
Predict Application Control

Concepts

Version 2.6.1

November 2016

This document applies to Predict Application Control Version 2.6.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1990-2016 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: PAC-CONCEPTS-261-20161120

Table of Contents

1 PAC / PAA Concepts and Facilities ... 1
2 Introduction ... 3

Terms Used in this Document .. 4
Integration and Requirements ... 6

3 Application Control .. 7
Inventory Management .. 9
Configuration Management ... 10
Migration Management ... 11
Production Management .. 12
Change Management ... 13

4 Using PAC ... 15
Overview .. 16
PAC Entities ... 18
Migrations .. 20
Versioned Object .. 24
File Translation Table ... 25
Change Control Log ... 26
Maintenance Request ... 27

5 PAC Facilities ... 29
Customizing PAC ... 30
Applications ... 50
Incorporation .. 32
Predict Case Support .. 32
Object Versions ... 33
Cross-Reference Data ... 54
Support for Dynamic Source Variables .. 34
Object Lists ... 35
Reporting System ... 36
Administrator Functions .. 37
Utilities ... 38

6 Managing and Auditing the Production Environment ... 41
Migrating Objects to the Production Environment ... 43
Loading a Job for Activation in the Future .. 45
Production Applications and Libraries / Datasets ... 46
PAA Administrator Functions ... 47
PAA Reports ... 47
Control Information ... 50

7 Application Control Issues and PAC/PAA Functions ... 51
Inventory Management .. 52
Configuration Management ... 52
Migration Management ... 53
Production Management .. 53
Change Management ... 54

iii

8 Using External Version Control with PAC .. 55
General Architecture .. 56
Handling of Error Messages and DDMs .. 58

Conceptsiv

Concepts

1 PAC / PAA Concepts and Facilities

Predict Application Control (PAC) is a flexible tool for controllingNatural and foreign applications
throughout the software life-cycle and for ensuring the integrity of applications in the production
environment. PAC facilitates and controls the movement of applications through the life-cycle.
When an application is implemented into production, it is protected and audited by Predict Ap-
plication Audit (PAA). You can use PAC and PAA to perform the following functions:

■ Develop and enforce site- or application-specific software life-cycles.
■ Establish who can promote applications through the life-cycle.
■ Control and audit the migration of applications from one location to another.
■ Analyze the impact of proposed code changes.
■ Track and control maintenance activities.
■ Protect the source code for each version of an application component and link it to the executable
code.

■ Maintain accurate relationships among versions of application components.

This documentation discusses the problems of application control and howPACand PAAaddress
them. It also describes how PAC and PAA work and the facilities they provide.

This information is organized under the following headings:

Introduction

Application Control

Using PAC

PAC Facilities

Managing and Auditing the Production Environment

Application Control Issues and PAC/PAA Functions

Using External Version Control with PAC

1

2

2 Introduction

■ Terms Used in this Document .. 4
■ Integration and Requirements .. 6

3

This introduction covers the following topics:

■ Terms Used in this Document
■ Integration and Requirements

Terms Used in this Document

This section defines basic terms used throughout this documentation. For your convenience, the
definitions are repeated in a glossary, along with other terms introduced in later documents.

Objects and Types of Code

An object is one of the following:

■ A unit of programming code (for example, a program or subroutine);
■ A data-dictionary definition (for example, a view of a database file);
■ A user-written error message.

Natural views (which can be generated from Predict views) are called data definition modules
(DDMs). To accommodate the terminology's used at different sites; they are called views/DDMs
in this documentation.

An object version is an object that has been put under the control of PAC and assigned a version
number. An object version is sometimes called a PAC object or versioned object.

Source code means a unit of code written in a high-level language, such as Natural. Source code
is equivalent to Natural "saved" code.

Executable code or executable object means a unit of code that has been compiled and can be
translated by Natural. Executable code is equivalent to Natural "cataloged" code. A PAC entity is
any of the structures that PAC uses to control or facilitate the movement of objects through the
life-cycle. These entities are discussed in Using PAC.

Applications, Libraries and Locks

An application is a set of objects that work together to perform a task. Thus, an application object
is a component of the application.

ANatural library is a set ofNatural objects that are stored together; you can add objects to a library
or delete objects from it.

A foreign location is the physical location of the dataset that contains the foreign objects.

A lock prohibits access to a library, application, or object.

Concepts4

Introduction

System Files

System files are Adabas files that contain the following (the name of each system file is in paren-
theses):

■ Software resources (FNAT)
■ Application libraries (FUSER)
■ Predict information (FDIC)
■ Security information (FSEC)

In this documentation, the FUSERfile, which contains application objects, is called the user system
file. The FDICfile is called the Predict file. In addition to Predict data definitions and cross-reference
information,Natural rules and views/DDMsgenerated fromPredict entries are stored in the Predict
file. User system files and Predict files are identified in PAC by the database number (DBnr) and
file number (Fnr).

In addition, there are three system files reserved to PAC and PAA:

1. The PACACF systems file stores the saved and cataloged code for every version of every object
under PAC control. The ACF also stores extended information about object versions and PAC
entities.

2. The PAC PCF system file stores cross-reference data, keywords, and the latest version of Nat-
ural and Predict objects in the PAC-controlled environment. Natural objects are cataloged and
Predict objects are generated in the PCF.

3. The PAA system file stores audit data for production objects.

Environments and Directories

The user environment is the mix of hardware, operating systems, teleprocessing (TP) systems,
and database managers (DBMSs) at a site. An application environment or operating environment
includes the physical locations where application objects are stored, and the operating system, TP
system, andDBMSwithwhich they are developed, tested, or used. ThePAC-controlled environment
refers to the PAC ACF and PCF system files and the operating environments that are governed
by site-specific procedures defined in PAC. The PAA-controlled environment refers to production
environments that are protected and audited by PAA. A Natural directory provides information
about the environment in which an object was developed, saved, or cataloged.

5Concepts

Introduction

Integration and Requirements

PAC is fully integrated with other Software AG products and at various levels does have certain
version requirements. These version requirements are described in detail in the PAC Installation
documentation and PAC Release Notes that are issued with each version. Other Software AG
products that may be required by PAC are:

■ Natural for Mainframes
■ Natural Security for Mainframe
■ Natural for UNIX / OpenVMS
■ Predict
■ Adabas
■ Entire System Server
■ Predict Case

Concepts6

Introduction

3 Application Control

■ Inventory Management .. 9
■ Configuration Management ... 10
■ Migration Management ... 11
■ Production Management ... 12
■ Change Management ... 13

7

Data processing applications and user environments are continually becoming more complex:

■ Multiple hardware and operating system configurations frequently coexist in the same facility.
■ Multiple programsmay access the same routine in an application library or across applications.
■ Several programmers may change the same code concurrently.
■ Different versions of a program or routine often exist in development, test, and production lib-
raries.

This increased complexity has multiplied the problems of controlling an application throughout
its life-cycle.

■ Inventory Management
■ Configuration Management
■ Migration Management
■ Production Management
■ Change Management

The following figure shows an example of an application life-cycle in a heterogeneous user envir-
onment.

Application control issues can be broken down into five areas of software management:

1. Inventory

Concepts8

Application Control

2. Configuration

3. Migration

4. Production

5. Change

The following sections present the questions and processes involved in each area and explain how
PAC addresses them.

Inventory Management

This section answers the following questions:

■ Where is the source code for an object?
■ Do the executable objects match the source code?
■ What is the current version of an object?
■ What other objects does an object need for successful compilation and execution?
■ Which version of an object does a calling program use?
■ How are obsolete objects handled?

Managers and auditors increasingly cite the need for better control over source and executable
code. Inventory management maintains the source and executable code for all components of an
organization's applications. Itmaintains the source and executable libraries, links executable objects
to source code, and provides an efficient way to retrieve the source code.

Each time an object is migrated from a development or maintenance environment to another en-
vironment defined to PAC (for example, for testing), PAC compiles the object, assigns it a new
version number, and stores both the source and executable code in a protected file. PAC uses a
date-time stamp to synchronize the source and executable code for each version of an object, or
object version. Thismechanism happens automatically for Natural objects, but has to be controlled
using supplied APIs for foreign objects.

A reporting facility shows all versions of an object in the PAC-controlled environment, including
the current version. For each object version, you can display the source code, directory information
about the operating environment inwhich the source codewas developed, and other information.

When the relationships among versions of component objects are not up to date, a new version
of an applicationmay fail in production. Inventorymanagement maintains accurate relationships
among versions of interdependent objects.

9Concepts

Application Control

PAC automatically cross-references object versions. Thus, not only can you list all the objects that
an object uses or all objects that use the object, but also you can list the specific object versions.
This is only possible for Natural objects.

