
Natural

Operations

Version 9.3.2

May 2025

This document applies to Natural Version 9.3.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATUX-NNATOPERATIONS-932-20250505

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Profile Parameter Usage .. 5
Parameter Hierarchy .. 6
Static Assignment of Parameter Values ... 7
Dynamic Assignment of Parameter Values ... 7
Runtime Assignment of Parameter Values .. 8

3 System Files ... 9
System File Structure .. 10
Access Rights .. 11
System Files FNAT and FUSER .. 11
System File FDDM ... 13
Important Information and Warnings ... 16
The File FILEDIR.SAG ... 17
Portable Natural System Files .. 17
Synchronizing Access to the System Files Using Semaphores 19
Using NFS to Store Natural Libraries .. 19

4 Work Files .. 21
Defining Work Files .. 22
Work File Formats .. 24
Special Considerations for Work Files with the Extension NCD 27
Using the Work File Type Transfer .. 29

5 Natural Buffer Pool .. 31
About the Natural Buffer Pool ... 32
Setting up a Buffer Pool .. 44
Using the Utility NATBPSRV for Creating the Buffer Pool 44
NATBPSRV Error Messages ... 44
Monitoring the Buffer Pool .. 46
Trouble Shooting .. 46
Shutting Down and Restarting the Buffer Pool ... 49

6 Using the Buffer Pool Monitor (NATBPMON) ... 51
Invoking the NATBPMON Utility ... 52
NATBPMON Commands ... 53
Displaying the Objects in the Buffer Pool .. 54
Specifying a Pattern .. 56
Displaying the Buffer Pool Settings ... 56
Statistical Information About the Buffer Pool .. 57

7 Natural in Batch Mode .. 61
About Batch Mode ... 62
Starting a Natural Session in Batch Mode .. 62

iii

Terminating a Natural Session in Batch Mode .. 63
Using Natural in Batch Mode .. 63
Sample Session for Batch Mode ... 65
Batch Mode Detection .. 68
Batch Mode Restrictions ... 68
Batch Mode Simulation .. 69

8 Support of Different Character Sets with NATCONV.INI .. 71
Why Support Different Character Sets .. 72
Character Sets that are Supported ... 72
How to Use Different Character Sets ... 74

9 Natural Exit Codes .. 77
Natural Startup Errors ... 78

10 Setting Up the Entire System Server Interface .. 81
Prerequisites ... 82
Activation ... 82
Changing the Database ID for the Entire System Server DDMs 83

11 Tuning SQL Database Access .. 85
SQLRELCMD ... 86
SQLMAXSTMT .. 86
Example .. 87

12 User Exit for Computation of Sort Keys - NATUSKnn ... 89
13 Abnormal End (Abend) Handling .. 91

Operationsiv

Operations

Preface

This documentation contains information for operatingNatural in a Linux andCloud environment.
It is organized under the following headings:

Information on the parameter hierarchy. How to assign profile
parameter values statically, dynamically and at runtime.

Profile Parameter Usage

How systemfiles andNatural objects are stored in the file system.
Information on the system files FNAT, FUSER and FDDM.

System Files

How to define work files. Information on the different work file
formats.

Work Files

How the buffer pool is used by Natural and how it is started.Natural Buffer Pool

How to invoke theNATBPMONutility. Information on the commands
that are available with this utility.

Using the Buffer Pool Monitor
(NATBPMON)

How to run Natural in batch mode. Information on the required
input and output channels. How to use batch mode simulation.

Natural in Batch Mode

How to define different character sets in the file NATCONV.INI.Support of Different Character Sets
with NATCONV.INI

Information on the Natural exit codes, including startup errors.Natural Exit Codes

How to activate the Entire System Server Interface for the product
Entire System Server.

Setting Up the Entire System Server
Interface

How to configure the handling of the SQLdriver's statement table.Tuning SQL Database Access

How to sort characters of other languages in the correct
alphabetical order.

User Exit for Computation of Sort Keys
- NATUSKnn

Information on the signal handlers.Abnormal End (Abend) Handling

TheNatural utilitieswhich can be used to execute numerous administrative functions are described
separately; see the Tools and Utilities documentation for detailed information.

Security is also described separately; see theNatural Securitydocumentation for detailed information.

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Operations2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Operations

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Profile Parameter Usage

■ Parameter Hierarchy .. 6
■ Static Assignment of Parameter Values ... 7
■ Dynamic Assignment of Parameter Values ... 7
■ Runtime Assignment of Parameter Values .. 8

5

Natural profile parameters affect the appearance and the response of your working environment.

The parameters are described in detail in the Parameter Reference.

Parameter Hierarchy

The values for the Natural parameters are taken from different sources. The priority of the para-
meters is as follows:

1. Static Assignments
Lowest priority. Static assignments are made by parameters specified in the Natural parameter
file NATPARM.

2. Dynamic Assignments
Dynamic assignments are made by specifying an alternative parameter file and/or individual
parameters when starting Natural.

3. Runtime Assignments
Highest priority. Runtime assignments are made during the session by specifying session
parameters.

See the remainder of this section for further information on the different types of assignments.

Note: When Natural Security is active, the use of specific parameters may be restricted.

The following graphic illustrates the parameter hierarchy:

Operations6

Profile Parameter Usage

Static Assignment of Parameter Values

By default, the parameter specifications in the parameter file NATPARM are used to determine the
characteristics of yourNatural environment. Initially, this file contains the default values as supplied
by Software AG. It can be changed using the Configuration Utility.

Tip: It is recommended that you do not modify the default parameter file NATPARM. If you
want to use Natural with parameter values other than the default values, create your own
parameter file (see also the following section).

Dynamic Assignment of Parameter Values

Using the dynamic parameters, you can set up your own environment when starting Natural.
When the session is started, the operating system passes the values for the dynamic parameters
to Natural.

The dynamic parameters are valid for the current Natural session. They override the static assign-
ments specified in the default parameter file NATPARM.

7Operations

Profile Parameter Usage

Using the Configuration Utility can also create your own parameter files. To use one of your own
parameter files, you have to specify its name when starting Natural.

To start Natural with dynamic parameter values

■ Add the dynamic parameters and their values to the command that is used to start Natural.

Example: The profile parameter PARM is used to invokeNaturalwith the alternative parameter
file MYPARM. The values for the profile parameters SM and DTFORM are to be used instead of
those defined in MYPARM:

natural PARM=MYPARM SM=ON DTFORM=I

Special Characters

Special characters like brackets and asterisks are interpreted by the operating system. Therefore,
it is necessary to put the parameters which use these special characters in double quotationmarks.
Example:

natural "FNAT=(99,30) FUSER=(99,32)"

As an exception to this rule, the parameters FNAT, FDIC, FSEC, FDDM and FUSER can also be specified
without brackets to avoid using quotation marks. Example:

natural FNAT=99,30 FUSER=99,32

For each opening bracket that you specify, you also have to specify the corresponding closing
bracket. Escape sequences are not supported with dynamic parameters.

Runtime Assignment of Parameter Values

The runtime assignments are made during the session by setting session parameters. The values
of the session parameters override static and dynamic assignments.

Session parameters are set with the system command GLOBALS. Example:

GLOBALS SA=ON,IM=D

Session parameters can also be set with the SET GLOBALS statement in a program. Example:

SET GLOBALS SA=ON IM=D

Note: In addition to setting the session parameters at session level (as described above), you
can also set themat program, statement or field level. For further information, see Introduction
to Session Parameters in the Parameter Reference.

Operations8

Profile Parameter Usage

3 System Files

■ System File Structure ... 10
■ Access Rights ... 11
■ System Files FNAT and FUSER ... 11
■ System File FDDM .. 13
■ Important Information and Warnings .. 16
■ The File FILEDIR.SAG ... 17
■ Portable Natural System Files .. 17
■ Synchronizing Access to the System Files Using Semaphores ... 19
■ Using NFS to Store Natural Libraries ... 19

9

Natural for Linux stores objects in files accessible by operating system functions. Unlike Natural
for z/OS where the objects are stored in Adabas system files, Natural for Linux stores the objects
in specific directories on the disk. Thus, a database such as Adabas is not required to run Natural
for Linux.

System File Structure

By default, the Natural libraries are created as subdirectories below the Natural root directory of
a specific Natural version. The subdirectories have the same names as the libraries.

The Natural objects are stored as files in the subdirectories. The file name for a Natural object has
the following form:

file-name.NKT

This the name of the object. See also Object Naming Conventions in Using Natural.file-name

The first character of the extension is always "N". It stands for “Natural”.N

K The second character of the extension can be one of the following:

for source filesS

for generated programsG

for resourcesR

The third character of the extension stands of the type of the object. For valid values, see the
list below.

T

For example, the source program TESTPROG is stored as file TESTPROG.NSP, while the generated
code for the map TESTMAP is stored as file TESTMAP.NGM.

Note: The file name is not always identical to the object name. Both the current object name
and the corresponding internal object name are documented in the file FILEDIR.SAG.

The following object types and the respective letters and numbers are used for the extensions
available:

Object TypeLetter or Number

Parameter data area (PDA)A

CopycodeC

DDMD

Global data area (GDA)G

HelproutineH

Local data area (LDA)L

Operations10

System Files

Object TypeLetter or Number

MapM

SubprogramN

ProgramP

SubroutineS

TextT

Class4

Command processor5

Function7

Adapter8

Access Rights

By default, objects allocated by Natural get the access rights "rw-rw-rw-". This makes sure that
users not belonging to the group of the owner (that is, other users) can recatalogNatural programs.
If this is not desirable, you have to run the Linux utility umask and set the appropriate mask.

Users developing Natural applications must have read and write access to all objects belonging
to the application. In a plain production environment, the write access rights may be restricted to
themaintenance team. If an object cannot be accessed due to too low access rights, Natural behaves
as if an object was not found.

System Files FNAT and FUSER

The Natural system files FNAT (for system programs) and FUSER (for user-written programs) are
located in different subdirectories.

FNAT assumes the following directory structure:

FNAT

LIBDIR.SAG

SYSTEM

FILEDIR.SAG

SRC

GP

ERR

RES

SYS*

FILEDIR.SAG

11Operations

System Files

SRC

GP

ERR

RES

The file LIBDIR.SAG, which is only available for FNAT, contains information on all further installed
Software AG products using Natural. This information can be displayed by using the system
command SYSPROD.

FUSER assumes the following directory structure:

FUSER

SYSTEM

FILEDIR.SAG

SRC

GP

ERR

RES

user-library1

FILEDIR.SAG

SRC

GP

ERR

RES

The name of a user library must not start with "SYS".

The directory structure is generated during the installation ofNatural. The directories representing
the system and user libraries contain the following:

■ FILEDIR.SAG
This file contains internal library information used by Natural. For further information, see The
File FILEDIR.SAG below.

■ SRC
This subdirectory contains the Natural source objects stored in the library.

■ GP
This subdirectory contains the generated Natural programs stored in the library.

■ ERR
This subdirectory contains the error messages stored in the library.

■ RES
This subdirectory contains the private and shared resources stored in the library.

DDMs can be stored in local libraries. If DDMs are used by a program, Natural first searches the
current library, then the steplibs, and then the library SYSTEM. If the DDMs are not found, the

Operations12

System Files

program does not compile and displays an error message. However, if FDDMmode has been
activated, Natural searches for the DDMs only in the system file FDDM.

The paths to the system files FNAT, FUSER and FDDM are defined in the ConfigurationUtility. System
files are version-dependent. Therefore, Natural can only access system files of the current Natural
version. It is recommended that you only have one FNAT system file. It is possible, however, to
define several FUSER system files (for example, when you have different development areas for
different purposes).

System File FDDM

The system file FDDM is a container in which all DDMs can be stored.

FDDM assumes the following directory structure:

FDDM

SYSTEM

FILEDIR.SAG

SRC

GP

By default, the system file FDDM is not active. If you want to use it, you have to activate FDDM
mode as described below.

■ Activating FDDM Mode
■ Migrating DDMs to the System File FDDM
■ Checking whether the System File FDDM is Used

Activating FDDM Mode

If FDDMmode is activated (both database ID and file number do not equal 0 in the global config-
uration file), all DDMs are stored and read in the system file FDDM. DDMs stored in libraries will
no longer be accessible fromNatural. This is similar to the mainframe, where all DDMs are stored
in the system file FDIC.

If the FDDM system file is undefined in the global configuration file, the DDMs are stored in the
Natural libraries FUSER and FNAT.

To activate FDDM mode

1 Create an empty directory in which the DDMs are to be stored in FDDMmode. The directory
can have any name which corresponds to the Natural naming conventions.

2 Invoke the Configuration Utility.

13Operations

System Files

3 In the global configuration file (category System Files), assign a database ID and file number
for the system file FDDM and define the path to the directory that you have created in the first
step.

4 Open the required parameter file.

5 Locate the parameter FDDM.

Tip: Locate this parameter by searching for "FDDM". See Finding a Parameter in the
Configuration Utility documentation for further information.

6 For the parameter FDDM, specify the same database ID and file number that you have defined
in the global configuration file.

7 Save your changes.

8 Migrate all required DDMs to the system file FDDM as described below.

Migrating DDMs to the System File FDDM

All DDMs that are to be available in FDDMmodemust be contained in the system file FDDM. Espe-
cially the example DDMs delivered with Natural in library SYSEXDDMmust be available in the
system file FDDM.

For migration of DDMs to the FDDM system file, you can choose between different alternatives:

■ You can use the Object Handler which supports the FDDM system file and offers the possibility
to migrate the DDMs into the FDDM system file. The DDMs can be unloaded from the Natural
libraries and can be stored into the FDDM system file in the active Natural session.

Important: To migrate a complete development environment, it is recommended to use
the Object Handler.

■ It is also possible to migrate the DDMs with the copy or move function of the SYSMAIN utility.
In this case, it is required that the FDDM parameter is first deactivated so that your old environment
is used again.

These alternatives are described below in detail.

Note: The INPL utility loads DDMs either to Natural libraries if FDDMmode is not active
or to the system file FDDM if FDDMmode is active. This may have some impact if the loaded
INPL files are intended to work in both modes. It may be necessary that the DDMs are
available in the Natural libraries as well as in the FDDM system file.

To migrate DDMs to the system file FDDM using the Object Handler

1 Activate FDDMmode as described above.

Operations14

System Files

2 Start Natural using the modified parameter file (that is, the parameter file in which path for
the parameter FDDM has been defined).

3 Issue the direct command SYSOBJH to invoke the Object Handler.

The following steps assume that you use the Object Handler wizards.

