§ software

Entire Connection

Application Programming Interface

Version 4.5.4

November 2016

ADABAS & NATURAL

This document applies to Entire Connection Version 4.5.4.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1984-2016 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: PCC-API-454-20161118

Table of Contents

PIOIACE ..ot e e e e e e e et ——————————— v
1 General INfOrmationooooviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 1
API Controls and Terminal SESSIONSccceeeeeeeeeeieieeeiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 2
Synchronous and Asynchronous Callsccooiiiiiiiiiii 3
GLOSSATY ..t s 3
2 OVEIrVIEW Of API CallS ..ovuueniiiiiiieiieeeee ettt e e e e e e e e eeeeeeaeeeees 5
INGHALIZATION Lovveeieii it e e e e e e e e e e 7
OPening @ SESSIONccccuuiiiiiiiiiiiiiiic e 8
GENETal CONITOL ..uuuieiiiieeeeeeeee e e et e e e e e e e e eee e e e e e e e eeeaaaas 9
SCIEEIN DAL .uvuuiiiieeeeeeee e e e e e e e et e e e e e e e et aaaaas 11
| D17z T =1 0 1S3 <) SRR 13
Tasks and Procedure FIles ... 17
ClOSING @ SESSION ...cuvecvviiieticiccii e 19
Other MEthOdsS ...ovvvieeeiieeeeeeceee ettt e e e e e e e eae e e eeaeeeees 20
3 Other Events, Key Codes and Return/Error Codesccccooiiviiiiiiiiiiiiiniiiiiinnnn, 21
OtNET EVEINES .euuniiiieeeeeeee ettt e e e e e e e e 22
Key COdes ...ooiiiiiiiiiiiiiiici 22
RetUIN/EITOr COAES ..o 24

Preface

Using the application programming interface (API), you can invoke Entire Connection functions
directly from a program. An ActiveX control provides a common interface for development with
Visual Basic .NET, C++ and C#.

This section provides the following information:

General Information
Overview of API Calls
Other Events, Key Codes and Return/Error Codes

It is assumed that you are familiar with ActiveX controls (with Visual Basic .NET, C++ or C#) and

Entire Connection.

This description should be read in conjunction with the sample code which is provided on the
Entire Connection installation medium. The sample code can be found in the Windows\ API folder
of the installation medium.

vi

1 General Information

= AP| Controls and TEerminal SESSIONScciiuiriiiiiiit ettt
= Synchronous and ASYNChrONOUS CallSuviiiiiiiiieeii e e e
B GlOSSANY ..ttt ettt et e e et e e ettt e e et e e e raeee e n

General Information

API Controls and Terminal Sessions

Each API control can link to an existing terminal session or create a new terminal session. Each
terminal session can have one API control attached at any one time, the only exception being a
terminal running in unattended mode when attaching is not allowed. It is also impossible to set
an API-controlled terminal to unattended mode.

AP ActiveX contral

: Terminal Link to host
APICllent1 — — SRR -
Entire Connection
i Terminal Link to host
APl Client 2 — — Sassion [2

Entire Connection

When a terminal session is in API mode, it is usually hidden to prevent user input. If the API
makes the terminal visible, the user has full control of the terminal, including executing procedure
files and closing down the terminal session. All data transfer operations and procedure files will
still remain under the control of the API client.

2 Application Programming Interface

General Information

Synchronous and Asynchronous Calls

Synchronous (blocking) and asynchronous (non-blocking) calls are available in Visual Basic .NET,
C++ and C#. At design time, you decide which of these two modes is appropriate.

If the control is set to asynchronous mode, nearly all API calls will return immediately with an
appropriate return code. The main exceptions to this are the functions used for initialization and
closing down a terminal session. These functions will always block regardless of the mode selected.

When the API is running asynchronously and a command completes, the control will fire a com-
pletion event. The parameters for this event contain the completion code from the call and any
data requested.

The descriptions in the Overview of API Calls indicate when a call is only available synchronously.
In all other cases, a completion event will be fired, for example LogonEntireConnection will fire
LogonComplete.

In certain situations, the API control will also fire notification events regardless of the mode it is
running in. These can include error messages, information messages and all data transfer data.

Glossary

API Functionality available to third-party applications.

