
Natural for Ajax

Natural Custom Controls

Version 9.3.2

February 2025

This document applies to Natural for Ajax Version 9.3.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NJX-NATNJX-CUSTOMCONTROLS-932-20250213

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Overview ... 5
3 Control Concept .. 7

Page Generation ... 8
Tag Handlers and Macro Tag Handlers ... 9
Library Concept ... 13
Binding Concept ... 14
Integrating Controls into the Layout Painter ... 15
Summary .. 17

4 Creating Macro Controls Out of Existing Controls ... 19
General Information ... 20
Creating Macro Controls .. 21

5 Creating New Controls .. 29
Concept .. 30
Njxdemos Sample Control: NADC:TEXTCONTROL1 .. 30
JavaScript Functions ... 31
Njxdemos Sample Control: NADC:TEXTCONTROL3 .. 33
Summary .. 34

6 Special Issues ... 35
Protocol Item .. 36
Bringing Controls into the Layout Painter - Data Types .. 37
Array Binding ... 37
Text ID/Multi Language Controls .. 38

iii

iv

Preface

This documentation provides information on how to develop your own custom controls with
Natural for Ajax. It is organized under the following headings:

General information about custom controls and when to use
them.

Overview

Details about the control concept and how to create custom
controls.

Control Concept

How to create macro controls from existing controls.CreatingMacroControlsOut of Existing
Controls

How to create completely new controls.Creating New Controls

Additional advanced topics for control creation.Special Issues

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Natural Custom Controls2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareGmbHproducts provide functionalitywith respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

3Natural Custom Controls

About this Documentation

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Overview

This documentation provides information on theNatural forAjax control concept. It is recommen-
ded that you first become familiar with the “normal development” of screens inside Natural for
Ajax.

When do you need custom controls? In general there are two cases:

1. You want to combine existing controls to form complex controls with a certain dedicated task.
Maybe you want to define an “address area” control which consists of a certain arrangement
of fields and labels that form an address. These kinds of controls are called “macro controls”
in this documentation - you take what is available and group it into certain units.

2. You want to create new controls - maybe you need some special kind of icon with a certain
behavior.

While macro controls do not require to deal with JavaScript and HTML, creating completely new
controls requires knowledge of JavaScript andHTMLand the use of the JavaScript library functions
that are available via the Natural for Ajax framework.

Natural for Ajax supports a flexible and open control framework. The basic concepts of this control
framework are XMLas the layout definition format and interfaces for integrating control definitions
into the page generation process of Natural for Ajax. This framework is not specific to custom
controls. All Natural for Ajax controls are using this control framework themselves.

The first concept is the definition of controls, that is, control tags with certain attributes which you
can integrate via a tag library concept into layout definitions. The second concept is the binding
of the control to server-side Natural adapter fields and events. Following the strict Natural for
Ajax architecture, dynamic controls have to transfer their data at runtime to/fromNatural adapter
fields. This binding concept is important for new controls and for macro controls:

■ When creating new controls, you want to bind the control to corresponding Natural adapter
fields and events.

5

■ When creatingmacro controls (for example, an address area), you sometimeswant your control
to provide some additional server-side logic. For advanced controls, this logic may go beyond
the logic of the single controls which make up the macro control.

Natural Custom Controls6

Overview

3 Control Concept

■ Page Generation ... 8
■ Tag Handlers and Macro Tag Handlers .. 9
■ Library Concept .. 13
■ Binding Concept .. 14
■ Integrating Controls into the Layout Painter .. 15
■ Summary ... 17

7

Page Generation

The page generation is the process of transferring an XML layout definition into an
HTML/JavaScript page. It is automatically executed inside the Layout Painter when previewing
a layout. It can also be called from outside.

A generator program (com.softwareag.cis.gui.generate.HTMLGenerator) is receiving a string
which contains the XML layout definition. The generator program parses this string with an XML
parser and as a consequence processes the string tag by tag.

The generation of HTML pages is done in two steps:

■ Macro Execution
First, each tag of the XML layout is checked if it is a so-called “macro tag”. A macro tag is a tag
which does not produce HTML/JavaScript output itself but which itself produces XML tags.
Imagine a control rendering an address input: this control is using existing controls in order to
create somedefined output area representing an address. TheHTML/JavaScript is not produced
by the address control directly - the address control internally creates other controls (such as
fields or buttons) which themselves produce corresponding HTML/JavaScript code.

Natural Custom Controls8

Control Concept

The execution of macro tags is recursively done until no macro tag is contained in the XML
layout anymore; that is, macro tags themselves can internally use macro tags.

■ HTML Generation
After having executed the macros, the rendering of HTML/JavaScript is started. This is done by
calling corresponding tag handlers for each tag. A tag handler is a Java class and is applied to
the corresponding tag via naming conventions. The HTML generator instantiates objects of a
tag handler class for the tags and calls corresponding methods of these tag handlers.

Each tag handler is called via a defined interface
(com.softwareag.cis.gui.generate.ITagHandler) and can contribute to the generation process.
All tag data, including the properties from the layout definition, is passed to the tag handler.
In addition, a string with the current HTML/JavaScript is passed and the tag handler can add
its control-specific HTML/JavaScript to this HTML/JavaScript string.

