S software*

A SOFTWARE GMBH BRAND

Natural

System Functions

Version 9.3.2

July 2025

ADABAS & NATURAL

This document applies to Natural Version 9.3.2 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATWIN-NNATFUNCTIONS-932-20250711

Table of Contents

PTOACE ..t v
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3

L e e 5
2 Natural System Functions for Use in Processing LOOPScccceeeuieviiiiiiniieneene. 7
Using System Functions in Processing LOOPSccccevvviiiiiiiiiiiiiiiiiiiice, 8
AVER(I)(field) .ooovviiiiiiiiiiiiiii 10
COUNT(X)(field) «eeoveeiieiiiiiiiieiccce 10
MAX(T)(HELA) v 11
MIN(E)(Feld) oeovviiiiiiiiiiiiic 11
NAVER(D)(Held) ..ooovveiiiiiiiiiiiiiiiiiiiecccee e 11
NCOUNT(r)(field) ..ooovviiiiiiiiiiiiiiiiiiciici 11
NMIN(T)(Fild) coveoveiiiiiiiiei e 12
OLD(r)(field) ..veiviiiiiiiiiiiiiiic 12
SUMU(E)(FIELA) +eeeeeniiiieeeiitee ettt ettt e e e e e e 12
TOTAL(T)(field) ..oovviviiiiiiiiiiiiciccc e 12
EXamMPLES ...ooiniiiiiii e 13

3 Mathematical System FUnCtionsc.coceoviiiiiiiiiiiiiic 19

IT Miscellaneous System FUNCHONSccocoiiiiiiiiiiiiic 23
4 *MINVAL/*MAXVAL - Evaluate the Minimum/Maximumcccccceevuernnnne. 25
FUNCHON ..o 26
ReSIICHONS ..ovveeiiiiiiiicci 26

Syntax Descriptionccoooiiiiiiiiiiii 26
Resulting Format/Length Conversion Rule Tablesccccccoccveriiiiiinninnneen. 28
Evaluating the result-format-lengthc.ccoocoiiii 30

5 *TRANSLATE - Translate to Lower/Upper Case Charactersc.ccccuevurnnene. 35
FUNCHON ..o 36
ReSIICHONS ...vviiiiiiiciiicc 36

Syntax Descriptionccocciiiiiiiiiiiiiiiiiiii i 36

Exampleooooiiiiiiii 37

6 *TRIM - Remove Leading and/or Trailing Blanksccccccooviiiiiiiiiniiinnnne. 39
FUNCHON ..o 40
ReSIICHONS ...vviiiiiiiciiicccc 40

Syntax Descriptionccoccviiiiiiiiiiiiiiiiiii 40
EXAMPIES ...ooviiiiiiiiici 41

7 POS - Field Identification FUNCHONccccoiiiiiiiiiiiiiiiii, 45

8 RET - Return Code FUNCHONcoccuiiiiiiiiiiiiiiiiiiiiiiicccecc e 47

9 SORTKEY - Sort-Key FUNCHONccoooiiiiiiiii, 49

III Functions Supplied as Natural ObjJectscccceeviiiiiiiiiiiiiiiniiiiiii 53
10 Functions Supplied as Natural Objectscc.occooviiiiiiiiii 55
URL ENCOAINE ..ot 56

System Functions

Base64 ENCOdiNgccccoouiiiiiiiiiiiiiiiiiiiiiii 66

iv System Functions

Preface

This documentation describes various Natural “built-in” functions for use in certain statements;
see System Functions in the Programming Guide.

This documentation is organized under the following headings:

System Functions for Use in
Processing Loops

Describes Natural system functions which can be used in a program
loop context.

Mathematical System Functions

Describes the system functions which are supported in arithmetic
processing statements and in logical condition criteria.

Miscellaneous System Functions

System functions to evaluate the minimum or maximum; system function
for field identification; system function to receive the return code from
anon-Natural program; system function to convert “incorrectly sorted”
characters; system function for lower/upper case translation; system
function to remove leading and/or trailing blanks.

Functions Supplied as Natural
Objects

Describes functions which are supplied as Natural objects to support,
for example, URL encoding and Base64 conversion.

See also Example of System Variables and System Functions in the Programming Guide.

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

System Functions

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

System Functions 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

|

= 2 Natural System Functions for Use in Processing Loops

= 3 Mathematical System Functionsc.....co.o.

2

Natural System Functions for Use in Processing Loops

= Using System Functions in ProCesSINGg LOOPSoeiiuiviiiiiiiiiie et 8
B AVER(F)(IEIA) ettt 10
LI OO0V T 1Yo PRSPPI 10
B MAX(F)TIEIA) e 11
B IVIN(EY(FIEIA) et 11
B NAVER(F)(FIEIA) ..ottt et 11
B NCOUNT(F)IEI) ettt ettt ettt 11
B NMIN(EYFIEI) .ttt ettt 12
B OLD(I)(FIBIA) ..t 12
B SUMP)IEI) .t 12
B TOTAL(D)(FIEI) .ottt ettt ettt 12
B EXAMIPIES i 13

Natural System Functions for Use in Processing Loops

This chapter describes those Natural system functions which can be used in a program loop context.

Using System Functions in Processing Loops

The following topics are covered:

= Specification/Evaluation

= Format/Length Requirements for AVER, NAVER, SUM and TOTAL
= Use in SORT GIVE Statement

= Statement Referencing (r)

Specification/Evaluation

Natural system functions may be specified in

" assignment and arithmetic statements:
" MOVE
" ASSIGN
= COMPUTE
= ADD
® SUBTRACT
" MULTIPLY
® DIVIDE
® input/output statements:
" DISPLAY
" PRINT
" WRITE

that are used within any of the following statement blocks:

" AT BREAK
= AT END OF DATA
= AT END OF PAGE

that is, for all FIND, READ, HISTOGRAM, SORT or READ WORK FILE processing loops.

If a system function is used within an AT END OF PAGE statement, the corresponding DISPLAY
statement must include the GIVE SYSTEM FUNCTIONS clause.

Records rejected by a WHERE clause are not evaluated by a system function.

8 System Functions

Natural System Functions for Use in Processing Loops

If system functions are evaluated from database fields which originated from different levels of
processing loops initiated with a FIND, READ, HISTOGRAM or SORT statement, the values are always
processed according to their position in the loop hierarchy. For example, values for an outer loop
will only be processed when new data values have been obtained for that loop.

If system functions are evaluated from user-defined variables, the processing is dependent on the
position in the loop hierarchy where the user-defined variable was introduced in reporting mode.
If the user-defined variable is defined before any processing loop is initiated, it will be evaluated
for system functions in the loop where the AT BREAK, AT END OF DATAor AT END OF PAGE statement
is defined. If a user-defined variable is introduced within a processing loop it will be processed
the same as a database field from that processing.

For selective referencing of system function evaluation for user-defined variables it is recommended
to specify a loop reference with the user-defined variable to indicate in which loop the value is to
be processed. The loop reference may be specified as a statement label or source code line number.

Format/Length Requirements for AVER, NAVER, SUM and TOTAL

In general, the format and length of the system functions AVER, NAVER, SUM and TOTAL are the same
as the field to which they are applied. The output length of the field must be long enough (either
by default or user-specified) to hold any overflow digits. If any arithmetic overflow occurs, an
error message will be issued.

The following applies:

= If the field is not long enough, use the NL option of the SORT GIVE statement to increase the
output length as follows:

SUM(field)(NL=nn)

This will not only increase the output length but also causes the field to be made longer internally.

® For a field of format N, the format of the system function will be of format P (with the same
length as the field).

® When the system function is written to a work file (WRITE WORK FILE statement), the internal
length of the field is increased by one digit for numeric fields (format N or P), for example, SUM
of a field of format P3 is increased to P4. This has to be taken into consideration when reading
the work file.

System Functions 9

Natural System Functions for Use in Processing Loops

Use in SORT GIVE Statement

System functions may also be referenced when they have been evaluated in a GIVE clause of a
SORT statement.

For a reference to a system function evaluated with a SORT GIVE statement, the name of the system
function must be prefixed with an asterisk (*).

Statement Referencing (r)

Statement referencing is also available for system functions (see also Referencing of Database Fields
Using (r) Notation in the section User-Defined Variables of the Programming Guide).

By using a statement label or the source-code line number (r) you can determine in which processing
loop the system function is to be evaluated for the specified field.

AVER(r)(field)

Format/length:|Same as field.

Exception: See Format/Length Requirements for AVER, NAVER, SUM and TOTAL.

This system function contains the average of all values encountered for the field specified with
AVER. AVER is updated when the condition under which AVER was requested is true.

COUNT(r)(field)

‘ Format/length: | P7 ‘

COUNT is incremented by 1 on each pass through the processing loop in which it is located. COUNT
is incremented regardless of the value of the field specified with COUNT.

10 System Functions

Natural System Functions for Use in Processing Loops

MAX(r)(field)

‘Format/length: ‘ Same as field. |

This system function contains the maximum value encountered for the field specified with MAX.
MAX is updated (if appropriate) each time the processing loop in which it is contained is executed.

MIN(r)(field)

‘Format/length: ‘Same as field. |

This system function contains the minimum value encountered for the field specified with MIN.
MIN is updated (if appropriate) each time the processing loop in which it is located is executed.

NAVER(r)(field)

Format/length:|Same as field.

Exception: See Format/Length Requirements for AVER, NAVER, SUM and TOTAL.

This system function contains the average of all values - excluding null values - encountered for
the field specified with NAVER. NAVER is updated when the condition under which NAVER was re-
quested is true.

NCOUNT(r)(field)

‘ Format/length: ‘ P7 ‘

NCOUNT is incremented by 1 on each pass through the processing loop in which it is located unless
the value of the field specified with NCOUNT is a null value.

Whether the result of NCOUNT is an array or a scalar value depends on its argument (field). The
number of the resulting occurrences is the same as of field.

System Functions "

Natural System Functions for Use in Processing Loops

NMIN(r)(field)

‘Format/length: ‘Same as field.

This system function contains the minimum value encountered - excluding null values - for the
field specified with NMIN. NMIN is updated (if appropriate) each time the processing loop in which
it is located is executed.

OLD(r(field)

‘Format/length: ’Same as field.

This system function contains the value which the field specified with 0LD contained prior to a
control break as specified in an AT BREAK condition, or prior to the end-of-page or end-of-data
condition.

SUM(r)(field)

Format/length:|Same as field.

Exception: See Format/Length Requirements for AVER, NAVER, SUM and TOTAL.

This system function contains the sum of all values encountered for the field specified with SUM.
SUM is updated each time the loop in which it is located is executed. When SUM is used following
an AT BREAK condition, it is reset after each value break. Only values that occur between breaks
are added.

TOTAL(r)(field)

Format/length:|Same as field.

Exception: See Format/Length Requirements for AVER, NAVER, SUM and TOTAL.

This system function contains the sum of all values encountered for the field specified with TOTAL
in all open processing loops in which TOTAL is located.

