
Entire Connection

Application Programming Interface

Version 9.1.4

October 2021

This document applies to Entire Connection Version 9.1.4 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1984-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: PCC-API-914-20210926

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 General Information .. 5
API Controls and Terminal Sessions .. 6
Synchronous and Asynchronous Calls .. 7
Glossary .. 7

3 Overview of API Calls ... 9
Initialization ... 11
Opening a Session .. 12
General Control .. 13
Screen Data ... 15
Data Transfer .. 17
Tasks and Procedure Files .. 21
Closing a Session .. 23
Other Methods ... 24

4 Other Events, Key Codes and Return/Error Codes ... 25
Other Events ... 26
Key Codes .. 26
Return/Error Codes .. 28

iii

iv

Preface

Using the application programming interface (API), you can invoke Entire Connection functions
directly from a program. An ActiveX control provides a common interface for development with
Visual Basic .NET, C++ and C#.

This section provides the following information:

General Information

Overview of API Calls

Other Events, Key Codes and Return/Error Codes

It is assumed that you are familiar with ActiveX controls (with Visual Basic .NET, C++ or C#) and
Entire Connection.

This description should be read in conjunction with the sample code which is provided on the
Entire Connection installationmedium. The sample code can be found in theWindows\API folder
of the installation medium.

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Application Programming Interface2

About this Documentation

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

■ Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Application Programming Interface

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

4

2 General Information

■ API Controls and Terminal Sessions ... 6
■ Synchronous and Asynchronous Calls .. 7
■ Glossary ... 7

5

API Controls and Terminal Sessions

Each API control can link to an existing terminal session or create a new terminal session. Each
terminal session can have one API control attached at any one time, the only exception being a
terminal running in unattended mode when attaching is not allowed. It is also impossible to set
an API-controlled terminal to unattended mode.

When a terminal session is in API mode, it is usually hidden to prevent user input. If the API
makes the terminal visible, the user has full control of the terminal, including executing procedure
files and closing down the terminal session. All data transfer operations and procedure files will
still remain under the control of the API client.

Application Programming Interface6

General Information

Synchronous and Asynchronous Calls

Synchronous (blocking) and asynchronous (non-blocking) calls are available in Visual Basic .NET,
C++ and C#. At design time, you decide which of these two modes is appropriate.

If the control is set to asynchronous mode, nearly all API calls will return immediately with an
appropriate return code. The main exceptions to this are the functions used for initialization and
closing down a terminal session. These functionswill always block regardless of themode selected.

When the API is running asynchronously and a command completes, the control will fire a com-
pletion event. The parameters for this event contain the completion code from the call and any
data requested.

The descriptions in theOverview of API Calls indicatewhen a call is only available synchronously.
In all other cases, a completion event will be fired, for example LogonEntireConnectionwill fire
LogonComplete.

In certain situations, the API control will also fire notification events regardless of the mode it is
running in. These can include error messages, information messages and all data transfer data.

Glossary

Functionality available to third-party applications.API

The application controlling Entire Connection using the application programming
interface.

API Client

The ActiveX used by the API client.API Control

The terminal application of Entire Connection.Terminal Session

Non-blocking mode. The application programming interface immediately returns to
the calling application. When processing has completed, the application programming
interface sends a message to the application.

Asynchronous

Blocking mode. The application programming interface only returns to the calling
application when processing of the API call has completed.

