syntax Description

DescriptionSyntax Element

Lower/Upper Bound:bound

A bound can be one of the following:

■ a numeric integer constant;
■ a previously defined named constant;
■ (for database arrays) a previously defined user-defined variable; or
■ an asterisk (*) defines an extensible bound, otherwise known as an X-array (eXtensible
array).

If only one bound is specified, the value represents the upper bound and the lower bound
is assumed to be 1.

X-Arrays

If at least one bound in at least one dimension of an array is specified as extensible, that array is
then called an X-array (eXtensible array). Only one bound (either upper or lower)may be extensible
in any one dimension, but not both.Multi-dimensional arraysmay have amixture of constant and
extensible bounds, for example: #a(1:100, 1:*).

Example:

DEFINE DATA LOCAL
1 #ARRAY1(I4/1:10)
1 #ARRAY2(I4/10)
1 #X-ARRAY3(I4/1:*)
1 #X-ARRAY4(I4/*,1:5)
1 #X-ARRAY5(I4/*:10)
1 #X-ARRAY6(I4/1:10,100:*,*:1000)
END-DEFINE

In the following table you can see the bounds of the arrays in the above program more clearly.

Statements310

Array Dimension Definition

Dimension 3Dimension 2Dimension 1
Upper boundLower boundUpper boundLower boundUpper boundLower bound

----101#ARRAY1

----101#ARRAY2

----eXtensible1#X-ARRAY3

--51eXtensible1#X-ARRAY4

----10eXtensible#X-ARRAY5

1000eXtensibleeXtensible100101#X-ARRAY6

Examples of array definitions:

#ARRAY2(I4/10) /* a one-dimensional array with 10 occurrences (1:10)
#X-ARRAY4(I4/*,1:5) /* a two-dimensional array
#X-ARRAY6(I4/1:10,100:*,*:1000) /* a three-dimensional array

Variable Arrays in a Parameter Data Area

In a parameter data area, you may specify an array with a variable number of occurrences. This
is done with the index notation 1:V.

Example 1: #ARR01 (A5/1:V)

Example 2: #ARR02 (I2/1:V,1:V)

Aparameter arraywhich contains a variable index notation 1:V can only be redefined in the length
of

■ its elementary field length, if the 1:V index is right-most; for example:

#ARR(A6/1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:3,1:V) can be redefined up to a length of 6 bytes

■ the product of the right-most fixed occurrences and the elementary field length; for example:

#ARR(A6/1:V,1:2) can be redefined up to a length of 2*6 = 12 bytes
#ARR(A6/1:V,1:3,1:2) can be redefined up to a length of 3*2*6 = 36 bytes
#ARR(A6/1:2,1:V,1:3) can be redefined up to a length of 3*6 = 18 bytes

A variable index notation 1:V cannot be used within a redefinition.

Example:

311Statements

Array Dimension Definition

DEFINE DATA PARAMETER
1 #ARR(A6/1:V)
1 REDEFINE #ARR
2 #R-ARR(A1/1:V) /* (1:V) is not allowed in a REDEFINE block

END-DEFINE

As the number of occurrences is not known at compilation time, it must not be referenced with
the index notation (*) in the statements INPUT, WRITE, READ WORK FILE, WRITE WORK FILE. Index
notation (*) may be applied either to all dimensions or to none.

Valid examples:

#ARR01 (*)
#ARR02 (*,*)
#ARR01 (1)
#ARR02 (5,#FIELDX)
#ARR02 (1,1:3)

Invalid example:

#ARRAYY (1,*) /* not allowed

To avoid runtime errors, the maximum number of occurrences of such an array should be passed
to the subprogram/subroutine/function via another parameter. Alternatively, you may use the
system variable *OCCURRENCE.

Notes:

1. If a parameter data area that contains an index 1:V is used as a local data area (that is, specified
in a DEFINE DATA LOCAL statement), a variable named Vmust have been defined as CONSTANT.

2. In a dialog, an index 1:V cannot be used in conjunction with BY VALUE.

Statements312

Array Dimension Definition

49 Initial-Value Definition

■ Restriction .. 314
■ Syntax Description ... 314

313

<character-string>
FULL LENGTH
LENGTH n

><
constant
system-variable

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The init-definition option is used to define the initial/constant values for a variable.

Note: If, in the variable-definition option, the keyword INITwas used for the initializa-
tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONSTwas used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Field Definitions, Initial Values in the Programming Guide.

Restriction

For a redefined field, an init-definition is not permitted.

Syntax Description

DescriptionSyntax Element

Constant Value Option:<constant>

The constant valuewithwhich the variable is to be initialized; or the constant value
to be assigned to the field.

For further information, see User-Defined Constants in the Programming Guide.

System Variable Option:<system-variable>

The initial value for a variable may also be the value of a Natural system variable,
for example:

DEFINE DATA LOCAL
1 #MYDATE (D) INIT <*DATX>
END-DEFINE

Note: When the variable is referenced in a RESET INITIAL statement, the system
variable is evaluated again; that is, it will be reset not to the value it contained
when program execution started but to the value it contains when the RESET
INITIAL statement is executed.

Statements314

Initial-Value Definition

DescriptionSyntax Element

Character String Option for Alphanumeric/Unicode Variables:FULL LENGTH
<character-string>

LENGTH n
<character-string>

For a variable of the Natural data format A or U, a character-string (for
example, 'ABC') can be used as an initial valuewhich fills all or part of the variable
field.

A character-string is a constant of theNatural data formatA orU as described
in Alphanumeric Constants and Unicode Constants in the Programming Guide.

FULL LENGTH Option:

With the FULL LENGTH option, a particular character-string is repeatedly
moved to the specified field until the field is completely filled. In the following
example, the entire field is filled with asterisks:

DEFINE DATA LOCAL
1 #FIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE

LENGTH Option:

With the LENGTH n option, a particular character-string is repeatedly moved
to the specified field until the first n positions of the field are filled. nmust be a
numeric constant. In the following example, the first four positions of the field are
filled with exclamation marks:

DEFINE DATA LOCAL
1 #FIELD (A25) INIT LENGTH 4 <'!'>
END-DEFINE

315Statements

Initial-Value Definition

316

50 Initial/Constant Values for an Array

■ Restriction .. 318
■ Syntax Description ... 319

317

For selected occurrences:

<character-string, >

)
,
3(

FULL LENGTH

index[:index] LENGTH n

V
, ><

constant
system-variable

For all occurrences:

<character-string>

ALL

FULL LENGTH
LENGTH n

><
constant
system-variable

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The array-init-definition option is used to define the initial/constant values for an array.

Note: If, in the variable-definition option, the keyword INITwas used for the initializa-
tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONSTwas used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Field Definitions in the Programming Guide, particularly the following sections:

■ Initial Values
■ User-Defined Constants

Restriction

For a redefined field, an array-init-definition is not permitted.

Statements318

Initial/Constant Values for an Array

Syntax Description

DescriptionSyntax Element

ALL Option:ALL

All occurrences of the array are initialized with the same value.

The ALL option cannot be combined with any other initialization definitions.

Index Option:index

The array occurrences specified by index are initialized.

If a single index or an index range is used, you can only specify a unique value
(constant or system-variable) which is assigned to all occurrences.

Examples:

DEFINE DATA LOCAL
1 #FLD1 (A4/1:4) INIT (1:3) <'A'> /* A fills occurrences ↩
(1:3)
1 #FLD2 (A4/1:4) INIT (*) <'B'> /* B fills all occurrences
1 #FLD3 (A4/1:2,1:4) INIT (2,3) <'C'> /* C fills occurrence ↩
(2,3)
END-DEFINE

Index Notation V:V

The special index notation V is used to fill a consecutive sequence of array
occurrences with individual values (constant or system-variable).

You can specify the V notation for one dimension of an array only. The number of
values provided must not exceed the number of occurrences of the specified
dimension.

You can omit the V notation for a one-dimensional array because the V index is
then used by default.

Example showing which values fill which occurrences when V is used:

DEFINE DATA LOCAL
1 #FLD4 (A4/1:3) INIT (V) <'A','B'> /* A fills (1) B ↩
fills (2)
1 #FLD5 (A4/1:2,1:3) INIT (1,V) <'C','D'> /* C, D fill ↩
(1,1:2)
 (2,V) <'F','G','H'> /* F, G, H fill ↩
(2,1:3)
END-DEFINE

319Statements

Initial/Constant Values for an Array

DescriptionSyntax Element

Constant Value Option:constant

The constant (value) with which the array is to be initialized.

Occurrences for which no values are specified, are initializedwith a default value.

In a list of consecutive occurrences, you can skip single occurrences by specifying
commas (,) only. However, you must end the list with a particular value for the
last occurrence.

For further information, see User-Defined Constants in the Programming Guide.

Note: Multiple constant values/system variables must be separated either by the
input delimiter character (as specified with the session parameter ID) or by a
comma. If numbers are provided in the value list and a comma is defined as the
decimal character (with the session parameter DC), either separate the comma from
the value with an extra blank character or use the input delimiter character.

Example with ID=; and DC=, delimiter settings:

DEFINE DATA LOCAL
1 #FLD1 (A4/1:3) INIT <'A',,'C'>
1 #NUM1 (N4,2/1:3) INIT <1 , 2 , 3>
1 #NUM2 (N4,2/1:3) INIT <1;2;3>
END-DEFINE

System Variable Option:

The initial value for an array can also be the value of a Natural system variable.

system-variable

See also the Note for constant.

Character String Option for Alphanumeric/Unicode Variables:FULL LENGTH
<character-string>

LENGTH n
<character-string>

For a variable of the Natural data format A or U, a character-string (for
example, 'ABC') can be used as an initial valuewhich fills all or part of the variable
field.

A character-string is a constant of theNatural data formatA orU as described
in Alphanumeric Constants and Unicode Constants in the Programming Guide.

FULL LENGTH Option:

With the FULL LENGTH option, a particular character-string is repeatedly
moved to the specified array occurrence until the occurrence is completely filled.

LENGTH Option:

With the LENGTH n option, a particular character-string is repeatedly moved
to the specified array occurrence until the first n positions of the occurrence are
filled.

Statements320

Initial/Constant Values for an Array

DescriptionSyntax Element

Example showing which values fill which occurrences:

DEFINE DATA LOCAL
1 #FLD1 (A6/1:3) INIT ALL FULL LENGTH <'X'> /* XXXXXX in all ↩
occ.
1 #FLD2 (A6/1:3) INIT ALL LENGTH 5 <'NO'> /* NONON in all ↩
occ.
1 #FLD3 (A6/1:3) INIT (1:2) LENGTH 4 <'AB'> /* ABAB in occ ↩
(1:2)
1 #FLD4 (A6/1:3) INIT (V) FULL LENGTH <'X','Y'>/* XXXXXX in occ. ↩
(1),
 /* YYYYYY in occ. ↩
(2)
END-DEFINE

Within one array-init-definition, only FULL LENGTH or LENGTH n can be
specified; both notations must not be mixed.

Note: For further example definitions of assigning initial values to arrays, see Example 2 -
DEFINE DATA (Array Definition/Initialization).

321Statements

Initial/Constant Values for an Array

322

51 EM, HD, PM Parameters for Field/Variable

■ Syntax Description ... 324

323

[HD='text'] [PM=value])(EM=value
EMU=value

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

The emhdpm option is used to define additional parameters to be in effect for a field/variable.

Note: If for a database field you specify neither an edit mask (EM= or EMU=) nor a header
(HD=), the default edit mask and default header as defined in the data definition module
(DDM) will be used. However, if you specify one of the two, the other's default from the
DDMwill not be used.

Syntax Description

DescriptionSyntax Element

Edit Mask:EM=value

The EM parameter may be used to define an edit mask usedwhen the field is displayed with
an I/O statement.

For further information, see the session parameter EM in the Parameter Reference.

Unicode Edit Mask:EMU=value

The EMU parameter may be used to define a Unicode edit mask used when the field is
displayed with an I/O statement.

For further information, see the session parameter EMU in the Parameter Reference.

Header Definition:HD='text'

The HD parameter may be used to define the header to be used as the default header for the
field.

For further information, see the session parameter HD in the Parameter Reference.

Print Mode:PM=value

The PM parameter may be used to set the print mode, which indicates how fields are to be
output.

For further information, see the session parameter PM in the Parameter Reference.

Statements324

EM, HD, PM Parameters for Field/Variable

52 Examples of DEFINE DATA Statement Usage

■ Example 1 - DEFINE DATA LOCAL (Local Data Definition) .. 326
■ Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization) ... 326
■ Example 3 - DEFINE DATA (View Definition, Array Redefinition) ... 330
■ Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas) ... 331
■ Example 5 - DEFINE DATA (Initialization) ... 332
■ Example 6 - DEFINE DATA (Variable Array) .. 332

325

The following topics are covered:

Example 1 - DEFINE DATA LOCAL (Local Data Definition)

** Example 'DDAEX1': DEFINE DATA
**
DEFINE DATA LOCAL
1 #VAR1 (A15)
1 #VAR2

2 #VAR2A (N4.1) INIT <1111>
2 #VAR2B (N6.2) INIT <222222>

1 REDEFINE #VAR2
2 #VAR2C (A2)
2 #VAR2D (A2)
2 #VAR2E (A6)

END-DEFINE
*
WRITE NOTITLE '=' #VAR2A / '=' #VAR2B /

'=' #VAR2C / '=' #VAR2D / '=' #VAR2E
*
END

Output of Program DDAEX1:

#VAR2A: 1111.0
#VAR2B: 222222.00
#VAR2C: 11
#VAR2D: 11
#VAR2E: 022222

Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization)

** EXAMPLE 'DDAEX2': DEFINE DATA (array definition/initialization)
**
DEFINE DATA LOCAL
**===
1 #A01 (A5/1:4) INIT <'A','B',,'D'>
1 #A02 (A5/1:4) INIT (V) <'A','B'>

(4) <'D'>
1 #A03 (A5/1:4) INIT (*) <'A'>
1 #A04 (A5/1:4) INIT (2) <'B'>

(3) <'C'>
1 #A05 (A5/1:4) INIT (2:3) <'X'>

(4) <'D'>
1 #A06 (A5/1:4) INIT (*) <'X'>

Statements326

Examples of DEFINE DATA Statement Usage

(3) <'C'>
**---
1 #A10 (A5/1:4) INIT FULL LENGTH <'X'>
1 #A11 (A5/1:4) INIT FULL LENGTH <,'B',,'D'>
1 #A12 (A5/1:4) INIT (V) FULL LENGTH <'A','B'>
1 #A13 (A5/1:4) INIT (2) FULL LENGTH <'B'>
1 #A14 (A5/1:4) INIT (*) FULL LENGTH <'X'>
**---
1 #A20 (A5/1:4) INIT LENGTH 2 <'A'>
1 #A21 (A5/1:4) INIT (2) LENGTH 2 <'B'>

(3) LENGTH 3 <'C'>
1 #A22 (A5/1:4) INIT (3:4) LENGTH 2 <'X'>
1 #A23 (A5/1:4) INIT (V) LENGTH 2 <,'B',,'D'>
**---
1 #A30 (A5/1:4) INIT ALL <'Z'>
1 #A31 (A5/1:4) INIT ALL FULL LENGTH <'Z'>
1 #A32 (A5/1:4) INIT ALL LENGTH 2 <'Z'>
**===
1 #B01 (A5/1:2,1:4) INIT (2,V) <'A','B',,'D'>
1 #B02 (A5/1:2,1:4) INIT (1,*) <'X'>

(1,2) <'B'>
(2,3) <'F'>

1 #B03 (A5/1:2,1:4) INIT (1,1:2) <'X'>
(1,4) <'Y'>

1 #B04 (A5/1:2,1:4) INIT (V,1) <'A1','A2'>
1 #B05 (A5/1:2,1:4) INIT (V,*) <'X','Y'>
**---
1 #B10 (A5/1:2,1:4) INIT ALL <'Z'>
1 #B11 (A5/1:2,1:4) INIT (1,*) FULL LENGTH <'Z'>
1 #B12 (A5/1:2,1:4) INIT (*,*) FULL LENGTH <'Z'>
1 #B13 (A5/1:2,1:4) INIT (1,*) LENGTH 2 <'Z'>
1 #B14 (A5/1:2,1:4) INIT (1,V) FULL LENGTH <'A',,'C'>

(2,V) FULL LENGTH <'E','F'>
1 #B15 (A5/1:2,1:4) INIT (1,*) FULL LENGTH <'X'>

(2,*) FULL LENGTH <'Y'>
(2,4) FULL LENGTH <'Z'>

*
END-DEFINE
**===
WRITE 7X '(1) (2) (3) (4)'
WRITE (AD=V) '=' #A01(*)
WRITE (AD=V) '=' #A02(*)
WRITE (AD=V) '=' #A03(*)
WRITE (AD=V) '=' #A04(*)
WRITE (AD=V) '=' #A05(*)
WRITE (AD=V) '=' #A06(*)
SKIP 1
WRITE (AD=V) '=' #A10(*)
WRITE (AD=V) '=' #A11(*)
WRITE (AD=V) '=' #A12(*)
WRITE (AD=V) '=' #A13(*)
WRITE (AD=V) '=' #A14(*)

327Statements

Examples of DEFINE DATA Statement Usage

SKIP 1
WRITE (AD=V) '=' #A20(*)
WRITE (AD=V) '=' #A21(*)
WRITE (AD=V) '=' #A22(*)
WRITE (AD=V) '=' #A23(*)
SKIP 1
WRITE (AD=V) '=' #A30(*)
WRITE (AD=V) '=' #A31(*)
WRITE (AD=V) '=' #A32(*)
SKIP 1
**===
WRITE 6X '(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)'
WRITE (AD=V) '=' #B01(1,*) 2X #B01(2,*)
WRITE (AD=V) '=' #B02(1,*) 2X #B02(2,*)
WRITE (AD=V) '=' #B03(1,*) 2X #B03(2,*)
WRITE (AD=V) '=' #B04(1,*) 2X #B04(2,*)
WRITE (AD=V) '=' #B05(1,*) 2X #B05(2,*)
SKIP 1
WRITE (AD=V) '=' #B10(1,*) 2X #B10(2,*)
WRITE (AD=V) '=' #B11(1,*) 2X #B11(2,*)
WRITE (AD=V) '=' #B12(1,*) 2X #B12(2,*)
WRITE (AD=V) '=' #B13(1,*) 2X #B13(2,*)
WRITE (AD=V) '=' #B14(1,*) 2X #B14(2,*)
WRITE (AD=V) '=' #B15(1,*) 2X #B15(2,*)
**===
END

Statements328

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX2:

329Statements

Examples of DEFINE DATA Statement Usage

Example 3 - DEFINE DATA (View Definition, Array Redefinition)

** Example 'DDAEX3': DEFINE DATA (view definition, array redefinition)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE

*
1 #ARRAY (A75/1:4)
1 REDEFINE #ARRAY

2 #ALINE (A25/1:4,1:3)
1 #X (N2) INIT <1>
1 #Y (N2) INIT <1>
END-DEFINE
*
FORMAT PS=20
LIMIT 5
FIND EMPLOY-VIEW WITH NAME = 'SMITH'

MOVE NAME TO #ALINE (#X,#Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #ALINE (#X+3,#Y)
IF #Y = 3

RESET INITIAL #Y
PERFORM PRINT

ELSE
ADD 1 TO #Y

END-IF
AT END OF DATA

PERFORM PRINT
END-ENDDATA

END-FIND
*
DEFINE SUBROUTINE PRINT

WRITE NOTITLE (AD=OI) #ARRAY(*)
RESET #ARRAY(*)
SKIP 1

END-SUBROUTINE
*
END

Statements330

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX3:

SMITH SMITH SMITH
ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.

MILWAUKEE MONTERREY
554349 877-4563 994-2260

SMITH SMITH
5 HAWTHORN 13002 NEW ARDEN COUR
OAK BROOK SILVER SPRING
150-9351 639-8963

Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas)

** Example 'DDAEX4': DEFINE DATA (global and local data area definition)
**
DEFINE DATA
GLOBAL

USING DDAEX4G
LOCAL
1 #FIELD1 (A10)
1 #FIELD2 (N5)
END-DEFINE
*
MOVE 'HELLO' TO #FIELD1
MOVE 123 TO #FIELD2
*
CALLNAT 'DDAEX4N' #FIELD1 #FIELD2
*
END

Global Data Area DDAEX4G Used by Program DDAEX4:

1 GLOBAL-FIELD A 10

Subprogram DDAEX4N Called by Program DDAEX4:

** Example 'DDAEX4N': DEFINE DATA PARAMETER (called by DDAEX4)
**
DEFINE DATA
PARAMETER
1 #FIELDA (A10)
1 #FIELDB (N5)
END-DEFINE
*
WRITE '=' #FIELDA '=' #FIELDB
END

331Statements

Examples of DEFINE DATA Statement Usage

Output of Program DDAEX4:

Page 1 05-01-12 08:55:53

#FIELDA: HELLO #FIELDB: 123

Example 5 - DEFINE DATA (Initialization)

** Example 'DDAEX5': DEFINE DATA (initialization)
**
DEFINE DATA LOCAL
1 #START-DATE (D) INIT <*DATX>
1 #UNDERLINE (A50) INIT FULL LENGTH <'_'>
1 #SCALE (A65) INIT LENGTH 65 <'....+..../'>
END-DEFINE
*
WRITE NOTITLE #START-DATE (DF=L)

/ #UNDERLINE
/ #SCALE

END

Output of Program DDAEX5:

2005-01-12
__
....+..../....+..../....+..../....+..../....+..../....+..../....+

Example 6 - DEFINE DATA (Variable Array)

** Example 'DDAEX6': DEFINE DATA (variable array with (1:V))
**
DEFINE DATA LOCAL
1 #ARRAY (A1/1:10)
1 #MAX-ARR (P3)
END-DEFINE
*
#ARRAY (1) := 'R'
#ARRAY (2) := 'E'
#ARRAY (3) := 'D'
#MAX-ARR := 4
*
WRITE #ARRAY(*)
*
CALLNAT 'DDAEX6N' #ARRAY(1:4) #MAX-ARR
*

Statements332

Examples of DEFINE DATA Statement Usage

WRITE #ARRAY(*)
*
*
#MAX-ARR := 5
*
CALLNAT 'DDAEX6N' #ARRAY(1:5) #MAX-ARR
*
WRITE #ARRAY(*)
*
END

Subprogram DDAEX6N Called by Program DDAEX6:

** Example 'DDAEX6N': DEFINE DATA (variable array with (1:V))
**
DEFINE DATA
PARAMETER
1 #STRING (A1/1:V)
1 #MAX (P3)
END-DEFINE
*
IF #MAX = 4

MOVE 'B' TO #STRING (1)
MOVE 'L' TO #STRING (2)
MOVE 'U' TO #STRING (3)
MOVE 'E' TO #STRING (4)

END-IF
*
IF #MAX = 5

MOVE 'W' TO #STRING (1)
MOVE 'H' TO #STRING (2)
MOVE 'I' TO #STRING (3)
MOVE 'T' TO #STRING (4)
MOVE 'E' TO #STRING (5)

END-IF
END

Output of Program DDAEX4:

Page 1 05-01-12 09:06:43

R E D
B L U E
W H I T E

333Statements

Examples of DEFINE DATA Statement Usage

334

VII
■ 53 DEFINE FUNCTION .. 337
■ 54 DEFINE PRINTER ... 345
■ 55 DEFINE PROTOTYPE ... 351
■ 56 DEFINE SUBROUTINE .. 359
■ 57 DEFINE WINDOW ... 367
■ 58 DEFINE WORK FILE ... 375

335

336

53 DEFINE FUNCTION

■ Function .. 338
■ Syntax Description ... 338
■ Examples ... 342

337

DEFINE FUNCTION function-name

[return-data-definition]

[function-data-definition]

statement...

END-FUNCTION

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE PROTOTYPE

Function

The DEFINE FUNCTION statement is used to define a function which is stored as a Natural object
of the type function. A function object may contain only one DEFINE FUNCTION statement.

The DEFINE FUNCTION statement defines the function name, the parameters, the local and applica-
tion-independent variables, the function result and the statements forming the operation logic.
These statements are executed when the function is called.

For further information, see the following sections in the Programming Guide:

■ Natural object type Function
■ Function Call

Syntax Description

DescriptionSyntax Element

Function Name:function-name

function-name is the name of the function to be called. It must comply
with the naming conventions for user-defined variables described in the
Using Natural documentation.

function-name is not necessarily the same as the name of the stored object
that contains the function definition.

You may not use the same function name twice in one library.

Return Data Definition Clause:return-data-definition

For details on this clause, see Return Data Definition.

Function Data Definition Clause:function-data-definition

Statements338

DEFINE FUNCTION

DescriptionSyntax Element

For details on this clause, see Function Data Definition.

Statement(s) to be Executed:statement...

Defines the operation sectionwhich is executedwhen the function is called.
It forms the function logic.

End of DEFINE FUNCTION Statement:END-FUNCTION

The Natural reserved word END-FUNCTIONmust be used to terminate the
DEFINE FUNCTION statement.

Return Data Definition

[BY
VALUE]

(format-length[/array-definition])

RETURNS
[variable-name]

[(array-definition)] HANDLE OF
dialog-element-type
OBJECT

DYNAMIC[/array-definition])

A

(U

B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the result value returned by the function.

Syntax Element Description:

DescriptionSyntax Element

Return Value Name:variable-name

Optionally, youmay specify a namewhich is used to access the return fieldwithin
the function coding. If no such name is specified, the function name is used
instead.

Format/Length Definition:format-length

The format and length of the result field.

For information on format/length definition of user-defined variables, see Format
and Length of User-Defined Variables in the Programming Guide.

Array Dimension Definition:array-definition

With array-definition, youdefine the lower andupper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, seeDEFINE DATA statement,ArrayDimensionDefinition.

Dialog Element Type:HANDLE OF
dialog-element-type

339Statements

DEFINE FUNCTION

DescriptionSyntax Element

The type of dialog element. Its possible values are the values of the TYPE attribute.

Handle of Object:HANDLE OF OBJECT

Used in conjunction with NaturalX.

For further information, see NaturalX in the Programming Guide.

Data Type:A, U or B

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.

Dynamic Variable:DYNAMIC

The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields in the Programming Guide.

BY VALUE Option:BY VALUE

If BY VALUE is specified, the format/length of the “sending” field (defined inside
the return-data-definition clause) and the “receiving” field (which receives the
result at the place where the function is called) must only be transfer compatible.

The format/length of the “receiving” field is either

■ defined via an explicit (IR=) clause in the function call; or
■ defined with a DEFINE PROTOTYPE statement; or
■ taken over from the RETURNS field of the function object, which must already
exist.

For data transfer compatibility the rules outlined inRules for Arithmetic Assignment
and Data Transfer in the Programming Guide apply.

If BY VALUE is not specified, the format and length of the “receiving” field must
exactly match the characteristics of the “sending” field.

Function Data Definition

DEFINE DATA

PARAMETER
USING parameter-data-area
parameter-data-definition

USING

LOCAL

local-data-area
parameter-data-area

local-data-definition

[INDEPENDENT aiv-data-definition]

Statements340

DEFINE FUNCTION

END-DEFINE

The function-data-definition clause defines the parameters which are to be provided when
the function is called, and the data fields used by the function, such as local and application-inde-
pendent variables. A global data area (GDA) cannot be referenced inside the function definition.

Syntax Element Description:

DescriptionSyntax Element

PDA Name:PARAMETER USING
parameter-data-area

Specify the name of the parameter data area (PDA) that contains data
elements which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

Parameter Data Definition:PARAMETER
parameter-data-definition

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Parameter Data Definition in the DEFINE DATA statement
description.

LDA Name:LOCAL USING
local-data-area

Specify the name of the local data area (LDA) to be referenced.

See alsoDefining Local Data in the DEFINE DATA statement description.

PDA Name:LOCAL USING
parameter-data-area

Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCAL may also be a
parameter data area (PDA). By using a PDA as an LDA you can avoid
the extra effort of creating an LDA that has the same structure as the PDA.

See alsoDefining Local Data in the DEFINE DATA statement description.

Local Data Definition:LOCAL
local-data-definition

For information on how to define elements or fields within the statement
itself, that is, without using an LDA or PDA, see the section Local Data
Definition in the DEFINE DATA statement description.

AIV Data Definition:INDEPENDENT
aiv-data-definition

Can be used to define a single or multiple application-independent
variables (AIVs).

See Defining Application-Independent Variables in the DEFINE DATA
statement description.

341Statements

DEFINE FUNCTION

DescriptionSyntax Element

End of Clause:END-DEFINE

The Natural reserved word END-DEFINEmust be used to end the
function-data-definition clause.

Examples

■ Example 1 - DEFINE FUNCTION
■ Example 2 - DEFINE FUNCTION with Result Value Array

Example 1 - DEFINE FUNCTION

** Example 'DFUEX1': DEFINE FUNCTION
**
DEFINE FUNCTION F#FIRST-CHAR

RETURNS #RESULT (A1)
DEFINE DATA PARAMETER

1 #PARM (A10)
END-DEFINE
/*
#RESULT := #PARM /* First character as return value.

END-FUNCTION
*
END

The function F#FIRST-CHAR is used in the example program DPTEX2 in library SYSEXSYN. See Ex-
amples in the DEFINE PROTOTYPE statement description.

Example 2 - DEFINE FUNCTION with Result Value Array

** Example 'DFUEX2': DEFINE FUNCTION
**
DEFINE FUNCTION F#FACTOR

RETURNS (I2/1:3)
DEFINE DATA PARAMETER

1 #VALUE (I2)
END-DEFINE
/*
F#FACTOR(1) := #VALUE * 1
F#FACTOR(2) := #VALUE * 2
F#FACTOR(3) := #VALUE * 3
/*

END-FUNCTION
*
END

Statements342

DEFINE FUNCTION

The function F#FACTOR is used in the example program DPTEX1 in library SYSEXSYN. See Examples
in the DEFINE PROTOTYPE statement description.

343Statements

DEFINE FUNCTION

344

54 DEFINE PRINTER

■ Function .. 346
■ Syntax Description ... 346
■ Examples ... 348

345

DEFINE PRINTER([logical-printer-name=]n)

[OUTPUT operand1]

PROFILE operand2
DISP operand2
COPIES operand3

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The DEFINE PRINTER statement is used to assign a symbolic name to a report number and to control
the allocation of a report to a logical destination. This provides you with additional flexibility
when creating output for various logical print queues.

When this statement is executed and the specified printer is already open, the statement will im-
plicitly cause that printer to be closed. To explicitly close a printer, however, you should use the
CLOSE PRINTER statement.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesASCoperand1

noyesASCoperand2

Syntax Element Description:

Statements346

DEFINE PRINTER

DescriptionSyntax Element

Printer Number (Report Number):(n)

The report number nmay be a value in the range of 0 - 31. This is the number
also to be used in a DISPLAY / WRITE or CLOSE PRINTER statement.

Report number 0 indicates the output channel of the main report. Only output
statements such as PRINT, WRITE or DISPLAY are affected. The INPUT statement
is not affected.

Logical Printer Name:logical-printer-name

Optionally you can assign a logical name logical-printer-name to printer
n. This name can be used for the rep notation in a DISPLAY / WRITE statement.

Naming conventions for logical-printer-name are the same as for
user-defined variables. Multiple logical names may be assigned to the same
printer number. Unlike the value of the OUTPUT operand (see below),
logical-printer-name is evaluated at compile time and therefore independent
of the program control flow.

OUTPUT operand1 Printer Name:

If operand1 is a variable, its format/lengthmust be A8 or one of the following.
The namemust be specified as LPTnn, where nnmay be a number in the range
of 1 - 31. See also Example 1.

Note: If the output data written to a report is to be sent to an Entire Connection
terminal and then be written to an NCD file on a PC, one of the printer names
LPTnn (where nn is a number in the range of 1 - 31) must be specified as
operand1.

Note: The device assignments of logical printer LPTnnmust be set in the
Configuration Utility; see Device/Report Assignments. AsDevice Destination
of the Physical Output Device, the value E (send data to an Entire Connection
terminal) must be specified.

Additional reports can be assigned with the following names:

FunctionReport

Output to be deleted.DUMMY

Output to the Natural infoline. For details
on the infoline, see the Natural terminal

INFOLINE

command %X in the Terminal Commands
documentation. See also Example 2.

Output to the Natural source area.SOURCE

Output to EntireOutputManagement. Refer
to the Entire Output Management
documentation for details.

NOM

Name of Printer Control Characters Table:PROFILE operand2

347Statements

DEFINE PRINTER

DescriptionSyntax Element

With the PROFILE clause, you specify as operand2 the name of a printer control
characters table. The maximum length allowed for operand2 is 8.

Such a table is defined in the global configuration file. See Printer Profiles in the
Configuration Utility documentation for details on how to set printer profiles.

DISP operand2 Disposition:

Maximum length of operand: 4 bytes.

Possible values for operand2:

The temporary spool file is deleted after its content has
been printed. This is the default value.

DEL

The temporary spool file is not deleted after its content has
been printed.

KEEP

The temporary spool file is neither deleted nor printed.HOLD

Number of Copies:COPIES operand3

operand3must be an integer value.

Examples

■ Example 1 - Printer Name Definition
■ Example 2 - Print Output to Infoline

Example 1 - Printer Name Definition

/* PRINTER NAME DEFINED FOR WINDOWS
*
DEFINE PRINTER (REPORT1 = 1) OUTPUT 'LPT1'
WRITE (REPORT1) 'REPORT 1 PRINTED ON PRINTER LPT1'
END

Example 2 - Print Output to Infoline

** Example 'DPIEX1': DEFINE PRINTER
**
*
SET CONTROL 'XI+' /* SWITCH INFOLINE MODE ON
SET CONTROL 'XT' /* INFOLINE TOP
*
DEFINE PRINTER (1) OUTPUT 'INFOLINE'
WRITE (1) 'EXECUTING' *PROGRAM 'BY' *INIT-USER
WRITE 'TEST OUTPUT'

Statements348

DEFINE PRINTER

EJECT /* FORCE PHYSICAL I/O
*
SET CONTROL 'X' /* SWITCH BACK TO NORMAL
*
END

Output of Program DPIEX1:

EXECUTING DPIEX1 BY HTR
Page 1 05-01-13 14:54:33

TEST OUTPUT

349Statements

DEFINE PRINTER

350

55 DEFINE PROTOTYPE

■ Function .. 352
■ Syntax Description ... 353
■ Examples ... 356

351

prototype-name
[FOR]
VARIABLE

DEFINE
PROTOTYPE

UNKNOWN
[return-data-definition]
[parameter-definition]
same-as-clause
USING FUNCTION [DEFINITION [OF]]
function-name

END-PROTOTYPE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE FUNCTION

Function

The DEFINE PROTOTYPE statement is used to specify the properties for calling a function including
the following:

■ the parameters to be passed in the function call,
■ the result value to be returned by the function call, and
■ whether the function is calledwith the function name defined in the DEFINE FUNCTION statement,
or with an alphanumeric variable that contains the function name.

This information is used to resolve a function call within a Natural object at compile time.

A DEFINE PROTOTYPE statement is only needed for a function call if any of the following is true:

■ The specified function name is an alphanumeric variablewhich contains the name of the function
to be called at execution time.

■ An (IR=) clause is not specified in the function call and a cataloged object of the called function
is not available.

■ The parameters provided in the function call are to be validated and the cataloged object of the
called function is not available.

The DEFINE PROTOTYPE statement can be included in a copycode object if the function is to be
called from multiple objects.

For further information, see the following sections in the Programming Guide:

■ Natural object type Function

Statements352

DEFINE PROTOTYPE

■ Function Call

Syntax Description

DescriptionSyntax Element

Prototype Name:[VARIABLE]
prototype-name

prototype-name is either of the following:

■ the name of the prototype whose parameter and result field definitions
are to be used. This name typically matches the function-name in the
DEFINE FUNCTION statement of the referenced function;

■ the name of an alphanumeric field specified as function-name in a
function call if the keyword VARIABLE is specified. This fieldmust contain
the name of the function to be called at execution time.

An array index expression must not be specified with the field name.

UNKNOWNOption:UNKNOWN

The keyword UNKNOWN specifies that the function interface is currently
undefined. In this case, the cataloged object (if available) will not be used to
extract the function result and the parameter description. When a function
call is embedded in aNatural statement, this requires to give the result layout
explicitly with an (IR=) clause. In addition, parameters provided in the
function call are not checked.

See Return Data Definition below.return-data-definition

See Parameter Definition below.parameter-definition

See SAME AS Clause below.same-as-clause

USING FUNCTION Clause:USING FUNCTION
[DEFINITION [OF]]
function-name

function-name is the name of an existing cataloged object of the type
function. The parameters and the result field definitions of this function are
used to resolve the function call.

End of DEFINE PROTOTYPE Statement:END-PROTOTYPE

The Natural reserved word END-PROTOTYPEmust be used to terminate the
DEFINE PROTOTYPE statement.

353Statements

DEFINE PROTOTYPE

Return Data Definition

(format-length [/array-definition])

RETURNS
[variable-name]

[(array-definition)] HANDLE OF OBJECT

DYNAMIC[/array-definition])

A

(U

B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the return value.

When no return data definition is specified, a function call can only be used within a statement if
an explicit (IR=) clause is provided. If such a clause is missing, the function can only be called as
a statement, but not in place of an operand within a statement.

Syntax Element Description:

DescriptionSyntax Element

Return Value Name:variable-name

The optionalvariable-namehas nomeaning. It is just there to have a syntax structure
similar to the Return Data Definition clause of the DEFINE FUNCTION statement.

Format/Length Definition:format-length

The format and length of the result field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

Array Dimension Definition:array-definition

With array-definition, you define the lower and upper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, see Array Dimension Definition in the description of the
DEFINE DATA statement.

Handle of Object:HANDLE OF OBJECT

Used in conjunction with NaturalX.

Data Type:A, U or B

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.

Dynamic Variable:DYNAMIC

The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic Variables
and Fields in the Programming Guide.

Statements354

DEFINE PROTOTYPE

Parameter Definition

DEFINE DATA

PARAMETER UNKNOWN

USING parameter-data-area

PARAMETER
...

parameter-data-definition
...

END-DEFINE

The parameter-definition clause defines the parameters which are to be provided in a function
call. This definition layout is checked against the parameters given in a function call. If this clause
is omitted, this declares the function as free of parameters. In this case, every attempt to provide
parameters in the function call is rejected.

The identifiers used to name the parameter fields have no meaning. They are just there to have a
syntax structure similar to the DEFINE DATA PARAMETER syntax.

Syntax Element Description:

DescriptionSyntax Element

UNKNOWNOption:PARAMETER UNKNOWN

With this option, no parameter is specified and the parameter check in
the function call is disabled. As a consequence, any number of parameters
in the function call will be accepted.

PDA Name:USING parameter-data-area

The name of the parameter-data-area that contains data elements
which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

Parameter Data Definition:parameter-data-definition

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Parameter Data Definition in the DEFINE DATA statement
description.

End of Clause:END-DEFINE

The Natural reserved word END-DEFINEmust be used to end the
parameter-definition clause.

355Statements

DEFINE PROTOTYPE

SAME AS Clause

prototype-nameSAME AS [PROTOTYPE]

With the SAME AS clause you can use the parameter and result field definitions of another prototype
which has been defined before in the same Natural object.

Examples

■ Example 1 - DEFINE PROTOTYPE with a Defined Function Name
■ Example 2 - DEFINE PROTOTYPE with a Variable Function Name

Example 1 - DEFINE PROTOTYPE with a Defined Function Name

This is a prototypedefinition for a functionnamed F#FACTORwhere the prototype-name corresponds
to the function-name specified in the referenced DEFINE FUNCTION statement. The result returned
by the function is of format (I2/1:3), and a single parameter of format (I2) is required.

** Example 'DPTEX1': DEFINE PROTOTYPE and function call
**
DEFINE DATA LOCAL

1 #NUM (I2)
END-DEFINE
*
DEFINE PROTOTYPE F#FACTOR

RETURNS (I2/1:3)
DEFINE DATA PARAMETER

1 #VALUE (I2)
END-DEFINE

END-PROTOTYPE
*
#NUM := 3
*
WRITE 'Function call:' F#FACTOR(<#NUM>)(*)
*
END

The function F#FACTOR is defined in the example function DFUEX2 in library SYSEXSYN. SeeExamples
in the DEFINE FUNCTION statement description.

Statements356

DEFINE PROTOTYPE

Output of Program DPTEX1:

Function call: 3 6 9

Example 2 - DEFINE PROTOTYPE with a Variable Function Name

Due to the keyword VARIABLE, this prototype specifies a function call where the referenced
prototype-name is an alphanumeric variable which contains the function name at execution time.

** Example 'DPTEX2': DEFINE PROTOTYPE and function call
**
DEFINE DATA LOCAL

1 #NAME (A20)
1 #TEXT (A10)

END-DEFINE
*
DEFINE PROTOTYPE VARIABLE #NAME

RETURNS #RETURN (A1)
DEFINE DATA PARAMETER

1 #IN (A10)
END-DEFINE

END-PROTOTYPE
*
#NAME := 'F#FIRST-CHAR'
#TEXT := 'ABCDEFGHIJ'
*
WRITE 'First character:' #NAME(<#TEXT>)
*
END

The function F#FIRST-CHAR is defined in the example function DFUEX1 in library SYSEXSYN. See
Examples in the DEFINE FUNCTION statement description.

Output of Program DPTEX2:

First character: A

357Statements

DEFINE PROTOTYPE

358

56 DEFINE SUBROUTINE

■ Function .. 360
■ Restrictions .. 361
■ Syntax Description ... 362
■ Examples ... 362

359

DEFINE [SUBROUTINE] subroutine-name

statement

END-SUBROUTINE (structured mode only)

RETURN (reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The DEFINE SUBROUTINE statement is used to define aNatural subroutine. A subroutine is invoked
with a PERFORM statement.

Inline/External Subroutines

A subroutinemay be definedwithin the object which contains the PERFORM statement that invokes
the subroutine (inline subroutine); or it may be defined external to the object that contains the
PERFORM statement (external subroutine). An inline subroutine may be defined before or after the
first PERFORM statement which references it.

Note: Although the structuring of a program function into multiple external subroutines
is recommended for achieving a clear program structure, please note that a subroutine
should always contain a larger function block because the invocation of the external sub-
routine represents an additional overhead as compared with inline code or subroutines.

Data Available in a Subroutine

Inline Subroutines

No explicit parameters can be passed from the invoking program via the PERFORM statement to an
internal subroutine.

An inline subroutine has access to the currently established global data area as well as to the local
data area used by the invoking program.

External Subroutines

An external subroutine has access to the currently established global data area. In addition, para-
meters can be passed directly with the PERFORM statement from the invoking object to the external
subroutine; thus, you may reduce the size of the global data area.

Statements360

DEFINE SUBROUTINE

An external subroutine has no access to the local data area defined in the calling program; however,
an external subroutine may have its own local data area.

Restrictions

■ Any processing loop initiated within a subroutine must be closed before END-SUBROUTINE is is-
sued.

■ An inline subroutine must not contain another DEFINE SUBROUTINE statement (see Example 1
below).

■ An external subroutine (that is, an object of type subroutine) must not contain more than one
DEFINE SUBROUTINE statement block (see Example 2 below). However, an external DEFINE
SUBROUTINE block may contain further inline subroutines (see Example 1 below).

■ You may not use the name of an external subroutine twice in one library.

Example 1

The following construction is possible in an object of type subroutine, but not in any other object
(where SUBR01would be considered an inline subroutine):

...
DEFINE SUBROUTINE SUBR01

...
PERFORM SUBR02
PERFORM SUBR03
...
DEFINE SUBROUTINE SUBR02
/* inline subroutine...
END-SUBROUTINE

...
DEFINE SUBROUTINE SUBR03
/* inline subroutine...
END-SUBROUTINE

END-SUBROUTINE
END

Example 2 (invalid):

The following construction is not allowed in an object of type subroutine:

361Statements

DEFINE SUBROUTINE

...
DEFINE SUBROUTINE SUBR01
...
END-SUBROUTINE
DEFINE SUBROUTINE SUBR02
...
END-SUBROUTINE
END

Syntax Description

DescriptionSyntax Element

Name of Subroutine:subroutine-name

For a subroutine name (maximum32 characters), the same naming conventions apply
as for user-defined variables; see Naming Conventions for User-Defined Variables in the
Using Natural documentation.

The subroutine name is independent of the name of the module in which the
subroutine is defined (it may but need not be the same).

Statement(s) to be Executed:statement
In place of statement, youmust supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

End of DEFINE SUBROUTINE Statement:END-SUBROUTINE

In structured mode, the subroutine definition is terminated with END-SUBROUTINE.
RETURN

In reporting mode, RETURNmay be used to terminate a subroutine.

Examples

■ Example 1 - Define Subroutine

Statements362

DEFINE SUBROUTINE

■ Example 2 - Sample Structure for External Subroutine Using GDA Fields

Example 1 - Define Subroutine

** Example 'DSREX1S': DEFINE SUBROUTINE (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE

*
1 #ARRAY (A75/1:4)
1 REDEFINE #ARRAY

2 #ALINE (A25/1:4,1:3)
1 #X (N2) INIT <1>
1 #Y (N2) INIT <1>
END-DEFINE
*
FORMAT PS=20
LIMIT 5
FIND EMPLOY-VIEW WITH NAME = 'SMITH'

MOVE NAME TO #ALINE (#X,#Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #ALINE (#X+3,#Y)
IF #Y = 3

RESET INITIAL #Y
PERFORM PRINT

ELSE
ADD 1 TO #Y

END-IF
AT END OF DATA

PERFORM PRINT
END-ENDDATA

END-FIND
*
DEFINE SUBROUTINE PRINT

WRITE NOTITLE (AD=OI) #ARRAY(*)
RESET #ARRAY(*)
SKIP 1

END-SUBROUTINE
*
END

363Statements

DEFINE SUBROUTINE

Output of Program DSREX1S:

SMITH SMITH SMITH
ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.

MILWAUKEE MONTERREY
554349 877-4563 994-2260

SMITH SMITH
5 HAWTHORN 13002 NEW ARDEN COUR
OAK BROOK SILVER SPRING
150-9351 639-8963

Equivalent reporting-mode example:DSREX1R.

Example 2 - Sample Structure for External Subroutine Using GDA Fields

** Example 'DSREX2': DEFINE SUBROUTINE (using GDA fields)
**
DEFINE DATA
GLOBAL

USING DSREX2G
END-DEFINE
*
INPUT 'Enter value in GDA field' GDA-FIELD1
*
* Call external subroutine in DSREX2S
*
PERFORM DSREX2-SUB
*
END

Global Data Area DSREX2G Used by Program DSREX2:

1 GDA-FIELD1 A 2

Subroutine DSREX2S Called by Program DSREX2:

** Example 'DSREX2S': SUBROUTINE (external subroutine using global data)
**
DEFINE DATA
GLOBAL

USING DSREX2G
END-DEFINE
*
DEFINE SUBROUTINE DSREX2-SUB
*

WRITE 'IN SUBROUTINE' *PROGRAM '=' GDA-FIELD1
*
END-SUBROUTINE

Statements364

DEFINE SUBROUTINE

*
END

365Statements

DEFINE SUBROUTINE

366

57 DEFINE WINDOW

■ Function .. 368
■ Syntax Description ... 369
■ Protection of Input Fields in a Window ... 373
■ Invoking Different Windows .. 373
■ Example .. 373

367

DEFINE WINDOW window-name

AUTO

QUARTERSIZE

operand1 * operand2

CURSOR

BASE
LEFTTOP

RIGHTBOTTOM

operand3 / operand4

[REVERSED [(CD=background-color)]]

[TITLE operand5]

WINDOW
CONTROL

SCREEN

[ON] [(CD=frame-color)] [position-clause]
FRAMED

OFF

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: INPUT | REINPUT | SET WINDOW

Belongs to Function Group: Screen Generation for Interactive Processing

Function

The DEFINE WINDOW statement is used to specify the size, position and attributes of a window.

Awindow is that segment of a logical page, built by a program,which is displayed on the terminal
screen. There is always a window present, although you may not be aware of its existence: unless
specified differently, the size of thewindow is identical to the physical size of your terminal screen.

A DEFINE WINDOW statement does not activate a window; this is donewith a SET WINDOW statement
or with the WINDOW clause of an INPUT statement.

Note: There is always only oneNatural window, that is, the most recent window. Any
previouswindowsmay still be visible on the screen, but are no longer active and are ignored
by Natural. You may enter input only in the most recent window. If there is not enough
space to enter input, the window size must be adjusted first.

Statements368

DEFINE WINDOW

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesIPNSCoperand1

noyesIPNSCoperand2

noyesIPNSCoperand3

noyesIPNSCoperand4

noyesUASCoperand5

Syntax Element Description:

DescriptionSyntax Element

The window-name identifies the window. The name may be up to 32 characters
long. For a window name, the same naming conventions apply as for user-defined

window-name

variables, see Naming Conventions for User-Defined Variables in the Using Natural
documentation.

With the SIZE clause, you specify the size of the window.SIZE

Note: Onmainframe computers, Natural requires additional columns for so-called
attribute bytes to be able to display data on the screen (on other platforms, such
attribute bytes are not needed). Consequently, on mainframe computers the screen
area overlaid by a window is wider, and the size of the page segment visible inside
a window is smaller than on other platforms.

Example: Assume a window whose size is defined as SIZE 5 * 15 (that is, with
a width of 15 columns):

■ Onmainframe computers, the screen area overlaid by the window is 16 columns;
the size of what is visible inside the window is 14 columns without frame, and
10 columns with frame respectively.

■ On other platforms, the screen area overlaid by the window is 15 columns; the
size of what is visible inside the window is 15 columns without frame, and 13
columns with frame respectively.

The size of thewindow is determined automatically byNatural at runtime. The size
is determined by the data generated into the window as follows:

SIZE AUTO

■ The number of window lines will be the number of INPUT lines generated (plus
possibly the PF-key lines, message line, and infoline/statistics line).

■ The number ofwindow columns is determined by the longest INPUT line: Natural
scans, starting from the ends of the lines, for the rightmost significant byte in a

369Statements

DEFINE WINDOW

DescriptionSyntax Element

line. This may cause an input-only or modifiable field (AD=A or AD=M) to be
truncated; to avoid this, you either put a single-character text string after such a
field or explicitly set the window size with the following:

SIZE operand1 *
operand2

If you omit the SIZE clause, SIZE AUTO applies by default.

Note: The title is not part of the window data. Therefore, if the window size has
been determined as described above and the title is longer than the window, it will
be truncated.

The size of the window will be one quarter of the physical screen.SIZE QUARTER

The size of the window will be n lines by n columns. The number of lines is
determined by operand1, the number of columns by operand2. Neither of the two
operands must contain decimal digits.

SIZE operand1 *
operand2

If the window is FRAMED, the specified size will be inclusive of the frame.

The minimum possible window size is:

■ without frame: 2 lines by 10 columns,
■ with frame: 4 lines by 13 columns.

The maximum possible window size is the size of the physical screen.

With the BASE clause, you determine the position of the window on the physical
screen. If you omit the BASE clause, BASE CURSOR applies by default.

BASE

Places the top left corner of the window at the current cursor position. The cursor
position is the physical position of the cursor on the screen. If the size of thewindow

BASE CURSOR

makes it impossible to place thewindowat the cursor position,Natural automatically
places the window as close as possible to the desired position.

Places the window at the top-left, bottom-left, top-right, or bottom-right corner
respectively of the physical screen.

BASE TOP/BOTTOM
LEFT/RIGHT

This places the top left corner of the window at the specified line/column of the
physical screen. The line number is determined by operand3, the column number
by operand4. Neither of the two operands must contain decimal digits.

BASE
operand3/operand4

If the size of the window makes it impossible to place the window at the specified
position, you will get an error message.

REVERSEDwill cause the window to be displayed in reverse video (if the screen
used supports this feature; if it does not, REVERSEDwill be ignored).

REVERSED

This will cause the window to be displayed in reverse video and the background
of the window in the specified color (if the screen used supports these features; if
it does not, the respective specification will be ignored).

REVERSED CD=
background-color

Statements370

DEFINE WINDOW

DescriptionSyntax Element

For information on valid color codes, see session parameter CD in the Parameter
Reference.

With the TITLE clause, you may specify a heading for the window. The specified
title (operand5) will be displayed centered in the top frame-line of the window.

TITLE operand5

The title can be specified either as a text constant (in apostrophes) or as the content
of a user-defined variable. If the title is longer than the window, it will be truncated.
The title is only displayed if the window is FRAMED; if FRAMED OFF is specified for
the window, the TITLE clause will be ignored.

Note: If the title contains trailing blanks, thesewill be removed. If the first character
of the title is a blank, one blank will automatically be appended to the title.

With the CONTROL clause, you determinewhether the PF-key lines, themessage line
and the statistics line are displayed in the window or on the full physical screen.

CONTROL

CONTROL WINDOW causes the lines to be displayed inside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

CONTROL WINDOW

CONTROL SCREEN causes the lines to be displayed on the full physical screen outside
the window.

CONTROL SCREEN

By default, that is, if you omit the FRAMED clause, the window is framed.FRAMED

The top and bottom frame lines are cursor-sensitive: where applicable, you can page
forward, backward, left or right within the window by simply placing the cursor
over the appropriate symbol (<, -, +, or >; see position-clause below) and then
pressing ENTER. If no symbols are displayed, you can page backward and forward
within the window by placing the cursor in the top frame line (for backward
positioning) or bottom frame line (for forward positioning) and then pressing ENTER.

Note: If the window size is smaller than 4 lines by 12 (or 13 on mainframe
computers) columns, the frame will not be visible.

If you specify FRAMED OFF, the framing and everything attached to the frame
(window title and position information) will be switched off.

FRAMED OFF

This causes the frame of the window to be displayed in the specified color (if the
screen used is a color screen; if it is not, the color specification will be ignored).

FRAMED
(CD=frame-color)

For information on valid color codes, see session parameter CD (in the Parameter
Reference).

Note: In Natural for Windows, this specification is ignored.

The POSITION clause is only evaluated on mainframe computers; on all other
platforms it is ignored. For details, refer to Position Clause below.

position-clause

371Statements

DEFINE WINDOW

POSITION Clause

The POSITION clause is only evaluated onmainframe computers; on all other platforms it is ignored.

LEFT
[AUTO] [SHORT]

TOP
SYMBOL

POSITION

RIGHTBOTTOM

LEFT
[MORE]TEXT

RIGHT

OFF

The POSITION clause causes information on the position of the window on the logical page to be
displayed in the frame of the window. This applies only if the logical page is larger than the win-
dow; if it is not, the POSITION clause will be ignored. The position information indicates in which
directions the logical page extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

Syntax Element Description:

DescriptionSyntax Element

Causes the position information to be displayed in form of symbols: More: < -
+ >. The information is displayed in the top and/or bottom frame line.

POSITION SYMBOL

Determines whether the position information is displayed in the top or bottom
frame line.

TOP/BOTTOM

Is only applicable if the logical page is fully visible in the window as far as its
horizontal size is concerned, that is, if only a minus sign character (-) and/or a

AUTO

plus sign character (+) are to be displayed. In this case, AUTO automatically switches
from the symbols to the words Top, Bottom and More respectively.

Causes the word More: before the symbols < - + > to be suppressed.SHORT

Determines whether the position information is displayed in the left or right part
of the frame line.

LEFT/RIGHT

Causes the position information to be displayed in text form. The information is
displayed in the top and/or bottom frame line with the words More,Top and

POSITION TEXT

Bottom. The text is language-dependent and may also be displayed in another
language if the language code is set accordingly.

Suppresses the words Top and Bottom and only displays the word Morewhere
applicable, i.e., in the top or bottom frame line or both.

POSITION TEXT MORE

Determines whether the position information is displayed in the left or right part
of the top frame line.

LEFT/RIGHT

Causes the position information to be suppressed; no position information will
be displayed.

POSITION OFF

Statements372

DEFINE WINDOW

Protection of Input Fields in a Window

The following rules apply to input fields (with AD=A or AD=M) which are not entirely within the
window:

■ Input fields whose beginning is not inside the window are always made protected.
■ Input fields which begin inside and end outside the window are only made protected if the
values they contain cannot be displayed completely in the window. Please note that in this case
it is decisivewhether the value length, not the field length, exceeds thewindow size. Filler characters
(as specified with the profile parameter FC) do not count as part of the value.

If you wish to access input fields thus protected, you have to adjust the window size accordingly
so that the beginning of the field/end of the value is within the window.

Invoking Different Windows

A DEFINE WINDOW statementmust not be placedwithin a logical condition statement block. To invoke
different windows depending on a condition, use different SET WINDOW statements (or INPUT
statements with a WINDOW clause respectively) in a condition.

Example

** Example 'DWDEX1': DEFINE WINDOW
**
DEFINE DATA LOCAL
01 #I (P3)
END-DEFINE
*
SET KEY PF1='%W<<' PF2='%W>>' PF4='%W--' PF5='%W++'
*
DEFINE WINDOW WIND1

SIZE QUARTER
BASE TOP RIGHT
FRAMED ON POSITION SYMBOL AUTO

*
SET WINDOW 'WIND1'
FOR #I = 1 TO 10

WRITE 25X #I 'THIS IS SOME LONG TEXT' #I
END-FOR
*
END

373Statements

DEFINE WINDOW

Output of Program DWDEX1:

+------------------------More: + >+
> r ! Page 1 !
All+....1....+....2....+....3.. ! !

0010 ** Example 'DWDEX1': DEFINE WIND ! 1 THIS !
0020 ******************************** ! 2 THIS !
0030 DEFINE DATA LOCAL ! 3 THIS !
0040 01 #I (P3) ! 4 THIS !
0050 END-DEFINE ! 5 THIS !
0060 * ! 6 THIS !
0070 SET KEY PF1='%W<<' PF2='%W>>' PF ! 7 THIS !
0080 * ! MORE !
0090 DEFINE WINDOW WIND1 +-------------------------------------+
0100 SIZE QUARTER
0110 BASE TOP RIGHT
0120 FRAMED ON POSITION SYMBOL AUTO
0130 *
0140 SET WINDOW 'WIND1'
0150 FOR #I = 1 TO 10
0160 WRITE 25X #I 'THIS IS SOME LONG TEXT' #I
0170 END-FOR
0180 *
0190 END
0200

....+....1....+....2....+....3....+....4....+....5....+... S 19 L 1

Statements374

DEFINE WINDOW

58 DEFINE WORK FILE

■ Function .. 376
■ Syntax Description ... 376

375

[ATTRIBUTES {operand3}...]DEFINE WORK FILEwork-file-number
operand1 [TYPE operand2]
TYPE operand2

Note: The elements shown in square brackets [...] are optional, however, at least one of
them must be specified with this statement.

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CLOSE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The statement DEFINE WORK FILE is used to assign a file name to a Natural work file number
within aNatural application. This allows you tomake or changework file assignments dynamically
within a Natural session or overwrite work file assignments made at another level. See alsoWork
Files in the Operations documentation.

When this statement is executed and the specified work file is already open, the statement will
implicitly close the work file.

Note: For Unicode and code page support onWindows and Linux platforms, seeWork Files
and Print Files in the Unicode and Code Page Support documentation.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesUASCoperand1

noyesUASCoperand2

noyesUASCoperand3

Note: If a format U operand is specified in Unicode (UTF-16), it is converted to session code
page characters before it is evaluated.

Syntax Element Description:

Statements376

DEFINE WORK FILE

DescriptionSyntax Element

Work File Number:work-file-number

The work file number is to be specified.

The work file number is either

■ a numeric constant in the value range (1:32) or
■ a numeric variable of type (B/N/P/I) definedwith a CONST clause assigning a value
in range (1:32). Variable is a scalar (non-array) without precision digits for type
(N/P), length in between 1-4 for type (B), and no redefinition field.

This is the number to be used in a WRITE WORK FILE, READ WORK FILE or CLOSE
WORK FILE statement.

Work File Name:operand1

operand1 is the name of the work file.

The file name (operand1) may contain environment variables. It is possible to use
physical work file names. If a file with the specified name does not exist, it will be
created.

If operand1 is not specified, the value of operand1 is determined by taking thework
file name stored with the Configuration Utility in the parameter file for the
corresponding work file number.

Note: If operand1 is not specified, the behavior of Natural for Mainframes and
Natural for Windows/Linux is different.

TYPE Clause:TYPE operand2

operand2 specifies the type of work file. See also Handling of Large and Dynamic
Variables in the description of the WRITE WORK FILE statement.

The value of operand2 is handled in a case insensitive way and must be enclosed in
quotes or provided in an alphanumeric variable.

Determines the file type from the extension.DEFAULT

Format: Depends on the work file type.

Note: The file type TRANSFER cannot be determined
by the work file type DEFAULT. You must explicitly
define TRANSFER as the file type you wish to use.

Is used to transfer data to and from a PC with Entire
Connection or NaturalONE.

TRANSFER

Thisworkfile type represents a data connection between
a Natural session on Linux and an Entire Connection
terminal or NaturalONE on a PC.

Format: ENTIRE CONNECTION

377Statements

DEFINE WORK FILE

DescriptionSyntax Element

Note:

1. This work file type cannot be used in conjunction
with the ATTRIBUTES Clause.

2. This work file type is not available under Windows.

Format: binarySAG

Files in ASCII are “text” files with records terminated
by [a carriage return] line feed.

ASCII

Format: ASCII

Is a file in ASCII format, with the exception that all
trailing blanks are removed.

ASCII-COMPRESSED

Format: ASCII

With this work file type, you can read and write (using
the statements READ and WRITE, for example) directly

ENTIRECONNECTION

from/to a work file in Entire Connection format on the
local disc.

Format: ENTIRE CONNECTION

Note: This work file type is available on PCs and on
Linux. No transfer to PC is possible. The Entire
Connection terminal is not used in this process.

A completely unformatted file. No formatting
information iswritten (neither for fields nor for records).

UNFORMATTED

Format: UNFORMATTED

Files which can handle dynamic variables exactly and
can also be transported: for example, from a Little

PORTABLE

Endian machine to a Big Endian machine, and vice
versa.

Format: PORTABLE

Comma-separated values. Each record is written to one
line in the file. By default, a header is not written. The

CSV

default character which is used to separate the data
fields is a semicolon (;).

For further information, seeWork Files in the
Configuration Utility documentation.

ATTRIBUTES Clause:ATTRIBUTES
{operand3}...

operand3 specifies a work file attribute.

Several attributes separated by a comma or a blank can be specified, for example:

Statements378

DEFINE WORK FILE

DescriptionSyntax Element

DEFINE WORK FILE ATTRIBUTES 'APPEND,KEEP'

If multiple values for the same attribute type are specified, the last value is taken, for
example:

DEFINE WORK FILE ATTRIBUTES 'APPEND,NOAPPEND'

In this case, NOAPPENDwill be taken.

Example for BOM/NOBOM usage:

...
DEFINE WORK FILE 11 'x.tmp' ATTRIBUTES 'BOM'
*
* write work file with BOM
*
DEFINE WORK FILE 11 'x.tmp' ATTRIBUTES 'NOBOM'
*
* write work file without BOM
...

Note: If operand3 is omitted, the corresponding value defined in the parameter file,
as created by the Configuration Utility, is implicitly used.

The following is an overview of the attribute types and their possible values:

Append Mode:

Deactivates the appendmode. The file is rewritten from
the start. This is the default value.

NOAPPEND

Activates the append mode. In this mode, new records
are added at the end of the file.

APPEND

Keep/Delete File after Work File Close:

Thework file is deleted after a closework file operation.DELETE

The work file is kept after a close work file operation.
This is the default value.

KEEP

Write Byte Order Mark (BOM):

A byte order mark is written in front of the work file
data.

Only available for the work file types which write code
page data: ASCII, ASCII-COMPRESSED, UNFORMATTED

BOM

and CSV. For thesework file types, the attribute BOM can
only be set, if the code page UTF-8 is defined for the
work file (see the description of the TYPE clause).

If a work file of another type is written or a code page
other than UTF-8 is defined, the specification of the
attribute BOM is ignored during runtime.

379Statements

DEFINE WORK FILE

DescriptionSyntax Element

See alsoWork Files and Print Files on Windows and Linux
Platforms in the Unicode and Code Page Support
documentation.

No byte order mark is written in front of the work file
data. This is the default value.

NOBOM

Remove/Keep Carriage Return:

Carriage return characters are kept when reading an
ASCII work file.

This attribute is only relevant for ASCII work files. If a
work file of another type than ASCII or

KEEPCR

ASCII-COMPRESSED is read, the specification of the
attribute KEEPCR is ignored during runtime.

Caution: Use KEEPCRwith care. ASCII format is only
recommended for alphanumeric data. Binary data
should not be processed with ASCII work files. When
you use KEEPCR, the work file record may include
carriage return characters.

The use of KEEPCR only makes sense when reading
ASCII work files which have been written on Linux. It
does not make sense to use KEEPCRwith ASCII work
files which have been written on Windows.

Carriage return characters are removed when reading
an ASCII work file. This is the default value.

This attribute is only relevant for ASCII work files. If a
work file of another type than ASCII or

REMOVECR

ASCII-COMPRESSED is read, the specification of the
attribute REMOVECR is ignored during runtime.

Statements380

DEFINE WORK FILE

VIII
■ 59 DELETE .. 383
■ 60 DELETE (SQL) ... 387
■ 61 DISPLAY ... 391
■ 62 DIVIDE .. 413
■ 63 DO/DOEND .. 419
■ 64 DOWNLOAD PC FILE .. 423
■ 65 EJECT .. 429
■ 66 END ... 435
■ 67 END TRANSACTION ... 439
■ 68 ESCAPE .. 445
■ 69 EXAMINE .. 451
■ 70 EXPAND .. 473

381

382

59 DELETE

■ Function .. 384
■ Restriction .. 384
■ Syntax Description ... 384
■ Database-Specific Considerations ... 385
■ Examples ... 385

383

DELETE [RECORD] [IN] [STATEMENT] [(r)]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The DELETE statement is used to delete a record from a database.

Hold Status

The use of the DELETE statement causes each record selected in the corresponding FIND or READ
statement to be placed in exclusive hold.

Record hold logic is explained in the section Database Update - Transaction Processing (in the Pro-
gramming Guide).

Restriction

A DELETE statement cannot be specified in the same statement line as a FIND, READ, or GET statement.

Syntax Description

DescriptionSyntax Element

Statement Reference:(r)

The notation (r) is used to reference the statementwhichwas used to select/read the record
to be deleted.

If no statement reference is specified, the DELETE statement will reference the innermost
active processing loop in which a database record was selected/read.

Statements384

DELETE

Database-Specific Considerations

The DELETE statement is used to delete a row from the database table. It corresponds with
the SQL statement DELETE WHERE CURRENT OF CURSOR-NAME, that is, only the rowwhich
was read last can be deleted.

SQL Databases

Withmost SQL databases, a row that was read with a FIND SORTED BY or READ LOGICAL
statement cannot be deleted.

The DELETE statement is used to delete an XMLobject from a database. For XMLdatabases,
this implies that only the record which was read last can be deleted.

XML Databases

Examples

■ Example 1
■ Example 2

Example 1

In this example, all records with the name ALDEN are deleted.

** Example 'DELEX1': DELETE
**
**
CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = 'ALDEN'

/*
DELETE
END TRANSACTION
/*
AT END OF DATA

WRITE NOTITLE *NUMBER 'RECORDS DELETED'
END-ENDDATA

END-FIND
END

385Statements

DELETE

Example 2

If no records are found in the VEHICLES file for the person named ALDEN, the EMPLOYEE record
for ALDEN is deleted.

** Example 'DELEX2': DELETE
**
**
CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID

END-DEFINE
*
EMPL. FIND EMPLOY-VIEW WITH NAME = 'ALDEN'

/*
VEHC. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMPL.)

IF NO RECORDS FOUND
/*
DELETE (EMPL.)
/*
END TRANSACTION

END-NOREC
END-FIND
/*

END-FIND
END

Statements386

DELETE

60 DELETE (SQL)

■ Function .. 388
■ Syntax 1 - Searched DELETE .. 388
■ Syntax 2 - Positioned DELETE ... 389

387

Belongs to Function Group: Database Access and Update

Function

The SQL DELETE statement is used to delete either rows in a tablewithout using a cursor (“searched”
DELETE) or rows in a table to which a cursor is positioned (“positioned” DELETE).

Two different structures are possible.

Syntax 1 - Searched DELETE

The “searched” DELETE statement is a stand-alone statement not related to any SELECT statement.
With a single statement you can delete zero, one, multiple or all rows of a table. The rows to be
deleted are determined by a search-condition that is applied to the table. Optionally, the table
name can be assigned a correlation-name.

Note: The number of rows that have actually been deleted with a “searched” DELETE can
be ascertained by using the system variable *ROWCOUNT; see System Variables documentation.

Common Set Syntax:

DELETE FROM table-name [correlation-name] [WHERE search-condition]

Extended Set Syntax:

DELETE FROM table-name [correlation-name]

[WHERE search-condition]

[QUERYNO integer]WITH
RR
RS
CS

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description:

Statements388

DELETE (SQL)

DescriptionSyntax Element

FROM Clause:FROM table-name

Specifies the table from which the rows are to be deleted.

Correlation Name:correlation-name

Optional. The table name can be assigned a correlation-name.

WHERE Clause:WHERE
search-condition

Specifies the selection criteria for the rows to be deleted.

If no WHERE clause is specified, the entire table is deleted.

WITH Isolation Level Clause:WITH

Enables the explicit specification of the isolation level used when locating the row
to be deleted.

This clause belongs to the SQL Extended Set.

It is only valid against Db2 databases. When used against other databases, it will
cause runtime errors.

Cursor StabilityCS

Repeatable ReadRR

Read StabilityRS

QUERYNO Clause:QUERYNO integer

This clause belongs to the SQL Extended Set.

This clause is not currently supported and will be ignored.

Syntax 2 - Positioned DELETE

The “positioned” DELETE statement always refers to a cursor within a database loop. Therefore
the table referenced by a positioned DELETE statement must be the same as the one referenced by
the corresponding SELECT statement, otherwise an errormessage is returned. A positioned DELETE
cannot be used with a non-cursor selection.

The functionality of the positioned DELETE statement corresponds to that of the “native” Natural
DELETE statement.

389Statements

DELETE (SQL)

DELETE FROM table-name WHERE CURRENT OF CURSOR [(r)]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description:

DescriptionSyntax Element

FROM Clause:FROM table-name WHERE
CURRENT OF CURSOR

This clause specifies the table from which the rows are to be deleted.

Statement Reference:(r)

The (r) notation is used to reference the statement which was used to select
the row to be deleted. If no statement reference is specified, the DELETE
statement is related to the innermost active processing loop inwhich a database
record was selected.

FOR ROW…OF ROWSET Clause:FOR ROW ... OF ROWSET

This clause belongs to the SQL Extended Set.

The optional FOR ROW ... OF ROWSET clause for positioned SQL DELETE
statements specifieswhich row of the current rowset has to be deleted. It should
only be specified if the DELETE statement is related to a SELECT statementwhich
uses rowset positioning and which has column arrays in its INTO clause, see
into-clause. If this clause is omitted, all rows of the current rowset are deleted.

Statements390

DELETE (SQL)

61 DISPLAY

■ Function .. 392
■ Syntax Description ... 392
■ Defaults Applicable for a DISPLAY Statement ... 404
■ Examples ... 405

391

DISPLAY [(rep)] [options] {[/] [output-format] output-element}

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER EJECT
| FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The DISPLAY statement is used to specify the fields to be output on a report in column format. A
column is created for each field and a field header is placed over the column.

Note: The statements WRITE and PRINT can be used to produce output in free (non-column)
format.

See also the following topics (in the Programming Guide):

■ Report Format and Control
■ Statements DISPLAY and WRITE
■ Index Notation for Multiple-Value Fields and Periodic Groups
■ Column Headers
■ Layout of an Output Page

Syntax Description

DescriptionSyntax Element

Report Specification:(rep)

The notation (rep)may be used to specify the identification of the report for which
the DISPLAY statement is applicable.

As report identification, a value in the range 0 - 31 or a logical name which has been
assigned using the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the statement will apply to the first report (Report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to the PC,
see Example 8.

Statements392

DISPLAY

DescriptionSyntax Element

For information on how to control the format of an output report createdwithNatural,
see Report Format and Control in the Programming Guide.

Display Options:options

For details, see Display Options below.

Output Format Definitions:output-format

For details, seeOutput Format Definitions below.

Line Advance - Slash Notation:/

When specified within a text element, a slash (/) causes a line advance for the text
displayed.

When specified between output elements, it causes the output element specified by the
slash (/) to be placed vertically within the same column. The header for this column
will be constructed by placing the headers of the vertically displayed elements vertically
above the column.

See also the following topics in the Programming Guide:

■ Line Advance - Slash Notation
■ Example 1 - Line Advance in DISPLAY Statement
■ Suppressing Column Headers - Slash Notation

Output Element:output-element

For details, seeOutput Element below.

Display Options

[(statement-parameters)][AND] [GIVE] [SYSTEM] FUNCTIONS[NOTITLE] [NOHDR]

Syntax Element Description:

DescriptionSyntax Element

Default Page Title Suppression:NOTITLE

By default, Natural generates a single title line for each page resulting from a
DISPLAY statement. This title contains the page number, the time of day, and
the date. Time of day is set at the beginning of the program execution or at the
beginning of the job (batch mode). The default title line may be overridden by
using a WRITE TITLE statement, or it may be suppressed by specifying the
keyword NOTITLE in the DISPLAY statement.

Examples:

393Statements

DISPLAY

DescriptionSyntax Element

■ Default title will be produced:

DISPLAY NAME

■ User title will be produced:

DISPLAY NAME WRITE TITLE 'user-title'

■ No title will be produced:

DISPLAY NOTITLE NAME

Note: If the NOTITLE option is used, it applies to all DISPLAY, PRINT and WRITE
statements within the same object which write data to the same report.

Column Headers:

Columnheaders are produced for each field specified in the DISPLAY statement
using the following rules:

NOHDR

■ The header text may be explicitly specified in the DISPLAY statement before
the field name. For example:

DISPLAY 'EMPLOYEE' NAME 'SALARY' SALARY

■ If you do not specify an explicit header for a field, the header as defined in
the DEFINE DATA statement will be used.

■ If for a database field no header is defined in the DEFINE DATA statement,
the default header as defined in the DDMwill be used.

■ If no default header is defined in the DDM, the field name will be used as
header.

■ If for a user-defined variable no header is defined in the DEFINE DATA
statement, the variable name will be used as header. See also the DEFINE
DATA statement for header definition.

DISPLAY NAME SALARY #NEW-SALARY

■ Natural always underlines column headings and generates one blank line
between the underlining and the data being displayed.

■ If there are multiple DISPLAY statements in a program, the first DISPLAY
statement determines the column header(s) to be used; this is evaluated at
compilation time.

Column Header Suppression:

To suppress the column header for a single field

Statements394

DISPLAY

DescriptionSyntax Element

■ Specify the following characters (apostrophe-slash-apostrophe) before the
field name:

'/'

For example:

DISPLAY '/' NAME 'SALARY' SALARY

To suppress all column headers

■ Specify the keyword NOHDR:

DISPLAY NOHDR NAME SALARY

Note:

1. NOHDR only takes effect for the first DISPLAY statement, as subsequent
DISPLAY statements cannot create column headers anyhow.

2. If both NOTITLE and NOHDR are used, they must be specified in the following
order: DISPLAY NOTITLE NOHDR NAME SALARY

Natural System Function Usage:GIVE SYSTEM
FUNCTIONS

The GIVE SYSTEM FUNCTIONS clause is used to make available the following
Natural system functions: AVER, COUNT, MAX, MIN, NAVER, NCOUNT, NMIN, SUM,
TOTAL. These are evaluated when the DISPLAY statement containing the GIVE
SYSTEM FUNCTIONS clause is executed.

These functions may then be referred to in a statement executed as a result of
an end-of-page condition.

Note:

1. Only one DISPLAY statement per report may contain a GIVE SYSTEM
FUNCTIONS clause. When system functions are evaluated from a DISPLAY
statement, they are evaluated on a page basis, whichmeans that all functions
(except TOTAL) are reset to zero when a new page is initiated.

2. When system functions are used within a DISPLAY statement within a
subroutine, the end-of-page processing must occur within the same routine.

3. In place of the keyword GIVE, the keyword GIVINGmay be used.

See also Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS
Clause.

Parameter Definition at Statement Level:statement-parameters

395Statements

DISPLAY

DescriptionSyntax Element

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the DISPLAY statement.

Each parameter specifiedwill override the corresponding parameter previously
specified in a GLOBALS command, SET GLOBALS (Reporting Mode only) or
FORMAT statement.

If more than one parameter is specified, they must be separated by one or more
blanks fromone another. Each parameter specificationmust not be split between
two statement lines.

Note: The parameter settings applied here will only be regarded for variable
fields, but they have no effect on text-constants. If you would like to set field
attributes for a text-constant, they have to be set explicitly for this element, see
Parameter Definition at Element (Field) Level.

See also:

■ List of Parameters
■ Example of Parameter Usage at Statement and Element (Field) Level
■ Example 7 - DISPLAY Statement Using Parameters on Statement/Element
Level

List of Parameters

The following parameters can be specified with the DISPLAY statement

Specification possible at statement level (S), at element
level (E) or both (SE)

ExplanationParameter Name

SEAttribute DefinitionAD

SEAlphanumeric Length for OutputAL

SEColor DefinitionCD

SEControl VariableCV

SEDate FormatDF

SEDisplay Length for OutputDL

SEDynamic AttributesDY

SEEdit MaskEM

EUnicode Edit MaskEMU

SEmpty Line SuppressionES

SEFiller CharacterFC

SEFloating Point Mantissa LengthFL

SEFiller Character for Group HeadersGC

Statements396

DISPLAY

Specification possible at statement level (S), at element
level (E) or both (SE)

ExplanationParameter Name

SEHeader CenteringHC

SEHeading WidthHW

SEInsertion CharacterIC

SEUnicode Insertion CharacterICU

SEIdentical SuppressIS

SELeading CharactersLC

SEUnicode Leading CharactersLCU

SLine SizeLS

SMultiple-Value Field CountMC

SMaximum Number of Pages of a ReportMP

SENumeric Length for OutputNL

SPeriodic Group CountPC

SEPrint ModePM

SPage SizePS

SESpacing FactorSF

SESign PositionSG

SETrailing CharactersTC

SEUnicode Trailing CharactersTCU

SEUnderlining CharacterUC

SEZero PrintingZP

The individual parameters are described in the Parameter Reference (session parameters).

See also the following topics in the Programming Guide:

■ Centering of Column Headers - HC Parameter
■ Width of Column Headers - HW Parameter
■ Filler Characters for Headers - Parameters FC and GC
■ Underlining Character for Titles and Headers - UC Parameter

397Statements

DISPLAY

Example of Parameter Usage at Statement and Element (Field) Level

DEFINE DATA LOCAL
1 VARI (A4) INIT <'1234'> /* Output
END-DEFINE /* Produced
* /* ---------
DISPLAY NOHDR 'Text' '=' VARI /* Text 1234
DISPLAY NOHDR (AD=U) 'Text' '=' VARI /* Text 1234
DISPLAY NOHDR 'Text' (AD=U) '=' VARI (AD=U)/* Text 1234
DISPLAY NOHDR 'Text' (AD=U) '=' VARI /* Text 1234
END

Output Format Definitions

nX

nT

[(attributes)]
'text'x/y

'c'(n)T*field-name

P*field-name

[/]
'text' [(attributes)] [CAPTIONED]

ASVERTICALLY
[CAPTIONED]

[HORIZONTALLY]

Field Positioning Notations

DescriptionSyntax Element

Column Spacing:nX

This notation inserts n spaces between columns.

Example:

DISPLAY NAME 5X SALARY

See also:

■ Example 1 - DISPLAY Statement Using nX and nT Notation (below)
■ Column Spacing - SF Parameter and nX Notation (in the Programming Guide)

Tab Setting:

The nT notation causes positioning (tabulation) to display position n. Backward
positioning is not permitted.

nT

Statements398

DISPLAY

DescriptionSyntax Element

In the following example, NAME is displayed beginning in position 25, and SALARY
beginning in position 50:

DISPLAY 25T NAME 50T SALARY

See also:

■ Example 1 - DISPLAY Statement Using nX and nT Notation (below)
■ Tab Setting - nT Notation (in the Programming Guide)

x/y Positioning:

The x/y notation causes the next element to be placed x lines below the output of the
last statement, beginning in column y. ymust not be zero. Backward positioning is not
permitted.

x/y

Field Related Positioning:T*field-name

The T* notation is used to position to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

Field and Line Related Positioning:P*field-name

The P* notation is used to position to a specific print position and line of a field used in
a previous DISPLAY statement. It is most often used in conjunction with vertical display
mode. Backward positioning is not permitted.

See also:

■ Example 3 - DISPLAY Statement Using P* Notation (below)
■ Tab Notation P*field (in the Programming Guide)

Override Column Heading Assignment

DescriptionSyntax Element

Text Assignment:'text'

'/' If placed immediately before a field, the text enclosed by single quotes overrides the column
heading.

The slash character '/' before a field causes the header for the field to be suppressed.

399Statements

DISPLAY

DescriptionSyntax Element

DISPLAY 'EMPLOYEE' NAME 'MARITAL/STATUS' MAR-STAT

If multiple 'text' elements are specified before a field name, the last 'text' element will
be used as the column header and the other text elements will be placed before the value of
the field within the column.

See also:

■ Define Your Own Column Headers (in the Programming Guide)
■ Text Notation, Defining a Text to Be Used with a Statement (in the Programming Guide)
■ Example 4 - DISPLAY Statement Using 'text', 'c(n)' and Attribute Notation (below)

Character Repetition:'c'(n)

The character enclosed by single quotes is displayed n times immediately before the field
value. For example:

DISPLAY '*' (5) '=' NAME

results in

***** SMITH

See also:

■ Text Notation, Defining a Character to Be Displayed n Times before a Field Value (in the
Programming Guide)

■ Example 4 - DISPLAY Statement Using 'text', 'c(n)' and Attribute Notation (below)

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

AD=ad-value
CD=cd-value
PM=pm-value

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

Statements400

DISPLAY

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-valuewithout preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IREwill be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-value
or ad-valuewith a value preceded by CD= or AD=.

Vertical/Horizontal Display

The VERT clause may be used to cause multiple field values to be positioned underneath one an-
other in the same column. In vertical mode, a new column may be initiated by specifying the
keyword VERT or HORIZ.

The column heading in vertical mode is controlled using the entry or entries specified with the AS
clause as described below.

DescriptionSyntax Element

DISPLAY VERT without AS Clause:VERTICALLY
Vertical column orientation. No column heading is produced if the AS clause is
omitted.

DISPLAY VERT NAME SALARY

For an example, see DISPLAY VERT without AS Clause in the Programming Guide.

DISPLAY VERT AS 'text' Clause:
Vertical column orientation. If AS 'text' is specified, the text enclosed by single
quotes is used as the column heading.

For an example, see DISPLAY VERT AS 'text' in the Programming Guide.

The slash character / in the character string of 'text'will cause multiple lines of
column headings.

AS 'text'

DISPLAY VERT AS 'LAST/NAME' NAME

401Statements

DISPLAY

DescriptionSyntax Element

DISPLAY VERT AS 'text' CAPTIONED Clause:AS 'text'
CAPTIONED Vertical column orientation. If AS 'text' CAPTIONED is specified, 'text' is used

as the column heading and the standard heading text or field name is inserted
immediately before the field value in each detail display line.

DISPLAY VERT AS 'PERSONS/SELECTED' CAPTIONED NAME FIRST-NAME

For an example, see DISPLAY VERT AS 'text' CAPTIONED in the Programming
Guide.

DISPLAY VERT AS CAPTIONED Clause:
Vertical column orientation. If AS CAPTIONED is specified, the standard heading
text for the field (either heading text or the field name) will be used as the column
heading.

AS CAPTIONED

DISPLAY VERT AS CAPTIONED NAME FIRST-NAME

DISPLAY HORIZ Clause:
Horizontal column orientation. This is the default display mode.

HORIZONTALLY

Vertical and horizontal column orientation may be intermixed by using the respective keyword.

To suspend vertical display for a single output element, you may place a dash (-) in front of the
element. For example:

DISPLAY VERT NAME - FIRST-NAME SALARY

In the above example, FIRST-NAMEwill be output horizontally next to NAME, while SALARYwill be
output vertically again, i.e. below NAME.

The standard display mode is horizontal. A column is constructed for each field to be displayed.

Column headings are obtained and used by Natural according to the following priority:

1. heading 'text' supplied in the DISPLAY statement;

2. the default heading defined in theDDM (database fields), or the name of a user-defined variable;

3. the field name as defined in the DDM (if no heading text was defined for the database field).

For group names, a group heading is produced for the entire group. When specifying a group,
only the heading for the entire group may be overridden by a user-specified heading.

The maximum number of column header lines is 15.

Line size overflow is not permitted for output resulting from a DISPLAY statement. If a line overflow
occurs, an error message is issued.

For more information about vertical/horizontal display usage, see:

Statements402

DISPLAY

■ Example 5 - DISPLAY Statement Using Horizontal Display
■ Example 6 - DISPLAY Statement Using Vertical and Horizontal Display
■ DISPLAY VERT AS CAPTIONED and HORIZ (in the Programming Guide)

Output Element

'text' [(attributes)]

'c'(n) [(attributes)]

['='] {operand1 [(parameters)]}nX

nT

x/y

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGLTDBFIPNANGASoperand1

Syntax Element Description

DescriptionSyntax Element

Column Spacing:nX

This is the same as under Output Format Definitions (see above).

Tab Setting:nT

This is the same as under Output Format Definitions (see above).

x/y Positioning:x/y

This is the same as under Output Format Definitions (see above).

Text Assignment:'text'

This is the same as under Output Format Definitions (see above).

Character Repetition:'c'(n)

This is the same as under Output Format Definitions (see above).

403Statements

DISPLAY

DescriptionSyntax Element

If 'text' '=' is placed immediately before the field, text is output immediately before
the field value. This applies analogously with 'c' (n) '='.

'text' '='

'c' (n) '='

DISPLAY '*****' '=' NAME

Output Attributes:

This is the same as under Output Attributes (see above).

attributes

The field to be displayed.operand1

Parameter Definition at Element (Field) Level:

One or more parameters, enclosed within parentheses, may be specified at element (field)
level, that is, immediately after operand1. Each parameter specified in this manner will

parameters

override the corresponding parameter previously specified at statement level or in a
GLOBALS command, SET GLOBALS (in Reporting Mode only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be placed between each
entry. An entry must not be split between two statement lines.

See also:

■ List of Parameters
■ Example of Parameter Usage at Statement and Element (Field) Level

Defaults Applicable for a DISPLAY Statement

The following defaults are applicable for a DISPLAY statement:

■ Report Width
The width of the report defaults to the value set when Natural is installed. This default value
is normally 132 in batchmode or the line length of the terminal in TPmode. It may be overridden
with the session parameter LS. In TP mode, line size (LS) and page size (PS) parameters are set
by Natural based on the physical characteristics of the terminal type in use.

■ Terminal Screen Output
When the DISPLAY output is displayed on a terminal (emulation) screen, the output begins in
physical Column 2 (because Column 1must be reserved for possible use as an attribute position
on a 3270-type terminal).

■ Printout on Paper
When the DISPLAY output is printed onpaper, the printout begins in the leftmost column (Column
1).

Statements404

DISPLAY

■ Spacing Factor
The default spacing factor between elements is one position. There is a minimum of one space
between columns (reserved for terminal attributes). This default may be overridden with the
session parameter SF.

■ Field Output
The length of the field or the field heading, whichever is greater, determines the column width
for the report (unless the HW parameter is used).
■ If the field is longer than the heading, the heading will be centered over the column unless
the HC=L or HC=R parameter is used to produce a left-justified or right-justified heading.

■ If the heading is longer than the field, the field will be left-justified under the heading.
■ The values contained in the field are left-justified for alphanumeric fields and right-justified
for numeric fields.

■ Numeric fields may be displayed left-justified by specifying AD=L.
■ Alphanumeric fields may be displayed right-justified by specifying AD=R.
■ In a vertical display, the longest data value or heading among all fields determines the column
width (unless the HW parameter is used).

■ Sign
One extra high-order print position is reserved for a sign when printing a numeric field. The
session parameter SGmay be used to suppress the sign position.

■ Page Overflow
Page overflow is checked before execution of a DISPLAY statement. No new page title or trailer
information is generated during the execution of a DISPLAY statement.

Examples

■ Example 1 - DISPLAY Statement Using nX and nT Notation
■ Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause
■ Example 3 - DISPLAY Statement Using P* Notation
■ Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation
■ Example 5 - DISPLAY Statement Using Horizontal Display
■ Example 6 - DISPLAY Statement Using Vertical and Horizontal Display
■ Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level

405Statements

DISPLAY

■ Example 8 - Report Specification with Output File Defined to Natural as PC

Example 1 - DISPLAY Statement Using nX and nT Notation

** Example 'DISEX1': DISPLAY (with nX, nT notation)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE

END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

DISPLAY NOTITLE 5X NAME 50T JOB-TITLE
END-READ
*
END

Output of Program DISEX1:

NAME CURRENT
POSITION

-------------------- -------------------------

ABELLAN MAQUINISTA
ACHIESON DATA BASE ADMINISTRATOR
ADAM CHEF DE SERVICE
ADKINSON PROGRAMMER

Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause

** Example 'DISEX2': DISPLAY (with GIVE SYSTEM FUNCTIONS)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE
*
LIMIT 15
FORMAT PS=15
*
READ EMPLOY-VIEW

DISPLAY GIVE SYSTEM FUNCTIONS
PERSONNEL-ID NAME FIRST-NAME SALARY (1) CURR-CODE (1)

AT END OF PAGE

Statements406

DISPLAY

WRITE / 'SALARY STATISTICS:'
/ 7X 'MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X 'MINIMUM:' MIN(SALARY(1)) CURR-CODE (1)
/ 7X 'AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)

END-ENDPAGE
END-READ
*
END

Output of Program DISEX2:

Page 1 05-01-12 09:47:48

PERSONNEL NAME FIRST-NAME ANNUAL CURRENCY
ID SALARY CODE

--------- -------------------- -------------------- ---------- --------

50005500 BLOND ALEXANDRE 172000 FRA
50005300 MAIZIERE ELISABETH 166900 FRA
50004900 CAOUDAL ALBERT 167350 FRA
50004600 VERDIE BERNARD 170100 FRA
50004200 VAUZELLE BERNARD 159790 FRA
50004100 CHAPUIS ROBERT 169900 FRA
50003800 JOUSSELIN DANIEL 171990 FRA
50006900 BAILLET PATRICK 188000 FRA
50007600 MARX JEAN-MARIE 365700 FRA

SALARY STATISTICS:
MAXIMUM: 365700 FRA
MINIMUM: 159790 FRA
AVERAGE: 192414 FRA

Example 3 - DISPLAY Statement Using P* Notation

** Example 'DISEX3': DISPLAY (with P* notation)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 SALARY (1)
2 BIRTH
2 CITY

END-DEFINE
*
LIMIT 2
READ EMPL-VIEW BY CITY FROM 'N'
DISPLAY NOTITLE NAME CITY

VERT AS 'BIRTH/SALARY' BIRTH (EM=YYYY-MM-DD) SALARY (1)
SKIP 1
AT BREAK OF CITY

DISPLAY P*SALARY (1) AVER(SALARY (1))

407Statements

DISPLAY

SKIP 1
END-BREAK

END-READ
END

Output of Program DISEX3:

NAME CITY BIRTH
SALARY

-------------------- -------------------- ----------

WILCOX NASHVILLE 1970-01-01
38000

MORRISON NASHVILLE 1949-07-10
36000

37000

Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation

** Example 'DISEX4': DISPLAY (with 'c(n)' notation and attribute)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 DEPT
2 LEAVE-DUE
2 NAME

END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY DEPT FROM 'T'

IF LEAVE-DUE GT 40
DISPLAY NOTITLE

'EMPLOYEE' NAME /* OVERRIDE STANDARD HEADER
'LEAVE ACCUMULATED' LEAVE-DUE /* OVERRIDE STANDARD HEADER
'*'(10)(I) /* DISPLAY 10 '*' INTENSIFIED

ELSE
DISPLAY NAME LEAVE-DUE

END-IF
END-READ
*
END

Statements408

DISPLAY

Output of Program DISEX4:

EMPLOYEE LEAVE ACCUMULATED
-------------------- -----------------

LAVENDA 33
BOYER 33
CORREARD 45 **********
BOUVIER 19

Example 5 - DISPLAY Statement Using Horizontal Display

** Example 'DISEX5': DISPLAY (horizontal display)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 SALARY (1:2)
2 CURR-CODE (1:2)

END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE NAME JOB-TITLE SALARY (1:2) CURR-CODE (1:2)
SKIP 1

END-READ
*
END

Output of Program DISEX5:

NAME CURRENT ANNUAL CURRENCY
POSITION SALARY CODE

-------------------- ------------------------- ---------- --------

ABELLAN MAQUINISTA 1450000 PTA
1392000 PTA

ACHIESON DATA BASE ADMINISTRATOR 11300 UKL
10500 UKL

ADAM CHEF DE SERVICE 159980 FRA
0

ADKINSON PROGRAMMER 34500 USD
31700 USD

409Statements

DISPLAY

Example 6 - DISPLAY Statement Using Vertical and Horizontal Display

** Example 'DISEX6': DISPLAY (vertical and horizontal display)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:2)
2 CURR-CODE (1:2)

END-DEFINE
*
LIMIT 1
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE VERT AS CAPTIONED

NAME CITY 'POSITION' JOB-TITLE
HORIZ 'SALARY' SALARY (1:2) 'CURRENCY' CURR-CODE (1:2)

/*
SKIP 1

END-READ
END

Output of Program DISEX6:

NAME SALARY CURRENCY
CITY

POSITION
------------------------- ---------- --------

ABELLAN 1450000 PTA
MADRID 1392000 PTA
MAQUINISTA

Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level

** Example 'DISEX7': DISPLAY (with parameters for statement/element)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 PERSONNEL-ID
2 TELEPHONE

3 AREA-CODE
3 PHONE

END-DEFINE
*
LIMIT 3
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE (AL=16 GC=+ NL=8 SF=3 UC==)

Statements410

DISPLAY

PERSONNEL-ID NAME TELEPHONE (LC=< TC=>)
END-READ
END

Output of Program DISEX7:

PERSONNEL NAME +++++++++++++++TELEPHONE+++++++++++++++
ID

AREA TELEPHONE
CODE

================ ================ ================== ==================

60008339 ABELLAN <1 > <4356726 >
30000231 ACHIESON <0332 > <523341 >
50005800 ADAM <1033 > <44864858 >

Example 8 - Report Specification with Output File Defined to Natural as PC

** Example 'PCDIEX1': DISPLAY and WRITE to PC
**
** NOTE: Example requires that Natural Connection is installed.
**
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES

02 PERSONNEL-ID
02 NAME
02 CITY

END-DEFINE
*
FIND PERS WITH CITY = 'NEW YORK' /* Data selection

WRITE (7) TITLE LEFT 'List of employees in New York' /
DISPLAY (7) /* (7) designates the output file (here the PC).

'Location' CITY
'Surname' NAME
'ID' PERSONNEL-ID

END-FIND
END

411Statements

DISPLAY

412

62 DIVIDE

■ Function .. 414
■ Syntax 1 - DIVIDE Statement without GIVING Clause ... 414
■ Syntax 2 - DIVIDE Statement with GIVING Clause ... 415
■ Syntax 3 - DIVIDE Statement with REMAINDER Clause .. 416
■ Example .. 417

413

Related Statements: ADD | COMPRESS | COMPUTE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET |
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The DIVIDE statement is used to divide an arithmetic expression or operand into two operands.

Note: Concerning Division by Zero: If an attempt is made to use a divisor (operand1) which
is zero, either an error message or a result equal to zero will be returned; this depends on
the setting of the session parameter ZD (described in the Parameter Reference documentation).