A tag handler instance is called at three different points of time by the generator:

■ when the tag is starting (for example, the generator finds "<page…>"),
■ when the tag is closing (for example, the generator finds "</page>"),
■ when the generator creates a defined JavaScriptmethodwhich is called at runtime in the browser
when the page is loaded.

It is now the task of the tag handler to create HTML/JavaScript statements at the right point of
time.

Tag Handlers and Macro Tag Handlers

As described above for the HTML generation, control-specific tag handlers are called. The macro
execution is either completely done based on XML definitions (see Creating Macro Controls Out
of Existing Controls) or you can also implement a specific macro tag handler. This macro tag
handler is then called during the macro execution. In case the macro execution is completely done
based on XML definitions, a general macro tag handler is used internally.

Macro tag handlers and tag handlers are Java classes which implement specific interfaces. The
corresponding classes are applied to the tags via the following naming convention: for a tag
<mytag>, the corresponding Java class must have the name "MYTAGHandler".

The following topics describe the tag handler and the macro tag handler interfaces in more detail:

■ Macro Tag Handlers (IMacroTagHandler)
■ Tag Handlers (ITagHandler)
■ Call Sequence (IMacroTagHandler and ITagHandler)

9Natural Custom Controls

Control Concept

■ Extensions of IMacroTagHandler and ITagHandler

Macro Tag Handlers (IMacroTagHandler)

The interface com.softwareag.cis.gui.generate.IMacroTagHandler contains twomethodswhich
represent the different points of time when the generator calls the tag handler during the macro
execution phase.

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;
import com.softwareag.cis.gui.protocol.ProtocolItem;

public interface IMacroTagHandler
{

public void generateXMLForStartTag(String tagName,
AttributeList attrlist,
StringBuffer sb,
ProtocolItem pi);

public void generateXMlForEndTag(String tagName,
StringBuffer sb);

}

Detailed information about the methods can be found inside the Javadoc documentation which
is part of your installation.

Tag Handlers (ITagHandler)

The interface com.softwareag.cis.gui.generate-ITagHandler contains threemethods that rep-
resent the different points of time when the generator calls a tag handler during the HTML gener-
ation phase.

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;
import com.softwareag.cis.gui.protocol.*;

public interface ITagHandler
{

public void generateHTMLForStartTag(int id,
String tagName,
AttributeList attrlist,
ITagHandler[] handlersAbove,
StringBuffer sb,
ProtocolItem protocolItem);

public void generateHTMLForEndTag(String tagName,
StringBuffer sb);

Natural Custom Controls10

Control Concept

public void generateJavaScriptForInit(int id,
String tagName,
StringBuffer sb);

}

Detailed information about the methods can be found inside the Javadoc documentation which
is part of your installation.

Call Sequence (IMacroTagHandler and ITagHandler)

A tag is processed by the generator in a certainway that is nowdescribed for theHTMLgeneration
phase. (The macro execution phase is processed in a similar way.)

■ The generator finds the tag, reads its properties and assigns an ID. The ID is unique inside one
page.

■ The generator creates a new instance of the tag handler which is responsible for processing the
tag.

■ The generator calls the generateHTMLForStartTag or generateXMLForStartTagmethod corres-
pondingly. It passes the list of properties, the string bufferwhich represents theHTML/JavaScript
or XML string correspondingly and a protocol item in which the tag handler can store further
information.

■ For tag handlers only: The generator calls the generateJavaScriptForInitmethod. It passes
as main parameter a string representing the method body of the initialisationmethod. You
can append JavaScript statements to this string.

■ (If the generator finds tags below the current tag, these tags are processed in the sameway now.)
■ The generator finds the end tag and calls the generateHTMLForEndTag or generateXMLForEndTag
method correspondingly.

The following image illustrates the call sequence for tag handlers:

11Natural Custom Controls

Control Concept

Be aware of the following:

■ There is one instance of a corresponding tag handler per tag. If there are three button definitions
inside a layout definition, then during generation there are three instances of the BUTTONHandler
class.

■ There is one instance of a protocol item which is passed as parameter per tag. Each tag has its
own protocol item. All the protocol items are collected at generation point of time to form one
generation protocol.

Extensions of IMacroTagHandler and ITagHandler

There are certain interfaces which extend the framework for specific situations:

■ com.softwareag.cis.gui.generate.IMacroHandlerWithSubTags - this is an extension of
IMacroHandler and provides the possibility to also receive subtags of a tag.

■ com.softwareag.cis.gui.generate.ITagWithSubTagsHandler - this is an extension of the
ITagHandler interface and provides the possibility to also receive the subtags of a tag.

■ com.softwareag.cis.gui.generate.IRepeatCountProvider and
com.softwareag.cis.gui.generate.IRepeatBehaviour - these interfaces are responsible for
controlling a specialmanagement for the REPEATprocessing,which you use, for example, inside
grids (ROWTABLEAREA2).

You do not need to know anything about these extensions to create your first controls. Details are
provided inside the Javadoc documentation of your installation.

