
NaturalONE

Application Testing

Version 8.2.7

March 2013

This document applies to NaturalONE Version 8.2.7.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2009-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ONE-TESTING-DOC-827-20130320

Table of Contents

Preface .. v
1 Release Notes .. 1

What's New in Version 8.2.1 .. 2
Fixes .. 3
What's New in Version 8.2.2 .. 3
What's New in Version 8.2.3 .. 4
What's New in Version 8.2.4 .. 4
What's New in Version 8.2.5 .. 4
What's New in Version 8.2.6 .. 7
What's New in Version 8.2.7 .. 8

2 Overview of Test Functions ... 9
3 Using the Test Functions ... 11

Features of the Test Editors .. 12
Test a Business Service or Subprogram Directly .. 13
Create a Unit Test for a Business Service or Subprogram .. 32
Create an External Data Unit Test .. 74
Create a Sequence Unit Test ... 83
Test an External Subroutine ... 98
Test a Natural Map ... 101

4 Setting Preferences for Application Testing .. 107
Set Logging Preferences for Unit Tests ... 108
Set Server Synchronization Preferences ... 109

5 Creating Ant Scripts to Run Unit Tests ... 111
Set Up the Environment ... 112
Generate the Ant Script and Command Files .. 112
Define the testsuite Ant Task .. 116

iii

iv

Preface

This documentation describes how to test business services, subprograms, subroutines, andmaps
in the NaturalONE environment. It is organized under the following headings:

Information on new features and enhancements.Release Notes

Brief description of this NaturalONE component.Overview of Test Functions

Information on how to use the test functions supplied with
NaturalONE.

Using the Test Functions

Describes the preferences you can set for the test functions, such as
setting preferences for logging unit test results and synchronizing local
resources with those on the server.

Setting Preferences for Application
Testing

Information on how to create xml-based Ant scripts to run unit test
files (file extension .bsrvtst, .exttst, .nattst, and .seqtst), and then create
a Junit test file to run the Ant scripts programmatically from Java.

Creating Ant Scripts to Run Unit
Tests

v

vi

1 Release Notes

■ What's New in Version 8.2.1 .. 2
■ Fixes .. 3
■ What's New in Version 8.2.2 .. 3
■ What's New in Version 8.2.3 .. 4
■ What's New in Version 8.2.4 .. 4
■ What's New in Version 8.2.5 .. 4
■ What's New in Version 8.2.6 .. 7
■ What's New in Version 8.2.7 .. 8

1

These Release Notes pertain to the Application Testing component of NaturalONE version 8.2. The
following topics are covered:

What's New in Version 8.2.1

What's New in Version 8.2.2

What's New in Version 8.2.3

What's New in Version 8.2.4

What's New in Version 8.2.5

What's New in Version 8.2.6

What's New in Version 8.2.7

What's New in Version 8.2.1

This section describes the new features for the test functions supplied with NaturalONE version
8.2.1. The following topics are covered:

■ Natural Unit Tests

Natural Unit Tests

This section describes changes to the Natural unit test functionality. The following topics are
covered:

■ Improved Unit Test Functions
■ Test an External Subroutine
■ Support for Local Decimal Format
■ New Log File and Report Functions

Improved Unit Test Functions

You can now create a unit test that will pass when an expected error occurs. You can also search
for a specified string in message text. For information, see Test for an Expected Error. In addition,
the following changes were made to the unit test functions:

■ You can now use mathematical comparisons (for example >, <, =, <=, >=) in the Configure Field
Validationwindow.

■ The available controls for the selected field are nowdisplayed in theConfigure FieldValidation
window.

■ The available controls for the selected field are now displayed in the Configure Input Field
window.

For information, see Create a Unit Test for a Business Service.

Application Testing2

Release Notes

Test an External Subroutine

You can use the test options to test an external subroutine using either a subprogramor a program.
For information, see Test an External Subroutine.

Support for Local Decimal Format

The tester now supports the decimal format for a local region. For example, a decimal number in
Germany can be "12343,99". To set Eclipse to another region, add the following code to the program
arguments window:

-nl de

where "de" indicates Germany.

New Log File and Report Functions

You can now create unit test log files and then use the log files to create summary reports. For in-
formation, see Create Summary Reports for Unit Test Log Files.

Fixes

This section describes the bug fixes in this release of the Application Testing component. The fol-
lowing topics are covered:

■ Test Business Services in Projects that Reference the Construct Runtime Project

Test Business Services in Projects that Reference the Construct Runtime Project

When testing a business service in a project that contains generated objects that reference the
Construct runtime project, the runtime project was not searched and an error was displayed. This
problem has been fixed.

What's New in Version 8.2.2

This version contains several error corrections. New functionality is not provided.

3Application Testing

Release Notes

What's New in Version 8.2.3

This section describes the new features for the test functions supplied with NaturalONE version
8.2.3. The following topics are covered:

■ Enhancements

Enhancements

This section describes the changes in this release of the Application Testing component. The fol-
lowing topics are covered:

■ Ensure Code Synchronization with the Server While Testing Subprograms
■ Create Unit Test Validations to Test for Mathematical Comparisons

Ensure Code Synchronization with the Server While Testing Subprograms

While testing a subprogram, a message may be displayed indicating that a local resource has not
been uploaded to the server and synchronized with the server resource. You can now use settings
in the Preferenceswindow to decide how to handle this scenario. For information, see Set Server
Synchronization Preferences.

Create Unit Test Validations to Test for Mathematical Comparisons

You can now create unit test validations for Natural errors and data entry based on validator types
(i.e., not restricted to characters in the data type). For information, see Define Validations.

What's New in Version 8.2.4

This version contains several error corrections. New functionality is not provided.

What's New in Version 8.2.5

This section describes the new features for the test functions supplied with NaturalONE version
8.2.5. The following topics are covered:

■ Changes to the Test Editors
■ Access Testing Functions Through a New Folder Structure
■ Eliminate Date/Time Information While Testing Subprograms
■ Create a Unit Test that Accepts Input from an External File

Application Testing4

Release Notes

■ Create Default Tests for Object-Browse-Subp and Object-Maint-Subp-generated Business Services
and Natural Subprograms
■ Edit Settings Inline, Duplicate Values, and Add Multiple Entries to an Array Field in the Unit Test Editor
■ Display the Elapsed Time a Test Takes to Run in the Natural Unit Test View
■ Create a History Chart and Display Elapsed Time and User IDs for Unit Test Log File Reports
■ Log and Save the Test History for an Ant testsuite Task

Changes to the Test Editors

All toolbar controls for the Test editors are now available in the editor toolbar. These controls were
previously located in the Eclipse toolbar.

Access Testing Functions Through a New Folder Structure

The folder structure used to store Natural and business service unit test files (file extension .nattst
and .bsrvtst) has changed to take advantage of new testing options. The new structure includes a
Testing-Suites folder within a Natural project. For example:

natural_project_name/Testing-Suites/optional_suite_subfolders/test_name.nattst (or ↩
.bsrvtst)

You can either use the Enable for Application Testing option on the context menu for a project
to add the Testing-Suites folder or you can create a new unit test and the folder will be automat-
ically added to the current project (alongwith any subfolders). The optional subfolder in the above
structure can also be created using the new Create Test Suite context menu option.

Notes:

1. Any test files stored outside of the new folder structure will display a warning marker (a "!"
symbol on theNavigator file icon) and an entry in the Problems view indicating that they are
not in the proper place. You can continue to run these tests individually (i.e., selecting Run
Unit Test on the context menu), but you can only run more than one test from the Testing-
Suites folder.

2. Ant scripts for Natural unit tests can contain unit test files existing outside of the above folder
structure.

3. TheCreate Unit Test Report contextmenu option is only available from theTesting orTesting-
History nodes in theNavigator view (previously available from anyNavigator node).

5Application Testing

Release Notes

Eliminate Date/Time Information While Testing Subprograms

Anew option in the testing editor allows you to blank out date and time informationwhen testing
business services or subprograms. For information, see Define Date and Time Details.

Create a Unit Test that Accepts Input from an External File

A new wizard is available to create a unit test that accepts input and/or validations from a CSV
(comma separated values) file (file extension .csv). This type of unit test eliminates the need to
create many unit tests that contain similar data and it decreases the effort required to maintain
the test. For information, see Create an External Data Unit Test.

A newwizard is also available to record the test data used to test a business service or subprogram
directly and then export the data to a CSV file. For information, see Export Test Data to a CSV
File.

Create Default Tests for Object-Browse-Subp and Object-Maint-Subp-generated Business Services
and Natural Subprograms

Default unit tests can nowbe created for all object-browse subprograms generated using theObject-
Browse-Subpwizard and all object-maintenance subprograms generated using the Object-Maint-
Subpwizard (bothVelocity andConstruct-generated). The tests can then be customized as required.
For information, see Generate Default Unit Tests.

Default unit tests are generated for:

■ Each browse key for an object-browse subprogram.
■ Each function for an object-maintenance subprogram (such as GET, NEXT, etc.).

Edit Settings Inline, Duplicate Values, and Add Multiple Entries to an Array Field in the Unit Test Editor

The unit test editor has been enhanced to include new editing functions. For example, you can
now edit the Input and Validation settings inline instead of through the Edit button, or use the
Duplicate button to quickly copy values from one field to another. In addition, an Add Array
button was added to allow you to add multiple entries to an array field at the same time. For in-
formation, see Create a Unit Test for a Business Service or Subprogram.

Application Testing6

Release Notes

Display the Elapsed Time a Test Takes to Run in the Natural Unit Test View

TheNatural Unit Test viewnowdisplays the length of time in seconds that a test takes to complete.
For information, see Run the Unit Test.

Create a History Chart and Display Elapsed Time and User IDs for Unit Test Log File Reports

A new History chart report is now available for unit test log files, which provides a graph of the
Pass/Fail count, and two new columns have been added to the Detail report: elapsed time and
user ID. For information, see Create Summary Reports for Unit Test Log Files.

Log and Save the Test History for an Ant testsuite Task

Two new options have been added to log and save test history for the Ant testsuite task to the
Testing-History folder. For information, see Define the testsuite Ant Task.

What's New in Version 8.2.6

This section describes the new features for the test functions supplied with NaturalONE version
8.2.6. The following topics are covered:

■ Create a Sequence Unit Test
■ Create Unit Tests and Data (CSV) Files from the External Data Unit Test Wizard

Create a Sequence Unit Test

A new wizard is available to create a unit test that executes a sequence of business service and/or
Natural unit tests. The generated test invokes target test business services/subprograms and can
copy data between each call. In addition, you can create new unit tests from the sequence unit test
editor. For information, see Create a Sequence Unit Test.

Create Unit Tests and Data (CSV) Files from the External Data Unit Test Wizard

You can now create a unit test and/or data file (file extension .csv) while generating an external
data unit test. In previous versions, these files had to exist before creating the external data test.
For information, see Create a New Unit Test and Create a New Data File.

7Application Testing

Release Notes

What's New in Version 8.2.7

This section describes the new features for the test functions supplied with NaturalONE version
8.2.7. The following topics are covered:

■ Export/Import Test Data for Business Services and Subprograms

Export/Import Test Data for Business Services and Subprograms

You can now export and import test data for a business service or subprogram in the test editor,
whichmakes it quicker and easier to run similar testswithoutmanually re-entering the input data.
For information, see Export/Import Test Data.