Syntax 1 - DIVIDE Statement without GIVING Clause

INTO operand2DIVIDE [ROUNDED] (arithmetic-expression)
operand1

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols .

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesFIPNNASCoperand1

noyesFIPNMASoperand2

Syntax Element Description:

DescriptionSyntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1 INTO operand2

operand1 is the divisor, operand2 is the dividend. The result is stored in
operand2 (result field), hence the statement is equivalent to:

Statements414

DIVIDE

DescriptionSyntax Element

operand2 := operand2 / operand1

If an arithmetic-expression is used, operand2must not be an array range.

The number of decimal positions for the result of the division is evaluated from
the result field (that is, operand2).

For the precision of the result, see Rules for Arithmetic Assignments, Precision of
Results of Arithmetic Operations in the Programming Guide.

ROUNDED Option:ROUNDED

If you specify the keyword ROUNDED, the result will be rounded.

For information on rounding, seeRules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.

Syntax 2 - DIVIDE Statement with GIVING Clause

GIVING
operand3

INTO
DIVIDE
[ROUNDED]

(arithmetic-expression)(arithmetic-expression)
operand2operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesFIPNNASCoperand1

noyesFIPNNASCoperand2

yesyesB*FIPNUAASoperand3

* Format B of operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1 INTO operand2
GIVING operand3

operand1 is the divisor, operand2 is the dividend.

The result of the division is stored in operand3, hence the statement is
equivalent to:

415Statements

DIVIDE

DescriptionSyntax Element

operand3 := operand2 / operand1

The number of decimal positions for the result of the division is evaluated
from the result field (that is, operand3).

For the precision of the result, see Rules for Arithmetic Assignments, Precision
of Results of Arithmetic Operations in the Programming Guide.

ROUNDED Option:

If you specify the keyword ROUNDED, the result will be rounded.

ROUNDED

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

Syntax 3 - DIVIDE Statement with REMAINDER Clause

[GIVING operand3]
REMAINDER operand4

INTODIVIDE
(arithmetic-expression)(arithmetic-expression)
operand2operand1

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesIPNNASCoperand1

noyesIPNNASCoperand2

yesyesTB*FIPNUAASoperand3

yesyesTB*FIPNUAASoperand4

* Format B of operand3 and operand4may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1

operand1 is the divisor, operand2 is the dividend.
operand2

If the GIVING clause is not used, the result is stored in operand2.

Statements416

DIVIDE

DescriptionSyntax Element

If operand2 is a constant or a non-modifiable Natural system variable, the
GIVING clause is required.

GIVING Clause:GIVING operand3

If this clause is used, operand2will not be modified and the result will be
stored in operand3.

The number of decimal positions for the result of the division is evaluated from
the result field (that is, operand2 if no GIVING clause is used, or operand3 if
the GIVING clause is used).

For the precision of the result, see Rules for Arithmetic Assignments, Precision of
Results of Arithmetic Operations (in the Programming Guide).

REMAINDER Clause:REMAINDER operand4

The remainder of the division is placed into the field specified in operand4.

■ If the GIVING clause is used, the statement is equivalent to:

operand3 := operand2 / operand1
operand4 := operand2 - (operand3 * operand1)

None of the four operands may be an array range.
■ If the GIVING clause is not used, the statement is equivalent to:

temporary := operand2
operand2 := operand2 / operand1
operand4 := temporary - (operand2 * operand1)

where temporary is a temporary field with the same format/length as
operand2.

For each of these steps, the rules described in Precision of Results of Arithmetic
Operations in the Programming Guide apply.

Example

** Example 'DIVEX1': DIVIDE
**
DEFINE DATA LOCAL
1 #A (N7) INIT <20>
1 #B (N7)
1 #C (N3.2)
1 #D (N1)
1 #E (N1) INIT <3>
1 #F (N1)

417Statements

DIVIDE

END-DEFINE
*
DIVIDE 5 INTO #A
WRITE NOTITLE 'DIVIDE 5 INTO #A' 20X '=' #A
*
RESET INITIAL #A
DIVIDE 5 INTO #A GIVING #B
WRITE 'DIVIDE 5 INTO #A GIVING #B' 10X '=' #B
*
DIVIDE 3 INTO 3.10 GIVING #C
WRITE 'DIVIDE 3 INTO 3.10 GIVING #C' 8X '=' #C
*
DIVIDE 3 INTO 3.1 GIVING #D
WRITE 'DIVIDE 3 INTO 3.1 GIVING #D' 9X '=' #D
*
DIVIDE 2 INTO #E REMAINDER #F
WRITE 'DIVIDE 2 INTO #E REMAINDER #F' 7X '=' #E '=' #F
*
END

Output of Program DIVEX1:

DIVIDE 5 INTO #A #A: 4
DIVIDE 5 INTO #A GIVING #B #B: 4
DIVIDE 3 INTO 3.10 GIVING #C #C: 1.03
DIVIDE 3 INTO 3.1 GIVING #D #D: 1
DIVIDE 2 INTO #E REMAINDER #F #E: 1 #F: 1

Statements418

DIVIDE

63 DO/DOEND

■ Function .. 420
■ Restrictions .. 420
■ Example .. 421

419

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Reporting Mode Statements

Function

The DO and DOEND statements are used in reporting mode to specify a group of statements to be
executed based on a logical condition as specified in any of the statements listed below.

■ AT BREAK

■ AT END OF DATA

■ AT END OF PAGE

■ AT START OF DATA

■ AT TOP OF PAGE

■ BEFORE BREAK PROCESSING

■ FIND ... IF NO RECORDS FOUND

■ IF

■ IF SELECTION

■ ON ERROR

■ READ WORK FILE ... AT END OF FILE

Note: If you specify a only single statement to be executed based on a logical condition, you
can omit the DO and DOEND statements. But with respect to good coding practice, you are
not recommended to do so.

Restrictions

■ The DO and DOEND statements are only valid in reporting mode.
■ WRITE TITLE, WRITE TRAILER, and the AT condition statements AT BREAK, AT END OF DATA, AT
END OF PAGE, AT START OF DATA, AT TOP OF PAGE are not permittedwithin a DO/DOEND statement
group.

■ A loop-initiating statement may be used within a DO/DOEND statement group provided that the
loop is closed prior to the DOEND statement.

Statements420

DO/DOEND

Example

** Example 'DOEEX1': DO/DOEND
**
*
EMP. FIND EMPLOYEES WITH CITY = 'MILWAUKEE'

VEH. FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID
IF NO RECORDS FOUND DO
ESCAPE

DOEND
DISPLAY PERSONNEL-ID (EMP.) NAME (EMP.)

SALARY (EMP.,1)
MAKE (VEH.) MAINT-COST (VEH.,1)

AT END OF DATA DO
WRITE NOTITLE

/ 10X 'AVG SALARY:'
T*SALARY (1) AVER(SALARY (1))

/ 10X 'AVG MAINTENANCE (ZERO VALUES EXCLUDED):'
T*MAINT-COST (1) NAVER(MAINT-COST (1))

DOEND
/*

LOOP
LOOP
END

Output of Program DOEEX1:

PERSONNEL NAME ANNUAL MAKE MAINT-COST
ID SALARY

--------- -------------------- ---------- -------------------- ----------

20021100 JONES 31000 GENERAL MOTORS 140
20027800 LAWLER 29000 GENERAL MOTORS 0
20027800 LAWLER 29000 TOYOTA 86
20030600 NORDYKE 47000 FORD 194

AVG SALARY: 35666
AVG MAINTENANCE (ZERO VALUES EXCLUDED): 140

421Statements

DO/DOEND

422

64 DOWNLOAD PC FILE

■ Function .. 424
■ Syntax Description ... 424
■ Examples ... 425

423

[VARIABLE] operand1
[FILE]
work-file-number

PCDOWNLOAD
WORKWRITE COMMAND operand2

SYNC
ASYNC

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CLOSE PC FILE | UPLOAD PC FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

This statement is used to transfer data from a Linux platform to the PC.

See also the Natural Connection and Entire Connection documentation

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesCLTDBFIPNUAGASCoperand1

yesyesASCoperand2

Whenusing thework file types ENTIRECONNECTION or TRANSFER, operand1mayneither be of Format
C, nor G.

Syntax Element Description:

DescriptionSyntax Element

Work File Number:work-file-number

The work file number to be used. This number must correspond to one of the work
file numbers for the PC as defined to Natural.

Variable Format:VARIABLE

The records in the PC filewill bewritten in variable format. Note that variable records
cannot be converted to PC spreadsheet formats.

Field Specification:operand1

With operand1 you specify the fields to be downloaded to the PC.

Statements424

DOWNLOAD PC FILE

DescriptionSyntax Element

COMMAND Clause:COMMAND

With the COMMAND clause, you can send PC commands (that is, any command that
can be entered in the command line of Entire Connection on the PC) from the
mainframe to the PC.

Entire Connection checks whether the command sent is valid or not. A command
that cannot be recognized by the PC is rejected. In this case, Natural issues the error
message that the downloaded command was rejected by the PC.

You can use the COMMAND clause, for example, to execute Entire Connection tasks
from the mainframe. If you have the task DIRwhich lists PC directory information,
you can initiate this directly out of your Natural program on the mainframe with the
following statement:

DOWNLOAD PC FILE 7 COMMAND 'DIR'

In Example 2 below, the COMMAND clause is used to define the name of the PC file that
is to receive the downloaded data. In this way, you can avoid prompting for the name
of the file.

COMMAND Specification:

With operand2, you specify the DOS command or Entire Connection task that is to
be executed on the PC. operand2must be an alphanumeric constant or variable.

operand2

SYNC Option:SYNC

With SYNC, you specify that the PC returns control to Natural after executing and
terminating COMMAND. SYNC can be used, for example, to ensure that the command
SET PCFILE has been executed before a file transfer starts.

ASYNC Option:ASYNC

With ASYNC, you specify that the PC immediately returns control toNatural, regardless
of whether the execution of COMMAND has terminated or not.

Examples

■ Example 1 - Use of DOWNLOAD PC FILE Statement

425Statements

DOWNLOAD PC FILE

■ Example 2 - Use of COMMAND Clause

Example 1 - Use of DOWNLOAD PC FILE Statement

The following program demonstrates the use of the DOWNLOAD PC FILE statement. The data is first
selected and then downloaded to the PC by using Work File 7.

** Example 'PCDOEX1': DOWNLOAD PC FILE
**
** NOTE: Example requires that Natural Connection is installed.
**
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES

02 PERSONNEL-ID
02 NAME
02 CITY

END-DEFINE
*
FIND PERS WITH CITY = 'NEW YORK' /* Data selection

DOWNLOAD PC FILE 7 CITY NAME PERSONNEL-ID /* Data download
END-FIND
END

Output of Program PCDOEX1:

When you run the program, a window appears in which you specify the name of the PC file into
which the data is to be downloaded. The data is then downloaded to the PC.

Example 2 - Use of COMMAND Clause

The following program demonstrates the use of the COMMAND clause in the DOWNLOAD PC FILE
statement. The name of the receiving PC file is first defined. Then the data is selected and down-
loaded to this file.

** Example 'PCDOEX2': DOWNLOAD PC FILE
**
** NOTE: Example requires that Natural Connection is installed.
**
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES

02 PERSONNEL-ID
02 NAME
02 CITY

01 CMD (A80) /* Variable for transfer
END-DEFINE /* of the PC command
*
MOVE 'SET PCFILE 7 DOWN DATA PERS.NCD' TO CMD /* PC command to define
*
DOWNLOAD PC FILE 6 COMMAND CMD /* Command download

Statements426

DOWNLOAD PC FILE

*
FIND PERS WITH CITY = 'NEW YORK' /* Data selection

DOWNLOAD PC FILE 7 CITY NAME PERSONNEL-ID /* Data download
END-FIND
END

Note: The PCfile number in two successive DOWNLOAD PC FILE statementsmust be different.

Output of Program PCDOEX2:

When you run the program, the data is downloaded to the PCfile thatwas specified in the program.
A window does not appear.

427Statements

DOWNLOAD PC FILE

428

65 EJECT

■ Function .. 430
■ Syntax Description ... 430
■ Processing ... 432
■ Example .. 432

429

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The EJECT statement may be used to control page advance/page ejection.

Syntax Description

Two different structures are possible for this statement.

■ EJECT - Syntax 1
■ EJECT - Syntax 2

For an explanation of the symbols used in the syntax diagrams below, see Syntax Symbols.

EJECT - Syntax 1

[(rep)]
ON

EJECT
OFF

Syntax Element Description:

DescriptionSyntax
Element

With Report Specification - Online and Batch Modes:EJECT
ON/OFF
(rep)

Causes nopage advance (except as specifiedwithSyntax
2 of the EJECT statement) for the specified report to be
executed.

EJECT OFF (rep)

Causes page advances for the specified report to be
executed.

EJECT ON (rep)

Without Report Specification - Batch Mode only:EJECT
ON/OFF

Without report notation (rep), EJECT ON/OFFmay be used in batch mode to control page
ejection between the output listings created during the execution of a program.

Statements430

EJECT

DescriptionSyntax
Element

Causes Natural to generate a page eject between the
source program listing, the output report and the
message

EJECT ON

EXECUTION COMPLETED

. This is the default setting.

Causes Natural to suppress page breaks between the
above output. EJECT OFF remains in effect until
revoked with a subsequent EJECT ON statement.

EJECT OFF

Report Specification:

The notation (rep)may be used to specify the identification of the report for which the EJECT
statement is applicable.

(rep)

Avalue in the range 0 - 31 or a logical namewhich has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the EJECT statement will be applicable to the first report (Report 0).

For information on how to control the format of an output report createdwithNatural, seeReport
Format and Control in the Programming Guide.

EJECT - Syntax 2

This form of the EJECT statement may be used to cause a page advance without a title or heading
line being generated on the next page and without TOP/END PAGE processing.

LESS [THAN] operand1 [LINES] [LEFT]
IF

[(rep)]EJECT
WHEN

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesIPNSCoperand1

Syntax Element Description:

431Statements

EJECT

DescriptionSyntax Element

Report Specification:(rep)

The notation (rep)may be used to specify the identification of the report forwhich
the EJECT statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the
DEFINE PRINTER statement may be specified.

If (rep) is not specified, the EJECT statement will be applicable to the first report
(Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

IF LESS THAN ... LINES LEFT Clause:IF LESS THAN
operand1 LINES
LEFT Apage advancewill be performed onlywhen the current line for the page is greater

than the page size minus operand1. The value for operand1may be specified as
a numeric constant or as a variable.

Processing

The execution of an EJECT statement does not cause any statements usedwith an AT TOP OF PAGE,
AT END OF PAGE, WRITE TITLE or WRITE TRAILER statement to be executed. It does not affect system
functions evaluated by DISPLAY GIVE SYSTEM FUNCTIONS.

EJECT causes a new physical page only. It causes the Natural system variable *LINE-COUNT to be
set to 1 but has no effect on the setting of the Natural system variable *PAGE-NUMBER.

Example

** Example 'EJTEX1': EJECT
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 JOB-TITLE

END-DEFINE
*
FORMAT PS=15
LIMIT 9
READ EMPLOY-VIEW BY CITY

/*
AT START OF DATA

Statements432

EJECT

EJECT
WRITE /// 20T '%' (29) /

20T '%%' 47T '%%' /
20T '%%' 3X 'REPORT OF EMPLOYEES' 47T '%%' /
20T '%%' 3X ' SORTED BY CITY ' 47T '%%' /
20T '%%' 47T '%%' /
20T '%' (29) /

EJECT
END-START
EJECT WHEN LESS THAN 3 LINES LEFT
/*
WRITE '*' (64)
DISPLAY NOTITLE NOHDR CITY NAME JOB-TITLE 5X *LINE-COUNT
WRITE '*' (64)

END-READ
END

Output of Program EJTEX1:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%
%% REPORT OF EMPLOYEES %%
%% SORTED BY CITY %%
%% %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

After pressing ENTER:

**
AIKEN SENKO PROGRAMMER 2
**
**
AIX EN OTHE GODEFROY COMPTABLE 5
**
**
AJACCIO CANALE CONSULTANT 8
**
**
ALBERTSLUND PLOUG KONTORASSISTENT 11
**
**
ALBUQUERQUE HAMMOND SECRETARY 14
**

433Statements

EJECT

After pressing ENTER:

**
ALBUQUERQUE ROLLING MANAGER 2
**
**
ALBUQUERQUE FREEMAN MANAGER 5
**
**
ALBUQUERQUE LINCOLN ANALYST 8
**
**
ALFRETON GOLDBERG JUNIOR 11
**

Statements434

EJECT

66 END

■ Function .. 436
■ Syntax Description ... 436
■ Examples ... 437

435

END

.

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The END statement is used tomark the physical end of a Natural program. No symbols may follow
the END statement.

In reportingmode, any processing loopwhich is currently active (that is, which has not been closed
with a LOOP statement) is closed by the END statement.

Considerations for Program Execution

When an END statement is executed in a main program (that is, a program executing on Level 1),
final end-page processing is performed as well as final break processing for user-initiated breaks
(PERFORM BREAK PROCESSING) which have not been associatedwith a processing loop by specifying
a reference notation (r).

When an END statement is executed in a subprogram, or in a program invokedwith FETCH RETURN,
control will be returned to the invoking program without any final processing.

Syntax Description

DescriptionSyntax Element

Keyword:END

The Natural reserved keyword END is normally used to mark the physical end of a Natural
program.

Period:.

Instead of the Natural reserved keyword END, a period (.) may be used. It must be preceded
by at least one blank if other statements are contained in the same line.

Statements436

END

Examples

For some typical examples, see Examples of DEFINE DATA Statement Usage.

437Statements

END

438

67 END TRANSACTION

■ Function .. 440
■ Restriction .. 440
■ Syntax Description ... 441
■ Databases Affected .. 441
■ Database-Specific Considerations ... 442
■ Examples ... 442

439

END [OF] TRANSACTION [operand1]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | FIND | GET | GET SAME | GET TRANSACTION
DATA | FIND HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The END TRANSACTION statement is used to indicate the end of a logical transaction. A logical
transaction is the smallest logical unit of work (as defined by the user) which must be performed
in its entirety to ensure that the information contained in the database is logically consistent.

Successful execution of an END TRANSACTION statement ensures that all updates performed during
the transaction have been or will be physically applied to the database regardless of subsequent
user, Natural, database or operating system interruption. Updates performedwithin a transaction
for which the END TRANSACTION statement has not been successfully completed will be backed out
automatically.

The END TRANSACTION statement also results in the release of all records placed in hold status
during the transaction.

The END TRANSACTION statement can be executed based upon a logical condition.

For further information, see the sectionDatabase Update - Transaction Processing (in the Programming
Guide).

Restriction

This statement cannot be used with Entire System Server.

Statements440

END TRANSACTION

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesTDBFIPNUANSCoperand1

Syntax Element Description:

DescriptionSyntax Element

Storage of Transaction Data:operand1

For a transaction applied to an Adabas database, you may also use this statement to store
transaction-related information. These transaction data must not exceed 2000 bytes. They
may be read with a GET TRANSACTION DATA statement.

The transaction data are written to the database specified with the profile parameter ETDB.

If the ETDB parameter is not specified, the transaction data are written to the database
specified with the profile parameter UDB, except on mainframe computers: here, they are
written to the database where the Natural Security system file (FSEC) is located (if FSEC is
not specified, it is considered to be identical to the Natural system file, FNAT; if Natural
Security is not installed, the transaction data are written to the database where FNAT is
located).

Note: END TRANSACTION cannot be used if operand1 is a dynamic variable.

Databases Affected

An END TRANSACTION statement without transaction data (that is, without operand1) will only be
executed if a database transaction under control of Natural has taken place. Depending on the
setting of the Natural profile parameter ET, the statement will be executed only for the database
affected by the transaction (ET=OFF), or for all databases that have been referenced since the last
execution of a BACKOUT TRANSACTION or END TRANSACTION statement (ET=ON).

An END TRANSACTION statement with transaction data (that is, with specifying operand1)will always
be executed and the transaction data be stored in a database as described in the following section.
It depends on the setting of the ET parameter (see above) for which other databases the END
TRANSACTION statement will be executed.

441Statements

END TRANSACTION

Database-Specific Considerations

As most SQL databases close all cursors when a logical unit of work ends, an END
TRANSACTION statement must not be placed within a database modification loop; instead,
it has to be placed after such a loop.

SQL Databases

An END TRANSACTION statement must not be placed within a database modification loop;
instead, it has to be placed after such a loop.

XML Databases

Examples

■ Example 1 - END TRANSACTION
■ Example 2 - END TRANSACTION with ET Data

Example 1 - END TRANSACTION

** Example 'ETREX1': END TRANSACTION
**
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 COUNTRY

END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'BOSTON'

ASSIGN COUNTRY = 'USA'
UPDATE
END TRANSACTION
/*
AT END OF DATA

WRITE NOTITLE *NUMBER 'RECORDS UPDATED'
END-ENDDATA
/*

END-FIND
END

Statements442

END TRANSACTION

Output of Program ETREX1:

7 RECORDS UPDATED

Example 2 - END TRANSACTION with ET Data

** Example 'ETREX2': END TRANSACTION (with ET data)
**
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 CITY

*
1 #PERS-NR (A8) INIT <' '>
END-DEFINE
*
REPEAT

INPUT 'ENTER PERSONNEL NUMBER TO BE UPDATED:' #PERS-NR
IF #PERS-NR = ' '

ESCAPE BOTTOM
END-IF
/*
FIND EMPLOY-VIEW PERSONNEL-ID = #PERS-NR

INPUT (AD=M) NAME / FIRST-NAME / CITY
UPDATE
END TRANSACTION #PERS-NR

END-FIND
/*

END-REPEAT
END

Output of Program ETREX2:

ENTER PERSONNEL NUMBER TO BE UPDATED: 20027800

After entering and confirming the personnel number:

NAME LAWLER
FIRST-NAME SUNNY
CITY MILWAUKEE

443Statements

END TRANSACTION

444

68 ESCAPE

■ Function .. 446
■ Syntax Description ... 447
■ Example .. 448

445

Structured Mode Syntax

TOP [REPOSITION]

ESCAPE
BOTTOM [(r)] [IMMEDIATE]

ROUTINE [IMMEDIATE]

MODULE [IMMEDIATE]

Reporting Mode Syntax

TOP [REPOSITION]

ESCAPE
BOTTOM [(r)] [IMMEDIATE]

ROUTINE [IMMEDIATE]

MODULE [IMMEDIATE]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements:

■ FIND | FOR | HISTOGRAM | PARSE XML | READ | READ RESULT SET (SQL)| READ WORK FILE |
READLOB | REPEAT | SORT

■ CALL | CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | FETCH | PERFORM

Belongs to Function Group:

■ Loop Execution
■ Invoking Programs and Routines

Function

The ESCAPE statement is used to interrupt the linear flow of execution of a processing loop or a
routine.

With the keywords TOP, BOTTOM and ROUTINE you indicate where processing is to continue when
the ESCAPE statement is encountered.

An ESCAPE TOP/BOTTOM statement, when encountered for processing, will internally refer to the
innermost active processing loop. The ESCAPE statement need not be physically placed within the
processing loop.

If an ESCAPE TOP/BOTTOM statement is placed in a routine (subroutine, subprogram, function, or
a program invokedwith FETCH RETURN), the routine(s) entered during execution of the processing
loop will be terminated automatically.

Statements446

ESCAPE

Additional Considerations

More than one ESCAPE statement may be contained within the same processing loop.

The execution of an ESCAPE statement may be based on a logical condition. If an ESCAPE statement
is encountered during processing of an AT END OF DATA, AT BREAK or AT END OF PAGE block, the
execution of the special condition block will be terminated and ESCAPE processing will continue
as required.

If an ESCAPE statement is encountered during processing of an if-no-records-found condition, no
loop-end processing will be performed (equivalent to ESCAPE IMMEDIATE).

Syntax Description

DescriptionSyntax Element

Top Option:ESCAPE TOP

TOP indicates that processing is to continue at the top of the processing loop. This starts
the next repetition of the processing loop.

Top Reposition Option:REPOSITION

WhenanESCAPE TOP REPOSITION statement is executed,Natural immediately continues
processing at the top of the active READ loop, using the current value of the search variable
as new start value.

At the same time, ESCAPE TOP REPOSITION resets the system variable *COUNTER to
zero.

ESCAPE TOP REPOSITION can be specified within a READ statement loop accessing an
Adabas database. The READ statement concerned must contain the option WITH
REPOSITION.

Bottom Option:ESCAPE BOTTOM

BOTTOM indicates that processing is to continue with the first statement following the
processing loop. The loop is terminated and loop-end processing (final BREAK and END
DATA) is executed for all loops being terminated.

In reporting mode, ESCAPE BOTTOM is the default.

Statement Reference:(r)

Notation (r): If BOTTOM is followed by a label or reference number, processing will
continue with the first statement following the processing loop identified by the label or
reference number.

A label or a reference number can only be specified if the ESCAPE BOTTOM statement is
physically placed within the referenced processing loop.

447Statements

ESCAPE

DescriptionSyntax Element

Immediate Option:IMMEDIATE

If you specify the keyword IMMEDIATE, no loop-end processing will be performed.

Routine Option:ESCAPE
ROUTINE

This option indicates that the current Natural routine, which may have been invoked
via a PERFORM, CALLNAT, FETCH RETURN, or as a main program, is to relinquish control.

In the case of a subroutine, processing will continue with the first statement after the
statement used to invoke the subroutine. In the case of amain program,Natural command
mode will be entered.

All loops currently active within the routine will be terminated and loop-end processing
performed as well as final processing for user-initiated (PERFORM BREAK) processing. If
the program containing the ESCAPE ROUTINE is executed as a main program (Level 1),
final end-page processing is performed.

Module Option:ESCAPE MODULE

This option indicates that the entire current program level, with all internal subroutines,
is to relinquish control. The control is then returned to the object of the former program
level. If ESCAPE MODULE is used in a hierarchy of internal subroutines, it allows to escape
all routines working at this level at once. If no internal subroutine is active, ESCAPE
MODULE has the same result as ESCAPE ROUTINE.

ESCAPE MODULE is only relevant in inline subroutines. In external subroutines,
subprograms and invoked programs, it has the same effect as ESCAPE ROUTINE.

As with ESCAPE ROUTINE, loop-end processing will be performed. However, if you
specify the keyword IMMEDIATE, no loop-end processing will be performed.

Example

** Example 'ESCEX1': ESCAPE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 FIRST-NAME
2 NAME
2 AREA-CODE
2 PHONE

*
1 #CITY (A20) INIT <' '>
1 #CNTL (A1) INIT <' '>
END-DEFINE
*
REPEAT

Statements448

ESCAPE

INPUT 'ENTER VALUE FOR CITY: ' #CITY
/ 'OR ''.'' TO TERMINATE '

IF #CITY = '.'
ESCAPE BOTTOM

END-IF
/*
FND. FIND EMPLOY-VIEW WITH CITY = #CITY

/*
IF NO RECORDS FOUND
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM (FND.)

END-NOREC
AT START OF DATA
INPUT (AD=O) 'RECORDS FOUND:' *NUMBER //

'ENTER ''D'' TO DISPLAY RECORDS' #CNTL (AD=M)
IF #CNTL NE 'D'

ESCAPE BOTTOM (FND.)
END-IF

END-START
/*
DISPLAY NOTITLE NAME FIRST-NAME PHONE

END-FIND
END-REPEAT

Output of Program ESCEX1:

ENTER VALUE FOR CITY: PARIS
(OR '.' TO TERMINATE)

After entering and confirming city name:

RECORDS FOUND: 26
ENTER 'D' TO DISPLAY RECORDS D

Result after entering and confirming D:

NAME FIRST-NAME TELEPHONE
-------------------- -------------------- ---------------

MAIZIERE ELISABETH 46758304
MARX JEAN-MARIE 40738871
REIGNARD JACQUELINE 48472153
RENAUD MICHEL 46055008
REMOUE GERMAINE 36929371
LAVENDA SALOMON 40155905
BROUSSE GUY 37502323
GIORDA LOUIS 37497316
SIECA FRANCOIS 40487413

449Statements

ESCAPE

CENSIER BERNARD 38070268
DUC JEAN-PAUL 38065261
CAHN RAYMOND 43723961
MAZUY ROBERT 44286899
FAURIE HENRI 44341159
VALLY ALAIN 47326249
BRETON JEAN-MARIE 48467146
GIGLEUX JACQUES 40477399
KORAB-BRZOZOWSKI BOGDAN 45288048
XOLIN CHRISTIAN 46060015
LEGRIS ROGER 39341509
VVVV

Statements450

ESCAPE

69 EXAMINE

■ Syntax 1 - EXAMINE .. 452
■ Syntax 2 - EXAMINE TRANSLATE .. 460
■ Syntax 3 - EXAMINE for Unicode Graphemes ... 462
■ Examples ... 464

451

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | MOVE | MOVE ALL | MULTIPLY | RESET |
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Syntax 1 - EXAMINE

[DIRECTION-clause]EXAMINE

operand1

[FULL [VALUE [OF]]] SUBSTRING
(operand1,operand2,operand3)

[POSITION-clause]

[FOR] [FULL [VALUE [OF]]] [PATTERN] operand4

[DELIMITERS-option]

DELETE-REPLACE-clause

GIVING-clause

DELETE-REPLACE-clause GIVING-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description - Syntax 1

The EXAMINE statement is used to inspect the content of an alphanumeric or binary field, or a range
of fields within an array, and to

■ return the number of how many times a search-pattern was found;
■ return the byte position where a search-pattern appears first;
■ return the significant content length of a field; that is, the field length without trailing blanks;
■ return the occurrence number (indices) of an array field, where a pattern was found first;
■ replace a pattern by another pattern;
■ delete a pattern.

Operand Definition Table:

Statements452

EXAMINE

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesBUAASC*operand1

noyesB*IPNSCoperand2

noyesB*IPNSCoperand3

noyesBUAA*SCoperand4

* operand1 can only be a constant if the GIVING clause is used, but not if the DELETE/REPLACE clause
is used.

* operand4 can also be used as an array, see Search and Replace with Multiple Values.

* Format B of operand2 and operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

DIRECTION Clause:DIRECTION-clause

This clause determines the search direction. For details, seeDIRECTIONClause
below.

Field to be Examined:operand1

operand1 is the field whose content is to be examined.

If operand1 is a DYNAMIC variable, a REPLACE operation may cause its length
to be increased or decreased; a DELETE operation may cause its length to be
set to zero. The current length of a DYNAMIC variable can be ascertained by
using the system variable *LENGTH.

POSITION Clause:POSITION-clause

This clause may be used to specify a starting and ending position within
operand1 (or the substring of operand1) for the examination. For details, see
POSITION Clause below.

Value to be Used for EXAMINE Operation:operand4

operand4 is the value which is searched for in the examined field(s). Youmay
search for a single value or for multiple values.

For more information on operand4 and operand6, see operand6, which is
used in the DELETE REPLACE Clause described below.

FULL Option:FULL

If FULL is specified for an operand, the entire value, including trailing blanks,
will be processed. If FULL is not specified, trailing blanks in the operand will
be ignored.

SUBSTRING Option:SUBSTRING

453Statements

EXAMINE

DescriptionSyntax Element

Normally, the content of a field is examined from the beginning of the field to
the end or to the last non-blank character.

With the SUBSTRING option, you examine only a certain part of the field. After
the field name (operand1) in the SUBSTRING clause, you specify first the
starting position (operand2) and then the length (operand3) of the field portion
to be examined.

For example, to examine the 5th to 12th position inclusive of a field #A, you
would specify:

EXAMINE SUBSTRING(#A,5,8).

Note:

1. If you omit operand2, the starting position is assumed to be 1.

2. If you omit operand3, the length is assumed to be from the starting position
to the end of the field.

3. If SUBSTRING is used in conjunction with a DYNAMIC variable, the field
behaves like a fixed length variable; that is, the length (*LENGTH) does not
change as a result of the EXAMINE operation, regardless ofwhether a DELETE
or REPLACE operation was executed or not.

PATTERN Option:PATTERN

If you wish to examine the field for a value which contains “wild characters”,
that is symbols for positions not to be examined, you use the PATTERN option.
operand4may then include the following symbols for positions to be ignored:

■ A period (.), question mark (?) or underscore (_) indicates a single position
that is not to be examined.

■ An asterisk (*) or a percent sign (%) indicates any number of positions not
to be examined.

Example:With PATTERN 'NAT*AL' you could examine the field for any value
which contains NAT and AL no matter which and how many other characters
are between NAT and AL (thiswould include the values NATURAL and NATIONAL
as well as NATAL).

Note:

If you use a pattern that starts with an asterisk (*) or percent sign (%), the
following rule applies:

■ All positions from the previous delimiter are not examined. If there is no
delimiter, all positions from the beginning of the string are not examined.

If you use a pattern that ends with an asterisk (*) or percent sign (%), the
following rule applies:

Statements454

EXAMINE

DescriptionSyntax Element

■ All positions to the next delimiter are not examined. If there is no delimiter,
all positions to the end of the string are not examined.

DELIMITERS Option:DELIMITERS-option

This option is used to scan for a value which exhibits delimiters. For details,
see DELIMITERS Option below.

DELETE REPLACE Clause:DELETE-REPLACE-clause

The DELETE option of this clause is used to delete each search-value (operand4)
found in operand1, whereas the REPLACE option is used to replace each
search-value (operand4) found in operand1 by the value specified in
operand6. For details, see DELETE REPLACE Clause below.

For details, see GIVING Clause below.GIVING-clause

DIRECTION Clause

The direction clause determines the search direction.

FORWARD

BACKWARDDIRECTION

operand8

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesA1SCoperand8

Syntax Element Description:

DescriptionSyntax Element

Examine in Left-to-Right Direction:FORWARD

If you specify FORWARD, the contents of the field are examined from left to right.

Examine in Right-to-Left Direction:BACKWARD

If you specify BACKWARD, the contents of the field are examined from right to left.

Alternative Specification:operand8

If you specify operand8, the search direction is determined by the contents of operand8.
operand8must be defined with format/length A1. If operand8 contains an F, then the
search direction is FORWARD, if operand8 contains a B, the search direction is BACKWARD. All
other values are invalid and are rejected at compile time if operand8 is a constant, or at run
time if operand8 is a variable.

455Statements

EXAMINE

Note: If the DIRECTION clause is not specified, the default direction is FORWARD.

POSITION Clause

The POSITION clause may be used to specify a starting and ending position within operand1 (or
the substring of operand1) for the examination.

[POSITION] operand10
ENDING AT

[[STARTING] FROM [POSITION] operand9]
THRU

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesIPNSCoperand9

noyesIPNSCoperand10

Syntax Element Description:

DescriptionSyntax Element

Starting Position:FROM operand9

operand9 is used to define the starting position for the examination.

Ending Position:ENDING AT / THRU operand10

operand10 is used to define the ending position for the examination.

The starting position (operand9) and the ending position (operand10) are relative to operand1 or
the substring of operand1, and both are processed.

The search is performed starting from the starting position and ending at the ending position.

If the starting and/or ending position are not specified, the default position value applies. This
value is determined by the search direction:

Default Ending PositionDefault Starting PositionDirection

length of operand1 (last character)1 (first character)FORWARD

1 (first character)length of operand1 (last character)BACKWARD

Note: If the search direction is FORWARD and the start position is greater than the end position,
or if the search direction is BACKWARD and the start position is less than the end position, no
search is performed.

Statements456

EXAMINE

DELIMITERS Option

ABSOLUTE

WITH [DELIMITERS] [operand5]

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesBUASCoperand5

Syntax Element Description:

DescriptionSyntax Element

Absolute Scan Option:ABSOLUTE

This is the default option. It results in an absolute scan of the field for the
specified value regardless of what other characters may surround the value.

WITH DELIMITERS Option:WITH DELIMITERS

This option is used to scan for a value which is delimited by blanks or by any
character that is neither a letter nor a numeric character.

Specific Delimiter Option:WITH DELIMITERS
operand5

This option is used to scan for a value which is delimited by the character or
any of the characters specified in operand5. If the search value was found at
the beginning or end of the examined field, only the right or left side has to be
delimited by one of the operand5 characters.

DELETE/REPLACE Clause

DELETE [FIRST]
[AND]

REPLACE [FIRST] [WITH] [FULL [VALUE [OF]]] operand6

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesBUAA*SCoperand6

* operand6 can also be used as an array, see Search and Replace with Multiple Values.

Syntax Element Description:

457Statements

EXAMINE

DescriptionSyntax Element

DELETE Option:DELETE

This option is used to delete the first (or all) occurrence(s) of the search-value (operand4)
in the content of operand1.

REPLACE Option:REPLACE

This option is used to replace the first (or all) occurrence(s) of the search-value (operand4)
in operand1 by the replace value specified in operand6.

FIRST Option:FIRST

If you specify the keyword FIRST, only the first identical value will be deleted/replaced.

Notes:

1. If the REPLACE operation results in more characters being generated than will fit into operand1,
you will receive an error message.

2. If operand1 is a dynamic variable, a REPLACE operation may cause its length to be increased
or decreased; a DELETE operation may cause its length to be set to zero. The current length of a
dynamic variable can be ascertained by using the system variable *LENGTH. For general inform-
ation on dynamic variables, see Using Dynamic Variables.

Search and Replace with Multiple Values

The search (operand4) and replace value (operand6)may also be defined as array fields. This allows
to substitute multiple different patterns in the examined field (operand1), all with an unique
EXAMINE statement. It is not necessary to have the same number of occurrences for the search and
replace operand. All what is required is the transfer compatibility between these fields; that is,
operand4:=operand6must be a valid operation; see Assignment Operations with Arrays in the Pro-
gramming Guide.

The operation logic for the multi-value search is as follows:

■ The field to be examined (operand1) is passed through only a single time, either from left to
right for direction FORWARD or from right to left for direction BACKWARD.

■ Beginningwith the first position, the values in the search array (operand4) are tested for amatch,
one after the other, starting with the array occurrence with the lowest index.

■ If no search value was found, the comparison repeats on the next field position.
■ If one of the searched patterns is detected in the examined field (operand1), it is substitutedwith
the value of the replace array (operand6), which overlays the matching pattern in operand4, if
a operand4:=operand6would be executed.

■ After a pattern replacement was performed, the compare process continues with the first occur-
rence for the search array, immediately after the inserted value. This means, a replaced pattern
is skipped and may not be replaced a second time.

Statements458

EXAMINE

Example:

This example shows an HTML translation for the characters less than (<), greater than (>), and
ampersand (&).

DEFINE DATA LOCAL
1 #HTML (A/1:3) DYNAMIC INIT <'<','>','&'>
1 #TAB (A/1:3) DYNAMIC INIT <'<','>','&'>
1 #DOC(A) DYNAMIC /* document to be replaced
END-DEFINE
#DOC := 'a<<b&b>c>'
WRITE #DOC (AL=30) 'before'
/* Replace #DOC using #HTML to #TAB (n:1 replacement)
EXAMINE #DOC FOR #HTML(*) REPLACE #TAB(*)
/* '<' is replaced by '<' (4:1 replacement)
/* '>' is replaced by '>' (4:1 replacement)
/* '&' is replaced by '&' (5:1 replacement)
WRITE #DOC (AL=30) 'after'
END

See also Example 3 - EXAMINE AND REPLACEWITH MULTIPLE VALUES.

GIVING Clause

GIVING [IN] operand7

[GIVING] NUMBER [IN] operand7

[[GIVING] POSITION [IN] operand7]

[[GIVING] LENGTH [IN] operand7]

[[GIVING] INDEX [IN] operand7 ...3]

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

yesyesIPNSoperand7

Syntax Element Description:

DescriptionSyntax Element

GIVING Clause:GIVING

If only the keyword GIVING is specified, this corresponds to GIVING NUMBER (default).

GIVING NUMBER Clause:NUMBER

Is used to obtain information on how many times the search value (operand4) was
found in the field (operand1) whose content is to be examined.

459Statements

EXAMINE

DescriptionSyntax Element

GIVING POSITION Clause:POSITION

Is used to obtain the byte position within operand1 (or the substring of operand1)
where the first value identical to operand4was found.

GIVING LENGTH Clause:LENGTH

Is used to obtain the remaining content length of operand1 (or the substring of
operand1) after all delete/replace operations have been performed. Trailing blanks
are ignored.

Number of Occurrences:operand7

The number of occurrences of the search-value. If the REPLACE FIRST or DELETE
FIRST option is also used, the number will not exceed 1.

GIVING INDEX Clause:INDEX operand7
...3

This option is only applicable if the underlying field to be examined is an array field.

GIVING INDEX is used to obtain the array occurrence number (index) of operand1
in which the first search-value (operand4) was found.

operand7must be specified as many times as there are dimensions in operand1
(maximum three times). operand7will return 0 if the search-value is found in none
of the occurrences.

Note: If the index range of operand1 includes the occurrence 0 (for example, 0:5),
a value of 0 in operand7 is ambiguous. In this case, an additional GIVING NUMBER
clause should be used to ascertain whether the search-value was actually found or
not.

Syntax 2 - EXAMINE TRANSLATE

[AND]
operand1

EXAMINE
(operand1,operand2,operand3)SUBSTRING

[CASE]
UPPER

INTO
TRANSLATE LOWER

USING [INVERTED] operand4

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Statements460

EXAMINE

Syntax Description - Syntax 2

The EXAMINE TRANSLATE statement is used to translate the characters contained in a field into upper-
case or lower-case, or into other characters.

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesBUAASoperand1

noyesB*IPNSCoperand2

noyesB*IPNSCoperand3

noyesBUAASoperand4

*Format B of operand2 and operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Complete Field Content Translation:EXAMINE operand1

operand1 is the field whose content is to be translated.

Partial Field Content Translation:EXAMINE SUBSTRING
operand1 operand2
operand3 Normally, the entire content of a field is translated.

With the SUBSTRING option, you translate only a certain part of the field.
After the field name (operand1) in the SUBSTRING clause, you specify first
the starting position (operand2) and then the length (operand3) of the field
portion to be examined.

For example, to translate the 5th to 12th position inclusive of a field #A, you
would specify:

EXAMINE SUBSTRING(#A,5,8) AND TRANSLATE ...

Note: If you omit operand2, the starting position is assumed to be 1. If you
omit operand3, the length is assumed to be from the starting position to
the end of the field.

Upper Case Translation:

The content of operand1will be translated into upper case.

TRANSLATE INTO UPPER
CASE

Lower Case Translation:TRANSLATE INTO LOWER
CASE

The content of operand1 will be translated into lower case.

Translation Table:TRANSLATE USING operand4

461Statements

EXAMINE

DescriptionSyntax Element

operand4 is the translation table to be used for character translation. The
table must be of format/length A2, U2 or B2.

Note: If for a character to be translatedmore than one translation is defined
in the translation table, the last of these translations applies.

INVERTED Option:INVERTED

If you specify the keyword INVERTED, the translation table (operand4) will
be used inverted; that is, the translation direction will be reversed.

Syntax 3 - EXAMINE for Unicode Graphemes

EXAMINE [FULL
[VALUE [OF]]]

operand1
SUBSTRING (operand1,operand2,operand3)

[POSITION-clause]

[FOR]
CHARPOSITION operand4 CHARLENGTH operand5
CHARPOSITION operand4
CHARLENGTH operand5

[GIVING] POSITION [IN] operand6 [GIVING] LENGTH [IN] operand7

[GIVING] POSITION [IN] operand6

[GIVING] LENGTH [IN] operand7

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description - Syntax 3

A “grapheme” is what a user normally thinks of as a character. In most cases, a UTF-16 code unit
(= U format character) is a grapheme, however, a grapheme can also consist of several code units.
Examples are: a sequence of a base character followed by combining characters or a surrogate
pair. For more information on graphemes and other Unicode terms, see The Unicode Standard at
http://www.unicode.org/.

The EXAMINE statement for U format operands in general operates on code units. However, with
the CHARPOSITION and CHARLENGTH clauses it is possible to obtain the starting position and length
(in terms of code units) of a graphemes sequence. The returned code unit values can then be used
in other statements/clauseswhich require code unit operands (for example, in a SUBSTRING clause).

For further information on this syntax of the EXAMINE statement, see also Unicode and Code Page
Support in the Natural Programming Language, section Statements, EXAMINE.

Operand Definition Table:

Statements462

EXAMINE

http://www.unicode.org/

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesUASCoperand1

noyesB*IPNSCoperand2

noyesB*IPNSCoperand3

noyesIPNSCoperand4

noyesIPNSCoperand5

noyesIPNSoperand6

noyesIPNSoperand7

* Format B of operand2 and operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

FULL Option:FULL

If FULL is specified for an operand, the entire value, including trailing blanks, will
be processed. If FULL is not specified, trailing blanks in the operandwill be ignored.

SUBSTRING Clause:SUBSTRING operand1
operand2 operand3

Normally, the content of a field is examined from the beginning of the field to the
end or to the last non-blank character.

With the SUBSTRING option, you examine only a certain part of the field. After the
field name (operand1) in the SUBSTRING clause, you specify first the starting
position (operand2) and then the length (operand3) of the field portion to be
examined. operand2 and operand3 are specified in terms of code units.

For example, to examine the 5th to 12th position inclusive of a field #A, you would
specify:

EXAMINE SUBSTRING (#A,5,8)

Note:

1. If you omit operand2, the starting position is assumed to be 1.

2. If you omit operand3, the length is assumed to be from the starting position to
the end of the field.

3. If SUBSTRING is used in conjunction with a DYNAMIC variable, the field behaves
like a fixed length variable; that is, the length (*LENGTH) does not change as a
result of the EXAMINE operation, regardless of whether a DELETE or REPLACE
operation was executed or not.

POSITION Clause:POSITION-clause

463Statements

EXAMINE

DescriptionSyntax Element

FROM and THRU positions are given in terms of code units. For further information,
see POSITION Clause under Syntax 1.

CHARPOSITION Clause:CHARPOSITION
operand4

operand4 defines the starting position (in terms of Unicode graphemes) of the
grapheme sequence. The according position in terms of code units is returned in
operand6. This clause can be omitted if the CHARLENGTH clause is specified; in
this case the starting position 1 is assumed.

CHARLENGTH Clause:CHARLENGTH
operand5

operand5 defines the length (in terms of Unicode graphemes) of the grapheme
sequence. The length of the grapheme sequence in terms of code units is returned
in operand7. This clause can be omitted if the CHARPOSITION clause is specified;
in this case the length from the starting position up to the end of the string is
returned.

GIVING POSITION Clause:GIVING POSITION IN
operand6

operand6 receives the starting position (in terms of code units) of the grapheme
sequence definedbyoperand4 andoperand5. Ifoperand1has less thanoperand4
graphemes, 0 is returned. This clause can be omitted if the GIVING LENGTH clause
is specified.

GIVING LENGTH Clause:GIVING LENGTH IN
operand7

operand7 receives the length (in terms of code units) of the grapheme sequence
defined by operand4 and operand5. If operand1 has less than
operand4+operand5 graphemes, 0 is returned. This clause can be omitted if the
GIVING POSITION clause is specified.

Notes:

1. Either the CHARPOSITION or the CHARLENGTH clause or both must be specified.

2. Either the GIVING POSITION or GIVING LENGTH clause or both must be specified.

Examples

■ Example 1 - EXAMINE
■ Example 2 - EXAMINE TRANSLATE
■ Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES

Statements464

EXAMINE

■ Example 4 - EXAMINE for Unicode Graphemes

Example 1 - EXAMINE

** Example 'EXMEX1': EXAMINE
**
DEFINE DATA LOCAL
1 #TEXT (A45)
1 #ARRAY (A5/1:3)
1 #A (A3)
1 #START (N2)
1 #NUM (N2)
1 #NUM1 (N2)
1 #NUM2 (N2)
1 #NUM3 (N2)
1 #POS (N2)
1 #POS1 (N2)
1 #LENG (N2)
1 #INDEX (N2)
END-DEFINE
*
MOVE 'ABC A B C .A. .B. .C. -A- -B- -C- ' TO #TEXT
*
WRITE / 'EXAMPLE 1 (DELIMITER, GIVING NUMBER)'
WRITE NOTITLE '#TEXT: ' #TEXT
EXAMINE #TEXT FOR 'A' GIVING NUMBER #NUM1
EXAMINE #TEXT FOR 'A' WITH DELIMITER GIVING NUMBER #NUM2
EXAMINE #TEXT FOR 'A' WITH DELIMITER '.' GIVING NUMBER #NUM3
WRITE 'EXAMINE #TEXT FOR "A" ' 57T 'Number found:' #NUM1
WRITE 'EXAMINE #TEXT FOR "A" WITH DELIMITER' 57T 'Number found:' #NUM2
WRITE 'EXAMINE #TEXT FOR "A" WITH DELIMITER "."'

57T 'Number found:' #NUM3
*
WRITE / 'EXAMPLE 2 (DELIMITER, REPLACE, GIVING NUMBER)'
WRITE 'EXAMINE #TEXT FOR "A" WITH DELIMITER "-" REPLACE WITH "*"'
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR 'A' WITH DELIMITER '-' REPLACE WITH '*'

GIVING NUMBER #NUM
WRITE 'After: ' #TEXT 57T 'Number found:' #NUM
*
*
NEWPAGE
*
WRITE / 'EXAMPLE 3 (REPLACE, GIVING NUMBER)'
WRITE 'EXAMINE #TEXT FOR " " REPLACE WITH "+"'
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR ' ' REPLACE WITH '+' GIVING NUMBER #NUM
WRITE 'After: ' #TEXT 57T 'Number found:' #NUM
*
WRITE / 'EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)'
WRITE 'EXAMINE FULL #TEXT FOR " " REPLACE WITH "+"'

465Statements

EXAMINE

WRITE 'Before:' #TEXT
EXAMINE FULL #TEXT FOR ' ' REPLACE WITH '+' GIVING NUMBER #NUM
WRITE 'After: ' #TEXT 57T 'Number found:' #NUM
*
WRITE / 'EXAMPLE 5 (DELETE, GIVING POSITION)'
WRITE 'EXAMINE #TEXT FOR "+" DELETE GIVING POSITION #POS'
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR '+' DELETE GIVING POSITION #POS
WRITE 'After: ' #TEXT 57T 'Position found:' #POS
*
WRITE / 'EXAMPLE 6 (DELETE, GIVING LENGTH)'
WRITE 'EXAMINE #TEXT FOR "A" DELETE GIVING LENGTH #LENG'
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR 'A' DELETE GIVING LENGTH #LENG
WRITE 'After: ' #TEXT 57T 'Length found:' #LENG
*
*
NEWPAGE
*
MOVE 'ABC A B C .A. .B. .C. -A- -B- -C- ' TO #TEXT
*
WRITE / 'EXAMPLE 7 (PATTERN, REPLACE, GIVING NUMBER)'
WRITE 'EXAMINE #TEXT FOR ".A." AND REPLACE "***"'
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR '.A.' AND REPLACE '***' GIVING NUMBER #NUM
WRITE 'After: ' #TEXT 57T 'Number found:' #NUM
*
MOVE 'ABC A B C .A. .B. .C. -A- -B- -C- ' TO #TEXT
*
WRITE 'EXAMINE #TEXT FOR PATTERN ".A." AND REPLACE "***"'
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR PATTERN '.A.' AND REPLACE '***' GIVING NUMBER #NUM
WRITE 'After: ' #TEXT 57T 'Number found:' #NUM
*
MOVE 'ABC A B C .A. .B. .C. -A- -B- -C- ' TO #TEXT
*
#A := 'B C'
#POS := 6
#LENG:= 25
*
WRITE / 'EXAMPLE 8 (SUBSTRING, REPLACE, GIVING POSITION)'
WRITE '#A := "B C" ; #POS := 6 ; #LENG:= 25 '
WRITE 'EXAMINE SUBSTRING(#TEXT,#POS,#LENG) FOR #A AND REPLACE "***"'
WRITE 'Before:' #TEXT
EXAMINE SUBSTRING(#TEXT,#POS,#LENG) FOR #A AND REPLACE '***'

GIVING POSITION #POS1
WRITE 'After: ' #TEXT 57T 'Position found:' #POS1
*
*
NEWPAGE
*
MOVE 'ABC A B C .A. .B. .C. -A- -B- -C- ' TO #TEXT

Statements466

EXAMINE

*
WRITE / 'EXAMPLE 9 (DELETE, GIVING NUMBER, GIVING POSITION, '-

'GIVING LENGTH)'
WRITE 'EXAMINE #TEXT FOR "." DELETE GIVING NUMBER #NUM'
WRITE 30T 'GIVING POSITION #POS'
WRITE 30T 'GIVING LENGTH #LENG'
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR '.' DELETE GIVING NUMBER #NUM

GIVING POSITION #POS
GIVING LENGTH #LENG

WRITE 'After: ' #TEXT
WRITE 'Number found: ' #NUM
WRITE 'Position found:' #POS
WRITE 'Length found: ' #LENG
*
*
*
MOVE 'ABC ' TO #ARRAY (1)
MOVE '.A.B.' TO #ARRAY (2)
MOVE '-A-B-' TO #ARRAY (3)
*
WRITE / 'EXAMPLE 10 (GIVING NUMBER, GIVING POSITION, GIVING INDEX)'
WRITE '#ARRAY(1):' #ARRAY(1)
WRITE '#ARRAY(2):' #ARRAY(2)
WRITE '#ARRAY(3):' #ARRAY(3)
WRITE 'EXAMINE #ARRAY(*) FOR "B" GIVING NUMBER #NUM'
WRITE 27T 'GIVING POSITION #POS'
WRITE 27T 'GIVING INDEX #INDEX'
EXAMINE #ARRAY(*) FOR 'B' GIVING NUMBER #NUM

GIVING POSITION #POS
GIVING INDEX #INDEX

WRITE 'Number found: ' #NUM
WRITE 'Position found:' #POS
WRITE 'Index found: ' #INDEX
END

Output of Program EXMEX1:

EXAMPLE 1 (DELIMITER, GIVING NUMBER)
#TEXT: ABC A B C .A. .B. .C. -A- -B- -C-
EXAMINE #TEXT FOR 'A' Number found: 4
EXAMINE #TEXT FOR 'A' WITH DELIMITER Number found: 3
EXAMINE #TEXT FOR 'A' WITH DELIMITER '.' Number found: 1

EXAMPLE 2 (DELIMITER, REPLACE, GIVING NUMBER)
EXAMINE #TEXT FOR 'A' WITH DELIMITER '-' REPLACE WITH '*'
Before: ABC A B C .A. .B. .C. -A- -B- -C-
After: ABC A B C .A. .B. .C. -*- -B- -C- Number found: 1

EXAMPLE 3 (REPLACE, GIVING NUMBER)
EXAMINE #TEXT FOR ' ' REPLACE WITH '+'
Before: ABC A B C .A. .B. .C. -*- -B- -C-

467Statements

EXAMINE

After: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B-++-C- Number found: 20

EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)
EXAMINE FULL #TEXT FOR ' ' REPLACE WITH '+'
Before: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B-++-C-
After: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B-++-C-+ Number found: 1

EXAMPLE 5 (DELETE, GIVING POSITION)
EXAMINE #TEXT FOR '+' DELETE GIVING POSITION #POS
Before: ABC+++A+B+C+++.A.++.B.++.C.++++-*-++-B-++-C-+
After: ABCABC.A..B..C.-*--B--C- Position found: 4

EXAMPLE 6 (DELETE, GIVING LENGTH)
EXAMINE #TEXT FOR 'A' DELETE GIVING LENGTH #LENG
Before: ABCABC.A..B..C.-*--B--C-
After: BCBC...B..C.-*--B--C- Length found: 21

EXAMPLE 7 (PATTERN, REPLACE, GIVING NUMBER)
EXAMINE #TEXT FOR '.A.' AND REPLACE '***'
Before: ABC A B C .A. .B. .C. -A- -B- -C-
After: ABC A B C *** .B. .C. -A- -B- -C- Number found: 1
EXAMINE #TEXT FOR PATTERN '.A.' AND REPLACE '***'
Before: ABC A B C .A. .B. .C. -A- -B- -C-
After: ABC ***B C *** .B. .C. *** -B- -C- Number found: 3

EXAMPLE 8 (SUBSTRING, REPLACE, GIVING POSITION)
#A := 'B C' ; #POS := 6 ; #LENG:= 25
EXAMINE SUBSTRING(#TEXT,#POS,#LENG) FOR #A AND REPLACE '***'
Before: ABC A B C .A. .B. .C. -A- -B- -C-
After: ABC A *** .A. .B. .C. -A- -B- -C- Position found: 4

EXAMPLE 9 (DELETE, GIVING NUMBER, GIVING POSITION, GIVING LENGTH)
EXAMINE #TEXT FOR '.' DELETE GIVING NUMBER #NUM

GIVING POSITION #POS
GIVING LENGTH #LENG

Before: ABC A B C .A. .B. .C. -A- -B- -C-
After: ABC A B C A B C -A- -B- -C-
Number found: 6
Position found: 15
Length found: 38

EXAMPLE 10 (GIVING NUMBER, GIVING POSITION, GIVING INDEX)
#ARRAY(1): ABC
#ARRAY(2): .A.B.
#ARRAY(3): -A-B-
EXAMINE #ARRAY(*) FOR 'B' GIVING NUMBER #NUM

GIVING POSITION #POS
GIVING INDEX #INDEX

Number found: 3
Position found: 2
Index found: 1

Statements468

EXAMINE

Example 2 - EXAMINE TRANSLATE

** Example 'EXMEX2': EXAMINE TRANSLATE
**
DEFINE DATA LOCAL
1 #TEXT (A50)
1 #TAB (A2/1:10)
1 #POS (N2)
1 #LENG (N2)
END-DEFINE
*
MOVE 'ABC A B C .A. .B. .C. -A- -B- -C- ' TO #TEXT
*
MOVE 'AX' TO #TAB(1)
MOVE 'BY' TO #TAB(2)
MOVE 'CZ' TO #TAB(3)
*
*
WRITE NOTITLE / 'EXAMPLE 1 (WITH TRANSLATION TABLE)'
WRITE 'EXAMINE #TEXT TRANSLATE USING #TAB(*)'
WRITE 'Before:' #TEXT
EXAMINE #TEXT TRANSLATE USING #TAB(*)
WRITE 'After: ' #TEXT
*
WRITE / 'EXAMPLE 2 (WITH INVERTED TRANSLATION TABLE)'
WRITE 'EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)'
WRITE 'Before:' #TEXT
EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)
WRITE 'After: ' #TEXT
*
#POS := 13
#LENG:= 15
*
WRITE / 'EXAMPLE 3 (WITH LOWER CASE TRANSLATION)'
WRITE '#POS := 13 ; #LENG:= 15 '
WRITE 'EXAMINE SUBSTRING(#TEXT,#POS,#LENG) TRANSLATE INTO LOWER CASE'
WRITE 'Before:' #TEXT
EXAMINE SUBSTRING(#TEXT,#POS,#LENG) TRANSLATE INTO LOWER CASE
WRITE 'After: ' #TEXT
*
END

469Statements

EXAMINE

Output of Program EXMEX2:

EXAMPLE 1 (WITH TRANSLATION TABLE)
EXAMINE #TEXT TRANSLATE USING #TAB(*)
Before: ABC A B C .A. .B. .C. -A- -B- -C-
After: XYZ X Y Z .X. .Y. .Z. -X- -Y- -Z-

EXAMPLE 2 (WITH INVERTED TRANSLATION TABLE)
EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)
Before: XYZ X Y Z .X. .Y. .Z. -X- -Y- -Z-
After: ABC A B C .A. .B. .C. -A- -B- -C-

EXAMPLE 3 (WITH LOWER CASE TRANSLATION)
#POS := 13 ; #LENG:= 15
EXAMINE SUBSTRING(#TEXT,#POS,#LENG) TRANSLATE INTO LOWER CASE
Before: ABC A B C .A. .B. .C. -A- -B- -C-
After: ABC A B C .a. .b. .c. -A- -B- -C-

Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES

* EXAMPLE 'EXMEX3': EXAMINE AND REPLACE WITH MULTIPLE VALUES
**
* This example shows a translation of the pattern
* 'AA', 'Aa' and 'aA' into '++',
* 'BB', 'Bb' and 'bB' into '--' and
* 'CC', 'Cc' and 'cC' into '**'.
**
DEFINE DATA LOCAL
1 #SV (A2/1:3,1:3) INIT (1,V) <'AA','BB','CC'>

(2,V) <'Aa','Bb','Cc'>
(3,V) <'aA','bB','cC'>

1 #RV (A2/1:3) INIT <'++','--','**'>
1 #STRING (A20) INIT <'AAABbbbbBCCCcccCaaaA'>
1 #NUM (N2)
END-DEFINE
*
*
WRITE NOTITLE / 'EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH #RV(*)' /
*
WRITE 'Before:' #STRING /* shows 'AAABbbbbBCCCcccCaaaA'
*
EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH #RV(*)

GIVING NUMBER #NUM
*
WRITE 'After: ' #STRING /* shows '++A--bb--****c**aa++'
40T 'Number found:' #NUM

*

Statements470

EXAMINE

Output of Program EXMEX3:

EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH #RV(*)

Before: AAABbbbbBCCCcccCaaaA
After: ++A--bb--****c**aa++ Number found: 7

Example 4 - EXAMINE for Unicode Graphemes

This example demonstrates the analysis of a Unicode string containing the characters ä und ü.
Both characters are defined as base character followed by a combining character: ä is coded with
U+0061 followed by U+0308, and ü is coded with U+0075 followed by U+0308.

DEFINE DATA LOCAL
1 #U (U20)
1 #START (I2)
1 #POS (I2)
1 #LEN (I2)
END-DEFINE
#U := U'AB'-UH'00610308'-U'CD'-UH'00750308'-U'EF'
*
REPEAT

#START := #START + 1
EXAMINE #U FOR CHARPOSITION #START

CHARLENGTH 1
GIVING POSITION IN #POS

LENGTH IN #LEN
*

INPUT (AD=O) MARK POSITION #POS IN FIELD *#U
' UNICODE-STRING:' #U (AD=MI)

// ' CHARACTER NO.:' #START (EM=9)
/ 'STARTS AT BYTE POSITION:' #POS (EM=9)
/ ' AND THE LENGTH IS:' #LEN (EM=9)

WHILE #POS NE 0
END-REPEAT
END

Output:

471Statements

EXAMINE

Windows and Linux Environments (with Natural Web I/O
Interface):

Mainframe Environments:

UNICODE-STRING: ABäCDüEF

CHARACTER NO.: 1
STARTS AT BYTE POSITION: 1

AND THE LENGTH IS: 1

UNICODE-STRING: ABa?CDu?EF

CHARACTER NO.: 1
STARTS AT BYTE POSITION: 1

AND THE LENGTH IS: 1

Press ENTER to continue.Press ENTER to continue.

UNICODE-STRING: ABäCDüEF

CHARACTER NO.: 2
STARTS AT BYTE POSITION: 2

AND THE LENGTH IS: 1

UNICODE-STRING: ABa?CDu?EF

CHARACTER NO.: 2
STARTS AT BYTE POSITION: 2

AND THE LENGTH IS: 1

Press ENTER to continue.Press ENTER to continue.

Note that the character in position 3 is a combining character sequence and is two code units long.

UNICODE-STRING: ABäCDüEF

CHARACTER NO.: 3
STARTS AT BYTE POSITION: 3

AND THE LENGTH IS: 2

UNICODE-STRING: ABa?CDu?EF

CHARACTER NO.: 3
STARTS AT BYTE POSITION: 3

AND THE LENGTH IS: 2

And so on.And so on.

Statements472

EXAMINE

70 EXPAND

■ Function .. 474
■ Syntax Description ... 474

473

[GIVING operand5]
dynamic-clause

EXPAND
array-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related statements: REDUCE | RESIZE

Belongs to Function Group:Memory Management Control for Dynamic Variables or X-Arrays

Function

The EXPAND statement is used to expand:

■ the allocated length of a dynamic variable (dynamic-clause), or
■ the number of occurrences of X-arrays (array-clause).

For further information, see the following sections in the Programming Guide:

■ Using Dynamic Variables
■ Allocating/Freeing Memory Space for a Dynamic Variable
■ X-Arrays
■ Storage Management of X-Group Arrays

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

nonoBUAASoperand1

nonoISCoperand2

noyesOGCLTDBFIPNUAGAoperand3

nonoIPNSCoperand4

yesnoI4Soperand5

Syntax Element Description:

Statements474

EXPAND

DescriptionSyntax Element

Dynamic Clause:dynamic-clause

TheEXPAND DYNAMIC VARIABLE statement expands the allocated length of a dynamic
variable (operand1) to the value specified with operand2. For more information,
see Dynamic Clause below.

Dynamic Variable:operand1

operand1 is the dynamic variable for which the size is to be expanded.

Target Length of Dynamic Variable:operand2

operand2 is used to specify the length to which the dynamic variable is to be
expanded. The value specified must be a non-negative integer constant or a variable
of type integer.

Array Clause:array-clause

The EXPAND ARRAY statement increases the number of occurrences of the X-array
(operand3) to the upper and lower bound specified with (dim[,dim[,dim]]). For
more information, see Array Clause below.

X-Array:operand3

operand3 is the X-array for which the number of occurrences may be increased. The
index notation of the array is optional. As index notation only the complete range
notation * is allowed for each dimension.

Dimension:dim

operand4 The lower and upper bound notation (operand4 or asterisk) to which the X-array
should be expanded is specified here. If the current value of the upper or lower bound
should be used, an asterisk (*) may be specified in place of operand4. For more
information, see Dimension below.

GIVING Clause:GIVING operand5

If the GIVING clause is not specified, Natural runtime error processing is triggered if
an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if
an error occurred, or zero upon success.

475Statements

EXPAND

Dynamic Clause

[SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

The EXPAND DYNAMIC VARIABLE statement expands the allocated size of a dynamic variable (oper-
and1) to the value specified with operand2.

If operand2 is less than the currently allocated length of operand1, the statement will be ignored
for this dynamic variable. The currently allocated length (*LENGTH) of the dynamic variable is not
modified.

Array Clause

[AND RESET] [OCCURRENCES OF] ARRAY operand3 TO (dim[,dim [,dim]])

The EXPAND ARRAY statement increases the number of occurrences of the X-array (operand3) to the
upper and lower bound specified with TO (dim [,dim[,dim]]).

The RESET option resets all occurrences of the expandedX-array to its default zero value. By default
(no RESET option), the actual values are kept and the expanded (new) occurrences are reset.

When using the EXPAND statement, it is only possible to increase the number of occurrences. If the
requested number is smaller than the currently allocated number of occurrences, it will simply be
ignored.

An upper or lower bound used in an EXPAND statementmust be exactly the same as the correspond-
ing upper or lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #a(I4/1:*)
1 #g(1:*)

2 #ga(I4/1:*)

1 #i(i4)
END-DEFINE
...
/* allocating #a(1:10)
EXPAND ARRAY #a TO (1:10) /* #a is allocated 10
EXPAND ARRAY #a TO (*:10) /* occurrences.

/* allocating #ga(1:10,1:20)
EXPAND ARRAY #g TO (1:10) /* 1st dimension is set to (1:10)
EXPAND ARRAY #ga TO (*:*,1:20) /* 1st dimension is dependent and

/* therefore kept with (*:*)
/* 2nd dimension is set to (1:20)

Statements476

EXPAND

EXPAND ARRAY #a TO (5:10) /* This is rejected because the lower index
/* must be 1 or *

EXPAND ARRAY #a TO (#i:10) /* This is rejected because the lower index
/* must be 1 or *

EXPAND ARRAY #ga TO (1:10,1:20) /* (1:10) for the 1st dimension is rejected
/* because the dimension is dependent and
/* must be specified with (*:*).

For further information, see the following topics in the Programming Guide:

■ Storage Management of X-Arrays
■ Storage Management of X-Group Arrays

Dimension

Each of the dimensions (dim) specified in the Array Clause is defined using the following syntax:

*

:
**
operand4operand4

The lower and upper bound notation (operand4 or asterisk) towhich the X-array should be expan-
ded is specified here. If the current value of the upper or lower bound should be used, an asterisk
(*) may be specified in place of operand4. Instead of *:*, you may also specify a single asterisk.

The number of dimensions (dim) must exactly match the defined number of dimensions of the X-
array (1, 2 or 3).

If the number of occurrences for a specified dimension is less than the number of the currently
allocated occurrences, the number of occurrences is not changed for the corresponding dimension.

477Statements

EXPAND

478

IX
■ 71 FETCH .. 481
■ 72 FIND ... 487
■ 73 FOR ... 523
■ 74 FORMAT ... 529
■ 75 GET .. 535
■ 76 GET SAME .. 541
■ 77 GET TRANSACTION DATA ... 545
■ 78 HISTOGRAM .. 549
■ 79 IF ... 561
■ 80 IF SELECTION ... 565
■ 81 IGNORE .. 569
■ 82 INCLUDE ... 571

479

480

71 FETCH

■ Function .. 482
■ Syntax Description ... 482
■ Example .. 484

481

operand1 [operand2 [(parameter)]]FETCH
REPEAT
RETURN

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE |
FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The FETCH statement is used to execute a Natural object program written as a main program. The
program to be loaded must have been previously stored in the Natural system file (cataloged or
stowed). Execution of the FETCH statement does not overwrite any source program in the Natural
source work area.

ForNatural RPC: SeeNotes onNatural Statements on the Server (in theNatural RPC (Remote Procedure
Call) documentation).

Additional Considerations

In addition to the parameters passed explicitly with FETCH, the fetched program also has access
to the established global data area.

The FETCH statement may cause the internal execution of an END TRANSACTION statement based on
the setting of the Natural profile parameter OPRB (Database Open/Close Processing) as set by the
Natural administrator. If a logical transaction is to span multiple Natural programs, the Natural
administrator should be consulted to ensure that the OPRB parameter is set correctly.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

yesyesGLTDBFIPNUAGASCoperand2

Syntax Element Description:

Statements482

FETCH

DescriptionSyntax
Element

REPEAT Option:REPEAT

The REPEAT option causes Natural to suppress the prompt for user input for each INPUT
statement issued during the execution of the FETCHed program. It may be used to send
information about the execution of the program to the terminal without the user having to
reply with ENTER.

RETURN Option:RETURN

Without the specification of RETURN, the execution of the program issuing the FETCH statement
will be terminated immediately and the fetched program will be activated as a “main
program” (Level 1).

If a program is invoked with FETCH RETURN, the execution of the invoking program will be
suspended - not terminated - and the FETCHed program will be activated as a “subordinate
program” on a higher level. Control is returned to the invoking program when an END or
ESCAPE ROUTINE statement is encountered in the FETCHed program. Processing is continued
with the statement following the FETCH RETURN statement.

Program Name:operand1

The nameof the programmodule (maximum8 characters) can be specified as an alphanumeric
constant or the content of an alphanumeric variable of length 1 to 8.

Natural will attempt to locate the program in the library currently active at the time the
FETCH statement is issued. If the program is not found, Natural will attempt to locate the
program in the steplibs. If the program is still not found, an error message will be issued.

The program name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different programs for the
processing of input, depending on the language in which input is provided.

Passing Parameter Fields:operand2

The FETCH statement may also be used to pass parameter fields to the invoked program. A
parameter field may be defined with any format. The parameters are converted to a format
suitable for a corresponding INPUT field. All parameters are placed on the top of the Natural
stack.

The parameter fields can be read by the FETCHed program using an INPUT statement. The
first INPUT statement will result in the insertion of all parameter field values into the fields
specified in the INPUT statement. The INPUT statement must have the sign position
specification (session parameter SG=ON) for parameter fields defined with numeric format,
because each parameter field definedwith numeric format in the FETCH statementwill receive
a sign position if its value is negative.

Ifmore parameters are passed than are read by the next INPUT statement, the extra parameters
are ignored. The number of parameters may be obtained with the Natural system variable
*DATA.

483Statements

FETCH

DescriptionSyntax
Element

Note: If operand2 is a time variable (format T), only the time component of the variable
content is passed, but not the date component.

Date Format:parameter

If operand2 is a date variable, you can specify the session parameter DF (Date Format) as
parameter for this variable.

Example

Invoking Program:

** Example 'FETEX1': FETCH (with parameter)
**
DEFINE DATA LOCAL
1 #PNUM (N8)
1 #FNC (A1)
END-DEFINE
*
INPUT 10X 'SELECTION MENU FOR EMPLOYEES SYSTEM' /

10X '-' (35) //
10X 'ADD (A)' /
10X 'UPDATE (U)' /
10X 'DELETE (D)' /
10X 'STOP (.)' //
10X 'PLEASE ENTER FUNCTION: ' #FNC ///
10X 'PERSONNEL NUMBER:' #PNUM

*
DECIDE ON EVERY VALUE OF #FNC

VALUE 'A', 'U', 'D'
IF #PNUM = 0
REINPUT 'PLEASE ENTER A VALID NUMBER' MARK *#PNUM

END-IF
VALUE 'A'

FETCH 'FETEXAD' #PNUM
VALUE 'U'

FETCH 'FETEXUP' #PNUM
VALUE 'D'

FETCH 'FETEXDE' #PNUM
VALUE '.'

STOP
NONE

REINPUT 'PLEASE ENTER A VALID FUNCTION' MARK *#FNC
END-DECIDE
*
END

Statements484

FETCH

Invoked Program FETEXAD:

** Example 'FETEXAD': FETCH (called by FETEX1)
**
DEFINE DATA LOCAL
1 #PERS-NR (N8)
END-DEFINE
*
INPUT #PERS-NR
*
WRITE *PROGRAM 'Record added with personnel number:' #PERS-NR
*
END

Invoked Program FETEXUP:

** Example 'FETEXUP': FETCH (called by FETEX1)
**
DEFINE DATA LOCAL
1 #PERS-NR (N8)
END-DEFINE
*
INPUT #PERS-NR
*
WRITE *PROGRAM 'Record updated with personnel number:' #PERS-NR
*
END

Invoked Program FETEXDE:

** Example 'FETEXDE': FETCH (called by FETEX1)
**
DEFINE DATA LOCAL
1 #PERS-NR (N8)
END-DEFINE
*
INPUT #PERS-NR
*
WRITE *PROGRAM 'Record deleted with personnel number:' #PERS-NR
*
END

485Statements

FETCH

Output of Program FETEX1:

SELECTION MENU FOR EMPLOYEES SYSTEM

ADD (A)
UPDATE (U)
DELETE (D)
STOP (.)

PLEASE ENTER FUNCTION: D

PERSONNEL NUMBER: 1150304

After entering and confirming function and personnel number:

Page 1 05-01-13 11:58:46

FETEXDE Record deleted with personnel number: 1150304

Statements486

FETCH

72 FIND

■ Function .. 488
■ Restrictions .. 490
■ Syntax 1 - FIND Statement with Processing Loop ... 490
■ Syntax 2 - FIND Statement without Processing Loop .. 490
■ Syntax Description ... 491
■ Examples ... 512

487

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | GET | GET SAME | GET
TRANSACTION | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE
| UPDATE

Belongs to Function Group: Database Access and Update

Function

The FIND statement is used to select a set of records from the database based on search criteria
consisting of fields defined as descriptors (keys).

This statement causes a processing loop to be initiated and then executed for each record selected.
Each field in each recordmay be referenced within the processing loop. It is not necessary to issue
a READ statement following the FIND in order to reference the fields within each record selected.

See also the following sections in the Programming Guide:

■ FIND Statement
■ Loop Processing
■ Referencing of Database Fields Using (r) Notation

Database-Specific Considerations

ExplanationDatabase

FIND FIRST as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.SQL

FIND UNIQUE is not permitted.

The SORTED BY clause corresponds with the SQL clause ORDER BY.

The basic search criteria for an SQL-database table may be specified in the same manner as for
an Adabas file. The term record used in this context corresponds with the SQL term “row”.

FIND FIRST, as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.XML

FIND UNIQUE is not permitted.

The basic search criteria for an XML-database may be specified in the same manner as for an
Adabas file. The term record used in this context corresponds with the XML term “XML object”.

Statements488

FIND

System Variables Available with the FIND Statement

TheNatural systemvariables *ISN, *NUMBER, and *COUNTER are automatically created for each FIND
statement issued. A reference number must be supplied if the system variable was referenced
outside the current processing loop or through a FIND UNIQUE, FIND FIRST, or FIND NUMBER
statement. The format/length of each of these system variables is P10; this format/length cannot
be changed.

Availability/UsageSystem Variable

*ISN ■ Adabas

*ISN contains the Adabas internal sequence number (ISN) of the record currently being
processed.

*ISN is not available for the FIND NUMBER statement.
■ Tamino

*ISN contains the XML object ID.
■ SQL

*ISN is not available.
■ Entire System Server

*ISN is not available.

See system variable *NUMBER in the System Variables documentation.*NUMBER

With Entire System Server, *NUMBER is not available.

The system variable *COUNTER contains the number of times the processing loop has been
entered.

*COUNTER

See also Example 13 - Using System Variables with the FIND Statement.

Issuing Multiple FIND Statements

Multiple FIND statements may be issued to create nested loops whereby an inner loop is entered
for each record selected in the outer loop.

See also Example 14 - Multiple FIND Statements.

489Statements

FIND

Restrictions

With Entire System Server, FIND NUMBER and FIND UNIQUE aswell as the PASSWORD, CIPHER, COUPLED
and RETAIN clauses are not permitted.

Syntax 1 - FIND Statement with Processing Loop

[MULTI-FETCH-clause] [RECORDS] [IN] [FILE] view-nameFIND
ALL
(operand1)

[PASSWORD=operand2]

[CIPHER=operand3]

[WITH] [[LIMIT] (operand4)] basic-search-criteria

[COUPLED-clause] 4/42

[STARTING WITH ISN=operand5]

[SORTED-BY-clause]

[RETAIN-clause]

[[IN] SHARED HOLD [MODE=option]]

[SKIP [RECORDS] IN HOLD]

[WHERE-clause]

[IF-NO-RECORDS-FOUND-clause]

statement

(structured mode only)END-FIND

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax 2 - FIND Statement without Processing Loop

[RECORDS] [IN] [FILE] view-nameFIND
FIRST
NUMBER
UNIQUE

[PASSWORD=operand2]

[CIPHER=operand3]

[WITH] [[LIMIT] (operand4)] basic-search-criteria

[COUPLED-clause] 4/42

Statements490

FIND

(only for FIND FIRST)[SORTED-BY-clause]

[RETAIN-clause]

[WHERE-clause]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesB*IPNSCoperand1

noyesASCoperand2

noyesNSCoperand3

noyesB*IPNSCoperand4

noyesB*IPNSCoperand5

* Format B of operand1, operand4 and operand5may be used only with a length of less than or
equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Processing Limit:ALL/operand1

The number of records to be processed from the selected set may be
limited by specifying operand1 (enclosed in parentheses, immediately
after the keyword FIND) - either as a numeric constant (in the range from
0 to 4294967295) or as the name of a numeric variable.

ALLmay be optionally specified. It emphasizes that all selected records
are to be processed.

If you specify a limit with operand1, this limit applies to the FIND loop
being initiated. Records rejected for processing by the WHERE clause are
not counted against this limit.

491Statements

FIND

DescriptionSyntax Element

FIND (5) IN EMPLOYEES WITH ...

MOVE 10 TO #CNT(N2)
FIND (#CNT) EMPLOYEES WITH ...

For this statement, the specified limit has priority over a limit set with
a LIMIT statement.

If a smaller limit is set with the LT parameter, the LT limit applies.

Note:

1. If you wish to process a 4-digit number of records, specify it with a
leading zero: (0nnnn); becauseNatural interprets every 4-digit number
enclosed in parentheses as a line-number reference to a statement.

2. operand1 has no influence on the size of an ISN set that is to be
retained by a RETAIN clause. operand1 is evaluated when the FIND
loop is entered. If the value of operand1 is modifiedwithin the FIND
loop, this does not affect the number of records processed.

FIND FIRST, FIND NUMBER, FIND UNIQUE Option:FIND FIRST | FIND NUMBER |
FIND UNIQUE

These options are used

■ to select the first record of a selected set (see FIND FIRST),
■ to determine the number of records in a selected set (see FIND
NUMBER), or

■ to ensure that only one record satisfies a selection criterion (see FIND
UNIQUE).

For a detailed description of these options, see below.

MULTI-FETCH Clause:MULTI-FETCH-clause

ForAdabas databases, Natural offers a MULTI-FETCH clause that allows
you to read more than one record per database access. For further
information, seeMULTI-FETCH Clause.

View Name:view-name

The name of a view as defined either within a DEFINE DATA block or
in a separate global or local data.

In reporting mode, view-name is the name of a DDM if no DEFINE
DATA LOCAL statement is used.

PASSWORD Clause:PASSWORD=operand2

The PASSWORD clause applies only for Adabas databases. This clause is
not permitted with Entire System Server.

Statements492

FIND

DescriptionSyntax Element

The PASSWORD clause is used to provide a password (operand2) when
reading/writing data from an Adabas file which is password protected.
If you require access to a password-protected file, contact the person
responsible for database security concerningpasswordusage/assignment.

If the PASSWORD clause is omitted, the default password specified with
the PASSW statement applies.

The password value must not be changed during the execution of a
processing loop.

See also Example 1 - PASSWORD Clause.

CIPHER Clause:CIPHER=operand3

The CIPHER clause only applies to Adabas databases. This clause is not
permitted with Entire System Server.

The CIPHER clause is used to provide a cipher key (operand3) when
retrieving data from Adabas files which are enciphered. If you require
access to an enciphered file, contact the person responsible for database
security concerning cipher key usage/assignment.

The cipher key may be specified as a numeric constant with 8 digits or
as a user-defined variable with format/length N8.

The value of the cipher key must not be changed during the processing
of a loop initiated by a FIND statement.

See also Example 2 - CIPHER Clause.

WITH Clause:WITH LIMIT operand4
basic-search-criteria

The WITH clause is required. It is used to specify the
basic-search-criteria (see Search Criteria for Adabas Files)
consisting of key fields (descriptors) defined in the database.

The following database-specific consideration applies.

You may use Adabas descriptors, subdescriptors, superdescriptors,
hyperdescriptors, and phonetic descriptors within a WITH clause. A
non-descriptor (that is, a field marked in the DDMwith N) can also be
specified.

The number of records to be selected as a result of a WITH clause may
be limited by specifying the keyword LIMIT together with a numeric
constant or a user-defined variable, enclosedwithin parentheses, which
contains the limit value (operand4, range from 1 to 4294967295). If
the number of records selected exceeds the limit, the program will be
terminated with an error message.

493Statements

FIND

DescriptionSyntax Element

Note: If the limit is to be a 4-digit number, specify it with a leading zero
(0nnnn); because Natural interprets every 4-digit number enclosed in
parentheses as a line-number reference to a statement.

COUPLED Clause:COUPLED-clause

This clause may be used to specify a search which involves the use of
the Adabas coupling facility. See COUPLED Clause.

STARTINGWITH Clause:STARTING WITH ISN=operand5

This clause may be used for repositioning within a FIND loop whose
processing has been interrupted. See STARTINGWITH Clause.

SORTED BY Clause:SORTED-BY-clause

This clause may be used to cause Adabas to sort the selected records
based on the sequence of one to three descriptors. See SORTED BY
Clause.

RETAIN Clause:RETAIN-clause

This clause may be used to retain the result of an extensive search in
large files for further processing. See RETAIN Clause.

SHARED HOLD Clause[[IN] SHARED HOLD
[MODE=option]]

Note: This clause can be used only for access to Adabas.

This clause can be used to place records being read in a “shared hold”
state. A record can be put in shared hold by many users at the same
time. As long as a record is in a shared hold state, it is protected from
being updated, because it cannot be set into an exclusive hold by parallel
users. This ensures data consistency for the record data, as no one can
update the record while it is being processed.

Especially if the same record is fetchedwithmultiple statements to read
different MU/PE occurrences (GET SAME statement) or to browse over
a LOB field in a piecemeal technique (READLOB statement), the shared
hold state can guarantee data stability over this transaction without
blocking the record for other users.

Although such a hold state is an efficient way to protect read sequences,
it is a basic and important matter when to release the record again from
this “soft lock”. Since this question depends on individual application
aspects, different options can be selected with the MODE subclause.

ExplanationHold PeriodMODE Option

Ensures only that the
record version being

Only at the moment of
reading the record.

C

read has been committed
by the last user who
updated the record. This

Statements494

FIND

DescriptionSyntax Element

option does not really set
a lock in hold state, but
checks only that the
record is not in exclusive
hold by another user at
time of read.

Releases the record from
shared hold when

Until the next record in
a sequence is read.

Q

■ the next record is read
in the loop sequence
or

■ the loop is terminated
or

■ anEND TRANSACTION
or BACKOUT
TRANSACTION is
executed.

Releases the record from
shared hold when a

Until the logical
transaction is
terminated.

S

logical transaction is
terminated with an END
TRANSACTION or
BACKOUT TRANSACTION
statement.

MODE=Q and MODE=S ensure that the record being read cannot be updated
concurrently by other users until it has been released from hold again.

If the MODE subclause is not specified, MODE=C is the default.

See also Example 15 - SHARED HOLD Clause below.

SKIP RECORDS Clause:SKIP RECORDS IN HOLD

Note: This clause can be used only for access to Adabas.

Whenever a record is going to be read with hold, a Natural error
NAT3145 (Adabas response code 145) might happen if the record is in
hold by another user at this time. This occurs if a shared hold is requested
and the record is in exclusive hold or if an exclusive hold is requested
and the record is in either exclusive or shared hold.

Although error NAT3145 is surely the right reaction to assure a “clean
data processing”, sometimes it might be useful if a record in hold could
be skipped. If it is alright that such a record will not be processed and
the loop processing should continue, the SKIP RECORDS clause should
be used.

495Statements

FIND

DescriptionSyntax Element

If the SKIP RECORDS clause is applied, Natural first tries to read the
record with hold.

If the record is already in hold and a Natural error NAT3145 would
occur,

■ no error processing is initiated;
■ the record (currently in hold by another user) is instantly re-fetched
without hold, but not processed in terms of the program logic;

■ the record which comes next after the skipped record is read with
hold and the processing continues.

See also Example 16 - SKIP RECORDS Clause.

WHERE Clause:WHERE-clause

This clause may be used to specify an additional selection criterion
(logical-condition). SeeWHERE Clause.

IF NO RECORDS FOUND Clause:IF-NO-RECORDS-FOUND-clause

This clausemay be used to cause a processing loop initiatedwith a FIND
statement to be entered in the event that no records meet the selection
criteria specified in the WITH clause and the WHERE clause. See IF NO
RECORDS FOUND Clause.

End of FIND Statement:END-FIND

In structuredmodewith processing loop, theNatural reserved keyword
END-FINDmust be used to end the FIND statement.

LOOP

In reporting mode with processing loop, the Natural statement LOOP is
used to end the FIND statement.

FIND FIRST

The FIND FIRST statementmay be used to select and process the first recordwhichmeets the WITH
and WHERE criteria.

For Adabas databases, the record processed will be the record with the lowest Adabas ISN from
the set of qualifying records.

This statement does not initiate a processing loop.

Restrictions with FIND FIRST

■ FIND FIRST can only be used in reporting mode.
■ FIND FIRST is not available for SQL databases.

Statements496

FIND

System Variables Available with FIND FIRST

The following Natural system variables are available with the FIND FIRST statement:

ExplanationSystem Variable

The system variable *ISN contains the Adabas ISN of the selected record. *ISNwill be zero
if no record is found after the evaluation of the WITH and WHERE criteria.

*ISN is not available with Entire System Server.

*ISN

The system variable *NUMBER contains the number of records found after the evaluation of
the WITH criterion and before evaluation of any WHERE criteria. *NUMBERwill be zero if no
record meets the WITH criterion.

*NUMBER is not available with Entire System Server.

*NUMBER

The system variable *COUNTER contains 1 if a recordwas found; contains 0 if no recordwas
found.

*COUNTER

Example of FIND FIRST Statement: See the program FNDFIR (reporting mode)

FIND NUMBER

The FIND NUMBER statement is used to determine the number of recordswhich satisfy the WITH/WHERE
criteria specified. It does not result in the initiation of a processing loop and no data fields from the
database are made available.

Note: Use of the WHERE clause may result in significant overhead.

Restrictions with FIND NUMBER

■ The WHERE clause can only be used in reporting mode.
■ FIND NUMBER is not available with Entire System Server.

System Variables Available with FIND NUMBER

The following Natural system variables are available with the FIND NUMBER statement:

ExplanationSystem Variable

The system variable *NUMBER contains the number of records found after the evaluation of
the WITH criterion.

*NUMBER

The system variable *COUNTER contains the number of records found after the evaluation
of the WHERE criterion.

*COUNTER is only available if the FIND NUMBER statement contains a WHERE clause.

*COUNTER

Example for FIND NUMBER: See the program FNDNUM (reporting mode).

497Statements

FIND

FIND UNIQUE

The FIND UNIQUE statement may be used to ensure that only one record is selected for processing.
It does not result in the initiation of a processing loop. If a WHERE clause is specified, an automatic
internal processing loop is created to evaluate the WHERE clause.

If no records or more than one record satisfy the criteria, an error message will be issued. This
condition can be tested with the ON ERROR statement.

Restrictions with FIND UNIQUE

■ FIND UNIQUE can only be used in reporting mode.
■ FIND UNIQUE is not available with Entire System Server.
■ For SQL databases, FIND UNIQUE cannot be used. (Exception: On mainframe computers, FIND
UNIQUE can be used for primary keys; however, this is only permitted for compatibility reasons
and should not be used.)

System Variables Available with FIND UNIQUE

ExplanationSystem Variable

The system variable *ISN contains the unique ISN number of the record, which itself must
be unique.

*ISN

The system variable *NUMBER always contains 1 for a valid FIND UNIQUE execution.

*NUMBERmay contain any other positive value (= 0 or >= 2) if an error has occurred. This
error condition may be used by the ON ERROR statement. *NUMBER is not allowed if the
WHERE clause is missing.

*NUMBER

The system variable *COUNTER contains the number of records found after the evaluation
of the WHERE criterion. *COUNTER is not allowed if the WHERE clause is missing.

*COUNTER

Example for FIND UNIQUE: See the Program FNDUNQ (reporting mode).

MULTI-FETCH Clause

Note: This clause can only be used for Adabas databases.

MULTI-FETCH
ON
OFF
[OF] multi-fetch-factor

Note: [MULTI-FETCH OF multi-fetch-factor] is supported for database types ADA/ADA2.
The default processing mode is applied; see profile parameter MFSET. The MULTI-FETCH
clause is ignored in case Adabas LA or large objects fields are used or a view size greater
than 64KB is defined.

Statements498

FIND

For more information, see the sectionMULTI-FETCH Clause (Adabas) in the Programming Guide.

Search Criteria for Adabas Files

valueOR
value

1 descriptor
[(i)]

EQ
EQ =
= EQUAL
EQUAL EQUAL TO
EQUAL TO

THRU value [BUT NOT value [THRU value]]

value
2
descriptor [(i)]

EQ
=
EQUAL
EQUAL TO
NE
<>
NOT =
NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL
TO
LT
LESS THAN
<
GE
GREATER
EQUAL
>=
NOT <
NOT LT
GT
GREATER
THAN
>
LE
LESS EQUAL
<=
NOT >
NOT GT

3 set-name

Operand Definition Table:

499Statements

FIND

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

nonoLTDBFIPNUAASdescriptor

noyesLTDBFIPNUASCvalue

nonoASCset-name

Syntax Element Description:

DescriptionSyntax Element

Descriptor:descriptor

Adabas descriptor, subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor.
A field marked as non-descriptor in the DDM can also be specified.

Index Specification:(i)

A descriptor contained within a periodic group may be specified with or without an index.
If no index is specified, the record will be selected if the value specified is located in any
occurrence. If an index is specified, the record is selected only if the value is located in the
occurrence specified by the index. The index specified must be a constant. An index range
must not be used.

No index must be specified for a descriptor which is a multiple-value field. The record will
be selected if the value is located in the record regardless of the position of the value.

Search Value:value

The formats of the descriptor and the search value must be compatible.

Set Name:set-name

Identifies a set of records previously selected with a FIND statement in which the RETAIN
clause was specified. The set referenced in a FINDmust have been created from the same
physical Adabas file. set-namemay be specified as a text constant (maximum32 characters)
or as the content of an alphanumeric variable.

set-name cannot be used with Entire System Server.

See also:

■ Example 3 - Basic Search Criteria in WITH Clause
■ Example 4 - Basic Search Criteria with Multiple-Value Field

Statements500

FIND

Search Criterion with Null Indicator

valuenull-indicator
=
EQ
EQUAL [TO]

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

nonoISnull-indicator

noyesBFIPNSCvalue

Syntax Element Description:

DescriptionSyntax Element

The null indicator.null-indicator

MeaningPossible Valuesvalue

The corresponding field contains no value.-1

The corresponding field does contain a value.0

Connecting Search Criteria (for Adabas Files)

basic-search-criteria can be combined using the Boolean operators AND, OR, and NOT. Par-
entheses may also be used to control the order of evaluation. The order of evaluation is as follows:

1. (): Parentheses

2. NOT: Negation (only for basic-search-criteria of form [2]).

3. AND: AND operation

4. OR: OR operation

basic-search-criteriamay be connected by logical operators to form a complex
search-expression. The syntax for such a complex search-expression is as follows:

search-expression[NOT] ORbasic-search-criteria
AND(search-expression)

See also Example 5 - Various Samples of Complex Search Expression in WITH Clause.

501Statements

FIND

Descriptor-Key Usage

Adabas users may use database fields which are defined as descriptors to construct basic search
criteria.

Subdescriptors, Superdescriptors, Hyperdescriptors and Phonetic Descriptors

With Adabas, subdescriptors, superdescriptors, hyperdescriptors and phonetic descriptors may
be used to construct search criteria.

■ A subdescriptor is a descriptor formed from a portion of a field.
■ A superdescriptor is a descriptor whose value is formed from one or more fields or portions of
fields.

■ A hyperdescriptor is a descriptor which is formed using a user-defined algorithm.
■ A phonetic descriptor is a descriptor which allows the user to perform a phonetic search on a
field (for example, a person's name). A phonetic search results in the return of all values which
sound similar to the search value.

Which fields may be used as descriptors, subdescriptors, superdescriptors, hyperdescriptors and
phonetic descriptors with which file is defined in the corresponding DDM.

Values for Subdescriptors, Superdescriptors, Phonetic Descriptors

Values used with these types of descriptors must be compatible with the internal format of the
descriptor. The internal format of a subdescriptor is the same as the format of the field fromwhich
the subdescriptor is derived. The internal format of a superdescriptor is binary if all of the fields
fromwhich it is derived are defined with numeric format; otherwise, the format is alphanumeric.
Phonetic descriptors always have alphanumeric format.

Values for subdescriptors and superdescriptors may be specified in the following ways:

■ Numeric or hexadecimal constants may be specified. A hexadecimal constant must be used for
a value for a superdescriptor which has binary format (see above).

■ Values in user-defined variable fields may be specified using the REDEFINE statement to select
the portions that form the subdescriptor or superdescriptor value.

Statements502

FIND

Using Descriptors Contained within a Database Array

A descriptor which is contained within a database array may also be used in the construction of
basic search criterion. For Adabas databases, such a descriptor may be a multiple-value field or a
field contained within a periodic group.

A descriptor contained within a periodic group may be specified with or without an index. If no
index is specified, the record will be selected if the value specified is located in any occurrence. If
an index is specified, the record is selected only if the value is located in the occurrence specified
by the index. The index specified must be a constant. An index range must not be used.

No index must be specified for a descriptor which is a multiple-value field. The record will be se-
lected if the value is located in the record regardless of the position of the value.

See also Example 6 - Various Samples Using Database Arrays.

COUPLED Clause

This clause only applies to Adabas databases.

This clause is not permitted with Entire System Server.

[TO] [FILE] view-nameCOUPLED
AND
OR

descriptor2VIA descriptor1
EQ
=
EQUAL [TO]

[WITH]
basic-search-criteria

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

nonoBPNAASdescriptor1

nonoBPNAASdescriptor2

Note: Without the VIA clause, the COUPLED clause may be specified up to 4 times; with the
VIA clause, it may be specified up to 42 times.