Natural Custom Controls12

Control Concept

Library Concept

The library concept is responsible for defining the way how the generator finds a tag handler class
for a certain tag. There are two situations:

1. The generator finds a tag without a ":" character. This indicates that this is a control from the
Natural for Ajax product - the according tag handler is found inside the package
com.softwareag.cis.gui.generate, the class name is created by converting the tag name to
upper case and appending "Handler".

For example, if the generator finds the tag "header", it tries to use a tag handler class
com.softwareag.cis.gui.generate.HEADERHandler.

2. The generator finds a tag with a ":" character, for example, demo:address. This indicates that
an external control library is used. There is a central configuration file (<installdir>/config/control-
libraries.xml) which contains the external control library names and the corresponding Java
package names. Besides this central configuration file, also corresponding configuration files
on the user interface level are supported. This is explained later. After having found the package
name, the class name is built in the same way as with standard Application Designer controls.

For example, if the generator finds the tag demo:address and in the configuration file the demo
prefix is assigned to the package com.softwareag.cis.demolibrary, then the full class name of the
tag handler is com.softwareag.cis.demolibrary.ADDRESSHandler.

What happens if the generator does not find a valid class for a certain tag? In this case, it just
copies the tag of the layout definition inside the generated HTML/JavaScript string. Via this
mechanism, it is possible to define, for example, HTML tags inside the layout definition which
are just copied into the HTML/JavaScript generation result.

When writing your own controls, be sure to use a tag name with your own prefix (such as
test:mycontrol) and use your own Java package namewhichmust not startwith com.softwareag.
The tag nameswithout prefixes and the Java package com.softwareag are reserved for theNatural
for Ajax product.

Control Libraries

A control library is a Java library containing ItagHandler/IMacroTagHandler implementations.
The corresponding .jar or .class files can be copied either to the centralWEB-INF/lib orWEB-
INF/classes directory of the cisnaturalweb application, or they can be copied to the ./appclasses/lib
or ./appclasses/classes subdirectory of a user interface component.

The central control file for configuring control libraries in your installation is the file <webapp-
dir>/cis/config/controllibraries.xml. An example of the file looks as follows:

13Natural Custom Controls

Control Concept

<controllibraries>
<library package="com.softwareag.cis.demolibrary"

prefix="demo">
</library>

</controllibraries>

Each library is listed with its tag prefix and with the package name in which the generator looks
for tag handler classes.

As an alternative to this central control file, you can have a file ./cisconfig/controllibraries.xml in your
user interface component (for example, njxdemos/cisconfig/controllibraries.xml). The format of this
file is identical to the central control file controllibraries.xml.

Binding Concept

The normal binding concept between a page and a corresponding class is:

■ Controls refer to properties and methods.
■ For pages implementedwith Java, properties andmethods are directly implemented as set/get
methods or as straight methods inside the adapter class.

As youmight already have read in the part Binding between Page and Adapter of the Special Devel-
opment Topics (part of the Application Designer documentation), the binding is much more
flexible. You can define hierarchical access paths for both methods and properties.

Note: The Application Designer documentation is included in the Natural for Ajax distri-
bution package.

■ For pages implementedwithNatural, properties andmethods aremapped to an internally used
XML representation of the data. The Service Data Objects technology (SDO) is used for manip-
ulating the XML internally (see also http://download.oracle.com/otndocs/jcp/sdo-2_1_1-fr-oth-
JSpec/). The XML is then bound to fields and events in the generated Natural adapter.

If you do not delegate the data binding to already existing controls, you need to call specific
methods in your handler class which add the corresponding data structures to the SDO. The
custom control examples in the Natural for Ajax demos contain corresponding guidelines.

For complex bindings, you sometimes need to implement a corresponding binding class. A
binding class is a Java class which extends the class
com.softwareag.cis.adapter.ndo.NDOCustomControlInfoBase. You sometimes use a binding
class if you want to implement some control functionality which is not appropriate to be imple-
mented in the JavaScript layer. There is also a naming convention for these binding classes. For
a tag demo:address, the name of the binding class would be ADDRESSInfo. The custom control
examples in the Natural for Ajax demos contain corresponding guidelines.

Natural Custom Controls14

Control Concept

http://download.oracle.com/otndocs/jcp/sdo-2_1_1-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/sdo-2_1_1-fr-oth-JSpec/

Integrating Controls into the Layout Painter

Once having created new controls, you want to use them inside the Layout Painter. The Layout
Painter is configured by a set of XML files.

The files with the name editor_*.xml are used to extend the Layout Painter with your own custom
controls. These editor_*.xml files can either be located centrally in <webappdir>/cis/config/ or in a
subfolder cisconfig of a user interface component.

There is a central file editor.xmlwhich defines the central controls that come with the Natural for
Ajax framework. For each control, the properties and how the control fits into other controls is
defined. In addition, data type definitions to provide value help for the properties are defined inside
this file.

In short: editor.xml controls the way in which controls are presented inside the Layout Painter.

When creating new controls, you want to integrate your controls into the Layout Painter, that is,
you want to register them inside editor.xml as well. Instead of letting you directly manipulate edit-
or.xml, there is an extension concept - in order to keep your definitions untouched by release up-
grades. Again naming conventions are used: for a control library named "demo", youwould define
your controls in a filewith the name editor_demo.xml. Thismeans that youwill have one editor_*.xml
file per control library.