4 In the main menu, mark the Unload function and press ENTER.

5 In the resulting screen, mark the option Unload objects into Natural work file(s) and press
ENTER.

6 In the resulting screen, mark the option Set additional options and press ENTER.

7 In the resulting screen, deactivate the optionUse FDDMfile for processingDDMs and press
ENTER to return to the previous screen.

This activates your old environment (which contains the DDM to migrated). If you do not
deactivate this option, you cannot access the DDMs that are to be migrated.

8 Press ENTER repeatedly until the screen is shown in which the object type for the unload has
to be selected.

The optionNatural library objects only is selected by default. This option is required for the
next steps.

9 Press ENTER.

10 In the resulting screen, enter an asterisk (*) in the fields Library andObject name. In addition,
mark the fieldMore detailed specification of objects. Press ENTER.

11 In the resulting screen, deactivate the options Error messages and Shared resources. In the
Natural types field, enter "V" and press ENTER.

12 Press ENTER to display the command that is to be processed.

13 Press ENTER to start the unload function.

14 When the objects have been unloaded, return to the main menu.

15 In the main menu, mark the Load function and press ENTER.

16 In the resulting screen, mark the option Load objects from Natural work file(s) and press
ENTER.

17 In the resulting screen, mark the option Set additional options and press ENTER.

18 In the resulting screen, activate the option Use FDDM file for processing DDMs.

This activates your new environment containing the FDDM system file.

Note: In different libraries, DDMs can existwith identical names. To prevent overwriting
DDMs in the FDDM system file and to detect DDMs with identical names, it is recom-
mended to load the DDMs with the Do not replace option. This option is located on
the same page as the option Use FDDM file for processing DDMs.

15Operations

System Files

19 Press ENTER to return to the previous screen.

20 Press ENTER repeatedly until the screen is shown in which the object type for the load has to
be selected.

The option Load all option from the work file is selected by default. This option is required
for the next steps.

21 Press ENTER.

The command that is to be processed is now shown.

22 Press ENTER to load the objects.

Checking whether the System File FDDM is Used

When you have migrated all DDMs to the system file FDDM, you can check whether FDDM is used.

To check whether FDDM is used

1 Start Natural.

2 Issue the system command SYSPROF.

3 If the FDDM file is displayed, Natural will access only DDMs stored in this system file.

If the FDDM file is not displayed or if the expected files are not displayed, revise the parameter
file used for your session.

Important Information and Warnings

A Natural developer must have read, write and delete rights for all objects.

An end-user must only have read rights for the generated programs (and in some special cases
also read rights for the sources).

Do not accessNatural fileswith operating systemutilities. These utilitiesmightmodify and destroy
the Natural directory information.

The use of an external editor is not recommended as code page conflicts may arise. These conflicts
can - but not necessarily must - deteriorate your source code.

Do not store private data files in the directories FNAT, FUSER and FDDM, since Natural may delete
or modify them in an unexpected way.

Do not use one of the directories FNAT, FUSER and FDDM as working directories for your Linux ap-
plications, since this can cause problems when issuing Natural system commands.

Operations16

System Files

The file name (i.e path including file name in 8.3 format) of any object accessed by Natural must
not exceed 255 bytes.

The File FILEDIR.SAG

The file FILEDIR.SAG supports up to 60000 objects. It contains internal library information used
by Natural including the programmingmode of an object (structured or reporting) and internally
converted object names. These internal object names are automatically created when storing Nat-
ural objects to disk with:

■ names longer than 8 characters (which can be the case with DDMs);
■ names containing any special character supported by Natural but not by the operating system.

Internal object names are unique and consist of an abbreviation of the current object name and an
arbitrary number. Both the current object name and the corresponding internal object name are
documented in FILEDIR.SAG.

Even if an object is located in the correct directory, it can only be used by Natural after this library
information is included in FILEDIR.SAG. For objects createdwithinNatural, the library information
is included automatically. For all other objects, the Import function of the SYSMAIN utility should
be used.

The utility FTOUCH can be used to update FILEDIR.SAGwithout entering Natural.

Portable Natural System Files

The directory file FILEDIR.SAG in a Natural library as well as the Natural error message files are
created in a portable platform-independent format. This offers, for example, the possibility of ex-
changing FUSER libraries between different Windows and Linux platforms simply by copying the
libraries via operating system commands.

The FNAT system file belongs to a Natural installation and is both version-specific and platform-
specific. Therefore, it is not recommended to share FNAT system files among different platforms.
Especially the FNAT system file on a Windows platform contains a completely different set of util-
ities as the FNAT system file on the Linux platform.

Although it is nowpossible to share an FUSER systemfile among different platforms, this possibility
should by handled with care because Natural's locking mechanism does not cross machine
boundaries and hence it would be possible for two Natural sessions on different platforms to
modify the same object at the same time with unpredictable results.

The following topics are covered below:

17Operations

System Files

■ Language-dependent Objects
■ Migrating Non-Portable Message Files to 64-Bit Platforms

Language-dependent Objects

When the application to be ported uses the system variable *LANGUAGE, you have to take notice of
the following information.

Almost all Natural objects are stored in the system file with a name which contains only upper-
case characters. An exception are the language-dependent objects (that is: the objects which have
been created for a specific language). Language-dependent objects may contain lower-case char-
acters in their names. Since Windows is a case-preserving operating system (whereas Linux is a
case-sensitive operating system), it may happen that names which have been created under Linux
cause a conflict in Windows, or that an application which has been developed under Linux yields
unexpected results in Windows.

Example

The command SAVE PGM& creates an object where the object name contains the language identifier.
The resulting object name depends on the setting of *LANGUAGE:

An object with the following name is createdSetting of *LANGUAGE

PGMX (with an upper-case X)33

PGMx (with a lower-case x)59

The separate objects which have been created under Linux (PGMX.NGP and PGMx.NGP) get
entries in the file FILEDIR.SAGwith the names PGMX and PGMx. These two objects will be treated
differently, depending on the environment in which Natural is being executed:

■ When you execute PGMXwith Natural for Linux, the file PGMX.NGP is loaded into the buffer
pool and executed.

■ When you execute PGMXwith Natural for Windows, either the file PGMX.NGP or PGMx.NGP
is loaded into the buffer pool and executed. This is because Windows does not distinguish
between these two objects and treats them as one and the same object. Thus it may be possible
that applicationswhich share an FUSER, or a copy of such an FUSER, behave in a differentmanner.

Operations18

System Files

Migrating Non-Portable Message Files to 64-Bit Platforms

Message files in the old, non-portable format which have not been created on a 64-bit platform
are not readable.

If youwant to migrate your applications from a 32-bit platform to a 64-bit platform, youmust first
convert your old message files to the portable format. You do this by using the export and import
functions of the SYSERR utility. First, you export the message file to a text file, and then you gen-
erate a new message file by importing the text file into Natural. This creates a portable message
file which is readable on Windows and Linux. For detailed information on the export and import
functions, see Generating Message and Text Files in the Tools and Utilities documentation.

Synchronizing Access to the System Files Using Semaphores

Semaphores are used to synchronize access to the Natural system files. Since this requires addi-
tional operating-system resources, you should consider incrementing the kernel parameters SEMMNI
and SEMMNS by the number of system files to be accessed.

With the usage of semaphores, several users have permission to address the system files FNAT and
FUSER. The semaphore ID is saved together with a lock file (*.LCK). If a further Natural session is
started, the buffer pool looks for the semaphore ID and the corresponding lock file for synchron-
ization.

If the lock file is not present, a new semaphore ID and lock file will be generated. This means that
no synchronization will be possible.

Caution: It is not allowed to delete only one of the resources. You must always delete the
semaphore ID and the corresponding lock file.

Using NFS to Store Natural Libraries

When you use NFS (Network File System) to store Natural libraries, you can run into problems
when the directories in which the Natural libraries are stored are mounted via NFS from a file
server in your network.

The reason for this is the need to lock the FILEDIR.SAG file stored in each library during update
operations of Natural objects.

If your NFS locking is incompatible or not properly set up between the involved platforms, Nat-
ural can hang in an uninterruptible state while waiting for NFS locking requests to be processed.
These requests are generally logged on the consoles of the involved systems or in some other
system-dependent log file.

19Operations

System Files

The work-around to solve this problem is to store Natural libraries only on local disks if problems
with a hanging and uninterruptible nucleus occur.

Operations20

System Files

4 Work Files

■ Defining Work Files .. 22
■ Work File Formats ... 24
■ Special Considerations for Work Files with the Extension NCD ... 27
■ Using the Work File Type Transfer .. 29

21

Work files are files to which data can be written and from which data can be read by Natural
programs. They are used for intermediate storage of data and for data exchange between programs.
Data can be transferred from or to a work file by using the Natural statements READ WORK FILE
and WRITE WORK FILE, or UPLOAD PC FILE and DOWNLOAD PC FILE.

Defining Work Files

Using the ConfigurationUtility or the DEFINE WORK FILE statement, you can assign names (includ-
ing the path) for up to 32 work files.

The maximum number of work files that can be used depends on the setting of the parameter
WORK.

If you run a program which uses a work file for which a name and path has not been assigned,
Natural automatically creates the file name and writes the work file into the temporary directory
specified in the local configuration file. The name of such a file consists of the specified work file
number and an arbitrary number assigned by the operating system. The generation of the work
file name is based on an algorithm which tries to generate a unique name. Depending on the
Natural parameter TMPSORTUNIQ, the naming conventionmay vary. Ifwork file names are referenced
from outside Natural, it is recommended that you specify the names explicitly to avoid problems
identifying the files.

The following topics are covered below:

■ Defining Work File Names with the Configuration Utility
■ Defining Work File Names with Environment Variables
■ Defining Work File Names with an Application Programming Interface

Defining Work File Names with the Configuration Utility

In the Configuration Utility, the work file names are assigned in the categoryWork Files of a
parameter file. The above mentioned parameters WORK and TMPSORTUNIQ can also be found in this
category. SeeWork File Assignments in the Configuration Utility documentation for further inform-
ation.

Tip: Locate the work file assignments by searching for "Work Files". See Finding a Parameter
in the Configuration Utility documentation for further information.

Operations22

Work Files

Defining Work File Names with Environment Variables

The following topics are covered below:

■ About Defining Work File Names with Environment Variables
■ Delimiters of Environment Variables

About Defining Work File Names with Environment Variables

Work files can also be defined by using Linux environment variables. Once you have defined the
work file names in the parameter file, the work file names can be set without further change to
the parameter file. For example, when you specify the following name for a work file in the para-
meter file (or in a DEFINE WORK FILE statement):

$NATURAL/$myfile

and assume the following settings in your operating system:

set NATURAL=/usr/natural
set myfile=sub/test

this will expand into the following file name:

usr/natural/sub/test

Note: Since the different shells interpret the tilde character (~) in differentways, this character
is not interpreted by Natural.

Delimiters of Environment Variables

Names of environment variables are delimited by special characters. A left-hand delimiter is to
the left of a variable, a right-hand delimiter is to the right.

For example, the string $TEMP identifies an environment variable named TEMP; $ is used as both
the left-hand and right-hand delimiter.

Valid delimiters are:

Valid DelimitersType of Delimiter

Left-hand delimiter $

Right-hand delimiter /
.

23Operations

Work Files

Defining Work File Names with an Application Programming Interface

You can also define work files with the application programming interface USR1050N in library
SYSEXT.

Work File Formats

The format of a work file depends on the work file type that has been defined. Different work file
formats are available. Natural recognizes the format by checking the file name and its extension:

file-name.extension

where file-name can have a maximum of 8 characters and extension can have a maximum of 3
characters.

The work file formats are:

■ Binary Format
■ ASCII Format
■ Entire Connection Format
■ Portable Format
■ Unformatted Format
■ CSV Format

See alsoWork Files and Print Files in the Unicode and Code Page Support documentation.

Binary Format

Possible type: SAG.

This format, which is specific to Software AG, is the preferred format since it can be used with all
data types. However, it is not portable across platforms with different endian modes.

Each record that is written is preceded by two bytes which contain the length of the record. The
length itself is written in a platform-specific form.

To define binary format for a work file, use a file name with a period and the extension SAG (for
example, <file-name>.SAG).

Operations24

Work Files

ASCII Format

Possible types: ASCII and ASCII compressed.

Since each written record is terminated with a line feed (LF), ASCII format is only recommended
for alphanumeric data.

To define ASCII format for a work file, enter either a file name with a period and any extension
except SAG andNCD (for example, <file-name>.<ext>), or a file namewith a period andwithout
an extension (for example, <file-name>).

Entire Connection Format

Possible types: Entire Connection and Transfer.

Work files can be accessed in two different ways:

■ Locally on Linux. The work file type Entire Connection is used for this purpose.
■ Via a data transfer with Entire Connection. The work file type Transfer is used for this purpose.
The data are sent to Entire Connection which writes the data to the PC.

The product Entire Connection uses two files: a data file which contains the actual data and a
format file which contains formatting information about the data in the data file.

Natural automatically generates the corresponding format file for the type Entire Connection. The
format file has the same name as the data file, however the extension isNCF. For detailed inform-
ation on the content of a format file with the extensionNCF, see the Entire Connection document-
ation.

When using the type Transfer, the format file is generated by the product Entire Connection
(provided that the option Create format file has not been deactivated in the user properties; see
the Entire Connection documentation for further information).

To define Entire Connection format for awork file, enter a file namewith a period and the extension
NCD (for example, <file-name>.NCD).

You can read/write work files in Entire Connection format directly from/to your local disk.

See also Special Considerations for Work Files with Extension NCD.

Notes:

1. The RECORD option of the READ WORK FILE statement is not available for reading work files of
format Entire Connection.

2. The operand format U (Unicode) is not supported for the work file types Entire Connection
and Transfer. If U is used with these work file types, a runtime error message is displayed.

25Operations

Work Files

Portable Format

Possible type: Portable.

The type Portable performs an automatic endian conversion of a work file when the work file is
transferred to a different machine. For example, a work file written on a PC (little endian) can be
read correctly on an RS6000 or HP machine (big endian). The endian conversion applies only to
field formats I2, I4, F4, F8 and U. The floating point format is assumed to be IEEE. There are,
however, slight differences in IEEE floating point representation by different hardware systems.
As a rule, these differences apply only to infinity and NaN representations, which are normally
not written into work files. Check the hardware descriptions if you are uncertain.

The files are alwayswritten in themachine-specific representation, so that a conversion is performed
only if the file is read by a machine with different representation. This keeps performance as fast
as possible.

There are no other conversions for this format apart from the conversions mentioned above.

