S software*

A SOFTWARE GMBH BRAND

Natural for Ajax

Natural Pages Development

Version 9.3.1

February 2025

ADABAS & NATURAL

This document applies to Natural for Ajax Version 9.3.1 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 2007-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NJX-NATNJX-DEVELOPMENT-931-20250213

Table of Contents

Natural Pages Developmentcccociiiiiiiiiiiiiiiiiiiiiiii i v
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 Developing the User Interfacecccooiiiiiiiiiiiiiii 5
Starting the Development Workplaceccccooiiiiiiiiiiii, 6
Creating an Application Designer Projectcccoviiiiiiiiiiiiiiiiiiiiiiin, 7
Creating a Natural Pagecccooiiiiiiii 7
Specifying Properties for the Natural Pagecccccociiiiiiiiiiiiiiiiiii, 8
Designing the Pagecccoooiiiiiiiii 9
Binding Properties and Methodsccccocciiiiiiiiiiiiiiii, 9
Previewing the Layoutccccooiiiiiiiiii 9
Viewing the Protocolcccooiiiiiiiiiiiiic 10
Saving the Layoutccccoiiiiiiiiiiiiiiiiiii 10
Generating the Adapter ... 10
Data Type Mappingccccooiiiiiiiiiiiiiiiiii e 11
Configuration of Page Layout Errors/Warningsccccocovieviiiiininiiiiiciccen, 12
3 Developing the Application Codecoceiviiiiiiiiiiiiiiic e 17
Importing the Adaptercccoviiiiiiiiiiiiiii 18
Creating the Main Programc.cccooiiiiiiiiii 18
Structure of the Main Programccccoeciiiiiiiiiiiiiiiiiiiiccciecce 20
Handling Page EVentsccoocooiiiiiiiii 21
Built-in Events and User-defined Eventscccccccooviiiiiiiiiiiii 21
Sending Events to the User Interfaceccccocoeviiiiiiiiiiiii, 22
Using Pop-Up WINAOWSooiiiiiiiiiiiiiiiiiieie e 23
Using Natural Mapscccociiiiiiiiiiiiiiiiiiiicci s 24
Navigating between Pages and Mapscccoooiiiiiiiiiiiiii 25
Using Pages and Maps Alternativelyccccooiiiiiiiiiiiiiiiiiiiic 26
Starting a Natural Application from the Logon Pagecccocoviiiiiiins 27
Starting a Natural Application with a URLccccciiiiiiiiiiiiiiiiic 27
4 Deploying the Applicationccoiiiiiiiiiiiii 29
Components of a Natural for Ajax Applicationc.cccooviviniiiiiiiiiiiiie, 30
Unloading the Natural Modulescccooviiiiiiiiiiiiiiiii e 30
Installing the Natural Modules ..o, 30
Packaging the User Interface Componentsccccoecuiiviiiiiiiiiiiiiniiiiiciieee 30
Deploying the User Interface Componentsc.cccoevviiiiiiiiiiiiiciicceecccns 31
Packaging and Deployment as a Web Applicationcccceceeveiiiiiiiiiniiiiiennnnne. 32
Generating HTML Pages Using the Command Linecccocooviiiiiiiiiiiincnns 33
5 Natural Parameters and System Variablesc..cccooooiiiii 37
6 Usage of Edit Masksccccoociiiiiiiiiiiiiiiiiiiii 39
General Informationcccociiiiiiiiiiiiii 40
Data Types with Edit Maskscccccoeoiiiiiiiiiiiiiiiiici e 40

Natural Pages Development

Natural Profile Parametersccccovviiiiiiiiiiiiiiiiiiiiic e, 42
Specifying Edit Masks in Layoutsccoccooiiiiiiiiiiiiiiicc 42
Edit Masks at RUNtime ..o 43
7 Multi-Language Management in AjaXc.coceeviiieiiiiiiiiiccicecce e 45
8 Support of Right-to-Left Languagesccccoeviiiiiiiiiiiiiiiiiiiiiiiciccccccecce 47
9 Server-Side Scrolling and SOTHINGcccovveiiiiiiiiiii 49
General Informationccccoiiiiiiiiiiiiii 50
Variants of Server-Side Scrolling and Sortingccccovvviiiiiiiiiiiiiiiiiiiiie, 50
Controls that Support Server-Side Scrolling and Sortingcccocoviiiininn 54
Data Structures for Server-Side Scrolling and Sortingcccccevviviiiiiiiiiinnnn 54
Server-Side Scrolling and Sorting in Treesc.coccoovviviiiiiiiiiiici 56
Events for Server-Side Scrolling and Sortingcccccoeeviiiiiiiiniiiiiiniciiee 57
10 ACCeSSIDILIY .voovviiiiiicicc 59
Accessibility Non Responsive Pages ... 60
Accessibility Responsive Pagesccccociiiiiiiiiiiiiiiiiiiiii 60
11 Code Pagescoueeiiiiiiiec 61
12 Test Automation of Natural for Ajax Applicationsccccceeeviiviiviiiniiniiiiiieninen, 63
General Informationccccociiiiiiiiiiiiii 64
Enabling the Applications for Test Automationcc.ccceceeviiiiiiniiniiiiieiiieens 64
Advanced testtoolid Settings in Complex Controlsc.cocoevieiiiiiiiiiiiiiiiies 67

