Reference
Version 5.3
September 2008

Construct Spectrum SDK

Order Number: SPV530-020I1BW

This document applies to Construct Spectrum SDK Version 5.3 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation
Department at the following e-mail address: Documentation@softwareag.com.

Copyright © Software AG, September 2008. All rights reserved.

Software AG and/or all Software AGqgatucts are either trademarks or registl trademarks of
Software AGOther products and company names mentioned herein may be the trademarks of
their respective owners.

TABLE OF CONTENTS

PREFACE
Prerequsite KNnowledge. e 14
Purpose and Structure of thisGuide 14
Howto UsethisGuide i i i 6....1
Create a Web Applicationt e e e e 16
Create a Client/Server Application i i e 17
Without Using the Client Framework i i 17
Other RESOUICES. . . .ottt e e e e e e e e e e e e 18. ..
Related Documentation it 18
CONSIIUCE SPECIIUM . . . o e e e e e e 18
Natural ConStrUCT. e et e 19
Other DocumeENtation i e e e 19
Related CoUISES.ot e e 19.....

1. INTRODUCTION

What is ConStruCt SPeCtrUM? e e e 22
Partner Products. 22
Data Dictionary and REPOSItOrYt e e e e 22
Middleware 22
Programming Languages. oottt 23
Multiple Development Environmentst e 23
Construct Spectrum Development Environments. i, 23
Administration Subsystem. e 24
Construct Windows Interface i 25
Visual BasiC. 6....2
Client/Server Applications i i e i 26
Web Applications 27
Types of Construct Spectrum Applications. 28
Architecture of Construct Spectrum Applications 29
Mainframe Server CoOmMpPONENES. ittt e e 30
SyStemM FUNCHONS. e e e e e e 32
WiINdows COmMPONENES.ottt 33
Internet Information Serverl@) Conponents. i 35
Internet/Intranet COMPONENtSt 35
Overview of the Development ProCessS oottt e et e e 36

Construct Spectrum SDK Reference

2. SETTING UP THE MAINFRAME ENVIRONMENT

OV IV W . . o oottt e e e e e 38.
Setting Up Predict Definitions. e 39
Field Headings. o e 39....

Business Data TYpes (BDTS) vttt et e et e 40
Default GUl and HTML Controls.o e 40

Verification RUIES 40. . ..
Default Primary Keysand Hold Fields 41
Define a Default Primary Key. e i 41
DefineaDefault Hold Key i e e 41
Default Business Object Description. i e 42
Descriptive Browse Fields. e 42
File Volume Information in Client/Server Applications. 42
Creating a Domain and Setting Up Security i i i 43
Step 1: Definethe Steplib Chain. i 43

Step 2: Definethe Domain e 45

Step 3: Define Security forthe Domain i 47
3. FEATURES OF THE WIZARDS
Using the Configuration Editor. 50
Invoke the Configuration Editor e 50
Modify the Profile Settings i e 52
Create a New Configuration Profile 55
Modify the Path Settings i e 57
Working with Code 58....
Implied User EXItS.o e e e 8....5
Preserve Customizations to Generated Code 58
Regenerating Modules. e 9.... 5
Regenerate Individual Modules. i e 59
Regenerate Multiple Modules e 60
Regenerate External Files 61
Editing Modules e, 62. ..
Generating and Reviewing RepOmsS. i 63
ACCESS REPOIS . ..o 63
Review a Stored RepOrt. e e 64
Specify Report Detail e 66
Use Reports with a Code Comparison Tool. i, 67
Using The Spectrum Cache. e e e e i 68
OV IV . . o oot e 68. . .
Mark Nodes to be Refreshed. 70
Remove Nodes From the Spectrum Cache 70

Table of Contents

4. USING THE BUSINESS-OBJECT-SUPER-MODEL

OV IV . . o ot e T2,

Before You Begin e e 73. ..
Check the Model Defaults. 73
Setup Default Values in Predict i e e 73
Establish a Naming Convention i 74
Set Up the Application Environment i 75

Generating PacKages oo i it 76.. ...
Step 1: Define the Standard Parameters 77
Step 2: Define the General Package Parameters. 78
Step 3: Define the Specific Package Parameters. 79
Step 4: Creatdnother Package (Optional) 81
Step 5: Generatethe Modules i e 81

Generation SUbSYStEM 82

Troubleshooting. e 83..

5. USING ACTIVEX BUSINESS OBJECTS

OV IV . . o oottt e e e 86.

Using the ABO Project WiaIrdt e e 87
Create the ABO Project. e e e e 87
Framework Components forthe ABO Project 91

Usingthe ABO Wizard i e e e e e e e 92

Customizing the ABO i e 98
Customize Properties Generated forthe ABO i, 98

Opt ColumN . . . 99
Customize the ABO withinUserEXxits 100
GetAppService_.SetMethodAndBlocks L 100
ICSTBrowseObject_LogicalKeyInfo.Extra 100
ICSTPersist_InstanceData.Get.Extra. i, 100
ICSTPersist_InstanceData.Let.EXtra. i 100
ICSTPropertyInfo_PropertyInfo.Get.EXtra. i, 101
<CounterPropertyName>.Get.NullList 101

6. USING THE SUBPROGRAM-PROXY MODEL

OV IV W . . o ottt e 104.

Accessing System Files. e e 104

Generating a Subprogram ProXyt e 105
Step 1: Specify Standard Parameters.t 106
Step 2: Specify the Number of OccurrencesReturned 108
Step 3: Add UsSer EXitS 109
Step 4: Generate the Subprogram ProxXy it e 110

Construct Spectrum SDK Reference

Generating Methods e 1...11
Access the Application Service Definitions o ... 112
AddaMethod 3...11

Stepl:Createthe MO e e 113

Step 2: Update the Application Service Definition. 113

Step 3: Update the Library Image File 114
Override the Steplib Chain forthe Domain. 115

Overriding Block Handling. i e e e 116

Default Block Handling. e e 116
Maintenance Subprogram Blocks Sentto Server 116
Maintenance Subprogram Blocks Returnedto Client 117
Browse Subprogram Blocks Sentto Server 118
Browse Subprogram Blocks ReturnedtoClient. 118

SPECIY OVEITIAES . . .o e e 118
Step 1: Define Block Handling On Server 118

Disable a Block Unconditionally. 118
Send Blocks to the Client Conditionally 119
Step 2: Define Block Handling On Client. 119

Creating Multiple Versions e e e e e 120
Security Implications. 120

Support for Trace OpPtioNS.t e e e 120

7. USING BUSINESS DATA TYPES (BDTS)

OVEIVIBW . . .t e, 122.
Understanding and Using BD TSttt e e et 123
Benefits of USiNg BDTSt e e e 123
Relationship With Visual Basic Data TYpeSottt e e 123
Composition of a BDT e e 124
NameE . . e 124. ..
Conversion ROULINE. 124
MOdIfIerS . . . 4 ...12
Elements of a BDT e 25...1
BDT Controller 5..12
How the Client Framework Uses BDTS 125
Conversion ROULINES i e 126
ConvertToDisplay Method e 127
ConvertFromDisplay Method 128
ConvertinPlace Method. 128
CreateSampleString Method e 129
Modifiers . . . e 129 .
Natural Formats. 0...13

Table of Contents

Handling Errors Returned from a BDT Conversion Routine 131
How Web Applications Use BDTSttt e e e e e 132
BDTs Supplied With Construct Spectrum e e 133

Alpha . . 133

Boolean, 133

TIMe. . o e e, 134

NUMEBKIC . . . e e 134

CUIMBNCY . .t e e e e e 135..

Date . . . e 136
Referencing BDTs in Predict. i e e e 137
DefiNiNg BD TS .. .ot e e e 138 ..

NaMeE . e 138.

Modifiers . . . 138 .

Natural Formats. e 8...13

Variant Data TYPeS . oo ittt e e e 139
Returning Conversion Error Infformation i 140
Handling RUNtIME EIMOrs e e e e e e e e 141
Creating and Customizing BDTS. ittt e e e e e 141

BDTs and the Client/Server Framework. 141

Understandingthe BDT Objects oot e e 141

Create BDT Conversion ROULINES. e e e 143

Register a BT ... i e 5...14

Deregister a BT i e 146

Locate the Conversion Routine foraBDT 146

Create a Natural-to-BDT Mappero oot e ettt 147

Other ConsiArations. o 148

Use One Conversion Routine with Multiple BDTS.ot 148
Placement of the Conversion Routine. 148
Override a Supplied BDT e e e 149
Reference BDTs in Your Application. i, 149
BDTs and the Web Framework. 150
Implement BDTs in the Web Framework 151
Register BDTs inthe Web Framework 151
Register BDT Classes Using the Windows Registry. 152
Explicitly Register BDT Classes.t 153
BDT Conversion Object e 154
Create the BDT Classot e 156
Other BDT Controller Methods. 157
Create a Natural-to-BDT Mapper oo oot e e e 157
Create One BDT Class with Multiple BDTS. i 159

Construct Spectrum SDK Reference

8. DEBUGGING YOUR CLIENT/SERVER APPLICATION

OV IV W . . o ottt e 162.
Communication ErTOrs 162
Communication Error Handling 162
Traditional Debugging TOOIS e e 163
Construct Spectrum Debugging Tools i i e 164
TYPES Of ENTOIS . . oo e e e e e e e 165. .
Visual Basic RUNIME ErTOrS.o e 165
Communication ErrOrs 166
Natural Runtime Errors 166
Construct Spectrum-Related Errors. e 166
Errors that Do Not Return an ErrorMessage ...t iiinnn.. 166
Generating Debug Data. i e e 167
Save Parameterand Debug Data. i e 167
SetTrace OPtioNS e e e e 167
Trace OPtioN(d) . . oo vttt e e e e 168
Create Debug Data. i e e 170
Trace OPtiON(2) . . oottt e e e 172
Specify Whereto Save Debug Data 172
Access the Maintain User Table Panel 172
Running Spectrum Dispatch Services Online., 174
Use the INPUT Statement as a Debugging Tool. 174
Using Natural Debugging ToOIS i e e e e e e 175
Invoke Subprogram Proxies Online i e 175
Access the Invoke Proxy Function i 176
Debugging Tools onthe Clientand Server. i e 177
Diagnostics WINdOW 177
Translations Program. i e 181
Troubleshooting. e, 183. .
RegIStry UsSage. . . . oo e 83...1
SN . s 183..
SDCAPP.INI . . o 84...1
Check for Necessary DLLSot e e e e e 184
Construct Spectrum Add-In. 184
Useful SDC Properties e e e e e e 185
Application Object. 185
NaturalDataArea Object e 185
Dispatcher Object e 186
RequestProperty Property 186

Table of Contents

9. DEPLOYING YOUR CLIENT/SERVER APPLICATION

Transferring Data. e 190..
Data Transfer Utilities. e 190
Administration SUbSysStem. e 190

Distributing Your Application. i 191
Step 1: Create the Executable File. i i 191
Step 2: Collect Files For Installation. i 191
Step 3: Install the Client Application 192
Step 4: Runthe Application i i e 192

10. USING THE SPECTRUM DISPATCH CLIENT

OV IV W . . oottt e 194.