12 System Functions

Natural System Functions for Use in Processing Loops

Examples

= Example 1 - AT BREAK Statement with Natural System Functions OLD, MIN, AVER, MAX, SUM,
COUNT

= Example 2 - AT BREAK Statement with Natural System Function AVER

= Example 3 - AT END OF DATA Statement with System Functions MAX, MIN, AVER

= Example 4 - AT END OF PAGE Statement with System Function AVER

Example 1 - AT BREAK Statement with Natural System Functions OLD, MIN, AVER, MAX, SUM, COUNT

** Example 'ATBEX3': AT BREAK (with Natural system functions)
R R R R B b R e b i b S b b i e b B b b S b b e e d b b i e i b e B e i b b e i b b e b S b b b o e b b b Y
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
LIMIT 3
READ EMPLOY-VIEW LOGICAL BY CITY = 'SALT LAKE CITY'
DISPLAY NOTITLE CITY NAME 'SALARY' SALARY(1) 'CURRENCY' CURR-CODE(1)
/*
AT BREAK OF CITY
WRITE / OLD(CITY) (EM=XAXAXAXAXAXAXAXAXAXAXAXAXAXAX)

31T MINIMUM:" MINCSALARY(1)) CURR-CODE(1) /
31T AVERAGE: "' AVER(SALARY (1)) CURR-CODE(1) /
31T MAXIMUM: "' MAX(SALARY(1)) CURR-CODE(1) /
31T SUM:" SUM(SALARY (1)) CURR-CODE(1) /
35T COUNT(SALARY (1)) 'RECORDS FOUND" /

END-BREAK

/%
AT END OF DATA
WRITE 22T 'TOTAL (ALL RECORDS):'
T*SALARY TOTAL(SALARY (1)) CURR-CODE(1)
END-ENDDATA
END-READ

*

END

Output of program ATBEX3:

System Functions 13

Natural System Functions for Use in Processing Loops

CITY NAME SALARY CURRENCY
SALT LAKE CITY ANDERSON 50000 USD
SALT LAKE CITY SAMUELSON 24000 USD
SALT L AKE CITY MINIMUM: 24000 USD
AVERAGE : 37000 USD
MAXIMUM: 50000 USD
SUM: 74000 USD

2 RECORDS FOUND

SAN DIEGO GEE 60000 USD
S AN DI EGO MINIMUM: 60000 USD
AVERAGE: 60000 USD

MAXIMUM: 60000 USD

SUM: 60000 USD

1 RECORDS FOUND

TOTAL (ALL RECORDS): 134000 USD «

Example 2 - AT BREAK Statement with Natural System Function AVER

**% Example "ATBEX4': AT BREAK (with Natural system functions)
khkhkhkkhhkhkhhkhkhhkhkhhkkhkhhkhhhkhkhhkhkhkhkhkhkhhhhkhhkhkhhkhkhhkhhhkhkkhhkhhkhkhkhhkhhkhkhhkhrhhkhkhhkkhhkhkhikxk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 SALARY (2)
*
1 JFINC-SALARY (P11)
END-DEFINE
S
LIMIT 4
EMPL. READ EMPLOY-VIEW BY CITY STARTING FROM "ALBU'
COMPUTE #FINC-SALARY = SALARY (1) + SALARY (2)
DISPLAY NAME CITY SALARY (1:2) 'CUMULATIVE' #INC-SALARY
SKIP 1
/*
AT BREAK CITY
WRITE NOTITLE
"AVERAGE: "' T*SALARY (1) AVER(CSALARY(1)) /
"AVERAGE CUMULATIVE:' T*{FINC-SALARY AVERCEMPL.) (4fINC-SALARY)
END-BREAK
END-READ

*

END

Output of program ATBEX4:

14 System Functions

Natural System Functions for Use in Processing Loops

NAME CITY ANNUAL CUMULATIVE
SALARY

HAMMOND ALBUQUERQUE 22000 42200
20200

ROLLING ALBUQUERQUE 34000 65200
31200

FREEMAN ALBUQUERQUE 34000 65200
31200

LINCOLN ALBUQUERQUE 41000 78700
37700

AVERAGE: 32750

AVERAGE CUMULATIVE: 62825

Example 3 - AT END OF DATA Statement with System Functions MAX, MIN, AVER

** Example 'AEDEX1S': AT END OF DATA
R R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e b b S e e b b S S e b b R e b b e b b b S S 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
LIMIT 5
EMP. FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'
IF NO RECORDS FOUND
ENTER
END-NOREC
DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)
/*
AT END OF DATA
IF *COUNTER (EMP.) = 0
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM
END-IF
WRITE NOTITLE / 'SALARY STATISTICS:'
/ 7X 'MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X "MINIMUM:' MIN(SALARY(1)) CURR-CODE (1)
/ 7X "AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)
END-ENDDATA
/*

System Functions

15

Natural System Functions for Use in Processing Loops

END-FIND

*

END

Output of program AEDEX1S:

PERSONNEL NAME FIRST-NAME ANNUAL ~ CURRENCY
ID SALARY CODE
11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE : 55680 DM

Example 4 - AT END OF PAGE Statement with System Function AVER

** Example "AEPEX1S': AT END OF PAGE (structured mode)
Kkhkkhkhkhkhkkhkhhhkhkhkkhkhhkhkhkkhkhhhhkhkkhkhhhhkhkhkhhhhkhkhhrhkhkhkhhhkhkhkhkhhhhkkhkhhhhkkhkhkhhkhkhkhkhrkkkhkhkxx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
FORMAT PS=10
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000'
DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*
AT END OF PAGE
WRITE / 28T 'AVERAGE SALARY: ..."' AVER(SALARY(1)) CURR-CODE (1)
END-ENDPAGE
END-READ

*

END

Output of program AEPEX1S:

16 System Functions

Natural System Functions for Use in Processing Loops

NAME CURRENT SALARY CURRENCY
POSITION CODE

CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

AVERAGE SALARY: ... 33533 USD

System Functions 17

18

3 Mathematical System Functions

The following mathematical functions are supported in arithmetic processing statements (ADD,
COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) and in logical condition criteria:

Function Format/Length Explanation
ABS(field) |sameas field Absolute value of field.
ATN(field) |F8 (%) Arc tangent of field.
COS(field) |F8(*) Cosine of field.
EXP(field) F8 (%) Exponentiation of exponent field to base e, that is, eﬁem, where e is
Euler's number.
FRAC(field) |sameas field Fractional part of field.
INT(field) |sameas field Integer part of field.
LOG(field) |F8(%) Natural logarithm of field.
A negative value in the argument field will be treated as positive.
SGN(field) |sameas field Signof field(-1, 0, +1).
SIN(field) |F8(*) Sine of field.
SQRT (field) |F8(*) Square root of field.
A negative value in the argument field will be treated as positive.
TAN(field) |F8 (%) Tangent of field.
VAL(field) |same as target field |[Extract numeric value from an alphanumeric 7e7d. The content of

the f7e]dmustbe the alphanumeric (code page or Unicode) character
representation of a numeric value. Leading or trailing blanks in the
fieldwill be ignored; decimal point and leading sign character will
be processed.

If the target field is not long enough, decimal digits will be truncated
(see also Field Truncation and Field Rounding in the section Rules for
Arithmetic Assignment of the Programming Guide).

19

Mathematical System Functions

" These functions are evaluated as follows:

® The argument is converted to format/length F8 and then passed to the operating system for
computation.

® The result returned by the operating system has format/length F8, which is then converted to

the target format.

A fieldto be used with a mathematical function - except VAL - may be a constant or a scalar; its
format must be numeric (N), packed numeric (P), integer (I), or floating point (F).

A fieldto be used with the VAL function may be a constant, a scalar, or an array; its format must
be alphanumeric.

Mathematical Functions Example:

** Example 'MATHEX': Mathematical functions

RRA R R B R R R e e b R R e b b e e b b e e b b e e b b b e e b b S e b b R e e b b R e b b e e b R e b b e e b b b o S

DEFINE DATA LOCAL

1 #A (N2.1) INIT <10>
1 #B (N2.1) INIT <-6.3>
1 #cC (N2.1) INIT <0>
1 JLOGA (N2.6)

1 #/SQRTA (N2.6)

1 #/,TANA (N2.6)

1 #ABS (N2.1)

1 #fFRAC (N2.1)

1 #INT (N2.1)

1 #SGN (N1)

END-DEFINE

*

COMPUTE #LOGA = LOG(#A)
WRITE NOTITLE '=' #A 5X 'LOG" 40T #LOGA

*

COMPUTE #SQRTA = SQRT(#A)

WRITE '=' #fA 5X "SQUARE ROOT' 40T #SQRTA
*

COMPUTE #TANA = TAN(F#A)

WRITE ="' #A 5X 'TANGENT' 40T FTANA
*

COMPUTE #ABS = ABS(§B)

WRITE // '=' {#B 5X 'ABSOLUTE' 40T #tABS
*

COMPUTE #FRAC = FRAC(#B)

WRITE '=' #B 5X 'FRACTIONAL' 40T #FRAC
*

COMPUTE #INT = INT({B)

WRITE '=' #B 5X 'INTEGER' 40T FFINT
*

COMPUTE #SGN = SGN({A)

WRITE // '=" #fA 5X 'SIGN' 40T SGN

20 System Functions

Mathematical System Functions

*

COMPUTE #SGN = SGN(#B)

WRITE '=' 4B 5X 'SIGN'
*

COMPUTE #SGN = SGN(#C)

WRITE '=' 4fC 5X 'SIGN'
*

END

Output of program MATHEX:

#A: 10.0 LOG

#A: 10.0 SQUARE ROOT
#A: 10.0 TANGENT

#B: -6.3 ABSOLUTE
#B: -6.3 FRACTIONAL
#B: -6.3 INTEGER

#A: 10.0 SIGN

#B: -6.3 SIGN

#HC: 0.0 SIGN

40T ESGN

40T HSGN

2.302585
3.162277
0.648360

6.3
-0.3
-6.0

System Functions

21

22

II Miscellaneous System Functions

The following topics are covered:

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum
*TRANSLATE - Translate to Lower/Upper Case Characters
*TRIM - Remove Leading and/or Trailing Blanks

POS - Field Identification Function

RET - Return Code Function

SORTKEY - Sort-Key Function

23

24

4 *MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

B Function ...,
® Restrictionsooevvvviiiiiieeee
= Syntax Description

= Resulting Format/Length Conversion Rule Tablescooouiiiiiiiiiii e

= Evaluating the result-format-length

25

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

{ *MINVAL

} ([(IR=result-format/length)] operand,...)
*MAXVAL

Format/length: Format and length may be specified explicitly using the IR clause or evaluated
automatically using the Format/Length Conversion Rule Tables below.

Function

The Natural system function *MINVAL/*MAXVAL evaluates the minimum/maximum value of all
given operand values. The result is always a scalar value. If an array is specified as operand, the
minimum/maximum of all array fields is evaluated.

