§ software

Natural for Ajax

Version 9.1.4

October 2021

This document applies to Natural for Ajax Version 9.1.4 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NJX-NNATNJX-914-20210923

Table of Contents

PTOACE ..ot xix
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
L e e 5
2 INtrOdUCHON ...ooviiiiiiiiiiii 7
What is a Rich Internet Application?cccoccviviiiiiiiiiiiiiiniiie, 8
Rich Internet Applications with Naturalccoooi 8
Mixed APPLCAtIONScc.coviiiiiiiiiiiiiiiii 9
3 System Requirementsc.oooviiiiiiiiiiiiiccc 11
Supported Operating SyStemSccocueiiiiiiiiiiiiiiiiicii e 12
Supported Application Serverscccocveviiiiiiiiiiii 12
Supported Web Containerscccceiiviiiiiiiiiiiiiiiiiiie 12
Supported Web Browsersccccceeviiiiiiiiiiiiiiiiiiiiiccn 13
JaVa 13
Natural for Mainframesccccccooiiiiiiiiiiiiii 13
Natural for UNIX ..o 14
Natural for WINdOWSccccoiiiiiiiiiiiiiiiii 14
Natural Development SEIverccccoiiviiiiiiiiiiiciiccc 14
Development CHentsc.occooiiiiiiiiiiie 15
License Key Filec.ccccoiiiiiiiiiiiiiiiiii 15
4 Installationccoooviiiiiiiiiii 17
Installing the Natural for Ajax Distributables with the Software AG
INStallerc..ooiiiiiiiiiiii 18
Installing Natural for Ajax on WildFLycccccooiiiiiiiiiiiieicce 19
Installing Natural for Ajax on IBM WebSphere Application Server 21
Installing Natural for Ajax on Apache Tomcatc.cccoooeeiiiiiiiiiiiiiii, 24
Verifying the Installationcccccooiiiiiiiiiiiii 26
5 Setting Up Your Environmentc.ccccoiiiiiiiiiiii 27
Setting Up Application Designercoceeviiiiiiiiiiiiiiiiiiiiieciccccee e 28
Setting Up Your Development Environment for Naturalccccccceeninn. 28
Setting Up Your Runtime Environment for Naturalcccocoiiiiinnn 29
IEFAISt SEPS oot 33
6 About this Tutorialcccoiiiiiiii 35
7 Starting the Development Workplaceccccocoiiiiiiiiiiiiiiiiniiiiiiiccecee 39
8 Creating a Project ... 41
9 Getting Started with the Layout Painterc..ccocceiiiiiiniiiiiinie, 43
Creating a New Layoutccccciiiiiiiiiiiiiiiiii 44
Elements of the Layout Painter Screenccoccoovoviiiiiiiiiiiiiic, 46
Previewing the Layoutccccooiiiiiiiiiiiiiiiii 47
Viewing the XML Codeccooiiiiiiiiiiicc 48
10 Writing the GUI Layoutccccociiiiiiiiiiiiiiiiiiiciciccceccecc e 51

Natural for Ajax

Specifying the Properties for the Natural Pagec.cccocooviiiiiiiinnnn 52
Specifying a Name for the Title Bar ..o, 53
Using the Property Editorcccccooviiiiiiiiiiiiiiiiiiiic 54
Specifying a Name and Method for the Buttonc..ccool 56
Adding the Input and Output Areascccceeviiiiiiiiiiiiiiiiciiccec 56
Adding the Imagecccocvoiiiiiiii 59
Adding a Horizontal Distancecccceeiiiiiiiiiiiiiiiiiiiicicecccccieee 60
Adding an Instructional Textccccociiiiiiiiiiiiiiiii 61
Adding a Vertical Distancecccocooviiiiiiiiiiii 61
Saving Your Layoutcccccooviiiiiiiiiiiii 62

11 Setting Up Your Development and Runtime Environment for Natural 63
12 Creating the Natural Codecccciiviiiiiiiiiiiiiiiicce 65
Importing the Adapter into Naturalcccocooiiiiiiiiiiii 66
Creating the Main Programcccccociiiiiiiiiiiiiiiiiiiic 67
Testing the Completed Applicationcccccceiviiiiiiiiiiiiiiiiiiiiie 70

13 Some Background Informationcccooiiiiiiiiiiiiii 73
Name Binding between Controls and Adaptercccccevviiiiiiiiiiiiiniinnnn, 74
Data Exchange at RUNtimecccoccooiiiiiiiiii, 74
Files and their LoCationsccccoiiiiiiiiiiiiiiiiiiicc e 75
... 77
14 Developing the User Interfacecccocooiiiiiiiiiiiiiiiiicccc 79
Starting the Development Workplacecccccciiiiiiiiiiiiiiiiiiiiiiiis 80
Creating an Application Designer Projectcccocooviiiiiiiiiiiiiiic 81
Creating a Natural Pageccocoiiiiiiiiiiiiiiiiiccccccc 81
Specifying Properties for the Natural Pagecccccooeviiiiiiiiiiiii 82
Designing the Pageccccoooiiiiiiiiiiiiiiiiccce e 83
Binding Properties and Methodscccccooiiiiiiiiiiiiiii, 83
Previewing the Layout ... 84
Viewing the Protocolcccooiiiiiiiiiiiiiiiiiiiiicccc 84
Saving the Layoutccoooiiiiiiiii 84
Generating the Adapterccooiiiiiiiiiiiiiiiiii 84
Data Type Mappingcccooviiiiiiiiiiiiiiicccc 85
Configuration of Page Layout Errors/Warningsccccoccevviiviiiiiininnnnnne. 86

15 Developing the Application Codeccccoviiiiiiiiiiiiiiiiiiiiie 91
Importing the Adapter ..o 92
Creating the Main Programcccoceviiiiiiiiiiiiiiiiiii 92
Structure of the Main Programc.ccoviiiiiiiiiiii, 94
Handling Page EVENtsccccoiiiiiiiiiiiiiiiiiiiccicccce e 95
Built-in Events and User-defined Eventsccccocoiiiiiiiiniiiiiiin, 95
Sending Events to the User Interfacec.cccocooiiiiiiiniiiii, 96
Using Pop-Up WINAOWSccceiiiiiiiiiiiiiiiiiiiiiiiiccic e 97
Using Natural Mapscccooviiiiiiiiice 98
Navigating between Pages and Mapsccccceeviiiiiiniiiiiiiniiiiiiiiccccceeeen 99
Using Pages and Maps Alternativelyccccocooviiiiiiiiiiiiii, 100
Starting a Natural Application from the Logon Pagecccccoovevviininnnen. 101

Natural for Ajax

Natural for Ajax

Starting a Natural Application with a URLc.cccooiiiiiiin 101

16 Deploying the Applicationcccoooiiiiiiiiiiiii 103
Components of a Natural for Ajax Applicationcccceeviviiiiiiiiiiiniiinnn. 104
Unloading the Natural Modulescccooiiiiiiiiiii 104
Installing the Natural Modulesccccoooiiiiiiiiiiiiiiie 104
Packaging the User Interface Componentscccocoeviiiiiiiiiniinciicnennn 104
Deploying the User Interface Componentsc.ccceceeveivcieniiiiienieeenncennnn. 105
Packaging and Deployment as a Web Applicationccceeiiviiiiiiinnnnnnn. 106
Generating HTML Pages Using the Command Lineccccooiiinn, 107

17 Natural Parameters and System Variablesccccccoviiiiiiniiiiiniiiiiinnn 111
18 Usage of Edit Masksc.cccooiiiiiiiiiiiii 113
General Informationcccocciviiiiiiiiiii 114
Data Types with Edit Masksccccoooioiiiiiiiiiii 114
Natural Profile Parameterscccocooviiiiiiiiiiiiiiiiiiiicccccc 116
Specifying Edit Masks in Layoutscccccoiviiiiiiiiiiiiiiiiiiiiiiicen 116

Edit Masks at Runtimecccccocooiiiiiiiii 117

19 Multi Language Managementcccccoocuiiiiiiiiiiiiniiiiiic e 119
20 Support of Right-to-Left Languagescccocooviiiiiiiiiiiiics 121
21 Server-Side Scrolling and SOTHINGccccvevviiiiiiiiiiiiiiiicic e, 123
General Informationcoccoeviiiiiiiiiiiiii 124
Variants of Server-Side Scrolling and Sorting ..o, 124
Controls that Support Server-Side Scrolling and Sortingcccccceeeenine 128
Data Structures for Server-Side Scrolling and Sortingc.cccoooiiiinnn. 128
Server-Side Scrolling and Sorting in Treesccccoovieiiiiiiiiiniiiiiininn, 130
Events for Server-Side Scrolling and Sortingccccocveviniiiiiiiiiiinnn, 131

22 Code Pagescoocviiiiiiiiiiiiii 133
23 Browser Configurationcccoceiiiiiiiiiiiiiiiiiiiii 135
JavaScript ENablingc.cccoooiiiiiiiiii 136
Browser Cachingccccovviiiiiiiiiiiiiiiiiiic 137
POp-Up BIOCKET ... 141
Browser Standards Mode and HTMLS5cccoccooiiiiiiiiniiiiiiiiie 142
Mastering Internet Explorer Browser Modescccocooiiiiiiiiiiiniiicieenns 145

24 Timeout Configurationccoccviiiiiiiiiiiiiiiii 147
Timeout Between the Browser and the Web Applicationccccccevienen. 148
Timeout Between the Web Application and the Natural Server 148
Dependencies Between Timeoutsccccoeeuiiiiiiiiiiiiiiiiiiiiiccicecce 149

25 Test Automation of Natural for Ajax Applicationscccoceeviiiiiiiiiiiiinnnn, 151
General Informationcccocciiviiiiiiiiiiii 152
Enabling the Applications for Test Automationcccocoviiiiiiiiinnnnne 152
Advanced testtoolid Settings in Complex Controlsc.ccoeiiiiiiiiinnn, 155

IV Application Modernizationccccceeviiiiiiiiiiiiiiiiiiiiiiic 161
26 Overview of Conversion StePsccoovveviiiiiiiiiiiccc e 163
27 Map EXtractioncoooiiiiiiiiiiiiiiiiii 165
General Informationccccoeeiiiiiiiiiiiiiii 166
Using Natural for Ajax TOOISccocuiiiiiiiiiiiiiiiiiccceec e 166

Natural for Ajax v

Natural for Ajax

Using the Mass FUNCHONc.oocoiiiiiiiiiiiic 166
Location of the Filesccccccoooiiiiiiiiiiiiiii, 166

28 Map CONVETISIONcuiiiiiiiiiiiiiiiie ittt 169
General Informationcccoviiiiiiiiiiiiii 170
FIrst StePS ...ooiviiiiiiiiiiiiii 171
Using the Map Convertercoccocvviiiiiiiiiiiicecceece e 179
Using the Editor EXteNsionccocoiiiiiiiiiiiiiiiiicccccecccc 183
Using the Conversion Rules Toolccccoooiiiiiiiiiiiiiiiiiiiiii, 186
Sample Conversion Rules Filescccoooooiiiiiii 188
Using the Conversion Logs Toolccccoviiiiiiiiiiiiiiiiiiiicie 188

29 Customizing the Map Conversion Processccccocvevuieiiiieniiiciieicciccnns 191
Map Converter Processingcccceeveuiiiiiiiiiiiiiiiiniiiiniiiiececciec e 192
Conversion RUIESccccciiiiiiiiiiiiiiiii 196
Templatesoooiiiiiii 206

Tag CONVETtErSoociiiiiiiiiiiii i 209

30 Code CONVETSIONocviiiiiiiiiiiiiiii et 211
General Informationcccoocvviiiiiiiiiiii 212
Generating Adapters ..o 212
Structure of a Map-Based Applicationc.cccceeviiiiiiiiiiiiiiiiiiieee, 212
Structure of a Natural for Ajax Applicationcccccovviviiiiiiiiiiniiis 213
Tasks of the Code CONVETrSIONccocuiiiiiiiiiiiiiiiiiiicc 214
DEFINE DATA Statementccccooiiiiiiiiiiiiiiiccc 214
INPUT Statementccccooviiiiiiiiiiiiiiiiici 215
REINPUT Statementc..cocooiiiiiiiiiiiiiiiiiicciccccc e 216
PF-Key Event Handlingcccooioviiiiiiiiiiiiccc 218

SET KEY Statementc.ccciiiiiiiiiiiiiiiiiiiccicccccc e 219
Array Dataoooviiiiii 222
Processing RUlesc.ccoooiiiiiiiii 223
System Variablescccooiiiiiiiiiiiiiiii, 223
Variable Names Containing Special Charactersc...ccocooviiiiiiiiinnnn 225

V Web Service for Optimize for Infrastructurec.cccoeoveiiiiiiiiiiiniiiiiiices 227
31 Web Service for Optimize for Infrastructurecccoocoviiiiin 229
General Informationcccoccivviiiiiiiiiiii 230
PrerequiSitescccooiiiiiiiiiiiiiii 230
Installing the Web Service on Wildfly Application Serverc..ccocoe. 231
Installing the Web Service on IBM WebSphere Application Server 231
Installing the Web Service on Apache Tomcatccooeviiiiiiiiiiiiiiic, 232
Verifying the Installationcccociiiiiiiiiiiiiiiie, 234

VI Typical Page Layoutccccooviiiiiiiiiiiiiiiiiiiiiiiccccc s 235
B2 NATPAGE ...cooiiiiiiiiii 237
PIOpertiescccviiiiiiiiiiiiiiii 238

B3 TITLEBAR ...coiiiiiiiicc e 247
PIoperties ... 248

34 HEADERooiiiiiiiiiiii e 253
PIoperties ... 254

vi Natural for Ajax

Natural for Ajax

35 PAGEBODYoiiiiiiiiiiiiiece s 255
PrOPerti€sooiiiiiiiiiiii 256

36 STATUSBARoviiiiiiiiiicc e 259
General Informationcoccooiiiiiiiiiii 260
EXamPIe ..o 260
PrOPertiesociiiiiiiiiiii e 261

VII Working with CONtainersccocveiiiiiiiiiiiiiiiiiiieiccccee e 263
37 Positioning of Controls inside a Containercccccceviiviiiiiiiiiiniiiininnne. 265
Row Types - TR and ITR ..., 266
Some More Details on ITRcccoooiiiiiiiiiiii 267

ITR in Google Chrome and Edge Chromiumc..cccoocooiiiiiiiiiiiininn, 268

TR Propertiesccciiiiiiiiiiiiiiiiiiiii 269

ITR PrOpertiescc.cocuiiiiiiiiiiiiiiiiciceie e 270

38 Defining the Width of Controls inside a Containercccccceeveviiiciennnnnen. 273
Controlling the Width of Controlsccccociiiiiiiiiiiiiiiii 274
HDIST and VDIST Controlsccccooviiiiiiiiiiiiiiiiiiiciiicciccecccei e 276
HDIST Propertiescocoiiiiiiiiiiiiiiiiiiiiiiiiiciic e 278
VDIST Propertiesccooiiiiiiiiiiiiiieee e 278
rowspan and colspan Definitionsccoceeviiiiiiiiiiiiiniiiee 279
CELLSPAN CONtIol ..cceviiiiiiiiiiiiiiiiieiic e 280
CELLSPAN Propertiescccooieiiiiiiiiiiciicicecc e 281
Rules for Positioning Controls inside Containersccccoeveviiiiiiniinnn. 283

39 Vertical Sizing of Containers and Controlsc.cocoeiiiiiiiiniiiiiicc, 285
Vertical Pixel SiZingc.ccocovviiiiiiiiiiiiiiiiiiciccc e, 286
Vertical Percentage Sizingccccooviiiiiiiiiiiiiic 287
Finishing the Examplecccccooiiiiiiiiiiiiii e 289

40 Overview of Different Containerscccooceevviiiiiiiiiiiiiiiccccc, 291
Different Kind of Containerscccocviiiiiiiiiiiiiiiiiiiiicicece 292
ROW CONtaINeTSccoeoviiiiiiiiiiiiiciccecee e 292
Column Containersccceeevuiiiiiiiiiiiiiiii 293
Row and Column Containers in Combinationccccocoiviiiiiiiiininnnn. 294
Nesting Containerscccoooiiiiiiiiiiiii 295

41 ROWAREA and COLAREAcccooiiiiiiiiiiiic 297
ROWAREA Propertiescccccoiiiiiiiiiiiiiiiiiiiiiiiicciieceiec e 298
COLAREA Propertiescocoeiiiiiiiiiiiiiiiiiceiicie e 305

42 ROWAREAWITHHEADERccooiiiiiiiiiiiiiicccccc 311
Simple Exampleccoooiiiiiiiii 312
Right-to-left (RTL) MOdeccceevviiiiiiiiiiiiiiiiiie e 313
ROWAREAWITHHEADER Propertiescccccccvvviiiiiniiiiniiiiiiciicceee 313
ROWAREAHEADER Propertiescccoccooiiiiiiiiiiiiiiicccicccccecn, 316
ROWAREABODY Propertiescccceiiiiiiiiiiiiiiiiiiiiiiiicciicciecccieccniecens 317

43 ROWTABAREA and COLTABAREAcccciiiiiiiiiiiiicccc 319
ROWTABAREA Propertiesccccoocuiiiiiiiiiiiiiiiiiiiiciicicccceccees 321
COLTABAREA Propertiesccccceiiiiiiiiiiiiiiiiiiiiciciicicceeiccec e 347
TABPAGE Propertiesccccoiviiiiiiiiiiiiiiiiiiiiccicccie e 370

Natural for Ajax vii

Natural for Ajax

The Most Common Error ..o 371
Example: Controlling which Tab is displayed by the Server Adapter 371
Example: Controlling the Visibility of Tab Pagesccccccceviiiiiiiiiiniiininns 373
44 ROWTABLEQO and COLTABLEQDccccocuiiiiiiiiiiiiiiiiiiciciccececcece 377
ROWTABLEQ Propertiescccciiiiuiiiiiiiiiiiiiiiciiicciiccciiccecciec s 379
COLTABLEQ Properties ..ottt 381
45 ROWDYNAVIS and COLDYNAVISccoooiiiiiiiiiiiiiiiicicicc e 383
ROWDYNAVIS Propertiescccocveiiiiiiiiiiiiiiiiiiiciiiccniiccciecciec e 385
COLDYNAVIS Propertiesc.cccovveviiiiiiiiiiiiiccicecccecee 387
Some Comments on Controlling the Visibility of Controls 389
46 ROWDIV and INNERDIVcccccoiiiiiiiiiiiiiiiiiiiiiciccice e 391
When to Use ROWDIV and INNERDIV Containersccccocveviiiiiennns 672
ROWDIV Propertiescccooiiiiiiiiiiiiiiiiceiceicci e 394
INNERDIV Propertiesc.ccooieiiiiiiiiiiiiiiciiicccicccicceeeceecee e 395
47 ROWSCROLLAREAooiiiiiiiiiiiicccecec e 399
ROWSCROLLAREA Propertiescccccvevueiiiiiiiiiiieiiieiceiecieeccecnee e 401
48 HSPLIT and VSPLITccooiiiiiiiiiiiiiiiccccci e 405
Example for HSPLITcccooooiiiiiiiicceceece e 406
Example for VSPLITcoooiiiiiiiiiiiicece e 407
HSPLIT Propertiesccccoviiiiiiiiiiiiiiiiicciicccieccicce s 408
VSPLIT Propertiescccooouiiiiiiiiiiiiiiicicecicc e 410
SPLITCELL Propertiesccccovviiiiiiiiiiiiiiiiciiiccciccciececiec e 411
Defining the Split Sizecccooiiiiiiiii 412
49 HLINE and VLINEcccoooiiiiiiiiicce 413
VLINE Propertiescccooiiiiiiiiiiiiiiici e 415
HLINE Properties ...t 416
50 Performance Optimization with Containersccccccevviiviiiiiiiiniiiininnnn. 417
51 ROWTABSUBPAGES and STRAIGHTTABPAGEccociviiiiiiiiiiiiiiiee 421
Adapter INterfaceccccoevuiiiiiiiiiiiiii 422
Built-in EVeNnts ..o 423
Session Managementcccceiiiiiiiiiiiiiiiii 423
Performance Considerationsccccoeviiiiiiiiiiiiiiiiniiii 424
ROWTABSUBPAGES Propertiescccccoovuiiiiiiiiiiiiiiiiiiiiiccicccn 424
STRAIGHTTABPAGE Propertiesccccceviviiiiiiiiiiiiiiiiiiiciecic, 427
VIII Working with Controlsc.ocooiiiiiiiiiie 429
52 Some Common Rules for all Controlscccccviviiiiiiiiiiiiiiiii, 431
Name and Text IDccccooiiiiiiiiiiiiiiii 432
Table, Row, Column, CONIOLcouuueveiiieeeeiieee ettt e e e eeeans 432
Explicit Aignmentccccooiiiiiiiiiiiiiiii 432
Binding to Adapter Parametersc.cocooiiiiiiiiiii 433
Directly Influencing the Control Stylecccociiiiiiiiiiiiiiiiiii 433
Dynamically Controlling the Visibility and the Display Status of
CONLIOLS .o 434
Focus Management ... 436
Flushing of INPULEScc.eiiiiiiiiiiiii e 437

viii

Natural for Ajax

Natural for Ajax

Tab SeqUENCEccviiiiiiiiiiii 437
TOOIHPS e 439
IMAGES .o 440
DOCUMENES ...t 441
53 BREADCRUMBcooiiiiiiiiiiiic e 443
EXampleoooiiiiiiiiiii 444
Adapter INterfacecooveioiiiiiiiiiiiiie 444
Built-in EVeNtsccooiiiiiiiii 444
Propertiesooiiiiiiiiii 445
54 BUTTON ...ooiiiiiiiiiice ettt 447
Example: Simple BUutton ... 448
Example: Button with Imageccocoiiiiiiiiiiiiie 449
Hiding and Disabling Buttonsccccccoviiiiiiii, 449
PIOPETties ...oooviiiiiiiiiic 449
55 BUTTONLIST ..ot 457
Adapter Interface ... 458
Properties ... 458
56 CHECKBOXoiiiiiiiiiiiiiiicicc s 461
PIoperties ... 462
57 COMBODYN2 ..ottt s 467
Adapter Interfacecocooiiiiiiiiiii 468
PIopertiesccoviiiiiiiiiiiiiii 468
58 COMBOFIXuiiiiiiiiiiiiii i 475
COMBOFIX Propertiesccceivuiiiiiiiiiiiiiiiiciiiccciiccciie e 476
COMBOOPTION Propertiesc.ccceeieviiiiiiiiiiiiiccieiceeccreecee e 480
59 DATEINPUTooiiiiiiiiiii et 481
EXamplecoooiiiiiiiiiiii 482
PrOperti€sooiiiiiiiiiiiie 482
60 DATEINPUTZ ...oooiiiiiiiiie e 489
Properti€sooiiiiiiiiiiic 490
61 DROPICONooviiiiiiiiiiiicicciccccee e 497
Example ...c.oooiiiiiiiiiii 498
PIOPETties ...oooviiiiiiiiiiic 498
02 FIELD ..ooiiiii e 503
Built-in EVeNntsccccocoiiiiiiiiii 504
Properties ... 504
63 FILEUPLOAD/FILEUPLOAD?c.cooiiiiiiiiiiiiiiiiice s 517
FILEUPLOADoooiiiiiiiiiicccce e 518
FILEUPLOADZooiiiiiiiiiiiiiiiiiiici s 519
FILEUPLOAD Propertiescccoceevuiiiiiiiiiiiiiieiccic e 520
FILEUPLOAD2Z Propertiescccccoovuiiiiiiiiiiiiiiiiiiciiiicciiiccniec e 524
64 ICON L.t 527
EXamMPLe ..o 528
PrOperti€sooiiiiiiiiiiii 528
65 ICONLISToviiiiiii s 535

Natural for Ajax iX

Natural for Ajax

Adapter Interfacecccooviiiiiiiiiiiiii 536
Built-in EVents ... 536
PIopertiesccouiiiiiiiiiiiiiiii 536
66 THTML ..o 539
Properties ... 540
67 IMAGEOUT ... 543
Properties ... 544
68 IMAGEVIEWERoccoiiiiiiiiiic e 547
Adapter Interfacecocooveiiiiiiiii 548
EXamPle ...ooiiiiiiiiiiii 549
Propertiesociiiiiiiiiiii 549
09 LABELooiiiii 553
Exampleoooiiiiiiiiiiii 555
Aligning the Textccccoiiiiiiiiiiii 555
Propertiescoouiiiiiiiiiiiiii i 556
70 MENUBUTTONcoooiiiiiiiiiiiiicic s 561
EXamPle ...ooiiiiiiiiii 562
MENUBUTTON Propertiescoccoooiiiiiiiiiiiiiiiiiciicecee 563
MENUITEM Propertiescccccciiiiiiiiiiiiiiiiiiiiciiccciieee e 565
71 METHODLINKoooiiiiiiiiiiiiiii i 567
PrOpertiesooiiiiiiiiiii 568
72 MULTISELECT ..ot 573
EXAMPIE ..o 574
Adapter INterfacecocoevuiiiiiiiiiiiiii 574
PrOpPerti€sociiiiiiiiiiii 574
73 NEWSFEEDcooiiiiiiiiiiiiiicce e 579
EXamplecoooiiiiiiiiiiii 581
Built-in EVents ..o 582
PIOperties ... 582
74 RADIOBUTTONooiiiiiiiiiiiiiiiiicicic s 583
Properties ... 584
75 SCHEDULELINEcccoiiiiiiiiiiiiiiii e 589
PrOPerti€sc..coiiiiiiiiiiic 590
76 SLIDER ...ooiiiiiiiiiie e 597
EXAMPIE ..ooviiiiiiii 598
Adapter INterfacecocoeviiiiiiiiiiiiiii 599
Properti€sooiiiiiiiiiiii 599
77 STRIPSEL ...coviiiiiiiiiiiiiiiec e 605
EXample ...c.coooiiiiiiiiiii 606
PrOperti€scoiiiiiiiiiiic 606
78 SUBCISPAGEZ ...ttt 611
EXAMPIE ..coviiiiiicic 612
Adapter INterfacecocovviiiiiiiiiiiiii 613
Session Managementccooiiiiiiiiiiiiiii 613
PIoperties ... 614

X Natural for Ajax

Natural for Ajax

79 SUBPAGE ..ot e 617
PrOPerti€sooiiiiiiiiiiii 618
80 TABSEL ..ottt s 621
Adapter Interface ..o 622
Built-in EVeNntsccccccoiiiiiiiii 622
PrOPertiesociiiiiiiiiiii e 623
81 TABSTRIP2 ..ottt 625
EXample ...c.ooooiiiiiiiiiii 626
Adapter Interfacecocooveiiiiiiiii 626
Built-in EVeNntscccooiiiiiiiiii 626
Propertiesociiiiiiiiiiii 627
82 TAGCLOUDcouiiiiiiiiiiiiccic e 631
Exampleoooiiiiiiiiiiii 632
Adapter INterfaceoocviiiiiiiiiiiiii e 633
Built-in EVeNntscccocoiiiiiiiiii 633
PrOpertiescoiiiiiiiiiiii 633
83 TEXT i 637
Using the max® Propertiesc.ocvevvieiiiiiiiiicicccecceec 638
PIoperties ... 638
84 TEXTOUT ..ot 647
EXAMPIE ..o 6438
PIopertiesccoviiiiiiiiiiiiiii 648
85 TOGGLE ... 655
Properties ... 656
86 ACTIVEX ..ottt 661
Properties ... 662
87 CHART .o 665
About the SVG and JPEG FOrmatscocccuiiiiiiiiiiiiiiiiieeee e 666
EXamPIe ...ooiiiiiiiiii 666
CHART Propertiescccoooiiiiiiiiiiiiiii e 667
CHARTCOLUMN Propertiesccccvciiiiiiiiiiiiiiiiiiiiciiieccice e 669
88 GOOGLEMARPcoviiiiiiiiiiiiiiiici e 671
Before YOou Startccooiiiiiiiiiiiiiiiiii 672
EXamplecooiiiiiiiiiii 672
Typical Problemscccoooiiiiiiiii 674
Properties ... 674
89 OPENSTREETMAP and Sub Controlsccccoovviiiiiiiiiiiiiiiiiiiiiceen, 677
EXaMPLe ..o 678
Properties for OPENSTREETMAPccccoooiiiiiiiiiiiiiiiiiiiiii, 678
Properties for MAPMARKERccoccooiiiiiiiiiiiiiicccceeee 681
Properties for MAPLAYERcccooiiiiiiiiiiiiiiiiiiic, 684
Properties for MAPPOINTccooiiiiiiiiiiiccec e 685
Properties for MAPLINEcccciiiiiiiiiiiiiii e, 687
Properties for MAPPOLYGONccccoooiiiiiiiiiiiiiccccece 688
90 LINECHART ...coiiiiiiiiiiiiic s 691

Natural for Ajax Xi

Natural for Ajax

EXampleooooiiiiiiiiiii 693
LINECHART Propertiescccoceevuiiiiiiiiiiiiciceccecce e 694
LINECHARTSERIES Propertiescccccevviiiiiiiiiiiiiiiiiiiiicciicccieceecce 696
CSVLINECHARTSERIES Propertiescccccoovviiiiiiiiiiiiiiiiiiiiccicccn 696
91 NETMEETINGc.ooiiiiiiiiiiiiiiiiicccc e 697
EXample ...c..oooiiiiiiiiiii 698
Properties ... 698
92 REPORT ..ottt 701
EXAMPIE ..ceviiiiiici 702
Built-in EVeNntscccooiiiiiiiiii 703
Propertiesociiiiiiiiiiii 703
93 REPORTZ ..ottt 707
Exampleoooiiiiiiiiiiii 708
Built-in EVents ..o 708
Propertiescoouiiiiiiiiiiiiii i 708
94 SKYPECALL ..ot 709
EXamPle ...ooiiiiiiiiii 711
ProOpertiesociiiiiiiiiii 711
95 TIMERooiiiiiiiiiiiiiic e 713
96 NJX:BUTTONITEMcouiiiiiiiiiiiiiiiiiiiciicicctei s 715
EXample ...c.oooiiiiii 716
Built-in EVeNtscccoooiiiiiiiiii 716
PrOPerti€sooiiiiiiiiiii 716
97 NJX:BUTTONITEMEIXooiiiiiiiiiiiiiiiiiiciccice e 721
EXampleoooiiiiiiiiiiii 722
Built-in EVeNnts ..o 722
Propertiescooviiiiiiiiiiiiiiic 723
98 NJX:BUTTONITEMLISTooiiiiiiiiiiiiiiiiiiccccc e 729
EXamPIe ...ooiiiiiiiiii 731
Adapter Interfacecoooeiiiiiiiii 731
Built-in EVeNtscccocoiiiiiiiiii 731
PrOPertiesoouiiiuiiiiiiii e 732
99 NJX:BUTTONITEMLISTEIXc.ccciiiiiiiiiiiiiiiiiiiicciccc 733
EXampleooooiiiiiiiiiii 734
Adapter Interface ..o 734
Built-in EVentscccocoiiiiiiiiii 735
Properti€sooiiiiiiiiiiii 735
100 NJX:DOCUMENTLINKccooiiiiiiiiiiiiiiiiiicc 737
Propertiescooouiiiiiiiiiiiiic 738
101 NJX:EVENTDATA ...c.ooiiiiiiiiiiiiiiiiiccc e 743
EXamPle ..ooooiiiiiiiiiiii 745
Adapter Interface ..o 746
102 NJX:FIELDITEMoooiiiiiiiiiiiiiiiiiiiiccccc e 747
EXample ...c.oooiiiiiiiiiii 749
Adapter INterfaceoocveiviiiiiiiiiiii i 750

Xii

Natural for Ajax

Natural for Ajax

BUilt-In EVENLS ...cooviiiiiiiiiiiiiicccec e 750
PrOPerti€sooiiiiiiiiiiii 750

103 NJX:FIELDLISToooiiiiiiiiiiiiiccccecc s 759
EXAMPIE ..coviiiiii 761
Adapter INterfacecccovviiiiiiiiiiiiiiii 762
Built-in EVeNntsccccocoiiiiiiiiiiiii 762
Properties ... 762

104 NJX:FIELDVALUEccooiiiiiiiiicec e 765
EXAMPIE ..ooviiiiiiiic 767
Adapter INterfaceccceeviiiiiiiiiiiiii 767
Built-in EVENtscccooiiiiiiiiiii 1239
Properties ... 767

105 NJX:MASHZONE and BMOBILE:MASHZONEc.ccccoooiiiiiiiiiiiniiiiien. 777
Before YOou Startccoviiiiiiiiiiiiiii 778
EXampleooooiiiiiiiiiii 779
Adapter Interface ... 779
Properties NJX:MASHZONEccciiiiiiiiiiiiiiiiiiic 780
Properties BMOBILE:MASHZONEc.cccoiiiiiiiiiiiiiiiiiicce, 782
Individual Data Sources per SESSIONcccceevviiviiiiiiiiieniiiiieiicceececeee, 782

106 NJX:NJXFILEDOWNLOADcccooiiiiiiiiiiiiiiiiiiieiiciceeece e 785
EXample ...c.oooiiiiii 787
Adapter Interfacecccooviiiiiiiiiiiiii 787
PrOPerti€sooiiiiiiiiii e 787

107 NJX:NJXFILEUPLOAD2Zooiiiiiiiiiiiiiiicccccccc e 789
EXampleooooiiiiiiiiiii 791
Adapter INterfacecocveieiiiiiiiiiiii e 791
Built-in EVeNntscccoooiiiiiiiii 791
PrOperti€sooiiiiiiiiiiiie 792

108 NJX:NJXVARIABLEoocviiiiiiiiiiiiiicicccccccc e 795
EXAMPIE ..o 796
Properties ... 796

IX Working with Gridscccooiiiiiiiiiii 797
109 BASICS ..vviiiiiiiciiice e 799
110 TEXTGRID2oooviiiiiiiiiiciiece e 801
A Simple EXample ..o 802
Adapter INterfacecccoeviiiiiiiiiiiiii 803
Selecting Rows in @ TEXTGRID2cccccoviiiiiiiiiiiiicicccc 803
TEXTGRID2 Propertiescccccocvuiiiiiiiiiiiiiiiiiiiicciiicciiee e 804
COLUMN Propertiescccouiiiiiiiiiiiiiiiiciiicciiic e 810
Dynamic Setting of Text Styles in TEXTGRID2ccccccoovvinininiiieiennn. 814
CSVCOLUMN Propertiesccccoviiiiiiiiiiiiiiiiciiicciecicc e 816

111 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrollingc..cccoceeieaie. 819
Performance Considerationscccccoeviiiiiiiiiiiiiiiiic 820
EXample ...c.oooiiiiiiiiiii 820
Adapter INterfacecoceeviiiiiiiiiiiii e 822

Natural for Ajax Xiii

Natural for Ajax

Using Server-Side Scrollingccccoooviiiiiiiiiiiiiiiiiiiiiiceccc, 822
Using Server-Side SOTtingccoociiiiiiiiiiiiiiiii 823
Setting the Client-Side Loading Behaviorccccoecviviiiiiiiiiiiiiiiiinnn. 823
TEXTGRIDSSS2 PrOpertiescoveueiuieiiiiiiiicieeiccicie e 823
112 ROWTABLEAREAZ2 - The Flexible Control Gridcccccceviiiiininiinininnn. 833
EXample ...c..oooiiiiiiiiiii 834
Adapter INterfacecocueioiiiiiiiiiiiii e 836
Built-in EVeNtsccoiiiiiiiii 836
Making Grids Look like Gridscccocooviiiiiiiiiiiiiic 837
Making Columns Movableccccoooiiiiiiiiiiiiiiiiii 838
Export to Clipboard and Fileccccoooooiiiiiiiiiiicc 839
ICON BATS ..evviiiiiice 841
ROWTABLEAREA2 Propertiesccccceoiiiiiiiniiiiiiiiiiiiiciieciccicseeieeeee 845
STR PIOPertiescccuovvuiiiiiiiiiiiiiiiiiccicicccc e 851
113 ROWTABLEAREAS3 - The Array Gridccccoooviviiiiiiiiiiiiiicccc 855
EXAMPIE ..coviiiiiiii 856
Adapter INterfacecccoeeiiiiiiiiiiiiii 858
Built-in EVeNnts ..o 861
ROWTABLEAREAS3 Propertiesccccccoviiiiiiiiiiiiiiiiciiiicciiciec e, 861
TR3 Propertiesccccocuiiiiiiiiiiiiiiiiiiicciec e 866
GRIDCOLHEADERS3 Propertiesccccceieiiieiiiiiiiieiceiccccicecee 868
STR3 Propertiesccccoovuiiiiiiiiiiiiiiiiiciicciccc e 870
FIELD3 Propertiescccoooiiiiiiiiiiiiii e 871
114 FLEXLINE - Flexible Columns in Control Gridscccccccevviiiiiiiniiiininnnn. 879
EXampleoooiiiiiiiiiiii 880
Adapter INterfacecocveiiiiiiiiiiiii e 882
ATTRIBUTESooiiiiiiiiiiccc 882
FLEXLINE Properti€s ..ot 882
115 MGDGRID - Managing the Gridccccociiiiiiiiiiiiiiiiii 885
EXAMPIE ..ot 887
Adapter INterfacecocevoiiiiiiiiiiiiii 888
Built-in EVeNntsc.cccciiiiiiiiiiiii 889
MGDGRID Propertiescccocviiiiiiiiiiiiiiiiiiiiiciiccieccceecc e 889
ROWINSERT Propertiescccooiiiiiiiiiiiiiiiiiiiiiiicciiccieccccccc e 894
ROWCOPY Propertiesccoceeieviieiiiiiiiiiceieeiceeeee e 894
ROWDELETE Propertiesccccccovviiiiiiiiiiiiiiiiiiiiiciiecicccec e 895
116 GRIDCOLHEADER - Flexible Column Headerscccccccooeiviiiiiiinnnnnn. 897
Flexible Column SiZingcccccoeoiiiiiiiiiiiiiiiieiicciccecccceeee e 898
Flexible Colummn SOTtingcccciviiiiiiiiiiiiiiiiiiii e, 900
GRIDCOLHEADER Propertiescccoevieiieiiiiiiiieiieiceicieecceeeneeieenn 901
Smart Selection of Rows - SELECTOR Controlcccccoviiiiiiiiiiininnn, 904
SELECTOR Propertiesccccevieiuiiiiiiiiiiiicsieecicececie e 906
117 Styling Gridscooviiuiiiiiiiiiiiiiiicc e 909
General HINtscccooiiiiiiiiiiiiiiiii 910
Styling ROWTABLEAREA2, ROWTABLEAREAS3 and Headers 910

Xiv

Natural for Ajax

Natural for Ajax

X Working with TIeescccciiiiiiiiiiiiiiiiiiiii 915
T18 BASICS ..vvieeiiiieiiiicciee e 917
TYPES Of TIEES ..ccvviiiiiiiiiiiiiiiiici 918
When to Use Which Typeccoooooiiiiiiiiiiic 919

119 TREENODES3 in Control Grid (ROWTABLEAREA?2)ccccccovviiiiiiiiiinnne, 921
EXampleoooiiiiiiiiiii 922
Adapter INterfacecooveioiiiiiiiiiiiiie 923
Built-in EVeNtsccooiiiiiiiii 923
Propertiesooiiiiiiiiii 923

120 CLIENTTREEccooiiiiiiiiiiiiccec s 929
EXAMPIE ..coviiiiiiiiic 930
Adapter INterfacecocoioiiiiiiiiiiiii 930
Built-in EVeNtsccccocoiiiiiiiiiiiiiiiii 931
PIOPETties ...oooviiiiiiiiiic 931

XI Working with MenUSccccoiviiiiiiiiiiiiiiiiiiicc 935
121 Types Of MENUScoooviiiiiiiiiiiiccec s 937
122 MENU ..o 939
EXAMPIE ..coviiiiiiciicc 940
Adapter INterfacecocoeoiiiiiiiiiiiiii 941
BUilt-In EVENLS ...cooviiiiiiiiiiiicccccc e 941
PrOpPertiesooiiiiiiiiiic 941

123 DLMENU ..ottt 945
EXAMPIE ..o 946
Adapter INterfacecoceeviiiiiiiiiiiiii 947
Built-in EVeNnts ..o 947
Properties ... 947

124 XCIPOPUPMENU - Enable Context Menusccccceeviiiiiiiiiiiiiiiinininnns 949
EXAMPIE ..coviiiiiiei 951
Adapter INterfacecceeviiiiiiiiiiiiii 952
Built-in EVeNntsccccocciiiiiiiiiii 953
Properties ... 953

125 Styling MENUScoviiiiiiiiiiiiiiccccc e 955
Shared and Unshared Style Classes in Menu Controlsccccoooiiniinnn. 956

XII Non-Visual Controls and Hot Keysccccoviiiiiiiiiiiiiiiiiiiinees 959
126 AUTOCOMPLETEc.cooiiiiiiiiiiiiiiiicc s 961
General Informationccccocciiviiiiiiiiii 962
EXAMPIE ..coviiiiiiciic 963
Data Sources for Populating the Valuesccoccooeiiiiiiiiiiiiniiii. 963
Propertiescooouiiiiiiiiiiiiiic 966

127 TIMER ..ottt 969
EXamPle ..ooooiiiiiiiiiiii 970
Properti€sociiiiiiiiiiii 971

128 XCIDATADEF - Data Definitioncccccooviiiiiiiiiiiiiiiiciccc, 973
EXample ...c.oooiiiiiiiiiii 974
PIoperties ... 977

Natural for Ajax XV

Natural for Ajax

129 XCICONTEXT ..ottt 981
General Informationccccociiiiiiiiiiiiii 982
EXamPle ..o.oooiiiiiiiiiiii 982
Properti€scoiiiiiiiiiiic 983

130 NJX:XCIOPENPOPUPocvviiiiiiiiiiiiiciicciccccc e 985
EXample ...c..oooiiiiiiiiiii 986
Adapter INterfacecocueioiiiiiiiiiiiii e 986

131 NJX:XCILIVINGPOPUP ... 989
EXAMPIE ..ceviiiiiici 990
Adapter INterfacecccoevviiiiiiiiiiiiii 990

132 Extended Hot Key Managementccoceeiiiiiiiiiiniiiciccecc 991
Direct Hot Key Definitions with Certain Controlscccccoceeviiiiiinnnnnen. 992
Hot Key Definitions for Certain Controlscccccooviiiiiiiiiiiiiiiicc, 992

133 Function Key Handlingcccccooiiiiiiiiiiiiiiiiic, 995

134 NJX:OBJECTS ..o 997
General Informationccccooiiiiiiiiiiii 998
EXamPle ...ooiiiiiiiiii 999
Adapter Interface ..o 999

135 NJX:SESSIONPARAMSoooiiiiiiiiiiiiiiiiicicce s 1001
General Informationcccccueeeiiiiniiiiiiiiiicc 1002
EXAMPIE ..ooviiiiiiii 1002
Adapter Interfacecccceeviiiiiiiiiiiiiiii 1003

136 NJX:REQUESTCONTEXToooiiiiiiiiiiiiiiiiiiciici e 1005
General Informationcccoeiiiiiiiiiiiiii 1006
Adapter Interfaceccooioiiiiiiii 1008

137 NJX:TRIGGEREVENToccoiiiiiiiiiiiiiiiiiicc 1009
EXampPlesoooviiiiiiiiiiiiiiii 1010
Adapter Interface ... 1012

XII Working with POP-UPScccccoiuiiiiiiiiiiiiiiiiiiiiiccicceccc e 1013

138 Working with Pop-Upscccooiviiiiiiiiiiie 1015
Browser Pop-Up SUpportccccvviiiiiiiiiiiiiiiiiie 1016
Using Page POp-UpPSccooiiiiiiiiiiiiii e 1017
Special Considerations when using Internet Explorer 11 1018

XIV Working with Workplacescccovviiiiiiiiiiiiiiiiiiiiiic 1021

139 What are Multi Frame Pages?c..cccooiiiiiiiiiiiiic 1023

140 Definition of Multi Frame Pagesccccccevviiiiiiiiiniiiiiiiiiiiicic 1025
MEFPAGE ..o 1026
MEFCISFRAMEccooiiiiiiiiiiiiiiicccc s 1027
MFHTMLEFRAMEociiiiiiiiiiiiiiiiici e 1030
MFFRAMESETooiiiiiiiiiiiiiiiiici s 1031

141 Application Designer Workplace Frameworkcccccccviviiiiiiiiniiniinnnn 1033
Framework OVerviewc.cccccooviiiiiiiiiiiiiiiiiicc 1034
Functions Frame: MEWPFUNCTIONSc.ccocooiiiiiiiiiiiiceccs 1036
Active Functions Frame: MEWPACTIVEFUNCTIONSccccccoviiiinnnen. 1038
Content Frame: MEWPCONTENTc.ccooiiiiiiiiiiiicc, 1039

XVi Natural for Ajax

Natural for Ajax

Filling the MEFWPFUNCTIONS Frame Initially:

MFWPBOOTSTRAPINFOcocoiiiiiiiiiiiiiiiiiiiicicccc 1040
Customizing the MEWPFUNCTIONS Behaviorccccccovviiiiiiiiiiinnnn, 1051
Session Management inside the Workplacec.ccccocoooiiii, 1060
Workplace API for Dynamic Manipulationcccccoccoeiiiiiiiiiinniiniinnn, 1060
142 Creating Your Own Workplace Applicationc.cccovieiiiiiiiiiiniie, 1063
General Informationcccoeiiiiiiiiiiiiiii 1064
Using the Default Workplace Frameworkccccoeoiiiiiiiiiiiinnii, 1064
Customizing the Frames, Dialogs and Messages of the Default Workplace
Frameworkcccooiiiiiiiiiiiiii 1065
Using Your Own Standard Pop-up Dialogs and Messages 1065
Using Your Own Active Functions Frameccccccoeviiiiiiiiin. 1067
143 Multi Language Management in Workplace Applicationsc...c......... 1069
General Informationcccoeciiiiiiiiiiiiiii 1070
Language Switch in Content Pagesccccccovviiiiiiiiiiiiiiiiiiiiiiiics 1071
Language Switch in Function Tree and Activities Panec...c......... 1071
144 NJXXCIWPINFOZ ..o 1073
EXAMPIE ..ot 1074
Adapter INterfaceccociiiiiiiiiiiiiii 1074
145 NJX:XCIWPFUNCTIONSooiiiiiiiiiiiiiccc 1079
EXAMPIE ..ooviiiiiiiii 1080
Adapter Interfaceccoceiviiiiiiiiiiiiii 1080
146 NJXXCIWPACCESS2ooiiiiiiiiiiiiiiiicciic e 1087
EXamPle ..oooiiiiiiiiii e 1088
Adapter Interfacecocooiiiiiiiii 1088
XV Working with PDF DOCUMENLScocoiiiiiiiiiiiiiiiiiiiiiiccieceee e 1091
147 Working with PDF Documentsccccoeciiiiiiiiiiiiiiiiiiiiiiciceccces 1093
General Informationccccoeiiiiiiiiiiiiiii 1094
About the Adapter Listenerccccoeviiiiiiiiiiiiiiiiiiicccecn 1094
EXAMPIE ..oovviiiiiiiiicc 1095
Built-in EVENtScooooiiiiiiiii 1098
Advanced Data Binding and Renderingcccoccoovveviiiiiiiniiiiin, 1098
XVI Working with ICONSccccoooiiiiiiiii, 1103
148 Working wWith ICONScccoiviiiiiiiiiiiiiiiii i 1105
Using OWN ICONSoouviiiiiiiicic 1106
Using Bootstrap ICONScccciiiiiiiiiiiiiiii 1106
Using Bootstrap Icons as Icon Fonts ... 1106
Using Bootstrap Icons as SVG Icon Filescccccoiviiiiiiiniin. 1107
Using SVG from Natural Programscccccoviiiiiiiiiiiiiiiiiiiiicecns 1108
XVII Responsive Page Layout and Controls ..o, 1109
149 Responsive Page Layout and Controlscccoeviiiiiiiiiiiniiiniiiiin, 1111
Creating Responsive Pagesc.cocoviiiiiiiiiiiiiccc 1112
First Steps towards ReSponsivenesscccccoeceevvuiiniiiiiiiniiiiiinieiieceee 1114
Responsive Pagesccoooiiiiiiiiiiii 1115
Responsive CONLIOLSc..ooeuiiiiiiiiiiiiiiieic e 1128

Natural for Ajax Xvii

Natural for Ajax

Responsive CoNtaiNersccccuieiiiiiiiiiiiiiiiiiicccicec e 1180
Responsive GIridsccoeeiiiiiiiiiiiiic e 1201
ReSponsive MENUScooouiiiiiiiiiiiiiiiiciici 1212
Responsive Chart CONntrolsccoocviviiiiiiiiii e, 1218
Responsive Media CONtIOLSccceecuiiiiiiiiiiiiiiiiiiiciccccccc 1232
Controls for Responsive and Non-Responsive Pagescccocceienninnnnne. 1245
Styling a Responsive Pageccccoocuiiiiiiiiiiiiiiiiiiicieiccccccceee 1246

XViii

Natural for Ajax

Preface

This documentation explains how to create rich internet applications which use the Ajax
(Asynchronous JavaScript and XML) technology.

