
Natural

Unicode and Code Page Support

Version 9.3.2

May 2025

This document applies to Natural Version 9.3.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATUX-NNATUNICODE-932-20250505

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Introduction to Unicode and Code Page Support ... 5
About Code Pages and Unicode .. 6
About Unicode and Code Page Support in Natural .. 7

3 Enabling Unicode and Code Page Support ... 9
ICU Library .. 10

4 Configuration and Administration of the Unicode and Code Page Environment 11
Profile Parameters .. 12
Encoding Information .. 13
Deploying Natural Objects with Encoding Information ... 13

5 Development Environment ... 15
Development Environment for Applications .. 16
Customizing Your Environment .. 17
Editors in the SPoD Environment .. 18

6 Unicode and Code Page Support in the Natural Programming Language 21
Natural Data Format U for Unicode-Based Data ... 22
Statements .. 23
Logical Condition Criteria ... 27
System Variables .. 28
Large and Dynamic Variables .. 28
Session Parameters ... 28
Sample Programs ... 31

7 Unicode Input and Output Handling in Natural Applications 33
Displaying and Entering Unicode Data ... 34
Natural Web I/O Interface Client ... 35

8 Bidirectional Language Support ... 39
General Information ... 40
Screen Direction ... 40
Field Direction .. 41
Maps and Dialogs ... 43
Print Methods ... 43
Terminal Capabilities ... 44
Arabic Shaping ... 44

9 Double-Byte Character Support .. 47
10 Unicode Data Storage .. 49

Unicode Data and Parameter Access ... 50
Database Management System Interfaces .. 50
Work Files and Print Files .. 51

11 Platform Differences .. 55

iii

General Information ... 56
Windows .. 56
Linux .. 57

12 Migrating Existing Applications ... 59
Impact of Unicode on Existing Applications ... 60
Migrating Existing Objects ... 60
Adding Unicode Support to Existing Applications ... 61
Migrating Natural Remote Procedure Calls (RPC) .. 62

13 Special Considerations and Limitations .. 63
14 Help and Troubleshooting ... 65

Receiving the Startup Error "Invalid Code Page Specified" 66
The Default Code Page ... 66
Picking the Right Format When Saving Your Natural Sources 66
Handling UTF-8 Encoding with Natural Code .. 66
Incorrectly Displayed Characters ... 67
Receiving an Error When Editing a Natural Source .. 67
Receiving an Error When Saving a Natural Source ... 67
Finding out the Encoding of a Natural Source .. 67
Changing the Encoding of a Natural Source ... 68
Converting an Existing Natural Source into UTF-8 Format 68
Substitution Characters Used When a Character Cannot Be Converted 68
Using UTF-8 Sources with Previous Natural Versions .. 68
Receiving a Conversion Error When Cataloging a Source Which Has UTF-8
Format .. 69
Receiving Junk on Linux When Displaying U Format by a Terminal
Emulation ... 69
Working with a Current SPoD Client and an Older SPoD Server 69
Working with a Current SPoD Server and an Older SPoD Client 69

Unicode and Code Page Supportiv

Unicode and Code Page Support

Preface

This documentation describes how Natural supports Unicode and code pages on Windows and
Linux platforms. It also describes howNatural supports bidirectional languages and double-byte
characters.

This documentation is organized under the following headings:

General information on code pages and the Unicode Standard,
and on how Unicode and code pages are supported in Natural.

Introduction

Information on the ICU library.Enabling Unicode and Code Page
Support

Information on profile parameters which provide Unicode and
code page support, and on the encoding of code page data.

Configuration and Administration of
the Unicode/Code Page Environment

How to customize your environment and howUnicode is handled
by the Natural editors.

Development Environment

Information on the U format and on statements, logical condition
criteria, systemvariables, large anddynamic variables, and session
parameters which provide Unicode and code page support.

Unicode and Code Page Support in the
Natural Programming Language

How to display and enter Unicode data. Information on the
Natural Web I/O Interface client which is used in SPoD and
runtime environments.

Unicode Input/Output Handling in
Natural Applications

How Natural supports bidirectional languages.Bidirectional Language Support

How Natural supports double-byte characters.Double-Byte Character Support

Information on database access, and on the work file types and
print files which provide Unicode and code page support.

Unicode Data Storage

Handling differences on Windows and Linux platforms.Platform Differences

About the impact of Unicode on existing applications. How to
migrate existing objects, add Unicode support to existing

Migrating Existing Applications

applications, and how to migrate Natural remote procedure calls
(RPC).

Important information and restrictions.Special Considerations andLimitations

Answers to frequently asked questions and help regarding
frequently received errors.

Help and Troubleshooting

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Unicode and Code Page Support2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Unicode and Code Page Support

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Introduction to Unicode and Code Page Support

■ About Code Pages and Unicode .. 6
■ About Unicode and Code Page Support in Natural ... 7

5

About Code Pages and Unicode

A traditional code page is a list of selected character codes, arranged in a certain order, that support
specific languages or groups of languages that share common scripts. A code page can contain a
maximum of 256 character codes. For character sets which contain more than 256 characters (for
example, Chinese or Japanese), double-byte code unit handling (DBCS) is used: DBCS code pages
are actually multi-byte encodings, a mix of 1-byte and 2-byte code points.

Code pages have the inherent disadvantage of not being able to be used to store different languages
in the same data stream. Unicodewas designed to remove this restriction by providing a standard
encoding for all character sets which is independent of the platform, program, or language used
to access the data. With Unicode, a unique number is provided for every character.

A single number is assigned to each code element defined by the Unicode Standard. Each of these
numbers is called a “code point” and, when referred to in text, is listed in hexadecimal form fol-
lowing the prefix "U". For example, the code point "U+0041" is the hexadecimal number "0041"
(equal to the decimal number "65"). It represents the character "A" in the Unicode Standard which
is named “LATIN CAPITAL LETTER A”.

The Unicode Standard defines three encoding forms that allow the same data to be transmitted
in a byte, word or double word oriented format. A “code unit” is the minimal bit combination
that can represent a character in a specific encoding. The Unicode Standard uses 8-bit code units
in the UTF-8 encoding form, 16-bit code units in the UTF-16 encoding form, and 32-bit code units
in theUTF-32 encoding form.All three encoding forms encode the same common character repertoire
and can be efficiently transformed into one another without loss of data.

In the context of Natural, we are concerned with two of these encoding forms: UTF-16 and UTF-
8. Natural uses UTF-16 for the coding of Unicode strings at runtime and UTF-8 for the coding of
Unicode data in files. UTF-16 is an endian-dependent 2-byte encoding; the endian format that will
be used depends on the platform. UTF-8 is a variable-length encoding.

For a complete description of Unicode, see the Unicode consortium web site at http://www.uni-
code.org/.

Note: For obtaining information onUnicode code points, you can use the SYSCP utilitywhich
is available with Natural for Windows.

Unicode and Code Page Support6

Introduction to Unicode and Code Page Support

http://www.unicode.org/
http://www.unicode.org/

About Unicode and Code Page Support in Natural

For Unicode support, the Natural data format U and specific statements, parameters and system
variables are used. For details, see the remainder of this documentation.

Most existing data is available in code page format. When converting this data to Unicode, it is
required that the correct code page is used. Natural provides the possibility to define the correct
code page on several levels:

■ The system code page is used if a default code page is not defined in Natural.

On the platforms supported byNatural for Linux, checkwhether the detected system code page
meets your expectations. For more information, see the description of the Natural parameter
CP.

■ The default code page is used when the Natural parameter CP is defined; this overwrites the
operating system's code page.

■ The object code page which is defined, for example, for a source overwrites the default code
page for this object.

When using Unicode strings and code page strings in one application, Natural performs implicit
conversionswhere necessary (for example, whenmoving or comparing data). Explicit conversions
can be performed with the statement MOVE ENCODED.

In most cases, existing applications which do not require Unicode support, will run unchanged.
Changes can be necessary if the existing sources are encoded in different code pages. For more
information, seeMigrating Existing Applications later in this documentation.

It is not possible to run an existing application and also support Unicode datawithout any changes
to the application. The Natural data format U has to be introduced in the application and it will
most probably not suffice to simply replace the A format definitions with U format definitions.
All code which assumes a specific memory layout of strings (for example, REDEFINE from alpha-
numeric to numeric format) has to be adapted.

Unicode characters are not permitted within variable names, object names and library names.

Unicode-based data are supported for Adabas.

Natural uses the International Components for Unicode (ICU) library for Unicode collation and
conversion. Formore information, see http://userguide.icu-project.org/. See also ICU Library later
in this documentation.

7Unicode and Code Page Support

Introduction to Unicode and Code Page Support

http://userguide.icu-project.org/

8

3 Enabling Unicode and Code Page Support

■ ICU Library .. 10

9

ICU Library

The ICU libraries are always installed with the full set of ICU conversion and collation data. The
settings in the configuration file NATCONV.INI apply to the A format. For the U format, the cor-
responding checks (for example, when a character is translated to upper case) are done via the
ICU library.

Note: For obtaining information on the ICU version and the supported code pages, you can
use the SYSCP utility which is available with Natural for Windows.

Unicode and Code Page Support10

Enabling Unicode and Code Page Support

4 Configuration and Administration of the Unicode and Code

Page Environment
■ Profile Parameters ... 12
■ Encoding Information ... 13
■ Deploying Natural Objects with Encoding Information ... 13

11

Notation vr:

When used in this document, the notation vr represents the 2-digit ICU version number.

Profile Parameters

This section lists the profile parameters which are used in conjunction with Unicode and code
page support.

DescriptionParameter

Defines the default code page forNatural. This code page is used for the runtime anddevelopment
environment if not superposed with a code page defined for a single object (for example, for a
Natural source).

CP

Only platform-suitable code pages can be used. This means, for example, that no EBCDIC code
page can be defined for a Windows or Linux platform.

