
Natural for Ajax

Natural Pages Development

Version 9.3.2

February 2025

This document applies to Natural for Ajax Version 9.3.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NJX-NATNJX-DEVELOPMENT-932-20250213

Table of Contents

Natural Pages Development .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Developing the User Interface ... 5
Starting the Development Workplace .. 6
Creating an Application Designer Project ... 7
Creating a Natural Page ... 7
Specifying Properties for the Natural Page ... 8
Designing the Page ... 9
Binding Properties and Methods ... 9
Previewing the Layout ... 9
Viewing the Protocol .. 10
Saving the Layout ... 10
Generating the Adapter ... 10
Data Type Mapping .. 11
Configuration of Page Layout Errors/Warnings .. 12

3 Developing the Application Code ... 17
Importing the Adapter ... 18
Creating the Main Program ... 18
Structure of the Main Program .. 20
Handling Page Events .. 21
Built-in Events and User-defined Events ... 21
Sending Events to the User Interface ... 22
Using Pop-Up Windows .. 23
Using Natural Maps ... 24
Navigating between Pages and Maps .. 25
Using Pages and Maps Alternatively ... 26
Starting a Natural Application from the Logon Page .. 27
Starting a Natural Application with a URL ... 27

4 Deploying the Application .. 29
Components of a Natural for Ajax Application ... 30
Unloading the Natural Modules .. 30
Installing the Natural Modules .. 30
Packaging the User Interface Components .. 30
Deploying the User Interface Components .. 31
Packaging and Deployment as a Web Application .. 32
Generating HTML Pages Using the Command Line ... 33

5 Natural Parameters and System Variables .. 37
6 Usage of Edit Masks .. 39

General Information ... 40
Data Types with Edit Masks .. 40

iii

Natural Profile Parameters ... 42
Specifying Edit Masks in Layouts .. 42
Edit Masks at Runtime ... 43

7 Multi-Language Management in Ajax .. 45
8 Support of Right-to-Left Languages .. 47
9 Server-Side Scrolling and Sorting .. 49

General Information ... 50
Variants of Server-Side Scrolling and Sorting .. 50
Controls that Support Server-Side Scrolling and Sorting .. 54
Data Structures for Server-Side Scrolling and Sorting ... 54
Server-Side Scrolling and Sorting in Trees ... 56
Events for Server-Side Scrolling and Sorting ... 57

10 Accessibility ... 59
Accessibility Non Responsive Pages .. 60
Accessibility Responsive Pages .. 60

11 Code Pages ... 61
12 Test Automation of Natural for Ajax Applications ... 63

General Information ... 64
Enabling the Applications for Test Automation .. 64
Advanced testtoolid Settings in Complex Controls ... 67

Natural Pages Developmentiv

Natural Pages Development

Natural Pages Development

How to develop the user interface using Application Designer.Developing the User Interface

How to develop the application code using Natural Studio.Developing the Application Code

How to unload and install the Natural modules and user
interface components.

Deploying the Application

Gives an overview of the Natural parameters and system
variables that are evaluated in Natural for Ajax applications
and sent to Application Designer.

Natural Parameters and SystemVariables

Describes howNatural for Ajax supports theNatural editmask
concept.

Usage of Edit Masks

Describes aspects to be considered for internationalization.Multi Language Management in Ajax

Describes howNatural forAjax supports right-to-left languages
and bidirectional text.

Support of Right-to-Left Languages

Describes how Natural for Ajax supports the concept of
server-side scrolling and sorting.

Server-Side Scrolling and Sorting

Describes how Natural for Ajax supports features pertaining
to accessibility.

Accessibility

Code Pages

Test Automation of Natural for Ajax
Applications

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Natural Pages Development2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareGmbHproducts provide functionalitywith respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

3Natural Pages Development

About this Documentation

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Developing the User Interface

■ Starting the Development Workplace .. 6
■ Creating an Application Designer Project ... 7
■ Creating a Natural Page ... 7
■ Specifying Properties for the Natural Page ... 8
■ Designing the Page ... 9
■ Binding Properties and Methods .. 9
■ Previewing the Layout .. 9
■ Viewing the Protocol .. 10
■ Saving the Layout .. 10
■ Generating the Adapter .. 10
■ Data Type Mapping .. 11
■ Configuration of Page Layout Errors/Warnings .. 12

5

In the First Steps tutorial, you have developed a small rich internet program step by step. In this
tutorial, you have already performed most of the steps required to develop a rich internet applic-
ation.

The general procedure to develop a rich internet application with Natural for Ajax is as follows:

1. Use Application Designer to design the web pages that form the user interface of your applica-
tion.

2. Generate a Natural adapter for each page (by saving the page). The adapter is a Natural object
that forms the interface between the application code and the web page.

3. Use Natural Studio to write the Natural application programs that contain the business logic
and use adapters to exchange data with the web pages.

In this chapter, the first two steps (design and adapter) are explained inmore detail. Step 3 (business
logic) is described in the sectionDeveloping the Application Codewhich also addresses advanced
topics that are not covered in the tutorial.

For detailed information on how to use the Application Designer development workplace, see
Development Workplace in the Application Designer documentation. The latest version of the Ap-
plicationDesigner documentation is available at https://documentation.softwareag.com/webmeth-
ods/application_designer.htm. The information which is provided below describes the most im-
portant differences which pertain to Natural for Ajax.

Starting the Development Workplace

The Application Designer development workplace is the central point for starting tools for layout
development.

To start the development workplace

1 Make sure that your application server is running.

2 Invoke your browser and enter the following URL:

http://<host>:<port>/cisnatural/HTMLBasedGUI/workplace/ide.html

where <host> is the name of the machine on which your application server is installed and
<port> is the port number of your application server.

Note: If you have not defined another port number during installation, the default port
number is "8080".

Natural Pages Development6

Developing the User Interface

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Creating an Application Designer Project

First you create an Application Designer project using the Project Manager. The project contains
the layouts of the web pages you design, the files that are generated from the layouts and are re-
quired to run your application and additional files that make your application multi language
capable and supply help information. See also Creating a Project in the tutorial.

All files in your Application Designer project are stored in one directory on the application server
where Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server.

Creating a Natural Page

In order to create the layout of your web pages, you use Application Designer's Layout Painter.

Add a page layout to your project as described in Creating a New Layout in the tutorial (select the
template for the Natural page).

Note: More detailed information on creating a layout is provided in theApplicationDesigner
documentation at https://documentation.softwareag.com/webmethods/application_design-
er.htm.

7Natural Pages Development

Developing the User Interface

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Specifying Properties for the Natural Page

In order to specify generation options for the new page, you specify values for certain properties
that are specific for Natural pages.

To define properties, you select the node natpage in the layout tree of the Layout Painter. The
properties for this control are then shown in the properties area at the bottom. When you select
theNatural tab in the properties area, you can see the Natural-specific properties.

For information on the properties that are available for a Natural page, see NATPAGE.

Natural Pages Development8

Developing the User Interface

Designing the Page

Design your Natural page by dragging controls and containers from the controls palette onto the
corresponding node in the layout tree or to the HTML preview. This has already been explained
in the sectionWriting the GUI Layout of the tutorial.

Note: More detailed information on defining the layout is provided in the Application De-
signerdocumentationathttps://documentation.softwareag.com/webmethods/application_de-
signer.htm.

Binding Properties and Methods

Many of the controls you use on your page have properties that can be controlled by the application.
Also the controls can raise events that your application may wish to handle. The next step is
therefore assigning identifiers to each of these properties and events underwhich your application
can later address them. This procedure is called “binding”.

To get an overview which properties and events are bindable to application variables and events,
select a control in the layout tree and open the Event Editor as described in the Application De-
signer documentation at https://documentation.softwareag.com/webmethods/application_design-
er.htm.

The Event Editor displays only those properties of controls that can be bound to application vari-
ables and events. It indicates also which properties are mandatory andmust be bound. The usage
andmeaning of the properties and events is described for each control inNatural Pages Development,

As an example for property and event binding, see the following sections in the First Steps tutorial:

■ Using the Property Editor
■ Specifying a Name and Method for the Button

Previewing the Layout

To find out how the current layout definitions are rendered on the page, preview the layout as
described in theApplicationDesignerdocumentationathttps://documentation.softwareag.com/web-
methods/application_designer.htm.

9Natural Pages Development

Developing the User Interface

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Viewing the Protocol

The protocol containswarnings and errormessages thatmight occurwhile you design and preview
your page. For further information, see the Application Designer documentation at https://docu-
mentation.softwareag.com/webmethods/application_designer.htm.

Saving the Layout

Save the page layout as described in Saving Your Layout in the tutorial.

