
NaturalONE

Application Testing

Version 9.2.1

January 2024

This document applies to NaturalONE Version 9.2.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2009-2024 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ONE-TESTING-DOC-921-20240129

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Release Notes .. 5
What's New in Version 9.1.3 .. 6

3 Prerequisites .. 7
4 Getting Started .. 9

General Information ... 10
Testing a Subprogram Directly .. 11
Creating a Unit Test .. 13
Running a Unit Test .. 16
Generating an Ant Script ... 17

5 Features of the Test Editors ... 19
6 Test a Business Service or Subprogram Directly ... 21

Test a Business Service Directly ... 22
Test a Subprogram Directly .. 31
Debug a Subprogram Directly ... 33
Export/Import Test Data ... 35
Export Test Data to a CSV File ... 38

7 Create a Unit Test for a Business Service or Subprogram ... 43
Enable for Application Testing ... 44
Create a Unit Test for a Business Service ... 44
Create a Unit Test for a Subprogram ... 59
Generate Default Unit Tests ... 62
Create a New Unit Test Suite ... 72
Create Unit Test Log Files .. 74
Use the Dependencies View ... 74

8 Create an External Data Unit Test ... 77
Create the Unit Test .. 78
Configure Column Mappings and Sample Data ... 83

9 Create a Sequence Unit Test .. 87
Create the Unit Test .. 89
Use the Sequence Unit Test Editor ... 92
Use the Dependencies View ... 101

10 Test an External Subroutine ... 105
Access the Subroutine Tester .. 106
Test with a Program ... 106
Test with a Subprogram ... 107

11 Test a Natural Map .. 109
12 Setting Preferences for Application Testing .. 113

Showing the Preferences for Application Testing .. 114

iii

Set Logging Preferences for Unit Tests ... 115
Set Server Synchronization Preferences ... 115

13 Creating Ant Scripts to Run Unit Tests .. 117
General Information ... 118
Using the Natural Unit Test Ant Script Wizard to Run Natural Unit Tests 118
Generating a JUnit-style Test Report .. 124
Running the Natural Unit Test Ant Script from NaturalONE 124
Running the Natural Unit Test Ant Script from the Command Line 125
Properties of the Natural Unit Test Ant Script ... 129
Migrate Existing Natural Unit Test Ant Scripts ... 131

Application Testingiv

Application Testing

Preface

This documentation describes how to test business services, subprograms, subroutines, andmaps
in the NaturalONE environment. It is organized under the following headings:

Information on new features and enhancements.Release Notes

Prerequisites for application testing.Prerequisites

A brief introduction to application testing. How to test a simple
subprogram, how to save it as a unit test file, and how to generate
an Ant script from the unit test file.

Getting Started

Describes the features of the test editors for business services and
subprogram, such as navigation options and toolbar icons.

Features of the Test Editors

How to run a business service or subprogram by analyzing the
parameters in a test editor.

Test a Business Service or
Subprogram Directly

How to create a Natural unit test for a business service or
subprogram.

Create a Unit Test for a Business
Service or Subprogram

How to create a unit test that accepts input and/or validations from
a CSV file.

Create an External Data Unit Test

How to create a special type of unit test that executes a sequence
of test steps in a specified order.

Create a Sequence Unit Test

How to test an external subroutine using either a subprogram or a
program that calls a subprogram.

Test an External Subroutine

How to test a map as you would on the server.Test a Natural Map

Describes the preferences you can set for the test functions, such as
setting preferences for logging unit test results and synchronizing
local resources with those on the server.

Setting Preferences for Application
Testing

How to create XML-based Ant scripts to run unit test files.CreatingAnt Scripts to RunUnit Tests

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Application Testing2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Application Testing

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Release Notes

■ What's New in Version 9.1.3 .. 6

5

These Release Notes pertain to the Application Testing component of NaturalONE version 9.1.

What's New in Version 9.1.3

Eclipse-Independent Application Testing

It is now possible to execute a Natural unit test bed with an Ant script outside the context of a
NaturalONE/Eclipse environment. This is especially important for providing full DevOps support
if you also want to execute test cases unattended in a lean command line environment. This exten-
sion will also simplify the integration of Natural unit test processing with continuous integration
tools like Jenkins.

The functionality of writing Natural unit test cases is already covered by NaturalONE. However,
this has now been extended with a new Natural unit test Ant Script wizard, which can be used to
generate Ant based testing scripts. These scripts support several targets like checkout for checking
out a test project or unittest for executing a Natural unit test bed.

For testing purposes, you can now also execute a testing Ant script inside NaturalONE via the
Eclipse built in Run As Ant Script functionality. The results of a test run will be displayed in the
Console view.

Refer to Creating Ant Scripts to Run Unit Tests for further details.

Application Testing6

Release Notes

3 Prerequisites

When the Application Testing component of NaturalONE has been installed, you can use the test
functions suppliedwithNaturalONE. If this component has not yet been installed, use the Software
AG Installer to install it.

The tests are run using the EntireX RPC mechanism. While many details are hidden, you must
have some knowledge of EntireX RPC to run the tests.

To test subprograms and business services directly, and to create unit tests for subprograms and
business services, a Natural RPC server is required. The Natural Development Server cannot be
used in this context. If you are testing items in a project connected to the local Natural runtime
environment, a special connection via RPC must be made.

As a business service cannot be tested in the local Natural runtime environment without a full
local installation ofNatural Business Services, the tests are simulated locally by calling the subpro-
gram directly.

Note: Some keywords like IN, OUT or INOUT have a special meaning in EntireX and therefore
cannot be used in subprograms as group or parameter names when they are going to be
tested. Please refer to Rules for Coding Group and Parameter Names in section Software AG IDL
Editor of the EntireX documentation for a full list of these keywords.

7

8

4 Getting Started

■ General Information ... 10
■ Testing a Subprogram Directly ... 11
■ Creating a Unit Test ... 13
■ Running a Unit Test ... 16
■ Generating an Ant Script ... 17

9

General Information

This is a brief introduction to working with the Application Testing component of NaturalONE.
It explains how to test a simple subprogram, how to save it as a unit test file, and how to generate
an Ant script from the unit test file. You can then use the Ant script, for example, with your auto-
mated nightly tests. It is assumed that you use the local RPC server which is automatically started
when you start NaturalONE.

Note: Testing business services is not in the scope of this introduction. However, this works
similarly.

The topics below assume that you have created a Natural project which uses the local Natural
runtime. This Natural project contains a library with two objects, a subprogram and a parameter
data area (PDA).

Testing is illustrated using the following simple subprogram:

DEFINE DATA PARAMETER
USING PDA1
END-DEFINE
#result := #var1 + #var2
END

where the subprogram calls the following PDA:

DEFINE DATA PARAMETER
1 #var1 (I4)
1 #var2 (I4)
1 #result (I4)

END-DEFINE

Do not forget to build your Natural project before you start testing.

Application Testing10

Getting Started

Testing a Subprogram Directly

When you test a subprogram directly, you can analyze the parameters in a test editor. You can
change the input values, run the test, and verify the return values.

To test a subprogram

1 In the Project Explorer view, select the subprogram.

2 Invoke the context menu and choose Testing > Test Subprogram.

The test editor appears.

3 Select the entry for #var1 on the left side of the test editor.

Properties are now shown on the right side of the test editor.

4 Define a value for #var1 on the right side. Example:

11Application Testing

Getting Started

5 Select the entry for #var2 on the left side of the test editor, and define a value on the right
side.

6 Choose the (Run Test) button in the local toolbar of the test editor.

The result value is now shown. Example:

Application Testing12

Getting Started

Creating a Unit Test

After defining the input and output parameters for the test, you can save this as a unit test.

To create a unit test

1 Make sure that the editor with your previous test is active.

2 From the Filemenu, choose Save As.

TheNew Natural Unit Test dialog appears.

13Application Testing

Getting Started

The name of the subprogram is automatically provided as the name for the unit test. For now,
you need not change any information.

3 Choose the Finish button.

A folder named Testing-Suites is automatically created in the project. This folder is always
created when you create the first unit test in a project.

The unit test is stored in the newTesting-Suites folder. Unit tests for subprograms (also called
"Natural unit tests)" have the extension .nattst.

Application Testing14

Getting Started

The generated unit test file is automatically shown in the unit test editor (provided that you
have not deselected the Display generated file(s) in theNew Natural Unit Test dialog).

The Summary tab shows the information that will be used for the test.

You can save the test for later reuse. For example, you can use it as the basis for an Ant script.
Before you save the test, however, you have the possibility the change information on the
following tabs:

15Application Testing

Getting Started

■ Summary
You can allow a test to pass with an expected error.

■ Connection
You can define a different RPC environment for your test.

■ Input
You can change the input fields that are to be sent to the server.

■ Validation
You can configure the fields that are to be tested after the call to the server has been made.

Detailed information these tabs is provided later in this documentation.

4 Use the standard Eclipse functionality to save your changes. For example, press CTRL+S.

Running a Unit Test

After you have created the unit test, you can run it in order to check whether it works as expected.

To run a unit test

■ Choose the button in the local toolbar of the unit test editor.

Or:

In the Project Explorer view, select the file with the extension .nattst, invoke the context menu
and choose Testing > Run Unit Test(s).

TheNatural Unit Test view is automatically opened the first time you run a unit test. Example:

When the test was successful, the state "passed" is shown.

Application Testing16

Getting Started

Generating an Ant Script

You can generate XML-based Ant scripts which run your unit test files.

To generate an Ant script

1 In the Project Explorer view, select the project where your test was created.

2 Invoke the context menu and chooseNew > Other.

3 In the resulting dialog box, expand Software AG > Testing and then chooseNatural Unit
Test Ant Script.

The following dialog appears.

17Application Testing

Getting Started

For now, leave the provided settings as they are.

4 Choose the Finish button.

As a result the unittest.xml file is created in the Natural project folder. This file contains the
Natural Unit Test Ant script. Detailed information on the available properties is provided
later in this documentation under Creating Ant Scripts to Run Unit Tests. Usually, you run
this file outside of Eclipse via the command line.

Application Testing18

Getting Started

5 Features of the Test Editors

This section describes the features of the test editors, such as navigation options and toolbar icons.
The following example shows the Test Subprogram editor. The test editors are similar for both
business services and subprograms; the main differences between the editors are that the Debug
option is not available in the Test Business Service editor and you can select the method to test
(which can change which subprogram is tested internally).

In this example, the INPUT-DATA and OUTPUT-DATA fields have been expanded:

Keyboard navigation is supported in all editors. In the example above, you can use keys on the
keyboard to move from one field to another in the tree view and/or navigate to the table on the
right to add or edit values.

The following table describes each of the options available on the editor toolbar:

19

DescriptionToolbar Icon

Debugs the current subprogram using the NaturalONE debug attach server and the current
values defined in the editor. For information, see Debug a Subprogram Directly.

Note: This toolbar icon is only visible in the Test Subprogram editor andwhen theUse debug
attach server option is selected in the Eclipse Preferences > Software AG > Natural > Debug
Attach Settingswindow; it is not available in the Test Business Service editor.

Runs the current file using the values defined in the editor. Use the down arrow to display the
available environments inwhich to run the test and select a different environment. For example:

Stops the current test.

Records the test data for export to a CSV file (file extension .csv), which can then be used as
input for an external data unit test. After selecting this option, either the record function for
the test will begin or the Define External Test Details panel will be displayed to define the
external data unit test. To change details about the recording, select the down arrow. For

example:

TheDefine External Test Details panel is displayed. For more information, see Export Test
Data to a CSV File.

Exports test data (field names and values) from the data tree in the test editor view to a new
or existing test data file (extension .tstdata) in the workspace. For information, see Export Test
Data.

Imports an existing test data file in the workspace to the data tree in the test editor view by
matching field names in the imported test data file to field names in the editor tree. For
information, see Import Test Data.

Resets all data values and structures to their default values.

Application Testing20

Features of the Test Editors

6 Test a Business Service or Subprogram Directly

■ Test a Business Service Directly ... 22
■ Test a Subprogram Directly ... 31
■ Debug a Subprogram Directly .. 33
■ Export/Import Test Data .. 35
■ Export Test Data to a CSV File ... 38

21

This section describes how to test a business service or subprogram directly. It provides an easy
way to run a business service or subprogram by analyzing the parameters, displaying them in a
test editor (tester), and allowing you to change the input values. You can then run the test and
verify the return values.