Specifies whether a conversion error that occurs when converting from Unicode to code page or
from code page to Unicode or from one code page to another code page results in a Natural error
or not.

CPCVERR

This parameter is not regarded for the conversion of Natural sources when loading them into
the source area or when cataloging them.

Specifies the code page in which the batch input file for data is encoded. This file is defined with
the Natural profile parameter CMOBJIN.

CPOBJIN

Specifies the code page in which the batch output file shall be encoded. This file is defined with
the Natural profile parameter CMPRINT.

CPPRINT

Specifies the code page inwhich the batch input file for commands is encoded. This file is defined
with the Natural profile parameter CMSYNIN (Windows and Linux).

CPSYNIN

Specifies that all existing sources have to be saved in their original encoding format. See also
Customizing Your Environment.

SRETAIN

Specifies the default format to be used when Natural sources are saved.

Note: On Linux, this parameter can only be used in a SPoD environment.

SUTF8

Specifies the substitution character for the conversion from Unicode to the default code page. If
SUBCHAR is OFF, the default substitution character defined by ICU will be used.

Note: SUBCHAR does not influence conversions from code page to Unicode or from Unicode to
code pages which differ from the default code page.

SUBCHAR

Specifies whether the Natural Web I/O Interface client (which supports Unicode) or the terminal
emulation window (which is not Unicode-enabled) is used for input and output.

In a local Windows environment, the output window (which is Unicode-enabled) is used.

WEBIO

Unicode and Code Page Support12

Configuration and Administration of the Unicode and Code Page Environment

DescriptionParameter

In a remoteWindows environment, theNaturalWeb I/O Interface client is always used, regardless
of the setting of this parameter.

See also:

■ Code Pages for the Input and Output Files in the section Natural in Batch Mode of the Operations
documentation

■ For valid code pages, see http://www.iana.org/assignments/character-sets.

Encoding Information

The encoding of code page data can be specified on different levels.

Level 1 - Default Code Page

The default code page can be defined with the CP parameter. It overwrites the system code page
and is valid for all code page data.

Level 2 - Code Page for a Single Object

A code page can be defined for Natural sources, batch input (CPOBJIN, CPSYNIN) and output files
(CPPRINT).

In addition, a code page can be defined forwork files of typeASCII, ASCII compressed, Unformat-
ted and CSV; seeWork File Assignments in the Configuration Utility documentation.

If a code page is defined at object level, this overwrites the default code page.

Important: It is important that the correct code page is defined for every object. For more
information, seeMigrating Existing Applications.

Deploying Natural Objects with Encoding Information

If you want to deploy Natural objects for which encoding information has already been defined,
you have to keep in mind that the encoding information is stored in the file FILEDIR.SAG and
that it is lost if you deploy only the object file from outside of Natural.

When deploying Natural objects, you have the following possibilities for keeping the encoding
information:

13Unicode and Code Page Support

Configuration and Administration of the Unicode and Code Page Environment

http://www.iana.org/assignments/character-sets

■ You can copy the entire library. The copy of the library can then be distributed to all Windows
and Linux platforms. In this case, the original code page is kept. If a library is copied from
Windows to Linux, you have to keep in mind that it may be possible that the objects cannot be
opened with a native Natural for Linux editor because these editors can only open objects with
the default code page.

■ You can use the Object Handler which keeps the encoding information. In this case, the original
code page is kept. If a Windows library is unloaded on Linux, you have to keep in mind that it
may be possible that the objects cannot be openedwith a nativeNatural for Linux editor because
these editors can only open objects with the default code page.

■ You can copy and paste objects with Natural Studio. In a SPoD environment, if the target envir-
onment is located on a platform different from the source environment, Natural tries to save
the object with the default code page of the target environment. If this is not possible, the object
is stored in UTF-8 format. For Linux targets, this assures that the object can be opened with the
native Natural for Linux editor, if all characters of the source are available in the default code
page of the Linux server.

Unicode and Code Page Support14

Configuration and Administration of the Unicode and Code Page Environment

5 Development Environment

■ Development Environment for Applications ... 16
■ Customizing Your Environment .. 17
■ Editors in the SPoD Environment .. 18

15

Development Environment for Applications

The development environment for Unicode applications is Natural Single Point of Development
(SPoD).

In a SPoD environment, the Natural objects of a Unicode application which are located on a Nat-
ural Development Server (NDV) can bemodified usingNatural Studio. If supported by the server,
the sources are exchanged between client and server in UTF-8 format.

On NDV servers for Linux, the setting of the profile parameter SUTF8 determines the format that
is used when storing the Natural object on the server. This is handled just like the local Windows
case.

OnNDV servers for mainframes, the objects are storedwith the default or their original encoding,
depending on the setting of the profile parameter SRETAIN.

Unicode and Code Page Support16

Development Environment

Customizing Your Environment

It is important that you define the correct default code page for your environment before changing
any Natural code. For more information, seeMigrating Existing Applications.

If you want to store characters from different languages in your sources, you have to save the
sources in UTF-8 format, or you have to use hexadecimal UH constants in the sources. With the
profile parameters SUTF8 and SRETAIN you can control in which format sources are saved. The
following table lists some situations and the recommended settings.

Note: On Linux, the parameter SUTF8 can only be used in a SPoD environment.

EffectSettingsSituation

All sources are saved in UTF-8 format when saving them
withNatural 6.2 or above.New sources are created inUTF-8
format. All characters can be stored in a source.

Sources are located on
Windows; U constants are
needed.

SUTF8=ON,
SRETAIN=OFF

All sources are saved in UTF-8 format when a conversion
to the original code page is no longer possible; if it is
possible, the code page of a source will not be changed.
New sources are created in UTF-8 format. All characters
can be stored in a source. A source with UTF-8 format can

Sources are located onWindows
and Linux; U constants are
needed and SPoD is used for
development.

only be changed with SPoD; it can no longer be handled
with the Natural for Linux editor.

SUTF8=ON,
SRETAIN=ON

All sources are saved with the original code page. New
sources are saved with the default code page (of server).

Sources are located onWindows
and Linux; no U constants are
needed. Only characters from the source code page can be stored

in a source. The sources can further be handled with the
Natural for Linux editor.

SUTF8=OFF,
SRETAIN=ON

All sources are saved with the original code page. New
sources are savedwith the default code page (of the server).
Only characters from the source code page can be stored

Sources are located onWindows
and Linux; U constants are
needed and SPoD is used for
development. in a source. The sources can further be handled with the

editors for Natural for Linux and Natural for Mainframes.
All Unicode constants have to be defined as hexadecimal
constants (UH).

SUTF8=OFF,
SRETAIN=ON

If the parameter SUTF8 is set to OFF and you stow a sourcewhich contains characters fromdifferent
character sets, but which was not yet saved in UTF-8 format, it is possible that the generated pro-
gram is created, but that the source cannot be saved and thus remains unchanged. This happens
if characters fromdifferent character sets are used in a comment or in aU constant. For this reason,
it is recommended that you set the parameter SUTF8 to ON if you want to create sources with
characters from different character sets and if your sources do not need to be distributed to
mainframe platforms.

17Unicode and Code Page Support

Development Environment

If the parameter SRETAIN is set to OFF, all sources are saved with the default code page. You have
to be careful with this setting because it may lead to improper code page information if you have
sources whichwere createdwith an earlier Natural version. In this case, the encoding information
of the source is unassigned and the source is always opened with the default code page (value of
the systemvariable *CODEPAGE). Thiswill oftenwork even if the default code page is not the correct
encoding of the source. Some language-specific characters will be displayed incorrectly in this
case. If such a source is opened with the wrong code page and is saved with SRETAIN being set to
ON, no encoding will be stored for the source; the source can later be opened correctly if Natural
is started with the correct default code page. However, once you have saved the source with
SRETAIN being set to OFF, the default code page will be saved as the encoding of the source; from
this time on, the source will only be opened with this code page. For this reason, you should use
this setting only if you are certain that all of your Natural sources are encoded in the default code
page.

See also: Regional Settings in the Configuration Utility documentation.

Editors in the SPoD Environment

The Natural for Windows editors are fully Unicode-enabled. Via SPoD they can also be used for
mainframe and Linux sources. The editors provided with Natural for Mainframes and Natural
for Linux are not Unicode-enabled.

When a source is opened with an editor in Natural Studio (Natural for Windows), the content of
the source will be converted from the corresponding code page to Unicode before it is loaded into
the editor. This will guarantee that all characters can be displayed correctly even if the source
contains characters which are not included in the system code page. If the conversion from the
source's code page to Unicode fails, an error will be displayed and the editor is not opened. In this
case, the user has to define the correct encoding of the source. The source encoding can be changed
in the Properties dialog box (see Properties for the Nodes in theUsingNatural Studio documentation).

For Windows and Linux sources, the Natural for Windows editors allow saving sources which
contain characters fromdifferent languages inUTF-8 format. Onmainframes, it will not be possible
to save UTF-8 sources.

Note: If you save a Linux source in UTF-8 format or with a code page which differs from
the default code page, the source can no longer be openedwith the nativeNatural for Linux
editor. Mainframe sources can be saved with a different code page and can be edited with
the native Natural for Mainframes editors.

Even if you do notwant to useUnicode strings in your programs and sources, theUnicode-enabled
editors have the advantage that you can write sources in all code pages, no matter which system
code page is installed. For example, if you have installed the "windows-1252" (Latin 1) code page,
you canwrite a program containing Cyrillic characters and save this programwith the "windows-

Unicode and Code Page Support18

Development Environment

1251" (Cyrillic) code page. You only have to select code page "windows-1251" in the SaveAs dialog
box (see Saving an Object with a New Name in the Using Natural Studio documentation).