When a READ WORK FILE statement is used for a dynamic variable, the variable is resized to the
length of the current record.

Unformatted Format

Possible type: Unformatted.

The type Unformatted reads or writes a complete file with just one dynamic variable and just one
record (for example, to store a video which was read from a database). No formatting information
is inserted; everything is written and read just as it is.

CSV Format

Possible type: CSV (comma-separated values).

Note: If you want to use the work file type CSV, you have to recatalog your sources using
the CATALOG or STOW command. It is not possible to use thework file typeCSVwith generated
programs of Natural Version 4.

The Natural fields are stored in a CSV work file as described below.

1. In the first step, the internal field data is converted into a readable format:
■ The field data of the internal Natural data formats B (binary), O (object handle), G (GUI
handle) and C (attribute control) is copied to the record without field conversion. The data
is taken as it is.

■ The field data of the internal Natural data format A (alphanumeric) is converted into the
specified work file code page (seeWork Files in the Configuration Utility documentation). If

Operations26

Work Files

no work file code page is specified in the Configuration Utility, the default code page which
is defined with the parameter CP is used and no conversion is done.

The field data of the internal Natural data format U (Unicode), is converted into the specified
work file code page (seeWork Files in the Configuration Utility documentation) or, if no work
file code page is specified, into the default code page which is defined with the parameter
CP.

■ The values of the internal Natural formats D (date) and T (time) are converted into an alpha-
numeric output format. The DTFORM parameter is evaluated so that the user-specified date
and time format is used.

■ The internal field values of the numeric types are converted into an alphanumeric output
format.

2. In the second step, the field data in readable format is copied to the CSV work file record. The
fields in the work file are separated by the specified separator character. If a field contains
special characters, the field is delimited by double quotes. Each written record is terminated
with a carriage return and line feed (CR/LF).

If you have defined that a header with the Natural field names is to be written to the work file
(seeWork File Assignments in the Configuration Utility documentation), the following applies:

■ With the WRITE WORK FILE statement, a header line containing the field names of the first written
record is stored in the first line of the work file. If subsequent CSV records contain a different
number of fields, it may be possible that the header line does not correspond to these subsequent
CSV records.

■ With the READ WORK FILE statement, it is assumed that the first line of the CSV work file is the
header line. Therefore, the first line is skipped (that is: the record data in the first line is not re-
turned).

Special Considerations for Work Files with the Extension NCD

If files with the extension NCD are created by Entire Connection and are then read into Natural
via the READ WORK FILE statement, it is required that the Entire Connection option Keep trailing
blanks is activated in the session properties. See your Entire Connection documentation for further
information.

Note: When you create an NCD file using Entire Connection and load this file using the
ObjectHandler, youmay receive an error indicating that the source control record ismissing.
To avoid this, make sure that the optionKeep trailing blanks is active when you create the
NCD file.

The following considerations apply for work files in Entire Connection format:

27Operations

Work Files

■ If an NCD file is read with a READ WORK FILE statement and the corresponding NCF format file
is not available or contains invalid information, the NCD file is assumed to be an ASCII work
file.

■ When the APPEND attribute is used to append data to an NCD file, the record layouts (that is:
the field format and length information which is written to the NCF format file) of the old and
new data must match. If the record layouts are different, an error occurs during runtime.

■ The maximum work-file record size for WRITE WORK FILE VARIABLE that can be handled by
Entire Connection is 32767 bytes.

■ If you have “old” work files with the extension NCD, the extensions must be changed.
■ Each of the following profile parameters must be set to the same value for both read and write
operations:

DC (decimal character)
IA (input assign character)
ID (input delimiter character)

■ Remember that the range of possible values for floating point variables on amainframe computer
is different from that on other platforms. The possible value range for F4 and F8 variables on a
mainframe is:

±5.4 * 10-79 to ±7.2 * 1075

The possible value range on most other platforms for F4 variables is:

±1.17 * 10-38 to ±3.40 * 1038

The possible value range on most other platforms for F8 variables is:

±2.22 * 10-308 to ±1.79 * 10308

■ ANatural error message is returned if DBMS calls are issued during an Entire Connection data
transfer and their number exceeds the limit for DBMS calls permitted between screen I/Os
(specifiedwith the profile parameter MADIO). To circumvent this error, the application program-
ming interface USR1068N in library SYSEXT is provided. USR1068 resets the database call counter
to zero (0). It must be invoked each time a DBMS call is issued during data transfer.

Operations28

Work Files

Using the Work File Type Transfer

With local access (that is, without any data transfer being involved), you can read/write work files
in Entire Connection format directly from/to your local disk. However, work files in Entire Con-
nection format can also be accessed by using a data transfer. Both methods can be used simultan-
eously, but with different work file numbers only.

Work files to be accessed by using a data transfer (type Transfer) must be in Entire Connection
format (NCD).

With data transfer, the Natural statements READ WORK FILE and WRITE WORK FILE do not read
from and/or write to your local disk, but transfer the data to a PC that runs Entire Connection.
The read/write operations are then done by Entire Connection from/to the disk of the PC.

For the work file number to be used, you have to set the profile parameter ECPMOD to ON in the
ConfigurationUtility. It is not required that you assign awork file name in this case, because Entire
Connection prompts you to enter a file name.

29Operations

Work Files

30

5 Natural Buffer Pool

■ About the Natural Buffer Pool ... 32
■ Setting up a Buffer Pool .. 44
■ Using the Utility NATBPSRV for Creating the Buffer Pool ... 44
■ NATBPSRV Error Messages .. 44
■ Monitoring the Buffer Pool ... 46
■ Trouble Shooting ... 46
■ Shutting Down and Restarting the Buffer Pool ... 49

31

About the Natural Buffer Pool

The Natural buffer pool is used to share Natural objects between several Natural processes that
access objects on the same computer. It is a storage area into which compiled Natural programs
are placed in preparation for their execution. Programs are moved into and out of the buffer pool
as Natural users request Natural objects.

Since Natural generates reentrant Natural object code, it is possible that a single copy of a Natural
program can be executed by more than one user at the same time. For this purpose, each object is
loaded only once from the system file into the Natural buffer pool, instead of being loaded by
every caller of the object.

The following topics are covered below:

■ Objects in the Buffer Pool
■ User Access for the Buffer Pool under Linux
■ Multiple Buffer Pools
■ Storing Objects in the Buffer Pool
■ Fast Locate
■ Read-Only Buffer Pool
■ Buffer Pool with Enhanced Performance
■ Restrictions of the Natural Buffer Pool

Objects in the Buffer Pool

Objects in the buffer pool can be any executable objects such as programs andmaps. The following
executable objects are only placed in the buffer pool for compilation purposes: local data areas,
parameter data areas and copycodes.

When a Natural object is loaded into the buffer pool, a control block called a directory entry is al-
located for that object. This control block contains information such as the name of the object, to
which library or application the object belongs, from which database ID and Natural system file
number the object was retrieved, and certain statistical information (for example, the number of
users who are concurrently executing a program).

Operations32

Natural Buffer Pool

User Access for the Buffer Pool under Linux

Resource sharing requires that access to the buffer pool be coordinated among all users. Several
system resources are necessary to accomplish this. For example, shared memory on the Linux
operating system is used to store the objects and their administrative information. To synchronize
access to these objects, a set of semaphores is used. The amount of available shared memory and
the number of semaphores is configured statically in the operating system, and as a result, it may
be necessary to change system parameters and to recreate the operating system kernel for your
installation. Further information about these topics is system-dependent and is described in the
installation documentation for your Linux computer.

Multiple Buffer Pools

Depending on the individual requirements, it is possible to run different buffer pools of the same
Natural version simultaneously on the same computer.

Storing Objects in the Buffer Pool

When a user executes a program, a call is made to the buffer pool manager. The directory entries
are searched to determine whether the program has already been loaded into the buffer pool. If
it does not yet exist in the buffer pool, a copy is retrieved from the appropriate library and loaded
into the buffer pool.

When a Natural object is being loaded into the buffer pool, a new directory entry is defined to
identify this program, and one ormore otherNatural objectswhich are currently not being executed
may be deleted from the buffer pool to make room for the newly loaded object.

For this purpose, the buffer pool maintains a record of which user is currently using which object,
and it detects situations inwhich a user exitsNaturalwithout releasing all its objects. It dynamically
deletes unused or out-of-date objects to accommodate new objects belonging to other applications.

Fast Locate

When a Natural object is executed, the Natural runtime system remembers the object name, the
library (name, database ID and file number) and the address of the corresponding buffer pool
directory entry. This data is referred to as “fast locate information”.

When aNatural object is executed again, theNatural runtime systempasses the fast locate inform-
ation to the buffer pool manager and performs a time-saving fast locate call. A fast locate call by-
passes the normal locate procedure including the steplib search and the search in the buffer pool.
It is therefore themost efficient way to locate an object. It provides significantly better performance
of subsequent program loads especially when steplib libraries are involved inmulti-user environ-
ments.

The address of an object saved as fast locate information is no longer valid once the object is re-
moved from the buffer pool, overwritten by another object or reloaded to another buffer pool

33Operations

Natural Buffer Pool

location. If the fast locate call does not find the object at the given address, the object is searched
in the buffer pool. If not found in the buffer pool, the object is reloaded from the system file.

This section covers the following topics:

■ Fast Locate at Object Resume
■ Fast Locate Table
■ Fast Locate Table with BPSFI=ON
■ Performance with BPSFI=ON
■ Fast Locate Table with BPSFI=OFF
■ Performance with BPSFI=OFF
■ Performance in a Multi-User Environment
■ Maintaining the Fast Locate Table

Fast Locate at Object Resume

Fast locate calls are issued when an object is accessed or resumed. An object resume operation is
performed, for example, when an object continues to execute after a CALLNAT statement. For object
resume operations, the Natural runtime system keeps fast locate information of the calling object
for each program level on the internal stack.

Fast Locate Table

TheNatural runtime systemkeeps fast locate information about each accessed object in the internal
fast locate table. The fast locate table also contains information about all libraries inwhich an object
was searched. For a subsequent call, a fast locate is issued if the current library and associated
steplibs are still the same.

The fast locate table is a hash table. The entries can be directly accessed without searching for an
object name. The hash value is calculated from the object name. It determines the slot index
number for the object. If another object has the same hash value (hash collision), a normal locate
call is performed and the entry in the fast locate table is overwritten.

If an object for the library given in the fast locate table is neither found in the buffer pool nor in
the systemfile (whichmeans that the object has been deleted ormoved to another library), a normal
locate call with the full steplib search is scheduled automatically.

The Locate Statistics of the buffer pool monitor shows howmany locate attempts were made and
how many of these attempts were fast locate calls (see Statistical Information About the Buffer
Pool). These values can be used to review the efficiency of the fast locate table. If the fast locate
table is activated for an application that calls the same objects many times, and if these objects are
contained in a steplib library, the following applies:

■ The number of locate attempts should decrease significantly (compared with a deactivated fast
locate table).

■ The number of fast locate attempts should be close to the number of locate attempts.

Operations34

Natural Buffer Pool

Fast Locate Table with BPSFI=ON

If the BPSFI (Object Search First in Buffer Pool) profile parameter is set to ON, the fast locate table
is activated by default. It is initialized at the start of the Natural session and it is not cleared impli-
citly during the running session. It can be deactivated or clearedwith the application programming
interface USR3004N as described in the sectionMaintaining the Fast Locate Table.

Performance with BPSFI=ON

In the following example, a subprogram is called 3,000,000 times. In the first test, the subprogram
is found in the current library, then in Steplib 1, Steplib 2, and so on. The red line shows the elapsed
time needed for the program loadwith a deactivated fast locate table, the green line with an activ-
ated fast locate table.

The diagram above shows that there is no performance improvement if the object is found in the
current library. The more steplibs there are involved in object search operations, the higher is the
performance improvement. For five steplibs, the program loads require less than half the time.

Fast Locate Table with BPSFI=OFF

If the BPSFI profile parameter is set to OFF, the fast locate table is deactivated by default. It can be
activated or cleared with the application programming interface USR3004N as described in the
sectionMaintaining the Fast Locate Table. It is initialized at the start of the Natural session and
it is implicitly cleared when the application is back on Program Level 0 (NEXT prompt).

Activation of the fast locate table for BPSFI=OFF can lead to unexpected results in the following
scenario:

■ The list of steplibs contains the libraries S1 and S2 whereby S1 is searched before S2.
■ An object from S2 is accessed during the current Natural session.

35Operations

Natural Buffer Pool

■ Another Natural session copies a new version of this object into S1.

If the application is still running (not back on ProgramLevel 0 in between) and the object is accessed
again, the new version of the object will not be used.

If you want to activate the fast locate table when BPSFI=OFF is set, make sure that the scenario
described above cannot occur.

If BPSFI=ON is set, object names should always be unique across all libraries involved in object
search operations. This also guarantees that such scenarios do not occur.

Performance with BPSFI=OFF

In the following example, a subprogram is called 3,000,000 times. In the first test, the subprogram
is found in the current library, then in Steplib 1, Steplib 2, and so on. The red line shows the elapsed
time needed for the program loadwith a deactivated fast locate table, the green line with an activ-
ated fast locate table.

The diagram above shows that there is no performance improvement if the object is found in the
current library. The more steplibs there are involved in object search operations, the higher is the
performance improvement. Since the search operation on the system file is considerably slower
than the search in the buffer pool, the improvement is much higher than the corresponding im-
provement when BPSFI=ON set. For five steplibs, the program load is about 20 times faster. If the
fast locate table is activated, in general, the time needed for subsequent program loads for BPSFI=OFF
is about the same as for BPSFI=ON, and it is always about the time needed to search for an object
in the current library only.

Operations36

Natural Buffer Pool

Performance in a Multi-User Environment

If an object is searched in a (read/write) buffer pool or on the systemfile, lock operations are issued
to ensure that no other session performs changes concurrently. The lock operations serialize the
access to the buffer pool, one session is processed after the other.

The fast locate table reduces the number of locate calls if steplibs are involved. Therefore, less lock
operations are required, and overall performance of the buffer pool is improved.

In the following example, a subprogram is called 3,000,000 times, and the subprogram is always
found in Steplib 5. In the first test, only one session is active. In the second test, two sessions execute
the same application simultaneously, then three sessions, and so on. The red line shows the elapsed
time needed for the program loadwith a deactivated fast locate table, the green line with an activ-
ated fast locate table.

As indicated inPerformancewith BPSFI=ON, the program loadwith a single session ismore than
2 times faster if the object is found in Steplib 5 with BPSFI=ON set. If multiple sessions access the
buffer pool simultaneously, the tests show that the performance can be 3 to 5 times faster.