Natural Pages Development

Natural Pages Development

Developing the User Interface

How to develop the user interface using Application Designer.

Developing the Application Code

How to develop the application code using Natural Studio.

Deploying the Application

How to unload and install the Natural modules and user
interface components.

Natural Parameters and System Variables

Gives an overview of the Natural parameters and system
variables that are evaluated in Natural for Ajax applications
and sent to Application Designer.

Usage of Edit Masks

Describes how Natural for Ajax supports the Natural edit mask
concept.

Multi Language Management in Ajax

Describes aspects to be considered for internationalization.

Support of Right-to-Left Languages

Describes how Natural for Ajax supports right-to-left languages
and bidirectional text.

Server-Side Scrolling and Sorting

Describes how Natural for Ajax supports the concept of
server-side scrolling and sorting.

Accessibility

Describes how Natural for Ajax supports features pertaining
to accessibility.

Code Pages

Test Automation of Natural for Ajax
Applications

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON ..o e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Natural Pages Development

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software GmbH products provide functionality with respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

Natural Pages Development 3

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Developing the User Interface

= Starting the Development WOrKPIACEvviviiiiiie e 6
= Creating an Application DeSIGNEr PrOJECEvviiiiiiiii et 7
B Creating @ NAtUFAl PAEeeieeiiiiie ettt 7
= Specifying Properties for the Natural Page ..o 8
Lo T R = =T T PP 9
= Binding Properties and MEINOUSuviiiiiii e 9
B PrevieWING the LAYOULue i 9
B VIEWING the PIOTOCOI ...t 10
B SAVING T8 LAYOUL ...ttt 10
B Generating the AaPler ... e 10
B DAta TYPE MAPPING ...ttt ettt e ettt e e e oot e e e e e et e e e e e e aaaaas 11
= Configuration of Page Layout Efrors/Waringscooiiuuriieiiieiii e, 12

Developing the User Interface

In the First Steps tutorial, you have developed a small rich internet program step by step. In this
tutorial, you have already performed most of the steps required to develop a rich internet applic-
ation.

The general procedure to develop a rich internet application with Natural for Ajax is as follows:

1. Use Application Designer to design the web pages that form the user interface of your applica-
tion.

2. Generate a Natural adapter for each page (by saving the page). The adapter is a Natural object
that forms the interface between the application code and the web page.

3. Use Natural Studio to write the Natural application programs that contain the business logic
and use adapters to exchange data with the web pages.

In this chapter, the first two steps (design and adapter) are explained in more detail. Step 3 (business
logic) is described in the section Developing the Application Code which also addresses advanced
topics that are not covered in the tutorial.

For detailed information on how to use the Application Designer development workplace, see
Development Workplace in the Application Designer documentation. The latest version of the Ap-
plication Designer documentation is available at hittps://documentation.softwareag.com/webmeth-
ods/application_designer.htm (Empower login required). The information which is provided below
describes the most important differences which pertain to Natural for Ajax.

Starting the Development Workplace

The Application Designer development workplace is the central point for starting tools for layout
development.

~ To start the development workplace
1 Make sure that your application server is running.

2 Invoke your browser and enter the following URL:

http://<host>:<port>/cisnatural/HTMLBasedGUI/workplace/ide.htm]l

where <host> is the name of the machine on which your application server is installed and
<port>is the port number of your application server.

| Note: If you have not defined another port number during installation, the default port

number is "8080".

6 Natural Pages Development

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

Creating an Application Designer Project

First you create an Application Designer project using the Project Manager. The project contains
the layouts of the web pages you design, the files that are generated from the layouts and are re-
quired to run your application and additional files that make your application multi language
capable and supply help information. See also Creating a Project in the tutorial.

All files in your Application Designer project are stored in one directory on the application server
where Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server.

