
Natural

Debugger

Version 9.3.2

July 2025

This document applies to Natural Version 9.3.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATWIN-NNATDEBUG-932-20250711

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 General Information .. 5
About the Debugger ... 6
Remote Debugging .. 6

3 Starting and Leaving the Debugger .. 7
Preparing to Use the Debugger ... 8
Starting the Debugger .. 8
Restarting the Debugger .. 9
Leaving the Debugger .. 10

4 Elements of the Debugger ... 11
Debugger Information in the Title Bar ... 12
Menu Commands ... 12
Toolbar .. 12
Trace Position in Editor Window ... 13
Debugger Windows ... 15

5 Moving through the Code ... 19
Stepping Through the Code ... 20
Going to the Next Breakpoint or Watchpoint .. 21
Going to the Next Event ... 22
Going to the Cursor Position .. 22
Going to the Next Statement .. 23

6 Setting Breakpoints and Watchpoints ... 25
About Breakpoints and Watchpoints ... 26
Adding and Removing a Breakpoint ... 27
Modifying a Breakpoint ... 28
Adding a Watchpoint ... 29
Modifying a Watchpoint .. 31
Deactivating Breakpoints and Watchpoints Temporarily .. 32
Showing the Source Code for a Defined Breakpoint or Watchpoint 33
Deleting Breakpoints and Watchpoints ... 34
Symbols Used in the Editor Window ... 34

7 Modifying and Watching Variables ... 35
Modifying a Variable .. 36
Adding a Watchvariable ... 39
Managing the Variables in the Variables Window ... 40

8 Using the Call Stack ... 45
About the Call Stack ... 46
Displaying the Source Code of a Different Object ... 46
Returning to the Object at the Current Trace Position ... 47

iii

iv

Preface

This documentation, which is complemental to the Using Natural Studio documentation, explains
how to debug Natural applications. It is organized under the following headings:

About the debugger which is integrated in Natural Studio.
Information on remote debugging.

General Information

Information on the GPGEN parameter. How to start, restart and leave
the debugger.

Starting and Leaving the Debugger

Information on additional elementswhich are available in theNatural
Studio window when the debugger has been started.

Elements of the Debugger

How to execute the code by stepping through it or by going to
breakpoints, watchpoints, events or to the cursor position.

Moving through the Code

How to add breakpoints and watchpoints, and how to manage them
in the break- and watchpoints window.

Setting Breakpoints and
Watchpoints

How to modify a variable, how to add watchvariables, and how to
manage the variables in the variables window.

Modifying and Watching Variables

How to manage the objects in the call stack window.Using the Call Stack

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Debugger2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag anddiscover additional SoftwareGmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Debugger

About this Documentation

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 General Information

■ About the Debugger .. 6
■ Remote Debugging ... 6

5

About the Debugger

The debugger is integrated in Natural Studio. The complete Natural Studio functionality can be
used in parallel to the debugger. For example, when the debugger is active, you can navigate to
another object in the libraryworkspace or you can search for a specific object using the FindObject
command.

The debugger is used to debug Natural applications in the local environment. To be able to debug
Natural applications, it is required to set the subparameter DEBUGGER of the Natural parameter
GPGEN to "ON" before you catalog theNatural application (see alsoPreparing toUse theDebugger).
Natural Studio handles all steps internally (such as setting up or terminating the communication
with the corresponding server).

See also Environments and Views in the LibraryWorkspace in the documentationUsing Natural Studio
and Accessing a Remote Development Environment in the documentation Remote Development Using
SPoD.

Note: Several differences exist when you debug applications in a remote mainframe envir-
onment. These differences are listed in the platform-specific Natural Development Server
(NDV) documentation which applies to this Natural release. The NDV documentation is
available separately; it is not part of this Natural for Windows documentation.

Remote Debugging

Remote debugging is no longer supported. Instead, you will have to use the debugger of Natur-
alONE.Using theNaturalONEdebugger, it is possible, for example, to debugNatural RPC applic-
ations or to debug workplace applications which have been created with Natural for Ajax.

Debugger6

General Information

3 Starting and Leaving the Debugger

■ Preparing to Use the Debugger .. 8
■ Starting the Debugger .. 8
■ Restarting the Debugger .. 9
■ Leaving the Debugger .. 10

7

Preparing to Use the Debugger

To exploit the full functional scope of the debugger, you must set the subparameter DEBUGGER of
the Natural parameter GPGEN to "ON". You can set this parameter in one of the following ways:

■ dynamically when starting Natural, or
■ in your parameter file using the Configuration Utility.

When you catalog or stow an object and the subparameter DEBUGGER of the Natural parameter
GPGEN is set to "ON", a symbol table is generated as part of the generated program. Since this table
contains the information relevant to the variables active for this object, variables cannot be accessed
if DEBUGGER is set to "OFF", although it is still possible to debug the object.

Note: It is not necessary to set the subparameter DEBUGGER of the Natural parameter GPGEN
when debugging in a SPoD environment on a mainframe.