Calling a Natural Subprogram. i i e et 195
Step 1: Create Parameter Data Area Instances 195
Step 2: Assign Valuestothe Fields. i i 195
Step 3: Use the CallNat Method onthe Client 196
Step 4: Check the Success of the CALLNAT i 196
SUMMIAIY . . vttt et e e e e e 196. ..

Spectrum Dispatch Client Components. i e e 197
Natural Data Area Simulation 198

Data Area Definitions 198
Data Area Simulation Objects. i e 200
Application Object. 201
Create NaturalDataArea ObjectsS. oot i e e e 202
NaturalDataArea Class 202
Case SeNSItIVITYo e e 206
Alphanumeric Fields e e 206
Fully Qualified Field Names i e 206
Redefined Fields 207
Errors When Compiling. i 207
Read Arrays and StrUCtUreS it e 208
RUNLIME EITOrS 209
DataDefinitionArea Class i 209
NaturalFieldDef Class 210
Client/Server Communication. e 213
Level 1 Block Optimization e 213
Application Service Definitions e 215
Dispatcher Objects and Dispatch Service Definitions. 218
Service Selection 219
Remote Subprogram Invocation e 220
Timeout, Retry, and Resume Handling.0... 221
Compression and EnCryption. i 223

Construct Spectrum SDK Reference

TrACING. . ottt e e 224. ..

Database Transaction Control i, 224

Error REPOIING e 225
User Identification and Authentication 226
Library Image Files and the SteplibChain 227

Advanced Features e 28.... 2

FieldRef Property e e 228
LV Fields 233..

11. CREATING APPLICATIONS WITHOUT THE FRAMEWORK

Setting Up the Server ComponeNntSottt e e e 236
Create or Select Application ServiCes.t e e i e 236
No Terminal I/O 236
Subprogram Interface e 236
No Global Data Area@DA). 236
Parameter Data Area (PDA) Data Size Limitation 237
Subprogram Behavior 237
Externalize Parameters 237
TIMING ISSUBS. .« ot ittt e e e e e e 237
Example of Creating a Simple Natural Subprogram. 238
Generating Subprogram ProXies i e 240
Subprogram-Proxy Model. e 240
Application Service Definition e 242
Creating the Library Image Files (LIFS) e e 244
Construct Spectrum Add-In. 244
Before You Start 244
Download Definitions 245
Developing the Client Application e 248
Step L: Create a New Project. i i e e e 249
Step 2: Add a Reference to the SDC Object Library. 249
Step 3: Write Code to Initialize the SDC i i 250
Step 4: Create the User Interface. i e e e 251
Step 5: Write Code to Call the Subprogram 252
Step 6: Runthe Application i 253
APPENDIX A: GLOSSARY . ..o e 255
APPENDIX B: UTILITIES. e e e 271
RESPONSE SUDPIOgramM e 272
Features and Benefits 272
Response Length Limitation i e e 272
Supported Methods e e e 272

— 10 -

Table of Contents

Message ProtoCol.o e e 273
CallInterfaceo e 273.
SPAREPLY Data Areao 274
SPAREPM Data Areao e e 276
Spectrum Interface Subprogram 278
Features and Benefits 278
EntireX Communicator Error Handling, 278
ErrOr LOQOiNg . . vi it e e e 278
Shutdown ReqUesSES 278
Server TIMEOULS.o e e e 278
Command Handling. i e e 279
SPUETB INterface 279
Data ArCaS ot 280. ..
SPAETB Data Area.o 280
ETBCB Data Area. . . . oo e e e e 285
SEND-BUFFER 285
RECEIVE-BUFFER 286
RESERVED-AREA 286
CO P D A-M. . 286
UsSiNg SPUETBo e 286
CMD TRACE . . . e 286
Valid Keywords. 287
Trace RESPONSE . . oo 288
Testthe Trace Facility. i e 288
CMD CALLNAT .. 288
Conversation Factory Utility. i 289
Character Tmaslation Subprogram i e e 290
Determine a Character Set. 290
Multi-Tasking Verification Utility i i 291
Log Utilities. e 292
Spectrum Log Utilities 292
Construct Spectrum Control Record Log Utilities 293
Domain Log Utilities. oo e 294
Spectrum Group Log Utilities i 295
Application Service Definition Log Utilities 296
Spectrum Steplib Log Utilities e 297
User and Group Log Utilities i e 298
IND X . . 299

—11 -

Construct Spectrum SDK Reference

—12 —

PREFACE

Welcome taConstruct Spectrum SDK Referenageference tool for developers using

the Construct Spectrum sofiwe deviopment kit (SDK). This preface will help you get

the most out of the documentation and find other sources of information about creating
Construct Spectrum applications.

The following topicsare covered:
» Prerequisite Knowledge page 14
» Purpose and Structure of this Guide page 14
+ How to Use this Guide page 16
» Other Resourcespage 18

— 13-

Construct Spectrum SDK Reference

Prerequisite Knowledge

This documentation does not provide information about the following topics. We as-
sume that you are either familiar with the topics or have access to other sources of
information about them.

» Natural Construct

» Microsoft Visual Basic

+ Predict

« Natural programming language and environment
« EntireX Communicator

+ EntireX Net-Work

SeeOther Resourcespage 18, for sources of information about Natural Construct and
Construct Spectrum.

Note: The examples used in this guide are from the Construct Windowfaoge
For examples from the Generation subsystem, see the appropriate chapter in
Natural Construct Generation

Purpose and Structure of this Guide

Construct Spectrum SDK Referenselesigned to help developers create client/server
and web applications and to customize, debug, and deploy applications. For informa-
tion about how to use this document, kv to Use this Guide page 16.

The following table describes the information contained in each chapter:

Chapter Title Topics

1 Introduction , page 21 Describes the components of Construct
Spectrum and the architecture of the
applications you can create using the
software development kit (SDK).

2 Setting up the Describes the tasks you musrform on
Mainframe the mainframe before gendéiray a client/
Environment, page 37 server or web application.
3 Features of the Introduces you to the Construct Spectrum
Wizards, page 49 Add-In tools used to build, customize,
and support Spectrum web and ABO
projects.

—14 -

Preface

Chapter Title Topics (continued)

4 Using the Business- Describes how to generate multiple
Object-Super- Natural components using the Business-
Model, page 71 Object-Super-Model.

5 Using ActiveX Describes how to generate ActiveX
Business Objects business objects (ABOs) — Visual Basic
page 85 classes that wrap the Spectrum calls

required to communicate with Natural
subprograms exposed by subprogram
proxies.

6 Using the Describes the subprogram proxy, how to
Subprogram-Proxy generate proxies using the Subprogram-
Model, page 103 Proxy model, and how to customize your

proxy.

7 Using Business Describes business data types (BDTs) as
Data Types they relate to client/server and web
(BDTs), page 121 applications.

8 Debugging Your Describes how to debug your Construct
Client/Server Spectrum-generated client/server
Application, page 161 applications.

9 Deploying Your Describes how to deploy your Construct
Client/Server Spectrum-generated client/server
Application, page 189 applications.

10 Using the Spectrum Describes the Spectrum Dispatch Client,
Dispatch Client, which allows you to make calls from a
page 193 client to Natural subprograms running on

a server.

11 Creating Applications Describes how to create a Construct
Without the Spectrum application without using
Framework, page 235 Construct-generated components.

Appendix A Appendix A: Glossary, = Contains a glossary of terms used
page 255 throughout the Construct Spectrum

documentation set.

Appendix B Appendix B: Utilities, Describes the utilities supplied with the

page 271

Spectrum Administration subsystem.

— 15—

Construct Spectrum SDK Reference

How to Use this Guide
Construct Spectrum SDK Referempeevides information about core development tasks
that the majority of Construct Spectrum users perform, whether they are creating:
» Construct Spectrum web applications
» Construct Spectrum client/server applications
» Client/server applications without using the Construct Spectrum client framework

The following sections describe how to use this and related guidesftorp these
types of tasks.

Create a Web Application
To use Construct Spectrum to create the components of a web application, read:

» Introduction, page 21, for an overview of the product, development process, and the
applications you can develop.

» Setting up the Mainframe Environment, page 37, for detailed information about how
to define domains and security options to control what data users of your application
will access on the mainframe.

» Features of the Wizards page 49, for information about setting configuration options
for the wizards, using the client-side cache, and modifying code frames.

» Using the Business-Object-Super-Modebage 71, for detailed information about
how to use this model wizard to generate the Natural components of your application.

» Using ActiveX Business Objectspage 85, for detailed information about creating
ABOs and an ABO project to contain them using theands supplied with Construct
Spectrum.

« Construct Spectrum SDK for Web Applicatidémsdetailed information about creating
the web components of your application.

To customize and regenerate application components, read:
» Using the Subprogram-Proxy Mode| page 103
» Using Business Data Types (BDTspage 121

—16 -

Preface

Create a Client/Server Application

To use Construct Spectrum to create a client/server application to run on Windows 95,
Windows 98, Windows 2000, or Windows NT, read:

» Introduction, page 21, for an overview of the product, development process, and the
applications you can develop.

» Setting up the Mainframe Environment, page 37, for detailed information about how
to define domains and security options to control what data users of your application
will access on the mainframe.

« Construct Spectrum SDK for Client/Server Applicatifimsletailed information about
using the VB-Client-Semr-Super-Model to generayeur application components. It
explains how to set up a Visual Basic project and customize maintenance and browse
dialogs. Also refer to this guide if you want to move existing server-based applications
to the Construct Spectrum client/server architecture.

To customize and regenerate applications components, read:
» Using the Subprogram-Proxy Mode| page 103
» Using Business Data Types (BDTspage 121
« Debugging Your Client/Server Application, page 161
» Deploying Your Client/Server Application, page 189

Without Using the Client Framework

To create a client/server application without using the Construct Spectrum client frame-
work, read:

» Introduction, page 21, for an overview of the product, development process, and ap-
plications you can develop.

» Using the Spectrum Dispatch Clientpage 193, for detailed information about the role
of the SDC in client/server communication.

« Creating Applications Without the Framework, page 235, for step-by-step proce-
dures to create your application.

- 17 -

Construct Spectrum SDK Reference

Other Resources

This section provides information about other resources you can use to learn more about
Construct Spectrum and Natural Construct. For more information about these docu-
ments and courses, contact the nearest Software AG office or visit the website at
www.softwareag.com to order documents or view course schedules and locations. You
can also use the website to email questions to Customer Support.

Related Documentation

This section lists other documentation in the Construct Spectrum and Natural Construct
documentation set.

Construct Spectrum

» Construct Spectrum SDK for Web Applications
This documentation is for developers creating the web components of applications. It
describes how to use the Construct Spectrum wizards in Visual Basic to generate
HTML templates, page handlers, and object factory entries. It also contains detailed in-
formation about customizing, debugging, deploying, and securing web applications.

» Construct Spectrum SDK for Client/Server Applications
This documentation is for developers creating client components for applications that
will run in a Natural mainframe (server) andMlows (client) environment.