The COUPLED clause is used to specify a search which involves the use of the Adabas coupling fa-
cility. This facility permits database descriptors from different files to be specified in the search
criterion of a single FIND statement.

503Statements

FIND

The same Adabas file must not be used in two different FIND COUPLED clauses within the same
FIND statement.

A set-name (see RETAIN Clause) must not be specified in the basic-search-criteria.

Database fields in a file specified within the COUPLED clause are not available for subsequent refer-
ence in the programunless another FIND or READ statement is issued separately against the coupled
file.

Note: If the COUPLED clause is used, the main WITH clause may be omitted. If the main WITH

clause is omitted, the keywords AND/OR of the COUPLED clause must not be specified.

Physical Coupling without VIA Clause

The files used in a COUPLED clause without VIAmust be physically coupled using the appropriate
Adabas utility (as described in the Adabas documentation).

See also Example 7 - Using Physically Coupled Files.

The reference to NAME in the DISPLAY statement of the above example is valid since this field is
contained in the EMPLOYEESfile,whereas a reference to MAKEwould be invalid since MAKE is contained
in the VEHICLES file, which was specified in the COUPLED clause.

In this example, records will be found only if EMPLOYEES and VEHICLES have been physically
coupled.

Logical Coupling - VIA Clause

The option VIA descriptor1 = descriptor2 allows you to logically couplemultiple Adabas files
in a search query, where:

■ descriptor1 is a field from the first view.
■ descriptor2 is a field from the second view.

The two files need not be physically coupled in Adabas.

See also Example 8 - VIA Clause.

Statements504

FIND

STARTING WITH Clause

This clause applies only to Adabas databases.

You can use this clause to specify as operand5 an Adabas ISN (internal sequence number) which
is to be used as a start value for the selection of records. operand5must be in the range from 0 to
4294967295.

This clausemaybe used for repositioningwithin a FIND loopwhose processing has been interrupted,
to easily determine the next recordwithwhich processing is to continue. This is particularly useful
if the next record cannot be identified uniquely by any of its descriptor values. It can also be useful
in a distributed client/server applicationwhere the reading of the records is performed by a server
programwhile further processing of the records is performed by a client program, and the records
are not processed all in one go, but in batches.

Note: The start value actually used will not be the value of operand5, but the next higher
value.

Example:

See the program FNDSISN in the library SYSEXSYN.

SORTED BY Clause

This clause only applies to Adabas, Tamino and SQL databases.

This clause is not permitted with Entire System Server.

SORTED [BY] descriptor 3 [DESCENDING]

The SORTED BY clause is used to cause Adabas to sort the selected records based on the sequence
of one to three descriptors. The descriptors used for controlling the sort sequencemay be different
from those used for selection.

By default, the records are sorted in ascending sequence of values; if you want them to be in des-
cending sequence, specify the keyword DESCENDING. The sort is performed using the Adabas in-
verted lists and does not result in any records being read.

Note: The use of this clause may result in significant overhead if any descriptor used to
control the sort sequence contains a large number of values. This is because the entire value
list may have to be scanned until all selected records have been located in the list. When a
large number of records is to be sorted, you should use the SORT statement.

Adabas sort limits (see the ADARUN LS parameter in the Adabas documentation) are in effect when
the SORTED BY clause is used.

505Statements

FIND

Adescriptor which is contained in a periodic groupmust not be specified in the SORTED BY clause.
A multiple-value field (without an index) may be specified.

Non-descriptors may also be specified in the SORTED BY clause. However, this function is not
available on mainframes.

If the SORTED BY clause is used, the RETAIN clause must not be used.

See also Example 9 - SORTED BY Clause.

Considerations for Combined Use of STARTING WITH and SORTED BY Clauses

If both the STARTING WITH and the SORTED BY clause are used in the same FIND statement and the
underlying database is Adabas, the following should be considered.

With Adabas for Mainframes

On Adabas for Mainframes, the FIND statement is executed in the following steps:

1. All records matching the search criterion are gathered and put in ISN sequence.

2. The records are sorted by the descriptor specified in the SORTED BY clause.

3. The recordwhose ISNvalue is specified in the STARTING WITH clause is positioned in the “sorted-
by-descriptor” record list.

4. The records following the record found under Step 3 are returned in the FIND loop.

With Adabas for OpenSystems

On Adabas for OpenSystems (Linux and Cloud or Windows) the same statement is executed as
follows:

1. All records matching the search criterion are gathered and put in ISN sequence.

2. The recordwhose ISNvalue is specified in the STARTING WITH clause is positioned in the “sorted-
by-ISN” record list.

3. All records following the record found under Step 2 are sorted by the descriptor specified in
the SORTED BY clause and returned in the FIND loop.

Example:

If the following program is executed with Adabas for Mainframes and Adabas on Linux and
Cloud/Windows:

Statements506

FIND

DEFINE DATA LOCAL
1 V1 VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY

1 #ISN (I4)
END-DEFINE
FORMAT NL=5 SG=OFF PS=43 AL=15
*
PRINT 'FIND' (I)
FIND V1 WITH NAME = 'B' THRU 'BALBIN'

RETAIN AS 'SET1'
IF *COUNTER = 4 THEN

#ISN := *ISN
END-IF
DISPLAY *ISN V1

END-FIND
*
PRINT / 'FIND .. SORTED BY NAME' (I)
FIND V1 WITH 'SET1'

SORTED BY NAME
DISPLAY *ISN V1

END-FIND
*
PRINT / 'FIND .. STARTING WITH ISN = ' (I) #ISN (AD=I)
FIND V1 WITH 'SET1'

STARTING WITH ISN = #ISN
DISPLAY *ISN V1

END-FIND
*
PRINT / 'FIND .. STARTING WITH ISN = ' (I) #ISN (AD=I)

' .. SORTED BY NAME' (I)
FIND V1 WITH 'SET1'

STARTING WITH ISN = #ISN
SORTED BY NAME
DISPLAY *ISN V1

END-FIND
END

The result is as follows:

Results on Natural for Mainframes

ISN NAME FIRST-NAME CITY
----- --------------- --------------- ---------------

FIND V1 WITH NAME = 'B' THRU 'BALBIN'
12 BAILLET PATRICK LYS LEZ LANNOY
58 BAGAZJA MARJAN MONTHERME
351 BAECKER JOHANNES FRANKFURT
355 BAECKER KARL SINDELFINGEN

507Statements

FIND

370 BACHMANN HANS MUENCHEN
490 BALBIN ENRIQUE BARCELONA
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY

FIND .. SORTED BY NAME
370 BACHMANN HANS MUENCHEN
351 BAECKER JOHANNES FRANKFURT
355 BAECKER KARL SINDELFINGEN
58 BAGAZJA MARJAN MONTHERME
12 BAILLET PATRICK LYS LEZ LANNOY
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY
490 BALBIN ENRIQUE BARCELONA

FIND .. STARTING WITH ISN = 355
370 BACHMANN HANS MUENCHEN
490 BALBIN ENRIQUE BARCELONA
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY

FIND .. STARTING WITH ISN = 355 .. SORTED BY NAME
58 BAGAZJA MARJAN MONTHERME
12 BAILLET PATRICK LYS LEZ LANNOY
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY
490 BALBIN ENRIQUE BARCELONA

Results on Natural for OpenSystems

ISN NAME FIRST-NAME CITY
----- --------------- --------------- ---------------

FIND V1 WITH NAME = 'B' THRU 'BALBIN'
12 BAILLET PATRICK LYS LEZ LANNOY
58 BAGAZJA MARJAN MONTHERME
351 BAECKER JOHANNES FRANKFURT
355 BAECKER KARL SINDELFINGEN
370 BACHMANN HANS MUENCHEN
490 BALBIN ENRIQUE BARCELONA
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY

FIND .. SORTED BY NAME
370 BACHMANN HANS MUENCHEN
351 BAECKER JOHANNES FRANKFURT
355 BAECKER KARL SINDELFINGEN
58 BAGAZJA MARJAN MONTHERME
12 BAILLET PATRICK LYS LEZ LANNOY
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY

Statements508

FIND

490 BALBIN ENRIQUE BARCELONA

FIND .. STARTING WITH ISN = 355
370 BACHMANN HANS MUENCHEN
490 BALBIN ENRIQUE BARCELONA
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY

FIND .. STARTING WITH ISN = 355 .. SORTED BY NAME
370 BACHMANN HANS MUENCHEN
650 BAKER SYLVIA OAK BROOK
913 BAKER PAULINE DERBY
490 BALBIN ENRIQUE BARCELONA

A FIND statement with at most one of these options (SORTED BY or STARTING WITH ISN) always
returns the same records in the same sequence, regardless under which system the statement is
executed. If, however, both clauses are used together, the result returned depends on which
Adabas platform is used to serve the database statement.

Therefore, if a Natural program is intended to be used on multiple platforms, the combination of
a SORTED BY and STARTING WITH ISN clause in the same FIND statement should be avoided.

RETAIN Clause

This clause only applies to Adabas databases.

This clause is not permitted with Entire System Server.

RETAIN AS operand6

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesASCoperand6

Syntax Element Description:

DescriptionSyntax Element

Retain Result:RETAIN AS

By using the RETAIN clause, the result of an extensive search in large files can be retained
for further processing.

The selection is retained as an ISN-set in the Adabas work file. The set may be used in
subsequent FIND statements as a basic search criterion for further refinement of the set or
for further processing of the records.

509Statements

FIND

DescriptionSyntax Element

The set created is file-specific andmay only be used in another FIND statement that processes
the same file. The set may be referenced by any Natural program.

Set Name:operand6

The set name is used to identify the record set. It may be specified as an alphanumeric
constant or as the content of an alphanumeric user-defined variable. Duplicate set names
are not checked; consequently, if a duplicate set name is specified, the new set replaces the
old set.

See also Example 10 - RETAIN Clause.

Releasing Sets

There is no specific limit for the number of sets that can be retained or the number of ISNs in a
set. It is recommended that the minimum number of ISN sets needed at one time be defined. Sets
that are no longer needed should be released using the RELEASE SETS statement.

If they are not released with a RELEASE statement, retained sets exist until the end of the Natural
session, or until a logon to another library, when they are released automatically. A set created by
one program may be referenced by another program for processing or further refinement using
additional search criteria.

Updates by Other Users

The records identified by the ISNs in a retained set are not locked against access and/or update
by other users. Before you process records from the set, it is therefore useful to check whether the
original search criteria which were used to create the set are still valid: This check is done with
another FIND statement, using the set name in the WITH clause as a basic search criterion and spe-
cifying in a WHERE clause the original search criteria (that is, the basic search criteria as specified
in the WITH clause of the FIND statement which was used to create the set).

Restriction

If the RETAIN clause is used, the SORTED BY clause must not be used.

WHERE Clause

WHERE logical-condition

The WHERE clause may be used to specify an additional selection criterion (logical-condition)
which is evaluated after a value has been read and before any processing is performed on the value
(including the AT BREAK evaluation).

The syntax for a logical-condition is described in the section Logical Condition Criteria in the
Programming Guide.

Statements510

FIND

If a processing limit is specified in a FIND statement containing a WHERE clause, records which are
rejected as a result of the WHERE clause are not counted against the limit. These records are, however,
counted against a global limit specified in theNatural session parameter LT, the GLOBALS command,
or LIMIT statement.

See also Example 11 - WHERE Clause.

IF NO RECORDS FOUND Clause

Structured Mode Syntax

IF NO [RECORDS] [FOUND]

ENTER
statement

END-NOREC

Reporting Mode Syntax

IF NO [RECORDS] [FOUND]

ENTER
statement
DO statement DOEND

Syntax Element Description:

DescriptionSyntax Element

IF NO RECORDS FOUND Clause:IF NO RECORDS FOUND

The IF NO RECORDS FOUND clause may be used to cause a processing loop
initiated with a FIND statement to be entered in the event that no records meet
the selection criteria specified in the WITH clause and the WHERE clause.

If no records meet the specified WITH and WHERE criteria, the IF NO RECORDS
FOUND clause causes the FIND processing loop to be executed once with an
“empty” record.

If this is not desired, specify the statement ESCAPE BOTTOMwithin the IF NO
RECORDS FOUND clause.

Statement Execution:ENTER

If one ormore statements are specifiedwith the IF NO RECORDS FOUND clause,
the statements will be executed immediately before the processing loop is
entered.

statement ...

If no statements are to be executed before entering the loop, the keyword ENTER
must be used.

511Statements

FIND

DescriptionSyntax Element

End of IF NO RECORDS FOUND Clause:END-NOREC

In structured mode, the Natural reserved word END-NORECmust be used to
end the IF NO RECORDS FOUND clause.

ENTER
statement
DO statement ...
DOEND In reporting mode, use the DO ... DOEND statements to supply one or several

suitable statements, depending on the situation, and to end the IF NO RECORDS
FOUND clause. If you specify only a single statement or the keyword ENTER (see
above), you can omit the DO ... DOEND statements. With respect to good
coding practice, this is not recommended.

See also Example 12 - IF NO RECORDS FOUND Clause.

Database Values

Unless other value assignments are made in the statements accompanying an IF NO RECORDS
FOUND clause, Natural will reset to empty all database fields which reference the file specified in
the current loop.

Evaluation of System Functions

Natural system functions are evaluated once for the empty record that is created for processing
as a result of the IF NO RECORDS FOUND clause.

Restriction

This clause cannot be used with FIND FIRST, FIND NUMBER and FIND UNIQUE.

Examples

■ Example 1 - PASSWORD Clause
■ Example 2 - CIPHER Clause
■ Example 3 - Basic Search Criteria in WITH Clause
■ Example 4 - Basic Search Criteria with Multiple-Value Field
■ Example 5 - Various Samples of Complex Search Expression in WITH Clause
■ Example 6 - Various Samples of Using Database Arrays
■ Example 7 - Using Physically Coupled Files
■ Example 8 - VIA Clause
■ Example 9 - SORTED BY Clause
■ Example 10 - RETAIN Clause
■ Example 11 - WHERE Clause
■ Example 12 - IF NO RECORDS FOUND Clause
■ Example 13 - Using System Variables with the FIND Statement
■ Example 14 - Multiple FIND Statements

Statements512

FIND

■ Example 15 - SHARED HOLD Clause
■ Example 16 - SKIP RECORDS Clause

See also the example for FIND NUMBER: program FNDNUM.

Example 1 - PASSWORD Clause

** Example 'FNDPWD': FIND (with PASSWORD clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 PERSONNEL-ID

*
1 #PASSWORD (A8)
END-DEFINE
*
INPUT 'ENTER PASSWORD FOR EMPLOYEE FILE:' #PASSWORD (AD=N)
LIMIT 2
*
FIND EMPLOY-VIEW PASSWORD = #PASSWORD

WITH NAME = 'SMITH'
DISPLAY NOTITLE NAME PERSONNEL-ID

END-FIND
*
END

Output of Program FNDPWD:

ENTER PASSWORD FOR EMPLOYEE FILE:

Example 2 - CIPHER Clause

** Example 'FNDCIP': FIND (with PASSWORD/CIPHER clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 PERSONNEL-ID

*
1 #PASSWORD (A8)
1 #CIPHER (N8)
END-DEFINE
*
LIMIT 2
INPUT 'ENTER PASSWORD FOR EMPLOYEE FILE: ' #PASSWORD (AD=N)

/ 'ENTER CIPHER KEY FOR EMPLOYEE FILE: ' #CIPHER (AD=N)
*
FIND EMPLOY-VIEW PASSWORD = #PASSWORD

513Statements

FIND

CIPHER = #CIPHER
WITH NAME = 'SMITH'

DISPLAY NOTITLE NAME PERSONNEL-ID
END-FIND
*
END Output of Program FNDCIP:

ENTER PASSWORD FOR EMPLOYEE FILE:
ENTER CIPHER KEY FOR EMPLOYEE FILE:

Example 3 - Basic Search Criteria in WITH Clause

FIND STAFF WITH NAME = 'SMITH'
FIND STAFF WITH CITY NE 'BOSTON'
FIND STAFF WITH BIRTH = 610803
FIND STAFF WITH BIRTH = 610803 THRU 610811
FIND STAFF WITH NAME = 'O HARA' OR = 'JONES' OR = 'JACKSON'
FIND STAFF WITH PERSONNEL-ID = 100082 THRU 100100

BUT NOT 100087 THRU 100095

Example 4 - Basic Search Criteria with Multiple-Value Field

When the descriptor used in the basic search criteria is amultiple-value field, basically four different
kinds of results can be obtained (the field MU-FIELD in the following examples is assumed to be a
multiple-value field):

FIND XYZ-VIEW WITH MU-FIELD = 'A'

This statement returns records in which at least one occurrence of MU-FIELD has the value A.

FIND XYZ-VIEW WITH MU-FIELD NOT EQUAL 'A'

This statement returns records inwhich at least one occurrence of MU-FIELD does not have the value
A.

FIND XYZ-VIEW WITH NOT MU-FIELD NOT EQUAL 'A'

This statement returns records in which every occurrence of MU-FIELD has the value A.

FIND XYZ-VIEW WITH NOT MU-FIELD = 'A'

This statement returns records in which none of the occurrences of MU-FIELD has the value A.

Statements514

FIND

Example 5 - Various Samples of Complex Search Expression in WITH Clause

FIND STAFF WITH BIRTH LT 19770101 AND DEPT = 'DEPT06'

FIND STAFF WITH JOB-TITLE = 'CLERK TYPIST'
AND (BIRTH GT 19560101 OR LANG = 'SPANISH')

FIND STAFF WITH JOB-TITLE = 'CLERK TYPIST'
AND NOT (BIRTH GT 19560101 OR LANG = 'SPANISH')

FIND STAFF WITH DEPT = 'ABC' THRU 'DEF'
AND CITY = 'WASHINGTON' OR = 'LOS ANGELES'
AND BIRTH GT 19360101

FIND CARS WITH MAKE = 'VOLKSWAGEN'
AND COLOR = 'RED' OR = 'BLUE' OR = 'BLACK'

Example 6 - Various Samples of Using Database Arrays

The following examples assume that the field SALARY is a descriptor contained within a periodic
group, and the field LANG is a multiple-value field.

FIND EMPLOYEES WITH SALARY LT 20000

Results in a search of all occurrences of SALARY.

FIND EMPLOYEES WITH SALARY (1) LT 20000

Results in a search of the first occurrence only.

FIND EMPLOYEES WITH SALARY (1:4) LT 20000 /* invalid

A range specification must not be specified for a field within a periodic group used as a search
criterion.

FIND EMPLOYEES WITH LANG = 'FRENCH'

Results in a search of all values of LANG.

515Statements

FIND

FIND EMPLOYEES WITH LANG (1) = 'FRENCH' /* invalid

An index must not be specified for a multiple-value field used as a search criterion.

Example 7 - Using Physically Coupled Files

** Example 'FNDCPL': FIND (using coupled files)
** NOTE: Adabas files must be physically coupled when using the
** COUPLED clause without the VIA clause.
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
1 VEHIC-VIEW VIEW OF VEHICLES

2 MAKE
END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'FRANKFURT'

AND COUPLED TO
VEHIC-VIEW WITH MAKE = 'VW'

DISPLAY NOTITLE NAME
END-FIND
*
END

Example 8 - VIA Clause

** Example 'FNDVIA': FIND (with VIA clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID

END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = 'ADKINSON'

AND COUPLED TO VEHIC-VIEW
VIA PERSONNEL-ID = PERSONNEL-ID WITH MAKE = 'VOLVO'

DISPLAY PERSONNEL-ID NAME FIRST-NAME
END-FIND
*
END

Statements516

FIND

Output of Program FNDVIA:

Page 1 05-01-17 13:18:22

PERSONNEL NAME FIRST-NAME
ID

--------- -------------------- --------------------

20011000 ADKINSON BOB

Example 9 - SORTED BY Clause

** Example 'FNDSOR': FIND (with SORTED BY clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

END-DEFINE
*
LIMIT 10
FIND EMPLOY-VIEW WITH CITY = 'FRANKFURT'

SORTED BY NAME PERSONNEL-ID

DISPLAY NOTITLE NAME (IS=ON) FIRST-NAME PERSONNEL-ID
END-FIND
*
END

Output of Program FNDSOR:

NAME FIRST-NAME PERSONNEL
ID

-------------------- -------------------- ---------

BAECKER JOHANNES 11500345
BECKER HERMANN 11100311
BERGMANN HANS 11100301
BLAU SARAH 11100305
BLOEMER JOHANNES 11200312
DIEDRICHS HUBERT 11600301
DOLLINGER MARGA 11500322
FALTER CLAUDIA 11300311

HEIDE 11400311
FREI REINHILD 11500301

517Statements

FIND

Example 10 - RETAIN Clause

** Example 'RELEX1': FIND (with RETAIN clause and RELEASE statement)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 BIRTH
2 NAME

*
1 #BIRTH (D)
END-DEFINE
*
MOVE EDITED '19400101' TO #BIRTH (EM=YYYYMMDD)
*
FIND NUMBER EMPLOY-VIEW WITH BIRTH GT #BIRTH

RETAIN AS 'AGESET1'
IF *NUMBER = 0

STOP
END-IF
*
FIND EMPLOY-VIEW WITH 'AGESET1' AND CITY = 'NEW YORK'

DISPLAY NOTITLE NAME CITY BIRTH (EM=YYYY-MM-DD)
END-FIND
*
RELEASE SET 'AGESET1'
*
END

Output of Example 10:

NAME CITY DATE
OF

BIRTH
-------------------- -------------------- ----------

RUBIN NEW YORK 1945-10-27
WALLACE NEW YORK 1945-08-04

Example 11 - WHERE Clause

** Example 'FNDWHE': FIND (with WHERE clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 CITY

END-DEFINE

Statements518

FIND

*
FIND EMPLOY-VIEW WITH CITY = 'PARIS'

WHERE JOB-TITLE = 'INGENIEUR COMMERCIAL'
DISPLAY NOTITLE

CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND
*
END

Output of Program FNDWHE:

CITY CURRENT PERSONNEL NAME
POSITION ID

-------------------- ------------------------- --------- --------------------

PARIS INGENIEUR COMMERCIAL 50007300 CAHN
PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
PARIS INGENIEUR COMMERCIAL 50004700 FAURIE
PARIS INGENIEUR COMMERCIAL 50004400 VALLY
PARIS INGENIEUR COMMERCIAL 50002800 BRETON
PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX
PARIS INGENIEUR COMMERCIAL 50000400 KORAB-BRZOZOWSKI

Example 12 - IF NO RECORDS FOUND Clause

** Example 'FNDIFN': FIND (using IF NO RECORDS FOUND)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
EMP. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

/*
VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)

IF NO RECORDS FOUND
MOVE '*** NO CAR ***' TO MAKE

END-NOREC
/*
DISPLAY NOTITLE

NAME (EMP.) (IS=ON)
FIRST-NAME (EMP.) (IS=ON)
MAKE (VEH.)

END-FIND

519Statements

FIND

/*
END-READ
END

Output of Program FNDIFN:

NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

JONES VIRGINIA CHRYSLER
MARSHA CHRYSLER

CHRYSLER
ROBERT GENERAL MOTORS
LILLY FORD

MG
EDWARD GENERAL MOTORS
MARTHA GENERAL MOTORS
LAUREL GENERAL MOTORS
KEVIN DATSUN
GREGORY FORD

JOPER MANFRED *** NO CAR ***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL *** NO CAR ***
JUNG ERNST *** NO CAR ***
JUNKIN JEREMY *** NO CAR ***
KAISER REINER *** NO CAR ***

Example 13 - Using System Variables with the FIND Statement

** Example 'FNDVAR': FIND (using *ISN, *NUMBER, *COUNTER)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 CITY

END-DEFINE
*
LIMIT 3
FIND EMPLOY-VIEW WITH CITY = 'MADRID'

DISPLAY NOTITLE PERSONNEL-ID NAME
*ISN *NUMBER *COUNTER

END-FIND
*
END

Statements520

FIND

Output of Program FNDVAR

PERSONNEL NAME ISN NMBR CNT
ID

--------- -------------------- ----------- ----------- -----------

60000114 DE JUAN 400 41 1
60000136 DE LA MADRID 401 41 2
60000209 PINERO 405 41 3

Example 14 - Multiple FIND Statements

In the following example, first all people named SMITH are selected from the EMPLOYEES file. Then
the PERSONNEL-ID from the EMPLOYEES file is used as the search key for an access to the VEHICLES
file.

** Example 'FNDMUL': FIND (with multiple files)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
EMP. FIND EMPLOY-VIEW WITH NAME = 'SMITH'

/*
VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = EMP.PERSONNEL-ID

IF NO RECORDS FOUND
MOVE '*** NO CAR ***' TO MAKE

END-NOREC
DISPLAY NOTITLE

EMP.NAME (IS=ON)
EMP.FIRST-NAME (IS=ON)
VEH.MAKE

END-FIND
END-FIND
END

Output of Program FNDMUL:

The resulting report shows the NAME and FIRST-NAME (obtained from the EMPLOYEES file) of all
people named SMITH as well as the MAKE of each car (obtained from the VEHICLES file) owned by
these people.

521Statements

FIND

NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

SMITH GERHARD ROVER
SEYMOUR *** NO CAR ***
MATILDA FORD
ANN *** NO CAR ***
TONI TOYOTA
MARTIN *** NO CAR ***
THOMAS FORD
SUNNY *** NO CAR ***
MARK FORD
LOUISE CHRYSLER
MAXWELL MERCEDES-BENZ

MERCEDES-BENZ
ELSA CHRYSLER
CHARLY CHRYSLER
LEE *** NO CAR ***
FRANK FORD

Example 15 - SHARED HOLD Clause

FIND EMPL-VIEW WITH NAME = ...
IN SHARED HOLD MODE=Q /* Record in shared hold until next record is read.

...
GET EMPL-VIEW *ISN /* The record remains unchanged!
...

END-FIND

Example 16 - SKIP RECORDS Clause

FIND EMPL-VIEW WITH NAME = ... /* Records found are put in hold while reading.
SKIP RECORDS IN HOLD /* Records already held by other users are

... /* skipped to prevent error NAT3145.
UPDATE
END TRANSACTION

END-FIND

Statements522

FIND

73 FOR

■ Function .. 524
■ Syntax Description ... 524
■ Example .. 526

523

FOR operand1
operand2

[:]=

(arithmetic-expression)
EQ
FROM

operand3TO
(arithmetic-expression)THRU

STEP
operand4
(arithmetic-expression)

statement

(structured mode only)END-FOR

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: REPEAT | ESCAPE

Belongs to Function Group: Loop Execution

Function

The FOR statement is used to initiate a processing loop and to control the number of times the loop
is processed.

Consistency Check

Before the FOR loop is entered, the values of the operands are checked to ensure that they are
consistent (that is, the value of operand3 can be reached or exceeded by repeatedly adding operand4
to operand2). If the values are not consistent, the FOR loop is not entered (however, no errormessage
is output, except when the STEP value is zero).

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

yesyesFIPNSoperand1

noyesFIPNNSCoperand2

nonoFIPNSarithmetic-expression

noyesFIPNNSCoperand3

Statements524

FOR

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesFIPNNSCoperand4

Syntax Element Description:

DescriptionSyntax Element

Loop Control Variable (operand1) and Initial Setting (operand2):operand1

operand1 is used to control the number of times the processing loop is to
be executed. It may be a database field or a user-defined variable.

operand2

The value specified after the keyword FROM (operand2) is assigned to the
loop control variable field before the processing loop is entered for the first
time. This value is incremented (or decremented if the STEP value is negative)
using the value specified after the STEP keyword (operand4) each additional
time the loop is processed.

The loop control variable value may be referenced during the execution of
the processing loop and will contain the current value of the loop control
variable.

Note: The keywords [:]=, EQ or FROM can be omitted.

TO Value:operand3

The processing loop is terminated when operand1 is greater than (or less
than if the initial value of the STEP value was negative) the value specified
for operand3.

Note: The keyword TO or TRU can be omitted.

STEP Value:STEP operand4

The STEP valuemay be positive or negative. If a STEP value is not specified,
an increment of +1 is used.

The compare operation will be adjusted to “less than” or “greater than”
depending on the sign of the STEP value when the loop is entered for the
first time.

Note:

1. operand4must not be zero.

2. The keyword STEP can be omitted.

Arithmetic Expression:(arithmetic-expression)

In place of operand2, operand3 or operand4, any arithmetic expression
may be specified.

525Statements

FOR

DescriptionSyntax Element

Note:

1. The arithmetic expressions must be enclosed in parentheses.

2. The preceding keyword cannot be omitted.

For further information on arithmetic expressions, see
arithmetic-expression in the COMPUTE statement description.

End of FOR Statement:END-FOR

In structured mode, the Natural reserved word END-FORmust be used to
end the FOR statement.

LOOP

In reporting mode, the Natural statement LOOP is used to end the FOR
statement.

Example

** Example 'FOREX1S': FOR (structured mode)
**
DEFINE DATA LOCAL
1 #INDEX (I1)
1 #ROOT (N2.7)
END-DEFINE
*
FOR #INDEX 1 TO 5

COMPUTE #ROOT = SQRT (#INDEX)
WRITE NOTITLE '=' #INDEX 3X '=' #ROOT

END-FOR
*
SKIP 1
FOR #INDEX 1 TO 5 STEP 2

COMPUTE #ROOT = SQRT (#INDEX)
WRITE '=' #INDEX 3X '=' #ROOT

END-FOR
*
END

Statements526

FOR

Output of Program FOREX1S:

#INDEX: 1 #ROOT: 1.0000000
#INDEX: 2 #ROOT: 1.4142135
#INDEX: 3 #ROOT: 1.7320508
#INDEX: 4 #ROOT: 2.0000000
#INDEX: 5 #ROOT: 2.2360679

#INDEX: 1 #ROOT: 1.0000000
#INDEX: 3 #ROOT: 1.7320508
#INDEX: 5 #ROOT: 2.2360679

Equivalent reporting-mode example: FOREX1R.

527Statements

FOR

528

74 FORMAT

■ Function .. 530
■ Syntax Description ... 530
■ Applicable Parameters .. 531
■ Example .. 533

529

FORMAT [(rep)] parameter

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The FORMAT statement is used to specify input and output parameter settings.

Settings specified with a FORMAT statement override (at compilation time) default settings in effect
for the session that have been set by a GLOBALS command, SET GLOBALS statement, or by the Nat-
ural administrator.

These settings may in turn be overridden by parameters specified in a DISPLAY, INPUT, PRINT,
WRITE, WRITE TITLE, or WRITE TRAILER statement.

The settings remain in effect until the end of a program or until another FORMAT statement is en-
countered.

A FORMAT statement does not generate any executable code in theNatural program. It is not executed
in dependence of the logical flow of a program. It is evaluated during program compilation in
order to set parameters for compiling DISPLAY, WRITE, PRINT and INPUT statements. The settings
defined with a FORMAT statement are applicable to all DISPLAY, WRITE, PRINT and INPUT statements
which follow.

Syntax Description

DescriptionSyntax
Element

Report Specification:(rep)

The notation (rep)may be used to specify the identification of the report for which the
FORMAT statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

Statements530

FORMAT

DescriptionSyntax
Element

If (rep) is not specified, the FORMAT statement will be applicable to the first report (Report
0).

For information on how to control the format of an output report created with Natural, see
Report Format and Control (in the Programming Guide).

Parameter(s):parameter

The parameters can be specified in any order and must be separated by one or more spaces.
A single entry must not be split between two statement lines.

Field sensitive parameter settings applied here will only be regarded for variable fields used
in an INPUT, WRITE, DISPLAY or PRINT statement of the selected report. They do not apply
for text-constants used in any of the mentioned statements.

Example:

DEFINE DATA LOCAL
1 VARI (A4) INIT <'1234'> /* Output
END-DEFINE /* Produced
FORMAT AD=U /* ---------
WRITE 'Text' VARI /* Text 1234
WRITE 'Text' (AD=U) VARI /* Text 1234
END

See also Applicable Parameters below.

Applicable Parameters

See the Parameter Reference for a detailed description of the session parameterswhichmay be used.

DescriptionParameter

Attribute DefinitionAD

Alphanumeric Length for OutputAL

Color DefinitionCD

Date FormatDF

Display Length for OutputDL

Edit MaskEM

Empty Line SuppressionES

Filler CharacterFC

Floating Point Mantissa LengthFL

Filler Character for Group HeadingGC

531Statements

FORMAT

DescriptionParameter

Header CenteringHC

Heading WidthHW

Insertion CharacterIC

Unicode Insertion CharacterICU

Input Prompting TextIP

Identical SuppressIS

Key DefinitionKD

Leading CharactersLC

Unicode Leading CharactersLCU

Line SizeLS

Multiple-Value Field Count (Can only be used in reporting mode.)MC

Maximum Number of Pages of a Report, see Note below.MP

Manual SkipMS

Numeric Length for OutputNL

Periodic Group Count (Can only be used in reporting mode.)PC

Print ModePM

Page Size, see Note below.PS

Spacing FactorSF

Sign PositionSG

Trailing CharactersTC

Unicode Trailing CharactersTCU

Underlining CharacterUC

Zero PrintingZP

Note: The parameters MP and PS do not take effect for a specific I/O statement, but apply to
the complete output created for the report. If multiple settings for MP and PS are performed,
the last definition is used.

See also Underlining Character for Titles and Headers - UC Parameter (in the Programming Guide).

Statements532

FORMAT

Example

** Example 'FMTEX1': FORMAT
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 POST-CODE
2 COUNTRY

END-DEFINE
*
FORMAT AL=7 /* Alpha-numeric field output length

FC=+ /* Filler character for field header
GC=* /* Filler character for group header
HC=L /* Header left justified
IC=<< /* Insert characters
IS=ON /* Identical suppress on
TC=>> /* Trailing character
UC== /* Underline character
ZP=OFF /* Zero print off

*
LIMIT 5
READ EMPLOY-VIEW BY NAME

DISPLAY NOTITLE
NAME 3X CITY 3X POST-CODE 3X COUNTRY

END-READ
*
END

Output of Program FMTEX1:

NAME+++++++ CITY+++++++ POSTAL+++++ COUNTRY++++
ADDRESS++++

=========== =========== =========== ===========

<<ABELLAN>> <<MADRID >> <<28014 >> <<E >>
<<ACHIESO>> <<DERBY >> <<DE3 4TR>> <<UK >>
<<ADAM >> <<JOIGNY >> <<89300 >> <<F >>
<<ADKINSO>> <<BROOKLY>> <<11201 >> <<USA>>

<<BEVERLE>> <<90211 >>

533Statements

FORMAT

534

75 GET

■ Function .. 536
■ Restrictions .. 537
■ Syntax Description ... 537
■ Example .. 538

535

In structured mode and in reporting mode using a DEFINE DATA LOCAL statement, the following
syntax applies:

GET [IN] [FILE] view-name

[PASSWORD=operand1]

[CIPHER=operand2]

operand3
RECORDS

*ISN [(r)]

In reporting mode using no DEFINE DATA LOCAL statement, the following syntax applies:

GET [IN] [FILE] ddm-name

[PASSWORD=operand1]

[CIPHER=operand2]

operand4
operand3

RECORDS
*ISN [(r)]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET SAME | GET
TRANSACTION | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE
| UPDATE

Belongs to Function Group: Database Access and Update

Function

The GET statement is used to read a record with a given Adabas Internal Sequence Number (ISN).

For XML databases, the GET statement is used to read an XML object with a given object ID.

The GET statement does not cause a processing loop to be initiated.

Statements536

GET

Restrictions

■ The GET statement cannot be used for SQL databases.
■ The GET statement cannot be used with Entire System Server.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

nonoNSCoperand2

noyesB *IPNNSCoperand3

yesyesLTDBFIPNAASoperand4

* Format B of operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

View Name:view-name

In structuredmode and in reportingmode using a DEFINE DATA LOCAL statement,
the name of a view as defined either directly within a DEFINE DATA statement or
in a separate global or local data area.

DDMName:ddm-name

In reporting mode using no DEFINE DATA LOCAL statement, the name of the data
definition module (DDM) is referenced.

PASSWORD Clause/CIPHER Clause:PASSWORD=operand1

These clauses are applicable only to Adabas databases.CIPHER=operand2

The PASSWORD clause is used to provide a password when retrieving data from an
Adabas file which is password protected.

The CIPHER clause is used to provide a cipher key when retrieving data from an
Adabas file which is enciphered.

See the statements FIND and PASSW for further information.

Internal Sequence Number:*ISN / operand3

537Statements

GET

DescriptionSyntax Element

The ISNmust be provided either in the form of a numeric constant or user-defined
variable (operand3 in the range from 1 to 4294967295), or via theNatural system
variable *ISN.

Statement Reference:(r)

The notation (r) is used to specify the statement which contains the FIND or READ
statement used to initially read the record.

If (r) is not specified, the GET statement will be related to the innermost active
processing loop.

(r)may be specified as a reference statement number or as a statement label.

Reference to Database Fields:operand4

In reporting mode, subsequent references to database fields that have been read
with a GET statement can contain the label or line number of the GET statement.

Example

** Example 'GETEX1': GET
**
DEFINE DATA LOCAL
1 PERSONS VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 SALARY-INFO VIEW OF EMPLOYEES
2 NAME
2 CURR-CODE (1:1)
2 SALARY (1:1)

*
1 #ISN-ARRAY (B4/1:10)
1 #LINE-NR (N2)
END-DEFINE
*
FORMAT PS=16
LIMIT 10
READ PERSONS BY NAME

MOVE *COUNTER TO #LINE-NR
MOVE *ISN TO #ISN-ARRAY (#LINE-NR)
DISPLAY #LINE-NR PERSONNEL-ID NAME FIRST-NAME
/*
AT END OF PAGE

INPUT / 'PLEASE SELECT LINE-NR FOR SALARY INFORMATION:' #LINE-NR
IF #LINE-NR = 1 THRU 10
GET SALARY-INFO #ISN-ARRAY (#LINE-NR)
WRITE / SALARY-INFO.NAME

Statements538

GET

SALARY-INFO.SALARY (1)
SALARY-INFO.CURR-CODE (1)

END-IF
END-ENDPAGE
/*

END-READ
END

Output of Program GETEX1:

Page 1 05-01-13 13:17:42

#LINE-NR PERSONNEL NAME FIRST-NAME
ID

-------- --------- -------------------- --------------------

1 60008339 ABELLAN KEPA
2 30000231 ACHIESON ROBERT
3 50005800 ADAM SIMONE
4 20008800 ADKINSON JEFF
5 20009800 ADKINSON PHYLLIS
6 20012700 ADKINSON HAZEL
7 20013800 ADKINSON DAVID
8 20019600 ADKINSON CHARLIE
9 20008600 ADKINSON MARTHA

10 20005700 ADKINSON TIMMIE

PLEASE SELECT LINE-NR FOR SALARY INFORMATION: 1

ABELLAN 1450000 PTA

539Statements

GET

540

76 GET SAME

■ Function .. 542
■ Restrictions .. 542
■ Syntax Description ... 542
■ Example .. 543

541

Structured Mode Syntax

GET SAME [(r)]

Reporting Mode Syntax

GET SAME [(r)] [operand1]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The GET SAME statement is used to re-read the record currently being processed. It ismost frequently
used to obtain database array values (periodic groups or multiple-value fields) if the number and
range of existing or desired occurrences was not known when the record was initially read.

Restrictions

■ GET SAME is only valid for Natural users who are using Adabas.
■ GET SAME cannot be used with Entire System Server.
■ An UPDATE or DELETE statement must not reference a GET SAME statement. These statements
should insteadmake reference to the FIND, READ or GET statement used to read the record initially.

Syntax Description

Operand Definition Table:

Statements542

GET SAME

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

yesnoBPNUAASoperand1

Syntax Element Description:

DescriptionSyntax Element

Statement Reference:(r)

The notation (r) is used to specify the statementwhich contains the FIND or READ statement
used to initially read the record.

If (r) is not specified, the GET SAME statement will be related to the innermost active
processing loop.

(r)may be specified as a reference statement number or as a statement label.

Fields to Be Made Available:operand1

As operand1, you specify the field(s) to be made available as a result of the GET SAME
statement.

Note: operand1 cannot be specified if the field is defined in a DEFINE DATA statement.

Example

** Example 'GSAEX1': GET SAME
**
DEFINE DATA LOCAL
1 I (P3)
1 POST-ADDRESS VIEW OF EMPLOYEES

2 FIRST-NAME
2 NAME
2 ADDRESS-LINE (I:I)
2 C*ADDRESS-LINE
2 POST-CODE
2 CITY

*
1 #NAME (A30)
END-DEFINE
*
FORMAT PS=20
MOVE 1 TO I
*
READ (10) POST-ADDRESS BY NAME

COMPRESS NAME FIRST-NAME INTO #NAME WITH DELIMITER ','
WRITE // 12T #NAME
WRITE / 12T ADDRESS-LINE (I.1)
/*

543Statements

GET SAME

IF C*ADDRESS-LINE > 1
FOR I = 2 TO C*ADDRESS-LINE
GET SAME /* READ NEXT OCCURRENCE
WRITE 12T ADDRESS-LINE (I.1)

END-FOR
END-IF
WRITE / POST-CODE CITY
SKIP 3

END-READ
END

Output of Program GSAEX1:

Page 1 05-01-13 13:23:36

ABELLAN,KEPA

CASTELAN 23-C

28014 MADRID

ACHIESON,ROBERT

144 ALLESTREE LANE
DERBY
DERBYSHIRE

DE3 4TR DERBY

Statements544

GET SAME

77 GET TRANSACTION DATA

■ Function .. 546
■ Restriction .. 546
■ Syntax Description ... 547
■ Example .. 547

545

GET TRANSACTION [DATA] operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The GET TRANSACTION DATA statement is used to read the data saved with a previous END
TRANSACTION statement.

GET TRANSACTION DATA does not create a processing loop.

System Variable *ETID

The content of the Natural system variable *ETID identifies the transaction data to be retrieved
from the database.

No Transaction Data Stored

If the GET TRANSACTION DATA statement is issued and no transaction data are found, all fields
specified in the GET TRANSACTION DATA statement will be filled with blanks regardless of format
definition.

Caution: Make sure that arithmetic operations are not performed on “empty” transaction
data, because this would result in an abnormal termination of the program.

Restriction

The GET TRANSACTION DATA statement is only valid for transactions applied to Adabas databases.

Statements546

GET TRANSACTION DATA

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

yesyesTDBFIPNUASoperand1

Syntax Element Description:

DescriptionSyntax Element

Field Specification:operand1

The sequence, lengths, and formats of the fields used in the GET TRANSACTION DATA
statementmust be identical to the sequence, lengths, and formats of the fields specifiedwith
the corresponding END TRANSACTION statement.

Note: GET TRANSACTION DATA cannot be used if operand1 is a dynamic variable.

Example

** Example 'GTREX1': GET TRANSACTION
**
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 MIDDLE-I
2 CITY

*
1 #PERS-NR (A8) INIT <' '>
END-DEFINE
*
GET TRANSACTION DATA #PERS-NR
IF #PERS-NR NE ' '

WRITE 'LAST TRANSACTION PROCESSED FROM PREVIOUS SESSION' #PERS-NR
END-IF
*
REPEAT

/*
INPUT 10X 'ENTER PERSONNEL NUMBER TO BE UPDATED:' #PERS-NR
IF #PERS-NR = ' '

547Statements

GET TRANSACTION DATA

STOP
END-IF
/*
FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PERS-NR

IF NO RECORDS FOUND
REINPUT 'NO RECORD FOUND'

END-NOREC
INPUT (AD=M) PERSONNEL-ID (AD=O)

/ NAME
/ FIRST-NAME
/ CITY

UPDATE
END TRANSACTION #PERS-NR

END-FIND
/*

END-REPEAT
END

Statements548

GET TRANSACTION DATA

78 HISTOGRAM

■ Function .. 550
■ Restrictions .. 551
■ Syntax Description ... 551
■ System Variables Available with HISTOGRAM ... 556
■ Examples ... 557

549

[MULTI-FETCH-clause] [multi-fetch-factor]
[IN] [FILE] view-nameHISTOGRAM

ALL
(operand1)

[PASSWORD=operand2]

[SEQUENCE][IN]

ASCENDING
DESCENDING
VARIABLEoperand3
DYNAMIC operand3

[VALUE] [FOR] [FIELD] operand4

[STARTING/ENDING-clause]

[WHERE logical-condition]

statement

(structured mode only)END-HISTOGRAM

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION DATA | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The HISTOGRAM statement is used to read the values of a database field which is defined as a
descriptor, subdescriptor, or a superdescriptor. The values are read directly from the Adabas in-
verted lists. The HISTOGRAM statement causes a processing loop to be initiated but does not provide
access to any database fields other than the field specified in the HISTOGRAM statement.

See also the following sections in the Programming Guide:

■ HISTOGRAM Statement
■ Loop Processing
■ Referencing of Database Fields Using (r) Notation

Note: For SQLdatabases: HISTOGRAM returns the number of rowswhich have the same value
in a specific column.

Statements550

HISTOGRAM

Restrictions

■ This statement cannot be used with XML databases.
■ This statement cannot be used with Entire System Server.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesB *IPNSCoperand1

noyesASCoperand2

noyesASoperand3

nonoLTDBFIPNASoperand4

* Format B of operand1may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Number of Descriptor Values:operand1 / ALL

You can limit the number of descriptor values to be processed with the
HISTOGRAM statement by specifying operand1 - either as a numeric constant
(0 - 4294967295) or as a user-defined variable (containing an integer value).

ALLmay optionally be specified to emphasize that all descriptor values are
to be processed.

For this statement, the specified limit has priority over a limit set with a LIMIT
statement.

If a smaller limit is set with the LT parameter (Limit for Processing Loops),
the LT limit applies.

Note: If you wish to process a 4-digit number of descriptor values, specify it
with a leading zero (0nnnn); becauseNatural interprets every 4-digit number
enclosed in parentheses as a line-number reference to a statement. operand1
is evaluated when the HISTOGRAM loop is entered. If the value of operand1
is modified within the HISTOGRAM loop, this does not affect the number of
values read.

551Statements

HISTOGRAM

DescriptionSyntax Element

MULTI-FETCH Clause:MULTI-FETCH-clause

SeeMULTI-FETCH Clause below.

View Name:view-name

As view-name, you specify the name of a view,which is defined eitherwithin
a DEFINE DATA statement or in a separate global or local data area.

The view must not contain any other fields apart from the field used in the
HISTOGRAM statement (operand4).

If the field in the view is a periodic-group field or multiple-value field that
is definedwith an index range, only the first occurrence of that range is filled
by the HISTOGRAM statement; all other occurrences are not affected by the
execution of the HISTOGRAM statement.

In reporting mode, view-name is the name of a DDM if no DEFINE DATA
LOCAL statement is used.

PASSWORD Clause:PASSWORD=operand2

The PASSWORD clause is used to provide a password (operand2) when
retrieving data from an Adabas file which is password-protected. See the
statements FIND and PASSW for further information.

SEQUENCE Clause:SEQUENCE

This clause can only be used for Adabas and SQL databases.

With this clause, you can determine whether the records are to be read in
ascending sequence or in descending sequence.

■ The default sequence is ascending (which may, but need not, be explicitly
specified by using the keyword ASCENDING).

■ If the records are to be read in descending sequence, you specify the
keyword DESCENDING.

■ If, instead of determining it in advance, you want to have the option of
determining at runtime whether the records are to be read in ascending or
descending sequence, you either specify the keyword VARIABLE or
DYNAMIC, followed by a variable (operand3). operand3 has to be of
format/length A1 and can contain the value A (for “ascending”) or D (for
“descending”).
■ If keyword VARIABLE is used, the reading direction (value of operand3)
is evaluated at start of the HISTOGRAMprocessing loop and remains same
until the loop is terminated, regardless if the operand3 field is altered
in the HISTOGRAM loop or not.

■ If keyword DYNAMIC is used, the reading direction (value of operand3)
is evaluated before every record fetch in the HISTOGRAM processing loop
and may be changed from record to record. This allows to change the

Statements552

HISTOGRAM

DescriptionSyntax Element

scroll sequence from ascending to descending (and vice versa) at any
place in the HISTOGRAM loop.

Examples of SEQUENCE clause:

■ Example 2 - HISTOGRAM Statement with Records Read in Descending
Sequence

■ Example 3 - HISTOGRAM Statement Using Variable Sequence

Descriptor:operand4

As operand4, a descriptor, subdescriptor, superdescriptor or hyperdescriptor
may be specified.

A descriptor contained within a periodic group may be specified with or
without an index. If no index is specified, the descriptor will be selected if
the value specified is located in any occurrence. If an index is specified, the
descriptor will be selected only if the value is located in the occurrence
specified by the index. The index specifiedmust be a constant. An index range
must not be used.

For a descriptorwhich is amultiple-value field an indexmust not be specified;
the descriptor will be selected if the value is located in the record regardless
of the position of the value.

STARTING/ENDING Clause:STARTING-ENDING-clause

Starting and ending values may be specified using the keywords STARTING
and ENDING (or THRU) followed by a constant or a user-defined variable
representing the value with which processing is to begin/end.

For further information, see Specifying Starting/Ending Values below.

WHERE Clause:WHERE logical-condition

The WHERE clause may be used to specify an additional selection criteria
(logical-condition) which is evaluated after a value has been read and
before any processing is performed on the value (including the AT BREAK
evaluation).

The descriptor specified in the WHERE clause must be the same descriptor
referenced in the HISTOGRAM statement. No other fields from the selected file
are available for processing with a HISTOGRAM statement.

The syntax for a logical-condition is described in the section Logical
Condition Criteria (in the Programming Guide).

End of HISTOGRAM Statement:END-HISTOGRAM

In structured mode, the Natural reserved word END-HISTOGRAMmust be
used to end the HISTOGRAM statement.

LOOP

553Statements

HISTOGRAM

DescriptionSyntax Element

In reporting mode, the Natural statement LOOPmust be used to end the
HISTOGRAM statement.

MULTI-FETCH Clause

Note: This clause can only be used for Adabas databases.

MULTI-FETCH
ON
OFF
[OF] multi-fetch-factor

Note: [MULTI-FETCH OF multi-fetch-factor] is supported for database types ADA/ADA2.
The default processing mode is applied; see profile parameter MFSET. The MULTI-FETCH
clause is ignored in case Adabas LA or large objects fields are used or a view size greater
than 64KB is defined.

For more information, see the sectionMULTI-FETCH Clause (Adabas) in the Programming Guide.

Specifying Starting/Ending Values

Starting and ending values may be specified using the keywords STARTING and ENDING (or THRU)
followed by a constant or a user-defined variable representing the value with which processing
is to begin/end.

If a starting value is specified and the value is not present, the next higher value is used as the
starting value. If no higher value is present, the HISTOGRAM loop will not be entered.

If an ending value is specified, values will be read up to and including the ending value.

Hexadecimal constants may be specified as a starting or ending value for descriptors of format A
or B.

Syntax Option 1:

operand6
THRU

[VALUES] operand5[STARTING] WITH
FROM ENDING AT

Syntax Option 2:

Statements554

HISTOGRAM

operand6TO[VALUES] operand5[STARTING] WITH
FROM

Syntax Option 3:

operand5

<

LT

LESS THAN

>

GT

GREATER THAN

<=

LE

LESS EQUAL

>=

GE

GREATER EQUAL

Note: If the comparators of Diagram 3 are used, the options ENDING AT, THRU and TOmay
not be used. These comparators are also valid for the READ statement.

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesLTDBFIPNUASCoperand5

noyesLTDBFIPNUASCoperand6

Syntax Element Description:

DescriptionSyntax Element

STARTING FROM / ENDING AT Clauses:STARTING FROM
... ENDING AT
|TO The STARTING FROM and ENDING AT clauses are used to limit reading to a user-specified

range of values.

The STARTING FROM clause (= or EQ or EQUAL TO or [STARTING] FROM) determines
the starting value for the read operation. If a starting value is specified, reading will
begin with the value specified. If the starting value does not exist, the next higher (or
lower for a DESCENDING read) value will be returned. If no higher (or lower for
DESCENDING) value exists, the HISTOGRAM loop will not be entered.

555Statements

HISTOGRAM

DescriptionSyntax Element

In order to limit the values to an end-value, you may specify an ENDING AT clause with
the terms THRU, ENDING AT or TO, that imply an inclusive range.Whenever the descriptor
field exceeds the end-value specified, an automatic loop termination is performed.
Although the basic functionality of the TO, THRU and ENDING AT keywords looks quite
similar, internally they differ in how they work.

THRU / ENDING AT Option:THRU | ENDING
AT

If THRU or ENDING AT is used, only the start-value is supplied to the database, but the
end-value check is performed by theNatural runtime system, after the value is returned
by the database.

The THRU and ENDING AT options can be used for all databases which support the
HISTOGRAM statements.

Range:TO

If the keyword TO is used, both the start-value and the end-value are sent to the database
and Natural does not perform checks for value ranges. If the end-value is exceeded, the
database reacts in the same way as when “end-of-file” is reached and the database loop
is exited. Since the complete range checking is done by the database, the lower-value
(of the range) is always supplied in the start-value and the higher-value filled into the
end-value, regardlesswhether you are browsing in ASCENDING or in DESCENDING order.

Note: The result of READ/HISTOGRAM THRU/ENDING ATmight differ from the result of
READ/HISTOGRAM TO if Natural and the accessed database reside on different platforms with
different collating sequences.

System Variables Available with HISTOGRAM

The Natural system variables *ISN, *NUMBER, and *COUNTER are available with the HISTOGRAM
statement.

*NUMBER and *ISN are only set after the evaluation of the WHERE clause. They must not be used in
the logical condition of the WHERE clause.

ExplanationSystem Variable

The system variable *NUMBER contains the number of database records that contain the last
value read.

*NUMBER

For SQL databases, see *NUMBER for SQL Databases in the System Variables documentation.

The system variable *ISN contains the number of the occurrence in which the descriptor
value last read is contained. *ISNwill contain 0 if the descriptor is not contained within a
periodic group.

*ISN

*ISN is not available for SQL databases.

Statements556

HISTOGRAM

ExplanationSystem Variable

The system variable *COUNTER contains a count of the total number of values which have
been read (after evaluation of the WHERE clause).

*COUNTER

Examples

■ Example 1 - HISTOGRAM Statement
■ Example 2 - HISTOGRAM Statement with Records Read in Descending Sequence
■ Example 3 - HISTOGRAM Statement Using Variable Sequence

Example 1 - HISTOGRAM Statement

** Example 'HSTEX1S': HISTOGRAM (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
END-DEFINE
*
LIMIT 8
HISTOGRAM EMPLOY-VIEW CITY STARTING FROM 'M'

DISPLAY NOTITLE
CITY 'NUMBER OF/PERSONS' *NUMBER *COUNTER

END-HISTOGRAM
*
END

Output of Program HSTEX1S:

CITY NUMBER OF CNT
PERSONS

-------------------- ----------- -----------

MADISON 3 1
MADRID 41 2
MAILLY LE CAMP 1 3
MAMERS 1 4
MANSFIELD 4 5
MARSEILLE 2 6
MATLOCK 1 7
MELBOURNE 2 8

Equivalent reporting-mode example: HSTEX1R.

557Statements

HISTOGRAM

Example 2 - HISTOGRAM Statement with Records Read in Descending Sequence

** Example 'HSTDSCND': HISTOGRAM (with DESCENDING)

DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES

2 NAME
END-DEFINE
*
HISTOGRAM (10) EMPL IN DESCENDING SEQUENCE FOR NAME FROM 'ZZZ'

DISPLAY NAME *NUMBER
END-HISTOGRAM
END

Output of Program HSTDSCND:

Page 1 05-01-13 13:41:03

NAME NMBR
-------------------- -----------

ZINN 1
YOT 1
YNCLAN 1
YATES 1
YALCIN 1
YACKX-COLTEAU 1
XOLIN 1
WYLLIS 2
WULFRING 1
WRIGHT 1

Example 3 - HISTOGRAM Statement Using Variable Sequence

** Example 'HSTVSEQ': HISTOGRAM (with VARIABLE SEQUENCE)

DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES

2 NAME
*
1 #DIR (A1)
1 #STARTVAL (A20)
END-DEFINE
*
SET KEY PF3 PF7 PF8
*
MOVE 'ADKINSON' TO #STARTVAL
*
HISTOGRAM (9) EMPL FOR NAME FROM #STARTVAL

WRITE NAME *NUMBER

Statements558

HISTOGRAM

IF *COUNTER = 5
MOVE NAME TO #STARTVAL

END-IF
END-HISTOGRAM
*
#DIR := 'A'
*
REPEAT

HISTOGRAM EMPL IN VARIABLE #DIR SEQUENCE
FOR NAME FROM #STARTVAL

MOVE NAME TO #STARTVAL
INPUT NO ERASE (IP=OFF AD=O)

15/01 NAME *NUMBER
// 'Direction:' #DIR
// 'Press PF3 to stop'
/ ' PF7 to go step back'
/ ' PF8 to go step forward'
/ ' ENTER to continue in that direction'

/*
IF *PF-KEY = 'PF7' AND #DIR = 'A'
MOVE 'D' TO #DIR
ESCAPE BOTTOM

END-IF
IF *PF-KEY = 'PF8' AND #DIR = 'D'
MOVE 'A' TO #DIR
ESCAPE BOTTOM

END-IF
IF *PF-KEY = 'PF3'
STOP

END-IF
END-HISTOGRAM
/*
IF *COUNTER(0250) = 0

STOP
END-IF

END-REPEAT
END

Output of Program HSTVSEQ:

Page 1 05-01-13 13:50:31

ADKINSON 8
AECKERLE 1
AFANASSIEV 2
AHL 1
AKROYD 1
ALEMAN 1
ALESTIA 1
ALEXANDER 5
ALLEGRE 1

559Statements

HISTOGRAM

MORE

After pressing ENTER:

Page 1 05-01-13 13:50:31

ADKINSON 8
AECKERLE 1
AFANASSIEV 2
AHL 1
AKROYD 1
ALEMAN 1
ALESTIA 1
ALEXANDER 5
ALLEGRE 1

AKROYD 1

Direction: A

Press PF3 to stop
PF7 to go step back
PF8 to go step forward
ENTER to continue in that direction

Statements560

HISTOGRAM

79 IF

■ Function .. 562
■ Syntax Description ... 562
■ Example .. 563

561

Structured Mode Syntax

IF logical-condition

[THEN] statement

[ELSE statement]

END-IF

Reporting Mode Syntax

IF logical-condition

statement
[THEN]

DO statement DOEND

statement
ELSE

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE FOR | DECIDE ON | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The IF statement is used to control execution of a statement or group of statements based on a
logical condition.

Note: If no action is to be performed in case the condition is met, you must specify the
statement IGNORE in the THEN clause.

Syntax Description

DescriptionSyntax Element

Logical Condition Criterion:IF logical-condition

The logical condition which is used to determine whether the statement or
statements specified with the IF statement are to be executed.

Examples:

Statements562

IF

DescriptionSyntax Element

IF #A = #B
IF LEAVE-TAKEN GT 30
IF #SALARY(1) * 1.15 GT 5000
IF SALARY (4) = 5000 THRU 6000
IF DEPT = 'A10' OR = 'A20' OR = 'A30'

For further information, see the section Logical Condition Criteria (in the
Programming Guide).

THEN Clause:THEN statement

In the THEN clause, you specify the statement(s) to be executed if the logical
condition is true.

ELSE Clause:ELSE statement

In the ELSE clause, you specify the statement(s) to be executed if the logical
condition is not true.

END of IF Statement:END-IF

In structured mode, the Natural reserved word END-IFmust be used to end
the IF statement.

statement
DO statement ... DOEND

In reportingmode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the clauses and
the IF statement. If you specify only a single statement, you can omit the DO
... DOEND statements. With respect to good coding practice, this is not
recommended.

Example

** Example 'IFEX1S': IF (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 SALARY (1)
2 BIRTH

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

*
1 #BIRTH (D)
END-DEFINE
*
MOVE EDITED '19450101' TO #BIRTH (EM=YYYYMMDD)

563Statements

IF

SUSPEND IDENTICAL SUPPRESS
LIMIT 20
*
FND. FIND EMPLOY-VIEW WITH CITY = 'FRANKFURT'

SORTED BY NAME BIRTH
IF SALARY (1) LT 40000

WRITE NOTITLE '*****' NAME 30X 'SALARY LT 40000'
ELSE

IF BIRTH GT #BIRTH
FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND.)

DISPLAY (IS=ON)
NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8)

END-FIND
END-IF

END-IF
END-FIND
END

Output of Program IFEX1S:

NAME DATE ANNUAL MAKE
OF SALARY

BIRTH
-------------------- ---------- ---------- --------

BAECKER 1956-01-05 74400 BMW
***** BECKER SALARY LT 40000
BLOEMER 1979-11-07 45200 FIAT
FALTER 1954-05-23 70800 FORD
***** FALTER SALARY LT 40000
***** GROTHE SALARY LT 40000
***** HEILBROCK SALARY LT 40000
***** HESCHMANN SALARY LT 40000
HUCH 1952-09-12 67200 MERCEDES
***** KICKSTEIN SALARY LT 40000
***** KLEENE SALARY LT 40000
***** KRAMER SALARY LT 40000

Equivalent reporting-mode example: IFEX1R.

Statements564

IF

80 IF SELECTION

■ Function .. 566
■ Syntax Description ... 566
■ Example .. 568

565

Structured Mode Syntax

IF SELECTION [NOT UNIQUE [IN [FIELDS]]] operand1

[THEN] statement

[ELSE statement]

END-IF

Reporting Mode Syntax

IF SELECTION [NOT UNIQUE [IN [FIELDS]]] operand1

statement
[THEN]

DO statement DOEND

statement
ELSE

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE FOR | DECIDE ON | IF

Belongs to Function Group: Processing of Logical Conditions

Function

The IF SELECTION statement is used to verify that in a sequence of alphanumeric fields one and
only one contains a value.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesCLUAASoperand1

Syntax Element Description:

Statements566

IF SELECTION

DescriptionSyntax Element

Selection Field(s):operand1

As operand1 you specify the fields which are to be checked.

If you specify an attribute control variable (Format C), it is considered to contain
a value if its status has been changed to MODIFIED.

Note: To check if a specific attribute control variable has been assigned the status
MODIFIED, use theMODIFIED option of, for example, an IF statement. This enables
you to check that exactly one field was modified.

THEN Clause:THEN statement ...

The statement(s) specified in the THEN clause will be executed if one of the
following conditions is true:

■ None of the fields specified in operand1 contains a value.
■ More than one of the fields specified in operand1 contains a value.

This statement is generally used to verify that a terminal user has entered only
one function in response to a map displayed via an INPUT statement.

Note: If no action is to be performed if one of the conditions is met, you specify
the statement IGNORE in the THEN clause.

ELSE Clause:ELSE statement ...

In the ELSE clause, you specify the statement(s) to be executed if exactly one field
contains a value.

End of IF SELECTION Statement:END-IF

In structured mode, the Natural reserved word END-IFmust be used to end the
IF SELECTION statement.

statement ...
DO statement ...
DOEND

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the clauses and the
IF SELECTION statement. If you specify only a single statement, you can omit
the DO ... DOEND statements. With respect to good coding practice, this is not
recommended.

567Statements

IF SELECTION

Example

** Example 'IFSEL': IF SELECTION
**
DEFINE DATA LOCAL
1 #A (A1)
1 #B (A1)
END-DEFINE
*
INPUT 'Select one function:' //

9X 'Function A:' #A
9X 'Function B:' #B

*
IF SELECTION NOT UNIQUE #A #B

REINPUT 'Please enter one function only.'
END-IF
*
IF #A NE ' '

WRITE 'Function A selected.'
END-IF
IF #B NE ' '

WRITE 'Function B selected.'
END-IF
*
END

Output of Program IFSEL:

Select one function:

Function A: Function B:

After selecting and confirming function A:

Page 1 05-01-17 11:04:07

Function A selected.

Statements568

IF SELECTION

81 IGNORE

■ Function .. 570
■ Example .. 570

569

IGNORE

Function

The IGNORE statement is an “empty” statement which itself does not perform any function.

During the development phase of an application, you can insert IGNORE temporarily within state-
ment blocks in which one or more statements are required, but which you intend to code later (for
example, within AT BREAK or AT START OF DATA / AT END OF DATA). This allows you to continue
programming in another part of the application without the as yet incomplete statement block
leading to an error.

The IGNORE statement must also be used in condition statements, such as IF or DECIDE FOR, if no
function is to be performed in the case of a condition being met.

Example

...

...
AT TOP OF PAGE

IGNORE /* top-of-page processing still to be coded
END-TOPPAGE
...
...

Statements570

IGNORE

82 INCLUDE

■ Function .. 572
■ Syntax Description ... 572
■ Examples ... 573

571

INCLUDE copycode-name [operand1] 99

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The INCLUDE statement is used to include source lines from an external object of type copycode
into another object at compilation.

The INCLUDE statement is evaluated at compilation time. The source lines of the copycode will not
be physically included in the source of the program that contains the INCLUDE statement, but they
will be included during the program compilation and thus in the resulting object module.

Caution: A source code line which contains an INCLUDE statement must not contain any
other statement.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

nonoUACoperand1

Syntax Element Description:

DescriptionSyntax Element

Copycode Name:copycode-name

As copycode-name you specify the name of the copycodewhose source is to be included.

copycode-namemay contain an ampersand (&); at compile time, this character will be
replaced by the one-character code corresponding to the current value of the Natural
systemvariable *LANGUAGE. This feature allows the use ofmultilingual copycode names.

The object you specify must be of the type copycode. The copycode must be contained
either in the same library as the program which contains the INCLUDE statement or in
the respective steplib (the default steplib is SYSTEM).

When the source of a copycode is modified, all programs using that copycode must be
compiled again to reflect the changed source in their object codes.

The source code of the copycode must consist of syntactically complete statements.

Insert Values for Dynamic Insertion:operand1

Statements572

INCLUDE

DescriptionSyntax Element

You can dynamically insert values in the copycode which is included. These values are
specified with operand1.

In the copycode, the values are referenced with the following notation:

&n&

That is, youmark the positionwhere a value is to be insertedwith &n&. n is the sequential
number of each value passedwith the INCLUDE statement. For example, &3&would refer
to the third value specified with the statement.

For every &n¬ation in the copycode youmust specify a value in the INCLUDE statement.
For example, if the copycode contains &5&, operand1must be specified at least five times.

You may write one copy code parameter (&n&) after another without blanks (that is,
&1&&2&&3&). This method is used to concatenate multiple copy code parameters to a
source.

A stringmay follow one or several copy code parameterswithout a blank (that is, &1&abc
or &1&&2&abc). This method is used to concatenate a string to multiple copy code
parameters.

Note: Because &n& is a valid part of an identifier, this notationmay not be used as a copy
code parameter substitution in other positions described above (i.e. abc&1& or
&1&abc&2&). In other words, a string may only come after copy code parameters, not
before or between.

Values that are specified in the INCLUDE statement but not referenced in the copycode
will be ignored.

Examples

■ Example 1 - INCLUDE Statement Including Copycode
■ Example 2 - INCLUDE Statement Including Copycode with Parameters
■ Example 3 - INCLUDE Statement Using Nested Copycodes

573Statements

INCLUDE

■ Example 4 - INCLUDE Statement with Concatenated Parameters in Copycode

Example 1 - INCLUDE Statement Including Copycode

Program containing the INCLUDE statement:

** Example 'INCEX1': INCLUDE (include copycode)
**
*
WRITE 'Before copycode'
*
INCLUDE INCEX1C
*
WRITE 'After copycode'
*
END

Copycode INCEX1C to be included:

** Example 'INCEX1C': INCLUDE (copycode used by INCEX1)
**
*
WRITE 'Inside copycode'

Output of Program INCEX1:

Page 1 05-01-25 16:26:36

Before copycode
Inside copycode
After copycode

Example 2 - INCLUDE Statement Including Copycode with Parameters

Program INCEX2 containing the INCLUDE statement:

** Example 'INCEX2': INCLUDE (include copycode with parameters)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
END-DEFINE
*
*
INCLUDE INCEX2C 'EMPL-VIEW' 'NAME' '''ARCHER''' '20' '''BAILLET'''
*
END

Statements574

INCLUDE

Copycode INCEX2C to be included:

** Example 'INCEX2C': INCLUDE (copycode used by INCEX2)
**
* Transferred parameters from INCEX2:
*
* &1& : EMPL-VIEW
* &2& : NAME
* &3& : 'ARCHER'
* &4& : 20
* &5& : 'BAILLET'
*
*
READ (&4&) &1& BY &2& = &3&

DISPLAY &2&
IF &2& = &5&

WRITE 5X 'LAST RECORD FOUND' &2&
STOP

END-IF
END-READ
*
* Statements above will be completed to:
*
* READ (20) EMPL-VIEW BY NAME = 'ARCHER'
* DISPLAY NAME
* IF NAME = 'BAILLET'
* WRITE 5X 'LAST RECORD FOUND' NAME
* STOP
* END-IF
* END-READ

Output of Program INCEX2:

Page 1 05-01-25 16:30:43

NAME

ARCHER
ARCONADA
ARCONADA
ARNOLD
ASTIER
ATHERTON
ATHERTON
ATHERTON
AUBERT
BACHMANN
BAECKER
BAECKER
BAGAZJA

575Statements

INCLUDE

BAILLET
LAST RECORD FOUND BAILLET

Example 3 - INCLUDE Statement Using Nested Copycodes

Program containing INCLUDE statement:

** Example 'INCEX3': INCLUDE (using nested copycodes)
**
DEFINE DATA LOCAL
1 #A (I4)
END-DEFINE
*
MOVE 123 TO #A
WRITE 'Program INCEX3 ' '=' #A
*
INCLUDE INCEX31C '#A' '5' /* source line is #A := 5
*
*
MOVE 300 TO #A
WRITE 'Program INCEX3 ' '=' #A
*
INCLUDE INCEX32C '''#A''' '''20''' /* source line is #A := 20
*
WRITE 'Program INCEX3 ' '=' #A
END

Copycode INCEX31C to be included:

** Example 'INCEX31C': INCLUDE (copycode used by INCEX3)
**
* Transferred parameters from INCEX3:
*
* &1& : #A
* &2& : 5
*
*
&1& := &2&
*
WRITE 'Copycode INCEX31C' '=' &1&

Statements576

INCLUDE

Copycode INCEX32C to be included:

** Example 'INCEX32C': INCLUDE (copycode used by INCEX3)
**
* Transferred parameters from INCEX3:
*
* &1& : '#A'
* &2& : '20'
*
*
WRITE 'Copycode INCEX32C' &1& &2&
*
INCLUDE INCEX31C &1& &2&

Output of Program INCEX3:

Page 1 05-01-25 16:35:36

Program INCEX3 #A: 123
Copycode INCEX31C #A: 5
Program INCEX3 #A: 300
Copycode INCEX32C #A 20
Copycode INCEX31C #A: 20
Program INCEX3 #A: 20

Example 4 - INCLUDE Statement with Concatenated Parameters in Copycode

Program containing INCLUDE statement:

** Example 'INCEX4': INCLUDE (with concatenated parameters in copycode)
**
DEFINE DATA LOCAL
1 #GROUP

2 ABC(A10) INIT <'1234567890'>
END-DEFINE
*
INCLUDE INCEX4C '#GROUP.' 'ABC' 'AB'
*
END

577Statements

INCLUDE

Copycode INCEX4C to be included:

** Example 'INCEX4C': INCLUDE (copycode used by INCEX4)
**
* Transferred parameters from INCEX4:
*
* &1& : #GROUP.
* &2& : ABC
* &3& : AB
*
*
WRITE '=' &2& /* 'ABC' results into ABC
WRITE '=' &1&ABC /* '#GROUP.' ABC results into #GROUP.ABC
WRITE '=' &1&&2& /* '#GROUP.' 'ABC' results into #GROUP.ABC
WRITE '=' &1&&3&C /* '#GROUP.' 'AB' C results into #GROUP.ABC

Output of Program INCEX4:

Page 1 05-01-25 16:37:59

ABC: 1234567890
ABC: 1234567890
ABC: 1234567890
ABC: 1234567890

Statements578

INCLUDE

X INPUT

The syntax is described separately. See:

■ INPUT Syntax 1 - Dynamic Screen Layout Specification
■ INPUT Syntax 2 - Using Predefined Map Layout

Related Statements: DEFINE WINDOW | REINPUT | SET WINDOW

Belongs to Function Group: Screen Generation for Interactive Processing

Function

The INPUT statement is used in interactivemode to create a formatted screen ormap for data entry.

It may also be used in conjunctionwith the Natural stack (see the STACK statement) and to provide
user data for programs being executed in batch mode.

For Natural RPC: SeeNotes on Natural Statements on the Server in theNatural RPC (Remote Procedure
Call) documentation.

Input Modes

The INPUT statement may be used in screen, forms, or keyword/delimiter mode. Screen mode is
generally used with video terminals/screens. Forms mode may be used with TTY terminals. De-
limiter mode is used with TTY terminals, and also in batch mode. The default mode is screen
mode.

You can change the input mode with the session parameter IM.

579

Screen Mode

In screen mode, execution of the INPUT statement results in the display of a screen according to
the fields and positioning notation specified. The message line of the screen is used by Natural
for error messages. The position of the message line (top or bottom of screen) may be controlled
by the terminal command %M. The terminal user may position to specific fields using the various
tabulation keys.

As Natural allows for screen window processing, the layout of the logical screen map may be
larger (theoretically 250 characters per line and 250 lines, but limited by the internal screen buffer)
than the physical screen size.

Thewindowing terminal command %Wmaybe used tomodify logical andphysicalwindowposition
and size (see the terminal command %W for details of window handling).

For input fields (AD=A or AD=M) that are not fully displayed on the physical screen, the following
rules apply:

■ Input fields whose beginning is not inside the window are always made protected.
■ Input fields which begin inside and end outside the window are only made protected if the
values they contain cannot be displayed completely in the window. Please note that in this case
it is decisive whether the value length, not the field length, exceeds the window size. Filler
characters (as specified with the profile parameter FC or session parameter AD) do not count as
part of the value.

■ Before an input field thus protected can be accessed and processed, the window size must be
adjusted so as to fully display the field or value respectively (see the terminal command %W).

Non-Screen Modes

The INPUT statement may be used for an operation on line-oriented devices or for the processing
of batch input from sequential files.

The same map layouts as defined for screen mode operation can also be processed in non-screen
mode.

Forms mode and keyword/delimiter mode are also available to process the input either by simu-
lating the screen layout in line mode or by just processing the data without any map layout.

See also:

■ Using the INPUT Statement in Non-Screen Modes
■ Using the INPUT Statement in Batch Mode
■ Processing Data from the Natural Stack

Statements580

INPUT

Entering Data in Response to an INPUT Statement

Data for an alphanumeric field must be entered left-justified. Any character, including a blank, is
meaningful. The data are assigned one character per byte to the internal field. Data entered for an
alphanumeric field are not validated.

Lower and upper case translation are controlled by the terminal commands %L and %U as well as
the attributes AD=T and AD=W.

Data for a numeric fieldmay be placed anywhere in the input field. Leading and/or trailing blanks,
leading zeros, a leading sign and one decimal point are permitted. Natural adjusts the value ac-
cording to the internal definition of the field. If SG=OFF is specified, Natural does not assume or
allocate a position for a sign position. Data for a field defined with format P must be entered in
decimal form. Natural will convert decimal to packed wherever necessary. A field containing all
blanks is interpreted as a zero value. Data for a numeric field are validated by Natural to ensure
that the value consists only of leading and/or trailing blanks, an optional leading sign, an optional
decimal point, and numeric characters. If no decimal point is entered, it is assumed to be to the
right of the value entered.

Data for a binary field must be entered for all positions (two characters per byte). Only valid
hexadecimal characters (0 - 9, A - F) may be used. A blank (H'20' in ASCII or H'40' in EBCDIC re-
spectively) is valid and is converted to binary zeros. Data for a binary field are validated by Nat-
ural for hexadecimal characters.

Data for format L fields may be entered as blank (false) or non-blank (true).

Data for format F, D, and T are entered according to the rules stated for F, D, and T constants.

Numeric Edit Mask Free Mode

Within a field element, you may format the representation of the field content with an edit mask.
The edit mask is used for two purposes:

■ to build the layout for displaying the field on the screen;
■ when a string has been modified and ENTER has been pressed, to extract the field data from the
string entered.

The advantage of improving the format of the field data displayedwith additional insert characters
may actually be a disadvantage, because a new data value entered has to perfectly match the
format of the edit mask.

581Statements

INPUT

Example:

SET GLOBALS ID=; DC=,
RESET N (N7,3)
INPUT N (AD=M EM=Z'.'ZZZ'.'ZZZ,999EUR)
END

leads to an input error if entered as:must be entered as:Input valueis displayed as:Output value

1,000EUR1,000EUR0 1
1EUR
01,000EUR

1.234.567,000EUR12345671.234,000EUR1234 1234567
1.234.567
1.234.567EUR

1,2341,234EUR1,234,123EUR0,123

Another option for entering numeric fields with the edit mask is to use an alternative INPUTmode,
which is called the edit mask free mode. When activated (either at session startup with the profile
parameter EMFM or in a running Natural session via the terminal command %FM+), all or some of
the edit mask insert characters may be left out from input.

However, when a contiguous string of insertion characters appears in the edit mask (like EUR in
the example below), you may only supply or leave out the string completely. The number of op-
tional or mandatory digits (edit-mask character Z and 9) to be supplied is not affected.

Example with Edit Mask Free Mode activated:

SET GLOBALS ID=; DC=,
SET CONTROL 'FM+' /* activate numeric Edit Mask Free Mode
RESET N (N7,3)
INPUT N (AD=M EM=Z'.'ZZZ'.'ZZZ,999EUR)
END

leads to an error if entered as:can be entered as:Input value

1EUR1 1
1,0
001
1,00EUR
0.001
1,EUR

1.234.567EUR1234567 1234567
1.234.567
1234.567
1234567,0
1.234.567,0
1.234.567,EUR

Statements582

INPUT

leads to an error if entered as:can be entered as:Input value

1.234.567,0EUR
1.234.567,000EUR

1,234EU1,234 1,234
1,234EUR
001,234
0.001,234EUR
00001,234EUR

Note: The edit mask free mode applies only for INPUT, but is ignored in a MOVE EDITED

statement.

SB - Selection Box

Selection boxes in an INPUT statement are available on mainframe computers only. On Windows,
selection boxesmay be defined in themap editor only. OnLinux, selection boxes cannot be defined
and are ignored, if they are imported from a Windows or mainframe environment.

Selection boxes can be attached to input fields. They are a comfortable alternative to help routines
attached to fields, since you can code a selection box direct in your program. You do not need an
extra program as with help routines.

For more information, see the session parameter SB in the Parameter Reference.

Error Correction

If the value entered in an input field does not correspond to the format or edit mask of the field,
Natural displays an errormessage (without terminating the program execution) and positions the
cursor in the field in error. The usermay then enter a valid value, whereupon processing continues.

Split-Screen Feature

In general, each INPUT statement generates a new page (or terminal screen) of output. Any INPUT
statement which is specified within an AT END OF PAGE statement will not produce a new screen.
This feature allows for the creation of a split screen where the upper portion of the screen may be
used to display multiple lines and the lower portion can be used to create an input map for com-
munication. The profile parameter PS (page size) should be used, either in a SET GLOBALS or FORMAT
statement, to set the logical page size to ensure that the input map is built on the same physical
screen.

583Statements

INPUT

The first INPUT line will be placed after the last displayed line. If the NO ERASE option is used, the
first INPUT line will be placed at the top of the page.

System Variables with the INPUT Statement

For information on relevant system variables, see the section Input/Output Related System Variables
in the System Variables documentation.

Statements584

INPUT

83 INPUT Syntax 1 - Dynamic Screen Layout Specification

■ INPUT Syntax 1 - Description ... 586
■ Examples - Syntax 1 .. 595

585

This form of the INPUT statement is used to create a layout of an INPUT screen, or to create an INPUT
data layout which is to be read in batch mode from a sequential input file.

[WINDOW='window-name'] [NO ERASE]INPUT

[(statement-parameters)]

[WITH-TEXT-option]

[MARK-option]

[ALARM-option]

[(attributes)]'text'

nX

'c'(n)

nT
x/y

operand1 [(parameter)]
*IN

'-'
/ *OUT

'='
*OUTIN

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

INPUT Syntax 1 - Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesGLTDBFIPNUANGASoperand1

Syntax Element Description:

DescriptionSyntax Element

INPUTWINDOW='window-name' Option:INPUT
WINDOW='window-name'

With this option, you indicate that the INPUT statement is to be executed for the
specifiedwindow. The specifiedwindowmust be defined in a DEFINE WINDOW
statement; see Example 2 - INPUT Statement with DEFINE WINDOW
Statement.

The specified window is only active for the duration of that INPUT statement,
and is automatically deactivated when the INPUT statement has been executed.

See also the statements DEFINE WINDOW and SET WINDOW.

NO ERASE Option:NO ERASE

Statements586

INPUT Syntax 1 - Dynamic Screen Layout Specification

DescriptionSyntax Element

This option causes a screen map of an INPUT statement to be overlaid onto an
existing screen without erasing the screen contents.

Screen as used here refers to a logical screen rather than a physical screen.

All unprotected fields that existed on the screen are converted to protected
(display only) fields. The old data remain on the screen until the new layout is
displayed. If a field from the new screen content partially overlays an existing
field, the one character before the newfield and the next character in the existing
field will be replaced by a blank.

Statement Parameter(s):statement-parameters

One or more parameters, enclosed within parentheses, may be specified
immediately after the INPUT statement or an element being displayed.

For a list of parameters that can be specified with the INPUT statement, refer to
the section Statement Parameters.

Each parameter specified in this manner will override any previous parameter
specified in a GLOBALS command, SET GLOBALS or FORMAT statement. If more
than one parameter is specified, one or more blanks must be present between
each entry. An entry may not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields,
but they have no effect on text-constants. If youwould like to set field attributes
for a text-constant, they have to be set explicitly for this element.

Example:

DEFINE DATA LOCAL
1 VARI (A4) INIT <'1234'> /* Output
END-DEFINE /* Produced
* /* ---------
INPUT 'Text' VARI /* Text 1234
INPUT (AD=U) 'Text' VARI /* Text 1234
INPUT 'Text' (AD=U) VARI (AD=U) /* Text 1234
INPUT 'Text' (AD=U) VARI /* Text 1234
END

Examples of using parameters at the statement and element level are provided
below.

WITH TEXT Option:WITH TEXT-option
This option is used to provide text which is to be displayed in the message line;
seeWITH TEXT Option below.

MARK Option:MARK-option

See the sectionMARK Option below.

Alarm Option:ALARM-option

587Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

DescriptionSyntax Element

See the section Alarm Option below.

Field Positioning, Text Specification, Attribute Assignment:Other syntax elements (nX,
nT, x/y, operand1, etc.)

See the section Field Positioning, Text Specification, Attribute Assignment
below.

Statement Parameters

Specification (S = at statement level, E = at element
level)

Parameters that can be specified with the INPUT statement

SEAttribute DefinitionAD

SEAlphanumeric Length for OutputAL

SEColor DefinitionCD

SEControl VariableCV

SEDate FormatDF

SEDisplay Length for OutputDL

SEDynamic AttributesDY

SEEdit MaskEM

EUnicode Edit MaskEMU

SEFloating Point Mantissa LengthFL

SEHelproutineHE

SEInput Prompting TextIP

SLine SizeLS

SMultiple-Value Field CountMC

SManual SkipMS

SENumeric Length for OutputNL

SPeriodic Group CountPC

SEPrint Mode *PM

SPage Size **PS

ESelection BoxSB

SESign PositionSG

SEZero PrintingZP

* The PM session parameter may not be specified for text constants.

**The PS session parameter setting is not considered if the number of occurrences of an array exceeds
the PS value.

The individual session parameters are described in the Parameter Reference.

Statements588

INPUT Syntax 1 - Dynamic Screen Layout Specification

WITH TEXT Option

[(attributes)][,operand3] 7[WITH] TEXT * operand1
operand2

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesB*IPNSCoperand1

yesyesASCoperand2

yesyesLTDBFIPNASCoperand3

* Format B of operand1may be used only with a length of less than or equal to 4.

WITH TEXT is used to provide text which is to be displayed in the message line. This is usually a
message indicating what action should be taken to process the screen or to correct an error.

Syntax Element Description:

DescriptionSyntax Element

Message Text Number:operand1

operand1 represents the number of a message text that is to be retrieved from a Natural
message file.

You can retrieve either user-defined messages or Natural system messages:

■ If you specify a positive value of up to four digits (for example: 954), you will retrieve
user-defined messages.

■ If you specify a negative value of up to four digits (for example: -954), you will retrieve
Natural system messages.

See also Example 4 - WITH TEXT Options in the description of the REINPUT statement.

Message Text:operand2

operand2 represents the message to be placed in the message line.

See also Example 4 - WITH TEXT Options in the description of the REINPUT statement.

Output Attributes:attributes

It is possible to assign various output attributes for operand1/2. These attributes and the
syntax that may be used are described in the sectionOutput Attributes below.

Dynamic Replacement of Message Text:operand3

operand3 represents a numeric or text constant or the name of a variable.

589Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

DescriptionSyntax Element

The values provided are used to replace parts of a message text that are either specified
with operand1 or operand2.

The notation :n: is used within the message text as a reference to operand3 contents,
where n represents the operand3 occurrence (1 - 7).

See also Example 4 - WITH TEXT Options in the description of the REINPUT statement.

Note: Multiple specifications of operand3must be separated from each other by a comma.
If the comma is used as a decimal character (as defined with the session parameter DC) and
numeric constants are specified as operand3, put blanks before and after the comma so
that it cannot bemisinterpreted as a decimal character. Alternatively, multiple specifications
of operand3 can be separated by the input delimiter character (as defined with the session
parameter ID); however, this is not possible in the case of ID=/ (slash), because the slash
has a different meaning in the INPUT statement syntax.

Leading zeros or trailing blanks will be removed from the field value before it is displayed
in a message.

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

AD=ad-value
CD=cd-value
PM=pm-value

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-valuewithout preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IREwill be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-value
or ad-valuewith a value preceded by CD= or AD=.

Statements590

INPUT Syntax 1 - Dynamic Screen Layout Specification

MARK Option

With the MARK option, you can cause the cursor to be placed at any non-protected field on screen.
In addition, you can specify the position of the cursor within that field. By default, that is, when
the MARK option is omitted, the cursor is placed at the beginning of the first non-protected field.

MARK [POSITION operand4 [IN]] [FIELD] operand1
*fieldname

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesIPNSCoperand4

yesyesIPNASCoperand1

Syntax Element Description:

DescriptionSyntax Element

Field Reference Number:operand1

operand1 specifies the number of the field where the cursor is to be positioned in.

Each field attribute AD=A or AD=M (that is, non-protected field) specified in an INPUT statement
is assigned a field reference number, beginning with 1.

Field Name for Referencing:*fieldname

Instead of the field reference number, the field namemay be used to position to a field, using
the *fieldname notation.

Cursor Position within Referenced Field:operand4

With MARK POSITION, you can have the cursor placed at a specific position - as specified
with operand4 - within a field specified with operand1 or *fieldname.

operand4must not contain decimal digits.

Examples:

MARK #NUMBER /* Field number
MARK 3 /* Third map field
MARK *#FIELD1 /* Map field
MARK POSITION 3 IN #NUMBER /* Third character in field number

See also Example 3 - INPUT Statement with MARK POSITIONOption at the end of this section.

591Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

ALARM Option

This option causes the sound alarm feature of the terminal to be activatedwhen the INPUT statement
is executed. The appropriate hardware must be available to be able to use this feature.

[AND] [SOUND] ALARM

Default Prompting Text

Unless the session parameter IP (input prompting) is set to IP=OFF, the field name of the field
used in an INPUT statement will be displayed preceding the field value (forms mode) or as a
prompting keyword to select the field (keyword/delimiter mode). This default field name may be
overridden by specifying either a 'text' element (which replaces the default name) or '-' (which
suppresses the display of the default field name) immediately preceding the field name.

Field Positioning, Text Specification, Attribute Assignment

Several notations are available for field positioning, attribute assignment, and text creation.

Syntax Element Description:

DescriptionSyntax Element

Insert Option:nX

This option causes n spaces to be inserted between fields.

Tabulator Option:nT

This option causes positioning (tabulation) to print position n.

Positioning Option:x/y

Places the next element on line x, beginning in column y. ymust not be zero. Backward
positioning in the same line is not permitted.

Write Protection:'text'

Causes text to be displayed write protected; see also Text Notation, Defining a Text to Be
Used with a Statement.

Character Repetition:'c' (n)

Identical to 'text', except that the character c is displayed n times. nmust be 1 - 132;
see also Text Notation, Defining a Character to Be Displayed n Times before a Field Value.

Display Attributes:attributes

Attributes to be used for display. See Attributes below.

Minus Sign:'-'

When placed before a field, '-' suppresses the generation of a field name as prompting
text.

Statements592

INPUT Syntax 1 - Dynamic Screen Layout Specification

DescriptionSyntax Element

Note: Any text string before a field will replace the field name as prompting text.

Equal Sign:'='

When placed before a field, '=' results in the display of the field heading followed by the
field contents.

Slash Sign:'/'

When placed between fields or text elements, '/' causes positioning to the beginning of
the next print line.

The contents of fields may be specified for input, output only, and output for modification
using the attribute settings AD=A, AD=O, and AD=M respectively. The default is AD=A. All
fields specified with AD=A (input only) or AD=M (output for modification) will create
unprotected fields on the screen. A value for such a field may be entered by the user. For
TTY devices, output for modification fields will occupy twice the size of the field (one for
output, one for input) so that a new value may be entered. An input field (with AD=A or
AD=M) specified as non-displayable will always start on a new line on a TTY device.

Example:

INPUT #A (AD=A) #B (AD=O) #C (AD=M)

#A is an input field which is unprotected, i.e., a value is to be entered for the field.

#B is a field which is to be displayed write-protected, that is, no value may be entered for
the field.

#C is a field whose current value is to be displayed, and the value may be modified by
entering a new value for the field.

Field Attribute Definition:*IN, *OUT
and *OUTIN

Equivalent to the attributes AD=A, AD=O, AD=M respectively.

Note: If a non-modifiable system variable is used in an INPUT statement, the value will
be displayed as an output-only field AD=O or *OUT attribute.

Field(s) to be Used:operand1

operand1 represents the field to be used. Database fields or user-defined variables may
be specified.

Natural directly maps the content of each field from the data area to the INPUT statement,
no move operation is necessary.

When the content of a database field is modified as a result of INPUT processing, only the
value as contained in the data area is modified. Appropriate database UPDATE / STORE
statements must be used to change the content of the database.

When the name of a group of database fields is referenced in an INPUT statement, all fields
belonging to that group will be individually used as input fields.

593Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

DescriptionSyntax Element

When reference is made to a range of occurrences within an array, all occurrences are
individually processed as input fields, but no prompting text will be created for each
individual occurrence, only for the first one.

Onmainframe computers, arrayswith ranges that allow to vary the number of occurrences
at execution time may not be specified.

Parameter(s):parameter(s)

One ormore parameters, enclosedwithin parentheses,may be specified immediately after
operand1 (see table and example below).

Each parameter specified will override any previous parameter specified in a GLOBALS
command, SET GLOBALS (in Reporting Mode) or FORMAT statement. If more than one
parameter is specified, they must be separated by one or more blanks from one another.
Each parameter specification must not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields, but they
have no effect on text constants. If you would like to set field attributes for a text-constant,
they have to be set explicitly for this element.

For information on the individual parameters, see the table in the section Statement
Parameters.

Note: The session parameter EMwill be referenced dynamically in the DDM if an edit
mask is defined for a database field. Edit masks may be specified for output and input
fields.When an editmask is defined for an input field, the data for the fieldmust be entered
according to the edit mask specification.

Attributes

The following attributes may be used:

BLB

CGRC

DNED

I[PM=]PI[CD=]I[AD=]

NREN

TUU

YEV

321

1. Display attributes; see the session parameter AD (in the Parameter Reference).

2. Color attributes; see the session parameter CD (in the Parameter Reference).

3. Print mode attributes; see the session parameter PM (in the Parameter Reference).

Statements594

INPUT Syntax 1 - Dynamic Screen Layout Specification

Examples - Syntax 1

■ Example 1 - INPUT Statement
■ Example 2 - INPUT Statement with DEFINE WINDOW Statement
■ Example 3 - INPUT Statement with MARK POSITION Option

Example 1 - INPUT Statement

** Example 'IPTEX1': INPUT
**
DEFINE DATA LOCAL
1 #FNC (A1)
END-DEFINE
*
INPUT 10X 'SELECTION MENU FOR EMPLOYEES SYSTEM' /

10X '-' (35) //
10X 'ADD (A)' /
10X 'UPDATE (U)' /
10X 'DELETE (D)' /
10X 'STOP (.)' //
10X 'PLEASE ENTER FUNCTION: ' #FNC

*
DECIDE ON EVERY VALUE OF #FNC

VALUE 'A' /* invoke the object containing the add function here
WRITE 'Add function selected.'

VALUE 'U' /* invoke the object containing the update function here
WRITE 'Update function selected.'

VALUE 'D' /* invoke the object containing the delete function here
WRITE 'Delete function selected.'

VALUE '.'
STOP

NONE
REINPUT 'Please enter a valid function.' MARK *#FNC

END-DECIDE
*
END

Output of Program IPTEX1:

SELECTION MENU FOR EMPLOYEES SYSTEM

ADD (A)
UPDATE (U)
DELETE (D)
STOP (.)

PLEASE ENTER FUNCTION:

595Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

Example 2 - INPUT Statement with DEFINE WINDOW Statement

** Example 'INPEX1': INPUT (with DEFINE WINDOW statement)
**
DEFINE DATA LOCAL
1 #STRING (A15)
END-DEFINE
*
DEFINE WINDOW WIND1

SIZE 10 * 40
BASE 5 / 10
FRAMED ON POSITION TEXT

*
INPUT WINDOW='WIND1'

'PLEASE ENTER HERE:' / #STRING
*
END

Output of Program INPEX1:

+----------------------------------Top+
! PLEASE ENTER HERE: !
! #STRING !
! !
! !
! !
! !
! !
! !
+-------------------------------Bottom+

Example 3 - INPUT Statement with MARK POSITION Option

** Example 'INPEX2': INPUT (with POSITION)
**
DEFINE DATA LOCAL
1 #START (A30)
END-DEFINE
*
ASSIGN #START = 'EXAM_'
*
INPUT (AD=M) MARK POSITION 5 IN *#START

/ 'PLEASE COMPLETE START VALUE FOR SEARCH'
/ 5X #START

END

Statements596

INPUT Syntax 1 - Dynamic Screen Layout Specification

Output of Program INPEX2:

PLEASE COMPLETE START VALUE FOR SEARCH
#START EXAM[]

597Statements

INPUT Syntax 1 - Dynamic Screen Layout Specification

598

84 INPUT Syntax 2 - Using Predefined Map Layout

■ INPUT USING MAP without Parameter List .. 600
■ INPUT Fields Defined in the Program .. 601
■ INPUT Syntax 2 - Description ... 601
■ Using the INPUT Statement in Non-Screen Modes ... 602
■ Processing Data from the Natural Stack ... 605
■ Using the INPUT Statement in Batch Mode ... 605

599

This form of the INPUT statement is used to perform input processing using a map layout that has
been created using the Natural map editor.

Map layouts can be used in two ways:

■ the program does not provide a parameter list;
■ the program does provide a parameter list (operand1).

INPUT [WINDOW='window-name'] [WITH-TEXT-option]

[MARK-option]

[ALARM-option]

[USING] MAP map-name [NO ERASE]

operand1

NO PARAMETER

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

INPUT USING MAP without Parameter List

The following requirements must be met when INPUT USING MAP is used without parameter list:

■ The map-namemust be specified as an alphanumeric constant (up to 8 characters).
■ The map used in this manner must have been created prior to the compilation of the program
which references the map.