Test a Business Service Directly

This section describes how to test a business service directly. The following topics are covered:

■ Test the Service
■ Define Date and Time Details
■ Define Connections
■ Define Additional RPC Environments
■ Save as a Business Service Unit Test

Note: The subprograms used for the servicemust be available locally. If they are not available
locally, download them from the server.

Test the Service

To test a business service directly

1 Open the context menu for the business service in the Project Explorer view.

2 Select Testing.

The testing options for business services are displayed.

3 Select Test Business Service.

The business service is displayed in the editor view. For example:

Application Testing22

Test a Business Service or Subprogram Directly

Note: For information on using this editor, see Features of the Test Editors.

4 Expand the INPUT-DATA andOUTPUT-DATA nodes.

TheData tab displays the properties and values defined for each parameter used in the test.
For example:

5 Select each input and output field to use in the test and define the value for the Value property.

For example:

23Application Testing

Test a Business Service or Subprogram Directly

ValueParameter

2FIRST-NUM

3SECOND-NUM

5RESULT

true (select Value to change the value from false to true)SUCCESS

Optionally, you can:

ProcedureTask

Select the method inMethod.

Note: Changing the method may change which
subprogram is tested; the parameters may also
change.

Define test data for anothermethod used by the
business service.

Expand the INPUT-DATA node and provide input
values for each property in Property and Value.

Define input parameters for the test.

Expand theOUTPUT-DATA node and provide
output values for each property in Property and
Value.

Define output parameters for the test.

Select the Reset Data toolbar icon. For example:Reset all data values and structures to their
default values.

See Define Date and Time Details.Enter date and/or time details.

See Define Connections.Run the test in another environment.

Select the Stop Test toolbar icon. For example:Interrupt a test that continues to run with no
response.

See Export/Import Test Data.Export and import test data for business services
and subprograms.

See Export Test Data to a CSV File.Record test data and then export it to a CSV file
(file extension .csv).

6 Select to start the test.

Define Date and Time Details

When defining the value for a date and/or time field in a subprogram used by a business service,
a window is displayed to enter details about the date or time. This section describes how to access
and define details about a date or time field.

To define details about a date or time field

1 Select Value for a date or time field in the testing editor.

For example:

Application Testing24

Test a Business Service or Subprogram Directly

2 Select in the Value column.

The Enter Date/Timewindow is displayed. For example:

By default, the current date and time are displayed. Optionally, you can:

ProcedureTask

Select Blank date/time.Blank out date and time information
when testing business services or
subprograms.

To change the month, select the up or down arrow forDate.

To change the day, select the day portion ofDate and then
select the up or down arrow.

Change the date used for the test.

To change the year, select the year portion ofDate and then
select the up or down arrow.

25Application Testing

Test a Business Service or Subprogram Directly

ProcedureTask

To change the hour, select the up or down arrow for Time.

To change the minute, select the minute portion of Time and
then select the up or down arrow.

Change the time used for the test.

To change the second, select the second portion of Time and
then select the up or down arrow.

Enter the number of tenths of a second in Fraction.Use tenths of a second to define the
time used for the test.

Define Connections

This section describes the Connection tab in the editor view. This tab is used to maintain inform-
ation about the environment in which the test will run.

To define the connection settings

1 Select the Connection tab for the test.

For example:

Application Testing26

Test a Business Service or Subprogram Directly

This tab shows the current connection settings for the RPC environment. For this example,
the settings define aNatural RPCMainframe environment derived directly fromNaturalONE,
as well as settings indicating how the RPC server will be started.

2 Select the environment in which to run the test in RPC environment.

This value defines the name of an EntireX RPC connection configured in Eclipse.

Note: The list of environments is defined in the Preferenceswindow for RPC environ-
ments. For information on adding additional environments to the list, seeDefine Addi-
tional RPC Environments.

Or:

Select Custom settings and define the custom connection as follows:

DescriptionSetting

Broker identifier. Each installation of EntireX is assigned a Broker ID. This
number uniquely identifies EntireX to your network. If you do not know the
Broker ID, ask the network administrator for your organization.

Broker ID

Name of the Broker server used to logically describe a server (rather than the
name of the program that implements the server). This allows you to change
the program name without affecting the client programs that use the service.

Server

User identifier the server will use to assign the corresponding fields in the
EntireX control block when making calls using the EntireX ACI (Advanced
Communication Interface).

User ID

Password value the server will use to assign the corresponding fields in the
EntireX control block.

Password

Determines whether a Natural logon is required.Natural logon required

User identifier the EntireX RPC server will use to connect with the Natural
server.

RPC user ID

Password value the EntireX RPC server will use to connect with the Natural
server.

RPC password

3 Use theSet project steplibs check box to indicatewhether the steplibs from theNatural project
are set in the RPC server environment. If checked, the Natural Development Server is used.
If not checked, only the RPC server environment is used, without Natural Development
Server.

Note: Keep in mind that the Natural Development Server used by the project must al-
ways be accessible when the value is checked. The Natural Development Server is ac-
cessed to check the development mode settings for the steplib consolidation. These
steplibs are then passed to the RPC server.

4 Save the connection settings.

27Application Testing

Test a Business Service or Subprogram Directly

Define Additional RPC Environments

You can define additional RPC environments. Once new environments have been added, they
can be selected in RPC environment on the Connection tab.

To define additional RPC environments

1 Select Preferences on theWindowmenu. The Preferenceswindow is displayed.

2 Expand the Software AG node.

3 Select EntireX > RPC Environments.

The RPC Environments settings are displayed. For example:

4 Select Insert.

TheNew RPC Environment panel is displayed.

5 SelectNatural RPC Server in Type.

The specification fields for this type of server are displayed. For example:

Application Testing28

Test a Business Service or Subprogram Directly

6 Provide the following details about the new environment:

DescriptionSection

Type the broker ID, server address, and default timeout values in the fields
provided.

Broker parameters

Type the user ID and password for EntireX in the fields provided.EntireX authentication

Type the user ID and password for the RPC server in the fields provided.RPC server authentication

Type the name of the library and program from which to extract data in
the fields provided.

Extractor settings

If the new environment is not a local environment, select Stow or Save
and provide the name of the library in which to stow or save wrapper
subprograms in Target library name.

Wrapper settings

29Application Testing

Test a Business Service or Subprogram Directly

DescriptionSection

After entering the Broker parameters, the default name of the new
environment is displayed in this section. If you do not want to use the
default name, selectOther and provide a new name.

Environment name

For more information about the settings on this panel, refer to the EntireX documentation.

7 Select Finish.

Save as a Business Service Unit Test

After defining the input and output parameters for the test, you can save it as a business service
unit test.

To save the test as a business service unit test

1 Select Save As on the Filemenu.

TheDefine Business Service Unit Test Details panel is displayed. For example:

2 Provide details for the unit test.

For information, see Create a Unit Test for a Business Service.

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst,
and .seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

Application Testing30

Test a Business Service or Subprogram Directly

Test a Subprogram Directly

This section describes how to test a subprogram directly. The following topics are covered:

■ Access the Test Function
■ Access the Debug Function
■ Save as a Natural Unit Test

Note: The subprogram must be available locally. If the subprogram is not available locally,
download it from the server.

Access the Test Function

To access the function to test a subprogram directly

1 Open the context menu for the subprogram in the Project Explorer view.

Or:

Open the context menu for the subprogram in the editor view.

Or:

Open the context menu for the subprogram in the Dependencies view.

2 Select Testing > Test Subprogram.

The subprogram is displayed in the editor view. For example:

This editor functions in the same way as the Test Business Service editor. The differences
between this editor and theTest Business Service editor is that this editor includes theDebug

31Application Testing

Test a Business Service or Subprogram Directly

toolbar icon and the business service editor has an option to select the method (which can
change which subprogram is tested internally).

Note: For information on using this editor, see Features of the Test Editors and Test a
Business Service Directly.

Access the Debug Function

This section describes how to access the Debug option from the Test Subprogram editor.

Note: To activate the Debug function, the Use debug attach server option must be selected
in the Eclipse Preferences > Software AG > Natural > Debug Attach Settingswindow.

To access the Debug function

1 Open the context menu for the subprogram in the Project Explorer view.

Or:

Open the context menu for the subprogram in the editor view.

Or:

Open the context menu for the subprogram in the Dependencies view.

2 Select Testing > Test Subprogram.

The subprogram is displayed in the editor view.

3 Select on the editor toolbar to debug the subprogram using the values currently defined
in the editor.

When a breakpoint is reached, the Debug perspective is displayed. For more information, see
Debug a Subprogram Directly.

Save as a Natural Unit Test

After defining the input and output parameters for the test, you can save it as a Natural unit test.

To save the test as a Natural unit test

1 Select Save As on the Filemenu.

TheDefine Natural Unit Test Details panel is displayed. For example:

Application Testing32

Test a Business Service or Subprogram Directly

2 Provide details for the unit test.

For information, see Create a Unit Test for a Subprogram.

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst,
and .seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

Debug a Subprogram Directly

This section describes how to debug a subprogram via RPC using the NaturalONE debugger and
the values currently defined in the editor.

Note: To activate the Debug context menu, the Use debug attach server option must be
selected in the Eclipse Preferences > Software AG > Natural > Debug Attach Settings
window.

To debug a subprogram

1 Open the context menu for the subprogram in the Project Explorer view.

2 SelectDebug As > Natural Application.

The subprogram is displayed in the editor view. For example:

33Application Testing

Test a Business Service or Subprogram Directly

This editor functions in the same way as the Test Subprogram editor.

3 Select the down arrow for to select the environment in which to debug the current file
using the values defined in the editor.

For example:

4 Select to debug the current file using the values defined in the editor.

When a breakpoint is reached, the Debug perspective is displayed.

Tip: If you receive a WAIT timeout occurred error message, try increasing the timeout
value for the selected RPC connection in the Eclipse Preferences > Software AG > En-
tireX > RPC Environmentswindow. You can continue debugging in the Debug per-
spective when the editor receives the WAIT timeout error.

Notes:

1. For information on using this editor, see Features of the Test Editors and Test a Subprogram
Directly.

2. For information on using a debug attach server, see Using the Debugger in Using NaturalONE.

Application Testing34

Test a Business Service or Subprogram Directly

Export/Import Test Data

This section describes how to export and import test data for a business service and subprogram,
which allows you to populate the test data quickly without re-entering each field name. These
options are:

■ Export test data (field names and values) from the test editor data tree to a new or existing test
data file (extension .tstdata) in the workspace.

Note: The .tstdata files can be stored anywhere in the workspace.

■ Import an existing test data file in the workspace to the test editor (matching field names in the
imported file to field names in the editor).

This section covers the following topics:

■ Export Test Data
■ Import Test Data

Export Test Data

To export test data to the workspace

1 Open the context menu for the business service (or subprogram) in the Project Explorer view.

The testing options are displayed.

2 Select Test Business Service (or Test Subprogram).

The business service (or subprogram) is displayed in the editor view.

3 Select on the editor toolbar.

TheDefine Details about the Test Data Filewindow is displayed. For example:

35Application Testing

Test a Business Service or Subprogram Directly

4 Select the location in which to export the test data file.

The last exported .tstdata file is selected.

Note: To overwrite data, select an existing file.

5 Type the name of the test data file in File name.

By default, the ".tstdata" extension is added to the file name.

6 SelectOK to export the test data file.

If the test data file currently exists (as shown in the example above), an overwrite confirmation
dialog is displayed.

Example

The following example shows sample input for a business service test:

Application Testing36

Test a Business Service or Subprogram Directly

After exporting the data, the following test data (.tstdata) file is created:

You can modify this file using key=value pairs (for example, FIELDA=value). If the key begins
with a hash character (#), then the field name must be preceded by a \ character (for example,
\#FIELDB=value) or the field will be skipped. All other hash characters (such as CUSTOM-
ER.#NAME=value) do not require the \ character.

Tip: Using this file as an example, you can create test data files for all the functions, save
the files using appropriate names, and then change the values accordingly.

Import Test Data

To import test data from the workspace

1 Open the context menu for the business service (or subprogram) in the Project Explorer view.

The testing options are displayed.

2 Select Test Business Service (or Test Subprogram).

The business service (or subprogram) is displayed in the editor view.

37Application Testing

Test a Business Service or Subprogram Directly

3 Select on the editor toolbar.

The Import Datawindow is displayed. For example:

4 Select the test data file to import (only projects/folders containing test data files are listed).

5 SelectOK to import the file.

Any field in the imported test data file that does not have a matching field in the test editor
tree, or has a matching field containing an invalid value, will not be imported and will not
stop the import process. If this situation occurs, an Error log warning is displayed showing
problem fields.

