S software~

A SOFTWARE GMBH BRAND

Natural

Statements

Version 9.3.2

July 2025

ADABAS & NATURAL

This document applies to Natural Version 9.3.2 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATWIN-NNATSTATEMENTS-932-20250711

Table of Contents

PTOACE ..ot xix
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
L e e 5
2 Statements Grouped by FUNCtionc.cceciiiiiiiiiiiiiiiiiccccce e 7
Database Access and Updatecoceiviiiiiiiiiiiiiiiiiiiiii, 8
Arithmetic and Data Movement Operationsccccocveviiiiiiiniiiiiices 9
Loop EXeCUtiONcoviiiiiiiiiiiiiii 10
Creation of Output Reportsccoovviiiiiiiiiiiiii 10
Screen Generation for Interactive Processingccccoceevviiiiiiniiiiiinicnncnns 11
Processing of Logical Conditionsccceeieiiiiiiiiiiiiiiciicce, 11
Invoking Programs and Routinesccocceiiviiiiiiiiiniiiiniie, 12
FUNCHONS ..o 12
Program and Session Terminationc.cccocieiiiiiiiiiiiiii 12
Control of Work Filescccooioiiiiiiiiiiiiiiiiic 13
Component Based Programmingccccoceeiiiiiiiiiiiiniciiccccccccc 13
Event-Driven Programmingccccociiiiiiiiiiiiiiiieece, 13
Memory Management Control for Dynamic Variables or X-Arrays 14
Natural Remote Procedure Callcccocoooiiiiiiii 14
Internet and Parsingcccoocviiiiiiiiiiiiiiiii 14
MiSCEllan@OUSoovviiiiiiiiiiiiiii 15
Reporting Mode Statementsccccoeeiiiiiiiiiiiiiiiiiiiiccc, 15

3 Syntax Symbols and Operand Definition Tablescccccooviviiiiiiiiii. 17
Syntax SYMDOLSooviiiiiiiiiii e 18
Operand Definition Tableccccocciiiiiiiiiiiiiiiiiiii 19

IT Using Natural SQL Statementscccoooeiiiiiiiiiiiiic 23
4 Common Set and Extended Setc.cocoviiiiiiiiiiiii 25
5 Basic Syntactical [temsccooiiiiiiiiii 27
CONSLANES ..ot 28
INAINES ... 28
Parametersooviiiiiiiiiiic 32
Natural Formats and SQL Data TYpescccceviiiiiiiiiiiiiiiiiiiiiicciccecn 35

6 Natural View COnceptccociiiiiiiiiiiiiiiic e 37
7 Scalar EXPIeSSIONScocuiiiiiiiiiiiiiiiiiiiie i 39
Scalar EXPIreSSionccoviiiiiiiiiiiiieicciccecec e 40
Scalar OPETatorc.coouiieiiiiiiiiiiiie et 40
FacCtor ..oooiiiiiii 41

8 Search Conditionsccccuiiiiiiiiiiiiiii 47
Search Conditionccoviiiiiiiiiiiii 48
Predicatecccoiiiiiiiiiiiii 48

9 Select EXPIESSIONSciiviiiiiiiiiiiiiiiie et 53

Statements

SElECHIONoiviiiiiiiiiiiiii i 54
Table EXPIeSSIONc.coviiiiiiiiiiiiicice 55
FEO S (S e 1 o) (SIS T) RPN 61
Using Flexible SQL ..o 62
Specifying Text Variables in Flexible SQLcc.cccccoiiiiiiiiiiniiiiiiiiien, 63
ROW CHANGE Expression with Flexible SQLcccccoiiniiiiiiiiiis 65
OLAP SpecifiCationccccceeuiiiiiiiiiiiiiii e 65
Case Expression with Flexible SQLccccccoooiiiiiiiiiiiiiis 70
Cast Expression with Flexible SQLccccccoiiiiii 71
XML Functions with Flexible SQLcoovviiiiieiiiiiiiieeeeeeeeeeeeveee e 71
Scalar-Function and Column-Function (Aggregating) with Flexible
SQL s 72
III Referenced Example Programscccocuiiiiiiiiiiiiiiiiiciciccceccece e 75
11 Referenced Example Programsccocceecuiiiiiiiiieniiiiiienie e 77
ASSIGN L. 78
AT BREAK ..ot 79
AT END OF DATAocoiiiiiiie et 81
AT END OF PAGEcciiiiiiiiiiiicccc s 82
AT START OF DATA ...ttt 82
AT TOP OF PAGEccooiiiiiiiiiiiiiiiccc 84
DEFINE SUBROUTINEccooiiiiiiiiiiiiiciccccceeeecc s 85
FIND oot 86
FOR Lo 88
HISTOGRAM ..ottt 89
LE 89
PERFORM BREAK PROCESSINGcccoooiiiiiiiiiiiiiiiicceceeeecc 91
READ .o 92
REPEAT ..ot 93
SORT ... 94
STORE ..ottt s 95
UPDATE ..ot 97
Example Programs for System Variablesccccccooviiiiiiiiiiniiiiii, 98
I s 103
12 ACCEPT/REJECT ...oviiiiiiiiiiciiciecee e 105
ACCEPT/REJECT USAEcouveuviiiiiiiiiiiiiiiieiiciccctcscete e 106
ACCEPT/REJECT Syntax Descriptionccccccuevviiiiiiiiiiniiiiiiiieiiccicn 106
Processing of Multiple ACCEPT/REJECT Statementsc.cccooeviviinnennnnns 107
Limit NOtationcccoiiiiiiiiiii 107
ACCEPT/REJECT EXamplesccceviiviiiiiiiiiiiiiiiiiiiicecicic e 108
13 ADD .o 111
ADD USAZEooiuviiiiiiiiiiiiiiciic et 112
Syntax 1 - ADD Statement without GIVING Clausecccccoeiiiinnnn, 112
Syntax 2 - ADD Statement with GIVING Clausec.cccccceeviiiiiiniinniennn. 113
ADD EXamPIecoovviiiiiiiiiiiiiiii 115
14 ASSIGN ..ot 117

Statements

Statements

15 AT BREAK ..ottt 119
AT BREAK USAEEoooiiiiiiiiiiiiiiiiccici e 120

AT BREAK Syntax Descriptionccccovviiiiiiiiiiiiiiiiiiiiicciecieccn 121
Multiple Break Levelsccoocooiiiiiiiiic 122

AT BREAK EXamPIEscccoooiiiiiiiiiiiiiiiiiiccicccc e 123

16 AT END OF DATAcoiiiiiiiiiiciiiecc s 127
AT END OF DATA USAEEccveiviiiiiiiiiiiiiiiiiiccic et 128

AT END OF DATA ReStrictionscccccoviiiiiiiiiiiiiiiiiiiieiecciececeee 129

AT END OF DATA Syntax Descriptionc.cccooiiiiiiiiiiiiiiniiiice 129

AT END OF DATA EXampleccccceoviiiiiiiiiiiiiiiiiiicciicic e 130

17 AT END OF PAGEcociiiiiiiiiiiiiiiiiiiicc s 133
AT END OF PAGE USAGEcccviiuiiiiiiiiiiiiiiciiciccccccec e 134

AT END OF PAGE Syntax Descriptionccccccoeviiiiiiiiiiiiiiiiiiciiccin, 136

AT END OF PAGE Examplesccccceviiiiiiiiiiiiiiiiiiiiciiccicccicc e 137

18 AT START OF DATAooiiiiiiiiicicecc s 141
AT START OF DATA USAQGEcccuviiiiiiiiiiiiiiiiiiciicie e 142

AT START OF DATA Syntax Descriptionccccccevviiiiiiiiiiiiiniinininnnnn, 143

AT START OF DATA Examplecccccooviiiiiiiiiiiiiiiiiiiiiiciccecccecneeee 143

19 AT TOP OF PAGEcooiiiiiiiiiiiiiiiciccicic s 147
AT TOP OF PAGE USagecccviiuiiiiiiiiiiiiiiiiiiicciic e 148

AT TOP OF PAGE Restrictionsccccevuiiiiiiiiiiiiiiiiiiiiciicccccecccencn 149

AT TOP OF PAGE Syntax Descriptionccccccvvviiiiiiiiiiiiiiiiiicece, 149

AT TOP OF PAGE EXxamplec..cccooiiiiiiiiiiiiiiiccccecceece e 150

20 BACKOUT TRANSACTIONccoiiiiiiiiiiiiiciiccieciccieee e 153
BACKOUT TRANSACTION USagecoovviiiuiiiiiiiiiiiiiiiiniiieiicciecceccieee 154
BACKOUT TRANSACTION ReStrictionsccccccevuiiiiiiiiiiiiiiiiiciicices 155
Database-Specific Considerations for BACKOUT TRANSACTION 155
BACKOUT TRANSACTION Examplecccccooiiiiiiiiiiiiiiiiiiiiiiciccee 155

21 BEFORE BREAK PROCESSINGccocoiiiiiiiiiiiiiiiicciiccciccc e 157
BEFORE BREAK PROCESSING USageccccovuviimiiiiiiiiiiiiiiiiciicciiceieene, 158
BEFORE BREAK PROCESSING Restrictionsccccocueviiiiiiiiiiiiiiicienn 159
BEFORE BREAK PROCESSING Syntax Descriptioncccccccevviiiiiiniinnnn. 159
BEFORE BREAK PROCESSING Examplecccocoiviiiiiiiiiiiiiiiiicee, 160

22 CALL oo 161
CALL USAZE ..cuveoviiiieieeieeeteet ettt 162
CALL Syntax Descriptioncccocuiiiiiiiiiiiiiiiiiiiiiiiiiciccceccee 162
Return Code ..o 163
CALL USer EXItS ...cooviiiiiiiiiiiiiiiiciccicccccccc e 163
INTERFACEZ ..ot 165

23 CALL FILE ...ooiiiiiiiiiiiicc e 177
CALL FILE USQGEccoiuviiiiiiiiiiiiiiiicciiiccicc s 178
CALL FILE ReStriCtioNnscccovvuiiiiiiiiiiiiiiiiiiiciiccceccccec e 178
CALL FILE Syntax Descriptioncccccovviiiiiiiiiiiiiiiiiiiiiicieciec e 178
CALL FILE EXamplecccccoiiiiiiiiiiiiiiiiiicicccicceieeee e 179

24 CALL LOOP ..ottt 181
Statements v

Statements

CALL LOOP USAZEuviiviiiiiiiiiiiiiiiiiieie ettt 182
CALL LOOP ReStrictionscccoeviiiiiiiiiiiiiiiiiiiciicciccececccceve 182
CALL LOOP Syntax Descriptionccccceevvuiiiiiiiiiiiiiiiiiiiiicciicciecciees 183
CALL LOOP Exampleccooviiiiiiiiiiiiiiiiccec e 183

25 CALLDBPROC (SQL) ..oiviiiiiiiiiiiiiiiicieeicec et 185
CALLDBPROC USAGEoeeuviiiiiiiiiiiiiiiieieiieciceie e 186
CALLDBPROC Syntax Descriptioncccceevviiiiiiiiiiiiiiiiiiiiiiieiicciieees 187
CALLDBPROC EXamplecccccoouiiiiiiiiiiiiiiiiiiciiciiee e 188

26 CALLNAT ...ttt 191
CALLNAT USAEE ...cvviiiiiiiiiiiiiiiicciiccic e 192
CALLNAT Syntax Descriptioncccocveviiiiiiiiiiiiiiiceccc 193
Parameter Transfer with Dynamic Variablesc.cccccooviiiiiiiiiniiniiinnnn, 195
CALLNAT EXamPILEScocuiiiiiiiiiiiiiiiiiii it 196

27 CLOSE CONVERSATIONcooiiiiiiiiiiiiiiiiciiicic e 199
CLOSE CONVERSATION USageccceevvieiiinieiiiiiiiiiiieicciceieeec e 200
CLOSE CONVERSATION Syntax Descriptioncccooeeiiiiiiiciiiiiiicnns 200
Further Information and CLOSE CONVERSATION Examples 201

28 CLOSE DIALOGcciiiiiiiiiiiiiiieiie et 203
CLOSE DIALOG USAEEccuvviiiiiiiiiiiiiiiiiiiic i 204
CLOSE DIALOG Syntax Descriptioncccceeiiiiiiiiiiiiiiiiiiiciiccciecen 204
Further Information and CLOSE DIALOG Examplesc..c.ccccoceeviiinnnninn 205
.. 207
29 CLOSE PRINTERccciiiiiiiiiiiiiiiiiiiicic e 209
CLOSE PRINTER USAZEccvovuiiiiiiiiiiiiiiiiiiiiccicciccic e 210
CLOSE PRINTER Syntax Descriptioncccceviiiiiiiiiiiiiiiiiiiiiiicecie 210
CLOSE PRINTER EXampleccccccciviiiiiiiiiiiiiiiiiiiicccececcccee 211

30 CLOSE WORK FILEccoooiiiiiiiiiiiiciicieccc e 213
CLOSE WORK FILE USQgEccueiiiiiiiiiiiiiiiiiiiciie e 214
CLOSE WORK FILE Syntax Descriptionccccccoevviiiiiiiiiiiiiiiiniiiiiiens 214
EXAMPIE ..ot 215

31 COMMIT (SQL) .eoiiiiiiiiiiiiiiiccic s 217
COMMIT USAGE ...ttt 218
COMMIT EXamplecociiiiiiiiiiiiiiiiciccccccccc 218

B2 COMPRESSooiiiiiiiiiiiic e 219
COMPRESS USAGEooveiiieiiiitieiieieeii ettt 220
COMPRESS Syntax Descriptionccccoeuviiiiiiiiiiiiiiiiiiiiieicecen 220
COMPRESS Processingcccuieiuiiiiiiiiiiiiieiieeie et 224
COMPRESS EXaAMPIES ...ceviiniiiiiiiiiiiiiieiieciccee e 225

33 COMPUTE ...ttt e 229
COMPUTE USAGEveonvieiiiiieiieiceieci et 230
COMPUTE Syntax Descriptionccccooouiiiiiiiiiiiiiiiiiiiiiciiiciccccccees 232
Result Precision of @ DiviSiOnccccociiiiiiiiiiiiiiiiiiicn 234
COMPUTE EXamMPIES ...ccevviiiiiiiiiiiiiiiiiiiciicccceic e 235

34 CREATE OBJECT ...c.oiiiiiiiiiiiiiiiiiieicicc e 237
CREATE OBJECT USAZEccuviiuiiiiiiiiiiiiiiiic it 238

vi

Statements

Statements

CREATE OBJECT Syntax Descriptioncccceivviiiiiiiiiiiiiiiiiicciiicce, 238

35 DECIDE FORcooiiiiiiiiiiiiiicic s 241
DECIDE FOR USAGEooiiiiiiiiiiiiiiiiiiicciiccciiccciiceec e 242
DECIDE FOR Syntax Descriptionccccovieiiiiiiiiiiiiiiiiicceciccccieens 242
DECIDE FOR EXamplesccccoeiiiiiiiiiiiiiiiieiiiciicceeeee e 243

36 DECIDE ONooiiiiiiiiiiiiiiiiiicc e 247
DECIDE ON USageoooiuiiiiiiiiiiiiiiiiiiiiiicciic it 248
DECIDE ON Syntax Descriptionc.cccovviiiiiiiiiiiiiiiiiiiiciecicccec 248
DECIDE ON EXamplescc.cooiiiiiiiiiiiiiiiiiicciece e 250

37 DEFINE CLASS ..ottt 253
DEFINE CLASS USAZEcevvuiiiiiiiiiiiiiiiiiiiic i 254
DEFINE CLASS Syntax Descriptionccccovviiiiiiiiiiiiiiiiiiiiiiiees 254
VIDEFINE DATA ..ottt 257
38 Function and Basic Syntax Rulescccccocciiiiiiiii, 259
DEFINE DATA USQZEcuvviiiiiiiiiiiiiiiiiiiiicciicciic e 260
DEFINE DATA General Syntax Rulesc.cccoooiiiiiiiiii 260
DEFINE DATA Programming Modesccccccueiviiiiiiiiiiniiiiiiiiecicececeee, 260

39 Defining Global Dataccooiiiiiiiiiii 263
DEFINE DATA GLOBAL USAgecccviiuiiiiiiiiiiiiiciiiiiciicciecicec e 264
DEFINE DATA GLOBAL Syntax Descriptionccccoovvuviiiiiiiiiiiiiiininnnnn. 264

40 Defining Parameter Datacccccooiiiiiiiiiiiiicc 267
DEFINE DATA PARAMETER USageccccovviiiiiiiiiiiiiiiiiiccicciccc i 268
DEFINE DATA PARAMETER Restrictionscccccoovviiiiiiiiiiiiiiiiciicn, 268
DEFINE DATA PARAMETER Syntax Descriptionccccccovviiiiiiiiinnnnnn. 268

41 Defining Local Datacccooiiiiiiiiiiiiccccc 273
DEFINE DATA LOCAL USAgEccevviiiiiiiiiiiiiiiiiicicieccicce e 274
RESETICHON ...t 274
DEFINE DATA LOCAL Syntax Descriptioncccoceeviiiiiiiiiiiiiiiicic, 274

42 Defining Application-Independent Variablesccccccociiviiiiiiniiiniinnnnnn. 279
DEFINE DATA INDEPENDENT UsSageccccoecviiiiiiiiiiiiiiciiiciiciicciee 280
DEFINE DATA INDEPENDENT Syntax Descriptioncccccceviiiiiinnnnne. 280

43 Defining Context Variables for Natural RPCc.ccccooiiiiiiiii 283
DEFINE DATA CONTEXT USagecccovuviiiiiiiiiiiiiiiiiiiiciicciccic e 284
DEFINE DATA CONTEXT ReStrictionscccooviiiiiiiiiiiiiiiiccicicceice, 285
DEFINE DATA CONTEXT Syntax Descriptionccccccoovviviiiiiiiiniiicnnnn, 285

44 Defining NaturalX Objectscccooviiiiiiiiiiiiiiiiiiiiiiiicceccc 287
DEFINE DATA OBJECT USAgEecccevvviiiiiiiiiiiiiiiiiiiiiiciiicciic e 288
DEFINE DATA OBJECT Syntax Descriptionccccceeviiiiiiiiiiiiiniiinnnnnn. 288

45 Variable Definitionccccooiiiiiiiiiiiiiiiiiiiiiiceieeceeeec e 291
Variable Definition Syntax Descriptionccccocooviiiiiiiiiiniiiiiiiiins 292

46 View Definitionc.ccoiiiiiiiiiiiiii 297
View Definition Syntax Descriptionc.coccoociiiiiiiiiiiiiic, 298

47 Redefinitionccciiiiiiiiiiiiiiic 303
Redefinition Restrictionscccooviiiiiiiiiiiiiiiii 304
Redefinition Syntax Descriptioncccccoccevviiiiiiiiiiiiiiiiiiecececcecee 304

Statements Vii

Statements

48 Array Dimension Definitionccccoviiiiiiiiiiiiiiiii, 307
Syntax Description of Array Dimension Definitioncccccocevviiiiiinnn, 308
49 Initial-Value Definitionccccovviiiiiiiiiiiiiiiiiiii 311
Restrictions with Initial-Value Definitionccccooiiiiiiinii. 312
Syntax Description of Initial-Value Definitioncccccooviiiiiiiiniinninnnn. 312
50 Initial/Constant Values for an Arraycccccoviiiiiiiiiiiiiiiiiiiiccen, 315
Restrictions for Initial/Constant Values for an Arraycccocceevvvevcnieniennnen. 316
Syntax Description of Initial/Constant Values for an Arrayccoceeee. 317
51 EM, HD, PM Parameters for Field/Variablecccccoevevumrrrmrererrinrnennnenensnnnnnnns 321
Syntax Description of EM, HD, PM Parameters for Field/Variable 322
52 Examples of DEFINE DATA Statement Usagecccoceeviiiiiiiniiiiciicics 323
Example 1 - DEFINE DATA LOCAL (Local Data Definition)c........ 324
Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization) 324
Example 3 - DEFINE DATA (View Definition, Array Redefinition) 328
Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas) 329
Example 5 - DEFINE DATA (Initialization)ccccoooiiiiiniiiiiiiiii 330
Example 6 - DEFINE DATA (Variable Array)ccccocovviiiiiiiiiiiiiniiiienees 330
.. 333
53 DEFINE FUNCTIONccooiiiiiiiiiiiiiiiiiicic e 335
DEFINE FUNCTION USAZEccuveuiiiiiiiiiiiiiiiiiiiciesieciccee e 336
DEFINE FUNCTION Syntax Descriptionccccoceeviiiiiiiiiiiicciiecies 336
DEFINE FUNCTION Examplesccccooiiiiiiiiiiiiiiiiiiiiiiciiiciccccic e 340
54 DEFINE PRINTERcccooiiiiiiiiiiiiiiiiic e 343
DEFINE PRINTER USQg€cccoovviiiiiiiiiiiiiiiiciiiiccccicecececc e 344
DEFINE PRINTER Syntax Descriptioncccccceeeiiviiiiiiiiiiiiiiiiciicicees 344
DEFINE PRINTER Examplesccccccoviiiiiiiiiiiiiiiiiiiccicciccicccccci 346
55 DEFINE PROTOTYPEccocoiiiiiiiiiiiiiiccccc e 349
DEFINE PROTOTYPE USagecccoviiiiiiiiiiiiiiiiiiiiccceccccieic 350
DEFINE PROTOTYPE Syntax Descriptioncccccoeevvviiiiiiiiiiiiiiniiinninnen, 351
DEFINE PROTOTYPE EXamplescccccoeviiiiiiiiiiiiiiiiiiiiicciccceiccie i 354
56 DEFINE SUBROUTINEccccooiiiiiiiiiiiiiiiiiiciccciccc s 357
DEFINE SUBROUTINE USageccococuiiuiiiiiiiiiiiiiiciiciciicciccic e 358
DEFINE SUBROUTINE ReStrictionscccccoviiiiiiiiiiiiiiiiiiiiciiciccice 359
DEFINE SUBROUTINE Syntax Descriptionccccocueviiiiiiiiiiiiiiiiiienine. 360
DEFINE SUBROUTINE Examplesccccoouiiiiiiiiiiiiiiiiiiiiiiiccicceec 360
57 DEFINE WINDOWccooiiiiiiiiiiiiiiiiiiccc s 365
DEFINE WINDOW USagecccuiiiiiiiiiiiiiiiiiiiiciiciceee e 366
DEFINE WINDOW Syntax Descriptionccccoevviiiiiiiiiiiiiiniiiiiee, 367
Protection of Input Fields in a Windowcccoccooviiiiiiniii, 371
Invoking Different Windowscccocooiiiiiiiiiiiiicc, 371
DEFINE WINDOW Exampleccccccoiiiiiiiiiiiiiiiiiiiiiiccicciccicccee 371
58 DEFINE WORK FILEccocooiiiiiiiiiiiiiiiiiiiiccccc e 373
DEFINE WORK FILE USAgEeccceivuiiiiiiiiiiiiiiiciiiicceccec e 374
DEFINE WORK FILE Syntax Descriptioncccccooueviiiiiiniiiiiiiiniiieen. 374
... 379

viii

Statements

Statements

BIDELETE ...ttt e 381
DELETE USAgecooviiiiiiiiiiiii 382
DELETE ReStrictionccciiiiiiiiiiiiiiiieiicciecic e 382
DELETE Syntax Descriptionc.ccooiiiiiiiiiiiiicc 382
DELETE Database-Specific Considerationscccccceevviiiiiniiiiiiniinnnnenn. 383
DELETE EXamplesccccocueiiiiiiiiiiiiiiiiiicicccccecsee e 383

60 DELETE (SQL) ..cuviiiiiiiiiiiiiiiccicice s 385
DELETE (SQL) USAZEeevviiiiiiiiiiiiiieiicctceiccnciesc et 386
Syntax 1 - Searched DELETEccccccooiiiiiiiiic 386
Syntax 2 - Positioned DELETEcccocciiiiiiiiiiiiiiiiiicce 387

61 DISPLAY ..ottt 389
DISPLAY USAGE ...ccvviiiiiiiiiiiiiiiicciiiccicccc e 390
DISPLAY Syntax Descriptionccccvviiiiiiiiiiiiiiiiiiicicieccecec 390
Defaults Applicable for a DISPLAY Statementc.ccccocooiiiiiiiiiiiiicnn, 402
DISPLAY EXamplesccccoooiiiiiiiiiiiiiiiiiiiiciiicicccce e 403

62 DIVIDE ...t 411
DIVIDE USAEuvviiiiiiiiiiiiiiiiiiiiiiiccciicccicc e 412
Syntax 1 - DIVIDE Statement without GIVING Clausecccccccoveenennin. 412
Syntax 2 - DIVIDE Statement with GIVING Clausecccccceevevuiiniennnen. 413
Syntax 3 - DIVIDE Statement with REMAINDER Clausecccccoceenen. 414
EXAMPIE ..o 415

63 DO/DOENDoooiiiiiiiiiiiicicci s 417
DO/DOEND USAZEcucoviiiiiiiiiiiiiieiieieiccic st 418
DO/DOEND ReStrictionsccccoiiiiiiiiiiiiiiiiiiiiciccicccc i 418
DO/DOEND EXampleccccociiiiiiiiiiiiiiiiiiiiiiieciccece e 419

64 EJECT .o 421
Y G R T 422
EJECT Syntax Descriptioncccccoeviiiiiiiiiiiiicicciccccce e 422
PIOCESSING ..cvvviiiiiiiiiiiicii 424
EJECT EXampIeccoooiiiiiiiiiiiiiccccee s 424

05 END ..o 427
END USAGevooiiieiiiiiiee e 428
END Syntax Descriptionccccccoviiiiiiiiiiiiiiiiiiccc 428
END EXamplescocooiiiiiiiiiiiiiiiiiiiiii i 429

66 END TRANSACTIONccoiiiiiiiiiiiiiiiiiiie s 431
END TRANSACTION USAGEcooveiiiiniiiniiiiiiiiiciiceic e 432
END TRANSACTION ReStrictionsc.cocevieiiiiiiiiiiciicciceicccceicecn 432
END TRANSACTION Syntax Descriptionccceceviviiiiiiiiiniiiiniiiiiiens 433
Databases Affectedccocoiiiiiiiiiiiiiiiii 433
END TRANSACTION Database-Specific Considerationsc.cccccueu..e. 434
END TRANSACTION Examplescccccooviiviiiiiiiiiiiiiiiiiiciccccceccee 434

67 ESCAPEcooiiiiiiiiiice 437
ESCAPE USAZEevviiiiiiiiiiiiiiiiiiiiicciiccic e 438
ESCAPE Syntax Descriptioncccooiiiiiiiiiiiiiiiiic 439
ESCAPE EXamplecccooiiiiiiiiiiiiiiiiiiiiiiiccicci e 440

Statements iX

Statements

68 EXAMINEooiiiiiiiiiii 443
Syntax 1 - EXAMINEccccoiiiiiiiiiiiii 444
Syntax 2 - EXAMINE TRANSLATEcccccoiiiiiiiiiiiiinicccecci 453
Syntax 3 - EXAMINE for Unicode Graphemescccocoviiiiiiiniiinnn, 454
EXAMINE EXamplescoceiiiiiiiiiiiiiiiiiiiiiicieccie e 457

09 EXPANDooiiiiiiiiiii s 465
EXPAND USAZE ...cevviiiiiiiiiiiiiiiiiiii e 466
EXPAND Syntax Descriptionccceviiiiiiiiiiiiiiiiiiiiiicicciecceccies 466

... 471

70 FETCH oottt 473
FETCH USAGe «..coviieiiiiiiieiiee e 474
FETCH Syntax Descriptioncccccovviiiiiiiiiiiiiiiiiiiiiceccccces 474
FETCH EXampleccocoiiiiiiiiiiiiiiiiiiiiiici e 476

L FIND i 479
FIND USQZE ...cvvviiiiiiiiiiiiiiic it 480
FIND ReStIICtONS ...eoovvviiiiiiiiiiicciiccicceccce e 482
Syntax 1 - FIND Statement with Processing LOOPccccoecvivviiiiiiiiiniinnen. 482
Syntax 2 - FIND Statement without Processing Loopccccccceveviiiiiiinnnns 482
Syntax Descriptionccccovviiiiiiiiiiiiiiiiiii 483
FIND EXamplescccoiviiiiiiiiiiiiiiiiiiiiiiiciiccc 504

72 FOR oo 515
FOR USAZEoiiiiiiiiiiiiiiiiiciic i 516
FOR Syntax Descriptioncccccoevieiiiiiiiiiiiicicccccc e 516
FOR EXQMPIE ..ot 518

73 FORMATooiiiiiiiiiiiiiic e 521
FORMAT USQZEccoiuviiiiiiiiiiiiiiiii it 522
FORMAT Syntax Descriptionccccocouiiiiiiiiiiiiiiiiiiiiiciiiccieccieccece 522
Applicable Parameters for FORMATccoooviiiiiiiiiiiiiccc 523
FORMAT EXampleccccoiiiiiiiiiiiiiiiiiiiiciccc e 524

74 GET oo 527
GET USAZE ...viiiiiiiiiiii i 528
GET ReStriCtONSc.coviiiiiiiiiiiiiiicciicccicccec e 529
GET Syntax Descriptionccccoociiiiiiiiiiiiiiiiiiiiiiiiicece e 529
GET EXamPIeooiiiiiiiiiiiiiiiiiicc 530

75 GET SAME ...ooiiiiiiiiiic e 533
GET SAME USAZEvviiiiiiiiiiiiiiiiiiiicciccicce s 534
GET SAME ReStIictioNScccuviiiiiiiiiiiiiiiciiiccececc e 534
GET SAME Syntax Descriptioncccccceiiiiiiiiiiiiiiiiiiieccee, 534
GET SAME EXampleccccoiiiiiiiiiiiiiiiiiiiiiiccicccc 535

76 GET TRANSACTION DATAcooiiiiiiiiiiiici e 537
GET TRANSACTION DATA USagec.coovvvuiriiiiiiiiiiiiiiiciiciieeicciecie e 538
ReSIICHON ..o 538
GET TRANSACTION DATA Syntax Descriptioncccocueviiiiiiiiiiiinnnne. 539
GET TRANSACTION DATA Examplecccccooviiiiiiiiiiiiiiiiiiiiiiciiccs 539

77 HISTOGRAMooiiiiiiiiiiiccccc s 541

Statements

Statements

HISTOGRAM USAZE ..ottt 542
HISTOGRAM ReStIiCtioNScccovuviiiiiiiiiiiiiiiiiiccic e 543
HISTOGRAM Syntax Descriptioncccccuviiviiiiiiiiiiiiiiiiiciiciccec, 543
System Variables Available with HISTOGRAMccooiiiiiiiiiiiis 548
HISTOGRAM EXamMPIEScoooviiiiiiiiiiiiiiiiiie it 549

T8 IF oo 553
IE USAZE ..eoiiiiiiiiiiiiiiiic i 554

IF Syntax Descriptioncccccciiiiiiiiiiiiiiiiiiiiii 554

IF EXamPe ...oooiiiiiiiic 555

79 IF SELECTIONooiiiiiiiiiiiiiiccicccce e 557
IF SELECTION USAEEuvviuiiiiiiiiiiiiiiiiiiieiiccic s 558

IF SELECTION Syntax Descriptioncccccoivciiiiiiiiiiiiiniiiiiiiccee 558

IF SELECTION EXxampleccccocoeiiiiiiiiiiiiiiiiiiiciciicecccceccce e 560

80 IGINOREoouiiiiiiiiiiiiii e 561
IGNORE USAZEoeoiviiiiiiiiiiiiiiiiicciiccccc s 562
IGNORE EXamplec.coooiiiiiiiiiiiiicicce e 562