To help you keep track of object versions, PAC enables you to recompile an entire application
using the latest versions in the PAC-controlled environment or other versions that you specify.

PAC includes two facilities for handling obsolete objects.When you archive objects, you can unload
them to disk or tape and purge them from the PAC-controlled environment, if necessary, you can
later restore them to PAC, this is called archiving. When you retire objects, you purge them from
the PAC-controlled environment by migrating them to a "virtual" environment; objects may or
may not be archived before being retired.

Configuration Management

This section answers the following questions:

■ How are the development, test, production, and maintenance environments defined?
■ What operating environments are defined for a particular application?
■ What is the physical location of a particular application environment?
■ What is the life-cycle of the application?
■ Who can authorize migrations of objects between two environments?

Configuration management establishes the operating environments for applications. For each
environment, it specifies the physical location, how objects are handled, and what applications
may use it.

For each application, configurationmanagement defines all the environments the applicationmay
use during its life-cycle, the valid migration paths among them, and the controls on those paths.
The structure of permitted environments andmigration paths constitutes the application life-cycle.

In PAC, you can define the attributes of an application environment once and enforce them for
all users. PAC allows you to define multiple development, test, production, and maintenance en-
vironments. Each application is assigned to a subset of the environments; applications can share
environments.

Managers can control who may define the valid migration paths among each application's envir-
onments. Eachmigration-path definition includes controls onmigrations along that path, including
who may authorize the migration. A configuration of migration paths can be copied from one
application to another.

Thus, PAC provides both central control and flexibility. Managers can establish the degree of
central control in configuring operating environments and authorizing migrations among them.

Concepts10

Application Control

Depending on the needs and philosophy of your organization, you can create varied or uniform
application life-cycles.

Migration Management

This section answers the following questions:

■ How do you handle migrations when the origin and destination environments use different
operating systems, teleprocessing (TP) systems, database management systems (DBMS's), and
databases?

■ How are procedures for migrating or promoting objects enforced?
■ How do you ensure that the correct object version is implemented and referenced by other ob-
jects?

■ How do you recover when an object is accidentally overlaid?
■ Howdo you handle a situation inwhich an objectwas compiled referencing one set of databases
and files and you need to execute it referencing a different set?

Control over the migration and promotion of applications through the life-cycle is essential to
application integrity. Migrationmanagement includes controls to ensure that objects aremigrated
only to approved locations and that appropriate personnel authorize all migrations. It provides a
way to recover from accidental overlays and an accurate audit trail of all migration activities.

When youmigrate an object,migrationmanagement helps ensure that all objects needed to compile
or execute the object are migrated also. For example, assume that Program (A) uses Subroutine
(B) during execution; if Program (A) is migrated to a new location for testing, there must be a way
to ensure that Subroutine (B) is migrated with it.

PAC operates independently of the operating system, TP system, and DBMS. Thus, you use the
same PAC procedures to migrate applications among heterogeneous environments.

Your definitions for the possible phases of an application's life-cycle, the physical location of each
phase and the valid paths for migrating objects to each phase enforce procedures. PAC migrates
objects only in accordance with your site- or application-specific definitions.

When youmigrate or promote an application to another phase in the life-cycle, PACuses the latest
object versions in the library by default; you can override the default and specify a different version
of an object. You can display the directory or source code for any object version or compare versions
of an object.

A protected PAC system file stores a copy of every version of every object in the PAC-controlled
environment. If one of these versions is accidentally overlaid in a library, it can be reloaded. In
addition, when you replace a production object with a new version, PAA automatically backs up
the old version; you can restore the earlier version from the backup.

11Concepts

Application Control

PACfile translation tables save time and computer resources by allowing you to execute compiled
objects against different files and databases without changing and recompiling the source code.
When an object referencing user data on one set of databases and files is migrated for execution
referencing user data on a different set, PAC dynamically recompiles the object to reference the
new database and file numbers.

PAC includes a migration utility with several modes for selecting objects. PACmaintains an audit
trail of all migration activities.

Production Management

This section answers the following questions:

■ How is implementation of application objects controlled?
■ When there are multiple production environments, how do you knowwhere objects are imple-
mented?

■ How is implementation tracked?
■ What facilities exist for recovery when a newly implemented object causes problems in the
production environment?

The ultimate goal of any application-control system is to ensure the integrity of applications in
the production environment. An organizationmust be able to protect its production code. Produc-
tion management protects, audits, and controls objects in production environments.

Although inventory, configuration, andmigrationmanagement help ensure that correct and tested
versions of objects are implemented into production, an applicationmay still cause a system failure
when implemented. When this happens, there must be a way to back out quickly to an earlier
version of the application or objects.

Predict Application Audit (PAA) protects each production environment and audits all migrations
of objects into the environment. When an application is migrated to production, PAA backs up
the existing production version of any object that will be replaced by a new version. The PAA
administrator can back out a migration, which automatically restores the previous versions of
objects that were replaced by the migration.

PAC and PAA also enable you to migrate applications to production in advance and schedule the
earliest date and time that they can be activated. The PAA administrator controls the activation.

PAA provides extensive reporting facilities. You can display information about production jobs,
applications, libraries, and object backups. You can list all the applications in a library or all the
libraries that contain objects of a specified application.

Auditors will appreciate the ease with which changes to production applications (for example,
when versions of objects are superseded) can be detailed. Audit reports provide information about

Concepts12

Application Control

each object version and its migration to the production environment. PAA also supply reporting
APIs for the end-user's use.

Change Management

This section answers the following questions:

■ How are maintenance activities tracked and controlled?
■ Who is changing an object?
■ How are concurrent changes handled?
■ How are related problems grouped?

Changemanagement coordinates themaintenance activities of programmers, ensures that critical
problems are resolved quickly, and minimizes the time required. It includes facilities to do the
following:

■ control updates to code;
■ enforce standard maintenance procedures;
■ track maintenance requests and activities;
■ report the status or history of changes;
■ analyze the impact of proposed code changes.

In PAC,when an object ismigrated to amaintenance environment, a check out facility automatically
logs detailed information about the migration, including the identity of the user who checked the
object out. PAC logs the same information when the object is checked in (migrated from the
maintenance environment). Users can display or print the logs. PAC controls migration to main-
tenance environments the way it controls migrations or promotions to any phase of the life-cycle:
objects can be migrated only in authorized migrations along defined paths.

You can monitor and prohibit concurrent maintenance activities; by default, PAC handles them
with a warning. For example, assume that Programmer A has checked Version 1 of the DISPLAY-
ORDER subroutine out for maintenance and has not yet checked it back in; when Programmer B
checks out this version of the subroutine, PAC issues a warning to Programmer B. Alternatively,
the PAC administrator can monitor the check-outs and block Programmer B from checking out
Version 1 until Programmer A checks it back in.

Each time an object is checked back in from amaintenance environment, PACgives it a newversion
number. Using the previous example, assume that Programmers A and B concurrently check out
Version 1 to maintenance. Programmer A checks the subroutine back in; PAC compiles it and
designates it Version 2. Then Programmer B checks the subroutine in; PAC compiles it and desig-
nates it Version 3. A PAC utility enables you to compare the two versions.

13Concepts

Application Control

You can use PAC maintenance requests to document problems with objects, track maintenance
activities performed in response to a request, and group related problems and activities. A main-
tenance request can be linked to an external problem-tracking system.

PAC supports impact analysis by listing all application objects that will be affected by changes to
an object.

Concepts14

Application Control

4 Using PAC

■ Overview ... 16
■ PAC Entities ... 18
■ Migrations .. 20
■ Versioned Object ... 24
■ File Translation Table ... 25
■ Change Control Log ... 26
■ Maintenance Request .. 27

15

PAC controls the application life-cycle in the following ways:

■ Secures the locations of libraries and system files
■ Controls migrations and promotions of objects
■ Protects source code
■ Migrates code from a protected environment
■ Ensures that object relationships are up to date
■ Tracks maintenance activities

This section is organized in the following topics:

Overview

An application goes through a series of phases in its life-cycle. These phases typically include de-
velopment, testing, implementation into production, and maintenance.

PAC allows you to monitor and control an application's life-cycle by defining a series of statuses
through which it is promoted. Each status defines a phase in the application's life-cycle and the
environment in which the application functions in that phase.

For example, an applicationmight be brought into the PAC-controlled environment from a devel-
opment status, move through several test statuses, and be implemented into a production status.
When changes to the application are needed, the affected objects are copied to a maintenance
status; after the changes aremade, the objects might againmove through one ormore test statuses
and back into a production status.