■ The names of the fields to be processed are taken dynamically from the map source definition
at compilation time. The field names used in both program and map must be identical.

■ All fields to be referenced in the INPUT statement must be accessible at that point.
■ In structuredmode, fieldsmust have been previously defined (database fieldsmust be properly
referenced to processing loops or views).

■ In reporting mode, user-defined variables may be newly defined in the map.
■ When themap layout is changed, the programs using themapneed not be recataloged.However,
when array structures or names, formats/lengths of fields are changed, or fields are added/deleted
in the map, the programs using the map must be recataloged.

■ The map source must be available at program compilation; otherwise the INPUT USING MAP
statement cannot be compiled.

Note: If you wish to compile the program even if the map is not yet available, specify NO

PARAMETER: the INPUT USING MAP can then be compiled even if themap is not yet available.

Statements600

INPUT Syntax 2 - Using Predefined Map Layout

INPUT Fields Defined in the Program

By specifying the names of the fields to be processed within the program (operand1), it is possible
to have the names of the fields in the program differ from the names of the fields in the map.

The sequence of fields in the program must match the map sequence. Please note that the map
editor sorts the fields as specified in themap in alphabetical order by field name. Formore inform-
ation, see the map editor description in your Natural Editors documentation.

When the layout of the map is changed, the program using the map need not be recataloged.
However, when field names, field formats/lengths, or array structures in the map are changed or
fields are added or deleted in the map, the program must be recataloged.

A check is made at execution time to ensure that the format and length of the fields as specified
in the program match the fields as specified in the map. If both layouts do not agree, an error
message is produced.

INPUT Syntax 2 - Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesUASCmap-name

yesyesCLTDBFIPNUAASoperand1

Syntax Element Description:

DescriptionSyntax Element

INPUTWINDOW='window-name' Option:INPUT
WINDOW='window-name'

This option is described under Syntax 1 of the INPUT statement.

WITH TEXT/MARK/ALARMOptions:WITH
TEXT/MARK/ALARM-options

These options are described under Syntax 1 of the INPUT statement; see
WITH TEXT Option,MARK Option, ALARMOption.

USINGMAP Clause:USING MAP map-name

USING MAP invokes a map definition which has been previously stored in
a Natural system file using the map editor.

601Statements

INPUT Syntax 2 - Using Predefined Map Layout

DescriptionSyntax Element

The map-namemay be a 1- to 8-character alphanumeric constant or
user-defined variable. If a variable is used, it must have been previously
defined. The map name may contain an ampersand (&); at execution time,
this character will be replaced by the one-character code corresponding to
the current value of the Natural system variable *LANGUAGE. This feature
allows the use of multi-lingual maps.

The execution of the INPUT statement causes the corresponding map to
replace the current contents of the screen, unless the NO ERASE option is
specified, in which case the map will overlay the current contents of the
screen.

NO ERASE Option:NO ERASE

This option is described under Syntax 1 of the INPUT statement; see NO
ERASE.

Field Specification:operand1

A list of database fields and/or user-defined variables. The fieldsmust agree
in number, sequence, format, length and (for arrays) number of occurrences
with the fields in the referenced map; otherwise, an error occurs.

When the content of a database field is modified as a result of INPUT
processing, only the value as contained in the data area is modified.
Appropriate database UPDATE / STORE statements must be used to change
the content of the database.

Using the INPUT Statement in Non-Screen Modes

You can change the input mode with the session parameter IM.

Forms Mode

In forms mode (profile/session parameter IM=F), Natural will display all output text of the map
layout on the terminal field by field according to the positioning parameters. This permits the user
to enter data on a field by field basis. When all data are entered, the hardcopy output is produced
exactly as it would have appeared on the screen.

In forms mode, entering %R permits the operator to retype the entire form in case of an error. The
input is processed as in the first execution of the INPUT statement.

Statements602

INPUT Syntax 2 - Using Predefined Map Layout

Keyword/Delimiter Mode

In keyword/delimitermode (profile/session parameter IM=D), data can be entered using keywords
or positional input values.

General Validation Rules
Data entered in keyword/delimiter mode are validated as for screen mode. An error message
will be returned if an attempt is made to enter more characters than defined for a field.

If the INPUT statement is to be processed in keyword/delimiter mode on a buffered (3270-type)
terminal or a workstation, all data to be assigned to one INPUT statement must be entered on
one screen. ENTER is only to be used when all data to the INPUT statement have been entered.

Keyword Input
Using keyword input, the terminal operator may enter data for the individual fields using the
prompting text that, in formsmode, would have been displayed before the value as a keyword
to identify the field. The keywordmust be followed by the input assign character (IAparameter),
followed immediately by the data. Any spaces following the assign character are taken as data
up to the delimiter character (ID parameter). A delimiter character is not required after the last
data element. Keyword data for the different fields may be entered in any order separated by
the delimiter character. If the operator types in a keyword which is not defined in the INPUT
statement, an error message will be returned. Data need not be entered for all input fields.
Fields for which no data are entered are set to blank for alphanumeric fields and zero for nu-
meric and hexadecimal fields.

A keyword and the corresponding input fieldmust be on the same logical line. If their aggregate
length exceeds the line size, adjust the line size (LS parameter) accordingly so that keyword
and field fit onto one line.

Indexed Input
Using indexed input, the terminal operatormay enter data for the individual input fields using
their ordinal values prefixed with a percent character (%). This index specification must be
followed by the input assign character (IA parameter), followed immediately by the data.

Indexed data for the different fields may be entered in any order separated by the delimiter
character (ID parameter). If the specified ordinal value does not correspond to that of any ex-
isting input field, an error message will be returned. Data need not be entered for all input
fields. Fields for which no data are entered are set to blank for alphanumeric fields and zero
for numeric and hexadecimal fields.

Positional Input
Using positional value input, the terminal operator enters only data for all input fields separated
by the currently defined input delimiter character (ID parameter). The sequence of fields for
input must correspond to the sequence of the fields in the INPUT statement.

The user may switch from positional to keyword input by entering a number of values in po-
sitional input separated by the delimiter character and then switching to keyword mode for
selected fields by specifying keywords in front of the values.

603Statements

INPUT Syntax 2 - Using Predefined Map Layout

After a keyword has been used to position to a field, any non-keyword input following the
keywordwill be processed as positional input to be assigned to fields following the previously
selected field in the INPUT statement.

Example of Keyword, Indexed and Positional Input
If you execute the following program

***** Program PGM1 *****
DEFINE DATA LOCAL
1 #F1 (A10)
1 #F2 (A10)
1 #F3 (A10)
END-DEFINE
INPUT (IP=ON) / 'FLD1' #F1

/ 'FLD2' #F2
/ 'FLD3' #F3

WRITE 'FLD1' #F1
/ 'FLD2' #F2
/ 'FLD3' #F3

END

from the command line with any of the following commands, assuming the comma (,) is used
as the delimiter character

keyword inputPGM1 FLD1=AA,FLD3=CC

indexed inputPGM1 %1=AA,%3=CC

positional inputPGM1 AA,,CC

positional input combined with keywordPGM1 AA,FLD3=CC

positional input combined with keywordPGM1 AA,FLD2=,CC

combined positional and indexed inputPGM1 AA,%3=CC

you will always receive the following output

FLD1 AA
FLD2
FLD3 CC

Statements604

INPUT Syntax 2 - Using Predefined Map Layout

Processing Data from the Natural Stack

Data elements that have been placed in the Natural stack via a FETCH, RUN or STACK statement will
be processed by the next INPUT statement encountered for execution.

The INPUT statement will process the data in keyword/delimiter mode as described above.

If data elements are not available to fill all input fields, fieldswill be filledwith blank/zero depend-
ing on the field format. If more data elements are specified than input fields exist, the remaining
data are ignored.

When a field is filled with data from the stack, the field attributes do not apply to the data.

The Natural system variable *DATAmay be referenced to determine the number of data elements
currently available in the Natural stack.

Using the INPUT Statement in Batch Mode

The following topics are covered below:

■ In Batch Forms Mode
■ In Batch Keyword/Delimiter Mode

In Batch Forms Mode

A data record is read for each line containing one or more AD=A and/or AD=M fields, and the data
contained in the record are assigned to the appropriate field (or fields).

Input data fields are assumed to be contiguous. Unless the delimiter character is used, input data
must be entered in the exact length according to the internal definition of the field. For numeric
fields, space must be allowed for a sign (if SG=ON) and decimal point when appropriate.

Datamay optionally be entered using the delimiter character to separate the values of the individual
fields. In this case, data need not be entered in the exact number of positions according to the in-
ternal definition but are processed from left to right beginning in position 1. The rules for data
entry are the same as described under Entering Data in Response to an INPUT Statement. In ad-
dition, the assign character may be used to skip a field.

605Statements

INPUT Syntax 2 - Using Predefined Map Layout

In Batch Keyword/Delimiter Mode

Keyword/delimiter mode, when used in batch mode, functions the same as keyword/delimiter
mode as used for stack input.

Statements606

INPUT Syntax 2 - Using Predefined Map Layout

XI
■ 85 INSERT (SQL) .. 609
■ 86 INTERFACE ... 615
■ 87 LIMIT .. 623
■ 88 LOOP ... 627
■ 89 METHOD ... 631
■ 90 MOVE ... 637
■ 91 MOVE INDEXED ... 659
■ 92 MULTIPLY ... 661
■ 93 NEWPAGE ... 667
■ 94 OBTAIN ... 673
■ 95 ON ERROR .. 681
■ 96 OPEN CONVERSATION ... 687
■ 97 OPTIONS .. 691

607

608

85 INSERT (SQL)

■ Function .. 610
■ Syntax Description ... 610

609

Common Set Syntax:

INSERT INTO table-name
(*) [VALUES-clause]
[(column-list)] VALUE-LIST

Extended Set Syntax:

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The SQL INSERT statement is used to add one or more new rows to a table.

Syntax Description

DescriptionSyntax Element

INTO Clause:INTO table-name

In the INTO clause, the table is specified into which the new rows are to be inserted.

See further information on table-name.

Column List:column-list

Syntax:

column-name...

In the column-list, one or more column-names can be specified, which are to be
supplied with values in the row currently inserted.

If a column-list is specified, the sequence of the columns must match with the
sequence of the values either specified in the insert-item-list or contained in the
specified view (see below).

If the column-list is omitted, the values in the insert-item-list or in the
specified view are inserted according to an implicit list of all the columns in the order
they exist in the table.

Values Clause:VALUES-clause

With the VALUES clause, you insert a single row into the table.

See VALUES Clause below.

Statements610

INSERT (SQL)

VALUES Clause

With the VALUES clause, you insert a single row into the table. Depending on whether an asterisk
(*) or a column-list has been specified, the VALUES clause can take one of the following forms:

VALUES Clause with Preceding Asterisk Notation

VALUES (VIEW view-name)

If asterisk notation is specified, a viewmust be specified in the VALUES clause.With the field values
of this view, a new row is inserted into the specified table using the field names of the view as
column names of the row.

VALUES Clause with Preceding Column List

)VALUES (VIEW view-name
insert-item-list

If a column-list is specified and a view is referenced in the VALUES clause, the number of items
specified in the column list must correspond to the number of fields defined in the view within
the VALUE-LIST.

If no column-list is specified, the fields defined in the view are inserted according to an implicit
list of all the columns in the order they exist in the specified table.

VALUE-LIST

Common Set Syntax:

VALUES
(VIEW view-name)
(insert-item-list)

Extended Set Syntax:

VALUES
(VIEW view-name)
(insert-item-list)

WITHselect-expression
RR
RS
CS

Syntax Description:

611Statements

INSERT (SQL)

DescriptionSyntax Element

View Name:VIEW view-name

With the field values of this view, a new row is inserted into the specified table
using the field names of the view as column names of the row.

INSERT Single Row:insert-item-list

In the insert-item-list, you can specify one or more values to be assigned to
the columns specified in the column-list. The sequence of the specified values
must match the sequence of the columns.

If no column-list is specified, the values in the insert-item-list are inserted
according to an implicit list of all the columns in the order they exist in the table.

The values to be specified in the insert-item-list can be constants,
parameters, special-registers or NULL.

See the section Basic Syntactical Items for information on view-name, constant and
parameter. See also the information on special-register.

If the value NULL has been assigned, this means that the addressed field is to receive
no value (not even the value 0 or “blank”).

Example - INSERT Single Row:

...
INSERT INTO SQL-PERSONNEL (NAME,AGE)

VALUES ('ADKINSON',35)
...

INSERTMultiple Rows:

This clause belongs to the SQL Extended Set.

With a select-expression, you insert multiple rows into a table. The
select-expression is evaluated and each row of the result table is treated as if

select-expression

the values in this row were specified as values in a VALUES Clause of a single-row
INSERT operation.

For further information, see Select Expressions.

Example - Insert Multiple Rows:

Statements612

INSERT (SQL)

DescriptionSyntax Element

...
INSERT INTO SQL-RETIREE (NAME,AGE,SEX)

SELECT LASTNAME, AGE, SEX
FROM SQL-EMPLOYEES
WHERE AGE > 60

...

Note: The number of rows that have actually been inserted can be ascertained by
using the system variable *ROWCOUNT.

WITH Isolation Level Clause:WITH RR/RS/CS

This clause belongs to the SQL Extended Set.

This clause allows the explicit specification of the isolation level usedwhen locating
the rows to be inserted. It is only valid against Db2 databases. When used against
other databases, it will cause runtime errors.

Cursor StabilityCS

Repeatable ReadRR

Read StabilityRS

613Statements

INSERT (SQL)

614

86 INTERFACE

■ Function .. 616
■ Syntax Description ... 617

615

INTERFACE interface-name

[EXTERNAL]

[ID interface-GUID]

[property-definition]

[method-definition]

END-INTERFACE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CREATE OBJECT | DEFINE CLASS | INTERFACE | METHOD | PROPERTY | SEND
METHOD

Belongs to Function Group: Component Based Programming

Function

In component-based programming, an interface is a collection of methods and properties that
belong together semantically and represent a certain feature of a class.

You can define one or several interfaces for a class. Defining several interfaces allows you to
structure/group methods according to what they do, for example, you put all methods that deal
with persistency (load, store, update) in one interface and put other methods in other interfaces.

The INTERFACE statement is used to define an interface. It may only be used in a Natural class
module and can be defined as follows:

■ within a DEFINE CLASS statement. This form is usedwhen the interface is only to be implemented
in one class, or

■ in a copycodewhich is included by the INTERFACE USING clause of the DEFINE CLASS statement.
This form is used when the interface is to be implemented in more than one class.

The properties andmethods that are associatedwith the interface are defined by the property and
method definitions.

Statements616

INTERFACE

Syntax Description

DescriptionSyntax Element

Interface Name:interface-name

This is the name to be assigned to the interface. The interface name can be up to
a maximum of 32 characters long and must conform to the Natural naming
conventions for user-defined variables; see Naming Conventions for User-Defined
Variables in the Using Natural documentation. It must be unique per class and
different from the class name.

If the interface is planned to be used by clients written in different programming
languages, the interface name should be chosen in a way that it does not conflict
with the naming conventions that apply in these languages.

EXTERNAL Clause:EXTERNAL

This clause is used to indicate that this interface is implemented by the class, but
which is originally defined in a different class. The clause is only relevant if the
class is to be registered with DCOM. Interfaces with the EXTERNAL clause are
ignored when the class is registered with DCOM. It is assumed that the interface
is registered by the class that originally defines it.

ID Clause:ID interface-GUID

This clause is used to assign a globally unique ID to the interface. The
interface-GUID is the name of a GUID defined in a data area that is included
by the LOCAL clause. The interface-GUID is a (named) alpha constant. AGUID
must be assigned to an interface if the class is to be registered with DCOM.

Property Definition:property-definition

The property definition is used to define a property of the interface. SeeProperty
Definition below.

Method Definition:method-definition

The method definition is used to define a method for the interface. SeeMethod
Definition below.

End of INTERFACE Statement:END-INTERFACE

TheNatural reservedword END-INTERFACEmust be used to end the INTERFACE
statement.

617Statements

INTERFACE

Property Definition

The property definition is used to define a property of the interface.

PROPERTY property-name

[(format-length/array-definition)]

[ID dispatch-ID]

[READONLY]

[IS operand]

END-PROPERTY

Properties are attributes of an object that can be accessed by clients. An object that represents an
employee might for example have a Name property and a Department property. Retrieving or
changing the name or department of the employee by accessing her Name or Department property
is much simpler for a client than calling one method that returns the value and another method
that changes the value.

Each property needs a variable in the object data area of the class to store its value - this is referred
to as the object data variable. The property definition is used to make this variable accessible to
clients. The property definition defines the name and format of the property and connects it to
the object data variable. In the simplest case, the property takes the name and format of the object
data variable itself. It is also possible to override the name and format within certain limits.

Syntax Element Description:

DescriptionSyntax Element

Property Name:property-name

This is the name to be assigned to the property. The property name
can contain up to a maximum of 32 characters and must conform
to the Natural naming conventions for user variables; see Naming
Conventions for User-Defined Variables in the Using Natural
documentation.

If the property is planned to be used by clients written in different
programming languages, the property name should be chosen in
a way that it does not conflict with the naming conventions that
apply in these languages.

format-length/array-definition Option:format-length/array-definition

This option defines the format of the property as it will be seen by
clients.

If format-length/array-definition is omitted, the
format-length and array-definition will be taken from the object
data variable assigned in the IS clause.

Statements618

INTERFACE

DescriptionSyntax Element

If format-length/array-definition is specified, it must be
data transfer-compatible both to and from the format of the object
data variable specified in operand in the IS clause. In the case of
a READONLY property, the data transfer-compatibility needs to hold
only in one direction: with the object data variable as source
operand and the property as destination operand. If an
array-definition is specified, it must be equal in dimensions,
occurrences per dimension, lower bounds and upper bounds to
the array definition of the corresponding object data variable. This
is expressed by specifying an asterisk for each dimension.

ID Clause:ID dispatch-ID

The ID clause is used to assign a specific numeric identifier to a
property. This identifier (dispatch-ID) is only relevant if the class
is to be registered with DCOM.

Normally, Natural automatically assigns a dispatch ID to a
property. It is only necessary to explicitly define a specific dispatch
ID for a property if the property belongs to an interface with the
EXTERNAL clause. (This is an interface that shall be implemented
in this class, but which is originally defined in a different class.) In
this case the dispatch IDs to be used are usually dictated by the
original implementation of the interface.

The dispatch-ID is a positive, non-zero constant of format I4.

READONLY Option:READONLY

If the keyword READONLY is specified, the value of the property
can only be read and not set. The format of the object data variable
specified in operand in the IS clause must be data
transfer-compatible to the format specified in
format-length/array-definition. It does not have to be data
transfer-compatible in the inverse direction.

If the keyword READONLY is omitted, the property value can be
both read and set.

IS Clause:IS operand

The operand in the IS clause assigns an object data variable as the
place to store the property value. The assigned object data variable
may not be a group. The variable is referenced in normal operand
syntax. This means, if the object data variable is an array, it must
be referenced with index notation. Only the full index range
notation and asterisk notation is allowed.

The IS clause should not be used if the INTERFACE statement will
be included from a copycodemember and reused in several classes.
If you want to reuse the INTERFACE statement, you must assign

619Statements

INTERFACE

DescriptionSyntax Element

the object data variable in a PROPERTY statement outside the
INTERFACE statement.

If the IS clause is omitted, the property is connected to the object
data variablewith the same name as the property. If a variablewith
this name is not defined or if it is a group, a syntax error results.

End of Interface Property Definition:END-PROPERTY

The Natural reserved word END-PROPERTYmust be used to end
the interface PROPERTY definition.

Examples

Let the object data area contain the following data definitions:

1 Salary(p7.2)
1 SalaryHistory(p7.2/1:10)

Then the following property definitions are allowed:

property Salary
end-property
property Pay is Salary
end-property
property Pay(P7.2) is Salary
end-property
property Pay(N7.2) is Salary
end-property
property SalaryHistory
end-property
property OldPay is SalaryHistory(*)
end-property
property OldPay is SalaryHistory(1:10)
end-property
property OldPay(P7.2/*) is SalaryHistory(1:10)
end-property
property OldPay(N7.2/*) is SalaryHistory(*)
end-property

The following property definitions are not allowed:

Statements620

INTERFACE

/* Not data transfer-compatible. */
property Pay(L) is Salary
end-property
/* Not data transfer-compatible. */
property OldPay(L/*) is SalaryHistory(*)
end-property
/* Not data transfer-compatible. */
property OldPay(L/1:10) is SalaryHistory(1:10)
end-property
/* Assigns an array to a scalar. */
property OldPay(P7.2) is SalaryHistory(1:10)
end-property
/* Takes only a sub-array. */
property OldPay(P7.2/3:5) is SalaryHistory(*)
end-property
/* Index specification omitted in ODA variable SalaryHistory. */
property OldPay is SalaryHistory
end-property
/* Only asterisk notation allowed in property format specification. */
property OldPay(P7.2/1:10) is SalaryHistory(*)
end-property

Method Definition

The method definition is used to define a method for the interface.

METHOD method-name

[ID dispatch-ID]

[IS subprogram-name]

USING parameter-data-area
PARAMETER

data-definition

END-METHOD

Tomake the interface reusable in different classes, include the interface definition from a copycode
and define the subprogram after the interface definition with a METHOD statement. Then you can
implement the method differently in different classes.

Syntax Element Description:

DescriptionSyntax Element

Method Name:method-name

This is the name to be assigned to the method. The method name can contain a
maximumof up to 32 characters andmust conform to theNatural naming conventions;
see Naming Conventions for User-Defined Variables in the Using Natural documentation.
It must be unique per interface.

621Statements

INTERFACE

DescriptionSyntax Element

If the method is planned to be used by clients written in different programming
languages, the method name should be chosen in a way that it does not conflict with
the naming conventions that apply in these languages.

ID Clause:ID dispatch-ID

The ID clause is used to assign a specific numeric identifier to amethod. This identifier
(the so-called dispatch ID) is only relevant if the class is to be registered with DCOM.

Normally, Natural automatically assigns a dispatch ID to amethod. It is only necessary
to explicitly define a specific dispatch ID for a method if the method belongs to an
interface with the EXTERNAL clause. (This is an interface that shall be implemented in
this class, but which is originally defined in a different class.) In this case, the dispatch
IDs to be used are usually dictated by the original implementation of the interface.

The dispatch ID is a positive, non-zero constant of format I4.

IS Clause:IS
subprogram-name

This clause can be used to specify the name of the subprogram that implements the
method. The name of the subprogram consists of up to 8 characters. The default is
method-name (if the IS clause is not specified).

PARAMETER Clause:PARAMETER

The PARAMETER clause specifies the parameters of themethod, and has the same syntax
as the PARAMETER clause of the DEFINE DATA statement.

The parametersmustmatch the parameterswhich are later used in the implementation
of the subprogram. This is ensured best by using a parameter data area.

Parameters that aremarked BY VALUE in the parameter data area are input parameters
of the method.

Parameters which are not marked BY VALUE are passed “by reference” and are
input/output parameters. This is the default.

The first parameter that is marked BY VALUE RESULT is returned as the return value
for the method. If more than one parameter is marked in this way, the others will be
treated as input/output parameters.

End of Method Definition:END-METHOD

The Natural reserved word END-METHODmust be used to end the METHOD definition
for the interface.

Statements622

INTERFACE

87 LIMIT

■ Function .. 624
■ Syntax Description ... 625
■ Examples ... 625

623

LIMIT n

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION | HISTOGRAM | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The LIMIT statement is used to limit the number of iterations of a processing loop initiated with
a FIND, READ, or HISTOGRAM statement.

The limit remains in effect for all subsequent processing loops in the programuntil it is overridden
by another LIMIT statement.

The LIMIT statement does not apply to individual statements inwhich a limit is explicitly specified
(for example, FIND (n) ...).

If the limit is reached, processing stops and a message is displayed; see also the session parameter
LEwhich determines the reaction when the limit for the processing loop is exceeded.

If no LIMIT statement is specified, the default global limit defined with the Natural profile para-
meter LT during Natural installation will be used.

Record Counting

To determine whether a processing loop has reached the limit, each record read in the loop is
counted against the limit. If the processing loop has reached the limit, the following will apply:

■ A record that is rejected because of criteria specified in a FIND or READ statement WHERE clause
is not counted against the limit.

■ A record that is rejected as a result of an ACCEPT/REJECT statement is counted against the limit.

Statements624

LIMIT

Syntax Description

DescriptionSyntax Element

Limit Specification:LIMIT n

The limit nmust be specified as a numeric constant in the range from 0 - 4294967295
(leading zeros are optional).

The processing loop is not entered if the limit is set to zero.

Examples

■ Example 1 - LIMIT Statement
■ Example 2 - LIMIT Statement (Valid for Two Database Loops)

Example 1 - LIMIT Statement

** Example 'LMTEX1': LIMIT
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 CITY

END-DEFINE
*
LIMIT 4
*
READ EMPLOY-VIEW BY NAME STARTING FROM 'BAKER'

DISPLAY NOTITLE
NAME PERSONNEL-ID CITY *COUNTER

END-READ
*
END

625Statements

LIMIT

Output of Program LMTEX1:

NAME PERSONNEL CITY CNT
ID

-------------------- --------- -------------------- -----------

BAKER 20016700 OAK BROOK 1
BAKER 30008042 DERBY 2
BALBIN 60000110 BARCELONA 3
BALL 30021845 DERBY 4

Example 2 - LIMIT Statement (Valid for Two Database Loops)

** Example 'LMTEX2': LIMIT (valid for two database loops)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
END-DEFINE
*
LIMIT 3
*
FIND EMPLOY-VIEW WITH NAME > 'A'

READ EMPLOY-VIEW BY NAME STARTING FROM 'BAKER'
DISPLAY NOTITLE 'CNT(0100)' *COUNTER(0100)

'CNT(0110)' *COUNTER(0110)
END-READ

END-FIND
*
END

Output of Program LMTEX2:

CNT(0100) CNT(0110)
----------- -----------

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3

Statements626

LIMIT

88 LOOP

■ Function .. 628
■ Restriction .. 628
■ Syntax Description ... 629
■ Examples ... 629

627

[CLOSE] LOOP [(r)]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Reporting Mode Statements

Function

The LOOP statement is used to close a processing loop. It causes processing of the current pass
through the loop to be terminated and control to be returned to the beginning of the processing
loop.

When the processing loop for which the LOOP statement is issued is terminated (that is, when all
records have been processed or iterations have been performed), execution continues with the
statement after the LOOP statement.

The LOOP statement is used with the following statements: CALL FILE, CALL LOOP, FIND, FOR,
HISTOGRAM, PARSE XML, READ, READ RESULT SET (SQL), READ WORK FILE, REPEAT, SELECT (SQL),
SORT, UPLOAD PC FILE.

Database Variable References

A LOOP statement, in addition to closing a processing loop, will eliminate all field references to
FIND, FIND FIRST, FIND UNIQUE, READ and GET statements contained within the loop.

A field within a view may be referenced outside the processing loop by using the view name as
a qualifier.

Restriction

■ This statement is for reporting mode only.
■ A LOOP statementmay not be specified based on a conditional statement such as IF or AT BREAK.

Statements628

LOOP

Syntax Description

DescriptionSyntax Element

Statement Reference Notation:LOOP (r)

The LOOP statement may be specified with a statement label or reference number (notation
(r)), in which case all inner loops up to and including the loop initiated by the statement
referenced will be closed. If no statement reference is specified, the innermost active
processing loop will be closed.

Notes:

1. In reportingmode, any processing loopwhich is currently active, that is, which has not explicitly
been closed with a LOOP statement, will be closed automatically by an END statement.

2. You can omit the LOOP statement. But with respect to good coding practice, you are not recom-
mended to do so.

Examples

Example 1

FIND ...
READ ...

READ ...
LOOP (0010) /* closes all loops

Example 2

FIND ...
READ ...

READ ...
LOOP /* closes loop initiated on line 0030

LOOP /* closes loop initiated on line 0020
LOOP /* closes loop initiated on line 0010

629Statements

LOOP

630

89 METHOD

■ Function .. 632
■ Syntax Description ... 632
■ Example .. 633

631

METHOD method-name

OF [INTERFACE] interface-name

IS subprogram-name

END-METHOD

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CREATE OBJECT | DEFINE CLASS | INTERFACE | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The METHOD statement assigns a subprogram as the implementation to amethod, outside an interface
definition. It is used if the interface definition in question is included from a copycode and is to
be implemented in a class-specific way.

The METHOD statementmay only be usedwithin the DEFINE CLASS statement and after the interface
definition. The interface and method names specified must be defined in the INTERFACE clause of
the DEFINE CLASS statement.

Syntax Description

DescriptionSyntax Element

Method Name:method-name

This is the name assigned to the method.

Interface Name:OF interface-name

This is the name assigned to the interface.

IS Clause:IS subprogram-name

This clause can be used to specify the name of the subprogram that implements
the method. The name of the subprogram consists of up to 8 characters. The
default is method-name (if the IS clause is not specified).

End of Method Statement:END-METHOD

The Natural reserved word END-METHODmust be used to end the METHOD
statement.

Statements632

METHOD

Example

The following example shows how the same interface is implemented differently in two classes
and how the PROPERTY statement and the METHOD statement are used to achieve this.

The interface Measure is defined in the copycode iface-c. The classes Elephant and Mouse imple-
ment both the interface Measure. Therefore, they both include the copycode iface-c. But the
classes implement the property Height using different variables from their respective object data
areas, and they implement the method Initwith different subprograms. They use the PROPERTY
statement to assign the selected data area variable to the property and the METHOD statement to
assign the selected subprogram to the method.

Now the program prog can create objects of both classes and initialize them using the same
method Init, leaving the specifics of the initialization to the respective class implementation.

The following shows the complete contents of the Natural modules used in the example above:

633Statements

METHOD

Copycode: iface-c

interface Measure
*
property Height(p5.2)
end-property
*
property Weight(i4)
end-property
*
method Init
end-method
*
end-interface

Class: class1

define class elephant
object using class1-o
interface using iface-c
*
property Height of interface Measure is height
end-property
*
property Weight of interface Measure is weight
end-property
*
method Init of interface Measure is init1-n
end-method
*
end-class
end

LDA Object Data: class1-o

* *** Top of Data Area ***
1 HEIGHT P 5.2
1 WEIGHT I 2

* *** End of Data Area ***

Method Subprogram: init1-n

define data
object using class1-o
end-define
*
height := 17.3
weight := 120
*
end

Statements634

METHOD

Class: class2

define class mouse
object using class2-o
interface using iface-c
*
property Height of interface Measure is size
end-property
*
property Weight of interface Measure is weight
end-property
*
method Init of interface Measure is init2-n
end-method
*
end-class
end

LDA Object Data: class2-o

* *** Top of Data Area ***
1 SIZE P 3.2
1 WEIGHT I 1

* *** End of Data Area ***

Method Subprogram: init2-n

define data
object using class2-o
end-define
*
size := 1.24
weight := 2
*
end

Program: prog

define data local
1 #o handle of object
1 #height(p5.2)
1 #weight(i4)
end-define
*
create object #o of class 'Elephant'
send "Init" to #o
#height := #o.Height
#weight := #o.Weight
write #height #weight
*

635Statements

METHOD

create object #o of class 'Mouse'
send "Init" to #o
#height := #o.Height
#weight := #o.Weight
write #height #weight
*
end

Statements636

METHOD

90 MOVE

■ Function .. 638
■ Syntax 1 - MOVE ... 638
■ Syntax 2 - MOVE SUBSTRING .. 640
■ Syntax 3 - MOVE BY NAME / POSITION ... 642
■ Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2) .. 643
■ Syntax 5 - MOVE EDITED (Edit Mask Specified with operand1) .. 644
■ Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED ... 645
■ Syntax 7 - MOVE NORMALIZED .. 646
■ Syntax 8 - MOVE ENCODED ... 648
■ Syntax 9 - MOVE ALL ... 650
■ Examples ... 653

637

For an explanation of the symbols used in the syntax diagrams below, see Syntax Symbols.

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | EXAMINE | MULTIPLY | RESET | SEPARATE
| SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The MOVE statement is used tomove the value of an operand to one ormore operands (field or array).

ANatural system functionmay be used only if the MOVE statement is specified in conjunction with
an AT BREAK, AT END OF DATA or AT END OF PAGE statement.

See also the section Rules for Arithmetic Assignment in the Programming Guide.

Syntax 1 - MOVE

MOVE [ROUNDED] operand1 [(parameter)] TO operand2

For an explanation of the symbols used in the syntax diagrams below, see Syntax Symbols.

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGCLTDBFIPNUANASCoperand1

yesyesOGCLTDBFIPNUAMASoperand2

Syntax Element Description:

DescriptionSyntax Element

MOVE ROUNDED Option:MOVE
ROUNDED

This option causes operand2 to be rounded.

ROUNDED is ignored if operand2 is not numeric or if the source operand has the same or
less precision digits than the target operand.

See also Example 1 - Various Samples of MOVE Statement Usage.

Source and Target Operands:operand1

Statements638

MOVE

DescriptionSyntax Element

operand1 is the source operand whose value is moved to the target operand operand2.operand2

For the rules for data transfer and information on data conversion and transfer compatibility,
see the section Data Transfer in the Programming Guide.

If operand2 is a dynamic variable, its length may be modified by the MOVE operation. The
current length of a dynamic variable can be ascertained by using the system variable
*LENGTH. For general information on the dynamic variable, see the section Using Dynamic
and Large Variables in the Programming Guide.

A MOVE statementwithmultiple target operands is identical to the corresponding individual
MOVE statements:

MOVE #SOURCE TO #TARGET1 #TARGET2

is identical to

MOVE #SOURCE TO #TARGET1
MOVE #SOURCE TO #TARGET2

parameter Parameter Option:

parameter either specifies the session parameter PM or the session parameter DF:

Right-to-Left Display Option:

In order to support languages whose writing direction is from right to
left, you can specify PM=I so as to transfer the value of operand1 in
inverse (right-to-left) direction to operand2.

PM=I

For example, as a result of the following statements, the content of #B
would be ZYX:

MOVE 'XYZ' TO #A
MOVE #A (PM=I) TO #B

PM=I can only be specified if operand2 has alphanumeric/Unicode
format (Natural data format A or U).

Any trailing blanks in operand1will be removed , then the value is
reversed and moved to operand2. If operand1 is not of
alphanumeric/Unicode format, the value will be converted to
alphanumeric/Unicode format before it is reversed.

See also the use of PM=I in conjunction with MOVE LEFT/RIGHT
JUSTIFIED.

Date Format:DF=S|I|L

639Statements

MOVE

DescriptionSyntax Element

If operand1 is a date variable and operand2 is an
alphanumeric/Unicode field, you can specify the session parameter DF
as parameter for this date variable.

Syntax 2 - MOVE SUBSTRING

[(parameter)]MOVE
operand1
SUBSTRING (operand1,operand3,operand4)

TO
operand2
SUBSTRING (operand2,operand5,operand6)

This syntax only applies if youwant tomove only part of the field contents (a substring) of a source
and/or target operand. Otherwise, Syntax 1 applies.

For an explanation of the symbols used in the syntax diagrams below, see Syntax Symbols.

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesBUAASCoperand1

noyesBUAASoperand2

noyesB*IPNSCoperand3

noyesB*IPNSCoperand4

noyesB*IPNSCoperand5

noyesB*IPNSCoperand6

* See text.

Syntax Element Description:

DescriptionSyntax
Element

MOVE SUBSTRING:MOVE
SUBSTRING

Without the SUBSTRING option, the whole content of a field is moved.

The SUBSTRING option allows you to move only a certain part of an alphanumeric/ Unicode
or a binary field. After the field name (operand1) in the SUBSTRING clause, you specify first
the starting position (operand3) and then the length (operand4) of the field portion to be
moved.

Statements640

MOVE

DescriptionSyntax
Element

If the underlying field format of operand1 is

■ alphanumeric/Unicode (A) or binary (B), then the values supplied with operand3 or
operand4 are considered as byte numbers;

■ Unicode (U), then the values suppliedwithoperand3 or operand4 are considered as number
of Unicode code units; that is, as double-bytes.

For example, to move the 5th to 12th position inclusive of the value in a field #A into a field
#B, you would specify:

MOVE SUBSTRING(#A,5,8) TO #B

If operand1 is a dynamic variable, the specified field portion to be moved must be within its
current length; otherwise, a runtime error will occur.

Also, you can move a value of an alphanumeric/Unicode or binary field into a certain part of
the target field. After the field name (operand2) in the SUBSTRING clause you specify first the
starting position (operand5) and then the length (operand6) of the field portion into which
the value is to be moved.

If the underlying field format of operand2 is

■ alphanumeric/Unicode (A/U) or binary (B), then the values supplied with operand5 or
operand6 are considered as byte numbers;

■ Unicode (U), then the values suppliedwithoperand3 or operand4 are considered as number
of Unicode code units; that is, as double-bytes.

For example, to move the value of a field #A into the 3rd to 6th position inclusive of a field #B,
you would specify:

MOVE #A TO SUBSTRING(#B,3,4)

If operand2 is a dynamic variable, the specified starting position (operand5) must not be
greater than the variable's current length plus 1; a greater starting positionwill lead to a runtime
error, because it would cause an undefined gap within the content of operand2.

If operand3/operand5 or operand4/operand6 is a binary variable, it may be used only with
a length of less than or equal to 4.

If you omit operand3/operand5, the starting position is assumed to be 1. If you omit
operand4/operand6, the length is assumed to range from the starting position to the end of
the field.

If operand2 is a dynamic variable and the specified starting position (operand5) is the
variable's current length plus 1, which means that the MOVE operation is used to increase the
length of the variable, operand6must be specified in order to determine the new length of
the variable.

641Statements

MOVE

DescriptionSyntax
Element

Note: MOVEwith the SUBSTRING option is a byte-by-byte move (that is, the rules described
under Rules for Arithmetic Assignment in the Programming Guide do not apply).

Parameter Option:parameter
See parameter in Syntax 1.

Syntax 3 - MOVE BY NAME / POSITION

operand1 TO operand2
[NAME]

BYMOVE
POSITION

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesGoperand1

noyesGoperand2

Syntax Element Description:

DescriptionSyntax Element

MOVE BY NAME Option:MOVE BY NAME
operand1 TO
operand2 This option is used tomove individual fields contained in a data structure to another

data structure, independent of their position in the structure.

A field ismoved only if its name appears in both structures (this includes REDEFINEd
fields as well as fields resulting from a redefinition). The individual fields may be
of any format. The operands can also be views.

Note: The sequence of the individual moves is determined by the sequence of the
fields in operand1.

See also Example 2 - MOVE BY NAME Statement.

MOVE BY NAME with Arrays:

If the data structures contain arrays, these will internally be assigned the index (*)
when moved; this may lead to an error if the arrays do not comply with the rules
for assignment operations with arrays; see the section Processing of Arrays in the
Programming Guide.

See also Example 3 - MOVE BY NAME with Arrays.

Statements642

MOVE

DescriptionSyntax Element

MOVE BY POSITION Option:MOVE BY POSITION
operand1 TO
operand2 This option allows you to move the contents of fields in a group to another group,

regardless of the field names.

The values aremoved field by field fromone group to the other in the order inwhich
the fields are defined (this does not include fields resulting from a redefinition).

The individual fieldsmay be of any format. The number of fields in each groupmust
be the same; also, the level structure and array dimensions of the fields must match.
Format conversion is done according to the rules for arithmetic assignment; see the
section Rules for Arithmetic Assignments in the Programming Guide. The operands can
also be views.

See also Example 4 - MOVE BY POSITION.

Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2)

(EM=value)
MOVE EDITED operand1 TO operand2

(EMU=value)

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesBUAASCoperand1

yesyesLTDBFIPNUAASoperand2

Syntax Element Description:

DescriptionSyntax Element

MOVE EDITED Option:MOVE EDITED

If an edit mask is specified for operand2, the value of operand1will be placed into
operand2 using this edit mask.

The edit mask can be considered as an input edit mask for operand2, that is used to specify
at which positions in the alphanumeric/Unicode contents of operand1 the significant input
data for operand2 can be found.

If the edit mask refers more characters or digits than existent in operand2, it is truncated
accordingly. The length of operand1may not be smaller than the length of the input value
represented by the edit mask. If operand1 is longer than the edit mask length, all the
overhanging data is ignored.

643Statements

MOVE

DescriptionSyntax Element

Under the pre-condition not to have an operand1 length larger than the edit mask length,
you may regard a

MOVE EDITED operand1 TO operand2 (EM=value)

operation like the execution of

STACK TOP DATA operand1
INPUT operand2 (EM=value)

See also Example 1 - Various Samples of MOVE Statement Usage.

Edit Mask:

For details on edit masks, see the session parameter EM in the Parameter Reference.

EM

Unicode Edit Mask:

For details onUnicode edit masks, see the session parameter EMU in the Parameter Reference.

EMU

Syntax 5 - MOVE EDITED (Edit Mask Specified with operand1)

TO operand2
(EM=value)

MOVE EDITED operand1
(EMU=value)

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesLTDBFIPNUANASCoperand1

yesyesBUAASoperand2

Syntax Element Description:

DescriptionSyntax Element

MOVE EDITED Option:MOVE EDITED

If an edit mask is specified for operand1, the edit mask will be applied to operand1 and
the result will be moved to operand2.

The edit mask can be considered as an output edit mask for operand1, that is used to create
an alphanumeric/Unicode string with the layout and length described by the edit mask.
Besides data characters or digits originating from operand1, you may include additional
decoration characters into the output string.

Statements644

MOVE

DescriptionSyntax Element

If the edit mask refers more characters or digits than existent in operand1, it is truncated
accordingly. The length of the created output string (resulting from operand1 value after
the edit mask has been applied) must not exceed the length of operand2.

Under the pre-condition not to have an operand2 length smaller than the edit mask length,
you may regard a

MOVE EDITED operand1 (EM=value) TO operand2

operation like a

WRITE operand1 (EM=value)

that does not write the output to the screen, but fills it into variable operand2.

See also Example 1 - Various Samples of MOVE Statement Usage.

Edit Mask:

For details on edit masks, see the session parameter EM in the Parameter Reference.

EM

Unicode Edit Mask:EMU

For details on Unicode edit masks, see the session parameter EMU in the Parameter Reference.

Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED

[JUSTIFIED] operand1 [(parameter)] TO operand2
LEFT

MOVE
RIGHT

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesLTDBFIPNUANASCoperand1

yesyesUAASoperand2

Syntax Element Description:

645Statements

MOVE

DescriptionSyntax Element

MOVE LEFT / RIGHT JUSTIFIED Options:MOVE LEFT / RIGHT
JUSTIFIED

This option is used to cause the values to be moved to be left- or right-justified in
operand2.

MOVE LEFT/RIGHT JUSTIFIED cannot be used if operand2 is a dynamic variable.

MOVE LEFT Option:MOVE LEFT
JUSTIFIED

With MOVE LEFT JUSTIFIED, any leading blanks in operand1 are removed before
the value is placed left-justified into operand2. The remainder of operand2will
then be filled with blanks. If the value is longer than operand2, the value will be
truncated on the right-hand side.

RIGHT JUSTIFIED Option:MOVE RIGHT
JUSTIFIED

With MOVE RIGHT JUSTIFIED, any trailing blanks in operand1 are truncated
before the value is placed right-justified into operand2. The remainder of operand2
will then be filled with blanks. If the value is longer than operand2, the value will
be truncated on the left-hand side.

See also Example 1 - Various Samples of MOVE Statement Usage.

Parameter:parameter

Whenyouuse MOVE LEFT/RIGHT JUSTIFIED in conjunctionwithPM=I, themove
is performed in the following steps:

1. If operand1 is not of alphanumeric/Unicode format, the value is converted to
alphanumeric/Unicode format.

2. Any trailing blanks in operand1 are removed.

3. In the case of LEFT JUSTIFIED, any leading blanks in operand1 are also
removed.

4. The value is reversed, and then moved to operand2.

5. If applicable, the remainder of operand2 is filled with blanks, or the value is
truncated (see above).

Syntax 7 - MOVE NORMALIZED

The MOVE NORMALIZED statement converts a Unicode string into the “UnicodeNormalization Form
C” (NFC). The resultingUnicode string does no longer contain combining sequences for characters
which are available as pre-composed characters.

If the format of the target operand is not Unicode itself, an implicit conversion from Unicode into
the target operand takes place - during this conversion the default code page (see system variable
*CODEPAGE) will be used.

Statements646

MOVE

For further information on the MOVE NORMALIZED statement, see the section Statements in theUnicode
and Code Page Support documentation.

Syntax Diagram:

MOVE NORMALIZED operand1 TO operand2

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesUASCoperand1

yesyesUAASoperand2

Syntax Element Description:

DescriptionSyntax Element

MOVE NORMALIZED Option:MOVE NORMALIZED

This option is used to convert Unicode fields with potentially unnormalized content
into the “Unicode Normalization Form C” (NFC). This composite form of a Unicode
string does not contain combining sequences for characters which are available as
pre-composed characters. See also:
http://www.unicode.org/reports/tr15/#Canonical_Composition_Examples
(“Normalization Forms D and C Examples”).

Example:

MOVE NORMALIZED #SCR TO #TGT

Source Operand:

operand1 contains the Unicode string to be converted.

operand1

Target Operand:

operand2 receives the converted Unicode string.

operand2

Example:

Some code points have different representations in Unicode. For example, the German letter 'Ä':
the decomposed representation in Unicode is U+0041 followed by U+0308 and uses a combining
character (U+0308); another representation is the pre-composed character U+00C4. The MOVE
NORMALIZED statement converts the Unicode representation with combining characters into a nor-
malized Unicode representation using pre-composed characters, where possible.

647Statements

MOVE

http://www.unicode.org/reports/tr15/#Canonical_Composition_Examples

Syntax 8 - MOVE ENCODED

This section explains the syntax of the MOVE ENCODED statement. For information on the purpose
of this statement, see the section Statements in the Unicode and Code Page Support documentation.

Syntax Diagram:

MOVE ENCODED

operand1 [[IN] CODEPAGE operand2] TO

operand3 [[IN] CODEPAGE operand4]

[GIVING operand5]

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesBUAASCoperand1

noyesUASoperand2

yesyesBUASoperand3

noyesUAASoperand4

yesyesI4Soperand5

Syntax Element Description:

DescriptionSyntax Element

MOVE ENCODED Option:MOVE ENCODED

This option converts a character string, encoded in one code page, into the equivalent
character string of another code page.

Note: Natural uses the International Components for Unicode (ICU) library for
Unicode conversion. For more information, see the ICU User Guide at
http://userguide.icu-project.org/.

Source Operand:operand1

operand1 contains the string to be converted.

Code Page of Source Operand:CODEPAGE operand2

As operand2, you specify the code page of operand1.

Can only be supplied if operand1 is of format A or B. See Note 1.

Target Operand:TO operand3

Statements648

MOVE

http://icu.sourceforge.net/userguide/

DescriptionSyntax Element

operand3 receives the converted string.

If the conversion result does not fit into the target field, the result is padded or
truncated, respectively, and as padding character the blank of the resulting code
page is used.

If the target field is defined as a dynamic variable, no padding or truncation is
needed, since the length of the dynamic variable is automatically adjusted to the
length of the conversion result.

Code Page of Target Operand:CODEPAGE operand4

As operand4, you specify the code page of operand3.

Can only be supplied if operand3 is of format A or B. See Note 1.

GIVING Clause:GIVING operand5

If you omit this clause, a Natural error message is returned if an error occurs.

If you specify the keyword GIVING, operand5 returns 0 or the Natural error code
instead of the Natural error message.

If the target gets truncated, noNatural errormessage is given, butwhen the keyword
GIVING is used, operand5will contain an appropriate error code to indicate
truncation.

Notes:

1. If a code page operand is not supplied, then the default code page (value of the system variable
*CODEPAGE) is used.

2. If the session parameter CPCVERR in the statement SET GLOBALS or in the system command
GLOBALS is set to ON, an error is output if at least one character of the source field could not be
converted properly into the destination code page, but was replaced in the target field by a
substitution character.

Examples of MOVE ENCODED:

MOVE ENCODED A-FIELD1 TO A-FIELD2

Invalid: This results in a syntax error, since the code page names are taken by default and are the
same for operand1 and operand3.

649Statements

MOVE

MOVE ENCODED A-FIELD1 CODEPAGE 'IBM01140' TO A-FIELD2 CODEPAGE 'IBM01140'

Invalid: This results in an error, since the coded code page names are the same for operand1 and
operand3.

MOVE ENCODED A-FIELD1 CODEPAGE 'IBM01140' TO A-FIELD2 CODEPAGE 'IBM037'

Valid: The string in A-FIELD1which is coded in IBM01140 is converted into A-FIELD2which is
coded in IBM037.

MOVE ENCODED U-FIELD TO U-FIELD

Invalid: This results in an error, since at least one operand must be of format A or B.

MOVE ENCODED U-FIELD TO A-FIELD

Valid: The Unicode string in U-FIELDwhich, considered to be encoded in UTF-16, is converted
into the alphanumeric A-FIELD in the default code page (*CODEPAGE).

MOVE ENCODED A-FIELD TO U-FIELD

Valid: The string in A-FIELDwhich, considered to be encoded in the default code page (*CODEPAGE),
is converted into the Unicode field U-FIELD.

MOVE ENCODED A100-FIELD CODEPAGE 'IBM1140' TO A50-FIELD CODEPAGE 'IBM037'

Valid: Conversion is done from A100-FIELD (format/length: A100) to A50-FIELD (format/length:
A50), using the relevant code pages. The target is truncated. NoNatural errormessage is returned.

MOVE ENCODED A100-FIELD CODEPAGE 'IBM1140' TO A50-FIELD
CODEPAGE 'IBM037' GIVING RC-FIELD

Valid: Conversion is done from A100-FIELD (format/length: A100) to A50-FIELD (format/length:
A50), using the relevant code pages. The target is truncated. Since a GIVING clause is supplied, the
RC-FIELD receives an error code, indicating that a value truncation has taken place.

Syntax 9 - MOVE ALL

The MOVE ALL statement enables you to move repeatedly the content of operand1 to operand2
until the complete target field is full or the UNTIL value (operand7) is reached.

Using a SUBSTRING Clause, you may limit the MOVE ALL operation to just segments of the source
and target field.

Syntax Diagram:

Statements650

MOVE

ALLMOVE
operand1
SUBSTRING (operand1,operand3,operand4)

TO
operand2
SUBSTRING (operand2,operand5,operand6)

[UNTIL operand7]

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesBN1UAASCoperand1

yesyesBUAASoperand2

noyesB2IPNSCoperand3

noyesB2IPNSCoperand4

noyesB2IPNSCoperand5

noyesB2IPNSCoperand6

noyesIPNSCoperand7

1 A numeric format (N) for operand1 is permitted only when used without the SUBSTRING clause.

2 If operand3/operand5 or operand4/operand6 is a binary variable, it may be used only with a
length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax
Element

Source Operand:operand1

The source operand contains the value to be moved.

All digits of a numeric operand including leading zeros are moved.

Target Operand:TO
operand2

The target operand is not reset before the execution of the MOVE ALL operation. This is of
particular importance when using the UNTIL option since data previously in operand2 is
retained if not explicitly overlaid during the MOVE ALL operation.

UNTIL Option:UNTIL
operand7

The UNTIL option can be used to limit the MOVE ALL operation to a given number of positions
in operand2. operand3 is used to specify the number of positions. The MOVE ALL operation
is terminated when this value is reached.

If operand7 is greater than the length of operand2, the MOVE ALL operation is terminated
when operand2 is full.

651Statements

MOVE

DescriptionSyntax
Element

The UNTIL optionmay also be used to assign an initial value to a dynamic variable: if operand2
is a dynamic variable, its length after the MOVE ALL operation will correspond to the value of
operand7. The current length of a dynamic variable can be ascertained by using the system
variable *LENGTH.

For general information on dynamic variables, see Usage of Dynamic Variables.

Note: The UNTIL option is not allowedwhen a SUBSTRING clause is used for the target operand.

SUBSTRING Clause:SUBSTRING

The SUBSTRING clause enables you to select a fixed segment of the source or target variable
in a MOVE ALL statement - whereas, without the SUBSTRING clause, the whole content of the
source or target variable is processed.

operand3 and operand4 describe the start position and length of the operand1 segment used
as source value.operand5 andoperand6describe the start position and length of theoperand2
segment which is filled by the operation. If the start position (operand3 or operand5) is
omitted, then position 1 is assumed by default. If the substring length (operand4 or operand6)
is omitted, then the remaining length of the field is assumed.

If SUBSTRING is used for the source field, the start value and length (operand3 and operand4)
must describe a data segment which is completely inside operand1.

If SUBSTRING is used for the target field the following rules apply:

■ If operand2 is a fixed length variable, the range described by the start-value and length
(operand5 and operand6) has completely to reside within the field extent.

■ If operand2 is a dynamic length variable, the start value (operand5) can either point into
or immediately behind the current field length (*LENGTH + 1). When the end of the
SUBSTRING range is within the allocated field data, the operation is processed in the same
way as for a fixed length field. When the SUBSTRING end exceeds the current field size, the
dynamic variable is expanded to this extent.

See also Examples of SUBSTRING Clause Usage below.

Examples of SUBSTRING Clause Usage

DEFINE DATA LOCAL
1 ALFA (A10) INIT <'AAAAAAAAAA'>
1 DYN (A) DYNAMIC INIT <'1234567890'>
1 #VAL (A4) INIT <'1234'>
END-DEFINE

Statements652

MOVE

ResultStatement

AfterBefore

1212121212AAAAAAAAAAMOVE ALL SUBSTRING (#VAL,1,2) TO
ALFA

AA12312AAAAAAAAAAAAAMOVE ALL '123' TO SUBSTRING
(ALFA,3,5)

123456xxx0 (*LENGTH=10)1234567890 (*LENGTH=10)MOVE ALL 'x' TO SUBSTRING (DYN,7,3)

123456xyzxyz (*LENGTH=12)1234567890 (*LENGTH=10)MOVE ALL 'xyz' TO SUBSTRING
(DYN,7,6)

1234567890xyzx
(*LENGTH=14)

1234567890 (*LENGTH=10)MOVE ALL 'xyz' TO SUBSTRING
(DYN,11,4)

Examples

■ Example 1 - Various Samples of MOVE Statement Usage
■ Example 2 - MOVE BY NAME
■ Example 3 - MOVE BY NAME with Arrays
■ Example 4 - MOVE BY POSITION
■ Example 5 - MOVE ALL

Example 1 - Various Samples of MOVE Statement Usage

** Example 'MOVEX1': MOVE
**
DEFINE DATA LOCAL
1 #A (N3)
1 #B (A5)
1 #C (A2)
1 #D (A7)
1 #E (N1.0)
1 #F (A5)
1 #G (N3.2)
1 #H (A6)
END-DEFINE
*
MOVE 5 TO #A
WRITE NOTITLE 'MOVE 5 TO #A' 30X '=' #A
*
MOVE 'ABCDE' TO #B #C #D
WRITE 'MOVE ABCDE TO #B #C #D' 20X '=' #B '=' #C '=' #D
*
MOVE -1 TO #E
WRITE 'MOVE -1 TO #E' 28X '=' #E
*
MOVE ROUNDED 1.995 TO #E

653Statements

MOVE

WRITE 'MOVE ROUNDED 1.995 TO #E' 18X '=' #E
*
*
MOVE RIGHT JUSTIFIED 'ABC' TO #F
WRITE 'MOVE RIGHT JUSTIFIED ''ABC'' TO #F' 10X '=' #F
*
MOVE EDITED '003.45' TO #G (EM=999.99)
WRITE 'MOVE EDITED ''003.45'' TO #G (EM=999.99)' 4X '=' #G
*
MOVE EDITED 123.45 (EM=999.99) TO #H
WRITE 'MOVE EDITED 123.45 (EM=999.99) TO #H' 6X '=' #H
*
END

Output of ProgramMOVEX1:

MOVE 5 TO #A #A: 5
MOVE ABCDE TO #B #C #D #B: ABCDE #C: AB #D: ABCDE
MOVE -1 TO #E #E: -1
MOVE ROUNDED 1.995 TO #E #E: 2
MOVE RIGHT JUSTIFIED 'ABC' TO #F #F: ABC
MOVE EDITED '003.45' TO #G (EM=999.99) #G: 3.45
MOVE EDITED 123.45 (EM=999.99) TO #H #H: 123.45

Example 2 - MOVE BY NAME

** Example 'MOVEX2': MOVE BY NAME
**
DEFINE DATA LOCAL
1 #SBLOCK

2 #FIELDA (A10) INIT <'AAAAAAAAAA'>
2 #FIELDB (A10) INIT <'BBBBBBBBBB'>
2 #FIELDC (A10) INIT <'CCCCCCCCCC'>
2 #FIELDD (A10) INIT <'DDDDDDDDDD'>

1 #TBLOCK
2 #FIELD1 (A15) INIT <' '>
2 #FIELDA (A10) INIT <' '>
2 #FIELD2 (A10) INIT <' '>
2 #FIELDB (A10) INIT <' '>
2 #FIELD3 (A20) INIT <' '>
2 #FIELDC (A10) INIT <' '>

END-DEFINE
*
MOVE BY NAME #SBLOCK TO #TBLOCK
*
WRITE NOTITLE 'CONTENTS OF #TBLOCK AFTER MOVE BY NAME:'

// '=' #TBLOCK.#FIELD1
/ '=' #TBLOCK.#FIELDA
/ '=' #TBLOCK.#FIELD2
/ '=' #TBLOCK.#FIELDB
/ '=' #TBLOCK.#FIELD3

Statements654

MOVE

/ '=' #TBLOCK.#FIELDC
*
END

Contents of #TBLOCK after MOVE BY NAME Processing:

CONTENTS OF #TBLOCK AFTER MOVE BY NAME:

#FIELD1:
#FIELDA: AAAAAAAAAA
#FIELD2:
#FIELDB: BBBBBBBBBB
#FIELD3:
#FIELDC: CCCCCCCCCC

Example 3 - MOVE BY NAME with Arrays

DEFINE DATA LOCAL
1 #GROUP1

2 #FIELD (A10/1:10)
1 #GROUP2

2 #FIELD (A10/1:10)
END-DEFINE
...
MOVE BY NAME #GROUP1 TO #GROUP2
...

In this example, the MOVE statement would internally be resolved as:

MOVE #GROUP1.#FIELD (*) TO #GROUP2.#FIELD (*)

If part of an indexed group ismoved to another part of the same group, thismay lead to unexpected
results as shown in the example below.

DEFINE DATA LOCAL
1 #GROUP1 (1:5)

2 #FIELDA (N1) INIT <1,2,3,4,5>
2 REDEFINE #FIELDA
3 #FIELDB (N1)

END-DEFINE
...
MOVE BY NAME #GROUP1 (2:4) TO #GROUP1 (1:3)
...

In this example, the MOVE statement would internally be resolved as:

655Statements

MOVE

MOVE #FIELDA (2:4) TO #FIELDA (1:3)
MOVE #FIELDB (2:4) TO #FIELDB (1:3)

First, the contents of the occurrences 2 to 4 of #FIELDA are moved to the occurrences 1 to 3 of
#FIELDA; that is, the occurrences receive the following values:

5.4.3.2.1.Occurrence:

54321Value before:

54432Value after:

Then the contents of the occurrences 2 to 4 of #FIELDB are moved to the occurrences 1 to 3 of
#FIELDB; that is, the occurrences receive the following values:

5.4.3.2.1.Occurrence:

54432Value before:

54443Value after:

Example 4 - MOVE BY POSITION

DEFINE DATA LOCAL
1 #GROUP1

2 #FIELD1A (N5)
2 #FIELD1B (A3/1:3)
2 REDEFINE #FIELD1B
3 #FIELD1BR (A9)

1 #GROUP2
2 #FIELD2A (N5)
2 #FIELD2B (A3/1:3)
2 REDEFINE #FIELD2B
3 #FIELD2BR (A9)

END-DEFINE
...
MOVE BY POSITION #GROUP1 TO #GROUP2
...

In this example, the content of #FIELD1A is moved to #FIELD2A, and the content of #FIELD1B to
#FIELD2B; the fields #FIELD1BR and #FIELD2BR are not affected.

Statements656

MOVE

Example 5 - MOVE ALL

** Example 'MOAEX1': MOVE ALL
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 CITY

1 VEH-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 4
RD. READ EMPLOY-VIEW BY NAME

SUSPEND IDENTICAL SUPPRESS
/*
FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)

IF NO RECORDS FOUND
MOVE ALL '*' TO FIRST-NAME (RD.)
MOVE ALL '*' TO CITY (RD.)
MOVE ALL '*' TO MAKE (FD.)

END-NOREC
/*
DISPLAY NOTITLE (ES=OFF IS=ON ZP=ON AL=15)

NAME (RD.) FIRST-NAME (RD.)
CITY (RD.)
MAKE (FD.) (IS=OFF)

/*
END-FIND

END-READ
END

Output of ProgramMOAEX1:

NAME FIRST-NAME CITY MAKE
--------------- --------------- --------------- ---------------

ABELLAN *************** *************** ***************
ACHIESON ROBERT DERBY FORD
ADAM *************** *************** ***************
ADKINSON JEFF BROOKLYN GENERAL MOTORS

657Statements

MOVE

658

91 MOVE INDEXED

The MOVE INDEXED statement is supported for compatibility reasons only.

Caution: In contrast to a MOVE statementwith array operands, checks for out-of-bound index
values are not possible when a MOVE INDEXED statement is executed. As a consequence,
when executing an incorrect MOVE INDEXED statement, you may unintentionally destroy
user data.

Therefore, Software AG strongly recommends that you replace MOVE INDEXED statements by MOVE
statements.

See the statement MOVE.

659

660

92 MULTIPLY

■ Function .. 662
■ Syntax 1 - MULTIPLY Statement without GIVING Clause ... 662
■ Syntax 2 - MULTIPLY Statement with GIVING Clause ... 663
■ Example .. 664

661

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | RESET |
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The MULTIPLY statement is used to multiply two operands. Depending on the syntax used, the
result of the multiplication may be stored in operand1 or operand3.

If a database field is used as the result field, the multiplication results in an update only to the in-
ternal value of the field as usedwithin the program. The value for the field in the database remains
unchanged.

Formultiplications involving arrays, see alsoRules for Arithmetic Assignments,Arithmetic Operations
with Arrays (in the Programming Guide).

Two different structures are possible for this statement.

Syntax 1 - MULTIPLY Statement without GIVING Clause

When Syntax 1 used, the result of the multiplication can be stored in operand1.

MULTIPLY [ROUNDED] operand1 BY (arithmetic-expression)
operand2

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesFIPNMASoperand1

noyesFIPNNASCoperand2

Syntax Element Description:

Statements662

MULTIPLY

DescriptionSyntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1 BY operand2

operand1 is the multiplicand, operand2 is the multiplier.

The result is stored in operand1, hence the statement is equivalent to:

operand1 := operand1 * operand2

ROUNDED Option:

If you specify the keyword ROUNDED, the value will be rounded before it is
assigned to operand1 or operand3.

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

ROUNDED

Syntax 2 - MULTIPLY Statement with GIVING Clause

When Syntax 2 is used, the result of the multiplication can be stored in operand3.

GIVING
operand3

BY
MULTIPLY
[ROUNDED]

(arithmetic-expression)(arithmetic-expression)
operand2operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesFIPNMASCoperand1

noyesFIPNNASCoperand2

yesyesTB*FIPNUAMASoperand3

* Format B of operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

663Statements

MULTIPLY

DescriptionSyntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1 BY operand2
GIVING operand3

operand1 is themultiplicand, operand2 is themultiplier. The result will
be stored in operand3, hence the statement is equivalent to:

operand3 := operand1 * operand2

ROUNDED Option:

If you specify the keyword ROUNDED, the value will be rounded before it
is assigned to operand1 or operand3.

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

ROUNDED

Example

** Example 'MULEX1': MULTIPLY
**
DEFINE DATA LOCAL
1 #A (N3) INIT <20>
1 #B (N5)
1 #C (N3.1)
1 #D (N2)
1 #ARRAY1 (N5/1:4,1:4) INIT (2,*) <5>
1 #ARRAY2 (N5/1:4,1:4) INIT (4,*) <10>
END-DEFINE
*
MULTIPLY #A BY 3
WRITE NOTITLE 'MULTIPLY #A BY 3' 25X '=' #A
*
MULTIPLY #A BY 3 GIVING #B
WRITE 'MULTIPLY #A BY 3 GIVING #B' 15X '=' #B
*
MULTIPLY ROUNDED 3 BY 3.5 GIVING #C
WRITE 'MULTIPLY ROUNDED 3 BY 3.5 GIVING #C' 6X '=' #C
*
MULTIPLY 3 BY -4 GIVING #D
WRITE 'MULTIPLY 3 BY -4 GIVING #D' 14X '=' #D
*
MULTIPLY -3 BY -4 GIVING #D
WRITE 'MULTIPLY -3 BY -4 GIVING #D' 14X '=' #D
*
MULTIPLY 3 BY 0 GIVING #D
WRITE 'MULTIPLY 3 BY 0 GIVING #D' 14X '=' #D
*

Statements664

MULTIPLY

WRITE / '=' #ARRAY1 (2,*) '=' #ARRAY2 (4,*)
MULTIPLY #ARRAY1 (2,*) BY #ARRAY2 (4,*)
WRITE / 'MULTIPLY #ARRAY1 (2,*) BY #ARRAY2 (4,*)'

/ '=' #ARRAY1 (2,*) '=' #ARRAY2 (4,*)
*
END

Output of ProgramMULEX1:

MULTIPLY #A BY 3 #A: 60
MULTIPLY #A BY 3 GIVING #B #B: 180
MULTIPLY ROUNDED 3 BY 3.5 GIVING #C #C: 10.5
MULTIPLY 3 BY -4 GIVING #D #D: -12
MULTIPLY -3 BY -4 GIVING #D #D: 12
MULTIPLY 3 BY 0 GIVING #D #D: 0

#ARRAY1: 5 5 5 5 #ARRAY2: 10 10 10 10

MULTIPLY #ARRAY1 (2,*) BY #ARRAY2 (4,*)
#ARRAY1: 50 50 50 50 #ARRAY2: 10 10 10 10

665Statements

MULTIPLY

666

93 NEWPAGE

■ Function .. 668
■ Syntax Description ... 668
■ Example .. 669

667

EVEN [IF] TOP [OF] [PAGE]

NEWPAGE [(rep)]
LESS [THAN] operand1 [LINES] [LEFT]IF

WHEN

[WITH] TITLE title-definition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | FORMAT | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The NEWPAGE statement is used to cause an advance to a new page. NEWPAGE also causes any AT
END OF PAGE and WRITE TRAILER statements to be executed. A default title containing the date,
time of day, and page numberwill appear on each newpage unless a WRITE TITLE, WRITE NOTITLE,
or DISPLAY NOTITLE statement is specified to define specific title processing.

Notes:

1. The advance to a newpage is not performed at the timewhen the NEWPAGE statement is executed.
It is performed only when a subsequent statement which produces output is executed.

2. If the NEWPAGE statement is not used, page advance is controlled automatically based on the
Natural profile/session parameter PS (Page Size for Natural Reports).

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesIPNSCoperand1

Syntax Element Description:

Statements668

NEWPAGE

DescriptionSyntax Element

Report Specification:(rep)

The notation (rep)may be used to specify the identification of the report for
which the NEWPAGE statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the NEWPAGE statement will be applicable to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control (in the Programming Guide).

EVEN IF TOP OF PAGE Option:EVEN IF TOP OF PAGE

This option is used to cause a new page (with corresponding AT TOP OF PAGE
and page title processing) to be generated, even if a new page was initiated
immediately before the NEWPAGE statement was encountered.

WHEN LESS THAN ... LINES LEFT Option:WHEN LESS THAN
operand1 LINES LEFT

This option is used to cause a new page to be generated when there are less than
operand1 lines left on the current page (current line count compared with value
for the Natural profile/session parameter PS).

WITH TITLE Option:WITH TITLE
title-definition

This option can be used to specify a title which is to be written to the new page
generated.

The title-definition is specified using the same syntax as described for the
WRITE TITLE statement, except that the SKIP clause is not allowed in a NEWPAGE
WITH TITLE title-definition statement.

Example

** Example 'NWPEX1': NEWPAGE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE
*
LIMIT 15
READ EMPLOY-VIEW BY CITY FROM 'DENVER'

669Statements

NEWPAGE

DISPLAY CITY (IS=ON) NAME SALARY (1) CURR-CODE (1)
AT BREAK OF CITY

SKIP 1
/*
NEWPAGE WHEN LESS THAN 10 LINES LEFT
WRITE '**'
/ 'SUMMARY FOR ' OLD(CITY)
/ '**'
/ '**'
/ 'SUM OF SALARIES:' SUM(SALARY(1))
/ 'AVG OF SALARIES:' AVER(SALARY(1))
/ '**'

NEWPAGE
/*

END-BREAK
END-READ
END

Output of Program NWPEX1 - Page 1:

Page 1 05-01-18 10:01:45

CITY NAME ANNUAL CURRENCY
SALARY CODE

-------------------- -------------------- ---------- --------

DENVER TANIMOTO 33000 USD
MEYER 50000 USD

**
SUMMARY FOR DENVER
**
**
SUM OF SALARIES: 83000
AVG OF SALARIES: 41500
**

Output of Program NWPEX1 - Page 2:

Page 2 05-01-18 10:01:45

CITY NAME ANNUAL CURRENCY
SALARY CODE

-------------------- -------------------- ---------- --------

DERBY DEAKIN 8750 UKL
GARFIELD 6750 UKL
MUNN 8800 UKL
MUNN 5650 UKL
GREBBY 9550 UKL
WHITT 8650 UKL

Statements670

NEWPAGE

PONSONBY 5500 UKL
MAGUIRE 4150 UKL
HEYWOOD 3900 UKL
BRYDEN 6750 UKL
SMITH 39000 UKL
CONQUEST 45000 UKL
ACHIESON 11300 UKL

**
SUMMARY FOR DERBY
**

Output of Program NWPEX1 - Page 3:

-------------------- -------------------- ---------- --------

DERBY DEAKIN 8750 UKL
GARFIELD 6750 UKL
MUNN 8800 UKL
MUNN 5650 UKL
GREBBY 9550 UKL
WHITT 8650 UKL
PONSONBY 5500 UKL
MAGUIRE 4150 UKL
HEYWOOD 3900 UKL
BRYDEN 6750 UKL
SMITH 39000 UKL
CONQUEST 45000 UKL
ACHIESON 11300 UKL

**
SUMMARY FOR DERBY
**
**
SUM OF SALARIES: 163750
AVG OF SALARIES: 12596
**

671Statements

NEWPAGE

672

94 OBTAIN

■ Function .. 674
■ Restriction .. 674
■ Syntax Description ... 675
■ Examples ... 679

673

OBTAIN operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Reporting Mode Statements

Function

The OBTAIN statement is used in reporting mode to cause one or more fields to be read from a file.
The OBTAIN statement does not generate any executable code in the Natural object program. It is
primarily used to read a range of values of a multiple-value field or a range of occurrences of a
periodic group so that portions of these ranges may be subsequently referenced in the program.

An OBTAIN statement is not required for each database field to be referenced in the program since
Natural automatically reads each database field referenced in a subsequent statement (for example,
a DISPLAY or COMPUTE statement).

When multiple-value or periodic-group fields in the form of an array are referenced, the array
must be defined with an OBTAIN statement to ensure that it is built for all occurrences of the fields.
If individual multiple-value or periodic-group fields are referenced before the array is defined,
the fields will not be placed within the array and will exist independent of the array. The fields
will contain the same value as the corresponding occurrence within the array.

Individual occurrences of multiple-value or periodic-group fields or subarrays can be held within
a previously defined array if the array dimensions of the second individual occurrence or array
are contained within the initial array.

References to multiple-value or periodic-group fields with unique variable index cannot be con-
tained in an array of values. If individual occurrences of an array are to be processedwith a variable
index, the index expression must be prefixed with the unique variable index to denote the indi-
vidual array.

Restriction

The OBTAIN statement is for reporting mode only.

Statements674

OBTAIN

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesLTDBFIPNUAGASoperand1

Syntax Element Description:

DescriptionSyntax Element

Fields to be Read:operand1

With operand1 you specify the field(s) to be made available as a result of the OBTAIN
statement.

Examples:

READ FINANCE OBTAIN CREDIT-CARD (1-10)
DISPLAY CREDIT-CARD (3-5) CREDIT-CARD (6-8)
SKIP 1 END

The above example results in the first 10 occurrences of the field CREDIT-CARD (which is contained
in a periodic group) being read and occurrences 3-5 and 6-8 being displayedwhere the subsequent
subarrays will reside in the initial array (1-10).

READ FINANCE
MOVE 'ONE' TO CREDIT-CARD (1)
DISPLAY CREDIT-CARD (1) CREDIT-CARD (1-5)

Output:

CREDIT-CARD CREDIT-CARD
------------------ ----------------

ONE DINERS CLUB
AMERICAN EXPRESS

ONE AVIS
AMERICAN EXPRESS

675Statements

OBTAIN

ONE HERTZ
AMERICAN EXPRESS

ONE UNITED AIR TRAVEL

The first reference to CREDIT-CARD (1) is not containedwithin the array. The arraywhich is defined
after the reference to the unique occurrence (1) cannot retroactively include a unique occurrence
or an array which is shorter than the one being defined.

READ FINANCE
OBTAIN CREDIT-CARD (1-5)
MOVE 'ONE' TO CREDIT-CARD (1)
DISPLAY CREDIT-CARD (1) CREDIT-CARD (1-5)

Output:

CREDIT-CARD CREDIT-CARD
------------------ ----------------

ONE ONE
AMERICAN EXPRESS

ONE ONE
AMERICAN EXPRESS

ONE ONE
AMERICAN EXPRESS

ONE ONE

The individual reference to CREDIT-CARD (1) is contained within the array defined in the OBTAIN
statement.

Statements676

OBTAIN

MOVE (1) TO INDEX
READ FINANCE
DISPLAY CREDIT-CARD (1-5) CREDIT-CARD (INDEX)

Output:

CREDIT-CARD CREDIT-CARD
------------------- ----------------

DINERS CLUB DINERS CLUB
AMERICAN EXPRESS

AVIS AVIS
AMERICAN EXPRESS

HERTZ HERTZ
AMERICAN EXPRESS

UNITED AIR TRAVEL UNITED AIR TRAVEL

The reference to CREDIT-CARD using the variable index notation is not contained within the array.

RESET A(A20) B(A20) C(A20)
MOVE 2 TO I (N3)
MOVE 3 TO J (N3)
READ FINANCE
OBTAIN CREDIT-CARD (1:3) CREDIT-CARD (I:I+2) CREDIT-CARD (J:J+2)
FOR K (N3) = 1 TO 3
MOVE CREDIT-CARD (1.K) TO A
MOVE CREDIT-CARD (I.K) TO B
MOVE CREDIT-CARD (J.K) TO C
DISPLAY A B C

LOOP /* FOR
LOOP / * READ
END

Output:

677Statements

OBTAIN

A B C
------------------- ------------------- -------------------
CARD 01 CARD 02 CARD 03
CARD 02 CARD 03 CARD 04
CARD 03 CARD 04 CARD 05

The three arrays may be accessed individually by using the unique base index as qualifier for the
index expression.

Invalid Example 1

READ FINANCE
OBTAIN CREDIT-CARD (1-10)
FOR I 1 10
MOVE CREDIT-CARD (I) TO A(A20)
WRITE A
END

The above example will produce error message NAT1006 (value for variable index = 0) because,
at the time the record is read (READ), the index I still contains the value 0.

In any case, the above example would not have printed the first 10 occurrences of CREDIT-CARD
because the individual occurrence with the variable index cannot be contained in the array and
the variable index (I) is only evaluated when the next record is read.

The following is the correct method of performing the above:

READ FINANCE
OBTAIN CREDIT-CARD (1-10)
FOR I 1 10
MOVE CREDIT-CARD (1.I) TO A (A20)
WRITE A
END

Invalid Example 2

READ FINANCE
FOR I 1 10
WRITE CREDIT-CARD (I)
END

The above example will produce error message NAT1006 because the index I is zero when the
record is read in the READ statement.

The following is the correct method of performing the above:

Statements678

OBTAIN

READ FINANCE
FOR I 1 10
GET SAME
WRITE CREDIT-CARD (0030/I)
END

The GET SAME statement is necessary to reread the record after the variable index has been updated
in the FOR loop.

Examples

■ Example 1 - OBTAIN Statement
■ Example 2 - OBTAIN Statement with Multiple Ranges

Example 1 - OBTAIN Statement

** Example 'OBTEX1': OBTAIN
**
RESET #INDEX (I1)
*
LIMIT 5
READ EMPLOYEES BY CITY

OBTAIN SALARY (1:4)
/*
IF SALARY (4) GT 0 DO

WRITE '=' NAME / 'SALARIES (1:4):' SALARY (1:4)
FOR #INDEX 1 TO 4
WRITE 'SALARY' #INDEX SALARY (1.#INDEX)

LOOP
SKIP 1

DOEND
LOOP
*
END

Output of Program OBTEX1:

Page 1 05-02-08 13:37:48

NAME: SENKO
SALARIES (1:4): 31500 29900 28100 26600
SALARY 1 31500
SALARY 2 29900
SALARY 3 28100
SALARY 4 26600

NAME: HAMMOND

679Statements

OBTAIN

SALARIES (1:4): 22000 20200 18700 17500
SALARY 1 22000
SALARY 2 20200
SALARY 3 18700
SALARY 4 17500

Example 2 - OBTAIN Statement with Multiple Ranges

** Example 'OBTEX2': OBTAIN (with multiple ranges)
**
RESET #INDEX (I1) #K (I1)
*
#INDEX := 2
#K := 3
*
LIMIT 2
*
READ EMPLOYEES BY CITY

OBTAIN SALARY (1:5)
SALARY (#INDEX:#INDEX+3)

/*
IF SALARY (5) GT 0 DO

WRITE '=' NAME
WRITE 'SALARIES (1-5):' SALARY (1:5) /
WRITE 'SALARIES (2-5):' SALARY (#INDEX:#INDEX+3)
WRITE 'SALARIES (2-5):' SALARY (#INDEX.1:4) /
WRITE 'SALARY 3:' SALARY (3)
WRITE 'SALARY 3:' SALARY (#K)
WRITE 'SALARY 4:' SALARY (#INDEX.#K)

DOEND
LOOP

Output of Program OBTEX2:

Page 1 05-02-08 13:38:31

NAME: SENKO
SALARIES (1-5): 31500 29900 28100 26600 25200

SALARIES (2-5): 29900 28100 26600 25200
SALARIES (2-5): 29900 28100 26600 25200

SALARY 3: 28100
SALARY 3: 28100
SALARY 4: 26600

For further examples of using the OBTAIN statement, seeReferencing a Database Array in the Program-
ming Guide.

Statements680

OBTAIN

95 ON ERROR

■ Function .. 682
■ Restriction .. 682
■ Syntax Description ... 683
■ ON ERROR Processing within Objects on Different Levels ... 683
■ System Variables ... 684
■ Example .. 684

681

Structured Mode Syntax

ON ERROR

statement

END-ERROR

Reporting Mode Syntax

statement
ON ERROR

DO statement DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE FOR | DECIDE ON | IF | IF SELECTION

Function

The ON ERROR statement is used to intercept execution time errors which would otherwise result
in a Natural error message, followed by termination of Natural program execution, and a return
to command input mode.

When the ON ERROR statement block is entered for execution, the normal flowof program execution
has been interrupted and cannot be resumed except for Natural error 3145 (record requested in
hold), in which case a RETRY statement will cause processing to be resumed exactly where it was
suspended.

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

Restriction

Only one ON ERROR statement is permitted in a Natural object.

Statements682

ON ERROR

Syntax Description

DescriptionSyntax Element

Defining the ON ERROR Processing:statement...

To define the processing that shall take place when an ON ERROR condition
has been encountered, you can specify one or multiple statements.

Exiting from an ON ERROR Block:

An ON ERROR blockmay be exited by using a FETCH, STOP, TERMINATE, RETRY,
ESCAPE ROUTINE or ESCAPE MODULE statement. If the block is not exited using
one of these statements, standard error message processing is performed and
program execution is terminated.

End of ON ERROR Statement Block:END-ERROR

In structured mode, the Natural reserved word END-ERRORmust be used to
end an ON ERROR statement block.

statement ...
DO statement ... DOEND

In reportingmode, use the DO ... DOEND statements to supply one ormultiple
statements, and to end the ON ERROR statement. If you specify only a single
statement, you can omit the DO ... DOEND statements. With respect to good
coding practice, this is not recommended.

ON ERROR Processing within Objects on Different Levels

In an object call hierarchy created by means of CALLNAT, PERFORM or FETCH RETURN statements,
each object may contain an ON ERROR statement.

When an error occurs, Natural will trace back the call hierarchy and select the first ON ERROR
statement encountered in an object for execution.

For further information, see Processing of Application Errors in the Programming Guide.

683Statements

ON ERROR

System Variables

The following Natural system variables can be used in conjunction with the ON ERROR statement
(as shown in the Example below):

ExplanationSystem Variable

Contains the number of the error detected by Natural.*ERROR-NR

Contains the line number of the statement which caused the error.*ERROR-LINE

Contains the name of the Natural object that is currently being executed.*PROGRAM

Example

** Example 'ONEEX1': ON ERROR
**
**
CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY

*
1 #NAME (A20)
1 #CITY (A20)
END-DEFINE
*
REPEAT

INPUT 'ENTER NAME:' #NAME
IF #NAME = ' '

STOP
END-IF
FIND EMPLOY-VIEW WITH NAME = #NAME

INPUT (AD=M) 'ENTER NEW VALUES:' ///
'NAME:' NAME /
'CITY:' CITY

UPDATE
END TRANSACTION
/*
ON ERROR
IF *ERROR-NR = 3009

WRITE 'LAST TRANSACTION NOT SUCCESSFUL'
/ 'HIT ENTER TO RESTART PROGRAM'

FETCH 'ONEEX1'
END-IF

Statements684

ON ERROR

WRITE 'ERROR' *ERROR-NR 'OCCURRED IN PROGRAM' *PROGRAM
'AT LINE' *ERROR-LINE

FETCH 'MENU'
END-ERROR
/*

END-FIND
END-REPEAT
END

685Statements

ON ERROR

686

96 OPEN CONVERSATION

■ Function .. 688
■ Syntax Description ... 688
■ Further Information and Examples .. 689

687

OPEN CONVERSATION USING [SUBPROGRAMS] operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CLOSE CONVERSATION | DEFINE DATA CONTEXT

Belongs to Function Group: Natural Remote Procedure Call

Function

The statement OPEN CONVERSATION is used in conjunctionwith theNatural RPC (Remote Procedure
Call). It allows the RPC Client to open a conversation and specify the remote subprograms to be
included in the conversation.

When the OPEN CONVERSATION statement is executed, it assigns a unique ID identifying the conver-
sation to the system variable *CONVID.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesAASCoperand1

Syntax Element Description:

DescriptionSyntax Element

Subprogram Names:operand1

As operand1 you specify the names of the remote subprograms to be included in the
conversation.

The name of a subprogram can be specified either as a constant of 1 to 8 characters, or as an
alphanumeric variable of length 1 to 8.

Statements688

OPEN CONVERSATION

Further Information and Examples

See the following sections in the Natural RPC (Remote Procedure Call) documentation:

■ Natural RPC Operation in Conversational Mode
■ Using a Conversational RPC

689Statements

OPEN CONVERSATION

690

97 OPTIONS

■ Function .. 692
■ Processing of Multiple OPTIONS Statements .. 692

691

OPTIONS parameter

Function

The OPTIONS statement can be used to specify compilation options as parameters for the current
Natural object. These are the same options that can be specified within a Natural session with the
COMPOPT system command.

Note: Nomainframe-specific options are available. For compatibility reasons, for example,
when programming a cross-platform application, such options are ignored during compile
time.

Processing of Multiple OPTIONS Statements

If multiple OPTIONS statements are specified within the same Natural object, the option settings
take effect immediately. However, this is not the case with the options PSIGNF, TSENABL and GFID.
For these options, the option value specified with the last OPTIONS statement applies.

Statements692

OPTIONS

XII
■ 98 PARSE XML ... 695
■ 99 PASSW ... 705
■ 100 PERFORM ... 709
■ 101 PERFORM BREAK PROCESSING ... 717
■ 102 PRINT ... 721
■ 103 PROCESS ... 731
■ 104 PROCESS COMMAND ... 735
■ 105 PROCESS PAGE .. 751
■ 106 PROCESS SQL (SQL) .. 765
■ 107 PROPERTY .. 769

693

694

98 PARSE XML

■ Function .. 696
■ Syntax Description ... 697
■ Examples ... 700

695

PARSE XML operand1 [INTO [PATH operand2] [NAME operand3] [VALUE operand4]]

[[NORMALIZE] NAMESPACE operand5 PREFIX operand6]

statement...

(structured mode only)END-PARSE

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: REQUEST DOCUMENT

Belongs to Function Group: Internet and XML

Function

The PARSE XML statement allows you to parse XML documents from a Natural program. See also
Statements for Internet and XML Access in the Programming Guide.

It is recommended that you use dynamic variables when using the PARSE statement, because it is
impossible to determine the length of a static variable. Using static variables could in turn lead to
the truncation of the value that is to be written into the variable.

For information on Unicode support, see PARSE XML in the Unicode and Code Page Support docu-
mentation.

Mark-Up

The following are markings used in path strings to represent the different data types in an XML
document (on ASCII-based systems):

Location in Path StringXML DataMarking

endProcessing instruction (except for <?XML...?>)?

endComment!

endCDATA sectionC

before the attribute nameAttribute (on mainframes: § or @, depending on session code page
and terminal emulation)

@

end or between parent namesClosing tag and/or parent name separator in a path/

endParsed data - character data string$

By using this additional markup in the path string, one can more easily identify the different ele-
ments of the XML document in the output document.

Statements696

PARSE XML

Global Namespace

To specify the global namespace, use a colon (:) as prefix and an empty URI.

Related System Variables

The following Natural system variables are automatically created for each PARSE XML statement
issued:

■ *PARSE-TYPE

■ *PARSE-LEVEL

■ *PARSE-ROW

■ *PARSE-COL

■ *PARSE-NAMESPACE-URI

The notation (r) after *PARSE-TYPE, *PARSE-LEVEL, *PARSE-ROW, *PARSE-COL and
*PARSE-NAMESPACE-URI is used to indicate the label or statement number of the statement inwhich
the PARSEwas issued. If (r) is not specified, the corresponding system variable represents the
system variable of the XML data currently being processed in the active PARSE processing loop.

For more information on these system variables, see the System Variables documentation.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesBUASCoperand1

yesyesBUASoperand2

yesyesBUASoperand3

yesyesBUASoperand4

yesyesBUAASoperand5

yesyesBUAASoperand6

Syntax Element Description:

697Statements

PARSE XML

DescriptionSyntax Element

XML Document:operand1
operand1 represents the XML document in question. The XML document may not be
changed while it is being parsed. If you try to change the XML document during parsing
(by writing into it, for example), an error message will be displayed.

Path:operand2

operand2 represents the PATH of the data in the XML document.

The PATH contains the name of the identified XML part, the names of all parents, as well
as the type of the XML part.

Note: The information given with PATH can be used to easily fill a tree view.

See also Example 1 - Using operand2.

Data Element Name:operand3

operand3 represents the NAME of a data element in the XML document.

If NAME has no value, then the dynamic variable associated with it will be set to
*length()=0, which is a static variable filled with a blank.

See also Example 2 - Using operand3.

Data Element Content:operand4

operand4 represents the content (VALUE) of a data element in the XML document.

If there is no value, a given dynamic variable will be set to *length()=0,which is a
static variable filled with a blank.

See also Example 3 - Using operand4.

Namespace URI and Prefix:operand5 and
operand6

NORMALIZE
NAMESPACE

The NAMESPACE URI or Uniform Resource Identifier (operand5) and the namespace
PREFIX (operand6) are copied during runtime. Therefore, modifying the namespace
mapping arrays inside the PARSE XML loop will not affect the parser.

PREFIX operand5 andoperand6 are one-dimensional arrayswith an equal number of occurrences.

Namespace normalization is a feature of the PARSE statement. XML is capable of defining
namespaces for the element names:

<myns:myentity xmlns:myns="http://myuri" />

The NAMESPACE definition consists of two parts:

■ a namespace PREFIX (which is, in this case, myns) and
■ a URI (myuri) to define the namespace.

Statements698

PARSE XML

DescriptionSyntax Element

The namespace PREFIX is part of the element name. This means, that for the PARSE
statement, and especially for operand2, the generated PATH strings depend on the
namespace PREFIX. If the path inside a Natural program is used to indicate specific tags,
then this will fail if an XML document uses the correct NAMESPACE (URI), but with a
different PREFIX.

With namespace normalization, all namespace PREFIXes can be set to defaults which
have been defined in the NAMESPACE clause. The first entry will be the one used if a URI
is specified more than once. If more than one PREFIX is used in the XML document, then
only the first one will be taken into account for the output. The rest will be ignored.

The NAMESPACE clause contains pairs of namespace URIs and prefixes. For example:

uri(1) := 'http://namespaces.softwareag.com/natural/demo'
pre(1) := 'nat:'

If NAMESPACE is defined inside an XML document, the parser checks to see if that
namespace (URI) exists in the normalization table. The prefix of the normalization table
is used for all output data from the PARSE statement, instead of the namespace defined
in the XML document.

See also:

■ Example 4 - Using operand5 and operand6
■ Example 5 - Using operand5 and operand6 with Namespace Normalization

Additional Information Concerning PREFIX:

In addition, the following applies to the prefix definition:

■ The prefix definition in the namespace normalization array always has to end in a colon
(:), since this is the string that will be replaced.

■ A PREFIX or a URI may only occur once in a namespace normalization array.
■ If a PREFIX or the NAMESPACE URI contains trailing blanks (e.g. when using a static
variable), the trailing blanks will be removed before the external parser is called.

■ If the PREFIX definition at the namespace normalization only contains a colon (:), the
NAMESPACE PREFIXwill be reduced to a colon (:).

■ If the PREFIX definition at the namespace normalization is empty, then the NAMESPACE
PREFIXwill be deleted.

End of PARSE XML Statement:END-PARSE

In structured mode, the Natural reserved keyword END-PARSEmust be used to end the
PARSE XML statement.

LOOP

In reporting mode, the Natural statement LOOP is used to end the PARSE XML statement.

699Statements

PARSE XML

Examples

■ Example 1 - Using operand2
■ Example 2 - Using operand3
■ Example 3 - Using operand4
■ Example 4 - Using operand5 and operand6
■ Example 5 - Using operand5 and operand6 with Namespace Normalization

Example 1 - Using operand2

The following XML code

myxml := '<?xml version="1.0" encoding="ISO-8859-1" ?>'-
'<employee personnel-id="30016315" >'-
'<full-name>'-
'<!--this is just a comment-->'-
'<first-name>RICHARD</first-name>'-
'<name>FORDHAM</name>'-
'</full-name>'-
'</employee>'

processed by the following Natural code:

PARSE XML myxml INTO PATH mypath
PRINT mypath

END-PARSE

produces the following output:

employee
employee/@personnel-id
employee/full-name
employee/full-name/!
employee/full-name/first-name
employee/full-name/first-name/$
employee/full-name/first-name//
employee/full-name/name
employee/full-name/name/$
employee/full-name/name//
employee/full-name//
employee//

Statements700

PARSE XML

Example 2 - Using operand3

The following XML code

myxml := '<?xml version="1.0" encoding="ISO-8859-1" ?>'-
'<employee personnel-id="30016315" >'-
'<full-name>'-
'<!--this is just a comment-->'-
'<first-name>RICHARD</first-name>'-
'<name>FORDHAM</name>'-
'</full-name>'-
'</employee>'

processed by the following Natural code:

PARSE XML myxml INTO PATH mypath NAME myname
DISPLAY (AL=39) mypath myname

END-PARSE

Note: produces the following output:

MYPATH MYNAME
---------------------------------- -----------------------------------

employee employee
employee/@personnel-id personnel-id
employee/full-name full-name
employee/full-name/!
employee/full-name/first-name first-name
employee/full-name/first-name/$
employee/full-name/first-name// first-name
employee/full-name/name name
employee/full-name/name/$
employee/full-name/name// name
employee/full-name// full-name
employee// employee

Example 3 - Using operand4

The following XML code

701Statements

PARSE XML

myxml := '<?xml version="1.0" encoding="ISO-8859-1" ?>'-
'<employee personnel-id="30016315" >'-
'<full-name>'-
'<!--this is just a comment-->'-
'<first-name>RICHARD</first-name>'-
'<name>FORDHAM</name>'-
'</full-name>'-
'</employee>'

processed by the following Natural code:

PARSE XML myxml INTO PATH mypath VALUE myvalue
DISPLAY (AL=39) mypath myvalue

END-PARSE

produces the following output:

MYPATH MYVALUE
---------------------------------- -----------------------------------

employee
employee/@personnel-id 30016315
employee/full-name
employee/full-name/! this is just a comment
employee/full-name/first-name
employee/full-name/first-name/$ RICHARD
employee/full-name/first-name//
employee/full-name/name
employee/full-name/name/$ FORDHAM
employee/full-name/name//
employee/full-name//
employee//

Example 4 - Using operand5 and operand6

The following XML code

myxml := '<?xml version="1.0" encoding="ISO-8859-1" ?>'-
'<nat:employee nat:personnel-id="30016315"'-
' xmlns:nat="http://namespaces.softwareag.com/natural/demo">'-
'<nat:full-Name>'-
'<nat:first-name>RICHARD</nat:first-name>'-
'<nat:name>FORDHAM</nat:name>'-
'</nat:full-Name>'-
'</nat:employee>'

processed by the following Natural code:

Statements702

PARSE XML

PARSE XML myxml INTO PATH mypath
PRINT mypath

END-PARSE

produces the following output:

nat:employee
nat:employee/@nat:personnel-id
nat:employee/@xmlns:nat
nat:employee/nat:full-Name
nat:employee/nat:full-Name/nat:first-name
nat:employee/nat:full-Name/nat:first-name/$
nat:employee/nat:full-Name/nat:first-name//
nat:employee/nat:full-Name/nat:name
nat:employee/nat:full-Name/nat:name/$
nat:employee/nat:full-Name/nat:name//
nat:employee/nat:full-Name//
nat:employee//

Example 5 - Using operand5 and operand6 with Namespace Normalization

Using NORMALIZE NAMESPACE, the sameXMLdocument as in Example 4with a different NAMESPACE
PREFIXwould produce exactly the same output.

XML code:

myxml := '<?xml version="1.0" encoding="ISO-8859-1" ?>'-
'<natural:employee natural:personnel-id="30016315"'-
' xmlns:natural="http://namespaces.softwareag.com/natural/demo">'-
'<natural:full-Name>'-
'<natural:first-name>RICHARD</natural:first-name>'-
'<natural:name>FORDHAM</natural:name>'-
'</natural:full-Name>'-
'</natural:employee>'

Natural code:

uri(1) := 'http://namespaces.softwareag.com/natural/demo'
pre(1) := 'nat:'
*
PARSE XML myxml INTO PATH mypath NORMALIZE NAMESPACE uri(*) PREFIX pre(*)

PRINT mypath
END-PARSE

Output of above program:

703Statements

PARSE XML

nat:employee
nat:employee/@nat:personnel-id
nat:employee/@xmlns:nat
nat:employee/nat:full-Name
nat:employee/nat:full-Name/nat:first-name
nat:employee/nat:full-Name/nat:first-name/$
nat:employee/nat:full-Name/nat:first-name//
nat:employee/nat:full-Name/nat:name
nat:employee/nat:full-Name/nat:name/$
nat:employee/nat:full-Name/nat:name//
nat:employee/nat:full-Name//
nat:employee//

Statements704

PARSE XML

99 PASSW

■ Function .. 706
■ Syntax Description ... 706

705

PASSW=operand1

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | HISTOGRAM | GET
| GET SAME | GET TRANSACTION | LIMIT | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The PASSW statement is used to specify a default password for access to Adabas or VSAM files
which have been password-protected.