Export Test Data to a CSV File

This section describes how to record the data used to test a business service or subprogramdirectly
and then export it to a CSV file (file extension .csv). You can then use this file as input to create an
external data unit test. For information, see Create an External Data Unit Test.

To record the test data and export it to a CSV file

1 Open the context menu for the business service (or subprogram) in the Project Explorer view.

The testing options are displayed.

2 Select Test Business Service (or Test Subprogram).

The business service (or subprogram) is displayed in the editor view.

3 Select on the NaturalONE toolbar to begin recording.

TheDefine External Test Details panel is displayed. For example:

Application Testing38

Test a Business Service or Subprogram Directly

4 Type the name of the external data file in .csv file name or select Browse to display a window
listing the available files for selection.

Optionally, you can use the Define External Test Details panel to:

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects for
selection.

Note: The project must currently exist.

Change the name of the project in which
to create the external data file.

Type the name of the folder in Parent suite or select Browse
to display awindow listing the available folders for selection.

By default, the external data file is stored in the
Testing-Suites folder in the current project. If you specify

Provide the name(s) of a subfolder(s) in
which to save the external data file. If the
folder does not currently exist, it will be
created for you.

a suite folder name, it becomes a subfolder in the
Testing-Suites folder and the filewill be stored in that folder.

Type the character in Delimiter.Change the delimiter character used to
separate input values in the external data
file you are generating.

Select "Overwrite" in Save options.

Note: If you specify the name of an existing file in .csv file
name and the Save options is "Append" (default), the test

Replace test data in an existing CSV file
(file extension .csv) with new data.

39Application Testing

Test a Business Service or Subprogram Directly

ProcedureTask

data is appended to existing test data in the file. If the mode
is "Overwrite", existing test data in the file will be
overwritten.

5 SelectNext.

The Select Data to Record panel is displayed. For example:

6 Select Expand All.

The level 1 fields are expanded to display the lower level fields. For example:

Application Testing40

Test a Business Service or Subprogram Directly

Note: To collapse the fields, select Collapse All.

7 Select Input and/orOutput for each level 1 field you want to include in the recording.

Only the selected data for each field will be saved.

8 Provide index values in Index for any array fields.

9 Select Finish to begin recording.

The Recording icon changes to on the toolbar.

10 Define the test data in the editor view.

For example:

41Application Testing

Test a Business Service or Subprogram Directly

Note: For information on using this editor, see Features of the Test Editors and Test a
Business Service Directly.

11 Select to run the test.

Repeat steps 10 and 11 for each test containing data you want to record.

12 Select to stop recording.

The generated CSV file is displayed in the Testing-Suites node in the Project Explorer view.

Application Testing42

Test a Business Service or Subprogram Directly

7 Create a Unit Test for a Business Service or Subprogram

■ Enable for Application Testing .. 44
■ Create a Unit Test for a Business Service ... 44
■ Create a Unit Test for a Subprogram ... 59
■ Generate Default Unit Tests ... 62
■ Create a New Unit Test Suite ... 72
■ Create Unit Test Log Files ... 74
■ Use the Dependencies View .. 74

43

This section describes how to create a Natural unit test for a business service or subprogram. This
allows you to specify a business service or subprogram to test, supply input values, and then
provide validation criteria for the output of the call (for example, you can supply two numbers
as the input values and a value for the result field as the validation criteria).

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst, and
.seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

Enable for Application Testing

When you create a new unit test, the Natural project containing the test is automatically enabled
for application testing. This will create the Testing-Suites folder in the Project Explorer view and
provide warning markers on existing unit test files that are not in the Testing-Suites folder or its
subfolders. This section describes how tomanually enable aNatural project for application testing.

To enable a Natural project for application testing

1 Open the context menu in the Project Explorer view for the Natural project containing the
business service or subprogram you want to test.

2 Select Testing > Enable for Application Testing.

The Testing-Suites folder is added to the project. All new unit tests will be generated into
this folder (or subfolder).

Create a Unit Test for a Business Service

This section describes how to create a unit test for a business service. The following topics are
covered:

■ Create the Unit Test
■ Configure Input Parameters
■ Define Validations
■ Run the Unit Test
■ Open a Previous Unit Test
■ Run a Unit Test in Another Environment
■ Test for an Expected Error

Application Testing44

Create a Unit Test for a Business Service or Subprogram

■ Test an Array Field

Create the Unit Test

To create a unit test for a business service

1 Open the context menu for the Natural project containing the business service in the Project
Explorer view.

Or:

Open the context menu for the business service in the Project Explorer view.

2 Select Testing.

The test options for business services are displayed.

3 Select Create Unit Test.

TheDefine Business Service Unit Test Details panel is displayed. For example:

Using this panel, you can:

45Application Testing

Create a Unit Test for a Business Service or Subprogram

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects
for selection.

Note: The project must currently exist.

Change the name of the project in which to
create the unit test.

Type the name of the folder in Parent suite or select
Browse to display a window listing the available folders
for selection.

By default, the unit test is stored in the Testing-Suites
folder in the current project. If you specify a suite folder

Provide the name(s) of a subfolder(s) in
which to save the unit test. If the folder
does not currently exist, it will be created
for you.

name, it becomes a subfolder in the Testing-Suites folder
and the unit test will be stored in that folder.

Type a new name inTest name. File names are savedwith
the .bsrvtst extension.

Change the default name for the unit test.

SelectGenerate default Construct tests. This option is
enabled when the unit test will be created for a business

Generate default unit tests for
object-maintenance functions and/or

service that uses Velocity or Construct-generatedobject-browse keys defined for business
service subprograms. object-browse or object-maintenance subprograms. For

information, see Generate Default Unit Tests.

DeselectDisplay generated file(s).Not display the generated files in the editor
view after generation.

Type or select a new folder in Service file.Change the location of the folder containing
the business service file.

Select the method inMethod.Select a different method to test.

4 Select Finish.

The unit test is displayed in the Testing-Suites folder in the Project Explorer view.

The test is also displayed in the editor view. For example:

Application Testing46

Create a Unit Test for a Business Service or Subprogram

TheSummary tab displays information about the test, such as the name of the project, business
service, and method. It also displays the default connection settings. To define another con-
nection in which to run the test, see Define Connections.

Note: You can use this tab to define an expected error, which allows a test to pass
whenever the expected error occurs. You can also use the tab to search for specified
text in an error message. For information, see Test for an Expected Error.

5 Select the Input tab and define which input parameters are sent to the server.

For information, see Configure Input Parameters.

6 Select the Validation tab and define which values must be returned for a successful test.

For information, see Define Validations.

Note: You can create Ant scripts to run business service unit tests (file extension .bsrvtst).
For information, see Creating Ant Scripts to Run Unit Tests.

47Application Testing

Create a Unit Test for a Business Service or Subprogram

Configure Input Parameters

To configure the input parameters sent to the server

1 Select the Input tab in the unit test editor.

For example:

2 Select Add.

The Configure Input Fieldwindow is displayed. For example:

The list of available controls in Field name is based on the data type of the input field. If you
selected a logical field, for example, two option buttons are displayed to select "true" or "false".
If the field is an array, you can type the index for the array in Index.

3 Select the name of the input field in Field name.

4 Type the field value in Value.

5 SelectOK.

The new field is added to the list of fields on the Input tab.

Application Testing48

Create a Unit Test for a Business Service or Subprogram

Optionally, you can use the Input tab to:

ProcedureTask

See Edit an Input Field.Edit an input field.

Select one or more input fields in Field Name using standard
selection techniques and selectDelete. The field(s) is removed
from the list of fields and will not be sent to the server.

Remove one or more input fields.

See Duplicate an Input Field.Duplicate an input field.

See Add Multiple Elements for an Array Field. This option is
enabled when the PDA contains array fields.

Add multiple elements to an array
field.

Edit an Input Field

To edit an input field

1 Select the input field in Field Name on the Input tab.

2 Select Edit.

The Configure Input Fieldwindow is displayed to edit the field information.

3 SelectOK to save the changes.

Or:

Select the input field in Field Name and edit the Value and/or Index values within the table.

Duplicate an Input Field

To duplicate an input field

1 Select the input field in Field Name on the Input tab.

2 SelectDuplicate.

The Configure Input Fieldwindow is displayed to edit the field information.

3 SelectOK to save the duplicate field.

49Application Testing

Create a Unit Test for a Business Service or Subprogram

Add Multiple Elements for an Array Field

This section describes how to define a range of values for an array field.

Note: The Add Array option does not support byte array and date/time fields.

To add multiple elements to an array field at the same time

1 Select Add Array.

TheDefine Array Element Detailswindow is displayed. For example:

2 Type each element of the array in Value(s), one entry per line.

3 SelectOK to save the array field.

Define Validations

This section describes how to create unit test validations for Natural errors and data entry based
on validator types (i.e., not restricted to characters in the data type).

To define validations

1 Select the Validation tab in the business service unit test editor.

For example:

Application Testing50

Create a Unit Test for a Business Service or Subprogram

2 Select Add.

The Configure Field Validationwindow is displayed. For example:

The list of available controls in Field name is based on the data type of the input field. If you
select a logical field, for example, two option buttons are displayed to select "true" or "false".
If the field is an array, you can type the index for the array in Index.

3 Select the name of the input field in Field name.

4 Select the type of validator to use for the input field in Validator.

The type of validator to use depends on the type of data in the field. The available validators
are:

■ BooleanValidator
■ ByteValidator
■ ComparisonValidator (displays a combo box with the options: ">", "<", "=", "<=", ">=")
■ DateValidator

51Application Testing

Create a Unit Test for a Business Service or Subprogram

■ DecimalValidator
■ IntegerValidator
■ RegexValidator (creates regular expressions to validate the contents of a field)
■ StringValidator
■ TimeValidator

5 SelectOK.

The new field is added to the list of fields on the Validation tab.

Optionally, you can use the Validation tab to:

ProcedureTask

See Edit a Field Validation.Edit a field validation.

Select one or more fields in Field Name using standard
selection techniques and selectDelete. The field validation(s)
is removed.

Remove one or more field validations.

See Duplicate a Field Validation.Duplicate a field validation.

SeeAddMultiple Validations for an Array Field. This option
is enabled when the PDA contains array fields.

Add multiple validations for an array
field.

Edit a Field Validation

To edit a field validation

1 Select the field in Field Name on the Validation tab.

2 Select Edit.

The Configure Field Validationwindow is displayed to edit the field information.

3 SelectOK to save the changes.

Or:

Select the input field in Field Name and edit the Value and/or Index values within the table.

Application Testing52

Create a Unit Test for a Business Service or Subprogram

Duplicate a Field Validation

To duplicate a field validation

1 Select the input field in Field Name on the Input tab.

2 SelectDuplicate.

The Configure Field Validationwindow is displayed to edit the information.

3 SelectOK to save the duplicate field validation.

Add Multiple Validations for an Array Field

This section describes how to define validations for an array field.

Note: The Add Array option does not support byte array and date/time fields.

To add multiple validations to an array field

1 Select Add Array.

TheDefine Array Element Detailswindow is displayed. For example:

2 Type each element of the array in Value(s), one entry per line.

3 SelectOK to save the array field.

53Application Testing

Create a Unit Test for a Business Service or Subprogram

Run the Unit Test

This section describes how to run one ormore unit tests. It includes information about theNatural
Unit Testwindow.

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst, and
.seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

To run one or more unit tests

1 Open the context menu for one of the following items in the Project Explorer view.

■ A project containing the Testing-Suites folder.
■ The Testing-Suites folder or a subfolder within the folder.
■ One or more unit test files (file extension .nattst or .bsrvtst), regardless of where they exist.
Use standard selection techniques to open the unit test(s). Any test files stored outside of
the Testing-Suites folder display a warning marker in the Project Explorer view and an
entry in the Problems view indicating that they are not in the proper place.

2 Select Testing > Run Unit Test(s).

Note: You can also use the context menu to change the environment in which a test is
run. For information, see Run a Unit Test in Another Environment.

The selected tests are displayed in the editor view and the results of the test are displayed in
theNatural Unit Test view. For example:

Note: If the test did not pass, a red circle () is displayed on the test icon in the Tests
section and State: failed is displayed in the Summary section.

The following table describes each of the options available on the toolbar for theNatural Unit
Test view:

Application Testing54

Create a Unit Test for a Business Service or Subprogram

DescriptionToolbar Icon

Runs the current unit test using the values defined in the editor view.