This documentation is organized under the following headings:

Using Natural for Ajax

Introduction

What is Natural for Ajax?

System Requirements

Supported operating systems, application servers and web
containers, browsers, and other prerequisites.

Installation

How to install Natural for Ajax on the supported application
servers and web containers.

Setting Up Your Environment

How to set up Application Designer, your development
environment for Natural, and your runtime environment for
Natural.

First Steps

How to create a “Hello World!” application.

Developing the User Interface

How to develop the user interface using Application Designer.

Developing the Application Code

How to develop the application code using Natural Studio.

Deploying the Application

How to unload and install the Natural modules and user interface
components.

Natural Parameters and System
Variables

Gives an overview of the Natural parameters and system variables
that are evaluated in Natural for Ajax applications and sent to
Application Designer.

Usage of Edit Masks

Describes how Natural for Ajax supports the Natural edit mask
concept.

Multi Language Management

Describes aspects to be considered for internationalization.

Support of Right-to-Left Languages

Describes how Natural for Ajax supports right-to-left languages
and bidirectional text.

Server-Side Scrolling and Sorting

Describes how Natural for Ajax supports the concept of server-side
scrolling and sorting.

Code Pages

Describes how Natural for Ajax supports code pages which only
allow Latin upper-case characters.

Browser Configuration

Describes the browser configuration and how to upgrade your
applications and environments to HTML5.

Timeout Configuration

Describes the configuration of timeouts in Natural for Ajax
applications.

Test Automation of Natural for Ajax
Applications

How to use stable identifiers for automated tests.

XiX

Preface

Application Modernization

How to convert a character-based Natural application to a Natural
for Ajax application.

Web Service for Optimize for
Infrastructure

Describes the installation of the Natural for Ajax web service for
Optimize for Infrastructure.

Page Layout and Control Reference

Typical Page Layout

Describes the elements used for the layout of a page.

Working with Containers

Shows you how to work with containers - containers are areas on
the page that can hold controls.

Working with Controls

Shows you how to work with the elements that are placed into
containers - the controls.

Working with Grids

Explains what grids are and how to use them.

Working with Trees

Explains the basic types of trees and how to use them.

Working with Menus

Shows you how to arrange a number of functions in a structured
way.

Non-Visual Controls and Hot Keys

Describes how to develop controls that do not have visual effects.

Working with Pop-Ups

Describes how to develop pop-up controls.

Working with Workplaces

Deals with applications that organize multiple pages in so-called
workplaces.

Working with PDF Documents

Explains how to create PDF documents for Natural page layouts.

Working with Icons

Explains how to use icons in controls and CSS

Responsive Page Layout and Controls

Explains how to develop your own mobile controls.

| Note: This documentation describes the Application Designer controls that are mapped to

Natural and are verified for the use with Natural. Application Designer controls that are
not contained here have either no mapping to Natural or their usability with Natural is not
verified. The latest version of the Application Designer documentation is available at
https://documentation.softwareag.com/webmethods/application_designer.htm (Empower

login required).

If you want to develop your own custom controls, see Custom Controls.

See also Client Configuration. There, you will learn how to

" start a Natural application from the logon page or with a URL,

" manage the configuration file for the session using the configuration tool,

® modify the style sheet which controls the font, the color and the representation of the PF keys,

" activate the preconfigured security settings of Natural for Ajax and adapt them to your

requirements,

" create your own trust files for a secure connection between the Natural Web 1/O Interface server

and Natural for Ajax,

" enable logging in the case of problems with Natural for Ajax.

XX

Natural for Ajax

https://documentation.softwareag.com/webmethods/application_designer.htm

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Natural for Ajax

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

About this Documentation

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

" Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.
" Access articles, code samples, demos, and tutorials.

= Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

® Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Natural for Ajax 3

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

|

B 2 INEOAUCHION ...ttt e e e et 7
B 3 SySIEM REGUIFEMENLSeiiiiiiii ettt e et e e e e e e ettt e e e e st e e e e raeeee s 11
B A INSHAIATION .o 17
m 5 Setting Up YOUr ENVIFONMENTooiiiiii et 27

2 Introduction

® What is a Rich Internet APPlICAtIONTooiiiiiiiii e 8
= Rich Internet Applications With NatUFalovviiiiiiiiiiiiiie e 8
9

B MIXEd APPLICALIONS ...t

Introduction

Using Natural for Ajax, you can create rich internet applications which use the Ajax (Asynchronous
JavaScript and XML) technology. This enables Natural users on Windows, UNIX and mainframe
platforms to develop and use Natural applications with a browser-based user interface, similar
to GUI desktop applications.

What is a Rich Internet Application?

Classical HTML- and browser-based applications suffer from known disadvantages. The server
responds to each user interaction with a new page. This may lead to long response times and new
rendering in the browser and thus to a discontinuous workflow for the user. The possibilities
offered by DHTML overcome these disadvantages, but they are complicated to use and make it
hard to build a comfortable user interface. The user interface is therefore often simpler and less
comfortable than users are accustomed to from their experience with desktop applications. Although
itis possible to provide complex controls and features like drag-and-drop, this is hard to implement
- especially if compatibility with all commonly used browsers is required. Classical GUI applications
also have the disadvantage that a client component of the application must be installed on each
client machine.

Rich internet applications that use the Ajax technology overcome these disadvantages by combining
the reachability of browser-based applications with the rich user interface of GUI applications.
Software AG provides support for the development of rich internet applications with Application
Designer. Natural for Ajax combines the user interface capabilities of Application Designer with
the application development capabilities of Natural.

Rich Internet Applications with Natural

At runtime, a rich internet application with Natural has the following structure:

® A Natural host session on a Windows, UNIX or mainframe server runs the application code.
Other than with a map application, the application does not deal with user interface issues. It
contains only the application logic and communicates with the user interface layer by sending
and receiving data. The data is displayed in page in a web browser. Events - such as button
clicks - that the user raises in the web browser are passed back to the application code. Along
with an event, the application code receives also the data that the user modified in the web
browser. It processes the event and the data and returns modified data back to the web browser

page.

® Natural for Ajax, which is running on an application server, merges the data received from the
Natural application intoa DHTML page and delivers the page to the web browser. In the inverse
direction, Natural for Ajax forwards events that the user raised in the web browser along with
the modified data to the Natural application.

8 Natural for Ajax

Introduction

A web browser renders the DHTML page. JavaScript code on the page processes local user in-
teraction and exchanges data with Natural for Ajax as needed. It uses Ajax technology to exchange
data with the Natural application in the background without having to re-render the page as a
whole.

At development time, a rich internet application is created with Natural in the following way:

Application Designer is used to develop the user interface layout of a web page and to bind the
controls on the page to data elements in the application. Application Designer is contained in
the Natural for Ajax module running on the application server.

When the user saves the page layout, a Natural module of type “Adapter” is generated. The
adapter serves as an interface between the application code and the page layout. It contains:

" A data structure that describes the data that the Natural application has to deliver to the ap-
plication server in order to populate the web page.

® The Natural code necessary to transfer the data structure to the user interface and to receive
modified data back.

" A code skeleton, in the form of comment lines, that contains handlers for the expected events.
The application programmer can copy this code skeleton into the main program to implement
the event handlers.

Then a main program is implemented that exchanges data with the web page using the adapter
and handles the events. The event handler code has no knowledge of the web page layout, but
operates only on the page data that is sent and received through the adapter.

The navigation between different pages is implemented. A rich internet application navigates
between pages in the same way as a map application would navigate between maps.

Mixed Applications

With the support of Unicode, Natural has introduced the Natural Web I/O Interface which renders
Natural maps in a web browser. Typically, if you are running map-oriented applications and wish
to change them to rich internet applications, you will do this gradually. In certain parts of an ap-
plication, maps might be replaced by rich GUI pages, other parts will possibly be left unchanged.
Therefore, Natural supports running mixed applications which consist of both maps and rich GUI
pages. With maps, the application controls the page layout, and the rendering mechanism therefore
respects the layout information that the application provides. With rich GUI pages, the application
does not control the layout; the layout is controlled by Application Designer. However, for the
users of an application the switch between maps and rich GUI pages is seamless.

Natural for Ajax 9

10

3 System Requirements

m Supported Operating SYSIEMSiiiiii i
m Supported APPlICALION SEIVETSvviiiiiieiiiic e

Natural for UNIX

SupPOrtEd WED CONTAINETS ... i e et e e e e e e a e e e e e e e
SUPPOItEd WED BIOWSETSooviiiiiiieieeeeeeee
= Java ...
Natural for MaINTAMES ...

B NGLUFAL FOr WINAOWS ...t e et e e e e e e ettt a e e e e e e e et raaeeeeaeas
B Natural DEVEIOPMENT SEIVET ..ot e e e e e e
B DEVEIOPMENT CIENLS ©..uviiiiiiii et e et e e e e e e s a e e e e e e e

= |icense Key File

11

System Requirements

Supported Operating Systems

The following operating systems are supported:

Microsoft Windows 10 Professional and Enterprise

Microsoft Windows Server 2016 (x64)

Microsoft Windows Server 2019 (x64)

Oracle Solaris 11

AIX 7.2 64-bit

Red Hat Enterprise Linux 8

SUSE Linux Enterprise Server 12 for AMD64 and Intel EM64T (x86-64)
SUSE Linux Enterprise Server 15

z/OS 2.5

z/0S 2.4

Supported Application Servers

The following application servers are supported. The application servers are not delivered with
Natural for Ajax. They can be obtained from the locations indicated below, according to their re-
spective license terms.

= WildFly 15, 16 and 17 (see http://www.wildfly.org/).
® IBM WebSphere Application Server 8.5 (see hittps://www.ibm.com/support/knowledgecenter/en/).

On z/OS, the following fix packs are required for WebSphere Application Server: 8.5.5.2.
® IBM WebSphere Application Server 9

Supported Web Containers

The following web container is supported. The web container is not delivered with Natural for
Ajax. It can be obtained from the location indicated below, according to its license terms.

® Apache Tomcat 7, 8 and 9 (see http://tomcat.apache.org/).

12 Natural for Ajax

http://www.wildfly.org/
https://www.ibm.com/support/knowledgecenter/en/
http://tomcat.apache.org/

System Requirements

Supported Web Browsers

Supported browsers in this version are:

Internet Explorer 11

Microsoft Edge

Mozilla Firefox Extended Support Release 78
Google Chrome ?

Notes:

@ Only the Extended Support Releases of Mozilla Firefox are explicitly supported. Due to frequent
upgrades of the Mozilla Firefox consumer release, the compatibility of Natural for Ajax with future
versions of Mozilla Firefox cannot be fully guaranteed. Possible incompatibilities will be removed
during the regular maintenance process of Natural for Ajax.

® The Google Chrome support is based on Google Chrome Version 91. Due to frequent version
upgrades of Google Chrome, compatibility of Natural for Ajax with future versions of Google
Chrome cannot be fully guaranteed. Possible incompatibilities will be removed during the regular
maintenance process of Natural for Ajax.

/) Important: Cookies and JavaScript must be enabled in the browser.

Java

Java 8 and Java 11.

Natural for Mainframes

If you want to use Natural for Ajax with Natural for Mainframes, the following must be installed:

® Natural for Mainframes Version 8.2.5 or above, and

= the Natural Web I/O Interface server.
For detailed information, see:

* the Installation documentation which is provided with Natural for Mainframes;

" the section Installing and Configuring the Natural Web I/O Interface Server in the version of the
Natural Web 1/O Interface documentation which is provided for Natural for Mainframes.

Natural for Ajax 13

System Requirements

Natural for UNIX

If you want to use Natural for Ajax with Natural for UNIX, the following must be installed:

= Natural for UNIX Version 9.1.4 or above, and

® the Natural Web I/O Interface server and daemon.
For detailed information, see:

® the Installation documentation which is provided for Natural for UNIX;

* the section Installing and Configuring the Natural Web I/O Interface Server in the version of the
Natural Web 1/0 Interface documentation which is provided for Natural for UNIX.

Natural for Windows

If you want to use Natural for Ajax with Natural for Windows, the following must be installed:

" Natural for Windows Version 9.1.4 or above, and

= the Natural Web I/O Interface server and service.
For detailed information, see:

*® the Installation documentation which is provided for Natural for Windows;

= the section Installing and Configuring the Natural Web 1/O Interface Server in the version of the
Natural Web I/O Interface documentation which is provided for Natural for Windows.

Natural Development Server

The following development servers support the remote development of Natural for Ajax applica-
tions:

® Natural Development Server for Mainframes Version 8.2.5 or above.

® Natural Development Server for UNIX Version 9.1.4 or above.

® Natural Development Server for Windows Version 9.1.4 or above.

14 Natural for Ajax

System Requirements

Development Clients

The following development clients support the remote development of Natural for Ajax applica-
tions:

= NaturalONE Version 9.1.4 or above.

License Key File

A valid license key file is required during the installation. The license key file is an XML file which
is usually supplied along with the product. Alternatively, you can obtain a license key file from
Software AG via your local distributor.

Natural for Ajax 15

16

4 Installation

Installing the Natural for Ajax Distributables with the Software AG Installerccccoceeeiiiiiiii e,
Installing Natural for Ajax on WIIAFIYovviiiiii e
Installing Natural for Ajax on IBM WebSphere Application SErver ..o
Installing Natural for Ajax on Apache TOMCALccoiiiiiiiiiiiii e
Verifying the INSAlIAtioNooiiiii e

17

Installation

Natural for Ajax uses the Software AG Installer, which you download from the Software AG
Empower website at hittps://empower.softwareag.com/, to copy the distributables for the supported
application servers and web containers to your machine. You can then install the distributables
on your application server or web container as described in this chapter. On application servers
and web containers, Natural for Ajax consists of a web application (cisnatural.war).

This chapter provides product-specific instructions for installing Natural for Ajax. It is intended
for use with Using the Software AG Installer. That guide explains how to prepare your machine to
use the Software AG Installer, and how to use the Software AG Installer and Software AG Unin-
staller to install and uninstall your products. The most up-to-date version of Using the Software

AG Installer is always available at https://documentation.softwareag.com/ (Empower login required).

| Note: This chapter does not describe the installation of the additionally required Natural

components on a Windows, UNIX or mainframe host, but refers to the corresponding in-
stallation documents.

For important last-minute information, see the readme file that is provided with Natural for Ajax.
You can find it in the Natural for Ajax product documentation at https://documentation.software-
ag.com/ (Empower login required).

For information on how to activate the preconfigured security settings of Natural for Ajax and
how to adapt them to your requirements, see Confiquring Container-Managed Security in Client
Configuration.

You may find additional technical papers dealing with advanced configuration topics in the
Knowledge Center at https://empower.softwareag.com/ (for registered users only).

Installing the Natural for Ajax Distributables with the Software AG Installer

This section provides just a brief description on how to install the Natural for Ajax distributables
directly on the target machine using the Software AG Installer GUI. For detailed information on
the Software AG Installer, see Using the Software AG Installer.

~ To install the Natural for Ajax distributables

1 Start the Software AG Installer GUI as described in Using the Software AG Installer.

2 When the first page of the Software AG Installer GUI (the so-called Welcome panel) is shown,
choose the Next button repeatedly (and specify all required information on the shown panels
as described in Using the Software AG Installer) until the panel containing the product selection
tree appears. This tree lists the products you have licensed and which can be installed on the
operating system of the machine on which you are installing.

3 Toinstall the Natural for Ajax distributables, expand the Natural Products node and select
Natural for Ajax.

18 Natural for Ajax

https://empower.softwareag.com/
https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://empower.softwareag.com/

Installation

4 Choose the Next button.

5 Read the license agreement, select the check box to agree to the terms of the license agreement,
and choose the Next button.

6 On the last panel, review the list of products and items you have selected for installation. If

the list is correct, choose the Next button to start the installation process.

When the Software AG Installer has completed the installation, you can find the distributables
in the <install-dir>/NaturalAjax/AppServer directory. You can now install them on your
application server or web container as described below.

Installing Natural for Ajax on WildFly

The distributables for WildFly are contained in the directory <instal7-dir>/Natural Ajax/AppServ-
er/WildFly.

The following is assumed:

® <host>is the name of the machine on which WildFly is installed.

" <port> is the name of the port where WildFly is installed. In a default installation, this is port
8080.

® <adminport>is the name of the port where the Administration Console is installed. In a default
installation, this is port 9990.

" <wildfly_home> is the path to the directory in which WildFly is installed.
The following topics are covered below:

= First-time Installation
= Update Installation

First-time Installation

~ To install Natural for Ajax

1 Stop WildFly.

2 Extract the contents of the file cisnatural.war into a new directory <wi1df1y_home>/standalone/de-
ployments/cisnatural.war.

3 Addyour license file to the directory <widf1y_home>/standalone/deployments/cisnatural.war/cis/li-
censekey.

4 Add the following security domain definition in the file standalone.xml, under
<{security-domains>. This file is contained in <application-server-install-dir>/stan-
dalone/configuration.

Natural for Ajax 19

Installation

<security-domain name="NaturalWebIOAndAjaxRealm" cache-type="default">
</security-domain> <«

Start WildFly.

To trigger the actual deployment, create a file named cisnatural.war.dodeploy in <wild-
f1y_home>/standalone/deployments.

Update Installation

~ To update Natural for Ajax

1 Start WildFly.

2 Create a backup copy of your sessions.xml file, which is located in <wi1df1y_home>/standalone/de-
ployments/cisnatural.war/WEB-INF.

3 Create a backup copy of your license file, which is located in <wi1df1y_home>/standalone/de-
ployments/cisnatural.war/cis/licensekey.

4 Create backup copies of all modified configuration files, which are located in <wi7d-
f1y_home>/standalone/deployments/cisnatural.war/cis/config.

5 Create backup copies of previously created projects, which are located in <wi7df1y_home>/stan-
dalone/deployments/cisnatural.war.

6 Open your web browser and enter the following URL:
http://<host>:<adminport>/console
This opens the Administration Console.

7 Select cisnatural.war in the list of installed applications.

8 Choose Remove.

9 Deploy the cisnatural.war file for the new version of Natural for Ajax as in a first-time install-
ation.

10 Restore the files that you have backed up in steps 2, 3, 4 and 5.

11 Open your web browser and enter the following URL:
http://<host>:<port>/cisnatural/index.html

12 Regenerate the HTML pages.
We recommend using the Ant generation script to regenerate the HTML pages. See Generating
HTML Pages Using the Command Line. Alternatively, you can use the Layout Manager and
Style Sheet Editor tools to manually regenerate the files.

20 Natural for Ajax

Installation

Installing Natural for Ajax on IBM WebSphere Application Server

The distributables for IBM WebSphere Application Server are contained in the directory <instal7 -
dir>/Natural Ajax/ AppServer/WebSphere.

Natural for Ajax is installed using the Administration Console of IBM WebSphere Application
Server.

The following is assumed:

® <host> is the name of the machine on which the application server is installed.

" <port>isthe name of the port where the application server is installed. In a default installation,
this is port 9080.

® <adminport>is the name of the port where the Administration Console is installed. In a default
installation, this is port 9060.

The following topics are covered below:

= First-time Installation
= Update Installation

First-time Installation

~ To install Natural for Ajax

1 Make sure the application server is running.

2 Open your web browser and enter the following URL:

http://<host>:<adminport>/ibm/console

This opens the Administration Console.
3 Deploy the web application cisnatural.war.
1. Open the tree node Applications > Application Types > WebSphere enterprise applica-
tions.
On the Enterprise applications page, choose Install.
Select WebSphere/cisnatural.war as the path to the new application. Then choose Next.

Choose Next. If additional information is required, you will be prompted.

A

On the Select installation options page, choose Next. You will then install with the default
options.

Natural for Ajax 21

Installation

6. On the Map modules to servers page, select a cluster and server, select Natural for Ajax
and choose Apply. Then choose Next.

7. On the Map virtual hosts for Web modules page, select a virtual host, select Natural for
Ajax and choose Next.

8. On the Map context roots for Web modules page, enter "cisnatural” as context root and
choose Next.

9. On the Summary page, choose Finish.

10. On the next page, choose Save.

4 Configure the application.
1. Open the tree node Applications > Application Types > WebSphere enterprise applica-
tions.
2. Select cisnatural.war.
3. On the Configuration page, select Class loading and update detection.
4. On the General Properties page, enter a value for Polling interval for updated files (for
example, 300 seconds).
5. On the General Properties page under Class loader order, select Classes loaded with
local class loader first (parent last).
6. On the General Properties page under WAR class loader policy, select Single class loader
for application.
7. Choose OK.
8. On the next page, choose Save.
9. Back on the Enterprise applications page, select cisnatural.war.
10. On the Configuration page under Modules, select Manage Modules.
11. On the Manage Modules page, click the Natural for Ajax link.
12 On the General properties page under Class loader order, select Classes loaded with
local class loader first (parent last).
13. Choose OK.
14. On the next page, choose Save.
5 Deploy the license file.
1. Open the tree node Applications > Application Types > WebSphere enterprise applica-
tions.
2. On the Enterprise applications page, select cisnatural.war and choose Update.
3. On the Preparing for the application update page, choose Replace or add a single file.
22 Natural for Ajax

Installation

® N o @9

In the Specify the path beginning... field, enter "cisnatural.war/cis/licensekey/<7icensekey -
filename>".

In the Specify the path to the file field, browse for your license key file.
Choose Next.
On the Updating application page, choose OK.

On the next page, choose Save.

6 Start the application.

1.

2.

Open the tree node Applications > Application Types > WebSphere enterprise applica-
tions.

On the Enterprise applications page, select cisnatural.war and choose Start.

Update Installation

~ To update Natural for Ajax

1 Create a backup copy of the Natural for Ajax application and the contained user projects.

1.

Open the tree node Applications > Application Types > WebSphere enterprise applica-
tions.

. On the Enterprise applications page, select cisnatural.war and choose Export. The applic-

ation is exported as the file cisnatural_war.ear.

. On the Export Application EAR files page, choose cisnatural_war.ear to download it from

the application server.

. Extract the web application cisnatural.war from the exported archive.

2 Copy user projects and modified configuration files from the exported old version of cisnatur-
al.war to the new version.

1.
2.
3.

Unpack the exported old cisnatural.war using a zip tool.
Unpack the new cisnatural.war using a zip tool.

Copy the sessions.xml file, which is located in cisnatural.war/WEB-INF, from the old version
to the new version.

. Copy the license file, which is located in cisnatural.war/cis/licensekey, from the old cisnatur-

al.war to the new cisnatural.war.

. Copy all modified configuration files, which are located in cisnatural.war/cis/config, from

the old cisnatural.war to the new cisnatural.war.

Natural for Ajax 23

Installation

6. Copy all user projects, which are located in cisnatural.war, from the old cisnatural.war to the
new cisnatural.war.

7. Repack the new cisnatural.war to a web application using a zip tool.

3 Uninstall the old version of Natural for Ajax.

1. Open the tree node Applications > Application Types > WebSphere enterprise applica-
tions.
2. On the Enterprise applications page, select cisnatural.war and choose Uninstall.

3. On the Uninstall Application page, choose OK.

4. On the next page, choose Save.

4 Install the new version of Natural for Ajax as in a first installation.

Installing Natural for Ajax on Apache Tomcat

The distributables for Apache Tomcat are contained in the directory <install-dir>/NaturalA-
jax/AppServer/lomcat.

Natural for Ajax is installed using the Tomcat Manager.
The following is assumed:

® <host> is the name of the machine on which Apache Tomcat is installed.

" <port> is the name of the port where Apache Tomcat is installed. In a default installation, this
is port 8080.

" <tomcat>is the path to the directory in which Apache Tomcat is installed.

| Note: In Apache Tomcat 7 and 8, the Tomcat Manager limits the size of a web application

to be deployed by default to 50MB. Before installing on Apache Tomcat 7 or 8, increase the
values of <max-file-size>and <max-request-size> in the configuration file <tom-
cat>/webapps/manager/WEB-INF/web.xml to at least SOMB.

The following topics are covered below:

= First-time Installation

24 Natural for Ajax

Installation

= Update Installation

First-time Installation

~ To install Natural for Ajax

1
2

Start Apache Tomcat.

Open your web browser and enter the following URL:
http://<host>:<port>/manager/html

This opens the Tomcat Manager.

Deploy the web application file cisnatural.war:

® Under Select WAR file to upload select the path to the file cisnatural.war.
® Choose Deploy.

Copy the license file into the directory <tomcat>/webapps/cisnatural/cis/licensekey (you have to
create the directory if it does not yet exist).

In the Tomcat Manager, look for the application Natural for Ajax and choose Reload.

Update Installation

~ To update Natural for Ajax

1
2

Shut down Apache Tomcat.

Create a backup copy of your sessions.xml file, which is located in <tomcat>/webapps/cisnatur-
al/WEB-INF.

Create a backup copy of your license file, which is located in <tomca t >/webapps/cisnatural/cis/li-
censekey.

Create backup copies of all modified configuration files, which are located in <tom-
cat>/webapps/cisnatural/cis/config.

Create backup copies of previously created projects, which are located in <tom-
cat>/webapps/cisnatural.

Start Apache Tomcat.

Open your web browser and enter the following URL:

http://<host>:<port>/manager/html

This opens the Tomcat Manager.

Select cisnatural.war in the list of installed applications.

Natural for Ajax 25

Installation

10
11
12
13
14

15

Choose Undeploy.

Deploy the new version of Natural for Ajax as in a first-time installation.
Shut down Apache Tomcat.

Restore the files that you have backed up in steps 2, 3, 4 and 5.

Start Apache Tomcat.

Open your web browser and enter the following URL:

http://<host>:<port>/cisnatural/index.html

Regenerate the HTML pages.

We recommend using the Ant generation script to regenerate the HTML pages. See Generating
HTML Pages Using the Command Line. Alternatively, you can use the Layout Manager and
Style Sheet Editor tools to manually regenerate the files.

Verifying the Installation

It is assumed that http://<host>:<port>is the URL of your application server or web container.

~ To verify the installation

1 Enter the following URL in your web browser:
http://<host>:<port>/cisnatural/index.html
This opens a page from where you can access the logon page, the development workplace
and the configuration tool.

2 Click on the link for the logon page.
This opens the Natural logon page. The installation is now complete.

26 Natural for Ajax

5 Setting Up Your Environment

B Setting Up ApPlICAtION DESIGNETvviieeeeei ittt e e e e e e e e e
= Setting Up Your Development Environment for Naturalooooiiiiiiiiiiiiii e
= Setting Up Your Runtime Environment for Naturalcccvvviiiiiiiiii e

27

Setting Up Your Environment

Before you start developing and executing Natural for Ajax applications, you have to make specific
definitions in your environment.

Setting Up Application Designer

Currently, there is nothing to configure for Natural pages.

Setting Up Your Development Environment for Natural

If you are practicing remote development with Natural's Single Point of Development (SPoD), a
Natural Development Server must be installed and activated on the remote machine.

* Mainframe
When your Natural Development Server is located on a mainframe, see the Natural Development
Server documentation.

* UNIX
When your Natural Development Server is located on UNIX, see Activating the Natural Develop-
ment Server on UNIX in the Installation documentation which is provided with Natural for UNIX.

* Windows
When your Natural Development Server is located on Windows, the Web 1/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural.
See the Installation documentation which is provided with Natural for Windows.

~ To set up Natural Studio

1 Ask your administrator for the host name and the port number of the Natural Development
Server.

2 Connect to the Natural Development Server. See Accessing a Remote Development Environment
in the Remote Development Using SPoD documentation which is provided with Natural for
Windows.

3 Itisrecommended that you create a new Natural library for each Application Designer project.

28 Natural for Ajax

Setting Up Your Environment

Setting Up Your Runtime Environment for Natural

The following must be installed on the remote machine where you are going to test and execute
the Natural code:

* Mainframe
When your Natural Development Server is located on a mainframe, the Natural Web I/O Interface
server must be installed and started. For detailed information, see Installing and Configuring the
Natural Web 1/O Interface Server in the Natural Web I/O Interface documentation which is provided
for Natural for Mainframes.

= UNIX
On UNIX, the Natural Web I/O Interface server is implemented as a daemon.

When your Natural Development Server is located on UNIX, the Natural Web I/O Interface
daemon must be installed and activated. For detailed information, see Installing and Configuring
the Natural Web I/O Interface Server in the Natural Web 1/O Interface documentation which is
provided for Natural for UNIX.

" Windows

On Windows, the Natural Web I/O Interface server is implemented as a service.

When your Natural Development Server is located on Windows, the Web 1/O Interface service
option, which can be set with the setup type Custom, must be selected when installing Natural
Runtime. See the Installation documentation which is provided with Natural for Windows.

See also Installing and Configuring the Natural Web 1/O Interface Server in the Natural Web 1/0 In-
terface documentation which is provided for Natural for Windows.

~ To set up the runtime environment for Natural for Mainframes

1 Askyour administrator for the host name and the port number of the Natural Web I/O Interface
server.

2 Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Client Configuration documentation.

3 Add anew session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number |The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Natural for Ajax 29

Setting Up Your Environment

In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name and port number) that match your environment. Remove the
dummy setting for the application (which is "script-name").

Then you will be able to execute the examples from the logon page.

Restart the application server.

~ To set up the runtime environment for Natural for UNIX

Ask your administrator for the host name and the port number of the Natural Web I/O Interface
server and the name of the script that is used to start up Natural sessions. A sample shell
script for starting up Natural (nwo.sh) is delivered with Natural for UNIX; see also nwo.sh -
Shell Script for Starting Natural in the Natural Web I/O Interface documentation.

Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Client Configuration documentation.

Add a new session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number |The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Application |The name of the script that is used to start up Natural sessions. Enter the value that you
have received from your administrator.

In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Edit this session and enter the settings (host name, port number and the name of the Natural
startup script) that match your environment. Then you will be able to execute the examples
from the logon page.

Restart the application server.

30

Natural for Ajax

Setting Up Your Environment

~ To set up the runtime environment for Natural for Windows

1 Askyour administrator for the host name and the port number of the Natural Web I/O Interface
server and the name of the batch file that is used to start up Natural sessions. A sample batch
file for starting up Natural (nwo.bat) is delivered with Natural for Windows; see also Batch
File for Starting Natural in the Natural Web I/O Interface documentation.

2 Invoke the configuration tool which is used for managing the session configurations in the
file sessions.xml. See Using the Configuration Tool in the Client Configuration documentation.

3 Add anew session with the following settings:

Option Description

Session ID |Enter the name that is to be available for selection in the logon page.

Host name |The host name of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Port number |The port number of the Natural Web I/O Interface server. Enter the value that you have
received from your administrator.

Application |The name of the batch file that is used to start up Natural sessions. Enter the value that
you have received from your administrator.

4 In the configuration file, there is a preconfigured session with the name "Natural for Ajax
Examples". It contains dummy settings for the host name, port number and application. This
session is intended to start the Natural for Ajax examples that are delivered with Natural in
the library SYSEXNJX.

Enter the settings (host name, port number and the name of the Natural startup batch file)
that match your environment. Then you will be able to execute the examples from the logon

page.

5 Restart the application server.

Natural for Ajax 31

32

I I First Steps

This part is organized under the following headings:

About this Tutorial

Starting the Development Workplace

Creating a Project

Getting Started with the Layout Painter

Writing the GUI Layout

Setting Up Your Development and Runtime Environment for Natural
Creating the Natural Code

Some Background Information

It is important that you work through the exercises in the same sequence as they appear in this

tutorial. Problems may occur if you skip an exercise.

33

34

6 About this Tutorial

This tutorial provides an introduction to working with Natural for Ajax. It explains how to create
a “Hello World!” application. This covers all basic steps you have to perform when creating pages
with Natural for Ajax: you create a layout file, you create an adapter and a main program, and
you run the application.

When you have completed all steps of this tutorial, the page for your “Hello World!” application
will look as follows:

35

About this Tutorial

(Preview &
‘Hello World! X

Say Hello

Input Area -
Your Marme | |
‘output Area
Result | |

Input your name and press the 'Say Hello' button,

Your application will act in the following way: When you enter a name in the Your Name field
and choose the Say Hello button, the Result field displays "Hello World" and the name you have
entered.

To reach this goal, you will proceed as follows:

1. You will first create a new Application Designer project.

2. You will then use Application Designer's Layout Painter to create the following layout:

36 Natural for Ajax

About this Tutorial

--[m@] natpage
- titlebar (Hello World!)
- header
= button {Say Hello)
-] pagebody
=FIID0tr
++ hdist (100%)
= icon
- rowarea (Input Area)

—Haa2 ifr
A label (Your Name, 100)
[field (name, 200)
=" rowarea (Output Area)

—H=a2 jfr
A label (Result, 100)
[field (result, 200)
1 wvdist (100)

=PIl it
A label {Input your name and press the 'Say Hello' button.)

[statusbar
This corresponds to the following XML layout:

<?xml version="1.0" encoding="UTF-8"7>
<natpage natsource="HELLO-A" natsinglebyte="true" natkcheck="true"
xmins:njx="http://www.softwareag.com/njx/njxMapConverter">
<titlebar name="Hello World!">
</titlebar>
<header withdistance="false">
<pbutton name="Say Hello" method="sayHello">
</button>
<{/header>
<pagebody>
<tr takefullwidth="true">
<hdist width="100%">

</hdist>
<icon image="../cisdemos/images/hello.gif">
</icon>
</itr>
<rowarea name="Input Area">
<Gitr>
<Tabel name="Your Name" width="100">
</label>
<field valueprop="name" width="200">
</field>

Natural for Ajax 37

About this Tutorial

</itr>
</rowarea>
<rowarea name="Qutput Area">
<Gtr>
<label name="Result" width="100">
</label>
<field valueprop="result" width="200" displayonly="true">
</field>
</itr>
</rowarea>
<vdist height="100">
</vdist>
<Gtr>

<label name="Input your name and press the 'Say Hello'
button." asplaintext="true">
</label>
</itr>
<{/pagebody>
<statusbar withdistance="false">
<{/statusbar>
</natpage>

3. When you save your layout for the first time, an intelligent HTML page and the Natural adapter
for this page are generated.

4. Before you can start coding, you have to make specific definitions in your development envir-
onment (this tutorial assumes that you are using Natural Studio as your development environ-
ment).

5. You will import the generated Natural adapter into your Natural library.

6. You will then create the main program which will use the adapter to display the page and which
will handle the events that occur on the page, for example, when you choose the Say Hello
button of your application.

You can now proceed with your first exercise: Starting the Development Workplace.

38 Natural for Ajax

7 Starting the Development Workplace

This tutorial assumes that you have installed Natural for Ajax as described in the Installation
section.

~ To start the development workplace

1 Make sure that your application server is running.

2 Invoke your browser and enter the following URL:
http://<host>:<port>/cisnatural/index.html

where <host> is the name of the machine on which your application server is installed and
<port>is the port number of your application server.

] Note: If you have not defined another port number during installation, the default port

number is "8080".

3 On the resulting page, click the Development Workplace link.

The development workplace is now shown in your browser.

39

Starting the Development Workplace

'. 3
g Development Workplace

0 OE®E

Application Designer

| Tools & Documentation

=] beveloprnent Toals
=] Project Manager
=] Layouwt Manager
= Style Sheet Editor
[=] Language Manager
m Lizeral Translator
=] war Packager
= contral Editar
=] Manitoring
[Layout Check
=] Natural Toals
E Map Converter
=] Map Converter Extension AP
E| Conversion Aules
=] Canversion Logs
= {1 Performancs Tools
H Start/Stop Trace
= Execute Trace
—) Developar Docurments
|:| iInline Documentstion

HTHLBasedEUL

APPLICATION DESIGNER

Lopymght @ 2005 - D008 Softwars AL, Darmstadt, Germany

ani/or Saftware AG USA, Inc., Restan, VA, United States of America,
and/or thewr suppliers.

Al rights reserved,

njzoemos

FjEmapon Y erter

You can now proceed with the next exercise: Creating a Project.

40

Natural for Ajax

8 Creating a Project

In the Application Designer environment, layouts are structured in so-called application projects.
In the development workplace, you see the existing projects on the left. For each project, there is
a tree of layout definitions that you can display when you choose the button containing the project
name. For example:

Tools & Documentation
cisdernos
cisnatural

HTMLE asedGUI

njxdemos

D Mew Layout... —

Refresh View

) Preferences

-1 Lavaouts
=[] {default package)

0-rnenu p
calculator
complexData
ctrlactivex
ctributtonlist
ctrlclienttree
ctrlcombodyn
ctrlcontrolgrid
ctridlimenu -

For this tutorial, you will now create a project with the name "cisnatfirst".

41

Creating a Project

~ To create a project

Choose Tools & Documentation to display the list of development tools.

Choose Project Manager in the tree.

A list of existing application projects is now shown on the right.

Choose the New button which is located below the list of application projects.

The following is now shown:

Create Mew Application Project -
Application Project

Create

Please note: you have to create a context root inside your servlet
engine! The name of the context root is the name of the application
project. In the native Application Designer environment this is done
autornatically by restarting the Server,

Enter "cisnatfirst" as the name of your project and choose the Create button.
Your new project is now shown in the list of existing application projects on the right.

The left side, which shows buttons for all existing projects, now also shows a button for your
new project.

You can now proceed with the next exercise: Getting Started with the Layout Painter.

42

Natural for Ajax

9 Getting Started with the Layout Painter

= Creating a New Layout

= Elements of the Layout PaiNter SCrEENcovviiiiiii e

= Previewing the Layout
= Viewing the XML Code

43

Getting Started with the Layout Painter

The Layout Painter, which can be accessed from the development workplace, is used to write the
page layout. This is an Application Designer application itself.

Creating a New Layout

You will now create a layout which is stored in the project you have previously created.

~ To choose a layout template

1 Choose the button for the project cisnatfirst.

The list of layout nodes inside the tree will be empty at the beginning:

cisnatfirst

[Mew Layout..,
Refresh Wiew
{7 Preferences
-] Layouts
- [C]idefault package)

2 Choose New Layout... in the tree.

The following dialog appears.

44 Natural for Ajax

Getting Started with the Layout Painter

hewl.xml

-- Webpage Dialog

Login online Help | | Absence Invo
Page Popup Request
< | iy
HTML Page Workplace WSDL Page atural Page PDF tpu ip
3 Enter "helloworld.xml" in the Name text box.
This is the name of your layout definition.
4 Select the Natural Page tab at the bottom of the dialog.
a -- Webpage Dialog | x|
Mame hellowaorld.xml

[0 Natural || & Natural
Map Converker
HTML Page Workplace WSDL Page HNatural Page PDF Qutpu qp

5 Select the template for the Natural page (when you move the mouse over this template, the

tool tip "Natural Page" appears).

Natural for Ajax

45

Getting Started with the Layout Painter

The main screen of the Layout Painter appears:

Layout: hellovsarld. xml X

Horme Edit Insart Tonls Extensions EJ I Lﬁ.'

|_: Hew Form ™ C Cpen ¥ Pratocal = Lag AML Schema (H50)

L:-_' Save As T Server Log ¥ Preferences ™
File Ly Configuration
R = Controls
- Page
- [natpage —m— .
+ T titlebar (Mew Matural Page) = T
= '—: header = Page Header
* | pagebody = Page Body
[.] statushar [status Bar
Kl J_l = pouble Line Manu
Tt 4 7 Shrip Salection
P
Properties 5 Tab Strip Selecion
7 Tab seladion
% Timer
L Internal Popup Pag
Caontainar
Corntrols
Grids/Trees
‘Web 2.0 f/ Mashup
Advancad
_l Hatural Extensions
1p Warkplace

Note: The file helloworld.xml is stored in the /xml directory of your project.
yory proj

Elements of the Layout Painter Screen

The Layout Painter screen is divided into several areas:

* Layout Area (left side)
This area consists of a layout tree and a properties area.

The layout tree contains the controls that represent the XML layout definition. You drag these
controls from the controls palette into the layout tree. Each node in the layout tree represents
an XML tag.

In the properties area below the layout tree, you specify the properties for the control which is
currently selected in the layout tree.

46 Natural for Ajax

Getting Started with the Layout Painter

" Preview Area (middle)
The preview area shows the HTML page which is created using the controls in the layout area.
This page is refreshed each time, you choose the preview button (see below).

® Controls Palette (right side)
Each control is represented by an icon. A tool tip is provided which appears when you move
the mouse pointer over the control. This tool tip displays the XML tag which will be used in the
XML layout. The palette is structured into sections, where each section represents certain types
of controls.

Previewing the Layout

The layout tree inside the Layout Painter already contains some nodes that were copied from the
template that you chose in the dialog in which you specified the name of the page. To see what
the page looks like, preview the layout as described below.

The preview area is a sensitive area. When you select a control in the preview area (for example,
the title bar), this control is automatically selected in the layout tree.

~ To preview the layout
s Choose the following button which is shown at the top of the Layout Painter.
&

The preview area is updated and you see the page. The page already contains a title bar, a
header containing an Exit button, the page body and a status bar.

Natural for Ajax 47

Getting Started with the Layout Painter

(Preview &
Mew Matural Page &3

Viewing the XML Code

When creating the layout, you can view the currently defined XML code.

> To view the XML code

From the Edit tab of the Layout Painter, choose XML.

A dialog box appears. At this stage of the tutorial, it contains the following XML layout
definition for the nodes which were copied from the template.

<?xml version="1.0" encoding="UTF-8"7>
<natpage natsource="HELLO-A" natkcheck="true" natsinglebyte="true"
xmins:njx="http://www.softwareag.com/njx/njxMapConverter">
<titlebar name="New Natural Page">
<{/titlebar>
<header withdistance="false">
<button name="Exit" method="onExit">
</button>
<{/header>
<pagebody>
</pagebody>
{statusbar withdistance="false">

48

Natural for Ajax

Getting Started with the Layout Painter

</statusbar>
</natpage>

You can now proceed with the next exercise: Writing the GUI Layout.

Natural for Ajax 49

50

10 Writing the GUI Layout

= Specifying the Properties for the Natural Pageoooiiiiiiiii e 52
= Specifying @ Name for the Title Baroooiiiiiiii s 53
B UsIiNg the Property EItOr ... 54
= Specifying a Name and Method for the BUtONc.ooiiiiiiiii 56
= Adding the INput and QUIPUL AFBASccoiiiiiiiie e 56
B AQAING T8 IMBGE ..ottt 59
® Adding @ HOMZONTAl DISTANCEuviiiiiiiiii e 60
= Adding an INSEUCIONEI TEXEoeiiiiii e 61
® Adding @ VertiCal DISTANCEviiiiiiiii s 61
B SAVING YOUE LAYOUL ...ttt e et e e e e e et e e e e e e e e st raaeeea e 62

51

Writing the GUI Layout

You will now create the layout for your “Hello World!” application. When you have completed
all exercises in this chapter, the layout should look as shown below and the XML code should be
the same as shown in the section About this Tutorial.

= IE| natpage
-] titlebar {Hello World!)
- header
= button {Say Hello)
-] pagebody
—=FIID0tr
++ hdist (100%)
= icon
=" rowarea (Input Area)
=-IIDtr
A label (Your Name, 100)
[field (name, 200)
- rowarea (Output Area)
—FIIDtr
A label (Result, 100)
[field (result, 200)
1 wdist (100)
=PIl it
A label (Input your name and press the 'Say Hello' button.)

[] statusbar

¢ Tip: Preview the layoutand view the XML code each time you have completed an exercise.

If the system finds some wrong or missing definitions while generating the preview page,
there will be a corresponding message in the status bar. From the Home tab of the Layout
Painter, choose Protocol to get more information about these problems.

Specifying the Properties for the Natural Page

You will now specify the following for the Natural page:

® Name for the Natural Adapter (natsource)
The value in the property natsource defines the name of the adapter. The adapter is a Natural
object that your application will use to communicate with the page. It will be generated when
you save the page layout.

52 Natural for Ajax

Writing the GUI Layout

If you do not specify a value for natsource, the name that you have specified for the layout
(without the extension ".xml") will be used as the name for the Natural adapter. If you want to
use the adapter in a development environment other than NaturalONE, you must make sure
that the resulting name matches the naming conventions for Natural object names.

Handling of Strings (natsinglebyte)

Using the property natsinglebyte, you can specify how the strings displayed on this page are
to be handled in the Natural application. Natural knows two types of strings: Unicode strings
(format U) and code page strings (format A). By default, the strings displayed in web pages are
mapped to Unicode strings in Natural. For this tutorial, you will specify that code page strings
are to be used. Therefore, you will set the property natsinglebyte to "true".

If you do not specify a value for natsinglebyte or when you set it to "false", Unicode strings
will be used.

~ To specify the properties for the Natural page

In the layout tree, select the node natpage.

The properties for this control are now shown in the properties area at the bottom.

Make sure that the following properties are specified:

Property Value

natsinglebyte|true
natsource HELLO-A

Specifying a Name for the Title Bar

You will now specify the string "Hello World!" which is to appear in the title bar of your application.

1

To specify the name for the title bar

In the layout tree, select the node titlebar (New Natural Page).

The properties for this control are now shown in the properties area at the bottom. You can
see the default entry "New Natural Page" for the name property.

Specify the following property:

Natural for Ajax 53

Writing the GUI Layout

Property | Value

name |Hello World!

When you click on the layout tree, the node in the layout tree changes to titlebar (Hello
World!).

| Note: Properties that are left blank are not shown in the XML code.

Using the Property Editor

You can also specify the property values using the Property Editor. In this case, you can access
detailed help information on each property.

~ To use the Property Editor

1 Select the control in the layout tree for which you need help, for example, the titlebar (Hello
World!) node.

_

- IE| natpage
+ | titlebar (Hello warld!)
+ = header
+ | pagebody
| statusbar

< L)
Trdd

2 From the Edit tab of the Layout Painter, choose Property Editor.

The following dialog appears.

54 Natural for Ajax

Writing the GUI Layout

A TITLEBAR -- Web Page Di... [

Basic
Basic properties for this control,

name Hello Warld! | | Basic
Binding

textid e

withclose b

align b

image

helpid

titlestyla A

pixelheight M

straighttext b

closetitle ﬂ

Click onto a name of an property to see a help text

Back || Mext | | | Finish || Cancel

The properties of the control are listed.

3 Click on the name of a property to display detailed information on this property. This inform-
ation is shown below the list of properties.

4 Choose the Finish button to close the dialog.

Any changes you have applied in the dialog will be saved.

Natural for Ajax 95

Writing the GUI Layout

Specifying a Name and Method for the Button

You will now specify the string "Say Hello" which is to appear on the button. And you will specify
the name of the method that is to be invoked when the user chooses this button.

~ To specify the name and the method for the button

1 Inthelayout tree, open the header node.

. Note: By clicking the icon of a node, you hide or expand the node’s subnodes.

You can now see the entry for the button with the default name "Exit".
2 Select the node button (Exit).
3 Specify the following properties:

Property |Value

method|sayHello

name |Say Hello

The method needs to be programmed in the adapter. This will be explained later in this tutorial.

Adding the Input and Output Areas

The input and output areas in this tutorial are created using Row Area controls. These controls
can be found in the Container section of the controls palette.

Each row area will contain an Independent Row control which in turn contains a Label and a
Field control. These controls can be found in the Controls section of the controls palette.

For adding controls to your layout, you drag them from the controls palette onto the corresponding
tree node in the layout tree. This is explained below.

~ To create the input area

1 Open the Container section of the controls palette.

When you move the mouse over a control, a tool tip appears which also displays the control
name which will be used in the XML layout. For example:

56 Natural for Ajax

Writing the GUI Layout

Page

Container

ez Independent Row el

:::: Table Row

#+=+ Harizontal Distance

i Vertical Distance

Foow Area

5 Collpow Area (ROWAREA)
% Row Area With Hea

wH Area Header

Area Bady

2 Drag the Row Area control from the controls palette onto the pagebody node in the layout
tree.

The row area is added as a subnode of the pagebody node. The new subnode is automatically
selected so that you can maintain the properties of the row area directly in the properties area.