Application Testing8

Release Notes

2 Overview of Test Functions

This section provides an overview of the test functions suppliedwithNaturalONE. These functions
are:

■ Test a Business Service or Subprogram Directly

Provides an easy way to run a business service or subprogram by analyzing the parameters,
displaying them in a test editor (tester), and allowing you to change the input values. You can
then run the test and verify the return values.

■ Create a Unit Test for a Business Service or Subprogram

Allows you to specify a business service or subprogram to test, supply input values, and then
provide validation criteria for the output of the call (for example, you can supply two numbers
as the input values and a value for the result field as the validation criteria).

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst,
and .seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

■ Create an External Data Unit Test

Generates a unit test that accepts input and validation values from a CSV file (file extension
.csv).

■ Create a Sequence Unit Test

Generates a unit test that executes a sequence of business service and/or Natural unit tests.
■ Test an External Subroutine

Tests a subroutine using either a subprogram or a program that calls a subprogram.
■ Test a Natural Map

Test a Natural map as you would on the server.

9

Notes:

1. To install the Application Testing component, you must selectDesigner > NaturalONE > Ap-
plication Testing in the installation tree for the installer.

2. The tests are run using the EntireX RPCmechanism. While many details are hidden, you must
have some knowledge of EntireX RPC to run the tests.

3. As a business service cannot be tested in the local Natural runtime environment without a full
local installation of Natural Business Services, the tests are simulated locally by calling the
subprogram directly.

Application Testing10

Overview of Test Functions

3 Using the Test Functions

■ Features of the Test Editors ... 12
■ Test a Business Service or Subprogram Directly .. 13
■ Create a Unit Test for a Business Service or Subprogram .. 32
■ Create an External Data Unit Test ... 74
■ Create a Sequence Unit Test ... 83
■ Test an External Subroutine ... 98
■ Test a Natural Map ... 101

11

Note: To test subprograms and business services directly, and to create unit tests for subpro-
grams and business services, a Natural RPC server is required. The Natural Development
Server cannot be used in this context. If you are testing items in a project connected to the
local Natural runtime environment, a special connection via RPC must be made.

Features of the Test Editors

This section describes the features of the test editors, such as navigation options and toolbar icons.
The following example shows the Test Business Service editor, which is similar for both business
services and subprograms. The INPUT-DATA and OUTPUT-DATA fields have been expanded
for the example:

Keyboard navigation is supported in all editors. In the example above, you can use keys on the
keyboard to move from one field to another in the tree view and/or navigate to the table on the
right to add or edit values.

The following table describes each of the options available on the editor toolbar:

DescriptionToolbar Icon

Runs the current file using the values defined in the editor. Use the down arrow to display the
available environments inwhich to run the test and select a different environment. For example:

Application Testing12

Using the Test Functions

DescriptionToolbar Icon

Stops the current test.

Records the test data for export to a CSV file (file extension .csv), which can then be used as
input for an external data unit test. After selecting this option, either the record function for
the test will begin or the Define External Test Details panel will be displayed to define the
external data unit test. To change details about the recording, select the down arrow. For

example:

TheDefine External Test Details panel is displayed. For more information, see Export Test
Data to a CSV File.

Exports test data (field names and values) from the data tree in the test editor view to a new
or existing test data file (extension .tstdata) in the workspace. For information, see Export Test
Data.

Imports an existing test data file in the workspace to the data tree in the test editor view by
matching field names in the imported test data file to field names in the editor tree. For
information, see Import Test Data.

Resets all data values and structures to their default values.

Test a Business Service or Subprogram Directly

This section describes how to test a business service or subprogram directly. The following topics
are covered:

■ Test a Business Service Directly
■ Test a Subprogram Directly
■ Export/Import Test Data
■ Export Test Data to a CSV File

Test a Business Service Directly

This section describes how to test a business service directly. The following topics are covered:

■ Test the Service
■ Define Date and Time Details
■ Define Connections
■ Define Additional RPC Environments
■ Save as a Business Service Unit Test

Note: The subprograms used for the servicemust be available locally. If they are not available
locally, download them from the server.

13Application Testing

Using the Test Functions

Test the Service

To test a business service directly:

1 Open the context menu for the business service in theNavigator view.

2 Select Testing.

The testing options for business services are displayed. For example:

3 Select Test Business Service.

The business service is displayed in the editor view. For example:

Application Testing14

Using the Test Functions

Note: For information on using this editor, see Features of the Test Editors.

4 Expand the INPUT-DATA andOUTPUT-DATA nodes.

TheData tab displays the properties and values defined for each parameter used in the test.
For example:

5 Select each input and output field to use in the test and define the value for the Value property.

For example:

15Application Testing

Using the Test Functions

ValueParameter

2FIRST-NUM

3SECOND-NUM

5RESULT

true (select Value to change the value from false to true)SUCCESS

Optionally, you can:

ProcedureTask

Select the method inMethod.

Note: Changing the method may change which
subprogram is tested; the parameters may also
change.

Define test data for anothermethod used by the
business service.

Expand the INPUT-DATA node and provide input
values for each property in Property and Value.

Define input parameters for the test.

Expand theOUTPUT-DATA node and provide
output values for each property in Property and
Value.

Define output parameters for the test.

Select the Reset Data toolbar icon. For example:Reset all data values and structures to their
default values.

See Define Date and Time Details.Enter date and/or time details.

See Define Connections.Run the test in another environment.

Select the Stop Test toolbar icon. For example:Interrupt a test that continues to run with no
response.

See Export/Import Test Data.Export and import test data for business services
and subprograms.

See Export Test Data to a CSV File.Record test data and then export it to a CSV file
(file extension .csv).

6 Select to start the test.

Define Date and Time Details

When defining the value for a date and/or time field in a subprogram used by a business service,
a window is displayed to enter details about the date or time. This section describes how to access
and define details about a date or time field.

To define details about a date or time field:

1 Select Value for a date or time field in the testing editor.

For example:

Application Testing16

Using the Test Functions

2 Select in the Value column.

The Enter Date/Timewindow is displayed. For example:

By default, the current date and time are displayed. Optionally, you can:

ProcedureTask

Select Blank date/time.Blank out date and time information
when testing business services or
subprograms.

To change the month, select the up or down arrow forDate.

To change the day, select the day portion ofDate and then
select the up or down arrow.

Change the date used for the test.

To change the year, select the year portion ofDate and then
select the up or down arrow.

17Application Testing

Using the Test Functions

ProcedureTask

To change the hour, select the up or down arrow for Time.

To change the minute, select the minute portion of Time and
then select the up or down arrow.

Change the time used for the test.

To change the second, select the second portion of Time and
then select the up or down arrow.

Enter the number of tenths of a second in Fraction.Use tenths of a second to define the
time used for the test.

Define Connections

This section describes the Connection tab in the editor view. This tab is used to maintain inform-
ation about the environment in which the test will run.

To define the connection settings:

1 Select the Connection tab for the test.

For example:

This tab shows the current connection settings for the RPC environment. For this example,
the settings define aNatural RPCMainframe environment derived directly fromNaturalONE,
as well as settings indicating how the RPC server will be started.

2 Select the environment in which to run the test in RPC environment.

This value defines the name of an EntireX RPC connection configured in Eclipse.

Application Testing18

Using the Test Functions

Note: The list of environments is defined in the Preferenceswindow for RPC environ-
ments. For information on adding additional environments to the list, seeDefine Addi-
tional RPC Environments.

Or:

Select Custom settings and define the custom connection as follows:

DescriptionSetting

Broker identifier. Each installation of EntireX is assigned a Broker ID. This
number uniquely identifies EntireX to your network. If you do not know the
Broker ID, ask the network administrator for your organization.

Broker ID

Name of the Broker server used to logically describe a server (rather than the
name of the program that implements the server). This allows you to change
the program name without affecting the client programs that use the service.

Server

User identifier the server will use to assign the corresponding fields in the
EntireX control block when making calls using the EntireX ACI (Advanced
Communication Interface).

User ID

Password value the server will use to assign the corresponding fields in the
EntireX control block.

Password

Determines whether a Natural logon is required.Natural logon required

User identifier the EntireX RPC server will use to connect with the Natural
server.

RPC user ID

Password value the EntireX RPC server will use to connect with the Natural
server.

RPC password

3 Save the connection settings.

Define Additional RPC Environments

You can define additional RPC environments. Once new environments have been added, they
can be selected in RPC environment on the Connection tab.

To define additional RPC environments:

1 Select Preferences on theWindowmenu. The Preferenceswindow is displayed.

2 Expand the Software AG node.

3 Select EntireX > RPC Environments.

The RPC Environments settings are displayed. For example:

19Application Testing

Using the Test Functions

4 Select Insert.

TheNew RPC Environment panel is displayed.

5 SelectNatural RPC Server in Type.

The specification fields for this type of server are displayed. For example:

Application Testing20

Using the Test Functions

6 Provide the following details about the new environment:

DescriptionSection

Type the broker ID, server address, and default timeout values in the fields
provided.

Broker parameters

Type the user ID and password for EntireX in the fields provided.EntireX authentication

Type the user ID and password for the RPC server in the fields provided.RPC server authentication

Type the name of the library and program from which to extract data in
the fields provided.

Extractor settings

If the new environment is not a local environment, select Stow or Save
and provide the name of the library in which to stow or save wrapper
subprograms in Target library name.

Wrapper settings

21Application Testing

Using the Test Functions

DescriptionSection

After entering the Broker parameters, the default name of the new
environment is displayed in this section. If you do not want to use the
default name, selectOther and provide a new name.

Environment name

For more information about the settings on this panel, refer to the EntireX documentation.

7 Select Finish.

Save as a Business Service Unit Test

After defining the input and output parameters for the test, you can save it as a business service
unit test.

To save the test as a business service unit test:

1 Select Save As on the Filemenu.

TheDefine Business Service Unit Test Details panel is displayed. For example:

2 Provide details for the unit test.

For information, see Create a Unit Test for a Business Service.

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst,
and .seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

Application Testing22

Using the Test Functions

Test a Subprogram Directly

This section describes how to test a subprogram directly. The following topics are covered:

■ Access the Test Function
■ Save as a Natural Unit Test

Note: The subprogram must be available locally. If the subprogram is not available locally,
download it from the server.

Access the Test Function

To access the function to test a subprogram directly:

1 Open the context menu for the subprogram in theNavigator view.

Or:

Open the context menu for the subprogram in the editor view.

Or:

Open the context menu for the subprogram in the Dependencies view.

2 Select Testing > Test Subprogram.

The subprogram is displayed in the editor view. For example:

This editor functions in the same way as the business service editor. The only difference
between this editor and the business service editor is that the business service editor has an
option to select the method (which can change which subprogram is tested internally).

Note: For information on using this editor, see Features of the Test Editors and Test a
Business Service Directly.

23Application Testing

Using the Test Functions

Save as a Natural Unit Test

After defining the input and output parameters for the test, you can save it as a Natural unit test.

To save the test as a Natural unit test:

1 Select Save As on the Filemenu.

TheDefine Natural Unit Test Details panel is displayed. For example:

2 Provide details for the unit test.

For information, see Create a Unit Test for a Subprogram.