Tip: You can also select in the editor view to run the test.

Selects the current unit test in the editor view.

Opens the business service or Natural subprogram used for the current unit test in the
editor view.

Displays the test history for the last 10 unit tests that were run during the current Eclipse
session and allows you to select a previous test and load it into the editor. For information,
seeOpen a Previous Unit Test.

The Tests section in theNatural Unit Test view displays the name of each unit tests that have
been run. You can use the context menu for a unit test in the Tests section to select more op-
tions. For example:

Using this menu, you can:

ProcedureTask

Select Run.Run the unit test.

SelectOpen unit test UnitTestName. The following file types are
available for selection:

Open the unit test file in the editor
view.

■ business service (file extension .bsrvtst)
■ external data (file extension .exttst)
■ Natural unit test (file extension .nattst)
■ sequence (file extension .seqtst)

SelectOpen BusinessServiceName.bsrv orOpen
NaturalSubprogramName.NSN. The following file types are
available for selection:

Open the associated business
service orNatural subprogramfile
in the editor view.

■ business service (file extension .bsrv)
■ external data (file extension .NSN)

Note: This option is not available for external data or sequence unit
tests.

55Application Testing

Create a Unit Test for a Business Service or Subprogram

The Summary section in theNatural Unit Test view displays:

■ Name of the test
■ Name of the RPC connection
■ Whether the test passed or failed
■ Length of time in seconds that the unit test executed before completing

To see the results of another test, select the test in theTests section and the results are displayed
in the Summary section. For example:

Open a Previous Unit Test

To open a previous unit test

1 Select on the toolbar in theNatural Unit Test view.

A list of the last 10 tests run during the current Eclipse session is displayed with a message
indicating the success of each test. For example:

In this example, seven tests passed and three tests failed.

2 Select the test you want to open.

The test is displayed in theNatural Unit Test view. For example:

Application Testing56

Create a Unit Test for a Business Service or Subprogram

3 Open the context menu for the test.

4 Select the unit test file in Open unit test UnitTestName.nnntst.

The following unit test file types are available:

■ business service (file extension .bsrvtst)
■ external data (file extension .exttst)
■ Natural unit test (file extension .nattst)
■ sequence (file extension .seqtst)

Run a Unit Test in Another Environment

You can run any unit test in another environment.

To run a unit test in another environment

1 Open the context menu for one of the following items in the Project Explorer view.

■ A project containing the Testing-Suites folder.
■ The Testing-Suites folder or a subfolder within the folder.
■ One or more unit test files (file extension .bsrvtst, .exttst, .nattst, and .seqtst), regardless of
where they exist.

2 Select Testing > Run Unit Test(s) using Environment.

3 Select the environment in which you want to run the test.

The results of the test are displayed in theNatural Unit Test view.

Note: The list of environments is defined in the Preferenceswindow for RPC environ-
ments. For information on adding additional environments to the list, seeDefine Addi-
tional RPC Environments.

57Application Testing

Create a Unit Test for a Business Service or Subprogram

Test for an Expected Error

To allow a test to pass with an expected error, define information about the error in the Error
section of the Summary tab. For example:

This will allow a test to fail only if it encounters an unexpected error.

To test for an expected error

1 Select Expect error.

2 Type the error class in Error class.

For Natural errors, the error class is 1014.

3 Type the error code in Error code.

You can also use the Error section to search the message text for a specific string.

To search the message text for a specified string

1 Type the string inMessage.

2 Select Regex.

If you specify ".* division by zero.*", for example, Regex will search for "division by zero"
anywhere in the error message.

Test an Array Field

You can expand or reduce an X-array using the Resize Array property. For example:

Application Testing58

Create a Unit Test for a Business Service or Subprogram

For some arrays, all values are displayed. For example:

Create a Unit Test for a Subprogram

To create a unit test for a subprogram

1 Open the context menu for the Natural project containing the subprogram in the Project Ex-
plorer view.

Or:

Open the context menu for the subprogram in the Project Explorer view.

2 Select Testing.

The test options for subprograms are displayed.

3 Select Create Unit Test.

TheDefine Natural Unit Test Details panel is displayed. For example:

59Application Testing

Create a Unit Test for a Business Service or Subprogram

Using this panel, you can:

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects
for selection.

Note: The project must currently exist.

Change the name of the project in which
to create the unit test.

Type the name of the folder inParent suite or selectBrowse
to display a window listing the available folders for
selection.

By default, the unit test is stored in the Testing-Suites
folder in the current project. If you specify a suite folder

Provide the name(s) of a subfolder(s) in
which to save the unit test. If the folder
does not currently exist, it will be created
for you.

name, it becomes a subfolder in the Testing-Suites folder
and the unit test will be stored in that folder.

Type a new name in Test name. File names are saved with
the .bsrvtst extension.

Change the default name for the unit test.

SelectGenerate default Construct tests. This option is
enabled when the unit test will be created for Velocity or

Generate default unit tests for
object-maintenance functions and/or

Construct-generated object-browse or object-maintenanceobject-browse keys defined for Natural
subprograms. subprograms. For information, seeGenerate Default Unit

Tests.

DeselectDisplay generated file(s).Not display the generated files in the editor
view after generation.

Application Testing60

Create a Unit Test for a Business Service or Subprogram

ProcedureTask

Type or select a new folder in Subprogram.Change the location of the folder
containing the subprogram file.

4 Select Finish.

The unit test is displayed in the Testing-Suites folder in the Project Explorer view.

The test is also displayed in the editor view. For example:

The Summary tab displays information about the test, such as the name of the project, library,
and subprogram. It also displays the default connection settings. To define another connection
in which to run the test, see Define Connections.

Note: You can use this tab to define an expected error, which allows a test to pass when
the expected error occurs. You can also use the tab to search for specified text in an
error message. For information, see Test for an Expected Error.

5 Select the Input tab and define which input parameters are sent to the server.

61Application Testing

Create a Unit Test for a Business Service or Subprogram

For information, see Configure Input Parameters.

6 Select the Validation tab and define which values must be returned for a successful test.

For information, see Define Validations.

7 Run the test.

For information, see Run the Unit Test.

Note: You can create Ant scripts to run Natural unit tests (file extension .nattst). For inform-
ation, see Creating Ant Scripts to Run Unit Tests.

Generate Default Unit Tests

This section describes how to generate default unit tests for browse keys andmaintenance functions
(for example, GET,NEXT, etc.) defined for Velocity or Construct-generated object-browse or object-
maintenance subprograms. If a business service uses both object-browse and object-maintenance
subprograms, default tests can be generated for both the browse keys and the maintenance func-
tions.

This section covers the following topics:

■ Generate Tests for a Business Service
■ Generate Tests for a Natural Subprogram

Generate Tests for a Business Service

To generate default unit tests for a business service

1 SelectTesting > Create Unit Test from the contextmenu for the business service in the Project
Explorer view.

TheDefine Business Service Unit Test Details panel is displayed.

2 SelectGenerate default Construct tests.

For example:

Application Testing62

Create a Unit Test for a Business Service or Subprogram

Note: This option is only available when the business service uses one or more subpro-
grams that were generated by an Object-Browse and/or Object-Maint wizard (either
Velocity-based or Construct).

3 SelectNext.

TheDefine Parameters for the Default Maintenance Tests panel is displayed. For example:

63Application Testing

Create a Unit Test for a Business Service or Subprogram

Note: If the business service does not use any object-maintenance subprograms, the
Define Parameters for the Default Browse Tests is displayed.

This panel displays the functions defined for all object-maintenance subprograms used by
the business service, as well as the key fields. Using this panel, you can:

ProcedureTask

DeselectGenerate for the unit test(s) you do not want to
have generated. To generate unit tests for all functions, select
Generate All.

Limit the generation of one or more
default tests.

SelectGenerate None.Limit the generation of all default tests.

Select or deselect Populate Key for the default unit test(s).
When selected, the test for the corresponding function will
populate the key field with the value specified in Value.

Change the default population of key
fields.

Select Value for the key field and type the value. For
example, you can provide a customer number for the
Customer number field.

Provide a value for a key field.

See Define Date and Time Details.Enter details for a date/time field (when
defining details for a date or time field).

Application Testing64

Create a Unit Test for a Business Service or Subprogram

Default tests can be created for each function defined for the subprogram that does not require
an existing record to be on hold. These functions are:

■ STORE
■ GET
■ NEXT
■ FORMER
■ EXISTS
■ INITIALIZE

Note: As the DELETE and UPDATE functions require an existing record to be held,
default tests are not generated for these functions.

4 Specify a key value in Value for each function.

The tests are designed with the assumption that this value exists (i.e., the test will pass when
the value exists). The following assumptions are also made:

AssumptionFunction

Assumes the specified key value exists and expects an error from the subprogram saying
the value already exists.

STORE

Assumes a key value is not entered and expects a message from the subprogram saying
the beginning of file condition has occurred.

FORMER

Assumes that the end of file condition has not occurred and expects a message from the
subprogram saying the next record was retrieved successfully.

NEXT

The key components are those listed in the object PDA for the object-maintenance subprogram
as elementary fields under STRUCTURE. For example, MCUSTN, an object-maintenance
subprogram used by the Customer business service (located in the SYSBIZDE library), uses
the MCUSTA PDA:

1 MCUSTA-ID N 5 /* Object identifier
R 1 MCUSTA-ID /* REDEF. BEGIN : MCUSTA-I

2 STRUCTURE /* To allow MOVE BY NAME
3 CUSTOMER-NUMBER N 5

In this example, CUSTOMER-NUMBER will be used as the key.

5 Select Finish.

Unit tests are created for all available browse keys and any object-maintenance subprogram
functions selected on the Define Parameters for the Default Maintenance Tests panel.

Or:

65Application Testing

Create a Unit Test for a Business Service or Subprogram

SelectNext.

TheDefine Parameters for the Default Browse Tests panel is displayed. For example:

Note: If the business service does not use any object-browse subprograms,Next is not
available on the Define Parameters for the Default Maintenance Tests panel.

This panel displays the key fields defined for all object-browse subprograms used by the
business service. Using this panel, you can:

ProcedureTask

DeselectGenerate for the unit test(s) you do not want to
have generated. To generate unit tests for all keys, select
Generate All.

Limit the generation of one ormore default
tests.

Type the new name for the unit test on the corresponding
line in Unit Test Name.

Change the name of a default unit test.

SelectGenerate None.Limit the generation of all default tests.

Default tests can be created for each browse keydefined for the subprogram. These tests include
default validations for items like rows returned and error codes. For a HISTOGRAMkey, key
value totals can be verified.

6 Select Finish.

The default unit tests are displayed in the Testing-Suites folder in the Project Explorer view.

The tests are also displayed in the editor view. For example:

Application Testing66

Create a Unit Test for a Business Service or Subprogram

Default input values and validations are created for each unit test. You can change the default
values by selecting the appropriate tab. For example, select the Input tab to change the input
values generated for the test:

Note: For more information, see Configure Input Parameters.

Select the Validation tab to change the validations generated for the test. For example:

67Application Testing

Create a Unit Test for a Business Service or Subprogram

Notes:

1. For more information, see Define Validations.

2. You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst, and .seqtst).
For information, see Creating Ant Scripts to Run Unit Tests.

Generate Tests for a Natural Subprogram

To generate default unit tests for a Natural subprogram

1 Select Testing > Create Unit Test from the context menu for the subprogram in the Project
Explorer view.

TheDefine Natural Unit Test Details panel is displayed.

2 SelectGenerate default Construct tests.

For example:

Application Testing68

Create a Unit Test for a Business Service or Subprogram

Note: This option is only available when the subprogram was generated by an Object-
Browse or Object-Maint wizard (either Velocity-based or Construct).

3 SelectNext.

If the subprogram was generated by an Object-Maint wizard, theDefine Parameters for the
Default Maintenance Tests panel is displayed. For example:

69Application Testing

Create a Unit Test for a Business Service or Subprogram

This panel is similar to the Define Parameters for the Default Maintenance Tests panel for
a business service unit test. For a description of this panel, see Generate Tests for a Business
Service.

Or:

If the subprogram was generated by an Object-Browse wizard, the Define Parameters for
the Default Browse Tests is displayed. For example:

Application Testing70

Create a Unit Test for a Business Service or Subprogram

This panel is similar to the Define Parameters for the Default Browse Tests panel for a
business service unit test. For a description of this panel, see Generate Tests for a Business
Service.

4 Select Finish.

The default unit tests are displayed in the Testing-Suites folder in the Project Explorer view.