Other than with Java adapters (which are described in the Application Designer documentation),
you do not use the Code Assistant (which is part of the Layout Painter) to generate adapter code
interactively. ForNatural pages the adapter code is generated completely from the page properties
and the property and event bindings that you specified previously. An adapter is generated
automatically when you save the layout for the first time. It is updated each time you save the
layout.

Generating the Adapter

When you save the layout, a Natural adapter is generated according to the following rules:

The adapter is generated into the subdirectory nat of your project directory.Location

The name of the project directory corresponds to the project name. The location of the directory
depends on the application server. See Creating an Application Designer Project.

The name of the adapter is determined by the properties you have set. See Specifying
Properties for the Natural Page.

Name

For each control property that has been bound to an identifier (as described in Binding
Properties andMethods) a parameter in the parameter data area of the adapter is generated.

Property
identifiers

The identifier is therefore validated against theNatural naming conventions for user-defined
variables and translated to upper-case. If an identifier does not comply to these rules, a
warning is generated into the protocol and as a comment into the adapter code. Additionally,
the name must comply to the naming conventions for XML entities. This means especially
that the name must start with a character.

To achieve uniquenesswithin 32 characters, the last four characters are (if necessary) replaced
by an underscore, followed by a three-digit number.

For each event that can be raised by a control on the page, an event handler skeleton is
generated as a comment into the adapter.

Event
identifiers

Natural Pages Development10

Developing the User Interface

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Caution: Some controls raise events whose names are dynamically constructed at runtime.
For these events, no handler skeleton can be generated. The control reference contains
information about these additional events.

The event identifiers are not validated.

When you specify a value for the property natdataarea, then also a Natural Parameter Data Area
(PDA) is generated.

Data Type Mapping

Several Application Designer controls have properties for which a data type can be specified. An
example is the FIELD control. It has a valueprop property which can be restricted to a certain data
type. The data type is used at runtime to validate user input. At generation time (that is, when a
Natural adapter is generated for the page), the data type determines the Natural data format of
the corresponding adapter parameter.

The following table lists the data types used in Application Designer and the corresponding Nat-
ural data formats.

NaturalApplication Designer

A or U (depending on theNATPAGEproperty natsinglebyte). The stringmust contain
an RGB value, for instance "#FF0000" for the color red.

color

D (YYYYMMDD)date

F4float

I4int

P19long

T (HHIISS)time

T (YYYYMMDDHHIISST)timestamp

Nn.nN n.n

Pn.nP n.n

A or U dynamic (depending on the NATPAGE property natsinglebyte).string (default)

An or Un (depending on the NATPAGE property natsinglebyte).string n

F8xs:double

I1xs:byte

I2xs:short

11Natural Pages Development

Developing the User Interface

Configuration of Page Layout Errors/Warnings

The layout protocol contains the information whether a page layout contains errors or warnings.
What is considered as error or warning can be configured. An invalid XML file or an XML file
from which valid HTML cannot be generated is always treated as an error.

Depending on the problem it often depends on the browser or even the browser version whether
the rendering is still as intended or not. The following default settings are a recommendation. In
case these settings are lowered, it may happen that in some browser versions the rendering is not
as intended.

To provide a better overview, the recommended settings are grouped by the type of problem that
is protocoled. The following problems can be configured:

■ Problem Group: Valid Value of Properties
■ Problem Group: Data and Event Binding
■ Problem Group: Height and Width Properties
■ Problem Group: Obligatory and Recommended Properties and Controls
■ Problem Group: Container - Control Hierarchy
■ Problem Group: Property Combination
■ Problem Group: Deprecated Controls and Properties
■ Problem Group: FOP Layout Definitions
■ Problem Group: Runtime Behavior

Problem Group: Valid Value of Properties

ExplanationSetting

The specified value is not a valid integer value.Invalid or missing integer value

The specified edit mask is invalid.Invalid edit mask value

Datatype timestamp is not supported for all property combinations.Invalid usage of timestamp type

The property value must be a valid comma separated list.Invalid comma separated list

The specified hotkey is not valid.Invalid hot key value

The specified value is not a valid value for this property.Invalid property value

Natural Pages Development12

Developing the User Interface

Problem Group: Data and Event Binding

SampleExplanationSetting

VALUEPROP in FIELD
control missing.

A valueprop, method or other mandatory data
property is missing. The impact is that no Natural
fields are generated in the adapter.

Missing obligatory data or
event property

-/-A recommendeddata property ismissing. This can
have major impacts on the control at runtime.

Missing recommended data
property

FLUSHMETHOD in
FIELD control missing.

When a method is not specified, in many cases a
default event will be triggered at runtime. It might
be the intended event or not.

Possible unintended usage of
default event

Problem Group: Height and Width Properties

ExplanationSetting

HEIGHT,WIDTHorLENGTHproperty is obligatory for proper
rendering.

Missing HEIGHT, WIDTH or LENGTH
properties

HEIGHT, WIDTH or LENGTH property is recommended for
proper rendering. Missing values might have impacts on the
rendering.

Missing recommended HEIGHT, WIDTH
or LENGTH properties

ROWCOUNT is missing in a grid control. This usually has
major impacts on the sizing of the grids.

Missing ROWCOUNT in GRIDS

Depending on specific property combinations or nesting of
controls, the specification of TAKEFULLWIDTH or
TAKEFULLHEIGHT is recommended.

Recommended TAKEFULLWIDTH or
TAKEFULLHEIGHT missing

Problem Group: Obligatory and Recommended Properties and Controls

SampleExplanationSetting

HELPICON control: property
HELPID missing.

An obligatory property is missing.Missing obligatory property

HSPLIT control: 2 SPLITCELL
controls required.

Sometimes the proper rendering of a
control requires the specification of
another control.

Missing recommended
control definition

COLAREA: no NAME, TEXTID or
VALUEPROP specified.

A recommended property is missing.
Thismight havemajor rendering impacts.

Missing recommended
property

13Natural Pages Development

Developing the User Interface

Problem Group: Container - Control Hierarchy

ExplanationSetting

A control or container has been specified as sub node of another control or controller.
But this hierarchy is not supported. This problem can only happen if you are not using
Layout Painter as editor.

Invalid sub node

Problem Group: Property Combination

SampleExplanationSetting

AREA controls: NAME and
TEXTID are set.

Someproperties are supported as design time
properties and as runtime properties. But

Duplicated definition -
design time and runtime

specifying the same property as runtime and
as design time property leads to undefined
rendering.

FIELDcontrol: POPUPPROP is set,
but POPUPMETHOD is not set.

The specified combination of properties is not
supported.

Invalid property
combination

TEXTGRID* controls:
WITHGRIDCOLHEADER is

Sometimes a property is only supported if
also other properties are specified: Supply
either all or none.

Incomplete property
combination

specified, but PROPREFSPROP is
not.

Problem Group: Deprecated Controls and Properties

SampleExplanationSetting

PAGEHEIGHTMINUS in
ROWTABSUBPAGES.

A deprecated property has been specified. One impact
might be that it is simply ignored in the currently
supported browsers.

Deprecated
properties

ACTIVEX control.A deprecated control has been specified. One impact
might be that the correspondingHTML is not supported

Deprecated controls

in all browsers or no longer supported in the current
browsers at all.

Problem Group: FOP Layout Definitions

ExplanationSetting

An obligatory property in the FOP controls is missing. May have impacts
on the *.pdf generation.

Missing obligatory properties

Invalid property value in FOP controls.Invalid property value

Natural Pages Development14

Developing the User Interface

Problem Group: Runtime Behavior

ExampleExplanationSetting

Layouts too big.All single controls may be specified correctly and still the
layout might cause performance issues.

Possibly reduced performance

TABINDEX=-10.Specifying invalid tabindex values confuses the browser
and leads to unexpected behavior at runtime.

Invalid TABINDEX values

Important: Export your settings and commit them in your version control system together
with the other workspace settings. When creating a new workspace, import your settings.
When upgrading your workspace to a newNatural for Ajax runtime version, your settings
will be taken over automatically.

15Natural Pages Development

Developing the User Interface

16

3 Developing the Application Code

■ Importing the Adapter ... 18
■ Creating the Main Program ... 18
■ Structure of the Main Program ... 20
■ Handling Page Events .. 21
■ Built-in Events and User-defined Events .. 21
■ Sending Events to the User Interface .. 22
■ Using Pop-Up Windows .. 23
■ Using Natural Maps ... 24
■ Navigating between Pages and Maps .. 25
■ Using Pages and Maps Alternatively ... 26
■ Starting a Natural Application from the Logon Page .. 27
■ Starting a Natural Application with a URL ... 27

17

Natural for Ajax Tools, which is an optional plug-in for Natural Studio, allows you to use some
of the Natural for Ajax functionality which is described in this chapter directly from within Nat-
ural Studio. For further information, see Natural for Ajax Tools in the Natural Studio Extensions
documentation which is provided for Natural for Windows.

