
Natural

First Steps

Version 9.3.1

May 2025

This document applies to Natural Version 9.3.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATUX-NNATFIRSTSTEPS-931-20250505

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 About this Tutorial .. 5
Prerequisites ... 6
About the Sample Application .. 6

3 Getting Started with Natural .. 9
Invoking Natural's Main Menu .. 10
Libraries .. 11
Issuing Commands .. 11
Creating a User Library .. 11
Programming Modes ... 13

4 Hello World! .. 15
Creating a Program .. 16
Running a Program .. 17
Correcting Program Errors ... 18
Stowing a Program ... 19
Displaying Information about a Program .. 20
Displaying the Content of the Current Library ... 21
Setting the Editor Profile Options .. 22

5 Database Access ... 27
Saving Your Program Under a New Name ... 28
Defining the Required Data Using a View ... 29
Reading Data from a Database ... 32
Reading Selected Data from a Database .. 34

6 User Input .. 37
Allowing for User Input ... 38
Designing a Map for User Input .. 40
Invoking the Map from Your Program .. 51
Ensuring that an Ending Name is Always Used ... 53

7 Loops and Labels ... 55
Allowing Repeated Usage .. 56
Displaying a Message Indicating that Information was not Found 58

8 Inline Subroutines ... 61
Defining the Inline Subroutine ... 62
Performing the Inline Subroutine .. 63

9 Processing Rules and Helproutines .. 65
Defining a Processing Rule .. 66
Defining a Helproutine .. 69

10 Local Data Areas .. 73
Creating a Local Data Area .. 74

iii

Defining Data Fields ... 75
Importing the Required Data Fields from a DDM ... 77
Referencing the Local Data Area from Your Program ... 80

11 Global Data Areas .. 83
Creating a Global Data Area from an Existing Local Data Area 84
Adapting the Local Data Area ... 86
Referencing the Global Data Area from Your Program ... 87

12 External Subroutines ... 89
Creating an External Subroutine .. 90
Referencing the External Subroutine from Your Program 91

13 Subprograms .. 95
Modifying the Local Data Area .. 96
Creating a Parameter Data Area from an Existing Local Data Area 98
Creating Another Local Data Area Containing a Different View 99
Creating a Subprogram .. 101
Referencing the Subprogram from Your Program ... 102

14 Natural Development Server and NaturalONE .. 107

First Stepsiv

First Steps

Preface

This tutorial provides a very simple and brief introduction to programming with Natural and to
using the Natural editors.

Note: The Natural program, data area and map editor have been disabled in your
environment by default. For more information, see NaturalONE as the Default Development
Environment in the Editors documentation.

Note: To work through the tutorial, an additional chargeable license has to be purchased.

Important: It is important that you read the following topics in the sequence indicated below,
and that youwork through all exercises in these topics in the same sequence as they appear
in this tutorial. Problems may occur if you skip an exercise.

Prerequisites and what you will learn in the course of this tutorial.About this Tutorial

How to invoke Natural's main menu. How to create the library that will be
used in this tutorial. Information onNatural's programmingmodes and the
mode that is required for this tutorial.

Getting Started with Natural

How to create, run and stow your first short program. How to display the
content of the current library. Information on some options which control
your editor profile.

Hello World!

How to read specific data from a database and display the output.Database Access

How to prompt the user for information and how to design a map for user
input. How to ensure that a specific value is always used (here: an ending
name), even if it has not been specified by the user.

User Input

How to define a repeat loop and labels for different loops. How to display
a message when specific information (here: the starting name entered by
the user) was not found.

Loops and Labels

How to define and invoke an inline subroutine (that is: a subroutine which
is coded directly in the program).

Inline Subroutines

How to define a processing rule (here: a message that is to appear when the
user does not specify a starting name) and a helproutine (here: a help text
for the field in which the user has to enter a starting name).

Processing Rules and
Helproutines

How to relocate the field definitions from the program to a local data area
outside the program.

Local Data Areas

How to define a global data areawhich can be shared bymultiple programs
or routines.

Global Data Areas

How to define and invoke an external subroutine (that is: a subroutinewhich
is stored as a separate object outside the program).

External Subroutines

v

How to define a parameter data area for a subprogram. How to define and
invoke a subprogram.

Subprograms

How to use NaturalONE editors when using Natural for Linux and Cloud
as the development server.

Natural Development Server
and NaturalONE

First Stepsvi

Preface

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

First Steps2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3First Steps

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 About this Tutorial

■ Prerequisites .. 6
■ About the Sample Application .. 6

5

As a first-time user, you are recommended to work through this tutorial to obtain a basic under-
standing of specific features of the Natural programming environment.

The layout of the example screens provided in the tutorial and the behavior of Natural described
here can differ from your results. For example, the command or message line may appear in a
different screen position, or the execution of a Natural command may be protected by security
control. The default settings in your environment depend on the system parameters set by your
Natural administrator.

Prerequisites

To perform all steps of this tutorial, the demo database SAG-DEMO-DBmust be active. If it is not
active, ask your administrator to start it.

The system library SYSEXDDMwhich contains the sample DDMs that are used in this tutorial
(EMPLOYEES and VEHICLES) must have been defined as a steplib. A steplib is a library in which
Natural searches if an object is not found in the current library. If SYSEXDDM has not been defined
as a steplib, an error occurs when you try to define the views for the sample DDMs; contact your
administrator in this case.

About the Sample Application

This tutorial illustrates how an application can be structured as a group ofmodules. It is not inten-
ded to provide an example of how an application should be built.

After you have written your first short Hello World program, you will write a program which
reads employees information from a database and displays the output. The user will be prompted
to enter a starting name and ending name for the output. You will enhance your program step by
step by moving specific parts of your program to external modules. When you have completed
all exercises of this tutorial, your application will be structured as follows:

First Steps6

About this Tutorial

Note: This tutorial describes how to create a map which is normally used in a character-
oriented environment (such as a mainframe). For a graphical user interface, you would
create a dialog. However, this is not part of this tutorial.

You can now proceed with your first exercise: Getting Started with Natural.

7First Steps

About this Tutorial

8

3 Getting Started with Natural

■ Invoking Natural's Main Menu .. 10
■ Libraries .. 11
■ Issuing Commands .. 11
■ Creating a User Library ... 11
■ Programming Modes .. 13

9

Invoking Natural's Main Menu

The way you invoke Natural and its main menu depends on how the system has been configured
at your site. For most installations, you invoke Natural as described below.

To invoke Natural's main menu

■ Enter the following command at the Linux system prompt:

natural

The main menu appears.

2009-06-30 NATURAL Library: SYSTEM
09:22:05 V 6.3.7 Software AG 2009 Mode : REPORT
User: SAG Work Area : empty

+--+
¦Library Direct Services OS Fin ¦
+--+

Select Library

First Steps10

Getting Started with Natural

Libraries

All Natural objects required for creating an application are stored in Natural libraries in Natural
system files. There is a system file for system programs (FNAT) and a system file for user-written
programs (FUSER).

Natural thus distinguishes system libraries and user libraries. The system libraries, which start
with the letters "SYS", are reserved for Software AG purposes only. A user library contains all
user-defined objects (for example, programs andmaps) which make up an application. The name
of a user library must not start with the letters "SYS".

The field Library in the top right-hand corner of the Natural main menu shows the name of the
library where you are currently logged on.

Issuing Commands

InNatural, you can perform a function either by selecting it from a sequence ofmenus and selection
windows, or by entering a Natural system command directly.

To select a menu, use the arrow keys. When the required menu is highlighted, press ENTER. It is
also possible to enter the first character of a menu name; you need not press ENTER in this case.

When the resulting window contains a list of options, use the arrow keys to select the required
option and press ENTER. In some windows, it is also possible to enter the first character of the
function; you need not press ENTER in this case.

If you want to close a window without further action, press ESC.

The input of aNatural command is not case-sensitive. After you have entered aNatural command,
you choose the ENTER key. ENTER confirms the action and executes the command or invokes an
extra confirmation window where you explicitly acknowledge command execution.

Creating a User Library

You will now create a user library with the name TUTORIAL. This library is to contain all Natural
objects that you will create in the course of this tutorial.

A library can be created in different ways. The following instructions illustrate how to use the
Directmenu in which you enter Natural system commands, and how to use the Librarymenu to
achieve the same result.

11First Steps

Getting Started with Natural

To create a user library using the Direct menu

■ Select theDirectmenu and press ENTER. In the resultingDirect Commandwindow enter the
following and press ENTER:

LOGON TUTORIAL

where "TUTORIAL" is the name of the library that you create.

LOGON is a system command which is used for two purposes:

■ to log on to an existing library, or
■ to create a new library when a library with the specified name does not exist.

To create a user library using the Library menu

1 Select the Librarymenu and press ENTER.

A window appears providing access to all existing libraries.

2009-06-30 NATURAL Library: SYSTEM
11:16:09 V 6.3.7 Software AG 2009 Mode : REPORT
User: SAG Work Area : empty

+--+
¦Library Direct Services OS Fin ¦
+--+
+----------+
¦ <LOGON> ¦
¦ AA ¦
¦ ABC ¦
¦ ADR ¦
¦ BBC ¦
¦ BTX ¦
¦ BZG ¦
¦ CEC1 ¦
¦ CEC2 ¦
¦ CEC3 ¦
¦ CMAS ¦
¦ CT ¦
¦ CUST ¦
¦ DAC ¦
+----------+

Select Library

2 Use the arrow keys to select the first entry which is <LOGON> and press ENTER.

The following window appears. You can either log on on to an existing library or add a new
library.

First Steps12

Getting Started with Natural

+-- New Library: --+
¦ ¦
+------------------+

3 Specify the name "TUTORIAL".

When the name of the library has eight characters, you need not press ENTER. In this case, you
are automatically logged on to the library after you have entered the last character of the
name.

Since this is a new library which does not yet contain any objects, a message is shown indic-
ating that the library is currently emtpy.

Notes:

1. If youwant to log on to an existing library, you can also use the arrowkeys to scroll through
all libraries in the window. Or you can enter a character to proceed to the libraries that
start with this character. Press ENTER to log on to the highlighted library.

2. If you log on to a library which already contains objects, a list of objects in this library is
shown. This list is is not shown when you log on using the Direct Commandwindow as
explained in the previous exercise.

Programming Modes

The programming mode is indicated in theMode field at the top right-hand corner of the menu.

Natural provides two different programming modes:

■ Structured Mode
Structured mode is intended for the implementation of complex applications with a clear and
well-defined program structure. It is recommended to use structured mode exclusively.

■ Reporting Mode
Reporting mode is only useful for the creation of adhoc reports and small programs which do
not involve complex data and/or programming constructs.

Important: This tutorial requires that structuredmode is active. If you try to run your program
in reporting mode, END-IF, END-READ and END-REPEATwill cause errors.

If reporting mode is currently active, proceed as described below.