Using the Natural for Windows program editor, you can convert text constants into their hexa-
decimal Unicode representations (seeConverting to Hexadecimal Format in the ProgramEditor section
of the Natural for Windows Editors documentation). If you are developing for a platform where
UTF-8 sources are not preferred, you can thus enter all characters for a Unicode constant, select
all the characters of the constant, convert them to their hexadecimal representation and then add
the "UH" prefix for Unicode hexadecimal constants. Furthermore, when you hover the mouse
pointer over a character or a selected character range of a text constant, a tool tip shows the corres-
ponding hexadecimal Unicode representation.

A byte ordermark (BOM) consists of the character code "U+FEFF" at the beginning of a data stream
where it can be used as a signature defining the byte order and encoding form, primarily of un-
marked plain-text files. On Windows, a byte order mark is used by some editors (for example,
Notepad) tomarkUTF-8 files. TheNatural forWindows editorswill recognize anUTF-8 byte order
markwhen reading an object. If the object has no other encoding defined so far, Natural will inter-
pret it as UTF-8 and when the object is saved, UTF-8 will be stored as the encoding for the object.
The byte order mark is removed in this case.

19Unicode and Code Page Support

Development Environment

20

6 Unicode andCodePageSupport in theNatural Programming

Language
■ Natural Data Format U for Unicode-Based Data .. 22
■ Statements .. 23
■ Logical Condition Criteria .. 27
■ System Variables .. 28
■ Large and Dynamic Variables .. 28
■ Session Parameters ... 28
■ Sample Programs .. 31

21

Natural Data Format U for Unicode-Based Data

In Natural, you can specify Unicode strings with the format U and U constants.

■ Format U
With format U, you can define data which holds Unicode strings. The Natural data format U is
internally UTF-16.

See also Format and Length of User-Defined Variables in the Programming Guide.
■ U Constants
You can define Unicode constants with the prefix "U". For example:

U'Äpfel'

The prefix "UH" can be used for defining Unicode constants in hexadecimal format. Four hexa-
decimal digits represent one UTF-16 code unit as defined by the Unicode Standard. So the
overall length must be a multiple of four. For example, if you need the hexadecimal form of

U'Äpfel'

you need the UTF-16 code units for "Ä", "p", "f", "e" and "l" (which are "U+00C4", "U+0070",
"U+0066", "U+0065" and "U+006C") and you have to combine them to the following hexadecimal
string:

UH'00C4007000660065006C'

See also Unicode Constants in the Programming Guide.

The data format U is endian-dependent. This has to be considered when moving between the
formats B and U.

U versus A

The advantage of theU format (as comparedwith theA format) is, that it can hold any combinations
of characters from different languages and that it does not depend on the default code page (value
of the system variable *CODEPAGE). Moreover, the U format makes it easier to share data between
different platforms; no more conversions (for example, from EBCDIC to ASCII) are necessary.

On the other hand, U format data often consumesmorememory thanA format data. For languages
in which most strings can be represented by single-byte encoding, U format will result in strings
occupying twice the space that was previously required. However, for East Asian languages, the
memory consumption will often not be higher.

Unicode and Code Page Support22

Unicode and Code Page Support in the Natural Programming Language

Statements

Basically, U format can be used in most statements which allow A format. However, if a Natural
object name is given as an operand of a statement (for example, in the CALLNAT statement), U
cannot be used becauseNatural object names haveA format. For information on a specific statement,
see the Statements documentation.

Basically, A and U format can be used together in one statement, however, it is recommended that
you use only one format within one statement, either A or U. If both formats are used together,
all variables have to be converted to a uniform format; this may lead to conversion errors.

The following statements are particularly affected when using Unicode:

■ MOVE NORMALIZED
■ MOVE ENCODED
■ EXAMINE
■ PARSE JSON
■ PARSE XML
■ REQUEST DOCUMENT
■ CALLNAT (RPC)

MOVE NORMALIZED

Normalization inUnicode:Aprocess of removing alternate representations of equivalent sequences
from textual data in order to convert the data into a form that can be binary-compared for equival-
ence. The Unicode Standard defines different normalization forms. The normalization form that
results from the canonical decomposition of a Unicode string, followed by the replacement of all
decomposed sequences by primary composites where possible, is called “Normalization Form
Composed” (NFC).

Natural assumes that all Unicode data is in NFC format to assure that string operations can be
performedwithout partial truncation of aUnicode character. Natural conversion operations assure
that the resulting Unicode string is in NFC. If Unicode data is received from outside of Natural
and it is not guaranteed that the data has NFC format, the MOVE NORMALIZED statement can be ap-
plied.

Example:

23Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

NFCCharacter Sequence

ê (U+00EA)ê (U+00EA)

ê (U+00EA)e (U+0065) + ^ (U+0302)

Note: Concatenating two or more strings in NFC format can result in not-NFC format.

MOVE ENCODED

An implicit conversion between Unicode and the default code page (value of the system variable
*CODEPAGE) is performed when moving strings fromU to A or vice versa with the MOVE statement.

Furthermore, the MOVE ENCODED statement can be used for conversion between different code pages
or from any available code page to Unicode and vice versa. This can be helpful if data is coming
from outside of Natural and this data is coded in a code page which differs from the default code
page. But even for conversions between the default code page and Unicode, this statement can be
used if you want to obtain a potential conversion error with the GIVING clause; if CPCVERR is set to
ON, the MOVE statement will stop with a runtime error in this case.

If a character cannot be converted, it depends on the setting of the CPCVERR parameter whether a
substitution character is used for this character or whether the conversion fails. The default substi-
tution character (defined by ICU) for the conversion from Unicode to the default code page (CP)
can be changed with the profile parameter SUBCHAR.

This statement can also be used for conversion from U data into UTF-8 format.

Note: If you convert data to a code page which differs from the default code page, it is re-
commended not to use this data in I/O. I/O is only meaningful with the default code page.

EXAMINE

A “grapheme” is what a user normally thinks of as a character. In most cases, a Unicode code
point is a grapheme, however, a grapheme can also consist of several Unicode code points. For
example, a sequence of one base character and one or more combining characters is a grapheme.

Example: "a" (U+0061) + "." (U+0323) + "^" (U+0302) defines one grapheme which is displayed as
follows:

Note: If a base/combining character sequence is normalized, this does not mean that the
sequence is always replaced by a pre-composed character, because not all characters are
available in a pre-composed format.

A “supplementary code point” is a Unicode code point between "U+10000" and "U+10FFFF". A
supplementary code point is in UTF-16, represented by a surrogate pair which consists of two

Unicode and Code Page Support24

Unicode and Code Page Support in the Natural Programming Language

code units where the first value of the pair is a “high-surrogate code unit”, and the second is a
“low-surrogate code unit”. Such characters are generally rare, but some are used, for example, as
part of Chinese and Japanese personal names, and therefore support for these characters is com-
monly required for government applications in East Asian countries.

The string handling statements such as EXAMINE and its SUBSTRING option work on UTF-16 code
units. It is the user's responsibility that the code does not separate graphemes or surrogate pairs.

However, the clauses CHARPOSITION and CHARLENGTH of the EXAMINE statement (see Syntax 3 - EX-
AMINE for Unicode Graphemes) can be used to ask for the start and length (in UTF-16 code units)
of graphemes. The result values can be used for SUBSTRING calls. With these clauses, it is possible
to scan a string grapheme by grapheme.

Example:

DEFINE DATA LOCAL
1 #UNICODE-STRING (U15)
1 #CODE-UNIT-INDEX (N4)
1 #CODE-UNIT-LEN (N4)
1 #GRAPHEME-NUMBER (N4)
END-DEFINE

MOVE U' ' TO #UNICODE-STRING

#GRAPHEME-NUMBER := 1

REPEAT
EXAMINE

FULL VALUE OF #UNICODE-STRING
FOR CHARPOSITION #GRAPHEME-NUMBER
GIVING POSITION IN #CODE-UNIT-INDEX
GIVING LENGTH IN #CODE-UNIT-LEN

DISPLAY #UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN

#GRAPHEME-NUMBER := #GRAPHEME-NUMBER + 1
WHILE #CODE-UNIT-INDEX NE 0
END-REPEAT

END

The above example program provides the following output:

25Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

Page 1 05-12-15 09:33:49

#UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN
--------------- ---------------- ---------------- --------------

1 1 1
2 2 2
3 4 1
4 5 3
5 8 1
6 9 3
7 12 1
8 13 3
9 0 0

PARSE JSON

The document to be parsed is always internally converted to UTF-8 if the document is not already
encoded in UTF-8.

See the description of the PARSE JSON statement for further information.

See also Statements for Internet Access and Parsing in the Programming Guide.

PARSE XML

XML documents can contain information within the XML document header about the encoding
of the document (for example, <?xml version="1.0" encoding="UTF-8" ?>). If an XMLdocument
contains this information, the parsing of the XML document on Windows and Linux platforms
always includes a conversion of the code page givenwithin theXMLdocument header to the default
code page ofNatural (value of the system variable *CODEPAGE), if the receiving field is not of format
U.

See the description of the PARSE XML statement for further information.

See also Statements for Internet Access and Parsing in the Programming Guide.

REQUEST DOCUMENT

Data transfer with the REQUEST DOCUMENT statement normally does not involve any code page
conversion. If you want to have the outgoing and/or incoming data encoded in a specific code
page, you can use the DATA ALL clause and/or the RETURN PAGE clause of the REQUEST DOCUMENT
statement to specify this.

See the description of the REQUEST DOCUMENT statement for further information.

See also Statements for Internet Access and Parsing in the Programming Guide.

Unicode and Code Page Support26

Unicode and Code Page Support in the Natural Programming Language

CALLNAT (RPC)

Data exchange in Unicode format via RPC is supported. See the description of the CALLNAT state-
ment.

If U data is sent from a platformwith big endian encoding to a platformwith little endian encoding
or vice versa, the encoding is adapted so that it conforms with the encoding on the receiving
platform. For example, when U data in little endian encoding arrives on a big endian platform,
this data is converted to big endian encoding before it is handed over to the program. When this
data is sent back, it is converted back to little endian encoding.