L INCLUDE ..ottt 563
INCLUDE USAZE ...c.eveviiiiiiiiiiiiiiiieciieiccie e e 564
INCLUDE Syntax Descriptioncccccoeeiiiiiiiiiiiiiiiiiiiiicciecciicccieciees 564
INCLUDE EXamplescccciiiiiiiiiiiiiiiiiiiiiiccicec e 565
XINPUT Lo 571
82 INPUT Syntax 1 - Dynamic Screen Layout Specificationcccccovieiinnnne. 577
INPUT Syntax 1 - DeScriptionc..cccoeiiviiiiiiiiiiiiiciccecceec e 578
Examples - INPUT Syntax 1cccceociiiiiiiiiiiiiiiiiiiceccceccee e 587

83 INPUT Syntax 2 - Using Predefined Map Layoutc..cccooveviiiininnnnnnne 591
INPUT USING MAP without Parameter Listccccoccoviiiiniinnnn. 592
INPUT Fields Defined in the Programccccoccoiiiiniiiiiiiiiiniiiiiiie 593
INPUT Syntax 2 - DeScriptionc.cccoeiiviiiiiiiiiiiicciciccce e 593
Using the INPUT Statement in Non-Screen Modescccoceeviiiiiininnn. 594
Processing Data from the Natural Stack ..o 597
Using the INPUT Statement in Batch Modeccccooviiiiiiiiiiiniiinin, 597

XL e e 599
84 INSERT (SQL) ...oiiiiiiiiiiiiiicicceicc e 601
INSERT USAGE ...coovviiiiiiiiiiiiiiiicciic et 602
INSERT Syntax Descriptionccocoviiiiiiiiiiiiiiiiicciciccc e 602

85 INTERFACEoooiiiiiiiiiiic e 607
INTERFACE USAEooiviiiiiiiiiiiiiiiic i 608
INTERFACE Syntax Descriptionccccoecuiiiiiiiiiiiiiiiiiiiiiccc 609

86 LIMIT ..o s 615
LIMIT USAGE ..cuvviiiieiiiiiieee e 616
LIMIT Syntax Descriptioncccccviviiiiiiiiiiiiiiiiiiicicccccc e 617
LIMIT EXamplesc.ccooviiiiiiiiiiiiccce e 617

87 LOOP ...ttt s 619
LOOP USAE ...ccuviviiiiiiiiiiiiiiieiieicciete et 620
LOQOP ReStIICHONeouviiiiiiiiiiiiiicciicciicciic e 620
Statements Xi

Statements

LOOP Syntax Descriptioncccueiiiiiiiiiiiiiiiiiiiiiiccicccieccecc e 621
LOOP EXamPIEScvoeoiiiiiiiiiiiiiccieeiece e 621
88 METHODooiiiiiiiiiiic 623
METHOD USAGEooviiiiiiiiiieiiccieec et 624
METHOD Syntax Descriptionccccocvviiiiiiiiiiiiiiiiiiiiececce 624
METHOD EXamplecccooiiiiiiiiiiiiiiiiiiiiccicec e 625
89 MOWVE ... 629
MOVE USAZEoooiiiiiiiiiiiiiiiiiiccciiccc e 630
Syntax 1 -MOVE ... 630
Syntax 2 - MOVE SUBSTRINGc.ccccooiiiiiiiiiiiiiiicicccccccie 632
Syntax 3 - MOVE BY NAME / POSITIONcccccceciiiiiiiiiiiiiiiiiiiiiciiee 634
Syntax 4 - MOVE EDITED (Edit Mask Specified with operand?2) 635
Syntax 5 - MOVE EDITED (Edit Mask Specified with operandl) 636
Syntax 6 - MOVE LEFT / RIGHT JUSTIFIEDc..ccccocooviiiiiiiiiiiiiiiiiiees 637
Syntax 7 - MOVE NORMALIZEDc.cccooiiiiiiiiiiiiiiiccccee 638
Syntax 8 - MOVE ENCODEDccccocuiiiiiiiiiiiiiiiiicicec e 640
Syntax 9 - MOVE ALLcooooiiiiiiiiiiiice 642
MOVE EXamPIESccoooiiiiiiiiiiiiiciccceccc e 645
90 MOVE INDEXEDcooiiiiiiiiiiiiiiiiccici i 651
91 MULTIPLY ..ottt s 653
MULTIPLY USAEcuviiuiiiiiiiiiiiiiiiiiiicciccic s 654
Syntax 1 - MULTIPLY Statement without GIVING Clauseccccccoeeueee. 654
Syntax 2 - MULTIPLY Statement with GIVING Clausec.cccoccoeveininnin. 655
EXamPIe .o 656
92 NEWPAGEoooiiiiiiiiiiiicii e 659
INEWPAGE USaEEevviiiiiiiiiiiiiiiiiiicciiccicce e 660
NEWPAGE Syntax Descriptionccccoivviiiiiiiiiiiiiiiiciccc 660
NEWPAGE Examplecccoooiiiiiiiiii 661
93 OBTAIN ..ot 665
OBTAIN USAZEveeviiiiiiiiiieiiciie e 666
OBTAIN ReStIICHONoooviiiiiiiiiiiiiicicciicccccc e 666
OBTAIN Syntax Descriptionc.ccccooviiiiiiiiiiniiiicccc i, 667
OBTAIN EXamplescccciiiiiiiiiiiiiiiiiiiiiccicccccc 671
94 ON ERROR ..ottt 673
ON ERROR USQZEcuveevviiiiiiiiicitieiceiceteie et 674
ON ERROR ReStrictionc..ccoveeiiiiiiiiiiiiiiiiiiicicciccccc 674
ON ERROR Syntax Descriptioncccccoeiiiiiiiiiiiiiiiiicc e, 675
ON ERROR Processing within Objects on Different Levels 675
ON ERROR System Variablescccccoevviiiiiiiiiiiiiiiiiiiicicceccec 676
ON ERROR Exampleccocooviiiiiiiiiiiic 676
95 OPEN CONVERSATIONcooiiiiiiiiiiiiiiiiiiciieicec e 679
OPEN CONVERSATION USAGEecceevuiiiiiiiiiiiiiiiiciiciicciec e 680
OPEN CONVERSATION Syntax Descriptionccccoeeviiviiiiiiiiiiiininnenns 680
Further Information and OPEN CONVERSATION Examples 681
96 OPEN DIALOGcoiiiiiiiiiiiiiiiicccc s 683

Xii Statements

Statements

OPEN DIALOG USAEEveviuviiiiiiiiiiiiiiiiiiic it 684
OPEN DIALOG Syntax Descriptionc.ccccoviiiiiiiiiiiiiiiciccecie 684
Further Information and OPEN DIALOG Examplescccccccceviiniinnninnnn. 686

97 OPTIONS ..o 687
OPTIONS USAZEcuvviiiiiiiiiiiiiiiiii i 688
Processing of Multiple OPTIONS Statementsccccoceoviiiiiiiiciiinenns 688

XIL e 689
98 PARSE JSONooiiiiiiiiiiiieicciect e 691
PARSE JSON USAEocvveviiiiiiiiiciieicetiei et 692
PARSE JSON Syntax Descriptioncccccceiiiiiiiiiiiiiiiiiiiciiieciecce, 693
PARSE JSON EXamplesc.cccoeviiiiiiiiiiiiiiiiicicccece e 696
PARSE JSON: Reason Codes for Error Message NAT8331ccccecvvevninnen. 701

99 PARSE XMLoiiiiiiiiiiiiiiiii i 703
PARSE XML USQZEccoviiuiiiiiiiiiiiiiiiiciiiciccic e 704
PARSE XML Syntax Descriptionccccoooviiiiiiiiiiiiiiiiiiiiciccicccece 705
PARSE XML EXamplesc.cccoevuiiiiiiiiiiiiieicccccc e 708

100 PASSW .o 713
PASSW USAZEe ...ccuveiiiiiiiiiiiiiiiicicic e 714
PASSW Syntax Descriptioncccccoviiiiiiiiiiiiiiiiiiiiiiicececcee 714

101 PERFORMooiiiiiiiiiiiiiiiiiiccec s 717
PERFORM USAZEccvviuiiiiiiieiiiiieie ettt 718
PERFORM Syntax Descriptioncccocveiviiiiiiiiiiiiiiiiiiiiiecccieccce 718
PERFORM EXampIesccccoiiiiiiiiiiiiiiicicccieecee e 721

102 PERFORM BREAK PROCESSINGcccooiiiiiiiiiiiiiiiciccec e 725
PERFORM BREAK PROCESSING USagecccccovviiiiiiiiiiiiiiiiiiiciiceiecnn 726
PERFORM BREAK PROCESSING Syntax Descriptionccccoccueeiiiiennnen. 726
PERFORM BREAK PROCESSING Examplec.cccccooviiiiiiiiiiiiiiciicics 727

103 PRINT ..ot 729
PRINT USAZE ...cooiuiiiiiiiiiiiiiiiiiicciciccc e 730
PRINT Syntax Descriptioncccoooiiiiiiiiiiiiiiiii 731
PRINT EXQMPLE ..oooiiiiiiiiiiiiiiiciici e 736

104 PROCESSoviiiiiiiiiiiiciicc s 739
PROCESS USAZEcovviiuiiiiiiiiiiiiiciicciicciccc et 740
PROCESS ReStrictionccviiiiiiiiiiiiiiiiiiiccicc 740
PROCESS Syntax Descriptioncccoceeviiiiiiiniiiciiceeccceec e 740

105 PROCESS COMMANDoooiiiiiiiiiiiiiiiiic i 743
PROCESS COMMAND USAZEccovvuiiimiiiiiiiiiiiiiiiicciccciic e 745
PROCESS COMMAND Syntax Descriptionccccceiiviiiiiiiniiiiniiinnnneen. 746
PROCESS COMMAND Examplescccccociiiiiiiiiiiiiiiiiiiiiiiiciiccec 756

106 PROCESS GUIoiiiiiiiiiiiiiicciciccecccc e 759
PROCESS GUI USAZEcoovvviiiiiiiiiiiiiiiicciicciiceiiec e 760
PROCESS GUI Syntax Descriptionccccceeieviiiiciieiiiicnieciecccc, 760

107 PROCESS PAGEcoooiiiiiiiiiiiiiiiiccccccc s 763
PROCESS PAGE USagecceoiviiiiiiiiiiiiiiiiciicci e 764
Syntax 1 - PROCESS PAGEccccccooiiiiiiiiiiiiiiiiiiicccccc 764
Statements xiii

Statements

Syntax 2 - PROCESS PAGE USINGcccccooviiiiiiiiiiiiiiiiicecccn 767
Syntax 3 - PROCESS PAGE UPDATEcccccocoiiiiiiiiiiiiiiiicicccs 770
Syntax 4 - PROCESS PAGE MODALcccocoiiiiiiiiiiiiiiiiiciccicece 773
PROCESS PAGE Examplescccoooiiiiiiiiiiiiiie 775

108 PROCESS REPORTERc.cociiiiiiiiiiiiiiiiiic i 777
PROCESS REPORTER USAEEcoouviiiiiiniiiiiiiiiiiiiiiicicic e 778
PROCESS REPORTER Syntax Descriptionccccceeviiiiiiiiiiiiiiiiiiiiennnenn, 779
PROCESS REPORTER EXamplesccccoociiiiiiiiiiiiiiiiiiiiiiiciiccecccciee 784

109 PROCESS SQL (SQL) ...vviiiiiiiiiiiiiiiicciiceicrc e 787
PROCESS SQL USAZEcoovuviiiiiiiiiiiiiiiiciiiccciiic e 788
PROCESS SQL Syntax Descriptioncccoceeviiiiiniiniiiiiiiciccicccceece 788
Entire Access OPtiONSccciiiiiiiiiiiiiiiiiiiic 789
PROCESS SQL Examplesccccccoiiiiiiiiiiiiiiiiiiiiiicciccccc 790

110 PROPERTY ..cuiiiiiiiiiiiiicciieic s 791
PROPERTY USAGE ...coovviiiiiiiiiiiiiiiiiiiic et 792
PROPERTY Syntax Descriptionccccocceeiiiiiiiiiiiiiiicciccccce 792
PROPERTY EXamPIecoooiiiiiiiiiiiiiiiiiiiiicciicnccecee e 793

XIIT e 795
11T READ oo s 797
READ USAGE ...ccuvviiiiiiiiiiiiiiiiicciccc s 798
READ Syntax Descriptionc.cccoeiiiiiiiiiiiiiiiiceeccc e 799
System Variables Available with READccccccooiiiiiiiiiiiiiiiiiiiiin, 810
READ EXamplesc.cccovuiiiiiiiiiiicc e 811

112 READ RESULT SET (SQL) ...oooviiiiiiiiiiiiiiiciicicceciccccc e 821
READ RESULT SET USAEEccovuviiiiiiiiiiiiiiiiiiic it 822
READ RESULT SET Syntax Descriptionccccceeviiiiiiiiiniininiiciniiecen, 822

113 READ WORK FILEcooiiiiiiiiiiiiiiccecece s 825
READ WORK FILE USAGEccecovuiiiiiiiiiiiiiiiiiiiciiciccie e 826
Syntax 1 - READ WORK FILE with Processing LOOpcccccecueviviiiiiininnnn. 826
Syntax 2 - READ WORK FILE without Processing Loopcccccoevvieirnncnn. 827
READ WORK FILE Syntax Descriptioncccccccoeviiiiiiiiiiiiiiiiiiiene, 827
Field Lengthsccooiiiiiiiiii 830
Variable Index Rangecccccooviiiiiiiiiiiiiiiiiiiii 831
Handling of Large and Dynamic Variablescccccociiiiiiiiniininn. 831
Handling of X-ArITaysc.ccooiiiiiiiiiiiiccec e 832
READ WORK FILE EXamplescccccccieiiiiiiiiiiiiiiiiiiiiiiciccnccceccceecen 832

114 READLOBoiiiiiiiiiiiiiicce e s 839
READLOB USAZEc.uviiiiiiiiiiiiiiiiiiiiicciic it 840
READLOB ReStIiCtiONScevviiiiiiiiiiiiiiiiiiiiiiicc e 840
READLOB Syntax Descriptionccooueiieiiiiiiiiiiiiccc 841
System Variables Available with READLOBcccccociviiiiiiiiiiiiiiiiiiee 843
READLOB Functional Considerationsccccoeeviiiiiiiiiiiiiiiiniiein, 844
READLOB EXaMPIEScooiiiiiiiiiiiiiiiiiiiciccic e 844

115 REDEFINEcooiiiiiiiiiiiiiicic e 847
REDEFINE USAGEcoouiiiiiiiiiiiiiiiiiiiciccicccic et 848

Xiv Statements

Statements

REDEFINE ReStrictionccccccooviiiiiiiiiiiiiiiiiiiiiciicccincccc e, 848
REDEFINE Syntax Descriptioncccovieeiiiiiiiiiniiiieccc 848
REDEFINE EXamplescccccooviiiiiiiiiiiiiiiiiiiiiicicccccee 849
116 REDUCEooiiiiiiiiiiiccce s 851
REDUCE USQZEcvviiiiiiiiiiiiiiiiciiicciicc i 852
REDUCE Syntax Descriptioncccooiiiiiiiiiiiiiiiiicc 852
117 REINPUT .ooiiiiiiiiiii s 857
REINPUT USQGEvviiiiiiiiiiiiiiiiiciiccciic e 858
REINPUT Syntax Descriptionccocceiiiiiiiiiiiiiiiicccccccc e 859
REINPUT EXaMPIEScocuviiiiiiiiiiiiiiiiiiiciiciie e 865
TI8 REJECT ...t 869
119 RELEASEooiiiiiiiiiiiiic s 871
RELEASE USAGEccviiuiiiiiiiiiiiiiiiiiccccicese e 872
RELEASE Syntax Descriptionccccoeviiiiiiiiiiiiiiiiiiiiiiiicicicccees 872
RELEASE Exampleccccccoiiiiiiiiiiiiiiiiiiiicicic 873
120 REPEAT ...t 875
REPEAT USAZEevviiiiiiiiiiiiiiiiiiiic it 876
REPEAT Syntax Descriptioncccooiiiiiiiiiiiiiiiiic 876
REPEAT EXAMPIES ...c.ceeiiiiiiiiiiiiiiiiiiciieeee e 877
121 REQUEST DOCUMENTccciiiiiiiiiiiiiiiiiiicccicec e 881
REQUEST DOCUMENT USageccceevvuiiiuiiiiiiiiiiiiiiicciccieccceee e 882
REQUEST DOCUMENT Syntax Descriptioncccccevvviiiiiiiiiiiiiiiienine. 883
Automatically Generated Headers ..o 888
URL Encoding for Special Charactersccccceeeiiiiiiiiiniiiiiiiiiiieicee, 889
HTTP Responses Redirected and Deniedcccocoviiiiiiiniiiiiiiiic, 891
REQUEST DOCUMENT EXamplescccccevvireuiiniiiiiiinieiiieniecieeseeeeee 892
122 RESET ..ot 895
RESET USAZEveoviiiiiiiiiieicee et 896
RESET Syntax Descriptionccccoiviiiiiiiiiiiiiiiiiiiiiciiciecieccec e 896
RESET EXamPIeooiiiiiiiiiiiiiiiiceceteec e 897
123 RESIZE ...ooiiiiiiiiiiiiiciec et 899
RESIZE USAGEcvviiuiiiiiiiiiiiiii i 900
RESIZE Syntax Descriptioncccccooiiiiiiiiiiiiiiiiiiciciccccccc 900
124 ROLLBACK (SQL) ..evitiiiiiiiiiiciiecci e 905
ROLLBACK USAGEcvveviiiiiiniiiieie ettt 906
Consideration for Non-Natural Programscccccevviiiiiiiiiiniiiniiiiinnns 906
ROLLBACK EXampPIeccccociiiiiiiiiiiiiiiiiiiiccici e 906
125 RETRY oo 907
RETRY USAZE ..eooiuviiiiiiiiiiiiiiiiiccccccccc e 908
RETRY ReStIiCtiONScoiiiiiiiiiiiiiiiiciiiicciccicccccc e 908
RETRY EXamplecooiiiiiiiiiiiiiiiiiiiiiiiccccc e 908
126 RUN L.t e 911
RUN USAZE ...uvviiiiiiiiiiiiiiiicccciic e 912
RUN Syntax Descriptionccccooiiiiiiiiiiiiiiiiii, 912
Dynamic Source Text Creation/EXecutioncccceevviiviiiiiiiiiniiniiinicnnen. 913

Statements XV

Statements

RUN EXamplecccooiiiiiiiiiiiiiiiiiiiici e 914

XIV s 917
127 SELECT (SQL) .ttt 919
SELECT USAZE ...veeveeniiiieiieticeieeie ettt 920
Syntax 1 - Cursor-Oriented Selectioncccceeviiiiiiiiiiniiiiiiiiiiiicie, 920
Syntax 2 - Non-Cursor Selectionc.cccoeiiiiiiiiiiiiiiiiicc 921
SELECT Syntax Element Descriptionccccocueiiiiiiiiiiiiiiiiiiiiiiiee, 922

JOIN QUETIES ..cevviiiiiee ettt e e e e e ettt e e e e e e e e esa e e e e e eeeeaasanaannnas 934

128 SEND EVENTcooiiiiiiiiiiiiiiiiic e 935
SEND EVENT USAQZEcooviiiiiiiiiiiiiiiiiiiticic it 936
SEND EVENT Syntax Descriptioncccooeviiiiiiiiiiiiiiicicccccc 936
Further Information and Examplescccceeviiiiiiiiiiiiiiiniiiiiceccee, 938

129 SEND METHODoociiiiiiiiiiiiiiicicce s 939
SEND METHOD USAGEccoovuiiiiiiiiiiiiiiiiiiiciiccic e 940
SEND METHOD Syntax Descriptionccccocueviiiiiiiiiiiiiiiiiiicece, 940
SEND METHOD Examplecccccooiiiiiiiiiiiiiiicccceeece 943

130 SEPARATEoooiiiiiiiiiiicce e 951
SEPARATE USAEooiuiiiiiiiiiiiiiiiiiicicicic e 952
SEPARATE Syntax Descriptionccccccoeviiiiiiiiiiiiiiiiiiiiiiiicccec, 952
Rules and Operational Considerationscccoccooviiviiiiiiiiiiiiiiiiiics 955
SEPARATE Examplescccooiiiiiiiiiiiie 958

131 SET CONTROLoootiiiiiiiiiiiiiicccccc s 965
SET CONTROL USAZEccoveivieiiiniiiiieitieiceiecie et 966

SET CONTROL Syntax Descriptionccccccceviiiiiiiiiiiiiiiiiiiiiiiicecce, 966

SET CONTROL EXampIesccccceiiiiiiiiiiiiiiiiiiiiiiiccicciec e 966

132 SET GLOBALSoooiiiiiiiiiiiicici e 969
SET GLOBALS USAZEcovveviiiiiiiiiiiiicitieiceccteecec st 970

SET GLOBALS Syntax Descriptioncccocooviiiiiiiiiiiiicie 970

SET GLOBALS Parametersccooeiiiiiiiiiiiiiiicciciccecccc e 971

SET GLOBALS Examplecccoouiiiiiiiiiiiiiiiiiiciccicccec e 972

133 SET KEY ..ttt 973
SET KEY USAZEcouviiiiiiiiiiiiiiiicie et 974

SET KEY Syntax Descriptioncc.cccevviiiiiiiiiiiiiiiiiicicccc, 974
Making Keys Program-Sensitive and Deactivating Keysccccccoeiiiiine 975
Assigning Commands/Programscccccoeveiiiiiiininiiicicccccccc 977
Assigning Input DATA ... 977
COMMAND OFF/ONooiiiiiiiiiiiiiiiiiiiec e 978
Assigning HELP ... 978
DYNAMIC OPHON ...oouviiiiiiiiiiiiiciiiieiici e 979
DISABLED OPHON ...ccoiiiiiiiiiiiiiiciiciccccccc s 979

SET KEY Statements on Different Program Levelsccccocccoviviininn. 980
AsSIgNINg INAMESociiiiiiiiiiii 982

SET KEY EXampPILecccoooviiiiiiiiiiiiiiiiiiice et 983

134 SET TIME ...coiiiiiiiiiiiic e 985
SET TIME USAEE ...cccuvviiiiiiiiiiiiiiiiiiicciic e 986

XVi Statements

Statements

SET TIME EXamplecccocciiiiiiiiiiiiiiiiiiiiiiccic e 986

135 SET WINDOW ..ottt 989
SET WINDOW USAZEevviiiiiiiiiiiiiiiiiiiie e 990

SET WINDOW Syntax Descriptioncccoceeieiiiiiiiiiiiiiciecceeic 990

SET WINDOW EXamPIec.coviiiiiiiiiiiiiiiiiiiiiicceccec e 990

136 SKIP ...t 991
SKIP USAZEuvviiiiiiiiiiiiiiie ittt 992
SKIP Syntax Descriptionccccceiiiiiiiiiiiiiiiiiiic i 992
SKIP EXaMPIE ...eooviiiiiiiiiccticieece e 993

137 SORT e 995
SORT USAZE ..cvveevvereeniietieitieic ettt ene e 996
SORT ReStIICHONS ..cvviiiviiiiiiiiiiciiicicciceic e 997
SORT Syntax Descriptionc.cocuiiiiiiiiiiiiiiiiii 997
Three-Phase SORT Processingcccoceviiiiiiiiiiiniiiiiiiiiciicccciccicn 1000
SORT EXaMPIE ...ooiiiiiiiiiiiiiiiiiiiiiccici s 1001

138 STACK .. 1007
STACK USAZE ...evviiiiiiiiiiiiiiiiiiciic e 1008
STACK Syntax Descriptioncccoooiiiiiiiiiiiiiiice 1008
STACK EXamPIecoooviiiiiiiiiiiiiiiiicciiceccce e 1011

139 STOP .. 1013
STOP USAZE ..ottt 1014
STOP EXampleccccooiiiiiiiiiiiiiiiiiiiicciicicccc e 1014

XV e 1017
140 STOREootiiiiiiiiiccc e 1019
STORE USAZEevviuiiiiiiiiiiiiiiiiiiciic e 1020
Database-Specific Considerationsccccevviiiiiiniiiiiiniiiiiiccieeeeee 1021
STORE Syntax Descriptionccccoceuiiiiiiiiiiiiiiiiiiiiiciicecceccec 1021
STORE EXamMPIEScoviiiiiiiiiiiiieicciiciccec e 1023

141 SUBTRACT ...t 1027
SUBTRACT USAZEc.vviiiviiiiiiiiiiiiiiiicciiceiec s 1028
Syntax 1 - SUBTRACT Statement without GIVING Clausec..cc........ 1028
Syntax 2 - SUBTRACT Statement with GIVING Clausecccccceeueennnnns 1029
SUBTRACT EXamplecccooiiiiiiiiiiiiiicciccc e 1030

142 SUSPEND IDENTICAL SUPPRESScccooviiiiiiiiiiiiiiicciieicccceeccce 1031
SUSPEND IDENTICAL SUPPRESS Usageccccceviiiiiiiiriiiiiiiiiiicineens 1032
SUSPEND IDENTICAL SUPPRESS Syntax Descriptioncccccceevuiinee. 1032
SUSPEND IDENTICAL SUPPRESS Examplescccccccovvviiiiiiiiiiiiinnnnnnn. 1032

143 TERMINATEc.ooiiiiiiiiiiiiiiiiicc e 1037
TERMINATE USaGEcooviiiiiiiiiiiiiiiiiiic i 1038
TERMINATE Syntax Descriptioncccocvevuiiiiiiiiiiiiicc, 1038
Program Receiving Control after Terminationcccccecevviiiiiiiiinininnn, 1039
TERMINATE EXamplecccccoooiiiiiiiiiiiiiiiiiicciciciccee e 1039

144 UPDATE ...ttt 1041
UPDATE USAEZEoooviiiiiiiiiiiiiiiiiiiiiicic e 1042
UPDATE ReStrictionsccoviiiiiiiiiiiiiiiiicciicccieccccee e 1043
Statements XVii

Statements

Database-Specific Considerationscccoceeiiviiiiiiiiiiicicc, 1043
UPDATE Syntax Descriptioncccociiiiiiiiiiiiciiiccccce e 1043
UPDATE Exampleccccoooiiiiiiiiiiiiiiiiiiiiiciciiceccee e 1044
145 UPDATE (SQL) ..cviiiiiiiiiiiiieiicie i 1047
UPDATE USAZE ...ccvviiiiiiiiiiiiiiiicciiicciic e 1048
Syntax 1 - Searched UPDATEccccoooiiiiiiiiiiiiiiiiics 1048
Syntax 2 - Positioned UPDATEccccooiiiiiiiiiiiiiiiicccccccee e 1050
UPDATE EXamMPIESccoouiiiiiiiiiiiiiiiiiiiiiiiicic e 1051
146 UPDATELOBoooiiiiiiiiiiiiciicicice s 1053
UPDATELOB USAgEecccooviiiiiiiiiiiiciiicicciccieeicec e 1054
UPDATELOB ReStrictionscccueiiiiiiiiiiiiiiiiiiiiicccieccciecececeec e 1054
UPDATELOB Syntax Descriptionccccceiiiiiiiiiiiiiiiiiiiiiecees 1055
System Variable Available with UPDATELOBccccocciiiiiiiiiiiiiinn. 1056
UPDATELOB Functional Considerationscccccocvivviiiiiiiiiiniiiniinnn 1057
UPDATELOB EXamplesccccccoiviiiiiiiiiiiiiiiiiiiiciiccccceec e 1057
147 WRITE ..ot 1061
WRITE USAZEevviiiiiiiiiiiiiiiiiiiicciic e 1062
Syntax 1 - Dynamic Formattingc.coocooiiii 1062
Syntax 2 - Using Predefined Form/Mapcccccoceeiiiiiiiiiiiiiiiniiiiciicees 1070
WRITE EXamplesccccoouiiiiiiiiiiiiiiiiiiiiiicic e 1071
148 WRITE TITLEc.ooiiiiiiiiiiiiiiiiiic s 1077
WRITE TITLE USAZEccveiuiiiiiiiiiiiiiiiiciiicciceicce i 1078
WRITE TITLE ReStrictionsccccovuiiiiiiiiiiiiiiiiiciiecciccceccciccce s 1079
WRITE TITLE Syntax Descriptioncccccccoviiiiiiiiiiiiiiiiiiicciee 1079
WRITE TITLE Exampleccccccoiiiiiiiiiiiiiiiiiiiciccicicceceeeee e 1083
149 WRITE TRAILERc.cccoiiiiiiiiiiiiiiiiicc 1085
WRITE TRAILER USAQZEooviiiiiiiiniiiiiiiiiicciccccccec e 1086
WRITE TRAILER ReStrictionscccccoeviiiiiiiiiiiiiiiiiiiiciiccciccec 1087
WRITE TRAILER Syntax Descriptioncccccoevuiiiiiiiiiiiiiiiiiiiiniiccne, 1087
WRITE TRAILER Examplecccccoooiiiiiiiiiiiiiiiiiiiiiiicieccccccc 1091
150 WRITE WORK FILEc.cociiiiiiiiiiiiiiiiicccc e 1093
WRITE WORK FILE USAEc.ccoviiiiiiiiiiiiiiiiiiiiiiciccicccccce e 1094
WRITE WORK FILE Syntax Descriptionc.cccoooiiiiiiiiiiiiiiiie, 1094
External Representation of Fieldscccccoociiiiiiiiiiiiiiiiiiis 1096
Handling of Large and Dynamic Variablesc.coccooiiiii, 1097
EXamPle ...oooiiiiiiiiiii 1098

XViii

Statements

Preface

This document describes native Natural programming language (DML) statements and Natural
SQL statements. It is organized under the following headings:

Statements Grouped by Function

Provides an overview of the Natural statements ordered by
functional groups.

Definition Tables

Syntax Symbols and Operand

Information on the symbols that are used within the diagrams
that describe the syntax of Natural statements and on operand
definition tables.

Using Natural SQL Statements

Describes rules specific to using Natural SQL statements.

Referenced Example Programs

Contains additional example programs that are referenced in the
Statements and System Variables documentation.