13First Steps

Getting Started with Natural

To switch from reporting mode to structured mode

■ Invoke the Direct Commandwindow (by choosing the Directmenu), enter the following
system command and press ENTER:

GLOBALS SM=ON

You can now proceed with your first program: Hello World!

First Steps14

Getting Started with Natural

4 Hello World!

■ Creating a Program ... 16
■ Running a Program .. 17
■ Correcting Program Errors .. 18
■ Stowing a Program .. 19
■ Displaying Information about a Program ... 20
■ Displaying the Content of the Current Library .. 21
■ Setting the Editor Profile Options .. 22

15

Creating a Program

You will now write your first short program which displays "Hello World!". It will be stored in
the library you have created previously.

To create a new program

1 Make sure that you have logged on to the library named TUTORIAL.

2 Invoke the Direct Commandwindow and enter one of the following:

EDIT PROGRAM

E P

System commands may be abbreviated. E P is the abbreviated form of EDIT PROGRAM.

The program editor appears. It is currently empty.

>> -----------Columns 001 072 << Program Lines User SAG
Command ===> Mode Struct Lib TUTORIAL
****** ****************************** top of data *****************************
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
****** **************************** bottom of data ****************************
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Save Exit Run Rfind Stow - + Check Home Undo Canc

Caution: Do not press ENTER now. When you press ENTER, you leave insert mode. To
enter code, you then have to return to insert mode as follows: enter the line command
I at the beginning of the line which contains the words "top of data" and press ENTER.

3 Enter the following code in the program editor:

First Steps16

Hello World!

* The "Hello world!" example in Natural.
*
DISPLAY "Hello world!"
END /* End of program

When you press ENTER twice after the last line of code has been added, insertmode is switched
off.

Comment lines start with an asterisk (*) followed by at least one blank or a second asterisk.
When you forget to enter the blank or second asterisk,Natural assumes that you have specified
a system variable; this will result in an error.

If you want to insert empty lines in your program, you should define them as comment lines.
This is helpful, if you want to access your program from different platforms (Windows,
mainframe or Linux and Cloud). With the mainframe version of Natural, for example, the
default is that empty lines are automatically deleted when you press ENTER.

You can also insert comments at the end of a statement line. In this case, the comment starts
with a slash followed by an asterisk (/*).

The text that is to be shown in the output is definedwith the DISPLAY statement. It is enclosed
in quotation marks.

The END statement is used tomark the physical end of aNatural program. Each programmust
end with END.

When you press ENTER, it may happen that all of your lower-case characters are translated to
upper-case characters. This behavior is defined in the editor profile (which is explained later).

Running a Program

The system command RUN automatically invokes the system command CHECKwhich checks the
program code for errors. If no error is found, the program is compiled on the fly and then executed.

Notes:

1. CHECK is also available as a separate command.

2. Natural also provides the system command EXECUTEwhich uses the stowed version of your
program (stowing a program is explained later in this tutorial). In contrast to this, the RUN
command always uses your latest modifications to the program.

To run a program

1 In the program editor's command line, enter one of the following:

17First Steps

Hello World!

RUN

R

Note: In the program editor, you can press PF10 (Home) to place the cursor in the com-
mand line.

When your code is syntactically correct, the output contains the text you have defined.

MORE
Page 1 13-05-16 13:27:42

Hello world!

2 Press ENTER to return to the program editor.

Correcting Program Errors

You will now create an error in your Hello World program and then run the program once more.

To correct an error

1 Delete the second quotation mark in the line containing the DISPLAY statement.

2 Run the program once more as described above.

When the error is found, an error message is displayed.

First Steps18

Hello World!

>> -----------Columns 001 072 << Program Lines 4 User SAG
Command ===> run Mode Struct Lib TUTORIAL
****** ****************************** top of data *****************************
000010 * The "Hello world!" example in Natural.
000020 *
000030 DISPLAY "Hello world!
000040 END /* End of program
+-------------------------- Error in File: ---------------------------+
¦NAT0305 Text string must begin and end on the same line. ¦
¦ VVVVVVVVVVVVVVV ¦
¦0030 DISPLAY "Hello world! ¦
+--+

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Save Exit Run Rfind Stow - + Check Home Undo Canc

3 Correct the error in the window which displays the error message, that is: insert the missing
quotation mark at the end of the line.

4 Press ENTER to find the next error.

In this case, no more errors are found and the output is shown.

5 Press ENTER to return to the program editor.

Stowing a Program

When you stow a program, it is compiled and both source code and a generated program are
stored in the Natural system file.

Like the RUN command, the system command STOW automatically invokes the CHECK command. A
program is only stowed when it is syntactically correct.

Note: If you want to save the changes to your program, even if the program contains a
syntactical error (for example, if you want to suspend your work until the next day), you
can use the system command SAVE. When a program is saved for the first time, you also
have to specify a name. For example: SAVE HELLO.

To stow a program

■ In the program editor's command line, enter the following:

19First Steps

Hello World!

STOW HELLO

where "HELLO" is the name with which your program is to be stored.

Note: When a program has already been given a name, it is sufficient to enter STOW in
the command line (without a program name) or to press PF6.

Displaying Information about a Program

The LIST command is useful to find out whether only the source code or both source code and a
generated program are available for an object.

To display information about a program

1 In the program editor's command line, enter one of the following:

LIST DIR HELLO

L DIR HELLO

The following screen appears. The information provided withCataloged on is only available
when the object has been stowed.

>> -----------Columns 001 072 << Program HELLO Lines 4 User SAG
Command ===> list dir hello Mode Struct Lib TUTORIAL
****** ****************************** top of data *****************************
+---------------------------- List Directory HELLO ----------------------------+
¦ Directory of Program HELLO Saved on ... 2009-06-30 16:37:00 ¦
¦ -- ¦
¦ Library TUTORIAL User-ID SAG Mode .. Structured ¦
¦ OP-System .. SUN_SOLA ¦
¦ NAT-Ver V 6.3.7 ¦
¦ Size 108 Bytes ¦
¦ ¦
¦ Directory of Program HELLO Cataloged on 2009-06-30 16:37:00 ¦
¦ -- ¦
¦ Library TUTORIAL User-ID SAG Mode .. Structured ¦
¦ OP-System .. SunOS OP-Version ..5.8Generic_10852 ¦
¦ NAT-Ver V 6.3.7 ¦
¦ Size 330 Bytes ¦
¦ Endian mode: Big ¦
¦ ENTER to continue ¦
+--+

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Save Exit Run Rfind Stow - + Check Home Undo Canc

First Steps20

Hello World!

2 Press ENTER to return to the program editor.

Displaying the Content of the Current Library

The LIST command can also be used to display a list of all Natural objects in the current library.
This is helpful, for example, if you decide at some point during this tutorial that youwant to delete
one or more of your Natural objects in order to start again from the very beginning.

To display a list of Natural objects

1 In the program editor's command line, enter one of the following:

LIST *

L *

The following window appears. It lists the program you have just created.

>> -----------Columns 001 072 << Program HELLO Lines 4 User SAG
Command ===> l * Mode Struct Lib TUTORIAL
****** ****************************** top of data *****************************
000010 * The "Hello world!" example in Natural.
000020 *
000030 DISPLAY "Hello world!"
0+--------------------------------- List * * ---------------------------------+
*¦ Cmd Name Type SM S/C Userid SRC Date GP Date ¦
¦ --- -------- ----------- -- --- -------- ---------------- ---------------- ¦
¦ <DIRECT COMMAND> ¦
¦ HELLO Program S S/C SAG 16:37 2009-06-30 16:37 2009-06-30 ¦
¦ ¦
¦ ¦
¦ ¦
¦ ¦
¦ ¦
¦ ¦
¦ ¦
¦ ¦
¦ ¦
¦ ¦
E¦ ¦
+--+

2 To find out which commands are available, enter a questionmark (?) in theCmd column next
to your program.

The following window appears.

21First Steps

Hello World!

+---------------------------+
¦ C Check ¦
¦ D Read ¦
¦ E Edit ¦
¦ L List ¦
¦ I List Dir ¦
¦ H Hardcopy ¦
¦ R Run ¦
¦ X Execute ¦
¦ S Stow ¦
¦ U Scratch ¦
¦ . End ¦
+---------------------------+

Note: Scratch is used to delete an object.

3 Do not apply any changes right now. Press ESC to close the window without selecting any
command.

4 Press ESC once more to return to the program editor.

Setting the Editor Profile Options

When working with the Natural program editor, an editor profile can be defined per user. This
tutorial uses the default settings of the editor profile named SYSTEM. Some important settings are
mentioned below.

To check the editor profile options

1 In the program editor's command line, enter the following:

PROFILE

The main menu of the editor profile appears.

First Steps22

Hello World!

13:57:44 **** Program Editor Profile **** 09.06.30
Main Menu

Profile Name ... SYSTEM

_ Save

_ Modify

_ Read

_ Technical Info

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Modi Save Read Tech Canc

When a user-specific editor profile does not exist, the default profile SYSTEM is displayed. This
default profile can be used to create a user-specific profile. When a user-specific profile exists
already, it is displayed instead of the SYSTEM profile.

2 Mark the optionModify and press ENTER.

Or:

Press PF4.

The following screen appears.

23First Steps

Hello World!

14:05:36 **** Program Editor Profile **** 09.06.30
Modify Defaults

User ID SYSTEM

_ PA/PF-Keys

_ Commands

_ Find

_ General

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Keys Exit Ctrl Find Genl Canc

3 Mark the option Commands and press ENTER.

The following screen appears.

14:04:39 **** Program Editor Profile **** 09.06.30
Modify Editor Defaults

User ID SYSTEM

aorder OFF hex OFF
autosave OFF justify LEFT
caps OFF limit OFF
cols OFF log OFF
decimal character mask line OFF
empty OFF message line ON
escape OFF mso ON
escape character scroll mode PAGE
fix OFF tabs OFF
fixlen 48 tabulator character . ^

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Canc

First Steps24

Hello World!

Check the setting of the following options:

■ caps
Specifies whether data are to be translated into upper case.

■ empty
Specifies whether lines containing only space characters are to be deleted automatically.

■ escape
Specifies whether the escape character is to be used to precede line commands.

This tutorial assumes that the above options are set to "OFF".

4 If "ON" is currently defined for any of the above options, overwrite it with "OFF".

5 Press PF3 or enter EXIT in the command line.

6 Press PF3 repeatedly until the main menu of the editor profile is shown again.

7 When a user-specific profile has not yet been created, overwrite the profile name SYSTEMwith
your user ID.

When a user-specific profile exists already, proceed with the next step.

8 Mark the option Save and press ENTER.

Or:

Press PF5.

9 Press PF3.

Or:

Enter EXIT in the command line.

The program editor is shown again. Any new settingswill now be used in the program editor.

You can now proceed with the next exercises: Database Access.