« Construct Spectrum Messages
This documentation is for application developers, application administrators, and sys-
tem administrators who want to investigate messages returned by Construct Spectrum
runtime and SDK components.

» Construct Spectrum Reference
This documentation is for application developers and administrators who need quick
access to information about Construct Spectrum application programming interfaces
(APIs) and utilities.

— 18 —

Preface

Natural Construct

» Natural Construct Installation Guide for Mainframes
This documentation provides essential information for setting up the latest version of
Natural Construct, which is needed tceagite the Construct Spectrum prograimgn
environment.

» Natural Construct Generation
This documentation describes how to use the Natural Construct models to generate ap-
plications that will run in a mainframe environment.

« Natural Construct Administration and Modeling
This documentation describes how to use the Administration subsystem of Natural
Construct and how to create new models.

» Natural Construct Help Text
This documentation describes how teate online help forgplications that run on
server platforms.

« Natural Construct Getting Started Guide
This guide introduces new users to Natural Construct and provides step-by-step instruc-
tions to ceate several common processes.

Other Documentation
This section lists documents published by WH&O International:

» Natural Construct Tips & Techniques
This book provides a reference of tips and techniques for developing and supporting
Natural Construct applications.

» Natural Construct Application Development User's Guide
This guide describes the basics of generating Natural Construct modules using the sup-
plied models.

» Natural Construct Study Guide
This guide is intended for programmers who have never used Natural Construct.

Related Courses

In addition to the documentation, the following courses are available from Software
AG:

« A self-study course on Natural Construct fundamentals
« An instructor-led course on building applications with Natural Construct

« An instructor-led course on modifying the existing Natural Construct models or creat-
ing your own models

—19 —

Construct Spectrum SDK Reference

— 20 -

INTRODUCTION

This chapter describes the components of Construct Spectrum and the architecture of
the applications you careatewith the software development kit (SDK). An overview

of the general steps involved in developing applications will prepare you for the de-
tailed procedures in this and related guides.

The following topicsare covered:
» Whatis Construct Spectrum? page 22
« Types of Construct Spectrum Applications page 28
« Architecture of Construct Spectrum Applications, page 29
» Overview of the Development Procespage 36

- 21—

Construct Spectrum SDK Reference

What is Construct Spectrum?

Construct Spectrum and the software development kit (SDK) comprise a set of middle-
ware and framework components, as well as integrated tools, that use the specifications
you supply to generate the components of a distributed application.

Construct Spectrum comprises two products:

+ The SDK is a set of tools, wizards, and framework components you can use to build cli-
ent/server and web applications.

« Construct Spectrum is a middleware product that facilitates communication between
client and server.

Partner Products

Construct Spectrum works with several other products to help you build applications.
The following sections provide a brief overview of these products. For more informa-
tion about these products, consult the appropriate documentation.

Data Dictionary and Repository

Construct Spectrum works closely with Predict, a data dictionary and repository that
manages metadata about the information contained in the database your applications
use. Predict's “views” of data, and the relationships between data, help you define the
business objects your applications access and maintain. Predict verification rules and
keywords validate and format data and its field definitions automatically select controls
for your applications. You can also use Predict to define the defaults Construct Spec-
trum uses to generate your applications.

Middleware

Construct Spectrum uses EntireX Communicator, either with EntireX Net-Work or
configured to use TCP/IP, to communicate between the client and server components
of the application.

Your applications also use Construct Spectrum’s middleware components — the Spec-
trum Dispatch Client (SDC) and Spectrum dispatch service — to encapsulate calls to
EntireX Communicator on the client and server and to perform such functions as data
translation, encryption, and compression. When the client makes a communication re-
guest, the SDC translates the request into a compact, secure message and transmits it to
the server via EntireX Communicator. On the server, the Spectrum dispatch service
converts the incoming processing request by the server application while enforcing
multi-level security. Construct Spectrum then uses a similar technique to return the pro-
cessed result to the client.

— 22—

Introduction

Programming Languages

Construct Spectrum applications incorporate Natural and Visual Basic code. You can
also develop client/server applications using other OLE-compliant languages.

To present data dynamically for web applications, generated web pages use JavaScript
and HTML, including the supplied Construct Spectrum HTML replacement tags. For
information, sedJsing HTML Replacement Tags Construct Spectrum SDK for Web
Applications.

Multiple Development Environments

Besides its own development environments, Construct Spectrum provides tools that are
integrated with the Natural and Visual Basic development environments. This allows
you can take advantage of the functionality of each, such as the Natural code editors or
the Visual Basic debugging facilities.

The following section provides information about the Construct Spectrum development
environments.

Construct Spectrum Development Environments
As you develop applications, you will work in at least three environments:
» Administration subsystem
» Construct Windows interface
» Visual Basic, using the Construct Spectrum Add-Ins
The following sections describe these environments.

— 23—

Construct Spectrum SDK Reference

Administration Subsystem
Use the Administration subsystem on the mainframe to manage system and application

data for your applications:

BS__MAIN **** Construct Spectrum Administration Subsystem ***** CDLAYMN1
Jul 30 - Main Menu - 10:14 AM
Functions
SA System Administration
AA Application Administration
? Help
. Terminate
Function o
Command
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
help retrn quit flip main

Administration Main Menu

24—

Introduction

Construct Windows Interface

Use the Construct Windows inface (CW1) on your PC to generate Natural and Visual
Basic modules for your application:

Mew Specification k |

Create in Library: ISPECDEMO ooo |

Packages |Natural I Wisual Basic I &l Models I

B-CLIENT-SERVER-SLIPER-MODEL |

BUSINESS-OBIECT-SUPER-MODEL

Generate many modules with just a few simple or
patamnekers,

Cancel

New Specification Window — Construct Windowsédrface

The wizards available in the CWI are available as models in the Generation subsystem
in your Natural Construct mainframe environment. For details about the supplied
models, se®latural Construct Generation

— 25—

Construct Spectrum SDK Reference

Visual Basic

Use the Construct Spectrum Add-Ins in Visual Basic to create projects, work with Vi-
sual Basic modules, and generate ActiveX business objects and web components.

Client/Server Applications

For a client/server application, use the Construct Spectrum options on the Visual Basic
Add-Ins menu to:

» Download generated modules from the mainframe server
» Upload modules to the mainframe server
» Create a new project
» Set preferences
The following example shows the Construct Spectrum options on the Add-Ins menu:

Ciagram Tools Spectrum | Add-Ins Window Help

N m | e i 5 Yisual Data Manager. ..

Add-In Manager...

Construck Spectrum Download Generated Modules, .,

pload Modules, .,

Create Mew Praojeck, ..

Preferences. .

abouk

Construct Spectrum Options — Visual Basic Add-Ins Menu

— 26—

Introduction

Web Applications

For a web application, use the desktop Construct Spectrum project wizards to create
ABO and other projects. Use the options on the Spectrum menu in Visual Basic to:

Access wizards to generate web components

Regenerate modules

Define report options

Set configuration options

View the cache of server data

The following example shows the Spectrum menu options:

IEIDlSlSJ:lEEtr'I_Im Add-Ins Window Help

Wizards Web Super Wizard, ..

Regenerate Multiple. .. Activer Business Object..

HTML Template. .,

Repaorts...
e Page Handlet. ..

Configuration. ..)
Obiject Fackary, .,

Wiew Cache. .,

About Conskruck Spectrum, ..

Spectrum Menu in Visual Basic

You also work with an HTML editor of your choice, the Microsoft Management Con-
sole to manage your Microsoft Internet Information Server on Windows NT, and/or the
Personal Web Server (if you are using Windows to develop applications).

Information about how to access and use these environments is presented where re-
quired throughout this documentation.

27—

Construct Spectrum SDK Reference

Types of Construct Spectrum Applications

Using Construct Spectrum SDK, you can create two kinds of applications:

» Client/server applications that run on Windows or Windows NT (client) and access Nat-
ural components and data on a mainframe &grv
Client/server applications are composed of Natural modules that encapsulate mainte-
nance and query functions on the server, Visual Basic components that function on the
client and present the user interface, and runtime components that communicate be-
tween client and server.

» Web applications that run on IIS and can be accessed with Microsoft Internetdgxplo
and Netscape Navigator.
Web applications are composed of Natural modules that encapsulate maintenance and
guery functions on the server, ActiveX business objects that communicate between cli-
ent and server components, page handlers that manage the processing of HTML
templates, and HTML templates that present web pages.

This guide describes how to develop components and functionality that are common to
the differenttypes of applications. Information specific to client/server applications is
contained inConstruct Spectrum SDK for Client/Server Applicationformation spe-

cific to web applications created with Construct Spectrum is contair@dristruct
Spectrum SDK for Web Applications

— 28 —

Introduction

Architecture of Construct Spectrum Applications

The following diagram shows the architecture of Natural chardxsed aplications,
client/server applications, and web applications:

Windows GUI Dialog Internet/ Web Page |JSenerated
Intranet [Spectrum
E @ o
Visual Basic Business Object HTTP
1S I

Web Application
|

ActiveX Business Object

Entire Broker

Entire Net-Work or TCP/IP
Character Ul

Entire Broker

Entire Net-Work or TCP/IP

Mainframe Server
Entire Broker

o swe | e

Subprogram Proxy
|

Natural Subprogram

Architecture of Construct Spectrum Applications

The following sections describe these components according to the platforms on which
they run: mainframe server, Windows, IIS, and internet or intranet.

—29_

Construct Spectrum SDK Reference

Mainframe Server Components

Component Description
Natural Perform maintenance and browse functions on the mainframe
subprograms server. The same set of business objects can be accessed from

character-based Natural applications, client/server
applications, and web applications. This ensures that the
integrity of business data is preserved, independent of the
presentation layer.

Natural subprograms may be either generated by Construct
models or written by hand. The models that generate
subprograms and their parameter data areas (PDAS) are the
VB-Client-Server-Super-Model, i&iness-Object-Super-
Model, Object-Maint-Subprogram model, and Object-
Browse-Subprogram model.

Natural subprograms can also be written by hand if they follow
certain guidelines. For example, screen I/O functions are not
allowed, and records cannot be held between conversations.

Character Ul Non-distributed Natural applications created with Natural
Construct accessing subprogramedily.

Subprogram Acts as a bridge between a subprogram and the Spectrum

proxy dispatch service. The subprogram proxy:

» Provides a common interface so that the Spectrum dispatch
service can pass the same set of parameters to any
subprogram proxy

» Issues a CALLNAT to the subprogram

» Converts the parameter data of the subprogram into a
format that can be transmitted between the client and server

» Supports optimization of the data passed through the
network so that only input parameters need to be sent to the
Spectrum dispatch service and only output parameters need
to be returned to the client

» Validates the format and length of the data received from
the client

» Supports debugging features to help uncover
inconsistencies between the data sent by the client and the
data expected by the subprogram proxy

For more information, sedsing the Subprogram-Proxy
Model, page 103.