Maintaining the Fast Locate Table

Usage of the fast locate table can be activated and deactivated by calling the application program-
ming interface (API) USR3004N. The API can also be used to get the current state of the fast locate
table, to clear the fast locate table and to receive statistical data. TheAPI is delivered in the SYSEXT
library. For more information on using APIs, see the section SYSEXT Utility - Natural Application
Programming Interfaces in the Utilities documentation.

To use API USR3004N

■ Copy the USR3004N subprogram to the SYSTEM library, to the appropriate steplib library,
or to the required library.

37Operations

Natural Buffer Pool

The function to be performed by USR3004N requires that the respective parameter value (ON,
OFF, STATE, CLEAR or COUNT) is specified first in the CALLNAT statement. The parameter values
can be specified in uppercase or lowercase. On return, P-RETURN contains the return code,
whereby Return Code 0 indicates that the function performed successfully. All parameters
are optional for compatibility with previous versions of the API on the mainframe.

To activate the fast locate table

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'ON' P-STATE 2X P-RETURN-CODE

To deactivate the fast locate table

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'OFF' P-STATE 2X P-RETURN-CODE

To retrieve the current state of fast locate table usage

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'STATE' P-STATE 2X P-RETURN-CODE

If the P-STATE state field is TRUE, the fast locate table is used. The state field is returned for
each API function.

To clear the fast locate table

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'CLEAR' P-STATE 2X P-RETURN-CODE

As described in Fast Locate Table with BPSFI=OFF, unexpected results can be encountered
if the fast locate table is used with BPSFI=OFF. For BPSFI=OFF, the fast locate table is cleared
when the application is back on Program Level 0 (NEXT prompt). A restart of the application
therefore ensures that the latest version of the object is found.

Since a server in a client/server environment never reaches Program Level 0, you can clear
the fast locate table by using the CLEAR function of USR3004N to ensure that the latest version
of the object is found.

Operations38

Natural Buffer Pool

To receive slot counts of the fast locate table

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'COUNT' P-STATE P-SLOTS-USED P-SLOTS-TOTAL
P-RETURN-CODE

The counters indicate how well the hash function operates. The hash function is used to cal-
culate the slot index number in the fast locate table.

DescriptionField

Shows the number of slots in the fast locate table that are currently occupied.

The hash function operates well if this number increases with the number of objects
accessed until close to the total number of slots.

P-SLOTS-USED

Shows the total number of slots available in the fast locate table.

The used hash function requires that the total number is a prime number. There are
593 slots available in the fast locate table.

P-SLOTS-TOTAL

Read-Only Buffer Pool

A read-only buffer pool is a special buffer pool that only allows read access. If an object is not
found in the read-only buffer pool, Natural issues error 82 (object not found). As no attempt is
made to retrieve the missing object in the system files, all lock operations on the system file as
well as on the buffer pool are skipped. Account data are gathered.

A read-only buffer pool is defined in the Configuration Utility (see also Setting up a Buffer Pool
below).

The utility NATBPSRV expects a preload list in a file named <bufferpool-name>.PRL at the location of
theNatural parameter files,which is defined in the local configurationfile (installation assignments).
For example, if the name of the read-only buffer pool is "ROBP", the file namemust be ROBP.PRL.

A preload list can be generated using the Natural utility CRTPRL. This utility extracts the contents
of a buffer pool and merges it with the existing preload data of a buffer pool.

The preload list in the PRL file contains recordswith comma-separated data in the following form:

39Operations

Natural Buffer Pool

database-ID,file-number,library,object-name,kind,type

The keywords in the file have the same meaning as the keywords shown by the DIR command of
the NATBPMON utility.

With the exception of directory-describing records (the kind of object is D, which means the object
is part of FILEDIR.SAG), a value must be assigned to all keywords. Examples:

NATBPSRV loads the following into the buffer poolKeywords

Object code of program PGM1 from library MY_LIBwhich is located on
database 222 and file number 111.

222,111,MY_LIB,PGM1,G,P

LIBDIR.SAGwhich is located on FNAT=222,113.222,113,*,*,D

FILEDIR.SAG from library MY_LIBwhich is located on FUSER=222,111 .222,111,MY_LIB,*,D

Using a read-only buffer pool has the disadvantage that the application must be known in detail
(as missing objects cannot be loaded). This means that all objects needed by an application must
be specified in the preload list. In seldom cases, the complete set of objects needed by an application
can be determined in advance.

Secondary Read/Write Buffer Pool

Natural can run with a read-only buffer pool as the primary buffer pool. Such a buffer pool is not
modifiable. Objectsmissing in the read-only buffer pool cannot be loaded. If an object is not found
in the read-only buffer pool, Natural issues error 82 (object not found). To avoid this, Natural can
attach during execution to a secondary standard buffer pool (which allows read/write access) and
activate the missing objects there. If a call to locate an object in the primary buffer pool fails, the
secondary buffer pool operates as a backup buffer pool. The dynamic parameter BPID2 identifies
the secondary buffer pool.

Other than for the read-only buffer pool, object locking through semaphores takes place each time
the secondary buffer pool is accessed.

The preload list of the read-only buffer pool can be updated/enhanced by merging the contents
of the secondary read/write buffer pool with the preload list of a read-only buffer pool using the
utility CRTPRL.

Operations40

Natural Buffer Pool

Alternate Read-Only Buffer Pool

For a read-only buffer pool, it is possible to define the name of an alternate buffer pool in the
Configuration Utility (see also Setting up a Buffer Pool below).

Using the SWAP command of the NATBPMON utility, which is only available for a read-only buffer
pool, you can tag a read-only buffer pool as “obsolete”. All Natural sessions attached to an obsolete
buffer pool will detach from this buffer pool and will attach to the alternate buffer pool - but only
if the alternate buffer pool is also a read-only buffer pool. The swap from one buffer pool to the
other occurs eitherwhenNatural tries to load a new object (for example, when executing a CALLNAT
or RETURN statement) or when Natural tries to interpret a command which has been put on the
stack. The IPC resources (that is, the shared memory segment) of a buffer pool tagged as obsolete
can be removed after issuing the SWAP command of the NATBPMON utility. This feature allows ex-
changing a buffer and its contents by another read-only buffer poolwith updated contentswithout
stopping Natural sessions.

Known issues: The IPCRM command of the NATBPMON utility will report an error trying to delete
the semaphores associated to a read-only buffer pool.

Creating a Preload List Using the CRTPRL Utility

The Natural utility CRTPRL, which is located in the library SYSBPM, is used to create a preload list
for a read-only buffer pool.

The utility uses the content of a source buffer pool as the basis for the preload list and checks
whether the preload list already exists for a read-only (target) buffer pool:

■ If the preload list exists, the existing data in the preload list is merged with the data from the
source buffer pool, and the preload list is saved with the new content.

■ If the preload list does not yet exist, it is created using the content from the source buffer pool.

The content of the resulting preload list determines the content of the read-only buffer pool. The
preload list is read by the utility NATBPSRVwhich loads the corresponding objects into the read-
only buffer pool.

Buffer Pool with Enhanced Performance

Abuffer poolwith enhanced performance is a read/write buffer pool that is optimized for perform-
ance and scalability. The enhanced performance features are enabled automatically when you
start a read/write buffer pool, unless only a runtime license is installed.

The buffer poolwith enhanced performance combines the advantages of a read-only and read/write
buffer pool.

Like the read-only buffer pool, the buffer pool with enhanced performance does not use locks if
only read operations are performed, and read operations do not use locks and read operations

41Operations

Natural Buffer Pool

from multiple user sessions can be executed concurrently. Therefore, single-session performance
matches that of a read-only buffer pool and exceeds that of the traditional read/write buffer pool,
due to the reduced number of system calls.

The buffer pool with enhanced performance scales better than the read-only buffer pool and tra-
ditional read/write buffer pool. The performance advantage of the buffer pool with enhanced
performance increasesmonotonicallywith increasing number of concurrent sessions actively using
it.

The buffer poolwith enhanced performance supports read and update operations. Thus, although
a preload list can be used to seed the buffer pool on startup, its usage is optional, and even if
specified, any objects missing from the list can be loaded later on demand without having to set
up andmaintain a secondary buffer pool for this purpose. Likewise, objects in the buffer poolwith
enhanced performance can be directly replaced, implying that application updates can be applied
without having to switch to an alternate buffer pool with the SWAP command, as is the case with
the read-only buffer pool.

The buffer pool with enhanced performance performs fewer update operations on internal data
structures due to deferred structural updates that are combined and applied in a later consolidation
operation. Furthermore, it only uses locks in conjunction with update operations. This enhances
robustness by reducing the risk of a process dying in the middle of updating its data structures
and/or while owning the lock.

The buffer pool with enhanced performance supports exclusive access for operations that need it
unlike the read-only buffer pool. The operations that are not performance-critical, such as attaching
to and detaching from the buffer pool, can be performed on their own, without interference from
other users, thus further enhancing robustness. This function of the buffer pool with enhanced
performance depends on the availability of the exclusive access, which is why it performs and
scales better than the read-only buffer pool. Exclusive access also allows a true snapshot of the
buffer pool status to be obtained via the STATUS command of the NATBPMON utility. The displayed
statistical information is not modified as they it is gathered. In addition, the exclusive access is
necessary for the VERIFY command, which is not available for the read-only buffer pool.

The extent towhich the performance improvements shown in synthetic benchmarks apply to real-
world applications depends on the number of concurrent sessions actively using the buffer pool
and the frequency of buffer pool operations. For example, the longer the time spent in a called
object (for example a subprogram, external subroutine, or function), the lower the impact of the
buffer pool operations on overall performance.

When a buffer poolwith enhanced performance is started, the NATBPSRV utility outputs the inform-
ation Enhanced performance cache created, for example:

Operations42

Natural Buffer Pool

NATURAL/C Buffer Pool 9.3(932) of 07/18/2024 started (internal version 2).
Existing shared memory will be deleted.
Creation of shared memory completed.
Enhanced performance cache created.
Existing semaphores will be deleted.
Creation of semaphores completed.
Permanent IPC resources created.
Buffer pool is ready to run.
The server process completed successfully.

To check whether an existing buffer pool is a buffer pool with enhanced performance, attach to it
with the NATBPMON utility and issue the STATUS command. If the output shows information about
the operation type (Read operations, Sync read operations, Update operations, and
Consolidations), the buffer pool is a buffer pool with enhanced performance. Otherwise, it is a
buffer pool that was started with NATBPSRV utility version 9.3.1 or lower, a read-only buffer pool,
or a standard Natural license could not be found. A standard Natural license allows installation
of the extended environment with additional functionality, while a runtime license only enables
a runtime environment.

Restrictions of the Natural Buffer Pool

When using the Natural buffer pool, only minimum restrictions must be considered:

■ When a Natural session hangs up, do not initially terminate it by using the Linux command
kill -KILL (also kill -9), the terminal command break or the interrupt key.

If this session is currently performing changes to the buffer pool internal data structures, an
interruption may occur at a stage where the update is not fully completed. If the buffer pool
internal data structures are inconsistent, this could have negative effects.

Instead, use the Linux command kill -TERM (also kill -15) to terminate the hung-up session.

Note: This can only happen when the Natural nucleus is executing buffer pool routines.

■ All resources must be shared among all users of one Natural buffer pool. Group membership
of a process is used to give access rights for the buffer pool. This means that the sharedmemory
can be changed by all group members, but not by anyone else. The same applies to the sema-
phores.

Note: All users of the same Natural buffer pool must belong to the same user group on
the Linux operating system.

43Operations

Natural Buffer Pool

Setting up a Buffer Pool

The buffer pool assignments are stored in the local configuration file. To set up a buffer pool, you
have to specify specific values in the local configuration file using the Configuration Utility. For
a list of these values, see Buffer Pool Assignments in the Configuration Utility documentation.

Using the Utility NATBPSRV for Creating the Buffer Pool

The buffer pool is created using the utility NATBPSRV.

Note: The utility NATBPSRV should not be accessible to all Natural users, because it can cause
damage to the work of other buffer pool users.

NATBPSRV allocates the resources required by the buffer pool and creates the permanent commu-
nication facilities (that is, sharedmemory and semaphores) used for the buffer pool. The necessary
specifications for the resources and facilities are made with the Configuration Utility (see Setting
up a Buffer Pool).

The NATBPSRV utility should only be used during system startup, fromwithin the startup procedure
natstart.bsh.

By default, the buffer pool NATBP is started. If another buffer pool is to be started, you specify its
name with the following NATBPSRV command line option:

NATBPSRV BP = buffer-pool-name

If NATBPSRV discovers in the process of creating a buffer pool that a buffer pool of the same name
is already active, it deletes the already active buffer pool. If the deletion fails, NATBPSRV terminates
with an appropriate error message.

NATBPSRV Error Messages

NATBPSRV can issue the following error messages if the buffer pool that is to be created is meant
to be a read-only buffer pool:

Operations44

Natural Buffer Pool

Unable to attach to buffer pool. Return code ... received from bp_init.

To load the objects described in the preload list, NATBPSRV attaches to the previously
created buffer pool as a user. The attach process failed.

Explanation

Contact Software AG Technical Support.Action

Unable to get parameter path.

The path defined in the local configuration file identifying Natural's parameter files
could not be established.

Explanation

Contact Software AG Technical Support.Action

File ... is not accessible.

The preload list is not accessible or not present.Explanation

Revise access rights or create a preload list.Action

Unable to open file ...

The preload list cannot be read.Explanation

Re-create preload list.Action

Skipped erroneous record: '...'. Buffer pool may not operate correctly.

An invalid record was found in the preload list. The record is skipped and the load
process is continued. Theremay arise errors in your application due tomissing objects.

Explanation

Correct the record if it has been created manually, or contact Software AG Technical
Support.

Action

Unable to retrieve LIBDIR.SAG in FNAT(...,...). Application will not run.

LIBDIR.SAGwas not found. An application depending on FNAT(...,...)will not
run.

Explanation

Correct the record if it has been created manually, or contact Software AG Technical
Support.

Action

Buffer pool manager returned with error code Buffer pool is not operational.

FILEDIR.SAG could not be loaded into the buffer pool. The buffer pool is either too
small to holdFILEDIR.SAGorFILEDIR.SAG is damaged. Thepreviously listedmessage
tells which FILEDIR.SAG is causing the trouble.

Explanation

Correct the record if it has been created manually, or contact Software AG Technical
Support.