Importing the Adapter

After having generated the adapter, the next step ismaking it available to yourNatural development
project.

As described previously, the adapter code is generated into a directory in your application server
environment.

The following topics are covered below:

■ Importing the Adapter Using Natural Studio

Importing the Adapter Using Natural Studio

It is assumed that your development library is located on a Natural development server and that
you have mapped this development server in Natural Studio.

To import the adapter from a remote environment

■ Use drag-and-drop.

Or:

Remote Linux environment only: Use the import function of SYSMAIN.

Creating the Main Program

After you have imported the adapter, you create a program that calls the adapter to display the
page and handles the events that the user raises on the page. This program can be a Natural pro-
gram, subprogram, subroutine or function. We use a Natural program as example.

The adapter already contains the data structure that is required to fill the page. It contains also a
skeletonwith the necessary event handlers. You can therefore create a programwith event handlers
from an adapter in a few steps.

Open or list the adapter in Natural Studio.

Natural Pages Development18

Developing the Application Code

* PAGE1: PROTOTYPE --- CREATED BY Application Designer ---
* PROCESS PAGE USING 'XXXXXXXX' WITH
* FIELD1 FIELD2
DEFINE DATA PARAMETER
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/MyProject/mypage' WITH
PARAMETERS
NAME U'field1'
VALUE FIELD1

NAME U'field2'
VALUE FIELD2

END-PARAMETERS
*
* TODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U'nat:page.end',U'nat:browser.end'
* /* Page closed.
* IGNORE
* VALUE U'onExit'
* /* TODO: Implement event code.
* PROCESS PAGE UPDATE FULL
* NONE VALUE
* /* Unhandled events.
* PROCESS PAGE UPDATE
* END-DECIDE
/*/*) END-HANDLER
*
END

Create a new program, copy the adapter source into the program and then proceed as follows:

■ Remove the comment lines in the header.
■ Change DEFINE DATA PARAMETER into DEFINE DATA LOCAL.
■ Replace the PROCESS PAGE statement with a PROCESS PAGE USING operand4 statement, where
operand4 stands for the name of your adapter.

■ Remove the comment lines that surround the DECIDE block.
■ Uncomment the DECIDE block.

Your program should now look as follows:

19Natural Pages Development

Developing the Application Code

DEFINE DATA LOCAL
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end'
/* Page closed.
IGNORE

VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*
END

Stow the programwith a name of your choice. The resulting program can be executed in a browser
where it displays the page. However, it does not yet do anything useful, because it handles the
incoming events only in a default way and contains no real application logic.

Structure of the Main Program

Themain program that displays the page and handles its events has the following general structure:

■ A PROCESS PAGE USING statement with the page adapter. The PROCESS PAGE statement displays
the page in the user's web browser and fills it with data. Then, it waits for the user to modify
the data and to raise an event.

■ A DECIDE block with a VALUE clause for each event that shall be explicitly handled.
■ A default event handler for all events that shall not be explicitly handled.

Each event handler does the following:

■ It processes the data the has been returned from the page in the user's web browser.
■ It performs a PROCESS PAGE UPDATE FULL statement to re-execute the previous PROCESS PAGE
USING statement with the modified data and to wait for the next event.

The default event handler does not modify the data. It does the following:

■ It performs a PROCESS PAGE UPDATE statement to re-execute the previous PROCESS PAGE USING
statement and to wait for the next event.

Natural Pages Development20

Developing the Application Code

Handling Page Events

When the PROCESS PAGE statement receives an event, the data structure that was passed to the
adapter is filled with the modified data from the page and the system variable *PAGE-EVENT is
filled with the name of the event. Now, the corresponding VALUE clause in the DECIDE statement
is met and the code in the clause is executed.

The application handles the event by processing and modifying the data and resending it to the
pagewith a PROCESS PAGE UPDATE FULL statement. Alternatively, it uses the PROCESS PAGE UPDATE
statement without the FULL clause in order to resend the original (not modified) data.

Built-in Events and User-defined Events

There are built-in events and user-defined events.

Built-in Events

The following built-in events can be received:

nat:browser.end
This is event is raised whenever the session is terminated by a browser action:
■ Closing of the browser.
■ Navigation to another page in the browser.
■ Programmatic close in a workplace (for example, close all session functions).

In addition, this event is raised in the following cases:
■ Timeout of the session.
■ Removal of the session with the monitoring tool.

After the event is raised, the Natural session terminates.

nat:page.end
This event is raised when the user closes the page with the Close button in the upper right
corner of the page.

nat:popup.end
This event can be raised when the user closes the pop-up window with the Close button in
the upper right corner of the pop-up window. To activate this event for the current pop-up
window, the property popupendmethod of the NATPAGE control has to be set to "true". The
default of this property is "false". When the property popupendmethod is set to false, the event
nat:page.end is raised when the user closes the pop-up windowwith the Close button in the
upper right corner of the pop-up window.

21Natural Pages Development

Developing the Application Code

Note: When the user closes a pop-up window using the Close button of the TITLEBAR
control, the built-in event nat:page.end is always raised, no matter whether
popupendmethod is set to "true" or not. With the nat:popup.end event, it is possible to
find out that the Close button of the actual pop-up window was clicked (and not the
Close button of a page within the pop-up window).

nat:page.default
This event is sent if the Natural for Ajax client needs to synchronize the data displayed on the
page with the data held in the application. It is usually handled in the default event handler
and just responded with a PROCESS PAGE UPDATE.

Other built-in events can be sent by specific controls. These events are described in the control
reference.

User-defined Events

User-defined events are those events that the user has assigned to controls while designing the
page layout with the Layout Painter. The names of these events are freely chosen by the user. The
meaning of the events is described in the control reference.

Sending Events to the User Interface

The PROCESS PAGE UPDATE statement can be accompanied by a SEND EVENT clause. With the SEND
EVENT clause, the application can trigger certain events on the page when resending the modified
data.

The following events can be sent to the page:

nat:page.message
This event is sent to display a text in the status bar of the page. It has the following parameters:

ValueFormatName

Sets the icon in the status bar ("S"=success icon, "W"=warning icon, "E"=error icon).A or Utype

Short text.A or Ushort

Long text.A or Ulong

nat:page.valueList
This event is sent to pass values to a FIELD control with value help on request (see also the
description of the FIELD control in the control reference). It has the following parameters:

Natural Pages Development22

Developing the Application Code

ValueFormatName

A list of unique text identifiers displayed in the FIELD control with value help. The list
must be separated by semicolon characters.

A or Uid

A list of texts displayed in the FIELD control with value help. The list must be separated
by semicolon characters.

A or Utext

nat:page.xmlDataMode
This event is sent to switch several properties of controls on the page in one call to a predefined
state. The state must be defined in an XML file that is expected at a specific place. See the in-
formation on XML property binding in the Application Designer documentation for further
information.

ValueFormatName

Name of the property file to be used.A or Udata

Using Pop-Up Windows

A rich GUI page can be displayed as a modal pop-up in a separate window. A modal pop-up
window can open anothermodal pop-upwindow, thus building awindowhierarchy. If a PROCESS
PAGE statement and its corresponding event handlers are enclosed within a PROCESS PAGE MODAL
block, the corresponding page is opened as a modal pop-up window.

The application can check the current modal pop-up window level with the system variable
*PAGE-LEVEL. *PAGE-LEVEL = 0 indicates that the application code is currently dealing with the
main window. *PAGE-LEVEL > 0 indicates that the application code is dealing with a modal pop-
up window and indicates the number of currently stacked pop-up windows.

In order to modularize the application code, it makes sense to place the code for the handling of
a modal pop-up window and the enclosing PROCESS PAGE MODAL block in a separate Natural
module, for instance, a subprogram. Then the pop-up window can be opened with a CALLNAT
statement and can thus be reused in several places in the application.

Example program MYPAGE-P:

DEFINE DATA LOCAL
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'MYPAGE-A'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end'
/* Page closed.

23Natural Pages Development

Developing the Application Code

IGNORE
VALUE U'onPopup'
/* Open a pop-up window with the same fields.
CALLNAT 'MYPOP-N' FIELD1 FIELD2
PROCESS PAGE UPDATE FULL

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*
END

Example subprogram MYPOP-N:

DEFINE DATA PARAMETER
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
/* The following page will be opened as pop-up.
PROCESS PAGE MODAL
*
PROCESS PAGE USING 'MYPOP-A'

*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end'
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*
END-PROCESS
*
END

Using Natural Maps

Rich internet applications written with Natural for Ajax need not only consist of rich GUI pages,
but may also use classical maps. This is especially useful when an application that was originally
written with maps shall only be partly changed to provide a rich GUI. In this case the application
can run under Natural for Ajax from the very beginning and can then be “GUIfied” step by step.