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst,
and .seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

Application Testing24

Using the Test Functions

Export/Import Test Data

This section describes how to export and import test data for a business service and subprogram,
which allows you to populate the test data quickly without re-entering each field name. These
options are:

■ Export test data (field names and values) from the test editor data tree to a new or existing test
data file (extension .tstdata) in the workspace.

Note: The .tstdata files can be stored anywhere in the workspace.

■ Import an existing test data file in the workspace to the test editor (matching field names in the
imported file to field names in the editor).

This section covers the following topics:

■ Export Test Data
■ Import Test Data

Export Test Data

To export test data to the workspace:

1 Open the context menu for the business service (or subprogram) in theNavigator view.

The testing options are displayed.

2 Select Test Business Service (or Test Subprogram).

The business service (or subprogram) is displayed in the editor view.

3 Select on the editor toolbar.

TheDefine Details about the Test Data Filewindow is displayed. For example:

25Application Testing

Using the Test Functions

4 Select the location in which to export the test data file.

The last exported .tstdata file is selected.

Note: To overwrite data, select an existing file.

5 Type the name of the test data file in File name.

By default, the ".tstdata" extension is added to the file name.

6 SelectOK to export the test data file.

If the test data file currently exists (as shown in the example above), an overwrite confirmation
dialog is displayed.

Example

The following example shows sample input for a business service test:

Application Testing26

Using the Test Functions

After exporting the data, the following test data (.tstdata) file is created:

You can modify this file using key=value pairs (for example, FIELDA=value). If the key begins
with a hash character (#), then the field name must be preceded by a \ character (for example,
\#FIELDB=value) or the field will be skipped. All other hash characters (such as CUSTOM-
ER.#NAME=value) do not require the \ character.

Tip: Using this file as an example, you can create test data files for all the functions, save
the files using appropriate names, and then change the values accordingly.

Import Test Data

To import test data from the workspace:

1 Open the context menu for the business service (or subprogram) in theNavigator view.

The testing options are displayed.

2 Select Test Business Service (or Test Subprogram).

The business service (or subprogram) is displayed in the editor view.

27Application Testing

Using the Test Functions

3 Select on the editor toolbar.

The Import Datawindow is displayed. For example:

4 Select the test data file to import (only projects/folders containing test data files are listed).

5 SelectOK to import the file.

Any field in the imported test data file that does not have a matching field in the test editor
tree, or has a matching field containing an invalid value, will not be imported and will not
stop the import process. If this situation occurs, an Error log warning is displayed showing
problem fields.

Export Test Data to a CSV File

This section describes how to record the data used to test a business service or subprogramdirectly
and then export it to a CSV file (file extension .csv). You can then use this file as input to create an
external data unit test. For information, see Create an External Data Unit Test.

To record the test data and export it to a CSV file:

1 Open the context menu for the business service (or subprogram) in theNavigator view.

The testing options are displayed.

2 Select Test Business Service (or Test Subprogram).

The business service (or subprogram) is displayed in the editor view.

3 Select on the NaturalONE toolbar to begin recording.

TheDefine External Test Details panel is displayed. For example:

Application Testing28

Using the Test Functions

4 Type the name of the external data file in .csv file name or select Browse to display a window
listing the available files for selection.

Optionally, you can use the Define External Test Details panel to:

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects for
selection.

Note: The project must currently exist.

Change the name of the project in which
to create the external data file.

Type the name of the folder in Parent suite or select Browse
to display awindow listing the available folders for selection.

By default, the external data file is stored in the
Testing-Suites folder in the current project. If you specify

Provide the name(s) of a subfolder(s) in
which to save the external data file. If the
folder does not currently exist, it will be
created for you.

a suite folder name, it becomes a subfolder in the
Testing-Suites folder and the filewill be stored in that folder.

Type the character in Delimiter.Change the delimiter character used to
separate input values in the external data
file you are generating.

Select "Overwrite" in Save options.

Note: If you specify the name of an existing file in .csv file
name and the Save options is "Append" (default), the test

Replace test data in an existing CSV file
(file extension .csv) with new data.

29Application Testing

Using the Test Functions

ProcedureTask

data is appended to existing test data in the file. If the mode
is "Overwrite", existing test data in the file will be
overwritten.

5 SelectNext.

The Select Data to Record panel is displayed. For example:

6 Select Expand All.

The level 1 fields are expanded to display the lower level fields. For example:

Application Testing30

Using the Test Functions

Note: To collapse the fields, select Collapse All.

7 Select Input and/orOutput for each level 1 field you want to include in the recording.

Only the selected data for each field will be saved.

8 Provide index values in Index for any array fields.

9 Select Finish to begin recording.

The Recording icon changes to on the toolbar.

10 Define the test data in the editor view.

For example:

31Application Testing

Using the Test Functions

Note: For information on using this editor, see Features of the Test Editors and Test a
Business Service Directly.

11 Select to run the test.

Repeat steps 10 and 11 for each test containing data you want to record.

12 Select to stop recording.

The generated CSV file is displayed in the Testing-Suites node in theNavigator view.

Create a Unit Test for a Business Service or Subprogram

This section describes how to create a Natural unit test for a business service or subprogram. The
following topics are covered:

■ Enable for Application Testing
■ Create a Unit Test for a Business Service
■ Create a Unit Test for a Subprogram
■ Generate Default Unit Tests
■ Create a New Unit Test Suite
■ Create Summary Reports for Unit Test Log Files

Application Testing32

Using the Test Functions

■ Use the Dependencies View

Enable for Application Testing

When you create a new unit test, the Natural project containing the test is automatically enabled
for application testing. Thiswill create theTesting-Suites folder in theNavigator view and provide
warningmarkers on existing unit test files that are not in theTesting-Suites folder or its subfolders.
This section describes how to manually enable a Natural project for application testing.

To enable a Natural project for application testing:

1 Open the context menu in theNavigator view for the Natural project containing the business
service or subprogram you want to test.

2 Select Testing > Enable for Application Testing.

For example:

33Application Testing

Using the Test Functions

The Testing-Suites folder is added to the project. All new unit tests will be generated into
this folder (or subfolder).

Create a Unit Test for a Business Service

This section describes how to create a unit test for a business service. The following topics are
covered:

■ Create the Unit Test
■ Configure Input Parameters
■ Define Validations
■ Run the Unit Test
■ Open a Previous Unit Test
■ Run a Unit Test in Another Environment
■ Test for an Expected Error

Application Testing34

Using the Test Functions

■ Test an Array Field

Create the Unit Test

To create a unit test for a business service:

1 Open the context menu for the Natural project containing the business service in theNavig-
ator view.

Or:

Open the context menu for the business service in theNavigator view.

2 Select Testing.

The test options for business services are displayed. For example:

35Application Testing

Using the Test Functions

3 Select Create Unit Test.

TheDefine Business Service Unit Test Details panel is displayed. For example:

Application Testing36

Using the Test Functions

Using this panel, you can:

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects
for selection.

Note: The project must currently exist.

Change the name of the project in which to
create the unit test.

Type the name of the folder in Parent suite or select
Browse to display a window listing the available folders
for selection.

By default, the unit test is stored in the Testing-Suites
folder in the current project. If you specify a suite folder

Provide the name(s) of a subfolder(s) in
which to save the unit test. If the folder
does not currently exist, it will be created
for you.

name, it becomes a subfolder in the Testing-Suites folder
and the unit test will be stored in that folder.

Type a new name inTest name. File names are savedwith
the .bsrvtst extension.

Change the default name for the unit test.

SelectGenerate default Construct tests. This option is
enabled when the unit test will be created for a business

Generate default unit tests for
object-maintenance functions and/or

service that uses Velocity or Construct-generatedobject-browse keys defined for business
service subprograms. object-browse or object-maintenance subprograms. For

information, see Generate Default Unit Tests.

DeselectDisplay generated file(s).Not display the generated files in the editor
view after generation.

Type or select a new folder in Service file.Change the location of the folder containing
the business service file.

37Application Testing

Using the Test Functions

ProcedureTask

Select the method inMethod.Select a different method to test.

4 Select Finish.

The unit test is displayed in the Testing-Suites folder in theNavigator view. For example:

The test is also displayed in the editor view. For example:

Application Testing38

Using the Test Functions

TheSummary tab displays information about the test, such as the name of the project, business
service, and method. It also displays the default connection settings. To define another con-
nection in which to run the test, see Define Connections.

Note: You can use this tab to define an expected error, which allows a test to pass
whenever the expected error occurs. You can also use the tab to search for specified
text in an error message. For information, see Test for an Expected Error.

5 Select the Input tab and define which input parameters are sent to the server.

For information, see Configure Input Parameters.

6 Select the Validation tab and define which values must be returned for a successful test.

For information, see Define Validations.

Note: You can create Ant scripts to run business service unit tests (file extension .bsrvtst).
For information, see Creating Ant Scripts to Run Unit Tests.

39Application Testing

Using the Test Functions

Configure Input Parameters

To configure the input parameters sent to the server:

1 Select the Input tab in the unit test editor.

For example:

2 Select Add.

The Configure Input Fieldwindow is displayed. For example:

The list of available controls in Field name is based on the data type of the input field. If you
selected a logical field, for example, two option buttons are displayed to select "true" or "false".
If the field is an array, you can type the index for the array in Index.

3 Select the name of the input field in Field name.

4 Type the field value in Value.

5 SelectOK.

The new field is added to the list of fields on the Input tab.

Application Testing40

Using the Test Functions

Optionally, you can use the Input tab to:

ProcedureTask

See Edit an Input Field.Edit an input field.

Select one or more input fields in Field Name using standard
selection techniques and selectDelete. The field(s) is removed
from the list of fields and will not be sent to the server.

Remove one or more input fields.

See Duplicate an Input Field.Duplicate an input field.

See Add Multiple Elements for an Array Field. This option is
enabled when the PDA contains array fields.

Add multiple elements to an array
field.

Edit an Input Field

To edit an input field:

1 Select the input field in Field Name on the Input tab.

2 Select Edit.

The Configure Input Fieldwindow is displayed to edit the field information.

3 SelectOK to save the changes.

Or:

Select the input field in Field Name and edit the Value and/or Index values within the table.

Duplicate an Input Field

To duplicate an input field:

1 Select the input field in Field Name on the Input tab.

2 SelectDuplicate.

The Configure Input Fieldwindow is displayed to edit the field information.

3 SelectOK to save the duplicate field.

41Application Testing

Using the Test Functions

Add Multiple Elements for an Array Field

This section describes how to define a range of values for an array field.

Note: The Add Array option does not support byte array and date/time fields.

To add multiple elements to an array field at the same time:

1 Select Add Array.

TheDefine Array Element Detailswindow is displayed. For example:

2 Type each element of the array in Value(s), one entry per line.

3 SelectOK to save the array field.

Define Validations

This section describes how to create unit test validations for Natural errors and data entry based
on validator types (i.e., not restricted to characters in the data type).

To define validations:

1 Select the Validation tab in the business service unit test editor.

For example:

Application Testing42

Using the Test Functions

2 Select Add.

The Configure Field Validationwindow is displayed. For example:

The list of available controls in Field name is based on the data type of the input field. If you
select a logical field, for example, two option buttons are displayed to select "true" or "false".
If the field is an array, you can type the index for the array in Index.