Note: This password can be overwritten using the PASSWORD clause of the database access
statements FIND, GET, HISTOGRAM, READ, STORE.

Natural Security Considerations

In the security profile of a library, you can specify a default Adabas password (as described in the
Natural Securitydocumentation); this password applies to all database access statements forwhich
neither an individual password is specified nor a PASSW statement applies. It applies within the
library in whose security profile it is specified, and also remains in effect in other libraries you
subsequently log on to and in whose security profiles no password is specified.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesASCoperand1

Syntax Element Description:

Statements706

PASSW

DescriptionSyntax Element

Password:operand1

The password (operand1) may be specified as an alphanumeric constant or the content of
an alphanumeric variable. It may consist of up to 8 characters, and must not contain special
characters or embedded blanks. If the password is specified as a constant, it must be enclosed
in apostrophes.

The password specified with the PASSW statement applies to all database access statements
(FIND, GET, HISTOGRAM, READ, STORE) for which no individual password is specified. It
remains in effect until another password is specified in the execution of a subsequent PASSW
statement or the Natural session is terminated.

Apassword specifiedwith a specific database access statement applies only to that statement,
not to any subsequent statement.

707Statements

PASSW

708

100 PERFORM

■ Function .. 710
■ Syntax Description ... 710
■ Examples ... 713

709

M

PERFORM
subroutine-name

)O(AD=operand1

A

nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE |
FETCH

Belongs to Function Group: Invoking Programs and Routines

Function

The PERFORM statement is used to invoke a Natural subroutine.

Nested PERFORM Statements

The invoked subroutine may contain a PERFORM statement to invoke another subroutine (the
number of nested levels is limited by the size of the required memory).

A subroutinemay invoke itself (recursive subroutine). If database operations are containedwithin
an external subroutine that is invoked recursively, Natural will ensure that the database operations
are logically separated.

Parameter Transfer with Dynamic Variables

See the statement CALLNAT.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesOGCLTDBFIPNUAGASCoperand1

Syntax Element Description:

Statements710

PERFORM

DescriptionSyntax Element

Subroutine to be Invoked:subroutine-name

For a subroutine name (maximum 32 characters), the same naming conventions apply
as for user-defined variables.

The subroutine name is independent of the name of themodule inwhich the subroutine
is defined (it may but need not be the same).

The subroutine to be invokedmust be definedwith a DEFINE SUBROUTINE statement.
It may be an inline or external subroutine (see DEFINE SUBROUTINE statement).

Within one object, no more than 50 external subroutines may be referenced.

Data Available in a Subroutine

■ Inline Subroutines
Noexplicit parameters can be passed from the invoking object to an inline subroutine.
An inline subroutine has access to the currently established global data area as well
as the local data area defined within the same object module.

■ External Subroutines
An external subroutine has access to the currently established global data area.
Moreover, parameters can be passedwith the PERFORM statement from the invoking
object to the external subroutine (see operand1); thus, you may reduce the size of
the global data area.

Parameters to be Passed:operand1

When an external subroutine is invoked with the PERFORM statement, one or more
parameters (operand1) can be passed with the PERFORM statement from the invoking
object to the external subroutine. For an inline subroutine, operand1 cannot be
specified.

If parameters are passed, the structure of the parameter listmust be defined in a DEFINE
DATA statement.

By default, the parameters are passed “by reference”, that is, the data are transferred
via address parameters, the parameter values themselves are not moved. However, it
is also possible to pass parameters “by value”, that is, pass the actual parameter values.
To do so, you define these fields in the DEFINE DATA PARAMETER statement of the
subroutine with the option BY VALUE or BY VALUE RESULT.

■ If parameters are passed “by reference” the following applies: The sequence, format
and length of the parameters in the invoking objectmustmatch exactly the sequence,
format and length of the DEFINE DATA PARAMETER structure of the invoked
subroutine. The names of the variables in the invoking object and the subroutine
may be different.

■ If parameters are passed “by value” the following applies: The sequence of the
parameters in the invoking object must match exactly the sequence in the DEFINE
DATA PARAMETER structure of the invoked subroutine. Formats and lengths of the

711Statements

PERFORM

DescriptionSyntax Element

variables in the invoking object and the subroutine may be different; however, they
have to be data transfer compatible. The names of the variables in the invoking object
and the subroutine may be different. If parameter values that have been modified
in the subroutine are to be passed back to the invoking object, you have to define
these fields with BY VALUE RESULT. With BY VALUE (without RESULT) it is not
possible to pass modified parameter values back to the invoking object (regardless
of the AD specification; see also below).

Note: With BY VALUE, an internal copy of the parameter values is created. The
subroutine accesses this copy and can modify it, but this will not affect the original
parameter values in the invoking object. With BY VALUE RESULT, an internal copy is
likewise created; however, after termination of the subroutine, the original parameter
values are overwritten by the (modified) values of the copy.

For both ways of passing parameters, the following applies:

■ In the parameter data area of the invoked subroutine, a redefinition of groups is
only permitted within a REDEFINE block.

■ If an array is passed, its number of dimensions and occurrences in the subroutine's
parameter data area must be same as in the PERFORM parameter list.

Note: If multiple occurrences of an array that is defined as part of an indexed group
are passed with the PERFORM statement, the corresponding fields in the subroutine's
parameter data area must not be redefined, as this would lead to the wrong addresses
being passed.

Note: Numeric constant parameters are internally represented in packed form (format
P). For further information see the Programming Guide > Numeric Constants.

AD= Attributes:

If operand1 is a variable, you can mark it in one of the following ways:

Non-modifiable, see session parameter AD=O.AD=O

Note: Internally, AD=O is processed in the same way
as BY VALUE (seeNote under operand1).

Modifiable, see session parameter AD=M.AD=M

This is the default setting.

Input only, see session parameter AD=A.AD=A

If operand1 is a constant, AD cannot be explicitly specified. For constants, AD=O always
applies.

Parameters to be Skipped:nX

With the notation nX you can specify that the next n parameters are to be skipped (for
example, 1X to skip the next parameter, or 3X to skip the next three parameters); this
means that for the next n parameters no values are passed to the external subroutine.

Statements712

PERFORM

DescriptionSyntax Element

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the
subroutine's DEFINE DATA PARAMETER statement. OPTIONALmeans that a value can
- but need not - be passed from the invoking object to such a parameter.

Examples

■ Example 1 - PERFORM as Inline Subroutine
■ Example 2 - PERFORM as External Subroutine

Example 1 - PERFORM as Inline Subroutine

** Example 'PEREX1': PERFORM (as inline subroutine)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE

*
1 #ARRAY (A75/1:4)
1 REDEFINE #ARRAY

2 #ALINE (A25/1:4,1:3)
1 #X (N2) INIT <1>
1 #Y (N2) INIT <1>
END-DEFINE
*
LIMIT 5
FIND EMPLOY-VIEW WITH CITY = 'BALTIMORE'

MOVE NAME TO #ALINE (#X,#Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #ALINE (#X+3,#Y)
IF #Y = 3

RESET INITIAL #Y
/*
PERFORM PRINT
/*

ELSE
ADD 1 TO #Y

END-IF
AT END OF DATA

/*
PERFORM PRINT
/*

END-ENDDATA
END-FIND

713Statements

PERFORM

*
DEFINE SUBROUTINE PRINT

WRITE NOTITLE (AD=OI) #ARRAY(*)
RESET #ARRAY(*)
SKIP 1

END-SUBROUTINE
*
END

Output of Program PEREX1:

JENSON LAWLER FORREST
2120 HASSELL 4588 CANDLEBERRY AVE 37 TENNYSON DRIVE
#206 BALTIMORE BALTIMORE

998-5038 629-0403 881-3609

ALEXANDER NEEDHAM
409 SENECA DRIVE 12609 BUILDERS LANE
BALTIMORE BALTIMORE
345-3690 641-9789

Example 2 - PERFORM as External Subroutine

Program containing PERFORM statement:

** Example 'PEREX2': PERFORM (as external subroutine)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE

*
1 #ALINE (A25/1:4,1:3)
1 #X (N2) INIT <1>
1 #Y (N2) INIT <1>
END-DEFINE
*
LIMIT 5
*
FIND EMPLOY-VIEW WITH CITY = 'BALTIMORE'

MOVE NAME TO #ALINE (#X,#Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #ALINE (#X+3,#Y)
IF #Y = 3

RESET INITIAL #Y
/*
PERFORM PEREX2E #ALINE(*,*)
/*

ELSE

Statements714

PERFORM

ADD 1 TO #Y
END-IF
AT END OF DATA

/*
PERFORM PEREX2E #ALINE(*,*)
/*

END-ENDDATA
END-FIND
*
END

External subroutine PEREX3with parameters called by program PEREX2:

** Example 'PEREX3': SUBROUTINE (external subroutine with parameters)
**
DEFINE DATA
PARAMETER
1 #ALINE (A25/1:4,1:3)
END-DEFINE
*
DEFINE SUBROUTINE PEREX2E

WRITE NOTITLE (AD=OI) #ALINE(*,*)
RESET #ALINE(*,*)
SKIP 1

END-SUBROUTINE
*
END

Output of Program PEREX2:

JENSON LAWLER FORREST
2120 HASSELL 4588 CANDLEBERRY AVE 37 TENNYSON DRIVE
#206 BALTIMORE BALTIMORE
998-5038 629-0403 881-3609

ALEXANDER NEEDHAM
409 SENECA DRIVE 12609 BUILDERS LANE
BALTIMORE BALTIMORE
345-3690 641-9789

715Statements

PERFORM

716

101 PERFORM BREAK PROCESSING

■ Function .. 718
■ Syntax Description ... 718
■ Example .. 719

717

PERFORM BREAK [PROCESSING] [(r)]

AT BREAK statement

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The PERFORM BREAK PROCESSING statement is used to establish break processing in loops created
by FOR, REPEAT, CALL LOOP and CALL FILE statements where no automatic break processing is es-
tablished, or whenever a user-initiated break processing is desired. Unlike automatic break pro-
cessing which is executed immediately after the record is read, the PERFORM BREAK PROCESSING
statement is executed when it is encountered in the normal flow of the program.

This statement causes a check for a break processing condition (based on the value of a control
field) and also results in the evaluation ofNatural system functions. This check and system function
evaluation are performed each time the statement is encountered for execution. This statement
may be executed depending on a condition specified in an IF statement.

Syntax Description

DescriptionSyntax Element

Statement Reference Notation:(r)

By default, the final PERFORM BREAK condition is true at the end of execution of
the program, subprogram or subroutine.

The notation (r)may be used to relate the final processing of a PERFORM BREAK
to a specific loop. In this case the PERFORM BREAK is executed in the loop end
handling of this loop; after the final automatic BREAK processing and before the
AT END OF DATA statements are executed.

See the syntax of the AT BREAK statement.AT BREAK
statement...

Statements718

PERFORM BREAK PROCESSING

Example

** Example 'PBPEX1S': PERFORM BREAK PROCESSING (structured mode)
**
DEFINE DATA LOCAL
1 #INDEX (N2)
1 #LINE (N2) INIT <1>
END-DEFINE
*
FOR #INDEX 1 TO 18

PERFORM BREAK PROCESSING
/*
AT BREAK OF #INDEX /1/

WRITE NOTITLE / 'PLEASE COMPLETE LINES 1-9 ABOVE' /
RESET INITIAL #LINE

END-BREAK
/*
WRITE NOTITLE '_' (64) '=' #LINE
ADD 1 TO #LINE

END-FOR
*
END

Output of Program PBPEX1S:

__ #LINE: 1
__ #LINE: 2
__ #LINE: 3
__ #LINE: 4
__ #LINE: 5
__ #LINE: 6
__ #LINE: 7
__ #LINE: 8
__ #LINE: 9

PLEASE COMPLETE LINES 1-9 ABOVE

__ #LINE: 1
__ #LINE: 2
__ #LINE: 3
__ #LINE: 4
__ #LINE: 5
__ #LINE: 6
__ #LINE: 7
__ #LINE: 8
__ #LINE: 9

PLEASE COMPLETE LINES 1-9 ABOVE

719Statements

PERFORM BREAK PROCESSING

Equivalent reporting-mode example: PBPEX1R.

Statements720

PERFORM BREAK PROCESSING

102 PRINT

■ Function .. 722
■ Syntax Description ... 723
■ Example .. 728

721

PRINT [(rep)] [NOTITLE] [NOHDR] [(statement-parameters)]

'text' [(attributes)]nX

'c'(n) [(attributes)]nT

['='] operand1 [(parameters)]/

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | FORMAT | NEWPAGE | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The PRINT statement is used to produce output in free format.

The PRINT statement differs from the WRITE statement in the following aspects:

■ The output for each operand is written according to the value content rather than the length of
the operand. Leading zeros for numeric values and trailing blanks for alphanumeric values are
suppressed. The session parameter AD defines whether numeric values are printed left or right
justified. With AD=L, the trailing blanks of a numeric value are suppressed. With AD=R, the
leading blanks of a numeric value are printed.

■ If the resulting output exceeds the current line size (LS parameter), the output is continued on
the next line as follows: An alphanumeric constant or the content of an alphanumeric variable
(without edit mask) is split at the rightmost blank or character which is neither a letter nor a
numeric character contained on the current line. The first part of the split value is output to the
current line, and the second part is written to the next line. Leading blanks in the second part
are removed. As a consequence, empty lines are suppressed.

For all other operands, the entire value is written to the next line.

Statements722

PRINT

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGLTDBFIPNUANGASoperand1

Syntax Element Description:

DescriptionSyntax Element

Report Specification:(rep)

The notation (rep)may be used to specify the identification of the report for
which the PRINT statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the PRINT statement will apply to the first report
(Report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to
the PC, see Example 2.

For information on how to control the format of an output report created with
Natural, see Report Format and Control (in the Programming Guide).

Default Page Title Suppression:NOTITLE

Natural generates a single title line for each page resulting from a PRINT
statement. This title contains the page number, the time of day, and the date.
Time of day is set at the beginning of the session (TP mode) or at the beginning
of the job (batch mode). This default title line may be overridden by using a
WRITE TITLE statement, or it may be suppressed by specifying the NOTITLE
clause in the PRINT statement. Examples:

■ Default title will be produced:

PRINT NAME

■ User title will be produced:

723Statements

PRINT

DescriptionSyntax Element

PRINT NAME WRITE TITLE 'user-title'

■ No title will be produced:

PRINT NOTITLE NAME

If the NOTITLE option is used, it applies to all DISPLAY, PRINT and WRITE
statements within the same object which write data to the same report.

Column Header Suppression:

The PRINT statement itself does not produce any column headers. However, if
you use the PRINT statement in conjunctionwith a DISPLAY statement, you can

NOHDR

use the NOHDR option of the PRINT statement to suppress the column headers
generated by the DISPLAY statement. The NOHDR option only takes effect if the
execution of the PRINT statement causes a new page to be output.

Without the NOHDR option, the columnheaders (if any) of the DISPLAY statement
would be output on this new page; with NOHDR they will not.

Parameter Definition at Statement Level:statement-parameters

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the PRINT statement or an element
being displayed.

Each parameter specified in this manner will override any previous parameter
specified in a GLOBALS command, SET GLOBALS (in Reporting Mode only) or
FORMAT statement. Ifmore than one parameter is specified, the parametersmust
be separated from one another by one or more blanks. A parameter entry must
not be split between two statement lines.

The parameter settings applied here will only be regarded for variable fields,
but they have no effect on text-constants. If youwould like to set field attributes
for a text-constant, they have to be set explicitly for this element, see Parameter
Definition at Element (Field) Level.

See also:

■ List of Parameters
■ Example of Parameter Usage at Statement and Element (Field) Level

Field Positioning, Text, Attribute Assignment:nX, nT, /

See Field Positioning, Text, Attribute Assignment below.

Statements724

PRINT

List of Parameters

Specification (S = at statement level, E = at
element level)

Parameters that can be specified with the PRINT statement

SEAttribute DefinitionAD

SEAlphanumeric Length for OutputAL

SEColor DefinitionCD

SEControl VariableCV

SEDate FormatDF

SEDisplay Length for OutputDL

SEDynamic AttributesDY

SEEdit MaskEM

EUnicode Edit MaskEMU

SEFloating Point Mantissa LengthFL

SMultiple-Value Field CountMC

SMaximum Number of Pages of a ReportMP

SENumeric Length for OutputNL

SPeriodic Group CountPC

SEPrint ModePM

SESign PositionSG

SEZero PrintingZP

The individual session parameters are described in the Parameter Reference.

Example of Parameter Usage at Statement and Element (Field) Level

DEFINE DATA LOCAL
1 VARI (A4) INIT <'1234'> /* Output
END-DEFINE /* Produced
* /* ---------
PRINT 'Text' VARI /* Text 1234
PRINT (PM=I) 'Text' VARI /* Text 4321
PRINT 'Text' (PM=I) VARI (PM=I) /* txeT 4321
PRINT 'Text' (PM=I) VARI /* txeT 1234
END

725Statements

PRINT

Field Positioning, Text, Attribute Assignment

'text' [(attributes)]nX

'c' (n) [(attributes)]nT

['='] operand1 [(parameters)]/

Field Positioning Notations

DescriptionSyntax Element

Column Spacing:nX
This notation inserts n spaces between columns.

PRINT NAME 5X SALARY

Tab Setting:

The nT notation causes positioning (tabulation) to print position n. Backward positioning
results in a line advance.

In the following example, NAME is printed beginning in position 25, and SALARY is printed
beginning in position 50:

nT

PRINT 25T NAME 50T SALARY

Line Advance - Slash Notation:

When placed between fields or text elements, a slash (/) causes positioning to the beginning
of the next print line.

/

PRINT NAME / SALARY

Text/Attribute Assignment

DescriptionSyntax Element

Text Assignment:

The character string enclosed by single quotes is displayed.

'text'

Statements726

PRINT

DescriptionSyntax Element

PRINT 'EMPLOYEE' NAME 'MARITAL/STATUS' MAR-STAT

Character Repetition:

The character c enclosed by single quotes is displayed n times immediately before the field
value.

'c' (n)

PRINT '*' (5) '=' NAME

Field Content Positioned behind Field Heading:

When placed before a field, the equal sign '=' results in the display of the field heading (as
defined in the DEFINE DATA statement or in the DDM) followed by the field contents.

'='

PRINT '=' NAME

Field to be Printed:

As operand1 you specify the field to be printed.

operand1

Parameter Definition at Element (Field) Level:

One or more parameters (see table above), enclosed within parentheses, may be specified
immediately after operand1.

parameters

Each parameter specified in this manner will override any previous parameter specified at
statement level or in a GLOBALS command, SET GLOBALS (in Reporting Mode only) or
FORMAT statement.

If more than one parameter is specified, one or more blanks must be placed between each
entry. An entry must not be split between two statement lines.

See also:

■ Statement Parameters
■ Example of Parameter Usage at Statement and Element (Field) Level

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

727Statements

PRINT

AD=ad-value
CD=cd-value
PM=pm-value

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-valuewithout preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IREwill be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-value
or ad-valuewith a value preceded by CD= or AD=.

Example

■ Example 1 - PRINT Statement
■ Example 2 - PRINT Statement with Report to be Downloaded to the PC

Example 1 - PRINT Statement

** Example 'PRTEX1': PRINT
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE
2 ADDRESS-LINE (2)

END-DEFINE
*
LIMIT 1
READ EMPLOY-VIEW BY CITY

/*
WRITE NOTITLE 'EXAMPLE 1:'

// 'RESULT OF WRITE STATEMENT:'

Statements728

PRINT

WRITE / NAME ',' FIRST-NAME ':' JOB-TITLE '*' (30)
WRITE / 'RESULT OF PRINT STATEMENT:'
PRINT / NAME ',' FIRST-NAME ':' JOB-TITLE '*' (30)
/*
WRITE // 'EXAMPLE 2:'

// 'RESULT OF WRITE STATEMENT:'
WRITE / NAME 60X ADDRESS-LINE (1:2)
WRITE / 'RESULT OF PRINT STATEMENT:'
PRINT / NAME 60X ADDRESS-LINE (1:2)
/*

END-READ
END

Output of Program PRTXEX1:

EXAMPLE 1:

RESULT OF WRITE STATEMENT:

SENKO , WILLIE : PROGRAMMER

RESULT OF PRINT STATEMENT:

SENKO , WILLIE : PROGRAMMER ******************************

EXAMPLE 2:

RESULT OF WRITE STATEMENT:

SENKO
2200 COLUMBIA PIKE #914

RESULT OF PRINT STATEMENT:

SENKO 2200 COLUMBIA
PIKE #914

Example 2 - PRINT Statement with Report to be Downloaded to the PC

** Example 'PCPIEX1': PRINT to PC
**
** NOTE: Example requires that Natural Connection is installed.
**
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES

02 PERSONNEL-ID
02 NAME
02 CITY

END-DEFINE

729Statements

PRINT

*
FIND PERS WITH CITY = 'NEW YORK' /* Data selection

PRINT (7) 5T CITY 20T NAME 40T PERSONNEL-ID /* (7) designates
/* the output file
/* (here the PC).

END-FIND
END

Statements730

PRINT

103 PROCESS

■ Function .. 732
■ Restriction .. 732
■ Syntax Description ... 732

731

PROCESS view-name USING {operand1=operand2}, [GIVING operand3]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The PROCESS statement is used in conjunctionwith Entire SystemServer. Entire SystemServer allows
you to use various operating system facilities such as reading andwriting files, VTOC and catalog
management, JES queues, etc.

See the section Getting Started in the Entire System Server User's Guide for further information on
the PROCESS statement and its individual clauses.

Restriction

This statement is only available with Entire System Server.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesBPNASCoperand1

noyesBPNUASCoperand2

noyesBPNASoperand3

Syntax Element Description:

DescriptionSyntax Element

View Name:view-name

Name of the view used by Entire System Server.

USING Clause:USING

The USING clause is used to pass parameters to the Entire System Server processor. This is
done by assigning a value (operand2) to a field (operand1) in a view defined to Entire
System Server. See the Entire System Server documentation for view description.

Statements732

PROCESS

DescriptionSyntax Element

Note: Multiple specifications of operand1=operand2must be separated either by the input
delimiter character (as specified with the session parameter ID) or by a comma.

GIVING Clause:GIVING

The GIVING clause is used to specify the fields (operand3) forwhich values are to be returned
by the Entire System Server processor. Each field must be defined in a view used by Entire
System Server.

733Statements

PROCESS

734

104 PROCESS COMMAND

■ Function .. 737
■ Syntax Description ... 738
■ Examples ... 748

735

CHECK | EXEC | TEXT | HELP Syntax:

PROCESS COMMAND ACTION

PROCESSOR-NAME=operand1USING

CHECK
EXEC

COMMAND-LINE (index[:index])=operand2

TEXT
(see Syntax Note)RESULT-FIELD (index[:index])GIVING

HELP RETURN-CODE

[NATURAL-ERROR]

GET Syntax:

PROCESS COMMAND ACTION

PROCESSOR-NAME=operand1USINGGET

GETSET-FIELD-NAME=operand3

(see Syntax Note)GETSET-FIELD-VALUEGIVING

[NATURAL-ERROR]

SET Syntax:

PROCESS COMMAND ACTION

PROCESSOR-NAME=operand1USINGSET

GETSET-FIELD-NAME=operand3

GETSET-FIELD-VALUE=operand4

NATURAL-ERROR] (see Syntax Note)[GIVING

CLOSE Syntax:

PROCESS COMMAND ACTION

[GIVING NATURAL-ERROR] (see Syntax Note)CLOSE

Syntax Note:

The GIVING option is only required in the reporting mode and if no VIEW OF COMMAND has been
defined in the DEFINE DATA statement.

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Invoking Programs and Routines

Statements736

PROCESS COMMAND

Function

Once a Natural Command Processor has been created using the Natural utility SYSNCP, it can be
invoked from a Natural program using the PROCESS COMMAND statement.

For details on how to create aNatural CommandProcessor, refer to the SYSNCPUtilitydocument-
ation.

DDMUsed for Command Processing

Important: The word COMMAND in the PROCESS COMMAND statement is in fact the name of a
view. The name of the view that is used need not necessarily be COMMAND; however, we re-
commend the use of COMMAND because there exists a DDM (data definition module) that is
also called COMMAND. This DDMmust be referenced within the DEFINE DATA statement, for
example COMMAND VIEW OF COMMAND.

The DDM COMMAND has been created specifically for use in conjunction with the PROCESS COMMAND
statement:

DB: 1 File: 1 - COMMAND Default Sequence: ?

TYL DB NAME F LENG S D REMARKS
--- -- -------------------------------- - ---- - - ------------------------

1 AA PROCESSOR-NAME A 8 N D DE USING
M 1 AB COMMAND-LINE A 80 N D MU/DE USING

1 AF GETSET-FIELD-NAME A 32 N D DE USING
1 BA NATURAL-ERROR N 4.0 N GIVING
1 BB RETURN-CODE A 4 N GIVING

M 1 BC RESULT-FIELD A 80 N MU GIVING
1 BD GETSET-FIELD-VALUE A 32 N D USING; GIVING

***** DDM OUTPUT TERMINATED ******

The fields contained in the DDM correspond to the fields used in the PROCESS COMMAND statement.
They are explained in Syntax Element Description.

Note: To avoid possible compilation or runtime errors, make sure that the DDM named
COMMAND is cataloged as type C (field DDM Type on the SYSDDMMenu) before you use it. (If
you re-catalog the DDM, anyDBID/FNR specification in the SYSDDM utility will be ignored.)

Security Considerations

With Natural Security, it is possible to restrict the usage of certain keywords and/or functions
which are defined in aCommandProcessor. Keywords and/or functions can be allowed/disallowed
for a specific user or group of users. See the Natural Security documentation for details.

737Statements

PROCESS COMMAND

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

nonoASCoperand1

nonoNAGASCoperand2

nonoNASCoperand3

nonoIPNASCoperand4

Syntax Element Description:

DescriptionSyntax Element

CHECK Action:CHECK
CHECK is used as a precautionarymeasure to determine if a command is executable
with the statement PROCESS COMMAND EXEC. It works as follows: for the given
Command Processor name, a runtime check is performed in two steps:

■ It is checked whether the Command Processor exists in the current library or
one of its steplibs;

■ The content of the command line COMMAND-LINE (1) is analyzed to determine
whether it is acceptable.

In addition, the runtime action definitions R, M and 1-9 are written into
RESULT-FIELD (1:9).

If the field NATURAL-ERROR is specified in the view or in the GIVING option, it
returns the error code. If this field is not available and the command analysis fails,
a Natural system error occurs.

Note: No CHECK is required if you want to perform an EXEC action. The CHECK is
included in an EXEC operation.

EXEC Action:EXEC

EXECworks exactly the same as CHECKwith the addition that the runtime actions
are executed as specified in the runtime action editor.

Only COMMAND-LINE (1) is needed. You can use up to 9 occurrences of
RESULT-FIELD (however, for optimum performance, you should not use more
occurrences than you really need).

Note: EXEC is the only action which can be used to leave the currently active
program. This is the case when the runtime action definition contains a FETCH or
STOP statement.

Statements738

PROCESS COMMAND

DescriptionSyntax Element

See also Example 1 - PROCESS COMMAND ACTION EXEC.

TEXT Action:TEXT

TEXT delivers general information about the Command Processor and text
associated with a keyword or function.

For further information, see the following sections under Input Values for TEXT
Actions:

■ TEXT for General Information
■ TEXT for Keyword Information
■ TEXT for Function Information

Note: To access texts for keywords and functions, you must have specified Y in
the field Catalog user texts on the Processor Header Maintenance 3 screen of
the SYSNCP utility, see the sectionMiscellaneous Options - Header 3.

HELP Action:HELP

HELP returns a list of all valid keywords, synonyms, and functions for the purpose
of, for example, the creation of online help windows. This list is contained in the
field(s) of RESULT-FIELD. The type of help returned is dependent on the content
of the command lines.

■ COMMAND-LINE (1)must contain the search criteria.
■ COMMAND-LINE (2), if specified, must contain the start value or a search value.
■ COMMAND-LINE (3), if specified, must contain a start value.

For further information, see the following sections under Input Values for HELP
Actions:

■ HELP for Keywords
■ HELP for Synonyms
■ HELP for Global Functions
■ HELP for Local Functions
■ HELP for IKN
■ HELP for IFN

Note: For optimum performance, the number of occurrences of the field
RESULT-FIELD should not exceed the number of lines to be displayed on the
screen. At least one occurrence must be used.

GET Action:GET
GET reads internal Command Processor information and current Command
Processor settings from the dynamically allocated NCPWORK buffer.

SET Action:SET
SETmodifies internal Command Processor settings in the NCPWORK buffer.

739Statements

PROCESS COMMAND

DescriptionSyntax Element

CLOSE Action:CLOSE
CLOSE terminates the use of the Command Processor and releases the Command
Processor buffer.

When the Command Processor is used during a session and is not released with
CLOSE, then there exists a buffer named NCPWORK in your thread. The runtime part
of the Command Processor requires this buffer; it can be released using the
statement PROCESS COMMAND ACTION CLOSE.

If any PROCESS COMMAND statement follows this statement, then the Command
Processor buffer will be opened again.

See also Example 2 - PROCESS COMMAND ACTION CLOSE.

GIVING Option:GIVING

This option is only required in reporting mode and if no VIEW OF COMMAND has
been defined in the DEFINE DATA statement.

The GIVING option is not available in structured mode, because there exists an
implicit GIVING option made up of all fields specified in the DEFINE DATA
statement, which are usually referenced in the GIVING option for the reporting
mode.

This means that in structured mode all field defined in the GIVING option must
be defined in the DEFINE DATA statement.

Note: Specified in the GIVING option are fields to be filled by the Command
Processor as a result of the processing of any action.

The name of the Command Processor to be used for processing.

The Command Processor specified must be cataloged.

PROCESSOR-NAME

The command line to be processed by a CHECK or an EXEC action, or the
keyword/command forwhich user text or help text is to be returned to the program
by a TEXT or HELP action.Note that this field can containmore than one occurrence.

COMMAND-LINE

Contains information resulting from the use of options that can be specifiedwithin
a runtime action defined for a Command Processor function (see RuntimeActions

RESULT-FIELD

in the Natural SYSNCP utility). Note that this field can contain more than one
occurrence.

The return code of an operation resulting from an EXEC or a CHECK action as
specified within a Runtime Actions definition (see the Natural SYSNCP utility).

RETURN-CODE

The Natural error returned for a PROCESS COMMAND action.

We recommend that you use this field in the DEFINE DATA statement as it returns
the Natural error code for the Command Processor. When the field is absent,
Natural runtime error processing is triggered if an error occurs.

NATURAL-ERROR

Statements740

PROCESS COMMAND

DescriptionSyntax Element

The name of the constant or variable that is read when a GET action is performed
or that is written with a SET action.

For a list of possible values for GETSET-FIELD-NAME, see Input Values for
GETSET-FIELD-NAME.

GETSET-FIELD-NAME

The value of the constant or variable specified in the field GETSET-FIELD-NAME
which is read when a GET action is performed or which written with a SET action.

GETSET-FIELD-VALUE

This section covers the following topics:

■ Input Values for GETSET-FIELD-NAME
■ Input Values for TEXT Actions
■ Input Values for HELP Actions

Input Values for GETSET-FIELD-NAME

The following values can be used for the GETSET-FIELD-NAME field (A32):

ContentG/S*FormatField Name

Name of current Command Processor.GA8NAME

Loaded from library.GA8LIBRARY

Loaded from file.GN10FNR

Loaded from database.GN10DBID

Time stamp of the current Command Processor.GA8TIMESTMP

Access counter.GN10COUNTER

Bytes allocated for NCPWORK.GN10BUFFER-LENGTH

Multiple command delimiter.G/SA1C-DELIMITER

Delimiter to precede data.GA1DATA-DELIMITER

PF key may be command (Y/N).G/SA1PF-KEY

Keywords in upper case (Y/N).GA1UPPER-CASE

Keywords unique (Y/N).GA1UQ-KEYWORDS

Identifier for implicit keyword entry.G/SA1IMPLICIT-KEYWORD

Minimum length of keywords.GN10MIN-LEN

Maximum length of keywords.GN10MAX-LEN

Keyword sequence.G/SA8KEYWORD-SEQ

Alternative keyword sequence.G/SA8ALT-KEYWORD-SEQ

User may override KEYWORD-SEQ (Y/N).GA1USER-SEQUENCE

Current location (IFN).G/SN10CURR-LOCATION

IKN1 of current location.G/SN10CURR-IKN1

IKN2 of current location.G/SN10CURR-IKN2

741Statements

PROCESS COMMAND

ContentG/S*FormatField Name

IKN3 of current location.G/SN10CURR-IKN3

Last checked location (IFN).GN10CHECK-LOCATION

IKN1 of CHECK-LOCATION.GN10CHECK-IKN1

IKN2 of CHECK-LOCATION.GN10CHECK-IKN2

IKN3 of CHECK-LOCATION.GN10CHECK-IKN3

IKN1 of topmost keyword.GN10TOP-IKN1

IKN2 of topmost keyword.GN10TOP-IKN2

IKN3 of topmost keyword.GN10TOP-IKN3

Number of keywords of type 1.GN10KEY1-TOTAL

Number of keywords of type 2.GN10KEY2-TOTAL

Number of keywords of type 3.GN10KEY3-TOTAL

Number of cataloged functions.GN10FUNCTIONS-TOTAL

Local/global function validation.G/SA8LOCAL-GLOBAL-SEQ

General error program.G/SA8ERROR-HANDLER

Natural Security installed (Y/N).GA1SECURITY

Natural Security data are to be read (Y/N) or have been read (D = done).GA1SEC-PREFETCH

Corresponds to the field Prefix Character 1 on the Processor
Header Maintenance 2 screen of the SYSNCP utility, see the section
Keyword Editor Options - Header 2.

GA1PREFIX1

Corresponds to the field Prefix Character 2 on the Processor
Header Maintenance 2 screen.

GA1PREFIX2

Corresponds to the field Hex. Replacement 1 on the Processor
Header Maintenance 2 screen.

GA1HEX1

Corresponds to the field Hex. Replacement 2 on the Processor
Header Maintenance 2 screen.

GA1HEX2

Dynamic part (:n:) of last error message.GA32DYNAMIC

Last command placed on top of stack as data.G-LAST

Last commands placed on top of stack as data.G-LAST-ALL

Last command moved to *COM.G-LAST-COM

Places the last of multiple commands as data on top of the stack.G-MULTI

Places the last of multiple commands in the system variable *COM.G-MULTI-COM

*G = Field name can be used with the GET action.
*S = Field name can be used with the SET action.

Statements742

PROCESS COMMAND

Input Values for TEXT Actions

The following input values are provided to return different information from a TEXT action:

TEXT for General Information
For general information, COMMAND-LINE (*); that is, all command lines, must be blank. Up to
nine fields of RESULT-FIELD are returned containing the following information:

ContentsFormatRESULT-FIELD

Header 1 for User TextText (A40)1

Header 2 for User TextText (A40)2

“First Entry used as” textText (A16)3

“Second Entry used as” textText (A16)4

“Third Entry used as” textText (A16)5

Number of Entry 1 KeywordsNumeric (N3)6

Number of Entry 2 KeywordsNumeric (N3)7

Number of Entry 3 KeywordsNumeric (N3)8

Number of Cataloged FunctionsNumeric (N7)9

TEXT for Keyword Information
For keyword information, COMMAND-LINE (1)must contain the corresponding keyword;
COMMAND-LINE (2) can optionally contain the keyword type (1, 2, 3 or P); COMMAND-LINE (3:6)
must be empty.

FormatContentsRESULT-FIELD

Text (A40)Keyword comment text1

Text (A16)Keyword in full length2

Text (A16)Keyword in unique short form3

Text (A16)“Keyword used as” entry4

Numeric (N4)Internal keyword number (IKN)5

Numeric (N2)Minimum length of keyword6

Numeric (N2)Maximum length of keyword7

Text (A2)Keyword type (1, 2, 3, 1S, 2S, 3S, P)8

TEXT for Function Information
For function information, COMMAND-LINE (1:3)must contain the keywords which specify the
wanted location. COMMAND-LINE (4:6) contains the keywords which specify the wanted
function. For example, if information about the global command ADD USER is to be returned,
the command lines 1, 2, 3, and 6must be blank; the command line 4must contain the text string
ADD, and the command line 5 must contain the text string USER.

743Statements

PROCESS COMMAND

ContentsFormatRESULT-FIELD

Text as defined with the option T in runtime action definition.Text (A40)1

Internal function number (IFN) of the specified location.Numeric (N10)2

Internal function number (IFN) of the specified function.Numeric (N10)3

Input Values for HELP Actions

The following input values are provided to return different information from a HELP action:

HELP for Keywords
This action returns an alphabetically sorted list of keywords and/or synonyms with their in-
ternal keyword numbers (IKN).

ContentsCommand
Line

Must begin with indicator K.1
The types of keywords to be returned:

Keywords of all types*

Keywords with type 11

Keywords with type 22

Keywords with type 33

Keywords with type P (parameter)P

Options:

Return IKN in addition to keywords.I

Show keyword partially in upper case (to show possible
abbreviation).

T

Return synonyms in addition to keywords.S

Return only synonyms of specified keywords.X

Internal keywords are also returned.A

Search does not include start value.+

Start value for the keyword search (optional).

By default, the search beginswith the start value. However, if you specify the plus (+) option,
the search does not include the start value itself, but begins with the next higher value.

2

The field RESULT-FIELD (1:n) returns the specified list.

Statements744

PROCESS COMMAND

Examples:

Command Line 1: K*X Returns all synonyms of all keyword types.

Command Line 1: K123S Returns all keywords of type 1, 2 and 3 including ↩
synonyms.

HELP for Synonyms
For a given IKN, this action returns the original keyword and all synonyms.

ContentsCommand Line

Must begin with the indicator S.1
Option:

Shows keyword partially in upper case (to show
possible abbreviation).

T

Internal Keyword Number (IKN) of the keyword in format N4.2

The field RESULT-FIELD (1) returns the original keyword. The fields RESULT-FIELD (2:n)
return associated synonyms for this keyword.

Example:

Output:Input:

Result-Field 1: Edit
Result-Field 2: Maintain
Result-Field 3: Modify

Command Line 1: S
Command Line 2: 1003

HELP for Global Functions
This action returns a list of all global functions.

ContentsCommand
Line

Must begin with the indicator G.1
Options:

Internal Function Number (IFN) is also returned.I

Shows keyword partially in upper case (to show possible
abbreviation).

T

The keywords returned in RESULT-FIELDwill be aligned
in columns.

S

Internal keywords are also returned.A

Only functions containing the given keyword of type 1
are to be returned.

1

745Statements

PROCESS COMMAND

ContentsCommand
Line

Only functions containing the given keyword of type 2
are to be returned.

2

Only functions containing the given keyword of type 3
are to be returned.

3

Search does not include start value.+

Start value for global function search. Keywords must be given in sequence 123.

By default, the search beginswith the start value. However, if you specify the plus (+) option,
the search does not include the start value itself, but begins with the next higher value.

2

Must be blank.3

To search only for global functions with a specific keyword, you specify the keyword here.

If you specify a keyword, you also have to specify the keyword type (1, 2 or 3) as option (see
above).

4

The field RESULT-FIELD (1:n) returns the specified list.

Example:

Output:Input:

Result-Field 1: ADD CUSTOMER
Result-Field 2: ADD FILE
Result-Field 3: ADD USER

Command Line 1: G
Command Line 2: ADD

HELP for Local Functions
This action returns a list of all local functions for a specified location.

ContentsCommand
Line

Must begin with the indicator L.1
Options:

Internal Function Number (IFN) is also returned.I

Shows keyword partially in upper case (to show possible
abbreviation).

T

The keywords returned in RESULT-FIELDwill be aligned in
columns.

S

Internal keywords are also returned.A

Only functions containing given keyword of type 1 are to be
returned.

1

Only functions containing given keyword of type 2 are to be
returned.

2

Statements746

PROCESS COMMAND

ContentsCommand
Line

Only functions containing given keyword of type 3 are to be
returned.

3

Only those functions are returned which are defined for the
current location (command line 3 is ignored).

C

Invoke “recursive” listing of local functions; that is, all local
commands that lead to the current/specified location will be
returned.

F

Start value for local function search (optional).

Keywords must be given in sequence 123.

2

The location for which the list is to be returned.

Keywords must be given in sequence 123.

3

If no location is specified, the current location of the Command Processor will be used.

Keyword restriction (optional):

If you specify a keyword, or an IKN with the format N4, only functions with this keyword
will be returned.

4

The field RESULT-FIELD (1:n) returns the specified list.

HELP for IKN
For any given internal keyword numbers (IKN), this action returns the original keyword.

ContentsCommand Line

Must start with IKN.1
Options:

The internal keyword will be shown.A

Shows keyword partially in upper case (to show possible
abbreviation).

T

The IKN to be translated, in format N4.2

The field RESULT-FIELD (1) returns the keyword.

Example:

747Statements

PROCESS COMMAND

Output:Input:

Result-Field 1: CUSTOMERCommand Line 1: IKN
Command Line 2: 0000002002

HELP for IFN
For any given internal function numbers (IFN), this action returns the keywords of a function.

ContentsCommand
Line

Must start with IFN.1
Option:

Functions with internal keywords will not be suppressed.A

The IFN to be translated, in format N10.2
Further options:3

Keywords belonging to the IFN will be returned in RESULT-FIELD
(1:3).

S

Shows keywords partially in upper case (to show possible
abbreviations).

T

IFN will be returned if IFN is used as a location.L

IFN will be returned if IFN is used as a command.C

The field RESULT-FIELD(1) returns the function; if option S is used, the function is returned
in RESULT-FIELD (1:3).

Example:

Output:Input:

Result-Field 1: DISPLAY INVOICECommand Line 1: IFN
Command Line 2: 0001048578

Examples

In addition to the example programs shown in this section, you can find example programs in the
SYSNCP system library. These programs all begin with EXAM.

You can test all available PROCESS COMMAND actions by executing the EXAM program in SYSNCP. You
can then choose an action from a menu.

■ Example 1 - PROCESS COMMAND ACTION EXEC

Statements748

PROCESS COMMAND

■ Example 2 - PROCESS COMMAND ACTION CLOSE

Example 1 - PROCESS COMMAND ACTION EXEC

/* EXAM-EXS - Example for PROCESS COMMAND ACTION EXEC (Structured Mode)
/**
DEFINE DATA LOCAL

01 COMMAND VIEW OF COMMAND
02 PROCESSOR-NAME
02 COMMAND-LINE (1)
02 NATURAL-ERROR
02 RETURN-CODE
02 RESULT-FIELD (1)

01 MSG (A65) INIT <'Please enter a command.'>
END-DEFINE
/*
REPEAT

INPUT (AD=MIT' ' IP=OFF) WITH TEXT MSG
'Example for PROCESS COMMAND ACTION EXEC (Structured Mode)' (I)

/ 'Command ==>' COMMAND-LINE (1) (AL=64)
/*******

PROCESS COMMAND ACTION EXEC
USING
PROCESSOR-NAME = 'DEMO'
COMMAND-LINE (1) = COMMAND-LINE (1)

/*******
COMPRESS 'NATURAL-ERROR =' NATURAL-ERROR TO MSG

END-REPEAT
END

Example 2 - PROCESS COMMAND ACTION CLOSE

/* EXAM-CLS - Example for PROCESS COMMAND ACTION CLOSE (Structured Mode)
/***
DEFINE DATA LOCAL

01 COMMAND VIEW OF COMMAND
END-DEFINE
/*
PROCESS COMMAND ACTION CLOSE
/*
DEFINE WINDOW CLS
INPUT WINDOW = 'CLS'

'NCPWORK has just been released.'
/*
END

749Statements

PROCESS COMMAND

750

105 PROCESS PAGE

■ Function .. 752
■ Syntax 1 - PROCESS PAGE .. 752
■ Syntax 2 - PROCESS PAGE USING .. 755
■ Syntax 3 - PROCESS PAGE UPDATE ... 758
■ Syntax 4 - PROCESS PAGE MODAL .. 761
■ Examples ... 763

751

Function

The PROCESS PAGE statement constitutes a general interface description to an external rendering
engine, such as Natural for Ajax, thus linking the Natural internal data representation with an
external data representation. Via this link, data and events, but no rendering information, are sent
to and returned from an external, browser-based application.

For further information, refer to the Natural for Ajax documentation. The latest Natural for Ajax
documentation is always available at https://empower.softwareag.com/.

Syntax 1 - PROCESS PAGE

PROCESS PAGE [(parameter)] operand1

[WITH PARAMETERS

{[NAME] operand3 [VALUE] operand4 [(parameters)]} ...

END-PARAMETERS]

[GIVING operand11]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Screen Generation for Interactive Processing

Syntax Description - Syntax 1

Syntax 1 of the PROCESS PAGE statement is normally only used inside aNatural adapter. An adapter
is a Natural object that forms the interface between Natural application code and web page. It is
automatically created/updated by Natural for Ajax when the layout is saved.

Note:

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesUASCoperand1

nonoCASoperand2

noyesUASCoperand3

yesyesLTDBFIPNUAASCoperand4

nonoCASoperand5

Statements752

PROCESS PAGE

https://empower.softwareag.com/

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

yesyesI4Soperand11

Syntax Element Description:

DescriptionSyntax Element

Attribute Control Variable(s):parameter
The parameter CV, enclosed within parentheses, may be specified to reference one or
more attribute control variables as specified in operand2:

(CV=operand2)

See also Logical Condition Criteria,MODIFIED Option - Check whether Field Content has
been Modified in the Programming Guide.

External Page Layout Name:
operand1 contains the name of the external page layout.

operand1

Name of Attribute Control Variable(s):

operand2 contains the name of the attribute control variable, must be of format C and
must be either a scalar or a single array occurrence.

operand2

Name(s) of external Data Field(s):operand3
operand3 contains the name(s) of the external data field(s) operand4will be transferred
to/from.

Name(s) of Natural Data Field(s):operand4
operand4 contains the name(s) of the Natural data field(s) which will be transferred.

parameters Parameters:
One or more parameters, enclosed within parentheses, may be specified immediately
after operand4:

Edit mask used during data transfer.EM or EMU

For further information, see the session parameter EM in the
Parameter Reference.

For details onUnicode editmasks, see the session parameter EMU
in the Parameter Reference.

753Statements

PROCESS PAGE

DescriptionSyntax Element

The parameter CV, enclosedwithin parentheses,may be specified
immediately after operand4 to reference one or more attribute
control variables as specified in operand5:

CV

(CV=operand5)

See also Logical Condition Criteria,MODIFIED Option - Check
whether Field Content has been Modified in the Programming Guide.

Name of Attribute Control Variable:
operand5 contains the name of the attribute control variable. The variable must be of
format C.

If operand4 is a scalar or a single array occurrence, operand5must be

operand5

■ a scalar
■ or a single array occurrence.

If operand4 is the full range of an array of dimension 1, operand5must be

■ a scalar
■ or a single array occurrence
■ or the full range of an array of dimension 1 with the same size.

If operand4 is the full range of an array of dimension 2, operand5must be

■ a scalar
■ or a single array occurrence
■ or the full range of an array of dimension 2 with the same size in both dimensions
■ or the full range of an array of dimension 1 with the same size that operand4 has in
dimension 1.

If operand4 is the full range of an array of dimension 3, operand5must be

■ a scalar
■ or a single array occurrence
■ or the full range of an array of dimension 3 with the same size in all three dimensions
■ or the full range of an array of dimension 2 with the same size that operand4 has in
dimension 1 and 2

■ or the full range of an array of dimension 1 with the same size that operand4 has in
dimension 1.

GIVING Clause:GIVING
operand11

operand11 contains the Natural error if the request could not be performed.

Statements754

PROCESS PAGE

Example of an adapter which has been created by Natural for Ajax:

* PAGE1: PROTOTYPE --- CREATED BY Natural for Ajax ---
* PROCESS PAGE USING 'XXXXXXXX' WITH
* INFOPAGENAME RESULT YOURNAME
DEFINE DATA PARAMETER
1 INFOPAGENAME (U) DYNAMIC
1 RESULT (U) DYNAMIC
1 YOURNAME (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/njxdemos/helloworld' WITH
PARAMETERS
NAME U'infopagename'
VALUE INFOPAGENAME

NAME U'result'
VALUE RESULT

NAME U'yourname'
VALUE YOURNAME

END-PARAMETERS
*
* TODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U'nat:page.end'
* /* Page closed.
* IGNORE
* VALUE U'onHelloWorld'
* /* TODO: Implement event code.
* PROCESS PAGE UPDATE FULL
* NONE VALUE
* /* Unhandled events.
* PROCESS PAGE UPDATE
* END-DECIDE
/*/*) END-HANDLER
*
END

Syntax 2 - PROCESS PAGE USING

PROCESS PAGE USING operand6

WITH {operand7}
NO PARAMETER

GIVING operand11]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

755Statements

PROCESS PAGE

Belongs to Function Group: Screen Generation for Interactive Processing

Syntax Description - Syntax 2

This syntax is used to perform rich GUI input/output processing using an object of type adapter
that has been generated from a page layout created with Natural for Ajax or a similar tool.

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand6

yesyesLTDBFIPNUAGASoperand7

yesyesI4Soperand11

Syntax Element Description:

DescriptionSyntax Element

Adapter Name:USING
operand6

Invokes an adapter definition which has been previously stored in a Natural system file.
See also Processing a Rich GUI Page - Adapter in the Programming Guide.

The adapter name (operand6) may be a 1 to 8 character alphanumeric constant or
user-defined variable. If a variable is used, it must have been defined previously.

The adapter name may contain an ampersand (&); at execution time, this character will
be replaced by the current value of the Natural system variable *LANGUAGE. This feature
is provided for historical reasons. If you need multi-lingual adapters, use the capability
of the external rendering system (for example, Natural for Ajax).

Note: New applications do not need the ampersand feature to be multilingual. Pages
designed, for example, using Natural for Ajax, can holdmultilingual information as part
of the layout design. SeeMulti LanguageManagement in theNatural for Ajaxdocumentation.

Field Specification:operand7

A list of database fields and/or user-defined variables, all ofwhichmust have been defined
previously. The fields must agree in number, sequence, format, length and (for arrays)
number of occurrences with the fields in the referenced adapter; otherwise, an error
occurs.

When the content of a database field ismodified as a result of PROCESS PAGE processing,
only the value as contained in the data area is modified. In order to change the content
of the database, appropriate database UPDATE/STORE statements must be used.

See PROCESS PAGE USING Fields Defined in the Program.

NO PARAMETER Option:NO PARAMETER

Statements756

PROCESS PAGE

DescriptionSyntax Element

See PROCESS PAGE USING without Parameter List.

GIVING Clause:GIVING
operand11

operand11 contains the Natural error if the request could not be performed.

Note: The GIVING clause interrupts the common Natural error handling, if an error
occurs while the adapter object is being activated or executed. Instead of back-tracking
theNaturalmodules in order to find an ON ERROR clause, theNatural error code is passed
to this variable and execution is continued with the next statement.

PROCESS PAGE USING without Parameter List

The following requirements must be met when PROCESS PAGE USING is used without parameter
list:

■ The adapter name (operand6)must be specified as an alphanumeric constant (up to 8 characters).
■ The adapter used in thismannermust have been created prior to the compilation of the program
which references the adapter.

■ The names of the fields to be processed are taken dynamically from the adapter source definition
at compilation time. The field names used in both program and adapter must be identical.

■ All fields to be referenced in the PROCESS PAGE statement must be accessible at that point.
■ In structuredmode, fieldsmust have been defined previously (database fieldsmust be properly
referenced to processing loops or views).

■ When the page layout is changed, the programs using the adapter need not be recataloged.
However, when array structures or names, formats/lengths of fields are changed, or fields are
added/deleted in the adapter, the programs using the adapter must be recataloged.

■ The adapter source must be available at program compilation; otherwise, the PROCESS PAGE
USING statement cannot be compiled.

Note: If you wish to compile the program even if the adapter is not yet available, specify
NO PARAMETER. The PROCESS PAGE USING statement can then be compiled even if the adapter
is not yet available.

PROCESS PAGE USING Fields Defined in the Program

By specifying the names of the fields to be processed within the program (operand7), it is possible
to have the names of the fields in the program differ from the names of the fields in the adapter.

The sequence of fields in the programmust match the sequence in the adapter. If you use Natural
maps as adapter objects, note that the map editor sorts the fields as specified in the map in alpha-
betical order by field name. For more information, see the map editor description in your Editors
documentation.

757Statements

PROCESS PAGE

When the layout of the adapter is changed, the program using the adapter does not need to be
recataloged. However, when field names, field formats/lengths, or array structures in the adapter
are changed or fields are added or deleted in the adapter, the program must be recataloged.

A check is made at execution time to ensure that the format and length of the fields as specified
in the program match the fields as specified in the adapter. If both layouts do not agree, an error
message is produced.

Syntax 3 - PROCESS PAGE UPDATE

PROCESS PAGE UPDATE

[event-option] [GIVING operand11]FULL
DATA

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Screen Generation for Interactive Processing

Syntax Description - Syntax 3

The PROCESS PAGE UPDATE statement is used to return to and re-execute a PROCESS PAGE statement.
It is generally used to return from event processing, because the data input processing of the pre-
ceding PROCESS PAGE statement was incomplete.

Note: No INPUT, WRITE, PRINT or DISPLAY statements may be executed between a PROCESS
PAGE statement and its corresponding PROCESS PAGE UPDATE statement.

The PROCESS PAGE UPDATE statement, when executed, repositions the program status regarding
subroutine, special condition and loop processing as it existed when the PROCESS PAGE statement
was executed (as long as the status of the PROCESS PAGE statement is still active). If the loop was
initiated after the execution of the PROCESS PAGE statement and the PROCESS PAGE UPDATE statement
iswithin this loop, the loopwill be discontinued and then restarted after the PROCESS PAGE statement
has been reprocessed as a consequence of the PROCESS PAGE UPDATE statement.

If a hierarchy of subroutines was invoked after the execution of the PROCESS PAGE statement, and
the PROCESS PAGE UPDATE is performedwithin a subroutine, Natural will trace back all subroutines
automatically and reposition the program status to that of the PROCESS PAGE statement.

It is not possible, however, to have a PROCESS PAGE statement positionedwithin a loop, a subroutine
or a special condition block, and then execute the PROCESS PAGE UPDATE statementwhen the status
under which the PROCESS PAGE statement was executed has already been terminated. An error
messagewill be produced and program execution terminatedwhen this error condition is detected.

Operand Definition Table:

Statements758

PROCESS PAGE

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

yesyesI4Soperand11

Syntax Element Description:

DescriptionSyntax Element

FULL Option:FULL

If you specify the FULL option in a PROCESS PAGE UPDATE statement, the corresponding
PROCESS PAGE statement will be re-executed fully:

■ With an ordinary PROCESS PAGE UPDATE statement (without FULL option), the
contents of variables that were changed between the PROCESS PAGE and PROCESS
PAGE UPDATE statement will not be displayed; that is, all variables on the screen will
show the contents they hadwhen thePROCESS PAGE statementwas originally executed.

■ With a PROCESS PAGE UPDATE FULL statement, all changes that have been made
after the initial execution of the PROCESS PAGE statement will be applied to the
PROCESS PAGE statement when it is re-executed; that is, all variables on the screen
contain the values they hadwhen the PROCESS PAGE UPDATE statementwas executed.
The MODIFIED status of all control variables is reset.

A characteristic of the PROCESS PAGE UPDATE FULL statement is that the status of
attribute control variables is reset to NOT MODIFIED. This is not done with the ordinary
PROCESS PAGE UPDATE statement. To check if an attribute control variable has been
assigned the status MODIFIED, use the MODIFIED option.

DATA Option:DATA

The DATA option behaves like the FULL option, with the exception that the MODIFIED
status of the control variables is not reset.

EVENT Option:event-option

See EVENT Option below.

GIVING Clause:GIVING
(operand11)

operand11 contains the Natural error if the request could not be performed.

Example User Program Fragment:

PROCESS PAGE USING "HELLOW-A"
*
/*(DEFINE EVENT HANDLER
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end'
/* Page closed.
IGNORE

VALUE U'onHelloWorld'
COMPRESS "HELLO WORLD" YOURNAME INTO RESULT
PROCESS PAGE UPDATE FULL

759Statements

PROCESS PAGE

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
/*) END-HANDLER

EVENT Option

AND SEND EVENT operand8

[WITH PARAMETERS

]}...{[NAME] operand9 [VALUE] operand10 [(EMU=value)
(EM=value)

END-PARAMETERS]

With this option, you can advise the external I/O system to run specific functions. These functions
are part of the external I/O system or implement special functions regarding the output processing
as setting of focus, displaying message boxes, etc.

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesUASCoperand8

noyesUASCoperand9

yesyesLTDBFIPNUAASCoperand10

Syntax Element Description:

DescriptionSyntax Element

Event Requested from the External I/O System:AND SEND EVENT operand8

Depending on the implementation of the external I/O system, events are
available, refer to Sending Events to the User Interface in the Natural for Ajax
documentation.

WITH PARAMETERS Clause:WITH PARAMETERS

With this clause, you can specify the following:

External Data Field Name:NAME operand9

operand9 contains the external name of the data fields operand10will be
transferred to/from.

Natural Data Fields:VALUE operand10

operand10 contains the Natural data fields which will be transferred.

Statements760

PROCESS PAGE

DescriptionSyntax Element

Edit Mask:EMU=

Edit mask used during data transfer.
EM=

For details on edit masks, see the session parameter EM in the Parameter
Reference.

For details on Unicode edit masks, see the session parameter EMU in the
Parameter Reference.

End of WITH PARAMETERS Clause:END-PARAMETERS

TheNatural reservedword END-PARAMETERSmust be used to end the WITH
PARAMETERS clause.

Syntax 4 - PROCESS PAGE MODAL

PROCESS PAGE MODAL

statement ...

END-PROCESS

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: PROCESS PAGE

Belongs to Function Group:

■ Screen Generation for Interactive Processing

Syntax Description - Syntax 4

The PROCESS PAGE MODAL statement is used to initiate a processing block and to control the lifetime
of a modal rich GUI window.

Entering the PROCESS PAGE MODAL statement block causes the following actions to be performed:

■ Data from Report 0, which is not displayed yet, will be displayed first;
■ the system variable *PAGE-LEVEL is incremented;
■ the opening of a modal page is prepared. The physical opening of the modal page will be per-
formed with the next PROCESS PAGE USING operand6 WITH statement, where operand6 is the
name of the adapter to be used.

Leaving the PROCESS PAGE MODAL statement block causes the following actions to be performed:

761Statements

PROCESS PAGE

■ If a modal page has been opened for this level, the closing of the modal page is prepared. The
physical closing of the modal page will be performed with the next PROCESS PAGE UPDATE
[FULL] statement;

■ the system variable *PAGE-LEVEL is decremented, and the system variable *PAGE-EVENT is set
back to the value it had before the statement block was entered;

■ a nat:page.default event will be raised in the program that opened the modal page.

Note: No PRINT, WRITE, INPUT or DISPLAY statements referring to Report 0 may be executed
between a PROCESS PAGE MODAL statement and its corresponding END-PROCESS statement.

The PROCESS PAGE MODAL statement is not valid in batch mode.

Syntax Element Description:

DescriptionSyntax Element

Statement(s) to be Executed:statement

In place of statement, you must supply one or several suitable statements, depending on
the situation. If you do not want to supply a specific statement, you may insert the IGNORE
statement.

End of PROCESS PAGEMODAL Statement:END-PROCESS

The Natural reserved word END-PROCESSmust be used to end the PROCESS PAGE MODAL
statement.

Example:

* Name: First Demo/Open modal!
*
PROCESS PAGE USING "EMPTY-A"
*
/*(DEFINE EVENT HANDLER
DECIDE ON FIRST *PAGE-EVENT

VALUE U'nat:page.end', U'onClose'
/* Page closed.
IGNORE

VALUE U'onNextLevel'
PROCESS PAGE MODAL
FETCH RETURN "EMPTY-P"

END-PROCESS
PROCESS PAGE UPDATE

NONE VALUE
PROCESS PAGE UPDATE

END-DECIDE
/*) END-HANDLER
END

Statements762

PROCESS PAGE

Examples

Further examples of using the PROCESS PAGE statement are contained in library SYSEXNJX.

763Statements

PROCESS PAGE

764

106 PROCESS SQL (SQL)

■ Function .. 766
■ Syntax Description ... 766
■ Entire Access Options .. 767
■ Examples ... 768

765

PROCESS SQL ddm-name <<statement-string>>

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: REQUEST DOCUMENT

Belongs to Function Group: Internet and XML

Function

The PROCESS SQL statement is used to issue SQL statements to the underlying database.

Syntax Description

DescriptionSyntax Element

DDMName:ddm-name

The name of a data definition module (DDM) must be specified to provide the
“address” of the databasewhich executes the stored procedure. Formore information,
see ddm-name.

Statement String:statement-string

The statements which can be specified in the statement-string are the same
statements which can be issued with the SQL statement EXECUTE; see also Flexible
SQL.

Caution: To avoid transaction synchronization problems between the Natural
environment and the underlying database, the COMMIT and ROLLBACK statements
must not be used within PROCESS SQL.

The statement string can cover several statement lines without any continuation
character to be specified. Comments at the end of a line as well as entire comment
lines are possible.

The statement string can also include parameters; see Parameters in Statement String
below.

Statements766

PROCESS SQL (SQL)

Parameters in Statement String

:host-variable [INDICATOR:host-variable] [LINIDICATOR:host-variable]
:U

:G

Unlike with the Parameters described in the section Basic Syntactical Items, the host-variables
used in this context must be prefixed by a colon (:). In addition, they can be preceded by a further
qualifier (:U or :G).

See further details on host-variable.

Syntax Element Description:

DescriptionSyntax Element

"USING" Variable::U:host-variable

The prefix :U qualifies the host variable as a so-called “USING” variable. Such a
variable indicates that its value is to be passed to the database.

:U is the default specification.

"GIVING" Variable::G:host-variable

The prefix :G qualifies the host variable as a so-called “GIVING” variable. Such a
variable indicates that it is to receive a value from the database.

Entire Access Options

With Entire Access, you can also specify the following as statement-string:

■ SET SQLOPTION option = value

■ SQLCONNECT option = value

■ SQLDISCONNECT

These options are only possible with Entire Access, and are described in the sectionAccessing Data
in an SQL Database (in the Programming Guide).

767Statements

PROCESS SQL (SQL)

Examples

Example for Adabas D:

PROCESS SQL ADABAS_D_DDM << LOCK TABLE EMPLOYEES IN SHARE MODE >>

Example of Calling a Procedure Stored in Adabas D:

The called procedure computes the sum of two numbers.

...
COMPUTE #N1 = 1
COMPUTE #N2 = 2
COMPUTE #SUM = 0
...
PROCESS SQL ADABAS_D_DDM << DBPROCEDURE DEMO.SUM (:#N1, :#N2, :G:#SUM) >>
...
WRITE #N1 '+' #N2 ' =' #SUM
...

Statements768

PROCESS SQL (SQL)

107 PROPERTY

■ Function .. 770
■ Syntax Description ... 770
■ Example .. 771

769

PROPERTY property-name

OF [INTERFACE] interface-name

IS operand

END-PROPERTY

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CREATE OBJECT | DEFINE CLASS | INTERFACE | METHOD | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The PROPERTY statement assigns an object data variable operand as the implementation to a
property, outside an interface definition.

It is used if the interface definition in question is included froma copycode and is to be implemented
in a class-specific way.

It may only be used within the DEFINE CLASS statement and after the interface definitions.

The interface and property names specifiedmust be defined in the INTERFACE clause of the DEFINE
CLASS statement.

Syntax Description

DescriptionSyntax Element

Property Name:property-name

This is the name assigned to the property.

Interface Name:OF interface-name

This is the name assigned to the interface.

IS Clause:IS operand

The operand in the IS clause assigns an object data variable as the place to store
the property value.

End of PROPERTY Statement:END-PROPERTY

The Natural reserved word END-PROPERTYmust be used to end the PROPERTY
statement.

Statements770

PROPERTY

Example

The example contained in the documentation of the METHOD statement showshow the same interface
is implementeddifferently in two classes, andhow the PROPERTY statement and the METHOD statement
are used to achieve this.

771Statements

PROPERTY

772

XIII
■ 108 READ .. 775
■ 109 READ RESULT SET (SQL) .. 797
■ 110 READ WORK FILE ... 801
■ 111 READLOB .. 815
■ 112 REDEFINE ... 823
■ 113 REDUCE .. 827
■ 114 REINPUT ... 833
■ 115 REJECT ... 845
■ 116 RELEASE .. 847
■ 117 REPEAT .. 851
■ 118 REQUEST DOCUMENT .. 857
■ 119 RESET .. 871
■ 120 RESIZE ... 875
■ 121 ROLLBACK (SQL) ... 881
■ 122 RETRY .. 883
■ 123 RUN .. 887

773

774

108 READ

■ Function .. 776
■ Syntax Description ... 777
■ System Variables Available with READ .. 788
■ Examples ... 788

775

[MULTI-FETCH-clause] [RECORDS] [IN] [FILE] view-nameALLREAD
(operand1)BROWSE

[PASSWORD=operand2]

[CIPHER=operand3]

[WITH REPOSITION]

[sequence/range-specification]

[STARTING WITH ISN=operand4]

[[IN] SHARED HOLD [MODE=option]]

[SKIP [RECORDS] IN HOLD]

[WHERE logical-condition]

statement

(structured mode only)END-READ

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | GET TRANSACTION DATA | DELETE | END TRANSACTION
| FIND | HISTOGRAM | GET | GET SAME | LIMIT | PASSW | PERFORM BREAK PROCESSING | READLOB |
RETRY | STORE | UPDATE | UPDATELOB

Belongs to Function Group: Database Access and Update

Function

The READ statement is used to read records from a database. The records can be retrieved in
physical sequence, in Adabas ISN sequence, or in the value sequence of a descriptor (key) field.
The READ statement causes a processing loop to be initiated.

See also the following sections in the Programming Guide:

■ READ Statement
■ Loop Processing
■ Referencing of Database Fields Using (r) Notation

Statements776

READ

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesB *IPNSCoperand1

noyesASCoperand2

noyesNSCoperand3

noyesB *IPNSCoperand4

* Format B of operand1 and operand4may be used with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Number of Records to be Read:operand1

The number of records to be read may be limited by specifying
operand1 (enclosed in parentheses, immediately after the keyword
READ) - either as a numeric constant (in the range from 0 to
4294967295) or as the name of a numeric variable.

Example:

READ (5) IN EMPLOYEES ...

MOVE 10 TO CNT(N2)
READ (CNT) EMPLOYEES ...

For this statement, the specified limit has priority over a limit setwith
a LIMIT statement.

If a smaller limit is set with the profile or session parameter LT, the
LT limit applies.

Note:

1. If you wish to read a 4-digit number of records, specify it with a
leading zero: (0nnnn); because Natural interprets every 4-digit
number enclosed in parentheses as a line-number reference to a
statement.

2. operand1 is evaluated when the READ loop is entered. If the value
of operand1 is modifiedwithin the READ loop, this does not affect
the number of records read.

777Statements

READ

DescriptionSyntax Element

ALL Option:ALL

To emphasize that all records are to be read, you can optionally specify
the keyword ALL.

The ALL option is used by default if operand1 and ALL are omitted.

MULTI-FETCH Clause:MULTI-FETCH-clause

SeeMULTI-FETCH Clause below.

View Name:view-name

As view-name, you specify the name of a view, which must have
been defined either within a DEFINE DATA statement or outside the
program in a global or local data area.

In reporting mode, view-name is the name of a DDM if no DEFINE
DATA LOCAL statement is used.

PASSWORD and CIPHER Clauses:PASSWORD=operand2

CIPHER=operand3 These clauses are applicable only to Adabas databases. They cannot
be used with Entire System Server.

The PASSWORD clause is used to provide a password when retrieving
data from a file which is password-protected.

The CIPHER clause is used to provide a cipher key when retrieving
data from a file which is enciphered.

See the statements FIND and PASSW for further information.

WITH REPOSITION Option:WITH REPOSITION

This option is used to make the READ statement sensitive for
repositioning events. SeeWITH REPOSITION Option.

Sequence/Range Specification:sequence/range-specification

This option specifies the sequence and/or the range of retrieval. See
Sequence/Range Specification.

STARTINGWITH ISN Clause:STARTING WITH ISN=operand4

This clause applies only to Adabas databases.

Access to Adabas

This clause can be used in conjunction with a READ statement in
physical or in logical (ascending/descending) sequence. The value
supplied (operand4, range from 0 to 4294967295) represents an
Adabas ISN (internal sequence number) and is used to specify a
definite record where to start the READ loop.

Statements778

READ

DescriptionSyntax Element

■ Logical Sequence
Even if documentedwith an equal character (=), the READ statement
does not return only those records with exactly the start value in
the corresponding descriptor field, but starts a logical browse in
ascending or descending order, beginning with the start value
supplied. If some records have the same contents in the descriptor
field, they will be returned in an ISN-sorted sequence.

The STARTING WITH ISN clause is some kind of a “second level”
selection criterion that applies only if the start value matches the
descriptor value for the first record. All records with a descriptor
value that is the same as the start value and an ISN that is “less
equal”(“greater equal” for a descending READ) than the start ISN
are ignored by Adabas. The first record returned in the READ loop
is either
■ the first recordwith descriptor = start value and an ISN “greater”
(“less” for a descending READ) than the start ISN,

■ or if such a record does not exist, the first recordwith a descriptor
“greater” (“less” for a descending READ) than the start value.

■ Physical Sequence
The records are returned in the order in which they are physically
stored. If a STARTING WITH ISN clause is specified,Adabas ignores
all records until the recordwith the ISN that is the same as the start
ISN is reached. The first record returned is the next record following
the ISN=start ISN record.

Examples

This clause may be used for repositioning within a READ loop whose
processing has been interrupted, to easily determine the next record
with which processing is to continue. This is particularly useful if the
next record cannot be identified uniquely by any of its descriptor
values. It can also be useful in a distributed client/server application
where the reading of the records is performed by a server program
while further processing of the records is performed by a client
program, and the records are not processed all in one go, but in
batches.

For an example, see the program REASISND below.

SHARED HOLD Clause:[[IN] SHARED HOLD
[MODE=option]]

Note: This clause can be used only for access to Adabas.

This clause can be used to place records being read in a “shared hold”
state. A record can be put in shared hold by many users at the same
time. As long as a record is in a shared hold state, it is protected from
being updated, because it cannot be set into an exclusive hold by

779Statements

READ

DescriptionSyntax Element

parallel users. This ensures data consistency for the record data, as
no one can update the record while it is being processed.

Especially if the same record is fetched with multiple statements to
read differentMU/PE occurrences (GET SAME statement) or to browse
over a LOB field in a piecemeal technique (READLOB statement), the
shared hold state can guarantee data stability over this transaction
without blocking the record for other users.

Although such a hold state is an efficient way to protect read
sequences, it is a basic and important matter when to release the
record again from this “soft lock”. Since this question depends on
individual application aspects, different options can be selected with
the MODE subclause.

ExplanationHold PeriodMODE Option

Ensures only that the
record version being

Only at the moment
of reading the record.

C

read has been
committed by the last
user who updated the
record. This option does
not really set a lock in
hold state, but checks
only that the record is
not in exclusive hold by
another user at time of
read.

Releases the record
from shared hold when

Until the next record
in a sequence is read.

Q

■ the next record is
read in the loop
sequence or

■ the loop is terminated
or

■ an END
TRANSACTION or
BACKOUT
TRANSACTION is
executed.

Releases the record
from shared hold when

Until the logical
transaction is
terminated.

S

a logical transaction is
terminated with an END
TRANSACTION or

Statements780

READ

DescriptionSyntax Element

BACKOUT TRANSACTION
statement.

MODE=Q and MODE=S ensure that the record being read cannot be
updated concurrently by other users until it has been released from
hold again.

If the MODE subclause is not specified, MODE=C is the default.

See also Example 8 - SHARED HOLD Clause below.

SKIP RECORDS Clause:SKIP RECORDS IN HOLD

Note: This clause can be used only for access to Adabas.

Whenever a record is going to be read with hold, a Natural error
NAT3145 (Adabas response code 145) might happen if the record is
in hold by another user at this time. This occurs if a shared hold is
requested and the record is in exclusive hold or if an exclusive hold
is requested and the record is in either exclusive or shared hold.

Although errorNAT3145 is surely the right reaction to assure a “clean
data processing”, sometimes it might be useful if a record in hold
could be skipped. If it is alright that such a record will not be
processed and the loop processing should continue, the SKIP
RECORDS clause should be used.

If the SKIP RECORDS clause is applied, Natural first tries to read the
record with hold.

If the record is already in hold and the Natural error NAT3145would
occur,

■ no error processing is initiated;
■ the record (currently in hold by another user) is instantly re-fetched
without hold, but not processed in terms of the program logic;

■ the record which comes next after the skipped record is read with
hold and the processing continues.

See also Example 9 - SKIP RECORDS Clause.

WHERE Clause:WHERE logical-condition

The WHERE clause may be used to specify an additional selection
criterion (logical-condition) which is evaluated after a value has
been read and before any processing is performed on the value
(including the AT BREAK evaluation).

The syntax for a logical-condition is described in the section
Logical Condition Criteria in the Programming Guide.

781Statements

READ

DescriptionSyntax Element

If a LIMIT statement or a processing limit is specified in a READ
statement containing a WHERE clause, records which are rejected as a
result of the WHERE clause are not counted against the limit.

End of READ Statement:END-READ

In structured mode, the Natural reserved keyword END-READmust
be used to end the READ statement.

LOOP

In reporting mode, the Natural statement LOOP is used to end the
READ statement.

MULTI-FETCH Clause

Note: This clause can only be used for Adabas databases.

MULTI-FETCH
ON
OFF
[OF] multi-fetch-factor

Note: [MULTI-FETCH OF multi-fetch-factor] is supported for database types ADA/ADA2.
The default processing mode is applied; see profile parameter MFSET. The MULTI-FETCH
clause is ignored in case Adabas LA or large objects fields are used or a view size greater
than 64KB is defined.

For more information, see the sectionMULTI-FETCH Clause (Adabas) in the Programming Guide.

WITH REPOSITION Option

Note: This option can only be applied if the underlying database is Adabas.

With a WITH REPOSITION option, you canmake a READ statement sensitive for repositioning events.
This allows you to reposition to another start value within an active READ loop. Processing of the
READ statement then continues with the new start value.

A repositioning event is triggered by one of two ways when you use a READ statement with the
WITH REPOSITION option:

1. When an ESCAPE TOP REPOSITION statement is executed. At execution of an ESCAPE TOP
REPOSITION statement, Naturalmakes an instant branch to the loop begin and performs a restart;
that is, the database repositions to a new record in the file according to the current content of
the search value variable. At the same time, the loop-counter *COUNTER is reset to zero.

2. When a READ loop tries to fetch the next record from the database and the value of the system
variable *COUNTER is 0.

Statements782

READ

Note: If *COUNTER is set to 0within the active READ loop, processing of the current record
is continued; no instant branch to the loop begin is performed. You cannot trigger a re-
position event in this fashion on Natural for Windows or Natural for Linux and Cloud.
This functionality has only been retained for compatibility with earlier versions of Nat-
ural for Mainframes. Therefore, it is not recommended that you use this process.

Functional Considerations

■ If the READ statement has a loop-limit (e.g. READ (10) EMPLOYEES WITH REPOSITION ..) and a
restart event was triggered, the loop gets another 10 new records, no matter howmany records
where already processed until the repositioning takes place.

■ If an ESCAPE TOP REPOSITION statement is executed, but the innermost loop is not capable of
repositioning (since the WITH REPOSITION keyword is not set in the READ statement or the posted
loop statement is anything else but a READ), a corresponding runtime error is issued.

■ Since the ESCAPE TOP statement does not allow a reference, you can only initiate a reposition
event if the innermost processing loop is a READ ..WITH REPOSITION statement.

■ A reposition event does not trigger the execution of the AT START OF DATA section, nor does it
trigger the re-evaluation of the loop-limit operand (if it is a variable).

■ If the search value was not altered, the loop repositions to the same record like at initial loop
start.

Sequence/Range Specification

Three syntax options are available to specify the sequence and/or the range of retrieval.

Syntax Option 1: READ PHYSICAL

[SEQUENCE][IN] [PHYSICAL]

ASCENDING
DESCENDING
VARIABLE operand5
DYNAMIC operand5

Syntax Option 2: READ BY ISN

[SEQUENCE][IN] [ISN]
ASCENDING
DESCENDING
VARIABLE operand5

783Statements

READ

operand7operand6ISN
THRU

=
BY

ENDING AT
EQ

WITH EQUAL TO
[STARTING] FROM

Syntax Option 3: READ BY DESCRIPTOR

[SEQUENCE][IN] [LOGICAL]

ASCENDING
DESCENDING
VARIABLE operand5
DYNAMIC operand5

operand7operand6descriptor
THRU

=
BY

ENDING AT
EQ

WITH EQUAL TO
[STARTING] FROM

operand6 TO operand7

=
EQ
EQUAL TO
[STARTING] FROM

operand6

<
LT
LESS THAN
>
GT
GREATER THAN
<=
LE
LESS EQUAL
>=
GE
GREATER EQUAL

Notes:

1. The syntax options [2] and [3] are not available with Entire System Server.

2. If the comparators of Diagram 3 are used, the options ENDING AT, THRU and TOmay not be used.
These comparators are also valid for the HISTOGRAM statement.

Operand Definition Table:

Statements784

READ

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesASoperand5

noyesLTDB *FIPNASCoperand6

noyesLTDB *FIPNASCoperand7

* Format B of operand6 and operand7may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Read in Physical Sequence:READ IN
PHYSICAL
SEQUENCE This option is used to read records in the order in which they are physically stored in a

database.

PHYSICAL is the default sequence.

Read by ISN:READ BY ISN

This option is used to read records in the order of Adabas ISNs (internal sequence
numbers). Instead of using the keyword BY, you may specify the keyword WITH, which
has the same effect.

For READ BY ISN, operand6 and operand7must be provided as a numeric constant or
user-defined variable in the range from 0 to 4294967295.

READ BY ISN can only be used for Adabas databases.

Note: For XML databases: READ BY ISN is used to read XML objects according to the
order of Tamino object IDs.

Read in Logical Sequence:READ IN
LOGICAL
SEQUENCE This option is used to read records in the order of the values of a descriptor (key) field.

If you specify a descriptor, the recordswill be read in the value sequence of the descriptor.
A descriptor, subdescriptor, superdescriptor or hyperdescriptormay be used for sequence
control. A phonetic descriptor, a descriptorwithin a periodic group, or a superdescriptor
which contains a periodic-group field cannot be used.

If you do not specify a descriptor, the default descriptor as specified in the DDM (field
Default Sequence) will be used.

If the descriptor used for sequence control is definedwith null-value suppression (Adabas
only), any record which contains a null value for the descriptor will not be read.

If the descriptor is a multiple-value field (Adabas only), the same record will be read
multiple times depending on the number of values present.

785Statements

READ

DescriptionSyntax Element

Note: READ IN LOGICAL SEQUENCE is also discussed in the Programming Guide; see
Statements for Database Access, READ Statement.

Ascending/Descending Order:ASCENDING |
DESCENDING |

This clause only applies to Adabas, XML databases and SQL databases. In a READ
PHYSICAL statement, it can only be applied to Db2 databases. In a READ BY ISN

VARIABLE |
DYNAMIC
SEQUENCE statement, it can only be applied to Adabas for Linux and Windows 7.2 (or higher) or

Adabas for Mainframe 8.6 (or higher).

With this clause, you can determine whether the records are to be read in ascending or
descending sequence.

■ The default sequence is ascending (which may, but need not, be explicitly specified
by using the keyword ASCENDING).

■ If the records are to be read in descending sequence, you specify the keyword
DESCENDING.

■ If, instead of determining it in advance, you want to have the option of determining
at runtime whether the records are to be read in ascending or descending sequence,
you either specify the keyword VARIABLE or DYNAMIC, followed by a variable
(operand5). operand5 has to be of format/length A1 and can contain the value “A”
(for “ascending”) or “D” (for “descending”).
■ If the keyword VARIABLE is used, the reading direction (value of operand5) is
evaluated at start of the READ processing loop and remains the same until the loop
is terminated, regardless if the operand5 field is altered in the READ loop or not.

■ If the keyword DYNAMIC is used, the reading direction (value of operand5) is
evaluated before every record fetch in the READ processing loop andmay be changed
from record to record. This allows to change the scroll sequence from ascending to
descending (and vice versa) at any place in the READ loop. This option is not allowed
in a READ BY ISN statement.

Note: For XML databases: DYNAMIC SEQUENCE is not available.

STARTING FROM/ENDING AT Clauses:STARTING FROM
... ENDING
AT/TO The STARTING FROM and ENDING AT clauses are used to limit reading to a set of records

based on a user-specified range of values.

The STARTING FROM clause (= or EQ or EQUAL TO or [STARTING] FROM) determines
the starting value for the read operation. If a starting value is specified, readingwill begin
with the value specified. If the starting value does not exist in the file, the next higher (or
lower for a DESCENDING read) valuewill be used. If no higher (or lower for DESCENDING)
value exists, the loop will not be entered.

In order to limit the records to an end value, you may specify an ENDING AT clause with
the terms THRU, ENDING AT, or TO that imply an inclusive range. Whenever the read
descriptor field exceeds the end value specified, an automatic loop termination is
performed. Although the basic functionality of the TO, THRU and ENDING AT keywords
looks quite similar, internally they differ in how they work.

Statements786

READ

DescriptionSyntax Element

THRU/ENDING AT Option:THRU/ENDING
AT

If THRU or ENDING AT is used, only the start value is supplied to the database, but the
end value check is performed by theNatural runtime system, after the record is returned
by the database. If the read direction is ASCENDING, you have to supply the lower value
as the start value and the higher value as the end value, since the start value represents
the value (and record) returned first in the READ loop.However, if you invoke a backwards
read (DESCENDING), the higher value has to appear in the start value and the lower value
in the end value.

Internally, to determine the end of the range to be read, Natural reads one record beyond
the end value. If you have left the READ loop because the end value has been reached, be
aware that this last record is in fact not the last record within the demanded range, but
the first record beyond that range (except if the file does not contain a further record after
the last result record).

The THRU and ENDING AT clauses can be used for all databases which support the READ
or HISTOGRAM statements.

TO Option:TO

If the keyword TO is used, both the start value and the end value are sent to the database,
and Natural does not perform checks for value ranges. If the end value is exceeded, the
database reacts the same aswhen “end-of-file” is reached, and the database loop is exited.
Since the complete range checking is done by the database, the lower value (of the range)
is always supplied in the start value and the higher value filled into the end value,
regardless if you are browsing in ASCENDING or DESCENDING order.

Notes on Functional Differences between THRU/ENDING AT and TO

The following list describes the functional differences between the usage of the THRU/ENDING AT
and TO options.

TOTHRU/ENDING AT

When the READ loop terminates because the end
value has been reached, the view contains the last
record of the specified range.

When the READ loop terminates because the end value
has been reached, the view contains the first record
“out-of-range”.

The end value variable will only be evaluated at
READ loop start. All further modifications during
the READ loop have no effect.

If a end value variable ismodified during the READ loop,
the new value will be used for end value check on next
record being read.

An incorrect range results in a database error (for
example, Adabas RC=61), because a value range
must not be supplied in descending order.

An incorrect range (for example, READ .. = 'B' THRU
'A') does not cause a database error, but just returns no
record.

Since both values are passed to the database, they
have to appear in ascending order. In otherwords,

If a READ .. DESCENDING is used with the start and
end values, the start value is used to position in the file,

the start value is lower than (or equal to) the endwhereas the end value is used by Natural to check for

787Statements

READ

TOTHRU/ENDING AT

“end-of-range”. Therefore the start value is higher than
(or equal to) the end value.

value, no matter if you are reading in ascending
or descending order.

The descriptor is not required in the record fields
returned.

In order to check for range overflow, the descriptor value
has to appear in the underlying database view; that is,
it must be returned in the record buffer.

You may specify an end value for MU-fields and
sub-/super-/hyper-descriptors.

The end value check for an Adabas multi-value field
(MU-field) or a sub-/super-/hyper-descriptor is not
possible and leads to syntax error NAT0160 at program
compilation.

Can be used for all databases.Can be used for all databases.

Note: The result of READ/HISTOGRAM THRU/ENDING ATmight differ from the result of
READ/HISTOGRAM TO if Natural and the accessed database reside on different platforms with
different collating sequences.

System Variables Available with READ

The Natural system variables *ISN and *COUNTER are available with the READ statement.

The format/length of these system variables is P10. This format/length cannot be changed.

The usage of the system variables is illustrated below.

ExplanationSystem Variable

The system variable *ISN contains the Adabas ISN of the record currently being processed.*ISN

The system variable *COUNTER contains the number of times the processing loop has been
entered.

*COUNTER

Examples

■ Example 1 - READ Statement
■ Example 2 - READ WITH REPOSITION
■ Example 3 - Combining READ and FIND Statements
■ Example 4 - DESCENDING Option
■ Example 5 - VARIABLE Option
■ Example 6 - DYNAMIC Option
■ Example 7 - STARTING WITH ISN Clause
■ Example 8 - SHARED HOLD Clause
■ Example 9 - SKIP RECORDS Clause

Statements788

READ

■ Example 10 - READ DESCENDING BY ISN

Example 1 - READ Statement

** Example 'REAEX1S': READ (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 3
*
WRITE 'READ IN PHYSICAL SEQUENCE'
READ EMPLOY-VIEW IN PHYSICAL SEQUENCE

DISPLAY NOTITLE PERSONNEL-ID NAME *ISN *COUNTER
END-READ
*
WRITE / 'READ IN ISN SEQUENCE'
READ EMPLOY-VIEW BY ISN STARTING FROM 1 ENDING AT 3

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
END-READ
*
WRITE / 'READ IN NAME SEQUENCE'
READ EMPLOY-VIEW BY NAME

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
END-READ
*
WRITE / 'READ IN NAME SEQUENCE STARTING FROM ''M'''
READ EMPLOY-VIEW BY NAME STARTING FROM 'M'

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER
END-READ
*
END

Output of Program REAEX1S:

PERSONNEL NAME ISN CNT
ID

--------- -------------------- ----------- -----------

READ IN PHYSICAL SEQUENCE
50005800 ADAM 1 1
50005600 MORENO 2 2
50005500 BLOND 3 3

789Statements

READ

READ IN ISN SEQUENCE
50005800 ADAM 1 1
50005600 MORENO 2 2
50005500 BLOND 3 3

READ IN NAME SEQUENCE
60008339 ABELLAN 478 1
30000231 ACHIESON 878 2
50005800 ADAM 1 3

READ IN NAME SEQUENCE STARTING FROM 'M'
30008125 MACDONALD 923 1
20028700 MACKARNESS 765 2
40000045 MADSEN 508 3

Equivalent reporting-mode example: REAEX1R.

Example 2 - READ WITH REPOSITION

DEFINE DATA LOCAL
1 MYVIEW VIEW OF ...

2 NAME
1 #STARTVAL (A20) INIT <'A'>
1 #ATTR (C)
END-DEFINE
...
SET KEY PF3
...
READ MYVIEW WITH REPOSITION BY NAME = #STARTVAL
INPUT (IP=OFF AD=O) 'NAME:' NAME /

'Enter new start value for repositioning:' #STARTVAL (AD=MT CV=#ATTR) /
'Press PF3 to stop'

IF *PF-KEY = 'PF3'
THEN STOP

END-IF
IF #ATTR MODIFIED

THEN ESCAPE TOP REPOSITION
END-IF

END-READ
...

DEFINE DATA LOCAL
1 MYVIEW VIEW OF ...

2 NAME
1 #STARTVAL (A20) INIT <'A'>
1 #ATTR (C)
END-DEFINE
...
SET KEY PF3
...
READ MYVIEW WITH REPOSITION BY NAME = #STARTVAL

Statements790

READ

INPUT (IP=OFF AD=O) 'NAME:' NAME /
'Enter new start value for repositioning:' #STARTVAL (AD=MT CV=#ATTR) /
'Press PF3 to stop'

IF *PF-KEY = 'PF3'
THEN STOP

END-IF
IF #ATTR MODIFIED

THEN RESET *COUNTER
END-IF

END-READ
...

Example 3 - Combining READ and FIND Statements

The following program reads records from the EMPLOYEES file in logical sequential order based on
the values of the descriptor NAME. A FIND statement is then issued to the VEHICLES file using the
personnel number from the EMPLOYEES file as search criterion. The resulting report shows the name
(read from the EMPLOYEES file) of each person read and the model of automobile (read from the
VEHICLESfile) owned by this person.Multiple lineswith the same name are produced if the person
owns more than one automobile.

** Example 'REAEX2': READ and FIND combination
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 CITY

1 VEH-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 10
*
RD. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

SUSPEND IDENTICAL SUPPRESS
FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)

IF NO RECORDS FOUND
ENTER

END-NOREC
DISPLAY NOTITLE (ES=OFF IS=ON ZP=ON AL=15)

PERSONNEL-ID (RD.)
FIRST-NAME (RD.)
MAKE (FD.) (IS=OFF)

END-FIND
END-READ
END

791Statements

READ

Output of Program REAEX2:

PERSONNEL FIRST-NAME MAKE
ID

--------------- --------------- ---------------

20007500 VIRGINIA CHRYSLER
20008400 MARSHA CHRYSLER

CHRYSLER
20021100 ROBERT GENERAL MOTORS
20000800 LILLY FORD

MG
20001100 EDWARD GENERAL MOTORS
20002000 MARTHA GENERAL MOTORS
20003400 LAUREL GENERAL MOTORS
30034045 KEVIN DATSUN
30034233 GREGORY FORD
11400319 MANFRED

Example 4 - DESCENDING Option

** Example 'READSCND': READ (with DESCENDING SEQUENCE)
**
DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BIRTH

END-DEFINE
*
READ (10) EMPL IN DESCENDING SEQUENCE BY NAME FROM 'ZZZ'

DISPLAY *ISN NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD)
END-READ
END

Example 5 - VARIABLE Option

** Example 'REAVSEQ': READ (with VARIABLE SEQUENCE)
**
DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BIRTH

*
1 #DIR (A1)
1 #STARTVALUE (A20)
END-DEFINE
*
SET KEY PF7 PF8

Statements792

READ

*
INPUT 'Select READ direction'

// 'Press' 08T 'PF7' (I) 21T 'to read backward'
/ 08T 'PF8' (I) 'or' 'ENTER' (I) 21T 'to read forward'

*
IF *PF-KEY = 'PF7'

MOVE 'D' TO #DIR
MOVE 'ZZZ' TO #STARTVALUE

ELSE
MOVE 'A' TO #DIR
MOVE 'A' TO #STARTVALUE

END-IF
*
READ (10) EMPL IN VARIABLE #DIR SEQUENCE

BY NAME FROM #STARTVALUE
DISPLAY *ISN NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD)

END-READ
END

Example 6 - DYNAMIC Option

DEFINE DATA LOCAL
1 #DIRECTION (A1) INIT <'A'> /* 'A' = ASCENDING
1 #EMPVIEW VIEW OF EMPLOYEES
2 NAME
...
END-DEFINE
...
READ #EMPVIEW IN DYNAMIC #DIRECTION SEQUENCE BY NAME = 'SMITH'

INPUT (AD=O) NAME
/ 'Press PF7 to scroll in DESCENDING sequence'
/ 'Press PF8 to scroll in ASCENDING sequence'

..
IF *PF-KEY = 'PF7' THEN MOVE 'D' TO #DIRECTION END-IF
IF *PF-KEY = 'PF8' THEN MOVE 'A' TO #DIRECTION END-IF

END-READ
...

Example 7 - STARTING WITH ISN Clause

** Example 'REASISND': READ (with STARTING WITH ISN)
**
DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BIRTH

*
1 #DIR (A1)
1 #STARTVAL (A20)

793Statements

READ

1 #STARTISN (N8)
END-DEFINE
*
SET KEY PF3 PF7 PF8
*
MOVE 'ADKINSON' TO #STARTVAL
*
READ (9) EMPL BY NAME = #STARTVAL

WRITE *ISN NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD) *COUNTER
IF *COUNTER = 5 THEN

MOVE NAME TO #STARTVAL
MOVE *ISN TO #STARTISN

END-IF
END-READ
*
#DIR := 'A'
*
REPEAT
READ EMPL IN VARIABLE #DIR BY NAME = #STARTVAL

STARTING WITH ISN = #STARTISN
MOVE NAME TO #STARTVAL
MOVE *ISN TO #STARTISN
INPUT NO ERASE (IP=OFF AD=O)

15/01 *ISN NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD)
// 'Direction:' #DIR
// 'Press PF3 to stop'
/ ' PF7 to go step back'
/ ' PF8 to go step forward'
/ ' ENTER to continue in that direction'

/*
IF *PF-KEY = 'PF7' AND #DIR = 'A'
MOVE 'D' TO #DIR
ESCAPE BOTTOM

END-IF
IF *PF-KEY = 'PF8' AND #DIR = 'D'
MOVE 'A' TO #DIR
ESCAPE BOTTOM

END-IF
IF *PF-KEY = 'PF3'
STOP

END-IF
END-READ
/*
IF *COUNTER(0290) = 0

STOP
END-IF

END-REPEAT
END

Statements794

READ

Example 8 - SHARED HOLD Clause

READ EMPL-VIEW WITH NAME = ...
IN SHARED HOLD MODE=Q /* Record in shared hold until next record is read.

...
GET EMPL-VIEW *ISN /* The record remains unchanged!
...

END-READ

Example 9 - SKIP RECORDS Clause

READ EMPL-VIEW WITH NAME = ... /* Records found are put in hold while reading.
SKIP RECORDS IN HOLD /* Records already held by other users are skipped

... /* to prevent error NAT3145.
UPDATE
END TRANSACTION

END-READ

Example 10 - READ DESCENDING BY ISN

** Example 'READVISN': READ with DESCENDING/VARIABLE BY ISN
**
** Note: The ASCENDING and DESCENDING order for READ BY ISN can only be
** applied to ADABAS 7.2 (or higher) on Linux and Windows.
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
*
1 #DIR-ASCENDING (A1) CONST<'A'>
1 #DIR-DESCENDING (A1) CONST<'D'>
*
END-DEFINE
*
WRITE 'READ with ASCENDING BY ISN = 500'
READ (5) EMPLOY-VIEW ASCENDING BY ISN = 500
 DISPLAY NOTITLE *ISN NAME FIRST-NAME
END-READ
*
WRITE / 'READ with DESCENDING BY ISN = 500'
READ (5) EMPLOY-VIEW DESCENDING BY ISN = 500
 DISPLAY *ISN NAME FIRST-NAME
END-READ
*
WRITE / 'READ with VARIABLE ascending BY ISN = 500'
READ (5) EMPLOY-VIEW VARIABLE #DIR-ASCENDING BY ISN = 500
 DISPLAY *ISN NAME FIRST-NAME
END-READ
*

795Statements

READ

WRITE / 'READ with VARIABLE descending BY ISN = 500'
READ (5) EMPLOY-VIEW VARIABLE #DIR-DESCENDING BY ISN = 500
 DISPLAY *ISN NAME FIRST-NAME
END-READ
END * ↩

Output of Program READVISN:

ISN NAME FIRST-NAME
----------- -------------------- --------------------

READ with ASCENDING BY ISN = 500
500 JENSEN HANS
501 JENSEN CLAUS
502 SOERENSEN KARL
503 ERIKSSEN JONAS
504 ANDERSEN ANITA

READ with DESCENDING BY ISN = 500
500 JENSEN HANS
499 MARTINEZ MANUEL
498 OSEA ROBERTO
497 FERNANDEZ CARMEN
496 DE LA IGLESIA JORGE

READ with VARIABLE ascending BY ISN = 500
500 JENSEN HANS
501 JENSEN CLAUS
502 SOERENSEN KARL
503 ERIKSSEN JONAS
504 ANDERSEN ANITA

READ with VARIABLE descending BY ISN = 500
500 JENSEN HANS
499 MARTINEZ MANUEL
498 OSEA ROBERTO
497 FERNANDEZ CARMEN
496 DE LA IGLESIA JORGE

Statements796

READ

109 READ RESULT SET (SQL)

■ Function .. 798
■ Syntax Description ... 798

797

Common Set Syntax:

FROM ddm-name
READ [(limit)] RESULT SET
result-set INTO

VIEW view-name
parameter [,
parameter]...