Creating a Natural Page

In order to create the layout of your web pages, you use Application Designer's Layout Painter.

Add a page layout to your project as described in Creating a New Layout in the tutorial (select the
template for the Natural page).

-- Web Page Dialog

Marme mypage.:ml

@ Natural || & Natural

Map Converker

4 2

HTML Page Workplace WSDL Page ¥CI Page HNatural Page PDF Output 4

] Note: More detailed information on creating a layout is provided in the Application Designer

documentation at https://documentation.softwareag.com/webmethods/application_design-
er.htm (Empower login required).

Natural Pages Development 7

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

Specifying Properties for the Natural Page

In order to specify generation options for the new page, you specify values for certain properties
that are specific for Natural pages.

To define properties, you select the node natpage in the layout tree of the Layout Painter. The
properties for this control are then shown in the properties area at the bottom. When you select
the Natural tab in the properties area, you can see the Natural-specific properties.

_

= |E| natpage
+-] titlebar (New Natural Page)
header
+-= pagebody
[_] statusbar

] e

=

=
P

4=

Properties

natsource
natsinglebyte true
natrecursion

natdc

£ £ X X

natsss
natcy

xmilns:ngx http: /fwewew .soft

2

Bacic MNatural Popup Occupied 4 b

For information on the properties that are available for a Natural page, see NATPAGE.

8 Natural Pages Development

Developing the User Interface

Designing the Page

Design your Natural page by dragging controls and containers from the controls palette onto the
corresponding node in the layout tree or to the HTML preview. This has already been explained
in the section Writing the GUI Layout of the tutorial.

| Note: More detailed information on defining the layout is provided in the Application De-

signer documentation at hittps://documentation.softwareag.com/webmethods/application_de-
signer.htm (Empower login required).

Binding Properties and Methods

Many of the controls you use on your page have properties that can be controlled by the application.
Also the controls can raise events that your application may wish to handle. The next step is
therefore assigning identifiers to each of these properties and events under which your application
can later address them. This procedure is called “binding”.

To get an overview which properties and events are bindable to application variables and events,
select a control in the layout tree and open the Event Editor as described in the Application De-
signer documentation at https://documentation.softwareag.com/webmethods/application_design-
er.htm (Empower login required).

The Event Editor displays only those properties of controls that can be bound to application vari-
ables and events. It indicates also which properties are mandatory and must be bound. The usage
and meaning of the properties and events is described for each control in Natural Pages Development,

As an example for property and event binding, see the following sections in the First Steps tutorial:

= Using the Property Editor
= Specifying a Name and Method for the Button

Previewing the Layout

To find out how the current layout definitions are rendered on the page, preview the layout as
described in the Application Designer documentation at https://documentation.softwareag.com/web-
methods/application_designer.htm (Empower login required).

Natural Pages Development 9

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

Viewing the Protocol

The protocol contains warnings and error messages that might occur while you design and preview
your page. For further information, see the Application Designer documentation at https://docu-
mentation.softwareag.com/webmethods/application_designer.htm (Empower login required).

Saving the Layout

Save the page layout as described in Saving Your Layout in the tutorial.

Other than with Java adapters (which are described in the Application Designer documentation),
you do not use the Code Assistant (which is part of the Layout Painter) to generate adapter code
interactively. For Natural pages the adapter code is generated completely from the page properties
and the property and event bindings that you specified previously. An adapter is generated
automatically when you save the layout for the first time. It is updated each time you save the
layout.

Generating the Adapter

When you save the layout, a Natural adapter is generated according to the following rules:

Location The adapter is generated into the subdirectory nat of your project directory.

The name of the project directory corresponds to the project name. The location of the directory
depends on the application server. See Creating an Application Designer Project.

Name The name of the adapter is determined by the properties you have set. See Specifying
Properties for the Natural Page.

Property For each control property that has been bound to an identifier (as described in Binding

identifiers Properties and Methods) a parameter in the parameter data area of the adapter is generated.

The identifier is therefore validated against the Natural naming conventions for user-defined
variables and translated to upper-case. If an identifier does not comply to these rules, a
warning is generated into the protocol and as a comment into the adapter code. Additionally,
the name must comply to the naming conventions for XML entities. This means especially
that the name must start with a character.

To achieve uniqueness within 32 characters, the last four characters are (if necessary) replaced
by an underscore, followed by a three-digit number.

Event For each event that can be raised by a control on the page, an event handler skeleton is
identifiers generated as a comment into the adapter.

10 Natural Pages Development

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

Caution: Some controls raise events whose names are dynamically constructed at runtime.