3 Select the name of the input field in Field name.

4 Select the type of validator to use for the input field in Validator.

The type of validator to use depends on the type of data in the field. The available validators
are:

■ BooleanValidator
■ ByteValidator
■ ComparisonValidator (displays a combo box with the options: ">", "<", "=", "<=", ">=")
■ DateValidator

43Application Testing

Using the Test Functions

■ DecimalValidator
■ IntegerValidator
■ RegexValidator (creates regular expressions to validate the contents of a field)
■ StringValidator
■ TimeValidator

5 SelectOK.

The new field is added to the list of fields on the Validation tab.

Optionally, you can use the Validation tab to:

ProcedureTask

See Edit a Field Validation.Edit a field validation.

Select one or more fields in Field Name using standard
selection techniques and selectDelete. The field validation(s)
is removed.

Remove one or more field validations.

See Duplicate a Field Validation.Duplicate a field validation.

SeeAddMultiple Validations for an Array Field. This option
is enabled when the PDA contains array fields.

Add multiple validations for an array
field.

Edit a Field Validation

To edit a field validation:

1 Select the field in Field Name on the Validation tab.

2 Select Edit.

The Configure Field Validationwindow is displayed to edit the field information.

3 SelectOK to save the changes.

Or:

Select the input field in Field Name and edit the Value and/or Index values within the table.

Application Testing44

Using the Test Functions

Duplicate a Field Validation

To duplicate a field validation:

1 Select the input field in Field Name on the Input tab.

2 SelectDuplicate.

The Configure Field Validationwindow is displayed to edit the information.

3 SelectOK to save the duplicate field validation.

Add Multiple Validations for an Array Field

This section describes how to define validations for an array field.

Note: The Add Array option does not support byte array and date/time fields.

To add multiple validations to an array field:

1 Select Add Array.

TheDefine Array Element Detailswindow is displayed. For example:

2 Type each element of the array in Value(s), one entry per line.

3 SelectOK to save the array field.

45Application Testing

Using the Test Functions

Run the Unit Test

This section describes how to run one ormore unit tests. It includes information about theNatural
Unit Testwindow.

Note: You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst, and
.seqtst). For information, see Creating Ant Scripts to Run Unit Tests.

To run one or more unit tests:

1 Open the context menu for one of the following items in theNavigator view.

■ A project containing the Testing-Suites folder.
■ The Testing-Suites folder or a subfolder within the folder.
■ One or more unit test files (file extension .nattst or .bsrvtst), regardless of where they exist.
Use standard selection techniques to open the unit test(s). Any test files stored outside of
the Testing-Suites folder display a warning marker in theNavigator view and an entry in
the Problems view indicating that they are not in the proper place.

2 Select Testing > Run Unit Test(s).

Note: You can also use the context menu to change the environment in which a test is
run. For information, see Run a Unit Test in Another Environment.

The selected tests are displayed in the editor view and the results of the test are displayed in
theNatural Unit Test view. For example:

Note: If the test did not pass, a red circle () is displayed on the test icon in the Tests
section and State: failed is displayed in the Summary section.

The following table describes each of the options available on the toolbar for theNatural Unit
Test view:

Application Testing46

Using the Test Functions

DescriptionToolbar Icon

Runs the current unit test using the values defined in the editor view.

Tip: You can also select in the editor view to run the test.

Selects the current unit test in the editor view.

Opens the business service or Natural subprogram used for the current unit test in the
editor view.

Displays the test history for the last 10 unit tests that were run during the current Eclipse
session and allows you to select a previous test and load it into the editor. For information,
seeOpen a Previous Unit Test.

The Tests section in theNatural Unit Test view displays the name of each unit tests that have
been run. You can use the context menu for a unit test in the Tests section to select more op-
tions. For example:

Using this menu, you can:

ProcedureTask

Select Run.Run the unit test.

SelectOpen unit test UnitTestName. The following file types are
available for selection:

Open the unit test file in the editor
view.

■ business service (file extension .bsrvtst)
■ external data (file extension .exttst)
■ Natural unit test (file extension .nattst)
■ sequence (file extension .seqtst)

SelectOpen BusinessServiceName.bsrv orOpen
NaturalSubprogramName.NSN. The following file types are
available for selection:

Open the associated business
service orNatural subprogramfile
in the editor view.

■ business service (file extension .bsrv)
■ external data (file extension .NSN)

Note: This option is not available for external data or sequence unit
tests.

47Application Testing

Using the Test Functions

The Summary section in theNatural Unit Test view displays:

■ Name of the test
■ Name of the RPC connection
■ Whether the test passed or failed
■ Length of time in seconds that the unit test executed before completing

To see the results of another test, select the test in theTests section and the results are displayed
in the Summary section. For example:

Open a Previous Unit Test

To open a previous unit test:

1 Select on the toolbar in theNatural Unit Test view.

A list of the last 10 tests run during the current Eclipse session is displayed with a message
indicating the success of each test. For example:

In this example, seven tests passed and three tests failed.

2 Select the test you want to open.

The test is displayed in theNatural Unit Test view. For example:

Application Testing48

Using the Test Functions

3 Open the context menu for the test.

4 Select the unit test file in Open unit test UnitTestName.nnntst.

The following unit test file types are available:

■ business service (file extension .bsrvtst)
■ external data (file extension .exttst)
■ Natural unit test (file extension .nattst)
■ sequence (file extension .seqtst)

Run a Unit Test in Another Environment

You can run any unit test in another environment.

To run a unit test in another environment:

1 Open the context menu for one of the following items in theNavigator view.

■ A project containing the Testing-Suites folder.
■ The Testing-Suites folder or a subfolder within the folder.
■ One or more unit test files (file extension .bsrvtst, .exttst, .nattst, and .seqtst), regardless of
where they exist.

2 Select Testing > Run Unit Test(s) using Environment.

For example:

49Application Testing

Using the Test Functions

3 Select the environment in which you want to run the test.

The results of the test are displayed in theNatural Unit Test view.

Note: The list of environments is defined in the Preferenceswindow for RPC environ-
ments. For information on adding additional environments to the list, seeDefine Addi-
tional RPC Environments.

Test for an Expected Error

To allow a test to pass with an expected error, define information about the error in the Error
section of the Summary tab. For example:

Application Testing50

Using the Test Functions

This will allow a test to fail only if it encounters an unexpected error.

To test for an expected error:

1 Select Expect error.

2 Type the error class in Error class.

For Natural errors, the error class is 1014.

3 Type the error code in Error code.

You can also use the Error section to search the message text for a specific string.

To search the message text for a specified string:

1 Type the string inMessage.

2 Select Regex.

If you specify ".* division by zero.*", for example, Regex will search for "division by zero"
anywhere in the error message.

Test an Array Field

You can expand or reduce an X-array using the Resize Array property. For example:

For some arrays, all values are displayed. For example:

51Application Testing

Using the Test Functions

Create a Unit Test for a Subprogram

To create a unit test for a subprogram:

1 Open the context menu for the Natural project containing the subprogram in theNavigator
view.

Or:

Open the context menu for the subprogram in theNavigator view.

2 Select Testing.

The test options for subprograms are displayed.

3 Select Create Unit Test.

TheDefine Natural Unit Test Details panel is displayed. For example:

Application Testing52

Using the Test Functions

Using this panel, you can:

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects
for selection.

Note: The project must currently exist.

Change the name of the project in which
to create the unit test.

Type the name of the folder inParent suite or selectBrowse
to display a window listing the available folders for
selection.

By default, the unit test is stored in the Testing-Suites
folder in the current project. If you specify a suite folder

Provide the name(s) of a subfolder(s) in
which to save the unit test. If the folder
does not currently exist, it will be created
for you.

name, it becomes a subfolder in the Testing-Suites folder
and the unit test will be stored in that folder.

Type a new name in Test name. File names are saved with
the .bsrvtst extension.

Change the default name for the unit test.

SelectGenerate default Construct tests. This option is
enabled when the unit test will be created for Velocity or

Generate default unit tests for
object-maintenance functions and/or

Construct-generated object-browse or object-maintenanceobject-browse keys defined for Natural
subprograms. subprograms. For information, seeGenerate Default Unit

Tests.

DeselectDisplay generated file(s).Not display the generated files in the editor
view after generation.

53Application Testing

Using the Test Functions

ProcedureTask

Type or select a new folder in Subprogram.Change the location of the folder
containing the subprogram file.

4 Select Finish.

The unit test is displayed in the Testing-Suites folder in theNavigator view. For example:

The test is also displayed in the editor view. For example:

Application Testing54

Using the Test Functions

The Summary tab displays information about the test, such as the name of the project, library,
and subprogram. It also displays the default connection settings. To define another connection
in which to run the test, see Define Connections.

Note: You can use this tab to define an expected error, which allows a test to pass when
the expected error occurs. You can also use the tab to search for specified text in an
error message. For information, see Test for an Expected Error.

5 Select the Input tab and define which input parameters are sent to the server.

For information, see Configure Input Parameters.

6 Select the Validation tab and define which values must be returned for a successful test.

For information, see Define Validations.

7 Run the test.

For information, see Run the Unit Test.

Note: You can create Ant scripts to runNatural unit tests (file extension .nattst). For inform-
ation, see Creating Ant Scripts to Run Unit Tests.

Generate Default Unit Tests

This section describes how to generate default unit tests for browse keys andmaintenance functions
(for example, GET,NEXT, etc.) defined for Velocity or Construct-generated object-browse or object-
maintenance subprograms. If a business service uses both object-browse and object-maintenance
subprograms, default tests can be generated for both the browse keys and the maintenance func-
tions.

This section covers the following topics:

■ Generate Tests for a Business Service
■ Generate Tests for a Natural Subprogram

Generate Tests for a Business Service

To generate default unit tests for a business service:

1 Select Testing > Create Unit Test from the context menu for the business service in theNav-
igator view.

TheDefine Business Service Unit Test Details panel is displayed.

2 SelectGenerate default Construct tests.

For example:

55Application Testing

Using the Test Functions

Note: This option is only available when the business service uses one or more subpro-
grams that were generated by an Object-Browse and/or Object-Maint wizard (either
Velocity-based or Construct).

3 SelectNext.

TheDefine Parameters for the Default Maintenance Tests panel is displayed. For example:

Application Testing56

Using the Test Functions

Note: If the business service does not use any object-maintenance subprograms, the
Define Parameters for the Default Browse Tests is displayed.

This panel displays the functions defined for all object-maintenance subprograms used by
the business service, as well as the key fields. Using this panel, you can:

ProcedureTask

DeselectGenerate for the unit test(s) you do not want to
have generated. To generate unit tests for all functions, select
Generate All.

Limit the generation of one or more
default tests.

SelectGenerate None.Limit the generation of all default tests.

Select or deselect Populate Key for the default unit test(s).
When selected, the test for the corresponding function will
populate the key field with the value specified in Value.

Change the default population of key
fields.

Select Value for the key field and type the value. For
example, you can provide a customer number for the
Customer number field.

Provide a value for a key field.

See Define Date and Time Details.Enter details for a date/time field (when
defining details for a date or time field).