An application is promoted from one status to another through an online or batch migration. The
migration process includes the following:

■ defined origin and destination statuses,
■ a list of the objects to be migrated,
■ a scheduled migration event,
■ job control statements (for batch migrations),
■ an audit of the migration activities.

Controls and facilities are built into themigration process to ensure that the application ismigrated
to the correct location, the set of objects to be migrated is complete and correct, and the migration
is made with the approval of the appropriate authority.

A logical migration is a promotion to the next status in the life-cycle; it may or may not include a
physical migration of objects. A migration to a new physical location is both logical and physical;

Concepts16

Using PAC

the logical and physical paths may differ. When two statuses share the same physical location, a
migration from one status to the other is merely logical. Thus, all migrations have logical paths,
but not all have physical paths.

Logical paths can be defined according to the needs of your site and applications. However, to
help you maintain the integrity of applications at every stage of the life-cycle, the code is always
physically migrated to and from the protected PAC ACF system file. The following figure shows
how PAC controls the typical software life-cycle.

17Concepts

Using PAC

PAC Entities

Application

An application is defined to PAC by its name and level. It provides default information to be used
when objects belonging to the application are processed. The objects that compose the application
may change as the application is developed and tested.

Status and Application Status Link

A site may require multiple testing and production environments. To enable an organization to
define a set of statuses and use different combinations of them to control a variety of applications,
PAC uses two entities, the status and the application status link.

Status

The type of status determines how PAC handles objects in that status. The following table shows
the four basic status types in PAC:

Associated PAC BehaviorStatus Type

Source code for objects can be modified freely. PAC recompiles each object migrated from
a development status and assigns the object a new version number.

Development

The behaviour of this status is a mixture of the behaviour of the statuses Development and
Incorporation in the following sense: objects to be transferred will be compiled newly and

External

a new PAC version of the object code is created, but it is not possible to transfer objects into
such a status.

Except for objects that use dynamic source variables, PAC migrates only executable code
to a test status. Test statuses are unprotected by PAC; you can modify an application by

Test

migrating objects with Natural or PAC utilities. However, unless you use a PAC event to
migrate the objects, PAC ignores them when it migrates the application to the next status;
this restriction ensures the consistency of the application.

All objects are protected by PAAand cannot bemodified. Except for objects that use dynamic
source variables, PAC migrates only executable code to a production status.

Production

Source code can be modified freely. The PAC check-out/check-in facility tracks objects
migrated to or from a maintenance status. PAC recompiles each object migrated from a
maintenance status and assigns the object a new version number.

Maintenance

You can define multiple statuses for each basic type. For example, test statuses might include
Systems Test, Integration Test, and User Test.

In addition to the basic types, PAChas the four special (PAC) status types shown in the table below.
Source code for objects in these statuses cannot be changed.

Concepts18

Using PAC

Associated PAC BehaviorStatus Type

Files associated with the Control status contain the source and executable code for every
version of every object under PAC control. Each application defined to PAC remains in the
Control status even as the application moves through its life-cycle.

Control

When an object is migrated to the Archive status, it is removed from all other statuses. The
object can be unloaded to disk or tape and purged from the PAC system. Active production
objects cannot be archived.

Archive

An incorporation status is used to bring existing production applications into PACwithout
recompiling the code.

Incorporation

A retire status is a logical or "virtual" status used to purge objects from a specified status
(including the Control status). Inactive or obsolete objects, including historical objects that
have been archived, are good candidates for a migration to a retire status.

Retire

Application Status Link

Before it can be migrated or promoted to a status, an application must be linked to the status. The
application status link specifies the application, the status, and the physical location where the
application's objects are stored at that status:

■ The library and user system file for Natural programming objects,
■ the dataset name and location for foreign objects,
■ the Predict file for Xref data, rules, and views/DDMs.

The link definition may also specify a file translation table to be used in migrations to the status.
The section File Translation Table later in this section describes the function of these tables.

For certain status types, the link definitionmay specify a step library to be usedwhen PAC compiles
objects during a migration to another status.

An application or object can exist in several statuses at the same time. Thus, an object in a production
status could be copied to a maintenance status for changes while the original remains available
to users.

The following figure shows an application linked to a subset of the defined statuses. It shows how
each application status link defines theNatural library and Predict file for the application's objects
in that status. Note that the links to Systems Test and User Test share a Natural library and Predict
file.

19Concepts

Using PAC

Migrations

As an application moves through its test plan or life-cycle, PAC uses defined procedures and
controls tomigrate it from one linked status to another. These procedures and controls are defined
in the migration path and migration event.

Migration Path

A migration path specifies the origin and destination statuses of the migration. The origin status
is the status fromwhich the objects are migrated. The destination status is the status to which they
are migrated.

A set of migration paths is application-specific. Before a migration path can be defined for an ap-
plication, the applicationmust be linked to the origin and destination statuses. The following figure
shows migration paths defined for the application SALARIES.

Concepts20

Using PAC

Each migration path also defines the following defaults for migration events along that path:

■ The migration mode:
■ Copy maintains the object version in the origin status and stores a copy in the destination
status.

■ Move removes the object version from the origin status and stores it in the destination status.
■ Include copies objects from an external work file and stores them in the destination status
(used when migrating objects into the PAC-controlled environment).

■ The processing mode (batch or online).
■ TheAuto Expansion option, which specifieswhether PAC automatically includes related objects
in the list of objects to be migrated and how PAC identifies which versions of the objects to in-
clude.

■ The PAC job, which contains job control statements for batch migrations.
■ The Workfile Usage option, which specifies whether PAC migrates objects directly from one
status to another or uses a work file in an intermediate step.

These defaults can be overridden when the migration event is authorized.

21Concepts

Using PAC

Migration Event

Amigration event executes the migration. An event can migrate objects only along a defined mi-
gration path; this restriction controls the locations to which users can migrate objects.

When defining the migration event, you can select from a list of valid paths. The event can be
scheduled for immediate or future processing, online or in batch. When authorizing a migration
event, you can set system Applymods, which override PAC default processing procedures. For
more information, refer to the section Applymods.

Object List

Themigration event includes the object list of objects to be migrated, which may include an entire
application or a single object. You can create the object list manually, or PAC can generate it
automatically. PAC can also add related groups of objects automatically. See the sections Expanding
an Object List and Generating an Object List for information about how PAC automates
the task of creating object lists.

Enforcing Migration Procedures

PACbuilds several levels of control into themigration path andmigration event. Before amigration
event can be processed, it must be authorized. Users whomay authorize a migration along a path
are specified in the migration-path definition; you can specify a single user as the authorizer, a
range of users (for example, user IDs that begin with a specified set of characters), or a group ID
to which individual user IDs are defined. You can also specify that the user who authorizes a mi-
gration event along the path must be different from the one who creates the event.

Similarly, an organization can restrict the authority to definemigration paths. In a highly centralized
organization, an administrator might be the only one authorized to define migration paths; thus,
the administrator would define the migration paths for all applications at the site. In another or-
ganization, the project leader for each application might be authorized to define the migration
paths for the application. By restricting the authority to define migration paths and authorize mi-
gration events, management can control migrations to specific environments.

Control Status and Migrations

Every application defined to PAC is automatically linked to the Control status, and every object
migrated into PAC ismigrated to Control. The Control status is associatedwith the protected PAC
ACF system file, which stores the following:

■ source and executable code for every object version in the PAC-controlled environment,
■ object-version information,
■ migration information.

Concepts22

Using PAC

To ensure the integrity of applications at each stage of the life-cycle, the Control status and the
ACF play a role in every PAC migration. When an object is migrated from a development or
maintenance status, PAC compiles the object and stores the source and executable code in the
ACF, along with information about the version and migration. If the destination status is a status
other than Control, PAC then copies the executable object to the destination library.

Whenever a migration involves the physical movement of code, the objects are always migrated
to the destination status from the ACF, even when Control is not defined as the origin status in
the migration path. PAC copies the objects from the ACF into the library at the destination status
and records the migration.

When a migration involves no change in physical location (that is, when the migration is a logical
promotion only), PAC simply records the migration. The following figure shows logical and
physical migrations of an application among five statuses to which it is linked.

The logicalmigration fromDevelopment to Systems Test involves an implicit migration to Control.
Although Systems Test is the destination status in the migration event, the code is first compiled
and stored in Control. Then it is copied to Systems Test from Control.

The Control Status and Migrations:

The table below describes the steps PAC performs to execute the migrations shown in the figure
above:

23Concepts

Using PAC

PAC ActionStepMigration

Copies the objects from the library DEV.1Development to Systems Test

Compiles the objects and stores them, along with version information,
in the ACF.