[GIVING [:] sql-code]

(structured mode only)END-RESULT

(reporting mode only)LOOP

Extended Set Syntax:

FROM ddm-name
READ [(limit)] RESULT SET
result-set INTO

VIEW view-name
parameter [,
parameter]...

[WITH INSENSITIVE SCROLL [:] scroll-hv]

[GIVING [:] sql-code]

(structured mode only)END-RESULT

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The SQL statement READ RESULT SET can only be used in conjunctionwith a CALLDBPROC statement.
It is used to read a result set which was created by a stored procedure that was invoked by a pre-
vious CALLDBPROC statement.

Syntax Description

DescriptionSyntax Element

Limit Option:limit

You can limit the number of rows to be read. You can specify the limit either as a
numeric constant (0 - 4294967295) or as a variable of format N, P or I.

Result Set:result-set

As result-set you specify a result-set locator variable filled by a preceding
CALLDBPROC statement. result-set has to be a variable of format/length I4.

Statements798

READ RESULT SET (SQL)

DescriptionSyntax Element

Note: If a syncpoint operation takes place between the CALLDBPROC statement and
the READ RESULT SET statement, the result sets can no longer be accessed by the
READ RESULT SET statement.

INTO Clause:INTO

The INTO clause is used to specify the target fields in the program which are to be
filled with the result set.

The INTO clause can specify either single parameters or one ormore views as defined
in the DEFINE DATA statement.

VIEW Clause:VIEW view-name

view-name specifies a view whose fields receive the columns of the result set
created by the stored procedure invoked via the CALLDBPROC statement.

The number of columns of the result set must correspond to the number of fields
defined in the view (not counting group fields, redefining fields and indicator
fields).

Parameter:parameter

Each parameter specifies a field which receives a column of the result set created
by the stored procedure invoked via the CALLDBPROC statement.

DDMName:FROM ddm-name

As ddm-name you specify the name of the data definition module (DDM) which is
used to “address” the database executing the stored procedure.

For further information, see ddm-name.

WITH INSENSITIVE SCROLL Clause:WITH INSENSITIVE
SCROLL [:]
scroll_hv This clause belongs to the SQL Extended Set.

This clause is not currently supported. When used, it will cause a compiler error.

GIVING sqlcode Clause:GIVING sqlcode

This clausemay be used to obtain the SQLCODE of the SQL “fetch” operation used
to process the result set.

If this clause is specified and the SQLCODEof the SQL operation is not 0, noNatural
error message will be issued. In this case, the action to be taken in reaction to the
SQLCODE value has to be coded in the invoking Natural object.

The sqlcode field has to be a variable of format/length I4.

If the GIVING sqlcode clause is omitted, a Natural error message will be issued
if the SQLCODE is not 0.

End of READ RESULT SET Statement:END-RESULT

799Statements

READ RESULT SET (SQL)

DescriptionSyntax Element

In structured mode, the Natural reserved keyword END-RESULTmust be used to
end the READ RESULT SET statement.

LOOP

In reporting mode, the Natural statement LOOPmust be used to end the READ
RESULT SET statement.

Statements800

READ RESULT SET (SQL)

110 READ WORK FILE

■ Function .. 802
■ Syntax 1 - READ WORK FILE with Processing Loop .. 802
■ Syntax 2 - READ WORK FILE without Processing Loop .. 803
■ Syntax Description ... 803
■ Field Lengths .. 806
■ Variable Index Range ... 807
■ Handling of Large and Dynamic Variables ... 807
■ Handling of X-Arrays .. 808
■ Examples ... 808

801

Related Statements: CLOSE WORK FILE | DEFINE WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The READ WORK FILE statement is used to read data from a non-Adabas physical sequential work
file. The data is read sequentially from the work file. How it is read is independent of how it was
written to the work file.

READ WORK FILE initiates and executes a processing loop for reading of all records on the work
file. Automatic break processing may be performed within a READ WORK FILE loop.

Notes:

1. When an end-of-file condition occurs during the execution of a READ WORK FILE statement,
Natural automatically closes the work file.

2. For Entire Connection: If an Entire Connectionwork file is read, no I/O statementmay be placed
within the READ WORK FILE processing loop.

3. For Unicode and code page support, seeWork Files and Print Files onWindows and Linux Platforms
in the Unicode and Code Page Support documentation.

If an ASCII work file is read, it is possible that an empty record is returned as the last record after
the last physical record. This is due to the fact that Natural does not read individual records, but
reads larger blocks of the work file in order to optimize file-access performance.

Syntax 1 - READ WORK FILE with Processing Loop

READ WORK [FILE] work-file-number

RECORD operand1

operand2

[AND]
[SELECT]

OFFSET n
FILLER nX

operand4 [AND]
ADJUST
[OCCURRENCES]

operand2
OFFSET n

OFFSET
n

FILLER nX FILLER
nX

[GIVING LENGTH operand3]

statement

Statements802

READ WORK FILE

(structured mode only)END-WORK

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax 2 - READ WORK FILE without Processing Loop

READ WORK [FILE] work-file-number ONCE

RECORD operand1

operand2

[AND]
[SELECT]

OFFSET
n
FILLER
nX

operand4 [AND]
ADJUST
[OCCURRENCES]

operand2

OFFSET
n OFFSET n

FILLER nXFILLER
nX

[GIVING LENGTH operand3]

[AT [END] [OF] [FILE] statement END-ENDFILE] (structured mode only)

(reporting mode only)AT [END] [OF] [FILE]
statement
DO statement
DOEND

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

yesyesCLTDBFIPNUAGASoperand1

yesyesCLTDBFIPNUAGASoperand2

yesyesISoperand3

nonoCLTDBFIPNUAAoperand4

See also Field Lengths.

803Statements

READ WORK FILE

Syntax Element Description:

DescriptionSyntax Element

Work File Number:work-file-number
The work file number (as defined to Natural) to be used.

The work file number is either

■ a numeric constant in the value range 1:32 or
■ a numeric variable of type (B/N/P/I) defined with a CONST clause which assigning
a value in range (1:32). Variable is a scalar (non-array) without precision digits for
type (N/P), length in between 1-4 for type (B), and no redefinition field.

ONCE Option:ONCE

ONCE is used to indicate that only one record is to be read. No processing loop is
initiated (and therefore the loop-closing keyword END-WORK or LOOPmust not be
specified). If ONCE is specified, the AT END OF FILE clause should also be used.

If a READ WORK FILE statement specified with the ONCE option is controlled by a
user-initiated processing loop, an end-of-file condition may be detected on the work
file before the loop ends. All fields read from the work file still contain the values
from the last record read. The work file is then repositioned to the first record which
will be read upon the next execution of READ WORK FILE ONCE.

RECORD Option:RECORD operand1
FILLER nX

In reporting mode, an operand list (operand1) corresponding to the layout of the
record must be provided. Specify FILLER nX if the total length of the operands is
less that the work file record length.

In structured mode, or if the record to be used is defined using a DEFINE DATA
statement, only one field (or group) may be specified, and FILLER is not permitted.
The field (or group) must be long enough to receive the entire work file record.

No checking and no conversion is performed byNatural on the data contained in the
record. It is the user's responsibility to describe the record layout correctly in order
to avoid program abends caused by non-numeric data in numeric fields. Because no
checking is performed by Natural, this option is the fastest way to process records
from a sequential file. The record area defined by operand1 is filled with blanks
before the record is read. Thus, an end-of-file condition will return a cleared area.
Short records will have blanks appended.

SeeOverview of RECORD Option Usage below.

SELECT SELECT Option (Default):

If SELECT is specified, only the fields specified in the operand list (operand2) will
be made available. The position of the field in the input record may be indicated
with an OFFSET and/or FILLER specification.

Statements804

READ WORK FILE

DescriptionSyntax Element

OFFSET 0 indicates the first byte of the
record.

OFFSET n

Indicates that n bytes are to be skipped in
the input record.

FILLER nX

Naturalwill assign the selected values to the individual fields and check that numeric
fields as selected from the record actually contain valid numeric data according to
their definition. Because checking of selected fields is performed by Natural, this
option results in more overhead for the processing of a sequential file.

If a record does not fill all fields specified in the SELECT option, the following applies:

■ For a field which is only partially filled, the section which has not been filled is
reset to blanks or zeros.

■ Fields which are not filled at all still have the contents they had before.

If the file type CSV is read, the OFFSET option is ignored.

ADJUST Clause:operand4 AND
ADJUST
OCCURRENCES Specify a one-dimensional X-array with complete range (*). The X-array is expanded

or reduced to the number of occurrences needed to receive all data read. SeeHandling
of X-Arrays below.

Note: This feature is not supported by Entire Connection.

GIVING LENGTH ClauseGIVING LENGTH
operand3

This clause can be used to retrieve the actual length of the record being read. The
length (number of bytes) is returned in operand3.

operand3must be defined with format/length I4.

If the work file is defined as TYPE UNFORMATTED, the length returned indicates the
number of bytes read from the byte-stream, including bytes skipped using the FILLER
operand.

If the GIVING LENGTH clause is used with work file type CSV, the operand specified
with GIVING LENGTH returns the number of fields in the record (not the length of
the record).

AT END OF FILE ClauseAT END OF FILE

This clause can only be used in conjunction with the ONCE option. If the ONCE option
is used, this clause is specified to indicate the action to be taken when an end-of-file
condition is detected.

If the ONCE option is not used, an end-of-file condition is handled like a normal
processing loop termination.

End of READWORK FILE Statement:END-WORK

805Statements

READ WORK FILE

DescriptionSyntax Element

In structuredmodewith processing loop, theNatural reservedword END-WORKmust
be used to end the READ WORK FILE statement.

End of READWORK FILE Statement:LOOP

In reporting mode with processing loop, the Natural statement LOOPmust be used
to end the READ WORK FILE statement.

Overview of RECORD Option Usage

RECORD option is
ignored, processing

switches to SELECT
mode

rejected at
runtime

rejected at
compile timeRECORD option is used with

xwork file type ENTIRECONNECTION

xdynamic variables

xwork file type CSV

xwork file type PORTABLE

xwork file types ASCII, ASCII-COMPRESSED, CSV,
UNFORMATTED, code page is specified in Configuration
Utility (conversion is necessary) or at least one Unicode
field is specified (operand of format U, conversion is
necessary)

Field Lengths

The field lengths in theOperand Definition Table are determined as follows:

LengthFormat

The number of bytes in the input record is the same as the internal length definition.A, B, I, F

The number of bytes in the input record is the sum of internal positions before and after the
decimal point. The decimal point and sign do not occupy a byte position in the input record.

N

The number of bytes in the input record is the sum of positions before and after the decimal point
plus 1 for the sign, divided by 2 rounded upwards.

P, D, T

1 byte is used. For C format fields, 2 bytes are used.L

Statements806

READ WORK FILE

Examples of Field Lengths:

Input RecordField Definition

10 bytes#FIELD1 (A10)

15 bytes#FIELD2 (B15)

4 bytes#FIELD3 (N1.3)

7 bytes#FIELD4 (N0.7)

2 bytes#FIELD5 (P1.2)

4 bytes#FIELD6 (P6.0)

See also Format and Length of User-Defined Variables in the Programming Guide.

Variable Index Range

When reading an array from a work file, you can specify a variable index range for the array. For
example:

READ WORK FILE work-file-number #ARRAY (I:J)

Handling of Large and Dynamic Variables

HandlingWork File Type

The work file types ASCII, ASCII-COMPRESSED can handle dynamic and large
variables with a maximum field/record length of 32766 bytes.

ASCII
ASCII-COMPRESSED

Reading a dynamic variable from an ASCII or ASCII-COMPRESSEDwork file puts
the rest of the work file record into the variable. Thus, for work files with these types,
the dynamic variable is resized in each execution of the READ WORK FILE statement
to match the exact length of the remaining part of the record.

The work file type SAG (binary) cannot handle dynamic variables and will produce
an error. It can, however, handle large variables with a maximum field/record length
of 32766 bytes.

SAG (binary)

The work file type ENTIRECONNECTION cannot handle dynamic variables. It can,
however, handle large variables with a maximum field/record length of 107341824
bytes.

ENTIRECONNECTION

Large and dynamic variables can be written into work files or read from work files
using the two work file types PORTABLE and UNFORMATTED. For these types, there is

PORTABLE
UNFORMATTED

no size restriction for dynamic variables. However, large variables may not exceed
a maximum field/record length of 32766 bytes.

807Statements

READ WORK FILE

HandlingWork File Type

Reading a dynamic variable from a PORTABLEwork file leads to resizing to the stored
length.

The maximum field/record length is 32766 bytes for dynamic and large variables.
Dynamic variables are supported. X-arrays are not allowed andwill result in an error
message.

CSV

Handling of X-Arrays

When the ADJUST clause is not used, X-arrays are treated the same as regular arrays; that is, their
existing occurrences are filled.

When the ADJUST clause is used, a one-dimensional X-array specified with complete range (*) is
processed as shown in the table:

HandlingWork File Type

A one-dimensional X-array specified with complete range (*) is expanded to receive
all data from the rest of the record.

ASCII
ASCII-COMPRESSED
SAG (binary)
CSV

A one-dimensional X-array specified with complete range (*) is expanded to receive
all data from the rest of the file.

UNFORMATTED

X-arrays are not supported.PORTABLE
ENTIRECONNECTION

Examples

■ Example 1 - READ WORK FILE
■ Example 2 - READ WORK FILE ASCII with Dynamic Variable
■ Example 3 - READ WORK FILE Unformatted with Dynamic Variable
■ Example 4 - READ WORK FILE ASCII with X-array and ADJUST its Occurrences
■ Example 5 - READ WORK FILE Unformatted with X-array and ADJUST its Occurrences

Statements808

READ WORK FILE

■ Example 6 - READ WORK FILE with Numeric CONST Variable as Work File Number

Example 1 - READ WORK FILE

** Example 'RWFEX1': READ WORK FILE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME

*
1 #RECORD

2 #PERS-ID (A8)
2 #NAME (A20)

END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'

WRITE WORK FILE 1
PERSONNEL-ID NAME

END-FIND
*
* ...
*
READ WORK FILE 1 RECORD #RECORD

DISPLAY NOTITLE #PERS-ID #NAME
END-WORK
*
END

Output of Program RWFEX1:

#PERS-ID #NAME
-------- --------------------

11100328 BERGHAUS
11100329 BARTHEL
11300313 AECKERLE
11300316 KANTE
11500304 KLUGE
11500308 DIETRICH
11500318 GASSNER
11500343 ROEHM
11600303 BERGER
11600320 BLAETTEL
11500336 JASPER
11100330 BUSH
11500328 EGGERT

809Statements

READ WORK FILE

Example 2 - READ WORK FILE ASCII with Dynamic Variable

** Example 'RWFEX2': READ WORK FILE - ASCII with dynamic variable
**
DEFINE DATA LOCAL

1 #DYNA (A) DYNAMIC
END-DEFINE
*
DEFINE WORK FILE 1 TYPE 'ASCII'
*
WRITE WORK FILE 1 VARIABLE 'text1 text2 text3 '
WRITE WORK FILE 1 VARIABLE 'text4 text5'
*
READ WORK FILE 1 AND SELECT #DYNA

DISPLAY *LENGTH(#DYNA) #DYNA (AL=40)
/*
/* Length: 18 Dyn.Var: 'text1 text2 text3'
/* Length: 11 Dyn.Var: 'text4 text5'

END-WORK
*
END

Output of Program RWFEX2:

Page 1 11-07-15 09:21:09

LENGTH #DYNA
----------- --

18 text1 text2 text3
11 text4 text5

Example 3 - READ WORK FILE Unformatted with Dynamic Variable

** Example 'RWFEX3': READ WORK FILE - Unformatted with dynamic variable
**
DEFINE DATA LOCAL

1 #DYNA (A) DYNAMIC
END-DEFINE
*
DEFINE WORK FILE 1 TYPE 'UNFORMATTED'
*
WRITE WORK FILE 1 VARIABLE 'text1 text2 text3 '
WRITE WORK FILE 1 VARIABLE 'text4 text5'
*
DEFINE WORK FILE 1 TYPE 'UNFORMATTED'
*
READ WORK FILE 1 AND SELECT #DYNA

DISPLAY *LENGTH(#DYNA) #DYNA (AL=40)
/*

Statements810

READ WORK FILE

/* Length: 29 Dyn.Var: 'text1 text2 text3 text4 text5'
END-WORK
*
END

Output of Program RWFEX3:

Page 1 11-07-15 09:31:04

LENGTH #DYNA
----------- --

29 text1 text2 text3 text4 text5

Example 4 - READ WORK FILE ASCII with X-array and ADJUST its Occurrences

** Example 'RWFEX4': READ WORK FILE - ASCII with X-array
** and ADJUST its occurrences
**
DEFINE DATA LOCAL

1 #ARR (A6/1:*)
1 #OCC (I4)

END-DEFINE
*
DEFINE WORK FILE 1 TYPE 'ASCII'
*
WRITE WORK FILE 1 VARIABLE 'text1 text2 text3 '
WRITE WORK FILE 1 VARIABLE 'text4 text5'
*
READ WORK FILE 1 AND SELECT #ARR(*) AND ADJUST OCCURRENCES

#OCC := *OCCURRENCE(#ARR)
DISPLAY #OCC #ARR(1:#OCC)
/*
/* Occurrences: 3 Array(*): 'text1', 'text2', 'text3'
/* Occurrences: 2 Array(*): 'text4', 'text5'

END-WORK
*
END

Output of Program RWFEX4:

Page 1 11-07-15 09:36:13

#OCC #ARR
----------- ------

3 text1
text2
text3

811Statements

READ WORK FILE

2 text4
text5

Example 5 - READ WORK FILE Unformatted with X-array and ADJUST its Occurrences

** Example 'RWFEX5': READ WORK FILE - Unformatted with X-array
** and ADJUST its occurrences
**
DEFINE DATA LOCAL

1 #ARR (A6/1:*)
1 #OCC (I4)

END-DEFINE
*
DEFINE WORK FILE 1 TYPE 'UNFORMATTED'
*
WRITE WORK FILE 1 VARIABLE 'text1 text2 text3 '
WRITE WORK FILE 1 VARIABLE 'text4 text5'
*
DEFINE WORK FILE 1 TYPE 'UNFORMATTED'
*
READ WORK FILE 1 AND SELECT #ARR(*) AND ADJUST OCCURRENCES

#OCC := *OCCURRENCE(#ARR)
DISPLAY #OCC #ARR(1:#OCC)
/*
/*Occurrences: 5 Array(*): 'text1', 'text2', 'text3', 'text4', 'text5'

END-WORK
*
END

Output of Program RWFEX5:

Page 1 11-07-15 09:41:25

#OCC #ARR
----------- ------

5 text1
text2
text3
text4
text5

Statements812

READ WORK FILE

Example 6 - READ WORK FILE with Numeric CONST Variable as Work File Number

** Example 'RWFEX6': READ WORK FILE - with numeric CONST variable as
** work file number
** see similar example RWFEX5 with numeric constant
**
DEFINE DATA LOCAL

1 #ARR (A6/1:*)
1 #OCC (I4)
1 #WF-1 (N4) CONST<1>

END-DEFINE
*
DEFINE WORK FILE #WF-1 TYPE 'UNFORMATTED'
*
WRITE WORK FILE #WF-1 VARIABLE 'text1 text2 text3 '
WRITE WORK FILE #WF-1 VARIABLE 'text4 text5'
*
DEFINE WORK FILE #WF-1 TYPE 'UNFORMATTED'
*
READ WORK FILE #WF-1 AND SELECT #ARR(*) AND ADJUST OCCURRENCES

#OCC := *OCCURRENCE(#ARR)
DISPLAY #OCC #ARR(1:#OCC)
/*
/*Occurrences: 5 Array(*): 'text1', 'text2', 'text3', 'text4', 'text5'

END-WORK
*
END

Output of Program RWFEX6:

Page 1 21-12-20 17:42:43

#OCC #ARR
----------- ------

5 text1
text2
text3
text4
text5

813Statements

READ WORK FILE

814

111 READLOB

■ Function .. 816
■ Restrictions .. 816
■ Syntax Description ... 817
■ System Variables Available with READLOB .. 819
■ Functional Considerations ... 820
■ Examples ... 820

815

[IN] [FILE] view-nameREADLOB
ALL
(operand1)

[PASSWORD=operand2]

[CIPHER=operand3]

[[WITH] ISN [=] operand4]

[[STARTING] [AT] OFFSET [=] operand5]

statement

(structured mode only)END-READLOB

(reporting mode only)LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: READ | FIND | GET | UPDATELOB

Belongs to Function Group: Database Access and Update

Function

The READLOB statement is used on a single record, where the defined LOB field (Large OBject field)
is read in fixed length segments during the loop processing. It is only applicable to read this LOB
field.

At loop beginning, the offset inside the LOB field is set from where to get the first data. On the
next loop iteration, the segment following the last segment is returned. If the LOB data end is
reached, the loop terminates.

This statement causes a processing loop to be initiated. See also Loop Processing in the Programming
Guide.

Restrictions

The READLOB statement can only be used for access to Adabas databases.

Statements816

READLOB

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesB *IPNSCoperand1

noyesASCoperand2

noyesNSCoperand3

noyesB *IPNSCoperand4

noyesB *IPNSCoperand5

* Format B of operand1, operand4 and operand5may be used with a length of less than or equal
to 4.

Syntax Element Description:

DescriptionSyntax Element

Number of LOB Segments to Be Read:operand1

The number of loop executions to be performed may be limited by specifying
operand1 (enclosed in parentheses, immediately after the keyword READLOB) -
either as a numeric constant (0 - 4294967295) or as the name of a numeric variable.

Example:

READLOB (5) IN FILE VIEW01 ...

#CNT := 10
READLOB (#CNT) IN FILE VIEW01 ...

For this statement, the specified limit has priority over a limit set with a LIMIT
statement. If a smaller limit is set with the profile or session parameter LT, the LT
limit applies.

Note: operand1 is evaluatedwhen the READLOB is started. If the value of operand1
is modified within the READLOB loop, this does not affect the number of loop
iterations.

ALL Option:ALL

To emphasize that the LOBdata is to be read until its end, you can optionally specify
the keyword ALL.

The ALL option is used by default if operand1 and ALL are omitted.

817Statements

READLOB

DescriptionSyntax Element

View Name:view-name

As view-name, you specify the name of a view, which must have been defined
either within a DEFINE DATA statement or outside the program in a global or local
data area.

■ The view has to contain just a single-valued LOB field, additional fields are not
allowed.

■ If the LOB is a MU or PE field, a unique occurrence must be specified; a range
notation is not allowed.

■ The LOB field must be defined in the DDMwith a fixed (non-dynamic) length
(which represents the segment length of the LOB field).

PASSWORD and CIPHER Clauses:PASSWORD=operand2

The PASSWORD clause is used to provide a password when retrieving data from a
file which is password-protected.

CIPHER=operand3

The CIPHER clause is used to provide a cipher key when retrieving data from a file
which is enciphered.

See the statements FIND and PASSW for further information.

WITH ISN Option:WITH ISN=operand4

This option is used to specify the ISN of the recordwhich is accessed by the READLOB
statement. During the complete loop execution, only this record is fetched.

operand4must be provided either in the form of a numeric constant or as a
user-defined variable, or via the Natural system variable *ISN. The field is not
modified by the READLOB execution.

Note: operand4 is evaluatedwhen the READLOB is started. If the value of operand4
is modified within the READLOB loop, this does not affect the record being fetched.

If this option is omitted, the *ISN field of the last active database statement is used
by default.

STARTING AT OFFSET Clause:STARTING AT
OFFSET=operand5

Provides the start offset within the LOB field, where the first segment read begins.
The first byte of the LOB field is offset zero (0).

operand5must be provided either in the form of a numeric constant or as a
user-defined variable, without precision digits. The field is not modified by the
READLOB execution.

If this clause is omitted, start offset (0) is assumed, which causes the LOB field to
be read from the beginning.

Statements818

READLOB

DescriptionSyntax Element

See also *NUMBER during the processing described in System Variables Available
with READLOB below.

End of READLOB Statement:END-READLOB

In structured mode, the Natural reserved keyword END-READLOBmust be used to
end the READLOB statement.

LOOP

In reportingmode, theNatural statement LOOP is used to end the READLOB statement.

System Variables Available with READLOB

TheNatural systemvariables *ISN, *COUNTER and *NUMBER are providedwith the READLOB statement.

The format/length of these system variables is P10. This format/length cannot be changed.

The purpose of the Natural system variables, when used with the READLOB statement, is explained
below:

ExplanationSystem
Variable

Contains the Adabas ISN of the record currently being processed. Since a READLOB statement
always makes access to the same record, the *ISN value returned is the same over all loop
iterations.

*ISN

Contains the number of times the processing loop has been passed through.*COUNTER

It specifies the byte offset in the LOB field fromwhich the
segment is to be read. Value zero (0) represents the
leftmost byte in the LOB field.

This does not apply for the first loop iteration. In this case
the read offset is determined by the STARTING AT
OFFSET clause.

Before the call:*NUMBER

If datawas found (that is, the offsetwas less than the LOB
field length), it receives the offset plus the segment length.

After the call:

This may lead to a *NUMBER value which is higher than
the length of the entire LOB field.

If no datawas found (that is, the offsetwas higher or equal
to the LOB field length), the value of *NUMBER remains
unchanged.

If a consecutive read over a LOB field is requested, the *NUMBER value must not be modified
within the READLOB, as it contains the offset to exactly continue with the next segment in the
subsequent loop iteration. However, if a continuation at another place within the LOB field is
desired (re-position), you may change the *NUMBER value to this offset. If *NUMBER is reset, this

819Statements

READLOB

ExplanationSystem
Variable

leads to the next segment coming from the LOB start. If *NUMBER is incremented by (n), this
number of bytes will be skipped in the LOB field processing.

Functional Considerations

■ The READLOB statement always reads the record without hold. In order to guarantee stability on
the LOB data (that is, to prevent an update by other users) while the READLOB browses over the
LOB field, the record can be set into hold with the database statement providing the ISN; either
■ into an exclusive hold, due to an UPDATE or DELETE referring to an outer READ or FIND statement
or

■ into a shared holdwith an explicit IN SHARED HOLD option applied in a READ or FIND statement.
If the additional subparameter MODE=Q is used, the record is automatically released from hold
if the next record is fetched in the read sequence.

■ Since the READLOB statement always reads the record without hold, an UPDATE, DELETE or GET
SAME statement must not refer to a READLOB statement.

Examples

■ Example 1 - Get Record Number from READ Loop
■ Example 2 - Get Record Number by User-defined Value
■ Example 3 - Get Record Number from READ Loop (with Exclusive Hold)

Example 1 - Get Record Number from READ Loop

DEFINE DATA LOCAL
1 VIEW01 VIEW OF ..

2 NAME
2 L@LOBFIELD

1 VIEW02 VIEW OF ..
2 LOBFIELD_SEGMENT /* LOB field defined in DDM with (A1000).

END-DEFINE
*
READ VIEW01 BY NAME = 'SMITH' /* Outer statement reads all demanded record

/* fields, except the LOB field.
IN SHARED HOLD MODE=Q /* Set record into shared hold to enforce LOB

/* data stability during READLOB.
DISPLAY NAME 'Total-length LOB-field' L@LOBFIELD
READLOB VIEW02 /* Record number used from active record of

/* READ statement.

Statements820

READLOB

/* LOB is read in segments with length 1000.
STARTING AT OFFSET = 2000 /* Start to read the LOB field at byte 2000.

WRITE 'Loop counter:' *COUNTER 10X ' Next offset:' *NUMBER
PRINT VIEW02.LOBFIELD_SEGMENT

END-READLOB
END-READ
END

Example 2 - Get Record Number by User-defined Value

DEFINE DATA LOCAL
1 #ISN (I4)
1 #CNT (I4)
1 #OFF (I4)
1 VIEW02 VIEW OF ..

2 LOBFIELD_SEGMENT /* LOB field defined in DDM with (A1000).
END-DEFINE
*
INPUT (AD=T)

/ ' Read record (ISN):' #ISN
/ 'Number of segments:' #CNT
/ ' Start at offset:' #OFF

*
READLOB (#CNT) VIEW02 /* Read max. (#CNT) segments with length 1000.

WITH ISN = #ISN /* Record number provided by user.
/* Record is not in hold.

STARTING AT OFFSET = #OFF /* Start to read the LOB field at byte (#OFF).
WRITE 'Loop counter:' *COUNTER 10X ' Next offset:' *NUMBER
PRINT VIEW02.LOBFIELD_SEGMENT

END-READLOB
END

Example 3 - Get Record Number from READ Loop (with Exclusive Hold)

DEFINE DATA LOCAL
1 VIEW01 VIEW OF ..

2 NAME
1 VIEW02 VIEW OF ..

2 LOBFIELD_SEGMENT /* LOB field defined in DDM with (A1000).
END-DEFINE
*
R1. READ VIEW01 BY NAME = 'SMITH'/* Outer statement reads all demanded

/* record fields, except the LOB field.
DISPLAY NAME
READLOB VIEW02 /* Record number from active record of READ.

/* LOB is read in segments with length 1000.
STARTING AT OFFSET = 2000 /* Start to read LOB field at byte 2000.

WRITE 'Loop counter:' *COUNTER 10X ' Next offset:' *NUMBER
PRINT VIEW02.LOBFIELD_SEGMENT

END-READLOB

821Statements

READLOB

...
UPDATE (R1.) /* Set record into exclusive hold that

/* enforces LOB data stability during READLOB.
END OF TRANSACTION

END-READ
END

Statements822

READLOB

112 REDEFINE

■ Function .. 824
■ Restriction .. 824
■ Syntax Description ... 824
■ Examples ... 825

823

)
nX

operand1 (REDEFINE
operand2

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Reporting Mode Statements

Function

The REDEFINE statement is used to redefine a field. The resulting definition may consist of one or
more user-defined variables.

With one REDEFINE statement, several fields may be redefined.

Restriction

The REDEFINE statement is only valid in reporting mode. To redefine a field in structured mode,
use the REDEFINE clause of the DEFINE DATA statement.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesCLTDBFIPNUAGASoperand1

yesyesCLTDBFIPNAGASoperand2

Syntax Element Description:

DescriptionSyntax Element

Method of Redefinition:REDEFINE
operand1
operand2 The byte positions of operand1 are redefined from left to right regardless of format.

The format of operand2 can be different from the format of operand1. However,
the data at the byte positions of operand2 should match the format specification of
operand2 to avoid strange results in the output report. For example, if an
alphanumeric field is redefined as numeric and does not contain numeric data

Statements824

REDEFINE

DescriptionSyntax Element

according to the format specification, an abnormal termination may result when it
is used.

Further Redefinition:

Fields defined using a REDEFINE statement may be subsequently redefined with
another REDEFINE statement.

Filler Notation:nX

The nX notation is used to denote filler byteswithin the field/variable being redefined.
Any trailing nX notation is optional.

Examples

■ Example 1
■ Example 2
■ Example 3
■ Example 4

Example 1

The user-defined variable #A (format/length A10) contains the value 123ABCDEFG.

REDEFINE #A (#A1(N3) #A2(A7))

The value in #A1 is 123. The value in #A2 is ABCDEFG.

Example 2

The user-defined variable #B (format/lengthA10) contains the value (shown in hexadecimal format)
12345CC1C2C3C4C5C6C7.

REDEFINE #B (#B1(P4) #B2(A7))

The value in #B1 is 12345C (in hexadecimal format).

The value in #B2 is C1C2C3C4C5C6C7 (in hexadecimal format).

825Statements

REDEFINE

REDEFINE #B (#BB1(B2)8X)) or REDEFINE #B(#BB1(B2))

The value in #BB1 is 1234 (in hexadecimal format).

Note: For packed data (Format P), the number of decimal positions required must be spe-
cified. The following formula can be used to determine the number of bytes that the packed
number occupies:

Number of bytes = (number of decimal positions + 1) / 2, rounded upwards to full bytes.

Example 3

COMPUTE #V (N8.2) = #Y (N10) = ...
REDEFINE #V (3X #A(N3) 2X #P (N2)) #Y (#B(N3) 7X)

Example 4

This example redefines the value of the system variable *DATN, which is in the form YYYYMMDD, and
displays the result as three separate fields in the order day/month/year:

MOVE *DATN TO #DATINT (N8)
REDEFINE #DATINT (#YEAR (N4) #MONTH (N2) #DAY (N2))
DISPLAY NOTITLE #DATINT #DAY #MONTH #YEAR
END

Output:

#DATINT #DAY #MONTH #YEAR
--------- ---- ------ -----

20140326 26 3 2014

Statements826

REDEFINE

113 REDUCE

■ Function .. 828
■ Syntax Description ... 828

827

[GIVING operand5]REDUCE
dynamic-clause
array-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related statements: EXPAND | RESIZE

Belongs to Function Group:Memory Management Control for Dynamic Variables or X-Arrays.

Function

The REDUCE statement is used to reduce:

■ the allocated length of a dynamic variable (dynamic-clause), or
■ the number of occurrences of X-arrays (array-clause).

For further information, see also the following sections in the Programming Guide:

■ Using Dynamic Variables
■ Allocating/Freeing Memory Space for a Dynamic Variable
■ X-Arrays
■ Storage Management of X-Group Arrays

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

nonoBUAASoperand1

nonoISCoperand2

noyesOGCLTDBFIPNUAGAoperand3

nonoIPNSCoperand4

yesnoI4Soperand5

Syntax Element Description:

Statements828

REDUCE

DescriptionSyntax Element

Dynamic Clause:dynamic-clause

The REDUCE DYNAMIC VARIABLE statement reduces the allocated length of a dynamic
variable (operand1) to the length specified (operand2).

For further information, see Dynamic Clause below.

Dynamic Variable:operand1

operand1 is the dynamic variable for which the length is to be reduced.

Target Length of Dynamic Variable:operand2

operand2 is used to specify the length towhich the dynamic variable is to be reduced.

The value specified must be a non-negative integer constant or a variable of type
Integer 4 (I4).

Array Clause:array-clause

The REDUCE ARRAY statement reduces the number of occurrences of the X-array
(operand3) to the upper and lower bound specified with (dim[,dim[,dim]]).

For further information, see Array Clause below.

X-Array:operand3

operand3 is the X-array. The occurrences of the X-array can be reduced.

The index notation of the array is optional. As index notation only the complete range
notation * is allowed for each dimension.

Dimension:dim operand4

The lower and upper bound notation (operand4 or asterisk) to which the X-array
should be reduced is specified here. If the current value of the upper or lower bound
should be used, an asterisk (*) must be specified instead of operand4.

For further information, see Dimension below.

GIVING Clause:GIVING operand5

If the GIVING clause is not specified, Natural runtime error processing is triggered if
an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if
an error occurred, or zero upon success.

829Statements

REDUCE

Dynamic Clause

[SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

The REDUCE DYNAMIC VARIABLE statement reduces the allocated length of a dynamic variable
(operand1) to the length specified (operand2). The allocated memory of the dynamic variable
which is beyond the given length is released immediately, i.e., when the statement is executed.

If the currently allocated length (*LENGTH) of the dynamic variable is greater than the given length,
*LENGTH is set to the given length and the content of the variable is truncated (but not modified).
If the given length is larger than the currently allocated length of the dynamic variable, the statement
will be ignored.

Array Clause

[OCCURRENCES OF] ARRAY operand3 TO
0
(dim[,dim[,dim]])

If REDUCE TO 0 (zero) is specified, all occurrences of the X-array are released. In other words, the
whole array is reduced.

The REDUCE ARRAY statement reduces the number of occurrences of the X-array (operand3) to the
upper and lower bound specified with TO (dim[,dim[,dim]]).

An upper or lower boundused in a REDUCE statementmust be exactly the same as the corresponding
upper or lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #a(I4/1:*)
1 #g(1:*)

2 #ga(I4/1:*)

1 #i(i4)
END-DEFINE
...

*/ reducing #a (1:10)

REDUCE ARRAY #a TO (1:10) /* #a is reduced
REDUCE ARRAY #a TO (*:10) /* to 10 occurrences.

*/ reducing #ga (1:10,1:20)

Statements830

REDUCE

REDUCE ARRAY #g TO (1:10) /* 1st dimension is set to (1:10)
REDUCE ARRAY #ga TO (*:*,1:20) /* 1st dimension is dependent and

/* therefore kept with (*:*)
/* 2nd dimension is set to (1:20)

REDUCE ARRAY #a TO (5:10) /* This is rejected because the lower index
/* must be 1 or *

REDUCE ARRAY #a TO (#i:10) /* This is rejected because the lower index
/* must be 1 or *

REDUCE ARRAY #ga TO (1:10,1:20) /* (1:10) for the 1st dimension is rejected
/* because the dimension is dependent and
/* must be specified with (*:*).

For further information, see

■ Storage Management of X-Arrays
■ Storage Management of X-Group Arrays

Dimension

Each of the dimensions (dim) specified in the Array Clause is defined using the following syntax:

*

:
**
operand4operand4

The lower and upper bound notation (operand4 or asterisk) towhich the X-array should be reduced
is specified here. If the current value of the upper or lower bound should be used, an asterisk (*)
may be specified in place of operand4. In place of *:*, you may also specify a single asterisk.

The number of dimensions (dim) must exactly match the defined number of dimensions of the X-
array (1, 2 or 3).

When using the REDUCE statement, it is only possible to decrease the number of occurrences. If the
requested number is larger than the currently allocated number of occurrences, it will simply be
ignored.

831Statements

REDUCE

832

114 REINPUT

■ Function .. 834
■ Syntax Description ... 835
■ Examples ... 841

833

USING HELP
[FULL] [(statement-parameters)]REINPUT

WITH-TEXT-option

[MARK-option]

[ALARM-option]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE WINDOW | INPUT | SET WINDOW

Belongs to Function Group: Screen Generation for Interactive Processing

Function

The REINPUT statement is used to return to and re-execute an INPUT statement. It is generally used
to display a message indicating that the data input as a result of the previous INPUT statement
were invalid. See Example 1.

No WRITE or DISPLAY statementsmaybe executed between an INPUT statement and its corresponding
REINPUT statement. The REINPUT statement is not valid in batch mode.

The REINPUT statement, when executed, repositions the program status regarding subroutine,
special condition and loop processing as it existed when the INPUT statement was executed (as
long as the status of the INPUT statement is still active). If the loop was initiated after the execution
of the INPUT statement and the REINPUT statement is within this loop, the loopwill be discontinued
and then restarted after the INPUT statement has been reprocessed as a result of REINPUT.

If a hierarchy of subroutines was invoked after the execution of the INPUT statement, and the
REINPUT is performed within a subroutine, Natural will trace back all subroutines automatically
and reposition the program status to that of the INPUT statement.

It is not possible, however, to have an INPUT statement positioned within a loop, a subroutine or
a special condition block, and then execute the REINPUT statement when the status under which
the INPUT statementwas executed has already been terminated. An errormessagewill be produced
and program execution terminated when this error condition is detected.

Note: The execution of a REINPUT statement (without FULL option) does not reset the MODIFIED
status of an attribute control variable used in the corresponding INPUT statement. To check
if an attribute control variable has been assigned the status MODIFIED, use the MODIFIED
option.

Statements834

REINPUT

Syntax Description

DescriptionSyntax Element

FULL Option:REINPUT FULL

If you specify the FULL option in a REINPUT statement, the corresponding INPUT
statement will be re-executed fully:

■ With an ordinary REINPUT statement (without FULL option), the contents of
variables that were changed between the INPUT and REINPUT statement will
not be displayed; that is, all variables on the screen will show the contents
they had when the INPUT statement was originally executed.

■ With a REINPUT FULL statement, all changes that have been made after the
initial execution of the INPUT statementwill be applied to the INPUT statement
when it is re-executed; that is, all variables on the screen contain the values
they had when the REINPUT statement was executed.

Note: The contents of input-only fields (AD=A) will be deleted again by REINPUT
FULL.

Another characteristic of the REINPUT FULL statement is that the status of
attribute control variables is reset to NOT MODIFIED. This is not done with the
ordinary REINPUT statement. To check if an attribute control variable has been
assigned the status MODIFIED, use theMODIFIED option.

See also Example 3 - REINPUT FULL WITH MARK POSITION.

Parameters:statement-parameters

Parameters specified in a REINPUT statementwill be applied to all fields specified
in the statement.

Anyparameter specified at element (field) level (seeMARKOption)will override
any corresponding parameter at statement level.

Specification (S = at statement level, E
= at element level)

Parameters that can be specified with
the REINPUT statement:

SEAD - Attribute Definition *

SCD - Color Definition
* If AD=P is specified at statement level, all fields - except those used in the MARK
option - are protected.

The individual session parameters are described in the Parameter Reference.

USING HELP Option:USING HELP

This option causes the helproutine defined for the INPUTmap to be invoked.

835Statements

REINPUT

DescriptionSyntax Element

USING HELP used in combination with the MARK option causes the helproutine
defined for the first field specified in the MARK option to be invoked. If no
helproutine is defined for that field, the helproutine for themapwill be invoked.

Example:

REINPUT USING HELP MARK 3

As a result, the helproutine defined for the third field in the INPUTmap will be
invoked.

WITH TEXT Option:

The WITH TEXT option is used to provide text which is to be displayed in the
message line.

SeeWITH TEXT Option below.

WITH-TEXT-option

MARK OptionMARK-option

With the MARK option, you can mark a specific field, that is, specify a field in
which the cursor is to be placed when the REINPUT statement is executed. See
MARK Option below.

ALARMOption:ALARM-option

This option causes the sound alarm feature of the terminal to be activated when
the REINPUT statement is executed.

See ALARMOption below.

WITH TEXT Option

WITH TEXT is used to provide text which is to be displayed in the message line. This is usually a
message indicating what action should be taken to process the screen or to correct an error.

[(attributes)] [,operand3] 7[WITH] [TEXT] *operand1
operand2

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesB *IPNSCoperand1

noyesUASCoperand2

noyesLTDBFIPNUASCoperand3

* Format B of operand1may be used only with a length of less than or equal to 4.

Statements836

REINPUT

Syntax Element Description:

DescriptionSyntax Element

Message Text from Natural Message File:operand1

operand1 represents the number of a message text that is to be retrieved from a Natural
message file.

You can retrieve either user-defined messages or Natural system messages:

■ If you specify a positive value of up to four digits (for example: 954), you will retrieve
user-defined messages.

■ If you specify a negative value of up to four digits (for example: -954), you will retrieve
Natural system messages.

See also Example 4 - WITH TEXT Options.
Natural message files are created and maintained with the SYSERR utility as described in
the relevant documentation.

Message Text:operand2

operand2 represents the message to be placed in the message line.

See also Example 4 - WITH TEXT Options.

Output Attributes:attributes

It is possible to assign various output attributes for operand1/operand2. These attributes
and the syntax that may be used are described in the sectionOutput Attributes below.

Dynamic Replacement of Message Text:operand3

operand3 represents a numeric or text constant or the name of a variable.

The values provided are used to replace parts of a message text that are either specified
with operand1 or operand2.

The notation :n: is usedwithin themessage text as a reference to operand3 contents, where
n represents the occurrence (1 - 7) of operand3.

See also Example 4 - WITH TEXT Options.

Note: Multiple specifications of operand3must be separated from each other by a comma.
If the comma is used as a decimal character (as defined with the session parameter DC) and
numeric constants are specified as operand3, put blanks before and after the comma so
that it cannot bemisinterpreted as a decimal character. Alternatively, multiple specifications
of operand3 can be separated by the input delimiter character (as defined with the session
parameter ID); however, this is not possible in the case of ID=/ (slash).

Leading zeros or trailing blanks will be removed from the field value before it is displayed
in a message.

837Statements

REINPUT

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes may be:

AD=ad-value
CD=cd-value
CV=variable

For the possible session parameter values, refer to the corresponding sections in the Parameter
Reference documentation:

■ AD - Attribute Definition, section Field Representation
■ CD - Color Definition
■ CV - Attribute Control Variable

Note: The compiler actually accepts more than one attribute value for an output field. For
example, you may specify: AD=BDI. In such a case, however, only the last value applies. In
the given example, only the value Iwill become effective and the output field will be dis-
played intensified.

MARK Option

With the MARK option, you can mark a specific field, that is, specify a field in which the cursor is
to be placed when the REINPUT statement is executed. You can also mark a specific position within
a field. Moreover, you can make fields input-protected, and change their display and color attrib-
utes.

[(attributes)]MARK [POSITION operand4 [IN]] [FIELD] operand5
*fieldname

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesIPNSCoperand4

noyesIPNASCoperand5

Syntax Element Description:

Statements838

REINPUT

DescriptionSyntax Element

Field to be Marked:operand5

All AD=A or AD=M (that is, non-protected) fields specified in an INPUT statement are
sequentially numbered (beginningwith 1) byNatural. operand5 represents the number
of the field in which the cursor is to be positioned.

*fieldname

The *fieldname notation is used to position to a field (as used in the INPUT statement)
using the name of the field as a reference.

If the corresponding INPUT field is an array, a unique index or an index range may be
used to reference one or more occurrences of the array.

INPUT #ARRAY (A1/1:5)
...
REINPUT (AD=P) 'TEXT' MARK *#ARRAY (2:3)

If operand5 is also an array, the values in operand5 are used as field numbers for the
INPUT array.

RESET #X(N2/1:2)
INPUT #ARRAY ...
...
REINPUT (AD=P) 'TEXT' MARK #X (1:2)

MARK POSITION Option:

With this option, you can have the cursor placed at a specific position - as specifiedwith
operand4 - within a field.

MARK POSITION

See also Example 3 - REINPUT FULL WITH MARK POSITION.

Cursor Position:operand4

operand4 specifies the cursor position.

operand4must not contain decimal digits.

Attribute Assignments:attributes

See Attribute Assignments below.

Attribute Assignments

With explicit attributes, you can define the display presentation and color of the WITH TEXTmessage
and also the layout of the MARK field (which is positioned by the REINPUT statement).

839Statements

REINPUT

BLB

GRC

NED

[CV=operand6]PICD=IAD=[P]

REN

TUU

YEV

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

nonoCSoperand6

With the attribute AD=P, you can make an input field (AD=A or AD=M) input-protected.

Note: You cannot use an attribute to make output-only fields (AD=O) available for input.

For information on the attributes AD, CD and CV, refer to the Parameter Reference.

The attributes for the WITH TEXT and MARK fields need not be specified in a fixed manner, but can
also be assigneddynamically bymeans of a control variable,which is referenced in a (CV=operand6)
clause. See Example 5 - REINPUT with Attribute Assignment Using a Control Variable.

If both an AD and a CV option are specified for the same field, the attributes from the AD option are
completely ignored, except (AD=P)which remains in effect.

If a CD and a CV option are specified for the same field, the color from the CV option is used. If the
CV variable contains no color specification, the color from the CD option is applied to that field.

If AD=P is specified at statement level, all fields except those specified in the MARK option are input-
protected. See also Example 2 - REINPUT with Attribute Assignment.

ALARM Option

[AND] [SOUND] ALARM

This option causes the sound alarm feature of the terminal to be activated when the REINPUT
statement is executed. The appropriate hardware must be available to be able to use this feature.

Statements840

REINPUT

Examples

■ Example 1 - REINPUT Statement
■ Example 2 - REINPUT with Attribute Assignment
■ Example 3 - REINPUT FULL with MARK POSITION
■ Example 4 - WITH TEXT Options
■ Example 5 - REINPUT with Attribute Assignment Using a Control Variable

Example 1 - REINPUT Statement

** Example 'REIEX1': REINPUT
**
DEFINE DATA LOCAL
1 #FUNCTION (A1)
1 #PARM (A1)
END-DEFINE
*
INPUT #FUNCTION #PARM
*
DECIDE FOR FIRST CONDITION

WHEN #FUNCTION = 'A' AND #PARM = 'X'
REINPUT 'Function A with parameter X selected.'

MARK *#PARM
WHEN #FUNCTION = 'C' THRU 'D'

REINPUT 'Function C or D selected.'
WHEN #FUNCTION = 'X'

STOP
WHEN NONE

REINPUT 'Please enter a valid function.'
MARK *#FUNCTION

END-DECIDE
*
END

Output of Program REIEX1:

#FUNCTION A #PARM Y

841Statements

REINPUT

And after pressing ENTER:

PLEASE ENTER A VALID FUNCTION
#FUNCTION A #PARM Y

Example 2 - REINPUT with Attribute Assignment

** Example 'REIEX2': REINPUT (with attributes)
**
DEFINE DATA LOCAL
1 #A (A20)
1 #B (N7.2)
1 #C (A5)
1 #D (N3)
END-DEFINE
*
INPUT (AD=A) #A #B #C #D
*
IF #A = ' ' OR #B = 0

REINPUT (AD=P) 'RETYPE VALUES'
MARK *#A (AD=I CD=RE) /* put cursor on first field

#B (AD=U CD=PI) / and change colors
END-IF
*
END

Example 3 - REINPUT FULL with MARK POSITION

** Example 'REIEX3': REINPUT (with FULL and POSITION option)
**
DEFINE DATA LOCAL
1 #A (A20)
1 #B (N7.2)
1 #C (A5)
1 #D (N3)
END-DEFINE
*
INPUT (AD=M) #A #B #C #D
*
IF #A = ' '

COMPUTE #B = #B + #D
RESET #D

END-IF
*
IF #A = SCAN 'TEST' OR = ' '
REINPUT FULL 'RETYPE VALUES' MARK POSITION 5 IN *#A
END-IF
*
END

Statements842

REINPUT

Output of Program REIEX3:

RETYPE VALUES
#A #B 0.00 #C #D 0

Example 4 - WITH TEXT Options

** Example 'REIEX4': REINPUT (with TEXT option)
**
DEFINE DATA LOCAL
01 #NAME (A8)
01 #TEXT (A20)
END-DEFINE
*
*
INPUT WITH TEXT 'Enter a program name.' 'Program name:' #NAME
*
IF #NAME = ' '

REINPUT WITH TEXT 'Input missing. Enter a name.'
END-IF
*
IF #NAME NE MASK (A)

MOVE 'Invalid input.' TO #TEXT
REINPUT WITH TEXT ':1: Name must start with a letter.',#TEXT

ELSE
/* Using Natural error message 7600 for demonstration
COMPRESS *INIT-USER 'on' *DAT4I INTO #TEXT
INPUT WITH TEXT *-7600,#NAME,#TEXT 'Input accepted.'

END-IF
END

Example 5 - REINPUT with Attribute Assignment Using a Control Variable

DEFINE DATA LOCAL
1 #HELLO (A5) INIT <'HELO'>
1 #VAR (A20) INIT <'Enter "HELLO"'>
1 #CV (C)
END-DEFINE
*
INPUT (IP=OFF) #HELLO (AD=M)
*
IF #HELLO NE 'HELLO' THEN

MOVE (AD=U CD=RE) TO #CV
REINPUT FULL WITH TEXT #VAR (CD=YE)

MARK *#HELLO (CV=#CV)
END-IF
END

843Statements

REINPUT

844

115 REJECT

For more information about this statement, see the statement ACCEPT/REJECT.

845

846

116 RELEASE

■ Function .. 848
■ Syntax Description ... 848
■ Example .. 849

847

STACK

SETS [set-name]RELEASE

VARIABLES

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: STACK | FIND with RETAIN option | DEFINE DATA GLOBAL

Function

The RELEASE statement is used to:

■ delete the entire contents of the Natural stack;
■ release sets of ISNs retained via a FIND statement that contained a RETAIN clause (applicable to
Adabas databases only);

■ reset global and application-independent variables.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

nonoASCset-name

Syntax Element Description:

DescriptionSyntax Element

RELEASE STACK Option:RELEASE STACK

Causes all data/commands currently in the Natural stack to be deleted.

RELEASE SETS Option:RELEASE SETS

Is applicable to Adabas databases only.

If only RELEASE SETS, without a set-name, is specified, all ISN sets retained
with a FIND statement with a RETAIN clause will be released.

Causes a specific single ISN set to be released.RELEASE SETS
set-name

Statements848

RELEASE

DescriptionSyntax Element

RELEASE SET 'CITY-SET'

MOVE 'CITY-SET' TO #SET(A32)
RELEASE SET #SET

RELEASE VARIABLES Option:

Causes all variables defined in the current global data area (GDA) to be reset to
their initial values. Also, it eliminates all application-independent variables
(AIVs), thus making them no longer available.

RELEASE VARIABLES

The RELEASE VARIABLES statement does not perform the reset/eliminate
operations directly after execution. Instead, a signal is set first which triggers
these operations when all Natural objects currently running have finished
processing.

Example

** Example 'RELEX1': FIND (with RETAIN clause and RELEASE statement)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 BIRTH
2 NAME

*
1 #BIRTH (D)
END-DEFINE
*
MOVE EDITED '19400101' TO #BIRTH (EM=YYYYMMDD)
*
FIND NUMBER EMPLOY-VIEW WITH BIRTH GT #BIRTH

RETAIN AS 'AGESET1'
IF *NUMBER = 0

STOP
END-IF
*
FIND EMPLOY-VIEW WITH 'AGESET1' AND CITY = 'NEW YORK'

DISPLAY NOTITLE NAME CITY BIRTH (EM=YYYY-MM-DD)
END-FIND
*
RELEASE SET 'AGESET1'
*
END

849Statements

RELEASE

Output of Program RELEX1:

NAME CITY DATE
OF

BIRTH
-------------------- -------------------- ----------

RUBIN NEW YORK 1945-10-27
WALLACE NEW YORK 1945-08-04

Statements850

RELEASE

117 REPEAT

■ Function .. 852
■ Syntax Description ... 852
■ Examples ... 853

851

Related Statements: FOR | ESCAPE

Belongs to Function Group: Loop Execution

Function

The REPEAT statement is used to initiate a processing loop.

See also Loop Processing in the Programming Guide.

Syntax Description

Two different structures are possible for this statement.

■ Syntax 1 - Statements are executed one or more times
■ Syntax 2 - Statements are executed zero or more times

The placement of the logical condition (either at the beginning or at the end of the loop) determines
when it is to be evaluated.

For further information on logical conditions, see the section Logical Condition Criteria in the Pro-
gramming Guide.

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Syntax 1:

REPEAT

logical-condition
UNTIL

statement
WHILE

(structured mode only)END-REPEAT

(reporting mode only)LOOP

Syntax 2:

Statements852

REPEAT

REPEAT

statementlogical-condition
UNTIL

WHILE

(structured mode only)END-REPEAT

(reporting mode only)LOOP

Syntax Element Description:

DescriptionSyntax Element

UNTIL Option:UNTIL

The processing loop will be continued until the logical condition becomes true.

WHILE Option:WHILE

The processing loop will be continued as long as the logical condition is true.

Logical Condition:logical-condition

If a logical condition is specified, the condition determines when the execution of
the loop is to be terminated.

If no logical condition is specified, the loop must be exited by an ESCAPE, STOP or
TERMINATE statement specified within the loop.

The syntax for a logical condition is described in the section Logical Condition Criteria
in the Programming Guide.

End of REPEAT Statement:END-REPEAT

In structured mode, the Natural reserved word END-REPEATmust be used to end
the REPEAT statement.

LOOP

In reportingmode, theNatural statement LOOP is used to end the REPEAT statement.

Examples

■ Example 1 - REPEAT

853Statements

REPEAT

■ Example 2 - Using WHILE and UNTIL Options

Example 1 - REPEAT

** Example 'RPTEX1S': REPEAT (structured mode)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME

*
1 #PERS-NR (A8)
END-DEFINE
*
REPEAT

INPUT 'ENTER A PERSONNEL NUMBER:' #PERS-NR
IF #PERS-NR = ' '

ESCAPE BOTTOM
END-IF
/*
FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PERS-NR

IF NO RECORD FOUND
REINPUT 'NO RECORD FOUND'

END-NOREC
DISPLAY NOTITLE NAME

END-FIND
END-REPEAT
*
END

Output of Program RPTEX1S:

ENTER A PERSONNEL NUMBER: 11500304

After entering and confirming personnel number:

NAME

KLUGE

Equivalent reporting-mode example: RPTEX1R.

Statements854

REPEAT

Example 2 - Using WHILE and UNTIL Options

** Example 'RPTEX2S': REPEAT (with WHILE and UNTIL option)
**
DEFINE DATA LOCAL
1 #X (I1) INIT <0>
1 #Y (I1) INIT <0>
END-DEFINE
*
REPEAT WHILE #X <= 5

ADD 1 TO #X
WRITE NOTITLE '=' #X

END-REPEAT
*
SKIP 3
REPEAT

ADD 1 TO #Y
WRITE '=' #Y
UNTIL #Y = 6

END-REPEAT
*
END

Output of Program RPTEX2S:

#X: 1
#X: 2
#X: 3
#X: 4
#X: 5
#X: 6

#Y: 1
#Y: 2
#Y: 3
#Y: 4
#Y: 5
#Y: 6

Equivalent reporting-mode example: RPTEX2R.

855Statements

REPEAT

856

118 REQUEST DOCUMENT

■ Function .. 858
■ Syntax Description ... 859
■ Automatically Generated Headers ... 864
■ URL Encoding for Special Characters .. 865
■ HTTP Responses Redirected and Denied ... 867
■ Examples ... 868

857

REQUEST DOCUMENT FROM url

WITH [with-clause]

RETURN [return-clause]

RESPONSE http-response-code

[GIVING natural-error-number]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: PARSE XML

Belongs to Function Group: Internet and XML

Function

The REQUEST DOCUMENT statement is used to retrieve and upload documents on the internet as
described in REQUESTDOCUMENT in Statements for Internet and XML Access in the Programming
Guide.

For information on Unicode support, see REQUEST DOCUMENT in the Unicode and Code Page
Support documentation.

See also the description of the Natural profile and session parameter RQTOUT, which specifies the
timeouts used for HTTP requests issued internally by the REQUEST DOCUMENT statement.

Restrictions for Cookies

Under the HTTP Protocol, a server uses cookies to maintain state information on the client work-
station.

REQUEST DOCUMENT is implemented using internet option settings. This means that, depending on
the security settings, cookies will be used.

If the internet option setting Disabled is set, no cookies will be sent, even if a cookie header
(header-name-out/header-value-out) is sent.

For server environments, do not use the internet option setting Prompt. This setting leads to a
“hanging” server, because no client will be able to answer the prompt.

The following profile parameters have to be considered: NOPROX, PROXPORT, PROX, SSLPRX, SSLPRXPT,
NOSSLPRX. For information on these profile parameters, refer to the Parameter Reference.

For HTTPS, OpenSSL must be installed.

Statements858

REQUEST DOCUMENT

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCurl

yesyesI4Shttp-response-code

noyesI4Snatural-error-number

Syntax Element Description:

DescriptionSyntax Element

Location of Document:url

url is the URL to access a document.

WITH Clause:with-clause

See with-clause.

RETURN Clause:return-clause

See return-clause.

RESPONSE:http-response-code

http-response-code is theHTTP response status code returned for the request,
for example: 200 (request completed).

See also HTTP Responses Redirected and Denied.

For a list of possible HTTP status codes, refer to the RFC 2616 memorandum
published by the World Wide Web Consortium (W3C).

GIVING Option:natural-error-number
natural-error-number contains the 4-digitNatural error number if the request
could not be performed.

859Statements

REQUEST DOCUMENT

with-clause

[USER user-id]

[PASSWORD user-password]

[HEADER {[NAME] header-name-out [VALUE] header-value-out} ...]

[DATA {ALL outbound-document [ENCODED [[IN] CODEPAGE code-page-out]]

|{[NAME] variable-name-out [VALUE] variable-value-out} ...}]

The with-clause is used to specify optional user/password, header and data details for the request.

An empty with-clause (that is, no value specified after WITH) is ignored.

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCuser-id

noyesASCuser-password

noyesASCheader-name-out

noyesLTDFIPNASCheader-value-out

noyesLTDBFIPNUASCoutbound-document

noyesASCcode-page-out

noyesASCvariable-name-out

noyesLTDFIPNASCvariable-value-out

Syntax Element Description:

DescriptionSyntax Element

USER:user-id

user-id is the ID of the user that will be used for the request.

PASSWORD:user-password

user-password is the password of the user that will be used for the request.

HEADER NAME/VALUE Option:header-name-out

header-value-out header-name-out and header-value-out can only be used in conjunctionwith
each other:

■ header-name-out is the name of a header variable sent with this request.
■ header-value-out is the value of a header variable sent with this request.

header-name-out:

Statements860

REQUEST DOCUMENT

DescriptionSyntax Element

Header names must not contain a carriage return (CR), a line feed (LF) or a colon
(:). Thiswill not be checked by the REQUEST DOCUMENT statement. For valid header
names, see the HTTP specifications. For compatibility with the web interface,
header names can be written with underscore (_) instead of a dash (-). (Internally,
the underscore is replaced by a dash).

header-value-out:

Header values are not allowed to contain CR/LF. This will not be checked by the
REQUEST DOCUMENT statement. For valid header values and formats, see theHTTP
specifications.

See also Automatically Generated Headers.

DATA ALL Option:outbound-document

outbound-document is a complete document that is to be sent. This value is
needed for the HTTP REQUEST-METHOD PUT (see Automatically Generated
Headers).

DATA ALL ENCODED Option:code-page-out

Data transfer with the REQUEST DOCUMENT statement normally does not involve
any code page conversion. If you want to encode outgoing data in a specific code
page, use the CODEPAGE option:

outbound-documentwill be encoded from the default code page (value of the
system variable *CODEPAGE) to the code page given in code-page-out.
Encoding and Charset Attributes:

If the outbound document contains an encoding (XML) or a charset (HTML)
attribute, we recommend that the value of the ENCODED option maps the attribute
value of the document.

Example: If an outboundXMLdocument contains the attribute encoding="UTF-8",
code the REQUEST DOCUMENT statement with the option DATA ALL #DOCUMENT
ENCODED CODEPAGE 'UTF-8'.

DATA NAME/VALUE Option:variable-name-out

variable-value-out variable-name-out and variable-value-out request only specific DATA
variable information instead of the complete document. They can only be used in
conjunction with each other:

■ variable-name-out is the name of a DATA variable to be sentwith this request.
■ variable-value-out is the value of a DATA variable to be sentwith this request.
This value is needed for the HTTP REQUEST-METHOD POST (URL encoding
necessary, especially ampersand (&), equal sign (=), percent sign (%) characters).

Restriction:

861Statements

REQUEST DOCUMENT

DescriptionSyntax Element

If variable-name-out and variable-value-out are given and the
communication is http:// or https://, by default, the REQUEST-METHOD POST
(see Automatically Generated Headers) with content type
application/x-www-form-urlencoded is used. During the request,
variable-name-out and variable-value-outwill be separated by equal sign
(=) and ampersand (&) characters. Therefore, the operands are not allowed to
contain equal sign (=), ampersand (&) and, because of URL encoding, percent sign
(%) characters. These characters are considered reserved and need to be encoded
as indicated in Reserved Characters.

return-clause

[HEADER [ALL header-all-in] [[NAME] header-name-in [VALUE] header-value-in ...]]

[PAGE inbound-document [ENCODED [[FOR TYPES mime-type ...] [IN] CODEPAGE code-page-in]]]

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

yesyesASheader-all-in

noyesASCheader-name-in

yesyesLTDBFIPNAA *Sheader-value-in

yesyesBUASinbound-document

noyesASCmime-type

noyesASCcode-page-in

This clause can be used to specify return information for the headers and/or the document.

Syntax Element Description:

DescriptionSyntax Element

HEADER ALL Option:header-all-in

header-all-in contains all header data delivered with the HTTP response.

The first line contains the status information and all following lines contain the headers
as pairs of name and value. The names always end in a colon (:) and the values end
in a line feed (LF). Internally, all carriage returns/line feeds (CR/LF) are transformed
into line feeds (LF).

HEADER NAME/VALUE Option:header-name-in

header-value-in header-name-in and header-value-in return only specific header information.
They can only be used in conjunction with each other:

Statements862

REQUEST DOCUMENT

DescriptionSyntax Element

■ header-name-in is the name for the header information returned by the HTTP
request.

For compatibility with the web interface, header names can be written with
underscore (_) instead of dash (-) characters.

Internally, the underscore is replaced by a dash. If header-name-in is a blank
string, the status information is returned, for example:

HTTP/1.0 200 OK

■ header-value-in is the scalar or array value required to receive the header data
returned by the HTTP request.

An array definition is required if more than one occurrence of the same header is
expected, for example, multiple Set-Cookie headers.

Only one dimension of amulti-dimensional arraymay contain an index range (see
Example 9).

An X-array must be materialized before you can use it.

If the number of array occurrences exceeds the number of headers, the unused
occurrences are reset. If the number of headers exceeds the number of array
occurrences, the remaining header values are ignored.

For an example of an array definition, see Example 9 - RETURN HEADER NAME
VALUE with Array Definition.

PAGE Option:inbound-document

inbound-document is the document returned for this request. No encoding at all of
the returned page will be done; that is, the page will remain encoded as delivered
from the HTTP server.

PAGE ENCODED Option:code-page-in

Data transfer with the REQUEST DOCUMENT statement normally does not involve any
code page conversion. If you want to encode incoming data in a specific code page,
use the ENCODED option:

If necessary, inbound-documentwill be encoded in the default code page (value of
system variable *CODEPAGE) of the Natural session.

If the value of code-page-in is blank, no conversion occurs. inbound-document
is then encoded in the default code page (profile parameter CP in the Configuration
Utility).

Note: “Returned MIME type contains an encoding” means that the HTTP server
returns a content-type header with a charset= clause, for example:
charset=ISO-8859-1.

863Statements

REQUEST DOCUMENT

DescriptionSyntax Element

PAGE ENCODED FOR TYPES Option:mime-type

As a response of an HTTP/HTTPS request, incoming data may contain binary data
(for example, image/gif) or character data (for example, text/html). Together with the
response, the REQUEST DOCUMENT statement receives a parameter which specifies
the type of content of the requested document (MIME type, also known as internet
media type). This parameter may contain information about the code page in which
the document is encoded. mime-type is the list ofMIME types forwhich an encoding
of the returned document in inbound-documentwill be performed.

If the returnedMIME type contains an encoding, inbound-documentwill be encoded
from this code page to the default code page (A/B) or (U).

If the returned MIME type does not contain an encoding, then inbound-document
will be encoded from the code page defined with code-page-in to the default code
page (value of the system variable *CODEPAGE) (A/B) or (U).

If the returned MIME type does not contain an encoding, then an additional check
is performed if the returned MIME type matches one of the types given with
mime-type. If a match is found, inbound-documentwill be encoded from the code
page defined with code-page-in to the default code page (A/B) or (U).

Automatically Generated Headers

For an HTTP request, some headers are required, for example: REQUEST-METHOD or content type.
These headerswill be automatically generated depending on the parameters givenwith the REQUEST
DOCUMENT statement.

Note: It is possible to overwrite the automatically generated headers. Naturalwill not check
them for errors. Unexpected errors may occur.

■ HTTP REQUEST-METHOD
■ Content Type

HTTP REQUEST-METHOD

The REQUEST DOCUMENT statement supports the followingHTTP REQUEST-METHODs: HEAD, POST, GET
and PUT.

The following table shows theHTTP REQUEST-METHOD generated depending on the given operands:

Statements864

REQUEST DOCUMENT

RETURN PAGERETURN HEADERWITH DATAWITH HEADER

-x-oHEAD

xoxoPOST

xo-oGET

ooDATA ALL *oPUT

In addition to the standard REQUEST-METHODsmentioned above, themethods DELETE, PATCH, OPTIONS
and TRACE can be specified in a REQUEST-METHOD header.

Explanation:

Optional. Operand can be optionally specified.o

Operand cannot be specified.-

Operand is always specified.x

Only applies to DATA ALL and not DATA NAME VALUE.*

Content Type

The REQUEST-METHOD POST requires a content-type header for the HTTP request. If no content type
is explicitly specified, Natural inserts the following default content-type header into the request:

application/x-www-form-urlencoded

URL Encoding for Special Characters

When sending POST data with the content type application/x-www-form-urlencoded, certain
charactersmust be represented bymeans ofURL encoding,whichmeans substituting the character
with %hexadecimal-character-code. Some basic details are given here:

■ Non-ASCII Characters
■ Unsafe Characters
■ Reserved Characters

For full details of when andwhyURL encoding is necessary, refer to thememorandumsRFC 1630,
RFC 1738 and RFC 1808 published by the World Wide Web Consortium (W3C).

865Statements

REQUEST DOCUMENT

Non-ASCII Characters

All non-ASCII characters (that is, valid ISO 8859/1 characters that are not also ASCII characters)
must be URL encoded, for example, the file köln.htmlwould appear in an URL as k%F6ln.html.

Unsafe Characters

URL encode the following unsafe characters when you request web pages to avoid server failures:

URL EncodingUnsafe Character

%09the tab character

%20the space character

%5B[

%5C\

%5D]

%5E^

%60`

%7B{

%7C|

%7D}

%7E~

Reserved Characters

Some characters have special meanings in URLs, such as the colon (:) that separates the URL
scheme from the rest of the URL, the double slash (//) that indicates that the URL conforms to the
Common Internet Scheme syntax and the percent sign (%). Generally, when these characters appear
as parts of file names, they must be URL encoded to distinguish them from their special meaning
in URLs (this is a simplification, refer to the RFCs mentioned earlier for full details).

Reserved characters are:

URL EncodingReserved Character

%22"

%23#

%25%

%26&

%2B+

%2C,

%2F/

Statements866

REQUEST DOCUMENT

URL EncodingReserved Character

%3A:

%3C<

%3D=

%3E>

%3F?

%40@

HTTP Responses Redirected and Denied

For a list of HTTP status codes, refer to the RFC 2616 memorandum published by theWorldWide
Web Consortium (W3C).

The following special considerations apply to the HTTP responses for redirected and denied re-
quests:

■ Response 301 - 303 (Redirected)
■ Response 401 (Denied/Unauthorized)

Response 301 - 303 (Redirected)

The HTTP response codes 301, 302 and 303 mean that the URL where the requested document
resides has changed and that the request was therefore redirected to another URL. As a response,
the return header with the name LOCATIONwill be displayed. This header contains the URLwhere
the requested page has moved to. A new REQUEST DOCUMENT request can be used to retrieve the
page moved.

HTTP browsers redirect automatically to the newURL, but the REQUEST DOCUMENT statement does
not handle redirection automatically.

Response 401 (Denied/Unauthorized)

The HTTP response code 401 means that the requested page can only be accessed if a valid user
ID and password are provided with the request. As a response, the return header with the name
WWW-AUTHENTICATEwill be delivered with the REALM needed for this request.

HTTP browsers normally display a dialog with user ID and password, but with the REQUEST
DOCUMENT statement, no dialog is displayed.

867Statements

REQUEST DOCUMENT

Examples

■ Example 1 - General Request
■ Example 2 - Simple GET Request (no data)
■ Example 3 - Simple HEAD Request (no return page)
■ Example 4 - Simple POST Request (default REQUEST-METHOD)
■ Example 5 - Simple PUT Request (with DATA ALL)
■ Example 9 - RETURN HEADER NAME VALUE with Array Definition

Note: There is an example dialog V5-RDOC for this statement in the example library SYSEXV.

Example 1 - General Request

REQUEST DOCUMENT FROM "http://bolsap1:5555/invoke/sap.demo/handle_RFC_XML_POST"
WITH

USER #User PASSWORD #Password
DATA
NAME 'XMLData' VALUE #Queryxml
NAME 'repServerName' VALUE 'NT2'

RETURN
PAGE #Resultxml

RESPONSE #rc

Example 2 - Simple GET Request (no data)

REQUEST DOCUMENT FROM "http://pcnatweb:8080"
RETURN

PAGE #Resultxml
RESPONSE #rc

Example 3 - Simple HEAD Request (no return page)

REQUEST DOCUMENT FROM "http://pcnatweb"
RESPONSE #rc

Statements868

REQUEST DOCUMENT

Example 4 - Simple POST Request (default REQUEST-METHOD)

REQUEST DOCUMENT FROM "http://pcnatweb/cgi-bin/nwwcgi.exe/sysweb/nat-env"
WITH

DATA
NAME 'XMLData' VALUE #Queryxml
NAME 'repServerName' VALUE 'NT2'

RETURN
PAGE #Resultxml

RESPONSE #rc

Example 5 - Simple PUT Request (with DATA ALL)

REQUEST DOCUMENT FROM "http://pcnatweb/test.txt"
WITH

DATA ALL #document
RETURN

PAGE #Resultxml
RESPONSE #rc

Example 9 - RETURN HEADER NAME VALUE with Array Definition

DEFINE DATA
LOCAL
1 #FROM (A) DYNAMIC
1 #HEADER (A) DYNAMIC
1 #PAGE (A) DYNAMIC
1 #COOKIES (A20/1:3,1:4,2:5)
1 #RC (I4)
END-DEFINE
ASSIGN #FROM = 'http://www.myserver.com'
REQUEST DOCUMENT FROM #FROM

RETURN
HEADER NAME 'Set-Cookie' VALUE #COOKIES(1,2:3,3)
PAGE #PAGE
RESPONSE #RC

PRINT #COOKIES(*,*,*)
END

In the example program above, invalid array definitions (with multiple dimensions) would be:

869Statements

REQUEST DOCUMENT

RETURN HEADER NAME 'Set-Cookie' VALUE #COOKIES(1:3,2:3,3)
RETURN HEADER NAME 'Set-Cookie' VALUE #COOKIES(*,2,*)

Statements870

REQUEST DOCUMENT

119 RESET

■ Function .. 872
■ Syntax Description ... 872
■ Example .. 873

871

RESET [INITIAL] operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY
| SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The RESET statement is used to reset the value of a field:

■ RESET (without INITIAL) sets the content of each specified field to its default initial value de-
pending on its format.

■ RESET INITIAL sets each specified field to the initial value as defined for the field in the DEFINE
DATA statement. For a field declared without INIT clause in the DEFINE DATA statement, RESET
INITIAL has the same effect as RESET (without INITIAL).

Notes:

1. A field declared with a CONSTANT clause in the DEFINE DATA statement may not be referenced
in a RESET statement, since its content cannot be changed.

2. In reporting mode, the RESET statement may also be used to define a variable, provided that
the program contains no DEFINE DATA LOCAL statement.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesOGCLTDBFIPNUAMGASoperand1

Syntax Element Description:

Statements872

RESET

DescriptionSyntax Element

Reset to Null Value:RESET operand1

RESET (without INITIAL) sets the content of each specified field (operand1) to its
default initial value.

If operand1 is a dynamic variable, it will be reset to a null value with the length the
variable currently has at the time the RESET statement is executed. The current length
of a dynamic variable can be ascertained by using the system variable *LENGTH.

For general information on dynamic variables, see the sectionUsing Dynamic and Large
Variables.

Reset to Initial Value:RESET INITIAL
operand1

RESET INITIAL sets each specified field (operand1) to the initial value as defined for
the field in the DEFINE DATA statement.

■ If you specify no INIT value in the DEFINE DATA statement, a field will be initialized
with a default initial value depending on its format.

■ If a dynamic variable is used, *LENGTH is set to zero if no initial value is defined.
■ If you apply RESET INITIAL to an array, it must be applied to the entire array (as
defined in the DEFINE DATA statement); a RESET INITIAL of individual array
occurrences is not possible.

■ If an X-array is used, *OCCURRENCE is set to zero.
■ RESET INITIAL of fields resulting from a redefinition is not possible either.
■ RESET INITIAL is applied to a dynamic variable.
■ RESET INITIAL cannot be applied to database fields.

Example

** Example 'RSTEX1': RESET (with/without INITIAL)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
1 #BINARY (B4) INIT <1>
1 #INTEGER (I4) INIT <5>
1 #NUMERIC (N2) INIT <25>
END-DEFINE
*
LIMIT 1
READ EMPLOY-VIEW

/*
WRITE NOTITLE 'VALUES BEFORE RESET STATEMENT:'

873Statements

RESET

WRITE / '=' NAME '=' #BINARY '=' #INTEGER '=' #NUMERIC
/*
RESET NAME #BINARY #INTEGER #NUMERIC
/*
WRITE /// 'VALUES AFTER RESET STATEMENT:'
WRITE / '=' NAME '=' #BINARY '=' #INTEGER '=' #NUMERIC
/*
RESET INITIAL #BINARY #INTEGER #NUMERIC
/*
WRITE /// 'VALUES AFTER RESET INITIAL STATEMENT:'
WRITE / '=' NAME '=' #BINARY '=' #INTEGER '=' #NUMERIC
/*

END-READ
END

Output of Program RSTEX1:

VALUES BEFORE RESET STATEMENT:

NAME: ADAM #BINARY: 00000001 #INTEGER: 5 #NUMERIC:
25

VALUES AFTER RESET STATEMENT:

NAME: #BINARY: 00000000 #INTEGER: 0 #NUMERIC:
0

VALUES AFTER RESET INITIAL STATEMENT:

NAME: #BINARY: 00000001 #INTEGER: 5 #NUMERIC:
25

Statements874

RESET

120 RESIZE

■ Function .. 876
■ Syntax Description ... 876

875

[GIVING operand5]
dynamic-clause

RESIZE
array-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: EXPAND | REDUCE

Belongs to Function Group:Memory Management Control for Dynamic Variables or X-Arrays.

Function

The RESIZE statement is used to adjust:

■ the size of a dynamic variable (dynamic-clause), or
■ the number of occurrences of X-arrays (array-clause).

For further information, see also the following sections in the Programming Guide:

■ Using Dynamic Variables
■ Allocating/Freeing Memory Space for a Dynamic Variable
■ X-Arrays
■ Storage Management of X-Group Arrays

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

nonoBUAASoperand1

nonoISCoperand2

noyesOGCLTDBFIPNUAGAoperand3

nonoIPNSCoperand4

yesnoI4Soperand5

Syntax Element Description:

Statements876

RESIZE

DescriptionSyntax Element

DYNAMIC Clause:dynamic-clause

The RESIZE DYNAMIC statement adjusts the allocated length of the currently allocated
storage of a dynamic variable (operand1) to the value specified with operand2. For
more information, see Dynamic Clause below.

Dynamic Variable to be Adjusted:operand1

operand1 is the dynamic variable for which the length is to be adjusted.

New Length Specification:operand2

operand2 is used to specify the new length of the dynamic variable. The value
specifiedmust be a non-negative numeric integer constant or a variable of type Integer
4 (I4).

ARRAY Clause:array-clause

The RESIZE ARRAY statement adjusts the number of occurrences of the X-array
(operand3) to the upper and lower bound specified with (dim[,dim[,dim]]). For
more information, see Array Clause below.

Name of X-array:operand3

operand3 is the X-array. The occurrences of the X-array can be expanded or reduced.
The index notation of the array is optional. As index notation only the complete range
notation * is allowed for each dimension.

X-array Lower and Upper Bound:dim

operand4 The lower and upper bound notation (operand4 or asterisk) to which the X-array
should be expanded is specified here. If the current value of the upper or lower bound
should be used, an asterisk (*) must be specified in place of operand4. For further
information, see Dimension below.

GIVING Clause:GIVING operand5

If the GIVING clause is not specified, Natural runtime error processing is triggered if
an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if
an error occurred, or zero upon success.

877Statements

RESIZE

Dynamic Clause

[SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

The RESIZE DYNAMIC statement adjusts the allocated length of a dynamic variable (operand1) to
the value specified with operand2.

When the RESIZE statement is used, the currently allocated storage size will be adjusted to the
requested values, regardless whether it must be increased or decreased.

Array Clause

[AND RESET] [OCCURRENCES OF] ARRAY operand3 TO (dim[,dim[,dim]])

The RESIZE ARRAY statement adjusts the number of occurrences of the X-array (operand3) to the
upper and lower bound specified with (dim[,dim[,dim]]).

The RESET option resets all occurrences of the resized X-array to its default zero value. By default
(no RESET option), the actual values are kept and the resized (new) occurrences are reset.

An upper or lower bound used in an RESIZE statementmust be exactly the same as the correspond-
ing upper or lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #a(I4/1:*)
1 #g(1:*)

2 #ga(I4/1:*)

1 #i(i4)
END-DEFINE
...

*/ resizing #a (1:10)
RESIZE ARRAY #a TO (1:10) /* #a is resized to
RESIZE ARRAY #a TO (*:10) /* 10 occurrences.

/* resizing #ga (1:10,1:20)
RESIZE ARRAY #g TO (1:10) /* 1st dimension is set to (1:10)
RESIZE ARRAY #ga TO (*:*,1:20) /* 1st dimension is dependent and

/* therefore kept with (*:*)
/* 2nd dimension is set to (1:20)

RESIZE ARRAY #a TO (5:10) /* This is rejected because the lower index
/* must be 1 or *

RESIZE ARRAY #a TO (#i:10) /* This is rejected because the lower index

Statements878

RESIZE

/* must be 1 or *

RESIZE ARRAY #ga TO (1:10,1:20) /* (1:10) for the 1st dimension is rejected
/* because the dimension is dependent and
/* must be specified with (*:*).

For further information, see the following sections in the Programming Guide:

■ Storage Management of X-Arrays
■ Storage Management of X-Group Arrays

Dimension

Each of the dimensions (dim) specified in the Array Clause is defined using the following syntax:

*

:
**
operand4operand4

The lower and upper bound notation (operand4 or asterisk) towhich the X-array should be expan-
ded is specified here. If the current value of the upper or lower bound should be used, an asterisk
(*) may be specified in place of operand4. In place of *:*, you may also specify a single asterisk.

The number of dimensions (dim) must exactly match the defined number of dimensions of the X-
array (1, 2 or 3).

879Statements

RESIZE

880

121 ROLLBACK (SQL)

■ Function .. 882
■ Consideration for Non-Natural Programs .. 882
■ Example .. 882

881

ROLLBACK

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The SQL statement ROLLBACK corresponds to theNatural statement BACKOUT TRANSACTION. It undoes
all databasemodificationsmade since the beginning of the last recovery unit. A recovery unit may
start either after the beginning of a session or after the last SYNCPOINT, COMMIT, END TRANSACTION
or BACKOUT TRANSACTION statement. This statement also releases all records held during the
transaction.

If a program tries to backout updates which have already been committed by a terminal I/O, a
corresponding Natural error message (NAT3711) is returned.

Caution: As all cursors are closed when a logical unit of work ends, a ROLLBACK statement
must not be placed within a database modification loop; instead, it has to be placed outside
such a loop or after the outermost loop of nested loops.

Consideration for Non-Natural Programs

If an external programwritten in another standard programming language is called from aNatural
program, this external program should not contain its own ROLLBACK statement if the Natural
program issues database calls, too. The callingNatural program should issue the ROLLBACK statement
on behalf of the external program.

Example

...
DELETE FROM SQL-PERSONNEL WHERE NAME = 'SMITH'
ROLLBACK
...

Statements882

ROLLBACK (SQL)

122 RETRY

■ Function .. 884
■ Restriction .. 884
■ Example .. 884

883

RETRY

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The RETRY statement is used within an ON ERROR statement block (see ON ERROR statement). It is
used to reattempt to obtain a record which is in hold status for another user.

When a record to be held is already in hold status for another user, Natural issues Error Message
3145. See also the session parameter WH (Wait for Record in Hold Status).

The RETRY statement must be placed in the object that causes the Error 3145.

For details on record hold logic, see the section Record Hold Logic in the Programming Guide.

Restriction

This statement can only be used to access Adabas databases.

Example

** Example 'RTYEX1': RETRY
**
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
*
1 #RETRY (A1) INIT <' '>
END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = 'ALDEN'

/*
DELETE
END TRANSACTION

Statements884

RETRY

/*
ON ERROR

IF *ERROR-NR = 3145
INPUT NO ERASE 10/1

'RECORD IS IN HOLD' /
'DO YOU WISH TO RETRY?' /
#RETRY '(Y)ES OR (N)O?'

IF #RETRY = 'Y'
RETRY

ELSE
STOP

END-IF
END-IF

END-ERROR
/*
AT END OF DATA

WRITE NOTITLE *NUMBER 'RECORDS DELETED'
END-ENDDATA

END-FIND
*
END

885Statements

RETRY

886

123 RUN

■ Function .. 888
■ Syntax Description ... 888
■ Dynamic Source Text Creation/Execution ... 889
■ Example .. 890

887

RUN [REPEAT] operand1 [operand2 [(parameter)]] 40

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Invoking Programs and Routines

Function

The RUN statement is used to read a Natural source program from the Natural system file and then
execute it.

For Natural RPC: SeeNotes on Natural Statements on the Server in theNatural RPC (Remote Procedure
Call) documentation.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

noyesGLTDBFIPNUAGASCoperand2

Syntax Element Description:

DescriptionSyntax Element

REPEAT Option:REPEAT

RUN REPEAT causes the program not to prompt the user for input until the program has
finished executing even if multiple output screens (produced by INPUT statements) are
produced.

This featuremay be used if the program is to displaymultiple screens of informationwithout
having the user respond to each screen.

Program Name:operand1

As operand1 the name of the program can be specified as an alphanumeric constant or as
the content of an alphanumeric variable. If a variable is used, it must be 8 characters in
length.

The programmay be stored in the current library or in a concatenated library (default steplib
is SYSTEM). If the program is not found, an error message is issued.

Statements888

RUN

DescriptionSyntax Element

The program is read into the source program work area and overlays any current source
program.

Parameters:operand2

The RUN statementmay also be used to pass parameters to the program to be run.Aparameter
may be defined with any format. The parameters are converted to a format suitable for a
corresponding INPUT field. All parameters are placed on the top of the Natural stack.

The parameters can be read using an INPUT statement. The first INPUT statement issued
will result in the insertion of all parameters into the fields specified in the INPUT statement.
The INPUT statement must have the sign specification (session parameter SG=ON) for
parameter fields defined with numeric format.

Ifmore parameters are passed than are read by the nextINPUT statement, the extra parameters
are ignored. The number of parameters may be obtained with the system variable *DATA.

Note: If operand2 is a time variable (format T), only the time component of the variable
content is passed, but not the date component.

Date Format:parameter

If operand2 is a date variable, you can specify the session parameter DF (described in the
Parameter Reference) as parameter for this variable.

Dynamic Source Text Creation/Execution

The RUN statement may be used to dynamically compile and execute a program for which the
source or parts thereof are created dynamically.

Dynamic source text creation is performed by placing source text into global variables and then
referring to these variables by using an ampersand (&) instead of a plus sign (+) as the first char-
acter of the variable name in the source text. The content of the global variable will be interpreted
as source text when the program is invoked using the RUN statement.

A global variablewith indexmust not be usedwithin a program that is invoked via a RUN statement.

It is not allowed to place a comment or an INCLUDE statement in a global variable.

889Statements

RUN

Example

Program containing RUN statement:

** Example 'RUNEX1': RUN (with dynamic source program creation)
**
DEFINE DATA
GLOBAL

USING RUNEXGDA
LOCAL
1 #NAME (A20)
1 #CITY (A20)
END-DEFINE
*
INPUT 'Please specify the search values:' //

'Name:' #NAME /
'City:' #CITY

*
RESET +CRITERIA /* defined in GDA 'RUNEXGDA'
*
IF #NAME = ' ' AND #CITY = ' '

REINPUT 'Enter at least 1 value'
END-IF
*
IF #NAME NE ' '

COMPRESS 'NAME' ' =''' #NAME '''' INTO +CRITERIA LEAVING NO
END-IF
IF #CITY NE ' '

IF +CRITERIA NE ' '
COMPRESS +CRITERIA 'AND' INTO +CRITERIA

END-IF
COMPRESS +CRITERIA ' CITY =''' #CITY '''' INTO +CRITERIA LEAVING NO

END-IF
*
RUN 'RUNEXFND'
*
END

Program RUNEXFND executed by RUN statement:

** Example 'RUNEXFND': RUN (program executed with RUN in RUNEX1)
**
DEFINE DATA
GLOBAL

USING RUNEXGDA
LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY

Statements890

RUN

END-DEFINE
*
* &CRITERIA filled with "NAME = 'xxxxx' AND CITY = 'xxxx'"
*
FIND NUMBER EMPLOY-VIEW WITH &CRITERIA

RETAIN AS 'EMP-SET'
DISPLAY *NUMBER
*
END

Global Data Area RUNEXGDA:

Global RUNEXGDA Library SYSEXSYN DBID 10 FNR 32
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 +CRITERIA A 80

891Statements

RUN

892

XIV
■ 124 SELECT (SQL) .. 895
■ 125 SEND METHOD .. 911
■ 126 SEPARATE .. 923
■ 127 SET CONTROL ... 937
■ 128 SET GLOBALS ... 941
■ 129 SET KEY ... 945
■ 130 SET TIME .. 957
■ 131 SET WINDOW .. 961
■ 132 SKIP ... 963
■ 133 SORT .. 967
■ 134 STACK .. 979
■ 135 STOP .. 985

893

894

124 SELECT (SQL)

■ Function .. 896
■ Syntax 1 - Cursor-Oriented Selection ... 896
■ Syntax 2 - Non-Cursor Selection ... 897
■ Syntax Element Description ... 898
■ Join Queries ... 910

895

For explanations of the symbols used in the syntax diagrams, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The SELECT statement supports both the cursor-oriented selection that is used to retrieve an arbit-
rary number of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row. With the SELECT ... END-SELECT construction, Natural uses the same database loop
processing as with the FIND statement.

Two different structures are possible.

Syntax 1 - Cursor-Oriented Selection

Like the Natural FIND statement, the cursor-oriented SELECT statement is used to select a set of
rows (records) from one or more Db2 tables, based on a search criterion. Since a database loop is
initiated, the loop must be closed by a LOOP (reporting mode) or END-SELECT statement. With this
construction, Natural uses the same loop processing as with the FIND statement.

In addition, no cursor management is required from the application program; it is automatically
handled by Natural.

■ Syntax 1 - Common Set
■ Syntax 1 - Extended Set

Syntax 1 - Common Set

SELECT selection into-clause table-expression

(SELECT selection
table-expression)

ALL
UNION
EXCEPT

SELECT selection
table-expression

INTERSECT

[ORDER BY criteria]

statement

END-SELECT
LOOP

Statements896

SELECT (SQL)

Syntax 1 - Extended Set

SELECT selection into-clause table-expression

(SELECT selection
table-expression)

ALL
UNION
EXCEPT

SELECT selection
table-expression

INTERSECT

[ORDER BY criteria]

[OPTIMIZE FOR integer ROWS]

[WITH isolation-level]

[FETCH FIRST row-limit]

[WITH scroll-mode]

[IF NO RECORDS FOUND instruction]

statement

END-SELECT
LOOP

Syntax 2 - Non-Cursor Selection

The SELECT SINGLE statement supports the functionality of a non-cursor selection (singleton
SELECT); that is, a select expression that retrieves atmost one rowwithout using a cursor. It cannot
be referenced by a positioned UPDATE or a positioned DELETE statement.

■ Syntax 2 - Common Set
■ Syntax 2 - Extended Set

Syntax 2 - Common Set

SELECT SINGLE

selection into-clause table-expression

[IF NO RECORDS FOUND instruction]

statement

END-SELECT
LOOP

897Statements

SELECT (SQL)

Syntax 2 - Extended Set

SELECT SINGLE

selection into-clause table-expression

[WITH isolation-level]

[FETCH FIRST row-limit]

[IF NO RECORDS FOUND instruction]

statement

END-SELECT
LOOP

Syntax Element Description

This section alphabetically lists and explains the syntax items contained in the syntax diagrams
of Syntax 1 - Cursor-Oriented Selection and Syntax 2 - Non-Cursor Selection:

■ END-SELECT | LOOP
■ FETCH FIRST row-limit
■ IF NO RECORDS FOUND instruction
■ into-clause
■ OPTIMIZE FOR integer ROWS
■ ORDER BY criteria
■ selection
■ statement
■ table-expression
■ UNION | EXCEPT | INTERSECT Clause
■ WITH isolation-level
■ WITH scroll-mode

END-SELECT | LOOP

In structured mode, the Natural reserved keyword END-SELECTmust be used to end the SELECT
statement.

In reporting mode, the LOOP statement must be used to end the SELECT statement.

Statements898

SELECT (SQL)

FETCH FIRST row-limit

ONLYFETCH FIRST
ROW1
ROWSinteger

The FETCH FIRST clause limits the number of rows to be fetched. It improves the performance of
queries with potentially large result sets if only a limited number of rows is needed.

This clause is only valid against Db2 databases. When used against other databases, it will cause
runtime errors.

IF NO RECORDS FOUND instruction

Note: This clause actually does not belong to Natural SQL; it represents Natural function-
ality which has been made available to SQL loop processing.

Structured Mode Syntax

IF NO [RECORDS] [FOUND]

ENTER

statement

END-NOREC

Reporting Mode Syntax

IF NO [RECORDS] [FOUND]

ENTER

statement

DO statement DOEND

The IF NO RECORDS FOUND clause is used to initiate a processing loop if no records meet the selec-
tion criteria specified in the preceding SELECT statement.

If no records meet the specified selection criteria, the IF NO RECORDS FOUND clause causes the
processing loop to be executed once with an “empty” record. If this is not desired, specify the
statement ESCAPE BOTTOMwithin the IF NO RECORDS FOUND clause.

If one or more statements are specified with the IF NO RECORDS FOUND clause, the statements are
executed immediately before the processing loop is entered. If no statements are to be executed
before entering the loop, the keyword ENTERmust be used.

Note: If the result set of the SELECT statement consists of a single row of NULL values, the
IF NO RECORDS FOUND clause is not executed. This could occur if the selection list consists
solely of one of the aggregate functions SUM, AVG, MIN or MAX on columns, and the set on

899Statements

SELECT (SQL)

which these aggregate functions operate is empty. When you use these aggregate functions
in the above-mentioned way, you should therefore check the values of the corresponding
null-indicator fields instead of using an IF NO RECORDS FOUND clause.

Database Values
Unless other value assignments are made in the statements accompanying an IF NO RECORDS
FOUND clause, Natural resets to empty all database fields which reference the file specified in
the current loop.

Evaluation of System Functions
Natural system functions are evaluated once for the empty record that is created for processing
as a result of the IF NO RECORDS FOUND clause.

into-clause

INTO
parameter,
VIEW {view-name [correlation-name]},

The INTO keyword introduces an INTO clause. This clause is used to specify the target fields in the
program which are to be filled with the result of the selection.

The INTO clause can specify either single parameters or one ormore views as defined in the DEFINE
DATA statement.

All target field values can come either from a single table or from more than one table as a result
of a join operation (see also Join Queries).

Note: In standard SQL syntax, an INTO clause is only used in non-cursor select operations
(singleton SELECT) and can be specified only if a single row is to be selected. In Natural,
however, the INTO clause is used for both cursor-oriented and non-cursor select operations.

The selection can also merely consist of an asterisk (*). In a standard select expression, this is a
shorthand for a list of all column names in the table(s) specified in the FROM clause. In the Natural
SELECT statement, however, the same syntactical item SELECT * has a different semantic meaning:
all the items listed in the INTO clause are also used in the selection. Their names must correspond
to names of existing database columns.

Syntax Element Description:

Statements900

SELECT (SQL)

DescriptionSyntax Element

If single parameters are specified as target fields, their number and formats must
correspond to the number and formats of the columns and/or scalar-expressions

parameter

specified in the corresponding selection as described above (for details, see Scalar
Expressions). See Example 5.

The name a Natural view as defined in the DEFINE DATA statement.

If one or more views are referenced in the INTO clause, the number of items specified
in the selectionmust correspond to the number of fields defined in the view(s)
(not counting group fields, redefining fields and indicator fields).

view-name

Note: Both the Natural target fields and the table columns must be defined in a
Natural DDM. Their names, however, can be different, since assignment is made
according to their sequence.
See Example 5.