Related Topics:

See also the Programming Guide for statement usage related topics such as: User-Defined Variables
| Dynamic and Large Variables | User-Defined Constants | Report Specification | Text Notation | User
Comments | Rules for Arithmetic Assignment | Logical Condition Criteria | Function Call

Statements in Alphabetical Order:

A-C D-F G-0 P-R S-Z
ACCEPT/REJECT DECIDE FOR GET PARSE JSON SELECT (SQL)
ADD DECIDE ON GET SAME PARSE XML SEND EVENT
ASSIGN DEFINE CLASS GET PASSW SEND METHOD
AT BREAK DEFINE DATA TRANSACTION PERFORM SEPARATE

AT END OF DATA DEFINE FUNCTION |DATA PERFORM BREAK SET CONTROL
AT END OF PAGE DEFINE PRINTER |HISTOGRAM PROCESSING SET GLOBALS
AT START OF DATA |[DEFINE PROTOTYPE|IF PRINT SET KEY

AT TOP OF PAGE DEFINE IF SELECTION |PROCESS SET TIME
BACKOUT SUBROUTINE IGNORE PROCESS COMMAND |SET WINDOW
TRANSACTION DEFINE WINDOW INCLUDE PROCESS GUI SKIP

BEFORE BREAK DEFINE WORK FILE|INPUT PROCESS PAGE SORT
PROCESSING DELETE INSERT (SQL) |PROCESS SQL (SQL)|STACK

CALL DELETE (SQL) INTERFACE PROCESS REPORTER |STOP

CALL FILE DISPLAY LIMIT PROPERTY STORE

CALL LOOP DIVIDE LOOP READ SUBTRACT
CALLDBPROC (SQL) |DO/DOEND METHOD READ RESULT SET |SUSPEND
CALLNAT EJECT MOVE (saL) IDENTICAL
CLOSE END MOVE INDEXED |READ WORK FILE SUPPRESS
CONVERSATION END TRANSACTION [MULTIPLY READLOB TERMINATE
CLOSE DIALOG ESCAPE NEWPAGE REDEFINE UPDATE
CLOSE DIALOG EXAMINE OBTAIN REDUCE UPDATE (SQL)

XiX

Preface

CREATE OBJECT

RESET

RESIZE

RETRY

ROLLBACK (SQL)
RUN

A-C D-F G-0 P-R S-Z

CLOSE PRINTER EXPAND ON ERROR REINPUT UPDATELOB

CLOSE WORK FILE |FETCH OPEN REJECT WRITE

COMMIT (SQL) FIND CONVERSATION |RELEASE WRITE TITLE
COMPRESS FOR OPEN DIALOG REPEAT WRITE TRAILER
COMPUTE FORMAT OPTIONS REQUEST DOCUMENT |WRITE WORK FILE

XX

Statements

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Statements

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Statements 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

|

= 2 Statements Grouped by Function

= 3 Syntax Symbols and Operand Definition Tablescccuvvviiiiiiiiiiiie e 17

2 Statements Grouped by Function

m Database ACCESS N UPUALEiiiiiiiiiiiii e 8
= Arithmetic and Data Movement OPErationscooiiiuuiiiiiiee it 9
B 100D EXECULION ...ttt 10
m Creation Of OUIPUE REPOTS ..ottt e e e ae e e e 10
= Screen Generation for INteractive ProCESSINGvvvvviiiiiiii i 1
= Processing of LOGICal CONAIIONSouuriiiiiiiii e 11
= [nvoking Programs and ROULINESuueuieiiiiiiiiiiiiiiiiiiiiiieiiisiiaeeseeeeses s nnssnnsnnnnnenes 12
LI 12101 o OO PP PTPPPPPPRRR 12
= Program and SesSion TErMINALIONoiuiiiiiiiiiii et 12
B CONETOl OF WOTK FIlES ... 13
= Component Based Programmingo.uueieoiuiire ettt 13
L =T T = T o To r=1 44T 0 o PP 13
= Memory Management Control for Dynamic Variables or X-Arraysccoourieiiiiiiiiiiiiiceiiee e 14
= Natural Remote Procedure Callcuuiiriiiiiiie e 14
B NEEMNEE AN PAISINGot 14
B MISCEIIANEOUS ...ttt ettt e e e e e oottt et e e e e ettt e e e e e e et aaeeeaa s 15
m Reporting Mode STAIEMENESvviiiiieiii e 15

Statements Grouped by Function

) Notes:

1. Certain statements can be used both in structured mode and in reporting mode, while others

can be used in reporting m

ode only. See Natural Programming Modes in the Programming Guide.

2. The statements DLOGOFF, DLOGON, SHOW, IMPORT and EXPORT are only available when Entire DB
is installed. For a description, see the Entire DB documentation.

Database Access and Update

The following types of statements are available:

= Natural DML Statements
= Natural SQL Statements

Natural DML Statements

The following Natural data manipulation language (DML) statements are used to access and ma-
nipulate information contained in a database.

READ Reads a database file in physical or logical sequence of records.

FIND Selects records from a database file based on user-specified criteria.

HISTOGRAM Reads the values of a database field.

GET Reads a record with a given ISN (internal sequence number) or RNO (record
number).

GET SAME Re-reads the record currently being processed.

ACCEPT/REJECT Accepts/reject records based on user-specified criteria.

PASSW Provides password for access to a password-protected file.

LIMIT Limits the number of executions of a READ, FIND or HISTOGRAM processing
loop.

STORE Adds a new record to the database.

UPDATE Updates a record in the database.

DELETE Deletes a record from the database.

END TRANSACTION Indicates the end of a logical transaction.

BACKOUT TRANSACTION Backs out a partially completed logical transaction.

GET TRANSACTION DATA Reads transaction data stored with a previous END TRANSACTION statement.

RETRY Attempts to re-read a record which is in hold status for another user.

AT START OF DATA Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

Statements

Statements Grouped by Function

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

BEFORE BREAK PROCESSING |Specifies statements to be performed before performing break processing.

PERFORM BREAK PROCESSING|Immediately invokes break processing.

Natural SQL Statements

In addition to the Natural DML statements, Natural also provides SQL statements for use in Nat-
ural programs that manipulate data on an SQL database.

The following Natural SQL statements are available:

CALLDBPROC Invokes a stored procedure of the SQL database system to which Natural is connected.

COMMIT Indicates the end of a logical transaction and releases all data locked during the
transaction. All data modifications are committed and made permanent.

DELETE Deletes either rows in a table without using a cursor (“searched” DELETE) or rows in
a table to which a cursor is positioned (“positioned” DELETE).

INSERT Adds one or more new rows to a table.

PROCESS SQL

Issues SQL statements to the underlying database.

READ RESULT SET

Reads a result set which was created by a stored procedure that was invoked by a
previous CALLDBPROC statement.

ROLLBACK Undoes all database modifications made since the beginning of the last recovery unit.

SELECT Supports both the cursor-oriented selection that is used to retrieve an arbitrary number
of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row.

UPDATE Performs an update operation on either rows in a table without using a cursor

(“searched” UPDATE) or columns in a row to which a cursor is positioned (“positioned”
UPDATE).

Arithmetic and Data Movement Operations

The following statements are used for arithmetic and data movement operations:

Statements

Statements Grouped by Function

COMPUTE Performs arithmetic operations or assigns values to fields.
ADD Adds two or more operands.

SUBTRACT Subtracts one or more operands from another operand.
MULTIPLY Multiplies two or more operands.

DIVIDE Divides one operand into another.

EXAMINE TRANSLATE |Translates the characters contained in a field into upper-case or lower-case, or into
other characters.

MOVE Moves the value of an operand to one or more fields.

MOVE ALL Moves multiple occurrences of a value to another field.

COMPRESS Concatenates the value of two or more fields into a single field.

SEPARATE Separates the content of a field into two or more fields.

EXAMINE Scans a field for a specific value and replaces it, and/or counts how often it occurs.
RESET Sets the value of a field to zero (if numeric) or blank (if alphanumeric), or to its

initial value.

Loop Execution

The following statements are related to the execution of processing loops:

ESCAPE |Stops the execution of a processing loop.

FOR Initiates a processing loop and controls the number of times the loop is to be processed.

REPEAT |Initiates a processing loop (and terminates it based on a specified condition).

SORT |Sorts records.

Creation of Output Reports

The following statements are used for the creation of output reports:

FORMAT Specifies output parameter settings.

DISPLAY Specifies fields to be output in column form.

WRITE/PRINT Specifies fields to be output in non-column form.

WRITE TITLE Specifies text to be output at the top of each page of a report.

WRITE TRAILER Specifies text to be output at the bottom of each page of a report.

AT TOP OF PAGE Specifies processing to be performed when a new output page is started.

AT END OF PAGE Specifies processing to be performed when the end of an output page
is reached.

10 Statements

Statements Grouped by Function

SKIP Generates one or more blank lines in a report.
EJECT Causes a page advance without titles or headings.
NEWPAGE Causes a page advance with titles and headings.
SUSPEND IDENTICAL SUPPRESS|Suspends identical suppression for a single record.
DEFINE PRINTER Allocates a report to a logical output destination.
CLOSE PRINTER Closes a printer.

Screen Generation for Interactive Processing

The following statements are used to create data screens (maps) for the purpose of interactive
processing of data:

INPUT Creates a formatted screen (map) for data display/ entry.

REINPUT Re-executes an INPUT statement (if invalid data were entered in response to the
previous INPUT statement).

DEFINE WINDOW Specifies the size, position and attributes of a window.
SET WINDOW Activates and de-activates a window.
PROCESS PAGE Creates a data mapping to a web rich GUI screen.

PROCESS PAGE USING |Performs rich GUII/O processing using an adapter object generated from a page
layout.

PROCESS PAGE UPDATE |Re-executes a PROCESS PAGE statement.
PROCESS PAGE MODAL |Initiates a processing block and controls the lifetime of a rich GUI window.

Processing of Logical Conditions

The following statements are used to control the execution of statements based on conditions de-
tected during the execution of a Natural program:

IF Performs statements depending on a logical condition.

IF SELECTION |Verifies that in a sequence of alphanumeric fields one and only one contains a value.

DECIDE FOR |Performs statements depending on logical conditions.

DECIDE ON Performs statements depending on the contents of a variable.

Statements 11

Statements Grouped by Function

Invoking Programs and Routines

The following statements are used in conjunction with the execution of programs and routines:

CALL Invokes a non-Natural program from a Natural program.

CALLNAT Invokes a Natural subprogram.

CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.
CALL LOOP Generates a processing loop containing a call to a non-Natural program.

DEFINE SUBROUTINE |Defines a Natural subroutine.

ESCAPE Stops the execution of a routine.
FETCH Invokes a Natural program.
PERFORM Invokes a Natural subroutine.

PROCESS COMMAND |Invokes a command processor.

RUN Compiles and executes a source program.

Functions

The following Natural statements are used to create functions:

DEFINE FUNCTION |Creates functions which can be called instead of operands in Natural statements.
Functions are defined in Natural objects of type function.

DEFINE PROTOTYPE |Specifies the properties to be used for a function call.

Function Call Used to call Natural objects of type function.

Program and Session Termination

The following Natural statements are used to terminate the execution of an application or to ter-
minate the Natural session.

STOP Terminates the execution of an application.

TERMINATE |Terminates the Natural session.

12 Statements

Statements Grouped by Function

Control of Work Files

The following Natural statements are used to read/write data to a physical sequential (non-Adabas)
work file:

WRITE WORK FILE |Writes data to a work file.

READ WORK FILE |Reads data from a work file.
CLOSE WORK FILE |[Closes a work file.

DEFINE WORK FILE|Assigns a file name to a work file.

Component Based Programming

The following Natural statements are used in conjunction with component based programming:

DEFINE CLASS |Specifies a class from within a Natural class module.

CREATE OBJECT |Creates an object (also known as an instance) of a given class.

SEND METHOD |Invokes a method of an object.

INTERFACE Defines an interface (a collection of methods and properties) for a certain feature of a
class.

METHOD Assigns a subprogram as the implementation of a method, outside an interface definition.

PROPERTY Assigns an object data variable as the implementation to a property, outside an interface
definition.

Event-Driven Programming

The following Natural statements are used for event-driven programming:

OPEN DIALOG |Opens a dialog.
CLOSE DIALOG|Closes a dialog.

SEND EVENT |Triggers a user-defined event.

PROCESS GUI |Performs a standard procedure in an event-driven application.

Statements 13

Statements Grouped by Function

Memory Management Control for Dynamic Variables or X-Arrays

EXPAND |Expands the allocated memory of dynamic variables to a given size or expands the number of
occurrences of X-arrays.

REDUCE |Reduces the size of a dynamic variable or the number of occurrences of X-arrays.

RESIZE |Adjusts the size of a dynamic variableor the number of occurrences of X-arrays.

Natural Remote Procedure Call

OPEN CONVERSATION |Allows the RPC Client to open a conversation and specify the remote
subprograms to be included in the conversation.

CLOSE CONVERSATION |Allows the client to close conversations. You can close the current conversation,
another open conversation, or all open conversations.

DEFINE DATA CONTEXT [Defines variables known as context variables, which are meant to be available
to multiple remote subprograms within one conversation, without having to

explicitly pass the variables as parameters with the corresponding CALLNAT
statements.

See also the section Natural Statements Involved in the Natural RPC (Remote Procedure Call) docu-
mentation.

Internet and Parsing

PARSE JSON Allows you to parse JSON documents from a Natural program.

PARSE XML Allows you to parse XML documents from a Natural program.

REQUEST DOCUMENT |Allows you to access an external system.

14 Statements

Statements Grouped by Function

Miscellaneous

DEFINE DATA

Defines the data elements which are to be used in a Natural program or routine.

END Indicates the end of the source code of a Natural program or routine.
INCLUDE Incorporates Natural copycode at compilation.
ON ERROR Intercepts runtime errors which would otherwise result in a Natural error message,

followed by the termination of the Natural program.

PROCESS REPORTER

Enables communication with the Natural reporter from within a program, instructing
the reporter to perform a particular action.

RELEASE

Deletes the contents of the Natural stack; releases sets of ISN sets retained viaa FIND
statement; releases Natural global variables.

SET CONTROL

Performs a Natural terminal command from within a Natural program.

SET KEY Assigns functions to terminal keys.

SET GLOBALS Sets values for session parameters.

SET TIME Establishes a point-in-time reference for a *TIMD system variable.
STACK Places data and/or commands into the Natural stack.

Reporting Mode Statements

The following statements are for reporting mode only:

LOOP

Closes a processing loop.

DO/DOEND

Specify a group of statements to be executed based on a logical condition.

OBTAIN

Causes one or more fields to be read from a file.

REDEFINE

Redefines a field.

The following statements can be used both in structured mode and in reporting mode, however,
the statement structure and, with some of them, the functionality is different:

AT START OF DATA

Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

AT TOP OF PAGE

Specifies processing to be performed when a new output page is started.

Statements

15

Statements Grouped by Function

AT END OF PAGE

Specifies processing to be performed when the end of an output page is
reached.

BEFORE BREAK PROCESSING

Specifies statements to be performed before performing break processing.

CALL LOOP Generates a processing loop containing a call to a non-Natural program.
CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.
COMPUTE Performs arithmetic operations or assigns values to fields.

DEFINE SUBROUTINE Defines a Natural subroutine.

ESCAPE Stops the execution of a processing loop.

FIND Selects records from a database file based on user-specified criteria.

GET SAME Re-reads the record currently being processed.

HISTOGRAM Reads the values of a database field.

IF Performs statements depending on a logical condition.

IF SELECTION

Verifies that in a sequence of alphanumeric fields one and only one contains
a value.

ON ERROR Intercepts runtime errors which would otherwise result in a Natural error
message, followed by the termination of the Natural program.

READ Reads a database file in physical or logical sequence of records.

READ WORK FILE Reads data from a work file.

REPEAT Initiates a processing loop (and terminates it based on a specified condition).

SORT Sorts records.

STORE Adds a new record to the database.

UPDATE Updates a record in the database.

16

Statements

3 Syntax Symbols and Operand Definition Tables

B SYNEAX SYMDOIS .
= Operand Definition Tableuvviiiiii i

17

Syntax Symbols and Operand Definition Tables

Syntax Symbols

The following symbols are used within the diagrams that describe the syntax of Natural statements:

Syntax Symbol

Description

ABCDEF

Upper-case non-italic letters indicate that the term is either a Natural keyword or a
Natural reserved word that must be entered exactly as specified.

ABCDEF

If an optional term in upper-case letters is completely underlined (not a hyperlink!),
this indicates that the term is the default value. If you omit the term, the underlined
value applies.

If a term in upper-case letters is partially underlined (not a hyperlink!), this indicates
that the underlined portion is an acceptable abbreviation of the term.

Letters in italics are used to represent variable information. You must supply a valid
value when specifying this term.

Note: Inplaceof statementor statements, you must supply one or several suitable

statements, depending on the situation. If you do not want to supply a specific
statement, you may insert the IGNORE statement.

Elements contained within square brackets are optional.

If the square brackets contain several lines stacked one above the other, each line is an
optional alternative. You may choose at most one of the alternatives.

If the braces contain several lines stacked one above the other, each line is an alternative.
You must choose exactly one of the alternatives.

The vertical bar separates alternatives.

A term preceding an ellipsis may optionally be repeated. A number after the ellipsis
indicates how many times the term may be repeated.

If the term preceding the ellipsis is an expression enclosed in square brackets or braces,
the ellipsis applies to the entire bracketed expression.

A term preceding a comma-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by commas. A number after the comma-ellipsis indicates
how many times the term may be repeated.

If the term preceding the comma-ellipsis is an expression enclosed in square brackets
or braces, the comma-ellipsis applies to the entire bracketed expression.

A term preceding a colon-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by colons. A number after the colon-ellipsis indicates
how many times the term may be repeated.

If the term preceding the colon-ellipsis is an expression enclosed in square brackets or
braces, the colon-ellipsis applies to the entire bracketed expression.

18

Statements

Syntax Symbols and Operand Definition Tables

Syntax Symbol Description

Other symbols All other symbols except those defined in this table must be entered exactly as specified.

(except[1 { !}

Exception: The SQL scalar concatenation operator is represented by two vertical bars
..) |that must be entered literally as they appear in the syntax definition.

Example:

WRITE [USING] {

FORM

MAP } operandl [operand? ...]

WRITE, USING, MAP and FORM are Natural keywords which you must enter as specified.

operandl and operand?Z are user-supplied variables for which you specify the names of the objects
you wish to deal with.

The braces indicate that you must choose whether to specity either FORM or MAP; however, you
must specify one of the two.

The square brackets indicate that USING and operand? are optional elements which you can, but
need not, specify.

The ellipsis indicates that you may specify operandZ? several times.

Operand Definition Table

Whenever one or more operands appear in the syntax of a Natural statement, the following table
is provided:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted
operand1|C|s |A|G|N/M|E |A|UIN|P|1[F|B|D|T|L|C|G|O]| yes/no yes/no

This table provides the following information on each operand:

Possible Structure

Indicates the structure which the operand may take:

Statements 19

Syntax Symbols and Operand Definition Tables

C |Constant.

S |Single occurrence (scalar; that is, a field/variable which is neither an array nor a group).
A Array.

G |Group.

NIM | Natural system variable:

N All system variables can be used.

M Only modifiable system variables can be used. For information on
whether the content of a system variable is modifiable or not, see
the Natural System Variables documentation.

E

Arithmetic expressions.

Possible Formats

Indicates the format which the operand may take:

Alphanumeric (ASCII code page)

Alphanumeric (Unicode)

Numeric unpacked

o =Z c >

Packed numeric

Integer

Floating point

Binary

Date

Time

Logical

Attribute control

HANDLE OF GUI

O ® O r| A O m T

HANDLE OF OBJECT

Referencing Permitted

Indicates whether the operand may be referenced or not, using a statement label or the source
code line number.

20

Statements

Syntax Symbols and Operand Definition Tables

Dynamic Definition

Indicates whether the field may be dynamically defined within the body of the program. This is
possible in reporting mode only.

Statements 21

22

I I Using Natural SQL Statements

In addition to the native Natural DML statements, Natural provides Natural SQL statements for
use in Natural programs that maintain data contained in an SQL or SQL-compliant database.

This chapter describes the special syntax rules and conventions that apply when using Natural
SQL statements.

Common Set and Extended Set
Basic Syntactical Items
Natural View Concept

Scalar Expressions

Search Conditions

Select Expressions

Flexible SQL

Overview of Natural SQL Statements:

CALLDBPROC | COMMIT | DELETE | INSERT | PROCESS SQL | READ RESULT SET | ROLLBACK
| SELECT | UPDATE

23

24

4 Common Set and Extended Set

The SQL statements available within the Natural programming language comprise two different
syntax sets:

® Common Set
The Common Set basically corresponds to the standard SQL syntax definitions and is provided
for each SQL-compliant database system supported by Natural. The Common Set is valid against
all SQL databases.

® Extended Set
The Extended Set, in addition, provides special enhancements to the Common Set to support
specific features of the supported database systems. Currently, the Extended Set is partly
available and is valid against Db2 databases only.

The Natural SQL statements documentation mainly describes the Natural SQL Common Set. The
statement syntax adheres as far as possible to the syntax described in the relevant literature on
SQL; please, refer to this literature for further details.

25

26

5 Basic Syntactical ltems

ParAMELELS ...
Natural Formats and SQL Data TYPESc..uuviiiiiiiii i

27

Basic Syntactical Items

This chapter describes basic syntactical items, which are referenced within the individual SQL
statement descriptions.

Constants

The constants used in the syntactical descriptions of the Natural SQL statements are:

constant |Theitem constant refers to either a Natural constant or an SQL datetime constant.

integer |Theitem 7nteger always represents an integer constant.

| Note: If the character for decimal point notation (session parameter DC) is set to a comma

(,), any specified numeric constant must not be followed directly by a comma, but must be
separated from it by a blank character; otherwise an error or wrong results occur.

Invalid Syntax: Valid Syntax:

VALUES (1,'A") leads to a syntax error. [VALUES (1 ,"'A")

VALUES (1,2,3) leads to wrong results.|VALUES (1 ,2 ,3)

SQL Datetime Constants

An SQL datetime constant is a character string constant of a particular format that specifies one
of the following:

DATE string-constant Specifies an SQL date constant, for example: DATE '2013-15-01".

TIME string-constant Specifies an SQL time constant, for example: TIME '10:30:15".

TIMESTAMP string-constant|Specifies an SQL time stamp constant, for example: TIMESTAMP
'2014-15-01 10:20:15.123456".

For information on the valid string-constant formats, refer to IBM's Db2 SQL reference information.

Names

The names used in the syntactical descriptions of the Natural SQL statements are:

= authorization-identifier
= ddm-name

= view-name

= column-name

= |ocation-name

28 Statements

Basic Syntactical ltems

= fable-name
= correlation-name

authorization-identifier

Theitem authorization-identifier, whichis also called creator name, is used to qualify database
tables and views. See also authorization-identifier under table-name below.

ddm-name

The item ddm-name always refers to the name of a Natural data definition module (DDM) as created
with the Natural DDM Editor.

view-name

The item view-name always refers to the name of a Natural view as defined in the DEFINE DATA
statement.

column-name
The item column-name always refers to the name of a physical database column.
location-name

The item Tocation-name always denotes the location of the table. Specification of location-name
is optional and belongs to the SOL Extended Set.

table-name

The item table-name in this section is used to reference both SQL base tables and SQL viewed
tables.

Syntax of item table-name:

[[Tocation-name]Jauthorization-identifier.Jddm-name

Syntax Element Description:

Statements 29

Basic Syntactical Items

Syntax Element

Description

ddm-name

A Natural data definition module (DDM) must have been created for a
table to be used. The name of such a DDM must be the same as the
corresponding database table name or view name.

location-name

This optional item specifies the location of the table to be accessed.

authorization-identifier

There are two ways of specifying the authorization-identifierofa
database table or view.

One way corresponds to the standard SQL syntax, in which the
authorization-identifierisseparated from the table name by a period.
Using this form, the name of the DDM must be the same as the name of
the database table without the authorization-identifier.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF PERSONNEL
02 NAME
02 AGE
END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL.PERSONNEL

Alternatively, you can define the authorization-identifier as part
of the DDM name. The DDM name then consists of the
authorization-identifierand the database table name separated by
a hyphen (-). The hyphen between the authorization-identifierand
the table name is converted internally into a period.

Note: This form of DDM name can also be used with a FIND or READ

statement, because it conforms to the DDM naming conventions applicable
to these statements.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
02 NAME
02 AGE
END-DEFINE
SELECT *
INTO VIEW PERS
FROM SQL-PERSONNEL

If the authorization-identifierhas been specified neither explicitly

nor within the DDM name, it is determined by the SQL database system.

30

Statements

Basic Syntactical ltems

Syntax Element

Description

In addition to being used in SELECT statements, table names can also be
specified in DELETE, INSERT and UPDATE statements.

Examples:

DELETE FROM SQL.PERSONNEL
WHERE AGE IS NULL

INSERT INTO SQL.PERSONNEL (NAME,AGE)
VALUES ("ADKINSON',35)

UPDATE SQL.PERSONNEL
SET SALARY = SALARY * 1.1
WHERE AGE > 30

correlation-name

The item correlation-name represents an alias name for a table-name. It can be used to qualify
column names; it also serves to implicitly qualify fields in a Natural view when used with the
INTO clause of the SELECT statement.

Example:

DEFINE DATA LOCAL

01 PERS-NAME (A20)
01 EMPL-NAME (A20)
01 AGE (I2)
END-DEFINE

SELECT X.NAME , Y.NAME , X.AGE
INTO PERS-NAME , EMPL-NAME , AGE

FROM SQL-PERSONNEL X
WHERE X.AGE = Y.AGE
END-SELECT

, SQL-EMPLOYEES Y

Although in most cases the use of correlation-names is not necessary, they may help to make

the statement clearer.

Statements

31

Basic Syntactical Items

Parameters

Syntax of item parameter:

[:1 host-variable[INDICATORI[:]1 host-variable][LINDICATORI[:]1 host-variable]

Syntax Element Description:

Syntax Element

Description

host-variable

A host-variableis a Natural user-defined variable (no system variable) which is
referenced in an SQL statement. It can be either an individual field or defined as part of
a Natural view.

When defined as a receiving field (for example, in the INTO clause), a host-variable
identifies a variable to which a value is assigned by the database system.

When defined as a sending field (for example, in the WHERE clause), a host-variable
specifies a value to be passed from the program to the database system.

See also Natural Formats and SQL Data Types.

L:] Colon:
To comply with SQL standards, a host-variable can also be prefixed by a colon (:).
When used with flexible SQL, host-variables must be qualified by colons.
Example:
SELECT NAME INTO :#fNAME FROM PERSONNEL
WHERE AGE = :VALUE
The colon is always required if the variable name is identical to an SQL reserved word.
In a context in which either a host-variable or a column can be referenced, the use of
a name without a colon is interpreted as a reference to a column.

INDICATOR INDICATOR Clause:
The INDICATOR clause is an optional feature to distinguish between a “null” value (that
is, no value at all) and the actual values 0 or “blank”.
When specified with a receiving host-variable (target field), the INDICATOR
host-variable (nullindicator field) serves to find out whether a column to be retrieved
is “null”.
Example:

32 Statements

Basic Syntactical ltems

Syntax Element |Description
DEFINE DATA LOCAL
1 NAME (A20)
1 NAMEIND (I2)
END-DEFINE
SELECT *

INTO NAME INDICATOR NAMEIND

In this example, NAME represents the receiving host-variable and NAMEIND the null
indicator field.

If a null indicator field has been specified and the column to be retrieved is null, the value
of the null indicator field is negative and the target field is set to 0 or “blank” depending
on its data type. Otherwise, the value of the null indicator field is greater than or equal
to 0.

When specified with a sending host-variable (source field), the null indicator field is
used to designate a null value for this field.

Example:

DEFINE DATA LOCAL

1 NAME (A20)

1 NAMEIND (I2)

UPDATE ...

SET NAME = :NAME INDICATOR :NAMEIND
WHERE ...

In this example, : NAME represents the sending host-variableand :NAMEIND the null
indicator field. By entering a negative value as input for the null indicator field, a null
value is assigned to a database column.

An INDICATOR host-variableis of format/length I2.

LINDICATOR

LINDICATOR Clause:

The LINDICATOR clause is an optional feature which is used to support columns of varying
lengths, for example, VARCHAR or LONG VARCHAR type.

When specified with a receiving host-variab]le (target field), the LINDICATOR
host-variable (length indicator field) contains the number of characters actually

returned by the database into the target field. The target field is always padded with
blanks.

If the VARCHAR or LONG VARCHAR column contains more characters than fit in the target
field, the length indicator field is set to the length actually returned (that is, the length of
the target field) and the null indicator field (if specified) is set to the total length of this
column.

Example

Statements

33

Basic Syntactical Items

Syntax Element

Description

DEFINE DATA LOCAL
1 ADDRESSLIND (I2)
1 ADDRESS (A50/1:6)
END-DEFINE
SELECT *
INTO :ADDRESS(*) LINDICATOR :ADDRESSLIND

In this example, : ADDRESS (*) represents the target field which receives the first 300
bytes (if available) of the addressed VARCHAR or LONG VARCHAR column, and
:ADDRESSLIND represents the length indicator field which contains the number of
characters actually returned.

When specified with a sending host-variable (source field), the length indicator field
specifies the number of characters of the source field which are to be passed to the
database.

Example:

DEFINE DATA LOCAL
1 NAMELIND (I2)

1 NAME (A20)
1 AGE (I2)
END-DEFINE
MOVE 4 TO NAMELIND
MOVE 'ABC%' TO NAME
SELECT AGE

INTO :AGE

WHERE NAME LIKE :NAME LINDICATOR :NAMELIND

A LINDICATOR host-variableis of format/length 12 or 14. For performance reasons,
it should be specified immediately before the corresponding target or source field;
otherwise, the field is copied to the temporary storage at runtime.

If the LINDICATOR field is defined as an 12 field, the SQL data type VARCHAR is used for
sending or receiving the corresponding column. If the LINDICATOR host-variableis
specified as 14, a large object data type (CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to its real
length. The LINDICATOR field and *LENGTH are set to this length. In case of a fixed length
field, the column is read up to the defined length. In both cases, the field is written up to
the value defined in the LINDICATOR field.

Let a fixed length field be defined witha LINDICATOR field specified as I2. If the VARCHAR
column contains more characters than fit into this fixed length field, the length indicator
field is set to the length actually returned and the null indicator field (if specified) is set
to the total length of this column (retrieval). This is not possible for fixed length fields
greater than or equal to 32 KB (length does not fit into null indicator field).

34

Statements

Basic Syntactical ltems

Natural Formats and SQL Data Types

The Natural data format of a host-variable is converted to an SQL data type according to the fol-

lowing table:

Natural Format/Length SQL Data Type

An CHAR (n)

B2 SMALLINT

B4 INT

Bn; nnot equal to 2 or 4|CHAR (n)

F4 REAL

F8 DOUBLE PRECISION
12 SMALLINT

14 INT

Nnn.m NUMERIC C(nn+m,m)
Pnn.m NUMERIC C(nn+m,m)
T TIME

D DATE

Gn; for view fields only

GRAPHIC (n)

Natural does not check whether the converted SQL data type is compatible to the database column.

Except for fields of format N, no data conversion is done.

In addition, the following extensions to standard Natural formats are available with Natural SQL:

® A one-dimensional array of format A can be used to support alphanumeric columns longer than
253 bytes. This array must be defined beginning with index 1 and can only be referenced by
using an asterisk (*) as the index. The corresponding SQL data type is CHAR (n), where n is the
total number of bytes in the array.

" Aspecial host-variableindicated by the keyword LINDICATOR can be used to support variable-
length columns. The corresponding SQL data type is VARCHAR (n); see also the LINDICATOR

clause.

® The Natural formats date (D) and time (T) can be used with Entire Access and will be converted
into the corresponding database-dependent formats (see the Entire Access documentation for

details)

A sending field specified as one-dimensional array without a LINDICATOR field is converted into
the SQL data type VARCHAR. The length is the total number of bytes in the array, not taking into
account trailing blanks.

Statements

35

36

6 Natural View Concept

Some Natural SQL statements also support the use of Natural views.

A Natural view can be specified instead of a parameter list, where each field of the view - except
group fields, redefining fields and fields prefixed with L@ or N@- corresponds to one parameter
(host variable).

Fields with names prefixed with L@ or N@ can only exist with corresponding master fields; that is,
fields of the same name, where:

" | @ fields are converted into LINDICATOR fields,
= N@ fields are converted into INDICATOR fields.

L@ fields should have been specified at view definition, immediately before the master fields to
which they apply.