API Client The application controlling Entire Connection using the application programming
interface.

API Control The ActiveX used by the API client.

Terminal Session The terminal application of Entire Connection.

Asynchronous Non-blocking mode. The application programming interface immediately returns to
the calling application. When processing has completed, the application programming
interface sends a message to the application.

Synchronous Blocking mode. The application programming interface only returns to the calling
application when processing of the API call has completed.

Application Programming Interface 3

2

Overview of API Calls

B I ZAE 0N © .ot 7
B OPENING @ SESSION ...ttt ettt ettt e e e et e e ettt e e e st e e e ettt e e e e sttt e e e et e e e ettt e e e ettt e e e ree s 8
B GNETAL CONTON ... e e e, 9
B S0 BN D8 .o 11
B DAt TT AN O e 13
B TASKS @Nd PrOCEAUNE FIlES ..o e e 17
B ClOSING @ SESSION ...ttt e e oottt e aeeaas 19
B O e MBHNOGS ... e e 20

Overview of API Calls

This section provides an overview of all available API calls, grouped according to the following
functional areas:
® Initialization
" GetRunningTerminalSessions
B Initialize
" LogonEntireConnection
® Opening a Session
" GetAvailableSessions
" OpenSession
® General Control
" RunHostCommand
" PutData
® SetDataNotificationFlag
® Screen Data
" GetScreenText
" GetScreenRawText
" GetScreenAttributes
" GetExtendedAttributes
® GetCursorPosition
B SetCursorPosition
® ClearScreenText
® CheckForScreenText
® Data Transfer
B SetAPIFileDetails
B SetWorkFileDetails
B GetFileName
® CancelFileTransfer
® Tasks and Procedure Files
" RunEntConTask
B SetGlobalParameter
" GetGlobalParameter
® CancelRunningTask

® Closing a Session

6 Application Programming Interface

Overview of API Calls

® CloseSession
" CloseAll1Sessions
" BreakConnection

® Other Methods

" GetScreenSize

See the descriptions below for detailed information on these API calls (including associated events).

Initialization

When starting a session, the API client can either attach to a running terminal or create a new
terminal.

> To find out the session names of any running terminals (synchronous call only)
n Call the following:

APIReturn = GetRunningTerminalSessions(TerminalNames, NumTerminals)

This returns an array of currently running terminals that can be attached.
GetRunningTerminalSessions is the only call that can be made before calling Initialize.

> To attach to a terminal
n Call the following:

APIReturn = Initialize(CreateSession, LinkSessionName, UserLoggedOn, OpenSession)

The parameters are:

CreateSession Boolean. "true" indicates that a new terminal is to be created.

LinkSessionName |[String. The name of an existing terminal to attach to. The name is one of the
terminal names that is returned by the GetRunningTerminalSessions function.

UserlLoggedOn Boolean. Returns "true" if the logon to Entire Connection has already taken place
on the workstation. In order to use a terminal, a user has to log on once per
workstation. If UserLoggedOn is "false", the API client has to log on now.

OpenSession String. Normally empty. In a special case, this contains the name of an open
session.

If "true" was returned for CreateSession or if it is not possible to attach to the specified ter-
minal, the API control creates a new session.

Application Programming Interface 7

Overview of API Calls

If the connection to an existing terminal has been established and if in the meantime a session
has been opened in this terminal, the OpenSession parameter contains the name of the session.
In this special case, the API client has to decide whether it wants to work with this session
which has not been opened under its control. This can only happen if an existing terminal is
attached that is currently in the process of opening a session, and this process takes a while
and has not yet been completed.

> To log on to Entire Connection

= (Call the following:

APIReturn = LogonEntireConnection(UserName, Password)

Opening a Session

The API client can either query the available session names from the share file or open a known
session directly.

> To query all sessions defined for the Entire Connection user
» Call the following:

APIReturn = GetAvailableSessions(SessionNames, DefaultSession)

The parameters are:

SessionNames Variant Array(Strings). The names of all defined sessions.

DefaultSession |String. The name of the default session.

> To open one of these sessions

n (Call the following:

APIReturn = OpenSession(SessionName)

The parameter is:

8 Application Programming Interface

Overview of API Calls

SessionName |String. The name of the session that is to be opened.