Starting the Debugger

The debugger can be usedwith stowed or catalogedNatural programs and dialogs. It can be used
in the local environment and in the remote environment.

See also the description of the system command DEBUG.

To start the debugger

1 Open the editor for the object that is to be debugged.

Or:

Select the object in the library workspace.

2 From the Debugmenu, choose Start.

Or:

Press CTRL+F7.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Debugger8

Starting and Leaving the Debugger

Or:

When you have selected an object in the library workspace, invoke the context menu and
chooseDebug.

When the editor for the selected object has not yet been opened, it is opened now.

For a dialog, the dialog source is now shown in a separate window.

When the debugger has been started, additional elements are available in the Natural Studio
window. See Elements of the Debugger for further information.

Restarting the Debugger

When you restart your debugging session, the debugger repositions to the beginning of the applic-
ation while all your current settings for breakpoints, watchpoints and watchvariables are kept.
Thus, restarting a debugging session is useful if want to rerun your application without having
to specify the settings relevant for debugging again.

To restart the debugger

■ From the Debugmenu, choose Restart.

Or:

Press CTRL+SHIFT+F7.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

9Debugger

Starting and Leaving the Debugger

Leaving the Debugger

The debugger is terminated automatically if the application ends without an error. You can also
stop the debugger before it terminates automatically; see the description below.

Note: Closing the editor window does not stop the debugger.

When the debugger is terminated or stopped, your breakpoint, watchpoint and watchvariable
settings are automatically stored. All these settings will be restored the next time you start the
debugger.

In the case of an error, the corresponding source is displayed and the trace position indicates the
line which caused the error. A message window appears with the appropriate error message and
a choice to either continue or end the debugging session. Continuing the debugging session may
be useful, for example, if your application contains any error processing (including error transac-
tions) or if you want to display any variables before you end your debugging session.

If an error is found in a Natural source and you want to continue debugging with the changed
and cataloged source, you first have to stop the debugger. After that, you can start the debugger
again with the changed and cataloged source.

To stop the debugger

■ From the Debugmenu, choose Stop.

Or:

Press SHIFT+F7.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

The debugging session is terminated and control is returned to Natural.

Debugger10

Starting and Leaving the Debugger

4 Elements of the Debugger

■ Debugger Information in the Title Bar .. 12
■ Menu Commands .. 12
■ Toolbar .. 12
■ Trace Position in Editor Window ... 13
■ Debugger Windows ... 15

11

When the debugger has been started, additional elements are available in the Natural Studio
window.

Debugger Information in the Title Bar

The title bar of the Natural Studio window shows one of the following:

■ [break]
When "[break]" is shown in the title bar, the debugger has control.

■ [running]
When "[running]" is shown in the title bar, the Natural application currently being debugged
has control.

When you are debugging an object in a remote environment using SPoD, the title bar also shows
the port number of the host.

Menu Commands

The commands in the Debugmenu apply to the debugger.

As long as the debugger has not been started, only the command Start is enabled in the Debug
menu. When the debugger has been started, the remaining commands in the Debugmenu are
enabled and theGo command is shown instead of the Start command.

When an editor window is active and the debugger has been started for the object in this window,
the context menu shows commands which apply to the debugger. As long as the debugger has
not been started, only the debug command Toggle Breakpoint is available in the context menu.

Detailed descriptions of these commands are provided later in this documentation.

Toolbar

The debugger has a special toolbar which provides fast access to the commands available in the
Debugmenu. As long as the debugger has not been started, only the toolbar buttons for the
commands Start and Toggle Breakpoint are enabled in the Debug toolbar. When the debugger
has been started, all other toolbar buttons are enabled.

The buttons in the Debug toolbar represent the following menu commands:

Debugger12

Elements of the Debugger

Start (only shown when the debugger has not yet been started)

Go (only shown after the debugger has been started)

Restart

Stop

Step Over

Step Into

Step Out

Show Trace Position

Toggle Breakpoint

Modify Variable

The display of the Debug toolbar can be switched on and off. See Customizing Natural Studio in
the Using Natural Studio documentation for further information.

Trace Position in Editor Window

The current trace position is indicated by an arrow in the left margin of the editor window.

When the debugger is started, the trace position is shown at the first executable source code line.
Example:

13Debugger

Elements of the Debugger

When you have scrolled the editor window so that the trace position is no longer visible, you can
return to the trace position as described below.

Note: See also Returning to the Object with the Current Trace Position.

To return to the trace position

■ From the Debugmenu, choose Show Trace Position.

Or:

Press ALT+NUM*.

Note: NUM* is the key on the numeric keypad which is used for multiplication.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Debugger14

Elements of the Debugger

Debugger Windows

When the debugger has been started, the following windows are shown:

■ Variables
■ Break- and Watchpoints
■ Call Stack

Each tab of a debugger window offers a context menuwhich contains either the commandswhich
can be used in combination with the entire tab (when an entry is not selected) or the commands
which can be used with the selected entry. These commands are described later in this document-
ation.