When using alphanumerical or binary data as an argument, if the data is the same (for example,
*MINVAL("AB','AB")), then the result is the argument with the smallest/largest length value.

Restrictions

When using the system function *MINVAL/*MAXVAL, the following restrictions apply:

" *MINVAL/*MAXVAL must not be used where a target variable is expected.

" You may not nest *MINVAL/*MAXVAL in a system function.

Syntax Description

Operand Definition Table:

Operand |Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted
operand |C |s |A |G | A‘U|N|P|I‘F‘B‘D‘T| | | | yes no

Syntax Element Description:

26 System Functions

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

Syntax Element Description

*MINVAL Evaluates the minimum value of all given operand values.

*MAXVAL Evaluates the maximum value of all given operand values.

operand The operand(s) whose minimum/maximum values are to be evaluated by the
*MINVAL/*MAXVAL system function.

result-format-length |Intermediate Result clause for explicit specification of the resulting
format/length. See IR Clause below.

IR Clause

The IR (Intermediate Result) clause may be used in order to specify explicitly the resuit-
format/length of the whole *MINVAL/*MAXVAL system function.

IR=result-format/ length

format-Tlength

1R= A
(‘U ’) DYNAMIC

B

For an assortment of valid result-format/lengths, refer to the Format/Length Conversion Rule
Tables below.

Syntax Element Description:

Syntax Element Description

format-length |The compiler tries to determine the resulting format/length of the whole function. If
the compiler cannot determine a format/length in a way that no loss of precision is
guaranteed, the format - Tengthmustbe set by the programmer using the IR operand

extension.
A, UorB Format: Alphanumeric, Unicode or Binary for dynamic variable.
DYNAMIC Instead of specifying a fixed format/length, you may specify an alphanumeric, Unicode

or binary format with dynamic length.

Example:

System Functions 27

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

DEFINE DATA LOCAL

1 #fRESULTI (14)

1 #FRESULTA (A20)

1 #fRESULTADYN (A) DYNAMIC

1 #FA(I4) CONST <1234>

1 #B(A20) CONST <H'30313233'> /* '0123' stored

1 #C(12/1:3) CONST <2000, 2100, 2200>

END-DEFINE

*

#FRESULTA := *MAXVAL((IR=A20) #A, #B) /*no error, I4->A20 is allowed!
#FRESULTADYN := *MAXVAL((IR=(A)DYNAMIC) #A, #B) /*result is (A) dynamic

/* #RESULTI := *MAXVAL((IR=I4) #A, 4B) /*compiler error, because conv. <
A20->14 is not allowed!

J#FRESULTI := *MAXVAL((IR=I4) #A, #C(*)) /*maximum of the array is <
evaluated

DISPLAY RESULTA #RESULTADYN (AL=10) #RESULTI

END

Resulting Format/Length Conversion Rule Tables

There are different ways to define the resulting format/length of the whole *MINVAL/*MAXVAL system
function.

= Explicit Specification of the Resulting Format/Length
= |mplicit Specification of the Resulting Format/Length

Explicit Specification of the Resulting Format/Length

The resulting format/length of the whole *MINVAL/*MAXVAL system function may be specified by
the IR clause. All operands specified will be converted into this resulting format/length, if this is
possible without any loss of precision. Afterwards the minimum/maximum of all the converted
operands will be evaluated and one single scalar value with the evaluated format/length will be
set as result of the whole system function.

Implicit Specification of the Resulting Format/Length

If no IR clause is used inside the *MINVAL/*MAXVAL system function, the resulting format/length
will be evaluated regarding the format/length of all operands specified as arguments inside the
*MINVAL/*MAXVAL system function. The format/length of each operand is taken and combined with
the format/length of the next following operand of the argument list. The resulting format/length
of two single operands are then evaluated using the Format/Length Conversion Rule Tables below.

The Format/Length Conversion Rule Table is separated into two different subtables. All combina-
tions not shown in the two tables below are invalid and must not be applied inside the argument
list of the *MINVAL/*MAXVAL system function. The keyword FLF indicates that the IR clause must

28 System Functions

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

be used in order to define the resulting format/length, because there otherwise may be a loss of
precision.

Table 1

Covers all the numeric combinations of two different operands.

Second Operand
F - length 11 12 14 F4,F
ormat- lengt Pa.b Na.b , F8
First 1 il 2 14 Pmax(3,a).b F8
Operand 2 2 2 14 Pmax(5, a).b F8
14 14 14 14 Pmax(10,a).b F8
Pmax(3, x).y [Pmax(5, x).y |Pmax(10, x).y |if max(x, a) + max(y, b) <=29/|if y=0 and x
Px.y,Nx.y
Pmax(x, a).max(y, b) <=15;
else FLF F8
else FLF
F8 F8 F8 if b=0 and a <=15 F8
F8
else FLF
Legend:
FLF Format-length declaration forced. The resulting format must be specified using the IR
clause.
Ix Format/length is Integer. x specifies the number of bytes which are used to store the
Integer value.
Fx Format/length is Float. x specifies the number of bytes which are used to store the
Float value.
Px.y Packed format with corresponding number of digits before the decimal point (x, a)
and the precision (y,).
Pa,b
Nx.y Numeric format with corresponding number of digits before the decimal point (x, a)
Na,b and the precision (y,).
Pmax(c, d).e The resulting format is packed. The length is evaluated by the information following.
The number of digits before the decimal point is the maximum value of ¢ and d. The
precision value is e.
Pmax(c, d).max(e,) The resulting forI.n.j:\t is packed. The .length i§ eYaluated by the information following.
The number of digits before the decimal point is the maximum value of ¢ and d. The
precision value is the maximum value of e and 7.

System Functions

29

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

Table 2

Covers all other formats and lengths which may be used for *MINVAL/*MAXVAL system function
operands.

Second Operand

F t-length| D | T
sl AL Aa, A dynamic |Ba, B dynamic |Ua, U dynamic

Operand 71T T < T
Ax, A dynamic NAINA| A dynamic | A dynamic | U dynamic
Bx, B dynamic NA|NA| A dynamic | B dynamic | U dynamic
Ux, U dynamic NA|NA| Udynamic | Udynamic | U dynamic

Legend:

NA This combination is not allowed.

Date format.

Time format.

Bx, Ba Binary format with length x, a.

Ax, Aa Alphanumeric format with length x, a.

Ux,Ua Unicode format with length x, a.

B dynamic| Binary format with dynamic length.

A dynamic| Alphanumeric format with dynamic length.

U dynamic| Unicode format with dynamic length.

Evaluating the result-format-length

Using the rules described above, the compiler is able to process the source operands by regarding
pairs of operands and calculating an intermediate result for each pair. The first pair consists of
the first and the second operand, the second pair of the intermediate result and the third operand,
etc. After all operands have been processed, the last result shows the comparison of format and
length which will be used to compare all operands in order to evaluate the minimum/maximum.
When you use this method of format-length evaluation, the operand format-Tengths can appear
in any order.

30 System Functions

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

Example:

DEFINE DATA LOCAL

1 A (I2) INIT <34>

1 B (P4.2) INIT <1234.56>

1 C (N4.4) INIT <12.6789>

1D (I1) INIT <100>

1 E (I4/1:3) INIT <32, 6745, 456>
1 #fRES-MIN (P10.7)

1 #RES-MAX (P10.7)
END-DEFINE

*

MOVE *MINVAL(A, B, C, D,
MOVE *MAXVAL(A, B, C, D,
DISPLAY #RES-MIN #tRES-MAX
END

E(*)) TO #RES-MIN
E(*)) TO #RES-MAX

Output:

##RES-MIN

12.6789000

FFRES -MAX

6745.0000000

The following table shows the single steps evaluating the format/length of the example automat-
ically. It shows the intermediate result (ir) of all steps and the comparison format/length (cf) which
isused as result-format/length.

Evaluation |Name of First |Format/Length of FirstName of Format/Length of Format/Length of the

Order Operand Operand or Second Second Operand or |Intermediate Result (ir)
Intermediate Result |Operand Intermediate Result

1. A 12 B P4.2 irl = P5.2

2. irl P5.2 C N4.4 ir2=P54

3. ir2 P5.4 D I1 ir3=P54

4. ir3 P5.4 E 14 cf =P10.4

During runtime, all operands are converted into the cf format/length; then all converted values
are compared, and the corresponding minimum/maximum is evaluated.

Notes:

1. If only a single operand is specified, result-format-Tength will be the format/length of this
operand.

2. If a binary operand with a length in the range 1- 4 is specified as an argument inside the
*MINVAL/*MAXVAL system function along with an alphanumeric or Unicode operand, the inter-
mediate result (result-format-Tlength) is evaluated to alphanumeric or Unicode format with
dynamic length.

System Functions 31

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

In this case, the value of the binary operand is considered to be a numeric value, which is con-
verted to the result-format-Tengthaccording to the data transfer rules (the binary numeric
value is converted to unpacked format) before the minimum/maximum is evaluated.

Example:

DEFINE DATA LOCAL
1 #B4 (B4) INIT <1>
1 #A10(AL10) INIT <"2">

END-DEFINE

WRITE "=" *MAXVAL(#A10, #B4) (AL=60) /* RESULT FORMAT-LENGTH IS (A)DYNAMIC: "2"
WRITE "=" *MINVAL(#A10, #B4) (AL=60) /* RESULT FORMAT-LENGTH IS (A)DYNAMIC: "1"
END

Intermediate result-format-length (#A10, #B4) is A dynamic.

So first #A10 is converted into A dynamic as well as #B4 is converted into A dynamic (considering
data transfer rules), before the intermediate result of both operands is evaluated.

Format/Length Evaluation Order

The following graphic represents the order in which format and length are evaluated:

32

System Functions

*MINVAL/*MAXVAL - Evaluate the Minimum/Maximum

Legend:

ir, ir2, ir3| [ntermediate result 1, 2, 3.

cf Resulting comparison format-length.

System Functions 33

34

5

*TRANSLATE - Translate to Lower/Upper Case Characters

L S0 (oo RN 36
B RESITICHONS ...ttt et e a s 36
B SYNEAX DESCIIPHON .t 36

37

= Example

35

*TRANSLATE - Translate to Lower/Upper Case Characters

*TRANSLATE (operand , {
UPPER

LOWER }

Format/length: same as operand.

Function

The Natural system function *TRANSLATE converts the characters of an alphanumerical or binary
operand to upper case or lower case. The content of the operand is not modified.

*TRANSLATE may be specified as an operand in any position of a statement wherever an operand
of format A, U or B is allowed.

Restrictions

When using the system function *TRANSLATE, the following restrictions apply:

" *TRANSLATE must not be used where a target variable is expected.

" You may not nest *TRANSLATE in a system function.

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

oversnd [c s [a] | ARS[[[[[[[[[]] s E

Syntax Element Description:

Syntax Element Description

*TRANSLATE (operand, LOWER) |Lower Case Translation

When the keyword LOWER is used as a second argument, the character
string in operand is translated to lower case.