57Application Testing

Using the Test Functions

Default tests can be created for each function defined for the subprogram that does not require
an existing record to be on hold. These functions are:

■ STORE
■ GET
■ NEXT
■ FORMER
■ EXISTS
■ INITIALIZE

Note: As the DELETE and UPDATE functions require an existing record to be held,
default tests are not generated for these functions.

4 Specify a key value in Value for each function.

The tests are designed with the assumption that this value exists (i.e., the test will pass when
the value exists). The following assumptions are also made:

AssumptionFunction

Assumes the specified key value exists and expects an error from the subprogram saying
the value already exists.

STORE

Assumes a key value is not entered and expects a message from the subprogram saying
the beginning of file condition has occurred.

FORMER

Assumes that the end of file condition has not occurred and expects a message from the
subprogram saying the next record was retrieved successfully.

NEXT

The key components are those listed in the object PDA for the object-maintenance subprogram
as elementary fields under STRUCTURE. For example, MCUSTN, an object-maintenance
subprogram used by the Customer business service (located in the SYSBIZDE library), uses
the MCUSTA PDA:

1 MCUSTA-ID N 5 /* Object identifier
R 1 MCUSTA-ID /* REDEF. BEGIN : MCUSTA-I

2 STRUCTURE /* To allow MOVE BY NAME
3 CUSTOMER-NUMBER N 5

In this example, CUSTOMER-NUMBER will be used as the key.

5 Select Finish.

Unit tests are created for all available browse keys and any object-maintenance subprogram
functions selected on the Define Parameters for the Default Maintenance Tests panel.

Or:

Application Testing58

Using the Test Functions

SelectNext.

TheDefine Parameters for the Default Browse Tests panel is displayed. For example:

Note: If the business service does not use any object-browse subprograms,Next is not
available on the Define Parameters for the Default Maintenance Tests panel.

This panel displays the key fields defined for all object-browse subprograms used by the
business service. Using this panel, you can:

ProcedureTask

DeselectGenerate for the unit test(s) you do not want to
have generated. To generate unit tests for all keys, select
Generate All.

Limit the generation of one ormore default
tests.

Type the new name for the unit test on the corresponding
line in Unit Test Name.

Change the name of a default unit test.

SelectGenerate None.Limit the generation of all default tests.

Default tests can be created for each browse keydefined for the subprogram. These tests include
default validations for items like rows returned and error codes. For a HISTOGRAMkey, key
value totals can be verified.

6 Select Finish.

The default unit tests are displayed in the Testing-Suites folder in theNavigator view. For
example:

59Application Testing

Using the Test Functions

The tests are also displayed in the editor view. For example:

Default input values and validations are created for each unit test. You can change the default
values by selecting the appropriate tab. For example, select the Input tab to change the input
values generated for the test:

Application Testing60

Using the Test Functions

Note: For more information, see Configure Input Parameters.

Select the Validation tab to change the validations generated for the test. For example:

Notes:

1. For more information, see Define Validations.

2. You can create Ant scripts to run unit tests (file extension .bsrvtst, .exttst, .nattst, and .seqtst).
For information, see Creating Ant Scripts to Run Unit Tests.

61Application Testing

Using the Test Functions

Generate Tests for a Natural Subprogram

To generate default unit tests for a Natural subprogram:

1 Select Testing > Create Unit Test from the context menu for the subprogram in theNavigator
view.

TheDefine Natural Unit Test Details panel is displayed.

2 SelectGenerate default Construct tests.

For example:

Note: This option is only available when the subprogram was generated by an Object-
Browse or Object-Maint wizard (either Velocity-based or Construct).

3 SelectNext.

If the subprogram was generated by an Object-Maint wizard, theDefine Parameters for the
Default Maintenance Tests panel is displayed. For example:

Application Testing62

Using the Test Functions

This panel is similar to the Define Parameters for the Default Maintenance Tests panel for
a business service unit test. For a description of this panel, see Generate Tests for a Business
Service.

Or:

If the subprogram was generated by an Object-Browse wizard, the Define Parameters for
the Default Browse Tests is displayed. For example:

63Application Testing

Using the Test Functions

This panel is similar to the Define Parameters for the Default Browse Tests panel for a
business service unit test. For a description of this panel, see Generate Tests for a Business
Service.

4 Select Finish.

The default unit tests are displayed in the Testing-Suites folder in theNavigator view. For
example:

The tests are also displayed in the editor view. For example:

Application Testing64

Using the Test Functions

This editor is similar to the editor for a business service unit test. For a description of the ed-
itor, see Generate Tests for a Business Service.

Create a New Unit Test Suite

This section describes how to create a new unit test suite to organize and store your Natural and
business service unit tests (file extension .bsrvtst, .exttst, .nattst, and .seqtst). The tests are generated
into the Testing-Suites folder or subfolder within a specified Natural project.

Note: Ant scripts for Natural unit tests may contain unit test files existing outside of the
Testing-Suites folder or subfolder.

To create a new unit test suite:

1 Select Testing > Create Test Suite for a project in theNavigator view.

Or:

Select Testing-Suites > Create Test Suite in theNavigator view.

Or:

Select Testing-Suites > SubfolderName > Create Test Suite in theNavigator view.

65Application Testing

Using the Test Functions

TheDefine Test Suite Details panel is displayed. For example:

Using this panel, you can:

ProcedureTask

Type the name of theNatural project inProject or selectBrowse
to display a window listing the existing projects for selection.

Note: The project must currently exist.

Change the name of the project in
which to create the test suite.

Type the name of the folder in Parent suite or select Browse
to display a window listing the available folders for selection.

By default, the unit test is stored in the Testing-Suites folder
in the current project. If you specify a suite folder name, it

Provide the name(s) of a subfolder(s)
in which to save the unit test. If the
folder does not currently exist, it will
be created for you.

becomes a subfolder in the Testing-Suites folder and the unit
test will be stored in that folder.

2 Type the name of the test suite in Suite name.

3 Select Finish.

The test suite is generated into the Testing-Suites folder or subfolder.

Application Testing66

Using the Test Functions

Create Summary Reports for Unit Test Log Files

This section describes how to create unit test log files and then use the log files to create summary
reports. Log files can be created for any subprogram and business service unit test executed
within a NaturalONE project.

This section covers the following topics:

■ Create Unit Test Log Files
■ Generate a Summary Report

Create Unit Test Log Files

A unit test history log file can be created to save the results of a unit test whenever it is executed
(for example, the test name, test status, date/time completed, error messages, etc.). To create these
files, you must select the option in the Preferenceswindow for Testing. For information, see Set
Logging Preferences for Unit Tests.

Generate a Summary Report

To generate a report:

1 Select Testing > Create Unit Test Report for a project in theNavigator view.

Or:

Select Testing-History > Testing > Create Unit Test Report in theNavigator view.

TheDefine Report Details panel is displayed. For example:

67Application Testing

Using the Test Functions

Note: To change the name of the Natural project, type the name of the project in Project
or select Browse to display a window listing the existing projects for selection.

2 Type or select the name of the report in Report.

The report types are Detail, Daily summary, History chart and Weekly summary (see below
for an example of each report).

3 Select the range of dates for the report in Date criteria.

4 Select Finish.

The report types are:

Detail

Application Testing68

Using the Test Functions

This report shows:

■ Name project containing the tests, as well as the range of dates included in the report
■ Name of each test

69Application Testing

Using the Test Functions

■ User ID of the person who executed the unit test (or Unknown if the user ID cannot be determ-
ined)

■ Whether the test passed (true) or failed (false)
■ Elapsed time (in seconds) that the test took to run
■ Error message for tests that failed
■ Total number of tests that passed or failed
■ Date and time the report was created

Daily Summary

This report calculates and displays a daily Pass/Fail summary from every unit test executed
within a selected range of dates.

History Chart

Application Testing70

Using the Test Functions

This report provides a graph of the Pass/Fail count for each Testing-History log file created
within a selected range of dates.

Weekly Summary

71Application Testing

Using the Test Functions

This report calculates and displays a weekly Pass/Fail summary from every unit test executed
within a selected range of dates.

Use the Dependencies View

When a generatedmodule is open in the editor view, theDependenciesviewdisplays dependencies
between business service andNatural unit tests and the business services andNatural subprograms
they execute. This section describes the nodes contributed to the view for these resources. The
following topics are covered:

■ Business Service Unit Test Resources
■ Natural Subprogram Unit Test Resources

Notes:

1. Select to sort the resources alphabetically.

2. Select to export a textual representation of the visible nodes in the view to a file.

3. When a supporting resource cannot be found locally using the project steplib chain and project
references, "<Unknown>" is displayedwith the name of the resource. If the unknownmodule(s)
is not shippedwith the Construct runtime project, either manually download it from the server

Application Testing72

Using the Test Functions

or create it locally. If the module(s) is shipped with the Construct runtime project, add the
project. For information, see the NaturalONE Code Generation guide.

4. For more information about the Dependencies view, see the description of the source editor
in Using NaturalONE.

Business Service Unit Test Resources

When a business service unit test is open in the editor view, the root node displays the name of

the business service unit test. In caller mode (), no child nodes are displayed because no other
Dependencies view objects depend on this business service unit test file. For example:

In callee mode (), the child nodes display the name of the business service that the unit test ex-
ecutes, along with the names of the supporting business service resources and the names of the
libraries and projects in which they are located. For example:

Natural Subprogram Unit Test Resources

When a Natural subprogram unit test is open in the editor view, the root node displays the name

of the unit test. In caller mode (), no child nodes are displayed because no otherDependencies

view objects depend on a unit test file; in callee mode (), the child node displays the name of
the Natural subprogram that the unit test executes, along with the names of the supporting Nat-
ural resources and the names of the libraries and projects in which they are located. For example:

73Application Testing

Using the Test Functions

Create an External Data Unit Test

This section describes how to create a unit test that accepts input and/or validations from a CSV
file (file extension .csv). You can create a unit test once and then provide a data file containing
different input or validations to run iterations of the test. The wizard creates a unit test file that
accepts data from the CSV file.

This section covers the following topics:

■ Create the Unit Test
■ Configure Column Mappings and Sample Data

Note: Similar to other unit tests, external data unit tests can be run from the unit test Ant
script. For information, see Creating Ant Scripts to Run Unit Tests.

Create the Unit Test

To create an external data unit test:

1 Select Testing > Create External Data Unit Test for a project in theNavigator view.

Or:

Select Testing-Suites > Create External Data Unit Test in theNavigator view.

Or:

Select Testing-Suites> SubfolderName > Create External Data Unit Test in theNavigator
view.

TheDefine External Data Unit Test Details panel is displayed. For example:

Application Testing74

Using the Test Functions

Using this panel, you can:

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects for
selection.

Note: The project must currently exist.

Change the name of the project inwhich
to create the external data unit test.

Type the name of the folder in Parent suite or select Browse
to display awindow listing the available folders for selection.

By default, the unit test is stored in the Testing-Suites folder
in the current project. If you specify a suite folder name, it

Provide the name(s) of a subfolder(s) in
which to save the external data unit test.
If the folder does not currently exist, it
will be created for you.

becomes a subfolder in theTesting-Suites folder and the unit
test will be stored in that folder.