Action

45Operations

Natural Buffer Pool

Buffer pool manager returned with error code Error ... occurred.

An error occurred loading an object into the buffer pool.Explanation

Normally, the size of the buffer pool is too small. Increase its size and repeat the
operation. If the problem remains, contact Software AG Technical Support.

Action

Object ... in library ... on system file (...,...) not found. Application may not run.

The preload record processed pointed to an object that was not found. This normally
happens if an application ismodified and the correspondingpreload list is not updated.

Explanation

Remove/revise preload record in questionAction

Preload executed. Buffer pool is ready to run.

All preload records were processed. The buffer pool is unlocked and Natural can
access that buffer pool.

Explanation

Monitoring the Buffer Pool

The Buffer Pool Monitor is used to oversee the buffer pool's activity during its operation. The
Buffer Pool Monitor can also be used to shut down the buffer pool whenNatural must be stopped
on a computer.

The Buffer Pool Monitor collects information on the current state of your Natural buffer pool.

If multiple buffer pools are active on the same computer and an object that is loaded to more than
one buffer pool is modified by a Natural process, the object will only be removed from the buffer
pool to which the modifying Natural process is attached.

For detailed information for how to use the Buffer Pool Monitor, see Using the Buffer Pool Mon-
itor (NATBPMON).

Trouble Shooting

This section describes problems that may occur when using the Natural buffer pool and how to
solve them.

It is assumed that you are familiar with the Linux commands ipcs and adb.

The following are typical command output examples, with an explanation of what went wrong
during execution.

Operations46

Natural Buffer Pool

Problem 1

Either Natural or the Natural Buffer Pool Monitor (NATBPMON utility) cannot be started.

Examples

The following examples describe the most typical problems you are likely to encounter as a Nat-
ural administrator or user. These problems occur when you start Natural or the Natural Buffer
Pool Monitor, and the buffer pool is not active.

■ You try to start Natural with the following command:

natural bp = sag

The following message appears:

Natural Startup Error: 16
Unable to open Buffer Pool,
Buffer Pool error: "unexpected system call error occurred " (20)
Global shared memory could not be attached.: shmkey = 11111111

Operating System Error 2 - No such file or directory

■ You try to start the Natural Buffer Pool Monitor with the following command:

natbpmon bp = sag

When you enter the WHO command at the NATBPMON prompt, the following message appears:

Buffer Pool error: unexpected system call error occurred (20)
Global shared memory could not be attached.: shmkey = 11111111
Operating System Error 2 - No such file or directory

Solution

1. Start the buffer pool service as described in Using the Utility NATBPSRV for Creating the
Buffer Pool.

2. Use the Linux command ipcs to verify the existence of the necessary semaphores and the shared
memory:

ipcs -m -s

This results in the following output:

47Operations

Natural Buffer Pool

IPC status from /dev/kmem as of Mon 23-MAY-2005 12:03:24.30
T ID KEY MODE OWNER GROUP
Shared Memory:
m 807 0x4e425031 --rw-rw---- sag natural
Semaphores:
s 85 0x4e425031 --ra-ra---- sag natural

Note: The above output was edited to exclude memory segments and semaphores that
do not belong to the Natural buffer pool.

If you cannot find a shared memory segment or a set of semaphores with the key you assigned
them, the buffer pool was not started.

Problem 2

The Natural buffer pool and a Natural utility are not of the same Natural version.

Examples

If a utility tries to use the buffer pool, the utility and buffer pool versions are checked for equality.
If they differ, the access is denied and an error message is output.

■ You try to start Natural and the following message appears:

Natural Startup Error 16: Unable to open buffer pool.
Buffer pool error: "Buffer pool does not correspond with your version of ↩
Natural"(25).
Internal version of buffer pool is 0 but requested internal version is 1. ↩

■ You try to start the Natural Buffer Pool Monitor and the following message appears:

Buffer pool error: Buffer pool does not correspond with your version of Natural ↩
(25).
Internal version of buffer pool is 0 but requested internal version is 1.

Solution

Verify that your Natural version corresponds to your buffer pool version number and that the
internal buffer pool version (BP version) is also correct. Restart the buffer pool with the same
version as Natural but make sure that no other users are active.

Important: The internal buffer pool versionnumber (BP version) can vary in between service
pack releases (third digit of the product version number). For example, a buffer pool that
has been initiated using Natural Version vrs cannot be used with Natural Version vr(s+1)
and vice versa.

Operations48

Natural Buffer Pool

Shutting Down and Restarting the Buffer Pool

Usually it should not be necessary to shut down and restart the buffer pool. This may only be ne-
cessary if the buffer pool should become unusable due to serious internal errors in the buffer pool,
which is extremely unlikely to occur, or because the parameters defining the buffer pool structure
became obsolete.

If the NATBPMON utility is still able to access the buffer pool, proceed as follows:

1. Shut down the buffer pool with the SHUTDOWN command of the NATBPMON utility.

Once the SHUTDOWN command is executed, new users are denied access to the buffer pool.

Tip: Active buffer pool users can bemonitored by issuing the WHO and STATUS commands
of the NATBPMON utility.

2. After the last user has stopped accessing the buffer pool, buffer pool resources can be deleted
by issuing the IPCRM command of the NATBPMON utility.

3. To restart the buffer pool, call the file natstart.bsh from a sufficiently privileged account.

If you have super user rights, you can use the FORCE option of the SHUTDOWN command:

1. Shut down the buffer pool with the SHUTDOWN FORCE grace-period command of the NATBPMON
utility.

This command - like the SHUTDOWN command without options - denies new users access the
buffer pool. However, the terminate signal SIGTERM is sent to all activeNatural sessions, forcing
them to log off from the buffer pool.

If the optional parameter grace-period is omitted, this commandwaits until all active sessions
have performed their shutdown processing and then executes the IPCRM command of the
NATBPMON utility .

If the optional parameter grace-period has been specified, NATBPMONwaits the specified number
of seconds before it executes its IPCRM command - regardless of the closedown status of the
sessions logged on to the buffer pool. Therefore, the value defined for the grace period should
be sufficiently large to allow the sessions to terminate in time.

Note: SHUTDOWN FORCE 0 is the same as SHUTDOWN FORCE (without the parameter grace-
period).

2. To restart the buffer pool after successful execution of the SHUTDOWN FORCE command, call the
file natstart.bsh from a sufficiently privileged account.

49Operations

Natural Buffer Pool

If the NATBPMON utility is not able to perform a clean shutdown of the buffer pool, the buffer pool
must be deleted by using operating system commands:

1. Use the Linux command ipcs to find out the status of the buffer pool's shared memory and
semaphores:

ipcs -a -m

In the columnNATTCH of the output of an ipcs -m -a command, you can see the number of
processes currently attached to a shared memory segment. For example:

IPC status from /dev/kmem as of Mon May 23 12:15:38.39 2002
T ID KEY ... OWNER GROUP ... NATTCH SEGSZ
Shared Memory:
m 707 0x4e425031 ... sag natural ... 7 153600

2. It is highly probable that the number of processes attached to shared memory incorporates a
Natural nucleus or the NATBPMON utility currently running. Inform the users who run these
processes and ask them to terminate their sessions or terminate them yourself by using the
Linux command kill once you have found out their process IDs using the ps command.

3. Once you are sure that no one is using the buffer pool for important work, its resources can be
deleted by using the Linux command ipcrm. For example:

ipcrm -M 0x4e425031 -S 0x4e425031

The values specified for the -M and -S options must be those that were specified inside the
parameter file used to start the buffer pool.

Be careful when you delete shared memory and semaphores using the Linux command ipcrm.
If you accidentally delete thewrong resource, thismight have a serious impact on other software
products running on your computer.

4. The result of deletion can be verified by using the Linux command ipcs again.

If there are still some memory segments or message queues displayed, they could belong to
other software, or they are marked for deletion because some other process is still attached to
them.

If the buffer pool cannot be started after removing the sharedmemory and semaphores, you should
consider either rebooting your computer or contacting Software AG Support.

Operations50

Natural Buffer Pool

6 Using the Buffer Pool Monitor (NATBPMON)

■ Invoking the NATBPMON Utility .. 52
■ NATBPMON Commands ... 53
■ Displaying the Objects in the Buffer Pool .. 54
■ Specifying a Pattern ... 56
■ Displaying the Buffer Pool Settings ... 56
■ Statistical Information About the Buffer Pool ... 57

51

See alsoNatural Buffer Poolwhich provides general information on the buffer pool and explains
how to start the buffer pool.

Caution: This utility should not be generally accessible to all users of Natural, because its
use can cause damage to the work of other users of the buffer pool.

Invoking the NATBPMON Utility

You can invoke the NATBPMON utility either for the default buffer pool NATBP or for another existing
buffer pool.

The NATBPMON administrator can always invoke the utility. If the maximum buffer pool user limit
is reached, the administrator accesses the utility as an emergency user. Only one additional buffer
pool administrator can use NATBPMON at a time. You can define a Natural buffer pool administrator
in the local configuration file in the Configuration utility.

To invoke the NATBPMON utility

1 If the default buffer pool NATBP is to be used, enter the following command in the command
line:

NATBPMON

Or:

If another buffer pool is to be used, enter the following command in the command line:

NATBPMON BP=buffer-pool-name

The following prompt appears:

NATBPMON>

2 If you want the NATBPMON utility to terminate with an appropriate error message, add GIVERC
to your command in the command line.

Operations52

Using the Buffer Pool Monitor (NATBPMON)

NATBPMON Commands

The following commands can be entered at the NATBPMON prompt:

DescriptionCommand

This is the same as the ZERO command.CLEAR

Displays the list of corpses. A corpse is an object that has been deleted, but was still
being used in the buffer pool when its deletion took place. Once this object is no longer
used, it will automatically disappear from the list of corpses.

Note: The column cusrwhich is shown with the DIR command indicates if an object
is being used.

CORPSES

Deletes an object from the buffer pool. All objects can be deleted from the buffer pool
by using an asterisk (*). A pattern is used to specify a collection of objects, similar to

DELETE
{pattern|[*]}

current operating systemswhich allow the specification of a class of fileswithwildcards.
For further information, see Specifying a Pattern.

Displays a directory containing all objects in the buffer pool. For further information,
see the sections Specifying a Pattern and Displaying the Objects in the Buffer Pool.

DIR
{pattern|[*]}

Used for error analysis.

Important: Do not use this command unless you are requested to do so by Software
AG Support.

DUMP

Exits the NATBPMON utility.EXIT

Exits the NATBPMON utility. This is the same as the EXIT command.FIN

Displays a list of all available commands of the NATBPMON utility.HELP

Frees the resources allocated to the buffer pool. This command should only be used
following a SHUTDOWN command when there are no active users.

IPCRM

Kills the specified buffer pool user. n is the number of the user to be “killed”. This
number corresponds to the index number as displayed by the WHO command.

KILL n

Displays the buffer pool settings. For further information, see Displaying the Buffer
Pool Settings.

PARAM

Exits the NATBPMON utility. This is the same as the EXIT command.QUIT

Without the option FORCE: Shuts down the buffer pool. No new processes will be able
to use the buffer pool once this command has been issued. The NATBPMON utility is

SHUTDOWN [FORCE
[grace-period]]

able to runwith a buffer poolwhich has the shutdown status “pending”; all commands
of the NATBPMON utility are available in this case. As soon as all users have stopped
using the buffer pool, the buffer pool's resources can be deleted with the IPCRM
command.

The option FORCE requires NATBPMON to be executedwith super user rights. After SUDO
or SU has validated the password and given control to NATBPMON, any new sessions
will be inhibited to log in and the terminate signal SIGTERMwill be sent to all active
Natural sessions. NATBPMONwill then wait the number of seconds defined with the

53Operations

Using the Buffer Pool Monitor (NATBPMON)

DescriptionCommand

parametergrace-period before the IPC resources used by the buffer pool are removed
from the system. If the optional parameter grace-period is omitted (or set to 0),
NATBPMONwillwait until all processes performed their cleanupprocessing. This process
can be considered as an emergency stop. If it is executed without super user rights, no
action takes place and a message reporting the incapability to execute the command
is sent. See also Shutting Down and Restarting the Buffer Pool.

Note: To start the buffer pool after shutdown, you can use the utility NATBPSRV.

Displays statistical information about the buffer pool. For further information, see
Statistical Information About the Buffer Pool.

STATUS

Only available for a read-only buffer pool. Tags a read-only buffer pool as “obsolete”.
All Natural sessions attached to such a buffer pool will detach from that buffer pool
and attach to the alternate buffer pool.

SWAP

This command cannot be used on a read-only buffer pool, because the required
exclusive access is not available for it.

VERIFY
[NOW|ON|OFF]

Performs, enables, or disables buffer pool consistency checks. If the command is entered
on its own orwith the NOW option, any existing consistency error is reported, otherwise
consistency checks are performed and the result is returned. If the option ON is provided,
consistency checks are performed after each consolidation (see Consolidations in
the output of the STATUS command) until a consistency error is detected or until
disabled again with the OFF option. By default, no automatic consistency checks are
performed.

Displays a list of all users who are using the buffer pool. The following statistics are
displayed: a number that the NATBPMON utility automatically assigns to each buffer

WHO

pool user (index) and the user ID, terminal ID and process ID of the process using the
buffer pool (tid).

Writes a buffer pool object onto the disk. You are prompted to specify an index and a
file name.

Note: The column “indx” which is shown with the DIR command shows the index
numbers.

WRITE

Resets to 0 all counters that are displayed by the STATUS command.ZERO

Displaying the Objects in the Buffer Pool

The DIR command displays a list of objects. This list contains the following information:

Operations54

Using the Buffer Pool Monitor (NATBPMON)

ExplanationColumn

A number that the NATBPMON utility automatically assigns to an object when it is loaded into the
buffer pool.

indx

The current number of users that are using an object in the buffer pool.cusr

The peak number of concurrent activations of an object in the buffer pool.pusr

The number of times an object has been activated in the buffer pool.nusg

g Specifies whether an object is being loaded into the buffer pool from the system file. Has one of
the following values:

The object is not being loaded.0

The object is being loaded.1

Specifies the size (in bytes) of an object in the buffer pool.size

The version number of the generated program.gpv

key Specifies the following information about an object:

Database ID.D

File number.F

The library in which the object is located.L

The name of the object. Numbers and the at sign (@) indicate chunks of
FILEDIR.SAG for the currently loaded library.

N

The kind of object (G=generated object module; S=source; D=part of
FILEDIR.SAG).