*TRANSLATE (operand,UPPER) |Upper Case Translation

When the keyword UPPER is used as a second argument, the character
string in operand is translated to upper case.

36 System Functions

*TRANSLATE - Translate to Lower/Upper Case Characters

Example

DEFINE DATA LOCAL

1 #SRC (A)DYNAMIC INIT <'aBcDeFg !§$%&/()=2">
1 #fDEST (A)DYNAMIC

END-DEFINE

*

PRINT 'Source string to be translated..........:"' #SRC

*

MOVE *TRANSLATE(#SRC, UPPER) TO {#fDEST
PRINT 'Source string translated into upper case:' #DEST

*

MOVE *TRANSLATE(#SRC, LOWER) TO 4fDEST
PRINT 'Source string translated into lower case:' #DEST
END

Output:

Source string to be translated..........: aBcDeFg !§$%&/()="
Source string translated into upper case: ABCDEFG !§$%&/()=?

Source string translated into lower case: abcdefg !§$%&/()=?

System Functions 37

38

6 *TRIM - Remove Leading and/or Trailing Blanks

= Function
= Restrictions

= Syntax Description

= Examples

39

*TRIM - Remove Leading and/or Trailing Blanks

*TRIM (operand [,{
TRAILING

LEADING }]

Format/length: same as operand (A, U or B)/DYNAMIC.

Function

The Natural system function *TRIM removes all leading and/or trailing blanks from an alphanu-
meric or a binary string. The content of the operand is not modified. When using a dynamic variable
as operand, the length of this variable is adapted according to the result.

The *TRIM system function may be specified as an operand in any position of a statement wherever
an operand of format A, U or B is allowed.

Restrictions

When using the system function *TRIM, the following restrictions apply:

" *TRIM must not be used where a target variable is expected.
" You may not nest *TRIM in a system function.

= If the operand is a static variable, it is not possible to remove trailing blanks using *TRIM, because
for static variables the remaining trailing positions of the variable memory are filled with space
characters.

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operand [C |s |A | | |AJUlB]|[|]]]]]] yes no

Syntax Element Description:

40 System Functions

*TRIM - Remove Leading and/or Trailing Blanks

Syntax Element Description

*TRIM(operand, LEADING) |Remove Leading Blanks

When the keyword LEADING is used as a second argument, all leading
blanks are removed from the string contained in operand.

*TRIM(operand, TRAILING)|Remove Trailing Blanks

When the keyword TRAILING is used as a second argument, all trailing
blanks are removed from the string contained in operand.

*TRIM(operand) Remove Both Leading and Trailing Blanks

When no keyword is used as a second argument, both the leading and the
trailing blanks are removed from the string contained in operand.

Examples

= Example 1 - Using an Alphanumeric Argument
= Example 2 - Using a Binary Argument

Example 1 - Using an Alphanumeric Argument

DEFINE DATA LOCAL

/*******************************

/* STATIC VARIABLE DEFINITIONS

[3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok ok ok ok
1 #SRC (A15) INIT <' ab CD '>
1 #DEST (A15)

/* FOR PRINT OUT WITH DELIMITERS
1 #SRC-PRN (A20)
1 #DEST-PRN (A20)

/*******************************

/* DYNAMIC VARIABLE DEFINITIONS

/*******************************

1 #DYN-SRC (A)DYNAMIC INIT <" ab CD '>
1 #DYN-DEST (A)DYNAMIC

/* FOR PRINT OUT WITH DELIMITERS

1 ##DYN-SRC-PRN (A)DYNAMIC

1 #DYN-DEST-PRN (A)DYNAMIC
END-DEFINE

PRINT 'static variable definition:'

COMPRESS FULL ":" #SRC ":' TO #SRC-PRN LEAVING NO SPACE

System Functions 41

*TRIM - Remove Leading and/or Trailing Blanks

PRINT " '
PRINT ' 123456789012345 123456789012345"

MOVE *TRIM(#SRC, LEADING) TO #DEST
COMPRESS FULL ':' #DEST ':' TO #DEST-PRN LEAVING NO SPACE
DISPLAY {#SRC-PRN #DEST-PRN "*TRIM(#SRC, LEADING)'

MOVE *TRIM(#SRC, TRAILING) TO #DEST
COMPRESS FULL ':' #DEST ':' TO #DEST-PRN LEAVING NO SPACE
DISPLAY #SRC-PRN #DEST-PRN "*TRIM(#SRC, TRAILING)'

MOVE *TRIM({fSRC) TO #DEST
COMPRESS FULL ':' #DEST ':' TO #DEST-PRN LEAVING NO SPACE
DISPLAY #SRC-PRN #DEST-PRN '*TRIM(#SRC)"

PRINT ' '

PRINT 'dynamic variable definition:'

PRINT "===========s==c=s22=c=22=c==== '

COMPRESS FULL ':' #DYN-SRC ':' TO #DYN-SRC-PRN LEAVING NO SPACE
PRINT ' '

PRINT ' 1234567890 12345678

MOVE *TRIM(#DYN-SRC, LEADING) TO #DYN-DEST
COMPRESS FULL ':' #fDYN-DEST ':' TO #fDYN-DEST-PRN LEAVING NO SPACE
DISPLAY (AL=20) #DYN-SRC-PRN #fDYN-DEST-PRN '*TRIM(#SRC, LEADING)'

MOVE *TRIM(#DYN-SRC, TRAILING) TO #DYN-DEST
COMPRESS FULL ':"' #fDYN-DEST ':' TO #fDYN-DEST-PRN LEAVING NO SPACE
DISPLAY (AL=20) #DYN-SRC-PRN #DYN-DEST-PRN '*TRIM(#SRC, TRAILING)'

MOVE *TRIM(#DYN-SRC) TO #DYN-DEST
COMPRESS FULL ':"' #fDYN-DEST ':' TO #fDYN-DEST-PRN LEAVING NO SPACE
DISPLAY (AL=20) #DYN-SRC-PRN #fDYN-DEST-PRN '*TRIM(#SRC)"

PRINT * '

PRINT "":" := delimiter character to show the start and ending of a string!’

END

Output of Example 1:

#SRC-PRN ##DEST - PRN

123456789012345 123456789012345
ab CD : :ab CD : *TRIM(#SRC, LEADING)
ab CD : : ab CD : *TRIM(#SRC, TRAILING)
ab CD : :ab CD : *TRIM(#SRC)

dynamic variable definition:

42

System Functions

*TRIM - Remove Leading and/or Trailing Blanks

1234567890 12345678
ab CD : :ab CD *TRIM(#SRC, LEADING)
ab CD : : ab CD: *TRIM(##SRC, TRAILING)
ab CD : :ab CD: *TRIM(#SRC)

:= delimiter character to show the start and ending of a string!

Example 2 - Using a Binary Argument

DEFINE DATA LOCAL

/*******************************

/* STATIC VARIABLE DEFINITIONS

[3Kk ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko

1 #SRC (B10) INIT <H'2020FFFF2020FFFF2020"'>
1 #fDEST (B10)

/*******************************

/* DYNAMIC VARIABLE DEFINITIONS

/*******************************

1 #DYN-SRC (B)DYNAMIC INIT <H'2020FFFF2020FFFF2020'>
1 #DYN-DEST (B)DYNAMIC
END-DEFINE

FORMAT LS=100
PRINT 'static variable definition:

MOVE *TRIM(#SRC, LEADING) TO #DEST
PRINT #SRC #DEST '*TRIM(#SRC, LEADING)'

MOVE *TRIM(#SRC, TRAILING) TO #DEST
PRINT #SRC #DEST '*TRIM(4#SRC, TRAILING)'

MOVE *TRIM(#SRC) TO #DEST
PRINT #SRC #DEST "*TRIM(#SRC)"

PRINT '
PRINT 'dynamic variable definition:'
PRINT “==cc=cssccccsccscsccsssocass '

MOVE *TRIM(#DYN-SRC, LEADING) TO #DYN-DEST
PRINT #DYN-SRC #DYN-DEST *TRIM(##SRC, LEADING)'

MOVE *TRIM(#fDYN-SRC, TRAILING) TO #DYN-DEST
PRINT #DYN-SRC #DYN-DEST ' *TRIM(##SRC, TRAILING)'

MOVE *TRIM(#DYN-SRC) TO #DYN-DEST
PRINT #DYN-SRC #DYN-DEST *TRIM(#SRC) '

System Functions 43

*TRIM - Remove Leading and/or Trailing Blanks

PRINT " '

PRINT 'hex."20" := space character'
END

Output of Example 2:

static variable definition:

2020FFFF2020FFFF2020 0000FFFF2020FFFF2020
2020FFFF2020FFFF2020 00002020FFFF2020FFFF
2020FFFF2020FFFF2020 00000000FFFF2020FFFF

dynamic variable definition:

2020FFFF2020FFFF2020 FFFF2020FFFF2020
2020FFFF2020FFFF2020 2020FFFF2020FFFF
2020FFFF2020FFFF2020 FFFF2020FFFF

hex.'20"' := space character

*TRIM(#src, leading)
*TRIM(#fsrc, trailing)
*TRIM(#src)

*TRIM(##src, leading)
*TRIM({#fsrc, trailing)
*TRIM(#fsrc)

44

System Functions

7 POS - Field Identification Function

Format/length: | 14 l

The system function POS(field-name) returns an identification of the field whose name is specified
with the system function. The value returned is an internal representation of the field address.

POS(field-name) may be used to identify a specific field, regardless of its position in a map. This
means that the sequence and number of fields in a map may be changed, but POS(field-name)
will still uniquely identify the same field. With this, for example, you need only a single REINPUT
statement to make the field to be MARKed dependent on the program logic.

Example:

DECIDE ON FIRST VALUE OF ...

VALUE ...
COMPUTE #FIELDX = POS(FIELD1)
VALUE ...
COMPUTE #FIELDX = POS(FIELD?2)
END-DECIDE
REINPUT ... MARK #FIELDX

If the field specified with P0S is an array, a specific occurrence must be specified; for example,
POS(FIELDX(5)). POS cannot be applied to an array range.

| Note: POS cannot distinguish between two different variables that start at the same storage

position (REDEFINE variables) since the internal field address returned by POS is the same
for both.

45

POS - Field Identification Function

POS and *CURS-FIELD

The system function POS(field-name) may be used in conjunction with the Natural system variable
*CURS-FIELD to make the execution of certain functions dependent on which field the cursor is
currently positioned in.

*CURS-FIELD contains the internal identification of the field in which the cursor is currently posi-
tioned; it cannot be used by itself, but only in conjunction with POS(field-name). You may use
them to check if the cursor is currently positioned in a specific field and have processing performed
depending on that condition.

Example:

IF *CURS-FIELD = POS(FIELDX)
MOVE *CURS-FIELD TO #FIELDY
END-IF

REINPUT ... MARK #FIELDY

Notes:

1. The values of *CURS-FIELD and POS(field-name) serve only as internal identifications of the
fields and cannot be used for arithmetic operations.