— 30 -

Introduction

Component Description (continued)

Spectrum dispatch Provides a common interface and EntireX Communicator
service services for Natural subprograms in the application. The main
functions of the Spectrum dispatch senace to:

» Receive requests from the client by way of EntireX
Communicator

» Optionally decompress or decrypt (or both) and translate
the request message (&estem Functionspage 32) from
the client’s character set (ASCII) to the server’s character
set (either ASCII or EBCDIC)

» Check security to ensure that the client is allowed to issue
such a request

» Determine the name of the subprogram proxy that handles
the request

» Issue a CALLNAT to the subprogram proxy, passing the
received message as a parameter string

« Optionally compress, encrypt (or both) the message to be
returned (seS&ystem Functions page 32)

» Send informatiomeceived from theubprogram proxy back
to the client application

Dispatch service Information defined and maintained in the Administration
data subsystem and accessed by Spectrum dispatch services
anywhere on the network by way of EntireX Communicator.
Administration Allows system administrators, application administrators, and
subsystem application developers to set up and manage system and

application environments.

Security service Checks client requests against security settings defined in the
Administration subsystem. This stand-alone service operates
independently of any one Spectrum dispatch service. Its
independence allows the security service to process, in one
central location, the requests of several Spectrispatth
services, which may be located on nodes throughout the

network.
EntireX Transfers messages between Windows or the web server and
Communicator the Natural environment. EntireX Communicator can be

configured to use either native TCP/IP or EntireX Net-Work as
the transport layer.

— 31 -

Construct Spectrum SDK Reference

System Functions

All Spectrum dispatch services defined in the Administration subsystem have access to
the following common system functions:

Function Description

Return debugging Ensures that all requested debugging information is generated

information into the source area. Debugging information is requested by
setting a Trae-Option in the subprogram proxy. The
debugging information is stored as a source member that can
be examined or used to initiate the request locally on the
server, removing the client and the network from the test.

For more information about trace options, Bebugging
Your Client/Server Application, page 161.

Encrypt and Supplies an interface that can be called by the external

decrypt data (assembler or C) routines used to encrypt and decrypt data.

Compress and Supplies an interface that can be called by the external

decompress data (assembler or C) routines used to compress and decompress
data.

Error handling Manages the capturing of runtieneors, returning the errors

to the client. If possible, this function also restarts the service
that ended with the runtimetror.

Message handling Returns a message string based on a message number and
substitution values. The function accepts and updates the data
used by the Spectrum dispatch service to return the message.

Data translation Translates data received from the client into EBCDIC or
ASCII, depending on the requirements of the server.

— 32 -

Introduction

Windows Components

Construct Spectrum client/server applications run on Windows or Windows NT. The
Windows components are:

Component

Description

EntireX
Communicator

Spectrum Dispatch
Client (SDC)

Transfers messages between the client and the Natural
environment. EntireX Communicator can be configured to use
either native TCP/IP or EntireX Net-Work as the transport
layer.

Component Object Model (COM) middleware component that
enables Construct Spectrum applicationsetd from, and
write to, variables in a Natural parameter data area (PDA) and
to issue CALLNAT statements to Natural subprograms.

The main functions of the SD&te:

Natural parameter data area sintiaia

The SDC defines the parameter data of Natural business
objects as a series of Natural data fields, which may include
structures, arrays, and redefines. To chlliainess object,

the application must be able to assign values to these
parameter data fields beforeload the business object and
then read the fields after the data is returned from the server.

To facilitate this, the SDC simulates Natural parameter data
areas, allowing the application developer to create code that
allocates a data area and reads and writes the fields in the
data area. The Construct Spectrum Add-In can download
Natural parameter data areas (@éwj in a library on the
server) to the client. This lets the SDC know the structure
(field names and formats) of a parameter data area.
Parameter data areas are stored in the library image file on
the client and only need to be downloaded afteation or
whenever they change on the server.

CALLNAT simulation

The SDC allows an application to issue a CALLNAT to a
Natural subprogram. To allow this, specify the logical name
of the subprogram to be called, and the listavbmeter

data areas to pass to the subprogram, in the client code.

Encapsulation of EntireX Communicator calls

The SDC uses EntireX Communicator calls to
communicate with the Spectrum dispatch service. These
calls are not exposed within the application layer, so the
application developer never needs to code EntireX
Communicator calls.

— 33—

Construct Spectrum SDK Reference

Component

Description (continued)

Visual Basic
business object

GUI dialog

- Database transaction control
Often, two or more calls to subprograms occur within the
same database transaction such that an END
TRANSACTION statement can be issued if all calls
complete successfully. Also, it is advantageous to have the
client application control the point at which the END
TRANSACTION or BACKOUT TRANSACTION
statement occurs. The SDC and the Spectrum dispatch
service cooperate to provide these capabilities.

For more information, sédsing the Spectrum Dispatch
Client, page 193.

Visual Basic class that acts as an intermediary between a
dialog and the SDC. This class invokes the methods of
subprograms on behalf of dialogs and instantiates all the data
areas required to communicate with a subprogram. Visual
Basic business objects can also perform local data validation to
provide immediate feedback to the user without involving a
network call.

GUI dialogs represent graphicaldriace screens that
communicate with the user and interact with the Visual Basic
business objects and other framework components to
implement business processes.

— 34—

Introduction

Internet Information Server (1IS) Components

Web applications created with Construct Spectrum work with IIS. The IS components

are:
Component Description
EntireX Transfers messages between the web server and the Natural

Communicator

Spectrum Dispatch
Client

ActiveX Business
Object

Web application

environment. EntireX Communicator can be configured to use
either native TCP/IP or EntireX Net-Work as the transport
layer.

Component Object Model (COM) middleware component that
enables web applications tead from, and write to, variables

in a Natural parameter data area (PDA) and to issue
CALLNAT statements to Natural subprograms. Its main
functionsare simulating PAs and CALLNATS,

encapsulating EntireX Communicator calls, and controlling
database transactions. As the client counterpart of Spectrum
dispatch services, it is also responsible for such things as data
marshaling, encryption, compression, error-handling, and all
communication for EntireX Communicator.

For more information, sédsing the Spectrum Dispatch
Client, page 193.

Object that encapsulates all communication with the SDC,
making it efficient to invoke Natural services from the client.
Each back-end business object is represented on the web server
as an ActiveX obiject.

For more information, sédsing ActiveX Business Objects
page 85.

Consists of framework components supplied with all Construct
Spectrum web projects and components that you generate
using Construct Spectrum wizards. Generated compoasnts
HTML templates, page handlers, and object factory entries.

For more information, se&rchitecture of a Web
Application, Construct Spectrum SDK for Web Applications

Internet/Intranet Components

Construct Spectrum-generated web applications support Internetr&xaia
Netscape Navigator browsers at version 4 or higher. For additional functionality:

Internet Explorer V5 provides improved HTML rendering and the ability to bookmark
web pages in Frames mode.

Internet Explorer V5.5 and Netscape Navigator V6 support fly-out menus.

— 35—

Construct Spectrum SDK Reference

Overview of the Development Process

This section provides an overview of the steps involved in developing a Construct Spec-
trum application. For detailed information, see the following sources:

« For an overview of developing web applications, @@erview of the Development
Procedure Construct Spectrum SDK for Web Applications

» For an overview of developing client/server applications Gesrview of the Devel-
opment Procedure Construct Spectrum SDK for Client/Server Applications

« For an overview of developing client/server applications without the Construct Spec-
trum framework components, s€eeating Applications Without the Framework,
page 235

» To develop a Construct Spectrum application:

1 Plan your application
You will save time and effort by planning as completely as possible the purpose,
functionality, security, and user interface of your application.

2 Set up your application environment
Based on the functionality of your application, ensure that the file, field, and
relationship definitions in Predict support the business objects and business rules your
application will use. Also set up a domain and steplib chain in the Administration
subsystem so the application can access the appropriate data. You may also want to
define users, groups, and security settings in this step.

3 Generate application components
Use the Construct Spectrum models and/or wizards to enter specifications for your
application components and geate them. For the first iteration, use siger model
wizards to create multiple components. For Natural modules and client/server Visual
Basic components, use either the models in the Generation subsystem on the mainframe
or the model wizards in the Construct Windows interface. To create a web application,
also use the wizards Construct Spectrum adds to Visual Basic. This step also involves
creating new Visual Basic projects and populating them with components.

4 Customize, test, and debug the application
Customize the look and functionality of your application. This iterative process may
require you to regenerate modules using the individual supplied models.

5 Deploy the application
When your application is fully functional, you are ready to distribute it to users. This
step can involve creating an installation kit and deploying the Administration
subsystem.

— 36 —

SETTING UP THE MAINFRAME
ENVIRONMENT

This chapter describes the tasks you must perform on the mainframe before generating
a client/server or web application.

Note: Before performing the tasks described in this chapter, ensure that all required
software is installed and configured on your server and client. For informa-
tion, see the installation documentation.

The following topicsare covered:
» Overview, page 38
« Setting Up Predict Definitions page 39
» Creating a Domain and Stting Up Security, page 43

— 37 -

Construct Spectrum SDK Reference

Overview

Before you can generate applications, you must complete some setup tasks to ensure
that your application casccess the database records it needs and thati&esable
to access the application. The following tasks are involved:

» Set up file and field definitions in Predict. You can alfec how field names and con-
trols are derived ankow validations are performed by adjusting Predict settings.

» Create and associate a steplib chain and domain in the Administration subsystem.

» Set up security privileges for the domain. This involves defining users and groups and
linking them to the domain in the Administration subsystem.

This chapter describes these steps in more detail.

— 38 —

Setting up the Mainframe Environment

Setting Up Predict Definitions

With any application created with Natural Construct or Construct Spectrum, you must
set up file and field definitions in Predict. This includes setting up your application files
and defining their intra- and inter-object relationships.

For information about these tasks, 8msign Methodology andUse of Predict in
Natural Construct, Natural Construct Generation

Predict features that have special implications for Construct Spectrum applications
include:

» Field headings

» Business data types

» Default GUI and HTML controls

» Verification rules

» Primary keys and hold fields

» Default business object description
» Descriptive browse fields

Tip: You can postpone the setup tasks described in this section until a later iteration of
your application. These tasks may be optional and, in all cases, Construct Spec-
trum applies its own values for these setup items based on your existing Predict
file and field definitions.

Field Headings

If a field definition has a heading in Predict, the heading is used to derive the caption
for the control on the dialog or page. If no heading is coded in Predict, the caption is
generated by converting the field name to mixed case and changing special characters
(dashes and underscores) to spaces.

When creating a client/server application, you can change the captions on the form in
Visual Basic.