Logical Condition Criteria

In a logical condition criterion, Unicode operands can be used together with alphanumeric and
binary operands. If not all operands are Unicode operands (format U), the second and all following
operands are converted to the format of the first operand. If a binary operand (format B) is specified
as the second or a following operand, the length of the binary operand must be even; the binary
operand is assumed to contain Unicode code points.

If the first operand is a Unicode operand (format U) and the comparison is therefore performed
as aUnicode comparison, the ICU collation algorithm is used. The ICU algorithmdoes not perform
a plain binary comparison. For example,

■ some code points such as "U+0000" are ignored during the comparison process,
■ combined characters are considered as being equal to the equivalent single code point (for ex-
ample, the German character "ä" represented by "U+00E4" and the combination of the code
points "U+0061" and "U+0308" are considered as being equal by ICU).

Note: Comparing an alphanumeric and a Unicode operand can deliver different results,
depending on the sequence of the fields.

See also Logical Condition Criteria in the Programming Guide.

27Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

System Variables

*CODEPAGE

The system variable *CODEPAGE is used to return the IANA name of the default code page, that is,
the code page used for conversions between Unicode and code page format.

*LOCALE

The system variable *LOCALE contains the language and country of the current locale.

Large and Dynamic Variables

U format can be used for large and dynamic variables. For dynamic U variables, *LENGTH returns
the number of UTF-16 code units.

See also Introduction to Dynamic Variables and Fields in the Programming Guide.

Session Parameters

The following session parameters are available:

DescriptionParameter

Specifies the display length for a field of format A or U. See also Display Length for Output - DL
Parameter in the Programming Guide.

DL

Edit mask in Unicode.EMU

Insertion character in Unicode.ICU

Leading characters in Unicode.LCU

Trailing characters in Unicode.TCU

Unicode and Code Page Support28

Unicode and Code Page Support in the Natural Programming Language

DL versus AL

As long as Natural was not Unicode-enabled, the length of an alphanumeric field was always
identical to the number of columns needed for displaying the field (called number of display
columns). This was even true for the East Asian languages which use DBCS code pages: an A
format field can hold only half the characters (for example, A10 results in A5).

Example:

DEFINE DATA LOCAL
1 #A8 (A8)
END-DEFINE
#A8 := 'computer'
WRITE #A8
#A8 := ' '
WRITE #A8
END

The above code results in the following output:

Page 1 ...

computer

With U format fields, the length of a field and the number of display columns is no longer
identical. U characters can have narrow width (for example, Latin characters), wide width (for
example, Chinese characters) or no width (for example, combining characters). Therefore, it is
totally unknown how many display columns a U field needs; this depends on the contents of the
field. Natural cannot automatically decide how many columns are to be reserved on the screen:
if the maximum size is assumed, Latin output will have large gaps, and if the minimum size is
assumed, Chinese output cannot be displayed totally. Therefore, the Natural programmer has to
define the display width of a field; this is done with the DL parameter. The AL parameter cannot
be used for this purpose, because it cuts away the part of the field which exceeds the defined
length. But we do not want to cut any characters from the U field; we only want to define the start
position of the following field.

Example:

DEFINE DATA LOCAL
1 #U8 (U8)
1 #U4 (U4)
END-DEFINE
#U8 := 'computer'
WRITE #U8
#U4 := U' '
WRITE #U4 (DL=8)
END

29Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

The above code results in the same output as above:

Page 1 ...

computer

OnWindows, either locally with the output window or in a remote development environment
with the Natural Web I/O Interface client, it is possible to scroll in a field where the defined value
for the DL parameter is smaller than the real display width of the field.

EMU, ICU, LCU, TCU versus EM, IC, LC, TC

The parameters EMU, ICU, LCU and TCU allow using characters which are not included in the default
code page. They are stored in Unicode format in the generated program. These parameters can
be used with all field formats.

The parameters EM, IC, LC and TC can also be used with U format fields. These parameters may
also be useful if characters which are contained in the default code page have different encodings
in other code pages. For example, the Euro sign (€) has the code point "0x80" in the "windows-
1252" (Latin 1) code page, but the code point "0x88" in the "windows-1251" (Cyrillic) code page.
Thus, using a Unicode parameter (EMU, ICU, LCU or TCU) will assure that the Euro sign is always
displayed correctly, no matter what code page is installed on the PC.

Example for EMU:

DEFINE DATA
LOCAL
01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
02 FIRST-NAME
02 NAME
02 SALARY (1)

END-DEFINE
*

READ (6) EMPLOYEES-VIEW
DISPLAY NAME FIRST-NAME SALARY(1) (EMU=999,999)

END-READ
*
END

The above code results in the following output:

Unicode and Code Page Support30

Unicode and Code Page Support in the Natural Programming Language

Page 1 05-12-15 11:45:36

NAME FIRST-NAME ANNUAL
SALARY

-------------------- -------------------- --------

ADAM SIMONE 159,980
MORENO HUMBERTO 165,810
BLOND ALEXANDRE 172,000
MAIZIERE ELISABETH 166,900
CAOUDAL ALBERT 167,350
VERDIE BERNARD 170,100

Sample Programs

The library SYSEXPG contains sample programs for Unicode and code page support in Natural:

■ UNICOX01 lists all Unicode characters.
■ UNICOX02 converts Unicode characters to code points and vice versa.
■ CODEPX01 lists all code pages, whether the code page is supported inNatural andwhich encoding
it uses. For all supported code pages, it offers services to list the characters of the code page and
to convert a string from the code page into its hexadecimal representation and vice versa.

■ CODEPXL1 lists all characters of any 1-byte code page.
■ CODEPXL2 lists all characters of any 2-byte code page.
■ CODEPXC1 converts a string from any code page into its hexadecimal representation and vice
versa.

31Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

32

7 Unicode Input and Output Handling in Natural Applications

■ Displaying and Entering Unicode Data ... 34
■ Natural Web I/O Interface Client ... 35

33

Displaying and Entering Unicode Data

If you want to display or enter Unicode data, the following possibilities exist:

■ When working in the local development environment with Natural for Windows, all Unicode
characters can be displayed and entered in the Natural output window.

■ When working in a remote development environment with Natural for Windows (SPoD), the
NaturalWeb I/O Interface client (see below) is necessary for displaying and entering all Unicode
characters.

■ When running applications with Natural for Linux, Natural for Mainframes or Natural for
Windows, see Natural Web I/O Interface Client below.

Notes:

1. Even if you are working with a Unicode-enabled output interface on Windows, you will see
only the Unicode characters which are supported by the currently selected font.

2. If you are working with the Unicode-enabled output window on Windows, characters which
are not contained in the current code pagewill be ignoredwhen entering data inA format fields
if the parameter CPCVERR is ON.

3. Unicode data cannot be displayed on 3270 terminals.

If you run Natural via a terminal emulation or a mainframe terminal such as IBM 3270/3279, the
page will be converted to the default code page (value of the system variable *CODEPAGE) before
displaying it, so that all characters which are not contained in the default code page are replaced
with the substitution character. Equally, input is only possible in code page format and will be
converted to Unicode format before assigning it to a U format field. You have to regard that the
substitution character is defined by the ICU conversion tables. Depending on this character, it is
possible that garbage is displayedwith a terminal emulation. On Linux platforms, you can change
this substitution character by setting the profile parameter SUBCHAR. However, it is strongly recom-
mended that you use the Natural Web I/O Interface when displaying characters not contained in
the default code page. When running a remote Windows session, the Natural Web I/O Interface
will be used in any case.

On code page oriented mainframe terminals, it is important to select the suitable code page. The
default code page of Natural, the code page of the terminal and even the font used by the terminal
determine the capability of displaying certain characters correctly.

Unicode and Code Page Support34

Unicode Input and Output Handling in Natural Applications

Natural Web I/O Interface Client

The Natural Web I/O Interface client is used to display non-GUI information which contains
Unicode characters. It can be used in the following environments:

■ SPoD Environment
■ Runtime Environment

SPoD Environment

The Natural Web I/O Interface client can be invoked when you use Natural for Windows and you
are working with Natural Studio in a remote development environment (SPoD); see Natural Web
I/O Interface Client in Remote Development Using SPoDwhich is part of the Natural for Windows
documentation.

When the Natural Web I/O Interface client is used, the Web I/O window appears instead of the
terminal emulation window which is not Unicode-enabled in remote Linux or mainframe envir-
onments, or instead of the output window in remote Windows environments.

The following graphic shows the SPoD environment forUnicode applicationswithNatural Devel-
opment Servers (NDV) on Linux and mainframes:

35Unicode and Code Page Support

Unicode Input and Output Handling in Natural Applications

So that the Natural Web I/O Interface client can be invoked, the Natural Development Server has
to be configured as follows:

■ Linux
If you want to use the Natural Web I/O Interface client in a remote Linux environment, the
profile parameter WEBIOmust be set to ON on the NDV server. See Configuration Utility in the
Natural for Linux and Cloud documentation.

■ Mainframe
If you want to use the Natural Web I/O Interface client in a remote mainframe environment,
theNDVconfiguration parameter TERMINAL_EMULATIONmust be set to WEBIO on theNDV server.
SeeNDVConfiguration Parameters in theNatural Development Server documentation. TheNatural
profile parameter TMODEL can be used to determine the user screen size.

Unicode and Code Page Support36

Unicode Input and Output Handling in Natural Applications

■ Windows
In a remoteWindows environment, theNaturalWeb I/O Interface client is always used, regardless
of the setting of the profile parameter WEBIO.

Runtime Environment

The Natural Web I/O Interface client appears when running applications with Natural. It runs in
a web/application server.

The following graphic shows the runtime environment for Unicode applications:

Natural recognizes automatically whether the session has been started from the Natural Web I/O
Interface client or from the terminal emulation.

Prerequisites for using the Natural Web I/O Interface client:

■ Natural for Linux
It is required that the Natural Web I/O Interface server (which is implemented as a daemon)
has been installed and activated. See Natural Web I/O Interface in the Natural for Linux and Cloud
documentation.