25First Steps

Hello World!

26

5 Database Access

■ Saving Your Program Under a New Name .. 28
■ Defining the Required Data Using a View ... 29
■ Reading Data from a Database .. 32
■ Reading Selected Data from a Database .. 34

27

You will now write a short program which reads specific data from a database file and displays
the corresponding output.

When you have completed the exercises below, your sample application will consist of just one
module (the data fields that are used by the program are defined within the program):

Saving Your Program Under a New Name

You will now create a new program which will be used in the remainder of this tutorial. It will be
created by saving your Hello World program under a new name.

To save the program under a new name

1 In the program editor's command line, enter one of the following:

SAVE PGM01

SA PGM01

The current program is saved with the new name PGM01. The program named HELLO is still
shown in the program editor.

2 Read the newly created program into the program editor by entering the following in the
program editor's command line:

READ PGM01

The program name which is displayed in the program editor changes to PGM01.

3 Delete all code in the program editor. To do so, enter the following line command at the be-
ginning of each line to be deleted and press ENTER:

D

Example:

First Steps28

Database Access

>> -----------Columns 001 072 << Program PGM01 Lines 4 User SAG
Command ===> Mode Struct Lib TUTORIAL
****** ****************************** top of data *****************************
D00010 * The "Hello world!" example in Natural.
D00020 *
D00030 DISPLAY "Hello world!"
D00040 END /* End of program
****** **************************** bottom of data ****************************

Or:

Enter the following line command at the beginning of the first line and press ENTER:

D4

where the number after the command indicates the number of lines to be deleted.

Or:

Enter the following line command in the command line, move the cursor to the first line to
be deleted and press ENTER:

:D4

Line commands can also be entered in the command line of the editor screen. In this case, the
commandmust be preceded by a colon (:). It always applies to the line marked by the cursor.

Defining the Required Data Using a View

The database file and the fields that are to be used by your program have to be specified between
DEFINE DATA and END-DEFINE at the top of the program.

For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definitionmodule (DDM). TheDDMcontains
information about the individual fields of the file. DDMs are usually defined by the Natural ad-
ministrator.

To be able to use the database fields in a Natural program, you must specify the fields from the
DDM in a view. For this tutorial, we will use the DDM for the EMPLOYEES database file.

Since you have deleted all lines of your previousHelloWorld program, the programeditor currently
looks as follows:

29First Steps

Database Access

>> -----------Columns 001 072 << Program PGM01 Lines User SAG
Command ===> Mode Struct Lib TUTORIAL
****** ****************************** top of data *****************************
****** **************************** bottom of data ****************************

Before you can enter the code for your program, you have to insert blank lines.

To insert blank lines

■ Enter the following line command at the beginning of the line which contains the words “top
of data” and press ENTER:

I

This inserts one blank line and the editor switches to insert mode. You can now enter your
program code (see below). When you press ENTER, a new line is inserted. If you do not enter
any data in a newly inserted line (which has a number of apostrophes instead of a line number)
and press ENTER, the editor leaves insert mode and the blank line is deleted.

Tip: To insert a blank line below LOCAL (as indicated below), enter an asterisk (*) in this
line. When insert mode is no longer active (after you have entered the last line of the
program and have pressed ENTER twice), you can remove the asterisk. The resulting
blank line will not be deleted in this case.

To specify the DEFINE DATA block

■ Enter the following code in the program editor:

DEFINE DATA
LOCAL

END-DEFINE
*
END

LOCALmeans that the variables that youwill definewith the next step are local variableswhich
apply only to this program.

To display the data fields from the DDM in a split screen

1 In the program editor's command line, enter the following:

SPLIT VIEW EMPLOYEES SHORT

SHORT indicates that the data fields are to be listed in short form (that is, only the Adabas short
names and corresponding Natural field names are displayed).

First Steps30

Database Access

The screen is divided into two sections. The data fields from the DDM displayed in the lower
half of the screen. It is not possible to edit the data in the lower half of the screen.

>> -----------Columns 001 072 << Program PGM01 Lines 6 User SAG
Command ===> Mode Struct Lib TUTORIAL
****** ****************************** top of data *****************************
000010 DEFINE DATA
000020 LOCAL
000030
000040 END-DEFINE
000050 *
000060 END
****** **************************** bottom of data ****************************

>> -----------Columns 001 072 << View EMPLOYEE Lines 38 User SAG
Command ===> Lib SYSTEM
****** ****************************** top of data *****************************
000001 DB: 020 FILE: 014 - EMPLOYEES DEFAULT SEQUENCE:
000002 1 AA PERSONNEL-ID A 8 D
000003 G 1 AB FULL-NAME
000004 2 AC FIRST-NAME A 20 N
000005 2 AD MIDDLE-I A 1 N
000006 2 AE NAME A 20 D
000007 1 AD MIDDLE-NAME A 20 N
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Save Exit Run Rfind Stow - + Check Home Undo Canc

2 You can now page through the view to see which data fields are used and how they have
been defined. To do so, use the following commands or keys:

DescriptionCommand or Key

Move the cursor from the command line of the edit area to the command line of the
display area (view) and vice versa. It is also possible to simply move the cursor to the
required command line.

SWAP

Page forward in the view. The cursor must be located in the command line of the
display area (view).

+ or PF8

Page backward in the view. The cursor must be located in the command line of the
display area (view).

- or PF7

Terminate split-screen mode. The cursor must be located in the command line of the
edit area (program).

SPLIT END

The next step assumes that split-screen mode has been terminated.

3 Place the cursor in the first position of the line containing LOCAL and enter the following:

I9

9 blank lines are inserted.

31First Steps

Database Access

4 Enter the following code below LOCAL:

1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
2 FULL-NAME

3 NAME (A20)
2 DEPT (A6)
2 LEAVE-DATA

3 LEAVE-DUE (N2)

5 Press ENTER.

The remaining blank lines are eliminated. However, one blank line remains with the cursor
in it (the editor stays in insert mode). When you now press ENTER, you will leave insert mode.

The first line contains the name of your view and the name of the database file from which the
fields have been taken. This is always defined on level 1. The level is indicated at the beginning
of the line. The names of the database fields from the DDM are defined at levels 2 and 3.

Levels are used in conjunction with field grouping. Fields assigned a level number of 2 or greater
are considered to be a part of the immediately preceding group which has been assigned a lower
level number. The definition of a group enables reference to a series of fields (this may also be
only one field) by using the group name. This is a convenient and efficient method of referencing
a series of consecutive fields.

Format and length of each field is indicated in parentheses. "A" stands for alphanumeric, and "N"
stands for numeric.

Reading Data from a Database

Now that you have defined the required data, you will add a READ loop. This reads the data from
the database file using the defined view. With each loop, one employee is read from the database
file. Name, department and remaining days of vacation for this employee are displayed. Data are
read until all employees have been displayed.

Note: It may happen that an error message is displayed indicating that the transaction has
been aborted. This usually happens when the non-activity time limit which is determined
by Adabas has been exceeded. When such an error occurs, you should simply repeat your
last action (for example, issue the RUN command once more).

To read data from a database

1 Insert the following below END-DEFINE (use the I command as described above to insert blank
lines):

First Steps32

Database Access

READ EMPLOYEES-VIEW BY NAME
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ

BY NAME indicates that the data which is read from the database is to be sorted alphabetically
by name.

The DISPLAY statement arranges the output in column format. A column is created for each
specified field and a header is placed over the column. 3Xmeans that 3 spaces are to be inserted
between the columns.

2 Run the program.

The following output appears.

MORE
Page 1 09-06-30 16:06:49

NAME DEPARTMENT LEAVE
CODE DUE

-------------------- ---------- -----

ABELLAN PROD04 20
ACHIESON COMP02 25
ADAM VENT59 19
ADKINSON TECH10 38
ADKINSON TECH10 18
ADKINSON TECH05 17
ADKINSON MGMT10 28
ADKINSON TECH10 26
ADKINSON SALE30 36
ADKINSON SALE20 37
ADKINSON SALE20 30
AECKERLE SALE47 31
AFANASSIEV MGMT30 26
AFANASSIEV TECH10 35
AHL MARK09 30
AKROYD COMP03 20
ALEMAN FINA03 20

As a result of the DISPLAY statement, the column headers (which are taken from the DDM)
are underlined and one blank line is inserted between the underlining and the data. Each
column has the same width as defined in the DEFINE DATA block (that is: as defined in the
view).

The title at the top of each page, which contains the page number, date and time, is also caused
by the DISPLAY statement.

3 Press ENTER repeatedly to display all pages.

33First Steps

Database Access

You will return to the program editor when all employees have been displayed.

Tip: If you want to return to the program editor before all employees have been dis-
played, enter EDIT or its abbreviation E at the MORE prompt. It is also possible to enter
the terminal command %., which interrupts the current Natural operation, at the MORE
prompt. By default, each terminal command starts with the control character %. Your
administrator, however, may have defined another control character.

Reading Selected Data from a Database

Since the previous output was very long, you will now restrict it. Only the data for a range of
names is to be displayed, starting with "Adkinson" and ending with "Bennett". These names are
defined in the demo database.

To restrict the output to a range of data

1 Before you can use new variables, you have to define them. Therefore, insert the following
below LOCAL:

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">

These are user-defined variables; they are not defined in demo database. The hash (#) at the
beginning of the name is used to distinguish the user-defined variables from the fields defined
in the demo database; however, it is not a required character.

INIT defines the default value for the field. The default value must be specified in pointed
brackets and quotation marks.

2 Insert the following below the READ statement:

STARTING FROM #NAME-START
ENDING AT #NAME-END

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA

First Steps34

Database Access

3 LEAVE-DUE (N2)
END-DEFINE
*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

Your program code now exceeds one screen page. To navigate in the program source, you
can use the following commands or keys:

DescriptionCommand

Go to the end of the program.BOT

Return to the beginning of the program.TOP

DescriptionKey

Scroll down one page in the program.PF8

Scroll up one page in the program.PF7

3 Run the program.

The output is shown. When you press ENTER repeatedly, you will notice that you will return
to the program editor after a couple of pages (that is: when the data for the last employee
named Bennett has been displayed).

4 Stow the program.

You can now proceed with the next exercises: User Input.

35First Steps

Database Access

36

6 User Input

■ Allowing for User Input ... 38
■ Designing a Map for User Input .. 40
■ Invoking the Map from Your Program ... 51
■ Ensuring that an Ending Name is Always Used ... 53

37

You will now learn how to prompt the user for data, that is: a starting name and an ending name
for the output.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Allowing for User Input

You will now modify your program so that input fields for the starting name and ending name
will be shown in the output. This is done using the INPUT statement.

To define input fields

1 Insert the following below END-DEFINE:

INPUT (AD=MT)
"Start:" #NAME-START /
"End: " #NAME-END

The session parameter AD stands for “attribute definition”, its value "M" stands for “modifiable
output field”, and the value "T" stands for “translate lowercase to uppercase”.