For these events, no handler skeleton can be generated. The control reference contains
information about these additional events.

The event identifiers are not validated.

When you specify a value for the property natdataarea, then also a Natural Parameter Data Area
(PDA) is generated.

Data Type Mapping

Several Application Designer controls have properties for which a data type can be specified. An
example is the FIELD control. It has a valueprop property which can be restricted to a certain data
type. The data type is used at runtime to validate user input. At generation time (that is, when a
Natural adapter is generated for the page), the data type determines the Natural data format of
the corresponding adapter parameter.

The following table lists the data types used in Application Designer and the corresponding Nat-

ural data formats.

Application Designer

Natural

color A or U (depending on the NATPAGE property natsinglebyte). The string must contain
an RGB value, for instance "#FF0000" for the color red.

date D (YYYYMMDD)

float F4

int 14

long P19

time T (HHIISS)

timestamp T (YYYYMMDDHHIISST)

N n.n Nn.n

Pn.n Pn.n

string (default)

A or U dynamic (depending on the NATPAGE property natsinglebyte).

string n Anor Un (depending on the NATPAGE property natsinglebyte).
xs:double F8
xS:byte 11
xs:short 12

Natural Pages Development "

Developing the User Interface

Configuration of Page Layout Errors/Warnings

The layout protocol contains the information whether a page layout contains errors or warnings.
What is considered as error or warning can be configured. An invalid XML file or an XML file
from which valid HTML cannot be generated is always treated as an error.

Depending on the problem it often depends on the browser or even the browser version whether
the rendering is still as intended or not. The following default settings are a recommendation. In
case these settings are lowered, it may happen that in some browser versions the rendering is not
as intended.

To provide a better overview, the recommended settings are grouped by the type of problem that
is protocoled. The following problems can be configured:

Problem Group: Valid Value of Properties

Problem Group: Data and Event Binding

Problem Group: Height and Width Properties

Problem Group: Obligatory and Recommended Properties and Controls
Problem Group: Container - Control Hierarchy

Problem Group: Property Combination

= Problem Group: Deprecated Controls and Properties

= Problem Group: FOP Layout Definitions

= Problem Group: Runtime Behavior

Problem Group: Valid Value of Properties

Setting Explanation

Invalid or missing integer value |The specified value is not a valid integer value.

Invalid edit mask value The specified edit mask is invalid.

Invalid usage of timestamp type |Datatype timestamp is not supported for all property combinations.

Invalid comma separated list ~ |The property value must be a valid comma separated list.

Invalid hot key value The specified hotkey is not valid.

Invalid property value The specified value is not a valid value for this property.

12 Natural Pages Development

Developing the User Interface

Problem Group: Data and Event Binding

Setting Explanation

Sample

Missing obligatory data or | A valueprop, method or other mandatory data |VALUEPROP in FIELD
event property property is missing. The impact is that no Natural |control missing.
fields are generated in the adapter.

Missing recommended data |A recommended data property is missing. This can
property have major impacts on the control at runtime.

/-

Possible unintended usage of | When a method is not specified, in many casesa |FLUSHMETHOD in
default event default event will be triggered at runtime. It might|FIELD control missing.
be the intended event or not.

Problem Group: Height and Width Properties

Setting

Explanation

Missing HEIGHT, WIDTH or LENGTH
properties

HEIGHT, WIDTH or LENGTH property is obligatory for proper
rendering.

Missing recommended HEIGHT, WIDTH
or LENGTH properties

HEIGHT, WIDTH or LENGTH property is recommended for
proper rendering. Missing values might have impacts on the
rendering.

Missing ROWCOUNT in GRIDS

ROWCOUNT is missing in a grid control. This usually has
major impacts on the sizing of the grids.

Recommended TAKEFULLWIDTH or
TAKEFULLHEIGHT missing

Depending on specific property combinations or nesting of
controls, the specification of TAKEFULLWIDTH or
TAKEFULLHEIGHT is recommended.

Problem Group: Obligatory and Recommended Properties and Controls

Setting Explanation Sample
Missing obligatory property | An obligatory property is missing. HELPICON control: property
HELPID missing.

Missing recommended Sometimes the proper rendering ofa |HSPLIT control: 2 SPLITCELL
control definition control requires the specification of controls required.
another control.

Missing recommended A recommended property is missing. |COLAREA:no NAME, TEXTID or
property This might have major rendering impacts. [VALUEPROP specified.

Natural Pages Development

13

Developing the User Interface

Problem Group: Container - Control Hierarchy

Setting

Explanation

Invalid sub node

A control or container has been specified as sub node of another control or controller.
But this hierarchy is not supported. This problem can only happen if you are not using
Layout Painter as editor.