Have a look at the editor_demo.xml file:

<!-- DEMO:ADDRESSROWAREA2 -->
<tag name="demo:addressrowarea2">

<attribute name="addressprop" mandatory="true"/>
<protocolitem>
</protocolitem>

</tag>
<tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea2"/>

In this example, a new control demo:addressrowarea2 is defined:

■ It provides one property addressprop.
■ It can be placed into the existing Application Designer control pagebody.

Or have a look at the following section:

15Natural Custom Controls

Control Concept

<!-- DEMO:ADDRESSROWAREA3 -->
 <tag name="demo:addressrowarea3">
 <attribute name="addressprop" mandatory="true"/>
 <taginstance>
 <rowarea name="Address">
 <itr>
 <label name="First Name" width="100">
 </label>
 <field valueprop="$addressprop$.firstName" width="150">
 </field>
 </itr>
 <itr>
 <label name="Last Name" width="100">
 </label>
 <field valueprop="$addressprop$.lastName" width="150">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr>
 <label name="Street" width="100">
 </label>
 <field valueprop="$addressprop$.street" width="300">
 </field>
 </itr>
 <itr>
 <label name="Town" width="100">
 </label>
 <field valueprop="$addressprop$.zipCode" width="50">
 </field>
 <hdist width="5">
 </hdist>
 <field valueprop="$addressprop$.town" width="245">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr>
 <hdist width="100">
 </hdist>
 <button name="Clear" method="$addressprop$.clearAddress">
 </button>
 </itr>
 </rowarea>
 </taginstance>
 <protocolitem>
 <addproperty name="$addressprop$" datatype="ADDRESSInfo" ↩
useincodegenerator="true"/>
 </protocolitem>
 </tag>
 <tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea3"/>

Natural Custom Controls16

Control Concept

The control demo:addressarea3 has the following features:

■ It provides one property addressprop.
■ It contains the macro XML (between <taginstance> and </taginstance>) for building the
control out of existing controls.

■ It binds to an address property of type ADDRESSInfo (between <protocolitem> and
</protocolitem>).

■ It can be positioned below the pagebody control.

Whenever possible we recommend to use the Control Editor to create and edit the editor_*.xml
files.

Summary

When defining new controls, there are the following resources:

■ controllibraries.xml - to define control library prefixes and their binding to a certain Java package
holding control implementations.

■ editor_*.xml - to define the controls and how they fit into existing controls.
■ IMacroTagHandler - implementations that transfer XML control definitions into other XML
control definitions. Remember: Implementing your own macro tag handler is optional. If a
control does not have its ownmacro tag handler, a general macro tag handler is used internally.

■ ITagHandler - implementations that transfer XML control definitions into HTML/JavaScript.
■ NDOCustomControlInfoBase - base class to implement complex data binding or control function-
ality for execution at runtime.

The next section contains examples for building macro controls and new controls.

17Natural Custom Controls

Control Concept

18

4 Creating Macro Controls Out of Existing Controls

■ General Information ... 20
■ Creating Macro Controls ... 21

19

General Information

There are two types of controls that you can create with Natural for Ajax:

■ Graphical Controls
A graphical control transforms an element of an XML layout definition into HTML/JavaScript
code. You can either create completely new controls by writing your own HTML/JavaScript, or
you can reuse existing controls and compose the HTML/JavaScript of these controls to new
controls. The latter is called “macro control”. The recommendation is to use macro controls if
possible and to write your own HTML/JavaScript only if needed.

Example: You can define an address area that comprises several existing controls (such as ITR,
LABEL and FIELD). You call the address area "NADC:ADDRESS" where "NADC" is the library
prefix. The control is a kind of macro that expands a short XML layout definition, which just
contains the NADC:ADDRESS control tag, into a more complex layout definition containing all
the single control tags (such as ITR, LABEL and FIELD).

■ Non-visual Controls
A non-visual control adds some data binding to the layout. It allows your Natural program to
exchange data with the Natural for Ajax framework and the browser client. The control can
decide whether the data is available in the browser or only available in the Natural for Ajax
framework of your web application. Non-visual custom controls are usually defined as macro
controls from existing non-visual controls.

Examples: You would like to define a specific data structure. This structure should be the same
for multiple layouts of your application. To do so, you would define a macro control composed
of several XCIDATADEF controls. Or you would like multiple of your layouts to exchange
context data. To do so, you could define a macro control composed of XCICONTEXT controls.

The following two aspects of macro controls are important:

■ Layout Aspect
From the layout aspect, macro controls help to be flexible regarding design changes. Macro
controls make sure that a certain graphical arrangement of existing controls is not applied to
various page layouts by using copy-and-paste, but by using a proper control definition. When
changing the control definition and re-generating the layout definitions that use the control, all
changes in the control are automatically propagated to the page layouts.

■ Server-side Aspect
From the server-side aspect, a macro control may have pre-designed server-side Natural data
fields and events that can be associated with it. For example, an address control may trigger an
event on the Natural server to check the validity of a zip code that the user has specified.