The debugger windows are moveable and dockable. See Dockable Windows in the documentation
Using Natural Studio.

Note: When the display of the debugger window has previously been switched on using
the corresponding command in the Viewmenu, this debugger window (which shows the
breakpoints and watchpoints that have been defined in the active environment) will be re-
placed by the debugger windows described below. See also Debugger Window in the docu-
mentation Using Natural Studio.

Variables

This window shows all variables which are available at current state of the program execution.

An expand or collapse toggle to the left of the variable name indicates a group, an array or redefined
field. The toggle for a redefined field additionally contains an "R" (for example:).

The variables are grouped in different categories. A tab is provided for each category:

15Debugger

Elements of the Debugger

■ Locals
Shows the local variables used in the active generated program.

■ Globals
Shows the global variables of the referenced global data area.

■ Systems
Shows all system variables on the current platform. For example, when you are currently debug-
ging an application in a mapped Linux environment, all system variables which are valid for
Linux are shown.

■ AIVs
Shows the currently available application-independent variables (AIVs) in the application.

■ Contexts
Shows the currently available context variables in the application.

■ Watch
Shows the variables that you have added yourself in order to watch them. See Adding a
Watchvariable.

You can switch between the display of the different types of variables by choosing the corresponding
tab at the bottom of the variables window.

SeeModifying and Watching Variables for further information.

To switch the variables window display on and off

■ From the Debugmenu, chooseWindows > Variables.

Or:

Press CTRL+ALT+1.

When the variables window is displayed in the Natural Studio window, a check mark is
shown next to this menu command.

To activate the variables window using a shortcut key

■ When the variables window is displayed in the Natural Studio window, press CTRL+SHIFT+V

to activate it.

Debugger16

Elements of the Debugger

Break- and Watchpoints

This window shows all currently defined breakpoints and watchpoints.

You can switch between the display of the watchpoints and breakpoints by choosing the corres-
ponding tab at the bottom of the break- and watchpoints window.

See Setting Breakpoints and Watchpoints for further information.

To switch the break- and watchpoints window display on and off

■ From the Debugmenu, chooseWindows > Break- and Watchpoints.

Or:

Press CTRL+ALT+2.

When the break- and watchpoints window is displayed in the Natural Studio window, a
check mark is shown next to this menu command.

To activate the break- and watchpoints window using a shortcut key

■ When the break- and watchpoints window is displayed in the Natural Studio window, press
CTRL+SHIFT+B to activate it.

Call Stack

This window shows the objects which have been called during the current debugging session in
hierarchical order.

17Debugger

Elements of the Debugger

See Using the Call Stack for further information.

To switch the call stack window display on and off

■ From the Debugmenu, chooseWindows > Call Stack.

Or:

Press CTRL+ALT+3.

When the call stack window is displayed in the Natural Studio window, a check mark is
shown next to this menu command.

To activate the call stack window using a shortcut key

■ When the call stack window is displayed in the Natural Studio window, press CTRL+SHIFT+C

to activate it.

Debugger18

Elements of the Debugger

5 Moving through the Code

■ Stepping Through the Code ... 20
■ Going to the Next Breakpoint or Watchpoint .. 21
■ Going to the Next Event .. 22
■ Going to the Cursor Position .. 22
■ Going to the Next Statement .. 23

19

Stepping Through the Code

You can instruct the debugger to execute the next program step. Different commands are available
for this purpose:

■ Stepping Over Another Object
■ Stepping Into Another Object
■ Stepping Out Of Another Object

Stepping Over Another Object

When you instruct the debugger to step over another object, the next program step is executed
and the trace position is shown at the corresponding source code line. If this source code line invokes
or includes a further Natural object, the debugger steps over this object; that is, all source code of
this object is executed at once. The debugger stops, however, if this object contains watchpoints
or breakpoints.

To step over another object

■ From the Debugmenu, choose Step Over.

Or:

Press F10.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Stepping Into Another Object

When you instruct the debugger to step into another object, the next program step is executed and
the trace position is shown at the corresponding source code line. If this source code line invokes
or includes a further Natural object, the debugger steps into this object and the trace position is
shown at the first executable line.

To step into another object

■ From the Debugmenu, choose Step Into.

Or:

Debugger20

Moving through the Code

Press F11.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Stepping Out Of Another Object

When you instruct the debugger to step out of another object, the debugger returns to the previous
program level. The debugger stops, however, if a watchpoint or breakpoint is found before this
previous level is reached.

This command is useful if you debug a subprogram and want to continue with the execution of
the rest of the subprogram. The execution continues without interruption and stops after the pos-
ition in the invoking program from which the subprogram has been invoked.

To step out of another object

■ From the Debugmenu, choose Step Out.