The "M" value in AD=MTmeans that the default values definedwith INIT (that is: "ADKINSON"
and "BENNETT") will be shown in the input fields. Different values may be entered by the
user.When the "M" value is omitted, the input fieldswill be empty even thoughdefault values
have been defined.

The "T" value in AD=MTmeans that all lowercase input is translated to uppercase before further
processing. This is important since the names in the demo database file have been defined
completely in uppercase letters. When the "T" value is omitted, you have to enter all names
completely in uppercase letters. Otherwise, the specified name will not be found.

"Start:" and "End:" are text fields (labels). They are specified in quotation marks.

First Steps38

User Input

#NAME-START and #NAME-END are data fields (input fields) inwhich the user can enter the desired
starting name and ending name.

The slash (/) means that the subsequent fields are to be shown in a new line.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
INPUT (AD=MT)

"Start:" #NAME-START /
"End: " #NAME-END

*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

2 Run the program.

The output shows the fields you have just defined.

Start: ADKINSON
End: BENNETT

3 Use the default names and press ENTER.

The list of employees is now shown.

4 Press ENTER repeatedly until you return to the program editor, or enter EDIT at the MOREprompt.

5 Stow the program.

39First Steps

User Input

Designing a Map for User Input

You are now introduced to a different way of prompting the user for input. You will use the map
editor to create a map which contains the same fields that you have previously defined in your
program. A map is a separate object and is used to separate the user interface layout from the
business logic of an application.

The map you will create now will look as follows:

XXXXXXXXXX TT:TT:TT

Start XXXXXXXXXXXXXXXXXXXX

End XXXXXXXXXXXXXXXXXXXX

The first line of the map contains system variables for the current date and time. There are two
data fields (input fields) in which the user can specify a starting name and an ending name. The
data fields are preceeded by text fields (labels).

The following steps are required for the above map:

■ Creating a Map
■ Defining Text Fields
■ Defining Data Fields
■ Specifying Names for Data Fields
■ Adding System Variables
■ Repositioning Fields
■ Testing a Map

First Steps40

User Input

■ Stowing a Map

Creating a Map

You will now invoke the map editor in which you will design your map.

To create a map

■ In the program editor's command line, enter one of the following:

EDIT MAP

E M

TheNatural Map Editormenu appears.

+--+
¦ NATURAL MAP EDITOR (Esc to select field) ¦
¦Create Modify Erase Drag Info OFF Lines Ops. Map Quit ¦
+--+

Create a new field definition

41First Steps

User Input

Defining Text Fields

You will now add two text fields (also called constants or labels) to the map.

To define the text fields

1 On theNatural Map Editormenu, select Create and press ENTER.

A window appears listing all items that you can create.

+--+
¦ NATURAL MAP EDITOR (Esc to select field) ¦
¦Create Modify Erase Drag Info OFF Lines Ops. Map Quit ¦
++-----------------------+---+
¦ A Parameter Data Area ¦
¦ G Global Data Area ¦
¦ H Help Routine ¦
¦ L Local Data Area ¦
¦ M Map ¦
¦ N Subprogram ¦
¦ P Program ¦
¦ S Subroutine ¦
¦ T Text Constant ¦
¦ U User Defined ¦
¦ V View Defined ¦
¦ 1 Parm Defined ¦
¦ 2 Local Defined ¦
+-----------------------+

Take variable definition from parameter data area

2 Use the arrow keys to select Text Constant and press ENTER.

Or:

Press T.

An empty screen appears. A message prompts you to position the cursor and to enter text.

3 Move the cursor to the first position of the fourth line (line and column number are shown
at the bottom of the screen) and type in the following:

First Steps42

User Input

Start

Do not yet press ENTER.

4 Press PF2.

A window appears in which you can set the attributes for this text field.

Start

+-Text Attribute/Color Definition: --------------+
¦ Attribute: <No Attribute> Color: <No Color> ¦
+--+
MAP0083: Use cursor keys (UP, DOWN) for Attribute. (Esc=Cancel, Enter=OK)

The Attribute field is automatically selected.

Note: Using LEFT-ARROW and RIGHT-ARROW, you can toggle between the fields for attribute
and color definition. This tutorial does not use colors.

5 Use UP-ARROW or DOWN-ARROW to scroll through the available attributes. When "Default" is
shown in the window, press ENTER. "Default" means that the field is neither intensified nor in
any way highlighted.

The field is now selected in the screen. This is indicated by a highlighted background.

6 Press ESC to redisplay the menu.

ESC is used as a toggle to display and hide the menu. The text field you have just defined is
no longer shown. It has not been deleted. It has just disappeared behind themenu.When you
press ESC once more, the menu disappears and your field is shown again.

43First Steps

User Input

7 Add a second text field in the same way as you have added the first text field (that is: define
a second text constant and set the Default attribute). Place it in the line below the Start field
(that is in line 5) and name it as follows:

End

8 When you have added the second text field, press ESC to redisplay the menu.

You should now see the new End field right below the menu.

Defining Data Fields

You will now add two data fields to the map. These are the input fields in which the user can
specify the starting name and ending name.

To define the data fields

1 From the Createmenu, choose User Defined.

The Extended Field Editingwindow appears:

Start
End

+-Extended Field Editing---+
¦Field : ¦
¦Format: A Len: AL: PM: ZP: N SG: N ¦
¦Rules : 0 Rule Editing: N Array: Array Editing: N Mode: ¦
¦AD: CD: CV: DY: N HE: N ¦
¦EM: ¦
+--+

MAP0079: Position cursor and press Enter or format char.(Esc=Cancel) (012,019)

2 Position the cursor behind the Start field (leave a blank space between text field and data
field) and press ENTER.

First Steps44

User Input

The following window appears.

+---------------------+
¦ A Alphanumeric ¦
¦ B Binary ¦
¦ D Date ¦
¦ F Floating Point ¦
¦ I Integer ¦
¦ L Logical ¦
¦ N Numeric ¦
¦ P Packed Numeric ¦
¦ T Time ¦
¦ * System ¦
+---------------------+

3 Choose A Alphanumeric.

The selected format is shown in the Format field of the Extended Field Editingwindow. The
cursor is automatically positioned in the AL field.

4 Enter "20" in the AL field.

This means that the data field is defined with a length of 20 characters.

5 Press TAB.

In the map, the length of the field is now indicated by "X" characters.

6 Press TAB repeatedly until the AD field is highlighted.

You will now define the I/O characteristics and the filler character. The following attribute
definition characters are currently shown in the AD field:

ILMFHT'_'

The I/O characteristics are indicated by the letter "M". The filler character is indicated by '_'.
This tutorial uses these default settings. The following steps are just provided to illustrate the
usage of this function. At this point, you can also close theAttribute Definitionwindow and
the Extended Field Editingwindow as described further below.

Note: The sequence in which the attribute definition characters are arranged in theAD
field may change, that is: an attribute may occur in a different position.

7 Press PF2 to edit the attribute definitions.

The Attribute Definitionwindow appears.

45First Steps

User Input

+-Attribute Definition--+
¦Representation ¦
¦Alignment ¦
¦I/O Characteristics ¦
¦Mandatory Characters ¦
¦Length Characteristics ¦
¦Upper/Lower Case ¦
¦Filler Character ¦
+-----------------------+

8 Choose I/O Characteristics.

The following window appears.

+------------------------+
¦ A Input, non_protected ¦
¦ M Output, modifiable ¦
¦ O Output, protected ¦
+-Esc=Quit, Enter=Toggle-+

9 When the character "M" is already shown in the AD field, press the ESC key to leave this
window.

Or:

When the character "M" is not shown in the AD field, chooseMOutput, modifiable.

Note: When you choose the same attribute several times, a toggle effect occurs: the at-
tribute is then either defined or removed.

10 In the Attribute Definitionwindow, choose Filler Character.

You are prompted to enter a new filler character.

The filler character is used to fill any empty positions in input fields in the map, allowing the
user to see the exact position and length of a field when entering input.

11 Enter an underscore (_) at the current cursor position.

It is not necessary to press ENTER. Themessage disappears immediately after you have entered
the underscore character.

12 Press ESC to close the Attribute Definitionwindow.

13 Press ENTER to close the Extended Field Editingwindow and to store the field in the map.

Caution: When you press ESC instead of ENTER, your definitions for the new data field
are not saved and the field is not stored in the map.

First Steps46

User Input

14 Add a second data field in the same way as described in the above steps: place it next to the
End field, define a length of 20 characters and define the same attribute definition characters
as described above.

Specifying Names for Data Fields

When you create a new data field for a user-defined variable, Natural assigns a field name to it.
This field name contains a number. You have to adjust the names of the newly created fields to
the variable names defined in your program.

You will now make sure that the same names are used as in your program: #NAME-START and
#NAME-END. The output of these fields (that is: the user input) will be passed to the corresponding
user-defined variables in your program.

To define names for the data fields

1 Use the arrow keys to select the data field for the starting name.

2 Press ESC to redisplay the menu.

3 In the menu, chooseModify.

The Extended Field Editingwindow appears.

+-Extended Field Editing---+
¦Field : #1 ¦
¦Format: A Len: 20 AL: 20 PM: ZP: N SG: N ¦
¦Rules : 0 Rule Editing: N Array: None Array Editing: N Mode: Undef ¦
¦AD: ILMFHT'_' CD: CV: DY: N HE: N ¦
¦EM: ¦
+--+

The Field field contains the field name that has been assigned by Natural: "#1".

4 In the Field field, enter "#NAME-START".

5 Press ENTER.

6 Repeat the above steps for the data field for the ending name and enter "#NAME-END" as
the field name.

47First Steps

User Input

Adding System Variables

Natural systemvariables contain information about the currentNatural session, such as the current
library, user, or date and time. They may be referenced at any point within a Natural program.
All system variables begin with an asterisk (*).

You will now add system variables for the date and time to the map. When the program is run,
the current date and time will be displayed in the map.

To add system variables

1 Press ESC to redisplay the menu.

2 From the Createmenu, choose User Defined.

The Extended Field Editingwindow appears.

3 Position the cursor in the top left corner of the screen (row 001, column 001) and press ENTER.

The following window appears.

+---------------------+
¦ A Alphanumeric ¦
¦ B Binary ¦
¦ D Date ¦
¦ F Floating Point ¦
¦ I Integer ¦
¦ L Logical ¦
¦ N Numeric ¦
¦ P Packed Numeric ¦
¦ T Time ¦
¦ * System ¦
+---------------------+

4 Choose * System.

The following window appears.