37Unicode and Code Page Support

Unicode Input and Output Handling in Natural Applications

■ Natural for Windows
It is required that the Natural Web I/O Interface server (which is implemented as a service) has
been installed and activated. SeeNatural Web I/O Interface in theNatural for Windows document-
ation.

Unicode and Code Page Support38

Unicode Input and Output Handling in Natural Applications

8 Bidirectional Language Support

■ General Information ... 40
■ Screen Direction ... 40
■ Field Direction .. 41
■ Maps and Dialogs .. 43
■ Print Methods ... 43
■ Terminal Capabilities .. 44
■ Arabic Shaping ... 44

39

General Information

Some languages, for example Arabic and Hebrew, are written from right-to-left (RTL), whereas
the majority of the languages, for example English and German, are written from left-to-right
(LTR). Text which contains both left-to-right and right-to-left characters is called bidirectional text.

Natural provides a basic support for bidirectional languages. OnWindows, this support is activated
when both the Natural default code page and the Windows system code page are defined as bid-
irectional code pages. If Natural does not define a specific code page, it is sufficient when a bid-
irectional Windows system code page has been defined. On Linux, the support for bidirectional
languages is activated when the Natural default code page is a bidirectional code page.

The output of Natural programs can be controlled using the profile parameter PM, the terminal
command %V, and the session parameter PM.

On Linux, the profile parameter DO (Display Order) is additionally used to support applications
that have been originally written for terminals which support inverse (right-to-left) print mode,
but no bidirectional data. These applications create the display order of bidirectional data in the
application code. With the parameter DO, these applications are enabled to run compatibly also
with I/O devices that support bidirectional data. This is for instance the case if an application runs
in a browser with the Natural Web I/O Interface.

Screen Direction

The profile parameter PMdefines the default screen direction.When PM is set to R (reset), the default
screen direction is left-to-right. When PM is set to I (inverse), the default screen direction is right-
to-left. All non-alphanumeric fields and system variables are automatically inverted by Natural
so that they are displayed correctly from right-to-left if the screen direction is right-to-left. PF key
lines (Linux) are not inverted; they are always shown from left-to-right.

The terminal command %V can be used to change the screen direction. If the screen direction is
right-to-left, the layout of the current window is mirrored, which means that the origin of all
window components or fields is the upper right corner. The screen direction is changed to right-
to-left using %VON and is reverted to left-to-right using %VOFF.

Unicode and Code Page Support40

Bidirectional Language Support

Field Direction

The session parameter PM reverses the direction of a field. The effect of “reversing the direction of
a field” depends on the statement in which the PM parameter is used and the platform. If the PM
parameter is used in a MOVE statement, the content of the field is simply reversed (that is, the first
character will become the last character, and so on); the result does not depend on the characters
of the field. Trailing blanks are removed before the field is reversed.

For example, the following program

DEFINE DATA LOCAL
1 TEST1 (A10)
1 TEST2 (A10)
END-DEFINE
TEST1 := 'program'

MOVE TEST1 (PM=I) TO TEST2
INPUT TEST1 (AD=O) TEST2 (AD=O)

END

produces the following output:

TEST1 program TEST2 margorp

where "margorp" is the reversed version of "program".

When the PM parameter is used for IO statements such as INPUT or DISPLAY, its effect is even more
complex. In this case, the field direction is based on the screen direction:

■ If the screen direction is left-to-right and PM=I is applied to a field, the field direction changes
to right-to-left.

■ If the screen direction is right-to-left and PM=I is applied to a field, the field direction changes
to left-to-right.

On Windows and browser terminals (Natural Web I/O Interface), “reversing the field direction”
does not mean that the characters of the field are simply reversed. Instead, the complex bidirec-
tional algorithm is applied (for more information, see the Microsoft Windows documentation).
On character-oriented terminals, however, the characters of a field are not resorted; they are simply
reversed.

In the following example, the characters assigned to the variable TEST have been entered in the
following sequence:

41Unicode and Code Page Support

Bidirectional Language Support

The following is an example program for Windows. The characters of the constant are already
resorted when entering them in the program editor.

DEFINE DATA LOCAL
1 TEST (A20)
END-DEFINE
TEST := 'abc 123 '

SET CONTROL 'voff'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

SET CONTROL 'von'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

END

This program produces the following two screens on Windows:

TEST abc 123
TEST 123 abc

and

123 abc TEST
abc 123 TEST

The following is an example program for Linux. If the characters are entered in the sequence as
described above, the program is displayed in the followingway, because the characters are simply
displayed in the keying sequence.

DEFINE DATA LOCAL
1 TEST (A20)
END-DEFINE
TEST := 'abc 123'

SET CONTROL 'voff'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

SET CONTROL 'von'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

END

Unicode and Code Page Support42

Bidirectional Language Support

On Linux, this program produces the following two screens:

TEST abc 123
TEST 321 cba

and

321 cba TSET
abc 123 TSET

Maps and Dialogs

OnWindows and Linux, the map editor simplifies the handling of maps with bidirectional fields
by offering theReverseMap command. This command changes the display direction of the current
map. The position of the fields is not changed; only the view is changed. On Windows, this com-
mand applies only to the current map. On Linux, a flag is set so that all following maps are dis-
played reversed; a following Reverse Map command will restore the original situation.

On Windows, the output of dialogs can be controlled in a similar way: both the dialog itself and
most of the dialog controls offer an RTL attribute. If the RTL attribute of the dialog is checked, the
screen direction of the dialog is right-to-left. If the RTL attribute of other controls is checked, the
direction of these controls is right-to-left.

The profile parameter PM defines the default setting of the RTL attribute for new dialogs. When PM
is set to R (reset), the RTL attribute is unchecked by default. When PM is set to I (inverse), the RTL
attribute is checked by default. The default setting of the RTL attribute for newly created controls
of a dialog is derived from the RTL attribute setting of the dialog.

If the RTL attribute of a dialog is changedwhen the dialog already contains controls, a dialog appears
asking whether the RTL attributes of the controls should also be changed.

Print Methods

When working with bidirectional languages on Windows, "GUI" is the preferred print method.
With the printmethod "GUI", the printed pagewill show the same layout as thewindowdisplayed
on the screen. The sorting of the field characters is identical.

If the print method "TTY" is used, the printed layout will most probably differ from the layout of
the screen window because the field characters are printed in logical sequence. For fields with
right-to-left direction, all characters are simply reversed (that is, the first character will become
the last character, and so on).

43Unicode and Code Page Support

Bidirectional Language Support

Terminal Capabilities

On Linux, some special terminal capabilities for bidirectional support can be defined with the
Natural Termcap utility.

The key which is defined by the RTLF capability can be used to toggle the input direction of a
field at runtime.

With the RTLM and LTRM capabilities, it is possible to switch automatically between right-to-left
and left-to-right input mode - provided that the terminal emulation supports this functionality.
The RTLM escape sequence will be inserted in front of right-to-left fields, and the LTRM escape
sequence will be inserted in front of left-to-right fields.

Arabic Shaping

In Arabic text, all characters of a string are normally connected with each other. For this reason,
Arabic characters have up to 4 presentation forms: the isolated, the final, the initial and themedial
form. The form thatwill be used depends on the position of the character in the string. For example,
the Arabic character "MEEM" has the following forms in Unicode:

ARABIC LETTER MEEMU+0645

ARABIC LETTER MEEM ISOLATED FORMU+FEE1

ARABIC LETTER MEEM FINAL FORMU+FEE2

ARABIC LETTER MEEM INITIAL FORMU+FEE3

ARABIC LETTER MEEMMEDIAL FORMU+FEE4

Moreover, some characters are combined to a new form if they appear consecutively in a string.
This is called a “ligature”. For example, the characters

ARABIC LETTER LAMU+0644

ARABIC LETTER ALEFU+0627

have the following combined form:

Unicode and Code Page Support44

Bidirectional Language Support

ARABIC LIGATURE LAMWITH ALEF ISOLATED FORMU+FEFB

Unicode strings should include only the Arabic characters in the Arabic block (U+0600 through
U+06FF) or the Arabic Supplement block (U+0750 through U+077F); it is not recommended to use
the presentation forms in regular Arabic text. It is up to the user interface to display the correct
shapes of the characters.

“Shaped” means that every Arabic base character is converted to the appropriate Arabic present-
ation form. The stringmay contain each of the four presentation forms of a character. For example,
if U+0645 (ARABIC LETTER MEEM) is used as the last character of a string, it is converted to
U+FEE2 (ARABIC LETTER MEEM FINAL FORM).

“Unshaped”means that each character is represented only by its basic form. For example, instead
of U+FEE2 (ARABIC LETTERMEEM FINAL FORM), U+0645 (ARABIC LETTERMEEM) is used.
The conversion to the correct presentation form is performed by the rendering engine of the output
device.

Natural strings are internally represented as unshaped alpha or Unicode strings. If strings are
displayedwith a browser using theNaturalWeb I/O Interface client or the PROCESS PAGE statement,
no transformation is required since the rendering engine of the browser takes care of the correct
presentation. Incoming strings from such devices are already unshaped and can be directly passed
to Natural. If a string is displayed on a terminal such as 3279 or a terminal emulator such as IBM
Personal Communications, it must be converted into the shaped form since the terminal itself does
not take care of the correct presentation. Accordingly, incoming strings are in the shaped form
and must be transformed into the unshaped form to be processed correctly by Natural. The most
popular code page for Arabic terminals on the mainframe is IBM420. Compared to Unicode, the
number of characters is reduced and not each form of a character is contained. The conversion of
strings into IBM420 substitutes unavailable forms of a character by a similar presentation form.
For example, the medial form of the Arabic letter MEEM (U+FEE4) is substituted by the initial
form (U+FEE3) of the character.