2 Type the name of the external data unit test in Test name.

3 Select an existing business service or Natural unit test in the Source unit test details section.

The selected unit test will be executed for each row in the data file. To display the available
unit test files for selection, select Browse for Use existing test. Optionally you can create a
new business service or Natural unit test. For information, see Create a New Unit Test.

4 Select an existing data file in the Source data file (CSV) details section.

75Application Testing

Using the Test Functions

To display the available CSV data files for selection, select Browse for Use existing file. Op-
tionally you can create a new data file. For information, see Create a New Data File.

Note: Awizard is available to record the sample data used to test a business service or
subprogramdirectly and then export the data to a CSVfile. For information, seeExport
Test Data to a CSV File.

5 Select Finish.

The external data unit test file is generated into the Testing-Suites folder (or subfolder) and
listed in theNavigator view. For example:

The .exttst file is also displayed in the editor view.

Note: The .csv file and/or the .nattst/.bsrvtst files may also be created.

6 Define the configuration settings for the unit test in the editor view.

For information, see Configure Column Mappings and Sample Data.

7 Select the Connection tab and define the connection settings for the unit test.

For information, see Define Connections.

8 Save the settings.

Application Testing76

Using the Test Functions

Create a New Unit Test

To create a new unit test:

1 Select Create new test in the Source details section on the Define External Data Unit Test
Details panel.

2 SelectNext.

TheDefine New Unit Test Details panel is displayed. For example:

3 Type the name of the unit test in New test name.

4 Select the object type for the source unit test in Object type.

You can select either Subprogram (the default) or Business service. When Business service
is selected, an additional field is added to the panel. For example:

77Application Testing

Using the Test Functions

5 Select Browse in Object path.

A list of available business service or subprogram unit test files is displayed. Select the unit
test to use for the external data unit test and selectOK.

6 For a business service unit test, select the method to test in Object method.

7 Select Finish to create the external data unit test and new unit test.

Or:

SelectNext to create a new data file.

Note: This option is only available when Create new file is selected on theDefine Ex-
ternal Data Unit Test Details panel.

Create a New Data File

To create a new data file:

1 Select Create new file in the Source data file (CSV) details section on the Define External
Data Unit Test Details panel.

2 SelectNext.

TheDefine New Data File Details panel is displayed. For example:

Application Testing78

Using the Test Functions

Note: If Create new test on the Define External Data Unit Test Details panel is also
selected, the Define New Unit Test Details panel is displayed before this panel.

3 Type the name of the data file in New data file name.

Using this panel, you can:

ProcedureTask

Type a new character in Delimiter.Change the character used to separate
entries in the first row of the CSV file.

Select First row contains field names. At runtime, the first
row in the CSV file is reserved for field names.

Note: When selecting fields for the first row in a CSV file, you
cannot specify the number of occurrences of an array to

Reserve the first row in the CSV file for
the field names.

include. By default, a maximum of five occurrences of each
array will be included. To add and/or remove occurrences
from the generated CSV file, you must edit the file manually.

Select Expand All. To close the tree view, select Collapse All.Display fields that can be selected for
the first row of the CSV file.

Select Select All and then deselect the fields you do not want
to include in the CSV file. To deselect all fields, selectDeselect
All.

Select fields to be included in the first
row of the CSV file.

4 Select Finish to create the external data unit test, a new data file, and optionally, a new unit
test.

79Application Testing

Using the Test Functions

Configure Column Mappings and Sample Data

This section describes how tomap columns in the CSV file (file extension .csv) to fields in the PDA
used by the business service or subprogramunit test. The followingCSVfilewas used for examples:

#FUNCTION,INPUT-DATA.#FIRST-NUM,INPUT-DATA.#SECOND-NUM,INPUT-DATA.#SUCCESS-CRITERIA,OUTPUT-DATA.#RESULT,OUTPUT-DATA.#SUCCESS
Add,1,2,3,3,FALSE
Add,1,9,10,10,TRUE

To configure column mappings and sample data:

1 Select the Configuration tab in the editor for the external data unit test.

For example:

Application Testing80

Using the Test Functions

2 Select Add in the ColumnMappings section.

The Edit Mappingwindow is displayed. For example:

The number of the first unmapped column is displayed in Column number. You can change
this number to define the mapping for another column.

3 Select the name of the field to use for this column in Field name.

4 Type the index position in Index (used when the field is an array).

5 Select the type of validator to use for the field in Validator.

The type of validator to use depends on the type of data in the field. The available validators
are:

■ BooleanValidator
■ ByteValidator
■ ComparisonValidator (displays a combo box with the options: ">", "<", "=", "<=", ">=")
■ DateValidator
■ DecimalValidator
■ IntegerValidator
■ RegexValidator (creates regular expressions to validate the contents of a field)
■ StringValidator
■ TimeValidator

6 SelectOK.

The new column mapping is added to the list of mappings on the Configuration tab.

7 Continue adding column mappings until all columns used for the test have been added.

81Application Testing

Using the Test Functions

■ To revise a mapping, select the mapping in ColumnMappings and select Edit. The Edit
Mappingwindow is displayed to change the mapping.

■ To remove a mapping, select the mapping in ColumnMappings and selectDelete. The
mapping is removed from ColumnMappings.

Optionally, you can use the Configuration tab to:

ProcedureTask

Type the name of the unit test in Unit test file or select Browse
to display awindow listing the existing unit test files for selection.

Note: The unit test must currently exist.

Change the name and/or location of
the unit test file used for the external
data unit test.

Type the name of the CSV file in Data file or select Browse to
display a window listing the existing CSV files for selection.

Note: The CSV file must currently exist.

Change the name and/or location of
the CSV file containing field names
and input for the external data unit
test.

Select First row contains field names. At runtime, the first row
in the CSV file is reserved for field names.

Note: When selecting fields for the first row in a CSV file, you
cannot specify the number of occurrences of an array to include.

Reserve the first row in the CSV file
for the field names.

By default, a maximum of five occurrences of each array will be
included. To add and/or remove occurrences from the generated
CSV file, you must edit the file manually.

Type a new delimiter character in Column delimiter.Change the delimiter character used
to separate columns in the CSV file.

Select Refresh in the Sample Data section. The first 20 rows in
the CSV file are retrieved.

Tip: To apply changes to the external data file to the unit test,
use this option with theMap option.

Retrieve sample data from the CSV
file.

SelectMap (enabled when the First row contains field names
option is selected). A confirmation window is displayed,

Map new sample data to the
columns.

indicating that all current column mappings will be removed.
Select Yes to delete the old mappings and apply the new
mappings.

8 Save the configuration settings.

Application Testing82

Using the Test Functions

Create a Sequence Unit Test

This section describes how to create a sequence unit test (file extension .seqtst), a type of unit test
that executes a sequence of test steps in a specified order. Each test step executes a business service
or Natural unit test and, optionally, copies data between steps, applies field overrides, defines
validation overrides. and/or applies method overrides (business service unit tests only). These
overrides do not physically change the existing unit test files; the values are only changed in
memory prior to execution of the files.

For example, a sequence test can have the following two steps:

1. Invoke a unit test for a Construct-generated object-maintenance subprogram and attempt to
retrieve (GET) a data record.

2. Re-invoke the same test, but apply a field override that attempts to update the record. In addition,
copy all data from Step 1 and pre-configure each input field.

There are several methods you can use to create a sequence unit test, depending on your require-
ments. These methods include:

■ Create one generic business service or Natural unit test and then create a sequence unit test
containing several test steps that reference the same generic unit test, but use a different field
override.

For example, you can create a generic Natural unit test called WAREHOUSE.nattst and then
create a unit test that reference a sequence of unit tests to override the value of WARE-
HOUSE.#FUNCTION, such as WAREHOUSE_GET.nattst, WAREHOUSE_NEXT.nattst, etc.

■ Create several business service and/orNatural unit tests that reference the same subprogram/PDA
and then create a sequence unit test that references each unit test in a specified sequence.

For example, you can create a unit test for each warehouse function, such as WARE-
HOUSE_GET.nattst, WAREHOUSE_NEXT.nattst, etc., and then create a unit test that invokes
these tests in a specified sequence.

■ Create several business service and/or Natural unit tests that reference different subpro-
grams/PDAs and then create a sequence unit test that references each unit test in a specified
sequence and copies data from one test to the next.

■ Create a sequence unit test and one or more unit tests to use for the test.

This section covers the following topics:

■ Create the Unit Test
■ Use the Sequence Unit Test Editor

83Application Testing

Using the Test Functions

■ Use the Dependencies View

Create the Unit Test

This section describes how to use the wizard to create a sequence unit test.

To create a sequence unit test:

1 Open the context menu for one of the following items in theNavigator view:

■ Project folder
■ Testing-Suites folder or subfolder
■ One or more business service and/or Natural unit test files (using standard selection tech-
niques). The tests can reference the same subprogram/PDAor different subprograms/PDAs.
The wizard will create one test step in the generated sequence unit test for each unit test
selected in theNavigator view.

2 Select Testing > Create Sequence Unit Test.

TheDefine Sequence Unit Test Details panel is displayed. For example:

3 Type the name of the sequence unit test in Test name.

Optionally, you can:

Application Testing84

Using the Test Functions

ProcedureTask

Type the name of the Natural project in Project or select
Browse to display a window listing the existing projects for
selection.

Note: The project must currently exist.

Change the name of the project inwhich
to create the sequence unit test.

Type the name of the folder in Parent suite or select Browse
to display awindow listing the available folders for selection.

By default, the unit test is stored in the Testing-Suites folder
in the current project. If you specify a suite folder name, it

Provide the name(s) of a subfolder(s) in
which to save the sequence unit test. If
the folder does not currently exist, it will
be generated for you.

becomes a subfolder in theTesting-Suites folder and the unit
test will be stored in that folder.

4 Select Finish.

The sequence unit test file is generated into theTesting-Suites folder (or subfolder) and listed
in theNavigator view. For example:

The .seqtst file is also displayed in the editor view. For example:

85Application Testing

Using the Test Functions

If one unit test file was selected in theNavigator view, a default test step is created for that
file. For example:

If several unit test files were selected in theNavigator view, one test step is created for each
test. For example:

Application Testing86

Using the Test Functions

Use the Sequence Unit Test Editor

This section describes how to use the sequence unit test editor. The following topics are covered:

■ Add Test Steps
■ Copy Data from a Previous Step
■ Add an Input Override
■ Add a Validation Override
■ Add a Method Override

Notes:

1. For information about the Connections tab, see Define Connections.

2. For general information about using the test editors, see Features of the Test Editors

Add Test Steps

This section describes how to add test steps to execute business service and/or Natural unit tests
in a specified order. Each test step executes one existing unit test and, optionally, copies data
between steps, applies field overrides, and/or defines validation overrides. In the following example,
the sequence unit test is generated from the context menu for a project and no steps are created.
For example:

Note: To resize the editor sections, select the sash and move it left or right.

To add test steps:

1 Select Add.

The Test Step Details section is displayed. For example:

87Application Testing

Using the Test Functions

2 Select Browse for Unit test file.

TheSelect Unit Testwindow is displayed. Select the unit test file andOK. The unit test details
are displayed in the Test Steps section and the selected unit test file is displayed in Unit test
file. For example:

Or:

SelectNew for Unit test file.