The session is now open and can be used.
Associated Events:
" FirstScreenArrived

Fired when the session receives the first data from the host.

® ScreenSizeChanged(NumRow, NumColumns)
Notifies the initial screen size, and also whether the terminal changes dynamically during a
session.

® SessionOpened(SessionName)

Fired if a session opens without the API client calling the OpenSession method. This may happen,
for example, when a startup task is used. The parameter is:

‘ SessionName ‘String. The name of the open session.

General Control

> To send commands to the open session

» (Call the following:

APIReturn = RunHostCommand(CommandName)

The parameter is:

CommandName |String. The name of the command that is to be executed on the host.

The string is sent to the host and then to the function key ENTER.

> To send general text and key codes

» (Call the following:

Application Programming Interface 9

Overview of API Calls

APIReturn

= PutData(Text, KeyCode)

The parameters are:

Text

String. The text that is to be transferred to the host.

KeyCode

Integer. The key that is to be sent after the text has been transferred.

The text that is sent with this command can contain line feeds. These are interpreted as if the
function key NEWLINE has been pressed. If you only want to send a key code, you have to pass
an empty string for the text.

> To enable data notifications (synchronous call only)

n Call the following:

APIReturn

= SetDataNotificationFlag(Enable)

The parameter is:

‘ Enable ‘Boolean. When you set this to "true", data notifications are switched on. Default: off.

> To show and hide the terminal window

m Set the API control property TerminalInteractive (boolean).

If you connect to a terminal, it stays visible until this value is set to "false".

If you create a new terminal, it is invisible until this value is set to "true".

Associated Events:

® CursorPositionChanged(XPosition, YPosition)

Fired when the terminal is in interactive mode and the cursor position is changed with the
mouse (not when the cursor moves due to typing).

" NewScreenDataArrived()

If enabled, this indicates that new data has arrived from the host.

10

Application Programming Interface

Overview of API Calls

Screen Data

Screen text is available as the raw text as it is received by the host and as the processed text as it
is displayed on the terminal. The raw text contains all characters - including those that are not to
be displayed (for example, password) - and can contain zero values.

Since the raw text can contain zero values, it can only be returned as an array of unsigned characters.
The screen text is returned as an array of strings.

> To return screen text

» (Call the following:

APIReturn = GetScreenText(ScreenTextArray, ToplLeftX, ToplLeftY, BottomRightX, <
BottomRightY)

The parameters are:

ScreenTextArray |Variant Array(Strings). One string per line of text requested.
ToplLeftX Integer. Starting coordinate.
ToplLefty Integer. Starting coordinate.
BottomRightX Integer. Ending coordinate.
BottomRightY Integer. Ending coordinate.

If any of the coordinates is set to -1, the entire screen is returned.
> To return raw data
s (Call the following:

APIReturn = GetScreenRawText(ScreenTextArray)

The parameter is:

ScreenTextArray |Variant Array(Unsigned chars). Raw data buffer.

> To return screen attributes

» Call the following:

Application Programming Interface "

Overview of API Calls

APIReturn =

The parameters are:

GetScreenAttributes(Attributes, AttributesDescription)

Attributes

AttributesDescription

Variant Array(Unsigned chars). Attribute buffer.

Variant Array(Unsigned chars). The description of an attribute is an array
of 6 values containing the bit patterns for the attribute properties:
Member 0: Attribute

Member 1: Protected

Member 2: Numeric

Member 3: No display

Member 4: High display

Member 5: Modify data tag

> To return extended screen attributes

> To read and set the current cursor position

> To remove all editable text in the specified area

Call the following;:

APIReturn =

GetExtendedAttributes(ExtendedAttributes)

The parameter is:

ExtendedAttributes

Variant Array(Unsigned chars). Extended attribute buffer.

Call the following:

APIReturn =

GetCursorPosition(XPosition,
SetCursorPosition(XPosition,

The parameters are:

YPosition)

YPosition) APIReturn = «

XPosition

Integer. X indicates the cursor position in the column.

YPosition

Integer. Y indicates the cursor position in the line.