If the VIEW clause is used within a SELECT * construction where multiple tables are
to be joined, correlation-names are required if the specified view contains fields

correlation-name

that reference columnswhich exist in more than one of these tables. In order to know
which column to select, all these columns are qualified by the specified
correlation-name at generation of the selection list. The correlation-name
assigned to a view must correspond to one of the correlation-names used to
qualify the tables to be joined. See also the section Join Queries and Example 6.

Examples
Example 1:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 NAME
02 AGE

END-DEFINE
...
SELECT *

INTO NAME, AGE

Example 2:

...
SELECT *

INTO VIEW PERS

These examples are equivalent to the following ones:

Example 3:

901Statements

SELECT (SQL)

...
SELECT NAME, AGE

INTO NAME, AGE

Example 4:

...
SELECT NAME, AGE

INTO VIEW PERS

Example 5:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 NAME
02 AGE

END-DEFINE
...
SELECT FIRSTNAME, AGE

INTO VIEW PERS
FROM SQL-PERSONNEL

...

The target fields NAME and AGE, which are part of a Natural view, receive the contents of the
table columns FIRSTNAME and AGE.

Example 6:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 NAME
02 FIRST-NAME
02 AGE

END-DEFINE
...
SELECT *

INTO VIEW PERS A
FROM SQL-PERSONNEL A, SQL-PERSONNEL B

...

Statements902

SELECT (SQL)

OPTIMIZE FOR integer ROWS

OPTIMIZE FOR integer ROWS

This clause is only valid against Db2 databases. When used against other databases, it will cause
runtime errors.

The OPTIMIZE FOR integer ROWS clause is used to informDb2 in advance of the number (integer)
of rows to be retrieved from the result table. Without this clause, Db2 assumes that all rows of the
result table are to be retrieved and optimizes accordingly.

This optional clause is useful if you knowhowmany rows are likely to be selected, because optim-
izing for integer rows can improve performance if the number of rows actually selected does not
exceed the integer value (which can be in the range from 0 to 2147483647).

Example

SELECT name INTO
#name FROM table WHERE AGE = 2 OPTIMIZE FOR 100 ROWS

ORDER BY criteria

ASCcolumn-reference
ORDER BY

DESCinteger

The ORDER BY clause arranges the result of a SELECT statement in a particular sequence.

Syntax Element Description:

DescriptionSyntax Element

Each ORDER BY clause must specify a column of the result table. In most ORDER BY
clauses a column can be identified either by column-reference (that is, by an

column-reference

optionally qualified columnname) or by columnnumber. In a query involving UNION,
a column must be identified by column number. See also Column Reference.

In a query involving UNION, a column must be identified by column number. The
column number is the ordinal left-to-right position of a column within the selection,

integer

which means it is an integer value. This feature makes it possible to order a result on
the basis of a computed column which does not have a name.

Specifies the sort order: ascending (ASC) or descending (DESC). ASC is the default. See
Example 2.

ASC|DESC

Examples
Example 1:

903Statements

SELECT (SQL)

DEFINE DATA LOCAL
1 #NAME (A20)
1 #YEARS-TO-WORK (I2)
END-DEFINE
...
SELECT NAME , 65 - AGE

INTO #NAME, #YEARS-TO-WORK
FROM SQL-PERSONNEL
ORDER BY 2
...

Example 2:

DEFINE DATA LOCAL
1 PERS VIEW OF SQL-PERSONNEL
1 NAME
1 AGE
1 ADDRESS (1:6)
END-DEFINE
...
SELECT NAME, AGE, ADDRESS

INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE AGE = 55
ORDER BY NAME DESC
...

selection

See Selection in Select Expressions.

statement

The Natural statement(s) to be executed in the processing loop.

table-expression

See table-expression in Select Expressions.

Statements904

SELECT (SQL)

UNION | EXCEPT | INTERSECT Clause

(SELECT selection table-expression)DISTINCT
UNION

SELECT selection table-expressionALL
EXCEPT
INTERSECT

UNION, EXCEPT and INTERSECT introduce a query that involves set operations.

Set operations combine the results of two or more select-expressions. The columns specified
in the individual select-expressionsmust match in number, type and format.

The INTO clause must be specified with the first select-expression only.

Syntax Element Description:

DescriptionSyntax Element

Combines the results of two or more select-expressions.UNION

Specifies the difference set of the result sets of two select-expressions.EXCEPT

Specifies the intersection of two result sets.INTERSECT

Specifies that the result set does not contain redundant (duplicate) rows. DISTINCT is the
default setting.

DISTINCT

Specifies that the result set contains redundant (duplicate) rows. Redundant duplicate rows
are eliminated from the result of a set operation unless the set operation explicitly includes
the ALL qualifier.

ALL

Example

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 NAME
02 AGE
02 ADDRESS (1:6)

END-DEFINE
...
SELECT NAME, AGE, ADDRESS

INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE AGE > 55

UNION ALL
SELECT NAME, AGE, ADDRESS

FROM SQL-EMPLOYEES
WHERE PERSNR < 100

ORDER BY NAME
...

905Statements

SELECT (SQL)

END-SELECT
...

WITH isolation-level

WITH

CS
RR
RR KEEP UPDATE LOCK
RS
RS KEEP UPDATE LOCKS
UR

This clause allows you to specify an explicit isolation level with which the statement is to be ex-
ecuted.

This clause is only valid against Db2 databases. When used against other databases, it will cause
runtime errors.

The following options are provided:

MeaningOption

Cursor StabilityCS

Repeatable ReadRR

Only applies to Syntax 1 - Extended Set and only if a positioned UPDATE or a
positioned DELETE statement is processed with the SELECT statement.

Repeatable Read and retaining update locks.

RR KEEP UPDATE
LOCKS

Read StabilityRS

Only applies to Syntax 1 - Extended Set and only if a positioned UPDATE or a
positioned DELETE statement is processed with the SELECT statement.

Read Stability and retaining update locks.

RS KEEP UPDATE
LOCKS

Uncommitted Read

UR can only be specified within a SELECT statement and when the table is
read-only. The default isolation level is determined by the isolation of the package

UR

or plan intowhich the statement is bound. The default isolation level also depends
on whether the result table is read-only or not. To find out the default isolation
level, refer to the IBM literature.

Statements906

SELECT (SQL)

WITH scroll-mode

[:] scroll_hv [GIVING [:] sqlcode]WITH

ASENSITIVE SCROLL
INSENSITIVE SCROLL
SENSITIVE STATIC SCROLL
SENSITIVE DYNAMIC SCROLL

Natural supports SQL scrollable cursors by using the clauses WITH ASENSITIVE SCROLL, WITH
SENSITIVE STATIC SCROLL, and SENSITIVE DYNAMIC SCROLL. Scrollable cursors allow Natural
applications to position randomly any row in a result set. With non-scrollable cursors, the data
can only be read sequentially, from top to bottom.

RDBMS scrollable cursors are enabled with this clause. Scrollable cursors can be ASENSITIVE,
INSENSITIVE, SENSITIVE STATIC, or SENSITIVE DYNAMIC.

Scrollable cursors allow the application to position any row in the cursor at any time as long as
the cursor is open. Scrollable cursors are not supported for Sybase databases at all. Scrollable
cursors are not supported for the MS SQL Server DBLIB interface, but only for the MS SQL Server
ODBC interface.

The positioning is performed depending on the content of the scroll_hv. The content is evaluated
each time a FETCH against the database is executed.

Note: Not all SQL database systems support all options.

Syntax Element Description:

DescriptionSyntax Element

Specifies that the cursor is either INSENSITIVE or SENSITIVE DYNAMIC.

This is determined by the database at open time of the cursor, depending on the
read-only property of the cursor: If the cursor is read-only, the cursor will become

ASENSITIVE SCROLL

INSENSITIVE. If the cursor is not read-only, the cursor will become SENSITIVE
DYNAMIC. This is supported for Db2 databases.

Specifies that the cursor is insensitive for updates, deletes and inserts executed
against the base table, after the cursor has been updated.INSENSITIVE SCROLL

INSENSITIVE
SCROLL

refers to a cursor that cannot be used in Positioned UPDATE or Positioned DELETE
operations. This is supported for Oracle, Adabas D, MS SQL Server ODBC,MySQL,
MariaDB, PostgreSQL, andDb2databases. In addition, once opened, anINSENSITIVE
SCROLL cursor does not reflect UPDATE, DELETE or INSERT operations against the
base table after the cursor was opened.

See alsoNote.

Specifies that the cursor is sensitive for updates and deletes against the base table,
but not against inserts, after the cursor has been opened.SENSITIVE STATIC SCROLL

SENSITIVE STATIC
SCROLL

907Statements

SELECT (SQL)

DescriptionSyntax Element

refers to a cursor that can be used for Positioned UPDATE or Positioned DELETE
operations. This is supported for Adabas D, MS SQL Server ODBC and Db2
databases.In addition, a SENSITIVE STATIC SCROLL cursor reflects UPDATE and
DELETE operations of base table rows. The cursor does not reflect INSERT operations.

See alsoNote.

SENSITIVE DYNAMIC specifies that the cursor is sensitive for updates, deletes and
inserts against the base table, after the cursor has been opened.

SENSITIVE DYNAMIC scrollable cursors reflect UPDATE and DELETE operations
against the base table while the cursor is open. This is supported for Adabas D, MS
SQL Server ODBC and Db2 databases.

SENSITIVE DYNAMIC
SCROLL

Note: INSENSITIVE and SENSITIVE STATIC scrollable cursors use temporary result tables
and require a TEMP database in Db2 (see the relevant Db2 literature by IBM).

scroll_hv
The variable scroll_hvmust be alphanumeric.

The variable scroll_hv specifies which row of the result table will be fetched during one exe-
cution of the database processing loop. The content of scroll_hv is evaluated each time the
database processing loop cycle is executed.

CURRENT

INSENSITIVE

FIRST

SENSITVE

LAST
PRIOR
NEXT

integer
+ABSOLUTE
-RELATIVE

scroll_hv Options

ExplanationOption

Fetches the current row (again).CURRENT

Fetches the first row.FIRST

Fetches the last row.LAST

Fetches the row after the current one. This is the default value.NEXT

Fetch the row before the current one.PRIOR

Only applies in connection with ABSOLUTE or RELATIVE.+|-integer

Specifies the position of the row to be fetched ABSOLUTE or RELATIVE.

Statements908

SELECT (SQL)

ExplanationOption

Enter a plus (+) or minus (-) sign followed by an integer.

The default value is a plus (+).

Only applies in connection with +|-integer.ABSOLUTE

Uses integer as the absolute positionwithin the result set fromwhere the row is fetched.

Only applies in connection with +|-integer.RELATIVE

Uses integer as the relative position to the current position within the result set from
where the row is fetched.

There are some restrictions for special RDBMS systems:
■ Db2 does not support the keyword CURRENT.
■ In a SELECT FOR UPDATE loop Db2 only supports NEXT as scrolling option.
■ MS SQL Server (ODBC interface) does not support the keyword CURRENT.
■ Adabas D does not support RELATIVE scrolling.

GIVING [:] sqlcode
The specification of GIVING [:] sqlcode is optional. If specified, the Natural variable [:]
sqlcodemust be of format I4. The values for this variable are returned from the Db2 SQLCODE
of the underlying FETCH operation. This allows the application to react to different statuses
encounteredwhile the scrollable cursor is open. Themost important status codes indicated by
SQLCODE are listed in the following table:

ExplanationSQLCODE

FETCH operation successful, data returned except for FETCHwith option BEFORE or AFTER.0

Row not found, cursor still open, no data returned.+100

General error while trying to FETCH a row-1

If you specify GIVING [:] sqlcode, the application must react to the different statuses. If an
SQLCODE +100 is entered five times successively andwithout terminal I/O, the Natural for Db2
runtimewill issueNatural errorNAT3296 in order to avoid application looping. The application
can terminate the processing loop by executing an ESCAPE statement.

If you do not specify GIVING [:] sqlcode, except for SQLCODE 0 and SQLCODE +100, each
SQLCODEwill generate Natural error NAT3700 and the processing loop will be terminated.
SQLCODE +100 (row not found) will terminate the processing loop.

See also the example program DEM2SCRL supplied in the Natural system library SYSDB2.

909Statements

SELECT (SQL)

Join Queries

A join is a query in which data is retrieved frommore than one table. All the tables involved must
be specified in the FROM clause.

A join always forms the Cartesian product of the tables listed in the FROM clause and later eliminates
from this Cartesian product table all the rows that do not satisfy the join condition specified in the
WHERE clause.

Correlation names can be used to save writing if table names are rather long. Correlation names
must be used when a column specified in the selection list exists in more than one of the tables to
be joined in order to know which of the identically named columns to select.

Example

DEFINE DATA LOCAL
1 #NAME (A20)
1 #MONEY (I4)
END-DEFINE
...
SELECT NAME, ACCOUNT

INTO #NAME, #MONEY
FROM SQL-PERSONNEL P, SQL-FINANCE F
WHERE P.PERSNR = F.PERSNR

AND F.ACCOUNT > 10000
...

Statements910

SELECT (SQL)

125 SEND METHOD

■ Function .. 912
■ Syntax Description ... 912
■ Example .. 915

911

SEND [METHOD] operand1 TO [OBJECT] operand2

)(AD=

WITH

Moperand3
O

nX A

[RETURN operand4]

[GIVING operand5]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CREATE OBJECT | DEFINE CLASS | INTERFACE | METHOD | PROPERTY

Belongs to Function Group: Component Based Programming

Function

The SEND METHOD statement is used to invoke a particular method of an object.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

nonoOSoperand2

noyesOGCLTDBFIPNUAGASCoperand3

noyesOGCLTDBFIPNUAASoperand4

noyesINSoperand5

The formats C and G can only be passed to methods of local classes.

Syntax Element Description:

Statements912

SEND METHOD

DescriptionSyntaxElement

Method-Name:operand1

operand1 is the name of a method which is supported by the object specified in operand2.

Since the method names can be identical in different interfaces of a class, the method name
in operand1 can also be qualified with the interface name to avoid ambiguity.

In the following example, the object #O3 has an interface Iteratewith the method Start.
The following statements apply:

* Specifying only the method name.
SEND 'Start' TO #O3
* Qualifying the method name with the interface name.
SEND 'Iterate.Start' TO #O3

If no interface name is specified, Natural searches the method name in all the interfaces of
the class. If the method name is found in more than one interface, a runtime error occurs.

Object Handle:

The handle of the object to which the method call is to be sent.

operand2

operand2must be defined as an object handle (HANDLE OF OBJECT). The objectmust already
exist.

To invoke a method of the current object inside a method, use the system variable
*THIS-OBJECT.

Parameter(s) Specific to the Method:operand3

As operand3 you can specify parameters specific to the method.

In the following example, the object #O3 has the method PositionTowith the parameter
Pos. The method is called in the following way:

SEND 'PositionTo' TO #O3 WITH Pos

Methods can have optional parameters. Optional parameters need not to be specified when
the method is called. To omit an optional parameter, use the placeholder 1X. To omit n
optional parameters, use the placeholder nX.

In the following example, the method SetAddress of the object #O4 has the parameters
FirstName,MiddleInitial,LastName,Street andCity, whereMiddleInitial,Street
and City are optional. The following statements apply:

913Statements

SEND METHOD

DescriptionSyntaxElement

* Specifying all parameters.
SEND 'SetAddress' TO #O4 WITH FirstName MiddleInitial
LastName Street City
* Omitting one optional parameter.
SEND 'SetAddress' TO #O4 WITH FirstName 1X LastName Street City
* Omitting all optional parameters.
SEND 'SetAddress' TO #O4 WITH FirstName 1X LastName 2X

Omitting a non-optional (mandatory) parameter results in a runtime error.

AD= Attribute Definition:
If operand3 is a variable, you can mark it in one of the following ways:

Non-modifiable, see session parameter AD=O.AD=O

Modifiable, see session parameter AD=M.

This is the default setting.

AD=M

Input only, see session parameter AD=A.AD=A

If operand3 is a constant, AD cannot be explicitly specified. For constants AD=O always
applies.

Parameter(s) to be Skipped:nX

With the notation nX you can specify that the next nparameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters). This means that for
the next n parameters no values are passed to the method.

For a method implemented in Natural, a parameter that is to be skipped must be defined
with the keyword OPTIONAL in the dialog'sDEFINE DATA PARAMETER statement. OPTIONAL
means that a value can - but need not - be passed from the invoking object to such a parameter.

RETURN Clause:RETURN
operand4

If the RETURN clause is omitted and the method has a return value, the return value is
discarded.

If the RETURN clause is specified, operand4 contains the return value of the method. If the
method execution fails, operand4 is reset to its initial value.

Note: For classes written in Natural, the return value of a method is defined by entering
one additional parameter in the parameter data area of the method and by marking it with
BY VALUE RESULT. For more information, see the PARAMETER clause in the INTERFACE
statement description. Therefore the parameter data area of a method that is written in
Natural and that has a return value always contains one additional field next to the method
parameters. This is to be considered when you call a method of a Natural written class and
want to use the parameter data area of the method in the SEND statement.

GIVING Clause:GIVING
operand5

If the GIVING clause is not specified, the Natural run time error processing is triggered if an
error occurs.

Statements914

SEND METHOD

DescriptionSyntaxElement

If the GIVING clause is specified, operand5 contains the Natural message number if an error
occurred, or zero on success.

Example

The following diagram gives an overview of the Natural objects that are used in this example. The
corresponding source code and the program output are shown below.

915Statements

SEND METHOD

Statements916

SEND METHOD

ProgramMETH01 -CREATEOBJECTandSENDMETHODUsing aClass andSeveralMethods:

** Example 'METH01': CREATE OBJECT and SEND METHOD
** using a class and several methods (see METH*)
**
DEFINE DATA
LOCAL

USING METHA
LOCAL
1 L-STUDENT HANDLE OF OBJECT
1 #NAME (A20)
1 #STREET (A20)
1 #CITY (A20)
1 #SUM (I4)
1 #MULTI (I4)
END-DEFINE
*
CREATE OBJECT L-STUDENT OF CLASS 'STUDENTS' /* see METHCL for class
*
L-STUDENT.<> := 'John Smith'
*
SEND METHOD 'INIT' TO L-STUDENT /* see METHCL

WITH #VAR1 #VAR2 #VAR3 #VAR4
*
SEND METHOD 'SUMMATION' TO L-STUDENT /* see METHCL

WITH #VAR1 #VAR2 #VAR3 #VAR4
*
SEND METHOD 'MULTIPLICATION' TO L-STUDENT /* see METHCL

WITH #VAR1 #VAR2 #VAR3 #VAR4
*
#NAME := L-STUDENT.<>
#SUM := L-STUDENT.<>
#MULTI := L-STUDENT.<>
*
SEND METHOD 'ADDRESS' TO L-STUDENT /* see METHCL
*
#STREET := L-STUDENT.<>
#CITY := L-STUDENT.<>
*
*
WRITE 'Name :' #NAME
WRITE 'Street:' #STREET
WRITE 'City :' #CITY
WRITE ' '
WRITE 'The summation of ' #VAR1 #VAR2 #VAR3 #VAR4
WRITE 'is' #SUM
WRITE 'The multiplication of' #VAR1 #VAR2 #VAR3 #VAR4
WRITE 'is' #MULTI
*
END

917Statements

SEND METHOD

Class Definition METHCL Used by METH01:

** Example 'METHCL': DEFINE CLASS (used by METH01)
**
* Defining class STUDENTS for METH01
*
DEFINE CLASS STUDENTS

OBJECT
USING METHO /* Object data for class STUDENTS

/*
INTERFACE STUDENT-ARITHMETICS

PROPERTY FULL-NAME
IS NAME

END-PROPERTY
PROPERTY SUM
END-PROPERTY
PROPERTY MULTI
END-PROPERTY

*
METHOD INIT
IS METH02
PARAMETER USING METHA

END-METHOD
METHOD SUMMATION
IS METH03
PARAMETER USING METHA

END-METHOD
METHOD MULTIPLICATION
IS METH04
PARAMETER USING METHA

END-METHOD
END-INTERFACE

*
INTERFACE STUDENT-ADDRESS

PROPERTY STUDENT-NAME
IS NAME

END-PROPERTY
PROPERTY STREET
END-PROPERTY
PROPERTY CITY
END-PROPERTY

*
METHOD ADDRESS
IS METH05

END-METHOD
END-INTERFACE

END-CLASS
END

Statements918

SEND METHOD

Local Data Area METHO (object data) Used by Class METHCL and Subprograms METH02,
METH03, METH04 and METH05:

Local METHO Library SYSEXSYN DBID 10 FNR 32
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 NAME A 20
1 STREET A 30
1 CITY A 20
1 SUM I 4
1 MULTI I 4

Parameter Data Area METHA Used by ProgramMETH01, Class METHCL and Subprograms
METH02, METH03 and METH04:

Parameter METHA Library SYSEXSYN DBID 10 FNR 32
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 #VAR1 I 4
1 #VAR2 I 4
1 #VAR3 I 4
1 #VAR4 I 4

SubprogramMETH02 - Method INIT Used by ProgramMETH01:

** Example 'METH02': Method INIT (used by METH01)
**
DEFINE DATA
PARAMETER

USING METHA
OBJECT

USING METHO
END-DEFINE
*
* Method INIT of class STUDENTS
*
#VAR1 := 1
#VAR2 := 2
#VAR3 := 3
#VAR4 := 4
*
END

919Statements

SEND METHOD

SubprogramMETH03 - Method SUMMATION Used by ProgramMETH01:

** Example 'METH03': Method SUMMATION (used by METH01)
**
DEFINE DATA
PARAMETER

USING METHA
OBJECT

USING METHO
END-DEFINE
*
* Method SUMMATION of class STUDENTS
*
COMPUTE SUM = #VAR1 + #VAR2 + #VAR3 + #VAR4
END

SubprogramMETH04 - Method MULTIPLICATION Used by ProgramMETH01:

** Example 'METH04': Method MULTIPLICATION (used by METH01)
**
DEFINE DATA
PARAMETER

USING METHA
OBJECT

USING METHO
END-DEFINE
*
* Method MULTIPLICATION of class STUDENTS
*
COMPUTE MULTI = #VAR1 * #VAR2 * #VAR3 * #VAR4
END

SubprogramMETH05 - Method ADDRESS Used by ProgramMETH01:

** Example 'METH05': Method ADDRESS (used by METH01)
**
DEFINE DATA

OBJECT USING METHO
END-DEFINE
*
* Method ADDRESS of class STUDENTS
*
IF NAME = 'John Smith'

STREET := 'Oxford street'
CITY := 'London'

END-IF
END

Statements920

SEND METHOD

Output of ProgramMETH01:

Page 1 05-01-17 15:59:04

Name : John Smith
Street: Oxford street
City : London

The summation of 1 2 3 4
is 10
The multiplication of 1 2 3 4
is 24

921Statements

SEND METHOD

922

126 SEPARATE

■ Function .. 924
■ Syntax Description ... 924
■ Rules and Operational Considerations ... 927
■ Examples ... 930

923

operand1
SEPARATE

SUBSTRING (operand1,operand2,operand3)

[[STARTING] FROM [POSITION] operand8]

[LEFT [JUSTIFIED]] INTO operand4

IGNORE

REMAINDER operand5

REMAINDER POSITION operand9

[ANY] DELIMITERS

WITH [RETAINED] INPUT DELIMITERS

DELIMITERS operand6

[[GIVING] NUMBER [IN] operand7]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: COMPRESS | COMPUTE | EXAMINE | MOVE | MOVE ALL | RESET

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The SEPARATE statement is used to separate the content of an alphanumeric or binary operand into
two or more alphanumeric or binary operands (or into multiple occurrences of an alphanumeric
or binary array).

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesBUAASCoperand1

noyesB*IPNSCoperand2

noyesB*IPNSCoperand3

yesyesBUAGASoperand4

yesyesBUASoperand5

noyesBUASCoperand6

yesyesIPNSoperand7

Statements924

SEPARATE

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesIPNSCoperand8

yesyesIPNSoperand9

* Format B of operand2 and operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Source Operand:operand1

operand1 is the alphanumeric/binary constant or variable whose content is to be
separated.

Trailing blanks in operand1 are removed before the value is processed (even if the
blank is used as a delimiter character; see also the DELIMITERS option).

SUBSTRING Option:SUBSTRING

Normally, the whole content of a field is separated, starting from the beginning of
the field.

The SUBSTRING option allows you to separate only a certain part of the field. After
the field name (operand1) in the SUBSTRING clause you specify first the starting
position (operand2) and then the length (operand3) of the field portion to be
separated. For example, if a field #A contained CONTRAPTION, SUBSTRING(#A,5,3)
would contain RAP.

Note: If you omit operand2, the starting position is assumed to be 1. If you omit
operand3, the length is assumed to be from the starting position to the end of the
field.

STARTING FROM POSITION Option:STARTING FROM
POSITION
operand8 This option determines the starting position for the source operand (operand1) to be

separated.

For details, see Defining Ranges for STARTING POSITION.

LEFT JUSTIFIED Option:LEFT JUSTIFIED

This option causes leading blanks which may occur between the delimiter character
and the next non-blank character to be removed from the target operand.

Target Operand:operand4

operand4 represents the target operands. If an array is specified as target operand,
it is filled occurrence by occurrence with the separated values.

The number of target operands corresponds to the number of delimiter characters
(including trailing delimiter characters) in operand1, plus 1.

925Statements

SEPARATE

DescriptionSyntax Element

If operand4 is a dynamic variable, its length may be modified by the SEPARATE
operation. The current length of a dynamic variable can be ascertained by using the
system variable *LENGTH.

For general information on dynamic variables, see the section Using Dynamic and
Large Variables.

IGNORE / REMAINDER Options:IGNORE /

REMAINDER
operand5

If you do not specify enough target fields for the source value to be separated into,
you will receive an appropriate error message.

To avoid this, you have two options:

■ IGNORE Option:

If you specify IGNORE, Natural will ignore it if there are not enough target operands
to receive the source value.

■ REMAINDER Option:

If you specify REMAINDER operand5, that section of the source value which could
not be placed into target operands will be placed into operand5. You may then
use the content of operand5 for further processing, for example in a subsequent
SEPARATE statement.

REMAINDER can only be used for single-value source operands. For array source
operands, use the REMAINDER POSITION option.

See also Rules and Operational Considerations and Example 3.

REMAINDER POSITION Option:REMAINDER
POSITION
operand9 The value returned by the REMAINDER POSITION clause corresponds to the position

from which a REMAINDER data field is filled.

For details, see Rules and Operational Considerations.

DELIMITERS Option:DELIMITERS

See DELIMITERS Option below.

RETAINED Option:RETAINED

Normally, the delimiter characters themselves are notmoved into the target operands.

When you specify RETAINED, however, each delimiter (that is, either default delimiters
and blanks, or the delimiter specifiedwith operand6) will also be placed into a target
operand.

Example:

The following SEPARATE statement would place 150 into #B, + into #C, and 30 into
#D:

Statements926

SEPARATE

DescriptionSyntax Element

...
MOVE '150+30' TO #A
SEPARATE #A INTO #B #C #D WITH RETAINED DELIMITER '+'
...

See also Example 3.

GIVING NUMBER Option:

This option causes the number of filled target operands (including those filled with
blanks) to be returned in operand7. The number actually obtained is the number of
delimiters plus 1.

GIVING NUMBER
operand7

If you use the IGNOREOption, themaximumpossible number returned in operand7
will be the number of target operands (operand4).

If you use the REMAINDER Option, the maximum possible number returned in
operand7will be the number of target operands (operand4) plus 1 (for operand5).

DELIMITERS Option:

Delimiter characters within operand1 indicate the positions at which the value is to be separated.

Syntax Element Description:

DescriptionSyntax Element

If you omit the DELIMITERS option or specify WITH ANY DELIMITERS, a
blank and any character which is neither a letter nor a numeric character
will be treated as delimiter character.

WITH [ANY] DELIMITERS

Indicates that the blank and the default input delimiter character (as
specified with the session parameter ID) are to be used as delimiter
character.

WITH INPUT DELIMITERS

Indicates that each of the characters specified in operand6 is to be treated
as delimiter character.

If operand6 contains trailing blanks, these will be ignored.

WITH DELIMITERS operand6

Rules and Operational Considerations

■ Processing of Source and Target Operands
■ Defining Ranges for STARTING FROM POSITION
■ Values Returned by REMAINDER POSITION
■ Overlapping Fields: REMAINDER and REMAINDER POSITION

927Statements

SEPARATE

■ Delimiters in SEPARATE

Processing of Source and Target Operands

Trailing blanks are ignored in source operands (in single values and array occurrences as well)
when the separation process starts. Trailing blanks only count when the REMAINDER POSITION
value is calculated: see also Values Returned by REMAINDER POSITION.

If the source operand (operand1) is an empty dynamic field (*LENGTH=0) or an X-array that is not
expanded, the SEPARATE statement stops executing after resetting the following fields:

■ all target operands (operand4);
■ the field (operand7) returning the number of filled target operands;
■ the REMAINDER data field (operand5);
■ the REMAINDER POSITION field (operand9)

The same applies if the source operand contains only blanks.

Defining Ranges for STARTING FROM POSITION

The value range allowed for the STARTING FROM POSITION clause operand8 is 1:nwhere n is the
last byte of the source field.

If the source operand (operand1) is an array, all occurrences are counted, including trailing blanks.
For a dynamic array, the length of each individual field is counted, up to the specified position.

Examples of operand8:

is the 63rd char in #A.Position 63 in #A (A100)

is the 3rd char in #B(4).Position 63 in #B (A20/1:10)

is the 3rd char in #C(2,3).Position 63 in #C (A10/1:3,1:4)

is the 23rd char in #D(4).Position 63 in #D (1:5) DYNAMICwith
LENGTH(#D()) = (15,25,0,33,61)

If you specify an invalid range (a negative or zero value, or a value greater than the actual field
length), the return fields listed in Processing of Source and Target Operands are reset, but no
runtime error occurs. Since the STARTING FROM value denotes a position (and not an offset), operand8
requires a minimum value of 1 for the first execution.

Statements928

SEPARATE

Values Returned by REMAINDER POSITION

The value returned by the REMAINDER POSITION clause corresponds to the position from which a
REMAINDER data field is filled.

Example:

...
SEPARATE 'AB CD' INTO #A REMAINDER #R
...

The above statement returns #A= 'AB' and #R= ' CD' as the REMAINDER starts after the separator
character (here: a blank), right after AB. With the REMAINDER POSITION option used instead, a value
of 4would be returned.

Although trailing blanks are ignored during the separation process, they are taken into account
for the calculation of the REMAINDER POSITION value in occurrences of a source array.

If all source segments are processed and the end of the source field is reached, REMAINDER POSITION
returns a value of zero indicating “no more data”.

See alsoExample 6 -Using a SourceArraywith STARTINGFROMandREMAINDERPOSITION.

Overlapping Fields: REMAINDER and REMAINDER POSITION

When the SEPARATE statement is executed, the source data (operand1) is usually copied and pro-
cessed from a work field. Therefore, the REMAINDER result is independent of possibly overlapping
source and result fields.

Such field backup copies are not produced if a REMAINDER POSITION clause is used. The complete
separation process operates on the original source operand, regardless of whether you separate
the source and target operands. Overlapping operands are neither rejected during compilation
nor execution but can cause undesired results.

Delimiters in SEPARATE

When you separate a single-value field, the field border always delimits the last word. The same
applies to each occurrence of an array field.

If the RETAINED DELIMITERS option is used, delimiters are also placed into the target field. This
only applies to delimiter characters within an array occurrence, and not to consecutive array oc-
currences that are automatically delimited (without delimiter character) when an occurrence ends.

See also Example 4 - Using a Source Array of a Redefined String and Example 5 - Using a Source
Array with RETAINED Delimiters.

929Statements

SEPARATE

Examples

■ Example 1 - Various Samples
■ Example 2 - Using an Array
■ Example 3 - Using REMAINDER/RETAINED Options
■ Example 4 - Using a Source Array of a Redefined String
■ Example 5 - Using a Source Array with RETAINED Delimiters
■ Example 6 - Using a Source Array with STARTING FROM and REMAINDER POSITION

Example 1 - Various Samples

** Example 'SEPEX1': SEPARATE
**
DEFINE DATA LOCAL
1 #TEXT1 (A6) INIT <'AAABBB'>
1 #TEXT2 (A7) INIT <'AAA BBB'>
1 #TEXT3 (A7) INIT <'AAA-BBB'>
1 #TEXT4 (A7) INIT <'A.B/C,D'>
1 #FIELD1A (A6)
1 #FIELD1B (A6)
1 #FIELD2A (A3)
1 #FIELD2B (A3)
1 #FIELD3A (A3)
1 #FIELD3B (A3)
1 #FIELD4A (A3)
1 #FIELD4B (A3)
1 #FIELD4C (A3)
1 #FIELD4D (A3)
1 #NBT (N1)
1 #DEL (A5)
END-DEFINE
*
WRITE NOTITLE 'EXAMPLE A (SOURCE HAS NO BLANKS)'
SEPARATE #TEXT1 INTO #FIELD1A #FIELD1B GIVING NUMBER #NBT
WRITE / '=' #TEXT1 5X '=' #FIELD1A 4X '=' #FIELD1B 4X '=' #NBT
*
WRITE NOTITLE /// 'EXAMPLE B (SOURCE HAS EMBEDDED BLANK)'
SEPARATE #TEXT2 INTO #FIELD2A #FIELD2B GIVING NUMBER #NBT
WRITE / '=' #TEXT2 4X '=' #FIELD2A 7X '=' #FIELD2B 7X '=' #NBT
*
WRITE NOTITLE /// 'EXAMPLE C (USING DELIMITER ''-'')'
SEPARATE #TEXT3 INTO #FIELD3A #FIELD3B WITH DELIMITER '-'
WRITE / '=' #TEXT3 4X '=' #FIELD3A 7X '=' #FIELD3B
*
MOVE ',/' TO #DEL
WRITE NOTITLE /// 'EXAMPLE D USING DELIMITER' '=' #DEL
*
SEPARATE #TEXT4 INTO #FIELD4A #FIELD4B

Statements930

SEPARATE

#FIELD4C #FIELD4D WITH DELIMITER #DEL
WRITE / '=' #TEXT4 4X '=' #FIELD4A 7X '=' #FIELD4B

/ 19X '=' #FIELD4C 7X '=' #FIELD4D
*
END

Output of Program SEPEX1:

EXAMPLE A (SOURCE HAS NO BLANKS)

#TEXT1: AAABBB #FIELD1A: AAABBB #FIELD1B: #NBT: 1

EXAMPLE B (SOURCE HAS EMBEDDED BLANK)

#TEXT2: AAA BBB #FIELD2A: AAA #FIELD2B: BBB #NBT: 2

EXAMPLE C (USING DELIMITER '-')

#TEXT3: AAA-BBB #FIELD3A: AAA #FIELD3B: BBB

EXAMPLE D USING DELIMITER #DEL: ,/

#TEXT4: A.B/C,D #FIELD4A: A.B #FIELD4B: C
#FIELD4C: D #FIELD4D:

Example 2 - Using an Array

** Example 'SEPEX2': SEPARATE (using array variable)
**
DEFINE DATA LOCAL
1 #INPUT-LINE (A60) INIT <'VALUE1, VALUE2,VALUE3'>
1 #FIELD (A20/1:5)
1 #NUMBER (N2)
END-DEFINE
*
SEPARATE #INPUT-LINE LEFT JUSTIFIED INTO #FIELD (1:5)

GIVING NUMBER IN #NUMBER
*
WRITE NOTITLE #INPUT-LINE //

#FIELD (1) /
#FIELD (2) /
#FIELD (3) /
#FIELD (4) /
#FIELD (5) /
#NUMBER

931Statements

SEPARATE

*
END

Output of Program SEPEX2:

VALUE1, VALUE2,VALUE3

VALUE1
VALUE2
VALUE3

3

Example 3 - Using REMAINDER/RETAINED Options

** Example 'SEPEX3': SEPARATE (with REMAINDER, RETAIN option)
**
DEFINE DATA LOCAL
1 #INPUT-LINE (A60) INIT <'VAL1, VAL2, VAL3,VAL4'>
1 #FIELD (A10/1:4)
1 #REM (A30)
END-DEFINE
*
WRITE TITLE LEFT 'INP:' #INPUT-LINE /

'#FIELD (1)' 13T '#FIELD (2)' 25T '#FIELD (3)'
37T '#FIELD (4)' 49T 'REMAINDER'
/ '----------' 13T '----------' 25T '----------'
37T '----------' 49T '------------------------------'

*
SEPARATE #INPUT-LINE INTO #FIELD (1:2)

REMAINDER #REM WITH DELIMITERS ','
WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
*
RESET #FIELD(*) #REM
SEPARATE #INPUT-LINE INTO #FIELD (1:2)

IGNORE WITH DELIMITERS ','
WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
*
RESET #FIELD(*) #REM
SEPARATE #INPUT-LINE INTO #FIELD (1:4) IGNORE

WITH RETAINED DELIMITERS ','
WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
*
RESET #FIELD(*) #REM
*
SEPARATE SUBSTRING(#INPUT-LINE,1,50) INTO #FIELD (1:4)

IGNORE WITH DELIMITERS ','
WRITE #FIELD(1) 13T #FIELD(2) 25T #FIELD(3) 37T #FIELD(4) 49T #REM
*
END

Statements932

SEPARATE

Output of Program SEPEX3:

INP: VAL1, VAL2, VAL3,VAL4
#FIELD (1) #FIELD (2) #FIELD (3) #FIELD (4) REMAINDER
---------- ---------- ---------- ---------- ------------------------------
VAL1 VAL2 VAL3,VAL4
VAL1 VAL2
VAL1 , VAL2 ,
VAL1 VAL2 VAL3 VAL4

Example 4 - Using a Source Array of a Redefined String

** Example 'SEPEX4': SEPARATE with source array
**
* This example shows different results when separating a scalar string
* or a string array redefining the scalar string.
*
*
**
*
*
DEFINE DATA LOCAL
1 #TEXT (A24) INIT <'VAL1 VAL2 VAL3 VAL4 VAL5'>
1 REDEFINE #TEXT

2 #TEXTARRAY (A12/2)
1 #WORD1(A5/6)
1 #WORD2(A5/6)
END-DEFINE
*
SEPARATE #TEXT INTO #WORD1(*)
/* Redefinition may split original words into two parts
SEPARATE #TEXTARRAY(*) INTO #WORD2(*)
*
DISPLAY #TEXT #WORD1(*) #TEXTARRAY(*) #WORD2(*)
END

Output of Program SEPEX4:

#TEXT #WORD1 #TEXTARRAY #WORD2
------------------------ ------ ------------ ------

VAL1 VAL2 VAL3 VAL4 VAL5 VAL1 VAL1 VAL2 VA VAL1
VAL2 L3 VAL4 VAL5 VAL2
VAL3 VA
VAL4 L3
VAL5 VAL4

VAL5

933Statements

SEPARATE

Example 5 - Using a Source Array with RETAINED Delimiters

** Example 'SEPEX5': SEPARATE with and without RETAINED DELIMITERS

* This example shows different results with a source array
* when using the option RETAINED DELIMITERS or not.
*
*

*
*
DEFINE DATA LOCAL
1 #TEXT(A20) INIT <'VAL1,VAL2,VAL3,VAL4'>
1 #TEXTARRAY(A10/3) INIT <'VAL1,VAL2',

'VAL3',
'VAL4'>

1 #WORD1(A5/7)
1 #WORD2(A5/7)
END-DEFINE
*
SEPARATE #TEXT INTO #WORD1(*)
SEPARATE #TEXTARRAY(*) INTO #WORD2(*)
DISPLAY #TEXT #WORD1(*) #TEXTARRAY(*) #WORD2(*)
*
SEPARATE #TEXT INTO #WORD1(*) WITH RETAINED DELIMITERS
SEPARATE #TEXTARRAY(*) INTO #WORD2(*) WITH RETAINED DELIMITERS
DISPLAY #TEXT #WORD1(*) #TEXTARRAY(*) #WORD2(*)
*
END

Output of Program SEPEX5:

#TEXT #WORD1 #TEXTARRAY #WORD2
-------------------- ------ ---------- ------

VAL1,VAL2,VAL3,VAL4 VAL1 VAL1,VAL2 VAL1
VAL2 VAL3 VAL2
VAL3 VAL4 VAL3
VAL4 VAL4

VAL1,VAL2,VAL3,VAL4 VAL1 VAL1,VAL2 VAL1
, VAL3 ,
VAL2 VAL4 VAL2
, VAL3
VAL3 VAL4
,
VAL4

Statements934

SEPARATE

Example 6 - Using a Source Array with STARTING FROM and REMAINDER POSITION

** Example 'SEPEX6': SEPARATE with STARTING FROM and REMAINDER POSITION
**
* This example shows how the options STARTING FROM POSITION and
* REMAINDER POSITION work together in a processing loop when
* separating a source array.
*
**
*
*
DEFINE DATA LOCAL
1 #TEXT (A15/1:3) INIT <'VAL1 VAL2',

'VAL3',
'VAL4 VAL5 VAL6'>

1 #WORD (A5/1:4)
1 #POS (I1) INIT <1>
END-DEFINE
*
WRITE '#TEXT(A15/1:3): (1) (2) (3)'

/ 16T #TEXT(*)
/ 16T '----+----1----+ ----2----+----3 ----+----4----+'
// '#WORD (A5/1:4): (1) (2) (3) (4) : #POS'

'(within #TEXT(*))'
*
REPEAT

SEPARATE #TEXT(*) STARTING FROM POSITION #POS
INTO #WORD(*) REMAINDER POSITION #POS

WRITE 16T #WORD(*) 44T ': ' #POS
UNTIL #POS = 0

END-REPEAT
END

Output of Program SEPEX6

#TEXT(A15/1:3): (1) (2) (3)
VAL1 VAL2 VAL3 VAL4 VAL5 VAL6
----+----1----+ ----2----+----3 ----+----4----+

#WORD (A5/1:4): (1) (2) (3) (4) : #POS (within #TEXT(*))
VAL1 VAL2 VAL3 VAL4 : 36
VAL5 VAL6 : 0

935Statements

SEPARATE

936

127 SET CONTROL

■ Function .. 938
■ Syntax Description ... 938
■ Examples ... 938

937

SET CONTROL operand1 ...

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The SET CONTROL statement is used to perform terminal commands from within a program.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesASCoperand1

Syntax Element Description:

DescriptionSyntax Element

Terminal Commands to be Performed:operand1

The terminal commands are specified as operand1without the control character % (by
default). They can be specified as a text constant or as the content of an alphanumeric variable.

For further information on terminal commands, see the Terminal Commands documentation.

Examples

■ Example 1 - Switching to Lower Case

Statements938

SET CONTROL

■ Example 2 - Activating Hardcopy Output Destination

Example 1 - Switching to Lower Case

...
SET CONTROL 'L'
...

Switches to lower case (equivalent to the terminal command %L).

Example 2 - Activating Hardcopy Output Destination

...
SET CONTROL 'HDEST'...

Activates hardcopy output to destination DEST (equivalent to the terminal command
%Hdestination).

939Statements

SET CONTROL

940

128 SET GLOBALS

■ Function .. 942
■ Syntax Description ... 942
■ Parameters .. 943
■ Example .. 944

941

SET GLOBALS {parameter=value}

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The SET GLOBALS statement is used to set values for session parameters.

The parameters are evaluated either when the program that contains the SET GLOBALS statement
is compiled, or when it is executed; this depends on the individual parameters.

The parameter settings specified with SET GLOBALS remain in effect until the end of the Natural
session, unless they are overridden with a subsequent SET GLOBALS statement or GLOBALS system
command. The statement SET GLOBALS and the systemcommand GLOBALS offer the sameparameters
for modification. They can both be used in the same Natural session. Parameter values specified
with a GLOBALS command remain in effect until they are overridden by a new GLOBALS command
or SET GLOBALS statement, the session is terminated, or you log on to another library.

Syntax Description

DescriptionSyntax Element

Parameter Specification(s):parameter=value

In place of parameter, specify the name of the parameter to be set. For a list of possible
parameters, see Parameters below.

If you specify multiple parameters, you have to separate them from one another by
one or more blanks. The parameters can be specified in any order; see also Example.

In place of value, specify a valid parameter value. For information on valid parameter
values, see the descriptions of the individual parameters listed below.

Statements942

SET GLOBALS

Parameters

Evaluation (R = at runtime,
C = at compilation)

Parameters that can be specified with the SET GLOBALS statement

RConditional Program ExecutionCC

RCharacter for Terminal CommandsCF

RCompiler OutputCO

RCode Page Conversion ErrorCPCVERR

RCharacter for Decimal Point NotationDC

RDate Format for OutputDFOUT

RDate Format for StackDFSTACK

RDate Format in Default Page TitleDFTITLE

RDisplay Order of Output DataDO

RDump GenerationDU

RPage EjectEJ

RFiller Character for Dynamically Protected FieldsFCDP

RFormat SpecificationFS

RINPUT Assign CharacterIA

RINPUT Delimiter CharacterID

RINPUTModeIM

CLimit Error ProcessingLE

RCLine SizeLS

RLimit of Records ReadLT

ROverwriting of Protected Fields by HelproutinesOPF

RNATPAGE Page Data SetPD

CPrint ModePM

RCPage SizePS

RInternal REINPUT for Invalid DataREINP

RSound Terminal AlarmSA

CSpacing FactorSF

RWait for Record in Hold StatusWH

RZero Division CheckZD

RCZero PrintingZP

The individual session parameters are described in the Parameter Reference.

943Statements

SET GLOBALS

Example

In the example below, the SET GLOBALS statement is used to set themaximumnumber of characters
permitted per line to 74 and to limit the number of database records that can be read in processing
loops within a Natural program to 5000.

SET GLOBALS LS=74 LT=5000
...

Statements944

SET GLOBALS

129 SET KEY

■ Function .. 946
■ Syntax Description ... 946
■ Making Keys Program-Sensitive and Deactivating Keys .. 947
■ Assigning Commands/Programs ... 949
■ Assigning Input DATA ... 949
■ COMMAND OFF/ON .. 950
■ Assigning HELP .. 950
■ DYNAMIC Option .. 951
■ DISABLED Option ... 951
■ SET KEY Statements on Different Program Levels ... 952
■ Assigning Names ... 954
■ Example .. 955

945

Function

The SET KEY statement is used to assign functions to the following types of keys:

■ video terminal PA (program attention) keys,
■ PF (program function) keys,
■ CLEAR key.

When a SET KEY statement is executed, Natural receives control of the keys during program exe-
cution and uses the values assigned to the keys.

The Natural system variable *PF-KEY identifies which key was pressed last.

Note: If a user presses a key to which no function is assigned, either a warningmessage will
be issued prompting the user to press a valid key, or the value ENTRwill be placed into the
Natural system variable *PF-KEY; that is, Natural will react as if the ENTER key had been
pressed (this depends on the Natural profile parameter IKEY as set by the Natural adminis-
trator).

Syntax Description

Several structures are possible for this statement.

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Syntax 1 - Affecting All Keys:

SET KEY

ALL
ON
OFF

COMMAND
ON
OFF

NAMED OFF

Syntax 2 - Affecting Individual Keys:

Statements946

SET KEY

=SET KEY

PAn

ON

PFn

OFF

CLR

DISABLED

DYNAMIC operand1 COMMAND
ON
OFF

Syntax 3 - Affecting Individual Keys:

PGM

SET
KEY

PAn
PFn PROGRAM
CLR

NAMED=
operand4operand2

DYNAMIC
operand1

OFFHELP
DATA operand3

NAMEDENTR
operand4
OFF

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesASoperand1

noyesUASCoperand2

noyesUASCoperand3

noyesUASCoperand4

Making Keys Program-Sensitive and Deactivating Keys

Making a key program-sensitive means that the key will be available for interrogation by the
currently active program. If a key is made program-sensitive, pressing the key has the same effect
as pressing ENTER. All data that have been entered on the screen are transferred to the program.

Note: PA keys and the CLEAR key, when made program-sensitive, do not cause any data to
be transferred from the screen.

The program-sensitivity remains in effect only for the execution of the current program. See also
the section SET KEY Statements on Different Program Levels.

947Statements

SET KEY

Examples:

This statement causes all keys to bemade program-sensitive. All function assignments
to any keys are overwritten.

SET KEY ALL

Each of these statements causes PF2 to be made program-sensitive.SET KEY PF2
SET KEY PF2=PGM

This statement de-activates all key settings. The Natural system variable *PF-KEY
contains ENTR after SET KEY OFF has been executed.

SET KEY OFF

This statement re-activates the functions assigned to all keys that had an assignment
and re-activates the program-sensitivity of keys that were made program-sensitive
before they were de-activated.

SET KEY ON

This statement de-activates PF2. After execution of SET KEY PF2=OFF, the Natural
system variable *PF-KEY contains ENTR if it contained PF2 before.

SET KEY PF2=OFF

This statement re-activates the function assigned to PF2 before it was de-activated or
made program-sensitive. If no function had been assigned to PF2, it will be made
program-sensitive again.

SET KEY PF2=ON

Key Program-Sensitivity and Contents of *PF-KEY

The following example shows the relation between the program-sensitivity of a key and the contents
of the system variable *PF-KEY.

Assume that PF2 has been made program-sensitive by means of SET KEY PF2=PGM and an INPUT
statement is executed afterwards. The table below shows how user actions and executed Natural
statements influence the contents of *PF-KEY.

Contents of *PF-KEYNatural Statement Executed / User ActionSequence

PF2User presses PF2.1

ENTRSET KEY OFF2

PF2SET KEY ON3

ENTRSET KEY PF2=OFF4

PF2SET KEY PF2=ON5

PF2SET KEY PF3=OFF6

Statements948

SET KEY

Assigning Commands/Programs

You can assign a command or program name to a key, and you can delete such an assignment.
When the key is pressed, the current program is terminated and the command/program assigned
to the key is invoked via the Natural stack. When assigning a command/program, you can also
pass parameters to the command/program (see third example below).

You can also assign a terminal command to a key.When the key is pressed, the terminal command
assigned to the key is executed.

When operand2 is specified as a constant, it must be enclosed within apostrophes.

Examples:

The command SAVE is assigned to PF4.SET KEY PF4='SAVE'

The value contained in the variable #XYZ is assigned to PF4.SET KEY PF4=#XYX

The command LIST, including the LIST parameters MAP and *, is
assigned to PF6.

SET KEY PF6='LIST MAP *'

The terminal command %% is assigned to PF2.SET KEY PF2='%%'

The command and name previously assigned to PF9 are deleted.SET KEY PF9=' '

The assignment remains in effect until it is overwritten by another SET KEY statement, until the
user logs on to another application, or until the end of the Natural session. See also the section
SET KEY Statements on Different Program Levels.

Note: Before a program invoked via a key is executed, Natural internally issues a BACKOUT
TRANSACTION statement.

Assigning Input DATA

You can assign a data string (operand3) to a key. When the key is pressed, the data string is placed
into the input field in which the cursor is currently positioned, and the data are transferred to the
executing program (as if ENTER had been pressed).

When operand3 is specified as a constant, it must be enclosed within apostrophes.

Example:

949Statements

SET KEY

SET KEY PF12=DATA 'YES'

For the validity of a DATA assignment, the same applies as for a command assignment, that is, it
remains in effect until it is overwritten by another SET KEY statement, until the user logs on to
another application, or until the end of theNatural session. See also the section SETKEY Statements
on Different Program Levels.

COMMAND OFF/ON

With COMMAND OFF, you can temporarily de-activate any function (command, program, or data)
assigned to a key. If the key had been program-sensitive before the functionwas assigned, COMMAND
OFFwill make it program-sensitive again.

With a subsequent COMMAND ON, you can re-activate the assigned function again.

Examples:

The function that has been assigned to PF4 is temporarily de-activated; if
PF4 had been program-sensitive before the function was assigned, it is now
made program-sensitive again.

SET KEY PF4=COMMAND OFF

The function assigned to PF4 is re-activated again.SET KEY PF4=COMMAND ON

All functions assigned to all keys are temporarily de-activated; those keys
which had been program-sensitive before functionswere assigned to them,
are now made program-sensitive again.

SET KEY COMMAND OFF

All functions assigned to all keys are re-activated again.SET KEY COMMAND ON

With SET KEY PFnn='' you can delete the function assigned to a key and at the same time deac-
tivate the program sensitivity of the key.

Assigning HELP

You can assign HELP to a key. When the key is pressed, the helproutine assigned to the field in
which the cursor is currently positioned will be invoked.

The effect is the same as when entering the help character in the field to invoke help. (The help
character - default is a question mark (?) - is determined by the Natural profile parameter HI as
set by the Natural administrator.)

Example:

Statements950

SET KEY

SET KEY PF1=HELP

For the validity of a HELP assignment, the same applies as for program-sensitivity, that is, it remains
in effect only for the execution of the current program. See also the section SET KEY Statements
on Different Program Levels.

DYNAMIC Option

Instead of specifying a specific key with the SET KEY statement, you can use the DYNAMIC option
with a variable (operand1), and assign a value (PFn, PAn, CLR) to this variable in the program.
This allows you to specify a function and make it dependent on the program logic which key this
function is assigned to.

Note: SET KEY cannot be used if operand1 is a dynamic variable.

Example:

...
IF ...

MOVE 'PF4' TO #KEY
ELSE

MOVE 'PF7' TO #KEY
END-IF
...
SET KEY DYNAMIC #KEY = 'SAVE'
...

DISABLED Option

Graphical user interface (GUI) elements, such as push buttons,menus, and bitmaps, are implemen-
ted as PF keys. With the DISABLED option, you can disable the use the of a GUI element assigned
to a PF key. Push buttons and menu items will then be displayed grey.

To cancel the effect of SET KEY PFnn=DISABLED, you use SET KEY PFnn=ON.

Example:

951Statements

SET KEY

Disables the use of the GUI element assigned to PF10.SET KEY PF10=DISABLED

The DISABLED option can only be used within a processing rule.

SET KEY Statements on Different Program Levels

When an application contains SET KEY statements at different levels, the following applies:

■ When keys are made program-sensitive, the program-sensitivity also applies to all lower level
(called) programs, unless these programs contain further SET KEY statements. When control is
returned to a higher level program, the SET KEY assignmentsmade at the higher level come into
effect again.

■ For keys which are defined as HELP keys, the same applies as for keys which are program-sens-
itive.

■ When a function (program, command, terminal command, or data string) is assigned to a key,
this assignment is valid at all higher and lower levels - regardless of the level at what the assign-
ment is made - until another function is assigned to the key or it is made program-sensitive, or
until the user logs on to another application or the Natural session is terminated.

Statements952

SET KEY

Example of SET KEY Statements on Different Program Levels

953Statements

SET KEY

Assigning Names

With the NAMED clause, you can assign a name (operand4) to a key. The name will then be dis-
played in the PF-key lines on the screen; this allows the users to identify the functions assigned
to the keys:

? Help
. Exit
---- --

Code ..: ? Library ..: *_______
Object ...: *_______________________________________
DBID: 0__ FILENR ...: 0__

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Last Flip Canc

The display of the PF-key lines is activated with the session parameter KD (see the Parameter Refer-
ence). You can control the way in which the PF-key lines are displayed by using the terminal
command %Y (see the Terminal Commands documentation).

The maximum length of a name to be assigned to a key is 10 characters. In normal tabular PF-key
line format (%YN), only the first 5 characters are displayed.

When operand4 is specified as a constant, it must be enclosed within apostrophes (see examples
below).

You cannot assign a name to a keywithout assigning a function to it ormaking it program-sensitive.
To the ENTER key, however, you can only assign a name, but no function.

With NAMED OFF, you delete the name assigned to a program-sensitive key.

Examples:

The name EXEC is assigned to the ENTER key.SET KEY ENTR NAMED 'EXEC'

PF3 is made program-sensitive, and the name EXIT is assigned
to PF3.

SET KEY PF3 NAMED 'EXIT'

PF3 is made program-sensitive, and the name that has been
assigned to PF3 is deleted.

SET KEY PF3 NAMED OFF

All names that have been assigned to any program-sensitive keys
are deleted.

SET KEY NAMED OFF

The program AP1 and the name APPL1 are assigned to PF4.SET KEY PF4='AP1' NAMED 'APPL1'

Statements954

SET KEY

When you use normal tabular PF-key line format (%YN), the following applies:

■ If you omit the NAMED clause when assigning a command/program to a key, the command/pro-
gram name will be displayed in the PF-key line; if the command/program name is longer than
5 characters, CMNDwill be displayed.

■ If you omit the NAMED clause when assigning input data to a key, DATAwill be displayed in the
PF-key line.

■ If you assign (with the NAMED clause) a name in Unicode format to a PF-key, the name might
not be correctly positioned under the respective headers. This problem, however, may occur
only when you are using the Natural Web I/O Interface and only for "wide" characters. In this
case, the sequential PF-key line format (%YS or %YP) is recommended.

When you use sequential PF-key line format (%YS or %YP), only those keys to which names have
been assigned will be displayed in the PF-key line; that is, if you omit the NAMED clause when as-
signing a command/program/data to a key, the key will not be displayed in the PF-key line.

Example

** Example 'SKYEX1': SET KEY
**
DEFINE DATA LOCAL
1 #PF4 (A56)
END-DEFINE
*
MOVE 'LIST VIEW' TO #PF4
*
SET KEY PF1 PF2
SET KEY PF3 = 'MENU'

PF4 = #PF4
PF5 = 'LIST VIEW EMPLOYEES' NAMED 'Empl'

*
FORMAT KD=ON
INPUT ////

10X 'The following function keys are assigned:' //
10X 'PF1: Function for PF1 ' /
10X 'PF2: Function for PF2 ' /
10X 'PF3: Return to MENU program' /
10X 'PF4: LIST VIEW ' /
10X 'PF5: LIST VIEW EMPLOYEES ' ///

*
IF *PF-KEY = 'PF1'

WRITE 'Function for PF1 executed.'
END-IF
IF *PF-KEY = 'PF2'

WRITE 'Function for PF2 executed.'
END-IF

955Statements

SET KEY

*
END

Output of Program SKYEX1:

The following function keys are assigned:

PF1: Function for PF1
PF2: Function for PF2
PF3: Return to MENU program
PF4: LIST VIEW
PF5: LIST VIEW EMPLOYEES

Statements956

SET KEY

130 SET TIME

■ Function .. 958
■ Example .. 958

957

SET TIME

SETTIME

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The SET TIME (or SETTIME) statement is used in conjunction with the Natural system variable
*TIMD to measure the time it takes to execute a specific section of a program.

The SET TIME statement is placed at a specific position in the program, and *TIMDwill contain the
amount of time elapsed since the execution of the SET TIME statement.

*TIMDmust always contain a reference to the SET TIME statement, either by using the source-code
line number of the SET TIME statement or by assigning a label to the SET TIME statement, which
can then be used as a reference.

Example

** Example 'STIEX1': SETTIME
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
END-DEFINE
*
ST. SETTIME
WRITE 10X 'START TIME:' *TIME
*
READ (100) EMPLOY-VIEW BY NAME
END-READ
*
WRITE NOTITLE 10X 'END TIME: ' *TIME
WRITE 10X 'ELAPSED TIME TO READ 100 RECORDS'

'(HH:MM:SS.T) :' *TIMD (ST.) (EM=99:99:99'.'9)
*
END

Statements958

SET TIME

Output of Program STIEX1:

START TIME: 16:39:07.6
END TIME: 16:39:07.7
ELAPSED TIME TO READ 100 RECORDS (HH:MM:SS.T) : 00:00:00.1

959Statements

SET TIME

960

131 SET WINDOW

■ Function .. 962
■ Syntax Description ... 962
■ Example .. 962

961

SET WINDOW
'window-name'

OFF

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE WINDOW | INPUT WINDOW='window-name' | REINPUT

Belongs to Function Group: Screen Generation for Interactive Processing

Function

The SET WINDOW statement is used to activate and de-activate a window.

Any SET WINDOW 'window-name' or INPUT WINDOW='window-name' statement de-activates the
window which has currently been active and activates the window specified in the statement.
This means that only one window can be active at a time.

Note: If you use SET WINDOW to activate a window which is defined with SIZE AUTO, the
data on the screen before the window is activated determine the size of the window.

Syntax Description

DescriptionSyntax Element

Activates the specified window, which means that all subsequent
statements refer to that window until either the window is de-activated

SET WINDOW 'window-name'

or another window is activated. The specified window must have been
defined with a DEFINE WINDOW statement.

De-activates the currently active window.SET WINDOW OFF

Example

See DEFINE WINDOW statement.

Statements962

SET WINDOW

132 SKIP

■ Function .. 964
■ Syntax Description ... 964
■ Example .. 965

963

SKIP [(rep)] operand1 [LINES]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | FORMAT | NEWPAGE | PRINT | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE
TITLE | WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The SKIP statement is used to generate one or more blank lines in an output report.

See also Page Titles, Page Breaks, Blank Lines in the Programming Guide.

Processing

If the execution of a SKIP statement would cause the page size to be exceeded, exceeding lines will
be ignored (except in an AT TOP OF PAGE statement).

A SKIP statement is only executed if something has already been output on the page (output from
an AT TOP OF PAGE statement is not taken into account here).

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesIPNSCoperand1

Syntax Element Description:

DescriptionSyntax Element

Report Specification:(rep)

The notation (rep)may be used to specify the identification of the report for which the
SKIP statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

Statements964

SKIP

DescriptionSyntax Element

If (rep) is not specified, the SKIP statement will apply to the first report (Report 0).

For information on how to control the format of an output report created with Natural, see
Report Format and Control in the Programming Guide.

Number of Lines to be Skipped:operand1

operand1 represents the number (1 - 250) of blank lines to be generated. This number
may be specified as a numeric constant or as the content of a numerical variable.

If operand1 exceeds the page size of the report, the SKIP statement will result in a newpage
condition.

Example

** Example 'SKPEX1': SKIP
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 CITY
2 COUNTRY
2 NAME

END-DEFINE
*
LIMIT 7
READ EMPL-VIEW BY CITY STARTING FROM 'W'

AT BREAK OF CITY
SKIP 2

END-BREAK
DISPLAY NOTITLE CITY (IS=ON) COUNTRY (IS=ON) NAME
/*

END-READ
END

Output of Program SKPEX1:

CITY COUNTRY NAME
-------------------- ------- --------------------

WASHINGTON USA REINSTEDT
PERRY

WEITERSTADT D BUNGERT
UNGER
DECKER

965Statements

SKIP

WEST BRIDGFORD UK ENTWHISTLE

WEST MIFFLIN USA WATSON

Statements966

SKIP

133 SORT

■ Function .. 968
■ Restrictions .. 969
■ Syntax Description ... 969
■ Three-Phase SORT Processing .. 972
■ Example .. 973
■ Using External Sort Programs .. 977

967

Structured Mode Syntax

END-ALL

[AND]

10

ASCENDING
operand1[BY]

THEM
SORT

DESCENDINGRECORDS

USING-clause

[GIVE-clause]

statement

END-SORT

* If a statement label is specified, it must be placed before the keyword SORT, but after END-ALL (and
AND).

Reporting Mode Syntax

10

ASCENDING
operand1[BY]

THEM
SORT

DESCENDINGRECORDS

[USING-clause]

[GIVE-clause]

statement

LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: FIND with SORTED BY option

Belongs to Function Group: Loop Execution

Function

The SORT statement is used to perform a sort operation, sorting the records from all processing
loops that are active when the SORT statement is executed.

Note: Natural creates a temporary work file during the sort operation. If you specify the
TMPSORTUNIQprofile parameter (see theParameter Referencedocumentation),Natural generates
a unique name for the temporary sort work file.

Statements968

SORT

Restrictions

■ The SORT statement must be contained in the same object as the processing loops whose records
it sorts.

■ Nested SORT statements are not allowed.
■ The total length of a record to be sorted must not exceed 10240 bytes.
■ The number of sort criteria must not exceed 10.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

nonoTDBFIPNASoperand1

Syntax Element Description:

DescriptionSyntax Element

Closing All Currently Active Loops:END-ALL

In structured mode, the SORT statement must be preceded by END-ALL, which serves to
close all active processing loops. The SORT statement itself initiates a new processing loop,
which must be closed with END-SORT.

Note: For reportingmode: The SORT statement closes all active processing loops and initiates
a new processing loop.

Sort Criteria:operand1

operand1 represents the fields/variables to be used as the sort criteria. 1 to 10 database
fields (descriptors and non-descriptors) and/or user-defined variables may be specified. A
multiple-value field or a field contained within a periodic group may be used. A group or
an array is not permitted.

Note: A field specified in the SORT criteria is used for both, to put a value into the SORT
record in the selecting phase (1st phase), and to receive the sorted value in the processing
phase (3rd phase). Be aware, this may cause addressing errors, when indexed array fields
are used which carry a correct index value in the selecting (1st) phase, but with an
out-of-range value in the processing (3rd) phase. Therefore, indexed array fields should be
used with caution, and better be replaced with non-indexed fields (scalar).

Sort Sequence:ASCENDING

969Statements

SORT

DescriptionSyntax Element

The default sort sequence is ascending. If you wish the values to be sorted in descending
sequence, specify DESCENDING.

DESCENDING

ASCENDING/DESCENDINGmay be specified for each sort field.

USING Clause:USING

See USING Clause below.

Note: The note given under the description of operand1 also applies to the USING clause.

GIVE Clause:GIVE

See GIVE Clause below.

End of SORT Statement:END-SORT

In structured mode, the Natural reserved word END-SORTmust be used to end the SORT
statement.

LOOP

In reporting mode, the Natural statement LOOP is used to end the SORT statement.

USING Clause

The USING clause indicates the fields which are to be written to intermediate sort storage. It is re-
quired in structuredmode and optional in reporting mode. However, it is strongly recommended
to also use it in reporting mode so as to reduce memory requirements.

USING operand2 ...
USING KEYS

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

nonoCLTDBFIPNAASoperand2

Syntax Element Description:

DescriptionSyntax Element

Additional Fields:USING operand2

You can specify additional fields that are to be written to the intermediate sort storage
- in addition to the sort key fields (as specified with operand1).

Sort Key Fields Only:USING KEYS

Only the sort key fields, as specified with operand1, will be written to intermediate
sort storage.

Statements970

SORT

In Reporting Mode: If you omit the USING clause, all database fields of processing loops initiated
before the SORT statement, as well as all user-defined variables defined before the SORT statement,
will be written to intermediate sort storage.

If, after sort execution, a reference is made to a fieldwhichwas not written to the sort intermediate
storage, the value for the field will be the last value of the field before the sort.

GIVE Clause

The GIVE clause is used to specify Natural system functions (such as MAX, MIN) that are to be eval-
uated in the first phase of the SORT statement. These system functions may be referenced in the
third phase (see SORT Statement Processing).

A reference to a system function after the SORT statement must be preceded by an asterisk, for ex-
ample, *AVER(SALARY).

Note: In place of the keyword GIVE, the keyword GIVINGmay be used.

MAX

MIN

NMIN

COUNT

[(NL=nn)]
(operand3)

[OF]
NCOUNT

GIVE
operand3OLD

AVER

NAVER

SUM

TOTAL

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyes*ASoperand3

* depends on function

Syntax Element Description:

971Statements

SORT

DescriptionSyntax Element

System Functions:MAX | MIN | NMIN | COUNT |
NCOUNT | OLD | AVER | NAVER |
SUM | TOTAL For details on the individual system functions, see the System Functions

documentation.

Field Name:operand3

operand3 is the field name.

Preventing Arithmetic Overflows:(NL=nn.m)

This option applies to the system functions AVER, NAVER, SUM and TOTAL
only. It will be ignored for any other system function. See also session
parameter NL in the Parameter Reference documentation.

This option may be used to prevent an arithmetic overflow during the
evaluation of system functions; it is described under Format/Length
Requirements for AVER, NAVER, SUM and TOTAL in the System Functions
documentation.

Three-Phase SORT Processing

A program containing a SORT statement is executed in three phases.

1st Phase - Selecting the Records to be Sorted

The statements before the SORT statement are executed. Data as described in the USING clause will
be written to intermediate sort storage.

In reportingmode, any variables to be used as accumulators following the sortmust not be defined
before the SORT statement. In structured mode, they must not be included in the USING clause.
Fields written to intermediate sort storage cannot be used as accumulators because they are read
backwith each individual record during the 3rd processing phase. Consequently, the accumulation
function would not produce the desired result because with each record the field would be over-
written with the value for that individual record.

The number of recordswritten to intermediate storage is determined by the number of processing
loops and the number of records processed per loop. One record on the internal intermediate
storage is created each time the SORT statement is encountered in a processing loop. In the case of
nested loops, a record is only written to intermediate storage if the inner loop is executed. If in the
example below a record is to be written to intermediate storage even if no records are found for
the inner (FIND) loop, the FIND statement must contain an IF NO RECORDS FOUND clause.

Statements972

SORT

READ ...
...
FIND ...

...
END-ALL
SORT ...

DISPLAY ...
END-SORT
...

2nd Phase - Sorting the Records

The records are sorted.

3rd Phase - Processing the Sorted Records

The statements after the SORT statement are executed for all records on the intermediate storage
in the specified sorting sequence. Database fields to be referenced after a SORT statement must be
correctly referenced using the appropriate statement label or reference number.

Example

■ Example 1 - SORT
■ Example 2 - SORT
■ Example 3 - SORT

Example 1 - SORT

** Example 'SRTEX1S': SORT (structured mode)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 CITY
2 SALARY (1:2)
2 PERSONNEL-ID
2 CURR-CODE (1:2)

*
1 #AVG (P11)
1 #TOTAL-TOTAL (P11)
1 #TOTAL-SALARY (P11)
1 #AVER-PERCENT (N3.2)
END-DEFINE
*
LIMIT 3
FIND EMPL-VIEW WITH CITY = 'BOSTON'

COMPUTE #TOTAL-SALARY = SALARY (1) + SALARY (2)
ACCEPT IF #TOTAL-SALARY GT 0

973Statements

SORT

/*
END-ALL
AND
SORT BY PERSONNEL-ID USING #TOTAL-SALARY SALARY(*) CURR-CODE(1)

GIVE AVER(#TOTAL-SALARY)
/*
AT START OF DATA

WRITE NOTITLE '*' (40)
'AVG CUMULATIVE SALARY:' *AVER (#TOTAL-SALARY) /

MOVE *AVER (#TOTAL-SALARY) TO #AVG
END-START
COMPUTE ROUNDED #AVER-PERCENT = #TOTAL-SALARY / #AVG * 100
ADD #TOTAL-SALARY TO #TOTAL-TOTAL
/*
DISPLAY NOTITLE PERSONNEL-ID SALARY (1) SALARY (2)

#TOTAL-SALARY CURR-CODE (1)
'PERCENT/OF/AVER' #AVER-PERCENT

AT END OF DATA
WRITE / '*' (40) 'TOTAL SALARIES PAID: ' #TOTAL-TOTAL

END-ENDDATA
END-SORT
*
END

Output of Program SRTEX1S:

PERSONNEL ANNUAL ANNUAL #TOTAL-SALARY CURRENCY PERCENT
ID SALARY SALARY CODE OF

AVER
--------- ---------- ---------- ------------- -------- -------

** AVG CUMULATIVE SALARY: 41900

20007000 16000 15200 31200 USD 74.00
20019200 18000 17100 35100 USD 83.00
20020000 30500 28900 59400 USD 141.00

** TOTAL SALARIES PAID: 125700

The previous example is executed as follows:

First Phase:

■ Records with CITY=BOSTON are selected from the EMPLOYEES file.
■ The first 2 occurrences of SALARY are accumulated in the field #TOTAL-SALARY.
■ Only records with #TOTAL-SALARY greater than 0 are accepted.
■ The records are written to the sort intermediate storage. The database arrays SALARY (first 2 oc-
currences) and CURR-CODE (first occurrence), the database field PERSONNEL-ID, and the user-
defined variable #TOTAL-SALARY are written to the intermediate storage.

Statements974

SORT

■ The average of #TOTAL-SALARY is evaluated.

Second Phase:

■ The records are sorted.

Third Phase:

■ The sorted intermediate storage is read.
■ At the at-start-of-data condition, the average of #TOTAL-SALARY is displayed.
■ #TOTAL-SALARY is added to #TOTAL-TOTAL and the fields PERSONNEL-ID, SALARY(1), SALARY(2),
#AVER-PERCENT and #TOTAL-SALARY are displayed.

■ At the end-of-data condition, the variable #TOTAL-TOTAL is written.

Equivalent reporting-mode example: SRTEX1R.

Example 2 - SORT

** Example 'SRTEX2': SORT
**
DEFINE DATA LOCAL
1 VEHIC-VIEW VIEW OF VEHICLES

2 MAKE
2 YEAR

END-DEFINE
*
LIMIT 10
*
READ VEHIC-VIEW
END-ALL
SORT BY MAKE YEAR USING KEY

DISPLAY NOTITLE (AL=15) MAKE (IS=ON) YEAR
AT BREAK OF MAKE

WRITE '-' (20)
END-BREAK

END-SORT
END

Output of Program SRTEX2S:

MAKE YEAR
--------------- -----

FIAT 1980
1982
1984

PEUGEOT 1980

975Statements

SORT

1982
1985

RENAULT 1980

1980
1982
1982

Example 3 - SORT

** Example 'SRTEX3': SORT values in an array

DEFINE DATA LOCAL
1 #I (I4)
1 #J (I4)
1 #X (I1)
1 #TAB (I1/1:6) INIT <2,4,6,5,3,1>
END-DEFINE
WRITE 'Array before SORT:' #TAB(*) /
*
FOR #I := 1 TO 6

#X := #TAB(#I)
WRITE #X '<-- Put into SORT record'

END-ALL
SORT #X USING KEYS

WRITE #X '<-- Get from SORT'
ADD 1 TO #J
#TAB(#J) := #X

END-SORT
*
WRITE / 'Array after SORT:' #TAB(*)
END

Output of Program SRTEX3:

Array before SORT: 2 4 6 5 3 1

2 <-- Put into SORT record
4 <-- Put into SORT record
6 <-- Put into SORT record
5 <-- Put into SORT record
3 <-- Put into SORT record
1 <-- Put into SORT record
1 <-- Get from SORT
2 <-- Get from SORT
3 <-- Get from SORT
4 <-- Get from SORT
5 <-- Get from SORT
6 <-- Get from SORT

Statements976

SORT

Array after SORT: 1 2 3 4 5 6

Using External Sort Programs

InNatural, sort operations are by default processed byNatural's internal sort program, as described
above. However, an external sort program can be used. This external sort program then processes
the sort operations instead of Natural's internal sort program.

As external sort programsDMExpress Syncsort for Linux and IRI CoSort for Linux are supported.

Whether an external sort program is used or not, can be determined while you install Natural.
For further information, see Re-Linking a Natural Nucleus in the Installation documentation.

The records that are to be sortedwill be temporarily stored in the directory specifiedunder TMP_PATH
in the Installation Assignments of your Local Configuration File.

977Statements

SORT

978

134 STACK

■ Function .. 980
■ Syntax Description ... 980
■ Example .. 983

979

COMMAND operand1 [operand2 [(parameter)]]
STACK [TOP]

[DATA] [FORMATTED] {operand2 [(parameter)]}

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: INPUT | RELEASE

Function

The STACK statement is used to place any of the following into the Natural stack:

■ the name of a Natural program or Natural system command to be executed;
■ data to be used during the execution of an INPUT statement.

For further information on the stack, see Further Programming Aspects, Stack Processing in the Pro-
gramming Guide.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesANGASCoperand1

yesyesGLTDBFIPNUANGASCoperand2

Syntax Element Description:

DescriptionSyntax Element

TOP Option:TOP

If you specify TOP, the data/program/command will be placed at the top of the Natural
stack. Otherwise, they are placed at the bottom of the stack.

Example: The following statement causes the content of the variable #FIELDA to be placed
as data on top of the stack:

Statements980

STACK

DescriptionSyntax Element

STACK TOP #FIELDA

DATA Option:

This option, which is also the default, causes data to be placed in the stack which are to
be used as input data for an INPUT statement.

Delimiter characters or input assign characters contained within the data values will be
processed as delimiters. For details on how data from the stack are processed by an INPUT

DATA

statement, refer toProcessingData from theNatural Stack (in the description of the INPUT
statement).

Example: The following statements cause the contents of the variables #FIELD1 and
#FIELD2 to be placed in the stack:

MOVE 'ABC' TO #FIELD1
MOVE 'XYZ' TO #FIELD2
STACK #FIELD1 #FIELD2

These variableswill be passed as data to the next INPUT statement in theNatural program,
using delimiter mode:

INPUT #FIELD1 #FIELD2

Note: If operand2 is a time variable (Format T), only the time component of the variable
content is placed in the stack, but not the date component.

FORMATTED Option:

This option causes all data to be passed on a field-by-field basis to the next INPUT statement;
no key assignments or delimiter characters will be interpreted.

Examples:

FORMATTED

The following statements cause ABC,DEF to be placed in #FIELD1 and XYZ in #FIELD2:

MOVE 'ABC,DEF' TO #FIELD1
MOVE 'XYZ' TO #FIELD2
STACK TOP DATA FORMATTED #FIELD1 #FIELD2
...
INPUT #FIELD1 #FIELD2

Assuming the input delimiter character to be the comma (profile/session parameter ID=,),
the following statements - without the keyword FORMATTED - cause ABC to be placed in
#FIELD1 and DEF in #FIELD2:

981Statements

STACK

DescriptionSyntax Element

MOVE 'ABC,DEF' TO #FIELD1
STACK TOP DATA #FIELD1
...
INPUT #FIELD1 #FIELD2

Note: The FORMATTED option should be used if the data to be passed contains delimiter,
control or DBCS characters to avoid unintentional interpretation of these characters.

COMMANDOption:

To place a command (or program name) in the stack, you specify the keyword COMMAND
followed by the command specified in operand1. Natural will execute the command
instead of displaying the NEXT prompt and prompting the user for input.

COMMAND
operand1

Example:

The following statement causes the command RUN to be placed at the top of the stack.
Natural will execute this command at the point where the NEXT prompt would normally
be issued.

STACK TOP COMMAND 'RUN'

COMMANDwith Data Option:

Together with a command (operand1), you may also place data (operand2) in the stack.
These data will then be processed by the next INPUT statement after the command has
been executed.

Data stacked with a command are always stacked unformatted.

COMMAND
operand1
operand2 ...

Note: If the data to be stacked include empty alphanumeric fields (that is, blanks), these
blanks will be interpreted as delimiters between values and thus not processed correctly
by the corresponding INPUT statement. Therefore, if youwish to stack empty alphanumeric
fields as data with a command, you have to use two STACK statements: one STACK DATA
operand2 ... to stack the data, and one STACK COMMAND operand1 to stack the
command.

Date Format:parameter

If operand2 is a date variable, you can specify the session parameter DF as a parameter
for this variable.

Statements982

STACK

Example

** Example 'STKEX1': STACK
**
DEFINE DATA LOCAL
1 #CODE (A1)
END-DEFINE
*
INPUT //

10X 'PLEASE SELECT COMMAND' //
10X 'LIST VIEW (V)' /
10X 'LIST PROGRAM * (P)' /
10X 'TECH INFO (T)' /
10X 'STOP (.)' //
20X 'CODE:' #CODE

*
*
DECIDE ON FIRST #CODE

VALUE 'V'
STACK TOP DATA 'VIEW'
STACK TOP COMMAND 'LIST'

VALUE 'P'
STACK TOP COMMAND 'LIST PROGRAM *'

VALUE 'T'
STACK TOP COMMAND 'LAST *'
STACK TOP COMMAND 'TECH'
STACK TOP COMMAND 'SYSPROD'

VALUE '.'
STOP

NONE
REINPUT 'PLEASE ENTER VALID CODE'

END-DECIDE
*
*
END

Output of Program STKEX1:

PLEASE SELECT COMMAND

LIST VIEW (V)
LIST PROGRAM * (P)
TECH INFO (T)
STOP (.)

CODE:P

983Statements

STACK

After entering and confirming code:

16:46:28 ***** NATURAL LIST COMMAND ***** 2005-01-19
User HTR - LIST Objects in a Library - Library SYSEXSYN

Cmd Name Type S/C SM Version User ID Date Time
--- *________ P__________ *__ * *______ *________ *__________ *________
__ ACREX1 Program S/C S 4.1.03 RKE 2004-11-11 16:32:37
__ ACREX2 Program S/C S 4.1.03 RKE 2005-01-05 10:29:51
__ ADDEX1 Program S/C S 4.1.03 RKE 2004-11-11 16:36:49
__ AEDEX1R Program S/C R 4.1.03 RKE 2004-11-11 16:40:34
__ AEDEX1S Program S/C S 4.1.03 RKE 2004-11-11 16:39:57
__ AEPEX1R Program S/C R 4.1.03 RKE 2004-11-11 16:41:57
__ AEPEX1S Program S/C S 4.1.03 RKE 2004-11-11 16:42:31
__ AEPEX2 Program S/C S 4.1.03 RKE 2004-11-11 16:43:37
__ ASDEX1R Program S/C R 4.1.03 RKE 2004-11-11 17:00:21
__ ASDEX1S Program S/C S 4.1.03 RKE 2004-11-11 17:00:50
__ ASGEX1R Program S/C R 4.1.03 RKE 2004-11-11 17:02:01
__ ASGEX1S Program S/C S 4.1.03 RKE 2004-11-11 17:02:08
__ ATBEX1R Program S/C R 4.1.03 RKE 2004-11-11 17:03:18
__ ATBEX1S Program S/C S 4.1.03 RKE 2004-11-11 17:03:05

14 Objects found
Top of List.
Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Print Exit Sort -- - + ++ > Canc

Statements984

STACK

135 STOP

■ Function .. 986
■ Example .. 986

985

STOP

Function

The STOP statement is used to terminate the execution of a program and return to the command
input prompt.

One or more STOP statements may be inserted anywhere within a Natural program.

The STOP statement will terminate the execution of the program immediately. Independent of the
positioning of a STOP statement in a subroutine, any end-page condition specified in the main
program will be invoked for final end-page processing during execution of the STOP statement.

The STOP statement behaves in the same way as the ESCAPE ROUTINE statement during method
execution. Method execution is terminated immediately without producing any return vale.

For Natural RPC: SeeNotes on Natural Statements on the Server in theNatural RPC (Remote Procedure
Call) documentation.

Example

** Example 'STPEX1': STOP
**
DEFINE DATA LOCAL
1 #CODE (A1)
END-DEFINE
*
INPUT //

10X 'PLEASE SELECT COMMAND' //
10X 'LIST VIEW (V)' /
10X 'LIST PROGRAM * (P)' /
10X 'TECH INFO (T)' /
10X 'STOP (.)' //
20X 'CODE:' #CODE

*
*
DECIDE ON FIRST #CODE

VALUE 'V'
STACK TOP DATA 'VIEW'
STACK TOP COMMAND 'LIST'

VALUE 'P'
STACK TOP COMMAND 'LIST PROGRAM *'

VALUE 'T'
STACK TOP COMMAND 'LAST *'
STACK TOP COMMAND 'TECH'

Statements986

STOP

STACK TOP COMMAND 'SYSPROD'
VALUE '.'

STOP
NONE

REINPUT 'PLEASE ENTER VALID CODE'
END-DECIDE
*
*
END

Output of Program STPEX1:

PLEASE SELECT COMMAND

LIST VIEW (V)
LIST PROGRAM * (P)
TECH INFO (T)
STOP (.)

CODE:

987Statements

STOP

988

XV
■ 136 STORE .. 991
■ 137 SUBTRACT .. 999
■ 138 SUSPEND IDENTICAL SUPPRESS .. 1003
■ 139 TERMINATE ... 1009
■ 140 UPDATE .. 1013
■ 141 UPDATE (SQL) .. 1019
■ 142 UPDATELOB .. 1025
■ 143 UPLOAD PC FILE .. 1033
■ 144 WRITE ... 1037
■ 145 WRITE TITLE .. 1053
■ 146 WRITE TRAILER ... 1061
■ 147 WRITE WORK FILE ... 1069

989

990

136 STORE

■ Function .. 992
■ Database-Specific Considerations ... 993
■ Syntax Description ... 993
■ Example .. 995

991

Structured Mode Syntax

[RECORD] [IN] [FILE] view-nameSTORE

[PASSWORD=operand1]

[CIPHER=operand2]

NUMBER operand3
USING

GIVING

Reporting Mode Syntax

[RECORD] [IN] [FILE] view-nameSTORE

[PASSWORD=operand1]

[CIPHER=operand2]

NUMBER operand3
USING

GIVING

[USING] SAME [RECORD] [AS] [STATEMENT [(r)]]

[operand4=operand5]SET

WITH

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ |
RETRY | UPDATE |

Belongs to Function Group: Database Access and Update

Function

The STORE statement is used to add a record to a database.

Statements992

STORE

Database-Specific Considerations

The Natural system variable *ISN contains the Adabas ISN assigned to the new record as a result
of the STORE statement execution. A subsequent reference to *ISNmust include the statement
number of the related STORE statement.

Adabas

This statement may be used to add a row to a table. The PASSWORD, CIPHER, and GIVING NUMBER
clauses cannot be used. The STORE statement corresponds with the SQL statement INSERT.

SQL

The Natural system variable *ISN is not available.

This statement may be used to add an XML object to a database. The PASSWORD, CIPHER, and
GIVING NUMBER clauses cannot be used.

XML

For Tamino, the Natural system variable *ISN contains the XML object ID assigned to the new
record as a result of the STORE statement execution. A subsequent reference to *ISNmust include
the statement number of the related STORE statement.

Syntax Description

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

noyesNSCoperand2

yesnoB *PNSCoperand3

nonoLTDBFIPNUAASoperand4

noyesLTDBFIPNUAASCoperand5

* Format B of operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

View Name:view-name

As view-name, you specify the name of a view, which must have been defined
either in a DEFINE DATA statement or outside the program in a global or local data
area.

In reporting mode, view-name is the name of a DDM if no DEFINE DATA LOCAL
statement is used.

993Statements

STORE

DescriptionSyntax Element

PASSWORD Clause:PASSWORD=operand1

The PASSWORD clause is applicable only for an Adabas database.

This clause is used to provide a password (operand1) when updating data from a
file which is password-protected. The password (operand1) may be specified as
an alphanumeric constant or as an alphanumeric variable. It may consist of up to
8 characters, and must not contain special characters or embedded blanks. If the
password is specified as a constant, it must be enclosed in apostrophes.

For further information, see the statements FIND and PASSW.

CIPHER Clause:CIPHER=operand2

The CIPHER clause is applicable only for an Adabas database.

This clause is used to provide a cipher key (operand2) when updating data from
afilewhich is enciphered. The cipher key (operand2)may be specified as an numeric
constant with 8 digits or as a user-defined variable with format/length N8.

For further information, see the statement FIND.

USING NUMBER Clause:USING NUMBER
operand3

This clause can only be used for an Adabas database.

GIVING NUMBER Clause:GIVING NUMBER
operand3

This clause is used to store a record with a user-supplied Adabas ISN (range from
1 to 4294967295). If a recordwith the specified ISN already exists, an errormessage
will be returned, and the execution of the program will be terminated unless ON
ERROR processing was specified.

SET/WITH Clause:SET/WITH
operand4=operand5

SET/WITH can be used in reporting mode to specify the fields for which values are
being provided. Any field defined in the file that is not specified in the SET clause
will contain a null value in the new record.

This clause is not permitted if a DEFINE DATA statement is used, because in that
case the STORE statement always refers to the entire view as defined in the DEFINE
DATA statement.

USING SAME Clause:USING SAME (r)

In reporting mode, this clause can be used to indicate that the same field values as
read in the statement referenced by the STORE statement (FIND, GET, READ) are to
be used to add a new record.

The statement reference notation (r)may be specified as a source-code line number
or as a statement label.

Statements994

STORE

DescriptionSyntax Element

This clause is not permitted if a DEFINE DATA statement is used, because in that
case the STORE statement would always refers to the entire view, as defined in the
DEFINE DATA statement.

Example

** Example 'STOEX1S': STORE (structured mode)
**
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 MAR-STAT
2 BIRTH
2 CITY
2 COUNTRY

*
1 #PERSONNEL-ID (A8)
1 #NAME (A20)
1 #FIRST-NAME (A15)
1 #BIRTH-D (D)
1 #MAR-STAT (A1)
1 #BIRTH (A8)
1 #CITY (A20)
1 #COUNTRY (A3)
1 #CONF (A1)
END-DEFINE
*
REPEAT

INPUT 'ENTER A PERSONNEL ID AND NAME (OR ''END'' TO END)' //
'PERSONNEL-ID : ' #PERSONNEL-ID //
'NAME : ' #NAME /
'FIRST-NAME : ' #FIRST-NAME

/*
/* VALIDATE ENTERED DATA
/*
IF #PERSONNEL-ID = 'END' OR #NAME = 'END'

STOP
END-IF
IF #NAME = ' '

REINPUT WITH TEXT 'ENTER A LAST-NAME' MARK 2 AND SOUND ALARM
END-IF
IF #FIRST-NAME = ' '

REINPUT WITH TEXT 'ENTER A FIRST-NAME' MARK 3 AND SOUND ALARM

995Statements

STORE

END-IF
/*
/* ENSURE PERSON IS NOT ALREADY ON FILE
/*
FIND NUMBER EMPL-VIEW WITH PERSONNEL-ID = #PERSONNEL-ID
IF *NUMBER > 0

REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS'
MARK 1 AND SOUND ALARM

END-IF
MOVE 'N' TO #CONF
/*
/* GET FURTHER INFORMATION
/*
INPUT

'ADDITIONAL PERSONNEL DATA' ////
'PERSONNEL-ID :' #PERSONNEL-ID (AD=IO) /
'NAME :' #NAME (AD=IO) /
'FIRST-NAME :' #FIRST-NAME (AD=IO) ///
'MARITAL STATUS :' #MAR-STAT /
'DATE OF BIRTH (YYYYMMDD) :' #BIRTH /
'CITY :' #CITY /
'COUNTRY (3 CHARACTERS) :' #COUNTRY //
'ADD THIS RECORD (Y/N) :' #CONF (AD=M)

/*
/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
/*
IF NOT (#MAR-STAT = 'S' OR = 'M' OR = 'D' OR = 'W')

REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -
'M=MARRIED D=DIVORCED W=WIDOWED' MARK 1

END-IF
IF NOT (#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))

REINPUT TEXT 'ENTER CORRECT DATE' MARK 2
END-IF
IF #CITY = ' '

REINPUT TEXT 'ENTER A CITY NAME' MARK 3
END-IF
IF #COUNTRY = ' '

REINPUT TEXT 'ENTER A COUNTRY CODE' MARK 4
END-IF
IF NOT (#CONF = 'N' OR= 'Y')

REINPUT TEXT 'ENTER Y (YES) OR N (NO)' MARK 5
END-IF
IF #CONF = 'N'

ESCAPE TOP
END-IF
/*
/* ADD THE RECORD
/*
MOVE EDITED #BIRTH TO #BIRTH-D (EM=YYYYMMDD)
/*
EMPL-VIEW.PERSONNEL-ID := #PERSONNEL-ID
EMPL-VIEW.NAME := #NAME

Statements996

STORE

EMPL-VIEW.FIRST-NAME := #FIRST-NAME
EMPL-VIEW.MAR-STAT := #MAR-STAT
EMPL-VIEW.BIRTH := #BIRTH-D
EMPL-VIEW.CITY := #CITY
EMPL-VIEW.COUNTRY := #COUNTRY
/*
STORE RECORD IN EMPL-VIEW
/*
END OF TRANSACTION
/*
WRITE NOTITLE 'RECORD HAS BEEN ADDED'
/*

END-REPEAT
END

Output of Program STOEX1S:

ENTER A PERSONNEL ID AND NAME (OR 'END' TO END)

PERSONNEL-ID : 90001100

NAME : JONES
FIRST-NAME : EDWARD

After entering and confirming the personnel key data, additional personnel data fields are
displayed for input:

ADDITIONAL PERSONNEL DATA

PERSONNEL-ID : 90001100
NAME : JONES
FIRST-NAME : EDWARD

MARITAL STATUS :
DATE OF BIRTH (YYYYMMDD) :
CITY :
COUNTRY (3 CHARACTERS) :

ADD THIS RECORD (Y/N) : N

Equivalent reporting-mode example: STOEX1R.

997Statements

STORE

998

137 SUBTRACT

■ Function ... 1000
■ Syntax 1 - SUBTRACT Statement without GIVING Clause ... 1000
■ Syntax 2 - SUBTRACT Statement with GIVING Clause ... 1001
■ Example ... 1002

999

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY
| RESET | SEPARATE

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The SUBTRACT statement is used to subtract one or more arithmetic expressions or operands from
another operand.

Syntax 1 - SUBTRACT Statement without GIVING Clause

FROM operand2SUBTRACT [ROUNDED] (arithmetic-expression)
operand1

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesTDFIPNNASCoperand1

noyesTDFIPNMASoperand2

Syntax Element Description:

DescriptionSyntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

Operands:operand1

operand2 is the minuend, operand1 is the subtrahend, hence the statement
is equivalent to:

FROM operand2

operand2 := operand2 - operand1

As for the formats of the operands, see also Rules for Arithmetic Assignments,
Performance Considerations for Mixed Formats in the Programming Guide.

ROUNDED Option:ROUNDED

If you specify the keyword ROUNDED, the result will be rounded.

For information on rounding, seeRules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.

Statements1000

SUBTRACT

Syntax 2 - SUBTRACT Statement with GIVING Clause

GIVING
operand3

FROM
SUBTRACT
[ROUNDED]

(arithmetic-expression)(arithmetic-expression)
operand2operand1

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesTDFIPNNASCoperand1

noyesTDFIPNNASCoperand2

yesyesTDB*FIPNUAMASoperand3

* Format B of operand3may be used only with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

See Arithmetic Expression in the COMPUTE statement.arithmetic-expression

GIVING Clause:GIVING

When the GIVING clause is used, operand2will not bemodified, and the result
will be stored in operand3.

Operands:operand1

operand2 is theminuend, operand1 is the subtrahend, operand3 is the result
field, hence the statement is equivalent to:

FROM operand2
GIVING operand3

operand3 := operand2 - operand1

As for the formats of the operands, see also the sectionPerformance Considerations
for Mixed Formats in the Programming Guide.

ROUNDED Option:ROUNDED

If you specify the keyword ROUNDED, the result will be rounded.

For information on rounding, seeRules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.

1001Statements

SUBTRACT

Example

** Example 'SUBEX1': SUBTRACT
**
DEFINE DATA LOCAL
1 #A (P2) INIT <50>
1 #B (P2)
1 #C (P1.1) INIT <2.4>
END-DEFINE
*
SUBTRACT 6 FROM #A
WRITE NOTITLE 'SUBTRACT 6 FROM #A ' 10X '=' #A
*
SUBTRACT 6 FROM 11 GIVING #A
WRITE 'SUBTRACT 6 FROM 11 GIVING #A ' 10X '=' #A
*
SUBTRACT 3 4 FROM #A GIVING #B
WRITE 'SUBTRACT 3 4 FROM #A GIVING #B ' 10X '=' #A '=' #B
*
SUBTRACT -3 -4 FROM #A GIVING #B
WRITE 'SUBTRACT -3 -4 FROM #A GIVING #B' 10X '=' #A '=' #B
*
SUBTRACT ROUNDED 2.06 FROM #C
WRITE 'SUBTRACT ROUNDED 2.06 FROM #C ' 10X '=' #C
*
END

Output of Program SUBEX1:

SUBTRACT 6 FROM #A #A: 44
SUBTRACT 6 FROM 11 GIVING #A #A: 5
SUBTRACT 3 4 FROM #A GIVING #B #A: 5 #B: -2
SUBTRACT -3 -4 FROM #A GIVING #B #A: 5 #B: 12
SUBTRACT ROUNDED 2.06 FROM #C #C: 0.3

Statements1002

SUBTRACT

138 SUSPEND IDENTICAL SUPPRESS

■ Function ... 1004
■ Syntax Description ... 1004
■ Examples ... 1004

1003

SUSPEND IDENTICAL [SUPPRESS] [(rep)]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER|
DISPLAY | EJECT | FORMAT | NEWPAGE | PRINT | SKIP | WRITE | WRITE TITLE | WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The SUSPEND IDENTICAL SUPPRESS statement is used to suspend the Natural session parameter
setting IS=ON (which suppresses the output of identical field values) for the processing of one record.