First Steps48

User Input

+-----------------------------+
¦ *APPLIC-ID A8 ¦
¦ *APPLIC-NAME A32 ¦
¦ *COM A128 ¦
¦ *CONVID I4 ¦
¦ *CPU-TIME I4 ¦
¦ *CURRENT-UNIT A32 ¦
¦ *CURSOR N6 ¦
¦ *CURS-COL P3 ¦
¦ *CURS-LINE P3 ¦
¦ *DAT4D A10 ¦
¦ *DAT4E A10 ¦
¦ *DAT4I A10 ¦
¦ *DAT4J A7 ¦
¦ *DAT4U A10 ¦
+-----------------------------+

You can use DOWN-ARROW and UP-ARROW to scroll through the list of system variables.

5 Select *DAT4I and press ENTER.

A number of "X" characters is now shown.

6 Press ENTER to close the Extended Field Editingwindow.

7 Repeat the above steps and add the system variable *TIMX. Place it in the top right corner
of the screen (row 001, column 070). TT:TT:TTwill be shown for this system variable. Do not
forget to press ENTER to close the Extended Field Editingwindow.

Repositioning Fields

You will now reposition the fields you have added.

To move a field

1 When the menu is currently shown, press ESC to hide it.

2 Use the arrow keys to select the data field for the starting name (which is indicated by "X"
characters).

The data field is now highlighted.

3 Press ESC to redisplay the menu.

4 ChooseDrag.

The menu disappears.

5 Use the arrow keys to move the highlighted field to the middle of the line.

6 Press ENTER to end drag mode.

49First Steps

User Input

7 Move the remaining text and data fields for the starting and ending names to the middle of
the line as described above. Leave an empty line between the fields for the starting and ending
names.

The map should now look as shown at the beginning of this section.

Testing a Map

You will now test your map to check whether it works as intended.

To test the map

1 Press ESC to redisplay the menu, and from theOps. Mapmenu, choose Test Map.

The following output is shown.

2009-06-30 13:39:55

Start ____________________

End ____________________

The input field for the starting name is automatically selected since it is the first input field
in the map. Both input fields contain the filler character.

Note: When working in insert mode, the user has to delete the filler characters before
it is possible to enter text. This is not necessary in overwrite mode which is the default.

2 Press ENTER to return to the map editor.

First Steps50

User Input

Stowing a Map

When the map has successfully been tested, you have to stow it so that it can be found by your
program.

To stow the map

1 Press ESC to redisplay the menu.

2 From theOps. Mapmenu, choose StowMap.

The following window appears.

+--Stow Map As: ---+
¦Name...: ¦
¦Library: TUTORIAL ¦
+------------------+

3 Enter "MAP01" as the name of the map and press ENTER.

Invoking the Map from Your Program

Once a map has been stowed, it can be invoked by a Natural program using a WRITE or INPUT
statement.

To invoke the map from your program

1 Press ESC to redisplay the menu and chooseQuit.

Natural'smainmenu is shown againwith theDirect Commandwindowprompting for input.

2 Return to the program editor by entering one of the following.

EDIT PGM01

E PGM01

3 Replace the previously defined INPUT lines with the following line:

51First Steps

User Input

INPUT USING MAP 'MAP01'

This will invoke the map you have just designed.

The map name must be enclosed in single quotation marks to distinguish the map from a
user-defined variable.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
INPUT USING MAP 'MAP01'
*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

4 Run the program.

Your map is now shown.

5 Press ENTER repeatedly until you return to the program editor, or enter EDIT at the MOREprompt.

6 Stow the program.

First Steps52

User Input

Ensuring that an Ending Name is Always Used

As your program is coded now, no data will not be found if an ending name is not specified.

Youwill now remove the initial values for the starting name and ending name; then the user always
has to specify these names. To ensure that an ending name is always used, even if it has not been
specified by the user, you will add a corresponding statement.

To use the ending name

1 In the DEFINE DATA block, remove the default values (INIT) for the fields #NAME-START and
#NAME-END so that the corresponding lines look as follows:

1 #NAME-START (A20)
1 #NAME-END (A20)

2 Insert the following below INPUT USING MAP 'MAP01':

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF

When the #NAME-END field is blank (that is: when an ending name has not been entered by the
user), the starting name is automatically used as the ending name.

Note: Instead of using the statement MOVE #NAME-START TO #NAME-END it is also possible
to use the following variant of the ASSIGN or COMPUTE statement: #NAME-END :=
#NAME-START.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
INPUT USING MAP 'MAP01'
*
IF #NAME-END = ' ' THEN

53First Steps

User Input

MOVE #NAME-START TO #NAME-END
END-IF
*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

3 Run the program.

4 In the resulting map, enter "JONES" in the field which prompts for a starting name and press
ENTER.

In the resulting list, only the employees with the name "Jones" are now shown.

5 Press ENTER to return to the program editor.

6 Stow the program.

You can now proceed with the next exercises: Loops and Labels.

First Steps54

User Input

7 Loops and Labels

■ Allowing Repeated Usage ... 56
■ Displaying a Message Indicating that Information was not Found .. 58

55

You will now enhance your program by adding loops and labels.

When you have completed the exercises below, your sample application will still consist of the
same modules as in the previous chapter:

Allowing Repeated Usage

As it is now, the program terminates after it has displayed the map and has shown the list. So that
the user can display a new employees list immediately, without restarting the program, you will
now put the corresponding program code into a REPEAT loop.

To define a repeat loop

1 Insert the following below END-DEFINE:

RP1. REPEAT

REPEATdefines the start of the repeat loop. RP1. is a labelwhich is usedwhen leaving the repeat
loop (this is defined below).

2 Define the end of the repeat loop by inserting the following before the END statement:

END-REPEAT

3 Insert the following below INPUT USING MAP 'MAP01':

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF

The IF statement, which must be ended with END-IF, checks the content of the #NAME-START
field. When a dot (.) is entered in this field, the ESCAPE BOTTOM statement is used to leave the
loop. Processingwill continuewith the first statement following the loop (which is END in this
case).

First Steps56

Loops and Labels

By assigning a label to the loop (here RP1.), you can refer to this specific loop in the ESCAPE
BOTTOM statement. Since loops may be nested, you should specify which loop you want to
leave. Otherwise, the program will only leave the innermost active loop.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ

*
END-REPEAT
*
END

Note: For better readability, the content of the REPEAT loop has been indented.

4 Run the program.

5 In the resulting map, enter "JONES" in the field which prompts for a starting name and press
ENTER.

57First Steps

Loops and Labels

In the resulting list, the employees with the name "Jones" are shown. Press ENTER. Due to the
REPEAT loop, the map is shown again. Now you can also see that "JONES" has been entered
as the ending name.

6 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER. Do not forget to delete the remaining characters of the name which is still shown in
this field.

7 Stow the program.

Displaying a Message Indicating that Information was not Found

You will now define the message that is to be displayed when the user enters a starting name
which cannot be found in the database.

To define the message that is to be displayed when the specified employee cannot be found

1 Add the label RD1. to the line containing the READ statement so that it looks as follows:

RD1. READ EMPLOYEES-VIEW BY NAME

2 Insert the following below END-READ:

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF

To check the number of records found in the READ loop, the system variable *COUNTER is used.
If its contents equals 0 (that is: an employee with the specified name has not been found), the
message defined with the REINPUT statement is displayed at the bottom of your map.

To identify the READ loop, you assign a label to it (here RD1.). Since a complex database access
program can contain many loops, you have to specify the loop to which you refer.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

First Steps58

Loops and Labels

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ

*
IF *COUNTER (RD1.) = 0 THEN

REINPUT 'No employees meet your criteria.'
END-IF

*
END-REPEAT
*
END

3 Run the program.

4 In the resulting map, enter a starting name which is not defined in the demo database (for
example, "XYZ") and press ENTER.

Your message should now appear in the map.

5 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER. Do not forget to delete the remaining characters of the name which is still shown in
this field.

6 Stow the program.

You can now proceed with the next exercises: Inline Subroutines.

59First Steps

Loops and Labels

60

8 Inline Subroutines

■ Defining the Inline Subroutine .. 62
■ Performing the Inline Subroutine .. 63

61

Natural distinguishes two types of subroutines: inline subroutines which are defined directly in
the program and external subroutines which are stored as separate objects outside the program
(this is explained later in this tutorial).

You will now add an inline subroutine to your program which moves an asterisk (*) to the new
user-defined variable named #MARK. This subroutine will be invoked when an employee has 20
days of leave or more.

When you have completed the exercises below, your sample application will be structured as
follows:

Defining the Inline Subroutine

You will now add the subroutine to your program.

To define the subroutine

1 Insert the following below the user-defined variable #NAME-END:

1 #MARK (A1)

This variable will be used by the subroutine. Therefore, it has to be defined first.

2 To define the subroutine, insert the following before the END statement:

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE '*' TO #MARK

END-SUBROUTINE

When performed, this subroutine moves an asterisk (*) to #MARK.

Note: Instead of using the statement MOVE '*' TO #MARK it is also possible to use the
following variant of the ASSIGN or COMPUTE statement: #MARK := '*'.

First Steps62

Inline Subroutines

3 Modify the DISPLAY statement as follows:

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK

This displays a new column in your output. Its heading is ">=20". The columnwill contain an
asterisk (*) if the corresponding employee has 20 days of leave or more.

Performing the Inline Subroutine

Now that you have defined the inline subroutine, you can specify the corresponding code for
performing it.

To perform the inline subroutine

1 Insert the following before the DISPLAY statement:

IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF

When an employee is found who has 20 days of leave or more, the new subroutine named
MARK-SPECIAL-EMPLOYEES is performed. When an employee has less than 20 days of leave,
the content of #MARK is reset to blank.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 #MARK (A1)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN

63First Steps

Inline Subroutines

ESCAPE BOTTOM (RP1.)
END-IF

*
IF #NAME-END = ' ' THEN

MOVE #NAME-START TO #NAME-END
END-IF

*
RD1. READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*

END-READ
*

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

2 Run the program.

3 In the resulting map, enter "JONES" and press ENTER.

The list of employees should now contain the additional column.

4 To return to the program editor, enter EDIT at the MORE prompt.

5 Stow the program.

You can now proceed with the next exercises: Processing Rules and Helproutines.

First Steps64

Inline Subroutines

9 Processing Rules and Helproutines

■ Defining a Processing Rule ... 66
■ Defining a Helproutine .. 69

65

Processing rules and helproutines are defined for fields in a map.

When you have completed the exercises below, your sample applicationwill consist of the following
modules (a processing rule cannot be defined as a separate module; it is always part of a map):

Defining a Processing Rule

You will now define the message that is to be displayed when the user presses ENTER without
specifying a starting name.

To define a processing rule

1 Return to the map editor by entering the following.

EDIT MAP01

2 Use the arrow keys to select the input field for the starting name. Press ESC to redisplay the
menu and chooseModify.

The Extended Field Editingwindow appears.