2

Copies the executable objects from the ACF to the library TEST.3

Records the migration to Systems Test.4

Records the migration to User Test.1Systems Test to User Test

Copies the executable objects from the ACF to the library PROD1.1User Test to Production-1

Records the migration to Production-1.2

An explicit migration to Control names Control as the destination status in the migration path.
The Control status can be used as a staging area and a way to distribute authority. For example,
when several programmers are responsible for different parts of an application, you might allow
each programmer to authorize migrations to Control, but only the project leader to authorize a
migration from Control to Systems Test. The programmers could independently migrate their
parts of the application to Control. When all the parts have been compiled and stored in the ACF,
the project leader could authorize an event migrating the entire application to Systems Test.

Versioned Object

PACassigns a newversion number to an object each time the object ismigrated fromadevelopment
or maintenance status. For a specific version of an object in a specific status, you can view the date
and time it was saved and cataloged, the event that migrated it to the status, other statuses in
which the version exists, and related objects.

The object audit history shows every version of the object, the statuses to which each version has
been migrated, and the dates and times of the migrations. You can view the source code for an
object version.

You can use a PAC utility to compare objects that are either PAC controlled or objects that are not
under the control of PAC. Objects can be compared on an individual basis, as well as on a mass
basis. Natural, DDM's as well as Foreign objects can be compared. Results of this compare utility
can be printed off or even stored in a work file for later use. Full details of this utility can be found
in the PAC documentation.

Concepts24

Using PAC

File Translation Table

A PAC file translation table (FTT) enables you to execute applications against different databases
and files without changing or recompiling the source code.

Normally, when the source code for an object is compiled, it references database and file numbers
in the development environment.When the object ismigrated to a locationwhere the user databases
and files have different numbers, the source code must be changed to reference the new numbers
and then be recompiled. This step not only requires time and computer resources but can also in-
troduce inconsistencies into the code.

In PAC, an FTT is assigned to an application status link. When youmigrate an object to the status,
PAC copies the object from theACF anddynamically recompiles it, substituting the correct database
and file numbers. Since PAC copies the executable object from the ACF without removing it,
neither the source code nor the executable code in the ACF is affected.

The following tables show excerpts from two File Translation Tables (FTTs) for an application
(status names are added for clarification). Note that in both tables, the origin database number
(DBnr) andfile number (Fnr) are those of theDevelopment status; the numbers are always translated
from the numbers referenced in the compiled objects.

FnrDBnrDestination StatusFnrDBnrOrigin Status

224Systems Test920Development

3241020

4241120

FnrDBnrDestination StatusFnrDBnrOrigin Status

127Systems Test920Development

2271020

3271120

In the Development status, the source code for the application objects references file numbers 9,
10, and 11 inDBnr 20.When an object ismigrated fromDevelopment to SystemsTest, PAC compiles
it using the same numbers and stores it in the ACF (as discussed in the section The Control Status
and Migrations).

PAC then copies the executable object from the ACF and dynamically recompiles it, changing
DBnr 20 and file numbers 9, 10, and 11 to DBnr 24 and file numbers 2, 3, and 4, respectively. PAC
stores the recompiled object in the application library at the Systems Test status.

25Concepts

Using PAC

When the object ismigrated from Systems Test to User Test, PAC again copies the executable object
from the ACF; dynamically recompiles it to reference file numbers 1, 2, and 3 in DBnr 27; and
stores the recompiled object in the application library at the User Test status. Although Systems
Test is the origin status in the migration, PAC translates the DBnr and file numbers referenced in
Development to those referenced in User Test.

You can specify that an FTT is available for all applications with either a Test or Production status,

, or you can restrict it to a specific application and/or status. By restricting an FTT, you prevent it
from being applied to objects in unauthorized locations. For example, it might be necessary to
prevent access to production data from anywhere but the production environment.

Change Control Log

The check-out/check-in facility is activated automatically by amigration to or from amaintenance
status. When an event migrating an object to a maintenance status is processed, PAC creates a
change control log for the check-out, which records the following information:

■ Application name,
■ Object name and version,
■ User ID of the user checking it out,
■ Terminal ID or batch ID,
■ Date and time of the check-out,
■ Library and user system file to which the object is migrated,
■ Maintenance request ID (if applicable),
■ Optional notes by the user.

PAC logs the same information, including the new version number, when the object is checked
in from the maintenance status.

PAC audits check-out and check-in activities. A user exit lets you view the audit information,
validate the user and object, and disallow the check-out or check-in. The user exit also lets you
track and control concurrent maintenance activities. When a user checks an object out, you can
list other users who currently have the same object checked out. When a user checks an object
back in, you can list other users who still have the object checked out, or who checked the object
in after this user checked it out. This mechanism currently only exists for Natural objects.

Concepts26

Using PAC

Maintenance Request

Maintenance requests are an optional PAC feature for documenting problems and maintenance
activities. In addition to describing the problem and related activities, a maintenance request can
list all objects required to resolve the problem; PAC can then generate an object list automatically
from the list in the maintenance request. You can define and assign site-specific codes to indicate
the state of a maintenance request (for example, open or closed) and the action to be taken in re-
sponse. You can also prioritize requests.

When you assign a maintenance request to an event migrating an object to or from maintenance,
PAC automatically assigns the request to the change control log. You can select and view change
control logs related to the maintenance request.

Maintenance requests can be used to integrate PACwith a user-developedproblem-tracking system.
You can define the PACmaintenance request ID to match the problem ID in the external problem-
tracking system. The problem description in the external system can be assigned as an attribute
to the PACmaintenance request. The codes for PAC problem states, priorities, and actions can be
defined to correspond with codes in the external system.

As related problems emerge, they can be added to a request. You can use maintenance requests
to group related problems in two ways:

By defining related problems in a single maintenance request and assigning the request ID to
multiple migrations, you can view all migration events related to a problem or assign them to a
group migration event. This concept is useful for grouping together all changes that made up a
certain release level of an application.

To document complex problems and activities, you can group requests, each of which may be
assigned to multiple migrations.

The following figure shows the relationships among PAC migrations to and from maintenance
change control logs and audits, and maintenance requests.

27Concepts

Using PAC

With PAC user exits and application program interfaces, the system shown above can be tailored
precisely to user requirements.

Concepts28

Using PAC

5 PAC Facilities

■ Customizing PAC .. 30
■ Applications ... 50
■ Incorporation .. 32
■ Predict Case Support ... 32
■ Object Versions ... 33
■ Cross-Reference Data .. 54
■ Support for Dynamic Source Variables ... 34
■ Object Lists .. 35
■ Reporting System .. 36
■ Administrator Functions .. 37
■ Utilities .. 38

29

This section describes PAC facilities for customizing the PAC system and for expediting your
work with PAC entities and objects. It also summarizes the PAC reporting system and adminis-
trator functions.

Customizing PAC

Application Program Interfaces

APAC / PAA application program interface (API) lets you call a PAC function from a user-written
program without logging on to PAC and invoking the function from within PAC / PAA. APIs
provide flexibility in accessing PAC information and interfacing with your existing systems.

For example, you can create a maintenance request or migration event without entering the PAC
/ PAA system.When you enter information on a front-end screen, the information is communicated
to PAC / PAA.

The maintenance-request API lets you interface an external problem-tracking system with PAC.
You can validate maintenance requests against the external system or extract data from it.

Another API lets you retrieve statistics for an object, display source code for an object version, and
edit the source code from the work area.

PAAdeliversAPIs specifically for reporting use. TheseAPIs enable the user to design and customize
user reports based on PAA (Production) information.

PAC includes APIs for working with the following entities:

■ Application
■ Status
■ Application status link
■ Migration path
■ Migration event
■ Object list for an event
■ Event authorization
■ Audit report for an event
■ Maintenance request
■ Object version (displaying information, loading Natural source code)
■ Automatic compilation of foreign objects
■ PAA entity reporting

Concepts30

PAC Facilities

PAC Express

PAC Express is a delivered EXAMPLE application using the APIs and demonstrates the use of
such APIs. It tries to simplify the presentation of PAC to users and reduces the number of actions
required to execute a PAC function. PAC Express integrates the PAC APIs to provide simplified
screens from which you can perform PAC functions without entering the PAC system.

PAC Express can reduce by half the number of actions required to execute some functions, such
as adding, authorizing, and submitting migration events. The modifiable source code is provided
so that you can tailor PAC Express precisely to the requirements at your site.

User Exits

At various points in the system, PACprovides user exits that pass control to a user-writtenNatural
program. When activated by the administrator, these exits allow you to do the following:

■ Add site-dependent code into PAC processing for auditing, security verification, or additional
rules,

■ Add functionality to certain PAC processing,
■ Override default change-management procedures.