2. The value returned by POS(field-name) for an occurrence of an X-array (an array for which at
least one bound in at least one dimension is specified as expansible) may change after the
number of occurrences for a dimension of the array has been changed using the EXPAND, RESIZE
or REDUCE statements.

3. Natural RPC: If *CURS-FIELD and POS(field-name) refer to a context variable, the resulting
information can only be used within the same conversation.

4. In Natural for Ajax applications, *CURS - FIELD identifies the operand that represents the value
of the control that has the input focus. You may use *CURS-FIELD in conjunction with the POS
function to check for the control that has the input focus and perform processing depending
on that condition.

5. *CURS-FIELD and POS(field-name) cannot distinguish between two different variables that
start at the same storage position (REDEFINE variables) since the internal field addresses returned
by *CURS-FIELD and POS(field-name) are the same for both variables.

See also Dialog Design, Field-Sensitive Processing and Simplifying Programming in the Programming
Guide in the Programming Guide.

46 System Functions

8 RET - Return Code Function

Format/length: | 14 l

The system function RET(program-name) may be used to receive the return code from a non-Nat-
ural program called via a CALL statement.

RET(program-name) can be used in an I1F statement and within the arithmetic statements ADD,
COMPUTE, DIVIDE, MULTIPLY and SUBTRACT.

Example:

DEFINE DATA LOCAL
1 #RETURN (I4)

END-DEFINE

CALL 'PROGIL'
IF RET('PROGL') > #RETURN

WRITE 'ERROR OCCURRED IN PROGRAM 1°
END-IF

47

48

9 SORTKEY - Sort-Key Function

‘SORTKEY (character-string) ‘

This system function is used to convert “incorrectly sorted” characters (or combinations of charac-
ters) into other characters (or combinations of characters) that are “correctly sorted” alphabetically
by the sort program or database system.

‘ Format/length: ‘ A253 ‘

Several national languages contain characters (or combinations of characters) which are not sorted
in the correct alphabetical order by a sort program or database system, because the sequence of
the characters in the character set used by the computer does not always correspond to the alpha-
betical order of the characters.

For example, the Spanish letter "CH" would be treated by a sort program or database system as
two separate letters and sorted between "CG" and "CI" - although in the Spanish alphabet it is in
fact a letter in its own right and belongs between "C" and "D".

Or it may be that, contrary to your requirements, lower-case and upper-case letters are not treated
equally in a sort sequence, that letters are sorted after numbers (although you may wish them to
be sorted before numbers), or that special characters (for example, hyphens in double names) lead
to an undesired sort sequence.

In such cases, you can use the system function SORTKEY (character-string). The values computed
by SORTKEY are only used as sort criterion, while the original values are used for the interaction
with the end-user.

You can use the SORTKEY function as an arithmetic operand in a COMPUTE statement and in a logical
condition.

As character-stringyou can specify an alphanumeric constant or variable, or a single occurrence
of an alphanumeric array.

49

SORTKEY - Sort-Key Function

When you specify the SORTKEY function in a Natural program, the user exit NATUSKnn will be invoked
- nn being the current language code (that is, the current value of the system variable *LANGUAGE).

You can write this user exit in any programming language that provides a standard CALL interface.
The character-string specified with SORTKEY will be passed to the user exit. The user exit has to
be programmed so that it converts any “incorrectly sorted” characters in this string into corres-
ponding “correctly sorted” characters. The converted character string is then used in the Natural
program for further processing.

The general calling conventions for external programs are explained in the description of the CALL
statement.

For details on the calling conventions for user exits, see User Exits.

Example:

DEFINE DATA LOCAL

1 CUST VIEW OF CUSTOMERFILE
2 NAME
2 SORTNAME

END-DEFINE

*LANGUAGE := 4
REPEAT
INPUT NAME
SORTNAME := SORTKEY (NAME)

STORE CUST
END TRANSACTION

END-REPEAT

READ CUST BY SORTNAME
DISPLAY NAME
END-READ

Assume that in the above example, at repeated executions of the INPUT statement, the following
values are entered: "Sanchez", "Sandino" and "Sancinto".

At the assignment of SORTKEY (NAME) to SORTNAME, the user exit NATUSK04 would be invoked.
This user exit would have to be programmed so that it first converts all lower-case letters to upper-
case, and then converts the character combination "CH" to "Cx" - where x would correspond to
the last character in the character set used, i.e. hexadecimal H'FF' (assuming that this last character
is a non-printable character).

The “original” names (NAME) as well as the converted names to be used for the desired sorting
(SORTNAME) are stored. To read the file, SORTNAME is used. The DISPLAY statement would then output
the names in the correct Spanish alphabetical order:

50 System Functions

SORTKEY - Sort-Key Function

Sancinto
Sanchez
Sandino

System Functions 51

52

I11

Functions Supplied as Natural Objects

53

54

10 Functions Supplied as Natural Objects

B URL ENCOGING vttt
B BASEO4 ENCOUING ...ttt eee ittt ettt e oottt e e e e ettt e e e e e e et e e e e e e

95

Functions Supplied as Natural Objects

This document describes functions that are implemented by using Natural objects of the type
function.

These function objects (and their prototype definitions) whose names start with SAG are supplied
in the Natural system library SYSTEM on the system file FNAT. Example function calls are provided
in the system library SYSEXPG.

For detailed information on function calls, see the relevant section in the Programming Guide.

URL Encoding

Interfacing Natural applications with HTTP requests often requires that the URI (Uniform Resource
Identifiers) is URL-encoded. The REQUEST DOCUMENT statement needs such a URL to access a doc-
ument.

URL-Encoding (or Percent-Encoding) is a mechanism to replace some special characters in parts
of a URL. Only characters of the US-ASCII character set can be used to form a URL. Some characters
of the US-ASCII character set have a special meaning when used in a URL - they are classified as
“reserved” control characters, which structure the URL string into different semantic subcompon-
ents. The quasi standard concerning the generic syntax of an URL is laid down in RFC3986, a
document composed by the Internet community. It describes under which conditions the URL-
Encoding is needed. This includes the representation of characters which are not inside the US-
ASCII character set (for example, Euro sign), and it describes the use of reserved characters.

Reserved characters are:

*

RO ABE

R

,’(

o[t

Non reserved characters are:

[A2]az[09]] ||

A URL may only consist of reserved and non-reserved characters, other characters are not permitted.
If other byte values are needed (which do not correspond to any of the reserved and non-reserved
characters) or if reserved characters are used as data (which should not have a special semantic
meaning in the URL context), they need to be translated into the “%-encoding” form - a percent
sign, immediately followed by the two-digit hexadecimal representation of the code point, due to
the Windows-1252 encoding scheme. This causes a plus sign (+) to appear as %28, a percent sign
(%) to appear as %25 and an at sign (@) to appear as %40 in the string.

The following encoding functions are operating the complete input string. You should take care
not to encode a complete URL or parts of it if they contain control characters (reserved characters)
which must not be translated into the percent-form. These functions should only be applied to

56 System Functions

Functions Supplied as Natural Objects

characters not permitted for use in a URL, and to characters with a special meaning inside the
URL context, which are supplied as a data item.

= Simple Encoding

= SAGENC - Simple Encoding (Format A to Format A)

= SAGDEC - Simple Decoding (Format A to Format A)

= Extended Encoding

= SAGENCE - Extended Encoding (Format U to Format A, Optional Parameters)
= SAGDECE - Extended Decoding (Format A to Format U, Optional Parameters)
= Example Program

Simple Encoding

The single input parameter contains the character string to be encoded or decoded. All data inside
is regarded as represented in code page Windows-1252, regardless which session code page is
really active at this time. The execution of the SAGENC/SAGDEC functions does not require Unicode
support. The following characters are replaced with the corresponding US-ASCII hexadecimal
equivalents.

Character| < [([+ | | [&[V[S|*)| |/], [|%|>[2| |:[#|@|" " [=["[2|[|1/{]})\
is 3C|28|2B|7C|26|21|24|2A|29|3B|2F|2C|25|3E|3F |60|3A|23|40(27|3D|22|5E|5B |5D|7B|7D|5C
encoded
to %nn

In addition, a space is replaced with a plus sign (+). All other characters are not translated and
remain as they are. The simple encoding function should be sufficient in most cases of URL encod-
ing. The result field returned is of format A dynamic.

The following functions are available:

" SAGENC - Simple encoding (format A to format A)
" SAGDEC - Simple decoding (format A to format A)

SAGENC - Simple Encoding (Format A to Format A)

The function SAGENC encodes a character string into its percent-encoded form. According to
standard RFC3986, reserved characters and characters below US-ASCII x'7F " (which are not allowed
in a URL) will be percent-encoded, a space character is replaced with a plus sign (+). Unreserved
characters according to RCF3986 and characters above US-ASCII x ' 7F ', such as German umlauts,
are not encoded. If you want to encode such characters, use the extended encoding function
SAGENCE.

System Functions 57

Functions Supplied as Natural Objects

Object Description

SAGENC |This is the simple encoding function call.

SAGENCP | The copycode containing the prototype definition is used at compilation time only in order to
determine the type of the return variable for function call reference and to check the parameters,
if this is desired.

SAGENCP is optional.

URLX01 |Example program contained in library SYSEXPG.
#FURL-ENC := SAGENC(<f#fURL-DEC>)

SAGDEC - Simple Decoding (Format A to Format A)

The function SAGDEC decodes the percent-encodings as provided by the function SAGENC. Besides
the decoding string, no other input parameters are necessary.

Object Description

SAGDEC |This is the simple decoding function call.

SAGDECP |The copycode containing the prototype definition is used at compilation time only in order to
determine the type of the return variable for function call reference and to check the parameters,
if this is desired.

SAGDECP is optional.

URLX01 |Example program contained in library SYSEXPG.

ffFURL-DEC := SAGDEC(<#URL-ENC>) <
Extended Encoding

The extended function considers all issues which are specified or recommended in RFC 3986. The
following parameters may be considered (default settings shown in bold):

N o ok L=

<dynamic U-string> to be encoded/decoded

Return code: <> 0 (Natural error) if error in MOVE ENCODED statement.
Error character if return code <> 0

Space character: %20/+/don't encode (default: +)

Unreserved characters: encode/don't encode

Reserved characters: encode/don't encode

Other special characters (neither unreserved nor reserved): encode/don't encode

58

System Functions

Functions Supplied as Natural Objects

8. Character Percent-Encoding: ISO-8859-1/UTF-8/any other code page/if ="' then *CODEPAGE
(default Natural code page, not default encoding code page!)

9. User-selected character in an X-array of format U, which shall not be percent-encoded according
to the above parameters, for example, for the Euro sign character, which is not in the ISO-8859-
1 code page, or to prevent a character from percent-encoding.

10. User defined percent-encoding in an X-array of format A, for a user-selected character in the
same occurrence of the X-array.