Natural Pages Development24

Developing the Application Code

Navigating between Pages and Maps

Due to the similar structure of programs that use maps and programs that use adapters, it is easy
for an application to leave a page and open a map, and vice versa. For each rich GUI page, you
write a program that displays the page and handles its events. For eachmap, youwrite a program
that displays themap and handles its events. In an event handler of the page, you call the program
that handles the map. In an “event handler” of the map, you call the program that handles the
page.

Example for program MYPAGE-P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end'
/* Page closed.
IGNORE

VALUE U'onDisplayMap'
/* Display a Map.
FETCH 'MYMAP-P'

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
*
END

Example for program MYMAP-P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
SET KEY ALL
INPUT USING MAP 'MYMAP'
*
DECIDE ON FIRST *PF-KEY
VALUE 'PF1'
/* Display a rich GUI page.
FETCH 'MYPAGE-P'

NONE VALUE
REINPUT WITH TEXT

25Natural Pages Development

Developing the Application Code

'Press PF1 to display rich GUI page.'
END-DECIDE
*
END

Using Pages and Maps Alternatively

An application can also decide at runtime whether to use maps or rich GUI pages, depending on
the capabilities of the user interface. The system variable *BROWSER-IO lets the application decide
if it is running in a web browser at all. If this is the case, the system variable tells whether the ap-
plication has been started under Natural for Ajax and may thus use both maps and pages, or
whether it has been started under the Natural Web I/O Interface and may thus use only maps.

Example:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
IF *BROWSER-IO = 'RICHGUI'

/* If we are running under Natural for Ajax,
/* we display a rich GUI page.
PROCESS PAGE USING 'MYPAGE'
DECIDE ON FIRST *PAGE-EVENT

VALUE U'nat:page.end',U'nat:browser.end'
/* Page closed.
IGNORE

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE
ELSE

/* Otherwise we display a map.
SET KEY ALL
INPUT USING MAP 'MYMAP'
DECIDE ON FIRST *PF-KEY

VALUE 'PF1'
/* Map closed.
IGNORE

NONE VALUE
REINPUT WITH TEXT
'Press PF1 to terminate.'

END-DECIDE
END-IF
*
END

Natural Pages Development26

Developing the Application Code

Starting a Natural Application from the Logon Page

See Starting a Natural Application from the Logon Page in the Configuration and Administration docu-
mentation.

Starting a Natural Application with a URL

See Starting a Natural Application with a URL andWrapping a Natural for Ajax Application as a Servlet
in the Client Configuration documentation.

27Natural Pages Development

Developing the Application Code

28

4 Deploying the Application

■ Components of a Natural for Ajax Application .. 30
■ Unloading the Natural Modules .. 30
■ Installing the Natural Modules .. 30
■ Packaging the User Interface Components ... 30
■ Deploying the User Interface Components .. 31
■ Packaging and Deployment as a Web Application .. 32
■ Generating HTML Pages Using the Command Line .. 33

29

Components of a Natural for Ajax Application

A Natural for Ajax application consists of two parts that are usually installed on two different
machines.

On one hand, there are Natural modules (adapters, programs, subprograms and other Natural
objects) that are installed on a Natural server. On the other hand, there are page layouts of rich
GUI pages and related files that are installed in a Natural for Ajax environment on an application
server.

Unloading the Natural Modules

The Natural modules that belong to your application are contained in one or several Natural lib-
raries in your Natural development environment. Unload them into a file, using the Object
Handler.

Installing the Natural Modules

In order to install the Natural modules in the production environment, load themwith the Object
Handler.

Packaging the User Interface Components

Your web application might contain one or more user interface components.

In production environments it is deeply recommended to always deploy/refresh the whole web
application for consistency.

In development or test environments you sometimes might want to deploy single user interface
components into an already deployed web application. To deploy global files such as custom
controls, which are used by several user interface components or configuration files like the ciscon-
fig.xml file (which is used for the whole web application), you have to use web application deploy-
ment/refreshment as described in the following sections.

User interface components are stored in subdirectories of your web application.

You only need to package those files of your user interface component which are not generation
results. All files which are generation results will be generated by the Natural for Ajax runtime

Natural Pages Development30

Deploying the Application

during deployment. If you also package files which are generation results, the Natural for Ajax
runtime system will ignore these files.

If you are using NaturalONE, use the Ant war deployment wizard to create an Ant file which will
package your user interface component(s). To package a user interface component for deployment
without NaturalONE, add all files and subdirectories to an archive using an archiving tool like
WinZip or tar. Do not include the following files and folders:

DescriptionFile

Generated HTML pages.<use interfacedir>/*.html

Generated data schemas.<use interfacedir>/wsdl/*.*

Generated Natural code<use interfacedir>/nat

Generated protocol files<use interfacedir>/protocol

Style sheet files that are generated from a Natural for
Ajax *.info file

<use interfacedir>/styles/<mystylesheet>.css

Provide a unique name for the created zip file. This can for example be done by appending date
or timestamp to the file name. Example: <myui>20170501.zip.

Deploying the User Interface Components

In order to deploy the user interface components, simply copy the zip file which you created as
described previously into the _uiupdates folder of your web application, for example: <tomcat-
folder>/webapps/<mywebapp>/_uiupdates/<myui>20170501.zip.

By default the Natural Ajax runtime system will pick up the file every 5 seconds. This value can
be customized with the monitoringthreadinterval parameter. It will deploy it and refresh all
internal caches of the Natural Ajax runtime system. For the example above, deployment and re-
freshing is finishedwhen a filewith the name <tomcatfolder>/webapps/<mywebapp>/_uiupdates/<my-
ui>20170501/update.result exists. It is important to check the update.result file for errors: Open the
file and look for "Update finished Successfully". If you cannot find this, check the *.protocol files
in the protocol sub folder for errors and/or exceptions.

In case you cannot solve the generation problems via the Layout Painter error marking, you can
switch on the creation of additional log files. See the htmlgeneratorlog attribute in the Ajax Con-
figuration section.

31Natural Pages Development

Deploying the Application

Packaging and Deployment as a Web Application

Natural for Ajax is delivered as aweb application (.war file). This allows for packaging and deploy-
ing also your own applications (more exactly: the user interface components thereof) as self-con-
tained web applications. The preferred way to create a *.war for your application is to use the Ant
war deployment wizard of NaturalONE.

If you are not using NaturalONE:

To package your application as a web application

1 Invoke the Application Designer development workplace.

2 In the Development Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), chooseWAR Packager.

3 In the resulting dialog, make sure that the Deployment Scenario tab is selected.

4 Define the generation type by selecting one of the following option buttons:with file system
reference or fully clusterable. See the Application Designer documentation for detailed in-
formation on these generation types.

Note: The option fully clusterable applies only for web applications written in Java,
not for those written in Natural. This is because a Natural-written application runs on
a Natural server and therefore needs to keep a TCP/IP connection to the server, while
Java applications are executed on the web container itself.

5 If you selected with file system reference, enable the Switch off Design Time check box.

6 Select the Project Selection tab.

7 Select the project directories that you want to include in your web archive. These must be at
least the following:

DescriptionDirectory

Application Designer configuration files.cis

Natural for Ajax logon page and related pages.cisnatural

HTML user interface.HTMLBasedGUI

Application Designer image files.images

Standard directory in a web application.META-INF

Natural Web I/O Interface style sheets and related files.resources

Natural Web I/O Interface JavaScript files.scripts

Standard directory in a web application.WEB-INF

Natural Pages Development32

Deploying the Application

In addition, you have to select your own project directories.

8 In the text boxWAR File to be created, specify a path and name for the web application to
be created.

9 Choose the Create WAR button.

The web application (.war file) is created.

To deploy your application

1 You deploy your web application in the same way as you deployed Natural for Ajax itself
(see Installation).

2 After you have deployed your web application, you can use the configuration tool to specify
the configuration for this specific application. For further information, see Natural Client
Configuration Tool.

Start the configuration tool with the following URL:

http://<host>:<port>/<webcontext>/conf_index.jsp

The logon page of the application can be found here:

http:// <host>:<port>/<webcontext>/servlet/StartCISPage?PAGEURL=/cisnatural/NatLogon.html

Note: <webcontext> denotes the web context of your application. On Apache Tomcat,
this is the name of the .war file, without the extension .war. On IBMWebSphere, this
is the value you specified as the web context during the deployment.