For example, if the user exit PACEX010 is active, it is invoked during the validation of an object
list for amigration. The PACadministrator can view each entry in the list anddisallow themigration
of specific objects.

More than 30 user exits are available in PAC and PAA.

Applymods

System applymods change certain PAC or PAA processing defaults. For example, by default the
authorizer of a PAC migration event can override some event parameters during authorization.
When Applymod 1 is active, the parameters cannot be overridden during authorization.

Another example is that by default, PAC creates a new version of an object even if the object fails
to compile successfully during a migration from a development or maintenance status. When
Applymod 14 is active, PAC rejects an object with compilation errors; no new version is created.

The authorizer of an event can activate or deactivate applymods by selecting from a list. The PAC
administrator establishes the default Applymod settings and can prevent specified settings from
being overridden by the event authorizer.

There are more than 30 system applymods for customizing PAC and PAA.

31Concepts

PAC Facilities

Applications

To define a new application, copy the following elements from an existing application:

■ the base application definition (name, level, and processing defaults),
■ the base application definition and its status links,
■ the base application definition, its status links, and their associated migration paths.

This facility simplifies the process of defining each application and its life-cycle to PAC. Once the
first application is defined, others can be defined quickly by copying and modifying the first
definition.

Incorporation

Incorporation allows you to bring objects already in production into PAC without recompiling
them. This facility is useful when implementing PAC at a site with a large number of application
objects in production. An incorporated application establishes the base level for subsequent devel-
opment, testing, implementation, and maintenance in the PAC-controlled environment.

To incorporate an application, you first define an incorporation status and link the application to
the status, specifying the location of the application objects in the application status link. When
youmigrate objects from the incorporation status to the Control status, PAC assigns them version
numbers. Objects can be incorporated directly from a Natural library or using the Include mode
in the migration event, you can incorporate objects from a work file.

Predict Case Support

PAC supports Predict Case applications. PAC verifies each object against the Predict Case library
definition. Once an application is under PAC control, PAC assigns version numbers and builds
cross-reference information about the relationships among the Natural and Predict Case objects.

Concepts32

PAC Facilities

Object Versions

Aligning Versions

Alignment is a Control-to-Control migration, which recompiles application objects so that they
all reference the same versions of subordinate objects. When it recompiles the objects, it assigns
them new version numbers.

By default, alignment uses the most recent version of each object. However, you can override the
default and instruct PAC to use a different version by specifying the version number or the status
in which the preferred version exists.

Aligning an application has the following benefits:

■ It simplifies subsequent maintenance.
■ It helps you keep track of object versions and dependencies.
■ It prevents anomalies (which can occur, for example, when a program that uses copy code is
not recompiled after the copy code is changed).

Using the Generate List function, you can also align the objects of an application in two statuses
so that the same object versions exist in each status. For more information, refer to the section
Generating an Object List.

Archiving Obsolete Versions

The PAC archiving facility unloads inactive object versions to an external storage device and
purges the physical object from the PAC-controlled environment, leaving only a control record.
The unload is performed in batch. Object versions can be restored if necessary.

PAC includes automatic selection of object versions for archiving. The automatic selection is based
on the following site-specified criteria:

■ The number of object versions in the application
■ The age of the object version
■ The status in which the object version exists

A user exit can be used to override default criteria for selected objects.

You can use a reporting routine to write the results to a work file for subsequent editing or pro-
cessing.

Using a batch command, you can dynamically create multiple migration events, including object
lists, to archive a range of applications.

33Concepts

PAC Facilities

Cross-Reference Data

PAC supports Predict Xref (cross-reference) data for objects. The Xref data is stored in the Predict
file specified in the application status link. Xref data is only available forNatural and Predict objects
and not for foreign objects.

Xref data is useful in nearly all phases of the application life-cycle. It can assist in finding errors
and inconsistencies in objects, analyzing the impact of proposed changes, and identifying existing
resources that can be used in an application.

The following is a partial list of Xref information that can be retrieved for an object in a specified
status:

■ External objects invoked by the object
■ Methods used to invoke Natural objects (for example, CALLNAT)
■ Entry points or functions that can be invoked by other objects
■ Copy code used to compile the object
■ Maps and help routines used by the object
■ Variables and data areas used by the object
■ Files and fields used by the object and the type of file/field use (for example, reading or updating)
■ Natural error messages used by the object
■ Processing rules used in a map
■ Work files used by the object

For more information, refer to the Predict Reference Documentation.

PAC automatically cross-references object versions. Thus, you can view the specific version of an
object that is used by another object version. PAC cross-reference data for object versions is called
object usage data.

Support for Dynamic Source Variables

The source code for some programs is compiled at execution time using the current values of dy-
namic source variables. These programsmust be RUN; therefore, the source codemust bemigrated
to environments where the programs are executed.

PAC and PAA support applications using dynamic source variables by allowing you to migrate
Natural source code to a test or production environment. All functionality of cataloged objects
(for example, scheduling and backout) is available for source code in production.

Concepts34

PAC Facilities

Object Lists

Expanding an Object List

The Expand function helps automate the creation of object lists. PAC "expands" objects in an object
list by automatically adding specified sets of related objects to the list. Expand can produce the
following sets:

■ all objects needed to compile a specified object (for example, data areas, copy code, views/DDMs,
and maps),

■ all objects referenced by a specified object during execution (for example, programs, subroutines,
and maps),

■ all objects that use or reference the specified object.

Before an object list can be expanded, it must contain at least one object. An object list can be ex-
panded manually or automatically:

When you invoke the Expand function fromwithin the object-list editor, PAC expands each object
in the object list.

You can use a selection list to add one or more objects to an object list and instruct PAC to expand
the object(s) at the same time.

When defining amigration path or authorizing amigration event, you can instruct PAC to expand
the object list automatically during the migration. In the authorization, you can specify whether
to expand all the objects in the list or only selected objects.

Even without knowing the version numbers, you can control the versions of objects that PAC ex-
pansion adds to an object list. You can instruct PAC to use specific versions of objects, versions in
a specified status, or the latest versions in the PAC-controlled environment.

Generating an Object List

The PAC Generate List facility generates an object list automatically from one of the following
sources:

■ PAC generate, objects selected from origin status, based on name and type
■ a Predict set,
■ a Predict Case set,
■ the list of objects in a maintenance request,
■ user-defined archive selection criteria (for archive events),
■ input from a work file (batch only).

35Concepts

PAC Facilities

You can also use Generate List to align the application objects in two statuses. PAC compares the
objects in the origin and destination statuses; it includes in the object list only the objects in the
origin status that are not in the destination status or that have a different date-time stamp.

Reporting System

You can display and print reports of any PAC entity. Some of the information that can be displayed
in PAC is listed below:

■ Applications:
■ the application definition (including processing options, general defaults, anddefault libraries),
■ statuses to which a specified application is linked,
■ applications that have not been linked to any status.

■ Statuses:
■ applications linked to a specified status,
■ statuses to which no applications have been linked.

■ Application status links:
■ the Natural library and file assignment for the application at the status,
■ the Predict Case library and file assignment (if applicable),
■ the file translation table and step library assigned to the link,
■ defined destination statuses (migration paths) from the status,
■ object versions in the application library at the status,
■ Predict Xref data for the application at the status.

■ Migration paths:
■ the configuration of migration paths for a specified application,
■ the authorizers and job for a specified migration path.

■ Migration events:
■ the origin and destination statuses (migration path),
■ the Schedule Date,
■ the maintenance request (if applicable),
■ the object list,
■ authorization information,
■ job information,
■ the audit report of the processing of the event.

Concepts36

PAC Facilities

■ Object versions:
■ control and directory information,
■ source code,
■ object versions used by the object at compile time or run time,
■ object versions that use the object at compile time or run time,
■ the status where the object version resides,
■ an object history (all PAC versions of each object for an application, including the statuses
where they currently reside).

■ File translation tables,
■ Jobs (you can display the JCL/JCS),
■ Maintenance requests,
■ Change control logs.

For information about PAA reports, refer toManaging andAuditing the ProductionEnvironment.

PAC reports for applications, jobs, object versions, statuses, migration events, and maintenance
requests can be customized for your site.

Administrator Functions

PAC provides administrators with facilities to perform the following control and maintenance
functions:

■ Add, modify, and delete user profiles, including authorization levels.
■ Establish defaults for the PAC system, profiles, applymods, descriptions, applications, and
Predict generation

■ Activate and deactivate user exits.
■ Release locked data.
■ Reset migration events so that they can be rerun.
■ Maintain tables of codes for maintenance requests.
■ Foreign table maintenance.
■ Maintain security definitions for views.
■ Archive event maintenance.
■ Purge change control logs, audit histories, and obsolete object versions. You can purge object
versions with or without first archiving them.