The tests are also displayed in the editor view. For example:

71Application Testing

Create a Unit Test for a Business Service or Subprogram

This editor is similar to the editor for a business service unit test. For a description of the ed-
itor, see Generate Tests for a Business Service.

Create a New Unit Test Suite

This section describes how to create a new unit test suite to organize and store your Natural and
business service unit tests (file extension .bsrvtst, .exttst, .nattst, and .seqtst). The tests are generated
into the Testing-Suites folder or subfolder within a specified Natural project.

Note: Ant scripts for Natural unit tests may contain unit test files existing outside of the
Testing-Suites folder or subfolder.

To create a new unit test suite

1 Select Testing > Create Test Suite for a project in the Project Explorer view.

Or:

Select Testing-Suites > Create Test Suite in the Project Explorer view.

Or:

Application Testing72

Create a Unit Test for a Business Service or Subprogram

Select Testing-Suites > SubfolderName > Create Test Suite in the Project Explorer view.

TheDefine Test Suite Details panel is displayed. For example:

Using this panel, you can:

ProcedureTask

Type the name of theNatural project inProject or selectBrowse
to display a window listing the existing projects for selection.

Note: The project must currently exist.

Change the name of the project in
which to create the test suite.

Type the name of the folder in Parent suite or select Browse
to display a window listing the available folders for selection.

By default, the unit test is stored in the Testing-Suites folder
in the current project. If you specify a suite folder name, it

Provide the name(s) of a subfolder(s)
in which to save the unit test. If the
folder does not currently exist, it will
be created for you.

becomes a subfolder in the Testing-Suites folder and the unit
test will be stored in that folder.

2 Type the name of the test suite in Suite name.

3 Select Finish.

The test suite is generated into the Testing-Suites folder or subfolder.

73Application Testing

Create a Unit Test for a Business Service or Subprogram

Create Unit Test Log Files

This section describes how to create unit test log files and then use the log files to create summary
reports. Log files can be created for any subprogram and business service unit test executed
within a NaturalONE project.

Create Unit Test Log Files

A unit test history log file can be created to save the results of a unit test whenever it is executed
(for example, the test name, test status, date/time completed, error messages, etc.). To create these
files, you must select the option in the Preferenceswindow for Testing. For information, see Set
Logging Preferences for Unit Tests.

Use the Dependencies View

When a generatedmodule is open in the editor view, theDependenciesviewdisplays dependencies
between business service andNatural unit tests and the business services andNatural subprograms
they execute. This section describes the nodes contributed to the view for these resources. The
following topics are covered:

■ Business Service Unit Test Resources
■ Natural Subprogram Unit Test Resources

Notes:

1. Select to sort the resources alphabetically.

2. Select to export a textual representation of the visible nodes in the view to a file.

3. When a supporting resource cannot be found locally using the project steplib chain and project
references, "<Unknown>" is displayedwith the name of the resource. If the unknownmodule(s)
is not shippedwith the Construct runtime project, either manually download it from the server
or create it locally. If the module(s) is shipped with the Construct runtime project, add the
project. For information, see NaturalONE's Code Generation documentation.

4. For more information about the Dependencies view, see the description of the source editor
in Using NaturalONE.

Application Testing74

Create a Unit Test for a Business Service or Subprogram

Business Service Unit Test Resources

When a business service unit test is open in the editor view, the root node displays the name of

the business service unit test. In caller mode (), no child nodes are displayed because no other
Dependencies view objects depend on this business service unit test file. For example:

In callee mode (), the child nodes display the name of the business service that the unit test ex-
ecutes, along with the names of the supporting business service resources and the names of the
libraries and projects in which they are located. For example:

Natural Subprogram Unit Test Resources

When a Natural subprogram unit test is open in the editor view, the root node displays the name

of the unit test. In caller mode (), no child nodes are displayed because no otherDependencies

view objects depend on a unit test file; in callee mode (), the child node displays the name of
the Natural subprogram that the unit test executes, along with the names of the supporting Nat-
ural resources and the names of the libraries and projects in which they are located. For example:

75Application Testing

Create a Unit Test for a Business Service or Subprogram

76

8 Create an External Data Unit Test

■ Create the Unit Test ... 78
■ Configure Column Mappings and Sample Data ... 83

77

This section describes how to create a unit test that accepts input and/or validations from a CSV
file (file extension .csv). You can create a unit test once and then provide a data file containing
different input or validations to run iterations of the test. The wizard creates a unit test file that
accepts data from the CSV file.

Note: Similar to other unit tests, external data unit tests can be run from the unit test Ant
script. For information, see Creating Ant Scripts to Run Unit Tests.

Create the Unit Test

To create an external data unit test

1 Select Testing > Create External Data Unit Test for a project in the Project Explorer view.

Or:

Select Testing-Suites > Create External Data Unit Test in the Project Explorer view.

Or:

SelectTesting-Suites> SubfolderName >Create ExternalDataUnit Test in theProject Explorer
view.

TheDefine External Data Unit Test Details panel is displayed. For example:

Application Testing78

Create an External Data Unit Test

Using this panel, you can:

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects for
selection.

Note: The project must currently exist.

Change the name of the project inwhich
to create the external data unit test.

Type the name of the folder in Parent suite or select Browse
to display awindow listing the available folders for selection.

By default, the unit test is stored in the Testing-Suites folder
in the current project. If you specify a suite folder name, it

Provide the name(s) of a subfolder(s) in
which to save the external data unit test.
If the folder does not currently exist, it
will be created for you.

becomes a subfolder in theTesting-Suites folder and the unit
test will be stored in that folder.

2 Type the name of the external data unit test in Test name.

3 Select an existing business service or Natural unit test in the Source unit test details section.

The selected unit test will be executed for each row in the data file. To display the available
unit test files for selection, select Browse for Use existing test. Optionally you can create a
new business service or Natural unit test. For information, see Create a New Unit Test.

4 Select an existing data file in the Source data file (CSV) details section.

To display the available CSV data files for selection, select Browse for Use existing file. Op-
tionally you can create a new data file. For information, see Create a New Data File.

Note: Awizard is available to record the sample data used to test a business service or
subprogramdirectly and then export the data to a CSVfile. For information, seeExport
Test Data to a CSV File.

5 Select Finish.

The external data unit test file is generated into the Testing-Suites folder (or subfolder) and
listed in the Project Explorer view.

The .exttst file is also displayed in the editor view.

Note: The .csv file and/or the .nattst/.bsrvtst files may also be created.

6 Define the configuration settings for the unit test in the editor view.

For information, see Configure Column Mappings and Sample Data.

7 Select the Connection tab and define the connection settings for the unit test.

79Application Testing

Create an External Data Unit Test

For information, see Define Connections.

8 Save the settings.

Create a New Unit Test

To create a new unit test

1 Select Create new test in the Source details section on the Define External Data Unit Test
Details panel.

2 SelectNext.

TheDefine New Unit Test Details panel is displayed. For example:

3 Type the name of the unit test in New test name.

4 Select the object type for the source unit test in Object type.

You can select either Subprogram (the default) or Business service. When Business service
is selected, an additional field is added to the panel. For example:

Application Testing80

Create an External Data Unit Test

5 Select Browse in Object path.

A list of available business service or subprogram unit test files is displayed. Select the unit
test to use for the external data unit test and selectOK.

6 For a business service unit test, select the method to test in Object method.

7 Select Finish to create the external data unit test and new unit test.

Or:

SelectNext to create a new data file.

Note: This option is only available when Create new file is selected on theDefine Ex-
ternal Data Unit Test Details panel.

Create a New Data File

To create a new data file

1 Select Create new file in the Source data file (CSV) details section on the Define External
Data Unit Test Details panel.

2 SelectNext.

TheDefine New Data File Details panel is displayed. For example:

81Application Testing

Create an External Data Unit Test

Note: If Create new test on the Define External Data Unit Test Details panel is also
selected, the Define New Unit Test Details panel is displayed before this panel.

3 Type the name of the data file in New data file name.

Using this panel, you can:

ProcedureTask

Type a new character in Delimiter.Change the character used to separate
entries in the first row of the CSV file.

Select First row contains field names. At runtime, the first
row in the CSV file is reserved for field names.

Note: When selecting fields for the first row in a CSV file, you
cannot specify the number of occurrences of an array to

Reserve the first row in the CSV file for
the field names.

include. By default, a maximum of five occurrences of each
array will be included. To add and/or remove occurrences
from the generated CSV file, you must edit the file manually.

Select Expand All. To close the tree view, select Collapse All.Display fields that can be selected for
the first row of the CSV file.

Select Select All and then deselect the fields you do not want
to include in the CSV file. To deselect all fields, selectDeselect
All.

Select fields to be included in the first
row of the CSV file.

4 Select Finish to create the external data unit test, a new data file, and optionally, a new unit
test.

Application Testing82

Create an External Data Unit Test

Configure Column Mappings and Sample Data

This section describes how tomap columns in the CSV file (file extension .csv) to fields in the PDA
used by the business service or subprogramunit test. The followingCSVfilewas used for examples:

#FUNCTION,INPUT-DATA.#FIRST-NUM,INPUT-DATA.#SECOND-NUM,INPUT-DATA.#SUCCESS-CRITERIA,OUTPUT-DATA.#RESULT,OUTPUT-DATA.#SUCCESS
Add,1,2,3,3,FALSE
Add,1,9,10,10,TRUE

To configure column mappings and sample data

1 Select the Configuration tab in the editor for the external data unit test.

For example:

83Application Testing

Create an External Data Unit Test

2 Select Add in the ColumnMappings section.

The Edit Mappingwindow is displayed. For example:

The number of the first unmapped column is displayed in Column number. You can change
this number to define the mapping for another column.

3 Select the name of the field to use for this column in Field name.

4 Type the index position in Index (used when the field is an array).

5 Select the type of validator to use for the field in Validator.

The type of validator to use depends on the type of data in the field. The available validators
are:

■ BooleanValidator
■ ByteValidator
■ ComparisonValidator (displays a combo box with the options: ">", "<", "=", "<=", ">=")
■ DateValidator
■ DecimalValidator
■ IntegerValidator
■ RegexValidator (creates regular expressions to validate the contents of a field)
■ StringValidator
■ TimeValidator

6 SelectOK.

The new column mapping is added to the list of mappings on the Configuration tab.

7 Continue adding column mappings until all columns used for the test have been added.

Application Testing84

Create an External Data Unit Test

■ To revise a mapping, select the mapping in ColumnMappings and select Edit. The Edit
Mappingwindow is displayed to change the mapping.

■ To remove a mapping, select the mapping in ColumnMappings and selectDelete. The
mapping is removed from ColumnMappings.

Optionally, you can use the Configuration tab to:

ProcedureTask

Type the name of the unit test in Unit test file or select Browse
to display awindow listing the existing unit test files for selection.

Note: The unit test must currently exist.

Change the name and/or location of
the unit test file used for the external
data unit test.

Type the name of the CSV file in Data file or select Browse to
display a window listing the existing CSV files for selection.

Note: The CSV file must currently exist.

Change the name and/or location of
the CSV file containing field names
and input for the external data unit
test.

Select First row contains field names. At runtime, the first row
in the CSV file is reserved for field names.

Note: When selecting fields for the first row in a CSV file, you
cannot specify the number of occurrences of an array to include.

Reserve the first row in the CSV file
for the field names.

By default, a maximum of five occurrences of each array will be
included. To add and/or remove occurrences from the generated
CSV file, you must edit the file manually.

Type a new delimiter character in Column delimiter.Change the delimiter character used
to separate columns in the CSV file.

Select Refresh in the Sample Data section. The first 20 rows in
the CSV file are retrieved.

Tip: To apply changes to the external data file to the unit test,
use this option with theMap option.

Retrieve sample data from the CSV
file.

SelectMap (enabled when the First row contains field names
option is selected). A confirmation window is displayed,

Map new sample data to the
columns.

indicating that all current column mappings will be removed.
Select Yes to delete the old mappings and apply the new
mappings.

8 Save the configuration settings.

85Application Testing

Create an External Data Unit Test

86

9 Create a Sequence Unit Test

■ Create the Unit Test ... 89
■ Use the Sequence Unit Test Editor .. 92
■ Use the Dependencies View .. 101

87

This section describes how to create a sequence unit test (file extension .seqtst), a type of unit test
that executes a sequence of test steps in a specified order. Each test step executes a business service
or Natural unit test and, optionally, copies data between steps, applies field overrides, defines
validation overrides. and/or applies method overrides (business service unit tests only). These
overrides do not physically change the existing unit test files; the values are only changed in
memory prior to execution of the files.