+-Extended Field Editing---+
¦Field : #NAME-START ¦
¦Format: A Len: 20 AL: 20 PM: ZP: N SG: N ¦
¦Rules : 0 Rule Editing: N Array: None Array Editing: N Mode: User ¦
¦AD: ILMFHT'_' CD: CV: DY: N HE: N ¦
¦EM: ¦
+--+

3 Use TAB to move to the field Rule Editing. Either enter "Y" in this field or press PF2.

The following screen appears.

First Steps66

Processing Rules and Helproutines

+-Current Field: #NAME-START---+
¦ R U L E E D I T I N G (Esc = Quit) ¦
¦Rules Fields ¦
+--+

End XXXXXXXXXXXXXXXXXXXX

Create or modify a rule for this field

4 Choose Rules and then <CREATE>.

An empty editor window appears.

5 Enter the following processing rule (use the line command I to insert blank lines):

IF & = ' ' THEN
REINPUT 'Please enter a starting name.'
MARK *&

END-IF

The ampersand (&) in the processing rule will dynamically be replaced with the name of the
field. In this case, it will be replaced with #NAME-START. If #NAME-START is blank, the message
defined with the REINPUT statement is displayed.

MARK is an option of the REINPUT statement. Its syntax is MARK *fieldname. MARK specifies the
field in which the cursor is to be placed when the REINPUT statement is executed. In this case,
the cursor will be placed in the #NAME-START field.

6 Enter the following in the command line:

P=1

The rank defines the sequence in which the rules for the different fields are to be processed.
All rules with rank 1 are processed first, followed by those with rank 2, etc.

67First Steps

Processing Rules and Helproutines

EDIT: S 02- ---------------Columns 001 074
Rank: NEW RULE Rule: Typ: R Mode: S
Cmnd=> p=1 Scroll==> CSR
****** ******************************* top of data *****************************
000001 IF & = ' ' THEN
000002 REINPUT 'PLEASE ENTER A STARTING NAME.'
000003 MARK *&
000004 END-IF
****** ***************************** bottom of data ****************************

PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
P U End P* Rfind Rchng Up Down Right Left Home

7 Press ENTER to save your input.

The following screen appears again. Your new rule with the rank 1 is now shown below
<CREATE>. When you select this rule, the first lines of your code are shown at the bottom of
the screen.

First Steps68

Processing Rules and Helproutines

+-Current Field: #NAME-START---+
¦ R U L E E D I T I N G (Esc = Quit) ¦
¦Rules Fields ¦
+--------+---+
¦<CREATE>¦
¦ 1¦ End XXXXXXXXXXXXXXXXXXXX
+--------+

0010 IF & = ' ' THEN
0020 REINPUT 'PLEASE ENTER A STARTING NAME.'
0030 MARK *&

Create or modify a rule for this field

8 Press ESC repeatedly until the Natural Map Editor menu is shown again.

9 Test the map.

10 In the resulting output, enter any starting name and press ENTER.

The output screen is closed.

11 Test the map once more. Do not enter a name and press ENTER.

The message defined with the processing rule should now appear in the map.

12 To leave the output screen, enter a dot (.) in the field which prompts for a starting name and
press ENTER.

13 Stow the map.

Defining a Helproutine

A helproutine is displayed when the user presses the help key when the cursor is on the input
field for the starting name.

You will first define the helproutine and then associate it with a specific field.

69First Steps

Processing Rules and Helproutines

To create a helproutine

1 From the Natural Map Editor menu, chooseQuit.

Natural'smainmenu is shown againwith theDirect Commandwindowprompting for input.

2 Enter one of the following:

EDIT PROGRAM

E P

An empty editor appears.

3 Enter the following:

WRITE 'Type the name of an employee'
END

4 Change the program to a helproutine by entering the following in the program editor's com-
mand line:

SET TYPE H

where "H" denotes helproutine.

5 Stow the helproutine and name it HLP01.

STOW HLP01

To associate the helproutine with a field on the map

1 Return to themap editor by entering the following in the command line of the screen inwhich
you have just entered the helproutine.

E MAP01

2 Select the data field for the starting name, press ESC to display the Natural Map Editor menu
and chooseModify.

The Extended Field Editingwindow is displayed for the field.

3 Use TAB to move to the fieldHE. Either enter "Y" in this field or press PF2.

A window appears prompting for the name of the helproutine.

4 In theHE field enter "'HLP01'" (including the single quotation marks).

This is the name under which you have saved your helproutine.

First Steps70

Processing Rules and Helproutines

XXXXXXXXXX TT:TT:TT

Start XXXXXXXXXXXXXXXXXXXX

End XXXXXXXXXXXXXXXXXXXX

+-HE---+
¦HE: 'HLP01' ¦
¦ ¦
+--+

+-Extended Field Editing---+
¦Field : #NAME-START ¦
¦Format: A Len: 20 AL: 20 PM: ZP: N SG: N ¦
¦Rules : 1 Rule Editing: Y Array: None Array Editing: N Mode: User ¦
¦AD: MILFHT'_' CD: CV: DY: N HE: Y ¦
¦EM: ¦
+--+
Helproutine and Parameters

5 Press ENTER twice to save your changes and close all windows.

6 Test the map.

7 In the resulting output, enter a question mark (?) in the input field for the starting name.

The help text you have defined is shown.

8 Press ENTER to return to the map.

9 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER.

10 Stow the map.

11 From the Natural Map Editor menu, chooseQuit.

Natural'smainmenu is shown againwith theDirect Commandwindowprompting for input.

You can now proceed with the next exercises: Local Data Areas.

71First Steps

Processing Rules and Helproutines

72

10 Local Data Areas

■ Creating a Local Data Area ... 74
■ Defining Data Fields ... 75
■ Importing the Required Data Fields from a DDM .. 77
■ Referencing the Local Data Area from Your Program .. 80

73

Currently, the fields used by your program are defined within the DEFINE DATA statement in the
program itself. It is also possible, however, to place the field definitions in a local data area (LDA)
outside the program, with the program's DEFINE DATA statement referencing this local data area
by name. For reusability and for a clear application structure, it is usually better to define fields
in data areas outside the programs.

You will now relocate the information from the DEFINE DATA statement to a local data area. When
you have completed the exercises below, your sample application will consist of the following
modules:

Creating a Local Data Area

You will now invoke the data area editor in which you will specify the required fields.

To invoke the data area editor

■ In the Direct Commandwindow, enter one of the following:

EDIT LOCAL

E L

The data area editor appears. The object type has been set to "Local". This is indicated at the
top of the screen.

First Steps74

Local Data Areas

Press <ESC> to enter command mode
Mem: empty Lib: TUTORIAL Type: LOCAL Bytes: 0 Line: 0 of: 0
C T Comment

* *** Top of Data Area ***
* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

By default, the data area editor is in edit mode when you invoke it. To toggle from edit mode
to command mode (and vice versa), you press ESC. When you leave the editor, the current
mode will be resumed when you open the editor the next time.

Defining Data Fields

You will now define the following fields:

LengthFormatNameLevel

20A#NAME-START1

20A#NAME-END1

1A#MARK1

These are the user-defined variables which you have previously defined in the DEFINE DATA
statement.

To define the data fields

1 Make sure that the first entry, which indicates the top of the data area, is selected in the editor.

75First Steps

Local Data Areas

Tip: If it is not possible to move the cursor and thus to highlight a line, you are in
command mode. In this mode, the command line is shown at the top of the screen.
Press ESC to switch to edit mode.

2 Enter the following line command in the first column of the selected line:

I

You need not press ENTER.

The following window appears.

+-----------------------+
¦ D Data Field ¦
¦ B Block ¦
¦ C Constant ¦
¦ H Handle ¦
¦ S Structure ¦
¦ * Comment ¦
+-----------------------+

3 ChooseData Field.

TheData Field Definitionwindow appears.

+-------------------- Data Field Definition ---------------------+
¦ Level: 1 ¦
¦ Field Name: ¦
¦ Field Format: ¦
¦ Field Length: ¦
¦ Arraydefinition: ¦
¦ Edit Mask: ¦
¦ ¦
¦ Header Definition: ¦
¦ ¦
¦ Initialization: ¦
¦ Value Clause: ¦
¦ Optional Param: N ¦
¦ Comment: ¦
+--+

4 Specify all required information for the first field (#NAME-START) as listed in the above table.
Use the arrow keys to move from one field to the next.

5 When all information for this field has been specified, press ENTER to save this information.

TheData Field Definitionwindow remains open. The input fields are empty again and you
can define a new data field.

First Steps76

Local Data Areas

6 Specify all required information for the remaining fields (#NAME-END and #MARK) as described
above.

7 When all fields have been added, press ESC.

The fields you have defined are now shown in the editor.

Press <ESC> to enter command mode
Mem: Lib: TUTORIAL Type: LOCAL Bytes: 291 Line: 3 of: 3

C T L Name of Datafield F Length Index/Comment M
* *** Top of Data Area ***

1 #NAME-START A 20
1 #NAME-END A 20
1 #MARK A 1

* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

Tip: If you notice that you have made a mistake in a field definition, you can use the
line command E to edit the selected field or the line command D to delete the selected
field.

Importing the Required Data Fields from a DDM

You will now import the same data fields which you have previously defined in the program's
DEFINE DATA statement. The fields are read directly from a Natural data view into the data area
editor. A data view references database fields defined in a data definition module (DDM).

In the data area editor, the imported data fields will be inserted below the currently selected data
field.

77First Steps

Local Data Areas

To import data fields from a DDM

1 Enter the following line command in the first column of the #MARK line.

V

The View Definitionwindow appears.

Press <ESC> to enter command mode
Mem: Lib: TUTORIAL Type: LOCAL Bytes: 291 Line: 3 of: 3

C T L Name of Datafield F Length Index/Comment M
* *** Top of Data Area ***

1 #NAME-START A 20
1 #NAME-END A 20

V 1 #MARK A 1
* *** End of Data Area ***

+------------------- View Definition -------------------+
¦Name of View: ¦
¦Name of DDM: ¦
¦Comment: ¦
+---+

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

2 Enter the following information and press ENTER:

+------------------- View Definition -------------------+
¦Name of View: EMPLOYEES-VIEW ¦
¦Name of DDM: EMPLOYEES ¦
¦Comment: ¦
+---+

A window appears showing the fields of the specified DDM.

First Steps78

Local Data Areas

Press <ESC> to enter command mode
Mem: Lib: TUTORIAL Type: LOCAL Bytes: 291 Line: 3 of: 3

C T L Name of Datafield F Length Index/Comment M
* *** Top of Data Area ***

1 #NAME-START A 20
1 #NAME-END A 20

V 1 #MARK A 1
* *** End of Data Area ***

+------------------------------- DDM: EMPLOYEES -------------------------------+
¦ 1 AA PERSONNEL-ID A 8 D ¦
¦ G 1 AB FULL-NAME ¦
¦ 2 AC FIRST-NAME A 20 N ¦
¦ 2 AD MIDDLE-I A 1 N ¦
¦ 2 AE NAME A 20 D ¦
¦ 1 AD MIDDLE-NAME A 20 N ¦
+--+

HD=PERSONNEL/ID

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

3 Mark the following fields by entering an "X" in the first column:

PERSONNEL-ID
FULL-NAME
NAME
DEPT
LEAVE-DATA
LEAVE-DUE

Use the arrow keys to scroll through the DDM.