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 PERSID (I14)
02 NAME (A20)
02 N@NAME (12) /* null indicator of NAME
02 L@ADDRESS (I2) /* length indicator of ADDRESS
02 ADDRESS (A50/1:6)
02 N@ADDRESS (I2) /* null indicator of ADDRESS
01 #PERSID (I14)
END-DEFINE
SELECT *

INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE PERSID = {fPERSID

END-SELECT

37

Natural View Concept

The above example is equivalent to the following one:

SELECT *
INTO PERSID,
NAME INDICATOR N@NAME,

ADDRESS(*)INDICATOR N@ADDRESS LINDICATOR L@ADDRESS
FROM SQL-PERSONNEL
WHERE PERSID = #PERSID

END-SELECT

| Note: When accessing VARCHAR data types with Natural for Windows or Natural for Linux
and Cloud, there must be a corresponding length indicator variable in the view.

38 Statements

7 Scalar Expressions

B SCAIAT EXPIESSION ..eiiiieeiti ittt e ettt e oottt e e e e e ettt e e e e e et e et e e e et aaeea e e
T 1 T O oL = (o] USRS SO UPPP PRSP

39

Scalar Expressions

+

{ factor }
(scalar-expression)

scalar-expression scalar-operator scalar-expression

Scalar Expression

A scalar-expression consists of a factor or other scalar expressions including scalar operators.
Concerning reference priority, scalar expressions behave as follows:

® When a non-qualified variable name is specified in a scalar expression, the first approach is to
resolve the variable name as column name of the referenced table.

® If no column with the specified name is available in the referenced table, Natural tries to resolve
this variable as a Natural user-defined variable (host variable).

Scalar Operator

/
|

CONCAT

A scalar-operator canbe any of the operators listed above. The minus (-) and slash (/) operators
must be separated by at least one blank from preceding operators.

40 Statements

Scalar Expressions

Factor

Common Set Syntax:

atom
column-reference
aggregate-function
special-register

Extended Set Syntax:

atom
column-reference
aggregate-function
special-register
scalar-function
length-stringunit
labeled-duration

A factor can consist of one of the items listed in the above diagram and described in the text below.

Atom

{ parameter }
constant

An atom can be either a parameter or a constant.

Column Reference

table-name.
correlation-name.

column-name

A column-referenceis a column name optionally qualified by either a tab7e-name or a
correlation-name (see also the section Basic Syntactical Items). Qualified names are often
clearer than unqualified names and sometimes they are essential.

] Note: A table name in this context must not be qualified explicitly with an authorization
identifier. Use a correlation name instead if you need a qualified table name.

Statements 41

Scalar Expressions

If a column is referenced by a table-name or correlation-name, it must be contained in the cor-
responding table. If neither a table-name nor a correlation-name is specified, the respective
column must be in one of the tables specified in the FROM clause (see Table Expression).

Aggregate Function
COUNT { ¢) }
(DISTINCT column-reference)

AVG

MAX { (DISTINCT co7umn—reference)}
MIN ([ALL] scalar-expression)

SUM

SQL provides a number of special functions to enhance its basic retrieval power. The so-called
SQL aggregate functions currently available and supported by Natural are:

AVG gives the average of the values in a column

COUNT |gives the number of values in a column

MAX gives the highest value in a column
MIN gives the lowest value in a column
SUM gives the sum of the values in a column

Apart from COUNT (*), each of these functions operates on the collection of scalar values in an ar-
gument (that is, a single columnora scalar-expression)and produces a scalar value as its result.

Example:

DEFINE DATA LOCAL
1 AVGAGE (I2)
END-DEFINE

SELECT AVG (AGE)
INTO AVGAGE
FROM SQL-PERSONNEL
DISTINCT

In general, the argument can optionally be preceded by the keyword DISTINCT to eliminate redund-
ant duplicate values before the function is applied.

If DISTINCT is specified, the argument must be the name of a single column; if DISTINCT is omitted,
the argument can consist of a general scalar-expression.

42 Statements

Scalar Expressions

DISTINCT is not allowed with the special function COUNT (*), which is provided to count all rows
without eliminating any duplicates.

Special Register

special-register

USER

With the exception of USER, the following special registers do not conform to standard SQL. They
are specific to Db2 and belong to the Natural SQL Extended Set:

CURRENT DATE

CURRENT_DATE

CURRENT TIME

CURRENT_TIME

CURRENT TIMESTAMP

CURRENT CLIENT_ACCTNG
CLIENT ACCTNG

CURRENT CLIENT_APPLNAME
CLIENT APPLNAME

CURRENT CLIENT_USERID
CLIENT USERID

CURRENT CLIENT_WRKSTNNAME
CLIENT WRKSTNNAME

CURRENT DEGREE

CURRENT TIMEZONE

CURRENT SERVER
CURRENT_TIMEZONE
CURRENT_SERVER
SESSTON_USER

CURRENT_PATH

CURRENT SCHEMA

CURRENT DECFLOAT ROUNDING MODE
CURRENT LOCK TIMEOUT
CURRENT PACKAGE PATH
CURRENT REFRESH AGE
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION <

A reference to a special-register returns a scalar value.

Statements 43

Scalar Expressions

Scalar Function

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions.

Scalar functions are specific to Db2 and belong to the Natural SQL Extended Set.

The scalar functions Natural for Db2 supports are listed below:

COALESCE
DATE

TIME
TIMESTAMP
VALUE

Each scalar function is followed by one or more scalar expressions in parentheses. The number of
scalar expressions depends upon the scalar function. Multiple scalar expressions must be separated
from one another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE VALUE(NAME, CITY) = 'VIZAG'

Length of String Unit

length-stringunit

Specifies the unit used for the length of a string. Commonly used for SQL scalar string functions.
The supported length of string units are listed below:

OCTETS
CODEUNITSI6
CODEUNITS32

where O0CTETS specifies that the length is expressed in bytes, CODEUNITS16 specifies that the length
is expressed in 16-bit UTF-16 code units, and CODEUNITS32 specifies that the length is expressed
in 32-bit UTF-32 code units.

44 Statements

Scalar Expressions

Labeled Duration

labeled-duration

YEAR

YEARS

MONTH
MONTHS

DAY

DAYS

HOUR

HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

scalar-expression

A Tabeled-duration denotes a specific unit of time as expressed by a number which can be an
expression followed by one of the duration keywords.

labeled-duration does not conform to standard SQL, and is therefore supported by the Natural
SQL Extended Set only.

Statements 45

46

8

Search Conditions

B S RANCN CONGIION .ottt

= Predicate

47

Search Conditions

predicate
[NOT] .
(search-condition)
AND
search-condition { oR } search-condition

Search Condition

A search-conditioncan consist of a simple predicate or multiple search-conditions. Multiple
search-conditions are combined with the Boolean operators AND, OR and NOT, and can contain
parentheses if required to indicate a desired order of evaluation.

Example

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
SELECT *

INTO NAME, AGE

FROM SQL-PERSONNEL
WHERE AGE = 32 AND NAME > 'K’

END-SELECT
Predicate
. scalar-expression
scalar-expression
comparison subquery

scalar-expression [NOT]BETWEEN scalar-expression AND scalar-expression
column-reference [NOT] LIKE atom
column-reference IS[NOT] NULL

. subquery
scalar-expression
[NOT] IN ‘ (atom, ...)]
scalar-expression ALL
comparison { ANY } subquery
SOME

EXISTS subquery

48 Statements

Search Conditions

XMLEXISTS (xquery-expression-constant{BY REFIPASSING xquery-argument,..})

A predicate specifies a condition that can be “true”, “false” or “unknown”.

Ina search-condition,a predicate can consist of a simple or complex comparison operation or
other kinds of conditions.

Example:

SELECT NAME, AGE
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE AGE BETWEEN 20 AND 30
OR AGE IN (32, 34, 36)
AND NAME LIKE 'Zer'

| Note: The percent sign (%) may conflict with Natural terminal commands. If so, you must

define a terminal command control character different from %; see Changing the Terminal
Command Control Character in the Terminal Commands documentation.

The individual predicates are explained in the following topics (for further information on predic-
ates, please refer to the relevant literature). According to the syntax above, they are called as follows:

= Comparison Predicate
= BETWEEN Predicate
= | |KE Predicate

= NULL Predicate

= |N Predicate

= Quantified Predicate

= EXISTS Predicate

= XMLEXISTS Predicate

Comparison Predicate

{scalar-expression comparison scalar-expression}

A comparison predicate compares two values or a set of values with another set of values.

In the syntax diagram above, comparison can be one of the following operators:

Statements 49

Search Conditions

equal to

less than

V| A

greater than

<= |less than or equal to

>= |greater than or equal to

<> |notequal to

See information on scalar-expression.

Subquery

(select-expression)

A subqueryisa select-expression that is nested inside another such expression.

Example:

DEFINE DATA LOCAL
1 fINAME (A20)
1 #fPERSNR (14)
END-DEFINE

SELECT NAME, PERSNR
INTO #NAME, #PERSNR
FROM SQL-PERSONNEL
WHERE PERSNR IN
(SELECT PERSNR
FROM SQL-AUTOMOBILES
WHERE COLOR = 'black')

END-SELECT

For further information, see Select Expressions.

BETWEEN Predicate

scalar-expression|[NOT] BETWEEN scalar-expression AND scalar-expression

A BETWEEN predicate compares a value with a range of values.

See information on scalar-expression.

50 Statements

Search Conditions

LIKE Predicate

column-reference[NOT] LIKE atom

A LIKE predicate searches for strings that have a certain pattern.

See information on column-reference and atom.

NULL Predicate

ISNOT]NULL
column-reference ‘ ISNULL]
NOTNULL

A NULL predicate tests for null values.

See information on column-reference.

IN Predicate

subquery .. }

scalar-expression[NOT] IN {
(atom)

An IN predicate compares a value or a set of values with a collection of values.
See information on scalar-expressionand atom.

See information on subquery.

Quantified Predicate
ALL
scalar-expression comparison ‘ ANY] subquery
SOME

A quantified predicate compares a value or a set of values with a collection of values.

See information on scalar-expression, comparisonand subquery.

Statements 51

Search Conditions

EXISTS Predicate

EXISTS subquery

An EXISTS predicate tests for the existence of certain rows.

The EXISTS predicate evaluates to true only if the result of evaluating the subquery is not empty;
that is, if there exists at least one record (row) in the FROM table of the subquery satisfying the search
condition of the WHERE clause of this subquery.

Example of EXISTS:

DEFINE DATA LOCAL
1 fINAME (A20)
END-DEFINE

SELECT NAME
INTO fENAME
FROM SQL-PERSONNEL
WHERE EXISTS
(SELECT *
FROM SQL-EMPLOYEES
WHERE PERSNR > 1000
AND NAME < 'L")

END-SELECT

See information on subquery.

XMLEXISTS Predicate

BY REF
XMLEXISTS (xquery-expression-constant [)
PASSING xquery-argument,...

xquery-argument

{ xquery-context-item-expression }

xquery-context-item-expressionAS identifier

The XMLEXISTS predicate belongs to the Natural SQL Extended Set.

The XMLEXISTS predicate tests whether an XPATH expression returns a sequence of one or more
items. For further information, see the IBM Db2 XML Guide.

52 Statements

9 Select Expressions

= Selection

= Table Expression

53

Select Expressions

SELECT selection table-expression

A select-expression specifies a result table. It is used in the following Natural SQL statements:
INSERT | SELECT | UPDATE

Selection

DISTINCT *

[ALL] { scalar-expression [[AS] correlation-name], ... }

A selection specifies the columns of the result set tables to be selected.

Syntax Element Description:

Syntax Element Description

ALL|DISTINCT Elimination of Duplicate Rows:

Duplicate rows are not automatically eliminated from the result of a
select-expression. To request this, specify the keyword DISTINCT.

The alternative to DISTINCT is ALL. ALL is assumed if neither is specified.

scalar-expression|Scalar Expression:

Instead of, or as well as, simple column names, a selection can also include general
scalar expressions containing scalar operators and scalar functions which provide
computed values (see also the section Scalar Expressions).

Example:

SELECT NAME, 65 - AGE
FROM SQL-PERSONNEL

AS The optional keyword AS introduces a correlation-name for a column.

correlation-name |Correlation Name:

A correlation-name canbe assignedtoa scalar-expressionasan alias name
for a result column.

The correlation-nameneed notbeunique.Ifno correlation-nameis specified
for a result column, the corresponding column-name will be used (if the result
column is derived from a column name; if not, the result table will have no name).
The name of a result column may be used, for example, as column name in the
ORDER BY clause of a SELECT statement.

* Asterisk Notation:

54 Statements

Select Expressions

Syntax Element Description

All columns of the result table are selected.

Example:

SELECT *

FROM SQL-PERSONNEL, SQL-AUTOMOBILES

Table Expression

from-clause [where-clause]
[group-by-clause][having-clause]

[order-by-clause][fetch-first-clause]

The table-expressionspecifies from where and according to what criteria rows are to be selected.

The following topics are covered below:

= FROM Clause

= Table Reference

= WHERE Clause

= GROUP BY Clause

= HAVING Clause

= ORDER BY Clause

= FETCH FIRST Clause

= Examples of Table Expressions

FROM Clause

FROM table-reference,...

This clause specifies from which tables the result set is built.

Statements

95

Select Expressions

Table Reference

table-name [[AS] correlation-name]
subquery[AS] correlation-name
Jjoined-table

The tables specified in the FROM clause must contain the column fields used in the selection list.

You can either specify a single table or produce an intermediate table resulting from a subquery
or a “join” operation (see below).

Since various tables (that is, DDMs) can be addressed in one FROM clause and since a
table-expression can contain several FROM clauses if subqueries are specified, the database ID
(DBID) of the first DDM specified in the first FROM clause of the whole expression is used to
identify the underlying database involved.

Optionally, a correlation-clause can be assigned to a table-name. For a subquery, a
correlation-clause must be assigned.

Joined Table

INNER
LEFT [OUTER] .. L
table-reference RIGHT [OUTER] JOIN table-referenceON join-condition

FULL [OUTER]

(Joined-table)

A joined-table specifies an intermediate table resulting from a “join” operation.

The “join” can be an INNER, LEFT OUTER, RIGHT OUTER or FULL OUTER JOIN.If you do not specify
anything, INNER applies.

Multiple “join” operations can be nested; that is, the tables which create the intermediate result
table can themselves be intermediate result tables of a “join” operation or a subquery; and the
latter, in turn, can also have a joined-table or another subguery in its FROM clause.

56 Statements

Select Expressions

Join Condition

For INNER, LEFT OUTER, and RIGHT OUTER joins:

‘search-condition

For FULL OUTER joins:

‘fu77—join—express7‘on= full-join-expression[AND ..]

Full Join Expression

‘ column-name

{ VALUE
COALESCE

} (column-name , ...

Within a join-expressiononly column-names and the scalar-function VALUE (or its synonym
COALESCE) are allowed.

See details on column-name.

WHERE Clause

[WHERE search-condition] ‘

The WHERE clause is used to specify the selection criteria (search-condition) for the rows to be
selected.

Example:

DEFINE DATA LOCAL
01 NAME (A20)
01 AGE (I2)
END-DEFINE
SELECT =
INTO NAME, AGE
FROM SQL-PERSONNEL

WHERE AGE = 32
END-SELECT

For further information, see Search Conditions.

Statements 57

Select Expressions

GROUP BY Clause

[GROUP BY column-reference,...]

The GROUP BY clause rearranges the table represented by the FROM clause into groups in a way that
all rows within each group have the same value for the GROUP BY columns.

Each column-referencein the selection list must be either a GROUP BY column or specified within
an aggregate-function. Aggregate functions are applied to the individual groups (not to the entire
table). The result table contains as many rows as groups.

For further information, see Column Reference and Aggregate Function.

Example:

DEFINE DATA LOCAL

1 #AGE (I2)
1 #NUMBER (I2)
END-DEFINE

SELECT AGE , COUNT(*)
INTO #fAGE, #NUMBER
FROM SQL-PERSONNEL
GROUP BY AGE

If the GROUP BY clause is preceded by a WHERE clause, all rows that do not satisfy the WHERE clause
are excluded before any grouping is done.

HAVING Clause

‘[HAVING search-condition]

If the HAVING clause is specified, the GROUP BY clause should also be specified.

Just as the WHERE clause is used to exclude rows from a result table, the HAVING clause is used to
exclude groups and therefore also based on a search-condition. Scalar expressions in a HAVING
clause must be single-valued per group.

For further information, see Scalar Expressions and Search Conditions.

Example:

58 Statements

Select Expressions

DEFINE DATA LOCAL
1 fFNAME (A20)
1 #fAVGAGE (I2)
1 JINUMBER (I2)
END-DEFINE

SELECT NAME, AVG(AGE), COUNT(*)
INTO #NAME, fAVGAGE, #NUMBER
FROM SQL-PERSONNEL
GROUP BY NAME
HAVING COUNT(*) > 1

ORDER BY Clause

ASC]

sort-key [DESC

ORDER BY
INPUT SEQUENCE

ORDER OF table-designator

sort-key
column-name
‘ integer ’
sort-key-expression
FETCH FIRST Clause
1 ROWS
FETCH FIRST { integer } { ROU } ONLY l

Examples of Table Expressions
Example 1:

DEFINE DATA LOCAL

01 #NAME (A20)
01 #FIRSTNAME (A15)
01 ftAGE (I2)
END-DEFINE

SELECT NAME, FIRSTNAME, AGE
INTO #fNAME, #FIRSTNAME, #AGE

Statements

59

Select Expressions

FROM SQL-PERSONNEL
WHERE NAME IS NOT NULL
AND AGE > 20

DISPLAY {ffNAME #fFIRSTNAME #fAGE
END-SELECT

END
Example 2:

DEFINE DATA LOCAL
01 #COUNT (I4)

END-DEFINE

SELECT SINGLE COUNT(*) INTO #COUNT FROM SQL-PERSONNEL

60 Statements

10 Flexible SQL

B USING FIBXIDIE SQIL ... 62
= Specifying Text Variables in Flexible SQLccoiiiiiii e 63
= ROW CHANGE Expression with Flexible SQLcooiiiiiiiie e 65
B OLAP SPECITICALION ...ttt e e e e e e e 65
= Case Expression With FIEXIDIE SQLvvrieiiii e s 70
= Cast Expression with Flexible SQL ... 71
= XML Functions with FIEXIbIe SQLeiiiiiiiiii e 71
= Scalar-Function and Column-Function (Aggregating) with Flexible SQLcccooiiiiiiiiiiiieceee 72

61

Flexible SQL

The so-called “Flexible SQL”, which is a further possibility of issuing SQL statements, enables you
to use arbitrary SQL syntax.

Using Flexible SQL

In addition to the SQL syntax described in the previous sections, flexible SQL enables you to use
arbitrary SQL syntax.

Characters << and >>

Flexible SQL is enclosed in << and >> characters. It can include arbitrary SQL text and host variables.
Within flexible SQL, host variables must be prefixed by a colon (:).

The flexible SQL string can cover several statement lines. Comments are possible, too (see also the
statement PROCESS SQL).

Flexible SQL can be used as a replacement for any of the following syntactical SQL items:

= atom
® column-reference
® scalar-expression

® predicate

Flexible SQL can also be used between the clauses of a select expression:

SELECT selection

KL ool >
INTO ...
FROM ...

N D 4
WHERE ...

N D 4
GROUP BY ...
N D 4
HAVING ...
NG 4
ORDER BY ...
KL ool >

| Note: The SQL text used in flexible SQL is not recognized by the Natural compiler. The
SQL text (with replaced host variables) is simply copied into the SQL string passed to the
database system. Syntax errors in flexible SQL are detected at runtime when the database
executes the corresponding statement.

62 Statements

Flexible SQL

Example 1

SELECT NAME

FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) >> = << MONTH (CURRENT_DATE) >>

Example 2:

SELECT NAME

FROM SQL-EMPLOYEES
WHERE << MONTH (BIRTH) = MONTH (CURRENT_DATE) >>

Example 3:

SELECT NAME

FROM SQL-EMPLOYEES
WHERE SALARY > 50000
<< INTERSECT
SELECT NAME
FROM SQL-EMPLOYEES
WHERE DEPT = '"DEPT1O0'

>>

Specifying Text Variables in Flexible SQL

Within flexible SQL, you can also specify so-called “text variables”.

<<:T:host-variable[LINDICATOR:host-variable]>>

The syntax items are described below:

A text variable is a host-variab]le prefixed by : T:. It must be in alphanumeric format.

At runtime, a text variable within an SQL statement will be replaced by its contents that is,
the text string contained in the text variable will be inserted into the SQL string.

After the replacement, trailing blanks will be removed from the inserted text string.

You have to make sure yourself that the content of a text variable results in a syntactically
correct SQL string. In particular, the content of a text variable must not contain
host-variables.

A statement containing a text variable will always be executed in dynamic SQL mode.

LINDICATOR

LINDICATOR Option:

Statements

63

Flexible SQL

(thatis, a host-variable prefixed by colon).

The length indicator variable has to be of format/length I2.

into the SQL string.

negative or 0, nothing will be inserted.

See general information on host-variable.

The text variable can be followed by the keyword LINDICATOR and a length indicator variable

If no LINDICATOR variable is specified, the entire content of the text variable will be inserted

If you specify a LINDICATOR variable, only the first n characters (n being the value of the
LINDICATOR variable) of the text variable content will be inserted into the SQL string. If the
number in the LINDICATOR variable is greater than the length of the text variable content,
the entire text variable content will be inserted. If the number in the LINDICATOR variable is

Example Using Text Variable

DEFINE DATA LOCAL

01 TEXTVAR (A200)

01 TABLES VIEW OF SYSIBM-SYSTABLES
02 NAME
02 CREATOR

END-DEFINE

*

MOVE 'WHERE NAME > "'SYS'' AND CREATOR = ''SYSIBM''' TO TEXTVAR
*
SELECT * INTO VIEW TABLES
FROM SYSIBM-SYSTABLES
<K :T:TEXTVAR >>
DISPLAY TABLES
END-SELECT

*

END

The generated SQL statement will look as follows:

SELECT NAME, CREATOR FROM SYSIBM.SYSTABLES:T: FOR FETCH ONLY

The executed SQL statement will look as follows:

SELECT TABNAME, CREATOR FROM SYSIBM.SYSTABLES

WHERE TABNAME > 'SYS' AND CREATOR = 'SYSIBM'

64

Statements

Flexible SQL

ROW CHANGE Expression with Flexible SQL

‘<<ROW CHANGE TOKEN FOR table-designator>> ‘

A ROW CHANGE expression returns a token that represents the last change to a row.

TOKEN Specifies a token of type BIGINT that represents a relative point in the
modification sequence of a row.

FOR table-designator|ldentifies the table in which the expression is referenced. table-designator
has to be a valid Natural SQL DDM.

Example Using Row Change Expression with Flexible SQL:

DEFINE DATA LOCAL
01 TEXTVAR (A200)
01 TABLES VIEW OF SYSIBM-SYSTABLES
02 NAME
02 CREATOR
END-DEFINE
*
SELECT << ROW CHANGE TOKEN FOR SYSTABLES >>
INTO TEXTVAR
FROM SYSIBM-SYSTABLES
DISPLAY TEXTVAR
END-SELECT

*

END

OLAP Specification

ordered-0LAP-specification
numbering-specification
aggregation-specification

Statements 65

Flexible SQL

ordered-0LAP-specification

CUME_DIST ()

PERCENT_RANK ()

RANKCC) OVER

DENSE_RANK () [(window-partition-clause]
NTILE (num-tile) window-order-clause)
lag-function

lead-function

lag-function

'"RESPECT NULLS'
LAG (expression [, offset [, default [, { } 11)

"IGNORE NULLS'

lead-function

'"RESPECT NULLS'
LEAD (expression [, offset [, default [, { } 11)

"IGNORE NULLS'

numbering-specification

ROW_NUMBER () OVER([window—part1t10n—clause][window—order—clauseh‘

aggregation-specification

aggregate-function
OVER ([window-partition-clause])

OLAP-column-function
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED }
FOLLOWING
window-aggregation-group-clause

window-order-clause {

66

Statements

Flexible SQL

aggregate-function

AVG function
CORRELATION function
COUNT function
COUNT_BIG function
COVARIANCE function
MAX function

MIN function

STDDEV function

SUM function
VARIANCE function

OLAP-column-function

first-value-function
last-value-function

nth-value-function

ratio-to-report-function

first-value-function

FIRST_VALUE (expression [, {

"RESPECT NULLS'

"IGNORE NULLS'

|

last-value-function

LAST_VALUE (expression [, {

'RESPECT NULLS'

"IGNORE NULLS'

}

nth-value-function

NTH_VALUE (expression , nth-row)

Statements

67

Flexible SQL

ratio-to-report-function

RATIO_TO_REPORT (expression)\

window-aggregation-group-clause

{ ROWS } ‘ group-start]
group-between

RANGE
group-end

group-start

unsigned-constant PRECEDING

‘ UNBOUNDED PRECEDING]
CURRENT ROW

group-between

‘BETWEENgroup—bound-lANDgroup—bound-Z

group-bound-1

UNBOUNDED PRECEDING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-bound-2

UNBOUNDED FOLLOWING
unsigned-constant PRECEDING
unsigned-constant FOLLOWING
CURRENT ROW

group-end

{ UNBOUNDED FOLLOWING }
unsigned-constant FOLLOWING

68 Statements

Flexible SQL

window-partition-clause

PARTITION BY partitioning-expression,..

window-order-clause
ASC
NULLS LAST
ORDER BY ASC NULLS FIRST |
{sort-key-expression DESC o
DESC NULLS FIRST
DESC NULLS LAST
RANK Specifies that the rank of a row is defined as 1 plus the number of rows that strictly precede
the row.
DENSE_RANK |Specifies that the rank of a row is defined as 1 plus the number of preceding rows that are
distinct with respect to the ordering.
ROW_NUMBER |Specifies that a sequential row number is computed for the row that is defined by the

ordering, starting with 1 for the first row.

PARTITION BY

Defines the partition within which the OLAP operation is applied.

ORDER BY Defines the ordering of rows within a partition that is used to determine the value of the
OLAP specification.

ASC Specifies that the values of sort-key-expression are used in ascending order.

DESC Specifies that the values of sort-key-expression are used in descending order.

NULLS_FIRST

Specifies that the window ordering considers null values before all non-null values in the
sort order.

NULLS LAST

Specifies that the window ordering considers null values after all non-null values in the
sort order.

Example:

Display the ranking of employees that have a total salary of more than $30,000, in order by last

name.

SELECT EMPNO,

LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,

<<KRANK() OVER(CORDER BY SALARY+BONUS DESC) AS RANK_SALARY>>
FROM DSN8910-EMP WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME;

Statements

69

Flexible SQL

Case Expression with Flexible SQL

case-expression

searched-when-clause
<< CASE } [

ELSE { NULL }] END >>

. scalar-expression
simple-when-clause

A case-expressiondoes not conform to standard SQL and is therefore supported by the Natural
SQL Extended Set only.

Searched WHEN Clause

WHEN search-condition THEN { .
scalar-expression

NULL }

A Searched When Clause does not conform to standard SQL and is therefore supported by the
Natural SOL Extended Set only.

See details on search-condition.

Simple WHEN Clause

scalar-expression

LL
scalar-expression { WHEN scalar-expression THEN { Nu }}."

A Simple WHEN Clause does not conform to standard SQL and is therefore supported by the Nat-
ural SQL Extended Set only.

Example:

DEFINE DATA LOCAL

1 VWA VIEW OF NAT-D00O1

2 1D

2 NAME

2 CITY

01 #RES1 (A8)

01 #fCASE (I4) INITKO>
END-DEFINE

SELECT CITY,

<<

CASE SUBSTR(CITY,1,1)

WHEN 'V' THEN "Administration'
WHEN 'D' THEN "Accounting'

70 Statements

Flexible SQL

WHEN "K' THEN 'Operations'

END

>>

INTO VWA.CITY , {fRES1
FROM NAT-D0001

WRITE VWA.CITY #RESL
END-SELECT

END

Cast Expression with Flexible SQL

cast-expression

’<<CAST (scalar-expressionAS data-type) >>‘

A CAST expression does not conform to standard SQL and is therefore supported by the Natural

SQL Extended Set only.

Example:

DEFINE DATA LOCAL

1 VWA VIEW OF NAT-DOO1
2 1D

2 NAME

2 CITY

01 #RES1 (I4)
END-DEFINE

SELECT

<< CAST (ID AS INTEGER)
>>

INTO #fRES1

FROM NAT-D001 WHERE ID =1

WRITE #RES1
END-SELECT
END

XML Functions with Flexible SQL

XML-Functions

Any available XML functions must be treated with flexible SQL if those functions have their own
specific keyword or syntax, if you are using the AS keyword and order by statement or any specific
statement recognized by SQL. You must place the symbol of the flexible SQL within that stated

Statements

7"

Flexible SQL

portion. Additionally, between the left parathesis and the left arrow symbol of flexible SQL, you
must leave a space or you receive a compiler error.

Example:

DEFINE DATA LOCAL

D033412A VIEW OF NATQA-D033412A

NAME

YEARS_OF_SERVICE

ANNUAL_LEAVE

TIME_IN

2 BACKGROUND

END-DEFINE

SELECT XMLSERTALIZE(C <<CONTENT XMLELEMENT>>(<<KNAME "Annual Leave">>,XMLATTRIBUTES(«
<<ANNUAL_LEAVE AS "al1">>),XMLAGG(XMLELEMENT(<<NAME "name">>,NAME)<<ORDER BY NAME>>) «
)<<AS CLOB(110)>>) INTO #XMLSERIALIZE

FROM NATQA-D033412A

GROUP BY ANNUAL_LEAVE

END-SELECT

END

NN

Scalar-Function and Column-Function (Aggregating) with Flexible SQL

Scalar-functionsand column-functions are only supported with their proper syntax, as stated
in the section Scalar Expression. After the function name, within the left and right parentheses
between the scalar expressions, there must be a comma. Therefore, not putting a comma between
one scalar expression and another is restricted.

Any additional usage of keywords or any SQL statements within the parentheses, which is not
recognized as a scalar expression with or without a comma, must be included with the flexible
SQL to make it work.

Additionally, between the left parathesis and the left arrow symbol of flexible SQL you must leave
a space or you receive a compiler error.

Example:

DEFINE DATA LOCAL

01 V1 VIEW OF DSN8910-EMP
02 EMPNO

02 FIRSTNME

02 LASTNAME

02 SALARY

02 BONUS

01 M1 (I4)

END-DEFINE

M1 := 10000

72 Statements

Flexible SQL

SELECT * INTO VIEW V1

FROM DSN8910-EMP

WHERE SALARY > GREATEST(CAST(<<:M1 AS INTEGER>>))
DISPLAY V1

END-SELECT

ENDEND

Statements 73

74

I11

Referenced Example Programs

75

76

11 Referenced Example Programs

B ASSIGN e e 78
B AT BREAK L.t 79
B AT END OF DAT A Lottt ettt e et e e et e e et e e et e s 81
B AT END OF PAGE ...t 82
B AT START OF DATA Lttt 82
B AT TOP OF PAGE ...ttt 84
B DEFINE SUBROUTINE ...t 85
B TN D et e et 86
LI O PP P PP PP RPPPR PP 88
B HISTOGRAM L.ttt 89
L | O TP U PO U P PP TPUP PRI 89
= PERFORM BREAK PROCESSING ...ttt 91
B R E A D et e ettt 92
B R E P E A s 93
LT PSPPSR PUTUPPPRPPPPPRN 94
B S T O R E e e 95
B P D AT E e 97
= Example Programs for System Variablesoooiiiiiiiiii 98

77

Referenced Example Programs

This chapter contains additional example programs that are referenced in the Natural statements
and system variables reference documentation. All these examples are contained in the library

SYSEXSYN.