For example, a sequence test can have the following two steps:

1. Invoke a unit test for a Construct-generated object-maintenance subprogram and attempt to
retrieve (GET) a data record.

2. Re-invoke the same test, but apply a field override that attempts to update the record. In addition,
copy all data from Step 1 and pre-configure each input field.

There are several methods you can use to create a sequence unit test, depending on your require-
ments. These methods include:

■ Create one generic business service or Natural unit test and then create a sequence unit test
containing several test steps that reference the same generic unit test, but use a different field
override.

For example, you can create a generic Natural unit test called WAREHOUSE.nattst and then
create a unit test that reference a sequence of unit tests to override the value of WARE-
HOUSE.#FUNCTION, such as WAREHOUSE_GET.nattst, WAREHOUSE_NEXT.nattst, etc.

■ Create several business service and/orNatural unit tests that reference the same subprogram/PDA
and then create a sequence unit test that references each unit test in a specified sequence.

For example, you can create a unit test for each warehouse function, such as WARE-
HOUSE_GET.nattst, WAREHOUSE_NEXT.nattst, etc., and then create a unit test that invokes
these tests in a specified sequence.

■ Create several business service and/or Natural unit tests that reference different subpro-
grams/PDAs and then create a sequence unit test that references each unit test in a specified
sequence and copies data from one test to the next.

■ Create a sequence unit test and one or more unit tests to use for the test.

Application Testing88

Create a Sequence Unit Test

Create the Unit Test

This section describes how to use the wizard to create a sequence unit test.

To create a sequence unit test

1 Open the context menu for one of the following items in the Project Explorer view:

■ Project folder
■ Testing-Suites folder or subfolder
■ One or more business service and/or Natural unit test files (using standard selection tech-
niques). The tests can reference the same subprogram/PDAor different subprograms/PDAs.
The wizard will create one test step in the generated sequence unit test for each unit test
selected in the Project Explorer view.

2 Select Testing > Create Sequence Unit Test.

TheDefine Sequence Unit Test Details panel is displayed. For example:

3 Type the name of the sequence unit test in Test name.

Optionally, you can:

89Application Testing

Create a Sequence Unit Test

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects for
selection.

Note: The project must currently exist.

Change the name of the project inwhich
to create the sequence unit test.

Type the name of the folder in Parent suite or select Browse
to display awindow listing the available folders for selection.

By default, the unit test is stored in the Testing-Suites folder
in the current project. If you specify a suite folder name, it

Provide the name(s) of a subfolder(s) in
which to save the sequence unit test. If
the folder does not currently exist, it will
be generated for you.

becomes a subfolder in theTesting-Suites folder and the unit
test will be stored in that folder.

4 Select Finish.

The sequence unit test file is generated into theTesting-Suites folder (or subfolder) and listed
in the Project Explorer view.

The .seqtst file is also displayed in the editor view. For example:

If one unit test file was selected in the Project Explorer view, a default test step is created for
that file. For example:

Application Testing90

Create a Sequence Unit Test

If several unit test files were selected in the Project Explorer view, one test step is created for
each test. For example:

91Application Testing

Create a Sequence Unit Test

Use the Sequence Unit Test Editor

This section describes how to use the sequence unit test editor. The following topics are covered:

■ Add Test Steps
■ Copy Data from a Previous Step
■ Add an Input Override
■ Add a Validation Override
■ Add a Method Override

Notes:

1. For information about the Connections tab, see Define Connections.

2. For general information about using the test editors, see Features of the Test Editors

Add Test Steps

This section describes how to add test steps to execute business service and/or Natural unit tests
in a specified order. Each test step executes one existing unit test and, optionally, copies data
between steps, applies field overrides, and/or defines validation overrides. In the following example,
the sequence unit test is generated from the context menu for a project and no steps are created.
For example:

Note: To resize the editor sections, select the sash and move it left or right.

To add test steps

1 Select Add.

The Test Step Details section is displayed. For example:

Application Testing92

Create a Sequence Unit Test

2 Select Browse for Unit test file.

TheSelect Unit Testwindow is displayed. Select the unit test file andOK. The unit test details
are displayed in the Test Steps section and the selected unit test file is displayed in Unit test
file. For example:

Or:

SelectNew for Unit test file.

The Select Unit Test Type panel is displayed. For example:

93Application Testing

Create a Sequence Unit Test

Select one of the following options:

■ Business Service Unit Test

TheDefine Business Service Unit Test Details panel is displayed. For information, see
Create a Unit Test for a Business Service.

■ Natural Unit Test

TheDefine Natural Unit Test Details panel is displayed. For information, see Create a
Unit Test for a Subprogram.

Note: When accessing these panels from the sequence unit test editor, the project name
defaults to the name of the project containing the sequence unit test and is read-only.
The unit test file specified for each test step must contain a relative path to the Testing-
Suites folder in the project containing the sequence unit test.

After defining the unit test and selecting Finish, the unit test details are displayed in the Test
Steps section and the newly created unit test file is displayed in Unit test file.

3 Select Add.

The second test step is displayed in Test Steps and the Copy data section is enabled. For ex-
ample:

Application Testing94

Create a Sequence Unit Test

4 Select or create the unit test for the second test step.

Repeat steps 1 and 2 until all test steps have been added. Optionally, you can use this editor
to:

ProcedureTask

Type a description of the test step in Description
(maximum of 250 characters). The first 60 characters
are displayed as the tool tip for the test step in Test
Steps.

Provide a description of this test step.

See Copy Data from a Previous Step.Copy data from a previous step.

Select the test step in Test Steps and select Remove or
open the context menu for the test step and select
Delete.

Delete a test step.

Select the test step inTest Steps and selectUp orDown.Reorder the test steps.

Type the step name in Name.Provide a name for the test step.

See Add an Input Override.Define an input override for a field used in a
test step.

See Add a Validation Override.Define a validation override for a field used
in a test step.

See Add a Method Override.Define a method override for a method used
in a test step (business service unit tests only).

5 Save the settings.

95Application Testing

Create a Sequence Unit Test

Copy Data from a Previous Step

This section describes how to copy data from a previous test step. When the generated sequence
test is run, the test step will attempt to copy the data from the specified test step. If the test steps
share the sameNatural unit test file, the entire data structure from the previous test step is copied.
If the test steps use different Natural unit test files, each field is copied by name and the level 1
name (if present) is compared to the field name.

Caution: All values are copied, evenwhen theNatural formats are different. Thismay result
in conversion errors (for example, when alpha values are placed in numeric fields).

To copy data from a previous test step

1 Select the test step to which you want to copy the data.

2 Select Copy data from a previous step.

3 Select the test step from which you want to copy the data in Step name.

You can select any previous test step in the list. Only previous test steps are listed, as data
cannot be copied from a test step that has not been run.

Note: When defining input or validation overrides, you can also select the field from
which to copy the data.

Add an Input Override

This section describes how to add an input override for a field. This value will override any input
value defined for an input field with the same name in the original unit test file. For example, if
the original unit test file has an input field and value of FUNCTION=GET and you add an override
to a test step that sets FUNCTION=UPDATE, then FUNCTION=UPDATEwill be used.

To add an input override

1 Open the context menu for the test step in Test Steps.

2 SelectNew > Input Override.

The field details are displayed in Test Step Details. For example:

Application Testing96

Create a Sequence Unit Test

3 Type the override value in Value.

The input override is displayed in Test Steps. For example:

In this example, an override value for the CUSTOMER-NUMBER field has been added.

Notes:

1. For information about the input parameters, see Configure Input Parameters.

2. You can copy the field data from a previous step. For information, see Copy Data from a
Previous Step.

3. To remove an input override, either select the override in Test Steps and select Remove
or open the context menu for the override and selectDelete.

97Application Testing

Create a Sequence Unit Test

Add a Validation Override

This section describes how to add an override value for a field validation. This value will override
any validation defined for an input field with the same name in the original unit test file. For ex-
ample, if the original unit test file has a field validation of #MSG <> ERROR and you add a validation
override of #MSG <> WARNING, then both validations will be used (i.e., the wizard will ensure that
the message is not equal to both ERROR and WARNING).

To add a validation override

1 Open the context menu for the test step in Test Steps.

2 SelectNew > Validation Override.

The validation details are displayed in Test Step Details. For example:

3 Select the field name in Field name.

4 Select the override value in Validator.

The validation override is displayed in Test Steps. For example:

Application Testing98

Create a Sequence Unit Test

In this example, an override validation for theCUSTOMER-TIMESTAMPfield has been added.

Notes:

1. For information about the validation parameters, see Define Validations.

2. You can copy the validation data from a previous step. For information, see Copy Data
from a Previous Step.

3. To remove a validation override, either select the override and select Remove or open the
context menu for the override and selectDelete.

Add a Method Override

This section describes how to add a method override value for a business service unit test. This
value will override the method name in the original business service unit test. For example, if the
original unit test has amethod value of "BROWSE" and you add amethod override value "EXISTS"
to a test step, then the sequence unit test will execute the "EXISTS" method.

To add a method override

1 Open the context menu for the test step in Test Steps.

2 SelectNew > Method Override.

The method details are displayed in Test Step Details. For example:

99Application Testing

Create a Sequence Unit Test

3 Type the override value inMethod.

The method override is displayed in Test Steps. For example:

In this example, an override value of METHOD=EXISTS has been added.

Notes:

1. For information about business service methods, see NaturalONE's Business Services docu-
mentation.

2. To remove a method override, either select the override in Test Steps and select Remove
or open the context menu for the override and selectDelete.

Application Testing100

Create a Sequence Unit Test

Use the Dependencies View

When a generated module is open in the editor, the Dependencies view displays dependencies
between a sequence unit test and the unit tests executed for each test step. This section describes
the nodes contributed to the view for these resources. The following topics are covered:

■ Sequence Unit Test Resources
■ Business Service Unit Test Resources
■ Natural Unit Test Resources

Notes:

1. Select to sort the resources alphabetically.

2. Select to export a textual representation of the visible nodes in the view to a file.

3. When a supporting resource cannot be found locally using the project steplib chain and project
references, "<Unknown>" is displayedwith the name of the resource. If the unknownmodule(s)
is not shippedwith the Construct runtime project, either manually download it from the server
or create it locally. If the module(s) is shipped with the Construct runtime project, add the
project. For information, see NaturalONE's Code Generation documentation.

4. For more information about the Dependencies view, see the description of the source editor
in Using NaturalONE.

Sequence Unit Test Resources

When a sequence unit test is open in the editor view, the root node displays the name of the se-

quence unit test. In callermode (), no child nodes are displayed because no otherDependencies
view objects depend on this sequence unit test file. For example:

In callee mode (), the child nodes display one business service or Natural unit test for each test
step in the sequence unit test. For example:

101Application Testing

Create a Sequence Unit Test

Business Service Unit Test Resources

When a business service unit test is open in the editor view, the root node displays the name of

the unit test. In caller mode (), one child node is displayed for each sequence unit test that in-
cludes this unit test in one of its test steps. For example:

In callee mode (), the child node displays the name of the business service that the unit test ex-
ecutes, along with the names of the supporting Natural resources and the names of the libraries
and projects in which they are located. For example:

Natural Unit Test Resources

When a Natural unit test is open in the editor view, the root node displays the name of the unit

test. In caller mode (), one child node is displayed for each sequence unit test that includes this
unit test in one of its test steps. For example:

Application Testing102

Create a Sequence Unit Test

In callee mode (), the child node displays the name of the Natural subprogram that the unit
test executes, along with the names of the supporting Natural resources and the names of the lib-
raries and projects in which they are located. For example:

103Application Testing

Create a Sequence Unit Test

104

10 Test an External Subroutine

■ Access the Subroutine Tester ... 106
■ Test with a Program ... 106
■ Test with a Subprogram .. 107

105

This section describes how to test an external subroutine. The tester can test the subroutine using
either a subprogram or a program that calls a subprogram. The following tables describes which
option to use:

Test UsingExternal Subroutine Features

Program (Natural for Ajax provides the screen input/output)No parameters and screen
input/output

Subprogram (then you can use the subprogram tester to create scripts
so the tests can be run again)

Note: If there are parameters and no screen input/output, it is easier
to test the routine as a subprogram because the subprogram tester
can handle the variety of parameters.