3 Specify the following property:

Property | Value

name |Input Area

4 Drag the Independent Row control from the controls palette onto the rowarea (Input Area)
node in the layout tree.

When you drop information into the tree, the system will sometimes respond by offering a
context menu with certain options about where to place the control. In this case, the following
context menu appears.

-] pagebaody
- Add as Subnode

| =ta

f+ Add as preceding Mode
+ Add as subsequent Node

| Note: When you move the mouse outside the context menu, the context menu disap-
pears. The control is not inserted in this case.

5 Choose the Add as Subnode command.

Natural for Ajax o7

Writing the GUI Layout

The control is now inserted below the rowarea (Input Area) node. The new node is shown
as itr.

6 Open the Controls section of the controls palette.

Drag the Label control from the controls palette onto the itr node you have just inserted and
specity the following properties:

Property | Value

name |Your Name

width |100

8 Drag the Field control from the controls palette onto the itr node you have previously inserted.

A context menu appears and you have to specify where to place the control.

-] pagebaody
- rowarea (Input Area)l
&2 Add as first Subnode

_ Bz Add as last Subnode
| stati=oan

9 From the context menu, choose the Add as last Subnode command.

10 Specity the following properties for the field:

Property Value

valueprop|name

width 200

~ To create the output area

m Create the output area in the same way as the input area (add it as the last subnode of the

pagebody node), with the following exceptions:

Row Area
Specify a different value for the following property:

58 Natural for Ajax

Writing the GUI Layout

Property | Value

name |Output Area

Label
Specity a different value for the following property:

Property | Value

name |Result

Field
Specity different values for the following properties:

Property Value

valueprop |result

displayonly|true

| Note: Todisplay the displayonly property, choose the Appearance tab at the bottom

of the properties area. You can then select the required value from a drop-down
list box.

Adding the Image

You will now add the image which is to be shown above the input area. To do so, you will use
the Icon control which can be found in the Controls section of the controls palette.

| Note: The image is provided in Application Designer's /cisdemos/images directory.

- To add the image

1 Drag the Icon control from the controls palette onto the pagebody node in the layout tree.

The icon is added as the last subnode of the pagebody node. It is automatically placed into
an itr (independent row) node.

2 Specify the following property for the icon:

Natural for Ajax 59

Writing the GUI Layout

Property

Value

image

../cisdemos/images/hello.gif

3 Select the itr node containing the icon and choose the following button below the layout tree:

T

The selected node is now moved up so that it appears as the first subnode of the pagebody

node.

4 Specify the following property for the itr node containing the icon:

Property

Value

takefullwidth|true

Adding a

Horizontal Distance

When you preview the layout, you will see that the image you have just added appears centered.

You will now move the image to the right side of the page. To do so, you will use the Horizontal
Distance control which can be found in both the Controls section and the Container section of
the controls palette.

> To add the horizontal distance

1 Drag the Horizontal Distance control from the controls palette onto the itr node containing
the icon.

2 From the resulting context menu, choose the Add as first Subnode command.

The node hdist is inserted into the tree.

3 Specify the following property:

Property

Value

width

100%

60

Natural for Ajax

Writing the GUI Layout

Adding an Instructional Text

You will now enter a text which is to appear below the output area and which tells the user what
to do.

To do so, you will once again use the Independent Row control into which you will insert a Label
control.

. Note: The Independent Row control can be found in both the Controls section and the
Container section of the controls palette.

~ To add the independent row with the label
1 Drag the Independent Row control from the controls palette onto the pagebody node in the
layout tree.

2 From the resulting context menu, choose the Add as last Subnode command.

The node itr is inserted into the tree.

3 Drag the Label control from the controls palette onto the itr node you have just created.

4 Specify the following properties for the label:

Property Value

name Input your name and press the 'Say Hello' button.

asplaintext|true

Note: Go to the Appearance tab to display the property asplaintext.

Adding a Vertical Distance

When you preview the layout, you will see that the text you have just added appears directly below
the output area. You will now move the text 100 pixels to the bottom.

To do so, you will use the Vertical Distance control which can be found in both the Controls
section and the Container section of the controls palette.

> To add the vertical distance

1 Drag the Vertical Distance control from the controls palette onto the itr node containing the
label.

Natural for Ajax 61

Writing the GUI Layout

2 From the resulting context menu, choose the Add as preceding Node command.

The node vdist is inserted into the tree.

3 Specify the following property:

Properties | Value

height |100

Saving Your Layout

If you have not already done so, you should now save your layout.

When you save a layout for the first time, an HTML file is generated (in addition to the XML file)
which is placed into the root directory of your application project. This HTML file is updated each
time you save the layout.

The Natural adapter is also created when you save your layout for the first time. Later in this tu-
torial, you will import this adapter into your Natural library. Your application program will use
the adapter to communicate with the page.

~ To save the layout

= Choose the following button which is shown at the top of the Layout Painter.
=

You can now proceed with the next exercise: Setting Up Your Development and Runtime Environ-
ment for Natural.

62 Natural for Ajax

11 Setting Up Your Development and Runtime Environment

for Natural

Before you start coding, you have to make specific definitions in your Natural environment.

~ To set up your Natural environment

= Setup your Natural development and runtime environment for the required platform as de-
scribed in Setting Up Your Environment previously in this documentation.

This tutorial assumes that you use Natural Studio as your development environment.
Make sure to use the names mentioned below.

* Development Environment
Create a new Natural library with the name CISHELLO.

* Runtime Environment
When you add the new entry to the configuration file, specify "Execute samples" as the
session name:

{session id="Execute samples" trace="false">

"Execute samples" is the entry that will later be available for selection in the logon page.

You can now proceed with the next exercise: Creating the Natural Code.

63

64

12 Creating the Natural Code

= |mporting the Adapter into Natural

= Creating the Main Program

= Testing the Completed Application

65

Creating the Natural Code

Importing the Adapter into Natural

You will now import the generated adapter into Natural to make it available to your application.

When you saved your page layout, Application Designer created the Natural adapter HELLO-A for
your page. This is the name that you have specified earlier in this tutorial. Your application program
will use the adapter to communicate with the page. The adapter has been generated into the fol-
lowing directory:

<installdir>/cisnatfirst/nat

Note: The location of <installdir>depends on your application server environment.

~ To import the adapter

Import the adapter source into the Natural library CISHELLO which you have created earlier
in this tutorial. To do so, use either drag-and-drop or the import function of the SYSMAIN
utility.

The adapter code looks as follows:

* PAGELl: PROTOTYPE --- CREATED BY Application Designer --- /*<R0>>
* PROCESS PAGE USING '"XXXXXXXX' WITH
* NAME RESULT
DEFINE DATA PARAMETER
1 NAME (U) DYNAMIC
1 RESULT (U) DYNAMIC

END-DEFINE
*
PROCESS PAGE U'/cisnatfirst/helloworld" WITH
PARAMETERS

NAME U'name'

VALUE NAME
NAME U'result'
VALUE RESULT

END-PARAMETERS
*
* TODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U'nat:page.end',U'nat:browser.end’
e /* Page closed.
o IGNORE
* VALUE U'sayHello'
2 /* TODO: Implement event code.
w PROCESS PAGE UPDATE FULL
* NONE VALUE

66

Natural for Ajax

Creating the Natural Code

3 /* Unhandled events.
PROCESS PAGE UPDATE
* END-DECIDE

/*/*) END-HANDLER

*

END /*<<RO>

Stow the adapter.

Creating the Main Program

You will now create the main program which uses the adapter to display the page and which
handles its events. The name of the program will be HELLO-P and you will store it in the library
CISHELLO.

This description assumes that you are working with Natural Studio.

~ To create the main program

1
2

Make sure that the library CISHELLO is selected.
From the Object menu, choose New > Program.

Enter a DEFINE DATA statement:

DEFINE DATA LOCAL
END-DEFINE

Import the adapter interface into the DEFINE DATA statement:

Place the cursor in END-DEFINE.

From the Program menu, choose Import.

In the resulting dialog box, select the Adapter option button.
Select the object HELLO-A.

Select all importable data fields.

SRR

Choose the Import button.

The result is your completed DEFINE DATA statement:

Natural for Ajax 67

Creating the Natural Code

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC

END-DEFINE
5 Enter the PROCESS PAGE statement. The statement uses the page adapter to display the page
in the web browser and to pass data to the controls on the page:
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT
6 Initialize the page data. In the page layout definition, the property name has been bound to
the FIELD control with the label Your Name. For the property name, a parameter NAME has
been generated into the parameter data area of the adapter. Thus, in order to preset the FIELD
control, we will preset the variable NAME with the value "Application Designer".
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := 'Application Designer'
PROCESS PAGE USING 'HELLO-A'
WITH NAME RESULT
7 Handle the events that can occur on the page. A template for the event handler code has been
generated as a comment block into the page adapter HELLO-A. List the adapter HELLO-A and
copy this comment block into your main program and terminate the program with an END
statement:
DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := '"Application Designer'
PROCESS PAGE USING '"HELLO-A'
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT
VALUE 'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE
VALUE 'sayHello'
68 Natural for Ajax

Creating the Natural Code

/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

After the page has been displayed, the user raises events on the page by using the controls.
The name of the raised event is then contained in the system variable *PAGE - EVENT. Depending
on the event, the program modifies the page data, resends it to browser with a PROCESS PAGE
UPDATE FULL statement and waits for the next event to occur.

The predefined events nat:page.endand U'nat:browser.end" are raised when the user closes
the page or closes the browser. The event sayHe11o is raised when the user chooses the Say
Hello button. Previously in this tutorial, you have bound the event sayHel10 to this button
while designing the page. The NONE VALUE block should always be defined as above. It contains
the default handling of all events that are not handled explicitly.

8 When the event sayHel10 occurs, we want to display a greeting in the FIELD control with
the label Result. Therefore, we modify the variable RESULT (which is bound to the correspond-
ing FIELD control in the page layout) accordingly before we resend the page data.

DEFINE DATA LOCAL

1 NAME (A) DYNAMIC

1 RESULT (A) DYNAMIC

END-DEFINE

*

NAME := "Application Designer'

PROCESS PAGE USING 'HELLO-A"'

WITH NAME RESULT

*

DECIDE ON FIRST *PAGE-EVENT
VALUE 'nat:page.end',U'nat:browser.end’
/* Page closed.

IGNORE
VALUE 'sayHello'
/* TODO: Implement event code.

COMPRESS 'Hello, ' NAME "!' TO RESULT
PROCESS PAGE UPDATE FULL
NONE VALUE

/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

The main program is now complete.

Natural for Ajax 69

Creating the Natural Code

If you have not yet saved the program, save or stow it now with the name "HELLO-P".

9 Catalog all modules in the library CISHELLO.

Testing the Completed Application

You will now run the application in your web browser and check whether it provides the desired
result.

The generated HTML file helloworld.html (which is updated each time you save your layout) can
be found within the root of your application project, that is in <instal1dir>/cisnatfirst.

This HTML page has some prerequisites concerning the browser workplace in which it is running.
Therefore, it is per se not usable as a directly accessible page but needs to be embedded into a
frame providing a defined set of functions.

It is necessary to logon to Natural before starting an application. Therefore, Natural applications
are started using a logon page.

~ To test the application

1 Enter the following URL inside your browser:
http://localhost:8080/cisnatural/servlet/StartCISPage?PAGEURL=/cisnatural/NatLogon.htm]

The logon page should now appear.

70 Natural for Ajax

Creating the Natural Code

Connection details

Session ID: IExecute Samples LI
Host name: Port;
Llser name: Password:

MHatural application:

Matural parameter:

Language: |Eng|i5h ;l

rChange Password -

Mew password:

Fepeat new
password:

Conneckt

If the logon page is not displayed, check the following:

® URLs are case-sensitive. Double-check your input.

® Check whether the file NatLogon.html is available in the directory cisnatural.

2 Onthelogon page, select the entry Execute samples from the Session ID drop-down list box.
You have prepared this entry earlier in this tutorial when you have set up the runtime envir-
onment.

3 Provide your user ID and password valid for the machine on which the Natural application
will be running.

4 In the Natural application text box, enter the following information, depending on your
Natural platform:

* Natural for Mainframes
Enter the name of the Natural program that is to be started. In our case, this is HELLO-P.

* Natural for UNIX
Enter the name of the UNIX shell script that is used to start Natural. By default, this is
nwo.sh.

* Natural for Windows
Enter the name of the Windows command file (.bat) that is used to start Natural. By default,
this is nwo.bat.

5 In the Natural parameters text box, enter the following information, depending on your
Natural platform:

Natural for Ajax 71

Creating the Natural Code

® Natural for Mainframes
Enter the dynamic Natural profile parameters that are necessary to start your application:

STACK=(LOGON CISHELLO)

| Note: With Natural for Mainframes, is recommended to specify the Natural program

that starts the application in the Natural application text box instead of passing it
with the profile parameter STACK.

* Natural for UNIX and Natural for Windows
Enter the Natural command line that is necessary to start your application:

STACK=(LOGON CISHELLO;HELLO-P)

6 Choose the Connect button.

Your application should be started now.

7 Enter your name and choose the Say Hello button.

The page should now successfully “talk” to your adapter.

Input Area i
Your Name Jo

Output Area i
Result Hello, Jo !

You have now completed this tutorial. See the remaining section of these First Steps for some
background information.

72 Natural for Ajax

13 Some Background Information

= Name Binding between Controls and AdapLercouvviiiiiiii
m Data EXchange at RUNTIME ..ottt e e e e

= Files and their Locations

73

Some Background Information

Name Binding between Controls and Adapter

Which are the critical parts when building the “Hello World!” application?

The NATPAGE control in the layout points to the name of the adapter object (property
natsource).

The FIELD control in the layout points to the property name of the adapter (property valueprop).

The BUTTON control in the layout points to the event sayHel10() of the adapter (property
method).

There is a name binding between the layout definition and its corresponding adapter. This is the
simple and effective approach of the development process: The adapter represents a logical ab-
straction of what the page displays. All layout definitions are kept in the page - all the logic is kept
in the adapter. (Or better: behind the adapter. The adapter itself should only be a facade to the
“real” application logic.)

Data Exchange at Runtime

What happens at runtime?

When the user starts a Natural session from the logon page, the Natural program that the user
specified in the command line is started.

The Natural program executes a PROCESS PAGE statement, using an adapter.

The PROCESS PAGE statement passes the name of the HTML page to be used and the initial page
data to the browser.

The browser displays the page. JavaScript code on the page distributes the initial data to the
controls.

The user provides some input, for example, enters the name. The content change is stored inside
the page. The Natural program is not yet involved.

The user does something which causes a flush of the changes (for example, the user chooses a
button). Therefore, all registered data changes are packaged and are sent through the adapter
to the Natural program, including the information which event has been raised.

The Natural program receives the modified data.
The system variable *PAGE-EVENT receives the name of the raised event.

The event handler in the Natural program modifies the data and resends it to the page using a
PROCESS PAGE UPDATE statement.

And so forth.

74

Natural for Ajax

Some Background Information

With a standard HTTP connection, only the changed content of the screen is passed when operating
on one page. The layout is kept stable in the browser. Consequently, there is no flickering of the
page due to page reloading.

All steps described in the list above are done completely transparent to your adapter; i.e. you do
not have to cope with session management, stream parsing, error management, building up HTML
on the server, etc. You just have to provide an intelligent HTML page by defining it in the Layout
Painter and an adapter object.

Files and their Locations

Have a look at the files created for your “Hello World!” application and take notice of the directory
in which they are located.

All files are located in the directory <installdir>/cisnatural/cisnatfirst. The <installdir>/cisnat-
ural directory is the directory of the web application instance. The <instal1d7ir>/cisnatural/cisnatfirst
directory is the directory that has been created for your new project.

® The XML layout definition is kept in the <instal1dir>/cisnatural/cisnatfirst/xml directory.

® The generated HTML page is kept directly in the project directory. There are possibly also some
other files inside this directory that start with "ZZZZ". These files are temporary files used when
previewing pages inside the Layout Painter.

® The generated Natural adapters are kept in the directory <instal1dir>/cisnatural/cisnatfirst/nat.

® Inthe directory <installdir>/cisnatural/cisnatfirst/accesspath, “access restriction” files are gener-
ated. If you view these files inside a normal text editor (such as Notepad), you see that one file
is maintained for each page; it holds the information about which properties are accessed by
the page.

Natural for Ajax 75

76

I11

= 14 Developing the USEr INEEITACEoioiiiiiiii s 79
= 15 Developing the ApPlICAtioN COOEviiiiiiiiie e 91
= 16 Deploying the APPIICALIONeeiiiiiii e 103
= 17 Natural Parameters and System Variables ..o 111
B 18 Usage Of EAIE MASKSooiiiiiiiiic e e 113
= 19 Multi Language Managementoouuiiiiiiii e 119
= 20 Support of Right-to-Left LanQUAGEScooiuiiiiiiiiiec e 121
= 21 Server-Side Scrolling @nd SOMINGeeiiiiiiie e 123
B 22 COGB PAGES ...ttt 133
B 23 Browser CONfIGUIALIONc.iiiiiiie et e e e et e e e e e e et a e e e e e e 135
m 24 Timeout CONFIGUIALION ... oottt 147
= 25 Test Automation of Natural for Ajax AppliCationsvvviiiiiiiiiiiiie e 151

77

78

14 Developing the User Interface

= Starting the Development WOTKPIACEcooiiiiiiiii e 80
= Creating an Application Designer ProJECtoooiiiiiiiiiii e 81
B Creating @ NAUrAl PAQEooiiiiiii e 81
= Specifying Properties for the Natural Pagecoooiiiiiiiiiiiii s 82
B DESIGNING T8 PAJEviviiiiiiiieieeeee ittt 83
= Binding Properties and MethOdScuuiiiiii e 83
L o oo Yo = = o T | P 84
B VIEWING the PIOTOCOI ...t 84
B SAVING T8 LAYOUL ...ttt 84
B Generating the AaPler ... e 84
B DAta TYPE MAPPING ...ttt ettt e ettt e e e oot e e e e e et e e e e e e aaaaas 85
= Configuration of Page Layout Efrors/Waringscooiiuuriieiiieiii e, 86

79

Developing the User Interface

In the First Steps tutorial, you have developed a small rich internet program step by step. In this
tutorial, you have already performed most of the steps required to develop a rich internet applic-
ation.

The general procedure to develop a rich internet application with Natural for Ajax is as follows:

1. Use Application Designer to design the web pages that form the user interface of your applica-
tion.

2. Generate a Natural adapter for each page (by saving the page). The adapter is a Natural object
that forms the interface between the application code and the web page.

3. Use Natural Studio to write the Natural application programs that contain the business logic
and use adapters to exchange data with the web pages.

In this chapter, the first two steps (design and adapter) are explained in more detail. Step 3 (business
logic) is described in the section Developing the Application Code which also addresses advanced
topics that are not covered in the tutorial.

For detailed information on how to use the Application Designer development workplace, see
Development Workplace in the Application Designer documentation. The latest version of the Ap-
plication Designer documentation is available at hittps://documentation.softwareag.com/webmeth-
ods/application_designer.htm (Empower login required). The information which is provided below
describes the most important differences which pertain to Natural for Ajax.

Starting the Development Workplace

The Application Designer development workplace is the central point for starting tools for layout
development.

~ To start the development workplace
1 Make sure that your application server is running.

2 Invoke your browser and enter the following URL:

http://<host>:<port>/cisnatural/HTMLBasedGUI/workplace/ide.htm]l

where <host> is the name of the machine on which your application server is installed and
<port>is the port number of your application server.

| Note: If you have not defined another port number during installation, the default port

number is "8080".

80 Natural for Ajax

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

Creating an Application Designer Project

First you create an Application Designer project using the Project Manager. The project contains
the layouts of the web pages you design, the files that are generated from the layouts and are re-
quired to run your application and additional files that make your application multi language
capable and supply help information. See also Creating a Project in the tutorial.

] Note: Detailed information on the Project Manager is provided in the Application Designer

documentation at https://documentation.softwareag.com/webmethods/application_design-
er.htm (Empower login required).

All files in your Application Designer project are stored in one directory on the application server
where Natural for Ajax is installed. The name of the directory corresponds to the project name
you have chosen. The location of the directory depends on the application server.

Creating a Natural Page

In order to create the layout of your web pages, you use Application Designer's Layout Painter.

Add a page layout to your project as described in Creating a New Layout in the tutorial (select
the template for the Natural page).

-- Web Page Dialog

MNare mypage.=ml

@ Natural || & Natural

Map Converker

Kl 2

HTML Page Workplace WSDL Page ¥CI Page MNatural Page PDF Output 4 b

] Note: More detailed information on creating a layout is provided in the Application Designer

documentation at https://documentation.softwareag.com/webmethods/application_design-
er.htm (Empower login required).

Natural for Ajax 81

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

Specifying Properties for the Natural Page

In order to specify generation options for the new page, you specify values for certain properties
that are specific for Natural pages.

To define properties, you select the node natpage in the layout tree of the Layout Painter. The
properties for this control are then shown in the properties area at the bottom. When you select
the Natural tab in the properties area, you can see the Natural-specific properties.

_

= |E| natpage
+-] titlebar (New Natural Page)
header
+-= pagebody
[_] statusbar

] e

=

=
P

4=

Properties

natsource
natsinglebyte true
natrecursion

natdc

£ £ X X

natsss
natcy

xmilns:ngx http: /fwewew .soft

2

Bacic MNatural Popup Occupied 4 b

For information on the properties that are available for a Natural page, see NATPAGE.

82 Natural for Ajax

Developing the User Interface

Designing the Page

Design your Natural page by dragging controls and containers from the controls palette onto the
corresponding node in the layout tree or to the HTML preview. This has already been explained
in the section Writing the GUI Layout of the tutorial.

] Note: More detailed information on defining the layout is provided in the Application De-

signer documentation at hittps://documentation.softwareag.com/webmethods/application_de-
signer.htm (Empower login required).

Binding Properties and Methods

Many of the controls you use on your page have properties that can be controlled by the application.
Also the controls can raise events that your application may wish to handle. The next step is
therefore assigning identifiers to each of these properties and events under which your application
can later address them. This procedure is called “binding”.

To get an overview which properties and events are bindable to application variables and events,
select a control in the layout tree and open the Event Editor as described in the Application De-
signer documentation at https://documentation.softwareag.com/webmethods/application_design-
er.htm (Empower login required).

The Event Editor displays only those properties of controls that can be bound to application vari-
ables and events. It indicates also which properties must be bound mandatorily. The usage and
meaning of each of the properties and events is described for each control in the following sections
of this Natural for Ajax documentation:

® Typical Page Layout

® Working with Containers

® Working with Controls

® Working with Grids

® Working with Trees

® Working with Menus

® Non-Visual Controls and Hot Keys

® Working with Workplaces

® Working with PDF Documents

® Working with Icons

As an example for property and event binding, see the following sections in the First Steps tutorial:

Natural for Ajax 83

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

® Using the Property Editor
® Specifying a Name and Method for the Button

Previewing the Layout

To find out how the current layout definitions are rendered on the page, preview the layout as
described in the Application Designer documentation at https://documentation.softwareag.com/web-
methods/application_designer.htm (Empower login required).

Viewing the Protocol

The protocol contains warnings and error messages that might occur while you design and preview
your page. For further information, see the Application Designer documentation at https://docu-
mentation.softwareag.com/webmethods/application_designer.htm (Empower login required).

Saving the Layout

Save the page layout as described in Saving Your Layout in the tutorial.

Other than with Java adapters (which are described in the Application Designer documentation),
you do not use the Code Assistant (which is part of the Layout Painter) to generate adapter code
interactively. For Natural pages the adapter code is generated completely from the page properties
and the property and event bindings that you specified previously. An adapter is generated
automatically when you save the layout for the first time. It is updated each time you save the
layout.

Generating the Adapter

When you save the layout, a Natural adapter is generated according to the following rules:

84 Natural for Ajax

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Developing the User Interface

Location

The adapter is generated into the subdirectory nat of your project directory.

The name of the project directory corresponds to the project name. The location of the directory
depends on the application server. See Creating an Application Designer Project.

Name

The name of the adapter is determined by the properties you have set. See Specifying
Properties for the Natural Page.

Property
identifiers

For each control property that has been bound to an identifier (as described in Binding
Properties and Methods) a parameter in the parameter data area of the adapter is generated.
The identifier is therefore validated against the Natural naming conventions for user-defined
variables and translated to upper-case. If an identifier does not comply to these rules, a
warning is generated into the protocol and as a comment into the adapter code. Additionally,
the name must comply to the naming conventions for XML entities. This means especially
that the name must start with a character.

To achieve uniqueness within 32 characters, the last four characters are (if necessary) replaced
by an underscore, followed by a three-digit number.

Event
identifiers

For each event that can be raised by a control on the page, an event handler skeleton is
generated as a comment into the adapter.

Caution: Some controls raise events whose names are dynamically constructed at runtime.

For these events, no handler skeleton can be generated. The control reference contains
information about these additional events.

The event identifiers are not validated.

Data Type Mapping

Several Application Designer controls have properties for which a data type can be specified. An
example is the FIELD control. It has a valueprop property which can be restricted to a certain data
type. The data type is used at runtime to validate user input. At generation time (that is, when a
Natural adapter is generated for the page), the data type determines the Natural data format of
the corresponding adapter parameter.

The following table lists the data types used in Application Designer and the corresponding Nat-
ural data formats.

Application Designer |Natural

color Aor U (depending on the NATPAGE property natsinglebyte). The string must contain
an RGB value, for instance "#FF0000" for the color red.

date D (YYYYMMDD)

float F4

int 14

long P19

Natural for Ajax

85

Developing the User Interface

Application Designer |Natural

time T (HHIISS)
timestamp T (YYYYMMDDHHIISST)
N n.n Nn.n

P n.n Pn.n

string (default)

A or U dynamic (depending on the NATPAGE property natsinglebyte).

string n Anor Un (depending on the NATPAGE property natsinglebyte).
xs:double F8
xs:byte 11
xs:short 12

Configuration of Page Layout Errors/Warnings

The layout protocol contains the information whether a page layout contains errors or warnings.
What is considered as error or warning can be configured. An invalid XML file or an XML file
from which valid HTML cannot be generated is always treated as an error.

Depending on the problem it often depends on the browser or even the browser version whether
the rendering is still as intended or not. The following default settings are a recommendation. In
case these settings are lowered, it may happen that in some browser versions the rendering is not

as intended.

To provide a better overview, the recommended settings are grouped by the type of problem that
is protocoled. The following problems can be configured:

= Problem Group: Valid Value of Properties

= Problem Group: Data and Event Binding

= Problem Group: Height and Width Properties

= Problem Group: Obligatory and Recommended Properties and Controls
= Problem Group: Container - Control Hierarchy

= Problem Group: Property Combination

= Problem Group: Deprecated Controls and Properties

= Problem Group: FOP Layout Definitions

86

Natural for Ajax

Developing the User Interface

= Problem Group: Runtime Behavior

Problem Group: Valid Value of Properties

Setting Explanation

Invalid or missing integer value |The specified value is not a valid integer value.

Invalid edit mask value The specified edit mask is invalid.

Invalid usage of timestamp type |Datatype timestamp is not supported for all property combinations.

Invalid comma separated list | The property value must be a valid comma separated list.

Invalid hot key value The specified hotkey is not valid.

Invalid property value The specified value is not a valid value for this property.

Problem Group: Data and Event Binding

Setting Explanation

Sample

Missing obligatory data or | A valueprop, method or other mandatory data |VALUEPROP in FIELD
event property property is missing. The impact is that no Natural | control missing.
fields are generated in the adapter.

Missing recommended data |A recommended data property is missing. This can
property have major impacts on the control at runtime.

/-

Possible unintended usage of | When a method is not specified, in many casesa |FLUSHMETHOD in

default event default event

be the intended event or not.

will be triggered at runtime. It might|FIELD control missing.

Problem Group: Height and Width Properties

Setting

Explanation

Missing HEIGHT, WIDTH or LENGTH
properties

HEIGHT, WIDTH or LENGTH property is obligatory for proper
rendering.

Missing recommended HEIGHT, WIDTH
or LENGTH properties

HEIGHT, WIDTH or LENGTH property is recommended for
proper rendering. Missing values might have impacts on the
rendering.

Missing ROWCOUNT in GRIDS

ROWCOUNT is missing in a grid control. This usually has
major impacts on the sizing of the grids.

Recommended TAKEFULLWIDTH or
TAKEFULLHEIGHT missing

Depending on specific property combinations or nesting of
controls, the specification of TAKEFULLWIDTH or
TAKEFULLHEIGHT is recommended.

Natural for Ajax

87

Developing the User Interface

Problem Group: Obligatory and Recommended Properties and Controls

Setting

Explanation

Sample

Missing obligatory property

An obligatory property is missing.

HELPICON control: property
HELPID missing.

Missing recommended
control definition

Sometimes the proper rendering of a
control requires the specification of
another control.

HSPLIT control: 2 SPLITCELL
controls required.

Missing recommended
property

A recommended property is missing.
This might have major rendering impacts.

COLAREA: no NAME, TEXTID or
VALUEPROP specified.

Problem Group: Container - Control Hierarchy

Setting

Explanation

Invalid sub node

A control or container has been specified as sub node of another control or controller.
But this hierarchy is not supported. This problem can only happen if you are not using
Layout Painter as editor.

Problem Group: Property Combination

Setting

Explanation

Sample

Duplicated definition -
design time and runtime

Some properties are supported as design time
properties and as runtime properties. But
specifying the same property as runtime and
as design time property leads to undefined
rendering.

AREA controls: NAME and
TEXTID are set.

Invalid property The specified combination of properties is not |[FIELD control: POPUPPROP is set,
combination supported. but POPUPMETHOD is not set.
Incomplete property Sometimes a property is only supported if |TEXTGRID* controls:
combination also other properties are specified: Supply |WITHGRIDCOLHEADER is

either all or none.

specified, but PROPREFSPROP is
not.

Problem Group: Deprecated Controls and Properties

Setting Explanation Sample
Deprecated A deprecated property has been specified. One impact |PAGEHEIGHTMINUS in
properties might be that it is simply ignored in the currently ROWTABSUBPAGES.
supported browsers.
Deprecated controls |A deprecated control has been specified. One impact |ACTIVEX control.
might be that the corresponding HTML is not supported

88

Natural for Ajax

Developing the User Interface

Setting

Explanation Sample

in all browsers or no longer supported in the current
browsers at all.

Problem Group: FOP Layout Definitions

Setting

Explanation

Missing obligatory properties | An obligatory property in the FOP controls is missing. May have impacts

on the *.pdf generation.

Invalid property value Invalid property value in FOP controls.

Problem Group: Runtime Behavior

Setting

Explanation Example

Possibly reduced performance | All single controls may be specified correctly and still the |Layouts too big.

layout might cause performance issues.

Invalid TABINDEX values Specifying invalid tabindex values confuses the browser | TABINDEX=-10.

and leads to unexpected behavior at runtime.

A

Important: Export your settings and commit them in your version control system together
with the other workspace settings. When creating a new workspace, import your settings.
When upgrading your workspace to a new Natural for Ajax runtime version, your settings
will be taken over automatically.

Natural for Ajax 89

90

15 Developing the Application Code

B MPOMtNG the AQADPIET ... e 92
m Creating the Main PrOGramc..uiiiiiiiie oottt e et e e e e e e e e e et e e e e e s 92
= Structure of the Main PrOGramooiiiiriii e 94
B HaNANG Page EVENLS ... 95
= Built-in Events and User-defined EVENLS ... 95
= Sending Events t0 the USer INterfaceoovviiiiiiii e 96
B USING POP-UP WINGOWS ...ttt nnnnnnen 97
B USING NGLUFAI MBDS ...ttt 98
= Navigating between Pages and Mapscoouuiiiiiiiiiiii e 99
= Using Pages and Maps AEINALIVEIYcoiiiiiiiiiii e 100
= Starting a Natural Application from the LOgon Pageccvviiiiiiiiiiiiiicc e 101
= Starting a Natural Application With @ URLuviiiiiiiiiii e 101

91

Developing the Application Code

Natural for Ajax Tools, which is an optional plug-in for Natural Studio, allows you to use some
of the Natural for Ajax functionality which is described in this chapter directly from within Nat-
ural Studio. For further information, see Natural for Ajax Tools in the Natural Studio Extensions
documentation which is provided for Natural for Windows.

Importing the Adapter

After having generated the adapter, the next step is making it available to your Natural development
project.

As described previously, the adapter code is generated into a directory in your application server
environment.

The following topics are covered below:

= |mporting the Adapter Using Natural Studio
Importing the Adapter Using Natural Studio

It is assumed that your development library is located on a Natural development server and that
you have mapped this development server in Natural Studio.

~ To import the adapter from a remote environment

s Use drag-and-drop.
Or:

Remote UNIX environment only: Use the import function of SYSMAIN.

Creating the Main Program

After you have imported the adapter, you create a program that calls the adapter to display the
page and handles the events that the user raises on the page. This program can be a Natural pro-
gram, subprogram, subroutine or function. We use a Natural program as example.

The adapter already contains the data structure that is required to fill the page. It contains also a
skeleton with the necessary event handlers. You can therefore create a program with event handlers
from an adapter in a few steps.

Open or list the adapter in Natural Studio.

92 Natural for Ajax

Developing the Application Code

* PAGELl: PROTOTYPE --- CREATED BY Application Designer ---

* PROCESS PAGE USING 'XXXXXXXX' WITH
* FIELD1 FIELD2
DEFINE DATA PARAMETER
1 FIELDI (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U'/MyProject/mypage' WITH
PARAMETERS
NAME U'fieldl’
VALUE FIELDI
NAME U'field2'
VALUE FIELDZ2
END-PARAMETERS

*

* TODO: Copy to your calling program and implement.

/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT

* VALUE U'nat:page.end',U'nat:browser.end’

/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
/*/*) END-HANDLER

*

END

Ok X ok o X % o

Create a new program, copy the adapter source into the program and then proceed as follows:

= Remove the comment lines in the header.

® Change DEFINE DATA PARAMETER into DEFINE DATA LOCAL.

= Remove the comment lines that surround the DECIDE block.

= Uncomment the DECIDE block.

Your program should now look as follows:

Replace the PROCESS PAGE statement with a PROCESS PAGE USING operand4 statement, where
operand4 stands for the name of your adapter.

Natural for Ajax

93

Developing the Application Code

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE
VALUE U'onExit'
/* TODO: Implement event code.
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Stow the program with a name of your choice. The resulting program can be executed in a browser
where it displays the page. However, it does not yet do anything useful, because it handles the
incoming events only in a default way and contains no real application logic.

Structure of the Main Program

The main program that displays the page and handles its events has the following general structure:

" A PROCESS PAGE USING statement with the page adapter. The PROCESS PAGE statement displays
the page in the user's web browser and fills it with data. Then, it waits for the user to modify
the data and to raise an event.

= A DECIDE block with a VALUE clause for each event that shall be explictly handled.

" A default event handler for all events that shall not be explicitly handled.
Each event handler does the following;:

" It processes the data the has been returned from the page in the user's web browser.

® It performs a PROCESS PAGE UPDATE FULL statement to re-execute the previous PROCESS PAGE
USING statement with the modified data and to wait for the next event.

The default event handler does not modify the data. It does the following:

® It performs a PROCESS PAGE UPDATE statement to re-execute the previous PROCESS PAGE USING
statement and to wait for the next event.

94 Natural for Ajax

Developing the Application Code

Handling Page Events

When the PROCESS PAGE statement receives an event, the data structure that was passed to the
adapter is filled with the modified data from the page and the system variable *PAGE-EVENT is
filled with the name of the event. Now, the corresponding VALUE clause in the DECIDE statement
is met and the code in the clause is executed.

The application handles the event by processing and modifying the data and resending it to the
page with a PROCESS PAGE UPDATE FULL statement. Alternatively, it uses the PROCESS PAGE UPDATE
statement without the FULL clause in order to resend the original (not modified) data.

Built-in Events and User-defined Events

There are built-in events and user-defined events.

Built-in Events

The following built-in events can be received:

nat:browser.end
This is event is raised whenever the session is terminated by a browser action:
* Closing of the browser.
® Navigation to another page in the browser.

® Programmatic close in a workplace (for example, close all session functions).

In addition, this event is raised in the following cases:
= Timeout of the session.

® Removal of the session with the monitoring tool.

After the event is raised, the Natural session terminates.

nat:page.end
This event is raised when the user closes the page with the Close button in the upper right
corner of the page.

nat:popup.end
This event can be raised when the user closes the pop-up window with the Close button in
the upper right corner of the pop-up window. To activate this event for the current pop-up
window, the property popupendmethod of the NATPAGE control has to be set to "true". The
default of this property is "false". When the property popupendmethod is set to false, the event
nat:page.end is raised when the user closes the pop-up window with the Close button in the
upper right corner of the pop-up window.

Natural for Ajax 95

Developing the Application Code

| Note: When the user closes a pop-up window using the Close button of the TITLEBAR

control, the built-in event nat:page.end is always raised, no matter whether
popupendmethod is set to "true" or not. With the nat:popup.end event, it is possible to
find out that the Close button of the actual pop-up window was clicked (and not the
Close button of a page within the pop-up window).

nat:page.default
This event is sent if the Natural for Ajax client needs to synchronize the data displayed on the
page with the data held in the application. It is usually handled in the default event handler
and just responded with a PROCESS PAGE UPDATE.

Other built-in events can be sent by specific controls. These events are described in the control
reference.

User-defined Events

User-defined events are those events that the user has assigned to controls while designing the
page layout with the Layout Painter. The names of these events are freely chosen by the user. The
meaning of the events is described in the control reference.

Sending Events to the User Interface

The PROCESS PAGE UPDATE statement can be accompanied by a SEND EVENT clause. With the SEND
EVENT clause, the application can trigger certain events on the page when resending the modified
data.

The following events can be sent to the page:

nat:page.message
This event is sent to display a text in the status bar of the page. It has the following parameters:

Name |Format |Value

type |A or U|Sets the icon in the status bar ("S"=success icon, "W"=warning icon, "E"=error icon).

short|A or U|Short text.

Tong |A or U|Long text.

nat:page.valueList
This event is sent to pass values to a FIELD control with value help on request (see also the
description of the FIELD control in the control reference). It has the following parameters:

96 Natural for Ajax

Developing the Application Code

Name [Format |Value

id |A or U|A list of unique text identifiers displayed in the FIELD control with value help. The list
must be separated by semicolon characters.

text|A or U|A list of texts displayed in the FIELD control with value help. The list must be separated
by semicolon characters.

nat:page.xmlDataMode
This event is sent to switch several properties of controls on the page in one call to a predefined
state. The state must be defined in an XML file that is expected at a specific place. See the in-
formation on XML property binding in the Application Designer documentation for further
information.

Name |Format |Value

data|A or U|[Name of the property file to be used.

Using Pop-Up Windows

A rich GUI page can be displayed as a modal pop-up in a separate browser window. A modal
pop-up window can open another modal pop-up window, thus building a window hierarchy. If
a PROCESS PAGE statement and its corresponding event handlers are enclosed within a PROCESS
PAGE MODAL block, the corresponding page is opened as a modal pop-up window.

The application can check the current modal pop-up window level with the system variable
*PAGE-LEVEL. *PAGE-LEVEL = 0 indicates that the application code is currently dealing with the
main browser window. *PAGE-LEVEL > 0 indicates that the application code is dealing with a
modal pop-up window and indicates the number of currently stacked pop-up windows.

In order to modularize the application code, it makes sense to place the code for the handling of
a modal pop-up window and the enclosing PROCESS PAGE MODAL block in a separate Natural
module, for instance, a subprogram. Then the pop-up window can be opened with a CALLNAT
statement and can thus be reused in several places in the application.

Example program MYPAGE - P:

DEFINE DATA LOCAL

1 FIELDI (U) DYNAMIC
1 FIELDZ (U) DYNAMIC
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE-A'

*

DECIDE ON FIRST *PAGE-EVENT

VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.

Natural for Ajax 97

Developing the Application Code

IGNORE
VALUE U'"onPopup'
/* Open a pop-up window with the same fields.
CALLNAT 'MYPOP-N' FIELD1 FIELD?
PROCESS PAGE UPDATE FULL
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Example subprogram MYPOP - N:

DEFINE DATA PARAMETER

1 FIELDI (U) DYNAMIC

1 FIELDZ (U) DYNAMIC

END-DEFINE

*

/* The following page will be opened as pop-up.
PROCESS PAGE MODAL

*

PROCESS PAGE USING 'MYPOP-A'
*

DECIDE ON FIRST *PAGE-EVENT

VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE

NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE

END-DECIDE

*

END-PROCESS

*

END

Using Natural Maps

Rich internet applications written with Natural for Ajax need not only consist of rich GUI pages,
but may also use classical maps. This is especially useful when an application that was originally
written with maps shall only be partly changed to provide a rich GUL In this case the application
can run under Natural for Ajax from the very beginning and can then be “GUlfied” step by step.

98 Natural for Ajax

Developing the Application Code

Navigating between Pages and Maps

Due to the similar structure of programs that use maps and programs that use adapters, it is easy
for an application to leave a page and open a map, and vice versa. For each rich GUI page, you
write a program that displays the page and handles its events. For each map, you write a program
that displays the map and handles its events. In an event handler of the page, you call the program
that handles the map. In an “event handler” of the map, you call the program that handles the

page.

Example for program MYPAGE - P:

DEFINE DATA LOCAL
1 FIELDI (U20)

1 FIELDZ (U20)
END-DEFINE

*

PROCESS PAGE USING 'MYPAGE'
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE
VALUE U'onDisplayMap'
/* Display a Map.
FETCH '"MYMAP-P'
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE

*

END

Example for program MYMAP - P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
SET KEY ALL
INPUT USING MAP 'MYMAP'
*
DECIDE ON FIRST *PF-KEY
VALUE 'PF1'
/* Display a rich GUI page.
FETCH 'MYPAGE-P'
NONE VALUE
REINPUT WITH TEXT

Natural for Ajax 99

Developing the Application Code

'Press PF1 to display rich GUI page.'
END-DECIDE

*

END

Using Pages and Maps Alternatively

An application can also decide at runtime whether to use maps or rich GUI pages, depending on
the capabilities of the user interface. The system variable *BROWSER- 10 lets the application decide
if it is running in a web browser at all. If this is the case, the system variable tells whether the ap-
plication has been started under Natural for Ajax and may thus use both maps and pages, or
whether it has been started under the Natural Web I/O Interface and may thus use only maps.

Example:

DEFINE DATA LOCAL
1 FIELDI (U20)
1 FIELDZ (U20)
END-DEFINE
*
IF *BROWSER-I0 = 'RICHGUI'
/* If we are running under Natural for Ajax,
/* we display a rich GUI page.
PROCESS PAGE USING "'MYPAGE'
DECIDE ON FIRST *PAGE-EVENT
VALUE U'nat:page.end',U'nat:browser.end’
/* Page closed.
IGNORE
NONE VALUE
/* Unhandled events.
PROCESS PAGE UPDATE
END-DECIDE
ELSE
/* Otherwise we display a map.
SET KEY ALL
INPUT USING MAP 'MYMAP'
DECIDE ON FIRST *PF-KEY
VALUE 'PF1°'
/* Map closed.
IGNORE
NONE VALUE
REINPUT WITH TEXT
'Press PF1 to terminate.'
END-DECIDE
END-IF

*

END

100 Natural for Ajax

Developing the Application Code

Starting a Natural Application from the Logon Page

See Starting a Natural Application from the Logon Page in the Client Configuration documentation.

Starting a Natural Application with a URL

See Starting a Natural Application with a URL and Wrapping a Natural for Ajax Application as a Servlet
in the Client Configuration documentation.

Natural for Ajax 101

102

16 Deploying the Application

= Components of a Natural for Ajax APPlICAtIONcooiiiiiiiiiii e 104
= Unloading the Natural MOGUIESooiiiiiii e 104
= [nstalling the Natural MOAUIESoieeiii e 104
= Packaging the User Interface COMPONENTScooiiiiiiiiiiii e 104
= Deploying the User Interface COMPONENESvvviiiiiiiiiiiiiiee e 105
= Packaging and Deployment as @ Web Applicationcoooviiiiiiiii 106
= Generating HTML Pages Using the Command LiNecouvvviiiiiiiiiiiiie e 107

103

Deploying the Application

Components of a Natural for Ajax Application

A Natural for Ajax application consists of two parts that are usually installed on two different
machines.

On one hand, there are Natural modules (adapters, programs, subprograms and other Natural
objects) that are installed on a Natural server. On the other hand, there are page layouts of rich
GUI pages and related files that are installed in a Natural for Ajax environment on an application
server.

Unloading the Natural Modules

The Natural modules that belong to your application are contained in one or several Natural lib-
raries in your Natural development environment. Unload them into a file, using the Object
Handler.

Installing the Natural Modules

In order to install the Natural modules in the production environment, load them with the Object
Handler.

Packaging the User Interface Components

Your web application might contain one or more user interface components.

In production environments it is deeply recommended to always deploy/refresh the whole web
application for consistency.

In development or test environments you sometimes might want to deploy single user interface
components into an already deployed web application. To deploy global files such as custom
controls, which are used by several user interface components or configuration files like the ciscon-
fig.xml file (which is used for the whole web application), you have to use web application deploy-
ment/refreshment as described in the following sections.

User interface components are stored in subdirectories of your web application.

You only need to package those files of your user interface component which are not generation
results. All files which are generation results will be generated by the Natural for Ajax runtime

104 Natural for Ajax

Deploying the Application

during deployment. If you also package files which are generation results, the Natural for Ajax
runtime system will ignore these files.

If you are using NaturalONE, use the ant war deployment wizard to create an ant file which will
package your user interface component(s). To package a user interface component for deployment
without NaturalONE, add all files and subdirectories to an archive using an archiving tool like
WinZip or tar. Do not include the following files and folders:

File Description

<use interfacedir>/*html Generated HTML pages.

<use interfacedir>/wsdl/** Generated data schemas.

{use interfacedir>/nat Generated Natural code

{use interfacedir>/protocol Generated protocol files

<use interfacedir>/styles/<mystylesheet>.css|Style sheet files that are generated from a Natural for
Ajax *.info file

Provide a unique name for the created zip file. This can for example be done by appending date
or timestamp to the file name. Example: <myui>20170501.zip.

Deploying the User Interface Components

In order to deploy the user interface components, simply copy the zip file which you created as
described previously into the _uiupdates folder of your web application, for example: <tomcat -
folder>/webapps/<mywebapp>/_uiupdates/<myui>20170501.zip.

By default the Natural Ajax runtime system will pick up the file every 5 seconds. This value can
be customized with the monitoringthreadinterval parameter. It will deploy it and refresh all
internal caches of the Natural Ajax runtime system. For the example above, deployment and re-
freshing is finished when a file with the name <tomcat folder>/webapps/<mywebapp>/_uiupdates/<my -
ui>20170501/update.result exists. It is important to check the update.result file for errors: Open the
file and look for "Update finished Successfully". If you cannot find this, check the *.protocol files
in the protocol sub folder for errors and/or exceptions.

In case you cannot solve the generation problems via the Layout Painter error marking, you can
switch on the creation of additional log files. See the htm1generatorlog attribute in the Ajax Con-
figuration section.

Natural for Ajax 105

Deploying the Application

Packaging and Deployment as a Web Application

Natural for Ajax is delivered as a web application (.war file). This allows for packaging and deploy-
ing also your own applications (more exactly: the user interface components thereof) as self-con-
tained web applications. The preferred way to create a *.war for your application is to use the ant
war deployment wizard of NaturalONE.

If you are not using NaturalONE:

~ To package your application as a web application

1 Invoke the Application Designer development workplace.

2 In the Development Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose WAR Packager.

3 In the resulting dialog, make sure that the Deployment Scenario tab is selected.

4 Define the generation type by selecting one of the following option buttons: with file system
reference or fully clusterable. See the Application Designer documentation for detailed in-
formation on these generation types.

. Note: The option fully clusterable applies only for web applications written in Java,

not for those written in Natural. This is because a Natural-written application runs on
a Natural server and therefore needs to keep a TCP/IP connection to the server, while
Java applications are executed on the web container itself.