The input parameter for a character string will be in Natural format U. This means the input string
may contain all Unicode characters. The output string of the extended function is of format A in
the Natural default code page (*CODEPAGE). The code page of the percent-encoding can be selected.
The UTE-8, ISO-8859-1, percent-encoding of the Euro sign will be done by the MOVE ENCODED
statement. If an input character does not exist in the target code page used for percent-encoding,
the character will not be encoded. This means the character will be returned unchanged in the
default Natural code page. If the character does not exist in the default Natural code page either,
it will be replaced by that substitution character which is returned by the MOVE ENCODED statement.
The substitution character will be percent-encoded. This may happen only if the percent-encoding
code page is not UTF-8. The last MOVE ENCODED error will be returned.

The parameters are optional parameters. If the user does not specify a parameter, the default value
will be assumed. If the user specifies an own character translation table, the characters in the table
will be percent-encoded according to this table and not according to the other parameters. If the
percent-encoding of a character in the user-defined translation table is equal to the character or
blank, this character will not be encoded. Thus, single characters from the reserved or unreserved
character set can be excluded.

The following functions are available:

" SAGENCE - Extended encoding (format U to format A, optional parameters)
" SAGDECE - Extended decoding (format A to format U, optional parameters)

SAGENCE - Extended Encoding (Format U to Format A, Optional Parameters)

The function SAGENCE percent-encodes a string, using the hexadecimal value of the selected code
page (default UTF-8). According to standard RFC3986, reserved characters and characters below
US-ASCII x'7F', which are not allowed in a URL, will be percent-encoded. Also, the space and
the percent sign (%) will be encoded.

In addition, unreserved characters according to RCF3986 and characters above US-ASCII x'7F ',
such as German umlauts, will be encoded by this function.

SAGENCE needs Natural Unicode support.

System Functions 59

Functions Supplied as Natural Objects

Object Description

SAGENCE |This is the extended encoding function call

/* Error strategy:

/* be %-encoded.

P-ERR-CHAR (Ul)
P-SPACE (A1)
P-UNRES (A1)
P-RES (A1)
P-OTHER (A1)
P-CP (A64)

/*
P-CP-TABLE-CHAR(UL/1:%)

/* specifed %-encoding.

Parameters:

P-DEC-STR-E (U)

P-RET (I14) OPTIONAL /* O: ok
/* else: Natural error returned
% by the GIVING clause of
/% MOVE ENCODED.
% This is the error which
A comes up when a character
/% cannot be converted into
A the target code page.

/* Step 1: If a character shall be %-encoded and is not available
/* in the code page for %-encoding, the character will not be

/* %-encoded. It will be copied.

/* Step 2: If a character will not be %-encoded but copied from the
/* input format U-variable to a format A-variable (in *CODEPAGE)

/* and the character is not available in *CODEPAGE, a substitution
/* character will be used instead. The substitution character will

/* The Tast error will be returned in P-RET.

/* On mainframe only code page names defined with the macro NTCPAGE
/* in the source module NATCONFG can be used. Other code page names
/* are rejected with a corresponding runtime error.

P-CP-TABLE-ENC (A12/1:*) OPTIONAL /* user %-encoding

/* Characters in this table will be encoded according to the

/* according to *CODEPAGE) or the P-CP-TABLE-ENC value is equal to

OPTIONAL /* Character causing the error
OPTIONAL /* '%' => %20

[0 =

/* else => '+' (default)
OPTIONAL /* 'E' => encode

/* else => don't encode (default)
OPTIONAL /* 'E' => encode (default)

/* else => don't encode

OPTIONAL /* 'E'" => encode (default)
/* else => don't encode

OPTIONAL /* IANA name e.g. UTF-8 (default)
/* or I1S0-8859-1

OPTIONAL /* user selected char to be

/* %-encoded, e.g. '6' or '/'

/* e.g. character '0'

/% "%F6" -> 1S0-8859-1

/% '"%C3%B6"' -> UTF-8

/* e.g. character '/'

J% A -> '"/' not encoded
J% although P-RES = 'E'

If the Ul2 encoding part is blank (space

60

System Functions

Functions Supplied as Natural Objects

Object Description

/* the character, then the character will not be encoded at all.
/*

SAGENCEP|The copycode containing the prototype definition is used at compilation time only in order to
determine the type of the return variable for function call reference and to check the parameters,
if this is desired.

SAGENCEP is optional.

URLX01 |Example program contained in library SYSEXPG.

Sample Calls

Default values will be taken:

JFURL-ENC := SAGENCE(<#fURL-DEC-U>)

All possible parameters are specified:

JJURL-ENC := SAGENCE(<{fURL-DEC-U,L-RET,L-ERR-CHAR,L-SPACE,L-UNRES, <
L-RES,L-OTHER,L-CP,L-CP-TAB-CHAR(*),L-CP-TAB-ENC(*) >)

SAGDECE - Extended Decoding (Format A to Format U, Optional Parameters)

The function SAGDECE decodes the percent-encodings as provided by the function SAGENCE. If a
space character and/or a code page is specified, the values must be the same as specified for encod-
ing.

SAGDECE needs Natural Unicode support.

Object Description
SAGDECE |This is the extended decoding function call.
Parameters:
1 P-ENC-STR-E (A)
1 P-RET (14) OPTIONAL /* O: ok
/* else: Natural error returned
/% by the GIVING clause of
/% MOVE ENCODED.
A This error comes up
/% when a %-encoded
/% character cannot be
/% converted into the
/% target code page.
/* The Tlast error will be returned in P-RET.
1 P-ERR-CHAR (A12) OPTIONAL /* Error character %-encoded
1 P-SPACE (A1) OPTIONAL /* ' ' => "'
/* else => '+' (default)

System Functions 61

Functions Supplied as Natural Objects

Object Description

1 P-CP (A64) OPTIONAL /* IANA name e.g. UTF-8 (default)
/* or IS0-8859-1

/* On mainframe only code page names defined with the macro NTCPAGE

/* in the source module NATCONFG can be used. Other code page names

/* are rejected with a corresponding runtime error.

/*

SAGDECEP|The copycode containing the prototype definition is used at compilation time only in order to
determine the type of the return variable for function call reference and to check the parameters,
if this is desired.

SAGDECEP is optional.

URLX01 |Example program contained in library SYSEXPG.

Sample Calls

Default values will be taken:

##URL-DEC-U := SAGDECE(<{fURL-ENC>)

All possible parameters are specified:

flURL-DEC-U := SAGDECE(<#fURL-ENC,L-RET,L-ERR-CHAR-DEC,L-SPACE,L-CP>)

Example Program
Example program contained in library SYSEXPG:

** Example 'URLXO01': ENCODED-STR := SAGENC(<DECODED-STR>)

R R R b R R e e b b e b b e e b b e b b e e i b b e e b b S e b b R e e b R e S b b R e b R e b R R e b b b S 4

DEFINE DATA

LOCAL

1 SAMPLE-STRING (A72)

/*

1 JHURL-DEC (A) DYNAMIC

1 #fURL-ENC (A) DYNAMIC

/*

1 JfURL-DEC-U (U) DYNAMIC

/*

1 L-RET (I4) /* Return code

1 L-ERR-CHAR (Ul1) /* Error character
1 L-ERR-CHAR-DEC(A12) /* Decoded error character
1

L-SPACE (A1) [* % => %20, ' o=> " ",
/* else => '+' (default)
1 L-UNRES (A1) /* "E'" => encode, else => don't encode (default)
1 L-RES (A1) /* 'E' => encode (default), else => don't encode
1 L-OTHER (A1) /* '"E' => encode (default), else => don't encode
1 L-CP (A64) /* default *CODEPAGE

62 System Functions

Functions Supplied as Natural Objects

1 L-CP-TAB-CHAR (U1/1:1)

1 L-CP-TAB-ENC (A12/1:1)

1 L-MSG (U72)

END-DEFINE

/*

/*

/*

WRITE 'Sample string to be processed:'

/* The string below shall be encoded and decoded again.
/* After decoding it should be unchanged.

SAMPLE-STRING := '"Decoded data!"'
WRITE SAMPLE-STRING (AL=72) /
/%

/* Assign the sample string to the input variable #fURL-DEC of the

/* simple encoding function.

#FURL-DEC := SAMPLE-STRING

/*

/* Copycode SAGENCP containing the prototype definition is used at
/* compilation time only in order to determine the type of the return
/* variable for function call reference and to check the parameters,
/* if this is desired. SAGENCP is optional.

INCLUDE SAGENCP

/*

/* SAGENC(<#fURL-DEC>) is the simple encoding function call.

/*

/* Function SAGENC %-encodes a string to code page I1S0-8859-1.

/* According to standard RFC3986 reserved characters and characters
/* below US-ASCII x'7F"' which are not allowed in a URL will be

/* %-encoded.

/* Also the space and the percent sign will be encoded.

/* Unreserved characters according to RCF3986 and characters above
/* US-ASCII x'7F" will not be encoded. If you want to encode such

/* characters, use the extended encoding function.

/*

/* ---- Space U=y U

/* ---- Percent sign "B -> %25

/*

/* Unreserved characters according to RFC3986 (will not be encoded!):
/* ---- Period (fullstop) R YA

J* ==== Tilde "=l == TRTE"

/* ---- Hyphen - -- '%2D!

/* ---- Underscore character 'Y o-- '"B5FY

/* ---- digits, lower and upper case characters

/* ---- 0123456789abcdefghijkImnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
/*

/* Reserved characters according to RFC3986:

/* ---- Exclamation mark B S YA

/* ---- Number sign HO-> %23

/* ---- Dollar sign "$'O-> 'h24

/* ---- Ampersand &' -> %26

/* ---- Apostrophe EEED I YA

/* ---- Left parenthesis (" -> %28’

System Functions 63

Functions Supplied as Natural Objects

/* ---- Right parenthesis ") -> %29
/* ---- Asterisk RS> TY2A!
/* ---- Plus sign '+ -> '%2B'
/* ---- Comma ,Uo-> '%2C!
/* ---- Reverse solidus (backslash) '/"' -> '%2F'
J%= ==== Colomn i -> '%3A"
/* ---- Semi-colon ;' -> '"%3B'
/* ---- Equals sign '=' -> '%3D'
/* ---- Question mark 20 -> '"%3F!
/* ---- Commercial at '@' -> '%40'
/* ---- Square bracket open "[' -> "%5B"
/* ---- Square bracket close "1t -> '"%5D'
/*

/* Other characters below x'7F' (US-ASCII) but not allowed in URL
/* ---- Quotation mark o> 22!
/* ---- Less than < o-> "R3C!
/* ---- Greater than ">' -> '"%3E'
/* ---- Reverse solidus (backslash) '\"'" -> "%5C'
/* ---- Accent, Circumflex Ato-> '"%5E!
/* ---- Accent, Grave Tto-> %60
/* ---- Opening brace "{"-> "%7/B"
/* ---- Vertical bar | -> "%7C!
/* ---- Closing brace "It-> '"%7D'
/*

ffJURL-ENC := SAGENC(<#fURL-DEC>)

/*

/*

WRITE 'Simple function, encoded:'

WRITE #URL-ENC (AL=72)

/*

/* Copycode SAGDECP containing the prototype definition is used at
/* compilation time only in order to determine the type of the return
/* variable for function call reference and to check the parameters,
/* if this is desired. SAGDECP is optional.