When creating a web application, you can modify captions using the HTML Template
wizard in Visual Basic. For more information, $eeeating and Customizing an
HTML Template , Construct Spectrum SDK for Web Applications

— 39—

Construct Spectrum SDK Reference

Business Data Types (BDTSs)

Business data types (BDTs) associate additional formatting with data fields to help en-
sure that data is presented consistently and validated in your applicatioafaiit,d
generated modules implement basic format and length-checking to ensure that all val-
ues stored on the client are of a valid format and length. BDTs extend this concept by
allowing the use of user-defined data types related to business representations of the da-
ta. For example, a numeric field might be intended to store a currency amount, a net
weight, a date, or a quantity. Each of these values might be presented to the user and
validated in a different way, alblugh they are all defined as numeric fields. For exam-
ple, a credit card number could be stored on the database as a 16-digit value. However,
when this value is placed on a page, it could be shown using the 9999-9999-9999-9999
format. Furthermore, the user could update the value with or without the dashes, and the
BDT will ensure that the unformatted value is assigned back to the database.

To associate a database field with a BDT, assign a special BDT keyword to the field in
Predict. For more information, seéksing Business Data Types (BDTspage 121.

Default GUI and HTML Controls

Construct Spectrum applies complex derivation rules to determine the most appropriate
control to represent a database field. Neverthelesie thay be times when the default
control is not ideal for a particular application. In these cases, you can override the de-
fault control by assigning the database field a special keyword. If you are creating a web
application, you can change some controls in the HTML Template wizard.

For more information, se@verriding GUI Controls , Construct Spectrum SDK for
Client/Server Applicationgr Creating and Customizing an HTML Template, Con-
struct Spectrum SDK for Web Applications

Verification Rules

Verification rulesare used to force th@plication user to make a selection based on one

or more predetermined choices. For example, if your application has a field where a val-
id month must be entered, you can specify a verification rule for the field so that only a
valid month will be accepted.

One criteria that Construct Spectrum uses to determine the most appropriate GUI or
HTML control for a particular field is the presence of verification rules attached to the
field. In the previous example of presenting valid months, Construct Spectrum would
attach a drop-down combo box to the field in the dialog or page. The user could select
a valid value from the drop-down combo box.

For more information, se@verriding GUI Controls , Construct Spectrum SDK for
Client/Server Applicationgr Creating and Customizing an HTML Template, Con-
struct Spectrum SDK for Web Applications

— 40 -

Setting up the Mainframe Environment

Default Primary Keys and Hold Fields

Predict keywords can also be used to designate default primary key values and logical
hold fields for a super model, which reduces the specifications the user must enter.

Define a Default Primary Key

To define a default primary key, specify a descriptor name in the Sequence field for the
file in Predict. Natural Construct observes the following priorities when defaulting a
primary key name for a file:

1 If the value of the default Sequence field for the file is unique and a valid descriptor,
Natural Construct uses this value as the primary key.

2 Ifthe value of the default Sequence field is not unique, Natural Construct reads through
the file and uses a unique descriptor field value as the primary key.

3 If the file does not have a unique descriptor field, but has only one descriptor field,
Natural Construct assumes the value is unique and uses it as the primary key.

Define a Default Hold Key

To define a default logical hold field, attach the HOLD-FIELD keyword to the field in
Predict. (You may have to first define the HOLD-FIELD keyword in Predict using Key-
word Maintenance.) Natural Construct observes the following priorities when
defaulting a hold field name for a file:

1 If the HOLD-FIELD keyword is attached to a field that meets the format criteria for a
hold field, Natural Construct uses this field as the logical hold field.

2 If a field name contains any of the following strings:

— HOLDFIELD

— HOLD-FIELD

— HOLD_FIELD

— TIMESTAMP

— TIME-STAMP

— TIME_STAMP

— LOGCOUNTER

— LOG-COUNTER

— LOG_COUNTER

and the field meets the format criteria for a hold field, Natural Construct uses this field
as the logical hold field.

—41 -

Construct Spectrum SDK Reference

Default Business Object Description

To specify a default business object description, assign a name to the file’s Literal
Name attribute in Predict. This name is defaulted as the business object description
when using a super model. Additionally, this name is displayed when the file is refer-
enced in error messages.

Descriptive Browse Fields

When the user invokes a browse dialog attached to a field on a maintenance form, it is
referred to as a foign field browse. When invoked, a foreign field browse displays

only the foreign field values unless you designate other fields in the foreign file as de-
scriptive. For example, suppose you know that the warehouse number field in a
warehouse file will be referenced as a foreign field browse on a numbeiménence

dialogs or pages. To help users select the correct warehouse when browsing, you can
designate another field, such as the Warehouse Name field, as descriptive. When users
browse for a warehouse number, the descriptive value (in this case, a warehouse name)
is displayed, along with the warehouse number.

A descriptive field is designated in Predict by associating a special keyword with the
field. You can indicate that certain fields are descriptive in all situations, while others
are descriptive depending on the form or page that contains the foreign field.

For information about descriptive fields, deisplaying Descriptions for a Foreign
Field, Construct Spectrum SDK for Client/Server Applicatiangreating and Cus-
tomizing an HTML Template, Construct Spectrum SDK for Web Applications

File Volume Information in Client/Server Applications

You can supply information related to the size and stability of your files in Predict.
These values are used to determine the default behavior of a standalone browse dialog
and browse dialogs linked to a maintenance dialog. For more information about linking
browse and maintenance functions, kgegrating Browse and Maintenance Func-

tions, Construct Spectrum SDK for Client/Server Applications

—42 -

Setting up the Mainframe Environment

Creating a Domain and Setting Up Security

U 00 Vv

The application environment includes users, applicatiagarigs business objects and

their associated modules. Users are combined into larger entities known as “groups”.
Application libraries, business objects and their associated maahelesnbined into

larger entities known as “domains”. Before creating an application with Construct
Spectrum, you must define a domain for the application. Before users can access the ap-
plication, you must grant access to the business objects and object methods within the
domain.

To create a domain and set up security:
Step 1: Define the Steplib Chainpage 43
Step 2: Define the Domainpage 45

Step 3: Define Security for the Domainpage 47
The following sections describe each of these steps in detail.

Step 1: Define the Steplib Chain

The first step in setting up a domain is to define its steplib chain. A steplib chain iden-
tifies where your application Ifaries raide on the server. To locate and execute
application modules, you must set up a steplib chain and link it to your application
domain.

When defining your steplib chain, keep the following tips in mind:

Before adding a steplib entry, determine the database ID (DBID) and file number (FNR)
of the FUSER system file you are using.

The library inwhich the dispatch service is executing is checked before libraries in the
steplib chain; you do not have to add this library to your steplib chain.

If you intend to use the default DBID and FNR values for the current FUSER system
file at runtime, you do not have to specify a DBID and FNR value for a library.

Ensure that you add your FUSER file in the SYSTENHIik to the stelib chain. Most
generated applications use the server framework components supplied with Construct
in this file (prefixed with “CD” or “CC").

Any components required by your generated methods, such as subprograms, copycode,
or data areas, must be available in your application library or one of its steplibs.

Both the FUSER and FNAT system libraries are automatically added to your steplib
chain; you do not have to add thesediles to your steplib chain.

Tip: If you are new to Construct Spectrum, set up a sample environment. For example,
set up a sample application library and link it to your sample steplib chain. Use
the same name to identify your application library, steplib chain, and domain.

— 43—

Construct Spectrum SDK Reference

To access the Maintain Steplib Table panel:

Log onto the SYSSPEC library and enter “MENU” at the Next prompt.
The Administration subsystem main menu is displayed.

Enter “AA” in the Function field.
The Application Administration main menu is displayed.

Enter “MM” in the Function field.
The Application Administration Maintenance menu is displayed.

Enter “ST” in the Function field.
The Maintain Steplib Table panel is displayed:

BSSD__MP ***** Construct Spectrum Administration Subsystem **** BSSD_ 11
Aug 31 - Maintain Steplib Table - 10:55 AM

*Action (A,B,C.DM,N,P) _

Steplib Name............:
Frmmmmm e e e +
| Library DB FNR |
| mmmmmmms oo oo I
|1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
R +

Direct Command:
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
confm help retrn quit flip pref main

Maintain Steplib Table Panel

Add up to eight application libraries to the steplib chain.

Record the name of the steplib chain.
You will add the steplib chain to the application domain described in the following
section.

—44 -

Setting up the Mainframe Environment

Step 2. Define the Domain

Domains are used to group related business objects and services. You can set up the
same business object in multiple domains. The services assigned to the object can be
different for each domain. For example, if you have a Customer object that is used in
two applications, an Accounts Receivable and a Sales application, the Customer object
in the Accounts Receivable application probably requirdereint services than a Cus-
tomer object in a Sales application. Consider setting up two domains, aacfor
application. Assign services to the Customer object based on the business requirements
addressed by each application.

The following steps describe how to set up a domain and link it to the steplib chain de-
scribed in the previous sectiddtep 1: Define the Steplib Chainpage 43. By default,

all business objects in the domain aceessed using the same steplib chain. You can,
however, override the steplib chain for each business object and object method. For
more information, se®verride the Steplib Chain for the Domain page 115.

Tip: Specify a steplib chain as high in the application architecturarbley as pssi-
ble. This prevents you from having to specify the steplib chain in many places. If
the steplib chain applies to an entire application, place it in the appropriate do-
main. If the steplib chain applies to one object only, identify it in the header por-
tion of the application service definition. In this way, only exceptions need be
specified.

» To access the Maintain Domains Table panel:

1 Log onto the SYSSPEC library and enter “MENU" at the Next prompt.
The Administration subsystem main menu is displayed.

2 Enter “AA” in the Function field.
The Application Administration main menu is displayed.

3 Enter “MM” in the Function field.
The Application Administration Maintenance menu is displayed.

— 45—

Construct Spectrum SDK Reference

4 Enter “DO” in the Function field.

© 00 N O O

The Maintain Domains Table panel is displayed:

BSDO__MP Construct Spectrum Administration Subsystem BSDO__ 11
Jun 27 Maintain Domains Table 4:11 PM

Action (A,B,C,D,M,N,P) A

Domain Name.............. SAMPLE___

Description.............. Sample Domain

Steplibs................. SAMPLE *
Command:
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref main

Domain SAMPLE added successfully

Maintain Domains Table Panel

Type “A” in the Action field.

Type the name of your domain in the Domain Name field.
Type a brief description of the domain in the Description field.
Type the name of your steplib chain in the Steplibs field.

Press Enter to add the domain.
Next, you will link the domain to user groups described in the following section.

Note: Specifying a steplib chain is optional. If no steplib is specified, the Spectrum
dispatch service attempts to locate the business object fromrtkatoexecu-
tion library and then from the FNAT SYSTEM library.

— 46 —

Setting up the Mainframe Environment

Step 3: Define Security for the Domain

To make your application available to users, you must grant them security privileges.
To set up security, assign users to groups. Groups identify users who require similar ac-
cess privileges to your application. You can then grant groups security privileges to
your application domain. Granting access to a domain enables users to access the ob-
jects and methods within the domain.

Tip: You can postpone this task until after you have created and tested your applica-
tion. At that time, you can better determine what security privileges should be
granted to each group.

For each group granted access to a domain, you can further define security privileges
by granting access to selected objects and methods. For example, assume you have an
application domain called “Payroll” containing all of the objects and methods required
for your organization’s payroll application. Two types of users require access to the
payroll application: managers and data entry personnel. Managers require access to the
entire application, while data entry personnel require access only to input hours, vaca-
tion time, sick time, and so on. You can set up one group for the managers and one for
the data entry personnel. The Manager group is given access to all objects and methods
in the Payroll domain and the Data Entry group is given access only to those objects and
methods required to do their job.