5 If you selected with file system reference, enable the Switch off Design Time check box.
6 Select the Project Selection tab.

7 Select the project directories that you want to include in your web archive. These must be at
least the following;:

Directory Description
cis Application Designer configuration files.
cisnatural Natural for Ajax logon page and related pages.

HTMILBasedGUI|HTML user interface.

images Application Designer image files.

META-INF Standard directory in a web application.

resources Natural Web I/O Interface style sheets and related files.
scripts Natural Web I/O Interface JavaScript files.
WEB-INF Standard directory in a web application.

106 Natural for Ajax

Deploying the Application

In addition, you have to select your own project directories.

8 In the text box WAR File to be created, specify a path and name for the web application to
be created.

9 Choose the Create WAR button.

The web application (.war file) is created.

~ To deploy your application

1 You deploy your web application in the same way as you deployed Natural for Ajax itself
(see Installation).

2 After you have deployed your web application, you can use the configuration tool to specify
the configuration for this specific application. For further information, see Using the Configur-
ation Tool.

Start the configuration tool with the following URL:
http://<host>:<port>/<webcontext>/conf_index.jsp

The logon page of the application can be found here:

http:// <host>:<port>/<webcontext>/serviet/StartCISPage?PAGEURL=/cisnatural/NatLogon.htm]

| Note: <webcontext> denotes the web context of your application. On Apache Tomcat,

this is the name of the .war file, without the extension .war. On IBM WebSphere, this
is the value you specified as the web context during the deployment.

Generating HTML Pages Using the Command Line

You can generate HTML pages using the command line (either single pages or entire projects). If
you do this, you have to reload your web application afterwards or - in a development environment
- use the monitoring tool to refresh the internal caches.

An Ant file named generate.xml is available for this purpose. After the installation, you can find it
in the support/ant directory.

The Ant file has the following major targets:

® info
Shows the syntax of this Ant task.

Natural for Ajax 107

Deploying the Application

" project
Generates all HTML pages for a given project.

" page
Generates a single HTML file for a given page in a project.

" pages
Generates HTML files for given pages in a project.

" style
Generates CSS files for info files in a project

The following call explains the targets with their mandatory and optional parameters:

ant -f generate.xml info
By default, the following log files are written during the HTML generation:

= <Jayout>.protocol files
= HTMLGeneratorWholeDirectory.log
= <Jayout>.log files

<layout>.protocol files

For a layout named mylayout.xm1 a file named mylayout.protocol is created in the protocol subdir-
ectory of the user interface component. It contains the error messages, warning messages and in-
formation messages for the controls in the layout. Open the layout with the Layout Painter Editor
to position at the erroneous controls.

Example

<?xml version="1.0" encoding="utf-8"7>
<pro:protocol xmlns:pro="http://www.softwareag.com/cis/protocol">
<pro:lineitem>

<pro:id>6</pro:id>

<pro:tag>field</pro:tag>

{pro:message>

<pro:severity>Error</pro:severity>

<pro:mtext>Property VALUEPROP is not set</pro:mtext>

<{/pro:message>

<{pro:message>

<pro:severity>Warning</pro:severity>

<pro:mtext>0ne of the properties LENGTH or WIDTH should be set</pro:mtext>
</pro:message>
</pro:lineitem>
<pro:summary errors='1" warnings="'1
<{/pro:protocol>

infos='0" ></pro:summary>

108 Natural for Ajax

Deploying the Application

HTMLGeneratorWholeDirectory.log

When generating all layouts of a user interface component, additionally a file named HTMLGen-
eratorWholeDirectory.log is created in the log subdirectory of the user interface component. It contains
the names of the generated layouts and the information, whether an error occurred.

Example

Starting generation of wpworkplacelanl.xml...
...finished

Starting generation of wpworkplacelanZ.xml...
...Tfinished

Starting generation of xmldatamode.xml...
...Tinished

Starting generation of xmldatamode?2.xml...
...Tinished

227 layouts generated
1 Tayouts with ERROR

<layout>.log files

In addition to the above, you can activate the creation of an individual ./og file for each layout.
This file contains generation details.

To switch on the log file creation, set htmlgeneratorlog="true" in the cisconfig.xml file. Only ac-
tivate this option, if you need to analyze generation problems, as it reduces generation performance.
The additional .log files are created in the log subdirectory of the user interface component. The
htmlgeneratorlog option is described in General cisconfig.xml Parameters of the Ajax Configuration
section.

Natural for Ajax 109

110

17 Natural Parameters and System Variables

The following Natural parameters and system variables are evaluated in Natural for Ajax applic-
ations and sent to Application Designer:

DC

The character assigned to the DC parameter is used in the representation of decimal fields in
Application Designer.

DTFORM

This parameter is used for all date fields in Application Designer pages. In your application,
the date is shown according to the setting of the DTFORM parameter.

EMFM

The value of the EMFM parameter is evaluated for fields in Application Designer pages for which
a dynamic edit mask has been assigned. See also Usage of Edit Masks.

*CURS-FIELD

Identify the operand that represents the value of the control that has the input focus. When the

Natural system function POS is applied to a Natural operand that represents the value of a control,
it yields the identifier of that operand.

*LANGUAGE

Change the language while an application is running. See also Multi Language Management.

M

12

18 Usage of Edit Masks

B GENEral INfOIMAtION ..o e e, 114
m Data Types With Edit MASKSeeeeiiieie e a e 114
B Natural Profile Parameters e 116
= Specifying Edit Masks in LAYOULScoouuriiiiiiiie e 116
B it MASKS At RUNTIME .ot e e et ettt e e 117

13

Usage of Edit Masks

General Information

Natural for Ajax supports a subset of the Natural edit mask concept in order to support output
formatting for most of the commonly used fields.

If edit mask support is specified for a field, the field content is

® rendered according to the edit mask during output, and

® checked for validity against the edit mask during user input.

Due to the nature of data being handled with a Natural for Ajax client, not all of the different
Natural edit mask types make sense. Therefore, only a subset of edit mask types is available for
Natural for Ajax.

Data Types with Edit Masks

In all controls that support the property datatype, edit masks can be specified for the data types
listed in the topics below:

= Edit Masks for Numeric Fields

= Edit Masks for Alphanumeric Fields
= Edit Masks for Date and Time Fields
= Edit Masks for Logical Fields

For detailed information on edit masks, see the Natural documentation for the appropriate platform.
Edit Masks for Numeric Fields

Edit masks for numeric fields can be specified for the following data types:

=N n.n

=P n.n
"int

" long

" float

" xs:double
" Xxs:byte

" xs:short

" xs:decimal

114 Natural for Ajax

Usage of Edit Masks

The full set of Natural numeric edit masks can be applied for these data types.

Edit Masks for Alphanumeric Fields

Edit masks for alphanumeric fields can be specified for the following data type:

string n

The full set of Natural alphanumeric edit masks can be applied for this data type.

Edit Masks for Date and Time Fields

Edit masks for date and time fields can be specified for the following data types:

A

date

time

timestamp (can only be displayed)
xs:date

xs:time

xs:dateTime (can only be displayed)

subset of the Natural edit masks can be applied for these data types.

Edit masks for date fields may contain the following characters:

Character|Usage

DD Day.

/D Day, with zero suppression.

MM Month.

M Month, with zero suppression.

YYYY Year, 4 digits.

YY Year, 2 digits.

Y Year, 1 digit. Must not be used for input fields.

The time in a date/time edit mask may contain the following characters:

Natural for Ajax 115

Usage of Edit Masks

Character Usage

T Tenths of a second.

SS Seconds.

ZS Seconds, with zero suppression.
Il Minutes.

Al Minutes, with zero suppression.
HH Hours.

ZH Hours, with zero suppression.

Edit Masks for Logical Fields

Edit masks for logical fields can be specified for the following data types:

=L

" xs:boolean

The full set of Natural logical edit masks can be applied for these data types.

Natural Profile Parameters

The following Natural profile parameters are evaluated for the edit mask processing of Natural
for Ajax:

= DC
" EMFM

For detailed information on these profile parameters, see the Natural documentation for the ap-
propriate platform.

Specifying Edit Masks in Layouts

An edit mask is added to a specific data type in the following way:

116 Natural for Ajax

Usage of Edit Masks

4 Validation
datatype M4.2
decimaldigits
decimaldigitsprop
digits
digitsprop
editmask *EURZIS.9
spinrangemax
spinrangermin
validation
validationprop

The datatype property of a field is specified (here the numeric type N4.2) and the editmask
property is filled with the proper (here numeric) edit mask.

Edit Masks at Runtime

At runtime, fields with edit masks are processed as follows:

® When a field has an edit mask and when a value is to be displayed in that field, the value is
processed and formatted according to the edit mask and is displayed afterwards.

" When a user enters a value into a field which has an edit mask, the value is validated against
that edit mask and the real value is extracted from the entered value by stripping the irrelevant
portions of the edit mask.

Natural for Ajax 17

118

19 Multi Language Management

The multi language management is responsible for changing the text IDs into strings that are
presented to the user.

There are two translation aspects:

= Allliterals in the GUI definitions of a layout are replaced by strings which are language-specific.
This is based on the multi language management of Application Designer.

| Note: Detailed information on the multi language management is provided in the Applic-

ation Designer documentation at https://documentation.softwareag.com/webmethods/ap-
plication_designer.htm (Empower login required).

* Literals that are contained in your application code are handled with the language management
of Natural.

In a Natural for Ajax application, both language management systems are related by common
language codes. The language codes used are those that are defined for the Natural profile para-
meter ULANG and the system variable * LANGUAGE.

The Application Designer documentation describes how the text files containing the language-
dependent texts are created and maintained (see the information on writing multi language layouts
at the above URL). For a multi-lingual Natural for Ajax application, the names of the directories
that contain the text files should be chosen according to the Natural language codes, for instance
/multilanguage/4 for Spanish texts.

When an application is started from the Natural logon page (see Starting a Natural Application
from the Logon Page), the user can select the language to be used. Depending on the selected
language, the same (Natural) language code is set up both in Application Designer and in the
Natural session, so that both language management systems are then configured to use the same
language.

19

https://documentation.softwareag.com/webmethods/application_designer.htm
https://documentation.softwareag.com/webmethods/application_designer.htm

Multi Language Management

| Note: The language for a session can also be defined in the configuration file sessions.xml,

using the Natural for Ajax configuration tool. See Using the Configuration Tool in the Client
Configuration documentation.

It is also possible to change the language while an application is running. This is done by setting
the Natural system variable *LANGUAGE in the Natural program. Each time this system variable is

changed, Natural for Ajax changes the language code for the web pages when the next update of
the page occurs.

For compatibility with the predefined multi language directories in Application Designer, the
English and German texts need not be stored in /multilanguage/1 and /multilanguage/2, but can be
contained in /multilanguage/en and /multilanguage/de.

See also: Multi Language Management in Workplace Applications.

120 Natural for Ajax

20 Support of Right-to-Left Languages

Natural for Ajax supports right-to-left languages and bidirectional text without specific actions

taken by the application. The browser displays and accepts bidirectional text always in the expected
order.

Applications can use the same page layouts both in left-to-right and in right-to-left screen direction.
To switch the screen direction, the statement SET CONTROL is used as follows:

Statement Description

SET CONTROL 'VON' |Sets the screen direction to right-to-left.

SET CONTROL 'VOFF'|Sets the screen direction to left-to-right.
SET CONTROL 'V

Switches from left-to-right to right-to-left screen direction and vice versa.

121

122

21 Server-Side Scrolling and Sorting

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 124
= Variants of Server-Side Scrolling and SOrtiNGccuviiiiiiiiie e 124
= Controls that Support Server-Side Scrolling and SOMINGvvieiiiiie e 128
= Data Structures for Server-Side Scrolling @and SOMINGvvviiiiiiiiii e 128
= Server-Side Scrolling and SOFNG iN TrEESvvviviiii et 130
= Events for Server-Side Scrolling and SOMINGooiiiiiiiiii e 131

123

Server-Side Scrolling and Sorting

General Information

It is often the case that a web application has to display an arbitrary amount of data in a grid
control, for instance, the records from a database table. In these cases, it is mostly not efficient to
send all data as a whole to the web client. Instead, it will be intended to display a certain amount
of data to begin with and to send more data as the user scrolls through the page. To support this,
the grid controls in Natural for Ajax support the concept of server-side scrolling and sorting.

Variants of Server-Side Scrolling and Sorting

The following graphic illustrates the different types of server-side scrolling and sorting that are
supported by Natural for Ajax.

Web Server
Web Client Matural
(Browser) - | > Ll < > Server
Web333 Matural Maturalsss
for Ajax

With respect to server-side scrolling and sorting, the following options can be used:

® No Server-Side Scrolling and Sorting
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) as a whole.

Advantage: Neither the web server nor the Natural application are involved in the process of
scrolling and sorting. As long as the user only scrolls and sorts, no round trip from the web client
to the web server or to the Natural server is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

124 Natural for Ajax

Server-Side Scrolling and Sorting

® Web Server-Side Scrolling and Sorting (WebSSS)
The Natural application sends the grid data to the web server as a whole. The web server sends
the grid data to the web client (browser) in portions.

Advantage: The Natural application is not involved in the process of scrolling and sorting. As
long as the user only scrolls and sorts, no round trip from the web server to the Natural server
is necessary.

Disadvantage: A round trip between web server and Natural server that is triggered by other
user actions transports the entire grid data.

® Natural Server-Side Scrolling and Sorting (SSS_N)
The Natural application sends the grid data to the web server in portions. The web server sends
the grid data to the web client (browser) in portions.

Advantage: A round trip between web server and Natural application passes only the visible
data portion.

Disadvantage: The Natural application must support the process of scrolling and sorting with
a specific application logic.

The decision between these options will often depend on the expected data volume. The application
can decide dynamically at runtime which option to use.

The following topics show the difference between these three options

= No Server-Side Scrolling and Sorting
= Web Server-Side Scrolling and Sorting
= Natural Server-Side Scrolling and Sorting

No Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of twenty. The Natural application
sends twenty rows and indicates that no further rows are to be expected (SIZE=0).

Web Web
Browser Server

20 [T 20

Matural

Natural for Ajax 125

Server-Side Scrolling and Sorting

Step 2: When you scroll up and down, no server round trips to the web server or to the Natural
application are performed.

Web Web

Natural
Browser Server

Web Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
twenty rows and indicates that no further rows are to be expected (SIZE=0).

Web Web

Browser WebsSs Server Lt

20

Step 2: When you scroll up and down, the web browser requests additional records from the web
server There are no server round trips to Natural.

126 Natural for Ajax

Server-Side Scrolling and Sorting

Web Web

Browser WebSSS Server b

Natural Server-Side Scrolling and Sorting

Step 1: The grid is configured at design time to a row count of five. The Natural application sends
five rows and indicates that further rows are to be expected (SI1ZE=20).

Web Web

Browser [Wehooo Server - > Natural

Step 2: When you scroll up and down, the web browser requests additional records from the web
server. The web server requests additional records from the Natural application.

Web Web

P Natural
Browser Wehsss Server MaturalSss

Natural for Ajax 127

Server-Side Scrolling and Sorting

The Natural application can dynamically decide at runtime which option of server-side scrolling
and sorting it wants to use. This can depend on the number of records contained in a search result.

= If the application does not want to use server-side scrolling and sorting at all, it sends as many
rows to the web browser as the grid is configured to hold, or it sends fewer rows.

= If the application wants to use web server-side scrolling and sorting, it sends all available rows
and sets the SIZE parameter to zero in the data structure that represents the grid in the applica-
tion.

= If the application wants to use Natural server-side scrolling and sorting, it sends only part of
the available rows and indicates in the SIZE parameter how many rows are to be expected alto-
gether.

Controls that Support Server-Side Scrolling and Sorting

The following controls support server-side scrolling and sorting:

TEXTGRIDSSS2
ROWTABLEAREA2
MGDGRID
MOBILE:SIMPLEGRID

| Note: For compatibility reasons with earlier versions of Natural for Ajax, you have to set

the natsss property of NATPAGE to true in order to activate server-side scrolling and
sorting for the controls ROWTABLEAREA2 and MGDGRID. If this property is set to true,
for all instances of these grid controls on a page, the necessary data structures are generated
into the Natural adapter interface.

Data Structures for Server-Side Scrolling and Sorting

If you use the TEXTGRIDSSS2 control or if you use the ROWTABLEAREA2 or MGDGRID control
and have set the property natsss to true for the page, the following additional data structure is
generated into the adapter interface for each instance of these controls. This data structure is used
to control the scroll and sort behavior at runtime.

128 Natural for Ajax

Server-Side Scrolling and Sorting

LINESINFO

ROWCOUNT (I4)

SIZE (I4)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC
TOPINDEX (I4)

N W WM NN

The name of the data structure is derived from the name of the variable that is bound to the grid.
In this example, the variable LINES had been bound to the grid. Therefore, the name LINESINFO
was generated.

With each event that is related to scrolling and sorting, the application receives the information
how many rows it should deliver at least (ROWCOUNT) and the index of the first record to be delivered
(TOPINDEX).

In SORTPROPS, the application receives the information in which sort sequence the records should
be delivered and by which columns the records should be sorted.

On the other hand, the application itself can specify a sort sequence (also using multiple sort cri-
teria) and indicate this sort sequence by filling the structure with the desired sort criteria.

= If web server-side scrolling and sorting is used, the specified sort sequence is automatically
created on the web server.

® If Natural server-side scrolling and sorting is used, the application itself must provide the records
in the specified sort sequence.

® With the TEXTGRIDSSS2 control, the first three specified sort criteria are automatically indicated
in the column headers of the grid.

® With the ROWTABLEAREA2 control, the first specified sort criterion is automatically indicated
in the column headers of the grid. If more sort criteria are to be indicated, the application should
provide custom grid headers.

In SIZE, the application can indicate whether the delivered amount of rows represents all available
data (SIZE=0, no Natural server-side scrolling), or whether there are more rows to come
(SIZE=total-number-of-records, Natural server-side scrolling).

When Natural server-side scrolling is used, the application will, for instance, hold the available
rows (mostly the result of a database search) in an X-array, sort this X-array as requested and de-
liver the requested portion of rows. However, other implementations and optimizations are possible,
depending on the needs and possibilities of the application.

When the application supports the selection of grid items, the application must take care to remem-
ber the selected state of each item when the TOPINDEX changes.

Natural for Ajax 129

Server-Side Scrolling and Sorting

Server-Side Scrolling and Sorting in Trees

The ROWTABLEAREA? control can also be configured as a tree control, where each row represents
a tree node. In this case, the data structure that supports server-side scrolling contains one more
field, DSPINDEXFIRST.

LINESINFO
DSPINDEXFIRST (I4)
ROWCOUNT (I4)

SIZE (I4)

SORTPROPS (1:*)
ASCENDING (L)
PROPNAME (U) DYNAMIC
TOPINDEX (I4)

N W WD N

The need for this additional control field comes from the fact that a tree can contain hidden items.

The rows sent by the Natural application must always start with an item at level one. The addi-
tional field DSPINDEXFIRST is provided because the visible part of the tree can start at a node with
a level greater than one (a subnode). In DSPINDEXFIRST, the application must indicate the index
of the first visible row within the rows sent from Natural.

130 Natural for Ajax

Server-Side Scrolling and Sorting

Example
B
i toptaxt_0 linginfo_o
= childtext_0.0 childlineinfo_
_3 childtext_0.1 childlineinfo_
4 childtext_0.2 childlineinfo_
5 childtext_0.3 childlineinfa_ « |

The top nodes of the tree are open and the user scrolls down as shown below:

™ chidtext 0.2] childineinfo__|
5 childrext_0.3 childlineinfa_
r childtext_0.4 childlineinfo_
T toptext_1 lineinfa_1
8 | childtext_1.0 rhlldllnemfu_j

The Natural application is supposed to send data starting with a top node. In our example, this
is the node named toptext_0. But the first visible child node would be childtext_0.2. This means
that among the sent items, the first three items are hidden. The application sets the value for
DSPINDEXFIRST to "3" when sending the data.

Events for Server-Side Scrolling and Sorting

In order to support server-side scrolling and sorting, an application must handle a number of related
events properly. The events are described with the corresponding controls. Examples on how to
handle the events are provided in the Natural for Ajax demos.

Natural for Ajax 131

132

22 Code Pages

The built-in event names in your Natural for Ajax main program (such as nat:page.end and
nat:browser.end) are usually written in lower case or mixed case. The URL values in your Natural
programs (in controls such as SUBCISPAGE2 and ROWTABSUBPAGES) are usually written in
mixed case. If you have an environment, however, in which you are bound to a code page which
only allows Latin upper-case characters, you need to set the parameter natuppercase="true" in
the cisconfig.xml file. In this case, the built-in events are generated in upper case, and URLs to
Natural for Ajax pages are handled correctly even if they are specified completely in upper case.

Limitations: Since browsers and URLs to web pages are usually case-sensitive, you cannot integrate
all kinds of URLs into your application. For example, it is not possible to integrate an HTML page
which is not a Natural for Ajax page into a Natural for Ajax workplace application using the
NJX:XCIWPACCESS2 control.

A\ Important: Set the parameter natuppercase="true" before you implement your main program

with Natural for Ajax. If you set this parameter after the implemention, you will have to
change all Latin lower-case characters to upper-case manually.

The following shows an implementation of the sample program CTRSUB-P from the Natural for
Ajax demos which runs with natuppercase="true".

) Tip: You often need to use an ampersand (&) as a separator between the parameters in a

URL. The Hebrew code page CP803 does not support the character "&". Therefore, you
need to specify the ampersand in your Natural code as a Unicode character, as shown below.

133

Code Pages

DEFINE DATA LOCAL
1 ARTICLE (U) DYNAMIC
1 INNERPAGE
2 CHANGEINDEX (I4)
2 PAGE (U) DYNAMIC
2 PAGEID (U) DYNAMIC
1 MYCONTEXT
2 SELECTEDARTICLE (U) DYNAMIC
1 MYTITLEPROP (U) DYNAMIC
END-DEFINE

*

INNERPAGE.CHANGEINDEX := 0

*

COMPRESS "/CISNATURAL/NATLOGON.HTML'
UH'0026" "XCIPARAMETERS.NATSESSION=WORKPLACE'
UH'0026" "XCIPARAMETERS.NATPARAMEXT=STACK%3D%28L0GON+SYSEXNIX%3BCTRSBI-P%29"
TO INNERPAGE.PAGE LEAVING NO

INNERPAGE.PAGEID := 'MYID'

INNERPAGE.CHANGEINDEX := INNERPAGE.CHANGEINDEX+1

*

PROCESS PAGE USING "CTRSUB-A"
*
DECIDE ON FIRST *PAGE-EVENT
VALUE U'NAT:PAGE.END', U'NAT:BROWSER.END'
TGNORE
VALUE U'SHOWDETAILS'
MYCONTEXT.SELECTEDARTICLE := ARTICLE
INNERPAGE . CHANGEINDEX := INNERPAGE.CHANGEINDEX + 1
PROCESS PAGE UPDATE FULL
NONE VALUE
PROCESS PAGE UPDATE
END-DECIDE

*

END

134 Natural for Ajax

23 Browser Configuration

B JAvaSCript ENGDING ..o 136
L =0T = O o411 T SO RS PRSP 137
B POP-UP BIOCKET ... 141
= Browser Standards Mode and HTIMLS ... 142
= Mastering Internet EXplorer BrowSer MOUESuuuuuumummuuiiiiiiiiiiiiiiiiniiininnnninnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 145

135

Browser Configuration

JavaScript Enabling

Ajax pages are interactive pages: the interactivity is internally implemented by the usage of
JavaScript inside the pages. As a consequence, JavaScript has to be enabled.

JavaScript enabling is explained below for the following browsers:

= |nternet Explorer
= Mozilla Firefox

Internet Explorer

In Internet Explorer, you enable JavaScript via Tools > Internet Options. On the Security tab of
the resulting dialog box, you can see that Internet Explorer provides different web content zones.

Each zone may have different attributes controlling security-relevant parameters. Make sure that
in the zones in which Ajax pages are available the security settings are set to allow the execution
of JavaScript inside a page.

¥]

Security Settings E]

Settings:

Scripting -
Active scripting B
() Disable
{*) Enable
O Prompk
Allow paste operations via scripk
) Disable
{*) Enable
O Prompk
acripting of Java applets
(") Disable
(%) Enable

o, Promet v

Reset cuskom setkings

Reset to: | Mediunm-low v

Ok l[Cancel]

136 Natural for Ajax

Browser Configuration

Mozilla Firefox

In Mozilla Firefox, JavaScript is switched on and off on a central level.

Open the Content tab of the Options dialog box (Tools > Options) and make sure that the Enable
JavaScript option is enabled. When you choose the Advanced button next to this option, you can
set the following options:

L -

Advanced JavaScript Settings

Alloww scripks to;

[¥]: Move or resize existing windows

Raise ar lower windows

Disable ar replace context menus
Hide the status bar
hange status bar kext

I I, l [Cancel] [Help

Browser Caching

When working with Ajax pages as a client front-end, make sure to set up the browser caching in
such a way that it does not reload a page every time it is accessed by the browser. The reason for
this is, that Ajax HTML pages remain stable in the browser. They do not contain any application
data and are more comparable to small programs. The actual application data is filled into the
pages dynamically at runtime. Also other files like JavaScript files are stable for each Natural Ajax
version. If the browser is not allowed to cache them, the JavaScript files will be reloaded with each
access of an Ajax HTML page.

The following sections contain recommendations on how to optimize browser caching:

= Natural Ajax JavaScript Files

= Ajax HTML Files and Styles

= |mages

= Setting HTTP Headers in web.xml

Natural for Ajax 137

Browser Configuration

= |nternet Explorer
Natural Ajax JavaScript Files

The Natural Ajax JavaScript framework only loads a few JavaScript files. In previous versions of
Natural for Ajax, for different controls single JavaScript files were loaded. Especially with slow
connection lines, the number of files influences the loading time of an Ajax page.

For the Natural JavaScript files it is important to have the correct version of the JavaScript files in
the cache of the browser. The JavaScript files usually change with different Natural for Ajax versions.
It is important to run the pages exactly with the JavaScript file version for which it was generated.
In previous versions of Natural for Ajax the only solutions were:

1. Letting the browser cache the files and then make sure that the browser cache is cleared when
the Natural for Ajax version is upgraded.
2. Instructing the browser to always ask the server if the JavaScript file has changed before using

the cached file — by setting a corresponding HTTP header in the server or the web application.

Both solutions were not optimal. The first solution required the end-users to always make sure
that their cache is cleared. The second solution does not allow for optimal performance because
at least a corresponding server request for the last modified date of the file had to be done.

Instead of the previous approach, Natural for Ajax uses versioned JavaScript for the JavaScript of
the frequently used controls. These files now have the build version of the cisversion.xml.

Example

® ciscentralCIS_Vvrs_YYYYMMDD_HHMM_NJX.Js
® cisbasicCIS_Vvrs_YYYYMMDD_HHMM_NJX.Js
® cisadvancedCIS_Vvrs_YYYYMMDD_HHMM_NJX.js

Where vrs is the Natural for Ajax version used (e.g. 841) and VY YYMMDD and HHMM represent the
date and timestamp.

It is not required to add corresponding HTTP headers to check for newer versions of ciscentral*js,
cisbasic*.js and cisadvance*.js. Every Ajax page will request exactly the JavaScript file for which it
is generated. Browser and server can be configured so that these JavaScript files are cached and
always accessed from the cache without any additional request to the server.

138 Natural for Ajax

Browser Configuration

Ajax HTML Files and Styles

The Ajax HTML files and styles for an Ajax page are generated files from corresponding source
files (*.xml, *.info). During development you may want to reload them whenever the sources are
modified, which can be every few seconds. In a production environment, you usually want to reload
them whenever a new version of your web application is released in your production environment.

In a development environment we recommend to set the HTTP header to:

Cache-Control: max-age=0, must-revalidate

Alternatively, you can opt for not allowing any caching at all:

Cache-Control: no-cache

In a production environment we recommend to set an HTTP header such that the client only
checks the age of these files every hour:

Cache-Control: max-age=3600

This results in all clients being forced to load the new version with a maximum delay of an hour
after upgrading your production environment. You can of course still force reload earlier by
clearing the browser cache manually for test purposes.

Images

In contrast to the Ajax HTML files and styles, images are not generated and usually do not change
so frequently. You might think about allowing an age higher than that granted for the generated
files but in most applications this does not have advantages. The recommendation is to use the
same settings as for the generated files described above.

Setting HTTP Headers in web.xml

The HTTP headers recommended above can be set at different places. They can be set in the con-
figuration files of web applications and web application servers. They can also be set in the web.xml
file and then apply exactly to this web application. The Natural Ajax framework contains a ready
touse HttpHeader filter which you can easily configure in your web.xml file. Search for Ht tpHeader
in the web.xml file and you should find commented configuration tags, which you can use.

Natural for Ajax 139

Browser Configuration

Example

<filter>
{filter-name>HttpHeader</filter-name>
{filter-class>com.softwareag.cis.server.filter.HttpHeaderFilter</filter-class>
<init-param>
<param-name>Cache-Control</param-name>
<param-value>max-age=3600</param-value>
</init-param>
</filter>

<filter-mapping>
<filter-name>HttpHeader</filter-name>
<url-pattern>*.gif</url-pattern>
</filter-mapping>
<filter-mapping>
(filter-name>HttpHeader</filter-name>
<url-pattern>*.jpg</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>HttpHeader</filter-name>
<url-pattern>*.html</url-pattern>
</filter-mapping>

Internet Explorer

Internet Explorer supports to switch off caching via settings in the browser itself. You need to
make sure that the browser is configured so that it allows caching at all.

In Internet Explorer, you set up caching via Tools > Internet Options. On the General tab of the
resulting dialog box, choose the Settings button in the Temporary Internet files group box. The
following dialog box appears:

140 Natural for Ajax

Browser Configuration

e T

Settings E]

‘ Check For newer versions of stored pages:
b
& () Every wisit to the page

{:} Ewery time you skart Inkernet Explorer

I[:]I Mever

Temporary Internet files Folder

Current location: C\Documents and
SettingstGRU.EUR Local
Settings Temporary Internet Files),

Amount of disk space ko use:

J 512 (4] MB

[Move Folder...] [Wiew Files. ., H YWiew Objects., ..]

[(0] 4][Cancel]

Either select the option Automatically or Every time you start Internet Explorer.

Pop-Up Blocker

The default browser setting in most browsers is to block pop-ups.

By default, Natural Ajax pop-ups are opened as page pop-ups, instead of browser pop-ups. See
the attribute usepagepopups in the cisconfig.xmi.

Only some controls like the DATEINPUT controls use browser pop-ups. There is a newer DATEINPUT2
control, which does not use browser pop-ups. If you use controls requiring browser pop-ups in
your application, you need to switch off the browser’s pop-up blocker. You can find the corres-
ponding setting in the Security tab of the browser options.

Natural for Ajax 141

Browser Configuration

Browser Standards Mode and HTML5

= General Information

= Enabling Standards Mode in the Browser

= Upgrading an Application to HTMLS

= Upgrading a Test Environment to HTML5

= Upgrading a Production Environment to HTML5

General Information

Natural for Ajax applications up to version 8.3.4 were running in quirks mode in the browsers,
which does not support HTML5 and CSS3 and which behaves differently in the different browsers.
With Internet Explorer 11, Firefox and Chrome, Natural for Ajax applications now run in standards
mode, which supports HTML5 and CSS3. In standards mode, the browsers should behave as de-
scribed by the W3C HTML and CSS specifications.

The following sections explain what you need to do when switching to standards mode and
HTMLS in the browsers.

Enabling Standards Mode in the Browser
The HTML pages that are generated with Natural for Ajax contain the following declaration:

<!DOCTYPE html>

This tells the browser to run in standards mode. If you have not defined specific configurations
settings in your browser, you do not have to do anything. The browser will automatically use the
correct mode.

Upgrading an Application to HTML5

There are differences between HTML4 and HTMLS5. Page layouts are written in XML and Natural
for Ajax takes care of the correct generation into HTML5. Therefore, you do not need to adapt
anything in your layouts in most cases. You only have to do the following: Regenerate the HTML
of your layout pages and the *.css files of your application.

When using NaturalONE this is automatically done when you rebuild your projects: When
packaging your application as a .war file using a NaturalONE wardeploy.xml file, the HTML and
CSS files are automatically regenerated. The prerequisite for this is a wardeploy.xml file that has
been generated with version 8.3.4 or above.

If you are not using the Natural ONE wardeploy.xml files you can do the regeneration in your Nat-
ural Ajax production or test environments using command line jobs. See Generating HTML Pages
Using the Command Line for details.

142 Natural for Ajax

Browser Configuration

You need to check whether your implementation is HTML5/CSS3-compliant if you are using the
following advanced features:

Style Sheet Settings

Some style settings have changed in CSS3. One major change is that for attributes such as height,
width and padding, a number only is no longer a valid value. The value must now also include a

non

unit such as "px", "em" or "%", or it must be one of the predefined values.

For your *.info files and if your application is using its own *.css files, we recommend that you
check at least whether "px" is properly applied to the corresponding attribute values.

IHTML Controls

In IHTML controls, the Natural programs provide plain HTML at runtime. We recommend that
you check whether this plain HTML is HTML5/CSS3-compliant.

*style and *styleprop Properties

Many controls support propertiessuch as textstyleand textstyleprop to directly set CSS attrib-
utes at design time and/or runtime. In attributes such as height, width and padding, any missing
"px" units are automatically applied by the Natural for Ajax framework. You do not need to take
care of this. In rare cases, you might want to check for attributes which are no longer supported
with CSS3.

Custom Controls

If you have built your own macro controls, changes are usually not required. For custom controls,
however, for which you generate your own HTML, you need to check whether the generated
HTML is HTML5-compliant.

Upgrading a Test Environment to HTMLS5

According to the HTML5 standard, all custom attributes must start with the string "data-". For
this reason, the Natural for Ajax framework generates the attribute data-testtoolid into the
HTML files by default. See also Test Automation of Natural for Ajax Applications.

In earlier versions, this attribute was called testtoolid. In the layout XML, the property name
testtoolidis kept - you need not change any layouts. This is just the default for the attribute in
the HTML which is changed to data-testtoolid. If you are using this attribute in automated
tests, you need to change your tests accordingly.

As an alternative solution, the Natural for Ajax framework still supports the testtoolid attribute.
This allows you to perform the upgrade step by step: You can first upgrade your application
without touching the test suite. When this is stable, you can adapt your test suite. The attribute
testtoolid doesnot adhere to the naming convention of the HTMLS5 specification. Therefore, the

Natural for Ajax 143

Browser Configuration

resulting HTML will not be 100% valid HTMLS5. But the currently supported browsers still accept
this attribute.

If you want the Natural for Ajax framework to generate the attribute testtoolid in the HTML
files instead of the default data-testtoolid, do the following:

1. In the cisconfig.xml file, set the parameter testtoolidhtml4 to "true".
2. Regenerate the HTML files for your layouts.

3. Make sure that your test environment also contains a cisconfig.xml file in which testtoolidhtm14
is set to "true".

Note: There is no guarantee that future browser versions will still tolerate the testtoolid

attribute. You may have to switch to data-testtoolid sooner or later, but you do not have
to do it immediately.

Upgrading a Production Environment to HTML5

If your application needs to support Internet Explorer 10, or if you need to do any compatibility
settings in Internet Explorer to run other applications, you have to add the following entries to
the web.xml file in your production environment:

filter>
<filter-name>BrowserCompatibility</filter-name>
<filter-class>
com.softwareag.cis.server.filter.BrowserCompatibilityFilter
</filter-class>
</filter>
<filter-mapping>
<filter-name>BrowserCompatibility</filter-name>
<url-pattern>*.html</url-pattern>
<servlet-name>StartCISPage</serviet-name>
</filter-mapping>
<filter-mapping>
<filter-name>BrowserCompatibility</filter-name>
{servlet-name>StartDynamicPage</serviet-name>
</filter-mapping>

For an example, see the web.xml file that is shipped with Natural for Ajax.

144 Natural for Ajax

Browser Configuration

Mastering Internet Explorer Browser Modes

= Applications Setting the Required Browser Mode
= Applications not Setting the Required Browser Mode

You are running Internet Explorer 11 (IE11) because it provides up-to-date security. But you have
different applications with different needs regarding the browser mode. IE11 supports all these
browser modes, but someone has to tell the browser which application should run in which mode.

IE 8 IE Edge
Standards IE9 = JE 11
Standard
QIuEirI5<s Standards neeres

NJX
Appli-:fation

Appli Eati o Appliga tion Applications

Internet Explorer 11

Applications Setting the Required Browser Mode

In an ideal world all applications tell IE11 which mode they require and all applications are
rendered correctly. In this case: Do not configure any compatibility settings in your IE11.

Natural for Ajax applications tell the browser, which mode they require. You only have to add
the BrowserCompatibility filter in your production or test environments as described in Upgrading
a Test Environment to HTML5 and Upgrading a Production Environment to HTML5 above.

Natural for Ajax 145

Browser Configuration

Applications not Setting the Required Browser Mode

If some of your applications do not set the required browser mode automatically but expect some
specific mode:, you have the following options.

Configuring your Application and/or Web Server/Web Container

Applications can tell IE11 in which mode they require to run by setting the HTTP header "X - UA
- Compatible". For more information see https://msdn.microsoft.com/en - us/lib-
rary/ff955275%28v=vs.85%29.aspx.

If these applications are deployed in a web server/web container that is under your control, it is
possible to configure the HTTP response header, which is sent for these applications.

In this case: Do not configure any compatibility settings in your IE11.
Configuring your Internet Explorer 11

In case you do not have a chance to configure the application and/or its web server/web container,
IE11 supports an "Enterprise Modus", see https://msdn.microsoft.com/de - de/library/dn6406
87.aspx.

146 Natural for Ajax

https://msdn.microsoft.com/en-us/library/ff955275%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ff955275%28v=vs.85%29.aspx
https://msdn.microsoft.com/de-de/library/dn640687.aspx
https://msdn.microsoft.com/de-de/library/dn640687.aspx

24 Timeout Configuration

= Timeout Between the Browser and the Web Applicationcooiiiiiiiiiiiiiiiee e 148
= Timeout Between the Web Application and the Natural SErvercccovvviiiiiiiiiiii e 148
= Dependencies BetWeen TIMEOULScooiiiiiiii e 149

147

Timeout Configuration

In Natural for Ajax applications, timeouts between the browser and the web application as well
as timeouts between the web application and the Natural server can be configured.

Timeout Between the Browser and the Web Application

Most users keep their browser open with several applications running in multiple browser tabs
for many hours or even days. More often than not, they do not remember which of the applications
are still running in one of the browser tabs. For security reasons and to avoid resource bottlenecks,
web applications should therefore timeout after a certain period of inactivity of the user.

By setting sessiontimeout in the Ajax Configuration you can configure such a timeout.

Timeout Between the Web Application and the Natural Server

Between the web application and the Natural server each user of your application usually has one
or several Natural connections active. There are two situations in which you would like to close
these connections automatically:

= Situation A
= Sijtuation B

Situation A

When the web application does not receive an appropriate answer for a request from the Natural
server in a defined time, thereby indicating that something could be wrong with

= either the server side execution,

® the Natural server or

" the connection to the Natural server.

Using the parameter Timeout (in Seconds) the timeout for this situation can be configured for

each session individually. For details, refer to the description of this parameter in the table under
Owerview of Session Options in section Session Configuration.

148 Natural for Ajax

Timeout Configuration

Situation B

When the Natural server does not receive any more requests from the web application for a defined
time, thereby indicating that something could be wrong with

" either the web application or

® with the connection from the web application to the Natural server

= or the user unintendedly did not close/end the application.

Using the global setting Last activity timeout (in seconds) the timeout for this situation can be

configured for all sessions globally. For details, refer to the description of this setting in Global
Settings under Session Configuration.

Dependencies Between Timeouts

We recommend, that you use the same value for the Last activity timeout (as in Situation B) and
the sessiontimeout in the Ajax configuration.

The Last activity timeout covers a subset of situations to which the sessiontimeout applies. The
sessiontimeout also applies to "non-Natural" Ajax pages such as workplace applications.

Natural for Ajax 149

150

25 Test Automation of Natural for Ajax Applications

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 152
= Enabling the Applications for Test AULOMALIONooiiiiiiiii i 152
= Advanced testtoolid Settings in Complex CONtrolScoouiiiiiiiiiie e 155

151

Test Automation of Natural for Ajax Applications

General Information

Natural for Ajax is based on running HTML pages in a browser. These pages are designed as XML
page layouts.

Test automation tools like Selenium (see http://docs.seleniumhq.org/) need to locate specific HTML
elements in an HTML page to either check or adapt the content or to trigger corresponding events.
In a Selenium test program, the developer usually passes identifiers using the Selenium Java API
which enable Selenium to locate the elements for testing.

For stable automated tests, it is extremely important to use stable identifiers. For instance, rearran-
ging controls in a layout or adding an additional control must not change the identifiers. For the
most common controls, Natural for Ajax automatically generates stable identifiers, the so-called

“test tool IDs”. They are generated as data-testtoolid attributes into the HTML page. Test tools
like Selenium can use this data-testtoolid attribute to locate the element.

The following gives a brief introduction for using stable identifiers in Natural for Ajax applications.

Enabling the Applications for Test Automation

All Natural for Ajax applications automatically generate stable identifiers for the most common
controls. So a developer need not do anything to set them.

Let us have a look at the helloworld.xml page layout of the njxdemos. The most interesting controls
for automated tests are the FIELD and BUTTON controls.

FIELD Control

In the following example, you see that the valueprop property is set in the FIELD control, but the
testtoolid property is not explicitly set.

152 Natural for Ajax

http://docs.seleniumhq.org/

Test Automation of Natural for Ajax Applications

5 habownddxml = Properties 51 = I? T -
[— S - walign
_ AN 4 Hanc
E _.:._'r_ldl.pdgl:- ello world Ewents . k
titleoar (Hello Workd) " Hello World Demn - Props < waluggrop yaurnarne >
= pagabody Test WAGEN
=225 itr (1009 Enter your nam= and choose the button! Dt a Hinding
i.H coltablan (50%) abwwytiush
- * rawarea fHalk Viur Name sutocellpopupmethod
I wilist (10} COnbEeIrEnu
contedmenumethod
£l e M diapleypreg
b wdst (10) fussh
= eaa T Fuahmethod
A lzhal (v leregthprop
fisld (e masdersgthprap
- " dtabuiprop
I vekst (10} tetidmode
B i titleprop
| owdst (10) valuetestprop
¥ Gaa IEr d Mok Key:
+= hdisk (2] hatbiy
I iine 4 Mizcellaneous
- . t
= t.o caltabkan [50%.) e ttonn
Statushar -
njsAalE s mEnAL
npankoy
njznatnerme
njs kst nghype
njmnetsgrin
njsnatgehar
- 4 onlinekelp
T &+ 4 & Fourrucdy
- hiklged

Liyout | XhAL 4 n L

If a value for the testtoolid property is not explicitly set in a FIELD control, the HTML will
contain a data-testtoolid attribute with the value of the valueprop property. This is shown in
the HTML snippet below. You do not need to understand all the HTML details. The snippet just
shows that a data-testtoolid attribute is automatically generated for a FIELD control; you do
not have to do anything.

<input id="F_13" name="CC" class='FIELDInputEdit'
data-testtoolid="yourname' type="text" style="width: 185px;">

@ Caution: The above HTML code contains the id attribute with the value F_13. Do not use

this in your test tool. It will break your tests sooner or later because it is not stable. For ex-
ample, if you add another FIELD control in front of the yourname FIELD control, the id of
the yourname FIELD control will change its value to F_14.

BUTTON Control

In the BUTTON control, the method property is set. Again, the testtoolid property is not explicitly
set.

Natural for Ajax 153

Test Automation of Natural for Ajax Applications

[T bt liowwr dvmd I Properties 5 (B & oo
Lagaut = Preview - buttonstyle -
™ s cakiphn
- [natpage Hello World e MEL__ i
+ | titlebar (Hello Workd) '-.Hdh'"uﬂlﬂel'lﬂ —o Props image imagentello.gé
= pagabody Test imagedisabled
= reditr (100 Enter wour name ard choose the button! imageh=ight
= 1 coltablsn (50%:) bl il
= rawarea {Halk R AR S imasiblemode
$ west (10) . T
shybsvanant
e submithutton
I wikat (10 M smttchwisiblepropanusennpu
= e itr tabindex
A Izhal ¥ beetatyle
11 Field (yc align
aidif LES
I woist (10}
& Baic
= jtr [——y
=+ hdist (1 frinsthoced mi@ E
=3 buttan n
I oweist (10} tecetid
32 i " [Imrlmg
= hdist (2] |!:lu'hld::lluF
imagedizabledprop
b vlire imsgeprop
+ £73 colrablen [50%:) namemnp
statusbar tileprap
sasibleprop
Mise
£ lestiaahd ?
& Onling
P [title
Foda titl eteadid
Layout XFL 4 ! L

For a BUTTON control, a data-testtoolid attribute with the value of the method property is
automatically generated as shown in the HTML snippet below. Again, you need not understand
all the HTML details, just look at the data-testtoolid attribute.

<pbutton type="button" id="B_17" data-testtoolid="'onHelloWorld"
style="width: 185px; height: 80px;" name="CC"
class="BUTTONInput">

XPATH Expression

With the Selenium tool, for example, you can locate the FIELD and BUTTON controls using an
XPATH expression which contains the data-testtoolid value. This XPATH expression can be
passed to the Selenium locator org.openga.selenium.By.ByXPath:

By myfieldlocator = new ByXPath(".//*[@data-testtoolid="'yourname"]");
By mymemthodlocator = new ByXPath(".//*[@data-testtoolid="onHelloWorld"]");

See http://docs.seleniumhq.org/ for more information about the Selenium Java API.

154 Natural for Ajax

http://docs.seleniumhq.org/

Test Automation of Natural for Ajax Applications

Explicit testtoolid

In some cases, you may not want to use the valueprop property of a control as the testtoolid.
Instead, you want to specify your own testtoolid. Examples for this are layouts in which several
controls are bound to the same Natural data field. You can then simply set an explicit testtoolid
property for each of these controls.

=5 "hel lweseldaml 1T [Progarie 57 = E e
Layout: = bactulign
— i Al tranaparenthackground
ul :atpage | Hello World Foe— uppercae
titlebar (Halo World) ‘Hello World Deme] Frren wilign
pa e by Tk & By
=3 itr (1009%) Enter vour nama and choosa the button! commment
S.f coltabled {S0%) 2L waluspmp DRI e
§ vour Nama wiidth 0 H]
rowarea (Healk ;
a Bnding
T wdest (10) alwayalluth
3 itr stncallpopuernvethod
A labal (B ke
t vt (10) eordrzimerarnsthad
it displinprap
Aush
A labal (¥ Aushmetred r
[0 mald {yc lengthprep b
t vt {10) rraydenghhpenp
#-58 jitr Thytusenp
b wdst (10 beetichmos
o itr hitleprog
— . valuetextprng
hdist (2} 4 Moty
I wire hatkey
+ £25 coltabled [50%:) a Micelaneous

statushar it = ¥
C besttuokd -—.yumnnuj_:i_—:-b
& et

njcrattamment

njEnaTy
njenatnyme
njenatEAnnghpe
njenatryzic
NpCRytEy T

=1

&l

*
=

<input id="F_13" name="CC" class='FIELDInputEdit'
testtoolid="myowntesttoolid' type="text" style="width: 185px;">

Advanced testtoolid Settings in Complex Controls

For complex controls, a single testtool1idisnot enough to locate the individual parts of the control.
The following table provides examples for the most common XPATH expressions for some complex
controls.

Natural for Ajax 155

Test Automation of Natural for Ajax Applications

Control

testtoolid

XPATH

ICONLIST

testtoolid="myiconlist"

.//*[@data-testtoolid="myiconlist0"'],
.//*[@data-testtoolid="myiconlistl'], ...

BUTTONLIST

testtoolid="mybuttonlist"

.//*[@data-testtoolid="mybuttonlist0'],
.//*[@data-testtoolid="mybuttonlistl'],...

ROWTABLEAREA?2

testtoolid="1ines"

.//*[@data-testtoolid='Tines_table']

Rows/columns:

.//*[@data-testtoolid="Tines.items[0].<colltesttooli
.//*[@data-testtoolid="Tines.items[0].<col2testtooli

.//*[@data-testtoolid="Tines.items[1].<colltesttooli
.//*[@data-testtoolid="Tines.items[1].<col2testtooli

ROWTABSUBPAGES

testtoolid="mytabs"

.//*[@data-testtoolid="mytabs0'],
.//*[@data-testtoolid="mytabsl'], ...