Note: Generally, the example programs shown in the statement descriptions are written in

structured mode. For statements where the reporting-mode syntax differs considerably
from the structured-mode syntax, references to equivalent reporting-mode examples are
also provided. The example programs are available in source-code form in the Natural library
SYSEXSYN. Further example programs of using Natural statements are documented in the
section Referenced Example Programs in the Programming Guide. These example programs are
provided in the Natural library SYSEXPG. Ask your Natural administrator about the availab-
ility of these libraries at your site. The example programs use data from the files EMPLOYEES

and VEHICLES, which are supplied by Software AG for demonstration purposes.

ASSIGN

The following example is referenced in the ASSIGN/COMPUTE statement description:

ASGEXIR - ASSIGN (reporting mode)

** Example "ASGEXIR': ASSIGN (reporting mode)

R R R R B B b e b R B R I e R e e R e e b e I b e B e i e b e e b e b b e e b e b S e e S e b b S e e b o 4

RESET #A (N3)

#B (A6)

##C (N0.3)

#D (N0O.5)

#/E (N1.3)

##F (N5)

#G (A25)

#H (A3/1:3)
*
ffA = 5
#B = "ABC'
ffc = .45
#D = #/E = -0.12345
ASSIGN ROUNDED #F = 199.999
#G = 'HELLO"
*

fiH (1) "UVW'
ffH (3) = "XYZ'
*

END

Output of Program AEDEX1R:

WRITE NOTITLE '=' #A
WRITE '=' #B

WRITE '=' #C

WRITE '=' #D / '=' {tE
WRITE '=" #F

WRITE '=" #G

WRITE '=' #H (1:3)

78

Statements

Referenced Example Programs

A 5

##B: ABC

#C: .450

#D: -.12345

#E: -0.123

JEF - 200

#G: HELLO

JH: UVW XYZ
AT BREAK

The following examples are referenced in the AT BREAK statement description:

ATBEXIR - AT BREAK (reporting mode)

** Example "ATBEXIR': AT BREAK (reporting mode)

khkkkhkkhkhkhkhkkhkhhhkkhkkhhhhkhkkhhhhhkkhkkhhhhkhkkhhhhkhkkhhhhhkhkhhhhkkhkhhhhkkhkkhhhkhkkhkhhhrhkkhhhhrkkhhrrtkk

*

LIMIT 10
READ EMPLOYEES BY CITY

AT BREAK OF CITY DO

SKIP 1

DOEND

/*

DISPLAY NOTITLE CITY (IS=0ON) COUNTRY (IS=0N) NAME
LOOP
END

Output of Program ATBEX1R:

CITY COUNTRY NAME
ATKEN USA SENKO
AIX EN OTHE F GODEFROY
AJACCIO CANALE
ALBERTSLUND DK PLOUG
ALBUQUERQUE USA HAMMOND
ROLLING
FREEMAN
LINCOLN
ALFRETON UK GOLDBERG

Statements 79

Referenced Example Programs

ALICANTE

ATBEX5R - AT BREAK statement with multiple break levels (reporting mode)

** Example "ATBEX5R': AT BREAK (multiple break Tevels) (reporting mode)

R R R R R b b R b e S b e I b R e i b e b S e i i b R e i R b S e b R R e b b e S b b

E

RESET LEAVE-DUE-L (N4)

*

LIMIT 5

FIND EMPLOYEES WITH CITY =
SORTED BY CITY DEPT

MOVE LEAVE-DUE TO LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME LEAVE-DUE-L

AT BREAK OF DEPT
WRITE NOTITLE /

T*DEPT OLD(DEPT) T*LEAVE-DUE-L SUM(CLEAVE-DUE-L) /

AT BREAK OF CITY
WRITE NOTITLE

T*CITY OLD(CCITY) T*LEAVE-DUE-L SUM(LEAVE-DUE-L) //

LOOP

*

END

Output of Program ATBEX5R:

CITY DEPARTMENT
CODE
PHILADELPHIA MGMT30
MGMT30
TECH10
TECH10
PHILADELPHIA
PITTSBURGH MGMT10
MGMT10
PITTSBURGH

GOMEZ

"PHILADELPHIA" OR =

WOLF-TERROINE
MACKARNESS

BUSH
NETTLEFOLDS

FLETCHER

"PITTSBURGH'

LEAVE-DUE-L

11
27

38

39
24

63

101

34

34

34

80

Statements

Referenced Example Programs

AT END OF DATA

The following example is referenced in the AT END OF DATA statement description:

AEDEXIR - AT END OF DATA (reporting mode)

** Example '"AEDEXIR': AT END OF DATA (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S

LIMIT 5
EMP. FIND EMPLOYEES WITH CITY = "STUTTGART'
IF NO RECORDS FOUND
ENTER
DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)
/%
AT END OF DATA DO
IF *COUNTER (EMP.) = 0 DO
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM
DOEND
WRITE NOTITLE / "SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X "MINIMUM:' MIN(CSALARY(1)) CURR-CODE (1)
/ 7X "AVERAGE:' AVER(SALARY (1)) CURR-CODE (1)

DOEND
LOOP
END

Output of Program AEDEX1R:

PERSONNEL NAME FIRST-NAME ANNUAL
ID SALARY
11100328 BERGHAUS ROSE 70800
11100329 BARTHEL PETER 42000
11300313 AECKERLE SUSANNE 55200
11300316 KANTE GABRIELE 61200
11500304 KLUGE ELKE 49200

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

CURRENCY
CODE

DM
DM
DM
DM
DM

Statements

81

Referenced Example Programs

AT END OF PAGE

The following example is referenced in the AT END OF PAGE statement description:

AEPEXIR - AT END OF PAGE (reporting mode)

** Example '"AEPEXIR': AT END OF PAGE (reporting mode)
RRA R R B R R R e e b b R e b b e e b b e b b e e i b b S e b b S e b i R e e b b R e b b S e e b b R e b b e b b S
FORMAT PS=10
LIMIT 10
READ EMPLOYEES BY PERSONNEL-ID FROM '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS

NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*
AT END OF PAGE DO
WRITE / 28T "AVERAGE SALARY: ..." AVER(SALARY (1)) CURR-CODE (1)

DOEND

/*
LOOP
END

Output of Program AEPEX1R:

NAME CURRENT SALARY CURRENCY
POSITION CODE

CREMER ANALYST 34000 USD

MARKUSH TRAINEE 22000 USD

GEE MANAGER 39500 USD

KUNEY DBA 40200 USD

NEEDHAM PROGRAMMER 32500 USD

JACKSON PROGRAMMER 33000 USD
AVERAGE SALARY: ... 33533 USD

AT START OF DATA

The following example is referenced in the AT START 0F DATA statement description:

82 Statements

Referenced Example Programs

ASDEXIR - AT START OF DATA (reporting mode)

** Example '"ASDEXIR': AT START OF DATA (reporting mode)

R R R e e b b S b b e b b S b b e b e S b S b S S b S b e b e b S b b S b S b b e b b S b b e b b b Y

RESET #CITY (A20) #CNTL (A1)

*

REPEAT
INPUT "ENTER VALUE FOR CITY' #CITY
/*
IF #CITY = ' ' OR= "END' DO
STOP
DOEND

FIND EMPLOYEES WITH CITY = #CITY
IF NO RECORDS FOUND DO
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE
DOEND
/%
AT START OF DATA DO
INPUT (AD=0) 'RECORDS FOUND' *NUMBER //
"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=A)
IF #CNTL NE 'D' DO
ESCAPE BOTTOM
DOEND
DOEND
/*
DISPLAY NAME FIRST-NAME
LOOP
LOOP
END

Output of Program ASDEX1R:

ENTER VALUE FOR CITY PARIS

After entering and confirming city name:

RECORDS FOUND 26
ENTER 'D' TO DISPLAY RECORDS D

After entering and confirming D:

Statements

83

Referenced Example Programs

NAME FIRST-NAME
MATZIERE ELISABETH
MARX JEAN-MARTE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS
CENSTER BERNARD
DuC JEAN-PAUL
CAHN RAYMOND
MAZUY ROBERT
FAURIE HENRI
VALLY ALAIN
BRETON JEAN-MARTE
GIGLEUX JACQUES
KORAB-BRZOZOWSKI BOGDAN
XOLIN CHRISTIAN
LEGRIS ROGER
VVVV
AT TOP OF PAGE

The following example is referenced in the AT TOP OF PAGE statement description:

ATPEXIR - AT TOP OF PAGE (reporting mode)

** Example "ATPEXIR': AT TOP OF PAGE (reporting mode)

R R R R B b e b b e R e b b e R e i e b e B e b e I e e e B e e b e e b e b e b e e b e e b e b e b e b e b e e b 4

*

FORMAT PS=15

LIMIT 15

*

READ EMPLOYEES BY NAME STARTING FROM 'L
DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER "-" (78)

/%
AT TOP OF PAGE DO
WRITE 'BEGINNING NAME:' NAME

DOEND
/*
AT END OF PAGE DO
SKIP 1
WRITE "ENDING NAME: " NAME

84

Statements

Referenced Example Programs

DOEND
LOOP
END

DEFINE SUBROUTINE

The following example is referenced in the DEFINE SUBROUTINE statement description:

DSREXIR - DEFINE SUBROUTINE (reporting mode)

** Example 'DSREXIR': DEFINE SUBROUTINE (reporting mode)
P e b b b i B i S e B i b b e b B b b i i b b b o b b b b i S B b i g B b o i b i o S b b b o i
RESET #ARRAY-ALL (A300)

X (N2) Y (N2)
REDEFINE #fARRAY-ALL (FARRAY (A75/1:4))

JFARRAY-ALL (#ALINE (A25/1:4,1:3))

*
FORMAT PS=20
LIMIT 5

*

MOVE 1 TO #X Y
*
FIND EMPLOYEES WITH NAME = 'SMITH'
OBTAIN ADDRESS-LINE (1:2)
/*
MOVE NAME TO F#ALINE (HX,4HY)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,#Y)
MOVE PHONE TO #FALINE (#X+3,4Y)
IF #Y = 3 DO
MOVE 1 TO #Y
PERFORM PRINT
DOEND
ELSE DO
ADD 1 TO fY
DOEND
AT END OF DATA DO
PERFORM PRINT
DOEND
LOOP
*
DEFINE SUBROUTINE PRINT
WRITE NOTITLE (AD=0I1) #ARRAY(*)
RESET #ARRAY (*)
SKIP 1
RETURN

*

END

Statements 85

Referenced Example Programs

Output of Program AEDEX1R:

SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD
MILWAUKEE

554349 877-4563

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963

FIND

14100 ESWORTHY RD.
MONTERREY

The following examples are referenced in the FIND statement description:

FNDFIR - FIND statement with FIRST option (reporting mode)

** Example "FNDFIR': FIND FIRST

R R R b R R b b R b e b S e I b R R i b e i b R e i b i R e i b R e i b b i b R R e i b b e b b

*

FIND FIRST EMPLOYEES WITH CITY = 'DERBY'

*

WRITE NOTITLE "TOTAL RECORDS SELECTED:' *NUMBER

SKIP 2

WRITE '***FIRST PERSON SELECTED***'
'NAME : " NAME /
"DEPARTMENT: " DEPT /
'JoB TITLE: ' JOB-TITLE

*

END

Output of Program FNDFIR:

TOTAL RECORDS SELECTED: 141

FIRST PERSON SELECTED

NAME : DEAKIN
DEPARTMENT: SALEO1
JOB TITLE: SALES ACCOUNTANT

86

Statements

Referenced Example Programs

FNDNUM - FIND statement with NUMBER option (reporting mode)

** Example "FNDNUM': FIND NUMBER

R R e b S b S b e b b e b e b e b b e e b e e b e S e e e S e e b e e b e e b S e b e e i b e b e e b o S

RESET #BIRTH (D)

*

MOVE EDITED '19500101" TO #BIRTH (EM=YYYYMMDD)
*
FIND NUMBER EMPLOYEES WITH CITY = 'MADRID'
WHERE BIRTH LT #BIRTH
*
WRITE NOTITLE 'TOTAL RECORDS SELECTED: " *NUMBER
/ "TOTAL BORN BEFORE 1 JAN 1950: ' *COUNTER

*

END

Output of Program FNDNUM:

TOTAL RECORDS SELECTED: 41
TOTAL BORN BEFORE 1 JAN 1950: 16

FNDUNQ - FIND statement with UNIQUE option (reporting mode)

** Example 'FNDUNQ': FIND UNIQUE

R R R b e b e b e b e R e b b e b b e e B e b e e e e e e I (e e b e b e b e e b e b e b e e b S b e b e e b o 4
RESET #NAME (A20)
*

*

INPUT "ENTER EMPLOYEE NAME: ' #NAME
IF #NAME = ' '
STOP

*

FIND UNIQUE EMPLOYEES WITH NAME = #NAME

*

DISPLAY NOTITLE NAME FIRST-NAME JOB-TITLE
*
ON ERROR DO
WRITE 'NAME EITHER NOT UNIQUE OR DOES NOT EXIST'
FETCH 'FNDUNQ®
DOEND

*

END

Output of Program FNDUNQ:

Statements 87

Referenced Example Programs

ENTER EMPLOYEE NAME: HEURTEBISE

After entering and confirming name HEURTEBISE:

NAME FIRST-NAME CURRENT
POSITION
HEURTEBISE MICHEL CONTROLEUR DE GESTION

FOR

The following example is referenced in the FOR statement description:

FOREXIR - FOR (reporting mode)

** fxample 'FOREX1R': FOR (reporting mode)
R R R b R e e b b e b b e b S S b b S e b b S e i S e b b e b S e b b S S e b S S e b b e e b b e e
RESET #FINDEX (I1)
#ROOT (N2.7)

*
FOR #INDEX 1 TO 5

COMPUTE #RO0OT = SQRT (#INDEX)

WRITE NOTITLE '=' ffINDEX 3X '=" #R0OOT
LOOP
*
SKIP 1
FOR ffINDEX 1 TO 5 STEP 2

COMPUTE #ROOT = SQRT (#INDEX)

WRITE '=" #fINDEX 3X '=' {fROOT
LOOP

*

END

Output of Program FOREX1R:

FFINDEX : 1 {#ROOT: 1.0000000
FFINDEX : 2 ffROOT: 1.4142135
FFINDEX : 3 #ROOT: 1.7320508
JFINDEX : 4 #ROOT: 2.0000000
F#FINDEX : 5 #ROOT: 2.2360679
FFINDEX : 1 {#ROOT: 1.0000000
FFINDEX : 3 #ROOT: 1.7320508
FFINDEX : 5 #ROOT: 2.2360679

88

Statements

Referenced Example Programs

HISTOGRAM

The following example is referenced in the HISTOGRAM statement description:

HSTEX1R - HISTOGRAM (reporting mode)

** Example "HSTEXIR': HISTOGRAM (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S
*

LIMIT 8
HISTOGRAM EMPLOYEES CITY STARTING FROM 'M'
DISPLAY NOTITLE CITY

"NUMBER OF/PERSONS' *NUMBER *COUNTER
LOOP

*

END

Output of Program HSTEX1R:

CITY NUMBER OF CNT
PERSONS

MADISON

MADRID 4
MAILLY LE CAMP

MAMERS

MANSFIELD

MARSETLLE

MATLOCK

MELBOURNE

N RN E W
O N O OB W

IF

The following example is referenced in the IF statement description:

Statements 89

Referenced Example Programs

IFEX1R - IF (reporting mode)

**% Example 'IFEXIR':

RO R b e b S b S b e b o b e b e b e b b e e b e e b e e e e e S e e b e e b e e b e e b e e i b e b e e o S

RESET #BIRTH (D)

*

MOVE EDITED '19450101°

IF (reporting mode)

SUSPEND IDENTICAL SUPPRESS

LIMIT 20

*

FND. FIND EMPLOYEES WITH CITY
SORTED BY NAME BIRTH

IF SALARY (1) LT 40000

WRITE NOTITLE ‘'****x!

ELSE DO

IF BIRTH GT #BIRTH DO

FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID (FND.)

DISPLAY (IS=0ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8)

LOOP
DOEND
DOEND
LOOP
END

Output of Program IFEXIR:

NAME

BAECKER

*xxHx BECKER
BLOEMER

FALTER

peasieasas [FALTER
ks GROTHE
FxxAk HETLBROCK
*xx%*x HESCHMANN
HUCH

*FxxHA KICKSTEIN
FrkAAk KLEENE
FxxAEE KRAMER

1956-01-05

1979-11-07
1954-05-23

1952-09-12

NAME 30X

TO #BIRTH (EM=YYYYMMDD)

"FRANKFURT'

ANNUAL MAKE
SALARY

74400 BMW

45200 FIAT
70800 FORD

67200 MERCEDES

"SALARY LT 40000'

SALARY

SALARY
SALARY
SALARY
SALARY

SALARY
SALARY
SALARY

LT

LT
LT
LT
LT

LT
LT
LT

40000

40000
40000
40000
40000

40000
40000
40000

90

Statements

Referenced Example Programs

PERFORM BREAK PROCESSING

The following example is referenced in the PERFORM BREAK PROCESSING statement description:

PBPEXIR - PERFORM BREAK PROCESSING (reporting mode)

** Example 'PBPEXIR': PERFORM BREAK PROCESSING (reporting mode)

R R B R R R e e b b R e b b e e b b e b b e e b b b S e b b S e b b R e e b b R e b b S e e b R e b b b e b b S

RESET #LINE (N2) #INDEX (N2)
*
MOVE 1 TO #LINE
FOR #INDEX 1 TO 18
PERFORM BREAK PROCESSING
/*
AT BREAK OF #fINDEX /1/ DO
WRITE NOTITLE / 'PLEASE COMPLETE LINES 1-9 ABOVE' /
MOVE 1 TO #LINE
DOEND
/*
WRITE NOTITLE '_" (64) '=' #LINE
ADD 1 TO #LINE
LOOP
END

Output of Program PBPEX1R:

FFLINE:
JFLINE:
JFLINE:
JFLINE:
JFLINE:
FLINE:
JFLINE:
FLINE:
JFLINE:

O 0O N o o B wnmMn -

PLEASE COMPLETE LINES 1-9 ABOVE

JFLINE:
#FLINE:
JFLINE:
fFLINE:
JFLINE:
JFLINE :
#FLINE:
JFLINE:
#FLINE:

W 00 N O O B WM

PLEASE COMPLETE LINES 1-9 ABOVE

Statements 91

Referenced Example Programs

READ

The following example is referenced in the READ statement description:

REAEXIR - READ (reporting mode)

** Example 'REAEXIR': READ (reporting mode)

RRA R R B R R R e e b b R e b b e e b b e b b e e i b b S e b b S e b i R e e b b R e b b S e e b b R e b b e b b S

LIMIT 3

*

WRITE 'READ IN PHYSICAL SEQUENCE'
READ EMPLOYEES IN PHYSICAL SEQUENCE
DISPLAY NOTITLE PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / '"READ IN ISN SEQUENCE'

READ EMPLOYEES BY ISN STARTING FROM 1 ENDING AT 3
DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / '"READ IN NAME SEQUENCE'

READ EMPLOYEES BY NAME

DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

WRITE / 'READ IN NAME SEQUENCE STARTING FROM "'M""'
READ EMPLOYEES BY NAME STARTING FROM 'M’
DISPLAY PERSONNEL-ID NAME *ISN *COUNTER

LOOP

*

END

Output of Program REAEX1R:

PERSONNEL NAME
ID

READ IN PHYSICAL SEQUENCE
50005800 ADAM

50005600 MORENO

50005500 BLOND

READ IN ISN SEQUENCE
50005800 ADAM
50005600 MORENO
50005500 BLOND

READ IN NAME SEQUENCE

92

Statements

Referenced Example Programs

60008339 ABELLAN 478 1
30000231 ACHIESON 878
50005800 ADAM 1 3

READ IN NAME SEQUENCE STARTING FROM 'M'

30008125 MACDONALD 923 1
20028700 MACKARNESS 765

40000045 MADSEN 508 3
REPEAT

The following examples are referenced in the REPEAT statement description:

RPTEXIR - REPEAT (reporting mode)

** Example 'RPTEXIR': REPEAT (reporting mode)

khkkkhkkhkhkhkhkkhkhhhkkhkkhhhhkhkkhhhhhkkhkkhhhhkhkkhhhhkhkkhhhhhkhkhhhhkkhkhhhhkkhkkhhhkhkkhkhhhrhkkhhhhrkkhhrrtkk

RESET #PERS-NR (A8)
*
REPEAT
INPUT 'ENTER A PERSONNEL NUMBER:' #PERS-NR
IF #fPERS-NR = '
ESCAPE BOTTOM
FIND EMPLOYEES WITH PERSONNEL-ID = #PERS-NR
IF NO RECORD FOUND
REINPUT 'NO RECORD FOUND'
DISPLAY NOTITLE NAME
LOOP
LOOP

*

END

Output of Program RPTEX1R:

ENTER A PERSONNEL NUMBER:

RPTEX2R - REPEAT with WHILE and UNTIL option (reporting mode)

** Example 'RPTEX2R': REPEAT (with WHILE and UNTIL option)

R R b i b S b b e b b e e b e b b e e e e b e e e e e e e e b e b e b e e b e e b e e i b e b e e b i S
RESET #X (I1) Y (I1)

*

*

REPEAT WHILE #X <= 5
ADD 1 TO #X
WRITE NOTITLE '=' #X
LOOP

*

Statements

93

Referenced Example Programs

SKIP 3

REPEAT
ADD 1 TO #
WRITE '=' 4y
UNTIL #Y =6

LOOP

*

END

Output of Program RPTEX2R:

X
X
X
X
X
X

D OB~ W N

7Y
7Y
7Y
Y -
Y
Y -

D OB~ W

SORT

The following example is referenced in the SORT statement description:

SRTEXIR - SORT (reporting mode)

**% Example '"SRTEXIR': SORT (reporting mode)
khkkkhkhkkhkhkkhhkkhhkhhkkhkhkhhkkhkhkhhkkhhkhhkkhkhkhhkkhhkhhkhkhkhhkhhkhhkhrkhhkhkhkhhkhkrkhhkhrkhhkhkrkhhkhrkhhkhkrkhkrkhxk
RESET #AVG (P11) #TOTAL-TOTAL (P11) #TOTAL-SALARY (P11)

JFAVER-PERCENT (N3.2)

*

LIMIT 3

FIND EMPLOYEES WITH CITY =

OBTAIN SALARY(1:2)
COMPUTE #TOTAL-SALARY

/*

SORT BY PERSONNEL-ID USING #TOTAL-SALARY SALARY(*) CURR-CODE
GIVE AVER(#TOTAL-SALARY)

/%
AT START OF DATA DO

SALARY (1) + SALARY (2)
ACCEPT IF #TOTAL-SALARY GT O

94

Statements

Referenced Example Programs

WRITE NOTITLE '*" (40)
"AVG CUMULATIVE SALARY:' *AVER (#TOTAL-SALARY) /
MOVE *AVER (#TOTAL-SALARY) TO #AVG
DOEND
COMPUTE ROUNDED ffAVER-PERCENT = #TOTAL-SALARY / #AVG * 100
ADD #TOTAL-SALARY TO #TOTAL-TOTAL
/*
DISPLAY NOTITLE PERSONNEL-ID SALARY (1) SALARY (2)
#fTOTAL-SALARY CURR-CODE (1)
"PERCENT/OF/AVER' #fAVER-PERCENT
AT END OF DATA
WRITE / '*' (40) 'TOTAL SALARIES PAID: " #TOTAL-TOTAL
LOOP

*

END

Output of Program SRTEX1R:

PERSONNEL ANNUAL ANNUAL #fTOTAL-SALARY CURRENCY PERCENT

ID SALARY SALARY CODE OF

AVER

Kok ok kkokkkkkkkokkkkkkkkkkkkkkkkkkxkkkkkkxk% AVG CUMULATIVE SALARY : 44633
20000100 31000 29400 60400 USD 135.30
20019200 18000 17100 35100 USD 78.60
20020400 20000 18400 38400 USD 86.00
Kok kok ok kk ok ok ok k ok ok k ok k ok kk ok ok kkkkkkkkkkkkxkkkkx TOTAL SALARIES PAID: 133900
STORE

The following example is referenced in the STORE statement description:

STOEXIR - STORE (reporting mode)

** Example 'STOEXIR': STORE (reporting mode)

**

**% CAUTION: Executing this example will modify the database records!

R R R o R R b b R b b e b e e I b R e i b b e i b R e i b i R e I b R e i i b e b R e i b b e b b

RESET #PERSONNEL-ID (A8)

#ENAME (A20)
#FIRST-NAME (Al15)
#BIRTH-D (D)

#IMAR-STAT (A1)
#BIRTH (A8)
FCITY (A20)

Statements

95

Referenced Example Programs

*

##COUNTRY (A3)
fFCONF (A1)
REPEAT
INPUT "ENTER A PERSONNEL ID AND NAME (OR ''END'' TO END)"' //
"PERSONNEL-ID : ' #PERSONNEL-ID //
"NAME : ' {INAME /
"FIRST-NAME : ' #FIRST-NAME
/*
/* VALIDATE ENTERED DATA
/*
IF #PERSONNEL-ID = "END' OR #NAME = 'END'
STOP
IF ##NAME = '

REINPUT WITH TEXT '"ENTER A LAST-NAME' MARK 2 AND SOUND ALARM

IF #fFIRST-NAME = ' '

REINPUT WITH TEXT "ENTER A FIRST-NAME' MARK 3 AND SOUND ALARM

/*
/* ENSURE PERSON IS NOT ALREADY ON FILE
/*
FIND NUMBER EMPLOYEES WITH PERSONNEL-ID = {PERSONNEL-ID
IF *NUMBER > 0
REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS'
MARK 1 AND SOUND ALARM
MOVE 'N' TO #CONF

/*

/* GET FURTHER INFORMATION

/*

INPUT
"ADDITIONAL PERSONNEL DATA' /117
"PERSONNEL-ID :' #fPERSONNEL-ID (AD=I0) /
"NAME ' fENAME (AD=I0) /
"FIRST-NAME ;' #fFIRST-NAME (AD=I0Q) ///
"MARITAL STATUS ' #IMAR-STAT /
"DATE OF BIRTH (YYYYMMDD) :' #BIRTH /
"CITY 2 JICITY /
"COUNTRY (3 CHARACTERS) ' JICOUNTRY //
"ADD THIS RECORD (Y/N) ;' JFCONF (AD=M)

/*

/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
/*
IF NOT (#MAR-STAT = 'S' OR = 'M' OR = 'D' OR = 'W")
REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -
"M=MARRIED D=DIVORCED W=WIDOWED' MARK 1
IF NOT (#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
REINPUT TEXT 'ENTER CORRECT DATE' MARK 2
IF #CITY = '
REINPUT TEXT 'ENTER A CITY NAME' MARK 3
IF #COUNTRY = ' '
REINPUT TEXT 'ENTER A COUNTRY CODE' MARK 4
IF NOT (#CONF = 'N' OR= 'Y")
REINPUT TEXT 'ENTER Y (YES) OR N (NO)' MARK 5

96

Statements

Referenced Example Programs

IF #CONF = 'N'
ESCAPE TOP
/*
/* ADD THE RECORD
/*
MOVE EDITED #BIRTH TO #BIRTH-D (EM=YYYYMMDD)
/*
STORE RECORD IN EMPLOYEES
WITH PERSONNEL-ID = #PERSONNEL-ID

NAME = {NAME
FIRST-NAME = {fFIRST-NAME
MAR-STAT = JMAR-STAT
BIRTH = #BIRTH-D
CITY = {fCITY
COUNTRY = JfCOUNTRY
END OF TRANSACTION
/*
WRITE NOTITLE 'RECORD HAS BEEN ADDED'
/*
LOOP
END
UPDATE

The following example is referenced in the UPDATE statement description:

UPDEXIR - UPDATE (reporting mode)

** Example 'UPDEXIR': UPDATE (reporting mode)

**

**% CAUTION: Executing this example will modify the database records!

R R R R R R R b e b e S R R i R e R e b R e i R b e b R R e i S b e S b b 4

RESET #NAME (A20)
*
INPUT "ENTER A NAME:' #NAME (AD=M)
IF #NAME = ' '

STOP
*
FIND EMPLOYEES WITH NAME = #NAME

IF NO RECORDS FOUND

REINPUT WITH 'NO RECORDS FOUND' MARK 1

/%

INPUT 'NAME: " NAME (AD=0) /
"FIRST NAME:' FIRST-NAME (AD=M) /
"CITY: " CITY (AD=M)

/*

UPDATE USING SAME RECORD

/*

END TRANSACTION

Statements 97

Referenced Example Programs

/*
LOOP
*

END

Output of Program UPDEX1R:

ENTER A NAME:

Example Programs for System Variables

The following examples are referenced in the *0CCURRENCE system variable description:

OCC1P - System Variable *OCCURRENCE

** Example 'OCCIP': *OCCURRENCE

R R R R R R R b e R R b b e e e e S R b b e e e e e R R i e e e e e e R i o e e e e S e b b e e e e e
DEFINE DATA LOCAL

1 #N1 (N7/1:10)

1 #N2 (N7/1:10,1:10)

1 #N3 (N7/1:10,1:10,1:10)

END-DEFINE

*

CALLNAT "OCCIN' 4NL1(*) #N2(1:2,1:4) 4#N3(1:6,1:7,1:8)

*

END

Subprogram 0CC1N Called by Program 0CC1P:

** Example 'OCCIN': *OCCURRENCE (called by 0CC1P)
Khkhkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkhhkkhhkhhkkhhkhhkhhkhhkkhhkhhkhhkhhkkhhkkhhkhhkhkkhhkhhkkhkkhxk
DEFINE DATA

PARAMETER

1 PARML (N7/1:V)

1 PARM2 (N7/1:V,1:V)

1 PARM3 (N7/1:V,1:V,1:V)

LOCAL

1 f0CC2 (14/1:2)

1 #0CC3 (14/1:3)

1 40CC1 (14)

END-DEFINE

*

MOVE *0CC(PARM1) TO #0CC1

MOVE *0CC(PARM2,*) TO #0CC2(*)

MOVE *OCC(PARM3,*) TO #0CC3(*)

*

DISPLAY #f0CC1 #0CC2(*) #0CC3(*)

DISPLAY *0CC(PARM1,*) *0CC(PARM2,*) *0CC(PARM3,*)

98

Statements

Referenced Example Programs

*

NEWPAGE

*

WRITE NOHDR

'Occurrences

/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences
/ 'Occurrences

*

END

of
of
of
of
of
of

of

LW = =

Output of Program 0CC1P - Page 1:

. parameter:
. parameter:
. parameter:
. parameter:
. parameter:
. parameter:

. parameter:

*0CC(PARMI)

*0CC(PARMI, 1)
*0CC(PARMI, *)
*0CC(PARMZ,1)
0CC(PARMZ,)
*0CC(PARM3,1)
*0CC(PARM3,3)
*0CC(PARM3, *)

*0CC(PARMZ,2)

*0CC(PARM3,2)

Page 1 05-01-18 10:21:30
##0CC1 ##0CC2 ##0CC3
10 2 6
4 7
8
10 2 6
4 7
8
Output of Program 0CC1P - Page 2:
Page 2 05-01-18 10:21:30
Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 1. parameter: 10
Occurrences of 2. parameter: 2 4
Occurrences of 2. parameter: 2 4
Occurrences of 3. parameter: 6 7 8
Occurrences of 3. parameter: 6 7 8
Statements 99

Referenced Example Programs

OCC2P - System Variable *OCCURRENCE

** Example '0CCZ2P': *OCCURRENCE

RO R b e b S b S b e b o b e b e b e b b e e b e e b e e e e e S e e b e e b e e b e e b e e i b e b e e o S

DEFINE DATA LOCAL
1 4N (N7/1:10)
1 41 (I4)
END-DEFINE
*
FOR #I=1 TO 10
MOVE #I TO #N(#I)
END-FOR

*

WRITE 'Passing occurrences 1:5'

CALLNAT "OCC2N" #N(1:5)

*

WRITE 'Passing occurrences 5:10°'

CALLNAT "OCC2N' #N(5:10)

*

END

Subprogram 0CC2N Called by Program 0CC2P:

** Example 'OCC2N': *OCCURRENCE (called by 0CC2P)

R R R b R R e I b R R e S b b e e b b S e e b b e e b b e e b b i S b b R e I b b R e e b b b e e b R e S b b i e e b b Y

DEFINE DATA

PARAMETER

1 #FARR (N7/1:V)

LOCAL

11 (N7)

END-DEFINE

*

FOR I=1 TO *0CC(#ARR)
DISPLAY #ARR(I)

END-FOR

*

END

Output of Program 0CC2P:

Page 1

Passing occurrences 1:5

o1 B~ W N

Passing occurrences 5:10

o1

05-01-18

10:33:03

100

Statements

Referenced Example Programs

O O 0

Statements 101

102

IV

B 2 ACCEPT/REJECT ..o 105
BB ADD e 111
B4 ASSIGN e 117
B I8 AT BREAK ..o 119
B A6 AT END OF DATA .o 127
AT ATEND OF PAGE ... 133
B 18 AT START OF DATA L.t 141
B IO AT TOP OF PAGE ... 147
m 20 BACKOUT TRANSACTION ...ttt 153
® 21 BEFORE BREAK PROCESSINGoiiiiiiiiiiie e 157
B 22 CALL s 161
B 23 CALL FILE ..o 177
B 24 CALL LOOP ...t 181
B 25 CALLDBPROC (SQL) ..ttt 185
B 20 CALLN AT e 191
B 27 CLOSE CONVERSATION ...ttt 199
B 28 CLOSE DIALOG ... 203

103

104

12 ACCEPT/REJECT

B ACCEPT/REJECT USAQE ... vvvieeeiiiie ettt ettt e e e e et e e et a e e et a e e e 106
m ACCEPT/REJECT Syntax DeSCHPLONvvviiiiiiiieeiii ittt 106
= Processing of Multiple ACCEPT/REJECT Statementscuvviiiiiiiiiieiiiec e 107
B LIMIENOLAHION ..o e 107
B ACCEPT/REJECT EXAMPIESveeeeeiiiiie ettt ettt e e e e e e e e e e es 108

105

ACCEPT/REJECT

{ ACCEPT

} [IF] Togical-condition
REJECT

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION |
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | HISTOGRAM | GET | GET SAME |
GET TRANSACTION DATA | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

ACCEPT/REJECT Usage

The statements ACCEPT and REJECT are used for accepting/rejecting a record based on user-specified
logical criterion. The ACCEPT/REJECT statement may be used in conjunction with statements which
read data records in a processing loop (FIND, READ, HISTOGRAM, CALL FILE, SORT or READ WORK
FILE). The criterion is evaluated after the record has been selected/read.