Call the following:

12

Application Programming Interface

Overview of API Calls

APIReturn = ClearScreenText(ToplLeftX, ToplLeftY, BottomRightX, BottomRightY)

The parameters are:

ToplLeftX

Integer. Starting coordinate.

ToplLeftY

Integer. Starting coordinate.

BottomRightX

Integer. Ending coordinate.

BottomRightY

Integer. Ending coordinate.

-1in any value indicates the whole screen.

> To call the IF command used to check for screen text

= (Call the following:

APIReturn = CheckForScreenText(Text, Result, Position, ToplLeftX, ToplLeftY, <
Length, CaseSensitive)

The parameters are:

Text String. Text to check for.

Result Boolean. "true" if the text was found.

Position Integer. Screen position where the text was found.
ToplLeftX Integer. Starting coordinate.

ToplLefty Integer. Starting coordinate.

Length Integer. Text length.

CaseSensitive |Boolean. True if case-sensitive check.

Data Transfer

> To prepare for data transfer to be processed directly by the API client

n Call the following:

Application Programming Interface

13

Overview of API Calls

APIReturn = SetAPIFileDetails(WorkFileNumber, UploadFlag, BinaryFlag, ReportFlag)

The parameters are:

WorkFiTeNumber |Integer. Work file number.
UpToadFlag Boolean. Is set for upload.
BinaryFlag Boolean. Is set for binary transfer.
ReportFlag Boolean. Is set for report format.

This results in the following events being fired during upload:
GetAsciiUploadFileBuffer(ErrorCode, FileNumber, Data, Datalength, DataFormat)
GetBinaryUploadFileBuffer(ErrorCode, WorkFileNumber, Data, Datalength)

and the following events being fired during download:
AsciiFileDataArrived(ErrorCode, FileNumber, DatalLength, Data, DataFormat)
BinaryFileDataArrived(ErrorCode, FileNumber, DatalLength, Data, DataFormat)

The event parameters are:

ErrorCode |Integer. Must be set to 0 by the API to indicate that all was processed without error.

FileNumber |Integer. The work file to be processed.

Datalength |Integer. Upload: the expected size is passed; the actual size is returned. Download: is
set to the size of the transmitted data.

Data Variant Arry(unsigned char). Data that are to be transferred.

DataFormat |String. Description of the record format.

For a normal transfer operation, the API client has to to provide a file name. This can be done
by presetting a file name.

> To preset a file name
= Call the following;:

APIReturn = SetWorkFileDetails(Name, FileNumber, Upload, Binary, Report)

The parameters are:

14 Application Programming Interface

Overview of API Calls

Name String. The file name that is to be used.
FileNumber |Integer. The work file being processed.
Upload Boolean. Is set for upload.

Binary Boolean. Is set for binary transfer.
Report Boolean. Is set for report format.

If no preset values are found for the work file being processed, the API client will be asked

for a file name.

> To return a file name

= Respond to the following event:

APIReturn = GetFileName(ErrorCode,

Landscape, ControlChars, DosFormat, FileName)

The parameters are:

FileNumber, Upload, Binary, ToPrinter, <

ErrorCode

Integer. If set to zero, the file name is used and processing starts. If set to any other

value, processing is canceled.

FileNumber

Integer. Work file being processed.

Upload Boolean. Is set for uploading a file name.
Binary Boolean. Is set for binary transfer.
ToPrinter Boolean. Is set to download to a printer.
Landscape Boolean. Is set to print in landscape format.

ControlChars

Boolean. Is set to interpret control characters.

FileName

String. The file name to be used.

> To cancel a running data transfer

» Call the following:

APIReturn = CancelFileTransfer(FileNumber)

The parameter is:

Application Programming Interface

15

Overview of API Calls

FileNumber

Integer. The number of the work file for which the data transfer is to be canceled.

This call is synchronous. It queues a cancelation request. When data transfer has completed,

the FileTra

nsferComplete event is fired.

Associated Events:

" FileTransfer

Starting(ErrorCode, FileNumber, Upload, Binary, Headings)

The parameters are:

ErrorCode

Integer. If set to zero, the file name is used and processing starts. If set to any other value,

processing is canceled.

FileNumber

Integer. The work file being processed.

Upload Boolean. Is set for uploading a file name.
Binary Boolean. Is set for binary transfer.
Headings Variant Array (Strings). Contains the field names of the record for the transfer.