MULTISELECT

testtoolid="mychoice"

XPATH for entries:

.//*[@data-testtoolid="mychoice0l"'],
.//*[@data-testtoolid="mychoicel'],...

XPATH for buttons:

.//*[@data-testtoolid="mychoicebutton0'],
.//*[@data-testtoolid="mychoicebuttonl'],
.//*[@data-testtoolid="mychoicebutton2'],
.//*[@data-testtoolid="mychoicebutton3']...

BMOBILE:SIMPLEGRID

testtoolid="1ines"

.//*[@data-testtoolid='T1ines"']

Column text:

.//*[@data-testtoolid="Tines"]

l.row/1.column //*[@data-testtoolid="'lines'1//tr[1]/
l.row/2.column.//*[@data-testtoolid="lines"']//tr[1]/
2.row/l.column .//*[@data-testtoolid="Tines"]//tr[2]

Button to enable editing

Select the row/column:

156

Natural for Ajax

Test Automation of Natural for Ajax Applications

Control testtoolid XPATH

//*[@data-testtoolid="lines']1//tr[1]1/td[1]
Use the className ‘SIMPLEGRIDEditbutton’ to select th

Selenium example:

driver.findElement(By.xpath(".//*[@data-testte

Input field of editable column:

.//*[@data-testtoolid='SIMPLEGRIDColinput’]

OK Button editable column:

.//*[@data-testtoolid="'SIMPLEGRIDColinputok’]

Cancel Button editable column:

.//*[@data-testtoolid="SIMPLEGRIDColinputok’]

In complex controls, you need not explicitly set the testtoolid property in the page layout. If
you do not specify any testtoolid, the corresponding *prop properties such as valueprop,
griddataprop, iconlistprop or pagesprop will be used.

Here is the table from above when not specifying a testtoolid explicitly:

Control XPATH
*prop

ICONLIST iconlistprop="myiconlist" .//*[@data-testtoolid="myiconlist0"'],
.//*[@data-testtoolid="myiconlistl'], ...

BUTTONLIST buttonlistprop="mybuttonlist"|.//*[@data-testtoolid="mybuttonlist0'],
.//*[@data-testtoolid="mybuttonlistl'],...

ROWTABLEAREA2 griddataprop="lines" .//*[@data-testtoolid="lines_table']

Rows/columns:

.//*[@data-testtoolid="Tines.items[0].<co]
.//*[@data-testtoolid="Tines.items[0].<co]

.//*[@data-testtoolid="Tines.items[1].<co]
.//*[@data-testtoolid="Tines.items[1].<co]l

Natural for Ajax 157

Test Automation of Natural for Ajax Applications

Control XPATH
*prop

ROWTABSUBPAGES |pagesprop="mytabs" .//*[@data-testtoolid="mytabs0'],
.//*[@data-testtoolid="mytabsl'], ...

MULTISELECT valueprop="mychoice" XPATH for entries:

.//*[@data-testtoolid="mychoice0'],
.//*[@data-testtoolid="mychoicel'],...

XPATH for buttons:

.//*[@data-testtoolid="mychoicebutton0'],
.//*[@data-testtoolid="mychoicebuttonl'],
.//*[@data-testtoolid="mychoicebutton2'],
.//*[@data-testtoolid="mychoicebutton3']...

BMOBILE:SIMPLEGRID [gridprop="Tlines" .//*[@data-testtoolid="Tlines"]

Column text:

.//*[@data-testtoolid="'Tlines"]

l.row/1l.column //*[@data-testtoolid="lines']//tr
l.row/2.column.//*[@data-testtoolid="lines"']//tr
2.row/l.column .//*[@data-testtoolid="lines"']//t

Button to enable editing

Select the row/column:

//*[@data-testtoolid="lines']1//tr[1]1/td[1]
Use the className ‘SIMPLEGRIDEditbutton’ to select the b

Selenium example:

driver.findElement(By.xpath(".//*[@data-testtoo]

Input field of editable column:

.//*[@data-testtoolid="'SIMPLEGRIDColinput’]

OK Button editable column:

158 Natural for Ajax

Test Automation of Natural for Ajax Applications

Control

*prop

XPATH

.//*[@data-testtoolid="SIMPLEGRIDColinputc

Cancel Button editable column:

.//*[@data-testtoolid="SIMPLEGRIDColinputc

Natural for Ajax

159

160

IV Application Modernization

This part describes how to convert a character-based Natural application to a Natural for Ajax
application.

The information in this part is organized under the following headings:

Overview of Conversion Steps
Map Extraction
Map Conversion

Customizing the Map Conversion Process

Code Conversion

161

162

26 Overview of Conversion Steps

The conversion of a character-based Natural application to a Natural for Ajax application consists
of several steps as illustrated in the following graphic:

Natural !

Maps

Map Extract ‘.|3 > Matural for Ajax
Files Map Conversion Pages

Matural
Programs

= Step 1: Map Extraction
Extracts from each Natural map the information that is required to create a corresponding
Natural for Ajax page. For each map, a map extract file is created. This file is intended as input
for the map conversion.

Required tool: Natural Studio which is part of Natural for Windows.

See Map Extraction for further information.

163

Overview of Conversion Steps

= Step 2: INPUT Statement Extraction
This step is required for Natural applications that do not use maps, but use INPUT statements
for the dynamic specification of the screen layouts.

Extracts from each INPUT statement in the source code the information that is required to create
a corresponding Natural for Ajax page. For each INPUT statement, a map extract file is created.
This file has the same format as a map extract file created by the map extraction process, and it
is also intended as input for the map conversion.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.
= Step 3: Map Conversion

Processes the map extract files and creates the corresponding Natural for Ajax pages.

Required tool: Map Converter which is part of the Application Designer development workplace
contained in Natural for Ajax.

See Map Conversion and Customizing the Map Conversion Process for further information.

" Step 4: Code Conversion
This step requires that the Natural for Ajax pages have already been created.

Modifies the application code in such as way that it can use the newly created Natural for Ajax
pages. The application can still run in a terminal, in the Natural Web I/O Interface client or in
batch as before. But it can now also run in a Natural for Ajax session with the new Natural for
Ajax pages.

Required tool: Natural for Ajax Conversion utility which is part of Natural Engineer.
Code conversion can also be performed manually. See Code Conversion for further information.

The resulting Natural for Ajax application mimics the character-based application. The user interface
is not restructured in the sense that several maps are combined into a single page or that complex
maps are split into several separate pages. This kind of restructuring is not part of the conversion,
but of the normal development of a Natural for Ajax application.

164 Natural for Ajax

27 Map Extraction

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 166
m Using Natural for AJaX TOOISceiveiriee ittt e e e e e e e nree e e e 166
B USING the MASS FUNCHONveeiii e 166
B 1 0CAtON OF e FlES ...t 166

165

Map Extraction

General Information

The Map Extractor is the first tool that is used in the process of converting a map-based application
to a Natural for Ajax application. It analyzes the code of a Natural map and creates from each map
a file that contains information about the map, the so-called “map extract file”.

The map extract files have the extension .njx and are not human-readable. They are intended as
input for the second step of the process, the map conversion.

The Map Extractor is used only to process character maps. GUI elements contained in maps are
not extracted.

Using Natural for Ajax Tools

The map extract files can be created using Natural for Ajax Tools, which is an optional plug-in for
Natural Studio. See Using the Map Extractor in the Natural Studio Extensions documentation which
is provided for Natural for Windows.

Using the Mass Function

For mass processing of maps, the Natural program MAP2NJX is provided. The program is delivered
in the plug-in library SYSPLNJX.

MAP2NJX is working only on the local environment. It is called in the following way:

MAP2NJX Tibrary-name map-name

In the parameter map -name, the asterisk (*) notation can be used.

Location of the Files

The location of the map extract files depends on the settings in the configuration file ConfigNJX-
PLG.dat (see Configuring the Servers in the Natural Studio Extensions documentation which is provided
for Natural for Windows).

If an application server and a Natural Web I/O Interface server has been specified for the active
environment, and if a file-system path to the application server environment has been specified,
and if an Application Designer project has been created for the current library, and if this Application

166 Natural for Ajax

Map Extraction

Designer project contains a nat subdirectory, then the Map Extractor writes the resulting map extract
files to the nat subdirectory of this Application Designer project.

If the above information is not available for the active environment, the Map Extractor stores the
files as follows:

= If the active environment is the local environment, the files are stored in the res subdirectory of
the current library.
= If the active environment is a remote environment, the extraction fails.

The names of the map extract files are derived from the map names (for example, MYMAP . NSM results
in MYMAP . NJX).

If the function is applied to several maps and the extraction fails for some of them, a log is displayed
and is stored at the location described below:

= If the above path information is available and valid, the log file is written to the nat subdirectory
of the corresponding Application Designer project.

= If the above path information is available, but not valid, the log file is written to the res subdir-
ectory of the user's library in the local environment.

= If the above path information is not available and the active environment is a remote environment,
the log file is written to the res subdirectory of the user's library in the local environment.

® If the above path information is not available and the active environment is the local environment,
the log file is written to the res subdirectory of the current library.

Natural for Ajax 167

168

28 Map Conversion

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 170
I 1] G o OO SOUOPUPPPPPN 171
B USING the MaP CONVEIET ...ttt e e 179
B Using the EdItor EXIENSIONueiiiiiiie et a e 183
m Using the Conversion RUIES TOOIciiiiiiiiiiiiiie e 186
B Sample CONVETSION RUIES FlESuuuuiiiiiiiiiiiiiiiiitt et aaaasaannnaees 188
m Using the Conversion LOGS TOOIciiiiiiiiiiii e 188

169

Map Conversion

General Information

After the Map Extractor or the INPUT Extractor has been used to create extract files from maps,
the Map Converter is the next tool used in the process of converting a map-based application into
a Natural for Ajax application. The Map Converter processes the map extract files that were created
by the Map Extractor or the INPUT Extractor. It analyzes the map extract files and creates a Natural
for Ajax page layout from each map extract file. Controls on the map are converted to controls on
the page. Many features of the original map are converted to features of the page.

By default, the Map Converter uses a predefined set of page templates and conversion rules that
control the conversion process. The templates and the conversion rules can be modified or extended
to adapt the converter to the requirements of a specific conversion project. With the advanced
option to program own conversion handlers, the Map Converter provides additional flexibility
and extensibility.

The Application Designer development workplace contained in Natural for Ajax provides addi-
tional Natural tools for map conversion:

Toels & Documentation

+] Development Tools

-1 Matural Tools
Map Converter
Map Conwerter Extension API
Conversion Rules
Conversion Logs

+ [Performance Tools

The following Natural tools can be invoked from the navigation frame:

" Map Converter
This tool is used for mass generation of layouts. For quick start with this tool, see First Steps
below. For detailed information on all options of this tool, see Using the Map Converter.

You can also generate a single layout while designing a page in the Layout Painter. An editor
extension is available for this purpose. See Using the Editor Extension for further information.

® Conversion Rules
You can use this tool to copy the conversion rules from other projects to the current project. See
Using the Conversion Rules Tool for further information.

® Conversion Logs
You can use this tool to view or delete the log files that have been created during the conversion.
See Using the Conversion Logs Tool for further information.

170 Natural for Ajax

Map Conversion

First Steps

We start with a simple map like the one below and we suppose that you have already created a
map extract file with the Map Extractor. The map is contained in a Natural library named TESTCONV.
The map extract file has been stored in the nat subdirectory of an Application Designer project
with the corresponding name testcono.

=1 NAMES-M [TESTCONV - NATOSAO1 (2700)] - Map - 10| x|
TY=-MM=-DD *T¥* Smimspt Employes *re TE=T T

First mame: |EXXXXXIXXX

Last name! |XXXXXXI(XKXKKKKKRXKXK
Company : |XKKKXX!X!X!XEKKKXRXR

Birth date: |[YY-MN-DD

F3 Exit
F4 Delece
F5 Save

~ To create a Natural for Ajax page layout from an extract file

1 Open the Application Designer development workplace.

2 In the Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Map Converter.

The Map Converter is opened.

Natural for Ajax 171

Map Conversion

i-m i3

Map Conversion Conversion Rules Conversion Logs View

"ol j =
Project Iteatcumr EI
'Select Conversion Rules 12 -

& Use default rules ¢ Use project rules

Rules | comvrulesDefault.cm| =l
| Select Natural Maps 2 =
;ﬂ"pm D:/1Boss IBoss4 22/ server/default)./deg
Select map |NAMES-M.NJX =1
RS mE———

3 Select the project in which you want to store the page layouts that are to be generated. That
is, select your project testconv.

4 Select the conversion rules file to be used. That is, stick with the rules file convrulesDefault.xml
to begin with.

5 Select the map input folder, that is, the folder in which your map extract files are stored.

6 Select a map extract file.

7 From the Map Conversion menu, choose Show Map to display the content of the map extract
file in XML format.
Or:

Choose the icon that is shown in the Select Natural Maps header.

172 Natural for Ajax

Map Conversion

"2 MAP XML

<7¥ml version="1.0" encoding="UTF-8" 7> a
«l-- Generator: MAP2MNIX for version NIX120 --»
<me:map xsi:schemalocation="http://www.softwareag.com/nat/mapextractor/naturalmap.xsd’
amins:me="http:/fwww.softwareag.com/nat/mapextractor’
wmins:xsi="http:/fwww.w3.0rgf2001/¥ML5chema-instance'
«me:identity>
<me:idDBID=99 </me:dDBID >
<me:idFNR>101</meidFNR >
<me:idLibrary>TESTCONV </me:idLibrary >
cme:idName>NAMES-M </me:idName>»
</me:identity =
zme:define=
cme:difield>
«me:dfLevel>1</me: dfLevels
zme:diName =2 COMPANY </me:dfName=
<me;dfformat=A20</me:dfFormat
</me:dfField>
<me:dfField=
zme;diLevel>=1</me:dfiLavel>
<me;dffame:>»#FIRST </me:dfName>
<me:dfFormat>A16</me: dfFormat>
</me:difield=
<me; difield>
<me:df_evel>1</me: dfiLevel=
zme:diNames>£LAST</me:dfName=
<me:diformat>A20</me:dfFormat=
</me:dfField>
<me;dfField>
<me:dfiLevel>1</me: dfiLevel=
cme:diName>BIRTH</me:diMame>
<me:dfformat>D</me: dfformat>
</me:dfField=
</me:define: ﬂ

From the Map Conversion menu, choose Preview Page Layout to display the resulting page
layout as it would turn out using the selected conversion rules file.

The right side shows a preview of the generated page layout. The Conversion Results area

shows a status message which informs either about successful conversion or an error that has
occurred.

Natural for Ajax 173

Map Conversion

Map Conversion Conversion Rules Conversion Logs View

* Use default rules © Use project rules

| convrulesDefautt, xmi i |
First name:
Last name:
D:jJEnssﬂBussdEzjsewu'f;lefamﬂded
| NAMES-p _NIX = Company:]
Birth date:

+" XML Layout created /serviet/StantDynamicPage?PAGENAME=PAGES4&SESSIONID=CASA3_1221210506283

9 From the Map Conversion menu, choose Preview in Browser to display the resulting page
layout in a separate browser window.

174 Natural for Ajax

Map Conversion

Exit

F4 Delete
F5 Save

First name:

Lazt name:

Company:

Birth date:

10 After having previewed the conversion result for one or several maps in your project, choose
Generate All Layouts from the Map Conversion menu to generate page layouts for all map
extract files contained in the selected folder.

Natural for Ajax

175

Map Conversion

B .

Map Conversion Conversion Rules Conversion Logs View

m|

Project |testcony =1

e |

% Use default rules © Use project rules

| Rules | convrulesDefault.xml =1

Map input D:/1Boss/MBoss422/server/default/. /deg
Select map [NAMES-M.NIX =l

T R —

Layout Generation for NAMES-M.NIX.. FINISHED

i B

" Layout generation finished.

11 For now close the Map Converter and switch to the project testconv to continue working on
the generated page layout.

176 Natural for Ajax

Map Conversion

Layout: MAMES-M.xoml i3
Homa ik Insert Toals Frbensinns & | l__—_J
L] New Form = [Open ~ Protocol = Log = | XML Schema (XSD)
i Save As ~ Server Log - Preferences -
Proview 5 § Controks
Page
_-@na_tpage Select Employes X = Title B
+ [T tilebar [Select Em _|| £ Title Bar
+ [pagebody 21| = Page Headar
[.] statusbar _ Page Body
.. Status Bar
& Double Line Menu
~ Strip Selection
= Tab Strip Selectic
£l | v I =1 Tab Selection
¥ + 1
L - First name: [
m_ %, Timer
natsource MAMES-A __ Internal Popup Pag
- Last name:
natsinglebyte true w -
natrecursion b Tl €IS Sub Page
Company': =
natdc w Sub Page
Contalnar
b i Birth date: w Cantrals
xmilns:npe hitp:/ ferwie j Grids/ Traes
I " Wab 2.0/ Mashup
Al | | Advancad
—J Hatural Extansions
: Matural Popup Oceupis 4@ warkplaca
" Layout was refreshed

12 You might wish to assign a different name for the adapter to be generated for the page, change
other properties or modify the layout in any other way. Then save the layout and generate
the adapter as usual.

When you import the adapter into your Natural library, you will notice that the parameter
data area is the same as in the original map. This is the case even though the map uses system
variables and variables with special characters. The necessary translation is done inside the
generated adapter code and does not influence the application code.

13 Now create a main program for the adapter and run it in the browser.

Natural for Ajax 177

Map Conversion

-|0] x|
£3
08-09-12 09:00:36

/A Date Input

September
First name: Mg Tu We Th Fr Sa3 Su
1 2 3 4 3 6 ¥
Last name:
B o 10 11 12 13 14
R i5 16 17 18 19 20 B
Birth date: s 22 23 24 25 26 327 S

29 30

2008

F3| Exit
F4| Delete
Fa Save

You may have noticed the following effects of the applied conversion rules:

® The title in the first row of the map has been placed into the caption of the page and the
asterisks have been stripped off. Your application will quite surely have a different layout
of the map titles. The conversion rules can therefore be adapted to accommodate the needs
of your application, and the rule that identifies the title and places it into the caption is just
a simple application of customizing the conversion rules.

® The literals such as "F4 Delete" on the map have each been turned into a button control and
a label. This is also due to a sample conversion rule contained in the default conversion
rules.

* The date field has been converted to a field control with the data type "date". This enables
the user to select the date with the Date Input dialog box.

The full concept of customizing the Map Converter is described in Customizing the Conversion
Process.

178

Natural for Ajax

Map Conversion

Using the Map Converter

The Map Converter is used for mass generation of layouts.

In the First Steps, you have already learned how to use the Map Converter. The topics below
provide detailed descriptions of the different options and menu commands that are available in
the Map Converter:

= |nvoking the Map Converter

= Setting the Conversion Options

= Previewing/Generating a Single Layout
= Generating All Layouts

= \iewing the Conversion Results

= Refreshing the Display

Invoking the Map Converter

When you invoke the Map Converter, the following dialog appears.

Natural for Ajax 179

Map Conversion

Map Converter

Map Conversion Conversion Rules Conversion Logs View

[Select Project -

Project |testcany =]

[Select Conversion Rules = -

* Uge default rules Use project rules

Fules | convrulesDefault xml =]
[Select Natural Maps 2 -
rﬂ?dﬂelpnur D:/test/tomeats webapps/casnatural/te
Select map [MDISLONG.NIX =

rcnnwrﬂm Results =

> To invoke the Map Converter

= In the Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Map Converter.

Setting the Conversion Options

In order to start the generation, you have to select a project, a conversion rules file and the folder
containing your map extract files. The following options are available for this purpose:

Project
This drop-down list box provides for selection all Application Designer projects that are cur-
rently defined.

Select the project in which you want to store the page layouts that are to be generated.

Use default rules
When this option button is selected, the default conversion rules and related templates are
used. These rules are stored in the subdirectory convrules of the project directory njxmapconverter.

180 Natural for Ajax

Map Conversion

Use project rules
When this option button is selected, the project-specific conversion rules are used. These rules
are contained in the subdirectory convrules of your project directory.

When your project does not yet have any project rules and you select this option button, the
Conversion Tool is automatically shown in a dialog. You can then copy the default conversion
rules and templates to the currently selected project. It is recommended that you copy all or
part of the default rules and related templates into your project and adapt the copies to the
requirements of your application. See Using the Conversion Rules Tool for further information.

You can also invoke the Conversion Tool manually. To do so, you choose Copy Rules from
the Conversion Rules menu.

Rules
This drop-down list box provides for selection all available conversion rules files. When the
Use default rules option button is selected, the default rules files are shown. When the Use
project rules option button is selected, the rules files in the project directory are shown.

Select the conversion rules file that is to be used.

You can display the XML code of the selected conversion rules file in a dialog. To do so, you
either choose the icon that is shown in the Select Conversion Rules header or you choose
Show Rules from the Conversion Rules menu.

Map input folder
Specity the folder which contains the map extract files that are to be processed.

Select map
Optional. This drop-down list box provides for selection all map extract files that are stored
in the currently selected map input folder.

For mass generation, it is not required that you select a map. However, you can select a map,
for example, if you want preview the layout of the resulting Application Designer page as it
would turn out using the selected conversion rules file.

You can display the XML code of the selected map extract file in a dialog. To do so, you either
choose the icon that is shown in the Select Natural Maps header or you choose Show Map
from the Map Conversion menu.

Natural for Ajax 181

Map Conversion

Previewing/Generating a Single Layout

When you choose one of the following commands from the Map Conversion menu, the currently
selected conversion rules file and the currently selected map extract file are used for preview or
generation of a single layout from a single map extract file:

Preview Page Layout
Shows a single page layout in the preview area of the Map Converter (on the right side).

Preview in Browser
Shows a preview of a single page layout in a separate browser window.

Generate Selected Layout
Generates a single page layout. The resulting file is stored in the currently selected project.

Generating All Layouts

When you choose the following command from the Map Conversion menu, the currently selected
conversion rules file and all map extract files in the selected map input folder are used as input
for the mass generation:

Generate All Layouts
Generates all page layouts (mass generation). The resulting files are stored in the currently
selected project.

Viewing the Conversion Results

After a preview or generation, you can either choose the icon that is shown in the Conversion
Results header or you choose the following command from the Map Conversion menu:

Show Layout XML Definition
Shows the XML layout definition for the page which was last generated or previewed in a
dialog.

When the last generation was a mass generation, an additional drop-down list box is shown
under Conversion Results. This drop-down list box provides for selection the names of all
generated page layouts. When you choose the Show Layout XML Definition command (or
the corresponding icon), the XML layout definition for the page which is currently selected in
the drop-down list box is shown in a dialog.

182 Natural for Ajax

Map Conversion

)
Conversion Results P -

MDISLONG.xm |

Layout Generation for MDISLOMNG.MNIK...FINISHED
Layout Generation for MODISSHOR.MIK. ..FINISHED
Layout Generation for MMEMNULMNIX...FINISHED
Layout Generation for NAMES-M.NIX...FINISHED

After a mass generation, an additional icon for previewing a generated page layout is shown
in the Conversion Results header. When you choose this icon, the layout for the page which
is currently selected in the drop-down list box is shown in the preview area of the Map Con-
verter (on the right side).

When you choose the Show Logs command from the Conversion Logs menu, the Conversion
Logs tool is shown in a dialog. For further information on the options in this dialog, see Using the
Conversion Logs Tool.

Refreshing the Display
For example, when you have created a new project which is not yet visible in the Map Converter,

you can choose the Refresh command from the View menu of the Map Converter. This reloads
all projects, conversion rules and map extract files and resets the contents of the dialog.

Using the Editor Extension

An editor extension, the Map Conversion Assistant, is used to generate a single layout while
designing a page in the Layout Painter. In this case, you fill an empty layout with the information
from a map extract file.

~ To add a map to an empty layout using the editor extension

1 Create a new layout using the Natural Map Converter template.

Natural for Ajax 183

Map Conversion

-- Web Page Dialog | x|

MName new 1. =ml

[@ Natural || &% Natural
Map Converker

il i

HTML Page Woriplace WSDL Page XCI Page Matural Page PDF Output 4 b

2 From the Extensions tab of the Layout Painter, choose Map Conversion Assistant.

The following area is now shown in the Layout Painter.

184

Natural for Ajax

Map Conversion

Map Conversion Assistant

& Use default rules " Use project rules o
Rules ||:|:|mrruI95DefauIt.me Il
Show Rules
Copy Rules
Eﬁe'ﬁpm d:jfomcataclusterfworkerl/webapps/foisnaturalftest/na
Select map | Il
&dd to Page
Show Log
(8 e [e |

Mo Map selected for preview

-
4] | E

° Please select a map file.

Map Conversion Assistant ip

Select either the Use default rules option button or the Use project rules option button. See
Setting the Conversion Options for information on these option buttons.

Optional. When you choose the Copy Rules button, you can copy the default conversion rules
and templates to the current project. In this case, the Conversion Rules tool is shown in a
dialog. For further information on the options in this dialog, see Using the Conversion Rules
Tool.

From the Rules drop-down list box, select the conversion rules file that is to be used. The
rules files that are provided for selection in this drop-down list box depend on the setting of
the option buttons (either the default rules or the project rules are shown).

Optional. When you choose the Show Rules button, the XML code of the selected conversion
rules file is shown in a dialog.

Natural for Ajax 185

Map Conversion

10

11

In the Map input folder text box, specify the folder which contains the map extract files.
From the Select map drop-down list box, select the map that is to be used.

The XML layout definition of the selected map is now shown at the bottom of the Map Con-
version Assistant.

Choose the Add to Page button.

The map description is converted to the corresponding layout elements and these elements
are added to the current layout, which is now shown in the preview area.

The Add to Page button is now dimmed. If you want to remove the elements you have added
to the page, you can choose the Undo Add button.

Optional. When you choose the Show Log button, the Conversion Logs tool is shown in a
dialog. For further information on the options in this dialog, see Using the Conversion Logs
Tool.

Modify the layout as usual.

Using the Conversion Rules Tool

Using this tool you can copy the default conversion rules and templates to a selected project for
modification.

| Conversion Rules
‘select Project -
Select the conversion rules you would like to copy to the selected project.
Project tast - Copy Selected Rules [T Overwrite existing files
‘Select Conversion Rules and Templates -
Conversion Rules ‘Templates
onvrulesDefault.xm ' BUTTON_TEMPLATE.xml =
anvrulesSButtonhst 33 BUTTONITEM_TEMPLATE .xr 3
anvrulesSNoGrids BUTTOMLIST_TEMPLATE.¥n |7
CHECKBOX_TEMPLATE.xmil
? EMPTYROW_TEMPLATE.xm | @
FIELDSEQ_TEMPLATE .xmi
£ GRID_TEMPLATE .xml £
GRIDHEADER,_TEMPLATE.xI
{4 GRIDITEM_TEMPLATE.xml <<
TETE! M TEAM ATE wesl
a |
186 Natural for Ajax

Map Conversion

> To invoke the Conversion Rules tool

In the Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Conversion Rules.

Or:

When the Map Converter is currently shown, choose Copy Rules from the Conversion Rules
menu.

Or:

When the editor extension is currently shown, choose the Copy Rules button.

~ To copy the conversion rules

1

From the Project drop-down list box, select the project into which you want to copy the con-
version rules.

In the Conversion Rules box, select the rules file(s) that you want to copy and choose the >
button.

Or:

If you want to copy all files, choose the >> button.

The selected files are shown on the right side of the Conversion Rules box.

To deselect one or more files, you can use the < or << button.

For each selected rules file, the templates that are used in the rules file are automatically se-
lected in the Templates box, so that always a consistent set of rules and templates is selected
for copying.

Optional. If you want to overwrite any existing rules and templates files with the same names
in the selected project, activate the Overwrite existing files check box.

Choose the Copy Selected Rules button to copy the rules and templates files to the selected
project.

Natural for Ajax 187

Map Conversion

Sample Conversion Rules Files

For the most common conversions the following sample conversion rules files exists:

File

Description

convrulesDefault.xml

Basic conversion rules for FIELD, TEXTGRIDSSS2 and
ROWTABLEAREA2 controls.

convrulesFieldlist.xml

Example rules for NJX:FIELDLIST and NJX:FIELDVALUE controls.

convrulesFieldlist2.xml

Example rules for NJX:FIELDLIST and NJX:FIELDITEM controls.

convrulesMultidimensional Arrays.xml

Example rules for ROWTABLEAREAS3.

convrulesSButtonrow.xml

Example rules for arranging all identified functions as buttons in a
row at the bottom of the page layout.

convrulesSNoGrids.xml

Arrays are also mapped to simple FIELD controls. No grid controls
are generated.

convrulesTextids.xml

Example rules for using a conversion listener to generate TEXTIDs (=
multilanguage support).

convrulesCVVariables.xml

Example rules to generate the corresponding attributes and data
controls for CV variables in the page layout.

See also the comments on top of each conversion rules file for further details.

Using the Conversion Logs Tool

Using this tool you can view the log files that have been created during the conversion of Natural

maps to Natural for Ajax layouts.

You can also delete these log files.

188

Natural for Ajax

Map Conversion

| Conversion Logs x|
[Select Project and Log Files =
Select the project containing the conversion logs,
Praject |nJ:-tmar:u:|:|nu erter El [nJK_Eﬂ.DE.EﬂDEI-DEIl? ID.Iugzl
Load Log File Wigw Text Delete Log Filas
(Log File -
Logged map =
CONYErsions I J

Mo map conversion selected

[ITEM JROW JCOL _INAME____________RULES |

~ To invoke the Conversion Logs tool

In the Natural Tools node of the navigation frame (which is visible when the Tools & Docu-
mentation button has previously been chosen), choose Conversion Logs.

Or:

When the Map Converter is currently shown, choose Show Log from the Conversion Logs
menu.

Or:

When the editor extension is currently shown, choose the Show Log button.

~ To view a log file

1

From the Project drop-down list box, select the project for which you want to view a log file.

The log files contained in this project are shown in the drop-down list box to the right.
Select the log file that you want to view.

Choose the Load Log File button.

Natural for Ajax 189

Map Conversion

Log lines for the selected log file are now shown at the bottom of the tool. Each log file contains
the conversion results of one or several maps. The log lines that are shown belong to an indi-
vidual map; this is the map that is selected in the Logged map conversions drop-down list
box.

Optional. Select a different map from the Logged map conversions drop-down list box.
The conversion result of the newly selected map is immediately shown at the bottom of the
tool.

Optional. Choose the View Text button to display the content of the selected log file as a CSV
file in a dialog. This shows the conversion results for all maps.

~ To delete log files

Select the project for which you want to delete the log files.
Choose the Delete Log Files button.

A dialog appears asking to confirm the deletion.

Choose the Yes button to delete all log files in the selected project.

190

Natural for Ajax

29 Customizing the Map Conversion Process

B MaP CONVEIET PrOCESSING ...ttt ettt e e e 192
B CONVETSION RUIBS ...ttt 196
B TEMPIAEES ...ttt e e e e e e e 206
B TAG CONVEILEIS ..ttt ettt oo oottt e e e e oottt e e e e e e e ettt e e e e e e e e et eaeeeeas 209

191

Customizing the Map Conversion Process

Map Converter Processing

The map conversion process reads a map extract file created by the Map Extractor or the INPUT
Extractor and transforms it into a corresponding Natural for Ajax page layout file. The conversion
process is controlled by rules and templates.

Extend/Customize
Conversion Input
Map Extract File
Templates -
XML Files
.
-,
R'H
e, 4
H'H
il
Tag Converters 3 Map Converter
Java Files
T
Conversion Rules
%ML File vy

Conversion Oulput

Page Layout File

The Map Converter ships with a default set of conversion rules and corresponding template files.
This set allows for default map conversions without changing rules or templates. In most cases,
you will add or modify some conversion rules and/or templates to customize the conversion ac-
cording to the requirements of your application.

For advanced customization, there is also the possibility to plug own Java-written conversion
classes (the so-called “tag converters”) into the conversion processing. But you should only do

this in very rare cases.
The following topics are covered below:

= Processing of Rows and Columns
= Processing of Sequence and Grid Areas

192

Natural for Ajax

Customizing the Map Conversion Process

= Summary: Processing Steps of the Map Converter
Processing of Rows and Columns

By default, for each row and column in a map, a corresponding row and column is generated in
the layout. By default, the Map Converter inserts the converted rows and columns at a defined
position within a corresponding page template. Template and insert position can be defined by
the user. Skipping or different handling of specific rows and columns can be defined via corres-
ponding conversion rules.

The following sections describe the default processing for rows and columns in case no specific
rules for different insert positions are specified:

= Rows
= Columns

Rows

For each row in a map, the Map Converter generates an ITR (independent table row) control with
the default settings. For empty rows, an ITR control containing the control defined in the
EMPTYROW_TEMPLATE is generated.

Columns

The fields and literals within a row are aligned to columns according to the following rules:

* Column Start Position
If an absolute column start position is defined for a field or literal in the map, the corresponding
control in the page layout is aligned so that it starts exactly with the specified column. This is
done by inserting a HDIST (horizontal distance) control with a corresponding width as a filler.

| Note: A precise vertical alignment of fields is only possible if absolute column start posi-
tions are defined for the fields.

® Conversion Rules

If no absolute column start position is defined for a field or literal in the map, a HDIST control
is not added as a filler by default. In this case, the field or literal is simply appended as the last
subnode of the current ITR control. In many cases, this would result in a layout that requires
additional manual adding of fillers. This is because appending two field controls without adding
any HDIST control often does not look as intended. Therefore, the Map Converter includes default
conversion rules for filler settings. You can modify the default conversion rules or add your
own conversion rules to fine-tune this behavior. For more information, see Conversion Rules.

Natural for Ajax 193

Customizing the Map Conversion Process

* Column Width

A character map has a fixed number of rows and columns. For the literal "ABCD", this means
that it uses exactly 4 columns. Calculating the correct width and height of field on a web page
is more complex. The width of "ABCD" will most likely be greater than the width of "llll". Very
short fields (with a length of one or two characters) should have a minimum width so that the
content is fully visible. You can fine-tune the width by adapting the predefined conversion rule
variable $$widthfactor$$ or by adding your own conversion rules. For more information, see
Conversion Rules.

Processing of Sequence and Grid Areas

The map extract file also contains information about arrays. With Application Designer, arrays
are usually rendered as grid controls. Application Designer provides a couple of grid controls:

TEXTGRID?2 - a grid containing text.

TEXTGRIDSSS2 - a text grid with server-side scrolling.
ROWTABLEAREAZ2 - a grid containing other controls.
MGDGRID - a managed grid.

The Map Converter tries to convert arrays into suitable grid controls. Before the real conversion
of arrays to grid controls can be done, the Map Converter must first identify the sequence and
grid areas on the map. During this process of area identification, the Map Converter groups literals
and fields together into sequences and areas. Whether the corresponding fields or literals are ac-
tually converted into a grid depends on the conversion rules that are executed after this area
identification step.

This process of area identification is simply a kind of marking. The corresponding sequence and
area objects can be used as source in the conversion rules to define the actual controls.

194 Natural for Ajax

Customizing the Map Conversion Process

Row 1
Row 2
Row 3
Row 4
Row 5
Identification of grid area

¥

Row 1
Row 2
Row 3 Grid area
Row 4
Row 5

Legend:
Literal

Field

Summary: Processing Steps of the Map Converter

The conversion is done in several steps:

1. The map extract file is loaded and the corresponding rows and columns are collected.
2. The sequence and grid areas are identified.

3. For each row, the list of items in this row is processed, according to the column order. An item
can be one of the following: a simple literal, a field or an area. For each found item, the corres-
ponding conversion rules are executed.

Natural for Ajax 195

Customizing the Map Conversion Process

Conversion Rules

Different conversion projects have different requirements to the conversion process. The Map
Converter is driven by conversion rules and thus allows for flexible control of the conversion
process. Conversion rules define how source items (items from a given map extract file) are mapped
to target items (items in the page layout to be created) and under which conditions a certain source
item shall be converted to a certain target item. The Map Converter is delivered with a default set
of conversion rules contained in the file convrulesDefault.xml in the subdirectory convrules in the
Application Designer project njxmapconverter. A more application-specific conversion can be
achieved by copying and modifying the default set of rules or by adding own rules.

Each set of conversion rules is defined in an XML file according to the XML schema convrules.xsd
in the subdirectory convrules in the Application Designer project njxmapconverter. Each individual
conversion rule consists of a name, a description, a source and a target. The source identifies an
element in the map extract file. The target identifies controls and attributes to be generated in the
page layout.

The conversion rules make often use of regular expressions and so-called capture groups. For
more information about regular expressions, see for instance the web site hittp://www.regular-ex-
pressions.info.

The following topics are covered below:

= Conversion Rules Examples

= Default Conversion Rules File

= Conversion Rules that Often Need to be Adapted
= Writing Your Own Conversion Rules

Conversion Rules Examples

The following examples are provided:

= Example 1
= Example 2

196 Natural for Ajax

http://www.regular-expressions.info/
http://www.regular-expressions.info/

Customizing the Map Conversion Process

= Example 3
Example 1

The following example rule (contained in the default conversion rules file) defines that fields in
the map extract file with the qualification AD=0 shall be converted to field controls with the property
displayonly="true".

<convrule rulename="0field_rule">
<description>Defines the control template to be used for input fields
which are specified as output only.</description>
<source>
<sourceitem>ifField</sourceitem>
{sourcecond>
<condattr>//ifAD</condattr>
<condvalue>.*0.*</condvalue>
</sourcecond>
</source>
{target>
<targetitem>$0FIELD_TEMPLATE</targetitem>
{/target>
</convrule>

The source element specifies that this rule applies to fields (element i fField) that have an AD
parameter (element i fAD) that contains a letter "O" (matching the regular expression .*0.*). The
target element specifies that these fields are to be converted to whatever is contained in the template
file OFIELD_TEMPLATE.xml. This template file must be contained in the same directory as the
conversion rules file.

The template file contains the detailed specification of the field to be generated. The file
OFIELD_TEMPLATE.xml delivered with the map converter contains, for instance, the following:

<?xml version="1.0" encoding="UTF-8"7>
<field valueprop="$$" width="$$" noborder="true" displayonly="true"/>

That is, the resulting field is generated without a border (noborder="true") and as a display-only
field (displayonly="true"). The valueprop and width to be assigned ($$) are not determined by
this rule, but are left under the control of other rules.

Natural for Ajax 197

Customizing the Map Conversion Process

Example 2

The following example rule (contained in the default conversion rules file) defines that for all
fields that are defined with the format An in the map extract file, an attribute datatype="string
n" shall be added to the element that is generated into the page layout.

<convrule rulename="AfixType_rule">
<description>All Natural "An" dfFields are converted to the
Application Designer datatype "string n". Example: "AIQ" is
converted to "string n".</description>
<{source>
{sourceitem>dfField</sourceitem>
{selection>
{selectattr>dfFormat</selectattr>
<{selectval>A([0-9]+)</selectval>
</selection>
</source>
{target>
<targetitem>$$</targetitem>
{targetattr>
<attrname>datatype</attrname>
<attrvalue>string $1</attrvalue>
</targetattr>
<{/target>
</convrule>

The source element specifies that this rule applies to fields that have in the field definition (element
dfField) a format (element dfFormat) of An (matching the regular expression A([0-91+)). The
target element specifies that for whatever element is generated into the page layout for this kind
of fields, an attribute datatype="string $1" shall be added. In terms of regular expressions, $1
refers to the contents of the first “capture group” of the regular expression A([0-91+). In case of
aformat A20, $1 will evaluate to 20 and thus an attribute datatype="string 20" will be generated.

The control to be generated into the page layout (<targetitem>$$</targetitem>)isnot determined
by this rule, but is left under the control of other rules.

Summary: The combination of the two rules in example 1 and 2 makes sure that output fields, for
example, of format A20 are converted to field controls with displayonly="true" and
datatype="string 20".

198 Natural for Ajax

Customizing the Map Conversion Process

Example 3

The following more advanced rule was created for the use of a specific conversion project. The
following task had to be achieved: A literal of the format "F10 Change" shall be converted to a
button that is named "F10", is labeled "Change" and raises an event named "PF10". With the explan-
ations from the examples above, the rule should be nearly self-explanatory.

Note that according to the rules of regular expressions, the variable $ 1 refers to the string matched
by the expression part in the first pair of parentheses (the first “capture group”), that is for instance
"F10", and the variable $3 refers to the string matched by the expression part in the third pair of
parentheses (the third “capture group”), that is for instance "Change".

<convrule rulename="Function_rule" lone="true">
<description>Generates a button from specific literals.</description>
<{source>
<sourceitem>1tlLiteral</sourceitem>
{selection>
<selectattr>ltName</selectattr>
<selectval>(F[0-91+)(\p{Space})(.*)</selectval>
</selection>
</source>
{target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$1</attrvalue>
{/targetattr>
{targetattr>
<attrname>method</attrname>
<attrvalue>P$1</attrvalue>
{/targetattr>
</target>
{target>
{targetitem>hdist</targetitem>
{targetattr>
<attrname>width</attrname>
<attrvalue>4</attrvalue>
{/targetattr>
</target>
{target>
{targetitem>Tabel</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$3</attrvalue>
{/targetattr>
{/target>
</convrule>

Natural for Ajax 199

Customizing the Map Conversion Process

Default Conversion Rules File

The Map Converter is delivered with a default set of conversion rules contained in the file con-
vrulesDefault.xml in the subdirectory convrules in the Application Designer project njxmapconverter.
A more application-specific conversion can be achieved by copying and modifying the default set
of rules or by adding own rules.

The following topics are covered below:

= Root Rule
= Data Type Conversion Rules
= Other Default Conversion Rules

Root Rule

Like every conversion rules file, the file contains exactly one "Root_rule". The root rule specifies
the template file to be used for the overall page layout. In this template file, the application-specific
page layout can be defined, using company logos, colors, fonts, etc. The root rule must always
have "map" as the source item and must refer to some variable defined in the page template file
as the target item. The place of that variable specifies where in the page template the converted
map items are placed. See for instance the root rule from the default conversion rules:

<convrule rulename="Root_rule">
<description>Exactly one rule with the sourceitem "map" is required.
This rule must define the natpage template and insert position of
the conversion result.</description>
{source>
{sourceitem>map</sourceitem>
<{/source>
{target>
<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
<{/target>
</convrule>

The rule refers to a page layout template NATPAGE_TEMPLATE.xml and refers to a variable
defined in that template where the converted map elements shall be placed. Here is the corres-
ponding content of the page layout template NATPAGE_TEMPLATE .xml:

<?xml version="1.0" encoding="UTF-8"7>

<natpage xmins:njx=http://www.softwareag.com/njx/njxMapConverter
natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>

<pagebody>
<njx:njxvariable name="MAPROOT"/>
</pagebody>
{statusbar withdistance="false"/>
</natpage>

200 Natural for Ajax

Customizing the Map Conversion Process

This template specifies the following:

The overall page layout shall consist of the elements titlebar, pagebody and statusbar.
The converted map elements shall be placed into the pagebody.

The name of the Natural adapter to be generated from that page layout shall be determined by
arule (natsource="$$NATSOURCE$$"). There must be a corresponding rule that yields a value
for the variable $ SNATSOURCE$$, for instance derived from the map name. We shall see later how
to define such a rule.

All strings in the page layout shall be mapped to Natural variables of type A in the adapter in-
terface (natsinglebyte="true").

The text displayed in the title bar shall be determined by a rule (name="$$TITLEVAR$$"). There
must be a corresponding rule that yields a value for the variable $$TITLEVAR$S, for instance
derived from a literal in the first row in the map. We shall see later how to define such a rule.

Data Type Conversion Rules

The default conversion rules file contains a set of rules that control the conversion of data types:
from Natural data types in the map to corresponding Application Designer data types in the page
layout. An example was given above in Example 2. Usually, these rules need not be adapted. They
have been chosen in such a way that the process of extracting maps, converting them to layouts
and generating Natural adapters for these usually yields the same data types in the adapter interface
as in the map interface.

Other Default Conversion Rules

Other default conversion rules define a default mapping for literals, modifiable fields, output
fields, modifiable grids, output grids, system variables and fields with special characters like "#"
in their names. These rules need only be adapted in special cases.

Conversion Rules that Often Need to be Adapted

Some conversion rules need to be adapted in nearly all conversion projects. These rules are con-
tained in the section "APPLICATION SPECIFIC RULES" in the default conversion rules file.

The following topics are covered below:

= Naming of Adapters

Natural for Ajax 201

Customizing the Map Conversion Process

= Setting the Title of a Map
Naming of Adapters

Each application has a different naming convention for Natural objects. There is a rule (it is named
"Natsource_rule" in the default conversion rules file) that controls how adapter names are derived
from map names. The rule replaces the first letter "M" in the map name with an "A" and places
the resulting string into the variable NATSOURCE. Remember that in the default page template, the
natsource property of NATPAGE (which defines the adapter name to generated) is preset with
the variable reference $ $NATSOURCE$$. Thus, a map with the name TESTMI results in an adapter
named TESTAL. Other naming conventions for maps will require a more sophisticated adapter
naming rule.

Setting the Title of a Map

Each application has a different way of showing titles in a map. Often, the title string shall be
placed into the title bar of the resulting page layout during conversion. There is a rule (in the default
conversion rules file, it is named "Titlevar_rule") that controls how the title string in a map is re-
cognized. The rule searches in the first row of a map for a literal enclosed in "***" and places the
resulting string into the variable TITLEVAR. Remember that in the default page template, the name
property of the titlebar element (which defines the string to be shown in the title bar) is preset
with the variable reference $$TITLEBARS$$. So this rule takes care that the found literal is placed
into the titlebar element of the page. Other conventions for map titles will require a more
sophisticated rule.

Writing Your Own Conversion Rules

When writing your own conversion rules, you can use the default rules as examples. In order to
write rules from scratch, you need to know the elements of the map that can be referred to as
source items and the full syntax of the rule definition.

® The XML schema of the map extract files is contained in the file naturalmap.xsd in the subdirectory
convrules in the Application Designer project njxmapconverter.

" As described in Processing of Sequence and Grid Areas, one step in the map conversion is the
detection of sequence and grid areas in the map. Conversion rules can also refer to the detected
sequence and grid areas. The XML schema of the map extract files after the detection of sequence
and grid areasis described in the extended XML schema naturalmapxml_extended.xsd in the same
directory.

" The syntax of the conversion rules is described by the XML schema convrules.xsd in the same
directory.

The basic structure of a conversion rule is as follows:

202 Natural for Ajax

Customizing the Map Conversion Process

<convrule rulename="...">
{description>...</description>
<source>...</source>
<target>...</target>
<target>...</target>

<{/convrule>

This means, a conversion rule consists of one source element and (optionally) one or several
target elements. The source element identifies an item from the map. The target elements specify
the conversion output. If no target elements are specified, nothing is generated from the identified
source element.

The basic structure of a source element is as follows (example):

<{source>
{sourceitem>ltlLiteral</sourceitem>
{selection>
<selectattr>ltName</selectattr>
<selectval >*F\F*(, %)\ ***<{/selectval>
<{/selection>
<{sourcecond>
{condattr>TtRow</condattr>
<condvalue>1</condvalue>
<{/sourcecond>
</source>

The sourceitem element refers to a specific kind of item on a map, such as a literal (1tLiteral),
a defined field (dfField), an input field (i fField) or the identifier of the map (identity). The
elements that can be used here are specified by the XML schema that describes the map extract
after the detection of sequence and grid areas (naturalmapxml_extended.xsd). Therefore, the elements
sequenceArea and gridArea, which are only known after this processing, can also be used here.

The selectattr and selectval elements are used to match an element of a specific kind by its
attribute values. The selectval element uses regular expressions to perform a match. Capturing
groups such as (.*) can be used here, so that the target part of the conversion rule can later refer
to parts of the matched value.

The selectattr element not only accepts single attributes but also XPATH expressions. You can
find an example for the usage of XPATH expressions in the file convrulesSNoGrids.xml:

<{source>
<sourceitem>ifField</sourceitem>
{selection>
{selectattr>iflndex/ifOffset{/selectattr>
<selectval>([1-9]1*)</selectval>
<{/selection>
</source>

Natural for Ajax 203

Customizing the Map Conversion Process

In the above example all i fIndex/if0ffset values, which are subnodes of the currently processed
ifField are found. For each value found it is checked whether it matches the regular expression
specified in the selectval element. Only if all values found match the regular expression, the
capturing is done on the concatenated found values. If any values found do not match the regular
expression, the rule is not applied to the i fField.