Or:

Press CTRL+F11.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Going to the Next Breakpoint or Watchpoint

You can instruct the debugger to execute the object until the next active breakpoint is found or
until a watchpoint condition becomes true. In this case, the debugger stops at the watchpoint or
breakpoint and the trace position is shown at the corresponding source code line.

To go to the next watchpoint or breakpoint

■ From the Debugmenu, chooseGo.

21Debugger

Moving through the Code

Or:

Press F7.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Going to the Next Event

In an event-driven application, you can instruct the debugger to execute the object until the next
event is sent to the application. The debugger stops, however, if an activewatchpoint or breakpoint
occurs before the next event is sent.

To go to the next event

■ From the Debugmenu, chooseGo Until Next Event.

Note: In a non-event driven application, this command has the same effect as theGo
command.

Or:

Press ALT+F7.

Going to the Cursor Position

You can instruct the debugger to execute the object until the source code line at the current cursor
position is reached.

To go to the cursor position

1 Place the cursor in the source code line at which execution is to be paused.

2 Invoke the context menu in the editor and choose Run to Cursor.

Or:

Press CTRL+F10.

Debugger22

Moving through the Code

Going to the Next Statement

You can instruct the debugger to skip code and to resume execution of the object with the source
code line in which you have placed the cursor. The skipped code is not executed.

Caution: Depending on the code youwant to skip, this commandmay lead to unpredictable
results. Use this command with care.

To go to the next statement

1 Place the cursor in the source code line with which you want to resume execution.

2 Invoke the context menu in the editor and choose Set Next Statement.

Note: This command is only available for the object which is currently processed.

23Debugger

Moving through the Code

24

6 Setting Breakpoints and Watchpoints

■ About Breakpoints and Watchpoints .. 26
■ Adding and Removing a Breakpoint .. 27
■ Modifying a Breakpoint ... 28
■ Adding a Watchpoint .. 29
■ Modifying a Watchpoint .. 31
■ Deactivating Breakpoints and Watchpoints Temporarily ... 32
■ Showing the Source Code for a Defined Breakpoint or Watchpoint .. 33
■ Deleting Breakpoints and Watchpoints ... 34
■ Symbols Used in the Editor Window .. 34

25

About Breakpoints and Watchpoints

Two types of entries can be defined in a program for debugging purposes:

■ Breakpoints
Abreakpoint is a point atwhich control is returned to the userwhile aNatural object is executing.

Breakpoints cannot be set on any statement line other than the first one if a single statement
occupies more than one line.

If you accidentally try to set a breakpoint on a non-executable line (for example, a comment
line), the breakpoint is automatically moved to the next executable line.

■ Watchpoints
Usingwatchpoints, you can rapidly detect unexpected alterations toNatural variables by objects
that contain errors.

By default, watchpoints are used to instruct the debugger to interrupt the execution of Natural
objects when the content of a variable changes. However, by specifying a certain value to the
variable together with a watchpoint operator when setting a watchpoint, a condition can be set
which only activates the watchpoint when the condition becomes true.

A variable is considered to have changed either when its current value differs from the value
recorded when the watchpoint was last triggered, or when it differs from the initial value.

Each breakpoint orwatchpoint is displayed in the corresponding tab of thebreak- andwatchpoints
window. For each breakpoint, the number of the line is shown in which the breakpoint has been
defined. For each watchpoint, a name is assigned that corresponds to the name of the variable to
which it belongs and the break condition is shown.

Using the check box in the first column of a tab, a breakpoint or watchpoint can be activated or
deactivated at any timeduring a debugging session. SeeDeactivatingBreakpoints andWatchpoints
Temporarily.

Every breakpoint or watchpoint has a hit count which increases every time the debug entry is
passed. The number of executions of a debug entry, however, can be restricted in the following
ways:

■ A number of skips can be specified before the breakpoint or watchpoint is executed. The debug
entry is then ignored until the event count is higher than the number of skips specified.

■ Amaximum number of executions can be specified, so that the breakpoint or watchpoint is ig-
nored as soon as the event count exceeds the specified number of executions.

When a breakpoint or watchpoint is hit inside another object but the currently active one, a new
editor window is opened displaying the source of this new object.

Debugger26

Setting Breakpoints and Watchpoints

Adding and Removing a Breakpoint

You can add a breakpoint for the current cursor position to the Breakpoints tab of the break- and
watchpoints window. Or, if a breakpoint already exists for this cursor position, you can remove
it from the Breakpoints tab.

A dialog box does not appear in this case. If you want to modify the breakpoint (for example, to
define the maximum number of breaks), seeModifying a Breakpoint.

See also Deleting Breakpoints and Watchpoints.

Note: In the local environment and in a remote environment (SPoD), it is also possible to
set and remove breakpoints as described below when the debugger is not active. Each
breakpoint which has been defined in the editor will then be verified when the debugger
is started.When the breakpoint is not allowed at the defined position, it will then bemoved
to the next line in which it is possible to define a breakpoint. See also Debugger Window in
the documentation Using Natural Studio.