Whenever an ACCEPT/REJECT statement is encountered for processing, it will internally refer to the
innermost currently active processing loop initiated with one of the above mentioned statements.

When ACCEPT/REJECT statements are placed in a subroutine, in case of a record reject, the sub-
routine(s) entered in the processing loop will automatically be terminated and processing will
continue with the next record of the innermost currently active processing loop.

ACCEPT/REJECT Syntax Description

Syntax Element Description

IF IF Clause:

An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read
with a FIND, READ, or HISTOGRAM statement. The logical condition criteria are
evaluated after the record has been read and after record processing has started.

lTogical-condition|Logical Condition Criterion:
The basic criterion is a relational expression. Multiple relational expressions may
be combined with logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

106 Statements

ACCEPT/REJECT

Syntax Element Description

The fields used to specify the logical criterion may be database fields or user-defined
variables. For additional information on logical conditions, see Logical Condition
Criteria in the Programming Guide.

Note: When ACCEPT/REJECT is used with a HI STOGRAM statement, only the database
field specified in the HI STOGRAM statement may be used as a logical criterion.

Processing of Multiple ACCEPT/REJECT Statements

Normally, only one ACCEPT or REJECT statement is required in a single processing loop. If more
than one ACCEPT/REJECT is specified consecutively, the following conditions apply:

® If consecutive ACCEPT and REJECT statements are contained in the same processing loop, they
are processed in the specified order.

® If an ACCEPT condition is satisfied, the record will be accepted and consecutive ACCEPT/REJECT
statements will be ignored.

® If a REJECT condition is satisfied, the record will be rejected and consecutive ACCEPT/REJECT
statements will be ignored.

= If the processing continues to the last ACCEPT/REJECT statement, the last statement will determine
whether the record is accepted or rejected.

If other statements are interleaved between multiple ACCEPT/REJECT statements, each ACCEPT/REJECT
will be handled independently.

Limit Notation

If a LIMIT statement or other limit notation has been specified for a processing loop containing an
ACCEPT or REJECT statement, each record processed is counted against the limit regardless of
whether or not the record is accepted or rejected.

Statements 107

ACCEPT/REJECT

ACCEPT/REJECT Examples

= Example 1 - ACCEPT
= Example 2 - ACCEPT / REJECT

Example 1 - ACCEPT

** Example "ACREX1': ACCEPT

R R R B b R R e I b b R e e b b e e b e e b b e e i b R S e b b S e B b b R e I b b b b S e I b R e b b b e b b b S 4

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 SEX
2 MAR-STAT

END-DEFINE

*

LIMIT 50

READ EMPLOY-VIEW

ACCEPT IF SEX='M"' AND MAR-STAT =
WRITE NOTITLE '=" NAME '=' SEX 5X '=

END-READ
END

Output of Program ACREX1:

NAME: MORENO
NAME: VAUZELLE
NAME: BATLLET
NAME: HEURTEBISE
NAME: LION
NAME: DEZELUS
NAME: BOYER
NAME: BROUSSE
NAME: DROMARD
NAME: DUC
NAME: BEGUERIE
NAME: FOREST
NAME: GEORGES

(S IV IV RN BNV IV RN Vo RNV I Vo RN Vo RN BN Vo RN V)
Mm rm rm rmoreorermeormeorme e rmormeorm

>X X X X X X X X X X X X X

vsl

T

MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL

' MAR-STAT

STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:

(S I o RV R Vo RV RV I R Ve R RN Vo I Ve BN)

108

Statements

ACCEPT/REJECT

Example 2 - ACCEPT / REJECT

** Example 'ACREX2': ACCEPT/REJECT

R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1)
*
1 ffPROC-COUNT (N8) INIT <0>
END-DEFINE
*
EMP. FIND EMPLOY-VIEW WITH NAME = 'JACKSON'
WRITE NOTITLE *COUNTER NAME FIRST-NAME 'SALARY:' SALARY(1)
/*
ACCEPT IF SALARY (1) LT 50000
WRITE *COUNTER 'ACCEPTED FOR FURTHER PROCESSING'
/*
REJECT IF SALARY (1) GT 30000
WRITE *COUNTER 'NOT REJECTED'
/*
ADD 1 TO #PROC-COUNT
END-FIND
*
SKIP 2
WRITE NOTITLE 'TOTAL PERSONS FOUND ' *NUMBER (EMP.) /
"TOTAL PERSONS SELECTED' #PROC-COUNT
END

Output of Program ACREX2:

1 JACKSON CLAUDE SALARY:
1 ACCEPTED FOR FURTHER PROCESSING
2 JACKSON FORTUNA SALARY:
2 ACCEPTED FOR FURTHER PROCESSING
3 JACKSON CHARLIE SALARY :
3 ACCEPTED FOR FURTHER PROCESSING
3 NOT REJECTED

TOTAL PERSONS FOUND 3

TOTAL PERSONS SELECTED 1

33000

36000

23000

Statements

109

110

13 ADD

B ADD USQE ...ttt 112
= Syntax 1 - ADD Statement without GIVING ClaUuSEccooiiiiiiiiiiiiec it 112
= Syntax 2 - ADD Statement With GIVING ClaUSEooiiiiiiiiieiiiiie e 113
B ADD EXAMPIE ..ot e e ettt e e e e e e e aaaaa e 115

M

ADD

Related Statements: COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
| SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

ADD Usage

The ADD statement is used to add two or more operands.

This statements has two different syntax structures.

J Notes:

1. At the time the ADD statement is executed, each operand used in the arithmetic operation must
contain a valid value.

2. For additions involving arrays, see also the section Arithmetic Operations with Arrays.

3. As for the formats of the operands, see also the section Performance Considerations for Mixed
Formats.

Syntax 1 - ADD Statement without GIVING Clause

(arithmetic-expression)

ADD [ROUNDED] {
operandl

} .. 10 operand?

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 1):

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandl|C|S |[A| |N N|P|I|F| |D|T yes no

operandZ| |S |A| M N|P|I|F| |D|T yes yes

Syntax Element Description:

112 Statements

ADD

Syntax Element

Description:

arithmetic-expression

See Arithmetic Expression in the COMPUTE statement.

operandl TO operand?

Operands:

operandl and operand? are summands. The result is stored in operand?
(result field). Hence, the statement is equivalent to:

operand? := operand? + operandl + ...
ROUNDED ROUNDED Option:
If the keyword ROUNDED is used, the result will be rounded.
For information on rounding, see Rules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.
Example:

The statement

ADD #A(*) TO #B(*)

ADD S TO #R
ADD #S #T TO #R
ADD #FA(*) TO #R

equivalent to COMPUTE #B(*)

FFACX) + 1B (*)

equivalent to COMPUTE #R = ##S + {R
equivalent to COMPUTE #R := S + #T + 4R
equivalent to COMPUTE #R = fFAC*) + R

Syntax 2 - ADD Statement with GIVING Clause

ADD [ROUNDED] {

(arithmetic-expression)
operandl

} .. GIVING operand?

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 2):

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C|S |A NP|I|F| |D|T yes no

operandz| |S |A A|UIN|P|I|F(B*|D|T yes yes

* Format B of operand? may be used only with a length of less than or equal to 4.

Syntax Element Description:

Statements

13

ADD

Syntax Element Description:

arithmetic-expression See Arithmetic Expression in the COMPUTE statement.

operandl GIVING operandZ |Operands:

operandl is a summand. operandZ is only used to receive the result of
the operation; it is not included in the addition. Hence, the statement is
equivalent to:

operand? := operandl + ...

ROUNDED ROUNDED Option:
If the keyword ROUNDED is used, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field
Truncation and Field Rounding in the Programming Guide.

| Note: If Syntax 2 is used, the following applies: Only the (operandl) field(s) left of the

keyword GIVING are the terms of the addition, the field right of the keyword GIVING
(operand?)isjust used to receive the result value. If just a single (operandi) field is supplied,
the ADD operation turns into an assignment.

Example:

The statement

ADD #S GIVING #R is equivalent to COMPUTE #R := #S
ADD #S #T GIVING #R is equivalent to COMPUTE #R := #S + #T

ADD #A(*) 0 GIVING #R 1is equivalent to COMPUTE #R := #A(*) + 0
which is a legal operation, due to the rules defined
in Arithmetic Operations with Arrays

ADD #A(*) GIVING #R is equivalent to COMPUTE #R := #A(*)
which is an illegal operation, due to the rules
defined in Assignment Operations with Arrays

114 Statements

ADD

ADD Example

** Example '"ADDEX1': ADD

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

DEFINE DATA LOCAL

1 #A (P2)

1 4B (P1.1)

1 #C (P1)

1 #fDATE (D)

1 JARRAY1 (P5/1:4,1:4) INIT (2,*) <5>

1 #fARRAY2 (P5/1:4,1:4) INIT (4,*) <10>

END-DEFINE

*

ADD +5 -2 -1 GIVING #A

WRITE NOTITLE 'ADD +5 -2 -1 GIVING #A' 15X '=' #A

*

ADD .231 3.6 GIVING #B

WRITE / 'ADD .231 3.6 GIVING #B' 15X '=' #B

*

ADD ROUNDED 2.9 3.8 GIVING #C

WRITE / "ADD ROUNDED 2.9 3.8 GIVING #C' 8X '=' #C

S

MOVE *DATX TO #DATE

ADD 7 TO {#fDATE

WRITE / "CURRENT DATE:" *DATX (DF=L) 13X
"CURRENT DATE + 7:' #DATE (DF=L)

*

WRITE / "JFARRAY1 AND #fARRAY2 BEFORE ADDITION'
/ '=" #IARRAY1 (2,*) '=' #fARRAY2 (4,*)

ADD #fARRAY1 (2,*) TO #fARRAY2 (4,*)

WRITE / "{FARRAY1 AND #fARRAY2 AFTER ADDITION'
/ '='" #ARRAY1 (2,*) '=' #fARRAY2 (4,*)

*

END

Output of Program ADDEXI:

ADD +5 -2 -1 GIVING #A A 2

ADD .231 3.6 GIVING #B #B: 3.8

ADD ROUNDED 2.9 3.8 GIVING #C #C: 7

CURRENT DATE: 2005-01-10 CURRENT DATE + 7: 2005-01-17

##ARRAY1 AND #fARRAY2 BEFORE ADDITION
fFARRAY1: 5 5 S 5 JFARRAY2: 10 10 10

10

Statements

15

ADD

F#FARRAY1 AND #ARRAY2 AFTER ADDITION
#FARRAY1 : 5 5 5 5 JFARRAYZ: 15 15 15 15

116 Statements

14 ASSIGN

See the statement COMPUTE.

"7

118

15 AT BREAK

B AT BREAK USEGE ...ttt ettt et e et e e 120
® AT BREAK Syntax DESCHIPHONeieiiiiiieeiiii ettt ettt e e e e e e e nneeeas 121
B MUHIPIE BrEaK LEVEIS ...ttt 122
B AT BREAK EXGMPIES ..ottt ettt e e e e et eeeaea e e 123

19

AT BREAK

Structured Mode Syntax

[AT] BREAK [(r)] [OF] operandl[/n/]
statement ...
END-BREAK

Reporting Mode Syntax

[AT] BREAK [(r)] [OF] operandI[/n/]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION
| BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

AT BREAK Usage

The AT BREAK statement is used to cause the execution of one or more statements whenever a
change in value of a control field occurs. It is used in conjunction with automatic break processing
and is available with the following statements: FIND, READ, HISTOGRAM, SORT, READ WORK FILE.

The automatic break processing works as follows: Immediately after a record was read by the
processing loop, the control field is checked. If a value change is detected in comparison to the
previous record, the statements included in the AT BREAK statement block are executed. This does
not apply to the very first record in the processing loop. In addition, when the processing loop is
terminated (as reading of records is complete or due to an ESCAPE BOTTOM statement), a final exe-
cution of the statements in the AT BREAK statement block is triggered.

For further information, see Automatic Break Processing in the Programming Guide.

An AT BREAK statement block is only executed if the object which contains the statement is active
at the time when the break condition occurs.

It is possible to initiate a new processing loop within an AT BREAK condition. This loop must also
be closed within the same AT BREAK condition.

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

120 Statements

AT BREAK

Natural system functions may be used in conjunction with an AT BREAK statement, see Natural
System Functions for Use in Processing Loops in the System Functions documentation and Example of
System Functions with AT BREAK Statement in the Programming Guide.

For further information, see also the section AT BREAK Statement in the Programming Guide. It
covers topics such as:

= Control Break Based on a Database Field
® Control Break Based on a User-Defined Variable

AT BREAK Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operand1| |s | | | |AJUN|P[1[F[BD|T|L]]] yes no

Syntax Element Description:

Syntax Element Description

(r) Reference Notation:

By default, the final AT BREAK condition (for loop termination) is always related to the
outermost active processing loop initiated with a FIND, READ, READ WORK FILE,
HISTOGRAM or SORT statement.

With the notation (1) you can relate the final break condition of an AT BREAK statement
to another specific currently open processing loop (that is, the loop in which the AT
BREAK statement is located or any outer loop).

Example:

READ ...
FIND ...
FIND ...
AT BREAK ...
FIND ...
END-FIND
END-BREAK
END-FIND
END-FIND
END-READ

Statements 121

AT BREAK

Syntax Element

Description

In this example, the final AT BREAK condition is related to the READ loop initiated in
line 0120. It would be possible to have it related to one of the FIND loops initiated in
line 0130 and 0140, but not to the one initiated in line 0160.

If (r) is specified for a break hierarchy, it must be specified with the first AT BREAK
statement and applies also to all AT BREAK statements which follow.

operandl

Control Field:

The field used as the break control field is usually a database field. If a user-defined
variable is used, it must be initialized prior to the evaluation of automatic break
processing (see BEFORE BREAK PROCESSING statement). A specific occurrence of an
array can also be used as a control field.

/n/

Notation /n/:

The notation /n/ may be used to indicate that only the first 1 positions (counting from
left to right) of the control field are to be checked for a change in value. This notation
can only be used with operands of format A, B, N or P.

A control break occurs when the value of the control field changes, or when all records
in the processing loop for which the AT BREAK statement applies have been processed.

statement ...

Statement(s) to be Executed at Break Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

END-BREAK

statement
DO statement
DOEND

End of AT BREAK Statement:

In structured mode, the Natural reserved word END-BREAK must be used to end the
AT BREAK statement.

In reporting mode, use the DO ... DOEND statements to supply one or several suitable
statements, depending on the situation, and to end the AT BREAK statement. If you
specify only a single statement, you can omit the DO ... DOEND statements. With
respect to good coding practice, this is not recommended.

Multiple Break Levels

Multiple AT BREAK statements may be specified within a processing loop within the same program
module. If multiple BREAK statements are specified for the same processing loop, they form a
hierarchy of break levels independent of whether they are specified consecutively or interspersed
within other statements. The first AT BREAK statement represents the lowest control break level,
and each additional AT BREAK statement represents the next higher control break level.

Every processing loop in a loop hierarchy may have its own break hierarchy attached.

122

Statements

AT BREAK

Example:
Structured Mode: Reporting Mode:
FIND ... FIND ...
AT BREAK AT BREAK
DO
END-BREAK
AT BREAK DOEND
ce AT BREAK
END-BREAK DO
AT BREAK ce
DOEND
END-BREAK
END-FIND

A change in the value of a control field in a break level causes break processing to be activated for
that break level and all lower break levels, regardless of the values of the control fields for the
lower break levels.

For easier program maintenance, it is recommended to specify multiple breaks consecutively.

See also Example 3 below and the section Multiple Control Break Levels in the Programming Guide.

AT BREAK Examples

This section covers the following topics:

= Example 1 - AT BREAK
= Example 2 - AT BREAK Using /n/ Notation
= Example 3 - AT BREAK with Multiple Break Levels

For further examples of AT BREAK, see Natural System Functions for Use in Processing Loops, Examples
ATBEX3 and ATBEX4.

Statements 123

AT BREAK

Example 1 - AT BREAK

** Example 'ATBEX1S': AT BREAK (structured mode)

R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 COUNTRY

2 NAME
END-DEFINE

*

LIMIT 10

READ EMPLOY-VIEW BY CITY

AT BREAK OF CITY
SKIP 1
END-BREAK

DISPLAY NOTITLE CITY (IS=0ON) COUNTRY (IS=0N) NAME

END-READ

*

END

Output of Program ATBEX1S:

ATKEN

AIX EN OTHE

AJACCIO

ALBERTSLUND

ALBUQUERQUE

ALFRETON

ALICANTE

Equivalent reporting-mode example: ATBEX1R.

COUNTRY

DK

USA

UK

E

SENKO
GODEFROY
CANALE
PLOUG
HAMMOND
ROLLING
FREEMAN
LINCOLN
GOLDBERG

GOMEZ

124

Statements

AT BREAK

Example 2 - AT BREAK Using /n/ Notation

** Example 'ATBEX2': AT BREAK (with /n/ notation)
R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 DEPT

2 NAME
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY DEPT STARTING FROM ‘A’
AT BREAK OF DEPT /4/

SKIP 1

END-BREAK

DISPLAY NOTITLE DEPT NAME
END-READ

*

END

Output of Program ATBEX2:

DEPARTMENT NAME
CODE
ADMAO1 JENSEN
ADMAO1 PETERSEN
ADMAO1 MORTENSEN
ADMAO1 MADSEN
ADMAO1 BUHL
ADMAO?2 HERMANSEN
ADMAO2 PLOUG
ADMAO?2 HANSEN
COMPO1 HEURTEBISE
COMPO1 TANCHOU

Example 3 - AT BREAK with Multiple Break Levels

** Example '"ATBEX5S': AT BREAK (multiple break levels) (structured mode)
R R R o R R b b i b e b e I b R i b e i b e b i R e i R i b S e b R R i b b e S b b 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 DEPT

2 NAME

2 LEAVE-DUE
1 #LEAVE-DUE-L (N4)
END-DEFINE

Statements 125

AT BREAK

*

LIMIT 5
FIND EMPLOY-VIEW WITH CITY = "PHILADELPHIA" OR = 'PITTSBURGH'
SORTED BY CITY DEPT
MOVE LEAVE-DUE TO #LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME #LEAVE-DUE-L
/*
AT BREAK OF DEPT
WRITE NOTITLE /
T*DEPT OLD(DEPT) T*#fLEAVE-DUE-L SUM(#fLEAVE-DUE-L) /
END-BREAK
AT BREAK OF CITY
WRITE NOTITLE
T*CITY OLD(CITY) T*{fLEAVE-DUE-L SUM({LEAVE-DUE-L) //
END-BREAK
END-FIND

*

END

Output of Program ATBEX5:

CITY DEPARTMENT NAME ##LEAVE-DUE-L
CODE

PHILADELPHIA MGMT30 WOLF-TERROINE 11
MACKARNESS 27

MGMT30 38

TECHIO BUSH 39

NETTLEFOLDS 24

TECH10 63

PHILADELPHIA 101
PITTSBURGH MGMT10 FLETCHER 34
MGMT10 34

PITTSBURGH 34

Equivalent reporting-mode example: ATBEX5R.

126 Statements

16 AT END OF DATA

B AT END OF DATA USBQEeeeeeeiiiiee ettt ettt 128
B AT END OF DATA RESIICHONSvvveeeeitiiii ettt ettt e e e e e e e e e e e 129
m AT END OF DATA SyntaX DESCIPHONvviieiiiiii et 129
B AT END OF DATA EXGMPIE ..ottt 130

127

AT END OF DATA

Structured Mode Syntax

[AT] END [OF] DATA [(r)]
statement ...
END-ENDDATA

Reporting Mode Syntax

[AT] END [OF] DATA [(r)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | BACKOUT TRANSACTION
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION
DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

AT END OF DATA Usage

The AT END OF DATA statement is used to specify processing to be performed when all records
selected for a database processing loop have been processed.

This section covers the following topics:

= Processing

= Values of Database Fields
= Positioning

= System Functions

See also AT START/END OF DATA Statements in the Programming Guide.

128 Statements

AT END OF DATA

Processing

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Values of Database Fields

When the AT END OF DATA condition for the processing loop occurs, all database fields contain
the data from the last record processed.

Positioning

This statement must be specified within the same program module which contains the loop creating
statement.

System Functions

Natural system functions may be used in conjunction with an AT END OF DATA statement as de-
scribed in Using System Functions in Processing Loops in the System Functions documentation.

AT END OF DATA Restrictions

* This statement can only be used in a processing loop that has been initiated with one of the
following statements: FIND, READ, READ WORK FILE, HISTOGRAM or SORT.

® It may be used only once per processing loop.

= It is not evaluated if the processing loop referenced for END OF DATA processing is not entered.

AT END OF DATA Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:
An AT END OF DATA statement may be related to a specific active processing
loop by using the notation (r).

If this notation is not used, the AT END OF DATA statement will be related to
the outermost active database processing loop.

statement ... Statement(s) to be Executed at End of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

Statements 129

AT END OF DATA

Syntax Element

Description

END-ENDDATA

statement ...

DO statement ...

DOEND

End of AT END OF DATA Statement:

In structured mode, the Natural reserved word END-ENDDATA must be used
to end the AT END OF DATA statement.

Inreporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF
DATA statement. If you specify only a single statement, you can omit the DO

DOEND statements. With respect to good coding practice, this is not
recommended.

AT END OF DATA Example

** Example '"AEDEX1S': AT END OF DATA

R R R o R R b b R b e b R e I b R i b b e o S e b i R e i R i i b b e b R R e i b b e i b b 4

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME
2 FIRST-NAME

2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE

*

LIMIT 5

EMP. FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'
IF NO RECORDS FOUND

ENTER
END-NOREC

DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)

/*

AT END OF DATA

IF *COUNTER (EMP.) = 0
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM

END-IF

WRITE NOTITLE /

END-ENDDATA
/*
END-FIND

*

END

"SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X '"MINIMUM:' MIN(CSALARY(1)) CURR-CODE (1)
/ 7X "AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)

130

Statements

AT END OF DATA

See also Natural System Functions for Use in Processing Loops in the System Functions documentation.

Output of Program AEDEX1S:

PERSONNEL NAME FIRST-NAME ANNUAL ~ CURRENCY
ID SALARY CODE
11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM

Equivalent reporting-mode example: AEDEXIR.

Statements 131

132

17 AT END OF PAGE

B AT END OF PAGE USBGEvvveieeiiiit ettt ettt ettt e e e et e e st e e e e nara e e e 134
= AT END OF PAGE Syntax DeSCHPLONcooiuiviiiiiiiieiiicctiie et 136
m AT END OF PAGE EXGMPIESiiieiei ittt 137

133

AT END OF PAGE

Structured Mode Syntax

[AT] END [OF] PAGE [(rep)]
statement ...
END-ENDPAGE

Reporting Mode Syntax

[AT] END [OF] PAGE [(rep)]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

AT END OF PAGE Usage

The AT END OF PAGE statement is used to specify processing that is to be performed when an end-
of-page condition is detected (see session parameter PS in the Parameter Reference). An end-of-page
condition may also occur as a result of a SKIP or NEWPAGE statement, but not as a result of an EJECT
or INPUT statement.

See also the following sections in the Programming Guide:

" Report Format and Control

" Report Specification - (rep) Notation
® Layout of an Output Page

AT END OF PAGE Statement

134 Statements

AT END OF PAGE

Processing

An AT END OF PAGE statement block is only executed if the object which contains the statement
block is active at the time when the end-of-page condition occurs.

An AT END OF PAGE statement must not be placed within an inline subroutine.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Logical Page Size

The end-of-page check is performed after the processing of a DISPLAY or WRITE statement is com-
pleted. Therefore, if a DISPLAY or WRITE statement produces multiple lines of output, overflow of
the physical page may occur before an end-of-page condition is detected.

Alogical page size (session parameter PS) which is less than the physical page size must be specified
to ensure that information printed by an AT END OF PAGE statement appears on the same physical
page as the title.

Last-Page Handling

Within a main program, an end-of-page condition is activated when the execution of the main
program terminates via ESCAPE, STOP or END.

Within a subroutine, an end-of-page condition is not activated when the execution of the subroutine
terminates via ESCAPE-ROUTINE, RETURN or END-SUBROUTINE.

System Functions

Natural system functions may be used in conjunction with an AT END OF PAGE statement as de-
scribed in the section Using System Functions in Processing Loops in the System Functions document-
ation.

If a system function is to be used within an AT END OF PAGE statement block, the GIVE SYSTEM
FUNCTIONS clause must be specified in the corresponding DISPLAY statement.

Statements 135

AT END OF PAGE

INPUT Statement with AT END OF PAGE

If an INPUT statement is specified withinan AT END OF PAGE statement block, no new page operation
is performed. The page size (session parameter PS) must be reduced to a value that allows the
lines created by the INPUT statement to appear on the same physical page.

See also:

= Split Screen Feature of INPUT Statement
® Example 2 - AT END OF PAGE with INPUT Statement

AT END OF PAGE Syntax Description

Syntax Element Description

(rep) Report Specification:

The notation (rep) may be used to specify the identification of the report for
which the AT END OF PAGE statement is applicable. A value in the range 0 -
31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the AT END OF PAGE statement will apply to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

statement Statement(s) to be Executed at End of Page Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Example below.

END-ENDPAGE End of AT END OF PAGE Statement:
Séa timin t . In structured mode, the Natural reserved word END-ENDPAGE must be used to
SLALeMent - lend the AT END OF PAGE statement.
DOEND
In reporting mode, use the D0 ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF PAGE
statement. If you specify only a single statement, you can omitthe DO ... DOEND

statements. With respect to good coding practice, this is not recommended.

136 Statements

AT END OF PAGE

AT END OF PAGE Examples

= Example 1 - AT END OF PAGE
= Example 2 - AT END OF PAGE with INPUT Statement

Example 1 - AT END OF PAGE

** Example "AEPEX1S': AT END OF PAGE (structured mode)
KA KRR AR A AR AR R AR A AR A AR AR R AR A AR A AR AR KR AR KA KA AR AR KA KR KA KA AR AR KA A AR A A KA AR ARk AK
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
FORMAT PS=10
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000°
DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*

AT END OF PAGE

WRITE / 28T 'AVERAGE SALARY: ..." AVER(SALARY(1)) CURR-CODE (1)
END-ENDPAGE

END-READ
*
END

See also Natural System Functions for Use in Processing Loops.

Output of Program AEPEX1S:

NAME CURRENT SALARY CURRENCY
POSITION CODE
CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

Statements 137

AT END OF PAGE

AVERAGE SALARY: ... 33533 USD

Equivalent reporting-mode example: AEPEX1R.

Example 2 - AT END OF PAGE with INPUT Statement

** Example 'AEPEX2': AT END OF PAGE (with INPUT)

R R B b R R e e b b R e e b b e e b b e e b b e e i b b e e b b S e b b R e I b b R e b b e e b R e i b b e e b b b S 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 POST-CODE
2 CITY
*
1 #START-NAME (A20)
END-DEFINE

*

FORMAT PS=21
*
REPEAT
READ (15) EMPLOY-VIEW BY NAME = #START-NAME
DISPLAY NOTITLE NAME FIRST-NAME POST-CODE CITY
END-READ
NEWPAGE
/*
AT END OF PAGE
MOVE NAME TO #START-NAME

INPUT / "-" (79)
/ 10T 'Reposition to name ==>'
fFSTART-NAME (AD=MI) '(''.'' to exit)"
IF #START-NAME = '.'
STOP
END-IF
END-ENDPAGE
/*
END-REPEAT

END

Output of Program AEPEX2S:

NAME FIRST-NAME POSTAL

ADDRESS
ABELLAN KEPA 28014

ACHIESON ROBERT DE3 4TR
ADAM SIMONE 89300
ADKINSON JEFF 11201
ADKINSON PHYLLIS 90211

MADRID

DERBY

JOIGNY
BROOKLYN
BEVERLEY HILLS

138

Statements

AT END OF PAGE

ADKINSON HAZEL 20760 GAITHERSBURG
ADKINSON DAVID 27514 CHAPEL HILL
ADKINSON CHARLIE 21730 LEXINGTON
ADKTNSON MARTHA 17010 FRAMINGHAM
ADKINSON TIMMIE 17300 BEDFORD
ADKTINSON BOB 66044 LAWRENCE
AECKERLE SUSANNE 7000 STUTTGART
AFANASSTEV PHILIP 39401 HATTIESBURG
AFANASSTEV ROSE 60201 EVANSTON
AHL FLEMMING 2300 SUNDBY
Reposition to name ==> AHL (".' to exit)
Statements 139

140

18 AT START OF DATA

B AT START OF DATA USAQEeeeeitiiee e ettt ettt ettt et e et e e et e e e e et e e e 142
= AT START OF DATA SyntaX DESCHPHONcoiiiiiiiiiii et a e 143
B AT START OF DATA EXGMPIE ...ttt et a e e 143

141

AT START OF DATA

Structured Mode Syntax

[AT] START [OF] DATA[(n)]
statement ...
END-START

Reporting Mode Syntax

[AT] START [OF] DATA [(n)]
{ statement }
DO statement... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT END OF DATA | BACKOUT TRANSACTION | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

AT START OF DATA Usage

The statement AT START OF DATA is used to perform processing immediately after the first of a
set of records is read for a processing loop that has been initiated by one of the following statements:
READ, FIND, HISTOGRAM, SORT or READ WORK FILE.