Problem Group: Property Combination

Setting

Explanation

Sample

Duplicated definition -
design time and runtime

Some properties are supported as design time
properties and as runtime properties. But
specifying the same property as runtime and
as design time property leads to undefined
rendering.

AREA controls: NAME and
TEXTID are set.

Invalid property
combination

The specified combination of properties is not
supported.

FIELD control: POPUPPROP is set,
but POPUPMETHOD is not set.

Incomplete property
combination

Sometimes a property is only supported if
also other properties are specified: Supply
either all or none.

TEXTGRID* controls:
WITHGRIDCOLHEADER is
specified, but PROPREFSPROP is
not.

Problem Group: Deprecated Controls and Properties

Setting Explanation Sample
Deprecated A deprecated property has been specified. One impact |PAGEHEIGHTMINUS in
properties might be that it is simply ignored in the currently ROWTABSUBPAGES.
supported browsers.
Deprecated controls |A deprecated control has been specified. One impact |ACTIVEX control.
might be that the corresponding HTML is not supported
in all browsers or no longer supported in the current
browsers at all.

Problem Group: FOP Layout Definitions

Setting

Explanation

Missing obligatory properties

on the *.pdf generation.

An obligatory property in the FOP controls is missing. May have impacts

Invalid property value

Invalid property value in FOP controls.

14

Natural Pages Development

Developing the User Interface

Problem Group: Runtime Behavior

Setting Explanation Example

Possibly reduced performance | All single controls may be specified correctly and still the |Layouts too big.
layout might cause performance issues.

Invalid TABINDEX values Specifying invalid tabindex values confuses the browser | TABINDEX=-10.
and leads to unexpected behavior at runtime.

/), Important: Export your settings and commit them in your version control system together

with the other workspace settings. When creating a new workspace, import your settings.
When upgrading your workspace to a new Natural for Ajax runtime version, your settings
will be taken over automatically.

Natural Pages Development 15

16

3 Developing the Application Code

Importing the Adaptercccccoeeein
Creating the Main Program
Structure of the Main Program
Handling Page Eventsccc.c...
Built-in Events and User-defined Events
Sending Events to the User Interface ...
Using Pop-Up Windowscccccevvnes
Using Natural Mapsccccevvnnne.
Navigating between Pages and Maps
= Using Pages and Maps Alternatively

= Starting a Natural Application from the Logon Pageocouviiiiiiiiiiiiii e

= Starting a Natural Application with a URL

17

Developing the Application Code

Natural for Ajax Tools, which is an optional plug-in for Natural Studio, allows you to use some
of the Natural for Ajax functionality which is described in this chapter directly from within Nat-
ural Studio. For further information, see Natural for Ajax Tools in the Natural Studio Extensions
documentation which is provided for Natural for Windows.

Importing the Adapter

After having generated the adapter, the next step is making it available to your Natural development
project.

As described previously, the adapter code is generated into a directory in your application server
environment.

The following topics are covered below:

= |mporting the Adapter Using Natural Studio
Importing the Adapter Using Natural Studio

It is assumed that your development library is located on a Natural development server and that
you have mapped this development server in Natural Studio.

~ To import the adapter from a remote environment

s Use drag-and-drop.
Or:

Remote Linux environment only: Use the import function of SYSMAIN.

Creating the Main Program

After you have imported the adapter, you create a program that calls the adapter to display the
page and handles the events that the user raises on the page. This program can be a Natural pro-
gram, subprogram, subroutine or function. We use a Natural program as example.

The adapter already contains the data structure that is required to fill the page. It contains also a
skeleton with the necessary event handlers. You can therefore create a program with event handlers
from an adapter in a few steps.

Open or list the adapter in Natural Studio.

18 Natural Pages Development

Developing the Application Code

* PAGELl: PROTOTYPE --- CREATED BY Application Designer ---

* PROCESS PAGE USING 'XXXXXXXX' WITH
* FIELD1 FIELD2
DEFINE DATA PARAMETER
1 FIELDI (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/MyProject/mypage' WITH
PARAMETERS
NAME U'fieldl’
VALUE FIELDI
NAME U'field2'
VALUE FIELDZ2
END-PARAMETERS

*

* TODO: Copy to your calling program and implement.

/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT

* VALUE U'nat:page.end',U'nat:browser.end’

/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
/*/*) END-HANDLER

*

END

Ok X ok o X % o

Create a new program, copy the adapter source into the program and then proceed as follows:

= Remove the comment lines in the header.