Generating HTML Pages Using the Command Line

You can generate HTML pages using the command line (either single pages or entire projects). If
you do this, you have to reload yourweb application afterwards or - in a development environment
- use the monitoring tool to refresh the internal caches.

An Ant file named generate.xml is available for this purpose. After the installation, you can find it
in the support/ant directory.

The Ant file has the following major targets:

■ info
Shows the syntax of this Ant task.

33Natural Pages Development

Deploying the Application

■ project
Generates all HTML pages for a given project.

■ page
Generates a single HTML file for a given page in a project.

■ pages
Generates HTML files for given pages in a project.

■ style
Generates CSS files for info files in a project

The following call explains the targets with their mandatory and optional parameters:

ant -f generate.xml info

By default, the following log files are written during the HTML generation:

■ <layout>.protocol files
■ HTMLGeneratorWholeDirectory.log
■ <layout>.log files

<layout>.protocol files

For a layout named mylayout.xml a file named mylayout.protocol is created in the protocol subdir-
ectory of the user interface component. It contains the error messages, warning messages and in-
formation messages for the controls in the layout. Open the layout with the Layout Painter Editor
to position at the erroneous controls.

Example

<?xml version="1.0" encoding="utf-8"?>
<pro:protocol xmlns:pro="http://www.softwareag.com/cis/protocol">
<pro:lineitem>
<pro:id>6</pro:id>
<pro:tag>field</pro:tag>
<pro:message>
<pro:severity>Error</pro:severity>
<pro:mtext>Property VALUEPROP is not set</pro:mtext>

</pro:message>
<pro:message>
<pro:severity>Warning</pro:severity>
<pro:mtext>One of the properties LENGTH or WIDTH should be set</pro:mtext>

</pro:message>
</pro:lineitem>
<pro:summary errors='1' warnings='1' infos='0' ></pro:summary>
</pro:protocol>

Natural Pages Development34

Deploying the Application

HTMLGeneratorWholeDirectory.log

When generating all layouts of a user interface component, additionally a file named HTMLGen-
eratorWholeDirectory.log is created in the log subdirectory of the user interface component. It contains
the names of the generated layouts and the information, whether an error occurred.

Example

...
Starting generation of wpworkplacelan1.xml...
...finished
Starting generation of wpworkplacelan2.xml...
...finished
Starting generation of xmldatamode.xml...
...finished
Starting generation of xmldatamode2.xml...
...finished
===
227 layouts generated
1 layouts with ERROR

<layout>.log files

In addition to the above, you can activate the creation of an individual .log file for each layout.
This file contains generation details.

To switch on the log file creation, set htmlgeneratorlog="true" in the cisconfig.xml file. Only ac-
tivate this option, if you need to analyze generation problems, as it reduces generation performance.
The additional .log files are created in the log subdirectory of the user interface component. The
htmlgeneratorlog option is described inGeneral cisconfig.xml Parameters of theAjax Configuration
section.

35Natural Pages Development

Deploying the Application

36

5 Natural Parameters and System Variables

The following Natural parameters and system variables are evaluated in Natural for Ajax applic-
ations and sent to Application Designer:

■ DC

The character assigned to the DC parameter is used in the representation of decimal fields in
Application Designer.

■ DTFORM

This parameter is used for all date fields in Application Designer pages. In your application,
the date is shown according to the setting of the DTFORM parameter.

■ EMFM

The value of the EMFM parameter is evaluated for fields in Application Designer pages for which
a dynamic edit mask has been assigned. See also Usage of Edit Masks.

■ *CURS-FIELD

Identify the operand that represents the value of the control that has the input focus. When the
Natural system function POS is applied to aNatural operand that represents the value of a control,
it yields the identifier of that operand.

■ *LANGUAGE

Change the language while an application is running. See alsoMulti-Language Management.

37

38

6 Usage of Edit Masks

■ General Information ... 40
■ Data Types with Edit Masks ... 40
■ Natural Profile Parameters .. 42
■ Specifying Edit Masks in Layouts .. 42
■ Edit Masks at Runtime ... 43

39

General Information

Natural for Ajax supports a subset of the Natural edit mask concept in order to support output
formatting for most of the commonly used fields.

If edit mask support is specified for a field, the field content is

■ rendered according to the edit mask during output, and
■ checked for validity against the edit mask during user input.

Due to the nature of data being handled with a Natural for Ajax client, not all of the different
Natural edit mask types make sense. Therefore, only a subset of edit mask types is available for
Natural for Ajax.

Data Types with Edit Masks

In all controls that support the property datatype, edit masks can be specified for the data types
listed in the topics below:

■ Edit Masks for Numeric Fields
■ Edit Masks for Alphanumeric Fields
■ Edit Masks for Date and Time Fields
■ Edit Masks for Logical Fields

For detailed information on editmasks, see theNatural documentation for the appropriate platform.

Edit Masks for Numeric Fields

Edit masks for numeric fields can be specified for the following data types:

■ N n.n

■ P n.n

■ int

■ long

■ float

■ xs:double

■ xs:byte

■ xs:short

■ xs:decimal

Natural Pages Development40

Usage of Edit Masks

The full set of Natural numeric edit masks can be applied for these data types.

Edit Masks for Alphanumeric Fields

Edit masks for alphanumeric fields can be specified for the following data type:

■ string n

The full set of Natural alphanumeric edit masks can be applied for this data type.

Edit Masks for Date and Time Fields

Edit masks for date and time fields can be specified for the following data types:

■ date

■ time

■ timestamp (can only be displayed)
■ xs:date

■ xs:time

■ xs:dateTime (can only be displayed)

A subset of the Natural edit masks can be applied for these data types.

Edit masks for date fields may contain the following characters:

UsageCharacter

Day.DD

Day, with zero suppression.ZD

Month.MM

Month, with zero suppression.ZM

Year, 4 digits.YYYY

Year, 2 digits.YY

Year, 1 digit. Must not be used for input fields.Y

The time in a date/time edit mask may contain the following characters:

41Natural Pages Development

Usage of Edit Masks

UsageCharacter

Tenths of a second.T

Seconds.SS

Seconds, with zero suppression.ZS

Minutes.II

Minutes, with zero suppression.ZI

Hours.HH

Hours, with zero suppression.ZH

Edit Masks for Logical Fields

Edit masks for logical fields can be specified for the following data types:

■ L

■ xs:boolean

The full set of Natural logical edit masks can be applied for these data types.

Natural Profile Parameters

The following Natural profile parameters are evaluated for the edit mask processing of Natural
for Ajax:

■ DC

■ EMFM

For detailed information on these profile parameters, see the Natural documentation for the ap-
propriate platform.

Specifying Edit Masks in Layouts

An edit mask is added to a specific data type in the following way:

Natural Pages Development42

Usage of Edit Masks

The datatype property of a field is specified (here the numeric type N4.2) and the editmask
property is filled with the proper (here numeric) edit mask.

Edit Masks at Runtime

At runtime, fields with edit masks are processed as follows:

■ When a field has an edit mask and when a value is to be displayed in that field, the value is
processed and formatted according to the edit mask and is displayed afterwards.

■ When a user enters a value into a field which has an edit mask, the value is validated against
that edit mask and the real value is extracted from the entered value by stripping the irrelevant
portions of the edit mask.

43Natural Pages Development

Usage of Edit Masks

44

7 Multi-Language Management in Ajax

The multi-language management is responsible for changing the text IDs into strings that are
presented to the user.

There are two translation aspects:

■ All literals in theGUI definitions of a layout are replaced by stringswhich are language-specific.
This is based on the multi-language management of Application Designer.

Note: Detailed information on themulti-languagemanagement is provided in theApplic-
ation Designer documentation atMulti-Language Management.

■ Literals that are contained in your application code are handledwith the languagemanagement
of Natural.

In a Natural for Ajax application, both language management systems are related by common
language codes. The language codes used are those that are defined for the Natural profile para-
meter ULANG and the system variable *LANGUAGE.

The Application Designer documentation describes how the text files containing the language-
dependent texts are created andmaintained (see the information onwritingmulti language layouts
at the above URL). For a multi-lingual Natural for Ajax application, the names of the directories
that contain the text files should be chosen according to the Natural language codes, for instance
/multilanguage/4 for Spanish texts.

When an application is started from the Natural logon page (see Starting a Natural Application from
the Logon Page), the user can select the language to be used. Depending on the selected language,
the same (Natural) language code is set up both inApplicationDesigner and in theNatural session,
so that both language management systems are then configured to use the same language.

Note: The language for a session can also be defined in the configuration file sessions.xml,
using the Natural for Ajax configuration tool. See Natural Client Configuration Tool in the
Client Configuration documentation, .