See also AT START/END OF DATA Statements in the Programming Guide.
Processing

If the loop-initiating statement contains a WHERE clause, the at-start-of-data condition will be true
when the first record is read which meets both the basic search and the WHERE criteria.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

142 Statements

AT START OF DATA

Value of Database Fields

All database fields contain the values of the record which caused the at-start-of-data condition to
be true (that is, the first record of the set of records to be processed).

Positioning

This statement must be positioned within a processing loop, and it may be used only once per
processing loop.

AT START OF DATA Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:

An AT START OF DATA statement may be related to a specific outer active
processing loop by using the notation (r). If this notation is not used, the
statement is related to the outermost active processing loop.

statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-START End of AT START OF DATA Statement:

statement ...
DO statement ... DOEND

In structured mode, the Natural reserved word END-START must be used to
end the AT START OF DATA statement.

In reporting mode, use the D0 ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT START
OF DATA statement. If you specify only a single statement, you can omit the
DO ... DOEND statements. With respect to good coding practice, this is not
recommended.

AT START OF DATA Example

** Example 'ASDEX1S': AT START OF DATA (structured mode)
RRAR R b R R e b b R e b b e e b b e e b b e b b b S e b b S S b R e b b e e b b i e e b R e B b b e e b b Y
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY

*

1 J)ICNTL (A1) INIT <" '>

Statements 143

AT START OF DATA

1 #CITY (A20) INIT <' '>

END-DEFINE
*
REPEAT
INPUT 'ENTER VALUE FOR CITY' #CITY
IF #CITY = ' ' OR = 'END'
STOP
END-IF

FIND EMPLOY-VIEW WITH CITY = #CITY
IF NO RECORDS FOUND
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE BOTTOM
END-NOREC
/*
AT START OF DATA
INPUT (AD=0) 'RECORDS FOUND' *NUMBER //

"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=A)

IF #CNTL NE 'D'
ESCAPE BOTTOM
END-IF
END-START
/*
DISPLAY NAME FIRST-NAME
END-FIND
END-REPEAT
END

Output of Program ASDEX1S:

ENTER VALUE FOR CITY PARIS

After entering and confirming name of city:

RECORDS FOUND 26

ENTER 'D' TO DISPLAY RECORDS D

Records displayed:

NAME FIRST-NAME
MATZTERE ELISABETH
MARX JEAN-MARIE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS
144

Statements

AT START OF DATA

CENSTER
DUC
CAHN
MAZUY
FAURIE
VALLY
BRETON
GIGLEUX
KORAB-BRZOZOWSKI
XOLIN
LEGRIS
VVVV

Equivalent reporting-mode example: ASDEXIR.

BERNARD
JEAN-PAUL
RAYMOND
ROBERT
HENRI
ALAIN
JEAN-MARIE
JACQUES
BOGDAN
CHRISTIAN
ROGER

Statements

145

146

19 AT TOP OF PAGE

B AT TOP OF PAGE USBQE ... veeeeiiiie etttk ettt ettt e et e et e e 148
B AT TOP OF PAGE RESICHONSvveiieeiiiii ettt e e e 149
= AT TOP OF PAGE Syntax DESCHIPHONeeiiiiiiieeiiiiie ettt 149
B AT TOP OF PAGE EXAMPIE ...ttt 150

147

AT TOP OF PAGE

Structured Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
statement ...
END-TOPPAGE

Reporting Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

AT TOP OF PAGE Usage

The statement AT TOP OF PAGE is used to specify processing which is to be performed when a
new page is started.

See also the following sections in the Programming Guide:

" Report Format and Control

" Report Specification - (rep) Notation
® Layout of an Output Page

" AT TOP OF PAGE Statement

148 Statements

AT TOP OF PAGE

Processing

A new page is started when the internal line counter exceeds the page size set with the session
parameter PS (page size for Natural reports), or when a NEWPAGE statement is executed. Either of
these events cause a top-of-page condition to be true. An EJECT statement causes a new page to
be started but does not cause a top-of-page condition.

An AT TOP OF PAGE statement block is only executed when the object which contains the statement
is active at the time when the top-of-page condition occurs.

Any output created as a result of AT TOP 0F PAGE processing will appear following the title line
with an intervening blank line.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

AT TOP OF PAGE Restrictions

An AT TOP OF PAGE statement must not be placed within an inline subroutine.

AT TOP OF PAGE Syntax Description

Syntax Element Description

(rep) Report Specification:
The notation (rep) may be used to specify the identification of the report for
which the AT TOP OF PAGE statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the AT TOP OF PAGE statement applies to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Report Format and Control in the Programming Guide.

Statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-TOPPAGE End of AT TOP OF PAGE Statement:
[5) Sa timin t . t . In structured mode, the Natural reserved word END- TOPPAGE must be used to
DOEIjDa ement. .- end the AT TOP OF PAGE statement.

Statements 149

AT TOP OF PAGE

Syntax Element Description

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT TOP 0F

PAGE statement. If you specify only a single statement, you can omit the DO . ..
DOEND statements. With respect to good coding practice, this is not recommended.

AT TOP OF PAGE Example

** Example 'ATPEX1S': AT TOP OF PAGE (structured mode)
R R R o R R b b R b i b e b R R i b b e b S e b i R e i i S e b b e e b R e i b b e S b b i 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
2 DEPT
END-DEFINE
*
FORMAT PS=15
LIMIT 15
READ EMPLOY-VIEW BY NAME STARTING FROM 'L’
DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER '-' (78)
/*
AT TOP OF PAGE
WRITE 'BEGINNING NAME:' NAME
END-TOPPAGE
/*
AT END OF PAGE
SKIP 1
WRITE '"ENDING NAME: ' NAME
END-ENDPAGE
END-READ
END

Output of Program ATPEX1S:

EMPLOYEE REPORT

BEGINNING NAME: LAFON

NAME FIRST-NAME CITY DEPARTMENT
CODE
LAFON CHRISTIANE PARIS VENT18
LANDMANN HARRY ESCHBORN MARK29
LANE JACQUELINE DERBY MGMTO2

150 Statements

AT TOP OF PAGE

LANKATILLEKE
LANNON
LANNON
LARSEN
LARSEN

ENDING NAME:

Equivalent reporting-mode example: ATPEX1R.

LARSEN

LALITH
BOB
LESLIE
CARL
MOGENS

FRANKFURT
LINCOLN
SEATTLE
FARUM
VEMMELEV

PROD22
SALE20
SALE30
SYSAO1
SYSAOQ2

Statements

151

152

20 BACKOUT TRANSACTION

® BACKOUT TRANSACTION USBQEveeeiiiiiee ettt ettt e e et e e e taaae e n 154
= BACKOUT TRANSACTION RESHHCHONS .. .vveivireeiiseeiiie ettt 155
= Database-Specific Considerations for BACKOUT TRANSACTIONcooiviiiiiiiieeei e 155
® BACKOUT TRANSACTION EXAMPIEceiuviiiieeiiiiie ettt et e e e nnaee e e 155

153

BACKOUT TRANSACTION

BACKOUT [TRANSACTION]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

BACKOUT TRANSACTION Usage

The BACKOUT TRANSACTION statement is used to back out all database updates performed during
the current logical transaction. This statement also releases all records held during the transaction.

The statement is executed only if a database transaction under control of Natural has taken place.
For which databases the statement is executed depends on the setting of the profile parameter ET
(execution of END/BACKOUT TRANSACTION statements):

" If ET=0FF, the statement is executed only for the database affected by the transaction.

= If ET=0N, the statement is executed for all databases that have been referenced since the last exe-
cution of a BACKOUT TRANSACTION or END TRANSACTION statement.

Backout Transaction Issued by Natural

If the user interrupts the current Natural operation with a terminal command (command %% or
CLEAR key), Natural issues a BACKOUT TRANSACTION statement.

See also the terminal command %% in the Terminal Commands documentation.
Additional Information

For additional information on the use of the transaction backout feature, see the sections Database
Update - Transaction Processing and Backing Out a Transaction in the Programming Guide.

154 Statements

BACKOUT TRANSACTION

BACKOUT TRANSACTION Restrictions

This statement is not available with Entire System Server.

Database-Specific Considerations for BACKOUT TRANSACTION

SQL Databases |As most SQL databases close all cursors when a logical unit of work ends, a BACKOUT
TRANSACTION statement must not be placed within a database modification loop; instead,
it has to be placed after such a loop.

XML Databases|A BACKOUT TRANSACTION statement must not be placed within a database modification
loop; instead, it has to be placed after such a loop.

BACKOUT TRANSACTION Example

** Example '"BOTEX1': BACKOUT TRANSACTION

* %

**% CAUTION: Executing this example will modify the database records!
khkkhkhkhkhkkhkhkhhkhkkhkhkhhhkhkkhkhkhhkhhkkhkhhhhkkhkhkhhhkhkhhhhhkhkhkhhhkhkhkhkhhhhkhkhhrhkkhkhkhhkhkkhkhkhrkkkhkhkrkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 DEPT

2 LEAVE-DUE

2 LEAVE-TAKEN
*
1 {#fDEPT (A6)
1 #fRESP (A3)
END-DEFINE
*
LIMIT 3
INPUT 'DEPARTMENT TO BE UPDATED:"' #fDEPT
IF #fDEPT = ' '

STOP
END-IF
*
FIND EMPLOY-VIEW WITH DEPT = 4DEPT

IF NO RECORDS FOUND

REINPUT 'NO RECORDS FOUND'

END-NOREC
INPUT 'NAME: " NAME (AD=0) /
"LEAVE DUE: ' LEAVE-DUE (AD=M) /

"LEAVE TAKEN:" LEAVE-TAKEN (AD=M)

Statements 155

BACKOUT TRANSACTION

UPDATE
END-FIND
*
INPUT 'UPDATE TO BE PERFORMED? YES/NO:' #RESP
DECIDE ON FIRST #RESP
VALUE 'YES"
END TRANSACTION
VALUE "NO'
BACKOUT TRANSACTION
NONE
REINPUT 'PLEASE ENTER YES OR NO'
END-DECIDE

*

END

Output of Program BOTEX1:

DEPARTMENT TO BE UPDATED: MGMT30

Result for department MGMT30:

NAME : POREE
LEAVE DUE: 45
LEAVE TAKEN: 31

Confirmation query:

UPDATE TO BE PERFORMED YES/NO: NO

156 Statements

21 BEFORE BREAK PROCESSING

= BEFORE BREAK PROCESSING USAQJEccuvviiieiiiiiieeiiie ettt 158
= BEFORE BREAK PROCESSING RESHCHONSceiiiiiiiiieeie e 159
= BEFORE BREAK PROCESSING Syntax DeSCrPtionccuuvriiiiiiiiieiiiiii e 159
= BEFORE BREAK PROCESSING EXaMPIEovviieiiiiiiciiie e 160

157

BEFORE BREAK PROCESSING

Structured Mode Syntax

BEFORE [BREAK] [PROCESSING]
statement ...
END-BEFORE

Reporting Mode Syntax

BEFORE [BREAK] [PROCESSING]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION | HISTOGRAM
| LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

BEFORE BREAK PROCESSING Usage

The BEFORE BREAK PROCESSING statement may be used in conjunction with automatic break pro-
cessing to perform processing;:

" before the value of the break control field is checked;

" before the statements specified with an AT BREAK statement are executed;

" before Natural system functions are evaluated.

This statement is most often used to initialize or compute values of user-defined variables which
are to be used in break processing (see AT BREAK statement).

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

See also the following sections in the Programming Guide:

= Control Breaks
® BEFORE BREAK PROCESSING Statement
® Example of BEFORE BREAK PROCESSING Statement

158 Statements

BEFORE BREAK PROCESSING

BEFORE BREAK PROCESSING Restrictions

® The BEFORE BREAK PROCESSING statement may only be used with a processing loop that has
been initiated with one of the following statements:

® FIND

® READ

® HISTOGRAM

® SORT

® READ WORK FILE

It may be placed anywhere within the processing loop and is always related to the processing

loop in which it is contained. Only one BEFORE BREAK PROCESSING statement may be specified
per processing loop.

® The BEFORE BREAK PROCESSING statement must not be used in conjunction with the statement
PERFORM BREAK PROCESSING.

BEFORE BREAK PROCESSING Syntax Description

Syntax Element Description

statement. .. Statement(s) for Break Processing;:
In place of statement, you must supply one or several suitable statements,
depending on the situation.

For an example of a statement, see Example below.

If no break processing is to be performed (that is, no AT BREAK statement is
specified for the processing loop), any statements specified with a BEFORE
BREAK PROCESSING statement will not be executed.

END-BEFORE End of BEFORE BREAK PROCESSING Statement:

statement ...
DO statement ... DOEND

In structured mode, the Natural reserved word END-BEFORE must be used
to end the BEFORE BREAK PROCESSING statement.

Inreporting mode, usethe DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the BEFORE BREAK
PROCESSING statement. If you specify only a single statement, you can omit
the DO ... DOEND statements. With respect to good coding practice, this is

not recommended.

Statements 159

BEFORE BREAK PROCESSING

BEFORE BREAK PROCESSING Example

**

**

DE
1

*

1
EN
*
LI
RE

B

EN
EN

Example 'BBPEX1': BEFORE BREAK PROCESSING
ko o o o o ook ok ok ko ok o o ok ok ok ok ok ok ok ko ok ko o o ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok o ok ok ok
FINE DATA LOCAL
EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 SALARY (1)
2 BONUS (1,1)

#INCOME (P11)
D-DEFINE

MIT 7
AD EMPLOY-VIEW BY CITY = 'L’
/%
EFORE BREAK PROCESSING
COMPUTE #fINCOME = SALARY (1) + BONUS (1,1)
END-BEFORE
/%
AT BREAK OF CITY
WRITE NOTITLE 'AVERAGE INCOME FOR' OLD (CITY) 20X AVER(#INCOME) /
END-BREAK
/*
DISPLAY CITY 'NAME' NAME 'SALARY' SALARY (1) 'BONUS' BONUS (1,1)
D-READ
D

Output of Program BBPEX1:

CITY NAME SALARY BONUS

LA BASSEE HULOT 165000 70000

AVERAGE INCOME FOR LA BASSEE 235000
LA CHAPELLE ST LUC GUILLARD 124100 23000

LA CHAPELLE ST LUC BERGE 198500 50000

LA CHAPELLE ST LUC POLETTE 124090 23000

LA CHAPELLE ST LUC DELAUNEY 115000 23000

LA CHAPELLE ST LUC SCHECK 125600 23000

LA CHAPELLE ST LUC KREEBS 184550 50000
AVERAGE INCOME FOR LA CHAPELLE ST LUC 177306
160 Statements

22 CALL

B CALL USBQE ... ettt 162
B CALL Syntax DESCIPHONvieeiiiiieeiiiiit ettt e et e e ettt e e e e e et ee e e e e nneee s 162
B REIUM COUE ..ottt e et e et 163
B CALL USEI EXIES ...ttt 163
B INTERFACEAS ...t 165

161

CALL

CALL[INTERFACE4] operandl [[USING] operand?...128]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALL Usage

The CALL statement is used to call an external program or function written in another standard
programming language from a Natural program and then return to the next statement after the
CALL statement.

The called program or function may be written in any programming language which supports a
standard CALL interface. Multiple CALL statements to one or more external program or functions
may be specified.

CALL Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C |S A yes no

operand2|C |S |A |G A|U|N|P|I|F|B|D|T|L|C|G yes yes

Syntax Element Description:

Syntax Element Description

INTERFACE4 Interface Usage:
The optional keyword INTERFACE4 specifies the type of the interface that is used for
the call of the external program. See the section INTERFACE4 below.

operandl Name of Called Function:

The name of the function to be called (operandI) can be specified as a constant or - if
different functions are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 32. A function name must be placed left-justified in the variable.

[USING] Parameters to be Passed:
operand?

162 Statements

CALL

Syntax Element

Description

The CALL statement may contain up to 128 parameters (operand?). One address is
passed in the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user
wishes to specify the beginning address of a group, the first field of the group must be
specified.

Note: If an application-independent variable (AIV) or context variable is passed as a

parameter to a user exit, the following restriction applies: if the user exit invokes a
Natural subprogram which creates a new AIV or context variable, the parameter is
invalid after the return from the subprogram. This is true regardless of whether the
new AIV/context variable is created by the subprogram itself or by another object
invoked directly or indirectly by the subprogram.

Return Code

The condition code of any called function may be obtained by using the Natural system function
RET (Return Code Function).

Example:

RESET #RETURN(B4)

CALL 'PROGI'

IF RET ('PROG1') > #RETURN
WRITE '"ERROR OCCURRED IN PROGRAMI'

END-IF

CALL User Exits

User exits are needed to be able to access external functions that are invoked with a CALL statement.
The user exits have to be placed in a DLL (dynamic link library). For further information on the
user exits, refer to the following file:

<install-dir>\natural\samples\sysexuex \readme.txt

| Note: If you want to use dynamically linked user exits in a CALL statement, User-defined

libraries must be set in the Installation Assignments of the Local Configuration File. Refer
to Installation Assignments in the section Local Configuration File of the Overview of Configuration
File Parameters in the Configuration Utility documentation.

Statements

163

CALL

Writing the External Functions

For each function, you must specify three or four parameters. Each function returns a long integer.
You must specify the fourth parameter (optional) only to pass fields of length greater than 65535.
Such fields are referred to as “oversize” (OS) fields, since their length is too big to be passed via
the FINFO structure. The FINFO structure supports only 2-byte lengths. 4-byte lengths are passed
in the oversize length array, specified as the last parameter. The FINFO structure passes non-
oversize and oversize fields differently. The following section describes the functions and their
parameters.

A function prototype should be as follows:

NATFCT myadd (WORD nparm, BYTE **parmptr, FINFO *parmdec) */
NATFCT myadd (WORD nparm, BYTE “**parmptr, FINFO *parmdec, LWORD *poslen)

nparm |16 bit unsigned short value, containing the total number of transferred operands (operand2).

parmptr|Array of pointers, pointing to the transferred operands.

parmdec|Array of field information for each transferred operand.

poslen |Array of 32-bit lengths for each transferred oversize operand.

The data type FINFO is defined as follows:

typedef struct f

unsigned char TypeVar; /* type of variable */
unsigned char pb2; /* if type == ('D', 'N', 'P' or 'T') ==> */
A total num of digits Y/

/* else */

union { A unused &y
unsigned char pb[2]; /* if type == ('D', 'N', 'P' or 'T") => */
unsigned short 1field; % pb[0] = ffdig before.dec.point w/

b flen; /% pb[1] = ffdig after.dec.point ®(
/* else */

[1field = length of field Y

} FINFO;

When used for oversize operands, the above FINFO data type has the following modfications:
® The "TypeVar" member contains 'X' for oversize Binary, "Y' for oversize Alpha, or 'Z' for oversize
Unicode

® The "pb2" member contains the zero-based index of the operand length in the oversize length
array

= The "1field" member is not used

Next, you must write the module containing the external functions.

164 Statements

CALL

You can find sample functions in the <instal71-dir>mnatural/samples/sysexuex/ directory. The mycadd.c
file contains a sample function that handles non-oversize operands. The myc3gl.c file contains a
sample function that can handle oversize operands.

INTERFACE4

The keyword INTERFACE4 specifies the type of the interface that is used for the call of the external
program. This keyword is optional. If this keyword is specified, the interface, which is defined as
INTERFACE4, is used for the call of the external program.

The following table lists the differences between the CALL statement used with INTERFACE4 and

the one used without INTERFACE4:

CALL statement without keyword
INTERFACE4

CALL statement with keyword
INTERFACE4

Number of parameters possible 128 32767
Maximum data size of one parameter |65535 1GB
Retrieve array information no yes
Support of large operands yes yes
Support of dynamic operands yes, but resizing is not possible yes
Parameter access via API no yes

The following topics are covered below:

= INTERFACE4 - External 3GL Program Interface
= QOperand Structure for INTERFACE4
= INTERFACE4 - Parameter Access

= Exported Functions

INTERFACE4 - External 3GL Program Interface

The interface of the external 3GL program is defined as follows, when INTERFACE4 is specified

with the Natural CALL statement:

NATFCT functionname (numparm,

parmhandle, traditional)

Statements

165

CALL

USR_WORD |[numparm;

16 bit unsigned short value, containing the total number of transferred

operands (operand?).

void

*parmhandle;

Pointer to the parameter passing structure.

void

*traditional;

Check for interface type (if it is not a NULL pointer it is the traditional CALL

interface).

Operand Structure for INTERFACE4

The operand structure of INTERFACE4 isnamed parameter_descriptionand is defined as follows.
The structure is delivered with the header file natuser.h.

struct parameter_description

void * |address Address of the parameter data, not aligned, realloc() and
free() are not allowed.
int format Field data format: NCXR_TYPE_ALPHA, etc. (natuser.h).
int Tength Length (before decimal point, if applicable).
int precision Length after decimal point (if applicable).
int byte_length Length of field in bytes (output only).
int dimensions Number of dimensions (0 to IF4_MAX_DIM).
int length_all Total data length of array in bytes (output only).
int flags Several flag bits combined by bitwise OR operation, meaning:
IF4_FLG_PROTECTED: The parameter is write-protected.
IFA_FLG_DYNAMIC: The parameter is a dynamic
variable.
IF4_FLG_NOT_CONTIGUOUS: The array elements are not
contiguous (have spaces between
them).
IF4_FLG_ATV: The parameter is an
application-independent variable.
IF4_FLG_DYNVAR: The parameter is a dynamic
variable.
IF4_FLG_XARRAY: The parameter is an X-array.
IF4_FLG_LBVAR_O: The lower bound of dimension 0
is variable.
IF4_FLG_UBVAR_O: The upper bound of dimension 0
is variable.
IF4_FLG_LBVAR_1: The lower bound of dimension 1
is variable.
IF4_FLG_UBVAR_1: The upper bound of dimension 1
is variable.
166 Statements

CALL

IF4_FLG_LBVAR_Z: The lower bound of dimension 2
is variable.
IF4_FLG_UBVAR_Z: The upper bound of dimension 2
is variable.
int occurrences[IF4_MAX_DIM] |Array occurrences in each dimension.
int indexfactors[IF4_MAX_DIM]|Array index factors for each dimension.
void * |dynp Reserved for internal use.
void * |pops Reserved for internal use.

The address element is null for arrays of dynamic variables and for X-arrays. In these cases, the
array data cannot be accessed as a whole, but must be accessed through the parameter access
functions described below.

For arrays with fixed bounds of variables with fixed length, the array contents can be accessed
directly using the address element. In these cases the address of an array element (i,j k) is computed
as follows (especially if the array elements are not contiguous):

elementaddress = address + i * indexfactors[0] + j * indexfactors[1l] + k * «
indexfactors[2]

If the array has less than 3 dimensions, leave out the last terms.
INTERFACE4 - Parameter Access

A set of functions is available to be used for the access of the parameters. The process flow is as
follows:

® The 3GL program is called via the CALL statement with the INTERFACE4 option, and the parameters
are passed to the 3GL program as described above.

® The 3GL program can now use the exported functions of Natural, to retrieve either the parameter
data itself, or information about the parameter, such as format, length, array information, etc.

® The exported functions can also be used to pass back parameter data.

There are also functions to create and initialize a new parameter set in order to call arbitrary sub-
programs from a 3GL program. With this technique a parameter access is guaranteed to avoid
memory overwrites done by the 3GL program. (Natural's data is safe: memory overwrites within
the 3GL program's data are still possible).

Statements 167

CALL

Exported Functions

The following topics are covered below:

= Get Parameter Information

= Get Parameter Data

= Write Back Operand Data

= Create, Initialize and Delete a Parameter Set
= Create Parameter Set

= Delete Parameter Set

= |nitialize a Scalar of a Static Data Type

= |nitialize an Array of a Static Data Type

= |nitialize a Scalar of a Dynamic Data Type
= |nitialize an Array of a Dynamic Data Type
= Resize an X-array Parameter

Get Parameter Information

This function is used by the 3GL program to receive all necessary information from any parameter.
This information is returned in the struct parameter_description, whichis documented above.

Prototype:

int ncxr_get_parm_info (int parmnum, void *parmhandle, struct parameter_description «
*descr);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list.
Range: 0 ... numparm-1.
parmhand]le |Pointer to the internal parameter structure
descr Addressof a struct parameter_description
return Return Value: Information:
0 OK
-1 Illegal parameter number.
-2 Internal error.
-7 Interface version conflict.

168 Statements

CALL

Get Parameter Data

This function is used by the 3GL program to get the data from any parameter.

Natural identifies the parameter by the given parameter number and writes the parameter data
to the given buffer address with the given buffer size.

If the parameter data is longer than the given buffer size, Natural will truncate the data to the
given length. The external 3GL program can make use of the function ncxr_get_parm_info, to
request the length of the parameter data.

There are two functions to get parameter data: ncxr_get_parm gets the whole parameter (even if
the parameter is an array), whereas ncxr_get_parm_array gets the specified array element.

If no memory of the indicated size is allocated for “buffer” by the 3GL program (dynamically or
statically), results of the operation are unpredictable. Natural will only check for a null pointer.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_get_parm(int parmnum, void *parmhandle, int buffer_length, void *buffer)

int ncxr_get_parm_array(int parmnum, void *parmhandle, int buffer_length, void <
*pbuffer, int *indexes)

This function is identical to ncxr_get_parm, except that the indexes for each dimension can be
specified. The indexes for unused dimensions should be specified as 0.

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.
parmhandle Pointer to the internal parameter structure

buffer_length|Length of the buffer, where the requested data has to be written to

buffer Address of buffer, where the requested data has to be written to. This buffer should be
aligned to allow easy access to 12/14/F4/F8 variables.
indexes Array with index information
return Return Value: Information:
<0 Error during retrieval of the information:
-1 Illegal parameter number.
-2 Internal error.
-3 Data has been truncated.

Statements 169

CALL

-4 Data is not an array.

-7 Interface version conflict.

-100 Index for dimension 0 is out of range.

-101 Index for dimension 1 is out of range.

-102 Index for dimension 2 is out of range.

0 Successful operation.

>0 Successful operation, but the data was only this
number of bytes long (buffer was longer than the
data).

Write Back Operand Data

These functions are used by the 3GL program to write back the data to any parameter. Natural
identifies the parameter by the given parameter number and writes the parameter data from the
given buffer address with the given buffer size to the parameter data. If the parameter data is
shorter than the given buffer size, the data will be truncated to the parameters data length, that
is, the rest of the buffer will be ignored. If the parameter data is longer than the given buffer size,
the data will be copied only to the given buffer length, the rest of the parameter stays untouched.
This applies to arrays in the same way. For dynamic variables as parameters, the parameter is
resized to the given buffer length.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_put_parm (int parmnum, void *parmhandle,
int buffer_length, void *buffer);
int ncxr_put_parm_array (int parmnum, void *parmhandle,
int buffer_length, void *buffer,
int *indexes);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.
parmhandle Pointer to the internal parameter structure.

buffer_length|Length of the data to be copied back to the address of buffer, where the data comes from.

indexes Index information

return Return Value: Information:
<0 Error during copying of the information:
-1 Illegal parameter number.

170 Statements

CALL

-2 Internal error.

-3 Too much data has been given. The copy back was done
with parameter length.

-4 Parameter is not an array.

-5 Parameter is protected (constant or AD=0).

-6 Dynamic variable could not be resized due to an “out of
memory” condition.

-7 Interface version conflict.

-13 The given buffer includes an incomplete Unicode character.

-100 Index for dimension 0 is out of range.

-101 Index for dimension 1 is out of range.

-102 Index for dimension 2 is out of range.

0 Successful operation.

>0 Successful operation, but the parameter was this number
of bytes long (length of parameter greater than given
length).

Create, Initialize and Delete a Parameter Set

If a 3GL program wants to call a Natural subprogram, it needs to build a parameter set that cor-
responds to the parameters the subprogram expects. The function ncxr_create_parmis used to
create a set of parameters to be passed with a call to ncxr_callnat_handle.

Prototype:

int ncxr_callnat_handle(int subname, void *parmhandle)

Parameter description:

subname Name of subprogram that is called

parmhandle|Parameter set handle

return Return Value: Information:
<0 Error
0 Successful operation

The set of parameters created is represented by an opaque parameter handle, like the parameter
set that is passed to the 3GL program with the CALL INTERFACE4 statement. Thus, the newly created
parameter set can be manipulated with functions ncxr_put_parm* and ncxr_get_parm* as described
above.

The newly created parameter set is not yet initialized after having called the function
ncxr_create_parm. Anindividual parameter is initialized to a specific data type by a set of

Statements 171

CALL

ncxr_parm_init* functions described below. The functions ncxr_put_parm*and ncxr_get_parm*
are then used to access the contents of each individual parameter. After the caller has finished
with the parameter set, they must delete the parameter handle. Thus, a typical sequence in creating

and using a set of parameters for a subprogram to be called through ncxr_callnat_handle will
be:

ncxr_create_parm
ncxr_init_ parm*
ncxr_init_ parm*

ncxr_put_ parm*
ncxr_put_ parm*

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_callnat_handle

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_get_ parm*
ncxr_get_ parm*

ncxr_delete_parm
Create Parameter Set

The function ncxr_create_parmis used to create a set of parameters to be passed with a call to
ncxr_callnat_handle.

Prototype:

int ncxr_create_parm(int parmnum, void** pparmhandle)

Parameter Description:

parmnum Number of parameters to be created.
pparmhand]e |Pointer to the created parameter handle.
return Return Value: Information:
<0 Error:
-1 Illegal parameter count.
-2 Internal error.
-6 Out of memory condition.
0 Successful operation.

172 Statements

CALL

Delete Parameter Set

The function ncxr_delete_parmis used to delete a set of parameters that was created with
ncxr_create_parm.

Prototype:

int ncxr_delete_parm(void* parmhandle)

Parameter Description:

parmhand]e |Pointer to the parameter handle to be deleted.
return Return Value: Information:

<0 Error:

-2 Internal error.

0 Successful operation.

Initialize a Scalar of a Static Data Type

Prototype:

int ncxr_init_parm_s(int parmnum, void *parmhandle,
char format, int Tength, int precision, int flags);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhand]le |Pointer to the parameter handle.

format Format of the parameter.

lTength Length of the parameter.

precision [Precision of the parameter.

flags IFA_FLG_PROTECTED

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
0 Successful operation.