Synchronous

7Application Programming Interface

General Information

8

3 Overview of API Calls

■ Initialization .. 11
■ Opening a Session .. 12
■ General Control .. 13
■ Screen Data ... 15
■ Data Transfer ... 17
■ Tasks and Procedure Files .. 21
■ Closing a Session .. 23
■ Other Methods .. 24

9

This section provides an overview of all available API calls, grouped according to the following
functional areas:

■ Initialization
■ GetRunningTerminalSessions

■ Initialize

■ LogonEntireConnection

■ Opening a Session
■ GetAvailableSessions

■ OpenSession

■ General Control
■ RunHostCommand

■ PutData

■ SetDataNotificationFlag

■ Screen Data
■ GetScreenText

■ GetScreenRawText

■ GetScreenAttributes

■ GetExtendedAttributes

■ GetCursorPosition

■ SetCursorPosition

■ ClearScreenText

■ CheckForScreenText

■ Data Transfer
■ SetAPIFileDetails

■ SetWorkFileDetails

■ GetFileName

■ CancelFileTransfer

■ Tasks and Procedure Files
■ RunEntConTask

■ SetGlobalParameter

■ GetGlobalParameter

■ CancelRunningTask

■ Closing a Session

Application Programming Interface10

Overview of API Calls

■ CloseSession

■ CloseAllSessions

■ BreakConnection

■ Other Methods
■ GetScreenSize

See the descriptions below for detailed information on theseAPI calls (including associated events).

Initialization

When starting a session, the API client can either attach to a running terminal or create a new
terminal.

To find out the session names of any running terminals (synchronous call only)

■ Call the following:

APIReturn = GetRunningTerminalSessions(TerminalNames, NumTerminals)

This returns an array of currently running terminals that can be attached.
GetRunningTerminalSessions is the only call that can be made before calling Initialize.

To attach to a terminal

■ Call the following:

APIReturn = Initialize(CreateSession, LinkSessionName, UserLoggedOn, OpenSession)

The parameters are:

Boolean. "true" indicates that a new terminal is to be created.CreateSession

String. The name of an existing terminal to attach to. The name is one of the
terminal names that is returnedby theGetRunningTerminalSessions function.

LinkSessionName

Boolean. Returns "true" if the logon to Entire Connection has already taken place
on the workstation. In order to use a terminal, a user has to log on once per
workstation. If UserLoggedOn is "false", the API client has to log on now.

UserLoggedOn

String. Normally empty. In a special case, this contains the name of an open
session.

OpenSession

If "true" was returned for CreateSession or if it is not possible to attach to the specified ter-
minal, the API control creates a new session.

11Application Programming Interface

Overview of API Calls

If the connection to an existing terminal has been established and if in the meantime a session
has been opened in this terminal, the OpenSession parameter contains the name of the session.
In this special case, the API client has to decide whether it wants to work with this session
which has not been opened under its control. This can only happen if an existing terminal is
attached that is currently in the process of opening a session, and this process takes a while
and has not yet been completed.

To log on to Entire Connection

■ Call the following:

APIReturn = LogonEntireConnection(UserName, Password)

Opening a Session

The API client can either query the available session names from the share file or open a known
session directly.

To query all sessions defined for the Entire Connection user

■ Call the following:

APIReturn = GetAvailableSessions(SessionNames, DefaultSession)

The parameters are:

Variant Array(Strings). The names of all defined sessions.SessionNames

String. The name of the default session.DefaultSession

To open one of these sessions

■ Call the following:

APIReturn = OpenSession(SessionName)

The parameter is:

Application Programming Interface12

Overview of API Calls

String. The name of the session that is to be opened.SessionName

The session is now open and can be used.

Associated Events:

■ FirstScreenArrived

Fired when the session receives the first data from the host.
■ ScreenSizeChanged(NumRow, NumColumns)

Notifies the initial screen size, and also whether the terminal changes dynamically during a
session.

■ SessionOpened(SessionName)

Fired if a session openswithout theAPI client calling the OpenSessionmethod. Thismay happen,
for example, when a startup task is used. The parameter is:

String. The name of the open session.SessionName

General Control

To send commands to the open session

■ Call the following:

APIReturn = RunHostCommand(CommandName)

The parameter is:

String. The name of the command that is to be executed on the host.CommandName

The string is sent to the host and then to the function key ENTER.