45

It is also possible to change the language while an application is running. This is done by setting
the Natural system variable *LANGUAGE in the Natural program. Each time this system variable is
changed, Natural for Ajax changes the language code for the web pages when the next update of
the page occurs.

For compatibility with the predefined multi language directories in Application Designer, the
English and German texts need not be stored in /multilanguage/1 and /multilanguage/2, but can be
contained in /multilanguage/en and /multilanguage/de.

See also:Multi-Language Management in Workplace Applications.

Natural Pages Development46

Multi-Language Management in Ajax

8 Support of Right-to-Left Languages

Natural for Ajax supports right-to-left languages and bidirectional text without specific actions
taken by the application. The browser displays and accepts bidirectional text always in the expected
order.

Applications can use the same page layouts both in left-to-right and in right-to-left screen direction.
To switch the screen direction, the statement SET CONTROL is used as follows:

DescriptionStatement

Sets the screen direction to right-to-left.SET CONTROL 'VON'

Sets the screen direction to left-to-right.SET CONTROL 'VOFF'

Switches from left-to-right to right-to-left screen direction and vice versa.SET CONTROL 'V'

47

48

9 Server-Side Scrolling and Sorting

■ General Information ... 50
■ Variants of Server-Side Scrolling and Sorting .. 50
■ Controls that Support Server-Side Scrolling and Sorting .. 54
■ Data Structures for Server-Side Scrolling and Sorting ... 54
■ Server-Side Scrolling and Sorting in Trees .. 56
■ Events for Server-Side Scrolling and Sorting ... 57

49

General Information

It is often the case that a web application has to display an arbitrary amount of data in a grid
control, for instance, the records from a database table. In these cases, it is mostly not efficient to
send all data as a whole to the web client. Instead, it will be intended to display a certain amount
of data to begin with and to send more data as the user scrolls through the page. To support this,
the grid controls in Natural for Ajax support the concept of server-side scrolling and sorting.

Variants of Server-Side Scrolling and Sorting

The following graphic illustrates the different types of server-side scrolling and sorting that are
supported by Natural for Ajax.

With respect to server-side scrolling and sorting, the following options can be used:

■ No Server-Side Scrolling and Sorting
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) as a whole.

Advantage: Neither the web server nor the Natural application are involved in the process of
scrolling and sorting. As long as the user only scrolls and sorts, no round trip from theweb client
to the web server or to the Natural server is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

Natural Pages Development50

Server-Side Scrolling and Sorting

■ Web Server-Side Scrolling and Sorting (WebSSS)
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) in portions.

Advantage: The Natural application is not involved in the process of scrolling and sorting. As
long as the user only scrolls and sorts, no round trip from the web server to the Natural server
is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

■ Natural Server-Side Scrolling and Sorting (SSS_N)
The Natural application sends the grid data to the web server in portions. The web server sends
the grid data to the web client (browser) in portions.

Advantage: A round trip between web server and Natural application passes only the visible
data portion.

Disadvantage: The Natural application must support the process of scrolling and sorting with
a specific application logic.

The decision between these optionswill often depend on the expected data volume. The application
can decide dynamically at runtime which option to use.

The following topics show the difference between these three options

■ No Server-Side Scrolling and Sorting
■ Web Server-Side Scrolling and Sorting
■ Natural Server-Side Scrolling and Sorting

No Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of twenty. The Natural application
sends twenty rows and indicates that no further rows are to be expected (SIZE=0).

51Natural Pages Development

Server-Side Scrolling and Sorting

Step 2: When you scroll up and down, no server round trips to the web server or to the Natural
application are performed.

Web Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
twenty rows and indicates that no further rows are to be expected (SIZE=0).

Step 2: When you scroll up and down, the web browser requests additional records from the web
server There are no server round trips to Natural.

Natural Pages Development52

Server-Side Scrolling and Sorting

Natural Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
five rows and indicates that further rows are to be expected (SIZE=20).

Step 2: When you scroll up and down, the web browser requests additional records from the web
server. The web server requests additional records from the Natural application.

53Natural Pages Development

Server-Side Scrolling and Sorting

The Natural application can dynamically decide at runtime which option of server-side scrolling
and sorting it wants to use. This can depend on the number of records contained in a search result.

■ If the application does not want to use server-side scrolling and sorting at all, it sends as many
rows to the web browser as the grid is configured to hold, or it sends fewer rows.

■ If the application wants to use web server-side scrolling and sorting, it sends all available rows
and sets the SIZE parameter to zero in the data structure that represents the grid in the applica-
tion.

■ If the application wants to use Natural server-side scrolling and sorting, it sends only part of
the available rows and indicates in the SIZE parameter howmany rows are to be expected alto-
gether.

Controls that Support Server-Side Scrolling and Sorting

The following controls support server-side scrolling and sorting:

■ TEXTGRIDSSS2
■ ROWTABLEAREA2
■ MGDGRID
■ BMOBILE:SIMPLEGRID

Note: For compatibility reasons with earlier versions of Natural for Ajax, you have to set
the natsss property of NATPAGE to true in order to activate server-side scrolling and
sorting for the controls ROWTABLEAREA2 and MGDGRID. If this property is set to true,
for all instances of these grid controls on a page, the necessary data structures are generated
into the Natural adapter interface.

Data Structures for Server-Side Scrolling and Sorting

If you use the TEXTGRIDSSS2 control or if you use the ROWTABLEAREA2 orMGDGRID control
and have set the property natsss to true for the page, the following additional data structure is
generated into the adapter interface for each instance of these controls. This data structure is used
to control the scroll and sort behavior at runtime.

Natural Pages Development54

Server-Side Scrolling and Sorting

1 LINESINFO
2 ROWCOUNT (I4)
2 SIZE (I4)
2 SORTPROPS (1:*)
3 ASCENDING (L)
3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)

The name of the data structure is derived from the name of the variable that is bound to the grid.
In this example, the variable LINES had been bound to the grid. Therefore, the name LINESINFO
was generated.

With each event that is related to scrolling and sorting, the application receives the information
howmany rows it should deliver at least (ROWCOUNT) and the index of the first record to be delivered
(TOPINDEX).

In SORTPROPS, the application receives the information in which sort sequence the records should
be delivered and by which columns the records should be sorted.

On the other hand, the application itself can specify a sort sequence (also using multiple sort cri-
teria) and indicate this sort sequence by filling the structure with the desired sort criteria.

■ If web server-side scrolling and sorting is used, the specified sort sequence is automatically
created on the web server.

■ If Natural server-side scrolling and sorting is used, the application itselfmust provide the records
in the specified sort sequence.

■ With the TEXTGRIDSSS2 control, the first three specified sort criteria are automatically indicated
in the column headers of the grid.

■ With the ROWTABLEAREA2 control, the first specified sort criterion is automatically indicated
in the column headers of the grid. If more sort criteria are to be indicated, the application should
provide custom grid headers.

In SIZE, the application can indicatewhether the delivered amount of rows represents all available
data (SIZE=0, no Natural server-side scrolling), or whether there are more rows to come
(SIZE=total-number-of-records, Natural server-side scrolling).

When Natural server-side scrolling is used, the application will, for instance, hold the available
rows (mostly the result of a database search) in an X-array, sort this X-array as requested and de-
liver the requestedportion of rows.However, other implementations and optimizations are possible,
depending on the needs and possibilities of the application.

When the application supports the selection of grid items, the applicationmust take care to remem-
ber the selected state of each item when the TOPINDEX changes.

55Natural Pages Development

Server-Side Scrolling and Sorting

Server-Side Scrolling and Sorting in Trees

TheROWTABLEAREA2 control can also be configured as a tree control, where each row represents
a tree node. In this case, the data structure that supports server-side scrolling contains one more
field, DSPINDEXFIRST.

1 LINESINFO
2 DSPINDEXFIRST (I4)
2 ROWCOUNT (I4)
2 SIZE (I4)
2 SORTPROPS (1:*)
3 ASCENDING (L)
3 PROPNAME (U) DYNAMIC
2 TOPINDEX (I4)

The need for this additional control field comes from the fact that a tree can contain hidden items.

The rows sent by the Natural application must always start with an item at level one. The addi-
tional field DSPINDEXFIRST is provided because the visible part of the tree can start at a node with
a level greater than one (a subnode). In DSPINDEXFIRST, the application must indicate the index
of the first visible row within the rows sent from Natural.

Natural Pages Development56

Server-Side Scrolling and Sorting

Example

The top nodes of the tree are open and the user scrolls down as shown below:

The Natural application is supposed to send data starting with a top node. In our example, this
is the node named toptext_0. But the first visible child node would be childtext_0.2. This means
that among the sent items, the first three items are hidden. The application sets the value for
DSPINDEXFIRST to "3" when sending the data.