To toggle a breakpoint

1 Select the line on which you want to set or remove a breakpoint.

2 Invoke the context menu in the editor and choose Toggle Breakpoint.

Or:

Press F9.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Or:

In the left margin of the editor window (where the symbols for the breakpoints are usually
shown), click a position next to the required line.

When a breakpoint is set, a symbol is now shown in the left margin of the editor window. See
Symbols Used in the Editor Window. An entry for the breakpoint is also shown on the
Breakpoints tab of the break- and watchpoints window.

When a breakpoint has been removed, the corresponding symbol is no longer shown. The
entry for the breakpoint is removed from the Breakpoints tab of the break- and watchpoints
window.

27Debugger

Setting Breakpoints and Watchpoints

Modifying a Breakpoint

You canmodify each breakpoint which is currently shown in the break- andwatchpoints window.

To modify a breakpoint

1 Select the required breakpoint, invoke the context menu and chooseModify.

The following dialog box appears:

2 Set the required options:

Hits before Break
The number of skips before execution of the breakpoint if it is not to be executed until the
program has run a certain number of times. The default is 0.

Number of Breaks
Themaximumnumber of executions of the breakpoint. After this number has been reached,
the breakpoint is ignored. The default is 0.

Reset Hit Count
When you choose this command button, the current hit count is reset to 0.

3 Choose theOK button.

Debugger28

Setting Breakpoints and Watchpoints

Adding a Watchpoint

Watchpoints are shown on theWatchpoints tab of the break- and watchpoints window.

You can add watchpoints in different ways:

■ Adding a Watchpoint from the Editor Window
■ Adding a Watchpoint from the Variables Window
■ Adding a Watchpoint Using a Dialog Box

Adding a Watchpoint from the Editor Window

You can add the variable at the current cursor position in the editor window to theWatchpoints
tab of the break- and watchpoints window. A dialog is not shown in this case.

To define a variable as a watchpoint

1 Select the variable in the editor by placing the cursor at any positionwithin the variable name.

2 Invoke the context menu and choose Add to Watchpoints.

Or:

Press CTRL+SHIFT+W.

Or:

Select the variable in the editor. Use themouse to drag the selected variable to theWatchpoints
tab and drop it there.

Adding a Watchpoint from the Variables Window

You can add a variable from the variables window to theWatchpoints tab of the break- and
watchpoints window. A dialog is not shown in this case.

To define a variable as a watchpoint

1 Select the desired variable in the variables window.

2 Invoke the context menu and choose Add to Watchpoints.

Or:

Press CTRL+SHIFT+W.

29Debugger

Setting Breakpoints and Watchpoints

Adding a Watchpoint Using a Dialog Box

You can use a dialog box to add awatchpoint to theWatchpoints tab of the break- andwatchpoints
window.

To add a watchpoint

1 From the Debugmenu, choose AddWatchpoint.

Or:

In theWatchpoints tab of break- and watchpoints window, invoke the context menu and
chooseAdd. Make sure that no other entry is selected. Otherwise, the context menu does not
show this command.

The AddWatchpoint dialog box appears. The title bar indicates the names of the current
program and library as well as the database ID and file number of the current FUSER.

2 Set the required options:

Variable
The variable that is to be watched in the debugged program.

Operator/Value
To define a condition for the watchpoint, select an appropriate watchpoint operator and
specify a value for this operator. If you do not specify a condition, the default setting
("changes") applies.

The watchpoint operators are:

Debugger30

Setting Breakpoints and Watchpoints

Activation of the WatchpointOperator

Each time the variable is changed. Default.changes

Only when the current value of the variable is equal to the specified value.EQ (=)

Only when the current value of the variable is not equal to the specified value.NE (!=)

Only when the current value of the variable is greater than the specified value.GT (>)

Only when the current value of the variable is less than the specified value.LT (<)

Onlywhen the current value of the variable is greater than or equal to the specified value.GE (>=)

Only when the current value of the variable is less than or equal to the specified value.LE (<=)

Skips before Break
The number of skips before execution of the watchpoint if it is not to be executed until
the program has run a certain number of times. The default is 0.

Number of Breaks
The maximum number of executions of the watchpoint. After this number has been
reached, the watchpoint is ignored. The default is 0.

3 Choose theOK button.

The name of the selected variable is now shown on theWatchpoints tab of the break- and
watchpoints window.

Modifying a Watchpoint

You can modify each watchpoint which is shown in the break- and watchpoints window.

To modify a watchpoint

1 Select the required watchpoint, invoke the context menu and chooseModify.

TheModify Watchpoint dialog box appears.

31Debugger

Setting Breakpoints and Watchpoints

This dialog box provides the same options as the AddWatchpoint dialog box. See Adding a
Watchpoint Using a Dialog Box for a description of the options which can be specified in this
dialog box.

In addition, this dialog box provides the Reset Hit Count button. When you choose this
command button, the current hit count is reset to 0.