To send general text and key codes

■ Call the following:

13Application Programming Interface

Overview of API Calls

APIReturn = PutData(Text, KeyCode)

The parameters are:

String. The text that is to be transferred to the host.Text

Integer. The key that is to be sent after the text has been transferred.KeyCode

The text that is sent with this command can contain line feeds. These are interpreted as if the
function key NEWLINE has been pressed. If you only want to send a key code, you have to pass
an empty string for the text.

To enable data notifications (synchronous call only)

■ Call the following:

APIReturn = SetDataNotificationFlag(Enable)

The parameter is:

Boolean. When you set this to "true", data notifications are switched on. Default: off.Enable

To show and hide the terminal window

■ Set the API control property TerminalInteractive (boolean).

If you connect to a terminal, it stays visible until this value is set to "false".

If you create a new terminal, it is invisible until this value is set to "true".

Associated Events:

■ CursorPositionChanged(XPosition, YPosition)

Fired when the terminal is in interactive mode and the cursor position is changed with the
mouse (not when the cursor moves due to typing).

■ NewScreenDataArrived()

If enabled, this indicates that new data has arrived from the host.

Application Programming Interface14

Overview of API Calls

Screen Data

Screen text is available as the raw text as it is received by the host and as the processed text as it
is displayed on the terminal. The raw text contains all characters - including those that are not to
be displayed (for example, password) - and can contain zero values.

Since the raw text can contain zero values, it can only be returned as an array of unsigned characters.
The screen text is returned as an array of strings.

To return screen text

■ Call the following:

APIReturn = GetScreenText(ScreenTextArray, TopLeftX, TopLeftY, BottomRightX, ↩
BottomRightY)

The parameters are:

Variant Array(Strings). One string per line of text requested.ScreenTextArray

Integer. Starting coordinate.TopLeftX

Integer. Starting coordinate.TopLeftY

Integer. Ending coordinate.BottomRightX

Integer. Ending coordinate.BottomRightY

If any of the coordinates is set to -1, the entire screen is returned.

To return raw data

■ Call the following:

APIReturn = GetScreenRawText(ScreenTextArray)

The parameter is:

Variant Array(Unsigned chars). Raw data buffer.ScreenTextArray

To return screen attributes

■ Call the following:

15Application Programming Interface

Overview of API Calls

APIReturn = GetScreenAttributes(Attributes, AttributesDescription)

The parameters are:

Variant Array(Unsigned chars). Attribute buffer.Attributes

AttributesDescription Variant Array(Unsigned chars). The description of an attribute is an array
of 6 values containing the bit patterns for the attribute properties:

AttributeMember 0:

ProtectedMember 1:

NumericMember 2:

No displayMember 3:

High displayMember 4:

Modify data tagMember 5:

To return extended screen attributes

■ Call the following:

APIReturn = GetExtendedAttributes(ExtendedAttributes)

The parameter is:

Variant Array(Unsigned chars). Extended attribute buffer.ExtendedAttributes

To read and set the current cursor position

■ Call the following:

APIReturn = GetCursorPosition(XPosition, YPosition) APIReturn = ↩
SetCursorPosition(XPosition, YPosition)

The parameters are:

Integer. X indicates the cursor position in the column.XPosition

Integer. Y indicates the cursor position in the line.YPosition

To remove all editable text in the specified area

■ Call the following:

Application Programming Interface16

Overview of API Calls

APIReturn = ClearScreenText(TopLeftX, TopLeftY, BottomRightX, BottomRightY)

The parameters are:

Integer. Starting coordinate.TopLeftX

Integer. Starting coordinate.TopLeftY

Integer. Ending coordinate.BottomRightX

Integer. Ending coordinate.BottomRightY

-1 in any value indicates the whole screen.