When you are using XPATH expressions, it is important to keep the two-step process in mind:

* matching for each single value and

" capturing on the concatenated values.

Finally, there can be zero, one or several sourcecond elements, which allow to define further to
which map items the rule applies. If several sourcecond elements are specified, the rule is triggered
only if all conditions match (logical AND).

The basic structure of a target element is as follows:

{target>
{targetitem>...</targetitem>
{targetattr>

<attrname>...</attrname>
<attrvalue>...</attrvalue>
</targetattr>
{targetattr>

<{/targetattr>
<{/target>
In detail, there are several different options to specify a target item:

" Specity the root element name of an Application Designer control, along with its attributes and
attribute values. The attribute value can be a constant, a variable or a reference to a capturing
group from a regular expression in a sourcecond element of the same rule. In this case, the
corresponding control is generated during conversion.

{target>
{targetitem>label</targetitem>
{targetattr>
<attrname>height</attrname>
<attrvalue>10</attrvalue>

</targetattr>

{targetattr>
<attrname>width</attrname>
<attrvalue>$$width$s</attrvalue>

{/targetattr>

{targetattr>
<attrname>name</attrname>
<attrvalue>$l</attrvalue>

204 Natural for Ajax

Customizing the Map Conversion Process

{/targetattr>
<{/target>

" Specify the name of a variable that is defined in the conversion rules file in a convvariable
element.

{target>
{targetitem>$$name$$</targetitem>
</target>

" Refer to the name of a template file, optionally along with attribute names and values. In this
case, whatever is contained in the template file will be generated. Attribute definitions in the
template file are replaced.

{target>
<targetitem>$BUTTON_TEMPLATE</targetitem>
{targetattr>
<attrname>name</attrname>
<attrvalue>$l</attrvalue>

{/targetattr>

{targetattr>
<attrname>method</attrname>
<attrvalue>P$1</attrvalue>

{/targetattr>

{/target>

" Refer to the name of a template variable and the name of a template file, separated by a dot. In
this case, the template variable is replaced with whatever is contained in the template file.

{target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>
{/target>

® Only in the root rule: Specify the name of a template file and the name of a template variable
that is contained in this file, separated by a dot. In this case, the template variable is replaced
with the entire result of the map conversion.

{target>
<targetitem>$NATPAGE_TEMPLATE.$MAPROOT</targetitem>
{/target>

" Specify "$$" as the target item. This is useful when writing a more general rule that is to apply
after another more specific rule has already created a target item. The attributes specified along
with the target item "$$" are applied to the already created target item, whatever this target item
was.

Natural for Ajax 205

Customizing the Map Conversion Process

{target>
{targetitem>$$</targetitem>
{targetattr>
<attrname>datatype</attrname>
<attrvalue>xs:double</attrvalue>
{/targetattr>
{/target>

" Specify "$." as the target item. This refers to the template that is currently being processed. The
attributes specified along with the target item "$." are applied to the current template.

{target>
{targetitem>$.</targetitem>
{targetattr>
<attrname>$$NATSOURCE$$</attrname>
<attrvalue>$l-A</attrvalue>
{/targetattr>
{/target>

Templates

The Map Converter assembles page layouts from templates. Which templates are used, how they
are assembled and how variables in templates are filled is controlled by the conversion rules.

A template file describes the general layout of an entire Application Designer page layout or of
an individual Application Designer control. A template can contain variables and references to
other templates. During conversion, the Map Converter resolves the structure of the templates
and fills the variables with specific values, depending on the contents of the map.

A template file can describe a simple control such as a FIELD control or a more complex control
such as a TEXTGRIDSSS2 control. For the same control, multiple templates may exist. For example,
an ofield_TEMPLATE and an ifield_TEMPLATE may both be templates for the FIELD control. The
ofield_TEMPLATE would be used for output fields, the ifield_ TEMPLATE for modifiable fields.
Which template is used for which subset of fields of the map is specified in the conversion rules.

Template files are well-formed XML files which contain control definitions. They are placed in
the folder convrules of your Application Designer project directory. The file name must end with
"_TEMPLATE.xml". The Map Converter ships with a set of default template files.

The following topics are covered below:

= Variables in Templates
= Templates in Templates

206 Natural for Ajax

Customizing the Map Conversion Process

= Editing Templates
Variables in Templates

As already seen in the examples above, templates can contain variables. Variables can be freely
defined by the user. Example:

<?xml version="1.0" encoding="UTF-8"7>

<natpage xmins:njx=http://www.softwareag.com/njx/njxMapConverter
natsource="$$NATSOURCE$$" natsinglebyte="true">
<titlebar name="$$TITLEVAR$$" align="center">
</titlebar>

<pagebody>
<njx:njxvariable name="MAPROOT"/>
</pagebody>
<{statusbar withdistance="false"/>
</natpage>

" Variables as placeholders for the property values of controls
An example is the variable $$TITLEVAR$$ in the template above. If a template contains a variable
such as name="$$TITLEVAR$$", there must be a corresponding rule that yields a value for the
variable $$TITLEVAR$$. The Map Converter replaces the variable with this value.

The built-in variable $$ has a specific meaning. If it occurs as a property value, there is no spe-
cific rule needed to produce the value. Instead, the Map Converter receives the value from a so-
called tag converter. Tag converters are Java classes that are delivered with the Map Converter.
Exchanging or writing your own tag converters is an advanced way of extending the Map
Converter and is usually not required. See Tag Converters for further information.

" Variables as placeholders for controls and containers

An example is the variable MAPROOT in the template above. Such a variable is defined by inserting
an NJX:NJXVARIABLE control (from the controls palette of the Layout Painter) into a template.
Aslong as the XML of the template is well-formed, an NJX:NJXVARIABLE control can be inserted
at any place in the template. Conversion rules refer to this variable as $MAPROOT. Notice that the
value in the name property of an NJX:NJXVARIABLE control does not start with $. Instead, the
NJX:NJXVARIABLE control itself defines that it is a variable. The NJX:NJXVARIABLE control
is a special control in the Natural Extensions section of the Layout Painter's controls palette.

Natural for Ajax 207

Customizing the Map Conversion Process

Templates in Templates

Templates can refer to other templates. This can be done via adding variables. The variable can
serve as a placeholder for another template. The template name is defined via a corresponding
rule.

Example (GRID_TEMPLATE.xml):

<?xml version="1.0" encoding="UTF-8"7>
<rowtablearea?2 withborder="false" griddataprop="$$gridnames" rowcount="§$" >
<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDHEADER" />
</t
{repeat>
<tr>
<hdist></hdist>
<njx:njxvariable name="GRIDITEM" />
</tr>
{/repeat>
</rowtableareaz2>

This means: A conversion rule like the following maps a grid area detected in the map to a
ROWTABLEAREA? control and formats the header and rows as specified in the templates
GRIDHEADER_TEMPLATE.xml and GRIDITEM_TEMPLATE.xml.

<convrule rulename="Griditem_rule">
<description>Mapping rule for the items of grid.</description>
<{source>
<sourceitem>gridArea//ifField</sourceitem>
</source>
{target>
<targetitem>$GRIDITEM.$GRIDITEM_TEMPLATE</targetitem>
</target>
{target>
<targetitem>$GRIDHEADER.$GRIDHEADER_TEMPLATE</targetitem>
<{/target>
</convrule>

208 Natural for Ajax

Customizing the Map Conversion Process

Editing Templates

Only NATPAGE templates (like the default NATPAGE template NATPAGE_TEMPLATE.xml) can
be edited with the Layout Painter. Templates for individual controls must currently be edited using
a text editor.

Tag Converters

A template must be a valid XML document. The root element must correspond to the root element
of a valid Application Designer control. Templates can contain variables. A special variable is the
variable $$.

Example:

<?xml version="1.0" encoding="UTF-8"7>
<button name="$$" method="$$"></button>

Each template is processed by a so-called tag converter. Tag converters are in charge of resolving
the variable $$. A tag converter is a Java class that must support a specific interface and be available
in the class path of the Map Converter. Which tag converter is used depends on the root element
of the template.

In the above example, the root element is the BUTTON control. The following rule applies:

® If a Java class with the name
com.softwareag.natural.mapconverter.converters.BUTTONConverter is found in the Java
class path, this Java class is used as the tag converter.

® QOtherwise, the class com.softwareag.natural.mapconverter.converters.DEFAULTConverter
is used as the tag converter.

In the above example, the Map Converter tries to find the class BUTTONConverter first. Since a
specific tag converter for the BUTTON control is not delivered with the Map Converter, the class
DEFAULTConverter is used as the tag converter.

In order to supply a custom tag converter for the BUTTON control, for instance, you would have
to create a Java class BUTTONConverter that belongs to the package
com.softwareag.natural.mapconverter.converters and make it available in the Java class path
of the Map Converter.

Detailed information on how to write your own tag converters is provided in the Application
Designer development workplace as Javadoc; see Map Converter Extension API in the Natural
Tools node of the navigation frame (under Tools & Documentation).

Natural for Ajax 209

210

30 Code Conversion

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 212
B GENErAtiNG AGAPIETS ..ottt e e e e e e et e e s 212
= Structure of @ Map-Based APPlICAtIONcooiiiiiiii e 212
= Structure of a Natural for Ajax ApPlICALIoNeeeiiiiiee e 213
® Tasks Of the COAE CONVEISIONeviiiiiiiiie ettt e et e e e e e et e e e 214
B DEFINE DATA STAtEMENTooeiiiiiiie i e e e aa e e 214
B INPUT SEAEBMENT ..ottt e e et e e e et e e e ettt e e e e ante e e e e nrneeee s 215
B REINPUT SEAIEMENT ...t e e e e e e e e e e e aeea e e e 216
B PE-Key EVENEHANAING ... 218
B SETKEY SEAtEMENT ...t e 219
B OAITAY DA .. 222
B PIOCESSING RUIES ... 223
B SYSEEM VAMADIES ... 223
= Variable Names Containing Special Characterscooouvviiiiiiiiiiiie e 225

211

Code Conversion

General Information

After the Map Converter has been used to create page layouts from map extract files, the last step
in the conversion process is adapting the application code to the new user interface. This step can
either be performed manually or, with Natural Engineer, partly automatically. In the following,
the manual code conversion is described.

Generating Adapters

First of all, it is necessary to generate HTML code and Natural adapters from the page layouts
that have been created by the Map Converter. This is the same procedure as with page layouts
that have been created manually with the Layout Painter. Then, the adapters are imported into
the Natural development environment.

Structure of a Map-Based Application

In this context, we need not consider the application code as a whole, but only the layer that
handles the user interface. Often, the user interface handling part of a map-based application is
structured in the following way:
" DEFINE DATA
*® Initialization
= REPEAT
® INPUT [USING MAP map-name]
* Includes client-side validations (processing rules)
= Server-side validations
® REINPUT or ESCAPE TOP
" DECIDE ON *PF-KEY
* Function key handler 1
" Processing
® REINPUT or ESCAPE TOP
® Function key handler 2
® Processing

® REINPUT or ESCAPE TOP

212 Natural for Ajax

Code Conversion

* Function key handler n
" Processing
® ESCAPE BOTTOM
-
® END-DECIDE
® END-REPEAT
® Cleanup

= END
In practice,

" the REPEAT loop might or might not be there, and

" there might not be a clean DECIDE structure for the function key handlers. Instead, checks for
the pressed function key might be spread all over the code.

However, accepting these differences, the above structure should match a large number of applic-
ations.

Structure of a Natural for Ajax Application

The corresponding part of a Natural for Ajax application looks as follows:

= DEFINE DATA
" Initialization
= REPEAT
® PROCESS PAGE USING adapter-name
* Includes client-side validations
" Server-side validations
® PROCESS PAGE UPDATE FULL
" DECIDE ON *PAGE-EVENT
" Event handler 1
® Processing
® PROCESS PAGE UPDATE FULL or ESCAPE TOP
" Event handler 2
® Processing

" PROCESS PAGE UPDATE FULL or ESCAPE TOP

Natural for Ajax 213

Code Conversion

® Event handler n
" Processing
® ESCAPE BOTTOM
-
® END-DECIDE
® END-REPEAT
® Cleanup

"= END

Tasks of the Code Conversion

The code conversion should achieve the following;:

= Jt should be minimal invasive.
*® It should not duplicate business code.

® The converted application should be able to run not only with the new user interface, but also
in a terminal session, in a Natural Web I/O Interface session and in batch, if it did so before the
code conversion.

In detail, the code conversion needs to deal with the statements and constructs mentioned below.

DEFINE DATA Statement

The DEFINE DATA statement must be extended because the data structures exchanged between a
program and map are not fully identical to those exchanged between a program and the corres-
ponding adapter.

The default conversion rules delivered with the Map Converter perform a data type mapping that
tries to ensure that the data elements in the map interface are mapped to data elements of the same
type and name in the adapter interface.

The Application Designer controls are usually not only bound to business data elements, but also
to additional control fields. Which control fields these are depends on the way in which the elements
of a map are mapped to Application Designer controls by the Map Converter rules. For instance,
astatusprop canbe assigned to a field, which results in an additional parameter in the parameter
data area of the adapter. An array on a map can have been converted to a grid control with server-
side scrolling. In this case, the additional data structures needed to control server-side scrolling
need to be added to the DEFINE DATA statement.

214 Natural for Ajax

Code Conversion

statusprop

The statusprop is needed to control the error status or focus of a FIELD control dynamically (see
example 3 for the REINPUT statement below where it is used to replace the MARK *field-name
clause). The default conversion rules contain a rule that creates a statusprop property for each
map field that is controlled by a control variable. The adapter generator creates from this property
a corresponding status variable and a comment line that identifies the status variable as belonging
to the field.

Example

The parameter data area of the map contains:

01 LIB-NAME (A8)
01 LIB-NAME-CV (C)

The parameter data area of the adapter will then contain:

* statusprop= STATUS_LIB-NAME-CV
01 LIB-NAME (A8)
01 STATUS_LIB-NAME-CV (A) DYNAMIC

The variable STATUS_LIB-NAME-CV is not yet known to the main program and must be defined
there.

INPUT Statement

The replacement for the INPUT statement is the PROCESS PAGE statement. In its simplest form, the
INPUT statement just references the map. In this case, it is just replaced by a PROCESS PAGE statement
with the corresponding adapter.

Example 1

Main program before conversion:

INPUT USING MAP "MMENU'

Main program after conversion:

Natural for Ajax 215

Code Conversion

IF *BROWSER-I0 NE 'RICHGUI'
INPUT USING MAP "MMENU'
ELSE
PROCESS PAGE USING 'AMENU'
END-IF

The INPUT statement can come with a message text that is displayed in the status bar. There is no
direct replacement for this construction because the PROCESS PAGE statement (in contrast to the
PROCESS PAGE UPDATE statement) does not support the SEND EVENT clause.

Example 2

Main program before conversion:

INPUT WITH TEXT MSGO1 USING MAP "MMENU'

Main program after conversion (no message will be displayed):

IF *BROWSER-I0 NE 'RICHGUI'

INPUT WITH TEXT MSGOl USING MAP "MMENU'
ELSE

PROCESS PAGE USING 'AMENU'
END-IF

REINPUT Statement

The replacement for the REINPUT statement is the PROCESS PAGE UPDATE statement. In its simplest
form, the REINPUT statement comes with a message text that is displayed in the status bar. In the
converted code, this is handled by the SEND EVENT clause of the PROCESS PAGE UPDATE statement.

Example 1

Main program before conversion:

REINPUT [FULL] WITH TEXT MSGO1

Main program after conversion:

IF *BROWSER-IO NE 'RICHGUI'
REINPUT [FULL] WITH TEXT MSGO1
ELSE
PROCESS PAGE UPDATE [FULL]
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE MSGO1

216 Natural for Ajax

Code Conversion

END-PARAMETERS
END-IF

The REINPUT statement can come with a message number and replacements. In this case, the
message must be created from number and replacements before it is sent to the status bar with
the SEND EVENT clause.

Example 2

This example uses a subprogram GETMSTXT that builds the message text from number and replace-
ments.

Main program before conversion:

REINPUT [FULL] WITH TEXT *MSGNR, REPLI, REPLZ

Main program after conversion:

IF *BROWSER-IO NE 'RICHGUI'
REINPUT [FULL] WITH TEXT *MSGNR, REPL1, REPLZ
ELSE
CALLNAT 'GETMSTXT' MSTEXT MSGNR REPLI REPLZ?
PROCESS PAGE UPDATE [FULLI]
AND SEND EVENT 'nat:page.message'’
WITH PARAMETERS
NAME 'type' VALUE '"E'
NAME 'short' VALUE MSTEXT
END-PARAMETERS
END-IF

Example 3

The REINPUT statement can come with a MARK clause in order to put the focus on a field. This case
requires that a statusprop property is created for the field during map conversion. The variable
bound to the statusprop property is then used before the PROCESS PAGE UPDATE statement to set
the FOCUS to the field.

Main program before conversion:

REINPUT [FULL] WITH TEXT MSGO1 MARK *LIB-NAME

Main program after conversion:

Natural for Ajax 217

Code Conversion

01 STATUS_LIB-NAME-CV (A) DYNAMIC

I[F *BROWSER-IO NE "RICHGUI'

REINPUT [FULL] WITH TEXT MSGO1 MARK *LIB-NAME

ELSE

STATUS_LIB-NAME-CV := "FOCUS'
PROCESS PAGE UPDATE FULL
AND SEND EVENT 'nat:page.message’
WITH PARAMETERS
NAME 'type' VALUE "W’
NAME 'short' VALUE MSGO1
END-PARAMETERS

END-IF

PF-Key Event Handling

The original application might contain checks for the content of the system variable *PF-KEY at
arbitrary places in the code. In order to handle function key events correctly in the converted ap-
plication, several things need to be achieved:

In response to the function keys, the converted application must raise events that are named
like the possible contents of *PF-KEY. This can be achieved by using a page template such as
NATPAGEHOTKEYS_TEMPLATE.xml which contains the required hot key definitions.

A common local variable must be set up right after the INPUT or PROCESS PAGE statement that
contains either the value *PF-KEY or *PAGE - EVENT, depending on the execution environment.
The name of the variable can be freely chosen. In the example below, the name XEVENT is used.

The events nat:page.end and nat:browser.end must be handled in such a way so that the
program terminates. See also Built-in Events and User-defined Events.

A default event handler must be set up that takes care of the values of *PAGE - EVENT that are not
expected by the original application code. These unexpected events are simply replied with a
PROCESS PAGE UPDATE FULL statement.

Example

01 XEVENT (U) DYNAMIC

PROCESS PAGE USING ...

IF *BROWSER-IO = 'RICHGUI'

DECIDE FOR FIRST CONDITION
WHEN *PAGE-EVENT = 'nat:page.end’
STOP
WHEN *PAGE-EVENT = MASK ('PF'*) OR = MASK ('PA'*)
OR = "ENTR" OR = 'CLR"'
XEVENT := *PAGE-EVENT
WHEN NONE

218 Natural for Ajax

Code Conversion

PROCESS PAGE UPDATE FULL
END-DECIDE
ELSE
XEVENT := *PF-KEY
END-IF

All references to *PF-KEY in the code must then be replaced by references to XEVENT.

SET KEY Statement

Natural for Ajax provides two controls (NJX:BUTTONITEMLIST and NJX:BUTTONITEMLIST-
FIX) that represent a row of buttons. These controls can be used to replace the visual representation
of the function keys from the original application. If the page template NATPAGEPFKEYS_TEM-
PLATE.xml or a similar individually adapted template is used during map conversion, each resulting
page will contain a row of function key buttons. The subject of this section is how the converted
application can control the labeling and the program-sensitivity of the function keys with only
little code changes.

Natural controls the labeling and program-sensitivity of the function keys in a highly dynamic
way. The corresponding application code (SET KEY statements) can be distributed across program
levels and can be lexically separated from the corresponding INPUT statements. Also, the SET KEY
statement has several flavors, some affecting all keys and others affecting only individual keys.
As a result, the status of the function keys at a given point in time can only be determined at ap-
plication runtime.

Therefore, the following approach is chosen: Natural provides the application programming inter-
face (API) USR4005 that reads the current function key naming and program-sensitivity at runtime.
During code conversion, a call to this API is inserted after each SET KEY statement or into each
round trip. This call reads the function key status and passes it to the user interface.

Example

Main program before conversion:

SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'

PF3 NAMED 'Modify"' PF4 NAMED 'Delete' PF5 NAMED 'F5'

PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display'’

PF9 NAMED 'F9"' PF10 NAMED 'F10' PF11 NAMED 'FI11' PF12 NAMED 'F12'

*

INPUT USING MAP "KEYS-M"

*

END

Map before conversion:

Natural for Ajax 219

Code Conversion

* KKk PF'KeyS * KKk

Enter=PFl===PF2===PF3===PFl===PF5===PFE===PF7===PF8===PF9===PFL0==PF1l==PF12===
Enter F1 F2 Modif Delet F5 Fb Creat Displ F9 F10 F11 Fl12

Main program after conversion:

DEFINE DATA LOCAL
PFKEY (1:%)
METHOD (A) DYNAMIC
NAME (A) DYNAMIC
TITLE (A) DYNAMIC
VISIBLE (L)
METHODS (A4/13) CONST <'ENTR','PF1','PF2','PF3','PF4',
"PF5','PF6',"PF7','PF8','PF9",'PF10", PF11"', 'PF12'>
END-DEFINE
*
SET KEY ENTR NAMED 'Enter' PF1 NAMED 'F1' PF2 NAMED 'F2'
PF3 NAMED 'Modify' PF4 NAMED 'Delete' PF5 NAMED 'F5'
PF6 NAMED 'F6' PF7 NAMED 'Create' PF8 NAMED 'Display’
PF9 NAMED 'F9' PF10 NAMED 'F10' PF11 NAMED 'F11' PF12 NAMED 'F12°
*
IF *BROWSER-10 NE "RICHGUI"
INPUT USING MAP "KEYS-M"
ELSE
EXPAND ARRAY PFKEY TO (1:13)
METHOD(1:13) := METHODS (*)
CALLNAT "GETKEY-N" PFKEY (%)
PROCESS PAGE USING "KEYS-A"
END-IF

*

END

R DN

220 Natural for Ajax

Code Conversion

Page after conversion:

PF-Eeys

Fi F2 | Modify| Delsta FS F& | Create| Display. Fo | F10 | P11 | F12

Explanation

The structure PFKEY is generated into the Natural adapter of the page as the application interface
to the BUTTONITEMLISTFIX control.

The subprogram GETKEY -N is a convenience wrapper for the API subprogram USR4005. It uses
USR4005 to determine the labeling and the program-sensitivity status for a given list of function
keys. Each function key is identified by the *PF-KEY value it raises. GETKEY - N returns the function
key information in a data structure suitable for the application interface of the BUTTONITEML-
ISTFIX control. The subprogram is delivered in source code with the Natural for Ajax demos and
can be adapted to the needs of the application.

Natural for Ajax 221

Code Conversion

Array Data

To use grid controls like TEXTGRIDSSS2 and ROWTABLEAREA?2, you need to bind the griddata-
prop attribute to an array structure at level 1. For the example Natural data definitions below the
griddataprop attribute needs to be bound to the Tevell field.

Example 1

1 levell (00001:00005)
2 arrayfieldl (al0)
2 arrayfield2 (al0)

Example 2

1 Tevell
2 arrayfieldl(al0/00001:00005)
2 arrayfield2(al0/00001:00005)

Natural however, also allows to have a combination of single fields and arrays as shown in the
following example:

Example 3

1 levell

2 fieldl (al0)

2 arrayfieldl(al0/00001:00005)
2 arrayfield2(al0/00001:00005)

Tobind a TEXTGRIDSSS3 or ROWTABLEAREA? to structures as shown in example 3 you basically
have two options:

Option 1

Change the original Natural data definition structure, which is usually the preferred and recom-
mended way.

Option 2

Add an extra set of variable definitions to your Natural code like:

222 Natural for Ajax

Code Conversion

levellx

fieldl (al0)

levell
arrayl(al0/00001:00005)
array2(al0/00001:00005)

N N = N

You may need to add extra Natural code to transfer the values to/from the original fields. However,
if the Natural source code only references the variables without level 1 qualifiers (for example,
using reset arrayl(*)instead of reset levell.arrayl(*))no source change is required except
for the initial data definitions.

If Option 1 is not possible, the convrulesCVVariables.xml example rules file offers semi-automated
support for Option 2. It automatically splits the original structure into two and adds an "x" to the
name of the newly created structure for the non-array fields in the adapter and adapter interface
as shown in Option 2.

Processing Rules

The Natural maps in the application to be converted may contain processing rules. In the sense
of a Natural for Ajax application, the processing rules are server-side validations because they are
executed on the Natural server side of the application.

In order to extract processing rules from the maps and to turn them into server-side validations
in the converted application, the Natural Engineer function “Separate Processing Rules from
Maps” can be used.

There is currently no function available that automatically turns processing rules into client-side
validations in Application Designer.

System Variables

If a map displays a system variable (for example, *DATX), a specific default conversion rule takes
care that the necessary code for handling the system variable is generated into the Natural adapter
of the resulting page layout.

Example 1

The map displays the contents of the system variables *DATX and *TIMX. The contents of these
system variables are not modifiable.

The DEFINE DATA statement of the adapter will then contain:

Natural for Ajax 223

Code Conversion

LOCAL
01 XDATX (A8)
01 XTIMX (A8)

The body of the adapter will then contain:

XDATX := *DATX
XTIMX = *TIMX

*

PROCESS PAGE ... WITH
PARAMETERS

NAME U'XDATX'
VALUE XDATX

NAME U"XTIMX'
VALUE XTIMX

END-PARAMETERS

The main program needs no special adaptation.
Example 2

The map displays the content of the system variable *CODEPAGE. The content of this system variables
is modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XCODEPAGE (A64)

The body of the adapter will then contain:

XCODEPAGE := *CODEPAGE

*

PROCESS PAGE ... WITH
PARAMETERS

NAME U’ XCODEPAGE"’
VALUE XCODEPAGE

END-PARAMETERS
*

*CODEPAGE := XCODEPAGE

The main program needs no special adaptation.

224 Natural for Ajax

Code Conversion

Variable Names Containing Special Characters

A similar procedure applies to special characters contained in variable names. These are the fol-
lowing special characters:

P puw @ ™~ = +

Note: The hash (#) can occur only as the first character.

Variables names containing these special characters cannot be directly bound to Application De-
signer control attributes. A specific default conversion rule replaces the names containing these
special characters with configurable replacements. The original field name is generated into the
parameter data area of the Natural adapter and a corresponding mapping is generated into the
PROCESS PAGE statement of the adapter.

Example
The map displays the variables #FIRST and #LAST.

The DEFINE DATA statement of the adapter will then contain:

DEFINE DATA PARAMETER
1 #FIRST (Al6)
1 JfLAST (A20)

The body of the adapter will then contain:

PROCESS PAGE ... WITH
PARAMETERS

NAME U"HFIRST'
VALUE #FIRST
NAME U"HLAST'
VALUE #LAST
END-PARAMETERS

The main program needs no special adaptation.

Natural for Ajax 225

226

V Web Service for Optimize for Infrastructure

227

228

31 Web Service for Optimize for Infrastructure

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 230
B PIErEQUISIIES ..o 230
= |nstalling the Web Service on Wildfly Application SEIVErcoooiiiiiiiiiiiie e 231
= |nstalling the Web Service on IBM WebSphere Application Server ... 231
= |nstalling the Web Service on Apache TOMCAtooiiiiiiiiiiii e 232
m Verifying the INSTAllAtion ... 234

229

Web Service for Optimize for Infrastructure

General Information

This document describes the installation of the Natural for Ajax web service for Optimize for In-
frastructure. This web service enables Optimize for Infrastructure to measure and display certain
key performance indicators (KPIs) of the Natural for Ajax installation. The Optimize for Infrastruc-
ture documentation contains the definitions of these KPIs and describes how to make the web
service known to Optimize for Infrastructure.

The web service is delivered as a web application (NJXOptimizeService.war).

Prerequisites

The following topics are covered below:

= Java
= Application Server
= Web Container

Java

Java 8 is required to run the web service. Therefore, your application server or web container must
be started with Java 8.

Application Server

The following application servers are supported:

® Wildfly Application Server 10 and 11.
® IBM WebSphere Application Server 8.5.

Web Container

The following web container is supported:

® Apache Tomcat 7, 8 and 9.

230 Natural for Ajax

Web Service for Optimize for Infrastructure

Installing the Web Service on Wildfly Application Server

The following topics are covered below:

= |nstallation
Installation

The distributables for the different Wildfly Application Server versions are contained in the fol-
lowing directories:

Version Directory

WildFly 10 and 11 |WildFly

Installing the Web Service on IBM WebSphere Application Server

The following topics are covered below:

= Prerequisites
= [nstallation

Prerequisites
For IBM WebSphere Application Server, there are no specific prerequisites.
Installation

The distributables for IBM WebSphere Application Server are contained in the directory WebSphere.

The web service is installed using the Administration Console of IBM WebSphere Application
Server.

The following is assumed:

® <host> is the name of the machine on which the application server is installed.

® <port>is the name of the port where the application server is installed. In a default installation,
this is port 9080.

® <adminport>is the name of the port where the Administration Console is installed. In a default
installation, this is port 9060.

Natural for Ajax 231

Web Service for Optimize for Infrastructure

> To install the web service

Make sure the application server is running.

Open your web browser and enter the following URL:

http://<host>:<adminport>/ibm/console

This opens the Administration Console.

Deploy the web application NJXOptimizeService.war:

1.

9.

Open the tree node Applications > Application Types > WebSphere enterprise applica-
tions.

. On the Enterprise applications page, choose Install.

. Select WebSphere/NJXOptimizeService.war as the path to the new application. Then choose

Next.

. Choose Next. If additional information is required, you will be prompted.

. On the Select installation options page, select the Deploy Web services check box. Then

choose Next.

. On the Map modules to servers page, select a cluster and server, select Natural for Ajax

and choose Apply. Then choose Next.

On the Map virtual hosts for Web modules page, select a virtual host, select Natural for
Ajax and choose Next.

. On the Map context roots for Web modules page, enter "NJXOptimizeService" as context

root and choose Next.

On the Summary page, choose Finish.

10. On the next page, choose Save.

Installing the Web Service on Apache Tomcat

The following topics are covered below:

= Prerequisites

232

Natural for Ajax

Web Service for Optimize for Infrastructure

= |nstallation
Prerequisites

You need to add JAX-WS to your NJXOptimizeService web application:

1. Download a version of JAX-WS from http://jax-ws.java.net/.

2. Expand the JAX-WS archive and copy all *.jar file from the /lib directory into the WEB-INF/Iib
directory of the NJXOptimizeService web application.

3. As of Java 11, the packages of the JavaBeans Activation Framework (JAF) have been removed
from the distribution. As a consequence, applications running on Java 11 need the activation* jar
copied into the WEB-INF/lib directory of the NJXOptimizeService web application.

> To install JAX-WS 2.0

1 Download the JAX-WS 2.0 archive from the site indicated above.

2 Unpack the archive.

3 Copy the contents of the [ib directory into the lib directory of your Apache Tomcat installation.
Installation

The distributables for Apache Tomcat are contained in the directory Tomcat.
The web service is installed using the Tomcat Manager.
The following is assumed:

® <host> is the name of the machine on which Apache Tomcat is installed.

= <port> is the name of the port where Apache Tomcat is installed. In a default installation, this
is port 8080.

" <tomcat>is the path to the directory in which Apache Tomcat is installed.

> To install the web service

1 Start Apache Tomcat.
2 Open your web browser and enter the following URL:

http://<host>:<port>/manager/html

This opens the Tomcat Manager.

3 Deploy the web application file NJXOptimizeService.war:

® Under Select WAR file to upload select the path to the file NJXOptimizeService.war.

Natural for Ajax 233

http://jax-ws.java.net/

Web Service for Optimize for Infrastructure

® Choose Deploy.

Verifying the Installation

It is assumed that http://<host>:<port> is the URL of your application server or web container.

~ To verify the installation

= Enter the following URL in your web browser:

http://<host>:<port>/NJX0ptimizeService/DataCollectionService?wsd]

The WSDL definition of the web service should be displayed.

234 Natural for Ajax

VI Typical Page Layout

The layout of a page typically contains the following elements:

Result | |

Input Your name and press the 'Say Hello' button,

This part describes these elements in more detail.

—— Title Bar

+—— Header

- #— Page Body

«—— Status Bar

235

Typical Page Layout

NATPAGE
TITLEBAR
HEADER
PAGEBODY
STATUSBAR

236 Natural for Ajax

32 NATPAGE

LI (] L= T ST PPPPTPPRR 238

237

NATPAGE

The NATPAGE control is always the top node of a Natural page's layout definition. The Natural
page, on the one hand, generates the visible container in which all the contained elements are
placed; on the other hand, some Natural-specific settings are defined on page level.

Properties

Basic

translationreference

This is the "translation reference" that is passed to the
multi language management.

The "tranlation reference" is a logical term representing a
group of textids together with their translation. If using
the standard file based multi language management that
comes with CIS as default then a "translation reference”
represents one file containing text-ids and translations in
a comma separated format.

Translation information is loaded by the multi language
management "per translation reference". Le. if a page links
to a certain translation reference then all the translation
information that is avaible through this reference is loaded
in one step and is also buffered.

You can set up different scenarios: either each page may
address an own translation reference. E.g. if your page is
named "abc.xml" then it references to "abc" - as
consequence there is (per language) one abc.csv file
holding translation information for this page. If you have
a second page "def.xml" then you may define "def"
accordingly. In this case each page is independent from
the other. - On the other side you are required to translate
certain "common text-ids" mulitple times.

If you on the other hand define one translation reference
for multiple pages then you can share text-ids throughout
the various pages.

Please set up a strategy for using translation references
when starting using the multi language management. The
strategy should also include a structured way of naming
text-ids. Text-ids may only be shared in an efficient way
if it is clear what they stand for. E.g. you may names of
buttons in the following way: "btn_save" and "btn_saveas".

Sometimes

obligatory

stylesheetfile

URL of a style sheet file used for control rendering.

Typically the style sheet file used for control rendering is
set dynamically e.g. the style depends on the user who is

Optional |css

238

Natural for Ajax

NATPAGE

currently logged on. When defining the style sheet file by
this property, the style sheet file is not set dynamically
but defined in a fix way for this page.

The style sheet file must be defined as URL, relative to the
generated page. A valid value may be
"../softwareag/styles/CIS_DEFAULT.css".

If not using the "hard setting" of the style sheet file via
this property then the style sheet is determined by the
runtime in the following way:

(1) The adapter object provides for a "String getStyle()"
method that return the URL. You can override the default
method and pass back your own URL.

(2) When using the default implementation derived from
com.softwareag.cis.server.Model then the getStyle()
method accesses the CIS session context. You can set the
session's style by calling "find CISessionContext()" in your
adapter and calling "setStyle()" in the session context's
object.

responsivestylesheetfile

URL of the responsive stylesheet file for Bootstrap. If not
specified the default Bootstrap stylesheet file is used. For
more information see the responsive style guide. For non
responsive pages this property is ignored.

Optional

datatablesstylesheetfile

URL of the responsive DataTables stylesheet file for
rendering responsive grids. If not specified the default
DataTables stylesheet file is used. For more information
see the responsive style guide. For non responsive pages
this property is ignored.

Optional

uselatestbootstrap

Set this to true if you want to use Bootstrap 4 for the
responsive controls. It will overwrite the corresponding
setting of cisconfig.xml for this page. Default is false.

Optional

addstylesheetfile

URL of an additional style sheet file.

You may use this additional style sheet file in order to
define more styles than are provided in the "normal" style
sheet file. Typical situations are:

(A) Some controls offer the possibility to render defined
content by style-class definitions (e.g. inside a TEXTGRID
you can dynamically define which style-class is used for
a certain cell).

(B) If you define own controls by using the control
extension framework and if these controls require own
style classes then these style classes may be provided
inside the additional style sheet file.

Optional

CSS

Natural for Ajax

239

NATPAGE

By using the additional style sheet file you are able to
avoid doing manipulations to the "normal" style sheet
files that come from CIS or that are generated inside the
tool "Style Sheet Editor".

imagestopreload

Semicolon separated list of image-URLs that are directly
preloaded in an invisible area of the page. If images are
used inside a tree or a text grid then they are loaded by
dynamically generated HTML that is placed into a
corresponding area of the page. In order to optimise the
loading you can preload such images by listing them in
this property.

The URL of the images must be relative to your generated
HTML page.

Example: if your page has a tree with certain node images
then you may define: "images/nodeopened.gif"
images/nodeclosed.gif; images/nodeendnode.gif".

Optional

darkbackground

Normally a page background is in light colour (white if
using CIS_DEFAULT style sheet). CIS style sheets also
have a dark(er) grey colour to be used.

If DARKBACKGROUND is set to true then the darker
background colour is chosen. This property typically is
used if using the SUBCISPAGE tag or
ROWTABSUBPAGES tag to seamlessly integrate inner
pages into darker container areas.

Optional

true

false

helpid

This is the id that is passed into the help management for
the page.

If a user clicks F1 inside the page and if there is no specific
context sensitive control help available (e.g. help for field)
then the help for the page is popped up.

Optional

visiblevalueifundefined

Several CIS controls support a VISIBLEPROP property.
The VISIBLEPROP contains the binding to an adapter
property that decides at runtime if a control is visible or
not.

This property defines how these controls behave if there
is no implementation available for the property.

Example: the VISIBLEPROP of a CHECKBOX is binding
to a property "cbvisible" but there is not corresponding
implementation "getCbvisible". If set to "true" then all
controls with undefined visibility are displayed. If set to
"false" then they are hidden.

Optional

true

false

contextmenumethod

Name of the event that is sent to the adapter when the
user clicks into the page with the right mouse button and

Optional

240

Natural for Ajax

NATPAGE

no other control (e.g. texgrid, tree,...) handled the click so
far.

immediatedisplay

Flag that indicates if the screen is visible within the initial
loading phase. Default is false. When using the default
you see a light HTML page showing a "just loading"
image. Use property "justloadingurl" to specify a page of
choice.

Optional

true

false

autotab

Sets the default behavior if an automatic tab should be
executed for FIELD controls in this layout. Notice that this
default is not used for FIELD controls in FLEXLINEs.

Optional

true

false

itrinlinedisplay

Set this property if you want to set the property inline for
all ITR controls of this page.

Optional

true

false

focusmgtprop

Name of adapter parameter that dynamically controls the
focus management in the browser for the current server
roundtrip. Valid values provided by the adapter are: 0
(=default), 1 (= suppress focus), 2 (= set focus), 3 (= open
tabs in TABPAGE controls).

Optional

addjavascriptlibs

Comma separated list of URLs of additional javascript
libraries. Example: "../yourproject/js/yourlib.js". Used to
include non-CIS javascript. Example of Usage: with the
DATEINPUT control you can run own rules to convert
and validate user input.

Optional

flushmethod

Name of the event that is sent to the adapter in case the
page loses the focus.

Optional

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

adapterlisteners

Semicolon separated list of classes which connect to the
server side adapter processing as adapter listeners (each
one supporting the interface IAdapterListener).

Optional

framebufferpriority

Priority (integer) that is used to manage the page within
the CIS frame buffer. Use value "-1" to indicate that the
page should not be buffered at all (typically used when
having a FILEUPLOAD2 control on the page). Default is
"0". Use any other integer value to indicate higher priority.

Optional

centralcontextmenu

If set to 'true’ then the context menu is rendered in a
central frame. This central frame can be specified via the
"popupdivframe" setting in cisconfig.

Optional

true

false

usexmlhttprequest

By default CIS framework is using hidden frame
communication (asynchronous server communication).
Use this attribute in order to use "XMLHTTPRequests".
Typical usage is with timer pages (to avoid seeing ongoing
communication to server on browser's statusbar).

Optional

Natural for Ajax

241

NATPAGE

withownborder

If set to "true" the page will be surrounded by an
additional border.

Optional

true

false

userinputprop

Name of the adapter parameter which will have a value
of "true" if some userinput in the page or one of its
subpages has been done since the last server-roundtrip.

Optional

pdfpageprop

Name of the adapter parameter that dynamically defines
the name of the pdf layout. This allows for applying
different pdf layouts dynamically at runtime. If not
specified a default name is used.

Optional

Natural

natsource

Specifies a name for the Natural adapter object that will
later be generated from your page layout. During adapter
generation, this name is checked to match the Natural
naming conventions for objects. If you do not specify a
name here, the adapter name is taken from the layout
name. This might result in names that are not valid for
Natural objects. These adapters can only be used in
Natural for Eclipse.

Optional

natsinglebyte

Specifies whether string properties of the page are to be
mapped to Unicode strings (U) or code page strings (A)
in Natural. The value "true" means code page strings. The
value "false" means Unicode strings (default).

Optional

true

false

natkcheck

For many controls a data structure is generated into the
Natural adapter. The user can choose the name of the data
structure, but the variable names inside the data structure
are predefined. If this property is set to “true”, it is
guaranteed that these predefined names do not collide
with Natural reserved keywords and conform to the
checks that the Natural parameter KCHECK defines. If
this property is set to “false”, this is not guaranteed. For
compatibility reasons the default value of the property is
“false” .

Optional

true

false

natrecursion

Properties of controls used in the page might have a
recursive structure. These structures are mapped to
multi-dimensional arrays in the Natural adapter. Natural
arrays are limited to three dimensions. Therefore, the
recursion depth of these structures can be limited using
this property.

Optional

2

3

int-value

natdc

Specifies the character that is to be used as the decimal
character in the format specifications of variables with
decimal format in the parameter data area of the Natural
adapter. For example, if a comma (,) is specified, "(N7,2)"
is generated. If a period (.) is specified, "(N7.2)" is
generated. The default is the period (.).

Optional

242

Natural for Ajax

NATPAGE

natsss The controls ROWTABLEAREA2 and MGDGRID support|Optional |true
server-side scrolling and sorting. The corresponding data

structures are generated into the parameter data area of false

the Natural adapter only if this attribute has been set to

true. The default is false. This is for compatibility with

earlier versions. For the control TEXTGRIDSSS2, the

server-side scrolling data structures are always generated.

natcv Name of a Natural control variable that shall be assigned |Optional

to the page. The control variable must be defined in a Data

Definition (XCIDATADEF) control on the same page. The

application can use the control variable to check the

modification status of the page.

xmlns:njx Internal use only. Do not modify this. Optional

Popup

popupwidth Each CIS page can be opened as a popup dialog. This |Optional |100px
properties define the pixel width preferred for the page.

- See the property "popupheight” for more information. 200px
300px
400px

popupheight Each CIS page can be opened as a popup dialog. This |Optional |100px
property defines the pixel height preferred for the page.
200px

A popup is typically opened by calling the

"openPopup"-method in your adapter code. If no further 300px

definition is done then the popup will open in the height 400

that is defined by this value. You can also dynamically pX

manipulate the size and position of the popup by using

the Model-method "setPopupFeatures" - please read

corresponding documentation inside the Java API

documentation.

popupfeatures In addition to POPUPWIDTH and POPUPHEIGHT you |Optional |dialogLeft:
can control the appearance of the popup dialog in which 200px

the current page may be displayed. You define a string to .

maintain different feature aspects, separated by dialogTop:

semi-colon. 100px
center:yes|no edge:
sunken
edge:sunken | raised
resizable:
resizable:yes Ino yes
scroll:yes|no status: no

status:yes|no (to display or hide a status bar)

An example string looks as follows: "dialogLeft:100px"

Natural for Ajax

243

NATPAGE

There is one special function built in by which you can
position a popup relative to its caller's window (the
dialogLeft and dialogTop definition normally refer to
absolute coordinates of the screen): by specifying
"dialogLeft: SCRX(100)px" you define that the position is
100 pixels right from the left top corner of the current
window. - Use "dialogTop: SCRY(100)px" in the same way
for vertical positioning.

Please also pay attention to the methods "setPopupTitle()"
and "setPopupPageFeatures()" in the
com.casabac.server.Model class. By using these method
you can define popup parameters in a dynamic way inside
your adapter implementation.

popupendmethod

When set to TRUE the event nat:popup.end is raised when
the page is running as popup. Default value is FALSE.

Optional

true

false

Occupied

occupiedimage

URL of the image that is displayed to indicate that the
screen is just communicating to the server. This is the
image that is located in the top left corner and which by
default is a flashing hour glass.

You can specify any image, e.g. also animated GIF files.
If you want your image not to be visible in the top left
corner but "somewhere" in the screen then draw an image
with some transparent area on the left and above the
image that you want to show.

Optional

occupiedpixelheight

When the screen is busy, because the client is exchanging
information with the server, an hour glass image is
displayed at the top left corner. With this property you
define the pixel height of this hour glass image.

Optional

occupiedpixelwidth

When the screen is busy, because the client is exchanging
information with the server, an hour glass image is
displayed at the top left corner. With this property you
define the pixel width of this hour glass image.

Optional

Hot Keys

hotkeys

Semicolon separated list of hot keys. A hotkey consists of
a list of keys and a method name. Separate the keys by "-"
and the method name again with a semicolon

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two hot keys.
Method onCtrlAltA is invoked if the user presses
Ctrl-Alt-A. Method "onEnter" is called if the user presses
the ENTER key.

Optional

244

Natural for Ajax

NATPAGE

Use the popup help within the Layout Painter to input
hot keys.

Loading

justloadingurl

URL of the page that is displayed to indicate that screen
is just loading. Typically this is a light HTML page
showing a loading image of choice. Use plain HTML - not
a generated CIS page.

Optional

Natural for Ajax

245

246

33 TITLEBAR

LI (] L= T ST PPPPTPPRR 248

247

TITLEBAR

The title bar is typically placed at the top of a page. The text in the title bar can either be set statically
inside the layout definition, or it can be dynamically resolved by a property of the corresponding
adapter.

The title bar can have a close icon (cross at the top right) and an online help icon.The close icon
triggers the nat:page.end event in the Natural application.

Properties

Basic

name Text that is displayed inside the control. Please do not |Sometimes
specify the name when using the multi language obligatory
management - but specify a "textid" instead.

textid Multi language dependent text that is displayed inside |Sometimes
the control. The "textid" is translated into a corresponding |obligatory
string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

withclose In the right top corner of the titlebar there is by default |Optional |true
a close-icon. Define "false" in this property in order to
hide this icon. false

The close-icon calls the method "endProcess” of your
adapter. "endProcess" is implemented in the class
"com.softwareag.cis.server.Model" and by default ends
the subsession the adapter is running in. - Override this
implementation if this default implementation does not
fit to your needs.

align Horizontal alignment of the text that is shown. Optional |left
center

right

image URL of image that is displayed inside the control. Any |Optional
image type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying

248 Natural for Ajax

TITLEBAR

"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

helpid

Id that is passed to the online help management.

If this "helpid" is specified then a help-icon will be
displayed in the right top corner. If clicking on the icon
then the corresponding help will show up.

Optional

titlestyle

CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

pixelheight

Height of the control in pixels.

Optional

2

3

int-value

straighttext

If the text of the control contains HTML tags then these
are by default interpreted by the browser. Specifiying
STRAIGHTTEXT as "true" means that the browser will
directly render the characters without HTML
interpretation.

Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".

Optional

true

false

closetitle

The text that is entered here appears as tooltip on the
close-icon on the right top border of the titlebar.

Optional

closetitletextid

Multi language dependent text that displays the tooltip
on the close-icon. Do not specify a CLOSETITLE if you
are specifying a CLOSETITLEID.

Optional

Natural for Ajax

249

TITLEBAR

comment

Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

Optional

Binding

valueprop

Name of the adapter parameter that provides a value
from which the titlebar text is dynamically derived.

Do not use "name" or "textid" when using this "valueprop"
property.

Optional

visibleprop

Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Optional

imageprop

Name of adapter parameter which dynamically provides
the URL of the image that is shown inside the control.

The URL must either be an absolute URL or a relative
URL.

Optional

withcloseprop

Name of the adapter parameter that indicates if the close
icon of the titlebar is visible.

The server side property will be of type (L).