2 Make all required changes and choose theOK button.

Deactivating Breakpoints and Watchpoints Temporarily

Each defined breakpoint or watchpoint can be deactivated temporarily.

To deactivate a breakpoint or watchpoint

1 Select the required tab in the break- and watchpoints window.

2 For the desired entry, select the first column of the tab to remove the check mark.

Or:

Invoke the context menu and choose Activate/Deactivate.

When you have deactivated a breakpoint, the symbol which is shown in the left margin of
the editor window changes. See Symbols Used in the Editor Window.

To activate a deactivated breakpoint or watchpoint

1 Select the required tab in the break- and watchpoints window.

2 For the desired entry, select the first column of the tab so that a check mark is shown again.

Or:

Debugger32

Setting Breakpoints and Watchpoints

Invoke the context menu and choose Activate/Deactivate.

When you have activated a breakpoint, the symbol which is shown in the left margin of the
editor window changes. See Symbols Used in the Editor Window.

To deactivate or activate all breakpoints or watchpoints

1 Select the required tab in the break- and watchpoints window.

2 Make sure that no entry is selected (otherwise, the context menu does not show the required
command), invoke the context menu and choose either Deactivate All or Activate All.

When you have deactivated or activated all breakpoints, the symbols which are shown in the
left margin of the editor window change. See Symbols Used in the Editor Window.

Showing the Source Code for a Defined Breakpoint or Watchpoint

For each defined breakpoint orwatchpointwhich is shown in the break- andwatchpointswindow
(no matter whether it is active or not), you can go to the source in which this breakpoint or
watchpoint has been defined.

To go to the source in which a breakpoint or watchpoint has been defined

1 Select the required tab in the break- and watchpoints window.

2 Select the required entry, invoke the context menu and chooseGo To Source Code.

Or:

Double-click the required entry.

For a breakpoint, the trace position is shown next to the source code line in which the break-
point has been defined.

For a watchpoint, the entire source code in which the watchpoint has been defined is shown.

33Debugger

Setting Breakpoints and Watchpoints

Deleting Breakpoints and Watchpoints

You can either delete selected breakpoints or watchpoints or you can delete all breakpoints or
watchpoints.

See also Adding and Removing a Breakpoint.

To delete a breakpoint or watchpoint

1 Select the required tab in the break- and watchpoints window.

2 Select the required entry.

3 Invoke the context menu and chooseDelete.

Or:

Press DEL.

To delete all breakpoints or watchpoints

1 Select the required tab in the break- and watchpoints window.

2 Make sure that no entry is selected (otherwise, the context menu does not show the required
command), invoke the context menu and chooseDelete All.

Symbols Used in the Editor Window

The following symbols may appear in the left margin of the editor window.

This line contains an active breakpoint.

This line contains a deactivated breakpoint.

This line contains an active breakpoint. It also contains the trace position.

This line contains a deactivated breakpoint. It also contains the trace position.

This line contains a breakpoint which has not yet been validated (that is, the debugger has not yet
reached the marked line). The state can either be shown as active (red background) or inactive (white
background).

This line contains an invalid breakpoint (for example, when the breakpoint has been set on a line after
the END statement). The state can either be shown as active (red background) or inactive (white
background).

Debugger34

Setting Breakpoints and Watchpoints

7 Modifying and Watching Variables

■ Modifying a Variable ... 36
■ Adding a Watchvariable .. 39
■ Managing the Variables in the Variables Window ... 40

35

Modifying a Variable

You can modify a variable in different ways:

■ Modifying a Variable in the Editor Window
■ Modifying a Variable in the Variables Window

Modifying a Variable in the Editor Window

You can modify the variable which is shown at the current cursor position in the editor window.
In the resulting dialog box, you can also enter the name of another variable to be modified.

To modify the variable at the cursor position

1 Select the variable in the editor by placing the cursor at any positionwithin the variable name.

2 Invoke the context menu and chooseModify Variable.

Or:

Press SHIFT+F9.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

TheModify Variable dialog box appears showing the content of the selected variable. In the
case of an array, the node is expanded by default.

Debugger36

Modifying and Watching Variables

3 To modify the content of the variable, enter the new value in the Value text box.

Note: For variables which cannot be modified (such as unmodifiable system variables)
the Value text box is dimmed.

You can also use theModify Variable dialog box in the following ways:

■ When you enter the name of another existing variable in the Variable text box, the content
of this variable is immediately shown in the dialog box and you can modify it.

■ In the case of an array, you can modify the occurrences of this array as follows:
■ The same value can be defined for all occurrences: Select the top-level node and enter
the new value.

■ Each occurrence can bemodified separately: Select the required occurrence and enter the
new value.

■ Specific occurrences can be modified at the same time: Specify the required occurrences
in the Variable text box. For example, when you change #MYVAR(1:6) to #MYVAR(2:3),

37Debugger

Modifying and Watching Variables

only the second and third occurrence is shown in the dialog box. When you enter a new
value, it applies only to these occurrences.