The Select Unit Test Type panel is displayed. For example:

Application Testing88

Using the Test Functions

Select one of the following options:

■ Business Service Unit Test

TheDefine Business Service Unit Test Details panel is displayed. For information, see
Create a Unit Test for a Business Service.

■ Natural Unit Test

TheDefine Natural Unit Test Details panel is displayed. For information, see Create a
Unit Test for a Subprogram.

Note: When accessing these panels from the sequence unit test editor, the project name
defaults to the name of the project containing the sequence unit test and is read-only.
The unit test file specified for each test step must contain a relative path to the Testing-
Suites folder in the project containing the sequence unit test.

After defining the unit test and selecting Finish, the unit test details are displayed in the Test
Steps section and the newly created unit test file is displayed in Unit test file.

3 Select Add.

The second test step is displayed in Test Steps and the Copy data section is enabled. For ex-
ample:

89Application Testing

Using the Test Functions

4 Select or create the unit test for the second test step.

Repeat steps 1 and 2 until all test steps have been added. Optionally, you can use this editor
to:

ProcedureTask

Type a description of the test step in Description
(maximum of 250 characters). The first 60 characters
are displayed as the tool tip for the test step in Test
Steps.

Provide a description of this test step.

See Copy Data from a Previous Step.Copy data from a previous step.

Select the test step in Test Steps and select Remove or
open the context menu for the test step and select
Delete.

Delete a test step.

Select the test step inTest Steps and selectUp orDown.Reorder the test steps.

Type the step name in Name.Provide a name for the test step.

See Add an Input Override.Define an input override for a field used in a
test step.

See Add a Validation Override.Define a validation override for a field used
in a test step.

See Add a Method Override.Define a method override for a method used
in a test step (business service unit tests only).

5 Save the settings.

Application Testing90

Using the Test Functions

Copy Data from a Previous Step

This section describes how to copy data from a previous test step. When the generated sequence
test is run, the test step will attempt to copy the data from the specified test step. If the test steps
share the sameNatural unit test file, the entire data structure from the previous test step is copied.
If the test steps use different Natural unit test files, each field is copied by name and the level 1
name (if present) is compared to the field name.

Caution: All values are copied, evenwhen theNatural formats are different. Thismay result
in conversion errors (for example, when alpha values are placed in numeric fields).

To copy data from a previous test step:

1 Select the test step to which you want to copy the data.

2 Select Copy data from a previous step.

3 Select the test step from which you want to copy the data in Step name.

You can select any previous test step in the list. Only previous test steps are listed, as data
cannot be copied from a test step that has not been run.

Note: When defining input or validation overrides, you can also select the field from
which to copy the data.

Add an Input Override

This section describes how to add an input override for a field. This value will override any input
value defined for an input field with the same name in the original unit test file. For example, if
the original unit test file has an input field and value of FUNCTION=GET and you add an override
to a test step that sets FUNCTION=UPDATE, then FUNCTION=UPDATEwill be used.

To add an input override:

1 Open the context menu for the test step in Test Steps.

2 SelectNew > Input Override.

The field details are displayed in Test Step Details. For example:

91Application Testing

Using the Test Functions

3 Type the override value in Value.

The input override is displayed in Test Steps. For example:

In this example, an override value for the CUSTOMER-NUMBER field has been added.

Notes:

1. For information about the input parameters, see Configure Input Parameters.

2. You can copy the field data from a previous step. For information, see Copy Data from a
Previous Step.

3. To remove an input override, either select the override in Test Steps and select Remove
or open the context menu for the override and selectDelete.

Application Testing92

Using the Test Functions

Add a Validation Override

This section describes how to add an override value for a field validation. This value will override
any validation defined for an input field with the same name in the original unit test file. For ex-
ample, if the original unit test file has a field validation of #MSG <> ERROR and you add a validation
override of #MSG <> WARNING, then both validations will be used (i.e., the wizard will ensure that
the message is not equal to both ERROR and WARNING).

To add a validation override:

1 Open the context menu for the test step in Test Steps.

2 SelectNew > Validation Override.

The validation details are displayed in Test Step Details. For example:

3 Select the field name in Field name.

4 Select the override value in Validator.

The validation override is displayed in Test Steps. For example:

93Application Testing

Using the Test Functions

In this example, an override validation for theCUSTOMER-TIMESTAMPfield has been added.

Notes:

1. For information about the validation parameters, see Define Validations.

2. You can copy the validation data from a previous step. For information, see Copy Data
from a Previous Step.

3. To remove a validation override, either select the override and select Remove or open the
context menu for the override and selectDelete.

Add a Method Override

This section describes how to add a method override value for a business service unit test. This
value will override the method name in the original business service unit test. For example, if the
original unit test has amethod value of "BROWSE" and you add amethod override value "EXISTS"
to a test step, then the sequence unit test will execute the "EXISTS" method.

To add a method override:

1 Open the context menu for the test step in Test Steps.

2 SelectNew > Method Override.

The method details are displayed in Test Step Details. For example:

Application Testing94

Using the Test Functions

3 Type the override value inMethod.

The method override is displayed in Test Steps. For example:

In this example, an override value of METHOD=EXISTS has been added.

Notes:

1. For information about business service methods, see NaturalONE Business Services.

2. To remove a method override, either select the override in Test Steps and select Remove
or open the context menu for the override and selectDelete.

95Application Testing

Using the Test Functions

Use the Dependencies View

When a generated module is open in the editor, the Dependencies view displays dependencies
between a sequence unit test and the unit tests executed for each test step. This section describes
the nodes contributed to the view for these resources. The following topics are covered:

■ Sequence Unit Test Resources
■ Business Service Unit Test Resources
■ Natural Unit Test Resources

Notes:

1. Select to sort the resources alphabetically.

2. Select to export a textual representation of the visible nodes in the view to a file.

3. When a supporting resource cannot be found locally using the project steplib chain and project
references, "<Unknown>" is displayedwith the name of the resource. If the unknownmodule(s)
is not shippedwith the Construct runtime project, either manually download it from the server
or create it locally. If the module(s) is shipped with the Construct runtime project, add the
project. For information, see the NaturalONE Code Generation guide.

4. For more information about the Dependencies view, see the description of the source editor
in Using NaturalONE.

Sequence Unit Test Resources

When a sequence unit test is open in the editor view, the root node displays the name of the se-

quence unit test. In callermode (), no child nodes are displayed because no otherDependencies
view objects depend on this sequence unit test file. For example:

In callee mode (), the child nodes display one business service or Natural unit test for each test
step in the sequence unit test. For example:

Application Testing96

Using the Test Functions

Business Service Unit Test Resources

When a business service unit test is open in the editor view, the root node displays the name of

the unit test. In caller mode (), one child node is displayed for each sequence unit test that in-
cludes this unit test in one of its test steps. For example:

In callee mode (), the child node displays the name of the business service that the unit test ex-
ecutes, along with the names of the supporting Natural resources and the names of the libraries
and projects in which they are located. For example:

Natural Unit Test Resources

When a Natural unit test is open in the editor view, the root node displays the name of the unit

test. In caller mode (), one child node is displayed for each sequence unit test that includes this
unit test in one of its test steps. For example:

97Application Testing

Using the Test Functions

In callee mode (), the child node displays the name of the Natural subprogram that the unit
test executes, along with the names of the supporting Natural resources and the names of the lib-
raries and projects in which they are located. For example:

Test an External Subroutine

This section describes how to test an external subroutine. The tester can test the subroutine using
either a subprogram or a program that calls a subprogram. The following tables describes which
option to use:

Test UsingExternal Subroutine Features

Program (Natural for Ajax provides the screen Input/Output)No parameters and screen
Input/Output

Subprogram (then you can use the subprogram tester to create scripts
so the tests can be run again)

Note: If there are parameters and no screen Input/Output, it is easier
to test the routine as a subprogram because the subprogram tester
can handle the variety of parameters.

Parameters and no screen
Input/Output

Regardless of which option you use, temporary Natural objects are created to perform the tests
and then deleted when the Natural for Ajax page or subprogram tester is closed.

Note: If you intend to use the temporary subprograms to create a unit (batch) test for the
subroutine, save the files locally before closing the tester.

Application Testing98

Using the Test Functions

This section covers the following topics:

■ Access the Subroutine Tester
■ Test with a Program
■ Test with a Subprogram

Access the Subroutine Tester

To access the subroutine tester:

1 Open the context menu for the subroutine in theNavigator view.

2 Select Testing.

The test options for external subroutines are displayed. For example:

99Application Testing

Using the Test Functions

Test with a Program

To test an external subroutine using a program:

1 Open the context menu for the subroutine in theNavigator view.

2 Select Testing > Test Subroutine with Program.

The subroutine is tested and the results are displayed in theNatural I/O view. For example:

Test with a Subprogram

To test an external subroutine using a subprogram:

1 Open the context menu for the subroutine in theNavigator view.

2 Select Testing > Test Subroutine with Subprogram.

The tester creates a temporary subprogram file to test the subroutine. For example:

Application Testing100

Using the Test Functions

Note: This editor functions in the same way as the editor used to test a subprogram.
For information on using this editor, see Features of the Test Editors and Test a Sub-
program Directly.

Test a Natural Map

This section describes how to test a Natural map in NaturalONE. The tester allows you to test a
map as you would on the server (i.e., pressing PF4 in the Map editor).

Note: The map must be available locally. If the map is not available locally, download it
from the server.

To test a Natural map:

1 Open the context menu for the map in theNavigator view.

2 Select Testing.

For example:

101Application Testing

Using the Test Functions

3 Select Test Map.

The map is displayed in the editor view. For example:

Application Testing102

Using the Test Functions

In addition to testing the output of the map, you can also test all code within the map. For
example, you can enter "?" in an input field to display the available help information (if help
has been attached to the map).

You can also apply a style sheet to the map by selecting in Style Sheet. For example:

103Application Testing

Using the Test Functions

In this example, the natural.css style sheet has been used.

To change style sheets, select the file inWeb I/O style sheet and select Apply. The map is
redisplayed with the selected style sheet. For example:

Application Testing104

Using the Test Functions

105Application Testing

Using the Test Functions

106

4 Setting Preferences for Application Testing

■ Set Logging Preferences for Unit Tests .. 108
■ Set Server Synchronization Preferences .. 109

107

This section describes how to set preferences for the supplied test function. The following topics
are covered:

Set Logging Preferences for Unit Tests

To set logging preferences:

1 Select Preferences on theWindowmenu.

The Preferenceswindow is displayed.

2 Select Software AG > Natural > Testing.

The Preferenceswindow for Testing is displayed. For example:

3 Select Log unit tests.

Application Testing108

Setting Preferences for Application Testing

Unit test log files will be created automatically each time a unit test is executed. The log files
are stored in the Testing-History folder within the NaturalONE project in which the unit test
was executed and include a .tstlog file extension. For example:

Note: If this option is not selected, the log files will not be created.

4 SelectOK to save the preferences.

Set Server Synchronization Preferences

When testing a subprogram, a message may be displayed indicating that a local resource has not
been uploaded to the server and synchronized with the server resource. You can set preferences
for this option in the Preferenceswindow for Testing.

To set server synchronization preferences:

1 Select Preferences on theWindowmenu.

The Preferenceswindow is displayed.

2 Select Software AG > Natural > Testing.

The Preferenceswindow for Testing is displayed.