37Concepts

PAC Facilities

Utilities

Compare Utility

The PAC Compare utility allows you to compare the following:

■ The Natural directories for two objects or two versions of an object,
■ Lists of saved (source) and cataloged (executable) objects in two libraries or in a library or PAC
status,

■ the source code for two objects or two versions of an object,
■ the contents of two Natural libraries,
■ foreign objects under the control of PAC,
■ PAA controlled objects.
■ In addition to the Compare, the results can be written away to a workfile, printed, saved to a
Natural text member or manipulated in several different ways.

You can compare two PAC object versions, two non-PAC objects (objects in Natural libraries
outside the PAC-controlled environment), or a PAC object with a non-PAC object. Compared
objects can reside in different libraries.

To identify an object version for comparison, you can specify either the version number or the
status in which it resides.

Migration Utilities

The PAC utilities MIGRATE LOAD (MIGLOAD) andMIGRATEUNLOAD (MIGUNLD) perform
the same functions as the Natural utilities NATLOAD and NATUNLD but also create and use
PAC control information. If you want to use only one set of utilities in a mixed environment, you
can use MIGLOAD and MIGUNLD for non-PAC objects as well.

With the MIGUNLD utility, you can unload objects from a set created using Predict Xref data,
objects from Natural libraries, and Natural views/DDMs from a Predict file. For each unloaded
object, the MIGUNLD report lists the object name and type, version, destination library, origin
database and file numbers, and other information.

With theMIGLOADutility, you can loadNatural saved objects, cataloged objects, views, and user
error messages. A MIGLOAD report lists the name, type, and version of each object loaded; its
destination library, database, and file; whether it replaced an existing object with the same name
in the destination library; and other information.

You can execute MIGUNLD and MIGLOAD in batch or online, using menu selections or direct
commands.

Concepts38

PAC Facilities

Scan Utilities

PAC includes scan utilities:

With SCANPATH, you can scan all migration paths for a specified job name. This utility includes
options to replace the job name selectively or globally and to modify migration-path defaults.

With SCANOBJ, you can scan a PAC application's Natural objects for a character string. You can
specify a range of objects or object types, a version number, a range of version numbers, or all
versions in a particular status. The utility supports absolute scans.

39Concepts

PAC Facilities

40

6 Managing and Auditing the Production Environment

■ Migrating Objects to the Production Environment ... 43
■ Loading a Job for Activation in the Future ... 45
■ Production Applications and Libraries / Datasets .. 46
■ PAA Administrator Functions ... 47
■ PAA Reports .. 47
■ Control Information .. 50

41

This section is organized in the following topics:

The production environment is the culmination and purpose of the application life-cycle. The in-
tegrity of this environment is critical.

The nature of development and testing environments requires that they be administered flexibly.
A wide range of people may be involved in controlling access to applications at these stages of
the life-cycle.

However, the production environment requires a high degree of control, along with special pro-
cedures to ensure the timeliness of implementation. For this reason, PAC views each production
environment as distinct fromother environments and uses a special subsystem, Predict Application
Audit (PAA), to control it.

A special problem is posed when an application is implemented in multiple production environ-
ments and a change to the application is required in one but not all of them, or if the change is
required in all of them simultaneously. Both of these problems are addressed with PAA in the
first instance, it is imperative that each be controlled separately. Thus, a separate PAA subsystem
controls each environment. In the second case the application has multiple defined locations con-
trolled by a single PAA.

The critical nature of the production environment increases the importance of timely implement-
ation. You may need to introduce objects into production at a specific date and time. PAA allows
you to migrate an application or object to the environment ahead of time and specify the date and
time that it can become active in production.

Sometimes, when a problem is detected with a production application, it is necessary to restore
the previous version.When production objects cause systemproblems, PAAautomates the process
of removing them and restoring the previous versions.

Auditing and reporting are particularly important in the production environment. You may need
quick answers to questions like the following:

■ Which objects were active at a certain date and time (for example, the end of the month, or the
point where a problem occurred)?

■ Which objects are currently in production?
■ What has changed in the production environment since last night?

Concepts42

Managing and Auditing the Production Environment

Migrating Objects to the Production Environment

A PAA-controlled production environment corresponds to a production status defined in PAC.
Thus, a PACmigration to the production status is amigration to the PAA-controlled environment.

A PAA load is the process of storing objects in the PAA-controlled environment. The load is usually
executed automatically when a PAC migration event to the production status is processed; when
the PAA-controlled environment is remote to PAC, the load is executed manually using the MIG-
LOAD utility.

PAA jobs are different from PAC jobs. A PAA job (or load job) identifies the destination library
and the objects to be loaded. The job is created during the processing of the PACmigration event.
The PAA job retains attributes of the PAC migration event (for example, the Schedule Date).

Each PAA job identifies a specific load. Thus, unlike a PAC migration event, which can be run
multiple times. Each PAA job must be unique. PAA uses the job number to define a unique job.

Migration Steps

The list below describes the steps in a direct migration (where the PAC and PAA systems commu-
nicate) to a PAA-controlled environment:

1. A user submits a PAC migration event to migrate objects from a test status to the production
status.

2. PAC locks the object versions specified in the object list.

3. PAC reads the object versions and invokes PAA

4. PAA creates a unique job to identify the load.

5. PAA verifies that the user is authorized to submit the load.

6. PAA verifies the application, destination library, and Predict file and locks the library.

7. PAA backs up each object version that is being superseded and stores the new version in the
library. PAA audits these actions and stores the audit data in the PAA system file.

8. When the load is complete, PAA unlocks the library.

9. PAC unlocks the objects that were locked in Step 2.

You can view information about the PAA load job, PACmigration event, application, library, and
loaded objects.

The PAA administrator can review the job table at any time to determine the state of the PAA jobs.

43Concepts

Managing and Auditing the Production Environment

Control and Production Versions of Objects

Whenever an object is migrated to a PAA-controlled production environment, PAA assigns the
object a production version number. PAA stores both the production version number and the PAC
version number (called the Control version) in a control record for the object.

For example,whenControl Version 1 of a program ismigrated fromaPAC test status to production,
PAA designates it Production Version 1. Assume that Control Version 2 is never migrated to
production;whenControl Version 3 ismigrated to production, it is designated ProductionVersion
2.

Superseded Object Versions and Backups

An object version is superseded when a load replaces it with another version. PAA automatically
backs up object versions that will be superseded during a load and assigns the job number to the
backup.

Backouts and Reactivated Versions

When a load abends or a problem is detected with object versions that were loaded, you can back
out the load job. Backing out a job reverses all actions completed by the load: object versions that
were added are purged, and object versions that were superseded are reactivated.

When a version is reactivated, it is restored from the backup and assigned a newproduction version
number. The assignment of production versions is illustrated in the table below:

RemarksProductionControl

Superseded by Production Version 2.11

Never migrated to production.?2

Load job subsequently backed out.23

Reactivated from backup of Production Version 1.31

Finalizing a job prevents it from being backed out. When a job is finalized, the backups of super-
seded versions are purged. Backups are removed only when a job is backed out (which restores
the backups) or finalized.

Concepts44

Managing and Auditing the Production Environment

Loading a Job for Activation in the Future

Unlike other PAC migrations, a migration event to a PAA-controlled production status can be
authorized and executed before the Schedule Date. When it processes a scheduled job, PAA loads
the objects into the user system file / dataset for foreign objects that constitutes the production
environment. However, it does not load them into the application library / dataset; they are inac-
cessible to the application. PAA designates the load and each loaded object as a Schedule until
the PAA administrator activates the job.

When the job is activated, PAA backs up versions that will be superseded and loads the scheduled
objects into the application library / dataset.

The dates and times in the following table are used to describe load jobs and the loaded objects.
When a job is loaded as a Schedule, these dates and times might all be different.

DescriptionDate

The earliest date and time the job can be activated. All PAA jobs have a Schedule Date;
except for jobs loaded as Schedules, the Schedule Date is the same as the Load Date and
Effective Date.

Schedule Date

The date and time the PAC migration event is authorized.Authorize Date

The date and time the objects are loaded into the PAA-controlled environment.Load Date

The date and time the loaded objects become active in production. Except for Schedules,
the Effective Date is the same as the Load Date.