Natural Custom Controls20

Creating Macro Controls Out of Existing Controls

Creating Macro Controls

Creating a macro control consists of the following steps:

■ Defining a New Control Library
■ Defining the Control Attributes and Control Hierarchy (Subtags, Container)
■ Definining/Implementing the Rendering of the Control
■ Implementing the Control's Server-Side Processing (Optional)
■ Putting Things to Work

The topics below describe a sample control which is used to specify an address.

We recommend that you use all-lowercase letters for prefixes, control names and attributed names.
A good example for this is:

nadc:zipcodecity

A bad example would be the following:

NaDc:zipCodeCity

Defining a New Control Library

Each control that is not supplied by Software AG requires a prefix that ensures that controls sup-
plied by different providers can be usedwithin one page. In our example, we use the prefix "nadc"
for “Natural for Ajax Demo Controls”.

The setup is done in the file <project>/cisconfig/controllibraries.xml.

An example for registering the nadc library would be:

<library prefix="nadc"
package="mycontrols.nadc">

</library>

The package that is included in the definition is the Java package that contains corresponding tag
handlers (optional).

Note: In order to activate new control libraries, you must restart the Tomcat server. For
NaturalONE, this means restarting Eclipse.

21Natural Custom Controls

Creating Macro Controls Out of Existing Controls

Defining the Control Attributes and Control Hierarchy (Subtags, Container)

For our nadc control library, we create the file editor_nadc.xml. This file can be created using the
Control Editor.

In the Control Editor, set up the file editor_nadc.xml. One file can contain a number of controls. For
each control, you specify the following:

The name of the control
In our example, this is "nadc:address". Be sure to add the prefix when entering the name.

The control's attributes
This is the list of attributes that a user of the controlmust specifywhen using the control inside
a page. In our example, the control "nadc:address" has the following attribute:

addressprop
A reference to the runtime property implementation.

Positioning definitions
These specify where the control can be added inside a layout definition. They are used by the
layout editor, which only allows controls to be placed in the specified positions.

The positioning definitions include:

Name of the section in the controls palette
The layout editor arranges all controlswithin the controls palette. This palette is structured
into sections. If the name of a section does not yet exist, a new section is created automat-
ically. In our example, the name of the section is "NJXDemos".

Embedding containers
A list of all controls which allow the new control to be positioned inside it. In our example,
we decide to position the controls below "pagebody", "rowarea", "colarea" and "splitcell".

After maintaining the information in the Control Editor, the content of the file editor_nadc.xml is
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<controllibrary>

<editor>
<tag name="nadc:address">
<attribute name="addressprop" mandatory="true"/>
<taginstance>
</taginstance>
<protocolitem>
</protocolitem>

</tag>
<tagsubnodeextension control="pagebody" newsubnode="nadc:address"/>
<tagsubnodeextension control="rowarea" newsubnode="nadc:address"/>
<tagsubnodeextension control="colarea" newsubnode="nadc:address"/>
<tagsubnodeextension control="splitcell" newsubnode="nadc:address"/>
<taggroupsubnodeextension group="NJXDemos" newsubnode="nadc:address"/>

Natural Custom Controls22

Creating Macro Controls Out of Existing Controls

</editor>
</controllibrary>

Definining/Implementing the Rendering of the Control

You can define the rendering either in a descriptive way (XML) in the editor_nadc.xml file or you
can define it by implementing a tag handler. The Natural for Ajax demos contain examples for
both options. Here, we will describe how to implement the rendering using a tag handler. The tag
handler is a Java class which defines how the control's “short XML” (for example, <nadc:address
addressprop=’person’/>) is transformed into an XML layout definition which itself contains
standard controls or own controls. The tag handler class must extend the interface
IMacroTagHandler. For details, see the corresponding Java API documentation. The tag handler
has to take care of two main issues:

■ defining the rendering of the control;
■ defining data bindings (advanced usage).

First, we discuss the sample "nadc:address" control. The tag handler is implemented in the package
com.softwareag.cis.test.customcontrols; this is the package thatwas definedwith the control
library prefix "nadc" in the configuration file controllibraries.xml. The name of the tag handler class
follows the convention <controlInUpperCase>Handler, in our case "ADDRESSHandler".

package com.softwareag.cis.test.customcontrols;

import org.xml.sax.AttributeList;

import com.softwareag.cis.gui.generate.IMacroTagHandler;
import com.softwareag.cis.gui.generate.IXSDGenerationHandler;
import com.softwareag.cis.gui.protocol.Message;
import com.softwareag.cis.gui.protocol.ProtocolItem;

public class ADDRESSHandler
implements IMacroTagHandler

{

public void generateXMLForStartTag(String tagName,
AttributeList attributes,
StringBuffer xml,
ProtocolItem protocolItem)

{
// read attributes
String ap = attributes.getValue("addressprop");
// rendering
xml.append
(

"<rowarea name='Address'>" +
"<itr>" +
"<label width='120' name='First/ Last Name'/>" +
"<field valueprop='"+ap+".firstName' width='150'/>" +

23Natural Custom Controls

Creating Macro Controls Out of Existing Controls

"<hdist width='5'/>" +
"<field valueprop='"+ap+".lastName' width='150'/>" +

"</itr>" +
"<itr>" +
"<label width='120' name='Street'/>" +
"<field valueprop='"+ap+".street' width='305'/>" +