3 Select one of the options listed inUpload resource(s) when they are not in sync with server.

These options are:

109Application Testing

Setting Preferences for Application Testing

DescriptionOption

Resource(s) are always uploaded to the server when not in sync.Always

Resource(s) are never uploaded to the server when not in sync.Never

A window is displayed to select an option.Prompt

4 SelectOK to save the preferences.

Application Testing110

Setting Preferences for Application Testing

5 Creating Ant Scripts to Run Unit Tests

■ Set Up the Environment .. 112
■ Generate the Ant Script and Command Files ... 112
■ Define the testsuite Ant Task .. 116

111

You can use theAnt scriptwizard to create xml-basedAnt scripts to run unit test files (file extension
.bsrvtst, .exttst, .nattst, and .seqtst), and then create a Junit test file to run the Ant scripts program-
matically from Java. The wizard generates the following files:

■ build.xml (contains the Ant script)
■ run.cmd (contains the DOS command file to run the script)

For information on creating unit test files, see:

■ Create a Unit Test for a Business Service
■ Create a Unit Test for a Subprogram
■ Create an External Data Unit Test
■ Create a Sequence Unit Test

Set Up the Environment

If you use an RPC environment connection ID, the ID must be setup before running the wizard.
For information, refer to the EntireX documentation.

Generate the Ant Script and Command Files

This section describes how to create the build.xml and run.cmd files.

To create the Ant script:

1 SelectNew > Other on the Filemenu.

The Select a wizard panel is displayed.

2 Select Software AG > Testing > Natural Unit Test Ant Script.

For example:

Application Testing112

Creating Ant Scripts to Run Unit Tests

3 SelectNext.

The Ant information panel is displayed. For example:

Using this panel, you can:

113Application Testing

Creating Ant Scripts to Run Unit Tests

ProcedureTask

Select a new folder in Eclipse root.Change the location of the default root folder in Eclipse.

Select a new folder inWorkspace root.Change the location of the default workspace folder.

Select a new ID in Broker connection ID.Change the Broker connection ID.

DeselectGenerate .cmd file.Suppress the generation of the run.cmd file containing the
DOS command file that runs the script.

4 Type the name of the Natural project in Output container or select Browse to display a list
of available projects for selection.

5 SelectNext.

The Item Selection panel is displayed. For example:

Using this panel, you can:

ProcedureTask

Deselect Sample business service.Suppress the generation of a sample business service.

Deselect Sample subprogram.Suppress the generation of a sample subprogram.

6 Select the location of the default fileset folder (the workspace root folder and the output con-
tainer folder) in Fileset.

7 Select Finish.

The generated build.xml and run.cmd files are displayed in theNavigator view. For example:

Application Testing114

Creating Ant Scripts to Run Unit Tests

The build.xml file is displayed in the editor view. For example:

8 Refine the parameters for the testsuite Ant task as desired.

115Application Testing

Creating Ant Scripts to Run Unit Tests

Define the testsuite Ant Task

This section describes the parameters for the testsuite Ant task in the generated build.xml file. The
following topics are covered:

■ Description
■ Parameters
■ Parameters Specified as Nested Elements

Description

Represents the set of Natural unit tests to be run.

It is assumed that all necessary resources to run the tests are contained within a NaturalONE
project. To run subprogram tests, a local copy of the subprogram file (.nsn file) must be in the
correct Natural Library folder. To run business service tests, the folder must contain the domain
file, steplib file associated with the domain, and all subprogram file(s) referenced by the business
service.

Each testsuite contains a connection node that defines how the tests will connect the Natural
server.

There are three ways to run Natural unit tests:

■ Create the units tests in NaturalONE using one of the Unit test wizards and then add a fileset
subnode that will load the generated .bsrvtst, .exttst, or .nattst files

■ Add a subprogram node to test a specific subprogram
■ Add a businessService node to test a specific business service

Parameters

RequiredDescriptionAttribute

NoValue indicating whether to log and save test history to the Testing-History folder. Valid
values are "true" (save test history) or "false" (do not save test history). By default, this
option is false.

logtests

NoName used by the testsuite for output information in the test logs and Ant build log.name

Application Testing116

Creating Ant Scripts to Run Unit Tests

Parameters Specified as Nested Elements

This section describes parameters that are specified as nested elements. The following topics are
covered:

■ connection
■ fileset
■ subprogram
■ businessService
■ input
■ validate

connection

Defines the connection settings to use to communicate with the Natural server.

Parameters

RequiredDescriptionAttribute

Either environmentName or brokerIDName of an EntireX RPC connection
configured in Eclipse.

environmentName

Either environmentName or brokerIDBroker ID for the connection.brokerID

Mandatory when brokerID is usedBroker address (when a broker ID is
specified).

address

Mandatory when brokerID is usedUser ID for the connection.userID

NoPassword.password

Optional and only when brokerID is
used

Whether a Natural logon is required.logon

fileset

Runs a set of unit test files.

Parameters

RequiredDescriptionAttribute

YesName of the folder/project containing the unit test files.dir

117Application Testing

Creating Ant Scripts to Run Unit Tests

Parameters Specified as Nested Elements

DescriptionParameter

Name of the unit test(s) to run. For example, include name="**/*.bsrvtst" /will
run all business service unit tests in the specified folder/project.

include name

subprogram

Runs a single test against a subprogram.

Parameters

RequiredDescriptionAttribute

YesName of the Eclipse Natural project containing the subprogram.project

YesNatural library containing the subprogram.library

YesName of the subprogram to execute, excluding the file extension (.NSN).name

Parameters Specified as Nested Elements

DescriptionParameter

See input.input

See validate.validate

businessService

Runs a single test against a business service.

Parameters

RequiredDescriptionAttribute

YesName of the Eclipse Natural project containing the business service.project

YesName of the domain containing the business service.domain

YesName of the business service to run.name

YesVersion of the business service to run.version

YesName of the method to test.method

Application Testing118

Creating Ant Scripts to Run Unit Tests

Parameters Specified as Nested Elements

DescriptionParameter

See input.input

See validate.validate

input

Specifies the value for a field to be used for input.

Parameters

RequiredDescriptionAttribute

YesFully qualified field name in the format:

[level one].[name]

name

.

YesValue to assign to the field.value

validate

Specifies the field to be validated when it is returned by the call to the server.

Parameters

RequiredDescriptionAttribute

YesFully qualified field name in the format:

[level one].[name]

name

.

YesType of validator to use (see the following table).type

YesValue to assign to the field.value

Validators

DescriptionType

Validates Boolean values. True values are: x, t , true, or 1.BooleanValidator

Compares an array of bytes.ByteValidator

Compares values based on mathematical expressions (for example, ">", "<", "=",
"<=", ">=").

ComparisonValidator

Compares dates. The value is in the format: MON DD, YYYY (where MON is
a 3-character abbreviation for a month name).

DateValidator

119Application Testing

Creating Ant Scripts to Run Unit Tests

DescriptionType

Compares decimal values.DecimalValidator

Compares integer values. Decimals will be truncated.IntegerValidator

Verifies that the value in the field matches a regular expression.RegexValidator

Compares the value in the field against a string.StringValidator

Compares the value in the field against a time. Time is in the format: MMM d,
yyyy hh:mm:ss.SSS.

TimeValidator

Application Testing120

Creating Ant Scripts to Run Unit Tests

	Application Testing
	Table of Contents
	Preface
	1 Release Notes
	What's New in Version 8.2.1
	Natural Unit Tests
	Improved Unit Test Functions
	Test an External Subroutine
	Support for Local Decimal Format
	New Log File and Report Functions

	Fixes
	Test Business Services in Projects that Reference the Construct Runtime Project

	What's New in Version 8.2.2
	What's New in Version 8.2.3
	Enhancements
	Ensure Code Synchronization with the Server While Testing Subprograms
	Create Unit Test Validations to Test for Mathematical Comparisons

	What's New in Version 8.2.4
	What's New in Version 8.2.5
	Changes to the Test Editors
	Access Testing Functions Through a New Folder Structure
	Eliminate Date/Time Information While Testing Subprograms
	Create a Unit Test that Accepts Input from an External File
	Create Default Tests for Object-Browse-Subp and Object-Maint-Subp-generated Business Services and Natural Subprograms
	Edit Settings Inline, Duplicate Values, and Add Multiple Entries to an Array Field in the Unit Test Editor
	Display the Elapsed Time a Test Takes to Run in the Natural Unit Test View
	Create a History Chart and Display Elapsed Time and User IDs for Unit Test Log File Reports
	Log and Save the Test History for an Ant testsuite Task

	What's New in Version 8.2.6
	Create a Sequence Unit Test
	Create Unit Tests and Data (CSV) Files from the External Data Unit Test Wizard

	What's New in Version 8.2.7
	Export/Import Test Data for Business Services and Subprograms

	2 Overview of Test Functions
	3 Using the Test Functions
	Features of the Test Editors
	Test a Business Service or Subprogram Directly
	Test a Business Service Directly
	Test the Service
	Define Date and Time Details
	Define Connections
	Define Additional RPC Environments
	Save as a Business Service Unit Test

	Test a Subprogram Directly
	Access the Test Function
	Save as a Natural Unit Test

	Export/Import Test Data
	Export Test Data
	Import Test Data

	Export Test Data to a CSV File

	Create a Unit Test for a Business Service or Subprogram
	Enable for Application Testing
	Create a Unit Test for a Business Service
	Create the Unit Test
	Configure Input Parameters
	Edit an Input Field
	Duplicate an Input Field
	Add Multiple Elements for an Array Field

	Define Validations
	Edit a Field Validation
	Duplicate a Field Validation
	Add Multiple Validations for an Array Field

	Run the Unit Test
	Open a Previous Unit Test
	Run a Unit Test in Another Environment
	Test for an Expected Error
	Test an Array Field

	Create a Unit Test for a Subprogram
	Generate Default Unit Tests
	Generate Tests for a Business Service
	Generate Tests for a Natural Subprogram

	Create a New Unit Test Suite
	Create Summary Reports for Unit Test Log Files
	Create Unit Test Log Files
	Generate a Summary Report

	Use the Dependencies View
	Business Service Unit Test Resources
	Natural Subprogram Unit Test Resources

	Create an External Data Unit Test
	Create the Unit Test
	Create a New Unit Test
	Create a New Data File

	Configure Column Mappings and Sample Data

	Create a Sequence Unit Test
	Create the Unit Test
	Use the Sequence Unit Test Editor
	Add Test Steps
	Copy Data from a Previous Step
	Add an Input Override
	Add a Validation Override
	Add a Method Override

	Use the Dependencies View
	Sequence Unit Test Resources
	Business Service Unit Test Resources
	Natural Unit Test Resources

	Test an External Subroutine
	Access the Subroutine Tester
	Test with a Program
	Test with a Subprogram

	Test a Natural Map

	4 Setting Preferences for Application Testing
	Set Logging Preferences for Unit Tests
	Set Server Synchronization Preferences

	5 Creating Ant Scripts to Run Unit Tests
	Set Up the Environment
	Generate the Ant Script and Command Files
	Define the testsuite Ant Task
	Description
	Parameters
	Parameters Specified as Nested Elements
	connection
	fileset
	subprogram
	businessService
	input
	validate