—47 -

Construct Spectrum SDK Reference

— 48 —

FEATURES OF THE WIZARDS

This chapter introduces you to the Construct Spectrum Add-In tools used to build, cus-
tomize, and support Spectrum web and ABO projects. These tools include the
Configuration editor, which allows you to customize environmental settings, and the
Regenerate Multiple function, which you can use to regenerate many modules. This
chapter also describes how to use implied user exits and the cst:PRESERVE tag to pro-
tect and preserve custom code as you generate and regenerate modules. The remainder
of this chapter explains the Report and Cache Viewer functions.

The following topicsare covered:
« Using the Configuration Editor, page 50
« Working with Code, page 58
+ Regenerating Modules page 59
« Editing Modules, page 62
» Generating and Reviewing Reportspage 63
» Using The Spectrum Cachgpage 68

— 49—

Construct Spectrum SDK Reference

Using the Configuration Editor

The Configuration editor maintains the configuration profiles used in Construct Spec-
trum. Configuration profiles specify global settings, such as Spectrum services, and
generate parameters in your development environment. You can set up a separate con-
figuration profile for each environment you want to access.

Invoke the Configuration Editor

» To invoke the Configuration editor:

1 Select Configuration from the Spectrum menu.
The Configuration editor is displayed, showing the Configuration Profiles tab:

Configuration Editor |

Configuration Profiles | Settings faor Profile 'Spectrum $41° I Path Setkings I

Profile Dake Madified Copy
1 Spectrumn 441 05-Apr-02 11:58 &AM
Remove
Add
Rename

Ackive Profile; Spectrum 441 Set as pckive |

Mokte:
=

I

(o] 4 Cancel

Configuration Editor — Configuration Profiles Tab

— 50 -

Features of the Wizards

This tab displays all available configuration profiles and the dates theylast mod-
ified. In the example, Spectrum 441 is the active profile.

The following options are available on the Configuration Profiles tab:

Option Description

Copy Makes a replica of the current profile and adds it to the Profiles list.
You can then rename the profile and modify the default settings as
desired. For information, sé€&reate a New Configuration Profilg
page 55.

Remove Removes the selected profile. When you select a profile and click this
button, a confirmation window is displayed.

Tip: You cannot remove the active profile. You can, however, designate
another profile as the active profile and then remove it. To change the
active profile, select another profile and click Set as Active.

Add Adds an unnamed profile to the Profiles list. You can then rename the
profile and modify the default settings as desired. For information,
seeModify the Profile Settings, page 52, antflodify the Path
Settings page 57.

Rename Renames a profile. When you select a profile and click this button, the
profile is highlighted for you to type the new name.

Set as Active Designates the active (default) profile. When you select a profile and
click this button, the selected profile becomes the active profile.

In addition to the Configuration Profiles tab, the following tabs are available:

Settings for Profiléprofile name tab
Select this tab to display the configuration settings for the selected profile. For informa-
tion, seeModify the Profile Settings, page 52.

Path Settings tab
Select this tab to display the path settings. For informatiornyiseldy the Path Set-
tings, page 57.

— 51 -

Construct Spectrum SDK Reference

Modify the Profile Settings

The Settings for Profileprofile namétab in the Configuration editor allows you to
view and modify a variety of settings for your Spectrum ABO or web projects.

» To modify profile settings:
1 Select the profile you want to change on the Configuration Profiles tab.

2 Select the Settings for Profile tab.
The settings for the specified proféee displayed:

Configuration Editor |

Configuration Prafiles | Setkings For Profile 'Spectrum 41 I Path Setkings I

=4 clobal -
----- Q@ worl Offline <False=

----- @ Source Compare Command <=
----- @ Source Compare Application <=
=5 Matural Environment

----- Q@ FU3ER <(1,1)=

----- Q FMAT <i(1,1)=

----- Q@ FDIC <(1,1)=

----- Q FCaT =(1,1)=

----- Q@ F3PEL =(1,1)=

----- Q@ F3PEZ «<(1,1)=

----- @ Steplibs <SPECDEMO SYSTEM(1,1) SYSTEM(1, 1)
=1 Snackenm j

(o] 4 Cancel

Configuration Editor — Settings for Profile ‘Spectrum 441’ Tab

3 Select the setting you want to change.
The options for that setting are displayed below the settings. For example, if you select
FUSER, the current DBID and FNR values are displayed for you to modify.

— 52 —

Features of the Wizards

4 Change the settings as desired.

The following settings are available:

Setting Description
Global
Work Offline Indicates whether to connect to the mainframe;:

Source Compare

Command

Source Compare

Application

Natural Environment

FUSER
FNAT
FDIC
FCST
FSPE1
FSPE2

Steplibs

Spectrum
User ID

Dispatcher
Service

Conversation

Factory Service

« Select True to work offline
« Select False to allow calls to the server

Indicates the command used to invoke the source comparison
utility.

Indicates the name of the code comparison application used.
This name is displayed on the status bar of the Generation
Status window when the utility is running.

Lists the libraries in which Natural modules are stored. To

access modules in another file, specify the DBID (database
identification) and FNR (file number) for the FUSER, FNAT,
Predict, Spectrum secured, and Spectrum unsecured files.

Lists the libraries in the steplib chain. Use the direction buttons
to reorder the libraries.

Displays your user ID. To change your user ID, type a new ID.

Displays the dispatch service currently used to access the
mainframe server. You can:

» Use the drop-down list to change the dispatch service.

» Click Service Manager to open the Spectrum Service
Manager and copy, edit, add, delete, or ping services.

Displays the conversation factory currently used to access the
mainframe server. You can:

» Use the drop-down list to change the service.

» Click Service Manager to open the Spectrum Service
Manager and copy, edit, add, delete, or ping services.

— 53—

Construct Spectrum SDK Reference

Setting Description (continued)

Wizards

ABO Wizard
LIF Definitions Displays the default settings for the library image file (LIF)
Module module.
Default Arbitrary Displays the default name for generated arbitrary subprogram
Class Name ABO classes.

Default Browse

Class Name

Default Maint.
Class Name

Code Frame

HTML Wizard

Default Browse

File

Default Maint
File

Code Frame

Page Handler Wizard

Default Class
Name

Code Frame
Object Factory
Code Frame

Misc

Displays the default name for the generated browse ABO
classes.

Displays the default name for the generated maintenance ABO
classes.

Displays the default code frame settings.

Displays the default name for the generated browse HTML
templates.

Displays the default name for the generated maintenance
HTML templates.

Displays the default code frame settings.

Displays the default name for the generated page handler
classes.

Displays the default code frame settings.

Displays the default code frame settings.

Displays any notes for the selected profile.

5 Click OK to save the modified profile settings and close the Configuration editor.

— 54—

Features of the Wizards

Create a New Configuration Profile

If you are creating multiple applications with different environmental settings, you may
want to have multiple profiles. One method of creating a new profile is to copy an ex-
isting profile and then modify the settings.

» To copy a profile:

1 Select the profile you want to copy from the Configuration Profiles tab.

2 Click Copy.
A copy of the profile is added to the Configuration editor:

Configuration Editor |

Configuration Profiles | Settings faor Profile 'Spectrum $41° I Path Setkings I

Profile | Dake Madified |
%Cnpy of Spectrum 441 31-May-02 01:06 PM
B Spectrum 441 05-Apr-02 11:55 AM Remave
Add
Rename
Ackive Profile; Spectrum 441 Set as pckive
Mote:

Kl IL_

(o] 4 | Cancel

Configuration Editor — Copy a Profile

3 Select the profile copy and enter a new name.

— 55 —

Construct Spectrum SDK Reference

4 Select the Settings for Profilprofile nameétab or the Path Settings tab to specify
configuration settings for the new profile.
For information, se#lodify the Profile Settings, page 52, antodify the Path
Settings page 57.

5 Click OK to save the profile.

— 56 -

Features of the Wizards

Modify the Path Settings

The Configuration editor allows you to view and modify the path settings for your Spec-
trum web or ABO projects.

» To modify path settings:

1 Select the profile you want to change on the Configuration Profiles tab.

2 Select the Path Settings tab.
The path settings for the specified profile are displayed:

Configuration Editor |

— Configuration path locations:

Configuration Files:
IE:'l,Pru:ujects'l,SPE441'I,Installatiu:un'l,InstallTree'l,weI:u_sdk'l,Cu:unFin |

Code Frames:
IC:'I,DEV'I,SF'E441'I,CSTWizards'l,CDdeFrames i |

Project Templates:
IC:'I,DEV'I,SF'E441'I,CST'-.-'-.-'izaru:IManager'l,F‘ru:uje-:tTemplates |

Wizard Catalog:
IC:'I,DEV'I,SF‘E441'I,CSTWizardManager i |

Moke; fou must reskart visual Basic andjor the Spectrum
#dd-In For these changes ta kake effectk,

(o] 4 Cancel

Configuration Editor — Path Settings Tab

3 Use the browse buttons to change the path settings for the Configuration Files, Code
Frames, Project Templates, or Wizard Catalog locations.

For changes to take effect, restart Visual Basic or the Spectrum Add-In.

— 57 —

Construct Spectrum SDK Reference

Working with Code

The following sections describe how to use implied user exits and the cst:PRESERVE
tag to protect and preserve custom code when regenerating modules.

Implied User Exits

Implied user exits act as placeholders for user exits coded after generating a module,
ensuring the user exits are placed in the source code in exactly the same order as before
generation. However, implied user exits are not added to the generated code unless you
have coded them first. Consequently, you must add an exit line to preserve any hand-
coded changes during regeneration.

Implied user exits are easily recognized because they use a standard structure and nam-
ing convention. Their names are prefixed with the name of the function, subroutine or
property you are coding, and suffixed with a location (start or end). For example, you
can add two user exits to a function called Initialize: Initialize.Start and Initialize.End.
The property procedures also indicate the type of property in the name. For example, a
Property Get exit for CustomerNumber is:

'‘CustomerNumber.Get.Start'

All subroutines have implied user exits at the beginning and end of the routine. For
example:

Private Sub PerformAction()
‘<cst:EXIT Name="PerformAction.Start' Implied=True>
Dim sval as String

sval = LookupAction()

'<cst:EXIT Name="PerformAction.End' Implied=True>
End Sub

Preserve Customizations to Generated Code

Use the cst:PRESERVE tag to protect your custom code during a regenerate. Place the
tag before and after whole subroutines, entity groups, or between individual variables.
For example, to preserve code in the Class_Initialize subroutine, add the following
code:

'<cst:PRESERVE>
Private Class_Initialize()
Set m_ABO = CreateObject(PROG_ID)
End Sub
'</cst:PRESERVE>

— 58 —

Features of the Wizards

Regenerating Modules

This section describes how to regenerate individual and multiple modules. The regen-
eration process is performed in the background (without your input).