See also session parameter IS in the Parameter Reference.

Syntax Description

DescriptionSyntax Element

Report Specification:(rep)

The notation (rep)may be used to specify the identification of the report for which the
SUSPEND IDENTICAL SUPPRESS statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE
PRINTER statement may be specified.

If (rep) is not specified, the SUSPEND IDENTICAL SUPPRESS statement will be applicable
to the first report (Report 0).

For information on how to control the format of an output report created with Natural, see
Report Format and Control in the Programming Guide.

Examples

■ Example 1 - Program with SUSPEND IDENTICAL SUPPRESS

Statements1004

SUSPEND IDENTICAL SUPPRESS

■ Example 2 - Same as Previous Program, but without SUSPEND IDENTICAL SUPPRESS

Example 1 - Program with SUSPEND IDENTICAL SUPPRESS

** Example 'SISEX1': SUSPEND IDENTICAL SUPPRESS
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 CITY

1 VEH-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
*
RD. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

/*
SUSPEND IDENTICAL SUPPRESS
/*
FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)

IF NO RECORDS FOUND
MOVE '***NO CAR***' TO MAKE

END-NOREC
DISPLAY NOTITLE

NAME (RD.) (IS=ON)
FIRST-NAME (RD.) (IS=ON)
MAKE (FD.)

END-FIND
/*

END-READ
END

Output of Program SISEX1:

NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

JONES VIRGINIA CHRYSLER
JONES MARSHA CHRYSLER

CHRYSLER
JONES ROBERT GENERAL MOTORS
JONES LILLY FORD

MG
JONES EDWARD GENERAL MOTORS
JONES MARTHA GENERAL MOTORS

1005Statements

SUSPEND IDENTICAL SUPPRESS

JONES LAUREL GENERAL MOTORS
JONES KEVIN DATSUN
JONES GREGORY FORD
JONES EDWARD ***NO CAR***
JOPER MANFRED ***NO CAR***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL ***NO CAR***
JUNG ERNST ***NO CAR***
JUNKIN JEREMY ***NO CAR***

Example 2 - Same as Previous Program, but without SUSPEND IDENTICAL SUPPRESS

** Example 'SISEX2': SUSPEND IDENTICAL SUPPRESS (compare with SISEX1)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 CITY

1 VEH-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
RD. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

/*
/* SUSPEND IDENTICAL SUPPRESS /* statement removed
/*
FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)

IF NO RECORDS FOUND
MOVE '***NO CAR***' TO MAKE

END-NOREC
DISPLAY NOTITLE

NAME (RD.) (IS=ON)
FIRST-NAME (RD.) (IS=ON)
MAKE (FD.)

END-FIND
/*

END-READ
END

Statements1006

SUSPEND IDENTICAL SUPPRESS

Output of Program SISEX2:

NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

JONES VIRGINIA CHRYSLER
MARSHA CHRYSLER

CHRYSLER
ROBERT GENERAL MOTORS
LILLY FORD

MG
EDWARD GENERAL MOTORS
MARTHA GENERAL MOTORS
LAUREL GENERAL MOTORS
KEVIN DATSUN
GREGORY FORD
EDWARD ***NO CAR***

JOPER MANFRED ***NO CAR***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL ***NO CAR***
JUNG ERNST ***NO CAR***
JUNKIN JEREMY ***NO CAR***

1007Statements

SUSPEND IDENTICAL SUPPRESS

1008

139 TERMINATE

■ Function ... 1010
■ Syntax Description ... 1010
■ Program Receiving Control after Termination ... 1011
■ Example ... 1011

1009

TERMINATE [operand1 [operand2]]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The TERMINATE statement is used to terminate a Natural session. A TERMINATE statement may be
placed anywhere within a Natural program.When a TERMINATE statement is executed, no end-of-
page or end-loop processing will be performed.

For Natural RPC: SeeNotes on Natural Statements on the Server in theNatural RPC (Remote Procedure
Call) documentation.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesIPNSCoperand1

yesyesUAASCoperand2

Syntax Element Description:

DescriptionSyntax Element

operand1may be used to pass a return code to the program receiving control whenNatural
terminates. For example, a return code setting may be passed as exit code to the shell.

operand1

See also Natural Startup Errors in the Operations documentation.

The value supplied for operand1must be in the range 0 - 255.

operand2may be used to pass additional information to the programwhich receives control
after the termination.

operand2

Statements1010

TERMINATE

Program Receiving Control after Termination

After the termination of theNatural session, the programwhose name is specifiedwith the profile
parameter PROGRAMwill receive control.

Natural passes operand2 and the value of the profile parameter PRGPAR to that program, if they
are specified. The program receives these parameters in the usual way as arguments:

int main(int argc, char *argv[])
{

/* Number of arguments passed. */
printf("Number of arguments: %d\n", argc);
/* Program name. */
if (argc > 0)

printf("Program: %s\n", argv[0]);
/* Value of operand2 of the TERMINATE statement. */
if (argc > 1)

printf("Operand 2: %s\n", argv[1]);
/* Value of the profile parameter PRGPAR. */
if (argc > 2)

printf("PRGPAR: %s\n", argv[2]);
return 0;

}

If the PROGRAM parameter is not set, the Linux command shell will receive control after the termin-
ation.

Example

** Example 'TEREX1': TERMINATE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 SALARY (1)

*
1 #PNUM (A8)
1 #PASSWORD (A8)
END-DEFINE
*
INPUT 'ENTER PASSWORD:' #PASSWORD
*
IF #PASSWORD NE 'USERPASS'

/*

1011Statements

TERMINATE

TERMINATE
/*

END-IF
*
INPUT 'ENTER PERSONNEL NUMBER:' #PNUM
*
FIND EMPLOY-VIEW WITH PERSONNEL-ID = #PNUM

DISPLAY NAME SALARY (1)
END-FIND
*
END

Statements1012

TERMINATE

140 UPDATE

■ Function ... 1014
■ Restrictions ... 1015
■ Database-Specific Considerations ... 1015
■ Syntax Description ... 1015
■ Example ... 1016

1013

Structured Mode Syntax

UPDATE [RECORD] [IN] [STATEMENT] [(r)]

Reporting Mode Syntax

[RECORD] [IN] [STATEMENT] [(r)]UPDATE

SET

SAME [RECORD]WITH

{operand1=operand2}USING

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME
| GET TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ |
RETRY | STORE

Belongs to Function Group: Database Access and Update

Function

The UPDATE statement is used to update one or more fields of a record in a database. The record
to be updated must have been previously selected with a FIND, GET or READ statement (or, for
Adabas only, with a STORE statement).

Hold Status

The use of the UPDATE statement causes each record read for processing in the corresponding FIND
or READ statement to be placed in exclusive hold.

For further information, see Record Hold Logic (in the Programming Guide).

Statements1014

UPDATE

Restrictions

The UPDATE statement

■ must not be entered on the same line as the statement used to select the record to be updated;
■ cannot be applied to Entire System Server views.

Database-Specific Considerations

The UPDATE statement can be used to update a row in a database table. It corresponds with the SQL
statement UPDATE WHERE CURRENT OF CURSOR (Positioned UPDATE), which means that only the
row which was read last can be updated.

SQL

With most SQL databases, a row that was read with a FIND SORTED BY or with a READ LOGICAL
statement cannot be updated.

The statement cannot be used with XML databases.XML

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

nonoLTDBFIPNAASoperand1

noyesLTDBFIPNAASCoperand2

Syntax Element Description:

DescriptionSyntax Element

Statement Reference:(r)

The notation (r) is used to indicate the statement inwhich the record to bemodified
was read. rmay be specified as a source-code line number or as a statement label.

If no reference is specified, the UPDATE statementwill reference the innermost active
READ or FIND processing loop. If no READ or FIND loop is active, it will reference
the last preceding GET (or STORE) statement.

1015Statements

UPDATE

DescriptionSyntax Element

Note: The UPDATE statement must be placed within the READ or FIND loop it
references.

USING SAME Clause:USING SAME

This clause is not permitted if a DEFINE DATA statement is used, because in that
case the UPDATE statement always refers to the entire view as defined in the DEFINE
DATA statement.

The layout of the record buffer or format buffer may be declared using the OBTAIN
statement.

USING SAME can be used in reporting mode to indicate that the same fields as read
in the statement referenced by the UPDATE statement are to be used for the update
function. In this case, the most recent value assigned to each database field will be
used to update the field. If no new value has been assigned, the old value will be
used.

If the field to be updated is an array range of amultiple-value field or periodic group
and you use a variable index for this array range, the latest range will be updated.
This means that if the index variable is modified after the record has been read and
before the UPDATE USING SAME (reporting mode) or UPDATE (structured mode)
statement respectively is executed, the range updated will not be the same as the
range read.

SET/WITH Clause:SET/WITH
operand1=operand2

This clause can be used in reporting mode to specify the fields to be updated and
the values to be used.

This clause is not permitted if a DEFINE DATA statement is used, because in that
case the UPDATE statement always refers to the entire view as defined in the DEFINE
DATA statement.

Example

** Example 'UPDEX1S': UPDATE (structured mode)
**
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY

*
1 #NAME (A20)
END-DEFINE

Statements1016

UPDATE

*
INPUT 'ENTER A NAME:' #NAME (AD=M)
IF #NAME = ' '

STOP
END-IF
*
FIND EMPLOY-VIEW WITH NAME = #NAME

IF NO RECORDS FOUND
REINPUT WITH 'NO RECORDS FOUND' MARK 1

END-NOREC
INPUT 'NAME: ' NAME (AD=O) /

'FIRST NAME:' FIRST-NAME (AD=M) /
'CITY: ' CITY (AD=M)

UPDATE
END TRANSACTION

END-FIND
*
END

Output of Program SUBEX1S

ENTER A NAME: BROWN

After entering and confirming name:

NAME: BROWN
FIRST NAME: KENNETH
CITY: DERBY

Equivalent reporting-mode example: UPDEX1R.

1017Statements

UPDATE

1018

141 UPDATE (SQL)

■ Function ... 1020
■ Syntax 1 - Searched UPDATE .. 1020
■ Syntax 2 - Positioned UPDATE ... 1022
■ Examples ... 1023

1019

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

Function

The SQL UPDATE statement is used to perform an UPDATE operation on either rows in a tablewithout
using a cursor (“searched” UPDATE) or columns in a row to which a cursor is positioned (“posi-
tioned” UPDATE).

Two different syntax structures are possible.

Syntax 1 - Searched UPDATE

The “Searched” UPDATE statement is a stand-alone statement not related to any SELECT statement.
With a single statement you can update zero, one, multiple or all rows of a table. The rows to be
updated are determined by a search-condition that is applied to the table. Optionally, view
names and table names can be assigned a correlation-name.

Note: The number of rows that have actually been updated with a “searched” UPDATE can
be ascertained by using the system variable *ROWCOUNT.

view-name [correlation-name] SET *
UPDATE

table-name [correlation-name] SET assignment-list

RR
RS
CS

WITH
[WHERE
search-condition]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description - Syntax 1:

DescriptionSyntax Element

View Name:view-name

Refers to the name of a Natural view as defined in the DEFINE DATA statement. For
further information, see view-name (in the section Basic Syntactical Items).

Correlation Name:correlation-name

The item correlation-name represents an alias name for a table-name.

Statements1020

UPDATE (SQL)

DescriptionSyntax Element

For further information, see correlation-name (in the section Basic Syntactical
Items).

SET Clause:SET

If a view has been specified for updating, an asterisk (*) has to be specified in the SET
clause, because all columns of the view must be updated.

If a table has been specified for updating, the SET clause must contain either an
assignment-list or the nameof the viewwhich contains the columns to be updated.

Assignment List:assignment-list
See Assignment List below.

WHERE Clause:WHERE
search-condition

This clause is used to specify the selection criteria for the rows to be updated.

If no WHERE clause is specified, the entire table is updated.

WITH - Isolation Level Clause:WITH

This clause allows the explicit specification of the isolation level used when locating
the row to be updated.

For detailed information, seeWITH isolation-level in the description of the SELECT
statement.

It is only valid against Db2 databases. When used against other databases, it will
cause runtime errors.

Cursor StabilityCS

Repeatable ReadRR

Read StabilityRS

Assignment List

,
scalar-expression

column-name =
NULL

In an assignment-list, you can assign values to one or more columns. A value can be either a
scalar-expression or NULL. For further information, see Scalar Expressions.

If the value NULL has been assigned, it means that the addressed field is to contain no value (not
even the value “0” or “blank”).

Syntax Element Description:

1021Statements

UPDATE (SQL)

DescriptionSyntax Element

Column Name:column-name

Specifies the name of a column of the result table of the MERGE statement that is not the
same name as another include column or a column in the target table.

NULL Option:NULL

Specifies the null value as the new value of the column.

If the value NULL has been assigned, it means that the addressed field is to contain no value
(not even the value 0 or “blank”).

Syntax 2 - Positioned UPDATE

The “positioned” UPDATE statement always refers to a cursor within a database loop. Thus, the
table or view referenced by a positioned UPDATE statement must be the same as the one referenced
by the corresponding SELECT statement; otherwise an error message is returned. A positioned
UPDATE cannot be used with a non-cursor selection.

Common Set Syntax:

[WHERE CURRENT OF CURSOR (r)]
view-name SET *

UPDATE
view-name SET assignment-list

Syntax Element Description - Syntax 2:

DescriptionSyntax Element

Natural View:view-name

Refers to the name of aNatural view as defined in the DEFINE DATA statement;
see also view-name (in the section Basic Syntactical Items).

SET Clause:SET *

SET assignment-list If a Natural view has been specified for updating, an asterisk (*) has to be
specified in the SET clause, because all columns of the view must be updated.

If a table has been specified for updating, the SET clause must contain either
an assignment-list or the name of the view which contains the columns to
be updated.

Statement Reference:WHERE CURRENT OF
CURSOR (r)

The (r) notation is used to reference the statement which was used to select
the row to be updated. If no statement reference is specified, the UPDATE
statement is related to the innermost active processing loop inwhich a database
record was selected.

Statements1022

UPDATE (SQL)

Examples

■ Example 1 - Searched UPDATE
■ Example 2 - Searched UPDATE with assignment-list
■ Example 3 - Positioned UPDATE
■ Example 4 - Positioned UPDATE with assignment-list

Example 1 - Searched UPDATE

DEFINE DATA LOCAL
1 PERS VIEW OF SQL-PERSONNEL
2 NAME
2 AGE
...
END-DEFINE
...
ASSIGN AGE = 45
ASSIGN NAME = 'SCHMIDT'
UPDATE PERS SET * WHERE NAME = 'SCHMIDT'
...

Example 2 - Searched UPDATE with assignment-list

DEFINE DATA LOCAL
1 PERS VIEW OF SQL-PERSONNEL
2 NAME
2 AGE
...
END-DEFINE
...
UPDATE SQL-PERSONNEL SET AGE = AGE + 1 WHERE NAME = 'SCHMIDT'
...

Example 3 - Positioned UPDATE

DEFINE DATA LOCAL
1 PERS VIEW OF SQL-PERSONNEL
2 NAME
2 AGE
...
END-DEFINE
...
SELECT * INTO PERS FROM SQL_PERSONNEL WHERE NAME = 'SCHMIDT'
COMPUTE AGE = AGE + 1
UPDATE PERS SET * WHERE CURRENT OF CURSOR

1023Statements

UPDATE (SQL)

END-SELECT
...

Example 4 - Positioned UPDATE with assignment-list

DEFINE DATA LOCAL
1 PERS VIEW OF SQL-PERSONNEL
2 NAME
2 AGE
...
END-DEFINE
...
SELECT * INTO PERS FROM SQL-PERSONNEL WHERE NAME = 'SCHMIDT'
UPDATE SQL-PERSONNEL SET AGE = AGE + 1 WHERE CURRENT OF CURSOR
END-SELECT
...

Statements1024

UPDATE (SQL)

142 UPDATELOB

■ Function ... 1026
■ Restrictions ... 1026
■ Syntax Description ... 1027
■ System Variable Available with UPDATELOB ... 1028
■ Functional Considerations ... 1029
■ Examples ... 1029

1025

UPDATELOB [OF] [RECORD] [(r)] [IN] [FILE] view-name

[PASSWORD=operand1]

[CIPHER=operand2]

[[STARTING] [AT] OFFSET [=] operand3]

TRUNCATE
[REMAINDER]
[AT] OFFSET

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: READ | FIND | GET | READLOB | UPDATE

Belongs to Function Group: Database Access and Update

Function

The UPDATELOB statement is used to update a data segment of a LOB field (Large OBject field) in
a database record. The position of the value modification is freely selectable. The record to be up-
dated must have been previously selected with a FIND, READ, or GET statement or created with a
STORE statement.

Hold Status

The use of the UPDATELOB statement causes each record read for processing in the corresponding
FIND, READ, or GET statement to be placed in exclusive hold.

For further information, see Record Hold Logic in the Programming Guide.

Restrictions

The UPDATELOB statement

■ can only be used for access to Adabas databases;
■ must not be entered on the same line as the statement used to select the record to be updated;
■ is only applicable to update a single LOB field.

Statements1026

UPDATELOB

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesASCoperand1

noyesNSCoperand2

noyesB *IPNSCoperand3

* Format B of operand3may be used with a length of less than or equal to 4.

Syntax Element Description:

DescriptionSyntax Element

Statement Reference:(r)

The notation (r) is used to indicate the statement inwhich the record to bemodified
was read or created. rmay be specified as a source-code line number or as a
statement label. You may reference a FIND, READ, GET or STORE statement.

If no reference is specified, the UPDATELOB statement will reference the innermost
active READ or FIND processing loop. If no READ or FIND loop is active, it will
reference the last preceding GET statement. To reference a STORE statement, you
have always to provide the (r) notation.

Note: The UPDATELOB statement must be placed within the READ or FIND loop it
references.

View Name:view-name

As view-name, you specify the name of a view, which must have been defined
either within a DEFINE DATA statement or outside the program in a global or local
data area.

■ The view has to contain just a single-valued LOB field, additional fields are not
allowed.

■ If the LOB is a MU or PE field, a unique occurrence must be specified; a range
notation is not allowed.

■ The LOB field must be defined in the view with a fixed (non-dynamic) length.

PASSWORD and CIPHER Clauses:PASSWORD=operand1

The PASSWORD clause is used to provide a password when retrieving data from a
file which is password-protected.

CIPHER=operand2

1027Statements

UPDATELOB

DescriptionSyntax Element

The CIPHER clause is used to provide a cipher key when retrieving data from a file
which is enciphered.

See the statements FIND and PASSW for further information.

STARTING AT OFFSET Clause:STARTING AT
OFFSET=operand3

Provides the start offset within the LOB field, where the operation is executed. The
leftmost byte of the LOB field is offset zero (0).

operand3must be provided either in the form of a numeric constant or as a
user-defined variable, without precision digits. The field is not modified by the
UPDATELOB execution. If the offset value is greater than the LOB length, the gap is
filled with blanks. This means a LOB field can be updated at a position which is
beyond its length.

If this clause is omitted, start offset (0) is assumed.

TRUNCATE Clause:TRUNCATE
REMAINDER

If TRUNCATE REMAINDER is specified, the remaining LOB field data is truncated
after the new segment has been written into the LOB field. This makes the end of
the inserted segment to the end of the LOB field.

or
TRUNCATE AT
OFFSET

If TRUNCATE AT OFFSET is specified, the data behind the specified starting offset
is truncated. A segment insert into the LOB field is not performed. After this, the
LOB length is equal to operand3.

If this clause is omitted, the data behind the inserted segment is preserved.

System Variable Available with UPDATELOB

The Natural system variable *NUMBER is provided with the UPDATELOB statement.

The format/length of this system variable is P10. This format/length cannot be changed.

ExplanationSystem Variable

The systemvariable *NUMBER returns the sumof the start offset and the number of characters
inserted. This value represents the starting offset for the next UPDATELOB, if a consecutive
area of the LOB field is replaced with multiple calls.

The number of inserted characters is either the byte length of the LOB segment defined in
the view or zero (0) if the TRUNCATE AT OFFSET clause was specified.

*NUMBER

The *NUMBER field returned by the UPDATELOB statement must always be provided with a
reference label or number (for example, *NUMBER(0430)) when used.

Statements1028

UPDATELOB

Functional Considerations

■ An UPDATELOB operates a record which was set into hold by an associated FIND, READ, GET or
STORE statement. The link is either implicit via the current active reference or explicit with (r)
notation.

■ The view used by the associated statement and the view used by the UPDATELOB have to access
the same database and file number. This is automatically assured if the views are derived from
the same data definition module (DDM).

■ If the insert position operand3 is greater than the LOB length, the gap is filled with blanks. This
means you may update a LOB field at a position which is beyond its length.

■ You cannot replace m bytes with n bytes - or in other words, it is not admissible to substitute a
LOB part with a data segment of different length.

■ The value returned with *NUMBER is the high-water mark indicating the position inside the LOB
where the last insert has ended. If a number of consecutive update operations is demanded, this
value should always be retained as STARTING AT value for the next UPDATELOB execution.

Examples

■ Example 1 - Store New Record and Fill LOB Segment
■ Example 2 - Add LOB Data to Existent Record, Piece by Piece
■ Example 3 - Truncate LOB Field
■ Example 4 - Read LOB Data to Existent Record and Update LOB Segment

Example 1 - Store New Record and Fill LOB Segment

DEFINE DATA LOCAL
1 V1 VIEW OF ..

2 PERSONNEL-ID
2 NAME

1 V2 VIEW OF ..
2 LOBFIELD_SEGMENT /* LOB field defined in DDM with (A1024).

END-DEFINE
*
**===
** Store new record
**===
V1.PERSONNEL-ID := '12345678'
V1.NAME := 'Smith'
LAB1.
STORE V1 /* Store new record with 2 fixed length fields.
*
MOVE ALL 'X' TO LOBFIELD_SEGMENT

1029Statements

UPDATELOB

**===
** Update LOB field
**===
UPDATELOB (LAB1.) IN FILE V2 /* INSERT 1 KB SEGMENT (LOBFIELD_SEGMENT)

/* IN LOB.
STARTING AT OFFSET = 2048

/* STORE DATA IN LOB RANGE 2049-3072.
/* FIRST 2 KBS ARE AUTO-FILLED WITH BLANKS BY THE DB.

END TRANSACTION
END

Example 2 - Add LOB Data to Existent Record, Piece by Piece

DEFINE DATA LOCAL
1 V1 VIEW OF EMPLOYEES-V2009

2 PERSONNEL-ID
2 NAME
2 L@PICTURE

1 V2 VIEW OF EMPLOYEES-V2009
2 PICTURE_SEGMENT /* LOB field defined in DDM with (A1024).
2 REDEFINE PICTURE

3 PICTURE_B (B1024)
1 #OFF (I4)
END-DEFINE
*
**===
** Read record to be updated
**===
LAB1.
READ (1) V1 BY PERSONNEL-ID = '60008339'

/* Read record and set into exclusive hold.
RESET #OFF /* Start to overwrite LOB field from the beginning.
/*===
/* Read data from work file and put into LOB field
/*===
READ WORK FILE 7 PICTURE_B

/* Start to read picture data (.jpg) from work file.
LAB2.

UPDATELOB (LAB1.) IN FILE V2
STARTING AT OFFSET #OFF

#OFF := *NUMBER(LAB2.) /* Keep next position to append.
END-WORK

END-READ
**===
END TRANSACTION
END

Statements1030

UPDATELOB

Example 3 - Truncate LOB Field

DEFINE DATA LOCAL
1 V1 VIEW OF EMPLOYEES-V2009

2 PERSONNEL-ID
2 NAME
2 L@PICTURE

1 V2 VIEW OF EMPLOYEES-V2009
1 V3 VIEW OF EMPLOYEES-V2009

2 PICTURE_SEGMENT /* LOB field defined in DDM with (A1024).
END-DEFINE
*
**===
** Read record to be updated
**===
LAB1.
READ V1 BY PERSONNEL-ID /* Read records.

IF L@PICTURE > 10240 THEN /* Check if LOB length is too high.
LAB2.

GET V2 RECORD *ISN(LAB1.) /* Set record to be updated into exclusive hold.
UPDATELOB (LAB2.) IN FILE V3

STARTING AT OFFSET 10240
TRUNCATE AT OFFSET /* Truncate LOB data beyond 10KB.

END TRANSACTION
END-IF

END-READ
END

Example 4 - Read LOB Data to Existent Record and Update LOB Segment

DEFINE DATA LOCAL
1 V1 VIEW OF ..

2 NAME
1 V2 VIEW OF ..

2 DOCUMENT_SEGMENT /* LOB field defined in DDM with (A100).
1 #ISN (I4)
1 #POS (I4)
1 #LENGTH (I4) INIT <100>
END-DEFINE
*
**===
** Read record to be updated
**===
INPUT (AD=T)

/ ' Read record (ISN):' #ISN
*
G1.
GET V1 RECORD #ISN /* Get record with ISN and set into exclusive hold.
*
**===

1031Statements

UPDATELOB

** Read LOB data and update segment of LOB field
**===
R1.
READLOB V2 WITH ISN = #ISN

STARTING AT OFFSET = 3000
..
#POS := *NUMBER(R1.) - #LENGTH
..
IF ..

DOCUMENT_SEGMENT := ..
UPDATELOB (G1.) IN FILE V2 /* Update current segment in LOB field.

STARTING AT OFFSET #POS
END-IF
..

END-READLOB
*
END TRANSACTION
END

Statements1032

UPDATELOB

143 UPLOAD PC FILE

■ Function ... 1034
■ Syntax Description ... 1035
■ Example ... 1036

1033

Structured Mode Syntax

[FILE] work-file-number [ONCE]PCUPLOAD
WORKREAD

RECORD operand1

operand2[AND] [SELECT] OFFSET n
FILLER nX

[GIVING LENGTH operand3]

[AT [END] [OF] [FILE] statement END-ENDFILE]

statement

END-WORK

Reporting Mode Syntax

[FILE] work-file-number [ONCE]PCUPLOAD
WORKREAD

RECORD {operand1 [FILLER nX]}

operand2[AND] [SELECT] OFFSET n
FILLER nX

[GIVING LENGTH operand3]

AT [END] [OF] [FILE] statement
DO statement DOEND

statement

LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CLOSE PC FILE | DOWNLOAD PC FILE | READ WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The UPLOAD PC FILE statement is used to transfer data from a PC to a Linux platform.

See also:

■ Natural Connection and Entire Connection documentation
■ READ WORK FILE statement syntax description

Statements1034

UPLOAD PC FILE

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

yesyesCLTDBFIPNUAGASoperand1

yesyesCLTDBFIPNUAGASoperand2

yesyesISoperand3

When using the work file types ENTIRECONNECTION or TRANSFER, operand2may not be of Format
C.

Syntax Element Description:

DescriptionSyntax Element

Work File Number:work-file-number

The number of the work file to be used. This number must correspond to one
of the work file numbers for the PC as defined to Natural.

Field Specification:operand1-2

With operand1 and operand2 you specify the fields to be uploaded from the
PC. The fields may be database fields or user-defined variables.

Statement(s) to be Executed:statement

In place of statement, you must supply one or several suitable statements,
depending on the situation.

No I/O statement may be placed with the UPLOAD PC FILE processing.

Options:ONCE, SELECT, GIVING
LENGTH

RECORD
For a description of the ONCE, SELECT, GIVING LENGTH options, refer to the
corresponding sections in the description of the READ WORK FILE statement.

The RECORD option is not permitted for PC work files. It will be rejected at
runtime.

When uploading data: If you wish to define a filler, you must use a dummy
variable instead of the standard filler notation.

End of UPLOAD PC FILE Statement:END-WORK

In structuredmode, the Natural reserved keyword END-WORKmust be used to
end the UPLOAD PC FILE statement.

LOOP

1035Statements

UPLOAD PC FILE

DescriptionSyntax Element

In reporting mode, the Natural statement LOOP is used to end the UPLOAD PC
FILE statement.

Example

The following program demonstrates the use of the UPLOAD PC FILE statement. The data is first
uploaded from the PC and then processed on the Linux platform.

** Example 'PCUPEX1': UPLOAD PC FILE
**
** NOTE: Example requires that Natural Connection is installed.
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
01 EMPL VIEW OF EMPLOYEES

02 PERSONNEL-ID
02 INCOME

03 SALARY (1)
*
01 #PID (A8) /* Personnel ID on PC
01 #NEW-INCREASE (N4) /* Increase for salary
END-DEFINE
*
UPLOAD PC FILE 7 #PID #NEW-INCREASE /* Data upload
*

FIND EMPL WITH PERSONNEL-ID = #PID /* Data selection
ADD #NEW-INCREASE TO SALARY (1) /* Data update on host
UPDATE
END TRANSACTION
ESCAPE BOTTOM

END-FIND
*
END-WORK
END

Output of Program PCUPEX1:

When you run the program, a window appears in which you specify the name of the PC file from
which the data is to be uploaded. The data is then uploaded from the PC.

Statements1036

UPLOAD PC FILE

144 WRITE

■ Function ... 1038
■ Syntax 1 - Dynamic Formatting ... 1038
■ Syntax 2 - Using Predefined Form/Map .. 1046
■ Examples ... 1047

1037

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The WRITE statement is used to produce output in free format.

The WRITE statement differs from the DISPLAY statement in the following respects:

■ Line overflow is supported. If the line width is exceeded for a line, the next field (or text) is
written on the next line. Fields or text elements are not split between lines.

■ Nodefault columnheaders are created. The length of the data determines the number of positions
printed for each field.

■ A range of values/occurrences for an array is output horizontally rather than vertically.

See also the following topics in the Programming Guide:

■ Report Format and Control
■ Statements DISPLAY and WRITE
■ Index Notation for Multiple-Value Fields and Periodic Groups
■ Example of DISPLAY VERT with WRITE Statement
■ Layout of an Output Page

Syntax 1 - Dynamic Formatting

WRITE [(rep)] [NOTITLE] [NOHDR]

[(statement-parameters)]

'text' [(attributes)]nX

'c'(n) [(attributes)]nT

['='] operand1 [(parameters)]x/y

T*field-name

P*field-name

/

Statements1038

WRITE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGLTDBFIPNUANGASoperand1

Syntax Element Description:

DescriptionSyntax Element

Report Specification:(rep)

The notation (rep) is used to specify the identification of the report if multiple
reports are to be produced by the program.

As report identification, a value in the range 0 - 31 or a logical name which
has been assigned using the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the statement will apply to the first report (Report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to
the PC, see Example 6.

For information on how to control the format of an output report created with
Natural, see Report Format and Control (in the Programming Guide).

Default Page Title Suppression:NOTITLE

Natural generates a single title line for each page resulting from a WRITE
statement. This title contains the page number, the time of day, and the date.
Time of day is set at the beginning of program execution. This default title line
may be overridden by using a WRITE TITLE statement, or it may be suppressed
by using the NOTITLE option in the WRITE statement.

Examples:

■ Default title will be produced:

WRITE NAME

■ User title will be produced:

1039Statements

WRITE

DescriptionSyntax Element

WRITE NAME WRITE TITLE 'user-title'

■ No title will be produced:

WRITE NOTITLE NAME

Note:

1. If the NOTITLE option is used, it applies to all DISPLAY, PRINT and WRITE
statements within the same object which write data to the same report.

2. Page overflow is checked before execution of a WRITE statement. No newpage
with title or trailer information is generated during the execution of a WRITE
statement.

Column Header Suppression:NOHDR

The WRITE statement itself does not produce any column headers. However, if
you use the WRITE statement in conjunctionwith a DISPLAY statement, you can
use the NOHDR option of the WRITE statement to suppress the column headers
generated by the DISPLAY statement. The NOHDR option only takes effect if the
execution of the WRITE statement causes a new page to be output.

Without the NOHDR option, the columnheaders (if any) of the DISPLAY statement
would be output on this new page; with NOHDR they will not.

Parameter Definition at Statement Level:statement-parameters

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the WRITE statement.

Each parameter specifiedwill override the corresponding parameter previously
specified in a GLOBALS command, SET GLOBALS (in Reporting Mode only) or
FORMAT statement.

If more than one parameter is specified, they must be separated by one or more
blanks fromone another. Each parameter specificationmust not be split between
two statement lines.

Note: The parameter settings applied here will only be regarded for variable
fields, but they have no effect on text-constants. If you would like to set field
attributes for a text-constant, they have to be set explicitly for this element, see
Parameter Definition at Element (Field) Level.

See also:

■ List of Parameters
■ Example of Parameter Usage at Statement and Element (Field) Level

Statements1040

WRITE

DescriptionSyntax Element

■ Example 5 -WRITEStatementUsing '=' andParameters on Statement/Element
(Field) Level

Field Positioning Notation:nX, nT, x/y,
T*field-name,
P*field-name, '=', / See Field Positioning Notations in the sectionOutput Format Definitions.

Text/Attribute Assignment:'text', 'c'(n),
attributes, operand1,
parameters See Text/Attribute Assignment in the sectionOutput Format Definitions.

List of Parameters

Specification (S = at statement level, E = at
element level)

Parameters that can be specified with the WRITE statement

SEAttribute DefinitionAD

SEAlphanumeric Length for OutputAL

SEColor DefinitionCD

SEControl VariableCV

SEDate FormatDF

SEDisplay Length for OutputDL

SEDynamic AttributesDY

SEEdit MaskEM

EUnicode Edit MaskEMU

SEFloating Point Mantissa LengthFL

SEIdentical SuppressIS

SLine SizeLS

SMultiple-Value Field CountMC

SMaximum Number of Pages of a ReportMP

SENumeric Length for OutputNL

SPeriodic Group CountPC

SEPrint ModePM

SPage Size *PS

SESign PositionSG

SUnderlining CharacterUC

SEZero PrintingZP

*The PS session parameter setting is not considered if the number of occurrences of an array exceeds
the PS value.

The individual session parameters are described in the Parameter Reference.

1041Statements

WRITE

See also the following topics in the Programming Guide:

■ Centering of Column Headers - HC Parameter
■ Width of Column Headers - HW Parameter
■ Filler Characters for Headers - Parameters FC and GC
■ Underlining Character for Titles and Headers - UC Parameter

Example of Parameter Usage at Statement and Element (Field) Level

DEFINE DATA LOCAL
1 VARI (A4) INIT <'1234'> /* Output
END-DEFINE /* Produced
* /* ---------
WRITE 'Text' VARI /* Text 1234
WRITE (AD=U) 'Text' VARI /* Text 1234
WRITE 'Text' (AD=U) VARI (AD=U) /* Text 1234
WRITE 'Text' (AD=U) VARI /* Text 1234
END

See also Example 5 - WRITE Statement Using '=' and Parameters on Statement/Element (Field)
Level.

Output Format Definitions

nX

nT

'text' [(attributes)]x/y

'c' (n) [(attributes)]T*field-name

['='] operand1 [(parameters)]P*field-name

/

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Field Positioning Notations

DescriptionSyntax Element

Column Spacing:nX

This notation inserts n spaces between columns.

Example:

Statements1042

WRITE

DescriptionSyntax Element

WRITE NAME 5X SALARY

See also:

■ Example 2 - WRITE Statement Using nX, nT Notation (below)
■ Column Spacing - SF Parameter and nX Notation in the Programming Guide

Tab Setting:

The nT notation causes positioning (tabulation) to print position n. Backward positioning
is not permitted.

nT

In the following example, NAME is printed beginning in position 25, and SALARY is printed
beginning in position 50:

WRITE 25T NAME 50T SALARY

See also:

■ Example 2 - WRITE Statement Using nX, nT Notation (below)
■ Tab Setting - nT Notation in the Programming Guide

x/y Positioning:

The x/y notation causes the next element to be placed x lines below the output of the last
statement, beginning in column y. ymust not be zero. Backward positioning in the same
line is not permitted.

x/y

See also Positioning Notation x/y (in the Programming Guide).

Field Related Positioning:T*field-name

The notation T* is used to position to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

See also:

■ Example 3 - WRITE Statement Using T* Notation (below)
■ Tab Notation - T*field (in the Programming Guide)

Field and Line Related Positioning:P*field-name

The notation P* is used to position to a specific print position and line of a field used in a
previous DISPLAY statement. It is most often used in conjunction with vertical printing
mode. Backward positioning is not permitted.

See also:

■ Example 4 - WRITE Statement Using P* Notation (below)
■ Tab Notation P*field (in the Programming Guide)

1043Statements

WRITE

DescriptionSyntax Element

Field Content Positioned behind Field Heading:'='

When placed before a field, the equal sign '=' results in the display of the field heading
(as defined in the DEFINE DATA statement or in the DDM) followed by the field contents.

See also:

■ Example 1 - WRITE Statement Using '=', 'text', '/'
■ Example 5 - WRITE Statement Using '=' and Statement/Element Parameters

Line Advance - Slash Notation:/

When placed between fields or text elements, a slash (/) causes positioning to the beginning
of the next print line.

Example:

WRITE NAME / SALARY

Multiple slash (/) notations may be used to cause multiple line advances.

See also:

■ Example 1 - WRITE Statement Using '=', 'text', '/' (below)
■ Line Advance - Slash Notation (in the Programming Guide)
■ Example 2 - Line Advance in WRITE Statement (in the Programming Guide)

Text/Attribute Assignments

DescriptionSyntax Element

Text Assignment:'text'

The character string enclosed by single quotes is displayed.

Example:

WRITE 'EMPLOYEE' NAME 'MARITAL/STATUS' MAR-STAT

See also:

■ Example 1 - WRITE Statement Using '=', 'text', '/' (below)
■ Text Notation, Defining a Text to Be Used with a Statement in the Programming Guide

Character Repetition:

The character enclosed by single quotes is displayed n times immediately before the field
value.

'c'(n)

Statements1044

WRITE

DescriptionSyntax Element

For example:

WRITE '*' (5) '=' NAME

results in

***** SMITH

See also Text Notation, Defining a Character to Be Displayed n Times before a Field Value (in the
Programming Guide).

Field Representation and Color Attributes:

It is possible to assign various attributes for text/field display. These attributes and the
syntax that may be used are described in the sectionOutput Attributes below.

Examples:

attributes

WRITE 'TEXT' (BGR)
WRITE 'TEXT' (B)
WRITE 'TEXT' (BBLC)

Field to be Written:

operand1 specifies the field whose content is to be written in this place.

operand1

Parameter Definition at Element (Field) Level:

One or more parameters, enclosed within parentheses, may be specified at element (field)
level, that is, immediately after operand1. Each parameter specified in this manner will

parameters

override the corresponding parameter previously specified at statement level or in a
GLOBALS command, SET GLOBALS (in Reporting Mode only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be placed between each
entry. An entry may not be split between two statement lines.

See also:

■ List of Parameters
■ Example of Parameter Usage at Statement and Element (Field) Level

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

1045Statements

WRITE

AD=ad-value
CD=cd-value
PM=pm-value

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-valuewithout preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IREwill be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-value
or ad-valuewith a value preceded by CD= or AD=.

Syntax 2 - Using Predefined Form/Map

operand2
operand1

FORMWRITE
[(rep)] [NOTITLE] [NOHDR]
[USING] NO PARAMETERMAP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

nonoASCoperand1

noyesLTDBFIPNUANGASoperand2

Syntax Element Description:

Statements1046

WRITE

DescriptionSyntax Element

Use of Predefined Form/Map Layout:[USING] FORM
[USING] MAP

This option may be used to indicate that a form/map layout previously defined
with the map editor is to be used.

Amap layout used in a WRITE statement does not automatically create a new page
each time the map is output.

For the line spacing, the LS parameter setting must be 1 byte greater than the LS
setting defined in the map.

Form/Map Name:operand1

operand1 is the name of the form/map to be used.

Field to be Written:operand2

operand2 is the name(s) of the field(s) to be written.

If operand1 is a constant and operand2 is omitted, the fields are taken from the
map source at compilation time.

The fieldsmust agree in number, sequence, format, length and (for arrays) number
of occurrences with the fields in the referenced form/map; otherwise, an error
occurs.

If FORM or MAP does not require any parameters, specify the NO PARAMETER option.

Title Line/Column Header Suppression:NOTITLE/NOHDR

NOTITLE and NOHDR are described under Syntax 1 of the WRITE statement.

Examples

■ Example 1 - WRITE Statement Using '=', 'text', '/'
■ Example 2 - WRITE Statement Using nX, nT Notation
■ Example 3 - WRITE Statement Using T* Notation
■ Example 4 - WRITE Statement Using P* Notation
■ Example 5 - WRITE Statement Using '=' and Parameters on Statement/Element (Field) Level

1047Statements

WRITE

■ Example 6 - Report Specification with Output File Defined to Natural as PC

Example 1 - WRITE Statement Using '=', 'text', '/'

** Example 'WRTEX1': WRITE (with '=', 'text', '/')
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 FIRST-NAME
3 MIDDLE-I
3 NAME

2 CITY
2 COUNTRY

END-DEFINE
*
LIMIT 1
READ EMPL-VIEW BY NAME

/*
WRITE NOTITLE

'=' NAME '=' FIRST-NAME '=' MIDDLE-I //
'L O C A T I O N' /
'CITY: ' CITY /
'COUNTRY:' COUNTRY //

/*
END-READ
END

Output of ProgramWRTEX1:

NAME: ABELLAN FIRST-NAME: KEPA MIDDLE-I:

L O C A T I O N
CITY: MADRID
COUNTRY: E

Example 2 - WRITE Statement Using nX, nT Notation

** Example 'WRTEX2': WRITE (with nX, nT notation)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE

END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

WRITE NOTITLE 5X NAME 50T JOB-TITLE

Statements1048

WRITE

END-READ
END

Output of WRTEX2:

ABELLAN MAQUINISTA
ACHIESON DATA BASE ADMINISTRATOR
ADAM CHEF DE SERVICE
ADKINSON PROGRAMMER

Example 3 - WRITE Statement Using T* Notation

** Example 'WRTEX3': WRITE (with T* notation)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 SALARY (1)

END-DEFINE
*
LIMIT 5
READ EMPL-VIEW BY CITY STARTING FROM 'ALBU'

DISPLAY NOTITLE CITY NAME SALARY (1)
AT BREAK CITY

/*
WRITE / 'CITY AVERAGE:' T*SALARY (1) AVER(SALARY(1)) //
/*

END-BREAK
END-READ
END

Output of ProgramWRTEX3:

CITY NAME ANNUAL
SALARY

-------------------- -------------------- ----------

ALBUQUERQUE HAMMOND 22000
ALBUQUERQUE ROLLING 34000
ALBUQUERQUE FREEMAN 34000
ALBUQUERQUE LINCOLN 41000

CITY AVERAGE: 32750

ALFRETON GOLDBERG 4800

CITY AVERAGE: 4800

1049Statements

WRITE

Example 4 - WRITE Statement Using P* Notation

** Example 'WRTEX4': WRITE (with P* notation)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 BIRTH
2 SALARY (1)

END-DEFINE
*
LIMIT 3
READ EMPL-VIEW BY CITY FROM 'N'

DISPLAY NOTITLE NAME CITY
VERT AS 'BIRTH/SALARY' BIRTH (EM=YYYY-MM-DD) SALARY (1)

SKIP 1
AT BREAK CITY

WRITE / 'CITY AVERAGE' P*SALARY (1) AVER(SALARY (1)) //
END-BREAK

END-READ
END

Output of ProgramWRTEX4:

NAME CITY BIRTH
SALARY

-------------------- -------------------- ----------

WILCOX NASHVILLE 1970-01-01
38000

MORRISON NASHVILLE 1949-07-10
36000

CITY AVERAGE 37000

BOYER NEMOURS 1955-11-23
195900

CITY AVERAGE 195900

Statements1050

WRITE

Example 5 - WRITE Statement Using '=' and Parameters on Statement/Element (Field) Level

** Example 'WRTEX5': WRITE (using '=', statement/element parameters)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 PERSONNEL-ID
2 PHONE

END-DEFINE
*
LIMIT 2
READ EMPL-VIEW BY NAME

WRITE NOTITLE (AL=16 NL=8)
'=' PERSONNEL-ID '=' NAME '=' PHONE (AL=10 EM=XXX-XXXXXXX)

END-READ
END

Output of ProgramWRTEX5:

PERSONNEL ID: 60008339 NAME: ABELLAN TELEPHONE: 435-6726
PERSONNEL ID: 30000231 NAME: ACHIESON TELEPHONE: 523-341

Example 6 - Report Specification with Output File Defined to Natural as PC

** Example 'PCDIEX1': DISPLAY and WRITE to PC
**
** NOTE: Example requires that Natural Connection is installed.
**
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES

02 PERSONNEL-ID
02 NAME
02 CITY

END-DEFINE
*
FIND PERS WITH CITY = 'NEW YORK' /* Data selection

WRITE (7) TITLE LEFT 'List of employees in New York' /
DISPLAY (7) /* (7) designates the output file (here the PC).

'Location' CITY
'Surname' NAME
'ID' PERSONNEL-ID

END-FIND
END

1051Statements

WRITE

1052

145 WRITE TITLE

■ Function ... 1054
■ Restrictions ... 1055
■ Syntax Description ... 1055
■ Example ... 1059

1053

WRITE [(rep)] TITLE [LEFT [JUSTIFIED]] [UNDERLINED]

[(statement-parameters)]

nX

nT

'text' [(attributes)]x/y

'c' (n) [(attributes)]T*field-name

['='] operand1 [(parameters)]P*field-name

/

[SKIP operand2 [LINES]]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE |
WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The WRITE TITLE statement is used to override the default page title with a page title of your own.
It is executed whenever a new page is initiated.

See also the following sections in the Programming Guide:

■ Report Format and Control
■ Report Specification - (rep) Notation
■ Layout of an Output Page
■ Page Titles, Page Breaks, Blank Lines
■ Define Your Own Page Title - WRITE TITLE Statement
■ Text Notation

Statements1054

WRITE TITLE

Processing

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

If a report is produced by statements in different objects, the WRITE TITLE statement is only executed
if it is contained in the same object as the statement that causes a new page to be initiated.

Restrictions

■ WRITE TITLEmay be specified only once per report.
■ WRITE TITLE cannot be specified within a special condition statement block.
■ WRITE TITLE cannot be specified within a subroutine.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGLTDBFIPNUANGASoperand1

noyesBIPNSCoperand2

Syntax Element Description:

DescriptionSyntax Element

Report Specification:(rep)

Ifmultiple reports are to be produced, the notation (rep)may be used to specify
the identification of the report for which the WRITE TITLE statement is
applicable.

As report identification, a value in the range 0 - 31 or a logical name which
has been assigned using the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the WRITE TITLE statement applies to the first report
(Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control (in the Programming Guide).

Page Title Justification and/or Underlining:LEFT JUSTIFIED

1055Statements

WRITE TITLE

DescriptionSyntax Element

By default, page titles are centered and not underlined. LEFT JUSTIFIED and
UNDERLINEDmay be specified to override these defaults.

UNDERLINED

If UNDERLINED is specified, the underlining character (systemdefault or specified
with the session parameter UC (Underlining Character) in a FORMAT statement)
is printed underneath the title and runs the width of the line size (see session
parameter LS).

Natural first applies all spacing or tab specifications and creates the line before
centering the whole line. For example, a notation of 10T as the first element
would cause the centered header to be positioned five positions to the right.

Parameter Definition at Statement Level:statement-parameters

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the WRITE TITLE statement. Each
parameter specified in this manner will override the corresponding parameter
previously specified in a GLOBALS command, SET GLOBALS (in ReportingMode
only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be present
between each entry. An entry may not be split between two statement lines.

Note: The parameter settings applied here will only be regarded for variable
fields, but they have no effect on text-constants. If you would like to set field
attributes for a text-constant, they have to be set explicitly for this element, see
Parameter Definition at Element (Field) Level.

For information on which parameters may be used, see List of Parameters (in
the WRITE statement documentation).

Format Notation and Spacing Elements:nX

See Format Notation and Spacing Elements (below).
nT
x/y
T*field-name
P*field-name
/

Text/Attribute Assignment:'text'

See Text/Attribute Assignments (below).
'c' (n)
attributes

Field to Be Displayed in Title:operand1

operand1 represents the field(s) to be displayed within the title.

Parameter Definition at Element (Field) Level:parameters

One or more parameters, enclosed within parentheses, may be specified at
element (field) level, that is, immediately after operand1. Each parameter
specified in this manner will override the corresponding parameter previously
specified at statement level or in a GLOBALS command, SET GLOBALS (in
Reporting Mode only) or FORMAT statement.

Statements1056

WRITE TITLE

DescriptionSyntax Element

If more than one parameter is specified, one or more blanks must be present
between each entry. An entry may not be split between two statement lines.

For information on which parameters may be used, see List of Parameters (in
the WRITE statement documentation).

Lines to Be Skipped:SKIP operand2 LINES

SKIPmay be used to cause lines to be skipped immediately after the title line.
The number of lines to be skipped may be specified in operand2 as a numeric
constant or as the content of a numeric variable.

Note: SKIP after WRITE TITLE is always interpreted as the SKIP clause of the
WRITE TITLE statement, and not as an independent statement. If you wish an
independent SKIP statement after a WRITE TITLE statement, use a semicolon
(;) to separate the two statements from one another.

Format Notation and Spacing Elements

DescriptionSyntax Element

Column Spacing:nX

This notation inserts n spaces between columns.

Tab Setting:nT

The nT notation causes positioning (tabulation) to print position n. Backward positioning
is not permitted.

x/y Positioning:x/y

Causes the next element to be placed x lines below the output of the last statement,
beginning in column y. ymust not be zero. Backward positioning in the same line is not
permitted.

Field-Related Positioning:T*field-name

The T* notation causes positioning to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

Field- and Line-Related Positioning:P*field-name

The P* notation causes positioning to a specific print position and line of a field used in a
previous DISPLAY statement. It is most often used in conjunction with vertical printing
mode. Backward positioning is not permitted.

Line Advance - Slash Notation:/

When placed between fields or text elements, a slash (/) causes positioning to the beginning
of the next print line.

1057Statements

WRITE TITLE

Text/Attribute Assignments

DescriptionSyntax Element

Text Assignment:'text'

The character string enclosed by single quotes is displayed.

Character Repetition:'c'(n)

The character enclosed by single quotes is displayed n times immediately before the field
value.

Field Representation and Color Attributes:attributes

It is possible to assign various attributes for text/field display. These attributes and the syntax
that may be used are described in the sectionOutput Attributes below.

Examples:

WRITE TITLE 'TEXT' (BGR)
WRITE TITLE 'TEXT' (B)
WRITE TITLE 'TEXT' (BBLC)

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

AD=ad-value
CD=cd-value
PM=pm-value

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-valuewithout preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IREwill be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-value
or ad-valuewith a value preceded by CD= or AD=.

Statements1058

WRITE TITLE

Example

** Example 'WTIEX1': WRITE (with TITLE option)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE

END-DEFINE
*
*
FORMAT LS=70
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

*TIME 3X 'PEOPLE LIVING IN NEW YORK CITY'
11X 'PAGE:' *PAGE-NUMBER

SKIP 1
*
FIND EMPL-VIEW WITH CITY = 'NEW YORK'

DISPLAY NAME FIRST-NAME 3X JOB-TITLE
END-FIND
END

Output of ProgramWTIEX1:

09:33:16.5 PEOPLE LIVING IN NEW YORK CITY PAGE: 1

NAME FIRST-NAME CURRENT
POSITION

-------------------- -------------------- -------------------------

RUBIN SYLVIA SECRETARY
WALLACE MARY ANALYST

1059Statements

WRITE TITLE

1060

146 WRITE TRAILER

■ Function ... 1062
■ Restrictions ... 1063
■ Syntax Description ... 1063
■ Example ... 1067

1061

WRITE [(rep)] TRAILER [LEFT [JUSTIFIED]] [UNDERLINED]

[(statement-parameters)]

nX

nT

'text' [(attributes)]x/y

'c' (n) [(attributes)]T*field-name

['='] operand1 [(parameters)]P*field-name

/

[SKIP operand2 [LINES]]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | EJECT | FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE |
WRITE TITLE

Belongs to Function Group: Creation of Output Reports

Function

The WRITE TRAILER statement is used to output text or the contents of variables at the bottom of
a page.

See also the following sections (in the Programming Guide):

■ Report Format and Control
■ Report Specification - (rep) Notation
■ Layout of an Output Page
■ Page Trailer - WRITE TRAILER Statement
■ Text Notation

Processing

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

This statement is executed when an end-of-page or end-of-data condition is detected, or when a
SKIP or NEWPAGE statement causes a page advance. It is not executed as a result of an EJECT state-
ment.

Statements1062

WRITE TRAILER

The end-of-page condition is checked only after the processing of an entire DISPLAY/WRITE statement.
If a DISPLAY/WRITE statement produces multiple lines of output, overflow of the physical page
may occur before the end-of-page condition is reached.

If a report is produced by statements in different objects, the WRITE TRAILER statement is only
executed if it is contained in the same object as the statement that causes the end-of-page condition.

Logical Page Size

The logical page size (specified with the session parameter PS) should be less than the physical
page size to ensure that the trailer information appears at the bottom of the same page.

Restrictions

■ WRITE TRAILERmay be specified only once per report.
■ WRITE TRAILER cannot be specified within a special condition statement block.
■ WRITE TRAILER cannot be specified within a subroutine.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGLTDBFIPNUANGASoperand1

noyesBIPNSCoperand2

Syntax Element Description:

DescriptionSyntax Element

Report Specification:(rep)

Ifmultiple reports are to be produced, the notation (rep)may be used to specify
the identification of the report for which the WRITE TRAILER statement is
applicable.

As report identification, a value in the range 0 - 31 or a logical name which
has been assigned using the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the WRITE TRAILER statement applies to the first
report (Report 0).

1063Statements

WRITE TRAILER

DescriptionSyntax Element

For information on how to control the format of an output report created with
Natural, see Report Format and Control (in the Programming Guide).

Title Justification and/or Underlining:LEFT JUSTIFIED

By default, the trailer lines are centered and not underlined.
UNDERLINED

LEFT JUSTIFIED and UNDERLINEDmay be specified to override these defaults.

If UNDERLINED is specified, the underlining character (either default or specified
with the session parameter UC) is printed underneath the trailer and runs the
width of the line size (session parameter LS).

Natural first applies all spacing or tab specifications and creates the line before
centering the whole line. For example, a notation of 10T as the first element
would cause the centered header to be positioned five positions to the right.

Parameter Definition at Statement Level:statement-parameters

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the WRITE TRAILER statement. Each
parameter specified in this manner will override the corresponding parameter
previously specified in a GLOBALS command, SET GLOBALS (in ReportingMode
only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be present
between each entry. An entry may not be split between two statement lines.

Note: The parameter settings applied here will only be regarded for variable
fields, but they have no effect on text-constants. If you would like to set field
attributes for a text-constant, they have to be set explicitly for this element, see
Parameter Definition at Element (Field) Level.

For information on which parameters may be used, see List of Parameters (in
the WRITE statement documentation).

Format Notation and Spacing Elements:nX

See Format Notation and Spacing Elements (below).
nT
x/y
T*field-name
P*field-name
/

Text/Attribute Assignments:'text'

See Text/Attribute Assignments (below).
'c'(n)
attributes

Trailer Information:operand1

operand1 represents the field/fields to be output as trailer information.

Parameter Definition at Element (Field) Level:parameters

Statements1064

WRITE TRAILER

DescriptionSyntax Element

One or more parameters, enclosed within parentheses, may be specified at
element (field) level, that is, immediately after operand1. Each parameter
specified in this manner will override the corresponding parameter previously
specified at statement level or in a GLOBALS command, SET GLOBALS (in
Reporting Mode only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be present
between each entry. An entry may not be split between two statement lines.

For information on which parameters may be used, see List of Parameters in
the WRITE statement documentation.

Lines to Be Skipped:SKIP operand2 LINES

SKIPmay be used to cause lines to be skipped immediately after the trailer line.
The number of lines to be skipped (operand2) may be specified as a numeric
constant or as the content of a numeric variable.

Note: SKIP after WRITE TRAILER is always interpreted as the SKIP clause of
the WRITE TRAILER statement, and not as an independent statement. If you
wish an independent SKIP statement after a WRITE TRAILER statement, use a
semicolon (;) to separate the two statements from one another.

Format Notation and Spacing Elements

DescriptionSyntax Element

Column Spacing:nX

This notation inserts n spaces between columns.

Tab Setting:nT

The nT notation causes positioning (tabulation) to print position n. Backward positioning
is not permitted.

x/y Positioning:x/y

Causes the next element to be placed x lines below the output of the last statement,
beginning in column y. ymust not be zero. Backward positioning in the same line is not
permitted.

Field-Related Positioning:T*field-name

The T* notation causes positioning to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

Field- and Line-Related Positioning:P*field-name

The P* notation causes positioning to a specific print position and line of a field used in a
previous DISPLAY statement. It is most often used in conjunction with vertical printing
mode. Backward positioning is not permitted.

Line Advance - Slash Notation:/

1065Statements

WRITE TRAILER

DescriptionSyntax Element

When placed between fields or text elements, a slash (/) causes positioning to the beginning
of the next print line.

Text/Attribute Assignments

DescriptionSyntax Element

Text Assignment:'text'

The character string enclosed by single quotes is displayed.

Character Repetition:'c'(n)

The character enclosed by single quotes is displayed n times immediately before the field
value.

Field Representation and Color Attributes:attributes

It is possible to assign various attributes for text/field display. These attributes and the syntax
that may be used are described in the sectionOutput Attributes below.

Examples:

WRITE TRAILER 'TEXT' (BGR)
WRITE TRAILER 'TEXT' (B)
WRITE TRAILER 'TEXT' (BBLC)

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes can be:

AD=ad-value
CD=cd-value
PM=pm-value

ad-value
cd-value

Where:

ad-value, cd-value and pm-value denote the possible values of the corresponding session para-
meters AD, CD and PM described in the relevant sections of the Parameter Reference documentation.

The compiler actually accepts more than one attribute value for an output field. For example, you
can specify: AD=BDI. In such a case, however, only the last value applies. In the given example,
only the value I becomes effective and the output field is displayed intensified.

Statements1066

WRITE TRAILER

For an alphanumeric/Unicode constant (Natural data format A or U), you can specify ad-value
and/or cd-valuewithout preceding CD= or AD=, respectively. The single value entered is then
checked against all possible CD values first. For example: a value of IREwill be interpreted as in-
tensified/red but not as intensified/right-justified/mandatory. You cannot combine a single cd-value
or ad-valuewith a value preceded by CD= or AD=.

Example

** Example 'WTLEX1': WRITE (with TRAILER option)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE

END-DEFINE
*
FORMAT PS=15
WRITE TITLE LEFT JUSTIFIED UNDERLINED

*TIME 3X 'PEOPLE LIVING IN BARCELONA'
14X 'PAGE:' *PAGE-NUMBER

SKIP 1
*
WRITE TRAILER LEFT JUSTIFIED UNDERLINED

/ 'CITY OF BARCELONA REGISTER'
*
LIMIT 10
FIND EMPL-VIEW WITH CITY = 'BARCELONA'

DISPLAY NAME FIRST-NAME 3X JOB-TITLE
END-FIND
END

Output of ProgramWTLEX1 - Page 1:

09:36:09.5 PEOPLE LIVING IN BARCELONA PAGE: 1

NAME FIRST-NAME CURRENT
POSITION

-------------------- -------------------- -------------------------

DEL CASTILLO ANGEL EJECUTIVO DE VENTAS
GARCIA M. DE LAS MERCEDES SECRETARIA
GARCIA ENDIKA DIRECTOR TECNICO
MARTIN ASUNCION SECRETARIA
MARTINEZ TERESA SECRETARIA
YNCLAN FELIPE ADMINISTRADOR

1067Statements

WRITE TRAILER

FERNANDEZ ELOY OFICINISTA
TORRES ANTONI OBRERA

CITY OF BARCELONA REGISTER

Output of ProgramWTLEX1 - Page 2:

09:37:26.0 PEOPLE LIVING IN BARCELONA PAGE: 2

NAME FIRST-NAME CURRENT
POSITION

-------------------- -------------------- -------------------------

RODRIGUEZ VICTORIA SECRETARIA
GARCIA GERARDO INGENIERO DE PRODUCCION

CITY OF BARCELONA REGISTER

Statements1068

WRITE TRAILER

147 WRITE WORK FILE

■ Function ... 1070
■ Syntax Description ... 1070
■ External Representation of Fields .. 1072
■ Handling of Large and Dynamic Variables ... 1073
■ Example ... 1074

1069

WRITE WORK [FILE] work-file-number [VARIABLE] operand1

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE WORK FILE | READ WORK FILE | CLOSE WORK FILE | DOWNLOAD PC FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The WRITE WORK FILE statement is used to write records to a physical sequential work file.

It is possible to create a work file in one program or processing loop and to read the same file in
a subsequent independent processing loop or in a subsequent program using the READ WORK FILE
statement.

Note: For Unicode and code page support, seeWork Files and Print Files on Windows and
Linux Platforms in the Unicode and Code Page Support documentation.

Syntax Description

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesGCLTDBFIPNUANGASCoperand1

Note: When using the work file types ENTIRECONNECTION or TRANSFER, operand1
may neither be of format C, nor G.

Syntax Element Description:

DescriptionSyntax Element

Work File Number:work-file-number
The work file number (as defined to Natural) to be used.

The work file number is either

■ a numeric constant in the value range 1:32 or
■ a numeric variable of type (B/N/P/I) defined with a CONST clause which assigning
a value in range (1:32). Variable is a scalar (non-array) without precision digits for
type (N/P), length in between 1-4 for type (B), and no redefinition field.

Statements1070

WRITE WORK FILE

DescriptionSyntax Element

Variable Entry:VARIABLE

It is possible to write recordswith different fields to the samework file with different
WRITE WORK FILE statements. In this case, the VARIABLE entry must be specified
in all WRITE WORK FILE statements. The records on the external file will be written
in variable format.

When the operand list includes a dynamic variable (that could change in size for
different executions of the WRITE WORK FILE statement), the VARIABLE entry must
be specified in all WRITE WORK FILE statements.

Variable Index Range:

When writing an array to a work file, you can specify a variable index range for the
array. For example:

WRITE WORK FILE work-file-number VARIABLE #ARRAY (I:J)

Fields to Be Written:

With operand1 you specify the fields to be written to the work file. These fields may
be database fields, user-defined variables, system variables and/or fields read from
another work file using the READ WORK FILE statement.

An array may be referenced completely or partially to select the occurrences that are
to be written to the work file.

operand1

Group Operands to be Written:

A group may be referenced using the group name. All fields belonging to the
referenced group will be written to the work file, the sequence is determined by the
sequence of the fields in the group. Fields resulting from a redefinition of the
referenced group are notwritten to the work file. If the referenced group is defined
as an array, the individual fields of the group are written to the work file as arrays
in the definition sequence.

For the group definition

1 GROUP1 (1:3)
2 FIELD1 (A2)
2 FIELD2 (A3)

1 REDEFINE GROUP1
2 FIELD3 (A15)

the statement

1071Statements

WRITE WORK FILE

DescriptionSyntax Element

WRITE WORK FILE 1 GROUP1(*)

is equivalent to

WRITE WORK FILE 1 GROUP1.FIELD1(*) GROUP1.FIELD2(*)

The statement

WRITE WORK FILE 1 GROUP1.FIELD3

is equivalent to

WRITE WORK FILE 1 GROUP1.FIELD1(1) GROUP1.FIELD2(1)
GROUP1.FIELD1(2) GROUP1.FIELD2(2)
GROUP1.FIELD1(3) GROUP1.FIELD2(3)

External Representation of Fields

Fields written with a WRITE WORK FILE statement are represented in the external file according to
their internal definition. No editing is performed on the field values.

For fields of format A and B, the number of bytes in the external file is the same as the internal
length definition as defined in the Natural program. No editing is performed and a decimal point
is not represented in the value.

For fields of format N, the number of bytes on the external file is the sum of internal positions
before and after the decimal point. The decimal point is not represented on the external file.

For fields of format P, the number of bytes on the external file is the sum of positions before and
after the decimal point, plus 1 for the sign, divided by 2, rounded upward to a full byte.

Note: No format conversion is performed for fields that are written to a work file.

Examples of field representations:

Output RecordField Definition

10 bytes#FIELD1 (A10)

15 bytes#FIELD2 (B15)

4 bytes#FIELD3 (N1.3)

7 bytes#FIELD4 (N0.7)

2 bytes#FIELD5 (P1.2)

4 bytes#FIELD6 (P6.0)

Statements1072

WRITE WORK FILE

■ Special Considerations for System Functions

Special Considerations for System Functions

For the special considerations that apply when WRITE WORK FILE is used for the Natural system
function AVER, NAVER, SUM or TOTAL, see Format/Length Requirements for AVER, NAVER, SUM and
TOTAL in the System Functions documentation.

Handling of Large and Dynamic Variables

HandlingWork File Type

The work file types ASCII and ASCII-COMPRESSED can handle dynamic and large
variables with a maximum field/record length of 32766 bytes.

ASCII
ASCII-COMPRESSED

The work file type SAG (binary) cannot handle dynamic variables and will produce
an error. It can, however, handle large variables with a maximum field/record length
of 32766 bytes.

SAG (binary)

The work file type TRANSFER can handle dynamic variables with a maximum
field/record length of 32766 bytes. The work file type ENTIRECONNECTION cannot

TRANSFER
ENTIRECONNECTION

handle dynamic variables. They can both, however, handle large variables with a
maximum field/record length of 1073741824 bytes.

Large and dynamic variables can be written into work files or read from work files
using the two work file types PORTABLE and UNFORMATTED. For these types, there is

PORTABLE
UNFORMATTED

no size restriction for dynamic variables. However, large variables may not exceed
a maximum field/record length of 32766 bytes.

For the work file type PORTABLE, the field information is stored within the work file.
The dynamic variables are resized during READ if the field size in the record is different
from the current size.

In the WRITE WORK FILE statement, fields are written to the file specified with their
byte length. All data types (DYNAMIC or not) are treated the same. No structural
information is inserted. Note that Natural uses a buffering mechanism, so you can
expect the data to be completely written only after a CLOSE WORK. This is especially
important if the file is to be processed with another utility while Natural is running.

With the READ WORK FILE statement, fields of fixed length are readwith their whole
length. If the end-of-file is reached, the remainder of the current field is filled with
blanks. The following fields are unchanged. In the case of DYNAMIC data types, all
the remainder of the file is read unless it exceeds 1073741824 bytes. If the end of file
is reached, the remaining fields (variables) are kept unchanged (normal Natural
behavior).

The maximum field/record length is 32766 bytes for dynamic and large variables.
Dynamic variables are supported. X-arrays are not allowed andwill result in an error
message.

CSV

1073Statements

WRITE WORK FILE

Example

** Example 'WWFEX1': WRITE WORK FILE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME

END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'LONDON'

WRITE WORK FILE 1
PERSONNEL-ID NAME

END-FIND
*
END

Statements1074

WRITE WORK FILE

	Statements
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I
	2 Statements Grouped by Function
	Database Access and Update
	Natural DML Statements
	Natural SQL Statements

	Arithmetic and Data Movement Operations
	Loop Execution
	Creation of Output Reports
	Screen Generation for Interactive Processing
	Processing of Logical Conditions
	Invoking Programs and Routines
	Functions
	Program and Session Termination
	Control of Work Files / PC Files
	Component Based Programming
	Memory Management Control for Dynamic Variables or X-Arrays
	Natural Remote Procedure Call
	Internet and XML
	Miscellaneous
	Reporting Mode Statements

	3 Syntax Symbols and Operand Definition Tables
	Syntax Symbols
	Operand Definition Table
	Possible Structure
	Possible Formats
	Referencing Permitted
	Dynamic Definition

	II Using Natural SQL Statements
	4 Common Set and Extended Set
	5 Basic Syntactical Items
	Constants
	SQL Datetime Constants

	Names
	authorization-identifier
	ddm-name
	view-name
	column-name
	location-name
	table-name
	correlation-name

	Parameters
	Natural Formats and SQL Data Types

	6 Natural View Concept
	7 Scalar Expressions
	Scalar Expression
	Scalar Operator
	Factor
	Atom
	Column Reference
	Aggregate Function
	Special Register
	Scalar Function
	Length of String Unit
	Labeled Duration

	8 Search Conditions
	Search Condition
	Predicate
	Comparison Predicate
	Subquery

	BETWEEN Predicate
	LIKE Predicate
	NULL Predicate
	IN Predicate
	Quantified Predicate
	EXISTS Predicate
	XMLEXISTS Predicate

	9 Select Expressions
	Selection
	Table Expression
	FROM Clause
	Table Reference
	Joined Table
	Join Condition
	Full Join Expression

	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause
	FETCH FIRST Clause
	Examples of Table Expressions

	10 Flexible SQL
	Using Flexible SQL
	Specifying Text Variables in Flexible SQL
	ROW CHANGE Expression with Flexible SQL
	OLAP Specification
	Case Expression with Flexible SQL
	Searched WHEN Clause
	Simple WHEN Clause

	Cast Expression with Flexible SQL
	XML Functions with Flexible SQL
	Scalar-Function and Column-Function (Aggregating) with Flexible SQL

	III Referenced Example Programs
	11 Referenced Example Programs
	ASSIGN
	AT BREAK
	AT END OF DATA
	AT END OF PAGE
	AT START OF DATA
	AT TOP OF PAGE
	DEFINE SUBROUTINE
	FIND
	FOR
	HISTOGRAM
	IF
	PERFORM BREAK PROCESSING
	READ
	REPEAT
	SORT
	STORE
	UPDATE
	Example Programs for System Variables

	IV
	12 ACCEPT/REJECT
	Function
	Syntax Description
	Processing of Multiple ACCEPT/REJECT Statements
	Limit Notation
	Examples
	Example 1 - ACCEPT
	Example 2 - ACCEPT / REJECT

	13 ADD
	Function
	Syntax 1 - ADD Statement without GIVING Clause
	Syntax 2 - ADD Statement with GIVING Clause
	Example

	14 ASSIGN
	15 AT BREAK
	Function
	Syntax Description
	Multiple Break Levels
	Examples
	Example 1 - AT BREAK
	Example 2 - AT BREAK Using /n/ Notation
	Example 3 - AT BREAK with Multiple Break Levels

	16 AT END OF DATA
	Function
	Processing
	Values of Database Fields
	Positioning
	System Functions

	Restrictions
	Syntax Description
	Example

	17 AT END OF PAGE
	Function
	Processing
	Logical Page Size
	Last-Page Handling
	System Functions
	INPUT Statement with AT END OF PAGE

	Syntax Description
	Example
	Example 1 - AT END OF PAGE
	Example 2 - AT END OF PAGE with INPUT Statement

	18 AT START OF DATA
	Function
	Processing
	Value of Database Fields
	Positioning

	Syntax Description
	Example

	19 AT TOP OF PAGE
	Function
	Processing

	Restriction
	Syntax Description
	Example

	20 BACKOUT TRANSACTION
	Function
	Backout Transaction Issued by Natural
	Additional Information

	Restriction
	Database-Specific Considerations
	Example

	21 BEFORE BREAK PROCESSING
	Function
	Restrictions
	Syntax Description
	Example

	22 CALL
	Function
	Syntax Description
	Return Code
	User Exits
	Step 1 - Defining the Jump Table
	Step 2 - Writing the External Functions
	Step 3 - Compiling and Linking
	How to Build a Shared Library
	How to Generate a Static Nucleus
	Example Programs

	INTERFACE4
	INTERFACE4 - External 3GL Program Interface
	Operand Structure for INTERFACE4
	INTERFACE4 - Parameter Access
	Exported Functions
	Get Parameter Information
	Get Parameter Data
	Write Back Operand Data
	Create, Initialize and Delete a Parameter Set
	Create Parameter Set
	Delete Parameter Set
	Initialize a Scalar of a Static Data Type
	Initialize an Array of a Static Data Type
	Initialize a Scalar of a Dynamic Data Type
	Initialize an Array of a Dynamic Data Type
	Resize an X-array Parameter

	23 CALL FILE
	Function
	Restriction
	Syntax Description
	Example

	24 CALL LOOP
	Function
	Restriction
	Syntax Description
	Example

	25 CALLDBPROC (SQL)
	Function
	Syntax Description
	Example

	26 CALLNAT
	Function
	Syntax Description
	Parameter Transfer with Dynamic Variables
	Call By Reference
	Call by Value (Result)

	Examples
	Example 1
	Example 2

	27 CLOSE CONVERSATION
	Function
	Syntax Description
	Further Information and Examples

	V
	28 CLOSE PC FILE
	Function
	Syntax Description
	Example

	29 CLOSE PRINTER
	Function
	Syntax Description
	Example

	30 CLOSE WORK FILE
	Function
	Syntax Description
	Example

	31 COMMIT (SQL)
	Function
	Example

	32 COMPRESS
	Function
	Syntax Description
	Processing
	Examples
	Example 1 - Compress
	Example 2 - Compress Leaving No Space
	Example 3 - Compress with Delimiter
	Example 4 - Compress with Edit Mask EM

	33 COMPUTE
	Function
	Syntax Description
	Result Precision of a Division
	Examples
	Example 1 - ASSIGN Statement
	Example 2 - COMPUTE Statement

	34 CREATE OBJECT
	Function
	Syntax Description

	35 DECIDE FOR
	Function
	Syntax Description
	Examples
	Example 1 - DECIDE FOR with FIRST Option
	Example 2 - DECIDE FOR with EVERY Option

	36 DECIDE ON
	Function
	Syntax Description
	Examples
	Example 1 - DECIDE ON with FIRST Option
	Example 2 - DECIDE ON with EVERY Option

	37 DEFINE CLASS
	Function
	Syntax Description

	VI DEFINE DATA
	38 Function and Basic Syntax Rules
	Function
	General Syntax Rules
	Programming Modes
	Structured Mode
	Reporting Mode

	39 Defining Global Data
	Function
	Syntax Description

	40 Defining Parameter Data
	Function
	Restrictions
	Syntax Description
	Parameter Data Definition

	41 Defining Local Data
	Function
	Restriction
	Syntax Description
	Local Data Definition

	42 Defining Application-Independent Variables
	Function
	Syntax Description

	43 Defining Context Variables for Natural RPC
	Function
	Restrictions
	Syntax Description

	44 Defining NaturalX Objects
	Function
	Syntax Description

	45 Variable Definition
	Syntax Description
	Default Initial Values

	46 View Definition
	Syntax Description
	Array Definition in a View

	47 Redefinition
	Restrictions
	Syntax Description

	48 Array Dimension Definition
	Syntax Description

	49 Initial-Value Definition
	Restriction
	Syntax Description

	50 Initial/Constant Values for an Array
	Restriction
	Syntax Description

	51 EM, HD, PM Parameters for Field/Variable
	Syntax Description

	52 Examples of DEFINE DATA Statement Usage
	Example 1 - DEFINE DATA LOCAL (Local Data Definition)
	Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization)
	Example 3 - DEFINE DATA (View Definition, Array Redefinition)
	Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas)
	Example 5 - DEFINE DATA (Initialization)
	Example 6 - DEFINE DATA (Variable Array)

	VII
	53 DEFINE FUNCTION
	Function
	Syntax Description
	Return Data Definition
	Function Data Definition

	Examples
	Example 1 - DEFINE FUNCTION
	Example 2 - DEFINE FUNCTION with Result Value Array

	54 DEFINE PRINTER
	Function
	Syntax Description
	Examples
	Example 1 - Printer Name Definition
	Example 2 - Print Output to Infoline

	55 DEFINE PROTOTYPE
	Function
	Syntax Description
	Return Data Definition
	Parameter Definition
	SAME AS Clause

	Examples
	Example 1 - DEFINE PROTOTYPE with a Defined Function Name
	Example 2 - DEFINE PROTOTYPE with a Variable Function Name

	56 DEFINE SUBROUTINE
	Function
	Inline/External Subroutines
	Data Available in a Subroutine

	Restrictions
	Syntax Description
	Examples
	Example 1 - Define Subroutine
	Example 2 - Sample Structure for External Subroutine Using GDA Fields

	57 DEFINE WINDOW
	Function
	Syntax Description
	POSITION Clause

	Protection of Input Fields in a Window
	Invoking Different Windows
	Example

	58 DEFINE WORK FILE
	Function
	Syntax Description

	VIII
	59 DELETE
	Function
	Hold Status

	Restriction
	Syntax Description
	Database-Specific Considerations
	Examples
	Example 1
	Example 2

	60 DELETE (SQL)
	Function
	Syntax 1 - Searched DELETE
	Syntax 2 - Positioned DELETE

	61 DISPLAY
	Function
	Syntax Description
	Display Options
	List of Parameters
	Example of Parameter Usage at Statement and Element (Field) Level
	Output Format Definitions
	Output Element

	Defaults Applicable for a DISPLAY Statement
	Examples
	Example 1 - DISPLAY Statement Using nX and nT Notation
	Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause
	Example 3 - DISPLAY Statement Using P* Notation
	Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation
	Example 5 - DISPLAY Statement Using Horizontal Display
	Example 6 - DISPLAY Statement Using Vertical and Horizontal Display
	Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level
	Example 8 - Report Specification with Output File Defined to Natural as PC

	62 DIVIDE
	Function
	Syntax 1 - DIVIDE Statement without GIVING Clause
	Syntax 2 - DIVIDE Statement with GIVING Clause
	Syntax 3 - DIVIDE Statement with REMAINDER Clause
	Example

	63 DO/DOEND
	Function
	Restrictions
	Example

	64 DOWNLOAD PC FILE
	Function
	Syntax Description
	Examples
	Example 1 - Use of DOWNLOAD PC FILE Statement
	Example 2 - Use of COMMAND Clause

	65 EJECT
	Function
	Syntax Description
	EJECT - Syntax 1
	EJECT - Syntax 2

	Processing
	Example

	66 END
	Function
	Considerations for Program Execution

	Syntax Description
	Examples

	67 END TRANSACTION
	Function
	Restriction
	Syntax Description
	Databases Affected
	Database-Specific Considerations
	Examples
	Example 1 - END TRANSACTION
	Example 2 - END TRANSACTION with ET Data

	68 ESCAPE
	Function
	Additional Considerations

	Syntax Description
	Example

	69 EXAMINE
	Syntax 1 - EXAMINE
	Syntax Description - Syntax 1
	DIRECTION Clause
	POSITION Clause
	DELIMITERS Option
	DELETE/REPLACE Clause
	GIVING Clause

	Syntax 2 - EXAMINE TRANSLATE
	Syntax Description - Syntax 2

	Syntax 3 - EXAMINE for Unicode Graphemes
	Syntax Description - Syntax 3

	Examples
	Example 1 - EXAMINE
	Example 2 - EXAMINE TRANSLATE
	Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES
	Example 4 - EXAMINE for Unicode Graphemes

	70 EXPAND
	Function
	Syntax Description
	Dynamic Clause
	Array Clause
	Dimension

	IX
	71 FETCH
	Function
	Additional Considerations

	Syntax Description
	Example

	72 FIND
	Function
	Database-Specific Considerations
	System Variables Available with the FIND Statement
	Issuing Multiple FIND Statements

	Restrictions
	Syntax 1 - FIND Statement with Processing Loop
	Syntax 2 - FIND Statement without Processing Loop
	Syntax Description
	FIND FIRST
	FIND NUMBER
	FIND UNIQUE
	MULTI-FETCH Clause
	Search Criteria for Adabas Files
	Descriptor-Key Usage
	Subdescriptors, Superdescriptors, Hyperdescriptors and Phonetic Descriptors
	Values for Subdescriptors, Superdescriptors, Phonetic Descriptors
	Using Descriptors Contained within a Database Array

	COUPLED Clause
	STARTING WITH Clause
	SORTED BY Clause
	Considerations for Combined Use of STARTING WITH and SORTED BY Clauses
	RETAIN Clause
	WHERE Clause
	IF NO RECORDS FOUND Clause

	Examples
	Example 1 - PASSWORD Clause
	Example 2 - CIPHER Clause
	Example 3 - Basic Search Criteria in WITH Clause
	Example 4 - Basic Search Criteria with Multiple-Value Field
	Example 5 - Various Samples of Complex Search Expression in WITH Clause
	Example 6 - Various Samples of Using Database Arrays
	Example 7 - Using Physically Coupled Files
	Example 8 - VIA Clause
	Example 9 - SORTED BY Clause
	Example 10 - RETAIN Clause
	Example 11 - WHERE Clause
	Example 12 - IF NO RECORDS FOUND Clause
	Example 13 - Using System Variables with the FIND Statement
	Example 14 - Multiple FIND Statements
	Example 15 - SHARED HOLD Clause
	Example 16 - SKIP RECORDS Clause

	73 FOR
	Function
	Consistency Check

	Syntax Description
	Example

	74 FORMAT
	Function
	Syntax Description
	Applicable Parameters
	Example

	75 GET
	Function
	Restrictions
	Syntax Description
	Example

	76 GET SAME
	Function
	Restrictions
	Syntax Description
	Example

	77 GET TRANSACTION DATA
	Function
	System Variable *ETID
	No Transaction Data Stored

	Restriction
	Syntax Description
	Example

	78 HISTOGRAM
	Function
	Restrictions
	Syntax Description
	Specifying Starting/Ending Values

	System Variables Available with HISTOGRAM
	Examples
	Example 1 - HISTOGRAM Statement
	Example 2 - HISTOGRAM Statement with Records Read in Descending Sequence
	Example 3 - HISTOGRAM Statement Using Variable Sequence

	79 IF
	Function
	Syntax Description
	Example

	80 IF SELECTION
	Function
	Syntax Description
	Example

	81 IGNORE
	Function
	Example

	82 INCLUDE
	Function
	Syntax Description
	Examples
	Example 1 - INCLUDE Statement Including Copycode
	Example 2 - INCLUDE Statement Including Copycode with Parameters
	Example 3 - INCLUDE Statement Using Nested Copycodes
	Example 4 - INCLUDE Statement with Concatenated Parameters in Copycode

	X INPUT
	Function
	Input Modes
	Screen Mode
	Non-Screen Modes

	Entering Data in Response to an INPUT Statement
	Numeric Edit Mask Free Mode

	SB - Selection Box
	Error Correction
	Split-Screen Feature
	System Variables with the INPUT Statement
	83 INPUT Syntax 1 - Dynamic Screen Layout Specification
	INPUT Syntax 1 - Description
	Statement Parameters
	WITH TEXT Option
	MARK Option
	ALARM Option
	Field Positioning, Text Specification, Attribute Assignment

	Examples - Syntax 1
	Example 1 - INPUT Statement
	Example 2 - INPUT Statement with DEFINE WINDOW Statement
	Example 3 - INPUT Statement with MARK POSITION Option

	84 INPUT Syntax 2 - Using Predefined Map Layout
	INPUT USING MAP without Parameter List
	INPUT Fields Defined in the Program
	INPUT Syntax 2 - Description
	Using the INPUT Statement in Non-Screen Modes
	Forms Mode
	Keyword/Delimiter Mode

	Processing Data from the Natural Stack
	Using the INPUT Statement in Batch Mode
	In Batch Forms Mode
	In Batch Keyword/Delimiter Mode

	XI
	85 INSERT (SQL)
	Function
	Syntax Description

	86 INTERFACE
	Function
	Syntax Description
	Property Definition
	Method Definition

	87 LIMIT
	Function
	Record Counting

	Syntax Description
	Examples
	Example 1 - LIMIT Statement
	Example 2 - LIMIT Statement (Valid for Two Database Loops)

	88 LOOP
	Function
	Database Variable References

	Restriction
	Syntax Description
	Examples

	89 METHOD
	Function
	Syntax Description
	Example

	90 MOVE
	Function
	Syntax 1 - MOVE
	Syntax 2 - MOVE SUBSTRING
	Syntax 3 - MOVE BY NAME / POSITION
	Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2)
	Syntax 5 - MOVE EDITED (Edit Mask Specified with operand1)
	Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED
	Syntax 7 - MOVE NORMALIZED
	Syntax 8 - MOVE ENCODED
	Syntax 9 - MOVE ALL
	Examples
	Example 1 - Various Samples of MOVE Statement Usage
	Example 2 - MOVE BY NAME
	Example 3 - MOVE BY NAME with Arrays
	Example 4 - MOVE BY POSITION
	Example 5 - MOVE ALL

	91 MOVE INDEXED
	92 MULTIPLY
	Function
	Syntax 1 - MULTIPLY Statement without GIVING Clause
	Syntax 2 - MULTIPLY Statement with GIVING Clause
	Example

	93 NEWPAGE
	Function
	Syntax Description
	Example

	94 OBTAIN
	Function
	Restriction
	Syntax Description
	Examples
	Example 1 - OBTAIN Statement
	Example 2 - OBTAIN Statement with Multiple Ranges

	95 ON ERROR
	Function
	Restriction
	Syntax Description
	ON ERROR Processing within Objects on Different Levels
	System Variables
	Example

	96 OPEN CONVERSATION
	Function
	Syntax Description
	Further Information and Examples

	97 OPTIONS
	Function
	Processing of Multiple OPTIONS Statements

	XII
	98 PARSE XML
	Function
	Mark-Up
	Global Namespace
	Related System Variables

	Syntax Description
	Examples
	Example 1 - Using operand2
	Example 2 - Using operand3
	Example 3 - Using operand4
	Example 4 - Using operand5 and operand6
	Example 5 - Using operand5 and operand6 with Namespace Normalization

	99 PASSW
	Function
	Natural Security Considerations

	Syntax Description

	100 PERFORM
	Function
	Nested PERFORM Statements
	Parameter Transfer with Dynamic Variables

	Syntax Description
	Examples
	Example 1 - PERFORM as Inline Subroutine
	Example 2 - PERFORM as External Subroutine

	101 PERFORM BREAK PROCESSING
	Function
	Syntax Description
	Example

	102 PRINT
	Function
	Syntax Description
	List of Parameters
	Example of Parameter Usage at Statement and Element (Field) Level
	Field Positioning, Text, Attribute Assignment
	Field Positioning Notations
	Text/Attribute Assignment

	Example
	Example 1 - PRINT Statement
	Example 2 - PRINT Statement with Report to be Downloaded to the PC

	103 PROCESS
	Function
	Restriction
	Syntax Description

	104 PROCESS COMMAND
	Function
	Syntax Description
	Input Values for GETSET-FIELD-NAME
	Input Values for TEXT Actions
	Input Values for HELP Actions

	Examples
	Example 1 - PROCESS COMMAND ACTION EXEC
	Example 2 - PROCESS COMMAND ACTION CLOSE

	105 PROCESS PAGE
	Function
	Syntax 1 - PROCESS PAGE
	Syntax Description - Syntax 1

	Syntax 2 - PROCESS PAGE USING
	Syntax Description - Syntax 2

	Syntax 3 - PROCESS PAGE UPDATE
	Syntax Description - Syntax 3
	EVENT Option

	Syntax 4 - PROCESS PAGE MODAL
	Syntax Description - Syntax 4

	Examples

	106 PROCESS SQL (SQL)
	Function
	Syntax Description
	Parameters in Statement String

	Entire Access Options
	Examples

	107 PROPERTY
	Function
	Syntax Description
	Example

	XIII
	108 READ
	Function
	Syntax Description
	MULTI-FETCH Clause
	WITH REPOSITION Option
	Sequence/Range Specification

	System Variables Available with READ
	Examples
	Example 1 - READ Statement
	Example 2 - READ WITH REPOSITION
	Example 3 - Combining READ and FIND Statements
	Example 4 - DESCENDING Option
	Example 5 - VARIABLE Option
	Example 6 - DYNAMIC Option
	Example 7 - STARTING WITH ISN Clause
	Example 8 - SHARED HOLD Clause
	Example 9 - SKIP RECORDS Clause
	Example 10 - READ DESCENDING BY ISN

	109 READ RESULT SET (SQL)
	Function
	Syntax Description

	110 READ WORK FILE
	Function
	Syntax 1 - READ WORK FILE with Processing Loop
	Syntax 2 - READ WORK FILE without Processing Loop
	Syntax Description
	Field Lengths
	Variable Index Range
	Handling of Large and Dynamic Variables
	Handling of X-Arrays
	Examples
	Example 1 - READ WORK FILE
	Example 2 - READ WORK FILE ASCII with Dynamic Variable
	Example 3 - READ WORK FILE Unformatted with Dynamic Variable
	Example 4 - READ WORK FILE ASCII with X-array and ADJUST its Occurrences
	Example 5 - READ WORK FILE Unformatted with X-array and ADJUST its Occurrences
	Example 6 - READ WORK FILE with Numeric CONST Variable as Work File Number

	111 READLOB
	Function
	Restrictions
	Syntax Description
	System Variables Available with READLOB
	Functional Considerations
	Examples
	Example 1 - Get Record Number from READ Loop
	Example 2 - Get Record Number by User-defined Value
	Example 3 - Get Record Number from READ Loop (with Exclusive Hold)

	112 REDEFINE
	Function
	Restriction
	Syntax Description
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	113 REDUCE
	Function
	Syntax Description
	Dynamic Clause
	Array Clause
	Dimension

	114 REINPUT
	Function
	Syntax Description
	WITH TEXT Option
	MARK Option
	ALARM Option

	Examples
	Example 1 - REINPUT Statement
	Example 2 - REINPUT with Attribute Assignment
	Example 3 - REINPUT FULL with MARK POSITION
	Example 4 - WITH TEXT Options
	Example 5 - REINPUT with Attribute Assignment Using a Control Variable

	115 REJECT
	116 RELEASE
	Function
	Syntax Description
	Example

	117 REPEAT
	Function
	Syntax Description
	Examples
	Example 1 - REPEAT
	Example 2 - Using WHILE and UNTIL Options

	118 REQUEST DOCUMENT
	Function
	Restrictions for Cookies

	Syntax Description
	with-clause
	return-clause

	Automatically Generated Headers
	HTTP REQUEST-METHOD
	Content Type

	URL Encoding for Special Characters
	Non-ASCII Characters
	Unsafe Characters
	Reserved Characters

	HTTP Responses Redirected and Denied
	Response 301 - 303 (Redirected)
	Response 401 (Denied/Unauthorized)

	Examples
	Example 1 - General Request
	Example 2 - Simple GET Request (no data)
	Example 3 - Simple HEAD Request (no return page)
	Example 4 - Simple POST Request (default REQUEST-METHOD)
	Example 5 - Simple PUT Request (with DATA ALL)
	Example 9 - RETURN HEADER NAME VALUE with Array Definition

	119 RESET
	Function
	Syntax Description
	Example

	120 RESIZE
	Function
	Syntax Description
	Dynamic Clause
	Array Clause
	Dimension

	121 ROLLBACK (SQL)
	Function
	Consideration for Non-Natural Programs
	Example

	122 RETRY
	Function
	Restriction
	Example

	123 RUN
	Function
	Syntax Description
	Dynamic Source Text Creation/Execution
	Example

	XIV
	124 SELECT (SQL)
	Function
	Syntax 1 - Cursor-Oriented Selection
	Syntax 1 - Common Set
	Syntax 1 - Extended Set

	Syntax 2 - Non-Cursor Selection
	Syntax 2 - Common Set
	Syntax 2 - Extended Set

	Syntax Element Description
	END-SELECT | LOOP
	FETCH FIRST row-limit
	IF NO RECORDS FOUND instruction
	into-clause
	OPTIMIZE FOR integer ROWS
	ORDER BY criteria
	selection
	statement
	table-expression
	UNION | EXCEPT | INTERSECT Clause
	WITH isolation-level
	WITH scroll-mode

	Join Queries
	Example

	125 SEND METHOD
	Function
	Syntax Description
	Example

	126 SEPARATE
	Function
	Syntax Description
	Rules and Operational Considerations
	Processing of Source and Target Operands
	Defining Ranges for STARTING FROM POSITION
	Values Returned by REMAINDER POSITION
	Overlapping Fields: REMAINDER and REMAINDER POSITION
	Delimiters in SEPARATE

	Examples
	Example 1 - Various Samples
	Example 2 - Using an Array
	Example 3 - Using REMAINDER/RETAINED Options
	Example 4 - Using a Source Array of a Redefined String
	Example 5 - Using a Source Array with RETAINED Delimiters
	Example 6 - Using a Source Array with STARTING FROM and REMAINDER POSITION

	127 SET CONTROL
	Function
	Syntax Description
	Examples
	Example 1 - Switching to Lower Case
	Example 2 - Activating Hardcopy Output Destination

	128 SET GLOBALS
	Function
	Syntax Description
	Parameters
	Example

	129 SET KEY
	Function
	Syntax Description
	Making Keys Program-Sensitive and Deactivating Keys
	Key Program-Sensitivity and Contents of *PF-KEY

	Assigning Commands/Programs
	Assigning Input DATA
	COMMAND OFF/ON
	Assigning HELP
	DYNAMIC Option
	DISABLED Option
	SET KEY Statements on Different Program Levels
	Example of SET KEY Statements on Different Program Levels

	Assigning Names
	Example

	130 SET TIME
	Function
	Example

	131 SET WINDOW
	Function
	Syntax Description
	Example

	132 SKIP
	Function
	Processing

	Syntax Description
	Example

	133 SORT
	Function
	Restrictions
	Syntax Description
	USING Clause
	GIVE Clause

	Three-Phase SORT Processing
	Example
	Example 1 - SORT
	Example 2 - SORT
	Example 3 - SORT

	Using External Sort Programs

	134 STACK
	Function
	Syntax Description
	Example

	135 STOP
	Function
	Example

	XV
	136 STORE
	Function
	Database-Specific Considerations
	Syntax Description
	Example

	137 SUBTRACT
	Function
	Syntax 1 - SUBTRACT Statement without GIVING Clause
	Syntax 2 - SUBTRACT Statement with GIVING Clause
	Example

	138 SUSPEND IDENTICAL SUPPRESS
	Function
	Syntax Description
	Examples
	Example 1 - Program with SUSPEND IDENTICAL SUPPRESS
	Example 2 - Same as Previous Program, but without SUSPEND IDENTICAL SUPPRESS

	139 TERMINATE
	Function
	Syntax Description
	Program Receiving Control after Termination
	Example

	140 UPDATE
	Function
	Hold Status

	Restrictions
	Database-Specific Considerations
	Syntax Description
	Example

	141 UPDATE (SQL)
	Function
	Syntax 1 - Searched UPDATE
	Assignment List

	Syntax 2 - Positioned UPDATE
	Examples
	Example 1 - Searched UPDATE
	Example 2 - Searched UPDATE with assignment-list
	Example 3 - Positioned UPDATE
	Example 4 - Positioned UPDATE with assignment-list

	142 UPDATELOB
	Function
	Hold Status

	Restrictions
	Syntax Description
	System Variable Available with UPDATELOB
	Functional Considerations
	Examples
	Example 1 - Store New Record and Fill LOB Segment
	Example 2 - Add LOB Data to Existent Record, Piece by Piece
	Example 3 - Truncate LOB Field
	Example 4 - Read LOB Data to Existent Record and Update LOB Segment

	143 UPLOAD PC FILE
	Function
	Syntax Description
	Example

	144 WRITE
	Function
	Syntax 1 - Dynamic Formatting
	Syntax 2 - Using Predefined Form/Map
	Examples
	Example 1 - WRITE Statement Using '=', 'text', '/'
	Example 2 - WRITE Statement Using nX, nT Notation
	Example 3 - WRITE Statement Using T* Notation
	Example 4 - WRITE Statement Using P* Notation
	Example 5 - WRITE Statement Using '=' and Parameters on Statement/Element (Field) Level
	Example 6 - Report Specification with Output File Defined to Natural as PC

	145 WRITE TITLE
	Function
	Processing

	Restrictions
	Syntax Description
	Example

	146 WRITE TRAILER
	Function
	Processing
	Logical Page Size

	Restrictions
	Syntax Description
	Example

	147 WRITE WORK FILE
	Function
	Syntax Description
	External Representation of Fields
	Special Considerations for System Functions

	Handling of Large and Dynamic Variables
	Example