"</itr>" +
"<itr>" +
"<label width='120' name='Zip Code/ City'/>" +
"<field valueprop='"+ap+".zipCode' width='80'/>" +
"<hdist width='5'/>" +
"<field valueprop='"+ap+".city' width='220'/>" +
"<hdist width='10'/>" +
"<button name='Check' method='"+ap+".onCheck'/>" +

"</itr>" +
"</rowarea>"

);
IXSDGenerationHandler xga = protocolItem.findXSDGenerationHandler();

xga.addControlInfoClass(protocolItem, ap, ADDRESSInfo.class);
}

public void generateXMlForEndTag(String arg0, StringBuffer arg1)
{
}

}

Here are the major processing steps of the tag handler:

■ The attribute addressprop is read from the control definition and stored in the variable ap.
■ The XML layout definition is appended by adding controls such as ROWAREA and FIELD.
Note that inside the rendering definition, property and method references are prefixed with
"ap" and "." (period).

■ The ADDRESS control implements some advanced binding (optional). As seen later, some part
of the control functionality is implemented in a corresponding binding class. This binding class
ADDRESSInfo is registered as the server-side counterpart of the control at an
IXSDGenerationHandler interface.

Natural Custom Controls24

Creating Macro Controls Out of Existing Controls

Implementing the Control's Server-Side Processing (Optional)

You can apply binding objects to controls. The association of a control to a binding object is specified
in the control's tag handler via the method addControlInfoClass of the interface
IXSDGenerationHandler.

The server binding objects are optional. They may encapsulate functions with the control which
are executed for the control on the server side. Example: In our address control, a zip code validity
checkwill be added. This check is automatically executedwithin the controlwhen the user presses
the Check button that is part of the control's rendering.

This server-side processing for a control is defined in a class that extends the existing class
NDOCustomControlInfoBase. See the following code:

package com.softwareag.cis.test.customcontrols;

import com.softwareag.cis.adapter.ndo.NDOCustomControlInfoBase;
import commonj.sdo.DataObject;

public class ADDRESSInfo
extends NDOCustomControlInfoBase

{
public void onCheck()
{

// first execute the control's logic
DataObject address = getDataObject();
String zipCode = address.getString("zipCode");
String city = address.getString("city");
if ("64297".equals(zipCode) &&

(city == null || city.length() ==0))
{

address.set("city","Darmstadt");
}
// delegate the method to the normal event processing
super.invokeMethod("onCheck");

}
}

We recommend the following guidelines:

■ The class's package should be the same as with the handler class.
■ The name of the class is <controlInUpperCase>Info.

The class extends the class NDOCustomControlInfoBasewhich is supplied with Natural for Ajax.
The base class provides some useful functions:

■ It provides the properties for the contained content (that is, "firstName", "lastName", "street",
etc.).

25Natural Custom Controls

Creating Macro Controls Out of Existing Controls

■ It provides a binding to the SDO to which the control refers. In the address example, the control
binds to an "addressprop", all detail properties are defined to be "<valueOfAddressProp>.first-
Name", "<valueOfAddressProp>.lastName", etc. Themethod getDataObject() returns the SDO
object that represents the control.

■ It provides a function to map methods to events in the Natural adapter code. If you control a
specific execution for amethod inside the control (in the example, this is the onCheck()method),
you can delegate the event to the normal Natural adapter event handling after having handled
the control-specific matters.

Putting Things to Work

Now we show how to use the control within a page.

When you open the Layout Painter, you can see a new section in the controls palette which has
the name "NJXDemos". In this section, you can find the control "nadc:address".

If you define a layout as follows:

<natpage>
...
<pagebody>

...
<nadc:address addressprop="person">
</nadc:address>
...

</pagebody>
...

</natpage>

the corresponding page looks as shown below:

Natural Custom Controls26

Creating Macro Controls Out of Existing Controls

When you run a corresponding Natural program with this layout and you then enter "64297" in
the field defined by zipCode and choose the Check button, the name of the corresponding city is
“calculated” by the control processing. Note that the event person.onCheck is then delegated to
the normal Natural adapter event processing. This means that this method can be implemented
just as a normal event in the Natural program.

Important: To activate/refresh new/changed controls in existing control libraries, you must
choose the Use latest Version for Applications in new Session, Refresh Text Buffer and
Refresh Layout Repository Buffer buttons in the monitoring tool.

27Natural Custom Controls

Creating Macro Controls Out of Existing Controls

Natural Custom Controls28

Creating Macro Controls Out of Existing Controls

5 Creating New Controls

■ Concept .. 30
■ Njxdemos Sample Control: NADC:TEXTCONTROL1 .. 30
■ JavaScript Functions .. 31
■ Njxdemos Sample Control: NADC:TEXTCONTROL3 .. 33
■ Summary ... 34

29

Concept

In the previous section, you learned how to create macro controls out of existing controls. You
will now learn how to build completely new controls which are not yet part of the Application
Designer control set.

The concept of building your own controls is to insert correspondingHTMLand JavaScript instruc-
tions into the HTML page which is the result of the generation process.

A JavaScript function library is available which can be directly accessed inside the HTML code
which is generated. This library contains useful methods for accessing properties as well as trig-
gering event execution and/or taking part in the execution of events.