In the Arabic EBCDIC code page IBM420, the Arabic character "MEEM" is represented by the fol-
lowing presentation forms:

ARABIC LETTER MEEMH’BA’

ARABIC LETTER MEEM INITIAL FORMH’BB’

Arabic Tail Fragment

The Arabic characters SEEN (U+0633), SHEEN (U+0634), SAD (U+0635) and DAD (U+0636) (Seen
Family) are displayed on terminals as two bytes if they appear in the final form. Code page IBM420
contains a so-called "Arabic tail fragment" that completes the final form of a Seen Family character
on terminals or terminal emulators. Of course, theArabic tail fragment needs an additional position
on the screen. The Arabic tail fragment is not required by the browsers. If a string with the final
form of a Seen Family character is entered in a browser (NaturalWeb I/O Interface client or PROCESS

45Unicode and Code Page Support

Bidirectional Language Support

PAGE statement) and subsequently displayed on a terminal, the Arabic tail fragment is appended
to the string with the consequence that the length of the string increases. If a string with the final
form of a Seen Family character is entered via a terminal or terminal emulator and subsequently
displayed in a browser, the Arabic tail fragment is removed from the string.

Note: For more information about control of character shaping, see SHAPED - Control of
Character Shaping in the Parameter Reference documentation.

Unicode and Code Page Support46

Bidirectional Language Support

9 Double-Byte Character Support

In most East Asian languages, language-specific characters in code page strings (that is, Natural
format A) are represented by 2 bytes (the so-called double-byte characters) and ASCII characters
are represented by 1 byte. Thus, a code pages string consists of characters with different lengths:
some have 1 byte and others have 2 bytes.

Natural provides a basic support for double-byte characters. OnWindows, this support is activated
when both the Natural default code page and the Windows system code page are defined as
double-byte code pages. If Natural does not define a specific code page, it is sufficient when a
double-byteWindows system code page has been defined. On Linux, the support for double-byte
characters is activated when the Natural default code page is a double-byte code page.

When double-byte character support is enabled, Natural assures for all string manipulations that
a double-byte character is treated as a unit. This is essential for keeping the meaning of a string.

If a single leading or trailing byte of a double-byte character is left over after the manipulation of
a variable of format A (for example, after extracting a substring with the SUBSTRING option), this
byte is replaced with a blank character.

For the example below, the code page Shift_JIS is selected. Variable #A contains a string which
consists of four characters. The first and last character is the double-byte character "FULLWIDTH
LATIN SMALL LETTER B" which is represented in code page Shift_JIS by the byte sequence
H'8282'. The second and third character is the single byte character "LATIN SMALL LETTER A"
which is represented by one byte H'61'. Thus, the hexadecimal representation of the full string is
H'828261618282'.

47

DEFINE DATA LOCAL
1 #A (A10)

END-DEFINE

#A := ' aa '

WRITE #A #A (EM=H(6))
EXAMINE #A FOR PATTERN ' ' REPLACE 'a'
WRITE #A #A (EM=H(6))

END

Without double-byte character support the output of the above program is as follows:

Page 1 07-02-07 17:22:09

aa 828261618282
a 826161828220

This is the result of not having treated the character " " (H'8282' in code page Shift_JIS) as one
unit. The trailing byte of this character and the following character "a" (H'61') are falsely interpreted
as the double-byte character " " (H'8261' in code page Shift_JIS).

With double-byte character support, the output of the program is as expected:

Page 1 07-02-07 17:22:09

aa 828261618282
aa 828261618282

Note: OnWindows, the Natural output window has been Unicode-enabled which means
that all fields have Unicode format now. In case of A format fields containing double-byte
characters, the behavior of the Natural output window has changed slightly. For A format
input fields it is nowpossible to enter “Unicode-string-length” characters in the field.When
leaving the field and the default code page is a double-byte code page, all characters which
do not fit into the target A format field are removed. For example, an A10 field can hold 5
double-byte characters. In the output window, this field is represented by a Unicode field
of length 10 with display length 5. So the user can enter 10 double-byte characters in the
input field. When the user moves the cursor to another field on the page or leaves the page
by pressing ENTER, the content of the field is converted to code page format so that only the
first 5 double-byte characters remain.

Unicode and Code Page Support48

Double-Byte Character Support

10 Unicode Data Storage

■ Unicode Data and Parameter Access .. 50
■ Database Management System Interfaces ... 50
■ Work Files and Print Files ... 51

49

Unicode Data and Parameter Access

The following graphic shows how Unicode data and parameters are accessed.

Database Management System Interfaces

Accessing Unicode Data in an Adabas Database

Natural enables users to access wide-character fields (format W) in an Adabas database.

Data Definition Module
Adabas wide-character fields (W) are mapped to the Natural data format U (Unicode).

Access Configuration
Natural receives data fromAdabas and sends data toAdabas usingUTF-16 as common encod-
ing.

Before accesing unicode data in an Adabas database, you must set the correct OPRB parameter
in natparm. The current OPRB parameter values are sent to Adabas with the open request. The
values are used for wide-character fields and apply to the entire Adabas user session.

Unicode and Code Page Support50

Unicode Data Storage

For detailed information, see Unicode Data in the Accessing Data in an Adabas Database part of the
Programming Guide.

Work Files and Print Files

The following topics are covered below:

■ WRITE WORK FILE
■ READ WORK FILE
■ Special Considerations for Work File Type Transfer
■ Print Files

WRITE WORK FILE

The information below applies for the statement WRITE WORK FILE. See the Statements document-
ation for detailed information on this statement.

Code Page Data

The following work file types write code page data:

■ ASCII and ASCII compressed
■ Unformatted
■ CSV
■ Entire Connection

The work file type and the code page must be defined in the Configuration Utility. For further
information, seeWork Files in the Configuration Utility documentation.

All Natural data defined with the operands A (alphanumeric) and U (Unicode) are converted to
the specified code page. If a code page has not been specified, all data are converted to the default
code page which is defined with the CP parameter.

Note: In the work file, all written A and U operand data are in code page format.

If U operand data are to be written into these work files and afterwards read from these work files
without loss of data, you have to define UTF-8 as the code page (in the Configuration Utility). In
this case, all A and U operand data are written in UTF-8 format. A subsequent READ WORK FILE
statement where the work file is also configured using code page UTF-8 reads the operand U data
without loss of data.

Notes:

51Unicode and Code Page Support

Unicode Data Storage

1. Work file data which have been written in UTF-8 format can be read by text editors which
support UTF-8 (for example, Notepad on the Windows platform).

2. Natural data definedwith the operand B (binary) are not converted to the code page which has
been specified in the Configuration Utility. These data are written as they are stored in Natural,
without any code page conversion.

If one of the above-mentioned work file types is specified and the code page UTF-8 is defined for
the work file, the work file attributes BOM (write byte order mark) and NOBOM (do not write byte
order mark) take effect. These attributes can be specified in theWork Files category of the Config-
uration Utility and with the DEFINE WORK FILE statement. If the code page UTF-8 is defined for
the work file and the work file attribute BOM is specified, the UTF-8 byte order mark (hexadecimal
representation: H'EFBBBF') is written at the beginning of the work file, in front of the work file
data.

If a work file type other than the above-mentioned work file types is used for writing the work
file, or if a code page other than UTF-8 is defined for the work file, the specification of the attribute
BOM is ignored during runtime. The following table shows the runtime behavior during the pro-
cessing of the statements WRITE WORK FILE and READ WORK FILE:

READ WORK FILEWRITE WORK FILE
Code Page and Attribute Setting

No check for UTF-8 byte order mark.No UTF-8 byte order mark
is written.

The code page UTF-8 is not
specified for the work file
(default). No conversion from UTF-8.

No conversion to UTF-8.
The work file attributes BOM and
NOBOM have no effect.

Check for UTF-8 byte order mark.UTF-8 byte order mark is
written.

The code pageUTF-8 is specified
for the work file.

If an UTF-8 byte order mark is found, it is
removed from thework file data. Afields areA and U fields are

converted to UTF-8.
The work file attribute BOM is
specified. converted from UTF-8 to the default code

page. U fields are converted from UTF-8 to
the Natural internal runtime representation
UTF-16.

Check for UTF-8 byte order mark.No UTF-8 byte order mark
is written.

The code pageUTF-8 is specified
for the work file.

If an UTF-8 byte order mark is found, it is
removed from thework file data. Afields areA and U fields are

converted to UTF-8.
The work file attribute NOBOM
(default) is specified. converted from UTF-8 to the default code

page. U fields are converted from UTF-8 to
the Natural internal runtime representation
UTF-16.

Binary Data

The following work file types write binary data (for example, UTF-16 for operand format U):

Unicode and Code Page Support52

Unicode Data Storage

■ SAG
■ Portable

Natural data defined with the operands A and U are not converted to code page. These data are
written to the work file in binary format. For U operand data, this is done in UTF-16.

READ WORK FILE

The information below applies for the statement READ WORK FILE. See the Statementsdocumentation
for detailed information on this statement. Take note of the restrictions that are listed for the RECORD
option.

Code Page Data

When the following work file types are used, the work file data that are read into Natural U
(Unicode) operands are converted from the specified code page to UTF-16.

■ ASCII and ASCII compressed
■ Unformatted
■ CSV
■ Entire Connection

Data that are read into A (alphanumeric) operands are converted, if required, from the specified
code page to the default code page which has been defined with the parameter CP.

If one of the above-mentioned work file types is specified and the code page UTF-8 is defined for
the work file, the READ WORK FILE statement automatically checks the work file for an UTF-8 byte
order mark. If an UTF-8 byte order mark is found at the beginning of the work file, it is removed.
The data that are read from the work file are converted from UTF-8 to the default code page.

If data are read from another work file type, the check for a byte order mark is not performed and
a byte order mark is therefore not removed.

For information on the runtime behavior during the processing of the statements WRITE WORK
FILE and READ WORK FILE, see the table in the previous section.