" FileTransferComplete(FileNumber, Upload, ErrorCode)

The parameters are:

FileNumber

Integer. Work file being processed.

Upload

Boolean. Is set if upload is completed.

ErrorCode

Integer. Is set to zero if the data transfer was processed without error.

" FileTransferProgress(ProgressMessage)

The parameter is:

ProgressMessage

application window.

String. Message that normally appears in the output window of the terminal

16

Application Programming Interface

Overview of API Calls

Tasks and Procedure Files

> To run an Entire Connection task or procedure file

» (Call the following:

APIReturn =

RunEntConTask(TaskName)

The parameter is:

‘Ta skName ‘String. The name of an Entire Connection task or procedure file. ‘

| Note: For a synchronous connection, the application programming interface returns

to the calling application after the TaskName has been checked and the task or procedure
file has been started (not when the task or procedure file is completed). For an asyn-
chronous call, the application programming interface immediately returns to the calling

application.

> To access the global parameters +PARMO to +PARM9

= Call the following;:

APIReturn =

SetGlobalParameter(ParamNumber,

GetGlobalParameter(ParamNumber, Value)

The parameters are:

Value) APIReturn

ParamNumber

Integer. From 0 to 9 for the required parameter.

Value

String. Value of the parameter.

> To cancel a running procedure file (synchronous call only)

= (Call the following:

©

Application Programming Interface

17

Overview of API Calls

APIReturn = CancelRunningTask()

This will return immediately. The procedure file will notify termination by firing the

EntConTaskComplete event.

Associated Events:

" EntConTaskStarting(ErrorCode, TaskName)

Is called when a task is started other than explicitly by the application programming interface

(for example, a logon task).

The parameters are:

ErrorCode

Integer. Has to be set to 0 (zero) so that the task can be started.

TaskName

String. The name of the task that has been started.

EntConTaskComplete(ErrorCode, TaskName)

The parameters are:

ErrorCode

Integer. Is set to zero if the task has completed without error.

TaskName

String. Task name.

TaskInputRequest(ErrorCode, DisplayOne DisplayTwo, Flags, ReturnData)

This event is fired if an INPUT statement is executed in a procedure file.

The parameters are:

ErrorCode |Integer. Is set to zero after input has been provided.
DisplayOne |String. First line of prompt text.
DisplayTwo |String. Second line of prompt text.
Flags Variant Array. Display flags (see below).
Flags(0) Must return some data; blank is
invalid.
Flags(l) Numeric data only.
Flags(2) Password field.
Flags(3) Maximum length of the
requested data.
ReturnData |String. Data that are to be returned to the procedure.

" TaskDisplayMessageRequest(ErrorCode, Text, DialogBox, MessageType, Response)

18

Application Programming Interface

Overview of API Calls

This event is fired if a WAIT statement is executed in a procedure file.

The parameters are:

ErrorCode Integer. Is set to 0 (zero) if the procedure is to continue. If zero is not set, the procedure
is canceled.

Text String. The message to be displayed.

DialogBox Boolean. "true" if a message box is expected.

MessageType |Variant. Display parameters.

Response Integer. Standard Microsoft response code of the MessageBox (for example, "IDOK") if
DialogBox is "true".

®" TaskError(ErrorCode, ErrorText)

The parameters are:

ErrorCode |Integer. Error code from the task.

ErrorText |String. Message to be displayed.

Closing a Session

> To close an open session and leave the connection to Entire Connection active
» (Call the following:

APIReturn = CloseSession()

> To close all terminals (asynchronous call only)

» Call the following:

APIReturn = CloseAllSessions()

This will close any terminal session on the workstation, including those opened directly. This
call should be used with caution. It also breaks the connection to the terminal. There is no
completion event.

> To break the link to the terminal (synchronous call only)

= (Call the following:

Application Programming Interface 19

Overview of API Calls

APIReturn = BreakConnection(Closedown)

The parameter is:

Closedown |Boolean. Is set to "true" to close the terminal window on disconnect.

If C1osedown is set to "false" and the Entire Connection terminal is not logged on, the terminal
will be closed anyway. If the terminal was hidden, it will be automatically shown when the
connection is broken.