Note: The field PERSONNEL-IDwill be used later when you create the subprogram.

4 After you have marked all required fields, press ENTER.

The local data area should now look as follows (use the arrow keys to scroll to the top of the
data area):

79First Steps

Local Data Areas

Press <ESC> to enter command mode
Mem: Lib: TUTORIAL Type: LOCAL Bytes: 970 Line: 0 of: 10
C T Comment

* *** Top of Data Area ***
1 #NAME-START A 20
1 #NAME-END A 20
1 #MARK A 1

V 1 EMPLOYEES-VIEW EMPLOYEES
2 PERSONNEL-ID A 8

G 2 FULL-NAME
3 NAME A 20
2 DEPT A 6

G 2 LEAVE-DATA
3 LEAVE-DUE N 2

* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

TheT column indicates the type of the variable. The view is indicated by a "V" and each group
is indicated by a "G".

5 Press ESC to enter command mode.

6 Stow the local data area and name it "LDA01".

STOW LDA01

Referencing the Local Data Area from Your Program

Once a local data area has been stowed, it can be referenced by a Natural program.

You will now change the DEFINE DATA statement your program so that it uses the local data area
that you have just defined.

To use the local data area in your program

1 Return to the program editor by entering the following in the command line of the data area
editor.

E PGM01

First Steps80

Local Data Areas

2 In the DEFINE DATA statement, delete all variables between LOCAL and END-DEFINE (use the
line command D).

3 Add a reference to your local data area by modifying the LOCAL line as follows:

LOCAL USING LDA01

Your program should now look as follows:

DEFINE DATA
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*

END-READ
*

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

81First Steps

Local Data Areas

4 Run the program.

5 To confirm that the results are the same as before (when the DEFINE DATA statement did not
reference a local data area), enter "JONES" as the starting name and press ENTER.

6 To return to the program editor, enter EDIT at the MORE prompt.

7 Stow the program.

You can now proceed with the next exercises: Global Data Areas.

First Steps82

Local Data Areas

11 Global Data Areas

■ Creating a Global Data Area from an Existing Local Data Area ... 84
■ Adapting the Local Data Area .. 86
■ Referencing the Global Data Area from Your Program .. 87

83

Data defined in a global data area (GDA) can be shared bymultiple programs, external subroutines
and helproutines.

Any modification of a data element value in a global data area affects all Natural objects that ref-
erence this global data area. Therefore, if you change the source of a global data area, you have to
stow all previously created Natural objects that reference this global data area once more. The se-
quence in which objects are stowed is important. You must first stow the global data area and
then the program. If you stow the program first and then the global data area, the program cannot
be stowed because new elements in the global data area cannot be found.

You will now create a global data area which will be shared by your program and an external
subroutine that you will create later. As the basis for your global data area, you will use some of
the information from the local data area you have just created.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Creating a Global Data Area from an Existing Local Data Area

You can create a new data area from an existing data area by editing it and saving it under a dif-
ferent name and with a different type. The original data area remains unchanged, and the new
data area can be edited. Since the fields #NAME-START and #NAME-END are not required in the global
data area, you will remove them.

To create the global data area

1 Return to your local data area by entering the following in the command line of the program
editor.

E LDA01

First Steps84

Global Data Areas

2 To save the data area under a new name, enter the following in the command line of the data
area editor.

SA GDA01

The current data area is saved with the new name GDA01. The local data area named LDA01 is
still shown in the data area editor.

3 Load GDA01 into the data area editor by entering the following command:

E GDA01

4 To change the local data area into a global data area, enter the following command:

SET TYPE G

where "G" denotes global data area.

The object type changes to "Global". This is indicated at the top of the screen.

5 Press ESC to enter edit mode. Use the line command D to delete the following fields:

#NAME-START
#NAME-END

6 The global data area should now look as follows:

Press <ESC> to enter command mode
Mem: GDA01 Lib: TUTORIAL Type: GLOBAL Bytes: 351 Line: 1 of: 8

C T L Name of Datafield F Length Index/Comment M
* *** Top of Data Area ***

1 #MARK A 1
V 1 EMPLOYEES-VIEW EMPLOYEES

2 PERSONNEL-ID A 8
G 2 FULL-NAME

3 NAME A 20
2 DEPT A 6

G 2 LEAVE-DATA
3 LEAVE-DUE N 2

* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

7 Stow the global data area.

85First Steps

Global Data Areas

Adapting the Local Data Area

The fields contained in the global data area are no longer required in the local data area. Therefore,
you will now remove all fields except #NAME-START and #NAME-END from the local data area.

To remove the fields

1 Return to your local data area by entering the following in the command line of the data area
editor:

E LDA01

2 Use the line command D to delete all fields except #NAME-START and #NAME-END.

When you delete the top-level entry for the view (indicated by a "V" in front of the view name),
all fields belonging to this view are automatically deleted.

3 Stow the modified local data area.

The local data area should now look as follows:

Command:
Mem: LDA01 Lib: TUTORIAL Type: LOCAL Bytes: 85 Line: of: 2
C T Comment
* *** Top of Data Area ***

1 #NAME-START A 20
1 #NAME-END A 20

* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

First Steps86

Global Data Areas

Referencing the Global Data Area from Your Program

Once a global data area has been stowed, it can be referenced by a Natural program.

You will now change the DEFINE DATA statement in your program so that it also uses the global
data area that you have just defined.

To use the global data area in your program

1 Return to the program editor by entering the following in the command line of the data area
editor.

E PGM01

2 Insert the following in the line above LOCAL USING LDA01:

GLOBAL USING GDA01

Aglobal data areamust always be defined before a local data area. Otherwise, an error occurs.

Your program should now look as follows:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

87First Steps

Global Data Areas

END-IF
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*

END-READ
*

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

3 Run the program.

4 To confirm that the results are the same as before (when the DEFINE DATA statement did not
reference a global data area), enter "JONES" as the starting name and press ENTER.

5 To return to the program editor, enter EDIT at the MORE prompt.

6 Stow the program.

You can now proceed with the next exercises: External Subroutines.

First Steps88

Global Data Areas

12 External Subroutines

■ Creating an External Subroutine ... 90
■ Referencing the External Subroutine from Your Program ... 91

89

Until now, the subroutine MARK-SPECIAL-EMPLOYEES has been defined within the program using
a DEFINE SUBROUTINE statement. You will now define the subroutine as a separate object external
to the program.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Creating an External Subroutine

Since the existing code from the program will be reused in the external subroutine, you will now
save the program under a new name, change its type to subroutine and delete all lines that are
not required.

The DEFINE SUBROUTINE statement of the external subroutine is coded in the sameway as the inline
subroutine in the program.

To create an external subroutine

1 Enter the following in the command line of the program editor.

SA SUBR01

The current program is saved with the new name SUBR01. The program is still shown in the
editor.

2 Load the newly created object into the editor by entering the following command:

E SUBR01

The object type is still program.

First Steps90

External Subroutines

3 To change the program into an external subroutine, enter the following command:

SET TYPE S

where "S" denotes subroutine.

The object type which is shown in the screen changes to "Subroutine".

4 Use the line command D to delete all lines except the following:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

It is also possible to delete a block of text. To do so, you have to proceed as follows:

1. At the beginning of the first line of the block, enter the line command .X.

2. At the beginning of the last line of the block, enter the line command .Y.

3. Press ENTER.

The block of lines to be deleted is now marked with ".X" and ".Y". (If you want to remove
the marks, you can enter RESET in the command line.)

4. To delete the marked block, enter DX-Y in the command line.

5 Stow the subroutine.

Referencing the External Subroutine from Your Program

The PERFORM statement invokes both internal and external subroutines.When an internal subroutine
is not found in the program, Natural automatically tries to perform an external subroutine with
the same name. Note that Natural looks for the name that has been defined in the subroutine code
(that is: the subroutine name), not for the name that you have specifiedwhen saving the subroutine
(that is: the Natural object name).

Now that you have defined an external subroutine, you have to remove the inline subroutine
(which has the same name as the external subroutine) from your program.

91First Steps

External Subroutines

To use the external subroutine in your program

1 Return to the program editor by entering the following in the command line of the editor in
which the subroutine is currently shown.

E PGM01

2 Remove the following lines:

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE '*' TO #MARK

END-SUBROUTINE

Your program should now look as follows:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK

END-READ
*

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF
*

First Steps92

External Subroutines

END-REPEAT
*
END

3 Run the program.

4 Enter "JONES" as the starting name and press ENTER.

The resulting list should still show an asterisk for each employee who has 20 days of leave
and more.

5 To return to the program editor, enter EDIT at the MORE prompt.

6 Stow the program.

You can now proceed with the next exercises: Subprograms.

93First Steps

External Subroutines

94

13 Subprograms

■ Modifying the Local Data Area ... 96
■ Creating a Parameter Data Area from an Existing Local Data Area .. 98
■ Creating Another Local Data Area Containing a Different View ... 99
■ Creating a Subprogram ... 101
■ Referencing the Subprogram from Your Program ... 102

95

You will now expand your program to include a CALLNAT statement that invokes a subprogram.
In the subprogram, the employees identified from the main program will be the basis of a FIND
request to the VEHICLES file which is also part of the demo database. As a result, your output will
contain vehicles information from the subprogram as well as employees information from the
main program.

The new subprogram requires the creation of an additional local data area and a parameter data
area.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Modifying the Local Data Area

You will now addmore fields to the local data area that you have previously created. These fields
will be used by the subprogram that you will create later.

To add more fields to the local data area

1 Return to your local data area.

E LDA01

First Steps96

Subprograms

2 If required, press ESC to switch to edit mode.

3 Define the following fields below #NAME-END (use the line command I and from the resulting
window, chooseData Field):

LengthFormatNameLevel

8A#PERS-ID1

20A#MAKE1

20A#MODEL1

When all fields have been added, press ESC.

The local data area should now look as follows:

Press <ESC> to enter command mode
Mem: LDA01 Lib: TUTORIAL Type: LOCAL Bytes: 376 Line: 5 of: 5

C T L Name of Datafield F Length Index/Comment M
* *** Top of Data Area ***

1 #NAME-START A 20
1 #NAME-END A 20
1 #PERS-ID A 8
1 #MAKE A 20
1 #MODEL A 20

* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

4 Stow the local data area.

97First Steps

Subprograms

Creating a Parameter Data Area from an Existing Local Data Area

A parameter data area (PDA) is used to specify the data parameters to be passed between your
Natural program and the subprogram that you will create later. The parameter data area will be
referenced in the subprogram.