Parameters and no screen
input/output

Regardless of which option you use, temporary Natural objects are created to perform the tests
and then deleted when the Natural for Ajax page or subprogram tester is closed.

Note: If you intend to use the temporary subprograms to create a unit (batch) test for the
subroutine, save the files locally before closing the tester.

Access the Subroutine Tester

To access the subroutine tester

1 Open the context menu for the subroutine in the Project Explorer view.

2 Select Testing.

The test options for external subroutines are displayed.

Test with a Program

To test an external subroutine using a program

1 Open the context menu for the subroutine in the Project Explorer view.

2 Select Testing > Test Subroutine with Program.

The subroutine is tested and the results are displayed in theNatural I/O view. For example:

Application Testing106

Test an External Subroutine

Test with a Subprogram

To test an external subroutine using a subprogram

1 Open the context menu for the subroutine in the Project Explorer view.

2 Select Testing > Test Subroutine with Subprogram.

The tester creates a temporary subprogram file to test the subroutine. For example:

Note: This editor functions in the same way as the editor used to test a subprogram.
For information on using this editor, see Features of the Test Editors and Test a Sub-
program Directly.

107Application Testing

Test an External Subroutine

108

11 Test a Natural Map

This section describes how to test a Natural map in NaturalONE. The tester allows you to test a
map as you would on the server (i.e., pressing PF4 in the map editor).

Note: The map must be available locally. If the map is not available locally, download it
from the server.

To test a Natural map

1 Open the context menu for the map in the Project Explorer view.

2 Select Testing.

3 Select Test Map.

The output of the map is displayed. For example:

109

In addition to testing the output of the map, you can also test all code within the map. For
example, you can enter "?" in an input field to display the available help information (if help
has been attached to the map).

You can also apply a different style sheet to themap by selecting in Style Sheet. For example:

Application Testing110

Test a Natural Map

In this example, the default style sheet natural.css has been used. If you would like to see the
same colors in the outputwindow as in themap editor, you can use the style sheet natural_ma-
peditor.css instead of the default style sheet.

To change style sheets, select the file inWeb I/O style sheet and select Apply. The map is
redisplayed with the selected style sheet.

111Application Testing

Test a Natural Map

112

12 Setting Preferences for Application Testing

■ Showing the Preferences for Application Testing .. 114
■ Set Logging Preferences for Unit Tests .. 115
■ Set Server Synchronization Preferences .. 115

113

This section describes how to set preferences for the supplied test function.

Showing the Preferences for Application Testing

The preferences for Application Testing are set in the Preferences dialog box of Eclipse.

To show the preferences for Application Testing

1 From theWindowmenu, choose Preferences.

2 In the tree of the resulting dialog box, expand the Software AG node and then select the
Testing node.

The Testing page is displayed.

Application Testing114

Setting Preferences for Application Testing

Set Logging Preferences for Unit Tests

To set logging preferences

1 Display the Testing page as described above.

2 Select Log unit tests.

Unit test log files will be created automatically each time a unit test is executed. The log files
are stored in the Testing-History folder within the NaturalONE project in which the unit test
was executed and include a .tstlog file extension.

Note: If this option is not selected, the log files will not be created.

3 SelectOK to save the preferences.

Set Server Synchronization Preferences

When testing a subprogram, a message may be displayed indicating that a local resource has not
been uploaded to the server and synchronized with the server resource. You can set preferences
for this option.

To set server synchronization preferences

1 Display the Testing page as described above.

2 Select one of the options listed inUpload resource(s) when they are not in sync with server.

These options are:

DescriptionOption

Resource(s) are always uploaded to the server when not in sync.Always

Resource(s) are never uploaded to the server when not in sync.Never

A window is displayed to select an option.Prompt

3 SelectOK to save the preferences.

115Application Testing

Setting Preferences for Application Testing

116

13 Creating Ant Scripts to Run Unit Tests

■ General Information ... 118
■ Using the Natural Unit Test Ant Script Wizard to Run Natural Unit Tests .. 118
■ Generating a JUnit-style Test Report ... 124
■ Running the Natural Unit Test Ant Script from NaturalONE ... 124
■ Running the Natural Unit Test Ant Script from the Command Line .. 125
■ Properties of the Natural Unit Test Ant Script ... 129
■ Migrate Existing Natural Unit Test Ant Scripts .. 131

117

You can use the Natural Unit Test Ant Script wizard to create XML-based Ant scripts to run unit
test files (file extension .exttst, .nattst, and .seqtst). You can run the Ant script from within Natur-
alONE or from the command line.

Note: It is not possible to run business services via the Natural Unit Test Ant Script.

For information on creating unit test files, see:

■ Create a Unit Test for a Subprogram
■ Create an External Data Unit Test
■ Create a Sequence Unit Test

General Information

NaturalONE offers a Natural Unit Test Ant Wizard which collects all required information (such
as the Natural project where the tests are located or the RPC environment to be used) and writes
it to an Ant script which is finally used to run the Natural unit tests. This Ant script makes the
testing task highly configurable and repeatable and allows you to run the tests unattended.

This Ant-based Natural unit testing can either be started from within the NaturalONE Eclipse
environment or via the Ant command line utility. It provides the following functionality:

■ Run Natural unit test cases available in a root folder hosting the project.
■ Check out a Natural project with Natural unit test cases and required Natural sources from a
version control system (either CVS, Subversion or Git); this is usually done outside of Eclipse.

Using the Natural Unit Test Ant Script Wizard to Run Natural Unit Tests

The Natural Unit Test Ant Script wizard creates a Natural test file in your project root folder for
executing Natural unit tests. This is an Ant script. You can create one or more Natural test files
for a project, and you can also load an existing Natural test file and modify the current settings.

To use the Natural Unit Test Ant Script wizard

1 In the Project Explorer view or in theNatural Navigator view, select the Natural project for
which you want to create the test file.

Or:

If you want to load the settings of an existing Natural test file, select this file in the Project
Explorer view or in theNatural Navigator view.

Application Testing118

Creating Ant Scripts to Run Unit Tests

2 From the Filemenu or from the context menu, chooseNew > Other.

3 In the resultingNew dialog box, expand the Software AG node, then expand the Testing
node, selectNatural Unit Test Ant Script and finally click theNext button.

The first page of the wizard (General Settings) appears.

4 Specify all required information as described individually for eachwizard page in the following
sections below. Use theNext button repeatedly to proceed from the first page of the wizard
to the last page.

5 When all required information has been provided, click the Finish button .

■ General Settings
■ Repository
■ Logging

General Settings

On the first page of the wizard, you define general settings for the Natural unit testing.

119Application Testing

Creating Ant Scripts to Run Unit Tests

Project
The project which contains the Natural unit test cases and required Natural sources.

Natural Unit test file
The default name for the Natural unit test file is unittest.xml. This name is shown in this text
box when an existing Natural test file was not selected while invoking the wizard. However,
when an existing Natural test file was selected, the name of the selected file is shown and the
settings from this file are automatically loaded.

You can enter any other name for your new test file. It is recommended that your new test file
also has the extension .xml.

Notes:

Application Testing120

Creating Ant Scripts to Run Unit Tests

1. If you keep the name unittest.xml, the settings from an existing Natural test file with the
same name are loaded the next time you select the project and invoke the wizard.

2. If youwant to load an existingNatural test file, choose theBrowse button. A dialog appears,
providing for selection of all Natural test files in the current project. Next, you have to
choose the Load from File button. Otherwise, the settings in this file are not shown in the
wizard and may thus be overwritten unintentionally.

3. If you want to return to the default settings of the test wizard (this also includes the inform-
ation that can be specified on the other pages of the wizard), choose the Load Defaults
button.

RPC Environment
You can select the RPC environment which should be used to run the Natural unit tests. An
RPC environment can be defined in the RPC Environmentmonitor of the EntireX perspective.
For more information, refer to the EntireX documentation.

The wizard creates all required RPC properties such as Broker ID or Server Address into the
test file.

Enable fail-on-error for Ant script
When enabled, the Ant script reports errors and terminates in the case of a build failure.

When disabled, the Ant script still reports errors but does not terminate.

Root directory
This path should only be changed when you intend to start the Natural unit testing from the
command line (that is, when the Natural unit testing is not to be started from Eclipse).

Specify the directory inwhich the selected project is to be checked out andwhere the processing
takes place. When the testing is supposed to run on a different machine, you can insert the
desired root path using copy and paste.

Repository

On this page of the wizard, you define all settings related to the versioning repository. This can
be either Subversion (SVN), Git or CVS.

121Application Testing

Creating Ant Scripts to Run Unit Tests

Type
From the Type drop-down list box, select the type of versioning repository that you are using,
and then specify all required information. The names of the text boxes and their availability
changes according to the selected type.

The wizard usually collects a set of default information as given for the selected project. In
most cases, only minor corrections have to be made to the defaults, for example, user ID and
password may have to be provided

Enable password encryption
When enabled, the repository password that is used in the Natural unit test file is stored in an
encrypted format.

Application Testing122

Creating Ant Scripts to Run Unit Tests

Logging

On this page of the wizard you can write history files or specify a log file for generating a Junit
compatible Test Report.

Write history files
If enabled, a history file is written to the Testing-History folder of the project any time the
Natural unit test file is run.

Log file name
The name of a JUnit-style Test Report. For further information please refer to Generating a
JUnit-style Test Report.

123Application Testing

Creating Ant Scripts to Run Unit Tests

Generating a JUnit-style Test Report

Usually, when running theNatural unit test script fromwithinNaturalONE or from the command
line, the standard output of the script is sufficient to determine the outcome of the test as well as
the errors that might have happened in single test steps during the run. However, when the test
is run within a continuous integration tool like Jenkins or Hudson, a different output style might
be desirable. It is possible to enable an additional JUnit-style output for theNatural unit test script.
While the standard console output remains the same, an additional file is written which can then
be used for example as the input file for a JUnit post-build action.

To switch on additional JUnit-style output, the Natural unit test Ant script has to be launched
with an Ant listener:

ant ... -listener ↩
com.softwareag.natural.unittest.ant.framework.NaturalTestingJunitLogger

The JUnit-style output will then be written to a file named log.xml. The name of the file can be
changed.

The resulting file can be used as input, for example in the Publish JUnit test result report post-
build action in a Jenkins job.

Running the Natural Unit Test Ant Script from NaturalONE

When you start the Natural unit test Ant script from Eclipse, it is not possible to execute the
checkout target of the Ant script since this target would access the versioning repository, and this
is not feasible from within an Eclipse environment. If you want to check out a specific revision
from the versioning repository, you have to start theNatural unit test Ant script from the command
line as described in Running the Natural Unit Test Ant Script from the Command Line.

However, for testing purposes it is helpful to start the Natural unit test Ant script from Eclipse.
Since the Natural unit testing file is an Ant script, the built-in Eclipse functionality of starting Ant
scripts is used here. The unittest target (which is the default target) of the Ant script will then be
executed.

To start the Natural Unit Test Ant script from Eclipse

■ In the Project Explorer view or in theNatural Navigator view, select your Natural unit test
file, invoke the context menu and choose Run As > Ant Build.

The Natural unit test process is started and the output test run is written to theConsole view.

Application Testing124

Creating Ant Scripts to Run Unit Tests

Notes:

1. If youwant to change the limit for the console output, you can do this in the general Eclipse
preferences under Run/Debug > Console.

2. If you want to generate a Junit-style test report from within Eclipse you must choose Run
As > Ant Build… and configure the arguments and the class path accordingly.

Running the Natural Unit Test Ant Script from the Command Line

You can start theNatural unit test Ant script from aWindows command line such as the Command
Prompt (cmd.exe) or from a shell command line on a Linux system. When you start the Natural
unit tests from the command line or shell, special requirements must be met.

■ Prerequisites
■ Starting Ant based Natural Unit testing
■ Example

Prerequisites

The following components must be installed and accessible:

■ Apache Ant 1.7.1 or above.
■ Java Development Kit (JDK) 11 or above.
■ If you want to use the Ant checkout task of the Natural Unit Test Ant script, the corresponding
repository tool has to be installed (either the Subversion command line tool 1.5.2 or above, the
CVS command line tool 1.11 or above, or the Git command line tool 1.9.5 or above)

You have to copy the following JAR files, which contain the necessary processing code, from the
NaturalONE Eclipse installation to the new directory:

■ com.softwareag.entirex.core_<version>.jar
■ com.softwareag.entirex.runtime_<version>.jar
■ com.softwareag.natural.unittest.ant_<version>.jar
■ com.softwareag.natural.unittest.core_<version>.jar
■ com.softwareag.naturalone.natural.auxiliary_<version>.jar
■ com.softwareag.naturalone.gen.common.logging_<version>.jar
■ com.thoughtworks.xstream_<version>.jar
■ org.apache.log4j.api_<version>.jar
■ org.apache.log4j.core_<version>.jar

125Application Testing

Creating Ant Scripts to Run Unit Tests

Where <version> represents the corresponding version number that is part of the JAR file name.