Variables (and occurrences) which you have modified are indicated in red.

4 When you activate theHexadecimal Display check box, the content of the variable is shown
in hexadecimal format.

5 Choose the Apply button.

Your changes are immediately saved when you choose the Apply button. They are not yet
shown the in variables window.

6 To close the dialog box, choose the Close button.

Your changes are now shown the in variables window.

Modifying a Variable in the Variables Window

You can modify a variable listed in the variables window.

It is not possible to modify an entry which can further be expanded (such as a view). This is only
possible for the individual variables after the entry has been expanded.

Different colors are used for the entries in the variables window:

■ Gray
Variables which cannot be modified (such as unmodifiable system variables) are indicated in
gray.

■ Red
Variables which you have modified are indicated in red.

To modify a variable in the variables window

1 Select the required tab in the variables window.

2 Select the required entry.

3 Invoke the context menu and chooseModify.

TheModify Variable dialog box appears showing the content of the selected variable.

For further information on this dialog box, seeModifying a Variable in the Editor Window.

Debugger38

Modifying and Watching Variables

Adding a Watchvariable

If youwant towatch specific variables, you can add them to theWatch tab of the variableswindow.

You can add a watchvariable in different ways:

■ Adding a Watchvariable from the Editor Window
■ Adding a Watchvariable from the Variables Window

Note: It is not possible to modify the content of a watchvariable.

Adding a Watchvariable from the Editor Window

You can define the variable at the current cursor position in the editor window as a watchvariable.

To add a watchvariable to the variables window

1 Select the variable in the editor by placing the cursor at any positionwithin the variable name.

2 Invoke the context menu in the editor and choose Add to Watchvariables.

Or:

Press CTRL+SHIFT+T.

Or:

Select the variable in the editor. Use the mouse to drag the selected variable to theWatch tab
of the variables window and drop it there.

Adding a Watchvariable from the Variables Window

You can add variables from the first tabs of the variables window to theWatch tab of the same
window.

To define a variable as a watchvariable

1 Select the desired variable in the variables window.

2 Invoke the context menu and choose Add to Watchvariables.

Or:

Press CTRL+SHIFT+T.

39Debugger

Modifying and Watching Variables

Managing the Variables in the Variables Window

The following topics are covered below:

■ Showing the Last Modified Variable
■ Finding a Variable
■ Showing the Content of a Variable in Alphanumeric or Hexadecimal Format
■ Refreshing the Display
■ Deleting Watchvariables

See also Adding a Watchpoint from the Variables Window.

Showing the Last Modified Variable

You can define that the variables which are modified during debugging are always visible in the
variables window. This is helpful when you debug a program which has more variables than can
be displayed in the variableswindowat the same time.When a variable ismodified during debug-
ging which is currently not visible in the variables window, the display of the variables window
is scrolled in such a way so that the modified variable is visible.

To switch this feature on an off

1 Select any tab in the variables window.

2 Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Show Last Modified.

When this feature is active, a check mark is shown next to this menu command.

Finding a Variable

When the variables window is active, you can search for a variable on the currently selected tab.

Note: When a node in the variables window is not expanded, its content is not considered
in the search.

To find a variable

1 Select the required tab in the variables window.

2 Press CTRL+F.

Or:

Debugger40

Modifying and Watching Variables

Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Find.

The Find Variable dialog box appears.

3 Specify your search criteria:

DescriptionOption

The string to be found.Find

If this check box is selected, only strings are found that exactly match the entry in the
Find text box. If not selected, any combination of upper- and lower-case letters will
be found.

Case sensitive

If this check box is selected, the search is restricted towholewords only. If not selected,
all occurrences of the string will be found.

Whole word

When this option button is selected, the string in the Find text box applies to a variable
name.

Names

When this option button is selected, the string in the Find text box is applies to the
contents of a variable. That is: youwant to find a variable which contains the specified
contents.

Contents

4 Choose theOK button.

When a variable which corresponds to the specified criteria can be found on the current tab,
its name is highlighted.

Note: A message is briefly displayed indicating whether the specified text has been
found or not.

To find the next variable with the specified search criteria

■ Press F3.

Or:

41Debugger

Modifying and Watching Variables

Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Find Next.

Showing the Content of a Variable in Alphanumeric or Hexadecimal Format

You can define whether the contents of the variables is shown in alphanumeric or hexadecimal
format in the variables window.

To toggle the format

1 Select the required tab in the variables window.

2 Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and chooseHexadecimal Display.

When the value in the Contents column was previously shown in the alphanumeric format,
it is now shown in hexadecimal format, and vice versa.

When the hexadecimal format is used, a check mark is shown next to this menu command.

Refreshing the Display

Usually when something changes in Natural Studio, the display is automatically refreshed. In the
debugger, this happens when the content of a variable changes. This automatic refresh requires
that the corresponding option has been set in the workspace options.