Events for Server-Side Scrolling and Sorting

In order to support server-side scrolling and sorting, an applicationmust handle a number of related
events properly. The events are described with the corresponding controls. Examples on how to
handle the events are provided in the Natural for Ajax demos.

57Natural Pages Development

Server-Side Scrolling and Sorting

58

10 Accessibility

■ Accessibility Non Responsive Pages ... 60
■ Accessibility Responsive Pages ... 60

59

Accessibility Non Responsive Pages

TheNonResponsive Layout Pages supportmany accessibility requirements and recommendations,
such as page structures and names, labels and headings, dynamic language settings, keyboard
handling, flexible color settings via CSS stylesheets.

Accessibility requires an appropriate design of the application, using suitable containers and
controls, as well as a conducive page structure and coloring. The setting of correct properties,
provides pages with detailed information for Screen Readers.

The NaturalAjaxDemos contain running accessibility samples with corresponding guidelines.
Although all major accessibility requirements can be met with appropriate control settings, the
newer Responsive Pages ofNatural forAjax provide better accessibility support for ScreenReaders.

Accessibility Responsive Pages

The Responsive Layout Pages support themajor accessibility requirements and recommendations,
Level A and AA.

All responsive samples have seen tests with two different accessibility tools.

Please mind that even with responsive pages, accessibility requires an appropriate design of the
application, using suitable containers and controls, as well as a conducive page structure and
coloring. The setting of correct properties provides pages with detailed information for Screen
Readers.

For details, please see the responsive samples in the NaturalAjaxDemos. The NaturalAjaxDemos
also contain a Responsive Accessibility Guide.

Natural Pages Development60

Accessibility

11 Code Pages

The built-in event names in your Natural for Ajax main program (such as nat:page.end and
nat:browser.end) are usuallywritten in lower case ormixed case. TheURL values in yourNatural
programs (in controls such as SUBCISPAGE2 and ROWTABSUBPAGES) are usually written in
mixed case. If you have an environment, however, in which you are bound to a code page which
only allows Latin upper-case characters, you need to set the parameter natuppercase="true" in
the cisconfig.xml file. In this case, the built-in events are generated in upper case, and URLs to
Natural for Ajax pages are handled correctly even if they are specified completely in upper case.

Limitations: Since browsers andURLs toweb pages are usually case-sensitive, you cannot integrate
all kinds of URLs into your application. For example, it is not possible to integrate an HTML page
which is not a Natural for Ajax page into a Natural for Ajax workplace application using the
NJX:XCIWPACCESS2 control.

Important: Set the parameter natuppercase="true" before you implement yourmain program
with Natural for Ajax. If you set this parameter after the implemention, you will have to
change all Latin lower-case characters to upper-case manually.

The following shows an implementation of the sample program CTRSUB-P from the Natural for
Ajax demos which runs with natuppercase="true".

Tip: You often need to use an ampersand (&) as a separator between the parameters in a
URL. The Hebrew code page CP803 does not support the character "&". Therefore, you
need to specify the ampersand in yourNatural code as aUnicode character, as shown below.

61

DEFINE DATA LOCAL
1 ARTICLE (U) DYNAMIC
1 INNERPAGE

2 CHANGEINDEX (I4)
2 PAGE (U) DYNAMIC
2 PAGEID (U) DYNAMIC

1 MYCONTEXT
2 SELECTEDARTICLE (U) DYNAMIC

1 MYTITLEPROP (U) DYNAMIC
END-DEFINE
*
INNERPAGE.CHANGEINDEX := 0
*
COMPRESS '/CISNATURAL/NATLOGON.HTML'

UH'0026' 'XCIPARAMETERS.NATSESSION=WORKPLACE'
UH'0026' 'XCIPARAMETERS.NATPARAMEXT=STACK%3D%28LOGON+SYSEXNJX%3BCTRSBI-P%29'
TO INNERPAGE.PAGE LEAVING NO

INNERPAGE.PAGEID := 'MYID'
INNERPAGE.CHANGEINDEX := INNERPAGE.CHANGEINDEX+1
*
PROCESS PAGE USING "CTRSUB-A"
*
DECIDE ON FIRST *PAGE-EVENT

VALUE U'NAT:PAGE.END', U'NAT:BROWSER.END'
IGNORE

VALUE U'SHOWDETAILS'
MYCONTEXT.SELECTEDARTICLE := ARTICLE
INNERPAGE.CHANGEINDEX := INNERPAGE.CHANGEINDEX + 1
PROCESS PAGE UPDATE FULL

NONE VALUE
PROCESS PAGE UPDATE

END-DECIDE
*
END

Natural Pages Development62

Code Pages

12 Test Automation of Natural for Ajax Applications

■ General Information ... 64
■ Enabling the Applications for Test Automation ... 64
■ Advanced testtoolid Settings in Complex Controls .. 67

63

General Information

Natural for Ajax is based on runningHTML pages in a browser. These pages are designed as XML
page layouts.

Test automation tools like Selenium (see http://docs.seleniumhq.org/) need to locate specificHTML
elements in anHTMLpage to either check or adapt the content or to trigger corresponding events.
In a Selenium test program, the developer usually passes identifiers using the Selenium Java API
which enable Selenium to locate the elements for testing.

For stable automated tests, it is extremely important to use stable identifiers. For instance, rearran-
ging controls in a layout or adding an additional control must not change the identifiers. For the
most common controls, Natural for Ajax automatically generates stable identifiers, the so-called
“test tool IDs”. They are generated as data-testtoolid attributes into the HTML page. Test tools
like Selenium can use this data-testtoolid attribute to locate the element.

The following gives a brief introduction for using stable identifiers inNatural for Ajax applications.

Enabling the Applications for Test Automation

All Natural for Ajax applications automatically generate stable identifiers for the most common
controls. So a developer need not do anything to set them.

Let us have a look at the helloworld.xml page layout of the njxdemos. The most interesting controls
for automated tests are the FIELD and BUTTON controls.

FIELD Control

In the following example, you see that the valueprop property is set in the FIELD control, but the
testtoolid property is not explicitly set.

Natural Pages Development64

Test Automation of Natural for Ajax Applications

http://docs.seleniumhq.org/

If a value for the testtoolid property is not explicitly set in a FIELD control, the HTML will
contain a data-testtoolid attribute with the value of the valueprop property. This is shown in
the HTML snippet below. You do not need to understand all the HTML details. The snippet just
shows that a data-testtoolid attribute is automatically generated for a FIELD control; you do
not have to do anything.

...
<input id="F_13" name="CC" class='FIELDInputEdit'
data-testtoolid='yourname' type="text" style="width: 185px;">
...

Caution: The above HTML code contains the id attribute with the value F_13. Do not use
this in your test tool. It will break your tests sooner or later because it is not stable. For ex-
ample, if you add another FIELD control in front of the yourname FIELD control, the id of
the yourname FIELD control will change its value to F_14.

BUTTON Control

In the BUTTONcontrol, the method property is set. Again, the testtoolid property is not explicitly
set.

65Natural Pages Development

Test Automation of Natural for Ajax Applications

For a BUTTON control, a data-testtoolid attribute with the value of the method property is
automatically generated as shown in the HTML snippet below. Again, you need not understand
all the HTML details, just look at the data-testtoolid attribute.

...
<button type="button" id="B_17" data-testtoolid='onHelloWorld'

style="width: 185px; height: 80px;" name="CC"
class="BUTTONInput">

...

XPATH Expression

With the Selenium tool, for example, you can locate the FIELD and BUTTON controls using an
XPATH expression which contains the data-testtoolid value. This XPATH expression can be
passed to the Selenium locator org.openqa.selenium.By.ByXPath:

By myfieldlocator = new ByXPath(".//*[@data-testtoolid='yourname"]");
By mymemthodlocator = new ByXPath(".//*[@data-testtoolid='onHelloWorld"]");

See http://docs.seleniumhq.org/ for more information about the Selenium Java API.

Natural Pages Development66

Test Automation of Natural for Ajax Applications

http://docs.seleniumhq.org/

Explicit testtoolid

In some cases, you may not want to use the valueprop property of a control as the testtoolid.
Instead, you want to specify your own testtoolid. Examples for this are layouts in which several
controls are bound to the same Natural data field. You can then simply set an explicit testtoolid
property for each of these controls.

...
<input id="F_13" name="CC" class='FIELDInputEdit'
testtoolid='myowntesttoolid' type="text" style="width: 185px;">
...

Advanced testtoolid Settings in Complex Controls

For complex controls, a single testtoolid is not enough to locate the individual parts of the control.
The following table provides examples for themost commonXPATHexpressions for some complex
controls.