Optional

Natural

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1) shall be
bound to the control, a different name (for instance
HFIELD1) can be bound instead. If the original name (in
this case #FIELD1) is then specified in this attribute, the
original name is generated into the parameter data area
of the Natural adapter and a mapping between the two
names is generated into the PROCESS PAGE statement
of the Natural adapter. This mapping must not break a
once defined group structure. If for instance a grid control
that is bound to a name of GRID1 contains fields that are
bound to FIELD1 and FIELD?2 respectively, the
corresponding njx:natname values may be
#GRID1.4FIELD1 and #GRID1.4FIELD2, but not
#GRID1.4FIELD1 and #MYGRID1.4FIELD2.

Optional

njx:natsysvar

If the control shall be bound to a Natural system variable,
this attribute specifies the name of the system variable.

Optional

njx:natsysio

If the control shall be bound to a Natural system variable
with the attribute njx:natsysvar, this attribute indicates
if the system variable is modifiable. The default is false.

Optional

njx:natstringtype

If the control shall be bound to a Natural system variable
of string format with the attribute njx:natsysvar, this
attribute indicates the format of the string, A (code page)
or U (Unicode). The default is A.

Optional

250

Natural for Ajax

TITLEBAR

njxmatcv

Name of a Natural control variable that shall be assigned | Optional
to the control.

njx:natcomment

The value of this attribute is generated as comment line |Optional
into the parameter data area of the Natural adapter,
before the field name. The Map Converter, for instance,
uses this attributes to indicate for a generated statusprop
variable to which field the statusprop belongs.

Natural for Ajax

251

252

34 HEADER

LI (] L= T ST PPPPTPPRR 254

253

HEADER

The header is an area in which you can place buttons, icons and menus. The area itself is grey and
has a dark grey line at its bottom (if using the standard style sheet). The header is used to display
buttons and icons that are valid for the whole page. Typically, it is placed directly under the title
bar.

Properties

Basic

nocellspacing [Flag that indicates if there is space between controls within the the header |Optional |true

table. Default is FALSE.
false

align Horizontal alignment of the control's content. Default is "center". Optional |left
center

right

visibleprop [Name of the adapter parameter that provides the information if this control |Optional
is displayed or not. As consequence you can control the visibility of the
control dynamically.

withdistance |If set to TRUE then an additional distance will be added at the bottom of |Optional|true

the header. Default is FALSE.
false

comment Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.

254 Natural for Ajax

35 PAGEBODY

LI (] L= T ST PPPPTPPRR 256

255

PAGEBODY

The page body is the main area in which you place the body part of your layout. The body adapts
its height to the current window's height, while elements such as TITLEBAR, HEADER and
STATUSBAR keep a constant height. If the page body's size is too small to hold its content, you
scroll through the elements that are inside the PAGEBODY.

Properties

Basic

vscroll Definition of the vertical scrollbar's appearance. Optional [auto
You can define that scrollbars only are shown if the content scroll
is exceeding the control's area ("auto"). Or scrollbars can be)
shown always ("scroll"). Or scrollbars are never shown - and hidden

the content is cut ("hidden").

Default is "auto".

hscroll Definition of the horizontal scrollbar's appearance. Optional |auto
You can define that the scrollbars only are shown if the scroll
content is exceeding the control's area ("auto"). Or scrollbars)
can be shown always ("scroll"). Or scrollbars are never shown hidden

- and the content is cut ("hidden").

Default is "auto".

takefullheight |Indicates if the content of the control's area gets the full Optional true

available height.
false

If you use percentage sizing inside the control's area then
this property must be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false'.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then hold
controls (e.g. LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with its content
as consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available area.

pagebodystyle |CSS style definition that is directly passed into this control. |Optional |background-color:

#FF0000
With the style you can individually influence the rendering

of the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000

background-color: #808080

256 Natural for Ajax

PAGEBODY

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source” function.

comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.

Padding

horizdist Defines if there is always a small horizontal distance kept |Optional |true
between the border of the PAGEBODY area and its content.
Set to 'false’ if you want controls in the page body to directly false
start at the very left and to end at the very end - without any
distance.

Default is 'true'.

paddingleft Number of pixels which you want to keep as margin between |Optional | 1
the pagebody's border and its content. If you want that all

contents inside your page body keeps a horizontal distance 2

of 50 pixels on the left then specify: 3

PADDINGLEFT =50 .
int-value

The PADDINGLEFT and PADDINGRIGHT values are added
in addition to the small horizontal distance which is added
via the HORIZDIST property.

paddingright |Number of pixels which you want to keep as margin between |Optional |1
the pagebody's border and its content. If you want that all
contents inside your page body keeps a horizontal distance 2
of 50 pixels on the right then specify:

3

PADDINGRIGHT =50 .
int-value

The PADDINGLEFT and PADDINGRIGHT values are added

in addition to the small horizontal distance which is added

via the HORIZDIST property.

paddingtop Number of pixels which you want to keep as margin between |Optional | 1

the pagebody's border and its content. If you want that all

contents inside your page body keeps a vertical distance of 2

50 pixels on the top then specify: 3

PADDINGTOP = 50 ,
int-value

paddingbottom [Number of pixels which you want to keep as margin between |Optional |1
the pagebody's border and its content. If you want that all
contents inside your page body keeps a vertical distance of
50 pixels on the bottom then specify:

Natural for Ajax 257

PAGEBODY

PADDINGBOTTOM = 50 3

int-value

Logon Form

withformtag |Default value is false. If set to true all controls included in |Optional|true
the pagebody tag will be surrounded by a form tag - only in
the generatet html page. false

That makes it possible to save or transfer forms.
i.e. save username and password or a complete search form.

You will also need an 'submitbutton' - please have a look at
the button control.

258 Natural for Ajax

36 STATUSBAR

B GENEral INfOIMAtION ..o e e, 260
B EXAMPIE oo 260
LI (0] 1= PSPPSR PRR 261

259

STATUSBAR

General Information

Normally, the status bar is located at the bottom of a page. It is a grey area (if using the standard
style sheet) where status information can be seen. The status information is derived dynamically
from the parameters sent with the nat:page.message event (see Sending Events to the User Inter-
face). The information consists of three parts:

® Type of the status message - whether it is an error message (E), a warning (W) or a success
message (S). Depending on the type, a small icon is displayed to the left of the message.

® The status message itself - the text displayed within the status message.

" Along text for the status - optional text shown in a dialog when clicking on the status message.

As an alternative to applying the status information as parameters of thenat : page.message event,
you can apply your own typeprop, shorttextpropand Tongtextprop properties to the STATUSBAR
control. This will generate the corresponding fields in your Natural variable. At runtime, you can
apply the corresponding values in the usual way. Applying values to the generated fields has the
same effect as sending the parameter values with the nat:page.message event. You can even mix
both methods.

Example

In the "Hello World!" application of the Natural for Ajax demos (HELLOW-P . NSP), you want to display
an error message if the user clicks the Say Hello! button and has not yet entered a name.

DECIDE ON FIRST *PAGE-EVENT

VALUE U'onHelloWorld'
IF YOURNAME = "' '
PROCESS PAGE UPDATE FULL AND SEND EVENT 'nat:page.message' WITH
PARAMETERS
NAME 'type' VALUE 'E'
NAME 'short' VALUE 'Please enter your name'
END-PARAMETERS
ELSE
COMPRESS "HELLO WORLD" YOURNAME INTO RESULT
PROCESS PAGE UPDATE FULL
END-IF

The screen including the error message looks as follows:

260 Natural for Ajax

STATUSBAR

Hello World

rHe-llr.l World Demo

Enter your name and choose the button!

Your Mame

a Please enter your name

Properties

Basic

typeprop Name of the adapter parameter that provides as value the type of the status|Optional
message. The type defines the image that is rendered at the beginning of the
message.

Currently there are 3 supported values: E for error, W for warning, S for
success.

Please pay attention: Do not use the name messageType. This name is
internally used when no property name is specified.

shorttextprop |Name of the adapter parameter that provides as value the message text that|Optional
is visible inside the status bar.

Please pay attention: Do not use the name messageShortText. This name is
internally used when no property name is specified.

longtextprop |Name of the adapter parameter that provides as value the long message text. |Optional
The long text pops up if clicking onto the short text mesage.

Please pay attention: Do not use the name messageLongText. This name is
internally used when no property name is specified.

straighttext |If the text of the control contains HTML tags then these are by default Optional |true
interpreted by the browser. Specifiying STRAIGHTTEXT as "true" means

false

Natural for Ajax 261

STATUSBAR

that the browser will directly render the characters without HTML
interpretation.
Example: if you want to output the source of an HTML text then
STRAIGHTTEXT should be set to "true".
resetbefore |If set to TRUE, the control is reset before a server roundtrip is done. Optional |true
false
withdistance |If set to TRUE then an additional distance will be added at the top of the |Optional|true
statusbar. Default is FALSE:
false
comment Comment without any effect on rendering and behaviour. The comment is |Optional
shown in the layout editor's tree view.
Miscellaneous
testtoolid Use this attribute to assign a fixed control identifier that can be later on used |Optional
within your test tool in order to do the object identification
262 Natural for Ajax

VII Working with Containers

Containers are areas on your screen that can hold controls (such as fields, labels, etc.) or other

container(s). Containers are the preferred way to structure elements inside your page body.

The information provided in this part is organized under the following headings:

Positioning of Controls inside a Container

Defining the Width of Controls inside a Container

Vertical Sizing of Containers and Controls
Overview of Different Containers
ROWAREA and COLAREA
ROWAREAWITHHEADER
ROWTABAREA and COLTABAREA
ROWTABLEO and COLTABLEO
COLDYNAVIS and ROWDYNAVIS
ROWDIV and INNERDIV
ROWSCROLLAREA

HSPLIT and VSPLIT

HLINE and VLINE

Performance Optimization with Containers

ROWTABSUBPAGES and STRAIGHTTABPAGE

263

264

37 Positioning of Controls inside a Container

B ROW TYPES - TR AN ITR .. 266
= Some More Details 0N ITR ... 267
= |TR in Google Chrome and Edge ChromiUumcueviiiiiiiiii e 268
B TR PIOPEITIES ... ettt ettt e e e oottt et e e e e ettt et e e e e e et e e e e e e e e 269
B TR PIOPEITIES .. e e ————— 270

265

Positioning of Controls inside a Container

Containers internally build an HTML table in which you place rows. Inside each row you place

the controls - or again container(s).

Row Types - TR and ITR

There are two types of rows:

® The TR row is a normal table row. If you place more table rows - one under the other - inside
one container, the columns inside the table row are all synchronized. See the example below in

order to understand what “synchronized” means.

Since controls are placed into columns, all controls are positioned in a synchronized way.

® TheITR row is a special table row. If you place more ITR table rows - one under the other - inside
one container, each row has an independent set of columns; i.e. columns are not synchronized.

Have a look at the following XML layout description:

<{rowarea name="With TR">
<tr>
<label name="First Name" width="100">
</label>
<field valueprop="fname" width="200">
</field>
</tr>
<tr>
<Tabel name="Last Name" width="200">
</Tabel>
<field valueprop="1Iname" width="200">
</field>
</tr>
</rowarea>
<rowarea name="With ITR">
<tr takefullwidth="true">
<label name="First Name" width="100px">
</label>
<field valueprop="fname" width="200">
</field>
</itrd
<tr takefullwidth="true">
<Tabel name="Last Name" width="200">
</label>
<field valueprop="Iname" width="200" Tength="20">
</field>
</itr>
</rowarea>

266

Natural for Ajax

Positioning of Controls inside a Container

Note that each control (label, button, fields, etc.) is placed into one column of its own. If you have
many controls inside one row - and have several rows one below the other - synchronized columns
(using TR rows) sometimes cause funny results.

What is better, TR or ITR? Of course, it depends. The recommendation is:

" Use ITR as default. Using ITR, each row is defined independently from other rows that are po-
sitioned in the same container. You can change the number of controls (i.e. you internally change
the number of managed columns) in one row without interdependencies to other rows.

® Only use TR if you really want to synchronize columns. A typical area of usage is inside the
grid management (ROWTABLEAREAZ2 control): in a grid you explicitly desire to have synchron-
ized columns inside the grid's table.

Some More Details on ITR

There are two ROWAREA containers. The first one uses TR rows, the second one uses ITR rows.
The label for First Name has a width of 100 pixels, the label for Last Name has a width of 200
pixels. Now look at the result:

"'with TR -

First Mame

Last Mame

"with ITR -

First Mame

Last Mame

Inside the TR rows, all columns are synchronized - while in the ITR rows, each row is individually
arranged.

How does the ITR control work internally? For each row, an individual table is opened with one
row. Example: you define the following area in the XML layout definition:

<area>
dtr>
</itrd
dtr>
</itrd

{/area>

Natural for Ajax 267

Positioning of Controls inside a Container

The generated HTML looks like this:

<table>
<tr>
<td colspan="100">
{table>
<tr>

</tr>
</table>
</td>
</tr>
<tr>
<td colspan="100">
<table>
<tr>

</tr>
</table>
</td>
</tr>
{/table>

Inside each row there is a table definition of its own, holding exactly one row.

You can definea takefullwidth property with the ITR definition, defining the width of the internal
table of an ITR tag. If the takefullwidth property is set to "true", this means that the internal table
that is kept per row is internally opened to use 100% of the available width. Without any definition,
the table will be as big as it is required by its content.

ITR in Google Chrome and Edge Chromium

When using pixel sizing for controls in ITRs you may see rounding issues when zooming the page
in Google Chrome and Edge Chromium. See the example "Inline rendering" in the NaturalAjax-
Demos.

In case your ITR only contains the following controls: FIELD, LABEL, HDIST, ICON, BUTTON
and/or XCIDATADEEF, you can set the inline property to true. This will force the browser to use
a different rendering style, which avoids the rounding issues while zooming. Instead of setting
the inline property directly in the ITR you can specify this inline rendering for the whole page or
the whole application.

To render this kind of ITRs of the whole page inline, set

268 Natural for Ajax

Positioning of Controls inside a Container

<natpage itrinlinedisplay='true'

To render this kind of ITRs in the whole application inline, in cisconfig.xml, set

<cisconfig itrinlinedisplay="true' ... <«

TR Properties

Basic

visibleprop Name of the adapter parameter that provides the Optional
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

height Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence 200
the height of the control will follow the height of its
content. 250
(B) Pixel sizing: just input a number value (e.g. "20"). 300
Please note: the row content may overrule this setting. 250
The height setting "100px" of an embedded textbox will
beat a row height of "50px". 400
(C) Percentage sizing: input a percantage value (e.g. 50%
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control 100%

properly defines a height this control can reference. If
you specify this control to have a height of 50% then
the parent element may itself define a height of "100%".
If the parent element does not specify a width then the
rendering result may not represent what you expect.

withalterbackground |Flag that indicates if the grid line shows alternating |Optional|true
background color (like rows within a textgrids). Default
is false. Please note: controls inside the row must have false
transparent background. In case of the FIELD control
simply set property TRANSPARENTBACKGROUND

to true.

trstyle CSS style definition that is directly passed into this ~ |Optional |background-color:
control. #FF0000
With the style you can individually influence the color: #0000FF
rendering of the control. You can specify any style sheet)
expressions. Examples are: font-weight: bold

Natural for Ajax 269

Positioning of Controls inside a Container

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

behaviour. The comment is shown in the layout editor's
tree view.

trstyleprop Name of the adapter parameter that dynamically Optional
provides explicit style information for the control.
comment Comment without any effect on rendering and Optional

ITR Properties

Basic
takefullwidth |If set to "true" then the control takes all available horizontal |Optional |true
width as its width. If set to "false" then the control does not
have a predefined width but grows with its content. false
height Height of the control. Optional | 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the height 250
of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percentage value (e.g. "50%"). 400
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 50%
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an ITR-row) 100%
may itself define a height of "100%". If the parent element does
not specify a width then the rendering result may not represent
what you expect.
align Alignment of the content of the ITR row. Optional |left
center
270 Natural for Ajax

Positioning of Controls inside a Container

Background: the ITR as independent table row renders a table right
into its content area. Inside this table a row is opened in which
the controls are placed.

This table normally is starting on the left of the ITR row. With
this ALIGN property you can explicitly define the alignement

of the table.

valign Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is middle
part of arow (e.g. ITR or TR). Sometimtes the size of the column
is bigger than the size of the control. In this case the "align" bottom
property specify the position of the control inside the column.

fixlayout The fixlayout property is important for saving rendering Optional |true
performance inside your browser. To become effective it
requires to have specified the height and the width (if available false

as property) of the control.

If setting fixlayout to "true" then the control's area is defined

as area which is not sized dependent on its content (as normally
done with table rendering). Instead the size is predefined from
outside without letting the browser "look" into the content of
the area. If the content is not fitting into the area then it is cut.

You typically use this control if the content of the control's area
is flexibly sizable. E.g. if the content (e.g. a TEXTGRID control)
is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

inline Only set this property to true if you see rounding issues when|Optional |true
zooming your page in Google Chrome or Edge Chromium
browser. The property will force the browser to use a different false

rendering style for this itr. Use this property only if your ITR
only contains the following controls: FIELD, LABEL, HDIST,

ICON, BUTTON and/or XCIDATADEEF and you are using pixel
sizing.

comment Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.

Visibility

visibleprop [Name of the adapter parameter that provides the information|Optional
if this control is displayed or not. As consequence you can
control the visibility of the control dynamically.

Appearance

Natural for Ajax 271

Positioning of Controls inside a Container

itrstyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

itrclass

CSS style class definition that is directly passed into this control.

The style class can be either one which is part of the "normal”
CIS style sheet files (i.e. the ones that you maintain with the
style sheet editor) - or it can be one of an other style sheet file
that you may reference via the ADDSTYLESHEET property
of the PAGE tag.

Optional

tablestyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

itrstyleprop

Name of the adapter parameter that dynamically provides the
style of the control.

Optional

272

Natural for Ajax

38 Defining the Width of Controls inside a Container

= Controlling the Width of CONIOISciiiiiiiiii e 274
B HDIST and VDIST CONIOISeiiiieiiii ettt 276
B HDIST PrOPEIIES ... eeeeieii ettt ettt ettt e ettt e e et e e et e e 278
B V/DIST PrOPEIHIES ...ttt ettt e ettt e e e e e et e e e et aaaeeas 278
= rowspan and colspan DEfiNItIONSciiiiiiiii e 279
B CELLSPAN CONMOL ...tttk ettt e ettt e e e e e e 280
B CELLSPAN PIOPEITIESeeiiiiiiiiiiiiie ettt e e et e e e e e e e e e e e e e a e e e e e e e ens 281
= Rules for Positioning Controls inside CONTAINETSoiiiiiiiiiiiiie e 283

273

Defining the Width of Controls inside a Container

As mentioned in the previous section, each control is automatically embedded into a column.
Consequently, the width of the control is, on the one hand, determined by the size of the control
itself - on the other hand, the column is part of a table row and also follows the table row's sizing.

Controlling the Width of Controls

Every control that allows width sizing offers a corresponding width property. In this property,
you put either an absolute pixel value (width="100") or a percentage value (width="50%"). The
rendering follows the strategy:

= If the width of a control is specified as a pixel value, the width is fixed: if the browser screen is
too small to display all controls, the controls will not be reduced but keep their pixel size. De-
pending on your settings in the PAGEBODY tag (hscrol1 property), the displayed elements
will be cut off or will be accessible by a scroll bar.

= If the width of a control is defined as a percentage value (width="50%"), HTML renders the
control accordingly. If the screen is too small to show all controls, the browser will try to reduce
elements according to the table rendering rules.

If you define the width of a control as a percentage value, the width relates to

® the width of the area in case of using TR rows, or to

* the width definition of the ITR row if using ITR rows. This width definition can either be absolute
or percentage-based.

The following example shows a page in which controls hold percentages values for the width:

<tr takefullwidth="true">
<{label name="Factorl" width="20%">
</label>
<field valueprop="factorl" width="80%">
</field>

/it

<tr takefullwidth="true">
<Tabel name="Factor2" width="20%">

</label>

<field valueprop="factor2" width="60%">
</field>

<hdist width="20%">

</hdist>

The HTML page looks as follows - the size of the controls changes according to their percentage
definition:

274 Natural for Ajax

Defining the Width of Controls inside a Container

Factarl
Factarz

A similar screen is now built using absolutely defined pixel sizes:

<Gtr takefullwidth="false">
<Tabel name="Factorl" width="100">
</label>
<field valueprop="factorl" width="200">
</field>

</itr>

<Gtr takefullwidth="true">
<{label name="Factor2" width="100">
</label>
<field valueprop="factor2" width="150">
</field>

/it

In the ITR definition, there is no width specification - therefore, the controls will occupy exactly
the space they require. The result looks as follows - the size of the controls will not change when
changing the screen size:

Factarl]
Factarz2]

Pay attention to what was said previously: Controls are placed into columns; columns are placed
into table rows; and table rows are placed into containers. If you place a control into a row and
define this control to have a width of 100%, then the elements “above” have to take care of
providing the space to which the control relates its "100%". More concrete: If you place a FIELD
control with a width of 100% into an ITR row that does not provide for a width of 100% itself
(using the property takefullwidth), then the result will be a minimum-width field (100% of
nothing).

Pixel sizing represents a bottom-up sizing approach: a control defines its width - all the other
controls around (e.g. the container in which the control is placed) have as a consequence to adapt
to the control's size: if the control is defined to occupy more space, then the container has to follow
and provide for the space.

Percentage sizing represents a top-down sizing approach: the inner control tells how many per-
centages of the space that is granted from the outer control is occupied. As a consequence the
outer control needs to define its size properly. Either the outer control itself defines a pixel size or
it itself defines a percentage size - thus passig the respsonsibility to the next higher level. This
might end up in a casacading defintion of “percentage sizing” - up to the PAGEBODY control,
which is the outer-most container of a page.

There are four commonly used properties for sizing:

Natural for Ajax 275

Defining the Width of Controls inside a Container

" width/height - this is the quite obvious definition as explained in this section.

" takefullwidth/takefullheight - this is an equivalent to width="100%" and height="100%".

HDIST and VDIST Controls

HDIST means “horizontal distance”. VDIST means “vertical distance”.
HDIST Control

The HDIST control represents a distance to be placed between controls. The distance itself holds
a certain width that again can either be a pixel width or a percentage width.

The following example shows a table row into which a town and a zip code is put:

HDIST Example -

Zip Code f Town

Between the two FIELD controls, you see a small distance that separates the fields from one another.
The corresponding XML layout definition is:

<rowarea name="HDIST Example">
<Gtr>
<label name="Zip Code / Town" width="120">
</label>
<field valueprop="zipcode" width="80">
</field>
<hdist width="5">
</hdist>
<field valueprop="town" width="200">
</field>
</itr>
</rowarea>

The HDIST control is also very useful for percentage-based sizing of widths. If you want a control
to occupy 50% of the available width, you have to “fill the gap” in the following way:

HDIST Example -

First Mame

The corresponding XML layout definition is:

276 Natural for Ajax

Defining the Width of Controls inside a Container

<rowarea name="HDIST Example">
<itr height="100%">
<label name="First Name" width="120">
</label>
<field valueprop="fname" width="50%">
</field>
<hdist width="50%">
</hdist>
</itr>
</rowarea>

Pay attention: when using percentage sizing, then you should take care of filling the "100%" by
the controls inside the row. Otherwise, the browser will distribute the remaining space to its
columns - i.e. the controls will not be positioned the way you expect.

VDIST Control

The VDIST control is the counterpart of the HDIST control - in vertical direction. The following
example shows a scenario in which the line containing the BUTTON control keeps a vertical distance
of 10 pixels from the lines containing the FIELD controls:

"VDIST Example -

First Mame

Last Mame

Search

The layout definition is:

<rowarea name="VDIST Example">

<itr height="100%">
<label name="First Name" width="120">
</label>
<field valueprop="fname" width="200">
</field>

</itr>

<itr height="100%">
<label name="lLast Name" width="120">
</Tabel>
<field valueprop="1Iname" width="200">
</field>

</itr>

<vdist height="10">

</vdist>

<Gtr>
<hdist width="120">
</hdist>

Natural for Ajax 277

Defining the Width of Controls inside a Container

<button name="Search" method="onSearch">
</button>
</itrd>
{/rowarea>

Note that an HDIST control is used in the line containing the BUTTON control to align the button
to the fields.

HDIST Properties

Basic

width Width of the HDIST control, either in pixels or as percentage value. Optional |100
If no width is defined then a default width of 2 pixels is assigned. 120
140
160
180
200
50%

100%

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Binding

visibleprop [Name of the adapter parameter that provides the information if this control |Optional
is displayed or not. As consequence you can control the visibility of the control
dynamically.

VDIST Properties

Basic
height Height of the VDIST control, either in pixels or as Optional |100
percentage value. If no width is defined then a default
width of 3 pixels is assigned. 150
200
250

278 Natural for Ajax

Defining the Width of Controls inside a Container

300
250
400
50%

100%

backgroundstyle | CSS style definition that is directly passed into this control. |Optional |background-color:

#FF0000
With the style you can individually influence the rendering

of the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.

rowspan and colspan Definitions

Each control has a colspan and rowspan property that is "1" by default. This definition is directly
transferred to the column definition that is placed around the control.

Example:

<tr>
<control colspan="2">
</control>

</tr>

If you specify the above definition, the created HTML code looks like this:

Natural for Ajax 279

Defining the Width of Controls inside a Container

<tr>
<td colspan="2" rowspan="1">
. control-specific HTML code ...
</td>
</tr>

The usage of rowspan and colspan only makes sense in scenarios in which you define multiple
rows inside one container and if you use TR rows at the same time. You do not have to pay attention
to them if working in ITR rows.

Again: first check if the TR way of arranging controls is really the best approach - compared to
the ITR approach. Using TR means you have to “fight” with colspan and rowspan definitions in
order to properly lay out your controls. With ITR, each row is independently defined from its
neighbor rows.

CELLSPAN Control

Inside one row, you can place controls or nested containers. Containers again allow you to specify
new rows inside the container.

There is a special control, the CELLSPAN control. With the CELLSPAN control, you can quickly
define one cell inside a row of a container to place other controls. The CELLSPAN control has a
width property to specify the width of its inner content.

Have a look at the following example:

<rowarea name="Cellspan Example">

<tr>
<{label name="Factor 1" width="25%">
</label>
<field valueprop="factorl" width="25%">
</field>
<hdist></hdist>

<cellspan width="50%">
<label name="Factor 1" width="50%">
</label>
<field valueprop="factorl" width="50%">
</field>
</cellspan>
</tr>
<tr>
<label name="Factor 2" width="25%">
</Tabel>
<field valueprop="factor2" width="25%">
</field>
<hdist></hdist>
<cellspan width="50%">

280 Natural for Ajax

Defining the Width of Controls inside a Container

<checkbox valueprop="activated" width="10%">
</checkbox>
<label name="Activated" width="40%" asplaintext="true">
</label>
<checkbox valueprop="generated" width="10%">
</checkbox>
<label name="Generated" width="40%" asplaintext="true">
</Tabel>
</cellspan>
</tr>
</rowarea>

Each TR row contains one CELLSPAN definition with a width of 50%. The inner content of the
CELLSPAN definitions is completely different between the rows:

Cellspan Example -
Factor 1] Factor 1]
Factor 2] [T Activated [T Generated

You could add controls to the CELLSPAN definition in the first row without any implications inside
the second row. The CELLSPAN control internally operates similar to the ITR control: it builds a
table on its own and decouples its content from the surrounding table rendering.

CELLSPAN Properties

Basic

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width 140
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 160
by it tent.

y its conten 180

(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%"). 509

Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 100%
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

Natural for Ajax 281

Defining the Width of Controls inside a Container

height Height of the control. Optional |100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the 200
control will be rendered with its default height. If the control
is a container control (containing) other controls then the 250
height of the control will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percentage value (e.g. "50%").

. iy . . 400

Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines 50%
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an 100%
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

title Text that is shown as tooltip for the control. Optional
Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

titletextid Text ID that is passed to the multi lanaguage management|Optional
- representing the tooltip text that is used for the control.

colspan Column spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 1
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are 50
explicitly not synched.

int-value

colspanprop Name of the adapter parameter which dynamically provides |Optional
a colspan value at runtime.

rowspan Row spanning of control. Optional |1
If you use TR table rows then you may sometimes want to 2
control the number of rows your control occupies. By
default it is "1" - but you may want to define the control to 3
span over more than one columns. 4
The property only makes sense in table rows that are 5
snychronized within one container (i.e. TR, STR table rows).

282 Natural for Ajax

Defining the Width of Controls inside a Container

It does not make sense in ITR rows, because these rows are 50
explicitly not synched.
int-value
cellstyle CSS style definition that is directly passed into this control. |Optional |background-color:
#FF0000

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions. color: #0000FF

Examples are:
font-weight: bold

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated

HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

comment Comment without any effect on rendering and behaviour. |Optional
The comment is shown in the layout editor's tree view.

backgroundclass | CSS style class definition that is directly passed into this |Optional
control.

The style class can be either one which is part of the
"normal” CIS style sheet files (i.e. the ones that you maintain
with the style sheet editor) - or it can be one of an other
style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

Rules for Positioning Controls inside Containers

This is a collection of rules you should consider when positioning controls inside containers:

® Make up your mind where to use relative percentage values or absolute pixel definitions.
* Do not mix percentage and pixel values inside one container.

* Internally, Application Designer controls are mapped to the HTML tags TABLE, TR and TD. When
developing, you should have in mind the normal HTML table management.

® Structure your container not as one big container holding one complex table, each row holding
a lot of controls. Instead, use the possibility to define nested containers or CELLSPAN controls
in order to structure your layout.

Natural for Ajax 283

284

39 Vertical Sizing of Containers and Controls

B VEICAI PIXEl SIZING ...ttt 286
B Vertical Percentage SiZiNGcoiieriii it 287
B Finishing the EXAMPIE ..o e 289

285

Vertical Sizing of Containers and Controls

Nearly all controls which can be sized offer vertical sizing by a corresponding height property.
You can set the value of this property either as a pixel value or as a percentage value.

Vertical Pixel Sizing

This is the default. Controls either occupy their standard height or the height is explicitly defined
in pixels. The whole page is sized from the bottom to the top.

Look at the following example:

<pagebody>
<rowarea name="Comment Input">
<Gtr>
<{label name="Text" width="100">
</label>
<text valueprop="comment" width="200" height="200">
</text>
/it
<vdist>
</vdist>
<Gitr>
<hdist width="100">
</hdist>
<button name="Clear" method="onClear">
</button>
</itr>
{/rowarea>
</pagebody>

The corresponding screen looks as follows:

286 Natural for Ajax

Vertical Sizing of Containers and Controls

Vertical Sizing K
Exit
rConunentInput -
Text
Clear

The vertical size of the ROWAREA is exactly as big as required by its content. The TEXT control
is defined to be 200 pixels high.

Vertical Percentage Sizing

Use the same example, but this time the size of the TEXT control should be as big as possible -
depending on the size of the browser window. It should take the full available height.

The XML layout definition looks as follows:

<pagebody takefullheight="true">
<rowarea name="Comment Input" height="100%">

<itr height="100%">
<Tabel name="Text" width="100">
</label>
<text valueprop="comment" width="200" height="100%">
</text>

</itrd

<vdist>

</vdist>

<Gtr>
<hdist width="100">
</hdist>
<pbutton name="Clear" method="onClear">

Natural for Ajax 287

Vertical Sizing of Containers and Controls

</button>
</itr>
{/rowarea>
<vdist>
</vdist>
</pagebody>

The TEXT control now occupies a height of 100%. However, the definition of the whole size of the
page is passed down from the PAGEBODY to the control:

® In the PAGEBODY, the property takefullheight is set to "true". This means that the content
of the page body gets passed 100% of the available height.

® On the next level, the ITR row - in which the TEXT control is placed - is defined to have a height
of "100%". This means it tries to grab as much height as possible. On the same level, there is also
a VDIST (vertical distance) control and another ITR row - with no height defined. This means
that these controls get as much height as they require due to their content - but the whole re-
maining vertical space is assigned to the first ITR row with the HEIGHT of "100%".

The result page looks as follows:

Vertical Sizing
Exit

' Comment Input

Text

Clear

288 Natural for Ajax

Vertical Sizing of Containers and Controls

By changing the size of the browser window, the height of the whole control arrangement will
follow accordingly.

You see that sizing by percentage values means that you have to think from top to bottom - just
the opposite direction as you think with pixel values. This is nothing new for you if you are used
to work with normal HTML tables - in fact, everything that is done below the diverse container
controls is done by table rendering.

Conclusion: The example shows you that the height property of controls can be defined as a
percentage value - but needs an outside reference to depend on. Some of the controls, such as the
PAGEBODY, do not offer explicitly a height property but only a property takefullheight that
can be set to "true". This is equivalent to a definition of HEIGHT="100%".

Finishing the Example

This has nothing to do with vertical sizing, but with horizontal sizing. We cannot finish the example
without having changed it also in a way that it occupies the full available horizontal width. The
layout definition now looks as follows:

<pagebody takefullheight="true">
<rowarea name="Comment Input" height="100%">
<itr takefullwidth="true" height="100%">
<{Tabel name="Text" width="100">
</label>
{text valueprop="comment" width="100%" height="100%">
</text>
</itrd
<vdist>
</vdist>
<tr>
<hdist width="100">
</hdist>
<button name="Clear" method="onClear">
</button>
/it
</rowarea>
<vdist>
</vdist>
<{/pagebody>

The width property of the TEXT control is set to "100%". Similar to the vertical height management,
the available width is passed from the ITR row definition above - which occupies 100% of the
available width inside the ROWAREA. The ROWAREA always occupies the whole available width
- it does not require an explicit width definition.

The result is now:

Natural for Ajax 289

Vertical Sizing of Containers and Controls

Text

290

Natural for Ajax

40 Overview of Different Containers

m Different Kind of CONTAINETSiiiiiiii et aaaias 292
L (T 731 = 1< 292
L 0o (VT4 T T 00T 1 =111 £ TP 293
= Row and Column Containers in Combinationuuiiiiiiii e 294
B NESHNG CONTAINEISeeiiiiii ittt e e et e e e e e e e s e e e e e e e e e 295

291

Overview of Different Containers

Different Kind of Containers

Currently, there are the following types of containers:

ROWAREA and COLAREA
These are containers holding a title. The graphic area represented by the container is surrounded
by aborder. The content of the area container can be reduced by clicking on the title - and resized
by clicking again on the title.

ROWTABAREA and COLTABAREA
These are containers holding different pages (TABPAGE elements) which can be toggled.

ROWTABLEO and COLTABLEO
These are containers you do not see; i.e. a container does not have any borders or any special
coloring. Use it just for arranging elements inside the container.

ROWDYNAVIS and COLDYNAVIS

This is a container that is the same as the ROWTABLEO or COLTABLEO container but with an
additional feature: You can control the visibility of the whole container dynamically by an adapter
property. Use this container if you want to display or hide a certain area of your screen depending
on some business logic.

A typical example is an address management: the user enters an address located in the United
States. Therefore, an additional area has to appear in which the user enters the state information.
For other countries, this area is not required and should not be visible.

Row Containers

The containers have a row implementation and a column implementation.

Row containers occupy the whole available width they can obtain. They are placed directly in
other containers. You can place several row containers inside one container. Therefore, they are
arranged one below the other.

Example:

<pagebody>

<{rowarea name="Area 1">
{/rowarea>
<{rowarea name="Area 2">
{/rowarea>
<{rowarea name="Area 3">
{/rowarea>

</pagebody>

292 Natural for Ajax

Overview of Different Containers

The above XML layout produces the following HTML page:

fnrea 1 -
rnrea 2 -
rnrea 3 -

Column Containers

Column containers are placed inside rows, i.e. into TR rows or ITR rows. You can place several
column containers inside one row. Therefore, they are arranged in a way that one column container
follows the other horizontally.

Example:

<{pagebody>

<Gtr width="100%">
<colarea name="Area 1"

{/colarea>
<hdist>
</hdist>

{colarea name="Area 2"

{/colarea>
<hdist>
</hdist>

{colarea name="Area 3"

{/colarea>
</litrd
</pagebody>

width="33%">

width="33%">

width="33%">

The above XML layout produces the following HTML page:

[Area 1

(nrea 2

(nrea 3

With column containers, you have to specify the width (either as a pixel value or as a percentage
value) of the container. Note that - if using percentage widths - you have to place them into an
ITR row that itself occupies the whole available width (itr width="100%").

Natural for Ajax

293

Overview of Different Containers

Row and Column Containers in Combination

It is possible to use row and column containers in combination. The following example combines
the two examples shown above.

<pagebody>

<{rowarea name="Areal">

{/rowarea>

<{rowarea name="Area 2">

{/rowarea>

<{rowarea name="Area 3">

{/rowarea>

<itr width="100%">
<colarea name="Area 1" width="33%">
</colarea>
<hdist>
</hdist>
<colarea name="Area 2" width="33%">
{/colarea>
<hdist>
</hdist>
<colarea name="Area 3" width="33%">
<{/colarea>

</itr>

<{/pagebody>

The HTML page looks as follows:

rnrea 1 -
fnrea 2 -
rnrea 3 -
‘Area 1 [nrea 2 {Area 3

294 Natural for Ajax

Overview of Different Containers

Nesting Containers

It is possible to nest containers - one into another - in any way. Example:

<pagebody>
{rowarea name="Level 1">
<{rowarea name="Level 2">
<rowarea name="lLevel 3">
<itr width="100%">
<colarea name="Left" width="50%">
</colarea>
<hdist>
</hdist>
<colarea name="Right" width="50%">
</colarea>
</itr>
<{/rowarea>
{/rowarea>
</rowarea>
</pagebody>

The above XML code produces the following HTML page:

‘Level 1 -
Level 2 -
Level 3 -
(Left "Right

Natural for Ajax 295

296

41 ROWAREA and COLAREA

B ROWAREA PIOPEITIESeeieeiiiiiiiiiit ettt e ettt e e e e e ettt e e e e e e e s e raaeeeaeas 298
B COLAREA PIOPEIIES ...veeeiieiii ittt ettt e e e e e e e e ettt e e e e e e s s et a e e e e ea e 305

297

ROWAREA and COLAREA

The ROWAREA or COLAREA container represents an area surrounded by a border and which
may have a title text. By clicking on the title of such a control, the inner content is hidden (the
ROWAREA or COLAREA is “folded”).

ROWAREA Properties

Basic

name

Text that is displayed inside the control. Please
do not specify the name when using the multi
language management - but specify a "textid"
instead.

Sometimes

obligatory

textid

Multi language dependent text that is displayed
inside the control. The "textid" is translated into
a corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

Sometimes
obligatory

nameprop

Name of adapter parameter which dynamically
provides the text that is shown inside the
control.

Optional

height

Height of the control.
There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the control will be rendered with
its default height. If the control is a container
control (containing) other controls then the
height of the control will follow the height of its
content.

(B) Pixel sizing: just input a number value (e.g.
||20")‘

(C) Percentage sizing: input a percentage value
(e.g. "50%"). Pay attention: percentage sizing
will only bring up correct results if the parent
element of the control properly defines a height
this control can reference. If you specify this
control to have a height of 50% then the parent
element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

Optional

100
150
200
250
300
250
400
50%

100%

298

Natural for Ajax

ROWAREA and COLAREA

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.

Visibility
foldable The "folding"-function that is available by Optional |true
clicking on the title of the area can be switched
off ("false"). "True" is the default. false
foldableprop Name of the adapter parameter that Optional

dynamically controls whether clicking on the
title of the area will fold/unfoald this area.

Valid values provided by the adapter parameter
are TRUE (=foldable) and FALSE(=not foldable).

foldedprop Name of adapter parameter which controls |Optional
whether the content of the ROWAREA is folded
(true) or displayed (false).

By using this property you can dynamically
control the "folded"-status of the control at
runtime.

visibleprop Name of the adapter parameter that provides |Optional
the information if this control is displayed or
not. As consequence you can control the
visibility of the control dynamically.

flush Flushing behaviour of the input control. Optional |screen

By default an input into the control is registered server
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization with
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you

Natural for Ajax 299

ROWAREA and COLAREA

want to pass one changed value to all its
representation directly after changing the value.

flushmethod

When the data synchronization of the control is
set to FLUSH="server" then you can specify an
explicit event to be sent when the user updates
the content of the control. By doing so you can
distinguish on the server side from which
control the flush of data was triggered.

Optional

Appearance

image

URL of image that is displayed inside the
control. Any image type (.gif, .jpg, ...) that your
browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../[HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

imageprop

Name of adapter parameter which dynamically
provides the URL of the image that is shown
inside the control.

The URL must either be an absolute URL or a
relative URL.

Optional

withtoppadding

The control by default renders some blank
vertical space (2 pixels) on top of its area.
Reason: if you vertically arrange one
ROW/COLAREA after the other then
automatically some distance is put between.

By specifying "false" you can avoid this
behaviour. "

Optional

true

false

withleftborder

The control normally renders a black border
around its area. With the properties
WITHLEFTBORDER, WITHRIGHTBORDER
and WITHBOTTOMBORDER you can avoid
this.

Reason behing: somtimes you want a
ROWAREA/COLAREA to be used as
"neighbour” of other ROWAERA/COLAREA
controls. In this case one of the "neighbours" has

Optional

true

false

300

Natural for Ajax

ROWAREA and COLAREA

to avoid the rendering of border lines -
otherwise two border lines will be rendered.

withtopborder See description of WITHLEFTBORDER Optional |true
property.
false
withrightborder See description of WITHLEFTBORDER Optional |true
property.
false
withbottomborder See description of WITHLEFTBORDER Optional |true
property.
false
paddingleft Number of pixels between the left border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
paddingright Number of pixels between the right border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
areastyle CSS style definition that is directly passed into |Optional |background-color:
this control. #FF0000
With the style you can individually influence color: #0000FF
the rendering of the control. You can specify .
any style sheet expressions. Examples are: font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source” function.
contenttablestyle CSS style definition that is applied to the content|Optional |background-color:

part of the ROWAREA control.

#FF0000

Natural for Ajax

301

ROWAREA and COLAREA

color: #0000FF

font-weight: bold

notabstop

The title of the area by default can be used by
the user to hide/show the area's content. In order
to also reach this title with the tab-key is is part
of the normal tab-sequence of a page.

Set this property to "true" if you do not want to
make the title reachable by tab-key. As
consequnece hiding/showing will only be
available by mouse-clicking on the title.

Optional

true

false

fixlayout

The fixlayout property is important for saving
rendering performance inside your browser. To
become effective it requires to have specified
the height and the width (if available as
property) of the control.

If setting fixlayout to "true" then the control's
area is defined as area which is not sized
dependent on its content (as normally done with
table rendering). Instead the size is predefined
from outside without letting the browser "look"
into the content of the area. If the content is not
fitting into the area then it is cut.

You typically use this control if the content of
the control's area is flexibly sizable. E.g. if the
content (e.g. a TEXTGRID control) is following
the size of the container.

When using vertical percentage based sizing
you should pay attention to set the
fixlayout-property to "true" as often as possible.
- The browser as consequence will be much
faster in doing its rendering because a screen
consists out of "building blocks" with simple to
calculate sizes.

Optional

true

false

tabindex

Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional

1
—_

10

302

Natural for Ajax

ROWAREA and COLAREA

32767

withcontenttoppadding The control by default renders some blank Optional |true

vertical space (3 pixels) on bottom of the content
area. false

By specifying "false" you can avoid this

behaviour.

withcontentbottompadding | The control by default renders some blank Optional |true
vertical space (3 pixels) on bottom of the content
area. false

By specifying "false” you can avoid this

behaviour.

withfadedtoggling The animation of the controls can be switched |Optional |true
off! Please take a look in your cisconfig.xml file.
Set animatecontrols="true" (default) if you false

generally want to animate all of your controls.

The rowarea control has a seperate switch
(withfadedtoggling = true/false) to (de)activate
the 'FadedToggling' animation especially for
this single rowarea control.

Notice: Entering true or false into the
withfadedtoggling attribute overwrites the
general animatecontrols setting !

stylevariant Some controls offer the possibility to define style |Optional
variants. By this style variant you can address
different styles inside your style sheet definition
file (.css). If not defined "normal” styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the
style sheet defintion and use them multiple
times by addressing them via the "stylevariant”
property. CIS currently offers two variants
"VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

titlerowontop Default value is 'true'. If set to 'false’ the titlerow |Optional |true
is rendered at the bottom of this area.
false
toggleimgtitle A text that is displayed as tooltip of the toggle |Optional
image.
toggleimgtitletextid Multi language dependent text that is displayed |Optional

as tooltip of the toggle image.

Natural for Ajax 303

ROWAREA and COLAREA

Do not specify a "toogleimagetitle” inside the
control if specifying a "toggleimagetextid".

Online Help

title

Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

Optional

titletextid

Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

Natural

njx:natname

If a Natural variable with a name not valid for
Application Designer (for instance #FIELD1)
shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead.
If the original name (in this case #FIELD1) is
then specified in this attribute, the original name
is generated into the parameter data area of the
Natural adapter and a mapping between the
two names is generated into the PROCESS
PAGE statement of the Natural adapter. This
mapping must not break a once defined group
structure. If for instance a grid control that is
bound to a name of GRID1 contains fields that
are bound to FIELD1 and FIELD?2 respectively,
the corresponding njx:natname values may be
#GRID1.#FIELD1 and #GRID1.#FIELD2, but not
#GRID1.4FIELD1 and #MYGRID1.4FIELD2.

Optional

njx:natsysvar

If the control shall be bound to a Natural system
variable, this attribute specifies the name of the
system variable.

Optional

njx:natsysio

If the control shall be bound to a Natural system
variable with the attribute njx:natsysvar, this
attribute indicates if the system variable is
modifiable. The default is false.

Optional

njx:natstringtype

If the control shall be bound to a Natural system
variable of string format with the attribute
njx:natsysvar, this attribute indicates the format
of the string, A (code page) or U (Unicode). The
default is A.

Optional

njx:natcv

Name of a Natural control variable that shall be
assigned to the control.

Optional

njx:natcomment

The value of this attribute is generated as
comment line into the parameter data area of
the Natural adapter, before the field name. The

Optional

304

Natural for Ajax

ROWAREA and COLAREA

Map Converter, for instance, uses this attributes
to indicate for a generated statusprop variable
to which field the statusprop belongs.

COLAREA Properties

The properties of COLAREA are very similar to those of ROWAREA.

Basic

name Text that is displayed inside the control. Please|Sometimes
do not specify the name when using the multi |obligatory
language management - but specify a "textid"
instead.

textid Multi language dependent text that is displayed | Sometimes
inside the control. The "textid" is translated into |obligatory
a corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

nameprop Name of adapter parameter which dynamically |Optional
provides the text that is shown inside the
control.

width Width of the control. Sometimes|100

obligatory
There are three possibilities to define the width: 120

(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160

follow the width that is occupied by its content. 180

(B) Pixel sizing: just input a number value (e.g.

"100"). 200

(C) Percentage sizing: input a percantage value 50%
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

Natural for Ajax 305

ROWAREA and COLAREA

comment

Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

Optional

Appearance

takefullheight

Indicates if the content of the control's area gets
the full available height.

If you use percentage sizing inside the control's
area then this property must be switched to
'true’. If you use no explicit vertical sizing at all
- or you use vertical pixel sizing for your
controls - the property must be switched to
'false’.

Background information: container control's
internally open up a table in which you place
rows (ITR/TR) which then hold controls (e.g.
LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with
its content as consequence. By specifying
"takefullheight=true" the table itself is sized to
fill the maximum height of the available area.

Optional

true

false

image

URL of image that is displayed inside the
control. Any image type (.gif, .jpg, ...) that your
browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../[HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

imageprop

Name of adapter parameter which dynamically
provides the URL of the image that is shown
inside the control.

The URL must either be an absolute URL or a
relative URL.

Optional

fixlayout

The fixlayout property is important for saving
rendering performance inside your browser. To
become effective it requires to have specified
the height and the width (if available as
property) of the control.

Optional

true

false

306

Natural for Ajax

ROWAREA and COLAREA

If setting fixlayout to "true" then the control's
area is defined as area which is not sized
dependent on its content (as normally done with
table rendering). Instead the size is predefined
from outside without letting the browser "look"
into the content of the area. If the content is not
fitting into the area then it is cut.

You typically use this control if the content of
the control's area is flexibly sizable. E.g. if the
content (e.g. a TEXTGRID control) is following
the size of the container.