Associated Events:
" CurrentSessionClosed

The session has closed down without a request from the application programming interface.
This can happen if the terminal is interactive and the user closes the session, or if a session times
out.

" TerminalClosedown

The terminal has completely closed down with no request from the application programming
interface. This can happen in interactive mode if the user closes the application, or if
CloseAllSessions is called from another API session.

Other Methods

> To return the current size of the open terminal
= (Call the following:

APIReturn = GetScreenSize(NumberOfRows, NumberOfColumns)

20 Application Programming Interface

3 Other Events, Key Codes and Return/Error Codes

= QOther Events
= Key Codes

= Return/Error Codes

21

Other Events, Key Codes and Return/Error Codes

Other Events

® ServerRequestedFileName(ErrorCode, OpenFile, Flags, Title, DefExtension, Filter,
InitFileName, InitDirectory, FileName)

Is called if the session needs a file name.

The parameters are:

ErrorCode |Integer. Is set to zero when the file name has been set.

FileName |String. The file name to be used.

The other parameters are those expected by the common open file dialog.

" TerminalWarningMessage(Message, DisplayFlag)

The parameters are:

Message String. Message to be displayed.

DisplayFlag |Boolean. The call is expected to show a message in a blocking dialog box (for example,
using the MessageBox function).

Key Codes

The table below shows the key codes that can be passed using the PutData function. The first
column contains the function key name. The second column contains the function key constant
as it is defined in the include file ECAPL.H, and the third column contains the key code value for

the function key. Only these values should be used. If other values are passed, the effects are not
defined.

The include file ECAPI.H is provided on the Entire Connection installation medium as part of the
samples.

Function Key [Key Code Definition |Key Code Value
PF1 EC_PF1 20
PE2 EC_PF2 21
PF3 EC_PF3 22
PF4 EC_PF4 23
PF5 EC_PF5 24
PF6 EC_PF6 25

22 Application Programming Interface

Other Events, Key Codes and Return/Error Codes

Function Key |Key Code Definition |Key Code Value
PF7 EC_PF7 26
PF8 EC_PF8 27
PF9 EC_PF9 28
PF10 EC_PF10 29
PF11 EC_PF11 30
PF12 EC_PF12 31
PF13 EC_PF13 32
PF14 EC_PF14 33
PF15 EC_PF15 34
PF16 EC_PF16 35
PF17 EC_PF17 36
PF18 EC_PF18 37
PF19 EC_PF19 38
PF20 EC_PF20 39
PF21 EC_PF21 40
PF22 EC_PF22 41
PF23 EC_PF23 42
PF24 EC_PF24 43
ATTN EC_ATTN 46
CLEAR EC_CLEAR 16
CR EC_CR 13
DEVCNCL |EC_DEVCNCL |50
EEOF EC_EEOF 54
ERASEINP |EC_ERASEINP |44
INSERT EC_INSERT 82
NEWLINE |EC_NEWLINE (48
PRINT EC_PRINT 49
SYSREQ EC_SYSREQ 47
HOME EC_HOME 71
PA1 EC_PA1 17
PA2 EC_PA2 18
PA3 EC_PA3 19
DELETE EC_DELETE 83
BACKSPACE |EC_BACKSPACE |8
TAB EC_TAB 9
BACKTAB |EC_BACKTAB |15

Application Programming Interface

23

Other Events, Key Codes and Return/Error Codes

Function Key [Key Code Definition |Key Code Value
LEFT EC_LEFT 75
RIGHT EC_RIGHT 77
ur EC_UP 72
DOWN EC_DOWN 80
DUE2 EC_DUE2 56
EM EC__EM 84
AFZ EC_AFZ 11
EFZ EC_EFZ 165
LZE EC_LZE 89
RU EC_RU 163
SDZ EC_SDZ 160
SZA EC_SZA 85
K1 EC_K1 193
K2 EC_K2 194
K3 EC_K3 195
Return/Error Codes

The return/error codes are all integer values. The constants listed below are defined in the include
file ECAPLH. The numbers in parentheses are the actual code values.

The include file ECAPI.H is provided on the Entire Connection installation medium as part of the

samples.

API_SUCCESS (0)

Returned from most functions if the operation was successful. Some functions have specific

success return codes - see below.