Binary Data

When the followingwork file types are used, thework file data are read into theNatural operands
A and U without conversion (that is: they are read in binary format):

■ SAG
■ Portable

The work file type Portable supports endian conversion for data of operand format U.

53Unicode and Code Page Support

Unicode Data Storage

Special Considerations for Work File Type Transfer

Operand format U is generally supported for the work file type Transfer. If Entire Connection is
not able to read or write Unicode for the selected file type, a runtime error message is displayed.

Print Files

The handling for Unicode data in print files depends on the selected logical device’s (LPT1 to
LPT31) print method, currently either GUI (Windows only) or TTY.

Regardless of the print method, data are passed to the Natural printing services in UTF-16 format.
That is, any format A field data will already have been converted to Unicode.

GUI Print Method

With this Windows-only print method, the data are passed to the Windows printer driver in
Unicode (UTF-16) format. Because this is the standard method for printing data in Windows, the
driver invariably handles this data appropriately. This is therefore the recommended printmethod
under Windows if any characters that are not within the system code page are being used.

TTY Print Method

With this print method, the data are, by default, converted from the internal (UTF-16) format into
the system code page. However, by using a printer profile, it is possible to specify that the data
should instead either be converted into UTF-8 format, or be subjected to an additional conversion
to an arbitrary external code page. For more information on these alternatives, see Printer Profiles
in the Configuration Utility documentation.

The rationale behind the default behavior of converting the data into the system code page is based
on the current lack of printers capable of directly accepting raw text files in UTF-8 format.

Unicode and Code Page Support54

Unicode Data Storage

11 Platform Differences

■ General Information ... 56
■ Windows ... 56
■ Linux .. 57

55

General Information

OnWindows and Linux platforms, Natural has internally been Unicode-enabled. This means that
many structures containing strings have Unicode format now. For example, the Natural source
area has now Unicode format. For this reason, Unicode data can be handled at runtime in the
Natural I/O as well as in the Natural development environment when writing and cataloging
Natural code.

Even if Natural is Unicode-enabled internally, all existing data currently has code page format.
As a consequence, all this data is converted from code page format to Unicode format when used
in Natural Version 6.2 or above. For example, if a source is opened with the program editor, a
conversion from the code page file format to the Unicode source area format is performed. Even
if you do not use theU format, this is of advantage: you can now see all language-specific characters,
no matter which system code page is installed. However, the user is responsible for defining the
correct code page information. SeeMigrating Existing Applications for more details.

When catalogingNatural objects, all constantswhich are not definedwith theUprefix are converted
to the code page of the corresponding source. If the source has UTF-8 format, these constants are
converted to the default code page.

Notes:

1. In most cases, Unicode data requires more memory space than code page data. Therefore, the
Natural parameter USIZEmay need to be increased with Natural Version 6.2 or above.

2. Natural dialogs (editor and runtime) are Unicode-enabled as of Natural Version 6.3.

Windows

Unicode is fully supported in the local Natural for Windows environment.

The editors are Unicode-enabled and it is possible to enter all possible characters. When saving
the source, Natural first tries to convert the source to the original code page. If this fails because
the source contains characters which are not found in this code page, further processing depends
on the setting of the parameter SUTF8. If SUTF8 is ON, the source will be saved in UTF-8 format. If
SUTF8 is OFF, the user will be asked whether to save the source in the original code page or to
cancel the current save. If the user decides to save the source in the original code page, the characters
which are not foundwill be replacedwith substitution characters. In addition, it is possible to select
a code page explicitly in the Save As dialog box.

The program editor has been enhanced in order to support the Unicode bidirectional algorithm.

Unicode and Code Page Support56

Platform Differences

The output window is also Unicode-enabled. When characters are entered via the keyboard, A
format fields accept only the characters which are available in the default code page.

Linux

Full Unicode support is only available with SPoD and the Natural Web I/O Interface. SPoD is ne-
cessary for entering Unicode input in Natural sources; the same applies as described above for
the localNatural forWindows environment. TheNaturalWeb I/O Interface is necessary forUnicode
I/O from Natural applications.

If Natural is used via a terminal emulation, all outputwill be converted fromUnicode to the default
code page before displaying it. Characters which are not available in the default code page will
be replaced with the substitution character of the default code page. Similar input is only possible
on base of the default code page.

Note: Natural sources which have UTF-8 format can no longer be opened with the native
Natural for Linux editor.

57Unicode and Code Page Support

Platform Differences

58

12 Migrating Existing Applications

■ Impact of Unicode on Existing Applications ... 60
■ Migrating Existing Objects ... 60
■ Adding Unicode Support to Existing Applications ... 61
■ Migrating Natural Remote Procedure Calls (RPC) .. 62

59

Impact of Unicode on Existing Applications

OnWindows and Linux platforms, Natural has internally been Unicode-enabled which means
thatmany structures containing strings haveUnicode format now. For example, theNatural source
area has now Unicode format. For this reason, data which is only available in code page format
is internally converted to Unicode format. This applies, for example, to the Natural sources and
to the Natural library names and object names. However, a conversion from code page to Unicode
and vice versa can only be performed successfully if the correct code page is used for conversion.
Even if an application is not changed but only re-cataloged, the code page information is important
because for cataloging an object is loaded into the Natural source area. If all objects are coded in
the system code page, no changes are necessary. If the objects are not coded in the system code
page, seeMigrating Existing Objects on Windows and Linux Platforms for further information.

On Windows, the Natural output window has been Unicode-enabled which means that all fields
have Unicode format now. In case of A format fields where the code page string length differs
from the Unicode string length, the behavior of the Natural output window has changed slightly.
This is especially relevant for double-byte code pageswhere the code page string length is normally
twice as long as the Unicode string length. For A format input fields, it is now possible to enter
“Unicode-string-length” characters in the field. When leaving the field and the default code page
is a double-byte code page, all characterswhich do not fit into the target A format field are removed.

The internal Unicode structure will most probably need more memory. If you have defined a low
value for the profile parameter USIZE, it may be necessary to increase this value.

Migrating Existing Objects

Natural has been extended so that the code page information can be defined on several levels:

■ The Natural profile parameter CP defines the default Natural code page.
■ For several objects (Natural sources, Natural batch input/output files, work files of type ASCII,
ASCII compressed, Unformatted and CSV) an object-specific code page can be defined.

If neither an object-specific code page nor a default code page is defined, Natural will use the op-
erating system's code page.

Since it is not possible to identify the correct code page automatically, it is important that you
define the required code page information yourself. The following scenarios are possible:

Unicode and Code Page Support60

Migrating Existing Applications

ActionEffortStatus

No action.No effortAll data is available in the operating
system's code page.

TheNatural profile parameter CP has to be set to the
correct code page.

EasyAll data is stored with one code
page, but this code page differs
from the operating system's code
page.

The correct code page has to be defined for every
Natural object:

Depends on the
number of
sources and code
pages

The data is available in different
code pages.

■ Sources
If only few objects are affected, change the code
page via the Properties dialog box. If several
objects (for example, an entire library) are affected,
use the FTOUCH utility for changing the code page.

■ Batch Files
Set the Natural profile parameters CPOBJIN,
CPSYNIN and CPPRINT to the correct code page.

■ Work Files
Set correct code page for the work files in the
Configuration Utility.

The object has to be rewritten in UTF-8 format.HighDifferent code pages are mixed in
one object (for example, in a source)

Adding Unicode Support to Existing Applications

It is easy to extend existing applicationswith new source code based on theU format. The following
rules have to be regarded for the U format (as compared with the A format):

■ A REDEFINE of U to a format other than U should be avoided because this may result in split
characters.

■ U format is endian-dependent. This has to be considered when moving between the formats B
and U.

■ Align U in DEFINE DATA for performance reasons (better performance on Linux).
■ Keep in mind that characters may be lost when moving U to A.

If you want to change existing fields from A format to U format, the following rules have to be
regarded:

■ Code which assumes a specific encoding of strings has to be changed (for example, comparison
with a B field).

61Unicode and Code Page Support

Migrating Existing Applications

■ All REDEFINE statements of the field have to be checked for their validity.
■ A REDEFINE to N is not possible (that is: you will not get the expected result).
■ The database field has to be migrated to Unicode (provided that this is supported by your
database).

■ You may have to change the length of the field: if the A field contains DBCS characters, half the
length is required for the U field.

Migrating Natural Remote Procedure Calls (RPC)

The profile parameter CP has been renamed to CPRPC. In earlier Natural versions, CPwas used to
specify the name of the code page used by the Entire Conversion Service (ECS) and applied only
to the Natural RPC (Remote Procedure Call) when the transport protocol ACI (that is, EntireX
Broker) was used.

A new CP parameter is available which defines the default code page for Natural data. When you
are working with Natural RPC and have previously used the CP parameter dynamically, you have
to change this parameter to CPRPC.

When you use parameter files from a previous version, you need not change anything; the Con-
figuration Utility automatically migrates CP to CPRPC.

Unicode and Code Page Support62

Migrating Existing Applications

13 Special Considerations and Limitations

■ The dialog editor, which is provided with Natural for Windows, and dialog-based runtime is
not Unicode-enabled.

■ The editors provided with Natural for Linux are not Unicode-enabled.
■ If the DL parameter is specified for a field which is longer than 250 characters, a maximum of
250 characters will be displayed in the field.

■ A Natural source line may not be longer than 250 bytes. The program editor, which works on
Unicode format, checks only that the number of UTF-16 code units is not greater than 250.
However, depending on the encoding of the source, the line lengthmay increasewhen converting
the encoding from UTF-16 to the source encoding. For example, the UTF-8 encoding requires
up to 4 bytes for a Chinese character; an error will be displayed in this case and the changes will
not be saved.

■ For Linux, Unicode is only supported at runtime with the Natural Web I/O Interface. If an ap-
plication is run in the terminal emulation or xterm and Unicode strings are displayed, strange
effects may occur.

■ Comparedwith previousNatural versions, the performance is degraded since several conversions
between code page and Unicode have to be performed.