INCLUDE SAGDECP

/*

/* SAGDEC(<#fURL-ENC>) is the simple decoding function call.

/* It decodes the above described %-encodings.

/*

fFURL-DEC := SAGDEC(<#fURL-ENC>)

/*

/*

/* The result after encoding and decoding must be equal to the original
/* SAMPLE-STRING.

WRITE '"Simple function, decoded:'

WRITE #fURL-DEC (AL=72)

/*

/*

/*

WRITE /

/*

/*

64 System Functions

Functions Supplied as Natural Objects

/*

/* Assign the sample string to the input variable #fURL-DEC-U of the
/* enhanced encoding function.

JJURL-DEC-U := SAMPLE-STRING

/*

/* Copycode SAGENCEP containing the prototype definition is used at
/* compilation time only in order to determine the type of the return
/* variable for function call reference and to check the parameters,
/* if this is desired. SAGENCEP is optional.

INCLUDE SAGENCEP

/*

/* This is the enhanced encoding function call.

/* The way, characters will be %-encoded dependes on the input

/* parameter of the function.

/* The parameters of the encoding and decoding function are preset
/* with the default values.

/* L-CP-TAB-CHAR(*) and L-CP-TAB-ENC(*) don't have default values.
/* L-CP-TAB-CHAR(1) = 'd@' and L-CP-TAB-ENC(1) = '%C3%A4' will not be

/* used for the sample string '"Decoded data!"'. The string does not
/* contain an '&'
L-SPACE = 4’ /* encoding and decoding
L-UNRES = "D /* encoding only
L-RES = 'E' /* encoding only
L-OTHER s= "E" /* encoding only
L-CP := 'UTF-8"' /* encoding and decoding
/* e.g. IS0-8859-1, UTF-16BE, UTF-32BE
L-CP-TAB-CHAR(1) := '&' /* encoding only
L-CP-TAB-ENC (1) := '%C3%A4' /* encoding only
/*

/* Note that all possible parameters are specified for this sample
/* call.
/* If the default values shall be used and no return code is wanted,
/* all parameters can be omitted, besides the string #URL-DEC-U.
/*
JFURL-ENC := SAGENCE(<#fURL-DEC-U,L-RET,L-ERR-CHAR,L-SPACE,L-UNRES,
L-RES,L-OTHER,L-CP,L-CP-TAB-CHAR(*),L-CP-TAB-ENC(*) >)
WRITE 'Extended function, encoded:'
WRITE #fURL-ENC (AL=72)
IF L-RET NE O THEN
/* If L-RET = 0, the function worked ok. Else L-RET contains the
/* Natural error returned by the GIVING clause of MOVE ENCODED.
/* The error comes up when a character cannot be converted into
/* the target codepage, e.g. because a character does not exist
/* in the target codepage.
COMPRESS 'Error' L-RET 'with MOVE ENCODED of' L-ERR-CHAR INTO L-MSG
WRITE L-MSG
END-IF
/*
/* Copycode SAGDECEP containing the prototype definition is used at
/* compilation time only in order to determine the type of the return
/* variable for function call reference and to check the parameters,
/* if this is desired. SAGDECEP is optional.

System Functions 65

Functions Supplied as Natural Objects

INCLUDE SAGDECEP
/*
/* This is the 1st enhanced decoding function call with 5 parameters.
/* Note that all possible parameters are specified for this sample
/* call.
/* Since the parameters have the default values, the subsequent
/* function calls return the same result although parameters
/* have been omitted.
#URL-DEC-U := SAGDECE(<{FURL-ENC,L-RET,L-ERR-CHAR-DEC,L-SPACE,L-CP>)
WRITE '"Extended function, decoded:'
WRITE #fURL-DEC-U (AL=72)
IF L-RET NE O THEN
/* If L-RET = 0, the function worked ok. Else L-RET contains the
/* Natural error returned by the GIVING clause of MOVE ENCODED.
/* The error comes up when a %-encoded character cannot be converted
/* into the target codepage, e.g. because a character does not exist
/* in the target codepage.
COMPRESS 'Error' L-RET 'with MOVE ENCODED of' L-ERR-CHAR INTO L-MSG
WRITE L-MSG
RESET L-RET
END-IF
/*
/* This is the 2nd enhanced decoding function call with one parameter.
#URL-DEC-U := SAGDECE(<{FURL-ENC>)
WRITE #URL-DEC-U (AL=72)
/* L-RET will not be returned
/*
/* This is the 3rd enhanced decoding function call with 3 parameters.
J#URL-DEC-U := SAGDECE(<#fURL-ENC,L-RET,2X,L-CP>)
WRITE #fURL-DEC-U (AL=72)
IF L-RET NE O THEN
COMPRESS 'Error' L-RET 'with MOVE ENCODED of' L-ERR-CHAR INTO L-MSG
WRITE L-MSG

RESET L-RET
END-IF
/*
END
Base64 Encoding

This section describes Natural functions which can be used to convert binary data into printable,
network-compatible data or vice versa, using Base64 conversion.

Base64 conversion means conversion from format B to format A and back to format B, where 6
(binary) bits will be converted into 8 (alphanumerical) bits; for example, a B3 value will be converted
into an A4 value.

66 System Functions

Functions Supplied as Natural Objects

Note: Every binary value will be converted into a non-ambiguous alphanumerical value.

Re-converting this alphanumerical value again will result in the original binary value.
However, this is not the case for most of the format A to format B and back to format A
conversions.

The conversion may be used to transfer a . bmp file via TCP/IP, or to transfer Natural binary or in-
teger values via the utility protocol.

On Open Systems only: There are 3 modes available: RFC3548, RFC2045 and NATRPC (default).
NATRPC means the conversion is done according the NATRPC logic. This is 100% mainframe compat-
ible. RFC2045 is the default of the CMBASE64 call. RFC3548 is like NATRPC, but alphanumerical
bytes which are not needed are filled with an equals sign character (=).

The following functions are available:

" SAG64BA - Binary to Alphanumerical Conversion

" SAG64AB - Alphanumerical to Binary Conversion

These two functions together provide the same functionality as the Natural application program-
ming interface USR4210N, which is delivered in library SYSEXT.

SAG64BA - Binary to Alphanumerical Conversion

The function SAG64BA converts binary data into printable, network-compatible data, using Base64
encoding.

Object Description

SAG64BA |This is the binary to alphanumerical format conversion function.

Parameters:
1 PARM-B (B) DYNAMIC BY VALUE

/* Binary source input/target output
1 PARM-RC (I14) OPTIONAL

/% 0 ok

/* Mainframe
/* 1 Source is not numeric

/* 2 Source is not packed

/* 3 Source is not floating point

/* 4 OQverflow, source doesn't fit into target

/* 5 Integer overflow

/* 6 Source is not a valid date or time

/* 7 Length error (hex input not even)

/* 8 Target precision is less than source precision

/* 9 Float underflow (result->0)

/* 10 Alpha source contains non-hex characters
/* 20 Invalid function code

/* Open Systems

/* 1 Invalid value for RFC parameter

System Functions 67

Functions Supplied as Natural Objects

Object Description

/* 2 Invalid function code
/* 3 CMBASE64: Overflow, source doesn't fit into
/% target
/* 4 CMBASE64: Non-base64 character found in encoded
/% data
/* 5 CMBASE64: Qut of memory
/* 6 CMBASE64: Invalid number of parameters
/* 7 CMBASE64: Invalid parameter type
/* 8 CMBASE64: Invalid parameter length
/* 9 CMBASE64: Invalid function code
/* 10 CMBASE64: Unkown return code

1 PARM-ERRTXT (A72) OPTIONAL
/* blank, if ok no error
/* else error text

1 PARM-RFC (B1) OPTIONAL
/* 0S only, not used for MF
/* 0 - RFC3548; 3 - RFC2045; 4 - NATRPC;

SAG64BAP|The copycode containing the prototype definition is used at compilation time only in order to
determine the type of the return variable for function call reference and to check the parameters,
if this is desired.

SAG64BAP is optional.
B64X01 |Example program contained in library SYSEXPG.
Default values will be taken:
PARM-A := SAG64BA(<KPARM-B>)
All possible parameters are specified (PARM-RFC does not apply to mainframe):
PARM-A := SAG64BA(<KPARM-B,PARM-RC,PARM-ERRTXT,PARM-RFC>)
SAG64AB - Alphanumerical to Binary Conversion
The function SAG64AB converts printable, network-compatible data into binary data, using Base64
encoding.
Object Description
SAG64AB |This is the alphanumerical to binary format conversion function.

Parameters:

68

System Functions

Functions Supplied as Natural Objects

Object Description
1 PARM-A (A)
/* Alpha source input/target output
1 PARM-RC (I4) OPTIONAL
/* 0: ok
/* Mainframe
/* 1 Source is not numeric
/* 2 Source is not packed
/* 3 Source is not floating point
/* 4 OQOverflow, source doesn't fit into target
/* 5 Integer overflow
/* 6 Source is not a valid date or time
/* 7 Length error (hex input not even)
/* 8 Target precision is less than source precision
/* 9 Float underflow (result->0)
/* 10 Alpha source contains non-hex characters
/* 20 Invalid function code
/* Open Systems
/* 1 Invalid value for RFC parameter
/* 2 Invalid function code
/* 3 CMBASE64: Overflow, source doesn't fit into
/% target
/* 4 CMBASE64: Non-base64 character found in encoded
A data
/* 5 CMBASE64: Qut of memory
/* 6 CMBASE64: Invalid number of parameters
/* 7 CMBASE64: Invalid parameter type
/* 8 CMBASE64: Invalid parameter Tength
/* 9 CMBASE64: Invalid function code
/* 10 CMBASE64: Unkown return code
1 PARM-ERRTXT (A72) OPTIONAL
/* blank, if ok no error
/* else error text
1 PARM-RFC (B1) OPTIONAL
/* 0S only, not used for MF
/* 0 - RFC3548; 3 - RFC2045; 4 - NATRPC;

SAG64ABP | The copycode containing the prototype definition is used at compilation time only in order to
determine the type of the return variable for function call reference and to check the parameters,
if this is desired.

SAG64ABP is optional.
B64X01 |Example program contained in library SYSEXPG.