Njxdemos Sample Control: NADC:TEXTCONTROL1

For the sample layout, see the file customcontrols3.xml in the njxdemos/xml folder.
NADC:TEXTCONTROL1 is a quite simple example of a new control: It does nothing else than
writing text which is passed via a static tag attribute into the generated HTML page:

The corresponding XML layout definition looks as follows:

<rowarea name="Pure JavaScript/HTML...">
<vdist height="10"></vdist>
<itr>

<nadc:textcontrol1 text="Some Static TEXT">
</nadc:textcontrol1>

</itr>
<vdist height="10"></vdist>

</rowarea>

You see that the text which is passed inside the text attribute of the NADC:TEXTCONTROL1 tag
is displayed inside the control in bold letters.

For details on the corresponding tag handler, see the description and the source code for the
CUSTC3-P.NSP example in the Natural for Ajax demos.

Natural Custom Controls30

Creating New Controls

JavaScript Functions

For more interactive controls - for example, which use certain data coming from the server-side
adapter - you need to access certain JavaScript functions which are available inside the client. The
generated HTML page contains an object named "csciframe". This object provides a certain set of
functions for usage from within custom controls.

It is not possible in JavaScript to arrange a set of published functions in some kind of interface in
order to only allow users a dedicated access. Therefore, the functions which are allowed to access
are listed in this section. You must not use any other functions of the Ajax framework - even if
you may see additional functions in the JavaScript sources. Only the following functions belong
to the public Java Script library:

DescriptionFunction

Sets a property value inside the adapter. The value is not directly sent to the
server but is buffered first in the client. If there is a synchronization event,
then the buffer is transferred.

setPropertyValue(pn,pv)

pn = name of property

pb = value

Examples:

csciframe.setPropertyValue(companyName,"Software AG");

csciframe.setPropertyValue(address.firstName,"John");

csciframe.setPropertyValue(addresses[2].firstName,"Maria");

Reads a property value from the adapter (better: the client representation of
the adapter).

getPropertyValue(pn)

pn = name of property

result = string of property value

Examples:

var vResult1 = csciframe.getPropertyValue("company");

var vResult2 =
csciframe.getPropertyValue("addresses[2].firstName");

Pay attention: the adapter value is always passed back as a string.

A boolean value, as a consequence, is returned as "true" string and not as
"true" boolean value.

31Natural Custom Controls

Creating New Controls

DescriptionFunction

Null values of the adapter, that is, where the Java adapter class on the server
side passes back "null", are returned as an empty string ("").

A JavaScript null value is passed back if the property for which you ask does
not exist.

Passes a method pointer (me value). The method is called every time when a
response of a client request is processed. In other words: every time new data

registerListener(me)

comes from the server or if themodel is updated in anotherway (for example,
by flush signals of other controls), then the correspondingmethods are called.
In themethod, you can place a corresponding reaction of your control on new
data.

Themethodwhich you passmust have a parameter model - which is not used
anymore, but which has to be defined.

Example:

...

...
function reactOnNewData(model)
{
var vResult = csciframe.getPropertyValue("firstName");
alert(vResult);

}
...
...
csciframe.registerListener(reactOnNewData);
...
...

Invokes the calling of amethod inside the adapter. As a consequence, the data
changes which may have been buffered inside the client are flushed to the
server and the method is called.

invokeMethodInModel(mn)

mn = name of adapter method

Example:

csciframe.invokeMethodInModel("onSave");

Synchronizes the client with the server. Analogous to the
invokeMethodInModel()method from the synchronization point of view
- but now without calling an explicit method in the adapter.

submitModel(n)

n = name, must be submit

Example:

csciframe.submitModel("submit");

Natural Custom Controls32

Creating New Controls

Njxdemos Sample Control: NADC:TEXTCONTROL3

The following example is an extension of the above NADC:TEXTCONTROL1 example. Whereas
in the NADC:TEXTCONTROL1 control, the text to be output by the control was defined at design
time as a static attribute of the tag definition, the text is now dynamically derived from an adapter
property. The adapter sets the final text value during a server roundtrip.

The corresponding XML layout definition looks as follows:

<rowarea name="With own Data Binding...">
 <vdist height="10"></vdist>
 <itr>
 <label name="Your name" width="100">
 </label>
 <field valueprop="yourname" width="200" flush="server" ↩
flushmethod="onNameChanged">
 </field>
 </itr>
 <vdist height="10"></vdist>
 <itr>
 <nadc:textcontrol3 textprop="hellotext" >
 </nadc:textcontrol3>
 </itr>
 <vdist height="10"></vdist>
</rowarea>

The NADC:TEXTCONTROL3 generates an own adapter property. This results in the generation
of a data field in the Natural adapter.

For details on the corresponding tag handler, see the description and the source code for the
CUSTC3-P.NSP example in the Natural for Ajax demos.

33Natural Custom Controls

Creating New Controls

Summary

Writing new controls requires a profound knowledge of HTML and JavaScript. In principle,
everything is simple, but there are a couple of pieces which have to be put together in order to
form a control properly:

■ You have to render the control via HTML.
■ You have to manipulate the control via JavaScript - in case you have a dynamic control.
■ You have to bind the control to adapter properties/methods.
■ You have to pay attention to the fact that all controls are living in the same page - and there
must not be any confusion with naming of IDs and method names.