Effective Date

The date and time the job is backed out.Backout Date

For example, a job is scheduled for 1999-11-07 (November 7, 1999) at 18:00:00. On November 5, it
is authorized at 12:02:33 and loaded into the production environment at 12:10:05.

OnNovember 7, the PAA administrator activates the job at 18:30:30. Two hours later, after finding
that an object loaded by the job is causing system problems, the administrator backs out the job.

PAA reports the following dates and times:

1999-11-07 at 18:00:00Schedule Date

1999-11-05 at 12:02:33Authorize Date

1999-11-05 at 12:10:05Load Date

1999-11-07 at 18:30:30Effective Date

1999-11-07 at 20:35:22Backout Date

45Concepts

Managing and Auditing the Production Environment

Production Applications and Libraries / Datasets

When a PAC application is migrated to production, PAA derives most of its information about
the application from PAC definitions. However, the PAA application definition controls file as-
signments for application libraries, the Predict file where views/DDMs are stored and the location
of the foreign object dataset.

Multiple production locations can be defined for a deployment (application).

To provide flexibility in mixed environments, applications in a PAA-controlled location can be
populatedwith objects either fromPACor fromoutside the PAC-controlled environment.However,
to protect the integrity of an application, you cannot replace a PAC object with a non-PAC object.

Deployment and Location Definitions

The PAA deployment definition consists of the following elements:

■ The name of the application;
■ The name of the production status;
■ The Xref option (whether to include Predict Xref data in loads for the application);
■ The default user system file that PAA assigns to the application's libraries when the user does
not specify a file assignment in the library definition;

■ The Predict file where views/DDMs and Xref data are loaded;
■ The library definition for each PAA library the application uses.

Its name and the database and file numbers of the user system file in which it is located defines a
library. Two libraries can have the same name if they are located in different systemfiles. A foreign
location is defined by specifying the ESY node, type, format, dataset name and volume.

You must define a deployment (application and library) and location to PAA before you can load
objects for the application into the PAA-controlled environment.

Maintaining the Integrity of Deployments and Locations

PAAprotects production deployments by securing file assignments and by locking an application
location when objects are loaded into the library.

Once you have loaded objects into a deployment location, the file assignment cannot be changed
unless the PAA administrator refreshes the deployment, which removes all objects and audit data
and resets the library to a Dormant (never used) state.

Once objects or data for the application have been stored in the Predict file, the database and file
numbers cannot be changed. During the load process, PAA locks the location accessed by the load.

Concepts46

Managing and Auditing the Production Environment

The lock prevents another migration from concurrently loading objects into the location. When
the load is complete, the lock is released.

PAA Administrator Functions

The PAA administrator can perform the online functions listed below. Some functions, such as
refreshing a deployment or finalizing a job, can also be performed in batch.

Deployment and Location Functions

■ Define a deployment and location to PAA.
■ Modify parts of the deployment definitions.
■ Refresh or purge deployments and locations. Purging a deployment or location removes all
objects, PAA audit data, and the deployment or location definition. Refreshing a deployment
or location removes objects and PAA audit data but leaves the definition intact.

Job Functions

■ Activate scheduled jobs.
■ Back out loaded jobs.
■ Finalize loaded jobs.
■ Purge backed-out or finalized jobs.
■ Purge superseded object versions from the Natural buffer pool.

System Functions

■ Activate or deactivate PAA system applymods.
■ Activate or deactivate PAA user exits.
■ Establish system defaults.

PAA Reports

PAA online reports provide information about deployments, locations, load jobs, object versions,
and object backups.

47Concepts

Managing and Auditing the Production Environment

Deployment Reports

Deployment reports include the following information:

■ The load state of the deployment (active, pending, etc.);
■ The date and time of the lastmigration for the deployment into the PAA-controlled environment;
■ The deployments PAA libraries and their locations;
■ The most recent jobs processed for the deployment.

Location Reports

Location reports include the following information:

■ The physical location of the library;
■ The deployment using it;
■ Its load state;
■ The date and time of the last migration into it.

Job Reports

Job reports provide the following information about load jobs:

■ The application for which the migration loaded objects;
■ The processing state of the job (backed out, loaded, pending, etc.);
■ The user ID of the user who submitted the job;
■ The PAC status from which the objects were migrated;
■ The name of the PAC migration event and the date and time it was authorized;
■ The user who authorized the migration event;
■ The date the job became effective in production;
■ The name, version, and type of each object included in the job;
■ The name and version of the file translation table used in the job.

Concepts48

Managing and Auditing the Production Environment

Audit Reports About Production Objects

In screens and pop-up windows, audit reports provide a wide range of information about object
versions in production:

General Information

PAA reports the following information about each object version:

■ The state of the object version (current, backed out, scheduled, etc.);
■ The dates the object was unloaded from the PAC-controlled environment, loaded into the PAA-
controlled environment, and activated in production;

■ The date the object version was superseded or backed out;
■ The corresponding production and Control version numbers;
■ The application to which the object belongs and the library and status where it resides;
■ The PAA load job that included the object version;
■ The related PAC migration event.

Directory Information

PAA reports the following information from Natural directories:

■ The library in which the object was saved or cataloged;
■ The user who saved or cataloged the object;
■ The date and time the object was saved or cataloged;
■ The sizes of the saved and cataloged object;
■ TheNatural version, operating system, and TP system used to create, save, or catalog the object.

Summary Reports

On a single screen, summary reports provide the following information about object versions:

■ Production and Control version numbers;
■ Number, date, and time of the load job;
■ The date the object version became effective in production;
■ The earliest date the object can be activated (for Schedules only);
■ The date the object version was backed out (if applicable).

49Concepts

Managing and Auditing the Production Environment

User Reports

PAA provides APIs for reporting purposes. These APIs enable you to design and customize your
own output reports based on PAA held data.

Control Information

The PAAadministrator can display a snapshot of the current state of the PAA-controlled production
environment:

■ The date and time of the last migration into the environment;
■ The numbers of active and pending load jobs (these jobs have locked PAA locations);
■ The numbers of load jobs that have been backed out;
■ The database and file numbers of the PAA system file where audit data is stored;
■ The number that will be assigned to the next load job.

Concepts50

Managing and Auditing the Production Environment

7 Application Control Issues and PAC/PAA Functions

■ Inventory Management ... 52
■ Configuration Management ... 52
■ Migration Management ... 53
■ Production Management ... 53
■ Change Management ... 54

51

This document summarizes the PAC/PAA functions that address the control issues discussed in
section Application Control.

Inventory Management

PAC stores all source code in the protected ACF system file.Where is the source code for an object?

PAC automatically synchronizes the source and executable code for
each object version.

Do the source and executable code
match?

PAC lists all Natural and Predict objects that a specified object uses.What other objects do an object use?

PAC lists the name, object type, and version number of each object
used by the calling program.

Which version of an object does a
calling program use?

You can view the version history for an object. PAA lists the current
versions of objects in a production status.

What is the current version of an
object?

You can use a PAC archive facility to unload objects to storagemedia,
purge them from the PAC-controlled environment, and restore them

How are obsolete objects handled?

if necessary. From a production status, only superseded objects can
be archived. With or without first archiving them, you can purge
objects from a status or from the PAC-controlled environment by
migrating them to a retire status.

Configuration Management

In PAC, you specify the location of the Natural library, Predict file
and foreign object dataset for each status (phase) of an application

How are the operating environments
defined?

life-cycle. You can define multiple environments for each status
type except Control, Archive and Retire.

You can view all statuses towhich a specified application is linked.What environments are defined for an
application?

You can view the system file assignments for the linked status.What is the location of a specific
environment?

The life-cycle is the structure of linked statuses for an application,
along with the valid migration paths among them. You can view
all linked statuses andmigration paths for a specified application.

What is the life-cycle of a specific
application?

Valid authorizers are specified in the migration-path definition.
You can view the valid authorizers for the migration path.

Who can authorize migrations between
two environments?

Concepts52

Application Control Issues and PAC/PAA Functions

Migration Management

PAC operates independently of the operating system, TP system,
and DBMS (PAC supports ADABAS, DB2, and VSAM files).

Howdoyouhandlemigrationswhen the
origin and destination environments are
heterogeneous?

Standard migration and promotion procedures are defined and
enforced in the migration paths, migration events, and jobs. The

How do you enforce migration and
promotion procedures?

PAC administrator controls who can define migration paths;
migration paths specify authorizers; and no unauthorized
migrations can be made.

By default, PAC migrates the latest object version in the origin
library. To ensure that the latest version is the correct one, you
can display the source code for the version or compare versions.

How do you ensure that the correct
object version is implemented and
referenced?