Statements 173

CALL

Initialize an Array of a Static Data Type

Prototype:

int ncxr_init_parm_sa(int parmnum, void *parmhandle,

char format,
int dim,

int length,

int *occ, int flags);

Parameter Description:

int precision,

parmnum

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.

Range: 0 numparm-1.

parmhandle

Pointer to the parameter handle.

format Format of the parameter.
Tength Length of the parameter.

precision [Precision of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.

flags A combination of the flags
IF4_FLG_PROTECTED
IF4_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4_FLG_LBVAR_1
IFA_FLG_UBVAR_1
IFA_FLG_LBVAR_?
IFA_FLG_UBVAR_Z

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.

174 Statements

CALL

Initialize a Scalar of a Dynamic Data Type

Prototype:

int ncxr_i
char f

nit_parm_d(int parmnum, void *parmhandle,
ormat, int flags);

Parameter Description:

parmnum

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhandle

Pointer to the parameter handle.

format Format of the parameter.

flags IFA_FLG_PROTECTED

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
0 Successful operation.

Initialize an Array of a Dynamic Data Type

Prototype:

int ncxr_init_parm_da(int parmnum, void *parmhandle,
char format, int dim, int *occ, int flags);

Parameter Description:

parmnum

Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhandle

Pointer to the parameter handle.

format Format of the parameter.

dim Dimension of the array.

occ Number of occurrences per dimension.

flags A combination of the flags
IFA_FLG_PROTECTED
IF4_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4_FLG_LBVAR_1

Statements 175

CALL

IF4_FLG_UBVAR_1
IFA_FLG_LBVAR_?
IFA_FLG_UBVAR_2

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.

Resize an X-array Parameter

Prototype:

int ncxr_resize_parm_array(int parmnum, void *parmhandle, int *occ);

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.
parmhand]le |Pointer to the parameter handle.
occ New number of occurrences per dimension.
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-12 Operand is not resizable (in one of the specified
dimensions).
0 Successful operation.

All function prototypes are declared in the file natuser.h.

176 Statements

23 CALL FILE

B CALL FILE USQE ... it ee ettt ettt e e e ettt e e e e e e ettt e e e e e e e e et eaaeeee e 178
B CALL FILE RESIFICHONS ..ottt ettt et e ettt e et e e e et e e e e 178
8 CALL FILE Syntax DESCHPHONeeeiiiiiiiee ittt e e 178
B CALL FILE EXAMPIE ...ttt ettt e e e e e e ettt e e e e e e e aa e e e 179

177

CALL FILE

Structured Mode Syntax

CALL FILE'program-name' operandl operand2
statement ...
END-FILE

Reporting Mode Syntax

CALL FILE'program-name' operandl operand?
statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALL FILE Usage

The CALL FILE statement is used to call a non-Natural program which reads a record from a non-
Adabas file and returns the record to the Natural program for processing.

CALL FILE Restrictions

The statements AT BREAK, AT START OF DATAand AT END OF DATA mustnotbe used withina CALL
FILE processing loop.

CALL FILE Syntax Description

Operand Definition Table:

178 Statements

CALL FILE

Operand | Possible Structure Possible Formats Referencing Dynamic Definition
Permitted

operandl A AUNPIFBDTLC yes yes

operandZ A |G AUNPIFBDTLC yes yes

Syntax Element Description:

Syntax Element Description

"program-name' |Program to be Called:
The name of the non-Natural program to be called.

operandl Control Field:
operandl is used to provide control information.

operand? Record Area:
operandZ defines the record area.
The format of the record to be read can be described using field definitions (or FILLER
nX) entries following the name of the first field in the record. The fields used to define
the record format must not have been previously defined in the Natural program. This
ensures that fields are allocated in the contiguous storage by Natural.

statement ... |Processing Loop:
The CALL FILE statement initiates a processing loop which must be terminated with
an ESCAPE or STOP statement. More than one ESCAPE statement may be specified to
escape from a CALL FILE loop based on different conditions.

END-FILE End of CALL FILE Statement:

LooP In structured mode, the Natural reserved keyword END- FILE must be used to end the
CALL FILE statement.
In reporting mode, the Natural statement LOOP isused to end the CALL FILE statement.

CALL FILE Example

Calling Program:

** Example 'CFIEX1':

CALL FILE

R R R R e R b e b b R b e b i e R e i e R e e b e I e S e e B e e b e e b e b e b e e b e b e b e e i e b e S e e b o 4

DEFINE DATA LOCAL
1 #fCONTROL (A3)

1 ffRECORD
2 A (A10)
2 B (N3.2)
2 #FILLL (A3)
2 {tC (P3.1)
END-DEFINE
*
Statements 179

CALL FILE

CALL FILE "USER1" #fCONTROL #RECORD
IF #CONTROL = "END'
ESCAPE BOTTOM
END-IF
END-FILE

/*****************************

/* ... PROCESS RECORD ...

/*****************************

END

The byte layout of the record passed by the called program to the Natural program in the above

example is as follows:

CONTROL #A 1B FILLER 4C
(A3) (A10) (N3.2) 3X (P3.1)

XXX XXXXXXXXXX XXXXX XXX XXX

Called COBOL Program:

ID DIVISION.
PROGRAM-ID. USERI.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT USRFILE ASSIGN UT-S-FILEUSR.

DATA DIVISION.
FILE SECTION.

FD USRFILE RECORDING F LABEL RECORD OMITTED

DATA RECORD DATA-IN.
01 DATA-IN PIC X(80).
LINKAGE SECTION.
01 CONTROL-FIELD PIC XXX.
01 RECORD-IN PIC X(21).

PROCEDURE DIVISION USING CONTROL-FIELD RECORD-IN.

BEGIN.
GO TO FILE-OPEN.
FILE-OPEN.
OPEN INPUT USRFILE
MOVE SPACES TO CONTROL-FIELD.

ALTER BEGIN TO PROCEED TO FILE-READ.

FILE-READ.
READ USRFILE INTO RECORD-IN
AT END

MOVE '"END' TO CONTROL-FIELD

CLOSE USRFILE

ALTER BEGIN TO PROCEED TO FILE-OPEN.

GOBACK.

180

Statements

24 CALL LOOP

B CALL LOOP USJE ...ttt etttk ettt ettt et e et e e nee e 182
B CALL LOOP RESHCHONSvvteeeiiet ettt et e et e e e e et e e e e e 182
® CALL LOOP Syntax DESCHIPHONeeiiiiiiieeiiiit ettt e e 183
B CALL LOOP EXGMPIE ...ttt 183

181

CALL LOOP

Structured Mode Syntax

CALL LOOP operandl [operandZ]..A40
statement ...
END-LOOP

Reporting Mode Syntax

CALL LOOP operandl [operandZ]...40
statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL FILE | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALL LOOP Usage

The CALL LOOP statement is used to generate a processing loop that contains a call to a non-Natural
program.

Unlike the CALL statement, the CALL LOOP statement results in a processing loop which is used to
repeatedly call the non-Natural program. See the CALL statement for a detailed description of the
CALL processing.

CALL LOOP Restrictions

The statements AT BREAK, AT START OF DATAand AT END OF DATA must notbe used withina CALL
LOOP processing loop.

182 Statements

CALL LOOP

CALL LOOP Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl|C (S A yes no

operandZ|C |S |A |G A|UIN|P|I|F|B|D|T|L|C yes yes

Syntax Element Description:

Syntax Element Description

operandl Program to be Called:

The name of the non-Natural program to be called can be specified as a constant or -
if different programs are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 32. A program name must be placed left-justified in the variable.

operand? Parameters:

The CALL LOOP statement can have a maximum of 40 parameters. The parameter list
is constructed as described for the CALL statement. Fields used in the parameter list
may be initially defined in the CALL LOOP statement itself or may have been previously
defined.

statement ... |Processing Loop:
The CALL LOOP statement initiates a processing loop which must be terminated with
an ESCAPE statement.

END-LOOP End of CALL LOOP Statement:
LOOP

In structured mode, the Natural reserved word END-LOOP must be used to end the
CALL LOOP statement.

In reporting mode, the Natural statement LOOP is used to end the CALL LOOP statement.

CALL LOOP Example

DEFINE DATA LOCAL

1 PARAMETER1 (A10)

END-DEFINE

CALL LOOP 'ABC' PARAMETER1L
IF PARAMETERI = "END'

ESCAPE BOTTOM

END-IF

END-LOOP

END

Statements 183

184

25 cavoerroc (SQL)

B CALLDBPROGC USJE ... ittt ettt ettt ettt ettt et e e e e e 186
® CALLDBPROC Syntax DESCHPLONeeiiiiiieeiiiiie ettt e e e e e e e 187
B CALLDBPROGC EXAMPIE ...ttt 188

185

CALLDBPROC (SQL)

CALLDBPROC dbproc ddm-name

o]]]|

[RESULT SETS result-set...]
[GIVING sqTcode]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Database Access and Update

CALLDBPROC Usage

The CALLDBPROC statement is used to invoke a stored procedure of the SQL database system to
which Natural is connected.

The stored procedure can be either a Natural subprogram (only available when executed from
Db2 for z/OS) or a program written in another programming language.

In addition to the passing of parameters between the invoking object and the stored procedure,
CALLDBPROC supports “result sets”; these make it possible to return a larger amount of data from
the stored procedure to the invoking object than would be possible via parameters.

The result sets are “temporary result tables” which are created by the stored procedure and which
can be read and processed by the invoking object via a READ RESULT SET statement.

| Note: In general, the invoking of a stored procedure could be compared with the invoking

of a Natural subprogram: when the CALLDBPROC statement is executed, control is passed to
the stored procedure; after processing of the stored procedure, control is returned to the
invoking object and processing continues with the statement following the CALLDBPROC
statement.

186 Statements

CALLDBPROC (SQL)

CALLDBPROC Syntax Description

Syntax
Element

Description

dbproc

Stored Procedure to be Invoked:

As dbproc you specify the name of the stored procedure to be invoked. The name can be
specified either as an alphanumeric variable or as a constant (enclosed in apostrophes).

The name must adhere to the rules for stored procedure names of the target database system.

If the stored procedure is a Natural subprogram, the actual procedure name must not be
longer than 8 characters.

ddm-name

Name of a Natural Data Definition Module:

The name of a DDM must be specified to provide the “address” of the database which executes
the stored procedure. For further information, see ddm-name.

LUSING]
parameter

Parameter(s) to be Passed:

As parameter, you can specify parameters which are passed from the invoking object to the
stored procedure. A parameter can be

® a host-variable (optionally with INDICATOR and LINDICATOR clauses),
B a constant, or

= the keyword NULL.

See further details on host-variable.

AD=

Attribute Definition:

If parameterisa host-variable, you can mark it as follows:

AD=0 Non-modifiable, see session parameter AD=0.

(Corresponding procedure notation in Db2 for
z/OS: TN.)

AD=M Modifiable, see session parameter AD=M.

(Corresponding procedure notation in Db2 for
z/OS: INOUT.)

AD=A For input only, see session parameter AD=A.

(Corresponding procedure notation in Db2 for
z/OS: 0UT.)

If parameter is a constant, AD cannot be explicitly specified. For constants, AD=0 always
applies.

Statements

187

CALLDBPROC (SQL)

Syntax Description

Element

RESULT Field for Result-Set Locator Variable:

SETS

result-set|As result-set you specify a field in which a result-set locator is to be returned.
A result set has to be a variable of format/length I4.
The value of a result set variable is merely a number which identifies the result set and which
can be referenced in a subsequent READ RESULT SET statement.
The sequence of the result - set values correspond to the sequence of the result sets returned
by the stored procedure.
The contents of the result sets can be processed by a subsequent READ RESULT SET statement.
If no result set is returned, the corresponding result-set variable will contain 0.
Only one result set can be specified.

GIVING GIVING sqicode Option:

sglcode
This option may be used to obtain the SQLCODE of the SQL CALL statement invoking the
stored procedure.
If this option is specified and the SQLCODE of the stored procedure is not 0, no Natural error
message will be issued. In this case, the action to be taken in reaction to the SQLCODE value
has to be coded in the invoking Natural object.
The sqlcode field has to be a variable of format/length 4.
If the GIVING sqg/code option is omitted, a Natural error message will be issued if the
SQLCODE of the stored procedure is not 0.

CALLDBPROC Example

The following example shows a Natural program that calls the stored procedure DEMO_PROC to
retrieve all names of table PERSON that belong to a given range.

Three parameter fields are passed to DEMO_PROC: the first and second parameters pass starting and
ending values of the range of names to the stored procedure, and the third parameter receives a
name that meets the criterion.

In this example, the names are returned in a result set that is processed using the READ RESULT
SET statement.

188

Statements

CALLDBPROC (SQL)

DEFINE DATA LOCAL
1 PERSON VIEW OF DEMO-PERSON
2 PERSON_ID

2 LAST_NAME

#BEGIN (A2) INIT <'AB'>
FEND (A2) INIT <'DE'>
#FRESPONSE (14)

#RESULT (I4)

#INAME (A20)

ND-DEFINE

M = = =

CALLDBPROC 'DEMO_PROC' DEMO-PERSON #BEGIN (AD=0) #END (AD=0) #NAME (AD=A)
RESULT SETS {RESULT
GIVING #RESPONSE

READ RESULT SET #RESULT INTO #fNAME FROM DEMO-PERSON
GIVING #RESPONSE
DISPLAY {NAME
END-RESULT

END

Statements 189

190

26 CALLNAT

B CALLNAT USJE ettt ettt et e sttt ettt et e e e e et e e 192
B CALLNAT Syntax DESCHPLONvvviiiiiieiieiiiiiie e e e e e e a e e e 193
= Parameter Transfer with Dynamic Variables ... 195
B CALLNAT EXAMPIES ...ttt ettt ettt e e e ettt e e e e e e e ettt e e e e e e e et eaeeeaeas 196

191

CALLNAT

M
operandZ2 (AD= ‘ 0 ’)

CALLNAT operandl [USING] A

nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

CALLNAT Usage

The CALLNAT statement is used to invoke a Natural subprogram for execution. (A Natural subpro-
gram can only be invoked via a CALLNAT statement; it cannot be executed by itself.)

When the CALLNAT statement is executed, the execution of the invoking object (that is, the object
containing the CALLNAT statement) will be suspended and the invoked subprogram will be executed.
The execution of the subprogram continues until either its END statement is reached or processing
of the subprogram is stopped by an ESCAPE ROUTINE statement being executed. In either case,
processing of the invoking object will then continue with the statement following the CALLNAT
statement.

) Notes:

1. A subprogram can in turn invoke other subprograms.

2. A subprogram has no access to the global data area used by the invoking object. If a subprogram
in turn invokes a subroutine or helproutine, it can establish its own global data area to be shared
with the subroutine/helproutine.

192 Statements

CALLNAT

CALLNAT Syntax Description

Operand Definition Table:

Operand |Possible Structure Possible Formats Referencing |Dynamic Definition
Permitted

operandI|C |S A yes no

operand2|C |S |A |G A|UN|P|I|F|B|D|T|L|C|G|O yes yes

Syntax Element Description:

Syntax
Element

Description

operandl

Subprogram to be Invoked:

As operandl, you specify the name of the subprogram to be invoked. The name may be specified
either as a constant of 1 to 32 characters, or - if different subprograms are to be called dependent
on program logic - as an alphanumeric variable of length 1 to 8.

The subprogram name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different subprograms for the
processing of input, depending on the language in which input is provided.

operand?

Parameters:

If parameters are passed to the subprogram, the structure of the parameter list must be defined
inaDEFINE DATA PARAMETER statement. The parameters specified with the CALLNAT statement
are the only data available to the subprogram from the invoking object.

By default, the parameters are passed by reference, that is, the data are transferred via address
parameters, the parameter values themselves are not moved. However, it is also possible to
pass parameters by value, that is, pass the actual parameter values. To do so, you define these
fieldsinthe DEFINE DATA PARAMETER statement of the subprogram with the option BY VALUE
or BY VALUE RESULT (see parameter-data-definitionin the description of the DEFINE
DATA statement).

= If parameters are passed by reference, the following applies: The sequence, format and length
of the parameters in the invoking object must match exactly the sequence, format and length
of the DEFINE DATA PARAMETER structure in the invoked subprogram. The names of the
variables in the invoking object and the invoked subprogram may be different.

If parameters are passed by value, the following applies: The sequence of the parameters in
the invoking object must match exactly the sequence in the DEFINE DATA PARAMETER
structure of the invoked subprogram. Formats and lengths of the variables in the invoking
object and the subprogram may be different; however, they have to be data transfer compatible;

see the corresponding table in the section Rules for Arithmetic Assignments, Data Transfer in

Statements

193

CALLNAT

Syntax
Element

Description

the Programming Guide. The names of the variables in the invoking object and the subprogram
may be different. If parameter values that have been modified in the subprogram are to be
passed back to the invoking object, you have to define these fields with BY VALUE RESULT.
When BY VALUE is specified without RESULT, it is not possible to pass modified parameter
values back to the invoking object (regardless of the AD specification; see also below).

Note: With BY VALUE, an internal copy of the parameter values is created. The subprogram

accesses this copy and can modify it, but this will not affect the original parameter values in
the invoking object. With BY VALUE RESULT, an internal copy is likewise created, however,
after termination of the subprogram, the original parameter values are overwritten by the
(modified) values of the copy.

For both ways of passing parameters, the following applies:

If a group is specified as operand?Z, the individual fields contained in that group are passed to
the subprogram; that is, for each of these fields a corresponding field must be defined in the
subprogram's parameter data area.

In the parameter data area of the invoked subprogram, a redefinition of groups is only permitted
within a REDEFINE block.

If an array is passed, its number of dimensions and occurrences in the subprogram's parameter
data area must be the same as in the CALLNAT parameter list.

Note: If multiple occurrences of an array that is defined as part of an indexed group are passed

with the CALLNAT statement, the corresponding fields in the subprogram's parameter data area
must not be redefined, as this would lead to the wrong addresses being passed.

When the option PCHECK of the COMPOPT command is set to ON, the compiler will check the
number, format, length and array index bounds of the parameters that are specified ina CALLNAT
statement. Also, the OPTIONAL feature of the DEFINE DATA PARAMETER statement is considered
in the parameter check.

Note: Numeric constant parameters are internally represented in packed form (format P). For

further information see the Programming Guide > Numeric Constants.

AD=

Attribute Definition:

If operand?Zis a variable, you can mark it in one of the following ways:

AD=0 Non-modifiable, see session parameter AD=0.

Note: Internally, AD=0 is processed in the same
way as BY VALUE (see
parameter-data-definitionin the
description of the DEFINE DATA statement).

AD=M Modifiable, see session parameter AD=M.

This is the default setting.

194

Statements

CALLNAT

Syntax Description
Element

AD=A Input only, see session parameter AD=A.

If operandZis a constant, AD cannot be explicitly specified. For constants AD=0 always applies.
nX Parameters to be Skipped:

With the notation X you can specify that the next n parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the
next 11 parameters no values are passed to the subprogram. The possible range of values for 1
is1 - 409¢6.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the
subprogram's DEFINE DATA PARAMETER statement. OPTIONAL means that a value can - but
need not - be passed from the invoking object to such a parameter.

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
A call by reference is possible because the value space of a dynamic variable is contiguous. A call
by value causes an assignment with the variable definition of the caller as the source operand and
the parameter definition as the destination operand. In addition, a call by value result causes the
movement to change to the opposite direction. When using a call-by-reference, both definitions
must be DYNAMIC. If only one of them is DYNAMIC, a runtime error is raised. In case of a call by value
(result) all combinations are possible.

The following table illustrates the valid combinations of statically and dynamically defined variables
of the caller, and statically and dynamically defined parameters concerning the parameter transfer.

Call By Reference

operand? of caller|Parameter definition
Static Dynamic

Static yes no

Dynamic no yes

The formats of the dynamic variables A or B must match.

Statements

195

CALLNAT

Call by Value (Result)

operand? of caller|Parameter definition
Static Dynamic

Static yes yes

Dynamic yes yes

Note: When using static/dynamic or dynamic/static definitions, a value truncation may

occur according to the data transfer rules of the appropriate assignments.

CALLNAT Examples

= Example 1
= Example 2

Example 1
Calling Program:

*% Example 'CNTEX1': CALLNAT

P R b i B B b b o B i i o i o b b b b b i b b g b i e o b o i e b b b e b i i g i b b b o o b b b i e b i b b b o
DEFINE DATA LOCAL

1 #FIELDL (N6)

1 #/FIELD2 (A20)

1 /FIELD3 (A10)

END-DEFINE

*

CALLNAT 'CNTEXIN' #FIELD1 (AD=M) {fFIELD2 (AD=0) #FIELD3 'P4 TEXT'

*

WRITE '=' #FIELDl '=' #FIELD2 '=' #FIELD3

*

END

Called Subprogram CNTEXIN:

*% Example 'CNTEXIN': CALLNAT (called by CNTEXL1)

P R e b i b b i i b o B b B b i b i b b e b b b i b o b b e b i i e b b b b b o b i e e b b b i i b b b b o b i b b b
DEFINE DATA PARAMETER

1 ffFIELDA (N6)

1 #fFIELDB (A20)

1 #FIELDC (A10)

1 fFIELDD (A7)

END-DEFINE

*
*

196 Statements

CALLNAT

JIFIELDA := 4711

*

#FIELDB := 'HALLO'
*

##FIELDC := 'ABC'

*

WRITE '=' #FIELDA '=' #FIELDB '=' #FIELDC '=' #FIELDD
*

END

Example 2

Calling Program:

** Example 'CNTEX2': CALLNAT
Khkhkkhhkkhhkhhkkhhkkhhkkhhkhhkhhhhkhhhhkhhhhkhhhhhhhhkhhkhhkhhkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhrkhrkhkrkhrk
DEFINE DATA LOCAL

1 #ARRAYL (N4/1:10,1:10)

1 #NUM (N2)

END-DEFINE

*
*
CALLNAT '"CNTEX2N' #fARRAY1 (2:5,%*)
*
FOR #NUM 1 TO 10

WRITE #NUM #FARRAYI(#NUM,1:10)
END-FOR

*

END

Called Subprogram CNTEX2N:

** Example 'CNTEX2N': CALLNAT (called by CNTEX2)

R R R o R R b b R b e b e S b R R i b b e i b e i b R e i b R i i b b e b R R e i b b e b i 4
DEFINE DATA

PARAMETER

1 #FARRAY (N4/1:4,1:10)

LOCAL

11 (I2)

END-DEFINE

*

*

FOR I 1 10
F#ARRAY (1,1) :=1
#FARRAY (2,1) := 100 + I
#FARRAY (3,1) := 200 + I
FFARRAY (4,1) := 300 + I
END-FOR

*

END

Statements 197

198

27 CLOSE CONVERSATION

B CLOSE CONVERSATION USJE ... vveevtieeeiiie ettt ettt 200
m CLOSE CONVERSATION SyntaxX DESCHIPHONcciiiiiieeiiiiie ettt 200
= Further Information and CLOSE CONVERSATION EXaMPIESccovvvirieiiiiiieeiiiiieeeeie et 201

199

CLOSE CONVERSATION

operandl ...
CLOSE CONVERSATION ‘ *CONVID]
ALL

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DEFINE DATA CONTEXT | OPEN CONVERSATION

Belongs to Function Group: Natural Remote Procedure Call

CLOSE CONVERSATION Usage

The statement CLOSE CONVERSATION is used in conjunction with the Natural RPC (Remote Procedure
Call). It allows the client to close conversations. You can close the current conversation, another
open conversation, or all open conversations.

| Note: A logon to another library does not automatically close conversations.

CLOSE CONVERSATION Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted Dynamic Definition

operandl ‘S ‘A ‘ I yes no

Syntax Element Description:

Syntax Element|Description

operandl Identifier of Conversation to be Closed:
To close a specific open conversation, specify its ID as operand]I.

operandl must be a variable of format/length 14.

*CONVID Closing the Current Conversation:
To close the current conversation, specify *CONVID.

The ID of the current conversation is determined by the value of the system variable *CONVID.

ALL Closing All Open Conversations:

To close all open conversations, specify ALL.

200 Statements

CLOSE CONVERSATION

Further Information and CLOSE CONVERSATION Examples

See the following sections in the Natural RPC (Remote Procedure Call) documentation:

® Natural RPC Operation in Conversational Mode
® Using a Conversational RPC

Statements 201

202

28 CLOSE DIALOG

B CLOSE DIALOG USBGE ... ettt ettt ettt ettt etttk ettt et et e et e e s e et eeneeas 204
® CLOSE DIALOG Syntax DESCHPHONveiiiiiiiiiiiiiie et 204
= Further Information and CLOSE DIALOG EXaMPIESccoiiiiiieiiiiiieeiiiiice e 205

203

CLOSE DIALOG

operandl
CLOSE DIALOG[USING][DIALOG-ID] { }

*DIALOG-ID

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: OPEN DIALOG | PROCESS GUI | SEND EVENT

Belongs to Function Group: Event-Driven Programming

CLOSE DIALOG Usage

The CLOSE DIALOG statement is used to close a dialog dynamically.

] Note: If a modal dialog is a child in a hierarchy of dialogs, the modal dialog should not
close its parent(s) because this will result in a deadlock.

CLOSE DIALOG Syntax Description

Operand Definition Table:

Operand | Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

operandl] S | | | [|[]a]]]]]]]] yes no

Syntax Element Description:

Syntax Element|Description

operandl Identifier of ID to be Closed:

operandl is the identifier of the dialog to be closed.
*DIALOG-ID |Closing the Current Dialog;:

To close the current dialog, specify the system variable *DIALOG- I D, which contains the ID
of the current instance of a dialog.

204 Statements

CLOSE DIALOG

Further Information and CLOSE DIALOG Examples

See the section Event-Driven Programming Techniques in the Programming Guide.

Statements 205

206

V

B 20 CLOSE PRINTER ... oottt ettt eeee ettt e e e e ee e s 209
B 30 CLOSE WORK FILE ...ttt 213
B 31 COMMIT (SQL) oot e et e e ee et ee e 217
B 32 COMPRESS ...ttt ettt ettt 219
B 33 COMPUTE ...ttt ettt 229
B 34 CREATE OBUECT ..ottt ettt ettt 237
B 35 DECIDE FOR ...ttt ettt ettt 241
B 36 DECIDE ON +..oooeooeeeeeeeee ettt e et e et e e ettt 247
B 37 DEFINE CLASS ..ottt ettt 253

207

208

29 CLOSE PRINTER

B CLOSE PRINTER USAQEeeiiiiiiieeiiiie ettt ettt e et e ettt e e et e e e e 210
® CLOSE PRINTER Syntax DESCHPHONcooiiiiiiiiiie ettt 210
B CLOSE PRINTER EXGMPIEccivvieieeiiiie ettt ettt e et e e e e 211

209

CLOSE PRINTER

logical-printer-name
CLOSE PRINTER { (109 P) }

(printer-number)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE IDEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

CLOSE PRINTER Usage

The CLOSE PRINTER statement is used to close a specific printer. With this statement, you explicitly
specify in a program that a printer is to be closed.

A printer is also closed automatically in one of the following cases:

® when a DEFINE PRINTER statement in which the same printer is defined again is executed;

® when command mode is reached.

CLOSE PRINTER Syntax Description

Syntax Element Description

Togical-printer-name|Logical Printer Name:

With the Togical-printer-name you specify which printer is to be closed.
The name is the same as in the corresponding DEFINE PRINTER statement in
which you defined the printer.

Naming conventions for the Togical-printer-name are the same as for
user-defined variables, see Naming Conventions for User-Defined Variables in Using
Natural Studio.

printer-number Printer Number:

Alternatively to the Togical-printer-name, you may define the
printer-number to specify which printer is to be closed.

The printer-number may be a number in the range from 0 - 31. This is the
number also to be used ina DISPLAY /WRITE or DEFINE PRINTER statement.

Printer number 0 indicates the hardcopy printer.

210 Statements

CLOSE PRINTER

CLOSE PRINTER Example

** Example 'CLPEX1': CLOSE PRINTER
R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 BIRTH
*
1 #1-NAME (A20)
END-DEFINE

*

DEFINE PRINTER (PRTO1=1)

*

REPEAT
INPUT "SELECT PERSON' #I-NAME
IF #I-NAME = " '
STOP
END-IF
FIND EMP-VIEW WITH NAME = 4I-NAME
WRITE (PRTO1) "NAME :' NAME "," FIRST-NAME
/ "PERSONNEL-ID :' PERSONNEL-ID
/ "BIRTH :' BIRTH (EM=YYYY-MM-DD)
END-FIND
/*
CLOSE PRINTER (PRTO1)
/*
END-REPEAT
END

Statements 211

212

30 CLOSE WORK FILE

B CLOSE WORK FILE USJE ... eeeuiiieeiiit ettt ettt e 214
® CLOSE WORK FILE Syntax DESCIPHONccvviiieeiiiiiie ittt 214
LI 1oL OSSPSR 215

213

CLOSE WORK FILE

CLOSE WORKI[FILE] work-file-number

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DEFINE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

CLOSE WORK FILE Usage

The statement CLOSE WORK FILE is used to close a specific work file. It allows you to explicitly
specify in a program that a work file is to be closed.

A work file is closed automatically:

® When command mode is reached.
® When an end-of-file condition occurs during the execution of a READ WORK FILE statement.

" Before a DEFINE WORK FILE statement is executed which assigns another file to the work file
number concerned.

CLOSE WORK FILE Syntax Description

Syntax Element Description

work-file-number |Work File Number:
The work file number (as defined to Natural) to be used.

The work file number is either

® a numeric constant in the value range 1:32 or

® anumeric variable of type (B/N/P/I) defined with a CONST clause which assigning
a value in range (1:32). Variable is a scalar (non-array) without precision digits
for type (N/P), length in between 1-4 for type (B), and no redefinition field.

214 Statements

CLOSE WORK FILE

Example

** Example 'CWFEX1': CLOSE WORK FILE

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

DEFINE DATA LOCAL
1 W-DAT (A20)
1 REC-NUM (N3)
11 (P3)
END-DEFINE
*
REPEAT
READ WORK FILE 1 ONCE W-DAT
/%
AT END OF FILE
ESCAPE BOTTOM
END-ENDFILE

/* READ MASTER RECORD

INPUT 'PROCESSING FILE' W-DAT (AD=0)
/ "ENTER RECORDNUMBER TO DISPLAY' REC-NUM

IF REC-NUM = 0
STOP
END-IF
FOR' I =1 TO REC-NUM
/%
READ WORK FILE 1 ONCE W-DAT
/*
AT END OF FILE

WRITE '"RECORD-NUMBER TOO HIGH,

ESCAPE BOTTOM
END-ENDFILE
END-FOR
I =1 -1
WRITE '"RECORD" I ":' W-DAT
/*
CLOSE WORK FILE 1
/*
END-REPEAT
END

LAST RECORD IS'

Statements

215

216

31 commr (SQL)

B COMMIT USBQE ...ttt ettt ettt et e ettt e e e e s 218
B COMMIT EXAMPIE ©.vvvieeeieeeeiiitie ettt e e e e e et e e e e e e e e e ettt rrr e e e e e e e 218

217

COMMIT (SQL)

Belongs to Function Group: Database Access and Update

COMMIT Usage

The SQL COMMIT statement corresponds to the END TRANSACTION statement. It indicates the end of
a logical transaction and releases all data locked during the transaction. All data modifications
are committed and made permanent.

& Important: As all cursors are closed when a logical unit of work ends, a COMMIT statement

must not be placed within a database modification loop; instead, it has to be placed outside
such a loop or after the outermost loop of nested loops.

CO