K

The object type (which is blank when D is shown in the K field).T

When the DIR command is issued, all objects in the pool will be displayed in a notation similar to
the following:

indx: index of the element
cusr: current number of concurrent users
pusr: peak number of concurrent users
nusg: number of usages
g : set if object is generating
gpv : version of generated program

indx | cusr | pusr | nusg | g | size | gpv | key
-----+------+------+--------+-----+--------+-------+---
1 | 0 | 1 | 4 | 0 | 920 | | (D=99 F=101 L="DEMO" N="SEL-MAP" K='G' T='M')
2 | 1 | 7 | 2 | 0 | 3096 | | (D=99 F=101 L="DEMO" N="EMWND" K='G' T='P')
3 | 4 | 9 | 4 | 0 | 604 | | (D=99 F=101 L="DEMO" N="HDR" K='G' T='P')
4 | 2 | 3 | 7 | 0 | 412 | | (D=99 F=101 L="RPA" N="MMUPROG1" K='G' T='P')
5 | 0 | 1 | 5 | 0 | 372 | | (D=99 F=101 L="RPA" N="MMUPROG2" K='G' T='P')
6 | 0 | 5 | 4 | 0 | 372 | | (D=99 F=101 L="RPA" N="MMUPROG3" K='G' T='P')

55Operations

Using the Buffer Pool Monitor (NATBPMON)

Specifying a Pattern

Apattern can be specifiedwith the commands DIR and DELETE. The examples in this section apply
to the DIR command.

To select some objects, it is possible to restrict the values of certain key fields by specifying a
matching pattern expression.

To restrict the allowed field values of a given field, the following pattern notation must be used:

name=expression

You can specify multiple patterns by separating them with a comma.

The specified patterns must all match their corresponding fields in order to accept the entire key.

The expression accepts the specification of the wildcard characters "*" and "?".

The character "*" matches any or no occurrences of a sequence of characters, and the wildcard
character "?" matches exactly one specific character.

Examples

To select all objects of type P in the sample above, the following command would be used:

DIR T=P

To select all programs in the demo library, the following command would be used:

DIR T=P, L=DEMO

To select all objects containing an M in their name, the following command would be used:

DIR N=*M*

Displaying the Buffer Pool Settings

The following settings are displayed with the PARAM command:

Operations56

Using the Buffer Pool Monitor (NATBPMON)

SHM active since: 13-AUG-2024 19:39:21, Version 9.3(932) BP version 2
Last time cleared: 13-AUG-2024 19:39:21

Bpid: TESTRW
Readonly: no
Shmkey: 0x39211291
Semkey: 0x39211291
Memsize: 10485748
Maxusers: 200

Date and time when the buffer pool was started, the version number of the program
that started it and created the sharedmemory, and the internal buffer pool format version
that is incremented on every structural change.

SHM active since

Date and time when the buffer pool statistical information was most recently cleared
(either implicitly on buffer pool creation, or explicitly via the CLEAR or ZERO command).

Last time cleared

Buffer pool ID.Bpid

Indicates whether this is a special buffer pool which only allows read access.Readonly

Unique name used to create a buffer pool or to connect to a buffer pool.Shmkey

Unique name used to synchronize accesses to the buffer pool memory.Semkey

Size of the available shared memory.Memsize

Maximum number of users that can have simultaneous access to the buffer pool.Maxusers

See Buffer Pool Assignments in the Configuration Utility documentation.

Statistical Information About the Buffer Pool

The following statistics are displayed with the STATUS command:

57Operations

Using the Buffer Pool Monitor (NATBPMON)

Buffer Pool Monitor version 9.3(932F00) of 07/18/2024
NATBPMON>st
SHM active since: 13-AUG-2024 19:39:21, Version 9.3(932F00)
Last time cleared: 13-AUG-2024 19:39:21
Bpid: TESTRW
Allocated memory (b) ...: 255280 Max users: 200
Smallest allocation: 48 Current users: 2
Largest allocation: 97624 Peak users: 2
Free memory (b): 10230480 Dead users purged: 0
Smallest free: 368
Largest free: 10228240 Peak parallel usages .: 1

Dormant objects: 12 Smallest object (b) ..: 108
Active objects: 0 Largest object (b) ...: 31228
Generating objects: 0 Total object sizes ...: 120638
Obsolete objects: 0
Dormant objects purged .: 0 Object reusage factor : 6.29

Attempted locates: 183 Stored objects: 0
Attempted fast locates .: 79 Loaded objects: 24
Successful fast locates : 62 Activated objects: 151
Percent: 78.48 Aborted loads: 0

Read operations: 334 Update operations: 81
Sync read operations ...: 0 Consolidations: 5

General Information

Version of the buffer pool including its fix level (enclosed in brackets as vrsFnn,
where vrs is the buffer pool version and nn is its fix level).

Buffer Pool Monitor
version

Date and time when the buffer pool was started, and the version number and
fix level of the program that started it and created the shared memory.

SHM active since

Date and time when the buffer pool statistical information was most recently
cleared (either implicitly on buffer pool creation, or explicitly via the CLEAR or
ZERO command).

Last time cleared

Buffer pool ID. If applicable, the read-only and swap status is shown enclosed
in brackets.

Bpid

Memory Allocation

Total of all allocated memory.Allocated memory (bytes)

Smallest amount of allocated memory.Smallest allocation

Largest amount of allocated memory.Largest allocation

Total of all free memory.Free memory (bytes)

Smallest amount of contiguous free memory.Smallest free

Largest amount of contiguous free memory.Largest free
User Statistics

Maximum number of users that can have simultaneous access to the buffer
pool. See Buffer Pool Assignments in the Configuration Utility documentation.

Max users

Operations58

Using the Buffer Pool Monitor (NATBPMON)

Number of users currently using the buffer pool.Current users

Peak number of users that have been using the buffer pool.Peak users

Number of inactive users that have been deleted from the buffer pool. This
number should be close to 0 (zero). An increment of this number indicates that

Dead users purged

entries for buffer pool users (i.e. Natural sessions) were canceled or killed
unconditionally. Each time an entry for such a user is identified by the buffer
poolmanager, this number is incremented and cleanup is performed to remove
residuals which have been left in the buffer pool by a canceled session.

The maximum number of users that have been concurrently using one of the
objects in the buffer pool.

Peak parallel usages

Object Use Statistics

Number of available, but inactive objects. These objects are in the buffer pool,
but are not being used. They are available for later use and will become active
objects as soon as a buffer pool user requests their availability.

Dormant objects

Number of active objects. These objects are currently in use by one or more
buffer pool users.

Active objects

Number of objects that are currently being loaded into the buffer pool. These
objects will become available as soon as the load operation completes.

Generating objects

Number of objects that are to be deleted from the buffer pool, but are still being
used. These objects can be displayed by using the CORPSES command. An

Obsolete objects

obsolete object is removed from the buffer pool as soon as all users who
activated this object have released this object. In a production environment,
this number should be 0 (zero). A value other than zero indicates that objects
were deleted either using the DELETE command of NATBPMON or became
obsolete because new objects were created (for example, due to a CATALOG
command).

The number of unused objects deleted from the buffer pool to make room for
newly loaded ones.

Dormant objects purged

Average number of times an object was reactivated. This number is the ratio
of the number of object activations to the number of objects loaded into the
buffer pool.

Object reusage factor

Object Size Statistics

Size of smallest object in the buffer pool.Smallest object (bytes)

Size of largest object in the buffer pool.Largest object (bytes)

Total size of all objects in the buffer pool.Total object sizes
Locate Statistics

Number of successful and failed object locates. This number tells you how
many times the buffer pool manager was asked to locate an object in the buffer
pool.

Attempted locates

Number of attempted activationswith known slot. This is the number of object
activations when the former location of an object was known. It is highly

Attempted fast locates

probable that an object can be found in the same place in the buffer pool when
it is reactivated.

59Operations

Using the Buffer Pool Monitor (NATBPMON)

Number of successful fast locates.Successful fast locates

Percentage of successful fast locates.Percent
Object Loading Statistics

The number of objects stored in the buffer pool. This is the number of objects
that were stored into the buffer pool and which were not loaded from the
system file.

Stored objects

The number of objects loaded from the system file. Each time an object is not
found in the buffer pool, it is loaded from the system file. This number is
increased each time an object is successfully loaded into the buffer pool.

Loaded objects

The number of activated objects. Activation is the process of marking an object
which is found in the buffer pool as “in use” by a buffer pool user.

Activated objects

The number of load operations that were aborted due to memory shortages
within the buffer pool, or due to an errorwhen loading an object into the buffer
pool. This number should not vary in a noticeable way.

Aborted loads

Operation Type Statistics

Not available for read-only buffer pools or if only a Natural Runtime license
is found.

Read operations

The total number of read operations, both unsynchronized and synchronized.
Unsynchronized read operations are fast. Furthermore, multiple operations of
this type can be executed in parallel.

Not available for read-only buffer pools or if only a Natural Runtime license
is found.

Sync read operations

The number of read operations that needed to be synchronized with update
operations. Operations of this type cannot be executed in parallel with any
other operations.

Not available for read-only buffer pools or if only a Natural Runtime license
is found.

Update operations

The number of update operations. These are operations that explicitly request
exclusive access to the buffer pool (for example to modify it or to obtain a data
snapshot). Operations of this type cannot be executed in parallel with any other
operations.

Not available for read-only buffer pools or if only a Natural Runtime license
is found.

Consolidations

For performance reasons and to allowmultiple read operations to be executed
in parallel, some internal administrative tasks associatedwith read and update
operations are not performed immediately. Instead, they are combined and
performed asynchronously in a later consolidation operation. The value shown
here is the number of such operations. Operations of this type cannot be
executed in parallel with any other operations.

Operations60

Using the Buffer Pool Monitor (NATBPMON)

7 Natural in Batch Mode

■ About Batch Mode ... 62
■ Starting a Natural Session in Batch Mode ... 62
■ Terminating a Natural Session in Batch Mode ... 63
■ Using Natural in Batch Mode ... 63
■ Sample Session for Batch Mode ... 65
■ Batch Mode Detection .. 68
■ Batch Mode Restrictions ... 68
■ Batch Mode Simulation ... 69

61

This chapter contains special considerations that apply when running Natural in batch mode.

About Batch Mode

Natural distinguishes between two processing modes:

■ interactive mode (via the Natural Main Menu)
■ batch mode

Themain difference between these twomodes is that in interactivemode, the commands and data
are input by the user by means of the keyboard and the output is displayed on a screen. In batch
mode, input is read from a file and output is written to a file - without user interaction.

WhenNatural is run as a batch job, no interaction betweenNatural and the personwho submitted
the batch job is necessary. The batch job consists of programs that are executed sequentially and
that receive sequential input data.

Batch mode is useful for mass data processing on a regular basis.

Starting a Natural Session in Batch Mode

Batch mode is activated with the parameter BATCHMODE.

To start a Natural session in batch mode

1 Start Natural with the dynamic parameter BATCHMODE as shown below:

natural BATCHMODE

The above call (where only the BATCHMODE parameter is specified) assumes that the required
input and output channels have already been defined in theConfigurationUtility. For inform-
ation on the input and output channels, seeUsingNatural in BatchMode later in this section).
For information on the batch-mode-relevant profile parameters in the parameter file, see Batch
Mode in the Configuration Utility documentation.

It is also possible to add the required input and output channels as dynamic parameters to
the above call. This is illustrated in Sample Session for Batch Mode later in this section. Any
input and output channels that are specified as dynamic parameters with the above call
override the channel definitions in the parameter file.

2 Check the filewhich has been defined as the output channel. At its end, this file should contain
the message that your session has terminated normally.

Operations62

Natural in Batch Mode

Terminating a Natural Session in Batch Mode

A Natural session in batch mode is terminated when one of the following is encountered during
the session:

■ the system command FIN in the batch input file, or
■ a TERMINATE statement in a Natural program which is being executed.

Note: When an end-of-input condition occurs in the batch input file, the batch session is
also terminated. In this case, the file which has been defined as the output channel contains
a message which indicates an unexpected end.

Using Natural in Batch Mode

To start a Natural session in batch mode you have to specify the dynamic parameter BATCHMODE.
In addition, input and output channels have to be defined as described below.

Important: The input channels CMSYNIN and/or CMOBJIN and the output channel CMPRINT are
always required for batch mode.

The following topics are covered below:

■ Input and Output Channels
■ Code Pages for the Input and Output Files

Input and Output Channels

The following parameters are available for batch mode:

DescriptionParameter

Defines the batch input file which contains the Natural commands and (optionally) data to be
read by INPUT statements during execution of Natural programs.

CMSYNIN

Defines the batch input file which contains the data to be read by INPUT statements. This data
can alternatively be placed in the file definedwith the parameter CMSYNIN, immediately following
the relevant RUN or EXECUTE command.

CMOBJIN

Defines the batch output file for the output resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

CMPRINT

Defines an output file for additional reports referenced by anyNatural program executed during
the session. nn is a two-digit decimal number in the range from 01 to 31 which corresponds to
the report number used in a DISPLAY, PRINT or WRITE statement.

CMPRTnn

63Operations

Natural in Batch Mode

DescriptionParameter

Defines a work file referenced by any Natural program executed during the session. nn is a
two-digit decimal number in the range from 01 to 32 which corresponds to the number used in
a READ WORK FILE or WRITE WORK FILE statement.

CMWRKnn

Used to logmessages that could not bewritten to the batch output file definedwith the parameter
CMPRINT. It is recommended to enable NATLOG in batch mode.

NATLOG

Code Pages for the Input and Output Files

The following parameters are used to specify the code pages in which the input files are encoded
and in which the output file shall be encoded.

DescriptionParameter

Specifies the code page inwhich the batch input file for commands is encoded. This file is defined
with the parameter CMSYNIN.

CPSYNIN

Specifies the code page in which the batch input file for data is encoded. This file is defined with
the parameter CMOBJIN.

CPOBJIN

Specifies the code page in which the batch output file shall be encoded. This file is defined with
the parameter CMPRINT.

CPPRINT

Encoding for CMSYNIN and CMOBJIN:

■ If a code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using this code page.

■ If no code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using the default code page specified in the Natural parameter
CP.

■ If no code page is specified in the Natural parameter CP, it is assumed that the data in the input
file is encoded using the current system code page.

Encoding for CMPRINT:

■ If a code page is specified for the output file CMPRINT, the output data will be encoded using
this code page.

■ If no code page is specified for the output file CMPRINT, the output data will be encoded using
the default code page specified in the Natural parameter CP.

■ If no code page is specified in the Natural parameter CP, the output data will be encoded using
the current system code page.