To call the IF command used to check for screen text

■ Call the following:

APIReturn = CheckForScreenText(Text, Result, Position, TopLeftX, TopLeftY, ↩
Length, CaseSensitive)

The parameters are:

String. Text to check for.Text

Boolean. "true" if the text was found.Result

Integer. Screen position where the text was found.Position

Integer. Starting coordinate.TopLeftX

Integer. Starting coordinate.TopLeftY

Integer. Text length.Length

Boolean. True if case-sensitive check.CaseSensitive

Data Transfer

To prepare for data transfer to be processed directly by the API client

■ Call the following:

17Application Programming Interface

Overview of API Calls

APIReturn = SetAPIFileDetails(WorkFileNumber, UploadFlag, BinaryFlag, ReportFlag)

The parameters are:

Integer. Work file number.WorkFileNumber

Boolean. Is set for upload.UploadFlag

Boolean. Is set for binary transfer.BinaryFlag

Boolean. Is set for report format.ReportFlag

This results in the following events being fired during upload:

GetAsciiUploadFileBuffer(ErrorCode, FileNumber, Data, DataLength, DataFormat)

GetBinaryUploadFileBuffer(ErrorCode, WorkFileNumber, Data, DataLength)

and the following events being fired during download:

AsciiFileDataArrived(ErrorCode, FileNumber, DataLength, Data, DataFormat)

BinaryFileDataArrived(ErrorCode, FileNumber, DataLength, Data, DataFormat)

The event parameters are:

Integer. Must be set to 0 by the API to indicate that all was processed without error.ErrorCode

Integer. The work file to be processed.FileNumber

Integer. Upload: the expected size is passed; the actual size is returned. Download: is
set to the size of the transmitted data.

DataLength

Variant Arry(unsigned char). Data that are to be transferred.Data

String. Description of the record format.DataFormat

For a normal transfer operation, the API client has to to provide a file name. This can be done
by presetting a file name.

To preset a file name

■ Call the following:

APIReturn = SetWorkFileDetails(Name, FileNumber, Upload, Binary, Report)

The parameters are:

Application Programming Interface18

Overview of API Calls

String. The file name that is to be used.Name

Integer. The work file being processed.FileNumber

Boolean. Is set for upload.Upload

Boolean. Is set for binary transfer.Binary

Boolean. Is set for report format.Report

If no preset values are found for the work file being processed, the API client will be asked
for a file name.

To return a file name

■ Respond to the following event:

APIReturn = GetFileName(ErrorCode, FileNumber, Upload, Binary, ToPrinter, ↩
Landscape, ControlChars, DosFormat, FileName)

The parameters are:

Integer. If set to zero, the file name is used and processing starts. If set to any other
value, processing is canceled.

ErrorCode

Integer. Work file being processed.FileNumber

Boolean. Is set for uploading a file name.Upload

Boolean. Is set for binary transfer.Binary

Boolean. Is set to download to a printer.ToPrinter

Boolean. Is set to print in landscape format.Landscape

Boolean. Is set to interpret control characters.ControlChars

String. The file name to be used.FileName

To cancel a running data transfer

■ Call the following:

APIReturn = CancelFileTransfer(FileNumber)

The parameter is:

19Application Programming Interface

Overview of API Calls

Integer. The number of the work file for which the data transfer is to be canceled.FileNumber

This call is synchronous. It queues a cancelation request. When data transfer has completed,
the FileTransferComplete event is fired.

Associated Events:

■ FileTransferStarting(ErrorCode, FileNumber, Upload, Binary, Headings)

The parameters are:

Integer. If set to zero, the file name is used and processing starts. If set to any other value,
processing is canceled.

ErrorCode

Integer. The work file being processed.FileNumber

Boolean. Is set for uploading a file name.Upload

Boolean. Is set for binary transfer.Binary

Variant Array (Strings). Contains the field names of the record for the transfer.Headings

■ FileTransferComplete(FileNumber, Upload, ErrorCode)

The parameters are:

Integer. Work file being processed.FileNumber

Boolean. Is set if upload is completed.Upload

Integer. Is set to zero if the data transfer was processed without error.ErrorCode

■ FileTransferProgress(ProgressMessage)

The parameter is:

String. Message that normally appears in the output window of the terminal
application window.