63

64

14 Help and Troubleshooting

■ Receiving the Startup Error "Invalid Code Page Specified" ... 66
■ The Default Code Page .. 66
■ Picking the Right Format When Saving Your Natural Sources ... 66
■ Handling UTF-8 Encoding with Natural Code .. 66
■ Incorrectly Displayed Characters .. 67
■ Receiving an Error When Editing a Natural Source ... 67
■ Receiving an Error When Saving a Natural Source ... 67
■ Finding out the Encoding of a Natural Source .. 67
■ Changing the Encoding of a Natural Source .. 68
■ Converting an Existing Natural Source into UTF-8 Format ... 68
■ Substitution Characters Used When a Character Cannot Be Converted .. 68
■ Using UTF-8 Sources with Previous Natural Versions ... 68
■ Receiving a Conversion Error When Cataloging a Source Which Has UTF-8 Format 69
■ Receiving Junk on Linux When Displaying U Format by a Terminal Emulation ... 69
■ Working with a Current SPoD Client and an Older SPoD Server ... 69
■ Working with a Current SPoD Server and an Older SPoD Client ... 69

65

Receiving the Startup Error "Invalid Code Page Specified"

The code page you have defined with the profile parameter CP does either not exist (see ht-
tp://demo.icu-project.org/icu-bin/convexp for valid ICU code pages and http://www.iana.org/as-
signments/character-sets for the appropriate IANA names) or is an invalid default code page for
the platform (for example, an EBCDIC code page cannot be used on aWindows or Linux platform).

The Default Code Page

The default code page is the code pagewhich is the result of the evaluation of the profile parameter
CP. If CP is not filled, it is the current operating system code page.

On the platforms supported by Natural for Linux, you should always define the CP parameter,
because the ICU default could be defined differently for different Linux platforms and this defin-
ition can as well change for a specific platform with newer ICU versions.

The default code page which is used by Natural for conversions between code page and Unicode
and vice versa can be detected by displaying the content of the system variable *CODEPAGE.

Picking the Right Format When Saving Your Natural Sources

Should you save all Natural sources in UTF-8 format depends on the characters you want to use
and on the platforms on which your sources are located. If you want to use Unicode constants,
UTF-8 is the only possibility to store all combinations of characters. However, you can define
hexadecimal UH constants which can also be stored in code page sources. The disadvantage of
hexadecimal constants is that you have to know the UTF-16 encoding for every character of the
constant. Onmainframes, UTF-8 format for sources is not possible at all. On Linux, UTF-8 sources
can only be handled via SPoD; they cannot be handled locally on Linux.

Handling UTF-8 Encoding with Natural Code

Use the MOVE ENCODED statement for conversion fromUTF-8 to UTF-16: the code page "UTF-8" has
to be used for the A format variable.

Unicode and Code Page Support66

Help and Troubleshooting

http://site.icu-project.org/#/convexp
http://site.icu-project.org/#/convexp
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Incorrectly Displayed Characters

Check if you are using the correct code page. If the code page is correct, check if the selected font
supports the characters you want to display.

Receiving an Error When Editing a Natural Source

The code page which is defined for the source is not correct. When converting the contents of the
source to Unicode, a conversion error occurs. Change the encoding of the source so that the con-
version to Unicode is successful.

Receiving an Error When Saving a Natural Source

You have entered characters in the source which cannot be converted to the code page which was
used to read the source. Check if you have entered these characters by mistake or if you really
want to save the characters in the source. In the first case, remove the faulty characters and save
the source. In the second case, save the source in UTF-8 format or, if the characters are contained
in U constants, use UH constants instead.

If you have not entered any characters which are not contained in the code page of the source,
check whether the profile parameter SRETAIN has been set to OFF. In this case, the source will be
saved with the default code page. If the concerned source was previously saved with a different
code page, a conversion error may occur.

Finding out the Encoding of a Natural Source

To find out the encoding of a Natural source, in Natural Studio, invoke the Properties dialog box
for the source node. TheGeneral page shows the encoding of the source. If the Encoding text box
is empty, no specific encoding is stored for the source. This means that the default encoding is
used when reading the source.

The list view windows of Natural Studio also show the encodings of all listed objects.

67Unicode and Code Page Support

Help and Troubleshooting

Changing the Encoding of a Natural Source

In Natural Studio, invoke the Properties dialog box for the source node. TheGeneral page shows
the encoding of the source. If this is not the correct encoding, you can change it by choosing the
Change button: a list of available code pages is shown and you can select the correct encoding for
the source.

Converting an Existing Natural Source into UTF-8 Format

Open the source in the Natural editor with the correct code page. Save the source with Save As
and in the Save As dialog box, select UTF-8 as the encoding.

Substitution Characters Used When a Character Cannot Be Converted

Which substitution character is used if a character cannot be converted depends on the direction
of the conversion: if a code page character cannot be converted toUnicode, theUnicode substitution
character "U+FFFD" is used. If a Unicode character cannot be converted to a code page, the substi-
tution character which is defined by ICU for this code page is used.

For the conversion fromUnicode to the default code page, the substitution character can be changed
by setting the profile parameter SUBCHAR.

Using UTF-8 Sources with Previous Natural Versions

You cannot use UTF-8 sources with previous Natural versions. Previous Natural versions do not
know any code page information; a UTF-8 source will be interpreted as the current system code
page.

Unicode and Code Page Support68

Help and Troubleshooting

Receiving a Conversion Error When Cataloging a Source Which Has UTF-8
Format

ANatural sourcewithUTF-8 format cannot be cataloged because a code point cannot be converted.

All A constants in a sourcewithUTF-8 format are converted to the default code pagewhen storing
them in the generated program. Either remove the characterswhich are not contained in the default
code page from the A constants or use U constants instead of A constants.

Receiving Junk on LinuxWhenDisplaying U Format by a Terminal Emulation

All characterswhich are not contained in the default code pagewill be replacedwith the substitution
character of the code page before displaying the output on a terminal emulation. For an ASCII
code page, the substitution character defined by the ICU conversion table is often "0x1A", which
could be a control character on Linux terminals. It is strongly recommended to use the Natural
Web I/O Interfacewhen usingU format in I/O statements. If using a terminal emulation is essential,
the substitution character (SUBCHAR) can be changed to a printable character (for example, "?").

Working with a Current SPoD Client and an Older SPoD Server

You can work with a current SPoD client and an older SPoD server, but you should set the code
page of the SPoD client to the code page of the server sources.

See also Prerequisites for Natural Single Point of Development at http://documentation.software-
ag.com/natural/spod_prereq/prereq.htm.

Working with a Current SPoD Server and an Older SPoD Client

You can work with a current SPoD server and an older SPoD client, but this is not recommended
if you have defined encodings for sources.

See also Prerequisites for Natural Single Point of Development at http://documentation.software-
ag.com/natural/spod_prereq/prereq.htm.

69Unicode and Code Page Support

Help and Troubleshooting

http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm

70

	Unicode and Code Page Support
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction to Unicode and Code Page Support
	About Code Pages and Unicode
	About Unicode and Code Page Support in Natural

	3 Enabling Unicode and Code Page Support
	ICU Library

	4 Configuration and Administration of the Unicode and Code Page Environment
	Profile Parameters
	Encoding Information
	Level 1 - Default Code Page
	Level 2 - Code Page for a Single Object

	Deploying Natural Objects with Encoding Information

	5 Development Environment
	Development Environment for Applications
	Customizing Your Environment
	Editors in the SPoD Environment

	6 Unicode and Code Page Support in the Natural Programming Language
	Natural Data Format U for Unicode-Based Data
	U versus A

	Statements
	MOVE NORMALIZED
	MOVE ENCODED
	EXAMINE
	PARSE JSON
	PARSE XML
	REQUEST DOCUMENT
	CALLNAT (RPC)

	Logical Condition Criteria
	System Variables
	*CODEPAGE
	*LOCALE

	Large and Dynamic Variables
	Session Parameters
	DL versus AL
	EMU, ICU, LCU, TCU versus EM, IC, LC, TC

	Sample Programs

	7 Unicode Input and Output Handling in Natural Applications
	Displaying and Entering Unicode Data
	Natural Web I/O Interface Client
	SPoD Environment
	Runtime Environment

	8 Bidirectional Language Support
	General Information
	Screen Direction
	Field Direction
	Maps and Dialogs
	Print Methods
	Terminal Capabilities
	Arabic Shaping

	9 Double-Byte Character Support
	10 Unicode Data Storage
	Unicode Data and Parameter Access
	Database Management System Interfaces
	Accessing Unicode Data in an Adabas Database

	Work Files and Print Files
	WRITE WORK FILE
	READ WORK FILE
	Special Considerations for Work File Type Transfer
	Print Files

	11 Platform Differences
	General Information
	Windows
	Linux

	12 Migrating Existing Applications
	Impact of Unicode on Existing Applications
	Migrating Existing Objects
	Adding Unicode Support to Existing Applications
	Migrating Natural Remote Procedure Calls (RPC)

	13 Special Considerations and Limitations
	14 Help and Troubleshooting
	Receiving the Startup Error "Invalid Code Page Specified"
	The Default Code Page
	Picking the Right Format When Saving Your Natural Sources
	Handling UTF-8 Encoding with Natural Code
	Incorrectly Displayed Characters
	Receiving an Error When Editing a Natural Source
	Receiving an Error When Saving a Natural Source
	Finding out the Encoding of a Natural Source
	Changing the Encoding of a Natural Source
	Converting an Existing Natural Source into UTF-8 Format
	Substitution Characters Used When a Character Cannot Be Converted
	Using UTF-8 Sources with Previous Natural Versions
	Receiving a Conversion Error When Cataloging a Source Which Has UTF-8 Format
	Receiving Junk on Linux When Displaying U Format by a Terminal Emulation
	Working with a Current SPoD Client and an Older SPoD Server
	Working with a Current SPoD Server and an Older SPoD Client