Regenerate Individual Modules

There ardwo ways to regegrate indvidual modules.

» To regenerate a single module:
1 Do one of the following:

— Right-click the module in the Project Explorer and select Regésmfrom theshort-
cut menu.

— Select the module in the Project Explorer and select Regien<nodule name>
from the Spectrum menu.

Note: You can regenerate individual modules by clicking Edit <module name> with
<Wizard> from the Spectrum menu. This invokes the wizard used &vaen
a module, allowing you to edit the specifications and regenerate the module.

For information about editing modules, $editing Modules, page 62.

— 59 —

Construct Spectrum SDK Reference

Regenerate Multiple Modules

» To regenerate several modules simultaneously:
1 Open your project in Visual Basic.

2 Select Spectrum > Regenerate Multiple.
The Regenerate Multiple window is displayed:

Regenerate Multiple |

To select a component For regeneration, click its selection
boy or press the spacebar when it is highlighted.

=-#5 ABOProject Add Files. ..
El% Webapplication —_—
-0 OFactary {Object Fackory) Rlemave Fle

----- O ProductBrowse (AED)
ProductBrowsePH (Page Handler)
----- O ProductMaintPH {Fage Handler)
----- B WarehouseBrowse (ABD)

t [0 WarehousetBrowsePH (Page Handler)
B-[27 External Files

Regenstake

Close

Wiebapplication, ProductBrowsePH o

Regenerate Multiple Window

This window contains both your project modules and any external files you added to
your projects. If you do not have any modules in a project or folder, an icon is displayed.

In this window, you can:

— Click Add Files to move external files into your project for reggation. For infor-
mation, sedkegenerate External Filespage 61.

— Click Remove Files to move files you do not want to regenerate from this window.

— Expand the tree to display the individual project modules you want and any external
files you want to regenerate.

3 Select the modules you want to regenerate and click Reaten
A message indicates when the regeneration is complete.

— 60—

Features of the Wizards

Regenerate External Files

You can also use the Regenerate Multiple window to add external files you want to
regenerate.

» To add external files:

1 Click Add Files in the Regenerate Multiple window.
The Add External Files window is displayed:

Add External Files

Lok it: Ia Canstruct Spectrum 4.3 j gl
-1 ProjectT emplates C5TaddInk.ont C5TUtils6. dl
2 Taols C5TaddInG. di CSTYEFWE.dI
2 TrueiGrid &P CSTAddInG hip C5 T'webLibG.di
EDTLib6.dl C5TCampLib6.di CS TwizardM anagert
b By, avi CSTCHLIbG. oox C5 Twizardsh. dl

ML CacheEngineb. exe CETGenServicesE. di D ownload. dat
Rl | 13
File name: || Open I
Files af type: I.-’-\-.II Files [+.7] j Cancel |

Add External Files Window

2 Select the file(s) you want to regenerate and click Open.
The files are added to the Regeneratetiiel window.

— 61—

Construct Spectrum SDK Reference

Editing Modules

» To edit a module, either:

1
2

Select the module you want to modify in the Project Explorer.

Select Edit <module name> with <Wizard> from the Spectrum menu.
The wizard used to generate the module opens.

Modify the model specifications and regenerate it.
or
Right-click the module in the Project Explorer.

Select Edit with <Wizard> from the shortcut menu.
The wizard used to generate the module opens.

Modify the model specifications and regenerate it.
For more information about the ABO wizard, $¢sing the ABO Wizard, page 92.

For more information about the HTML Template wizard, Geeating and Custom-
izing an HTML Template, Construct Spectrum SDK for Web Applications

For more information about the Object Factory wizard,\$gdating and Customiz-
ing the Object Factory, Construct Spectrum SDK for Web Applications

For more information about the Page Handler wizardCseating and Customizing
a Page Handler Construct Spectrum SDK for Web Applications

— 62 —

Features of the Wizards

Generating and Reviewing Reports

This section describes how to generate reports as you generate modules, and how you
can review these stored reports as you edit and regenerate modules. It also describes
how to use a code comparison tool to further determine tfezatices between initial

and regenerated code.

A report is generated every time you use a wizard to generate an ABO or web compo-
nent. These reports are also stored, allowing you to review the generation process while
editing and regenerating modules. If you have a code comparison utility configured to
work with Construct Spectrum, you can invoke it from the Report window to examine
code differences between initial and regenerated modules. For more information, see
Use Reports with a Code Comparison Topbage 67.

Access Reports

There aréwo ways to access reports:

« As you generate.
Clicking Generate in the last window of a wizard generates both the module and a report
that details the specific actions that occurred during the generation process. This report
is automatically stored, allowing you to review it as you modify and regenerate modules
before saving them in your Visual Basic project. For informationResgew a Stored
Report, page 64.

» By reviewing stored reports.
It may be useful to review stored reports as you edit and regenerate your application
components using the Generate Report window. You can also invoke your code com-
parison tool from this window to determine the éifnces betweenitial and
regenerated code. For information, &= Reports with a Code Comparison Tool
page 67.

— 63—

Construct Spectrum SDK Reference

Review a Stored Report

» To review a stored report:

1 Select Reports from the Spectrum menu.
The Browse Generated Reports window is displayed:

Browsze Generate Reports |
Report Date | Report Descripkion | Open Repork
1999/058/26 11:55 Projects: ABOProjeck; 2 Components e ———

009/05/26 11:50 Praojects: 8EOProjeck; 4 Components Close
1999/058/26 10:55 Projects: ABEOProjeck; 2 Components
1999/08/26 10:52 Projects: AEOProjeck; 2 Components
1999/058/26 10:52 Projects: ABOProject; 2 Components
1999/05/26 10:51 Projects: ABOProjeck; 2 Components
1999/058/25 15:55 Projects: ABEOProjeck; 5 Components
1999/058/25 15:54 Projects; ABOProject; 1 Components
1999/08/25 15:54 Projects: ABOProject; 1 Components
1999/058/25 15:53 Projects: ABOProjeck; 2 Components
1999/058/25 15:51 Projects: AEOProjeck; 2 Components
1999/058/25 15:43 Projects: ABOProject; 2 Components

| CCST431GenReportsiradD2481 , xml

Browse Generated Reports Window

This window provides the generation date and the description of saved reports. This in-
cludes listing the names of projects in the report and the number of components that
were included in the report.

— 64—

Features of the Wizards

2 Select the report you want to open and click Open Report.
The Generate Report Window is displayed:

E| Generate Report h _ (O] x]

Show messages Far;

A —————————— Show Differences 1 Options. .. 1
Messages:
Component i Message i Relativ. .. i Record Source

WarehousetBrows. .. Processing REPLACE tag, name Page... 00:00.14 PHWizard. Genera
Processing REPLACE tag, name ABOP.,, 00:00,14 PHwizard, Genera
Processing REPLACE tag, name HTML.,, 00:00.14 PHWizard, Genera
Processing REPLACE tag, name Title, 00:00.14 PHWizard, Genera
Processing SPECIFICATION tag. 00:00.17 PHWizard, Genera
Module doesn't exist in project, Creat,., 00:00.19 Merge. vEModule

4| | i
Cutput Location: Webdpplication,\WarehausetBrowsePH
Message: Pracessing REPLACE tag, name PageHandlerID.
ESu:uurce code is newly generated, EGenerate Started: 22-Sep-99 03:52 PM o

Generate Report Window

This window displays any items that were added, removed, or changed, not only in the
current module, but also in any other modules affected by the generation, such as LIF
definitions. It also displays the location of the component, the time the generate was ini-
tiated, and any messages.

Use the Show messages for drop-down list to select other components. The following
table outlines the components for which you can view messages:

Component Displays

All components Messages for the generation status of all module
components.

System Generic system process messages that are unrelated to a

specific component.

<Specific component> Messages for the generation of a specific component.

— 65—

Construct Spectrum SDK Reference

Note: All components may not be displayed as they may not be included in all gen-
erated modules.

Specify Report Detail

You can specify the level of detail you want to see in your report and select other report
options and requirements.

To specify report options:

Click Options in the Generate Report window.
The Report Options window is displayed:

Report Options |
Detail level: Im 'I K
Show Additional Columns Cancel

[~ Relative Time
v Record source
[Detail level

Report Options Window

Select the options you want.
For example, you can:

— Use the Detall level drop-down list to select the level of detail you want the report
to display. Level 1 provides a very high level summary, whereas Level 4 provides a
highly detailed report.

— Select Relative Time to display exactly when various stages of the generation pro-
cess occurred.

— Select Record source to view the source of each message.

Click OK to return to the Generate Report window.
The window contains information in response to all of the options you specified.

— 66 —

Features of the Wizards

Use Reports with a Code Comparison Tool

U\)I\)I—‘V

If you have a code comparison tool that is configured to work with Construct Spectrum,
you can click Show Dferences in the Generate Repoimdow to view differences be-
tween an original and regenerated file. If you do not have a code comparison tool
installed or it is not properly configured to work with Construct Spectrum, the View
Differences button is disabled.

Use the Configuration editor to configure your code comparison tool with Construct
Spectrum.

To configure the code comparison tool:
Open the Configuration editor.
Select the Settings for Profilprofile nameétab.

Supply a command in Source Compare Command.
For example:

"C:\Program Files\BeyondCompare\beyond32.exe" "%1" "%2" /noedit

Click OK.
To launch the comparison utility, click Showfferences in the Reports Generate

window.

— 67 —

Construct Spectrum SDK Reference

Using The Spectrum Cache

The Spectrum Cache is a dynamic, hierarchical data structure that stores data returned
from the server. The cache allows you to quickly store and access values that are used
frequently but that take a long time to retrieve or derive. This section describes how to
use the Cache Viewer.

Overview

The hierarchical tree structure of the Spectrum cache means it can store complex values
such as Predict file definitions. The cache contains all the data used by the wizards dur-
ing the generate process. It also contains information extracted from FUSER modules
and information about the generation environment. Use the Cache Viewer to display
data in the cache, mark nodes to &eashed, or removeodes to clean up the cache.

» To invoke the Cache Viewer:

1 Do one of the following:
— Select View Cache from the Spectrum menu.
— Click the Cache Viewer icon on any wizard.

— 68 —

Features of the Wizards

The Cache Viewer window is displayed:

Cache Viewer |

Click on the check boxes (or press the Spacebar) to mark entries that should
be refreshed. ou may also delete entries From the cache if you no longer
need thern,

=-0O Matural System File (17,609
- -0 SPECDEMO
=1~ Matural System File {19,309
- @0 SYSTEM
=~ Predict (17,220
[0 NCST-CUSTOMER -- 9/17/99 05:57 PM
L[NCST-PRODUCT -- 9020499 12:33 PM

Delete | Ik Cancel

Cache Viewer Window

The Cache Viewer displays a hierarchical structure of the system files, libraries, nodes,
and Predict views in your application. The lowest nodes are followed by the date they
were last refreshed.

— 69 —

Mark

hwl\)l—‘v

Construct Spectrum SDK Reference

Nodes to be Refreshed

Use the Cache Viewer to select the nodes you vedirdshed.