With minor modifications, your local data area can be used to create the parameter data area: you
will delete two of the data fields in in the local data area and then save the revised data area as a
parameter data area. The original local data area remains intact.

To create the parameter data area

1 In the local data area, delete the fields #NAME-START and #NAME-END using the line command
D.

2 Enter the following in the command line of the data area editor.

SA PDA01

The current data area is saved with the new name PDA01. The existing local data area is still
shown in the editor.

3 Load the newly created data area into the editor by entering the following command:

E PDA01

4 To change the local data area into a parameter data area, enter the following command:

SET TYPE A

where "A" denotes parameter data area.

The object type changes to "Parameter". This is indicated at the top of the screen. The parameter
data area should now look as follows:

First Steps98

Subprograms

Command:
Mem: PDA01 Lib: TUTORIAL Type: PARAMETER Bytes: 116 Line: of: 3
C T Comment

* *** Top of Data Area ***
1 #PERS-ID A 8
1 #MAKE A 20
1 #MODEL A 20

* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

5 Stow the parameter data area.

Creating Another Local Data Area Containing a Different View

You will now create a second local data area and import fields from the DDM for the VEHICLES
database file.

This local data area will be referenced in the subprogram.

To create the local data area

1 Enter the following command in the command line of the data area editor.

CLEAR

The data area editor is now empty.

2 To change the type of the data area, enter the following in the command line:

SET TYPE L

where "L" denotes local data area.

99First Steps

Subprograms

3 Press ESC to switch to edit mode. Then enter the following line command in the first column
of the line indicating the top of the data area.

V

4 Enter the following in the resulting window and press ENTER:

+------------------- View Definition -------------------+
¦Name of View: VEHICLES-VIEW ¦
¦Name of DDM: VEHICLES ¦
¦Comment: ¦
+---+

A window appears showing the fields of the specified DDM.

Press <ESC> to enter command mode
Mem: empty Lib: TUTORIAL Type: LOCAL Bytes: 0 Line: 0 of: 0

C T Comment
V * *** Top of Data Area ***

* *** End of Data Area ***

+------------------------------- DDM: VEHICLES --------------------------------+
¦ 1 AA REG-NUM A 15 N D ¦
¦ 1 AB CHASSIS-NUM B 4 F ¦
¦ 1 AC PERSONNEL-ID A 8 D ¦
¦ G 1 CD CAR-DETAILS ¦
¦ 2 AD MAKE A 20 N D ¦
¦ 2 AE MODEL A 20 N ¦
+--+

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

5 Mark the following fields by entering an "X" in the first column:

PERSONNEL-ID
CAR-DETAILS
MAKE
MODEL

6 After you have marked all required fields, press ENTER.

The local data area should now look as follows (use the arrow keys to scroll to the top of the
data area):

First Steps100

Subprograms

Press <ESC> to enter command mode
Mem: Lib: TUTORIAL Type: LOCAL Bytes: 485 Line: 0 of: 5
C T Comment

* *** Top of Data Area ***
V 1 VEHICLES-VIEW VEHICLES

2 PERSONNEL-ID A 8
G 2 CAR-DETAILS

3 MAKE A 20
3 MODEL A 20

* *** End of Data Area ***

F 1 HELP F 2 CHOICE F 3 QUIT F 4 SAVE F 5 STOW F 6 CHECK
F 7 READ F 8 CLEAR F 9 MEM TYPE F10 GEN F11 FLD TYPE F12

7 Save the new local data area by entering the following in the command line:

SA LDA02

8 Stow the new local data area.

Creating a Subprogram

Youwill now create a subprogram that uses a parameter data area and a local data area to retrieve
information from the VEHICLES file. The subprogram receives the personnel ID passed by the
program PGM01 and uses this ID as the basis for a search of the VEHICLES file.

To create the subprogram

1 In the command line of the data area editor, enter the following command:

E N

where "N" denotes subprogram.

An empty program editor is invoked. The object type has been set to subprogram.

2 Enter the following:

101First Steps

Subprograms

DEFINE DATA
PARAMETER USING PDA01
LOCAL USING LDA02

END-DEFINE
*
FD1. FIND (1) VEHICLES-VIEW

WITH PERSONNEL-ID = #PERS-ID
MOVE MAKE (FD1.) TO #MAKE
MOVE MODEL (FD1.) TO #MODEL
ESCAPE BOTTOM

END-FIND
*
END

This subprogram returns to a given personnel ID the make and model of the employee's
company car.

The FIND statement selects a set of records (here: one record) from the database based on the
search criterion #PERS-ID.

In the field #PERS-ID, the subprogram receives the value of PERSONNEL-ID that has been passed
by the program PGM01. The subprogramuses this value as the basis for a search of the VEHICLES
file.

3 Stow the subprogram.

STOW SPGM01

Referencing the Subprogram from Your Program

A subprogram is invoked from the main program using a CALLNAT statement. A subprogram can
only be invoked via a CALLNAT statement; it cannot be executed by itself. A subprogram has no
access to the global data area used by the invoking object.

Data is passed from the main program to the specified subprogram through a set of parameters
that are referenced in the DEFINE DATA PARAMETER statement of the subprogram.

The variables defined in the parameter data area of the subprogram do not have to have the same
names as the variables in the CALLNAT statement. Since the parameters are passed by address, it is
only necessary that they match in sequence, format, and length.

Youwill nowmodify your main program so that it can use the subprogram you have just defined.

To use the subprogram in your main program

1 Return to the program editor by entering the following in the command line.

First Steps102

Subprograms

E PGM01

2 Insert the following directly above the DISPLAY statement:

RESET #MAKE #MODEL
CALLNAT 'SPGM01' PERSONNEL-ID #MAKE #MODEL

The RESET statement sets the values of #MAKE and #MODEL to null values.

3 Delete the line containing the DISPLAY statement and replace it with the following:

WRITE TITLE
/ '*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***'
/ '*** ARE MARKED WITH AN ASTERISK ***'//

*
DISPLAY 1X '//N A M E' NAME

1X '//DEPT' DEPT
1X '/LV/DUE' LEAVE-DUE

' ' #MARK
1X '//MAKE' #MAKE
1X '//MODEL' #MODEL

The text defined with the WRITE TITLE statement will appear at the top of each page in the
output. The WRITE TITLE statement overrides the default page title: the information which
was previously displayed at the top of each page (page number, date and time) is no longer
shown. Each slash (/) causes the subsequent information to be shown in a new line.

Since the subprogram is now returning additional vehicles information, the columns in the
output need to be resized. They receive shorter headers. The column in which the asterisk is
to be shown (#MARK), does not receive a header at all. One space will be inserted between the
columns (1X). Each slash in the header causes the subsequent information to be shown in a
new line of the same column.

Your program should now look as follows:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

103First Steps

Subprograms

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

RESET #MAKE #MODEL
CALLNAT 'SPGM01' PERSONNEL-ID #MAKE #MODEL

*
WRITE TITLE
/ '*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***'
/ '*** ARE MARKED WITH AN ASTERISK ***'//

*
DISPLAY 1X '//N A M E' NAME

1X '//DEPT' DEPT
1X '/LV/DUE' LEAVE-DUE

' ' #MARK
1X '//MAKE' #MAKE
1X '//MODEL' #MODEL

*
END-READ

*
IF *COUNTER (RD1.) = 0 THEN

REINPUT 'No employees meet your criteria.'
END-IF

*
END-REPEAT
*
END

4 Run the program.

5 Enter "JONES" as the starting name and press ENTER.

The resulting list should look similar to the following:

MORE

*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***
*** ARE MARKED WITH AN ASTERISK ***

LV
N A M E DEPT DUE MAKE MODEL

-------------------- ------ --- - -------------------- --------------------

First Steps104

Subprograms

JONES SALE30 25 * CHRYSLER IMPERIAL
JONES MGMT10 34 * CHRYSLER PLYMOUTH
JONES TECH10 11 GENERAL MOTORS CHEVROLET
JONES MGMT10 18 FORD ESCORT
JONES TECH10 21 * GENERAL MOTORS BUICK
JONES SALE00 30 * GENERAL MOTORS PONTIAC
JONES SALE20 14 GENERAL MOTORS OLDSMOBILE
JONES COMP12 26 * DATSUN SUNNY
JONES TECH02 25 * FORD ESCORT 1.3

6 To return to the program editor, enter EDIT at the MORE prompt.

7 Stow the program.

You have successfully completed this tutorial.

105First Steps

Subprograms

106

14 Natural Development Server and NaturalONE

When using Natural for Linux and Cloud as a development server, you should use the editors
which are provided by NaturalONE to edit the Natural sources on the Natural server.

To edit DDMs you use the DDM Editor. For maps you use the Map Editor. For all other Natural
object types you use the Natural source editor.

To use your test projects on the Linux server in NaturalONE:

1 In the Natural Server View, map to the Linux server.

2 Select the library.

3 In the context menu select Add to new Project to download the library into a new Natural
project of the workspace.

107

108

	First Steps
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 About this Tutorial
	Prerequisites
	About the Sample Application

	3 Getting Started with Natural
	Invoking Natural's Main Menu
	Libraries
	Issuing Commands
	Creating a User Library
	Programming Modes

	4 Hello World!
	Creating a Program
	Running a Program
	Correcting Program Errors
	Stowing a Program
	Displaying Information about a Program
	Displaying the Content of the Current Library
	Setting the Editor Profile Options

	5 Database Access
	Saving Your Program Under a New Name
	Defining the Required Data Using a View
	Reading Data from a Database
	Reading Selected Data from a Database

	6 User Input
	Allowing for User Input
	Designing a Map for User Input
	Creating a Map
	Defining Text Fields
	Defining Data Fields
	Specifying Names for Data Fields
	Adding System Variables
	Repositioning Fields
	Testing a Map
	Stowing a Map

	Invoking the Map from Your Program
	Ensuring that an Ending Name is Always Used

	7 Loops and Labels
	Allowing Repeated Usage
	Displaying a Message Indicating that Information was not Found

	8 Inline Subroutines
	Defining the Inline Subroutine
	Performing the Inline Subroutine

	9 Processing Rules and Helproutines
	Defining a Processing Rule
	Defining a Helproutine

	10 Local Data Areas
	Creating a Local Data Area
	Defining Data Fields
	Importing the Required Data Fields from a DDM
	Referencing the Local Data Area from Your Program

	11 Global Data Areas
	Creating a Global Data Area from an Existing Local Data Area
	Adapting the Local Data Area
	Referencing the Global Data Area from Your Program

	12 External Subroutines
	Creating an External Subroutine
	Referencing the External Subroutine from Your Program

	13 Subprograms
	Modifying the Local Data Area
	Creating a Parameter Data Area from an Existing Local Data Area
	Creating Another Local Data Area Containing a Different View
	Creating a Subprogram
	Referencing the Subprogram from Your Program

	14 Natural Development Server and NaturalONE