Default values will be taken:

System Functions

69

Functions Supplied as Natural Objects

Object Description
PARM-B := SAG64AB(<PARM-A>)

All possible parameters are specified (PARM-RFC does not apply to mainframe):

PARM-B := SAG64AB(<PARM-A,PARM-RC,PARM-ERRTXT,PARM-RFC>)

Example Program
Example program B64X01 contained in library SYSEXPG:

** Example 'B64X01': BASE64-A-STR := SAG64BA(<KBASE64-B-STR>)

R R b e b e b b e b S b e b e b e b b e e b e e b e e e b e e e e e b e e b e e b e e b e e i b e b e e b i S

* Function Convert binary data into printable,
& network-compatible data or vice versa using
o Base64 encoding.
*
* Baseb4 encoding means (B) -> (A) -> (B),
& where 6 (binary) bits will be encoded into 8
o (alpha) bits, e.g a (B3) value will be encoded
o into a (A4) value.
*
& Note: Every binary value will be encoded into
& a non-ambiguous alpha value. Re-encoding this
& alpha value again will result in the original
& binary value. However, this is not the case with
* most of the (A) -> (B) -> (A) encodings.
*
& The encoding may be used to transfer a .bmp
& file via TCP/IP, or to transfer Natural binary or
& integer values via the utility protocol.
*
& Open Systems only:
w3 On Open Systems, there are 3 modes:
* RFC3548, RFC2045 and NATRPC (default).
& NATRPC means the encoding follows
& the NATRPC Togic. This is 100% MF compatible.
& RFC2045 is the default of the CMBASE64 call.
& RFC3548 is 1like NATRPC, but alpha bytes not
& needed are filled with '=".
*
DEFINE DATA
LOCAL
1 FUNCTION (A2)
/* "AB' Alpha to binary encoding
/* "BA' Binary to alpha encoding
1 PARM-RC (I14)

/% 03 ok
/* Mainframe

70 System Functions

Functions Supplied as Natural Objects

1 PARM-ERRTXT

1 PARM-A

—_

PARM-B

—_

PARM-RFC

/*
1 #BACKUP-A
1 #BACKUP-B
END-DEFINE
/*

/*

SET KEY ALL
/%

not numeric

not packed

not floating point

source doesn't fit into target

not a valid date or time

Length error (hex input not even)
Target precision is less than source precision

9 Float underflow (result->0)
10 Alpha source contains non-hex characters

1 Invalid value for RFC parameter

Overflow, source doesn't fit into
target

Non-base64 character found in encoded
data

Out of memory

Inalid number of parameters

Invalid parameter type

Invalid parameter length

Invalid function code

Unkown return code

/* 1 Source is

/* 2 Source is

/* 3 Source is

/* 4 Overflow,

/* 5 Integer overflow
/* 6 Source is

J% 7

/* 8

/*

/*

/* 20 Invalid function code
/* Open Systems

/*

/* 2 Invalid function code
/* 3 CMBASE64:

/*

/* 4 CMBASE64:

/*

/* 5 CMBASE64:

/* 6 CMBASEG64:

/* 7 CMBASE64:

/* 8 CMBASE64:

/* 9 CMBASE64:

/* 10 CMBASE64:

(A72)

/* blank, if ok no error

/* else error text

(A)

DYNAMIC

/* Alpha source input/target output

(B)

DYNAMIC

/* Binary source input/target output
(B1)
/* 0S only, not used for MF

/* 0 - RFC3548; 3 - RFC2045; 4 - NATRPC;

(A) DYNAMIC
(B) DYNAMIC

/* Copycode SAG64BAP and SAG64ABP containing the prototype definition
/* is used at compilation time only in order to determine the type of
/* the return variable for function call reference and to check the

/* parameters, if this is desired. SAG64BAP and SAG64ABP are optional.

INCLUDE SAG64BAP
INCLUDE SAG64ABP

/*
REPEAT

RESET PARM-A PARM-B

REDUCE DYNAMIC PARM-A TO O

System Functions

7"

Functions Supplied as Natural Objects

REDUCE DYNAMIC PARM-B TO O

FUNCTION := 'BA'

PARM-B := H'01234567/89ABCDEF"

INPUT (AD=MIL IP=0OFF CD=NE) WITH TEXT PARM-ERRTXT
// 10T 'Base64 Encoding:' (YEI)

/ 10T '-' (19) (YEL) /

/ 10T 'Function (BA,AB) ..' (TU) FUNCTION (AD=T)

/ 10T '"Alpha In/Output ...' (TU) PARM-A (AL=30)

/ 10T 'Binary In/Output ..' (TU) PARM-B (EM=HHHHHHHH)
/ 10T 'Response ' (TU) PARM-RC (AD=0D CD=TU)

/ PARM-ERRTXT (AD=0D CD=TU)
RESET PARM-ERRTXT
IF *PF-KEY NE "ENTR'
ESCAPE BQOTTOM
END-IF
/*
RESET #fBACKUP-A #BACKUP-B
REDUCE DYNAMIC #BACKUP-A TO 0
REDUCE DYNAMIC #BACKUP-B TO 0
##BACKUP-A := PARM-A
##BACKUP-B := PARM-B
/*
IF FUNCTION = "BA'
/* Parameter PARM-RC, PARM-ERRTXT and PARM-RFC are optional
/* Parameter PARM-RFC does not apply to mainframe
/* PARM-A := SAG64BA(<KPARM-B,PARM-RC,PARM-ERRTXT,PARM-RFC>)
PARM-A := SAG64BA(<PARM-B,PARM-RC,PARM-ERRTXT>)
/* PARM-A := SAG64BA(<KPARM-B,PARM-RC>)
/* PARM-A := SAG64BA(<PARM-B>)
ELSE
/* Parameter PARM-RC, PARM-ERRTXT and PARM-RFC are optional
/* Parameter PARM-RFC does not apply to mainframe
/* PARM-B := SAG64AB(<PARM-A,PARM-RC,PARM-ERRTXT,PARM-RFC>)
PARM-B := SAG64AB(<KPARM-A,PARM-RC,PARM-ERRTXT>)
/* PARM-B := SAG64AB(<PARM-A,PARM-RC>)
/* PARM-B := SAG64AB(<PARM-A>)
END-IF
/*
IF PARM-RC NE O THEN
WRITE "Encoding' FUNCTION
WRITE NOTITLE PARM-ERRTXT
ELSE
IF FUNCTION = 'BA" THEN
WRITE 'Binary -> Alpha'
WRITE '=' PARM-B (EM=HHHHHHHHHHHHHHHHHHHHHHHHH)
/ '=' PARM-A (AL=50)
RESET PARM-B
REDUCE DYNAMIC PARM-B TO 0

FUNCTION := "AB'

ELSE
WRITE '"Alpha -> Binary'
WRITE '=' PARM-A (AL=50) /

72 System Functions

Functions Supplied as Natural Objects

'='" PARM-B (EM=HHHHHHHHHHHHHHHHHHHHHHHHH)
RESET PARM-A
REDUCE DYNAMIC PARM-A TO 0
FUNCTION := 'BA'
END-IF
/*
IF FUNCTION = 'BA"'
/* Parameter PARM-RC, PARM-ERRTXT and PARM-RFC are optional
/* Parameter PARM-RFC does not apply to mainframe
/* PARM-A := SAG64BA(<KPARM-B,PARM-RC,PARM-ERRTXT,PARM-RFC>)
PARM-A := SAG64BA(<KPARM-B,PARM-RC,PARM-ERRTXT>)
/* PARM-A := SAG64BA(<PARM-B,PARM-RC>)
/* PARM-A := SAG64BA(<KPARM-B>)
ELSE
/* Parameter PARM-RC, PARM-ERRTXT and PARM-RFC are optional
/* Parameter PARM-RFC does not apply to mainframe
/* PARM-B := SAG64AB(<PARM-A,PARM-RC,PARM-ERRTXT,PARM-RFC>)
PARM-B := SAG64AB(<PARM-A,PARM-RC,PARM-ERRTXT>)
/* PARM-B := SAG64AB(<PARM-A,PARM-RC>)
/* PARM-B := SAG64AB(<KPARM-A>)
END-IF
IF PARM-RC NE 0 THEN
WRITE "Encoding' FUNCTION
WRITE NOTITLE PARM-ERRTXT
ELSE
IF FUNCTION = "BA" THEN
WRITE 'Binary -> Alpha’
WRITE '=' PARM-B (EM=HHHHHHHHHHHHHHHHHHHHHHHHH)
/ '=' PARM-A (AL=50)
IF PARM-A = #fBACKUP-A THEN
WRITE "seesesissss Encodineg SUCCERSSTU] Fiasamset

ELSE
WRITE "==rissess Yalue chianged by @ncolling =it
END-IF
ELSE
WRITE "Alpha -> Binary'
WRITE '=' PARM-A (AL=50) /

'='" PARM-B (EM=HHHHHHHHHHHHHHHHHHHHHHHHH)
IF PARM-B = #fBACKUP-B THEN
WRITE "sesssessessss Encoding SUCCERSSTU rirriasinmst
ELSE
WRITE "x****x%*x% \3lue changed by encoding ****x*xx*xx!
END-IF
END-IF
END-IF
END-IF
END-REPEAT
END

System Functions 73

74

	System Functions
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I
	2 Natural System Functions for Use in Processing Loops
	Using System Functions in Processing Loops
	Specification/Evaluation
	Format/Length Requirements for AVER, NAVER, SUM and TOTAL
	Use in SORT GIVE Statement
	Statement Referencing (r)

	AVER(r)(field)
	COUNT(r)(field)
	MAX(r)(field)
	MIN(r)(field)
	NAVER(r)(field)
	NCOUNT(r)(field)
	NMIN(r)(field)
	OLD(r)(field)
	SUM(r)(field)
	TOTAL(r)(field)
	Examples
	Example 1 - AT BREAK Statement with Natural System Functions OLD, MIN, AVER, MAX, SUM, COUNT
	Example 2 - AT BREAK Statement with Natural System Function AVER
	Example 3 - AT END OF DATA Statement with System Functions MAX, MIN, AVER
	Example 4 - AT END OF PAGE Statement with System Function AVER

	3 Mathematical System Functions

	II Miscellaneous System Functions
	4 *MINVAL/*MAXVAL - Evaluate the Minimum/Maximum
	Function
	Restrictions
	Syntax Description
	IR Clause

	Resulting Format/Length Conversion Rule Tables
	Explicit Specification of the Resulting Format/Length
	Implicit Specification of the Resulting Format/Length

	Evaluating the result-format-length
	Format/Length Evaluation Order

	5 *TRANSLATE - Translate to Lower/Upper Case Characters
	Function
	Restrictions
	Syntax Description
	Example

	6 *TRIM - Remove Leading and/or Trailing Blanks
	Function
	Restrictions
	Syntax Description
	Examples
	Example 1 - Using an Alphanumeric Argument
	Example 2 - Using a Binary Argument

	7 POS - Field Identification Function
	8 RET - Return Code Function
	9 SORTKEY - Sort-Key Function

	III Functions Supplied as Natural Objects
	10 Functions Supplied as Natural Objects
	URL Encoding
	Simple Encoding
	SAGENC - Simple Encoding (Format A to Format A)
	SAGDEC - Simple Decoding (Format A to Format A)
	Extended Encoding
	SAGENCE - Extended Encoding (Format U to Format A, Optional Parameters)
	SAGDECE - Extended Decoding (Format A to Format U, Optional Parameters)
	Example Program

	Base64 Encoding
	SAG64BA - Binary to Alphanumerical Conversion
	SAG64AB - Alphanumerical to Binary Conversion
	Example Program