ProgressMessage

Application Programming Interface20

Overview of API Calls

Tasks and Procedure Files

To run an Entire Connection task or procedure file

■ Call the following:

APIReturn = RunEntConTask(TaskName)

The parameter is:

String. The name of an Entire Connection task or procedure file.TaskName

Note: For a synchronous connection, the application programming interface returns
to the calling application after the TaskName has been checked and the task or procedure
file has been started (not when the task or procedure file is completed). For an asyn-
chronous call, the application programming interface immediately returns to the calling
application.

To access the global parameters +PARM0 to +PARM9

■ Call the following:

APIReturn = SetGlobalParameter(ParamNumber, Value) APIReturn = ↩
GetGlobalParameter(ParamNumber, Value)

The parameters are:

Integer. From 0 to 9 for the required parameter.ParamNumber

String. Value of the parameter.Value

To cancel a running procedure file (synchronous call only)

■ Call the following:

21Application Programming Interface

Overview of API Calls

APIReturn = CancelRunningTask()

This will return immediately. The procedure file will notify termination by firing the
EntConTaskComplete event.

Associated Events:

■ EntConTaskStarting(ErrorCode, TaskName)

Is called when a task is started other than explicitly by the application programming interface
(for example, a logon task).

The parameters are:

Integer. Has to be set to 0 (zero) so that the task can be started.ErrorCode

String. The name of the task that has been started.TaskName

■ EntConTaskComplete(ErrorCode, TaskName)

The parameters are:

Integer. Is set to zero if the task has completed without error.ErrorCode

String. Task name.TaskName

■ TaskInputRequest(ErrorCode, DisplayOne DisplayTwo, Flags, ReturnData)

This event is fired if an INPUT statement is executed in a procedure file.

The parameters are:

Integer. Is set to zero after input has been provided.ErrorCode

String. First line of prompt text.DisplayOne

String. Second line of prompt text.DisplayTwo

Flags Variant Array. Display flags (see below).

Must return some data; blank is
invalid.

Flags(0)

Numeric data only.Flags(1)

Password field.Flags(2)

Maximum length of the
requested data.

Flags(3)

String. Data that are to be returned to the procedure.ReturnData

■ TaskDisplayMessageRequest(ErrorCode, Text, DialogBox, MessageType, Response)

Application Programming Interface22

Overview of API Calls

This event is fired if a WAIT statement is executed in a procedure file.

The parameters are:

Integer. Is set to 0 (zero) if the procedure is to continue. If zero is not set, the procedure
is canceled.

ErrorCode

String. The message to be displayed.Text

Boolean. "true" if a message box is expected.DialogBox

Variant. Display parameters.MessageType

Integer. Standard Microsoft response code of the MessageBox (for example, "IDOK") if
DialogBox is "true".

Response

■ TaskError(ErrorCode, ErrorText)

The parameters are:

Integer. Error code from the task.ErrorCode

String. Message to be displayed.ErrorText

Closing a Session

To close an open session and leave the connection to Entire Connection active

■ Call the following:

APIReturn = CloseSession()

To close all terminals (asynchronous call only)

■ Call the following:

APIReturn = CloseAllSessions()

This will close any terminal session on the workstation, including those opened directly. This
call should be used with caution. It also breaks the connection to the terminal. There is no
completion event.

To break the link to the terminal (synchronous call only)

■ Call the following:

23Application Programming Interface

Overview of API Calls

APIReturn = BreakConnection(Closedown)

The parameter is:

Boolean. Is set to "true" to close the terminal window on disconnect.Closedown

If Closedown is set to "false" and the Entire Connection terminal is not logged on, the terminal
will be closed anyway. If the terminal was hidden, it will be automatically shown when the
connection is broken.

Associated Events:

■ CurrentSessionClosed

The session has closed down without a request from the application programming interface.
This can happen if the terminal is interactive and the user closes the session, or if a session times
out.

■ TerminalClosedown

The terminal has completely closed down with no request from the application programming
interface. This can happen in interactive mode if the user closes the application, or if
CloseAllSessions is called from another API session.