Assign a file translation table to the application status link for
each status in which you want to execute the object. When you

How do you compile an object
referencing one set of databases and files
and execute it referencing a different set? migrate the object, PAC dynamically recompiles it to reference

the correct database and file numbers.

PAC stores each object version in the protected ACF system file.
If an object in a status library is overlaid, it can be reloaded. PAA

How can you recover an object that is
accidentally overlaid?

backs up a production object before replacing it; you can back out
the job that replaced it and restore the earlier version.

Production Management

All PACmigrations require authorization. The PAA administrator
can predefine production applications and control load jobs.

How is implementation controlled?

PAAdisplays the production library, database number, file number
and dataset for any object in a PAA-controlled production
environment.

Where is an object implemented?

PAA automatically tracks migrations of objects into production.
PAA provides audit reports and supports user-written reports via
use of the supplied APIs.

How is implementation of production
objects tracked?

The PAA administrator can backout a load job and automatically
restores an object version replaced by the load. You can also reload
earlier versions.

How do you recover when an
implemented object causes system
problems?

53Concepts

Application Control Issues and PAC/PAA Functions

Change Management

To change an object, you must make an authorized migration to a
development or maintenance status. PAC logs all check-outs and check-ins

How is maintenance tracked
and controlled?

(migrations to and from a maintenance status), which can be audited and
disallowed. Maintenance requests can be linked to migration events and
logs.

The change control log for the object shows all users who have checked out
the specified object.

Who is changing an object?

By default, PAC warns a user who checks out an object that is currently
checked out by another user; concurrent check-outs can be blocked. When

How are concurrent changes
handled?

several users check out an object version concurrently, each check-in of the
object is given a new version number.

You can define a singlemaintenance request for related problems and assign
it to multiple migration events; thus, you can view all migrations to and

How are related problems
grouped?

frommaintenance for the related problems.Maintenance requests can span
applications.

Concepts54

Application Control Issues and PAC/PAA Functions

8 Using External Version Control with PAC

■ General Architecture .. 56
■ Handling of Error Messages and DDMs ... 58

55

If you are using an external version control software such as Subversion (SVN) orCVS for versioning
on an Open Systems platform you may want to use it also to version your Natural sources. You
can already do so using the Local Versioning plug-in of Natural Studio (Natural for Windows) or
the versioning functions ofNatural for Eclipse orNaturalONE.However, in addtion to the external
version control software PACoffers the support of the complete product lifycycle of an application
from development to production environments.

Natural sources versioned with external version control software can be introduced into PAC
without the need to create new versions of the sources in PACs ACF. Instead, a relationship to the
versioned source text is kept.

General Architecture

Source Access and Handling

The access to a source text in an external version control software is realized bymeans of a REQUEST
DOCUMENT statement using the URL of the source code file. For details on the REQUEST DOCUMENT
statement please refer to the corresponding section in the Natural Statements documentation.

The link of a PAC application to the status type External defines a foreign source from where
Natural sources can be transferred into a PAC controlled environment and holds the information
about the path into the external version control software. Additionally, a user ID and a password
may be defined to such an application-status link. User ID and password are usedwhen accessing
the source in the external version control software.

It is possible to change the versioning location of existing applications from PAC versioning to
external versioning and vice versa.

Usually, applications versioned in an external version control software do not have a link to a
maintenance status, because bug fixing will be done in a development environment and the
changed sources are committed to the external version control software and then newly transferred
into PAC.

When new or changed Natural sources are transferred into a PAC controlled environment, a
transfer event from External to Control status (or any other target status) must be created. This
can be done by specifying the fully qualified URL. When the transfer event is executed, the
handling is the same as with other migrations from a development status into a PAC controlled
environment. PAC gets the source by means of a REQUEST DOCUMENT statement and writes it into
the PCF, compiles the sources in the PCF and creates a new version of the cataloged object in the
ACF. DDMs are written into the PCF. But instead of the source text the used URL is stored in the
ACF.

Before storing the source into the PCF, the line numbers and line number references will be recre-
ated.

Concepts56

Using External Version Control with PAC

The Natural member name, the programming mode, the save date, the user and the code page
information will be extracted from the source text. This information is either inserted into the
source text by the Local Versioning plug-in or by Natural for Eclipse. If that information does not
exist, default values will be used. The member type of the source file can only be derived from its
extension. Those URLs that do not allow to determine the member type will be rejected.

Deployment and Maintenance

From this point on the already existing deployment mechanism of PAC can be used. If the source
is accessed again, the stored URL has to be used. The function Display Object Version displays
the URL of an object. If there is a need to maintain a program (e. g. for bug fixing), the URL of the
object that is to be changed in PAC has to be picked. Then the library contents of the branch used
when transferring the objects must be checked out.

After the changes are made and commited to the external version control software, a new branch
must be created. An example of how to proceed with Subversion as an external version control
software is described in the Local Versioning section of theNatural Studio Extensionsdocumentation.

URL Handling

When using e. g. SVN as an external version control software, the command svn diff
<new-branch> <old-branch> --summarize produces a list of URLs of those sources that were
modified and added. This information can also be written to a text file. If workfile 7 is defined as
the Entire Connection workfile such a text file can be used as input for the IMPORT command in
the Migration List editor.

Caution: Please note that the above mentioned command produces only URLs that denote
the head revision (the latest revision) of a source. However, since the URLs are required
for future access, you are strongly recommended to use unique URLs (e. g. containing in-
formation about a specific revision, branch or both). Developers must create a branch in
the external version control software before transferring the objects into PAC to make sure
that no changes are committed into this new branch. The existing branch must be freezed
for editing.

Alternatively, the commands ADD EVENT and GENLIST EVENT allow to import lists of URLs
(denoting the objects to be transferred into PAC) either instream (option I of GENTYPE) or by
means of a workfile (option R of GENTYPE) in batch. The local GENLIST command accepts a base
URL or the input from an Entire Connection workfile.

Another alternative is to use the SEL command in the object list editor to produce the object list
from a base URL.

Further Aspects

For Migration Paths having an External status as origin, no expansion is possible, because

■ there are no Xref data available in this status and

57Concepts

Using External Version Control with PAC

■ the contents of a directory can not be determined automatically.

Handling of Error Messages and DDMs

Natural errormessages are versioned externally as complete errormessage files (one per language).
Whenever theURL of such an errormessage file is specified in themigration list then a newversion
in PAC is created for each message contained in the file. It is not possible to specify a single error
message in the migration list of an event from status External.

The source of DDMs and Error messages is stored additionally in the ACF and thus handled as
in previous PAC versions once under PAC control. This is done for performance reasons.

Concepts58

Using External Version Control with PAC

	Concepts
	Table of Contents
	1 PAC / PAA Concepts and Facilities
	2 Introduction
	Terms Used in this Document
	Objects and Types of Code
	Applications, Libraries and Locks
	System Files
	Environments and Directories

	Integration and Requirements

	3 Application Control
	Inventory Management
	Configuration Management
	Migration Management
	Production Management
	Change Management

	4 Using PAC
	Overview
	PAC Entities
	Application
	Status and Application Status Link
	Status
	Application Status Link

	Migrations
	Migration Path
	Migration Event
	Object List
	Enforcing Migration Procedures
	Control Status and Migrations

	Versioned Object
	File Translation Table
	Change Control Log
	Maintenance Request

	5 PAC Facilities
	Customizing PAC
	Application Program Interfaces
	PAC Express
	User Exits
	Applymods

	Applications
	Incorporation
	Predict Case Support
	Object Versions
	Aligning Versions
	Archiving Obsolete Versions

	Cross-Reference Data
	Support for Dynamic Source Variables
	Object Lists
	Expanding an Object List
	Generating an Object List

	Reporting System
	Administrator Functions
	Utilities
	Compare Utility
	Migration Utilities
	Scan Utilities

	6 Managing and Auditing the Production Environment
	Migrating Objects to the Production Environment
	Migration Steps
	Control and Production Versions of Objects
	Superseded Object Versions and Backups
	Backouts and Reactivated Versions

	Loading a Job for Activation in the Future
	Production Applications and Libraries / Datasets
	Deployment and Location Definitions
	Maintaining the Integrity of Deployments and Locations

	PAA Administrator Functions
	Deployment and Location Functions
	Job Functions
	System Functions

	PAA Reports
	Deployment Reports
	Location Reports
	Job Reports
	Audit Reports About Production Objects
	General Information
	Directory Information

	Summary Reports
	User Reports

	Control Information

	7 Application Control Issues and PAC/PAA Functions
	Inventory Management
	Configuration Management
	Migration Management
	Production Management
	Change Management

	8 Using External Version Control with PAC
	General Architecture
	Handling of Error Messages and DDMs