When using vertical percentage based sizing
you should pay attention to set the
fixlayout-property to "true" as often as possible.
- The browser as consequence will be much
faster in doing its rendering because a screen
consists out of "building blocks" with simple to
calculate sizes.

withleftborder The control normally renders a black border |Optional |true
around its area. With the properties
WITHLEFTBORDER, WITHRIGHTBORDER false
and WITHBOTTOMBORDER you can avoid
this.
Reason behing: somtimes you want a
ROWAREA/COLAREA to be used as
"neighbour” of other ROWAERA/COLAREA
controls. In this case one of the "neighbours" has
to avoid the rendering of border lines -
otherwise two border lines will be rendered.
withtopborder See description of WITHLEFTBORDER Optional |true
property.
false
withrightborder See description of WITHLEFTBORDER Optional |true
property.
false
withbottomborder See description of WITHLEFTBORDER Optional [true
property.
false
paddingleft Number of pixels between the left border and |Optional |1
the area's content. Default is 5 pixels.
2
3

Natural for Ajax

307

ROWAREA and COLAREA

int-value
paddingright Number of pixels between the right border and |Optional |1
the area's content. Default is 5 pixels.
2
3
int-value
areastyle CSS style definition that is directly passed into |Optional |background-color:
this control. #FF0000
With the style you can individually influence color: #0000FF
the rendering of the control. You can specify _
any style sheet expressions. Examples are: font-weight: bold
border: 1px solid #FF0000
background-color: #808080
You can combine expressions by appending and
separating them with a semicolon.
Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.
contenttablestyle CSS style that is applied to the content are of |Optional |background-color:
the COLAREA control. #FF0000
color: #0000FF
font-weight: bold
withcontenttoppadding The control by default renders some blank Optional |true
vertical space (3 pixels) on bottom of the content
area. false
By specifying "false” you can avoid this
behaviour.
withcontentbottompadding | The control by default renders some blank Optional |true
vertical space (3 pixels) on bottom of the content
area. false
By specifying "false" you can avoid this
behaviour.
titlerowontop Default value is 'true'. If set to 'false’ the titlerow |Optional |true
is rendered at the bottom of this area.
false
308 Natural for Ajax

ROWAREA and COLAREA

stylevariant Some controls offer the possibility to define style | Optional
variants. By this style variant you can address
different styles inside your style sheet definition
file (.css). If not defined "normal” styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the
style sheet defintion and use them multiple
times by addressing them via the "stylevariant"
property. CIS currently offers two variants
"VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

withtoppadding The control by default renders some blank Optional |true
vertical space (2 pixels) on top of its area.
Reason: if you vertically arrange one false

ROW/COLAREA after the other then
automatically some distance is put between.

By specifying "false" you can avoid this

behaviour. "
Online Help
title Text that is shown as tooltip for the control. |Optional
Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.
titletextid Text ID that is passed to the multi lanaguage |Optional

management - representing the tooltip text that
is used for the control.

Natural for Ajax 309

310

42 ROWAREAWITHHEADER

B SIMPIE EXAMIPIE ..ottt et e e e e e e e e e e e e e 312
B RIGht-t0-1Eft (RTL) MOGE ...ttt e e e e e e e 313
8 ROWAREAWITHHEADER PrOPEItIESveeeeiiiiiieeiitiiie et 313
® ROWAREAHEADER PIOPEILIEScivviieeeiiiiiee ettt e e et e et e e e et e e e e nnneee e 316
B ROWAREABODY PIOPEIHES ©..vvvviiiieiiiiiieiie ettt e e a e e e e e 317

3N

ROWAREAWITHHEADER

This container represents an area surrounded by a border which may have a title text. By clicking
on the title, the inner content is hidden (the container is “folded”). You can place icons (ICON,
ICONLIST) into the header line (ROWAREAHEADER). Other content is placed into the
ROWAREABODY container.

Simple Example

<{rowareawithheader>
<rowareaheader name="Note">
<hdist width="20">
</hdist>
<{icon image="../HTMLBasedGUI/images/cut.gif" method="onCut">
</icon>
<hdist width="6">
</hdist>
<icon image="../HTMLBasedGUI/images/copy.gif" method="onCopy">
</icon>
<hdist width="6">
</hdist>
<icon image="../HTMLBasedGUI/images/paste.gif" method="onPaste">
</icon>
</rowareaheader>
<rowareabody>
<tr takefullwidth="true">
{text valueprop="text" width="100%" rows="5">
</text>
</itrd>
</rowareabody>
<{/rowareawithheader>

The above XML layout produces a page which looks as follows:

‘Note 3 =k

There are three icons within the header line (ROWAREAHEADER). The text box is placed into
the body container (ROWAREABODY).

312 Natural for Ajax

ROWAREAWITHHEADER

Right-to-left (RTL) Mode

To properly support right-to-left (RTL) mode, it is required to set a foldableprop for correct display
of right-to-left content.

For example: <rowareawithheader foldableprop="myfoldableprop">.

ROWAREAWITHHEADER Properties

the ROWAREA is folded (true) or displayed (false).

Basic

height Height of the control. Optional {100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control will 200
be rendered with its default height. If the control is a container control
(containing) other controls then the height of the control will follow 250

he height of i .
the height of its content 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percentage value (e.g. "50%"). Pay
. iy . . . 400

attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define a height of 100%
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

comment Comment without any effect on rendering and behaviour. The Optional
comment is shown in the layout editor's tree view.

Visibility

foldable The "folding"-function that is available by clicking on the title of the |Optional|true
area can be switched off ("false"). "True" is the default.

false

foldableprop Name of the adapter parameter that dynamically controls whether |Optional
clicking on the title of the area will fold/unfoald this area.
Valid values provided by the adapter parameter are TRUE (=foldable)
and FALSE(=not foldable).

foldedprop Name of adapter parameter which controls whether the content of |Optional

Natural for Ajax

313

ROWAREAWITHHEADER

By using this property you can dynamically control the "folded"-status
of the control at runtime.

visibleprop

Name of the adapter parameter that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

Optional

flush

Flushing behaviour of the input control.

By default an input into the control is registered within the browser
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server" means that directly after changing the input
a synchronization with the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that
were changed before - are transferred to the adapter object, not only
the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if you want to pass one changed
value to all its representation directly after changing the value.

Optional

screen

server

flushmethod

When the data synchronization of the control is set to FLUSH="server"
then you can specify an explicit event to be sent when the user updates
the content of the control. By doing so you can distinguish on the
server side from which control the flush of data was triggered.

Optional

Appearance

height

(already explained above)

withleftborder

The control normally renders a black border around its area. With the
properties WITHLEFTBORDER, WITHRIGHTBORDER and
WITHBOTTOMBORDER you can avoid this.

Reason behing: somtimes you want a ROWAREA/COLAREA to be
used as "neighbour" of other ROWAERA/COLAREA controls. In this
case one of the "neighbours" has to avoid the rendering of border lines
- otherwise two border lines will be rendered.

Optional

true

false

withtopborder

See description of WITHLEFTBORDER property.

Optional

true

false

withrightborder

See description of WITHLEFTBORDER property.

Optional

true

false

withbottomborder

See description of WITHLEFTBORDER property.

Optional

true

314

Natural for Ajax

ROWAREAWITHHEADER

false

withtoppadding |The control by default renders some blank vertical space (2 pixels) on|Optional |true
top of its area. Reason: if you vertically arrange one ROW/COLAREA
after the other then automatically some distance is put between. false

By specifying "false" you can avoid this behaviour. "

image URL of image that is displayed inside the control. Any image type |Optional
(.gif, .jpg, ...) that your browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

imageprop Name of adapter parameter which dynamically provides the URL of |Optional
the image that is shown inside the control.

The URL must either be an absolute URL or a relative URL.

nameprop Name of adapter parameter which dynamically provides the text that|Optional
is shown inside the control.

fixlayout The fixlayout property is important for saving rendering performance |Optional | true
inside your browser. To become effective it requires to have specified
the height and the width (if available as property) of the control. false

If setting fixlayout to "true" then the control's area is defined as area
which is not sized dependent on its content (as normally done with
table rendering). Instead the size is predefined from outside without
letting the browser "look" into the content of the area. If the content
is not fitting into the area then it is cut.

You typically use this control if the content of the control's area is
flexibly sizable. E.g. if the content (e.g. a TEXTGRID control) is
following the size of the container.

When using vertical percentage based sizing you should pay attention
to set the fixlayout-property to "true" as often as possible. - The browser
as consequence will be much faster in doing its rendering because a

screen consists out of "building blocks" with simple to calculate sizes.

Natural

njx:natname If a Natural variable with a name not valid for Application Designer |Optional
(for instance #FIELD1) shall be bound to the control, a different name
(for instance HFIELD1) can be bound instead. If the original name (in
this case #FIELD1) is then specified in this attribute, the original name

Natural for Ajax 315

ROWAREAWITHHEADER

is generated into the parameter data area of the Natural adapter and
a mapping between the two names is generated into the PROCESS
PAGE statement of the Natural adapter. This mapping must not break
a once defined group structure. If for instance a grid control that is
bound to a name of GRID1 contains fields that are bound to FIELD1
and FIELD?2 respectively, the corresponding njx:natname values may
be #GRID1.4FIELD1 and #GRID1.4FIELD2, but not #GRID1.4FIELD1
and #MYGRID1.4FIELD2.

njx:natsysvar If the control shall be bound to a Natural system variable, this attribute |Optional
specifies the name of the system variable.

njx:natsysio If the control shall be bound to a Natural system variable with the |Optional
attribute njx:natsysvar, this attribute indicates if the system variable
is modifiable. The default is false.

njx:natstringtype |If the control shall be bound to a Natural system variable of string |Optional
format with the attribute njx:natsysvar, this attribute indicates the
format of the string, A (code page) or U (Unicode). The default is A.

njx:natcv Name of a Natural control variable that shall be assigned to the control. |Optional

njx:natcomment | The value of this attribute is generated as comment line into the Optional
parameter data area of the Natural adapter, before the field name. The
Map Converter, for instance, uses this attributes to indicate for a

generated statusprop variable to which field the statusprop belongs.

ROWAREAHEADER Properties

Basic

name Text that is displayed inside the control. Please do not specify the name when |Optional
using the multi language management - but specify a "textid" instead.

textid Multi language dependent text that is displayed inside the control. The "textid" |Optional
is translated into a corresponding string at runtime.

Do not specify a "name" inside the control if specifying a "textid".

comment |Comment without any effect on rendering and behaviour. The commentis |Optional
shown in the layout editor's tree view.

Online Help

title Text that is shown as tooltip for the control. Optional

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

titletextid | Text ID that is passed to the multi lanaguage management - representing the |Optional
tooltip text that is used for the control.

Appearance

align Horizontal alignment of the controls inside the header line. ‘Optional ‘left

316 Natural for Ajax

ROWAREAWITHHEADER

center
right
notabstop | The title of the area by default can be used by the user to hide/show the area's |Optional |true
content. In order to also reach this title with the tab-key is is part of the normal
tab-sequence of a page. false
Set this property to "true" if you do not want to make the title reachable by
tab-key. As consequnece hiding/showing will only be available by
mouse-clicking on the title.
tabindex |Index that defines the tab order of the control. Controls are selected in increasing |Optional |-1
index order and in source order to resolve duplicates.
0
1
2
5
10
32767

ROWAREABODY Properties

Basic
paddingleft Number of pixels between the left border and |Optional|l
the area's content. Default is 5 pixels.
2
3
int-value
paddingright Number of pixels between the right border and |Optional | 1
the area's content. Default is 5 pixels.
2
3
int-value
bodystyle CSS style definition that is directly passed into |Optional |background-color:

this control.

#FF0000

color: #0000FF

Natural for Ajax

317

ROWAREAWITHHEADER

With the style you can individually influence
the rendering of the control. You can specify any
style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source” function.

font-weight: bold

withcontenttoppadding The control by default renders some blank Optional |true
vertical space (3 pixels) on bottom of the content
area. false
By specifying "false" you can avoid this
behaviour.

withcontentbottompadding | The control by default renders some blank Optional true
vertical space (3 pixels) on bottom of the content

false

area.

By specifying "false" you can avoid this
behaviour.

318

Natural for Ajax

43 ROWTABAREA and COLTABAREA

B ROWTABAREA PrOPEITIESvviiiiieeeeee ettt ettt e e e e et e e e e e e e e et eaeeeaa e e e 321
B COLTABAREA PIOPEITIESvveeeeeiietee ettt ettt e et e e et e e e e sttt e e e e e e e nnee e e e e e 347
B TABPAGE PrOPEITIES ..ottt e e e e 370
B The MOSt COMMON EFTOT ...ttt e ettt e e e e e ettt eeeeee e 371
= Example: Controlling which Tab is displayed by the Server Adaptercccccoiiiiiiiiiii e 371
= Example: Controlling the Visibility 0f TaD PAgeSvvviiiiiiiiiiiii e 373

319

ROWTABAREA and COLTABAREA

The ROWTABAREA or COLTABAREA container is the representation of a tab control. A tab area
consists of the ROWTABAREA or COLTABAREA definition. Inside this definition, you define
TABPAGE containers representing the individual pages between which you can navigate.

Example:

<pagebody>
<rowtabarea height="200" namel="Left Tab" pagel="LEFT" name2="Right Tab" <
page2="RIGHT">
{tabpage id="LEFT" takefullheight="true">
<{/tabpage>
<tabpage id="RIGHT" takefullheight="true">
</tabpage>
<{/rowtabarea>
<{/pagebody>

The above XML layout produces the following page:

Left Tab Right Tab

Inside the ROWTABAREA definition, specify the name and the ID of each area you want to display.
Pay attention to the naming of the page* properties: the name must not contain any blank spaces
or non-alphanumeric characeters. Start the page* values with a character, not with a number.

Specify the individual toggle areas - by the TABPAGE definition. Each TABPAGE holds an ID
which must be equal to the definition on ROWTABAREA level. Each TABPAGE has a display
property which is set to "none" for all TABPAGE definitions except the first one.

Each TABPAGE is a container itself - i.e. inside the TABPAGE, place controls (or containers) by
adding ITR or TR rows and place elements into these rows.

320 Natural for Ajax

ROWTABAREA and COLTABAREA

ROWTABAREA Properties

Basic

height Height of the control. Obligatory [100
There are three possibilities to define the height: 150

(A) You do not define a height at all. As 200
consequence the control will be rendered with
its default height. If the control is a container 250
control (containing) other controls then the

height of the control will follow the height of its
content. 250

300

(B) Pixel sizing: just input a number value (e.g. 400
"20").
50%
(C) Percentage sizing: input a percentage value
(e.g. "50%"). Pay attention: percentage sizing will 100%
only bring up correct results if the parent
element of the control properly defines a height
this control can reference. If you specify this
control to have a height of 50% then the parent
element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

leftindent Inserts a horizontal distance left of the first "tab" |Optional |1
and shifts the "tabs" to the right as consequence.
The value you may define represents the number
of pixels that are inserted.

2

3

int-value

scrollable If set to "true" then small icons will appear on |Optional |true
the right border of the control. If the size of the
"tabs" is too big and some tabs are cut as false
consequence then you can use these icons for
scrolling left and right.

namel Text that is shown in the corresponding "tab". |Sometimes
Either define the text as NAME or as language |obligatory
dependent TEXTID.

textid1 Text ID that is transferred in a corresponding |Sometimes
literal at runtime by the multi language obligatory
management.

Natural for Ajax 321

ROWTABAREA and COLTABAREA

pagel

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Obligatory

withclosel

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

name2

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid2

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

page2

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclose2

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

name3

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid3

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

page3

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -

Optional

322

Natural for Ajax

ROWTABAREA and COLTABAREA

holding exactly the id that is defined in the
PAGE property.

withclose3 If you want a close-icon to be shown at the right |Optional |true
top corner of the tab, set this property value to
"true". Default is "false". false

name4 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid4 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

page4 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

withclose4 If you want a close-icon to be shown at the right |Optional |true
top corner of the tab, set this property value to
"true". Default is "false". false

nameb Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid5 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

page5 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the

PAGE property.

withclose5 If you want a close-icon to be shown at the right|Optional |true
top corner of the tab, set this property value to
"true". Default is "false". false

Natural for Ajax 323

ROWTABAREA and COLTABAREA

nameb

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid6

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pageb

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclose6

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

name?7

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid?7

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

page7

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclose?7

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

name8

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid8

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

324

Natural for Ajax

ROWTABAREA and COLTABAREA

page8 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

withclose8 If you want a close-icon to be shown at the right |Optional |true
top corner of the tab, set this property value to
"true". Default is "false". false

name9 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid9 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

page9 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

withclose9 If you want a close-icon to be shown at the right |Optional |true
top corner of the tab, set this property value to
"true". Default is "false". false

namel0 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid10 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

pagel0 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -

Natural for Ajax 325

ROWTABAREA and COLTABAREA

holding exactly the id that is defined in the
PAGE property.

withclosel0

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

namell

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid11

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagell

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclosell

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

namel2

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid12

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagel2

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclosel2

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

326

Natural for Ajax

ROWTABAREA and COLTABAREA

namel3

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid13

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagel3

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclosel3

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

namel4

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid14

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagel4

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclosel4

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

namelb5

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid15

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

Natural for Ajax

327

ROWTABAREA and COLTABAREA

pagel5

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclosel5

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

namelé6

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid16

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagel6

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

withclosel6

If you want a close-icon to be shown at the right
top corner of the tab, set this property value to
"true". Default is "false".

Optional

true

false

Binding

openedindexprop

Name of adapter parameter which represents
the index of the "tab" that is currently opened.

There are two ways of using the property: either
you can define which "tab" should be opened or
you can react to "tab" selections by the user.
(Also have a look onto the property
OPENMETHOD!).

The property must be of type "int" or "Integer"
(or "String"). The left most "tab" represents index
"0", the next one "1", etc.

Optional

328

Natural for Ajax

ROWTABAREA and COLTABAREA

openmethod Name of the event that is sent to the adapter ~ |Optional
when the user does a "tab" selection. The index
of the "tab" that is opened can be transferred to
the adapter by using the property
OPENEDINDEXPROP.

visiblepropl Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop2 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop3 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop4 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop5 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop6 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If

Natural for Ajax 329

ROWTABAREA and COLTABAREA

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop?7

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop8

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop9

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop10

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop11

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

330

Natural for Ajax

ROWTABAREA and COLTABAREA

visibleprop12 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop13 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop14 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop15 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop16 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

disabledpropl Name of the adapter parameter that dynamically |Optional
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Natural for Ajax 331

ROWTABAREA and COLTABAREA

disabledprop2

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop3

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop4

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop5

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop6

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop?

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop8

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop9

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In

Optional

332

Natural for Ajax

ROWTABAREA and COLTABAREA

COLTABAREA controls this property is only
supported for IE.

disabledprop10

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledpropll

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop12

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop13

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop14

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop15

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop16

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

titleprop1

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool

Optional

Natural for Ajax

333

ROWTABAREA and COLTABAREA

tip when ther user moves the mouse onto the
control.

titleprop2

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop3

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop4

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop5

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop6

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop?7

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop8

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop9

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop10

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop11

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop12

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool

Optional

334

Natural for Ajax

ROWTABAREA and COLTABAREA

tip when ther user moves the mouse onto the
control.

titleprop13

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop14

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop15

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop16

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

tabselectedstylepropl

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop1

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstylepropl

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop2

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop2

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected

Optional

background-color:
#FF0000

Natural for Ajax

335

ROWTABAREA and COLTABAREA

and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

color: #0000FF

font-weight: bold

tabdisabledstyleprop2 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don'th t t | t ti t
on't have c? set a VE:? ue at runtime, but you font-weight: bold
need to specify a valid name.
tabselectedstyleprop3 Name of the adapter parameter that dynamically |[Optional |background-color:
defines the style for a tab which is selected. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
Al l :
don't have to. seta value at runtime, but you font-weight: bold
need to specify a valid name.
tabunselectedstyleprop3 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is not selected #FF0000
and not disabled. NOTICE: When using this
property you must also set the property color: #0000FF
OPENEDINDEXPROP. You don't have to set a .
. . . font-weight: bold
value at runtime, but you need to specify a valid
name.
tabdisabledstyleprop3 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have t(? set a Vélue at runtime, but you font-weight: bold
need to specify a valid name.
tabselectedstyleprop4 Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is selected. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don'th t t 1 t ti t
on't have to set a value at runtime, but you font-weight: bold
need to specify a valid name.
tabunselectedstyleprop4 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is not selected #FF0000
and not disabled. NOTICE: When using this
property you must also set the property color: #0000FF
OPENEDINDEXPROP. You don't have to set a .
. . . font-weight: bold
value at runtime, but you need to specify a valid
name.
tabdisabledstyleprop4 |Name of the adapter parameter that dynamically |Optional |background-color:

defines the style for a tab which is disabled.

#FF0000

336

Natural for Ajax

ROWTABAREA and COLTABAREA

NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

color: #0000FF

font-weight: bold

tabselectedstyleprop5

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop5

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop5

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop6

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop6

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop6

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop?

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must

Optional

background-color:
#FF0000

color: #0000FF

Natural for Ajax

337

ROWTABAREA and COLTABAREA

also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

font-weight: bold

tabunselectedstyleprop7 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is not selected #FF0000
and not disabled. NOTICE: When using this
property you must also set the property color: #0000FF
OPENEDINDEXPROP. You don't have to set a .
. . . font-weight: bold
value at runtime, but you need to specify a valid
name.
tabdisabledstyleprop? |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't h t t 1 t time, but
on't have to set a value at runtime, but you font-weight: bold
need to specify a valid name.
tabselectedstyleprop8 Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is selected. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don'th t t 1 t ti but
on't have to set a value at runtime, but you font-weight: bold
need to specify a valid name.
tabunselectedstyleprop8 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is not selected #FF0000
and not disabled. NOTICE: When using this
property you must also set the property color: #0000FF
OPENEDINDEXPROP. You don't have to set a .
. . . font-weight: bold
value at runtime, but you need to specify a valid
name.
tabdisabledstyleprop8 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have tc? set a Va?lue at runtime, but you font-weight: bold
need to specify a valid name.
tabselectedstyleprop9 Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is selected. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't h t t 1 t time, but
on't have to set a value at runtime, but you font-weight: bold
need to specify a valid name.
tabunselectedstylepro ame of the adapter parameter that dynamica tiona ackground-color:
b lectedstyleprop9 |N f the adapter p hat dy ically |Optional |backg d-col

defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property

#FF0000

color: #0000FF

338

Natural for Ajax

ROWTABAREA and COLTABAREA

OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

font-weight: bold

tabdisabledstyleprop9

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop10

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop10

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop10

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop11

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop11

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop11

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You

Optional

background-color:
#FF0000

color: #0000FF

Natural for Ajax

339

ROWTABAREA and COLTABAREA

don't have to set a value at runtime, but you
need to specify a valid name.

font-weight: bold

tabselectedstylepropl2 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is selected. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have tq seta Va?lue at runtime, but you font-weight: bold
need to specify a valid name.

tabunselectedstyleprop12|Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is not selected #FF0000
and not disabled. NOTICE: When using this
property you must also set the property color: #0000FF
OPENEDINDEXPROP. You don't have to set a .

.) . font-weight: bold

value at runtime, but you need to specify a valid
name.

tabdisabledstyleprop12 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have t(? set a Vélue at runtime, but you font-weight: bold
need to specify a valid name.

tabselectedstylepropl3 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is selected. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have tc? set a Va?lue at runtime, but you font-weight: bold
need to specify a valid name.

tabunselectedstyleprop13 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is not selected #FF0000
and not disabled. NOTICE: When using this
property you must also set the property color: #0000FF
OPENEDINDEXPROP. You don't have to set a .

. . . font-weight: bold

value at runtime, but you need to specify a valid
name.

tabdisabledstyleprop13 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have tol set a Va}lue at runtime, but you font-weight: bold
need to specify a valid name.

tabselectedstyleprop14 |Name of the adapter parameter that dynamically |Optional |background-color:

defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You

#FF0000
color: #0000FF

font-weight: bold

340

Natural for Ajax

ROWTABAREA and COLTABAREA

don't have to set a value at runtime, but you
need to specify a valid name.

tabunselectedstyleprop14

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop14

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop15

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop15

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop15

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop16

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop16

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Natural for Ajax

341

ROWTABAREA and COLTABAREA

value at runtime, but you need to specify a valid
name.

tabdisabledstyleprop16

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Appearance
withleftborder If specified as "false" then no left border will be |Optional |true
drawn.
false
withrightborder If specified as "false" then no right border will |Optional |true
be drawn.
false
withbottomborder If specified as "false” then no bottom border will |Optional |true
be drawn.
false
stylevariant Some controls offer the possibility to define style |Optional |VAR1
variants. By this style variant you can address
different styles inside your style sheet definition
file (.css). If not defined "normal” styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.
Purpose: you can set up style variants in the style
sheet defintion and use them multiple times by
addressing them via the "stylevariant” property.
CIS currently offers two variants "VAR1" and
"VAR2" but does not predefine any semantics
behind - this is up to you!
tabindex Index that defines the tab order of the control. |Optional |-1
Controls are selected in increasing index order
and in source order to resolve duplicates. 0
1
2
5
10
32767
342 Natural for Ajax

ROWTABAREA and COLTABAREA

withtoppadding The control by default renders some blank Optional |true
vertical space (2 pixels) on top of its area. Reason:
if you vertically arrange one ROW/COLAREA false

after the other then automatically some distance
is put between.

By specifying "false" you can avoid this

behaviour. "
tabpagepaddingleft Number of pixels between the left border and |Sometimes |1
the area's content. Default is 5 pixels. obligatory
2
3
int-value

tabpagepaddingright Number of pixels between the right border and |Optional |1
the area's content. Default is 5 pixels.
2
3

int-value

tabpagepaddingtop Number of pixels between the top border and |Optional |1
the area's content. Default is 5 pixels.
2
3

int-value

tabpagepaddingbottom |Number of pixels between the bottom border |Optional |1
and the area's content. Default is 5 pixels.

2
3
int-value
withflash Adds animation effects when the user uses the |Optional
control.
Online Help
titlel Tooltip text that appears on the corresponding |Optional
tab.
title2 Tooltip text that appears on the corresponding |Optional
tab.
title3 Tooltip text that appears on the corresponding |Optional
tab.

Natural for Ajax 343

ROWTABAREA and COLTABAREA

title4 Tooltip text that appears on the corresponding |Optional
tab.

titleb Tooltip text that appears on the corresponding |Optional
tab.

title6 Tooltip text that appears on the corresponding |Optional
tab.

title7 Tooltip text that appears on the corresponding |Optional
tab.

title8 Tooltip text that appears on the corresponding |Optional
tab.

title9 Tooltip text that appears on the corresponding |Optional
tab.

title10 Tooltip text that appears on the corresponding |Optional
tab.

title11 Tooltip text that appears on the corresponding |Optional
tab.

title12 Tooltip text that appears on the corresponding |Optional
tab.

title13 Tooltip text that appears on the corresponding |Optional
tab.

title14 Tooltip text that appears on the corresponding |Optional
tab.

title15 Tooltip text that appears on the corresponding |Optional
tab.

title16 Tooltip text that appears on the corresponding |Optional
tab.

titletextid1 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

titletextid2 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

titletextid3 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

titletextid4 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

344 Natural for Ajax

ROWTABAREA and COLTABAREA

titletextid5

Text ID for the tooltip of the corresponding "ta
At runtime the multi language management
replaces the textid with a language dependent
literal.

".|Optional

titletextid6

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid7

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid8

Text ID for the tooltip of the corresponding "ta
At runtime the multi language management
replaces the textid with a language dependent
literal.

".|Optional

titletextid9

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid10

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid11

Text ID for the tooltip of the corresponding "ta
At runtime the multi language management
replaces the textid with a language dependent
literal.

".|Optional

titletextid12

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid13

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid14

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid15

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

Natural for Ajax

ROWTABAREA and COLTABAREA

titletextid16 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

Comment

comment Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.

Miscellaneous

testtoolid1 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid2 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid3 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid4 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid5 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid6 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid” Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid8 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid9 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid10 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid11 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

346 Natural for Ajax

ROWTABAREA and COLTABAREA

testtoolid12 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid13 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid14 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid15 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid16 Use this attribute to assign a fixed control Optional
identifier that can be later on used within your
test tool in order to do the object identification

COLTABAREA Properties

The properties of COLTABAREA are very similar to those of ROWTABAREA.

Basic

width Width of the control. Obligatory [100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case 140
the width of the control will either be a default
width or - in case of container controls - it will 160
follow the width that is occupied by its content. 180
(B) Pixel sizing: just input a number value (e.g.
100" 200

100").
s 50%

(C) Percentage sizing: input a percantage value
(e.g."50%"). Pay attention: percentage sizing will 100%
only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

leftindent Inserts a horizontal distance left of the first "tab" |Optional |1
and shifts the "tabs" to the right as consequence.

Natural for Ajax 347

ROWTABAREA and COLTABAREA

The value you may define represents the number
of pixels that are inserted.

2

3

int-value

scrollable

If set to "true" then small icons will appear on
the right border of the control. If the size of the
"tabs" is too big and some tabs are cut as
consequence then you can use these icons for
scrolling left and right.

Optional

true

false

namel

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Sometimes
obligatory

textid1

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Sometimes
obligatory

pagel

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Obligatory

name2

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid2

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

page2

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

name3

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

348

Natural for Ajax

ROWTABAREA and COLTABAREA

textid3 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

page3 Id of the TABPAGE that is defined as child of |Optional

the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

name4 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid4 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

page4 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

name5 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid5 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

pageb Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Natural for Ajax 349

ROWTABAREA and COLTABAREA

nameb

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid6

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pageb

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

name7

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid7

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

page7

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

names

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid8

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

page8

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -

Optional

350

Natural for Ajax

ROWTABAREA and COLTABAREA

holding exactly the id that is defined in the
PAGE property.

name9 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid9 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

page9 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

namel0 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid10 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

pagel0 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

namell Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid11 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

pagell Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

Natural for Ajax 351

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

namel2

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid12

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagel2

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

namel3

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid13

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagel3

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Optional

namel4

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

Optional

textid14

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

Optional

pagel4

Id of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

Optional

352

Natural for Ajax

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

namel5 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid15 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

pagel5 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

namel6 Text that is shown in the corresponding "tab". |Optional
Either define the text as NAME or as language
dependent TEXTID.

textid16 Text ID that is transferred in a corresponding |Optional
literal at runtime by the multi language
management.

pagelé6 Id of the TABPAGE that is defined as child of |Optional
the TABAREA. Use an id that is unique within
the page and that is a "healthy" id: starting with
characters, without blanks and without "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Binding

openedindexprop Name of adapter parameter which represents |Optional
the index of the "tab" that is currently opened.

There are two ways of using the property: either
you can define which "tab" should be opened or
you can react to "tab" selections by the user.
(Also have a look onto the property
OPENMETHOD!).

Natural for Ajax 353

ROWTABAREA and COLTABAREA

The property must be of type "int" or "Integer"
(or "String"). The left most "tab" represents index
"0", the next one "1", etc.

openmethod

Name of the event that is sent to the adapter
when the user does a "tab" selection. The index
of the "tab" that is opened can be transferred to
the adapter by using the property
OPENEDINDEXPROP.

Optional

visibleprop1

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop2

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop3

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop4

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

visibleprop5

Name of property that defines if the
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a

Optional

354

Natural for Ajax

ROWTABAREA and COLTABAREA

value at runtime, but you need to specify a valid
name.

visibleprop6 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop?7 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop8 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop9 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop10 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop11 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute

Natural for Ajax 355

ROWTABAREA and COLTABAREA

OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop12 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop13 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop14 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop15 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

visibleprop16 Name of property that defines if the Optional
corresponding tag is visible or not. NOTICE: If
you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

disabledpropl Name of the adapter parameter that dynamically |Optional
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In

356 Natural for Ajax

ROWTABAREA and COLTABAREA

COLTABAREA controls this property is only
supported for IE.

disabledprop2

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop3

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop4

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop5

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop6

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop?

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop8

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop9

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at

Optional

Natural for Ajax

357

ROWTABAREA and COLTABAREA

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

disabledprop10

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop11

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop12

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop13

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop14

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledpropl5

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

disabledprop16

Name of the adapter parameter that dynamically
defines if the control is disabled or enabled at
runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Optional

358

Natural for Ajax

ROWTABAREA and COLTABAREA

titleprop1 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop2 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop3 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop4 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop5 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop6 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop? Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop8 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop9 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop10 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

titleprop11 Property of adapter that dynamically defines the |Optional
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Natural for Ajax 359

ROWTABAREA and COLTABAREA

titleprop12

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop13

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop14

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop15

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

titleprop16

Property of adapter that dynamically defines the
title of the control. The title is displayed as tool
tip when ther user moves the mouse onto the
control.

Optional

tabselectedstyleprop1

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstylepropl

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstylepropl |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have tg seta Ve?lue at runtime, but you font-weight: bold
need to specify a valid name.

tabselectedstyleprop?2 Name of the adapter parameter that dynamically |Optional |background-color:

defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

#FF0000
color: #0000FF

font-weight: bold

360

Natural for Ajax

ROWTABAREA and COLTABAREA

tabunselectedstyleprop2

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop2

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop3

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop3

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop3

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop4

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop4

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Natural for Ajax

361

ROWTABAREA and COLTABAREA

tabdisabledstyleprop4

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop5

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop5

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop5

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop6

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop6

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop6

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

362

Natural for Ajax

ROWTABAREA and COLTABAREA

tabselectedstyleprop?

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop?

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop?

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop8

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop8

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop8

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop9

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Natural for Ajax

363

ROWTABAREA and COLTABAREA

tabunselectedstyleprop9

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop9

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop10

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop10

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop10

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop11

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop11

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

364

Natural for Ajax

ROWTABAREA and COLTABAREA

tabdisabledstyleprop11

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop12

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop12

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop12

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop13

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop13

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop13

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Natural for Ajax

365

ROWTABAREA and COLTABAREA

tabselectedstyleprop14

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop14

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop14

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabselectedstyleprop15

Name of the adapter parameter that dynamically
defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabunselectedstyleprop15

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstylepropl5 |Name of the adapter parameter that dynamically |Optional |background-color:
defines the style for a tab which is disabled. #FF0000
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You color: #0000FF
don't have t9 set a Va}lue at runtime, but you font-weight: bold
need to specify a valid name.

tabselectedstylepropl6 |Name of the adapter parameter that dynamically |Optional |background-color:

defines the style for a tab which is selected.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

#FF0000
color: #0000FF

font-weight: bold

366

Natural for Ajax

ROWTABAREA and COLTABAREA

tabunselectedstyleprop16

Name of the adapter parameter that dynamically
defines the style for a tab which is not selected
and not disabled. NOTICE: When using this
property you must also set the property
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

tabdisabledstyleprop16

Name of the adapter parameter that dynamically
defines the style for a tab which is disabled.
NOTICE: When using this property you must
also set the property OPENEDINDEXPROP. You
don't have to set a value at runtime, but you
need to specify a valid name.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

Appearance

withleftborder

If specified as "false" then no left border will be
drawn.

Optional

withrightborder

If specified as "false" then no right border will
be drawn.

Optional

withbottomborder

If specified as "false" then no bottom border will
be drawn.

Optional

stylevariant

Some controls offer the possibility to define style
variants. By this style variant you can address
different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style
sheet defintion and use them multiple times by
addressing them via the "stylevariant” property.
CIS currently offers two variants "VAR1" and
"VAR2" but does not predefine any semantics
behind - this is up to you!

Optional

VARI1

tabindex

Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional

1
—_

10

32767

Online Help

Natural for Ajax

367

ROWTABAREA and COLTABAREA

titlel Tooltip text that appears on the corresponding |Optional
tab.

title2 Tooltip text that appears on the corresponding |Optional
tab.

title3 Tooltip text that appears on the corresponding |Optional
tab.

title4 Tooltip text that appears on the corresponding |Optional
tab.

titleb Tooltip text that appears on the corresponding |Optional
tab.

title6 Tooltip text that appears on the corresponding |Optional
tab.

title7 Tooltip text that appears on the corresponding |Optional
tab.

title8 Tooltip text that appears on the corresponding |Optional
tab.

title9 Tooltip text that appears on the corresponding |Optional
tab.

title10 Tooltip text that appears on the corresponding |Optional
tab.

title11 Tooltip text that appears on the corresponding |Optional
tab.

title12 Tooltip text that appears on the corresponding |Optional
tab.

title13 Tooltip text that appears on the corresponding |Optional
tab.

title14 Tooltip text that appears on the corresponding |Optional
tab.

title15 Tooltip text that appears on the corresponding |Optional
tab.

title16 Tooltip text that appears on the corresponding |Optional
tab.

titletextid1 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

titletextid2 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

titletextid3 Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management

368 Natural for Ajax

ROWTABAREA and COLTABAREA

replaces the textid with a language dependent
literal.

titletextid4

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid5

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextidé

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid7

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid8

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid9

Text ID for the tooltip of the corresponding "ta
At runtime the multi language management
replaces the textid with a language dependent
literal.

".|Optional

titletextid10

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid11

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid12

Text ID for the tooltip of the corresponding "ta
At runtime the multi language management
replaces the textid with a language dependent
literal.

".|Optional

titletextid13

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management
replaces the textid with a language dependent
literal.

Optional

titletextid14

Text ID for the tooltip of the corresponding "tab".
At runtime the multi language management

Optional

Natural for Ajax

ROWTABAREA and COLTABAREA

replaces the textid with a language dependent
literal.

titletextid15

Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

titletextid16

Text ID for the tooltip of the corresponding "tab". |Optional
At runtime the multi language management
replaces the textid with a language dependent
literal.

Comment

comment

Comment without any effect on rendering and |Optional
behaviour. The comment is shown in the layout
editor's tree view.

TABPAGE Properties

Basic

id

Id of the TABPAGE. Each page has an id that refers to the PAGE1 .. PAGE9
definition inside the ROW/COLTABAREA control that contains the
TABPAGE. Clicking a "tab" will display the TABPAGE with the associated
id.

Obligatory

display

Initial display status of the TABPAGE. The first TABPAGE inside the
ROW/COLTABAREA control must be set to "". All others need to be set
ot "none". - If a ROW/COLTABAREA should show up with two or more
pages being visible one below the other then check the setting of this

property!"

Sometimes
obligatory

takefullheight

Indicates if the content of the control's area gets the full available height.

If you use percentage sizing inside the control's area then this property
must be switched to 'true'. If you use no explicit vertical sizing at all - or
you use vertical pixel sizing for your controls - the property must be
switched to 'false’.

Background information: container control's internally open up a table in
which you place rows (ITR/TR) which then hold controls (e.g.
LABEL/FIELD). The table that is opened up normally has no explicit height
and grows with its content as consequence. By specifying
"takefullheight=true" the table itself is sized to fill the maximum height of
the available area.

Optional

true

false

fixlayout

The fixlayout property is important for saving rendering performance
inside your browser. To become effective it requires to have specified the
height and the width (if available as property) of the control.

Optional

true

false

370

Natural for Ajax

ROWTABAREA and COLTABAREA

If setting fixlayout to "true" then the control's area is defined as area which
is not sized dependent on its content (as normally done with table
rendering). Instead the size is predefined from outside without letting the
browser "look" into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the control's area is flexibly
sizable. E.g. if the content (e.g. a TEXTGRID control) is following the size
of the container.

When using vertical percentage based sizing you should pay attention to
set the fixlayout-property to "true" as often as possible. - The browser as
consequence will be much faster in doing its rendering because a screen
consists out of "building blocks" with simple to calculate sizes.

comment Comment without any effect on rendering and behaviour. The comment |Optional
is shown in the layout editor's tree view.

The Most Common Error

Do you receive errors when clicking in the tabs? Then take a further look at the ID assignments
in the ROWTABAREA or COLTABAREA control on the one hand, and in the TABPAGE control
on the other hand: each page* property of a ROWTABAREA or COLTABAREA defines an ID that
must exactly match an id property of TABPAGE.

If you have more than one ROWTABAREA or COLTABAREA inside your page: do not use the
same IDs - each ID must be unique throughout one page.

Example: Controlling which Tab is displayed by the Server Adapter

The following example demonstrates the usage of the property openedindexprop on ROWTAB-
AREA level:

Natural for Ajax 371

ROWTABAREA and COLTABAREA

Index

Second (=1

rD',rnamicsetlzingufindexinTABAREA

First Second

Third

The user selects the value of the property index using the combo control. The index property
controls also which tab is displayed inside the ROWTABAREA control.

The layout definition is as follows:

<{pagebody>

{rowarea name="Dynamic setting of index in TABAREA">

<tr>

<label name="Index" width="100">
</Tlabel>
<combofix valueprop="index" size="1" flush="server">

<combooption name="First (=0)" value="0">
</combooption>

<combooption name="Second (=1)" value="1">
</combooption>

<combooption name="Third (=2)" value="2">
</combooption>

</combofix>

</itr>
{/rowarea>
{rowtabarea

height="200" openedindexprop="index"
namel="First" pagel="FIRST"
name2="Second" page2="SECOND"
name3="Third" page3="THIRD">

{tabpage id="FIRST">

</tabpage>

<tabpage id="SECOND">

</tabpage>

<tabpage id="THIRD">

</tabpage>
</rowtabarea>

<{/pagebody>

372

Natural for Ajax

ROWTABAREA and COLTABAREA

Example: Controlling the Visibility of Tab Pages

For each individual tab page, you can control at runtime whether it is visible or not. The following
example allows the user to control the visibility of tabs using check boxes:

Rich User Intefaces for Business Applications

Rich

Visibility -
v Rich W User W Interfaces W for W Business W Applications

The XML layout is:

<rowtabarea height="100" namel="Rich" pagel="RICH" visiblepropl="pagelVisibility"
name2="User" page2="USER" visibleprop2="page2Visibility"
name3="Intefaces" page3="INTERFACES" <
visibleprop3="page3Visibility"
name4="for" page4="FOR" visibleprop4="pagedVisibility"
nameb="Business" pageb="BUSINESS" <«
visibleprop5="pagebVisibility"
name6="Applications" page6="APPLICATIONS"
visibleprop6="page6Visibility">
{tabpage id="RICH">
<vdist height="20">
</vdist>
<itr>
<hdist width="60">
</hdist>
<Tabel name="Rich" asplaintext="true" textalign="center">
</label>
</itr>
<{/tabpage>
{tabpage id="USER">

</tabpage>

{rowarea name="Visibility">
<Jtr>
<checkbox valueprop="pagelVisibility" flush="server">
</checkbox>
<hdist>

Natural for Ajax 373

ROWTABAREA and COLTABAREA

</hdist>

<Tabel name="Rich" asplaintext="true">
</label>

<hdist width="10">

</hdist>

<checkbox valueprop="page2Visibility" flush="server">
</checkbox>

<hdist>

</hdist>

<label name="User" asplaintext="true">

</label>

<hdist width="10">

</hdist>

<checkbox valueprop="page3Visibility" flush="server">
</checkbox>

<hdist>

</hdist>

<label name="Interfaces" asplaintext="true">

</label>

<hdist width="10">

</hdist>

<checkbox valueprop="page4Visibility" flush="server">
</checkbox>

<hdist>

</hdist>

<Tabel name="for" asplaintext="true">

</label>

<hdist width="10">

</hdist>

<checkbox valueprop="pagebVisibility" flush="server">
</checkbox>

<hdist>

</hdist>

<label name="Business" asplaintext="true">

</label>

<hdist width="10">

</hdist>

<checkbox valueprop="page6Visibility" flush="server">
</checkbox>

<hdist>

</hdist>

<label name="Applications" asplaintext="true">
</label>

<hdist width="10">

</hdist>

</itrd

{/rowarea>

You see that the definition of the properties that control the visibility of tab pages is done in the
ROWTABAREA (not on TABPAGE level). The check boxes reference the same adapter properties
as used on ROWTABAREA level.

374

Natural for Ajax

ROWTABAREA and COLTABAREA

| Note: In the previous example, the openedindexprop property of the ROWTABAREA was

used. Be aware of the fact that each tab page still keeps its stable index position - no matter
whether it is displayed or not.

Natural for Ajax 375

376

44 ROWTABLEO and COLTABLEQ

B ROWTABLEQD PrOPEIIES ..ottt e e et e e e e e e et baeaeeea e 379
B COLTABLED PrOPEIIES ... vveeeiitieee ettt ettt ettt et e ettt e et e e et e e e et e e e e sttt e e e e nnneee e 381

377

ROWTABLEO and COLTABLEO

The ROWTABLEO or COLTABLEQ container is not visible. Normally, it is just used for arranging
controls. The following example shows how to define two columns - inside a ROWAREA - to ar-
range controls:

<{pagebody>
<rowarea name="Area 1">
<Gtr takefullwidth="true">
<coltableO width="50%" takefullheight="true">
<Gtr>
<lTabel name="Factor 1" width="100">
</label>
<field valueprop="factorl" length="5">
</field>
</itr>
</coltable0>
<coltable0 width="50%" takefullheight="true">
<Gtr>
<{label name="Factor 2" width="100">
</Tabel>
<field valueprop="factor2" length="5">
</field>
</itr>
</coltablel>
</itr>
{/rowarea>
</pagebody>

The result looks as follows:

Area 1 -

Factor 1 0 Factor 2 0

Inside the ROWAREA, two COLTABLEQ tags are placed - each occupying 50% of the width. Each
COLTABLEQ area builds - independently from the other - its own table rows (ITR rows in the ex-
ample).

All complex field arrangements should be done by using ROWTABLEO/COLTABLEO tags as
shown in the example.

378 Natural for Ajax

ROWTABLEO and COLTABLEO

ROWTABLEO Properties

Basic
height |Height of the control. Optional 100
There are three possibilities to define the height: 150
(A) You do not define a height at all. As consequence the control 200
will be rendered with its default height. If the control is a container
control (containing) other controls then the height of the control 250
will follow the height of its content. 300
(B) Pixel sizing: just input a number value (e.g. "20"). 250
(C) Percentage sizing: input a percentage value (e.g. "50%"). Pay
. . . ; . 400
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control 50%
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row) may itself define a height 100%
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.
align Alignment of the content of the ITR row. Optional |left
Background: the ITR as independent table row renders a table into center
its content area. Inside this table a row is opened in which the '
controls are placed. right
This table normally is starting on the left of the ITR row. With this
ALIGN property you can explicitly define the alignement of the
table.
valign |Vertical alignment of control in its column. Optional |top
Each control is "packaged" into a column. The column itself is part middle
of a row (e.g. ITR or TR). Sometimtes the size of the column is
bigger than the size of the control. In this case the "align" property bottom
specify the position of the control inside the column.
fixlayout |The fixlayout property is important for saving rendering Optional [true
performance inside your browser. To become effective it requires
false

to have specified the height and the width (if available as property)
of the control.

If setting fixlayout to "true" then the control's area is defined as
area which is not sized dependent on its content (as normally done
with table rendering). Instead the size is predefined from outside
without letting the browser "look" into the content of the area. If
the content is not fitting into the area then it is cut.

Natural for Ajax

379

ROWTABLEO and COLTABLEO

You typically use this control if the content of the control's area is
flexibly sizable. E.g. if the content (e.g. a TEXTGRID control) is
following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as possible.
- The browser as consequence will be much faster in doing its
rendering because a screen consists out of "building blocks" with
simple to calculate sizes.

tablestyle

CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000
background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

Optional

background-color:
#FF0000

color: #0000FF

font-weight: bold

area. "Flashing" means that the area is animated for a short point
of time in order to make the user aware that e.g. some change of
data happened inside the area. The value is an index - whenever
you change the index then a flashing of the control is triggered on
client side.

Pay attention: do not mix the "flashing" of an area with the
"flushing" of controls - "flushing" is the way an input control (e.g.
field) triggers server side updates when the user changed the value,
"flashing" is pure animation.

comment | Comment without any effect on rendering and behaviour. The |Optional
comment is shown in the layout editor's tree view.
flashprop|Name of the adapter parameter that triggers a "flashing" of the |Optional

380

Natural for Ajax

ROWTABLEO and COLTABLEO

COLTABLEO Properties

The properties for COLTABLEQ are very similar to those of ROWTABLEQ.

Basic

width Width of the control. Optional 100
There are three possibilities to define the width: 120
(A) You do not define a width at all. In this case the width of 140
the control will either be a default width or - in case of
container controls - it will follow the width that is occupied 160
by it tent.

y its conten 180

(B) Pixel sizing: just input a number value (e.g. "100"). 200
(C) Percentage sizing: input a percantage value (e.g. "50%"). 509

Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a 100%
width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an ITR-row)
ma