Other Methods

To return the current size of the open terminal

■ Call the following:

APIReturn = GetScreenSize(NumberOfRows, NumberOfColumns)

Application Programming Interface24

Overview of API Calls

4 Other Events, Key Codes and Return/Error Codes

■ Other Events .. 26
■ Key Codes ... 26
■ Return/Error Codes .. 28

25

Other Events

■ ServerRequestedFileName(ErrorCode, OpenFile, Flags, Title, DefExtension, Filter,
InitFileName, InitDirectory, FileName)

Is called if the session needs a file name.

The parameters are:

Integer. Is set to zero when the file name has been set.ErrorCode

String. The file name to be used.FileName

The other parameters are those expected by the common open file dialog.
■ TerminalWarningMessage(Message, DisplayFlag)

The parameters are:

String. Message to be displayed.Message

Boolean. The call is expected to show a message in a blocking dialog box (for example,
using the MessageBox function).

DisplayFlag

Key Codes

The table below shows the key codes that can be passed using the PutData function. The first
column contains the function key name. The second column contains the function key constant
as it is defined in the include file ECAPI.H, and the third column contains the key code value for
the function key. Only these values should be used. If other values are passed, the effects are not
defined.

The include file ECAPI.H is provided on the Entire Connection installation medium as part of the
samples.

Key Code ValueKey Code DefinitionFunction Key

20EC_PF1PF1

21EC_PF2PF2

22EC_PF3PF3

23EC_PF4PF4

24EC_PF5PF5

25EC_PF6PF6

Application Programming Interface26

Other Events, Key Codes and Return/Error Codes

Key Code ValueKey Code DefinitionFunction Key

26EC_PF7PF7

27EC_PF8PF8

28EC_PF9PF9

29EC_PF10PF10

30EC_PF11PF11

31EC_PF12PF12

32EC_PF13PF13

33EC_PF14PF14

34EC_PF15PF15

35EC_PF16PF16

36EC_PF17PF17

37EC_PF18PF18

38EC_PF19PF19

39EC_PF20PF20

40EC_PF21PF21

41EC_PF22PF22

42EC_PF23PF23

43EC_PF24PF24

46EC_ATTNATTN

16EC_CLEARCLEAR

13EC_CRCR

50EC_DEVCNCLDEVCNCL

54EC_EEOFEEOF

44EC_ERASEINPERASEINP

82EC_INSERTINSERT

48EC_NEWLINENEWLINE

49EC_PRINTPRINT

47EC_SYSREQSYSREQ

71EC_HOMEHOME

17EC_PA1PA1

18EC_PA2PA2

19EC_PA3PA3

83EC_DELETEDELETE

8EC_BACKSPACEBACKSPACE

9EC_TABTAB

15EC_BACKTABBACKTAB

27Application Programming Interface

Other Events, Key Codes and Return/Error Codes

Key Code ValueKey Code DefinitionFunction Key

75EC_LEFTLEFT

77EC_RIGHTRIGHT

72EC_UPUP

80EC_DOWNDOWN

56EC_DUE2DUE2

84EC__EMEM

11EC_AFZAFZ

165EC_EFZEFZ

89EC_LZELZE

163EC_RURU

160EC_SDZSDZ

85EC_SZASZA

193EC_K1K1

194EC_K2K2

195EC_K3K3

Return/Error Codes

The return/error codes are all integer values. The constants listed below are defined in the include
file ECAPI.H. The numbers in parentheses are the actual code values.

The include file ECAPI.H is provided on the Entire Connection installation medium as part of the
samples.

API_SUCCESS (0)
Returned from most functions if the operation was successful. Some functions have specific
success return codes - see below.

API_CALL_QUEUED (-1)
This return code is used in asynchronous (non-blocking) mode. It means that the request from
the API application has successfully been sent to Entire Connection for processing. The return
code for the request from Entire Connection is passed in a completion event to the API applic-
ation.