67Natural Pages Development

Test Automation of Natural for Ajax Applications

XPATH
testtoolid

Control

testtoolid="myiconlist"ICONLIST .//*[@data-testtoolid='myiconlist0'],
.//*[@data-testtoolid='myiconlist1'],...

testtoolid="mybuttonlist"BUTTONLIST .//*[@data-testtoolid='mybuttonlist0'],
.//*[@data-testtoolid='mybuttonlist1'],...

testtoolid="lines"ROWTABLEAREA2 .//*[@data-testtoolid='lines_table']

Rows/columns:

.//*[@data-testtoolid=’lines.items[0].<col1testtoolid>’]

.//*[@data-testtoolid=’lines.items[0].<col2testtoolid>’]...

.//*[@data-testtoolid=’lines.items[1].<col1testtoolid>’]

.//*[@data-testtoolid=’lines.items[1].<col2testtoolid>’]...

testtoolid="mytabs"ROWTABSUBPAGES .//*[@data-testtoolid='mytabs0'],
.//*[@data-testtoolid='mytabs1'],...

XPATH for entries:testtoolid="mychoice"MULTISELECT

.//*[@data-testtoolid='mychoice0'],

.//*[@data-testtoolid='mychoice1'],...

XPATH for buttons:

.//*[@data-testtoolid='mychoicebutton0'],

.//*[@data-testtoolid='mychoicebutton1'],

.//*[@data-testtoolid='mychoicebutton2'],

.//*[@data-testtoolid='mychoicebutton3']...

testtoolid="lines"BMOBILE:SIMPLEGRID .//*[@data-testtoolid='lines']

Column text:

.//*[@data-testtoolid='lines']
1.row/1.column //*[@data-testtoolid='lines']//tr[1]/td[1]
1.row/2.column.//*[@data-testtoolid='lines']//tr[1]/td[2]
2.row/1.column .//*[@data-testtoolid='lines']//tr[2]/td[1]

Button to enable editing

Select the row/column:

Natural Pages Development68

Test Automation of Natural for Ajax Applications

XPATH
testtoolid

Control

//*[@data-testtoolid='lines']//tr[1]/td[1]

Use the className ‘SIMPLEGRIDEditbutton’ to select the button.

Selenium example:

driver.findElement(By.xpath(".//*[@data-testtoolid='lines']//tr[1]/td[2]")).findElement(By.className("SIMPLEGRIDEditbutton"));

Input field of editable column:

.//*[@data-testtoolid='SIMPLEGRIDColinput’]

OK Button editable column:

.//*[@data-testtoolid='SIMPLEGRIDColinputok’]

Cancel Button editable column:

.//*[@data-testtoolid='SIMPLEGRIDColinputok’]

In complex controls, you need not explicitly set the testtoolid property in the page layout. If
you do not specify any testtoolid, the corresponding *prop properties such as valueprop,
griddataprop, iconlistprop or pagespropwill be used.

Here is the table from above when not specifying a testtoolid explicitly:

XPATH
*prop

Control

iconlistprop="myiconlist"ICONLIST .//*[@data-testtoolid='myiconlist0'],
.//*[@data-testtoolid='myiconlist1'],...

buttonlistprop="mybuttonlist"BUTTONLIST .//*[@data-testtoolid='mybuttonlist0'],
.//*[@data-testtoolid='mybuttonlist1'],...

griddataprop="lines"ROWTABLEAREA2 .//*[@data-testtoolid='lines_table']

Rows/columns:

.//*[@data-testtoolid=’lines.items[0].<col1testtoolid>’]

.//*[@data-testtoolid=’lines.items[0].<col2testtoolid>’]...

.//*[@data-testtoolid=’lines.items[1].<col1testtoolid>’]

.//*[@data-testtoolid=’lines.items[1].<col2testtoolid>’]...

69Natural Pages Development

Test Automation of Natural for Ajax Applications

XPATH
*prop

Control

pagesprop="mytabs"ROWTABSUBPAGES .//*[@data-testtoolid='mytabs0'],
.//*[@data-testtoolid='mytabs1'],...

XPATH for entries:valueprop="mychoice"MULTISELECT

.//*[@data-testtoolid='mychoice0'],

.//*[@data-testtoolid='mychoice1'],...

XPATH for buttons:

.//*[@data-testtoolid='mychoicebutton0'],

.//*[@data-testtoolid='mychoicebutton1'],

.//*[@data-testtoolid='mychoicebutton2'],

.//*[@data-testtoolid='mychoicebutton3']...

gridprop="lines"BMOBILE:SIMPLEGRID .//*[@data-testtoolid='lines']

Column text:

.//*[@data-testtoolid='lines']
1.row/1.column //*[@data-testtoolid='lines']//tr[1]/td[1]
1.row/2.column.//*[@data-testtoolid='lines']//tr[1]/td[2]
2.row/1.column .//*[@data-testtoolid='lines']//tr[2]/td[1]

Button to enable editing

Select the row/column:

//*[@data-testtoolid='lines']//tr[1]/td[1]

Use the className ‘SIMPLEGRIDEditbutton’ to select the button.

Selenium example:

driver.findElement(By.xpath(".//*[@data-testtoolid='lines']//tr[1]/td[2]")).findElement(By.className("SIMPLEGRIDEditbutton"));

Input field of editable column:

.//*[@data-testtoolid='SIMPLEGRIDColinput’]

OK Button editable column:

Natural Pages Development70

Test Automation of Natural for Ajax Applications

XPATH
*prop

Control

.//*[@data-testtoolid='SIMPLEGRIDColinputok’]

Cancel Button editable column:

.//*[@data-testtoolid='SIMPLEGRIDColinputok’]

71Natural Pages Development

Test Automation of Natural for Ajax Applications

72

	Natural Pages Development
	Table of Contents
	Natural Pages Development
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Developing the User Interface
	Starting the Development Workplace
	Creating an Application Designer Project
	Creating a Natural Page
	Specifying Properties for the Natural Page
	Designing the Page
	Binding Properties and Methods
	Previewing the Layout
	Viewing the Protocol
	Saving the Layout
	Generating the Adapter
	Data Type Mapping
	Configuration of Page Layout Errors/Warnings
	Problem Group: Valid Value of Properties
	Problem Group: Data and Event Binding
	Problem Group: Height and Width Properties
	Problem Group: Obligatory and Recommended Properties and Controls
	Problem Group: Container - Control Hierarchy
	Problem Group: Property Combination
	Problem Group: Deprecated Controls and Properties
	Problem Group: FOP Layout Definitions
	Problem Group: Runtime Behavior

	3 Developing the Application Code
	Importing the Adapter
	Importing the Adapter Using Natural Studio

	Creating the Main Program
	Structure of the Main Program
	Handling Page Events
	Built-in Events and User-defined Events
	Sending Events to the User Interface
	Using Pop-Up Windows
	Using Natural Maps
	Navigating between Pages and Maps
	Using Pages and Maps Alternatively
	Starting a Natural Application from the Logon Page
	Starting a Natural Application with a URL

	4 Deploying the Application
	Components of a Natural for Ajax Application
	Unloading the Natural Modules
	Installing the Natural Modules
	Packaging the User Interface Components
	Deploying the User Interface Components
	Packaging and Deployment as a Web Application
	Generating HTML Pages Using the Command Line
	<layout>.protocol files
	HTMLGeneratorWholeDirectory.log
	<layout>.log files

	5 Natural Parameters and System Variables
	6 Usage of Edit Masks
	General Information
	Data Types with Edit Masks
	Edit Masks for Numeric Fields
	Edit Masks for Alphanumeric Fields
	Edit Masks for Date and Time Fields
	Edit Masks for Logical Fields

	Natural Profile Parameters
	Specifying Edit Masks in Layouts
	Edit Masks at Runtime

	7 Multi-Language Management in Ajax
	8 Support of Right-to-Left Languages
	9 Server-Side Scrolling and Sorting
	General Information
	Variants of Server-Side Scrolling and Sorting
	No Server-Side Scrolling and Sorting
	Web Server-Side Scrolling and Sorting
	Natural Server-Side Scrolling and Sorting

	Controls that Support Server-Side Scrolling and Sorting
	Data Structures for Server-Side Scrolling and Sorting
	Server-Side Scrolling and Sorting in Trees
	Events for Server-Side Scrolling and Sorting

	10 Accessibility
	Accessibility Non Responsive Pages
	Accessibility Responsive Pages

	11 Code Pages
	12 Test Automation of Natural for Ajax Applications
	General Information
	Enabling the Applications for Test Automation
	Advanced testtoolid Settings in Complex Controls