You have to copy your Natural unit test file which has been created by the Natural Unit Test Ant
wizard into the directory which has been specified in the wizard as the root directory (this is the
base directory for processing).

Starting Ant based Natural Unit testing

When all prerequisites are in place, the Natural unit testing can be started by issuing specific Ant
calls. (where the default name unittest.xml is used).

■ Print the help screen of the Natural Unit Test Ant script:

ant -lib path-to-mylib -buildfile unittest.xml help

■ Perform an initial checkout of the project containing the Natural unit tests from the versioning
repository:

ant -lib path-to-mylib -buildfile unittest.xml checkout

■ Perform Natural unit test run with a Junit-style log file:

ant -lib path-to-mylib -buildfile unittest.xml -listener ↩
com.softwareag.natural.unittest.ant.framework.NaturalTestingJunitLogger

Example

The following sections describe how to run Ant-based Natural unit tests from the command line:

■ Contents of the root folder
■ Modification of the Ant Script unittest.xml
■ Checkout the Project from repository
■ Run the Ant Script
■ Console result of the Natural Unit Test Run
■ JUnit-style log file has been created

Application Testing126

Creating Ant Scripts to Run Unit Tests

■ Display the log file with JUnit View

Contents of the root folder

In this example, the folderP:\NatUnit contains theNaturalONEbundles required forNatural unit
testing. The path to the Ant binaries must have been set. In addition to the .jar files, the Ant script
unittest.xml is also available in this folder.

Modification of the Ant Script unittest.xml

In order to run the Ant based Natural unit testing script from a specific root folder, to checkout
from a specific repository site, or to use a specific project name, the following adjustments are
applied in the file unittest.xml:

■ natural.ant.project.rootdir value="P:\NatUnit"

■ natural.ant.project.name value="UnitTests2"

■ natural.ant.repository.module value="UnitTests2"

127Application Testing

Creating Ant Scripts to Run Unit Tests

Checkout the Project from repository

The projectUnitTests2will be checked out from an SVN repository using the following command
at the command prompt:

ant -lib P:\NatUnit -buildfile unittest.xml checkout

After the checkout task has been run, the Natural project UnitTests2 is now also available as a
subdirectory in the root folder P:\NatUnit.

Run the Ant Script

In the next step, the Ant script is running the tests located in the UnitTest2 project. It is using an
Ant listener to write a JUnit-style log file in addition to the console output. The unittest task is
not explicitly specified in the command line, since this task is the default task:

ant -lib P:\NatUnit -buildfile unittest.xml -listener ↩
com.softwareag.natural.unittest.ant.framework.NaturalTestingJunitLogger

Console result of the Natural Unit Test Run

The console shows the results of the test run. The single test case SECTEST1 has been run success-
fully.

Application Testing128

Creating Ant Scripts to Run Unit Tests

JUnit-style log file has been created

The file log.xmlwith the JUnit compatible format has been added to the root folder P:\NatUnit.

Display the log file with JUnit View

The log file is displayed inside Eclipse with the JUnit view:

Properties of the Natural Unit Test Ant Script

This section describes the Ant properties that the Natural Unit Test Ant wizard generates into the
Natural unit test Ant script. Some properties can bemodified according to specific needs.However,
in most cases it will be sufficient to just adapt the natural.ant.project.rootdir property since
the wizard assigns the Eclipse workspace path to this property.

129Application Testing

Creating Ant Scripts to Run Unit Tests

DescriptionProperty

The root folderwhere the project containing theNatural unit test cases is located. TheNatural
Unit Test Ant wizard always assigns the Eclipse workspace path to this property.

natural.ant.project.rootdir

The name of the project containing the tests. Apart from the various test cases like .exttst,
.nattst, and .seqtst all Natural sources relevant for constructing the IDL of a calling subprogram
must be available.

natural.ant.project.name

The encrypted RPC password.natural.testing.ant.rpcpwd

The RPC user ID.natural.testing.ant.rpcuid

The name of the RPC environment.natural.testing.ant.rpcenvname

The RPC address string.natural.testing.ant.srvaddr

The name of the Ant script.natural.testing.ant.file.name

The used Broker.natural.testing.ant.brokerid

The encrypted EntireX password.natural.testing.ant.exxpwd

The EntireX user.natural.testing.ant.exxuid

The name of the JUnit-style logfile.NaturalTestingJunitLogger.file

The default is log.xml. A fully qualified path could also be entered.

The log file will only be generated when the ant listener
com.softwareag.natural.unittest.ant.framework.NaturalTestingJunitLogger
is set.

The steplib chain.natural.ant.project.steplibs

This chain is just used for finding the Natural sources involved in constructing the IDL to be
passed to the Broker/RPC environment but will not be used for passing the steplibs to the
RPC runtime environment. As a consequence all Natural sources like parameter data areas
must be available in the Natural unit test project.

The projects referenced by the Natural unit test project. The default is "".natural.ant.referenced.projects

If specified, the referenced projectsmust also be checked out. Referenced projects are accessed
during test case execution to potentially find a required Natural source like a parameter data
area in a library of a referenced project.

Logon to the broker in order to perform authentication. The default is YES. This is especially
mandatory for secured Broker/RPC environments.

natural.testing.ant.logon

The Ant processing terminates after the first error. The default is NO.natural.ant.failonerror

Writes history files to the fixed folder Testing-History located under the project root. The
default is NO.

natural.testing.ant.writehistory

Enables repository password encryption. The default is YES.natural.ant.project.password.encryption

The version to check out from the repository.natural.ant.repository.version

The repository type.natural.ant.repository.type

The repository password.natural.ant.repository.password

The repository user.natural.ant.repository.username

The repository access method.natural.ant.repository.access.method

Application Testing130

Creating Ant Scripts to Run Unit Tests

DescriptionProperty

The URL of the repository.natural.ant.repository.url

The name of the project to check out from the repository.natural.ant.repository.module

Migrate Existing Natural Unit Test Ant Scripts

As of NaturalONE version 9.2.1, Code Generation logging is based on Apache Log4j 2 instead of
Apache Log4j.

For this reason, the natural.ant.searchpath property in Creating Ant Scripts to Run Unit Tests
has been changed. If you create a new Natural Unit Test Ant Script, the correct
natural.ant.searchpathwill be generated. However, if you have Natural Unit Test Ant scripts
in yourNatural Projects directory createdwithNaturalONE before version 9.2.1, youmustmigrate
these scripts to the new format.

■ Migrate Natural Unit Test Ant Scripts from within the NaturalONE Eclipse Environment
■ Migrate Natural Unit Test Ant Scripts from the Command Line

Migrate Natural Unit Test Ant Scripts from within the NaturalONE Eclipse Environment

To migrate the Natural Unit Test Ant scripts

1 In the Project Explorer view or in theNatural Navigator view, select the Natural project for
which you want to migrate scripts.

2 Invoke the context menu and choose Testing >Migrate Natural Unit Test Ant Scripts.

3 In theMigrate Natural Unit Test Ant Scripts dialog box, all projects which contain scripts
with the old format will be listed. The projects which are selected will be migrated.

4 Select all projects you want to migrate or selectMigrate all to migrate all listed projects. Then
clickMigrate.

5 The Natural Unit Test Ant scripts will be migrated to the current format and a backup file
with the .bck extension will be created for every migrated script (e.g. unittest.xml.bck).

131Application Testing

Creating Ant Scripts to Run Unit Tests

Migrate Natural Unit Test Ant Scripts from the Command Line

You can start the Natural Unit Test Ant script migration from a Windows command line such as
the Command Prompt (cmd.exe) or from a shell command line on a Linux system. When you start
the migration from the command line or shell, special requirements must be met.

■ Prerequisites
■ Start Migration

Prerequisites

■ Java Development Kit (JDK) 11 or above

Copy the following JAR file, which contains the necessary processing code, from the NaturalONE
Eclipse installation to the new directory:

■ com.softwareag.natural.unittest.ant_<version>.jar

Where <version> represents the corresponding version number that is part of the JAR file name.

Application Testing132

Creating Ant Scripts to Run Unit Tests

Start Migration

When all prerequisites are in place, the Natural Unit Test Ant script migration can be started by
issuing specific java calls.

■ Print the help screen:

java -jar com.softwareag.natural.unittest.ant_<version>.jar

■ List all scripts with old format on the given path:

java -jar com.softwareag.natural.unittest.ant_<version>.jar ↩
findAntUnitScriptsToMigrate <Path_to_search>

■ Migrate all scripts with old format on the given path:

java -jar com.softwareag.natural.unittest.ant_<version>.jar ↩
migrateAntUnitScripts <Path_to_search>

133Application Testing

Creating Ant Scripts to Run Unit Tests

134

	Application Testing
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Release Notes
	What's New in Version 9.1.3
	Eclipse-Independent Application Testing

	3 Prerequisites
	4 Getting Started
	General Information
	Testing a Subprogram Directly
	Creating a Unit Test
	Running a Unit Test
	Generating an Ant Script

	5 Features of the Test Editors
	6 Test a Business Service or Subprogram Directly
	Test a Business Service Directly
	Test the Service
	Define Date and Time Details
	Define Connections
	Define Additional RPC Environments
	Save as a Business Service Unit Test

	Test a Subprogram Directly
	Access the Test Function
	Access the Debug Function
	Save as a Natural Unit Test

	Debug a Subprogram Directly
	Export/Import Test Data
	Export Test Data
	Import Test Data

	Export Test Data to a CSV File

	7 Create a Unit Test for a Business Service or Subprogram
	Enable for Application Testing
	Create a Unit Test for a Business Service
	Create the Unit Test
	Configure Input Parameters
	Edit an Input Field
	Duplicate an Input Field
	Add Multiple Elements for an Array Field

	Define Validations
	Edit a Field Validation
	Duplicate a Field Validation
	Add Multiple Validations for an Array Field

	Run the Unit Test
	Open a Previous Unit Test
	Run a Unit Test in Another Environment
	Test for an Expected Error
	Test an Array Field

	Create a Unit Test for a Subprogram
	Generate Default Unit Tests
	Generate Tests for a Business Service
	Generate Tests for a Natural Subprogram

	Create a New Unit Test Suite
	Create Unit Test Log Files
	Create Unit Test Log Files

	Use the Dependencies View
	Business Service Unit Test Resources
	Natural Subprogram Unit Test Resources

	8 Create an External Data Unit Test
	Create the Unit Test
	Create a New Unit Test
	Create a New Data File

	Configure Column Mappings and Sample Data

	9 Create a Sequence Unit Test
	Create the Unit Test
	Use the Sequence Unit Test Editor
	Add Test Steps
	Copy Data from a Previous Step
	Add an Input Override
	Add a Validation Override
	Add a Method Override

	Use the Dependencies View
	Sequence Unit Test Resources
	Business Service Unit Test Resources
	Natural Unit Test Resources

	10 Test an External Subroutine
	Access the Subroutine Tester
	Test with a Program
	Test with a Subprogram

	11 Test a Natural Map
	12 Setting Preferences for Application Testing
	Showing the Preferences for Application Testing
	Set Logging Preferences for Unit Tests
	Set Server Synchronization Preferences

	13 Creating Ant Scripts to Run Unit Tests
	General Information
	Using the Natural Unit Test Ant Script Wizard to Run Natural Unit Tests
	General Settings
	Repository
	Logging

	Generating a JUnit-style Test Report
	Running the Natural Unit Test Ant Script from NaturalONE
	Running the Natural Unit Test Ant Script from the Command Line
	Prerequisites
	Starting Ant based Natural Unit testing
	Example
	Contents of the root folder
	Modification of the Ant Script unittest.xml
	Checkout the Project from repository
	Run the Ant Script
	Console result of the Natural Unit Test Run
	JUnit-style log file has been created
	Display the log file with JUnit View

	Properties of the Natural Unit Test Ant Script
	Migrate Existing Natural Unit Test Ant Scripts
	Migrate Natural Unit Test Ant Scripts from within the NaturalONE Eclipse Environment
	Migrate Natural Unit Test Ant Scripts from the Command Line
	Prerequisites
	Start Migration