® Change DEFINE DATA PARAMETER into DEFINE DATA LOCAL.

= Remove the comment lines that surround the DECIDE block.

= Uncomment the DECIDE block.

Your program should now look as follows:

Replace the PROCESS PAGE statement with a PROCESS PAGE USING operand4 statement, where
operand4 stands for the name of your adapter.

Natural Pages Development

19

Developing the Application Code

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Stow the program with a name of your choice. The resulting program can be executed in a browser
where it displays the page. However, it does not yet do anything useful, because it handles the
incoming events only in a default way and contains no real application logic.

Structure of the Main Program

The main program that displays the page and handles its events has the following general structure:

" A PROCESS PAGE USING statement with the page adapter. The PROCESS PAGE statement displays
the page in the user's web browser and fills it with data. Then, it waits for the user to modify
the data and to raise an event.

" A DECIDE block with a VALUE clause for each event that shall be explicitly handled.

" A default event handler for all events that shall not be explicitly handled.
Each event handler does the following;:

" It processes the data the has been returned from the page in the user's web browser.

® It performs a PROCESS PAGE UPDATE FULL statement to re-execute the previous PROCESS PAGE
USING statement with the modified data and to wait for the next event.

The default event handler does not modify the data. It does the following:

® It performs a PROCESS PAGE UPDATE statement to re-execute the previous PROCESS PAGE USING
statement and to wait for the next event.

20 Natural Pages Development

Developing the Application Code

Handling Page Events

When the PROCESS PAGE statement receives an event, the data structure that was passed to the
adapter is filled with the modified data from the page and the system variable *PAGE-EVENT is
filled with the name of the event. Now, the corresponding VALUE clause in the DECIDE statement
is met and the code in the clause is executed.

The application handles the event by processing and modifying the data and resending it to the
page with a PROCESS PAGE UPDATE FULL statement. Alternatively, it uses the PROCESS PAGE UPDATE
statement without the FULL clause in order to resend the original (not modified) data.

Built-in Events and User-defined Events

There are built-in events and user-defined events.

Built-in Events

The following built-in events can be received:

nat:browser.end
This is event is raised whenever the session is terminated by a browser action:
* Closing of the browser.
® Navigation to another page in the browser.

® Programmatic close in a workplace (for example, close all session functions).

In addition, this event is raised in the following cases:
= Timeout of the session.

® Removal of the session with the monitoring tool.

After the event is raised, the Natural session terminates.

nat:page.end
This event is raised when the user closes the page with the Close button in the upper right
corner of the page.

nat:popup.end
This event can be raised when the user closes the pop-up window with the Close button in
the upper right corner of the pop-up window. To activate this event for the current pop-up
window, the property popupendmethod of the NATPAGE control has to be set to "true". The
default of this property is "false". When the property popupendmethod is set to false, the event
nat:page.end is raised when the user closes the pop-up window with the Close button in the
upper right corner of the pop-up window.

Natural Pages Development 21

Developing the Application Code

| Note: When the user closes a pop-up window using the Close button of the TITLEBAR

control, the built-in event nat:page.end is always raised, no matter whether
popupendmethod is set to "true" or not. With the nat:popup.end event, it is possible to
find out that the Close button of the actual pop-up window was clicked (and not the
Close button of a page within the pop-up window).

nat:page.default
This event is sent if the Natural for Ajax client needs to synchronize the data displayed on the
page with the data held in the application. It is usually handled in the default event handler
and just responded with a PROCESS PAGE UPDATE.

Other built-in events can be sent by specific controls. These events are described in the control
reference.

User-defined Events

User-defined events are those events that the user has assigned to controls while designing the
page layout with the Layout Painter. The names of these events are freely chosen by the user. The
meaning of the events is described in the control reference.

Sending Events to the User Interface

The PROCESS PAGE UPDATE statement can be accompanied by a SEND EVENT clause. With the SEND
EVENT clause, the application can trigger certain events on the page when resending the modified
data.

The following events can be sent to the page:

nat:page.message
This event is sent to display a text in the status bar of the page. It has the following parameters:

Name |Format |Value

type |A or U|Sets the icon in the status bar ("S"=success icon, "W"=warning icon, "E"=error icon).

short|A or U|Short text.