If the encoding/decoding fails (for instance if a character is written to CMPRINT that is not contained
in the code page used to encode the file), the batch job terminates with a startup error 42 (batch
mode driver error) that specifies the file on which the encoding/decoding error occurred.

Operations64

Natural in Batch Mode

Note that it is possible in particular to specify UTF-8 as code page in each of these parameters.
This allows for reading and writing Unicode data encoded in UTF-8.

Sample Session for Batch Mode

This example demonstrates how to start Natural in batch mode. A simple Natural program is ex-
ecuted and data items are taken from the batch input file. After the items are processed with the
INPUT statement, a DISPLAY statement follows,whichwrites the data to the batch output file. Then,
Natural terminates.

This example uses the program RECCONTwhich is stored in the library SYSEXBAT.

Note: See the text A-README in the library SYSEXBAT for information on the objects that are
stored in this library.

The sample session is invoked with the following call:

natural BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt NATLOG=ALL

Note: This call assumes that all files can be found in the current directory and that the output
is written to this directory. If the files are located in different directories or if the output is
to be written to a different directory, you have to specify the path.

The parameters in the above call are described below:

BATCHMODE
The parameter BATCHMODE enables batchmode and sets the value of the systemvariable *DEVICE
to BATCH.

CMSYNIN=cmd.txt
The batch input file cmd.txt is a text file which is stored in your file system. The content of this
file is shownbelow. It containsNatural system commands for logging on to the library SYSEXBAT,
executing the Natural program RECCONT, and terminating the Natural session.

LOGON SYSEXBAT
EXECUTE RECCONT
FIN

The Natural program RECCONT has the following content:

65Operations

Natural in Batch Mode

DEFINE DATA
LOCAL

1 #firstname (A10)
1 #lastname (A10)

END-DEFINE
INPUT (IP=OFF AD=M) #firstname #lastname
DISPLAY #firstname #lastname
END

CMOBJIN=data.txt
The INPUT statement in the program RECCONT uses the data which is defined in the batch input
file data.txt. This is a text file which is stored in your file system. The content of this file is
shown below.

Ben %
Smith

Note: The percent character (%) indicates that the information continues in the next line.

CMPRINT=out.txt
The DISPLAY statement in the program RECCONTwrites the data to the batch output file out.txt
which is created in your file system. The content of this file is shown below:

NEXT LOGON SYSEXBAT
Logon accepted to library SYSEXBAT.
NEXT EXECUTE RECCONT

DATA Ben %
DATA Smith
Page 1 25.04.05 13:39:09

#FIRSTNAME #LASTNAME
---------- ----------

Ben Smith
NEXT FIN
NAT9995 Natural session terminated normally.

NATLOG=ALL
When you invoke the sample session with the above call, a log file is created with contains all
types of messages (which also includes the names of the batch input and outfile files). The log
file is normally created in Natural's temporary directory which is defined in the local config-
uration file. See also the description of the NATLOG parameter.

The image below illustrates the different ways in which Natural reads input and writes output in
batch mode.

Operations66

Natural in Batch Mode

As shown in the above graphic, you can proceed in one of the following ways:

■ CMOBJIN andCMSYNIN
Different files are used for batch input. One file contains the Natural commands and the other
file contains the data:

natural BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt

■ CMSYNIN
One file is used for batch input. It contains both the Natural commands and data:

natural BATCHMODE CMSYNIN=data.txt CMOBJIN=data.txt CMPRINT=out.txt

Note: Even though only one batch input file is used, both parameters CMSYNIN and CMOBJIN

have to be specified. Both parameters must refer to the same file.

67Operations

Natural in Batch Mode

■ CMOBJIN andSTACK
One file is used for batch input. It contains the data. The Natural commands are specified with
the profile parameter STACK:

natural BATCHMODE CMOBJIN=data.txt STACK="(LOGON SYSEXBAT; RECCONT;FIN)"

Batch Mode Detection

The system variable *DEVICE indicates whether Natural is running in batch mode or interactive
mode.

DescriptionMode

*DEVICE contains the value BATCH. This value is set by the parameter BATCHMODE.Batch mode

*DEVICE contains a value other than BATCH. In most cases, it contains the value VIDEO.Interactive mode

Example:

IF *DEVICE = "BATCH" THEN
WRITE 'This is the background task'

ELSE
WRITE 'This is the interactive session'

END-IF

Batch Mode Restrictions

When Natural is running in batch mode, some features are not available or are disabled:

■ Interactive input or output is not possible.
■ Only data for an INPUT statement can be processed.
■ The terminal database SAGtermcap is not supported. Therefore, the terminal capability TCS
which is used for a different character set is not supported. To use a different character set, use
environment variable NATTCHARSET instead.

■ No colors and video attributes are written to the batch output file defined by CMPRINT.
■ Filler characters are not displayed within an INPUT statement.
■ Certain Natural system commands are not executable in batch mode, and are ignored. In the
System Commands documentation, a corresponding note is provided for each system command
to which this restriction applies.

Operations68

Natural in Batch Mode

Batch Mode Simulation

In addition to the batch mode as described above, you can also simulate batch mode. However,
it is recommended to use batch mode instead of batch mode simulation. Batch mode has the fol-
lowing advantages over batch mode simulation:

■ Easy data input with support of keyword delimiter mode.
■ Configurable and formatted output processing.
■ Extended error handling.
■ Faster startup and shutdown.
■ Faster program execution.

If the input channel is redirected to a file, Natural does not read the input commands and data
from the keyboard but from this file. You have to specify the data in exactly the same way as you
would do on the terminal. For example, for two input fields you have to fill up the first field with
trailing blanks to position to the second field. No keyword delimiter mode is supported. To use
keyword delimiter mode, use batch mode instead of batch mode simulation.

If the output channel is redirected to a file, Natural writes any output that would appear on the
screen to this file. Control sequences are also written to the file, which makes the file unreadable.
To get a formatted output, use batch mode instead of batch mode simulation.

Use the dynamic parameter BATCHwhen starting Natural, to set the system variable *DEVICE to
the value BATCH. This value can be checked within a Natural program.

Example: Redirecting the Input Channel

natural BATCH < input-file-name

Natural then receives all input operations from this input file (an example of this input file is
provided below).

Example: Redirecting the Input and Output Channel

natural BATCH < input-file-name > output-file-name

If youwant to keepNatural reports only and hide all other output (write output to the null device),
set the profile parameter MAINPR to a valid printer number and assign an executable file to the
corresponding logical printer (device) in the parameter file, then specify:

natural BATCH < input-file-name > /dev/null

Any Natural reports are written to the executable file, whereas any screen output is suppressed.
An input file must be specified even if Natural does not expect any input at all. In this case, also
the null device may be used.

69Operations

Natural in Batch Mode

Sample Input File

dlist program *^M
fin^M

The input file for batch mode simulation must contain the same keystrokes that you would make
in an interactive session.

The following keystrokes are used in the above sample input file:

Opens the Direct Commandwindow.d

Executes the Natural system command which is used to list all programs.list program *

Stands for the key combination CTRL+M (carriage return). Simulates the ENTER key.^M

Executes the Natural system command which is used to terminate the Natural session.fin

Stands for the key combination CTRL+M (carriage return). Simulates the ENTER key.^M

Operations70

Natural in Batch Mode

8 Support of Different Character Sets with NATCONV.INI

■ Why Support Different Character Sets ... 72
■ Character Sets that are Supported .. 72
■ How to Use Different Character Sets ... 74

71

The settings in the configuration file NATCONV.INI apply to the A format. For the U format, the
ICU library is used.

This chapter describes how Natural supports different character sets.

Why Support Different Character Sets

The support of multiple languages with different character sets represents Natural's approach
towards internationalization. It can help you when using:

■ terminals and printers with different character sets, all communicating with the same Natural
environment;

■ several Natural environments sharing one database and located on different platforms;
■ upper-/lower-case translation of language-specific characters;
■ language-specific characters in Natural identifiers, object names and library names;
■ language-specific characters in an operand comparedwith a mask definition (seeMASKOption
in the Programming Guide).

Character Sets that are Supported

Natural supports any single-byte character set that conforms to the ASCII character set in the
lowest seven bits.

Natural distinguishes between an internal character and several external character sets; the internal
character set is used by Natural itself.

As illustrated below, conversion between the internal and an external character set is performed
after the input from a terminal and before the output to a terminal or printer. There is no conversion
to an external character set available for work file I/Os, database I/Os and reading/writing of
Natural objects.

Operations72

Support of Different Character Sets with NATCONV.INI

Internal Character Set

By default, Natural uses the internal character set ISO8859_1. If the default character set does not
meet your requirements, you can choose either one of the predefined character sets provided by
Natural or any other standard character set.

Note: Problemsmay occur if you run computerswith different internal character sets sharing
the same database, or if you try to exchange data orNatural objects between such computers.

External Character Sets

You can define an external character set for any terminal and printer.

For a terminal, the name of its character set is defined by the TCS entry in the terminal database,
for example:

73Operations

Support of Different Character Sets with NATCONV.INI

:TCS = usascii:

You can also use the Linux environment variable $NATTCHARSETwhich overrides all TCS settings.

If neither a TCS entry nor the logical NATTCHARSET (which is set with the environment variable
$NATTCHARSET) is defined, no conversion is performed during terminal I/O.

For a printer, the name of an external character set name can be defined in the printer profile. This
is part of the global configuration file. See Printer Profiles in the Overview of Configuration File
Parameters of the Configuration Utility documentation.

How to Use Different Character Sets

All check, translation and classification tables used by Natural to support language-specific char-
acters reside in the configuration file NATCONV.INI. By default, this file is located in Natural's
etc directory.

You can modify NATCONV.INI to support local or application-specific character sets.

In a standard application,NATCONV.INI need not and should not bemodified, because this could
lead to serious inconsistencies, in particular if Natural objects and database data are already present.

Modifications are necessary if you want to do any of the following:

■ use an internal character set other than the default one,
■ use a terminal or printer whose character set is not supported by NATCONV.INI,
■ allow or disallow the use of certain characters in identifiers,
■ support local characters when evaluating the MASK option.

Anymodifications ofNATCONV.INI should bewell considered and carefully performed, otherwise
problems might occur that are difficult to locate.

NATCONV.INI is subdivided in sections and subsections. The following sections are defined:

DescriptionSection

This section defines the name of the internal character set. The default is
ISO8859_1.

If you choose a different character set, subsections for this character set
must be contained in the sections described below.

CHARACTERSET-DEFINITION

Operations74

Support of Different Character Sets with NATCONV.INI

DescriptionSection

This section contains the tables required for the conversion between the
internal character set and external character sets.

If you use, for example, a terminal with an entry in SAGtermcap of :TCS
= ASCII_GERMAN: and if ISO8859_1 is used as internal character set, the
following two subsections must be contained in this section:

CHARACTERSET-TRANSLATION

■ [ISO8859_1->ASCII_GERMAN]

■ [ASCII_GERMAN->ISO8859_1]

This section contains the tables required for the conversion fromupper-case
to lower-case which is performed when one of the following is specified:

CASE-TRANSLATION

■ the terminal command %U,
■ the field attribute AD=T,
■ the statement EXAMINE TRANSLATE.

This conversion is done within the internal character set. If the internal
character set is, for example, ISO8859_5, the following two subsections
must be contained in this section:

■ [ISO8859_5->UPPER]

■ [ISO8859_5->LOWER]

This section contains the tables required for the validation of identifiers
(that is, user-defined variables in source programs), object names and

IDENTIFIER-VALIDATION

library names. It contains a subsection for each defined internal character
set.

The special characters "#" (for non-database variables), "+" (for
application-independent variables), "@" (for SQL andAdabas null or length
indicators) and "&" (for dynamic source generation) can be redefined in
this section. In addition, the set of valid first and subsequent characters for
identifiers, object names and library names can be modified.

Note: When extending the set of valid characters for object names with
values greater than x7f (decimal 127), the sorting sequence of the objects
(for example, during a LIST * command) may not be in the numerical
order.

This section contains the tables required for the classification of characters,
which, for example, are usedwhen evaluating the MASK option. It contains
a subsection for each defined internal character set.

CHARACTER-CLASSIFICATION

The section CHARACTERSET-DEFINITION and each subsection contain lines which describe how
characters are to be converted and which characters are related with which attributes. These lines
are represented as follows:

75Operations

Support of Different Character Sets with NATCONV.INI

line ::= key = value
key ::= name_key | range_key
name_key ::= keyword{ CHARS }
keyword ::= INTERNAL-CHARACTERSET | NON-DB-VARI | DYNAMIC-SOURCE |

GLOBAL-VARI | FIRST-CHAR | SUBSEQUENT-CHAR |
LIB-FIRST-CHAR | LIB-SUBSEQUENT-CHAR | ALTERNATE-CARET
ISASCII | ISALPHA | ISALNUM | ISDIGIT | ISXDIGIT |
ISLOWER | ISUPPER | ISCNTRL | ISPRINT | ISPUNCT |
ISGRAPH | ISSPACE

range_key ::= hexnum | hexnum-hexnum
value ::= val {, val }
val ::= hexnum | hexnum-hexnum
hexnum ::= xhexdigithexdigit | xhexdigithexdigit

Notes:

1. If the range_key variable is specified on the left-hand side, the number of values specified on
the right-hand side must correspond to the number of values specified in the key range, unless
only one value is specified on the right-hand side, which is then assigned to each element of
the key range.

2. When the name_key variable is specified on the left-hand side and the corresponding list of
character codes does not fit in one line, it can be continued on the next line by specifying name_key
= again. You must not start the lines with leading blanks or tabulators.

Examples of Valid Lines

All characters between x00 and x1f are converted to x00.x00-x1f = x00

All characters between x00 and x7f are not converted.x00-x7f = x00-x7f

The characters x00 and x08 are converted to x00 and characters
between x01 and x07 are not converted.

x00-x08 = x00,x01-x07,x00

The attribute ISALPHA is assigned to all characters specified in
these two lines.

ISALPHA= x41-x5a,x61-x7a,xc0-xd6,xd8
ISALPHA = xd9-xf6,xf8-xff

Examples of Invalid Lines

All characters must be specified in hexadecimal format.x41 = 'A'

Hexadecimal values have to be specified in either of the following ways:0x00-0x1f = 0x00

xdigitdigit
Xdigitdigit

The number of specified values does not correspond to the number of elements in the
key range.

x00-x0f = x00,x01

Operations76

Support of Different Character Sets with NATCONV.INI

9 Natural Exit Codes

■ Natural Startup Errors .. 78

77

There are two types of Natural exit codes:

■ Startup errors, where exit codes 0 and 1 indicate success and all other exit codes indicate errors.
■ Errors generated by the TERMINATE statement, where exit codes 0 to 255 are possible.