When the automatic refresh has been deactivated in the workspace options and the content of one
or more variables changes in the currently selected tab, you have to refresh the display manually
in order to see the current values.

There is one exception: Watchvariables are always refreshed automatically, independent of the
setting in the workspace options.

To refresh the display manually

1 Select any tab in the variables window (except theWatch tab).

2 Press F5.

Or:

Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Refresh.

Debugger42

Modifying and Watching Variables

Deleting Watchvariables

You can either delete selected watchvariables or all watchvariables from the variables window.

To delete a watchvariable

1 Select the desired watchvariable in theWatch tab of the variables window.

2 Invoke the context menu and chooseDelete.

Or:

Press DEL.

To delete all watchvariables

■ Make sure that no entry is selected in theWatch tab of the variables window (otherwise, the
context menu does not show the required command), invoke the context menu and choose
Delete All.

43Debugger

Modifying and Watching Variables

44

8 Using the Call Stack

■ About the Call Stack .. 46
■ Displaying the Source Code of a Different Object ... 46
■ Returning to the Object at the Current Trace Position .. 47

45

About the Call Stack

The call stack window lists the objects which have been called during the current debugging
session in hierarchical order.

The latest object is always shown at the top of the list. The variables window shows all variables
which belong to this object by default. For example, when you step into a subprogram, this sub-
program is shown at the top of the list and the variableswindow automatically shows the variables
for this subprogram.

You can bring the editor window for a specific object to the front by double-clicking the corres-
ponding entry in the call stack window.

Notes:

1. A gray arrow in the editor window indicates the position at which the previous object in the
call stack hierarchy was invoked.

2. If copycode is debugged, the call stack does not contain an additional entry for this copycode.

Displaying the Source Code of a Different Object

For each object listed in the call stack, you can display the source code and thus bring its editor
window to the front. There are different commands for this purpose:

■ Go To Source Code
When you choose this command, the variables for the object in the activated editor window are
not considered in the variableswindow. It still shows the variables of the previously called object.

■ Switch To Call Level
When you choose this command, the variables for the object in the activated editor window are
shown in the variables window.

To go to the source code of a different object

■ In the call stack, select the object for which you want to display the source code and from the
context menu, chooseGo To Source Code.

The editor window for this object is activated.

Debugger46

Using the Call Stack

To go to the source code of a different object and display the variables of this object

■ In the call stack, select the object for which you want to display the source code and from the
context menu, choose Switch To Call Level.

The editor window for this object is activated. The content of the variables window changes;
it now shows variables of this object.

Returning to the Object at the Current Trace Position

When you have displayed the source code of a different object, you can return to the object at the
current trace position (which is indicated by an arrow) and thus bring its editor window to the
front.

To return to the object at the current trace position

■ From the Debugmenu, choose Show Trace Position.

Note: See also Trace Position in Editor Window.

The editor window containing the current trace position is activated. The content of the vari-
ables window changes; it now shows the variables of this object.

47Debugger

Using the Call Stack

48

	Debugger
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 General Information
	About the Debugger
	Remote Debugging

	3 Starting and Leaving the Debugger
	Preparing to Use the Debugger
	Starting the Debugger
	Restarting the Debugger
	Leaving the Debugger

	4 Elements of the Debugger
	Debugger Information in the Title Bar
	Menu Commands
	Toolbar
	Trace Position in Editor Window
	Debugger Windows
	Variables
	Break- and Watchpoints
	Call Stack

	5 Moving through the Code
	Stepping Through the Code
	Stepping Over Another Object
	Stepping Into Another Object
	Stepping Out Of Another Object

	Going to the Next Breakpoint or Watchpoint
	Going to the Next Event
	Going to the Cursor Position
	Going to the Next Statement

	6 Setting Breakpoints and Watchpoints
	About Breakpoints and Watchpoints
	Adding and Removing a Breakpoint
	Modifying a Breakpoint
	Adding a Watchpoint
	Adding a Watchpoint from the Editor Window
	Adding a Watchpoint from the Variables Window
	Adding a Watchpoint Using a Dialog Box

	Modifying a Watchpoint
	Deactivating Breakpoints and Watchpoints Temporarily
	Showing the Source Code for a Defined Breakpoint or Watchpoint
	Deleting Breakpoints and Watchpoints
	Symbols Used in the Editor Window

	7 Modifying and Watching Variables
	Modifying a Variable
	Modifying a Variable in the Editor Window
	Modifying a Variable in the Variables Window

	Adding a Watchvariable
	Adding a Watchvariable from the Editor Window
	Adding a Watchvariable from the Variables Window

	Managing the Variables in the Variables Window
	Showing the Last Modified Variable
	Finding a Variable
	Showing the Content of a Variable in Alphanumeric or Hexadecimal Format
	Refreshing the Display
	Deleting Watchvariables

	8 Using the Call Stack
	About the Call Stack
	Displaying the Source Code of a Different Object
	Returning to the Object at the Current Trace Position