Tong |A or U|Long text.

nat:page.valueList
This event is sent to pass values to a FIELD control with value help on request (see also the
description of the FIELD control in the control reference). It has the following parameters:

22 Natural Pages Development

Developing the Application Code

Name [Format |Value

id |A or U|A list of unique text identifiers displayed in the FIELD control with value help. The list
must be separated by semicolon characters.

text|A or U|A list of texts displayed in the FIELD control with value help. The list must be separated
by semicolon characters.

nat:page.xmlDataMode
This event is sent to switch several properties of controls on the page in one call to a predefined
state. The state must be defined in an XML file that is expected at a specific place. See the in-
formation on XML property binding in the Application Designer documentation for further
information.

Name |Format |Value

data|A or U|[Name of the property file to be used.

Using Pop-Up Windows

A rich GUI page can be displayed as a modal pop-up in a separate window. A modal pop-up
window can open another modal pop-up window, thus building a window hierarchy. If a PROCESS
PAGE statement and its corresponding event handlers are enclosed within a PROCESS PAGE MODAL
block, the corresponding page is opened as a modal pop-up window.

The application can check the current modal pop-up window level with the system variable
*PAGE-LEVEL. *PAGE-LEVEL = 0 indicates that the application code is currently dealing with the
main window. *PAGE-LEVEL > 0 indicates that the application code is dealing with a modal pop-
up window and indicates the number of currently stacked pop-up windows.

In order to modularize the application code, it makes sense to place the code for the handling of
a modal pop-up window and the enclosing PROCESS PAGE MODAL block in a separate Natural
module, for instance, a subprogram. Then the pop-up window can be opened with a CALLNAT
statement and can thus be reused in several places in the application.

Example program MYPAGE - P:

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE-A'

*

DECIDE ON FIRST *PAGE-EVENT

VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.

Natural Pages Development 23

Developing the Application Code

IGNORE
VALUE U'"onPopup'
/* Open a pop-up window with the same fields.
CALLNAT 'MYPOP-N' FIELD1 FIELD?
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Example subprogram MYPOP - N:

DEFINE DATA PARAMETER

1 FIELDI (U) DYNAMIC

1 FIELDZ (U) DYNAMIC

END-DEFINE

*

/* The following page will be opened as pop-up.
PROCESS PAGE MODAL

*

PROCESS PAGE USING 'MYPOP-A'
*

DECIDE ON FIRST *PAGE-EVENT

VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE

*

END-PROCESS

*

END

Using Natural Maps

Rich internet applications written with Natural for Ajax need not only consist of rich GUI pages,
but may also use classical maps. This is especially useful when an application that was originally
written with maps shall only be partly changed to provide a rich GUL In this case the application
can run under Natural for Ajax from the very beginning and can then be “GUlfied” step by step.

24 Natural Pages Development

Developing the Application Code

Navigating between Pages and Maps

Due to the similar structure of programs that use maps and programs that use adapters, it is easy
for an application to leave a page and open a map, and vice versa. For each rich GUI page, you
write a program that displays the page and handles its events. For each map, you write a program
that displays the map and handles its events. In an event handler of the page, you call the program
that handles the map. In an “event handler” of the map, you call the program that handles the

page.

Example for program MYPAGE - P:

DEFINE DATA LOCAL
1 FIELDI (U20)

1 FIELDZ (U20)
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE
VALUE U'onDisplayMap'
/* Display a Map.
FETCH '"MYMAP-P'
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Example for program MYMAP - P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
SET KEY ALL
INPUT USING MAP 'MYMAP'
*
DECIDE ON FIRST *PF-KEY
VALUE 'PF1'
/* Display a rich GUI page.
FETCH 'MYPAGE-P'
NONE VALUE
REINPUT WITH TEXT

Natural Pages Development 25

Developing the Application Code

'Press PF1 to display rich GUI page.'
END-DECIDE

*

END

Using Pages and Maps Alternatively

An application can also decide at runtime whether to use maps or rich GUI pages, depending on
the capabilities of the user interface. The system variable *BROWSER- 10 lets the application decide
if it is running in a web browser at all. If this is the case, the system variable tells whether the ap-
plication has been started under Natural for Ajax and may thus use both maps and pages, or
whether it has been started under the Natural Web I/O Interface and may thus use only maps.

Example:

DEFINE DATA LOCAL
1 FIELDI (U20)
1 FIELDZ (U20)
END-DEFINE
*
IF *BROWSER-I0 = 'RICHGUI'
/* If we are running under Natural for Ajax,
/* we display a rich GUI page.
PROCESS PAGE USING "'MYPAGE'
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
ELSE
/* Otherwise we display a map.
SET KEY ALL
INPUT USING MAP 'MYMAP'
DECIDE ON FIRST *PF-KEY
VALUE 'PF1°'
/* Map closed.
IGNORE
NONE VALUE
REINPUT WITH TEXT
'Press PF1 to terminate.'
END-DECIDE
END-IF

*

END

26 Natural Pages Development

Developing the Application Code

Starting a Natural Application from the Logon Page

See Starting a Natural Application from the Logon Page in the Configuration and Administration docu-
mentation.