API_CALL_QUEUED (-1)

This return code is used in asynchronous (non-blocking) mode. It means that the request from
the APl application has successfully been sent to Entire Connection for processing. The return
code for the request from Entire Connection is passed in a completion event to the API applic-

ation.

API_NEW_SESSION_OPENED (-2)

Returned by the Initialize API function if a new session has been created successfully.

API_PROC_CANCELLED_OK (-3)
Sent as completion event for the CancelRunningTask API function if the Entire Connection
task or procedure file has been canceled successfully.

24

Application Programming Interface

Other Events, Key Codes and Return/Error Codes

API_ERROR_CALL_BLOCKED (1)
This return code is used internally. It is not passed to the API application.

API_ERROR_INCORRECT_PARAMETERS (2)
Each API function checks whether the passed parameters are valid. If not, this error code is
returned.

API_ERROR_NO_USER (10)
In order to use a terminal, a user has to log on to Entire Connection. This error code is returned
if you called a function requiring a terminal but no user has logged on yet. Use the API function
LogonEntireConnection to log on.

API_ERROR_NO_OPEN_SESSION (11)
This error code is returned by API functions that work on an open terminal session if there is
no open terminal session. You first have to open a session, for example, with the API functions
GetAvailableSessions and OpenSession.

API_ERROR_NO_FILE_TRANSFER (12)
The API function CancelFileTransfer returns this error code if there is no active file transfer.

API_ERROR_NO_SESSIONS_DEFINED (13)
The API function GetAvailableSessions returns this error code if no sessions are defined in
the share file for the current user.

API_ERROR_NO_SCREEN_PRESENT (14)
The API function GetScreenText returns this error code if no screen data is available because
the first screen from the host has not yet arrived.

API_ERROR_NO_SESSION_NAME (15)
The API function OpenSession returns this error code if no session name was passed in the
parameter SessionName.

API_ERROR_NO_TASK_RUNNING (16)
The API function CancelRunningTask returns this error code if there is no active task or pro-
cedure.

API_ERROR_NOT_CONNECTED (20)
This error code is returned by the API functions if the API ActiveX control is not connected to
Entire Connection. For example, if Entire Connection was manually closed by a user.

API_ERROR_ALREADY_CONNECTED (21)
The API function Initialize returns this error code when the function has already been called
before and returned successfully.

API_ERROR_ALREADY_LOGGED_ON (22)
The API function LogonEntireConnection returns this error code if the user is already logged
on to Entire Connection.

API_ERROR_ALREADY_INITIALIZED (23)
The API function Initialize returns this error code if the API ActiveX control is already at-
tached to Entire Connection.

Application Programming Interface 25

Other Events, Key Codes and Return/Error Codes

API_ERROR_SESSION_ALREADY_OPEN (24)
The API function OpenSession returns this error code if there already is an open session.

API_ERROR_SESSION_NOT_FOUND (30)
This return code is currently not used.

API_ERROR_API_CALL_ONLY (31)
This error code is used in Entire Connection if API functions are called but there is no active
API application.

API ERROR_INITIALIZATION FAILED (40)
The API function Initialize returns this error code if the API ActiveX control could not be
initialized or if it could not be attached to Entire Connection.

API_ERROR_CALL_FAILED (41)
This error code is used by the API functions if Entire Connection could not complete the re-
quested operation successfully and it did not return a specific error code.

API_ERROR_COMMS_ERROR (200)
This return code is currently not used.

API_ERROR_INTERNAL_ERROR (201)
This error code is returned when an unexpected error or exception occurred. At least the re-
quested operation was aborted, and failed. Entire Connection may be instable. Restart Entire
Connection and retry.

26 Application Programming Interface

	Application Programming Interface
	Table of Contents
	Preface
	1 General Information
	API Controls and Terminal Sessions
	Synchronous and Asynchronous Calls
	Glossary

	2 Overview of API Calls
	Initialization
	Opening a Session
	General Control
	Screen Data
	Data Transfer
	Tasks and Procedure Files
	Closing a Session
	Other Methods

	3 Other Events, Key Codes and Return/Error Codes
	Other Events
	Key Codes
	Return/Error Codes