■ You have to use the JavaScript initialization for registering your control inside the internal
eventing when new page content arrives inside the client.

■ You have to properly fill the protocol item.

Some topics have been mentioned here, but have not been fully explained. For more information,
see Special Issues.

Natural Custom Controls34

Creating New Controls

6 Special Issues

■ Protocol Item .. 36
■ Bringing Controls into the Layout Painter - Data Types .. 37
■ Array Binding .. 37
■ Text ID/Multi Language Controls ... 38

35

Protocol Item

Inside a tag handler, a protocol item is passed in the called methods. There are some mandatory
tasks that you have to do with a protocol item:

■ You must tell the protocol item every property you are referencing from your control.

This information is required because only these properties are transferred from the server to
the client at runtime which are referenced inside the page.

■ You must tell the protocol item every text ID you are referencing from your control.

Again this information is used to send the right text IDs to the client processing.

In case of using macro controls, one macro control is rendered into many normal controls. Each
normal control is treated in the way that it generates corresponding HTML/JavaScript and in the
way that it itself tells towhich properties it binds; that is, each normal control adds its properties/text
IDs itself: when your macro control contains some FIELD controls, then each FIELD control will
tell during generation the adapter properties to which it binds - there is no necessity for you to
re-tell on macro control level.

But: youmight tell onmacro control level that all the contained adapter properties are not provided
via one-by-one implementation but by implementing a server-side class already providing all sub-
properties.We call these classes "binding classes", see alsoCreatingMacro ControlsOut of Existing
Controls. To add a binding class ADDRESSInfo, you use the protocol item in the following way:

■ Call IXSDGenerationHandler xga = protocolItem.findXSDGenerationHandler(); to get access
to an object which implements the IXSDGenerationHandler interface. This object is responsible
for the generation of the corresponding data bindings for NATPAGE layouts.

■ Call the method addControlInfoClass and pass your binding class as the third parameter. The
second parameter is the name of the complex property to which you apply the binding:
xga.addControlInfoClass(protocolItem, myproperty, ADDRESSInfo.class);.

Formore information, see the corresponding Javadoc files of yourNatural for Ajax orNaturalONE
installation.

Natural Custom Controls36

Special Issues

Bringing Controls into the Layout Painter - Data Types

In a previous section, you learned how to integrate controls into the Layout Painter (see Integrating
Controls into the Layout Painter). In addition to the basic concepts described in that section, you
can also apply data-type definitions to your control attributes.

The following example shows how to apply data types to an attribute editor_nadc.xml file:

<!--
Dynamic extension of editor.xml file.
-->

<controllibrary>
<editor>

<!-- datatype TEXT -->
<datatype name="nadc:count">
<value id="1st" name="First"/>
<value id="2nd" name="Second"/>
<value id="3rd" name="Third"/>

</datatype>

<!-- control MYCONTROL -->
<tag name="nadc:mycontrol">

<attribute name="fixedtext" datatype="nadc:count"/>
</tag>
....

Note that both newdata types and new control tags are named togetherwith their prefix - in order
not to mix them up with standard Application Designer controls or with controls of other control
library providers.

Array Binding

As shown in the CUSTC2-P example of the Natural for Ajax demos, you can create controls with
repeated data structures without having to deal with all the details of array bindings. The control
NADC:ADDRESSLIST is an example for this. The idea is to have your own custom controls and
simply reuse the repeated concepts and array bindings of the framework together with your own
custom controls. We recommend to use this approach whenever possible.

If you really need to implement your own repeated data binding, you will find some details for
generating and implementing your own array binding in the description of the CUST2-P example
and the corresponding Natural for Ajax demos.

37Natural Custom Controls

Special Issues

Text ID/Multi Language Controls

Please contact SoftwareAG in case you create new controlswith language-dependent information
- and if you want to use the same translation methods as Application Designer does for these
controls.

Natural Custom Controls38

Special Issues

	Natural Custom Controls
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Overview
	3 Control Concept
	Page Generation
	Tag Handlers and Macro Tag Handlers
	Macro Tag Handlers (IMacroTagHandler)
	Tag Handlers (ITagHandler)
	Call Sequence (IMacroTagHandler and ITagHandler)
	Extensions of IMacroTagHandler and ITagHandler

	Library Concept
	Control Libraries

	Binding Concept
	Integrating Controls into the Layout Painter
	Summary

	4 Creating Macro Controls Out of Existing Controls
	General Information
	Creating Macro Controls
	Defining a New Control Library
	Defining the Control Attributes and Control Hierarchy (Subtags, Container)
	Definining/Implementing the Rendering of the Control
	Implementing the Control's Server-Side Processing (Optional)
	Putting Things to Work

	5 Creating New Controls
	Concept
	Njxdemos Sample Control: NADC:TEXTCONTROL1
	JavaScript Functions
	Njxdemos Sample Control: NADC:TEXTCONTROL3
	Summary

	6 Special Issues
	Protocol Item
	Bringing Controls into the Layout Painter - Data Types
	Array Binding
	Text ID/Multi Language Controls