API_NEW_SESSION_OPENED (-2)
Returned by the Initialize API function if a new session has been created successfully.

API_PROC_CANCELLED_OK (-3)
Sent as completion event for the CancelRunningTask API function if the Entire Connection
task or procedure file has been canceled successfully.

Application Programming Interface28

Other Events, Key Codes and Return/Error Codes

API_ERROR_CALL_BLOCKED (1)
This return code is used internally. It is not passed to the API application.

API_ERROR_INCORRECT_PARAMETERS (2)
Each API function checks whether the passed parameters are valid. If not, this error code is
returned.

API_ERROR_NO_USER (10)
In order to use a terminal, a user has to log on to Entire Connection. This error code is returned
if you called a function requiring a terminal but no user has logged on yet. Use theAPI function
LogonEntireConnection to log on.

API_ERROR_NO_OPEN_SESSION (11)
This error code is returned by API functions that work on an open terminal session if there is
no open terminal session. You first have to open a session, for example, with the API functions
GetAvailableSessions and OpenSession.

API_ERROR_NO_FILE_TRANSFER (12)
The API function CancelFileTransfer returns this error code if there is no active file transfer.

API_ERROR_NO_SESSIONS_DEFINED (13)
The API function GetAvailableSessions returns this error code if no sessions are defined in
the share file for the current user.

API_ERROR_NO_SCREEN_PRESENT (14)
The API function GetScreenText returns this error code if no screen data is available because
the first screen from the host has not yet arrived.

API_ERROR_NO_SESSION_NAME (15)
The API function OpenSession returns this error code if no session name was passed in the
parameter SessionName.

API_ERROR_NO_TASK_RUNNING (16)
The API function CancelRunningTask returns this error code if there is no active task or pro-
cedure.

API_ERROR_NOT_CONNECTED (20)
This error code is returned by the API functions if the API ActiveX control is not connected to
Entire Connection. For example, if Entire Connection was manually closed by a user.

API_ERROR_ALREADY_CONNECTED (21)
TheAPI function Initialize returns this error codewhen the function has already been called
before and returned successfully.

API_ERROR_ALREADY_LOGGED_ON (22)
The API function LogonEntireConnection returns this error code if the user is already logged
on to Entire Connection.

API_ERROR_ALREADY_INITIALIZED (23)
The API function Initialize returns this error code if the API ActiveX control is already at-
tached to Entire Connection.

29Application Programming Interface

Other Events, Key Codes and Return/Error Codes

API_ERROR_SESSION_ALREADY_OPEN (24)
The API function OpenSession returns this error code if there already is an open session.

API_ERROR_SESSION_NOT_FOUND (30)
This return code is currently not used.

API_ERROR_API_CALL_ONLY (31)
This error code is used in Entire Connection if API functions are called but there is no active
API application.

API_ERROR_INITIALIZATION_FAILED (40)
The API function Initialize returns this error code if the API ActiveX control could not be
initialized or if it could not be attached to Entire Connection.

API_ERROR_CALL_FAILED (41)
This error code is used by the API functions if Entire Connection could not complete the re-
quested operation successfully and it did not return a specific error code.

API_ERROR_COMMS_ERROR (200)
This return code is currently not used.

API_ERROR_INTERNAL_ERROR (201)
This error code is returned when an unexpected error or exception occurred. At least the re-
quested operation was aborted, and failed. Entire Connection may be instable. Restart Entire
Connection and retry.

Application Programming Interface30

Other Events, Key Codes and Return/Error Codes

	Application Programming Interface
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 General Information
	API Controls and Terminal Sessions
	Synchronous and Asynchronous Calls
	Glossary

	3 Overview of API Calls
	Initialization
	Opening a Session
	General Control
	Screen Data
	Data Transfer
	Tasks and Procedure Files
	Closing a Session
	Other Methods

	4 Other Events, Key Codes and Return/Error Codes
	Other Events
	Key Codes
	Return/Error Codes