Starting a Natural Application with a URL

See Starting a Natural Application with a URL and Wrapping a Natural for Ajax Application as a Servlet
in the Client Configuration documentation.

Natural Pages Development 27

28

4 Deploying the Application

= Generating HTML Pages Using the Command Line

Components of a Natural for Ajax Application
Unloading the Natural Modules
Installing the Natural Modulescccccccvvnnnnne
Packaging the User Interface Components
Deploying the User Interface Components
= Packaging and Deployment as a Web Application ..

29

Deploying the Application

Components of a Natural for Ajax Application

A Natural for Ajax application consists of two parts that are usually installed on two different
machines.

On one hand, there are Natural modules (adapters, programs, subprograms and other Natural
objects) that are installed on a Natural server. On the other hand, there are page layouts of rich
GUI pages and related files that are installed in a Natural for Ajax environment on an application
server.

Unloading the Natural Modules

The Natural modules that belong to your application are contained in one or several Natural lib-
raries in your Natural development environment. Unload them into a file, using the Object
Handler.

Installing the Natural Modules

In order to install the Natural modules in the production environment, load them with the Object
Handler.

Packaging the User Interface Components

Your web application might contain one or more user interface components.

In production environments it is deeply recommended to always deploy/refresh the whole web
application for consistency.

In development or test environments you sometimes might want to deploy single user interface
components into an already deployed web application. To deploy global files such as custom
controls, which are used by several user interface components or configuration files like the ciscon-
fig.xml file (which is used for the whole web application), you have to use web application deploy-
ment/refreshment as described in the following sections.

User interface components are stored in subdirectories of your web application.

You only need to package those files of your user interface component which are not generation
results. All files which are generation results will be generated by the Natural for Ajax runtime

30 Natural Pages Development

Deploying the Application

during deployment. If you also package files which are generation results, the Natural for Ajax
runtime system will ignore these files.

If you are using NaturalONE, use the Ant war deployment wizard to create an Ant file which will
package your user interface component(s). To package a user interface component for deployment
without NaturalONE, add all files and subdirectories to an archive using an archiving tool like
WinZip or tar. Do not include the following files and folders:

File Description

<use interfacedir>/*html Generated HTML pages.

<use interfacedir>/wsdl/** Generated data schemas.

{use interfacedir>/nat Generated Natural code

{use interfacedir>/protocol Generated protocol files

<use interfacedir>/styles/<mystylesheet>.css|Style sheet files that are generated from a Natural for
Ajax *.info file

Provide a unique name for the created zip file. This can for example be done by appending date
or timestamp to the file name. Example: <myui>20170501.zip.

Deploying the User Interface Components

In order to deploy the user interface components, simply copy the zip file which you created as
described previously into the _uiupdates folder of your web application, for example: <tomcat -
folder>/webapps/<mywebapp>/_uiupdates/<myui>20170501.zip.

By default the Natural Ajax runtime system will pick up the file every 5 seconds. This value can
be customized with the monitoringthreadinterval parameter. It will deploy it and refresh all
internal caches of the Natural Ajax runtime system. For the example above, deployment and re-
freshing is finished when a file with the name <tomcat folder>/webapps/<mywebapp>/_uiupdates/<my -
ui>20170501/update.result exists. It is important to check the update.result file for errors: Open the
file and look for "Update finished Successfully". If you cannot find this, check the *.protocol files
in the protocol sub folder for errors and/or exceptions.

In case you cannot solve the generation problems via the Layout Painter error marking, you can
switch on the creation of additional log files. See the htm1generatorlog attribute in the Ajax Con-
figuration section.

Natural Pages Development 31

Deploying the Application

Packaging and Deployment as a Web Application

Natural for Ajax is delivered as a web application (.war file). This allows for packaging and deploy-
ing also your own applications (more exactly: the user interface components thereof) as self-con-
tained web applications. The preferred way to create a *.war for your application is to use the Ant
war deployment wizard of NaturalONE.

If you are not using NaturalONE:

~ To package your application as a web application

1 Invoke the Application Designer development workplace.

2 In the Development Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose WAR Packager.

3 In the resulting dialog, make sure that the Deployment Scenario tab is selected.

4 Define the generation type by selecting one of the following option buttons: with file system
reference or fully clusterable. See the Application Designer documentation for detailed in-
formation on these g