Natural Startup Errors

The following exit codes may occur when starting Natural.

Terminal Control String (TCS) capability specified in SAGtermcap or Environment Variable
NATTCHARSET.

2

Failed to initialize character conversion table.3

Error in character conversion file NATCONV.INI.4

Unable to read database assignments from global configuration file NATCONF.CFG.5

Unable to find FNAT(dbid,fnr) or FUSER(dbid,fnr). Check your configuration files.6

Cannot initialize LFILE table.7

Obsolete.10

Obsolete.11

Unable to read specified parameter file. Please verify the parameter file.12

Unable to read parameter file NATPARM.13

Storage manager initialization failed.14

End of input file (EOF) encountered while reading from STDIN.15

Unable to open buffer pool; contact the Natural system administrator.16

Unable to read buffer pool assignments from NATURAL.INI file.17

Invalid FDIC assignment.18

Invalid FNAT assignment.19

Invalid FSEC assignment.20

Invalid FUSER assignment.21

Unable to load Natural login module.22

Unable to allocate memory for local data. Reduce USIZE and/or SSIZE parameter.23

Unable to load Natural display module.24

Error loading shareable image or DLL.25,26

Security violation during start of Natural. Natural terminates.28

NAT0866 Your Natural nucleus is not a Natural Security nucleus.31

Lock manager cannot create/initialize semaphores.33

No library is accessible or present in specified FNAT/FUSER. Check system file assignments and file
attributes of FNAT and FUSER (directories and files).

34

Operations78

Natural Exit Codes

Internal wfc i/o terminal driver error.35

Internal XVT error.36

NNI Startup error.37

Creation of runtime context failed.38

Unable to find NATDIR and/or NATVERS environment variable. If you have set the NATDIR environment
variable, please check that it does not contain invalid or whitespace characters! NATVERS should only
contain the Natural version. The path must contain a valid drive ID.

39

Natural zmodem error.40

Creation of TF table failed because there are entrieswith different database types fromolder parameter
module. Check parameter module with Natural Configuration Utility.

41

Batch mode driver error.42

Screen window size is too small.43

Exit from SQL signal handler.44

Unable to access FNAT library SYSLIB. Insufficient privilege or file protection violation.46

Unable to read PARM_PATH entry from NATURAL.INI file or directory is not accessible.47

Unable to read CONFIG_NAME entry from NATURAL.INI file or file is not accessible.48

Unable to read NATTCAP entry from NATURAL.INI file or file is not accessible.49

Unable to read NATCONV entry from NATURAL.INI file or file is not accessible.50

Unable to process TMP_PATH entry from NATURAL.INI file. Path 'path' not accessible.51

Unable to read PROFILE_PATH entry from NATURAL.INI file or directory is not accessible.52

Unable to open local configuration file NATURAL.INI.53

Unable to read NATCONF.CFG for NATOSDEP.54

Unable to read NATURAL.INI for NATEXTLIB.55

Unrecognized option 'option' specified.59

Not enough memory to initalize internal tables.60

Execution or compilation error occured.61

Natural session with active repository already running.63

Failed to open FNAT's LIBDIR.SAG. Check presence and access protection.64

The FNAT assigned to this Natural session is out of date.65

This is an evaluation copy of Natural ... It is valid until...72

The test period of this evaluation copy of Natural ... has expired. It was valid until...73

Invalid FDDM assignment.77

The specified server session ... is not accessible.78

Invalid combination of options encountered.80

NDV server could not be terminated. Reason:81

Error accessing file 'NDVSERVER.PRU'.82

Error accessing file 'NDVSERVER.PRU'.83

Natural runtime startup error during context initialization.85

79Operations

Natural Exit Codes

Invalid code page [...] specified.86

Failure initializing signal handlers.87

Conflicting buffer pool usage.88

Invalid Client type [...] encountered. Please use ONE, NAT or ANY.90

No connection to Natural Web I/O Interface.91

SSL/TLS could not be activated. Reason:93

Pre-loading of OpenSSL libraries failed.94

RDC environment not found.95

Failed to create RDC trace buffer.96

Invalid RDC trace buffer length.97

Failed to create RDC resource file.98

Failure on writing RDC resource file.99

Generic RDC error.100

Failed to create RDC consolidation buffer.101

Invalid RDC consolidation buffer length.102

Cannot create RES subdirectory for storage of RDC data.103

RDC resource full name (including path) too long.104

Value of dynamic parameter ITERMmust be ON or OFF.105

Terminate on error during initialization.106

Profiling with sampling not allowed if code coverage also active.107

Profiling with event trace not allowed if code coverage also active.108

Invalid ICU version (custom BS2000 code page support missing).110

Failed to attach to RDC trace buffer.120

Failed to write to RDC trace buffer.121

License check failed.122

WEBIO=ON is allowed for server sessions only.123

Operations80

Natural Exit Codes

10 Setting Up the Entire System Server Interface

■ Prerequisites .. 82
■ Activation ... 82
■ Changing the Database ID for the Entire System Server DDMs .. 83

81

The Entire System Server Interface is required if the product Entire System Server is to be used.
The Entire System Server Interface is part of Natural and no extra installation is needed.

Additionally, Natural provides the libraries SYSNPE and SYSNPR.

SYSNPE is the Entire System Server online tutorial which is provided as a starting help for Entire
System Server users. For more information about Entire System Server, see the Entire System
Server documentation.

The library SYSNPR contains the program CHANGEDBwhich is used to change the database ID of the
Entire System Server DDMs.

Prerequisites

The Entire System Server Interface provides access to Entire System Server on z/OS, z/VSE and
BS2000 via Entire Net-Work. For full support of the Entire System Server Interface, Entire Net-
Work Version 5.8.1 or above is required on the mainframe platforms.

Activation

The Entire System Server Interface is not active if you use the standard Natural configuration
settings. The value of the Entire System Server Interface database (Natural profile parameter ESXDB)
is set to 0 by default. To use the Entire System Server Interface you have to set the value of the
parameter ESXDB to 148 using the Configuration Utility.

In the Configuration Utility, the parameter ESXDB is assigned in the parameter group Product
Configuration of a parameter file.

Tip: Locate this parameter by searching for "ESXDB". See Finding a Parameter in the Config-
uration Utility documentation for further information.

ESXDB specifies the database ID used for the DDMs of Entire System Server. This DBID does not
specify the target DBID of Entire System Server requests but tells Natural which DBID is used for
the cataloged Entire System Server DDMs. The effective Entire System Server target DBID will be
specified with the NODE field which is part of all Entire System Server DDMs.

Important: Change the value of ESXDB to 148 to run Natural with Entire System Server Inter-
face support. All Entire System Server DDMs are cataloged with DBID 148.

After startingNatural again, youmay access Entire SystemServer nodes running on themainframes
via Entire Net-Work.

Operations82

Setting Up the Entire System Server Interface

The customization of Entire System Server Interface supports themodification of the Entire System
Server DDMs only.

Changing the Database ID for the Entire System Server DDMs

The library SYSNPR contains the program CHANGEDBwhich is used to modify the database ID of all
Entire System Server DDMs. You will find all Entire System Server DDMs in the library SYSNPE.
The database ID entered as a new DBID value in the program CHANGEDBmust also be specified as
the value of the Entire System Server Interface database parameter (ESXDB) in the Configuration
Utility.

83Operations

Setting Up the Entire System Server Interface

84

11 Tuning SQL Database Access

■ SQLRELCMD ... 86
■ SQLMAXSTMT ... 86
■ Example .. 87

85

By default, the Natural SQL driver manages a table with the 16 most recently used Natural state-
ments. All statements in this table are marked as prepared, which indicates that the statement can
be executed immediately without being compiled by the database system.

To ensure maximum performance, the dynamic parameters SQLRELCMD and SQLMAXSTMT are
provided. These parameters configure the handling of the SQL driver's statement table. Note that
these parameters are not profile parameters.

SQLRELCMD

This parameter determines when commands are to be released from the SQL statement table.

Possible values:

■ ENDGP (default): if a generated program terminates, all statements from this program that are in
the statement table are removed from the table.

■ NEVER: No statement will be deleted from the table.

SQLMAXSTMT

This parameter determines the size of the statement table.

Possible values are 1 to 64 (default: 16).

If you set the SQLMAXSTMT parameter, keep the following in mind:

■ Resource consumptionmay be higher if you are keepingmore prepared statements in the table.
■ If the size of the statement table exceeds the limit of dynamic SQL statements in the target
database, the application will receive SQL errors.

■ It depends on the database whether there is a real benefit from the SQLMAXSTMT optimization.
■ In general, performance in batch-type applications will be improved if the number of PREPARE
statements isminimized,while performance in online applicationswill probably beworse because
of the increased resource consumption of the target database.

Operations86

Tuning SQL Database Access

Example

To set the above parameters dynamically, enter them when starting Natural:

natural sqlrelcmd=never sqlmaxstmt=40

Natural will then start with a statement table size of 40 and the statement tablewill only be cleared
when Natural is terminated.

87Operations

Tuning SQL Database Access

88

12 User Exit for Computation of Sort Keys - NATUSKnn

Some national languages contain characters which are not sorted in the correct alphabetical order
by a sort program or database system. With the system function SORTKEY you can convert such
“incorrectly sorted” characters into other characters that are “correctly sorted” alphabetically.

When you use the SORTKEY function in a Natural program, the user exit NATUSKnnwill be invoked
- nn being the current language code (that is, the current value of the system variable *LANGUAGE).

You can write a NATUSKnn user exit in the C programming language using the CALL interface. The
character-string specified with SORTKEYwill be passed to the user exit. The user exit has to be
programmed so that it converts “incorrectly sorted” characters in this string into corresponding
“correctly sorted” characters. The converted character string is then used in the Natural program
for further processing.

Note: A conversion table is not supplied.

NATUSKnn is called using the CALL interface. The parameters of the C function have the following
values:

ContentsParameter

The number of arguments.1

The array of pointers to the operands.2

The array of field information for each operand.3

If you use the Natural system function #OP1=SORTKEY(#OP2), the source operand is in the arrays
at index 0 and the target operand (#OP1) is in the arrays at index 1.

A sample user exit, natusk01.c, is provided in source form: it applies to English and converts all
English lower-case letters in the character string to upper-case letters. The sample is to be found
in <install-dir>/natural/samples/sysexuex, where you can also find the other user exits.

89

The source code of the example contains all comments which are needed to write a specific user
exit for SORTKEY.

For linkage and loading conventions, refer to the CALL statement.

Operations90

User Exit for Computation of Sort Keys - NATUSKnn

13 Abnormal End (Abend) Handling

The signal SIGTERM is caught. The signal handler for SIGTERM releases all currently used resources
and terminates Natural smoothly.

Natural's default signal handlers for SIGBUS, SIGSEGV and SIGILL are only installed if the command
gcore is available and if the user running Natural has execution rights for this command. If one
of these signal handlers gets control, the handlers that were valid at startup time are restored,
gcore is executed and an attempt is made to behave as if the signal SIGTERMwas caught.

91

92

	Operations
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Profile Parameter Usage
	Parameter Hierarchy
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Runtime Assignment of Parameter Values

	3 System Files
	System File Structure
	Access Rights
	System Files FNAT and FUSER
	System File FDDM
	Activating FDDM Mode
	Migrating DDMs to the System File FDDM
	Checking whether the System File FDDM is Used

	Important Information and Warnings
	The File FILEDIR.SAG
	Portable Natural System Files
	Language-dependent Objects
	Migrating Non-Portable Message Files to 64-Bit Platforms

	Synchronizing Access to the System Files Using Semaphores
	Using NFS to Store Natural Libraries

	4 Work Files
	Defining Work Files
	Defining Work File Names with the Configuration Utility
	Defining Work File Names with Environment Variables
	About Defining Work File Names with Environment Variables
	Delimiters of Environment Variables

	Defining Work File Names with an Application Programming Interface

	Work File Formats
	Binary Format
	ASCII Format
	Entire Connection Format
	Portable Format
	Unformatted Format
	CSV Format

	Special Considerations for Work Files with the Extension NCD
	Using the Work File Type Transfer

	5 Natural Buffer Pool
	About the Natural Buffer Pool
	Objects in the Buffer Pool
	User Access for the Buffer Pool under Linux
	Multiple Buffer Pools
	Storing Objects in the Buffer Pool
	Fast Locate
	Fast Locate at Object Resume
	Fast Locate Table
	Fast Locate Table with BPSFI=ON
	Performance with BPSFI=ON
	Fast Locate Table with BPSFI=OFF
	Performance with BPSFI=OFF
	Performance in a Multi-User Environment
	Maintaining the Fast Locate Table

	Read-Only Buffer Pool
	Secondary Read/Write Buffer Pool
	Alternate Read-Only Buffer Pool
	Creating a Preload List Using the CRTPRL Utility

	Buffer Pool with Enhanced Performance
	Restrictions of the Natural Buffer Pool

	Setting up a Buffer Pool
	Using the Utility NATBPSRV for Creating the Buffer Pool
	NATBPSRV Error Messages
	Monitoring the Buffer Pool
	Trouble Shooting
	Problem 1
	Problem 2

	Shutting Down and Restarting the Buffer Pool

	6 Using the Buffer Pool Monitor (NATBPMON)
	Invoking the NATBPMON Utility
	NATBPMON Commands
	Displaying the Objects in the Buffer Pool
	Specifying a Pattern
	Displaying the Buffer Pool Settings
	Statistical Information About the Buffer Pool

	7 Natural in Batch Mode
	About Batch Mode
	Starting a Natural Session in Batch Mode
	Terminating a Natural Session in Batch Mode
	Using Natural in Batch Mode
	Input and Output Channels
	Code Pages for the Input and Output Files

	Sample Session for Batch Mode
	Batch Mode Detection
	Batch Mode Restrictions
	Batch Mode Simulation

	8 Support of Different Character Sets with NATCONV.INI
	Why Support Different Character Sets
	Character Sets that are Supported
	Internal Character Set
	External Character Sets

	How to Use Different Character Sets

	9 Natural Exit Codes
	Natural Startup Errors

	10 Setting Up the Entire System Server Interface
	Prerequisites
	Activation
	Changing the Database ID for the Entire System Server DDMs

	11 Tuning SQL Database Access
	SQLRELCMD
	SQLMAXSTMT
	Example

	12 User Exit for Computation of Sort Keys - NATUSKnn
	13 Abnormal End (Abend) Handling