To mark nodes to be refreshed:

Invoke the Cache Viewer.

Expand the tree to view individual nodes.
Select the node(s) you want to hae&eshed.
Click OK.

When you mark a node, you also mark all of its children. When the wizards fetch data
from the cache, they recognize the nodes you specified &fleslmed and make the
appropriate call to the server. If the server call fails, existing data in the cache is used.

Remove Nodes From the Spectrum Cache

wl\)l—‘v

You can remove nodes that are no longer needed to clean up the cache.

To remove nodes:
Invoke the Cache Viewer.
Expand the nodede and select theode(s) you want to delete.

Click Delete.
The nodes are removed from the cache.

— 70 -

USING THE BUSINESS-OBJECT-SUPER-
MODEL

This chapter describes how to use the Business-Object-Super-Model to generate multi-
ple Natural components of a Construct Spectrum web or client/server application —
without using the Construct Spectrum cliénaimework components.

The following topicsare covered:
» Overview, page 72
» Before You Begin page 73
« Generating Packagespage 76
» Troubleshooting, page 83

— 71 -

Construct Spectrum SDK Reference

Overview

The Business-Object-Super-Model uses a single, high-level model specification to gen-
erate all the required Natural components (modules) of a web or other distributable
application. This model generates sets of modules, called “packages”, for all the busi-
ness objects in an application, such as the object maintenance and browse subprograms,
proxies, and parameter data areas (PDA) for a Customer business object.

Typically, you will use the Business-Object-Super-Model to generate the first iteration
of your application. To generate these components, the super model executes the indi-
vidual model for each module. As you refine the application, you will likely regenerate
certain modules separately using the individual models. The following table lists each
module in a typical package and the model used to generate it:

Module Model Name Description

Object maintenance Object-Maint-Subp Subprogram used to maintain a

subprogram, business object. This model also
Object PDA, generates the parameter data area and
Restricted PDA restricted PDA for the object.

Object maintenance Subprogram-Proxy Proxy used to communicate

subprogram proxy information between the Spectrum
dispatch service and an object
maintenance subprogram.

Object browse Object-Browse-Subp Subprogram used to encapsulate access

subprogram, to data on the server and return records

Key PDA, in rows and columns, and the PDAs

Row PDA, that communicate information to and

Restricted PDA from the subprogram.

Object browse Subprogram-Proxy Proxy used to communicate

subprogram proxy information between the Spectrum
dispatch service and an object browse
subprogram.

You can also generate modules that allow users to browse business objects within a
package or linked through a foreign field relationship.

Tip: Although the super model does not support user exits, you can specify a user exit
by regenerating the Natural module using its individual model.

— 72—

Using the Business-Object-Super-Model

Before You Begin

Before generating application packages for a Construct Spectrum application, there are
several prereqgsite tasks you must perform. Before completing any of these tasks, en-
sure that all required software has been installed and configured on both the server and
the client.

Before you begin:

Check the Model Defaults page 73

Set up Default Values in Predict page 73
Establish a Naming Conventionpage 74

A W N P

Set Up the Application Environment, page 75
These tasks are described in the following sections.

Check the Model Defaults

When the super model invokes individual models, it uses the default values specified
for each model. Review and change (if necessary) the current defaults for these models.
To review the values, invoke each model used by the Business-Object-Super-Model
and note the default values.

Model Defaults

Object-Browse-Subp Uses the first four characters of the module name to suffix
the object, key, and restricted PDAs.

Object-Maint-Subp Uses the first four characters of the module name to suffix
the object and restricted PDAs.

Set up Default Values in Predict

The Business-Object-Super-Model generates specifications for all of the models used
to generate an application from a small set of input parameters. To accomplish this, it
relies heavily on parameter defaulting. You can add keywords to your file and field def-
initions in Predict to default various parameters. Customize parameter defaults by
linking Predict keywords and verification rules to your fields, files, and relationships.

For more information about Predict defaults and definitionsSséting Up Predict
Definitions, page 39.

— 73—

Construct Spectrum SDK Reference

Establish a Naming Convention

Because the Business-Object-Super-Model generates multiple modules, it is important
to establish a naming convention. Locating the modules is easier when your naming
convention clearly identifies them.

When using the Business-Object-Super-Model, you must supply a four-character prefix
to be used for all modules within a package. (If you specify a prefix that is less than four
characters, it is padded with dashes.) The super model defaults the suffix, which iden-
tifies the module type, as follows:

Suffix

Module

MSO
MSA
MSR

MSP

BSO
BROW
BKEY
BPRI

BSP

Object maintenance subprogram
object PDA
restricted PDA

Proxy for the object maintenance subprogram

Object browse subprogram
row PDA

key PDA

restricted PDA

Proxy for the object browse subprogram

The following example illustrates the naming conventions for a generated module:

“CUST" for Customer “M" for Maintenance
“S" for Server
l_ “P” for Program

CUSTMSP
Four-character prefix Three-character suffix
assigned by you assigned by system

Naming Conventions for a Generated Module

— 74—

Using the Business-Object-Super-Model

Set Up the Application Environment

Before creating a Construct Spectrum application, you must set up and configure the
mainframe environment for your application as follows:

Define the steplib chain.
2 Define the domain.
Define security for the domain.
For more information, se®etting up the Mainframe Environment, page 37.

— 75—

Construct Spectrum SDK Reference

Generating Packages

O 0000 v

You can use the Business-Object-Super-Model in either the Construct Windows inter-
face or the Construct Generation subsystem. Binenpeter informi@on you are asked

to specify is the same in both@nfaces and there are the same numbauft speci-

fication steps. In the Generation subsystem, there are three specification panels:
Standard Parameters, Package Parameters, and Specific Package Parameters. Similarly,
in the Construct Windows iatface, there are three stepsvimich you can specify stan-

dard parameters, packages parameters, and new package parameters.

The following sections describe how to use the Business-Object-Super-Model to create
application packages. Examples are from the Construct Windows interface.

To generate application packages using the Business-Object-Super-Model:

Step 1: Define the Standard Parametergage 77

Step 2: Define the General Package Parametensage 78

Step 3: Define the Specific Package Parametensage 79

Step 4: Create Another Package (Optiona))page 81

Step 5: Generate the Modulespage 81

Note: For information about invoking the super model, Using the Generation
Subsystem Natural Construct GeneratiomndGenerating with the Super
Model, Construct Spectrum SDK for Client/Server Applications

— 76 —

Using the Business-Object-Super-Model

Step 1. Define the Standard Parameters

The following example shows the standard parameters for the Business-Object-Super-

Model:
BUSINESS-0BJECT-SUPER-MODEL wWizard |

B stan Standard Parameters
Standard I_
Paramekters Module: EHCLI {SPECDEMC on 1000, 10023
. Packages Syskem: ISPECDEMO
B New package
e packan Title: ISuper Spec For my module
Finish
Description: |Specification ﬂ

[T Message numbers

Yalidate | Cancel < Back Mexk = Einish

Business-Object-Super-Model Wizard Standard Parameters

» To define standard parameters for the package:

1 Type a name for the super model specifications in Module.
This name identifies the package you are about to create. The name should be
descriptive so that you can easily identify the package later.

2 Type the name or identification number of the library where you want to generate the
modules in System.
By default the name of the current library is displayed.

Type a brief title for the package in Title.
Type a brief description of the package in Description.

5 Click Next.
The general package parameters are displayed.

A W

— 77 —

Construct Spectrum SDK Reference

Step 2 Define the General Package Parameters

Next, specify the name of the package for which you want to generate modules, as well
as some basic package criteria that affect the entire application:

BUSINESS-0BJECT-SUPER-MODEL Wizard
B stan Packages
Standard .
. Parameters Domain: SPECOH] J

D Packages
If package modules exist:

W Nes {* Reqgenerate them, preserving all custom code

Finish " Delete them and generate new copies

Yalidate Cancel < Back | Mexk = | Einish

Business-Object-Super-Model Wizard General Package Parameters

» To define general package parameters:

1 Provide the domain name for this application in Domain.
To display a list of domains for selection, click the Browse button.

2 Do one of the following:

— Mark Regenerate them, preserving all custom code (the default) to regenerate exist-
ing modules and save all custom code. Any modified parameters in the specification
are not used. However, the super model will keep user exits and apply updates from
Predict (such as a new field or BDT keyword) and from the model code frames.

— Mark Delete it and generate a new copy to replace all existing modules.

3 Click Next.
The specific package parameters are displayed.

— 78 —

Using the Business-Object-Super-Model

Step 3: Define the Specific Package Parameters

All packages in your application are displayed on the navigation bar. To navigate be-
tween packages, click Next, Back, or select a package from the navigation bar:

BUSINESS-0BJECT-SUPER-MODEL Wizard

. Start Package prefix: [EHCU
. Skandard PREDICT wiew: |NCST-CUSTDMER
Parameters

Primary: kesy: |
Hald field: |

[m] ncsT-cusTD
Descripkion: | Add | Delete |

Finish
Package modules:
Module | Gen, | Model [Girfo | Library
EHCUMSO [| Object Maintenance Subprogram ? ?
EHCLUMSF O | Spectrum Maintenance Proxy ? ?
EHCUESD [0 | Object Browse Subprogram ? ?
EHCUESP [| Spectrum Browse Proxy ? ?

Check,
Yalidate Cancel < Back. | Mexk = | Einish |

Business-Object-Sgp-Model Wizard —Specific Package Parameters

» To define package parameters:

1 Specify a prefix for the package in Package prefix.
For more information, sdestablish a Naming Convention page 74.

2 Specify the view used by the browse and maintenance subprograms in Predict view.
This view determines which business object will be used. Clafallts to retrieve the
defaults for the object.

3 Specify the primary key for the specified view in Primary key.
The key can be a descriptor, superdescriptor, or subdescriptor. If the key does not exist

in the corresponding Predict file, arror message issplayed upon validation. This
value cannot be the same as that in the Hold field.

4 Specify the name of the field used to logically protect the record against intervening
Update or Delete actions in Hold.

— 79—

Construct Spectrum SDK Reference

Type a brief description of your package file in Description.

Tip: Based on how the file is defined in Predict, the super model attempts to provide

default field values. You can override the defaults using Predict keywords. Rather
than typing the values directly, set up your Predict file definition to default the
required values. For information, s8etting Up Predict Definitions page 39.

Select the package modules you want to generate from Package modules.
To select all the modules, right-click and select Select All Modules from the shortcut
menu. The following information is displayed in Package modules:

— Module lists all modules that can be generated by the super model. Each module is
identified by the package prefix, followed by the standard suffix for the module type.
For more information, sdestablish a Naming Convention page 74.

— Gen indicates which modules will be generated.

— Model indicates the names of the individual models that the super model invokes to
generate the package modules.

— G/R/O indicates one of the following:

G

Module does not currently exist in source form and will be generated and
saved in the current library.

Module currently exists in source form and will be regenerated and saved in
the current library. This status occurs when you select Regenerate it,
preserving custom code in Step 2.

Module currently exists in source form and will be overwritten and saved in
the current library. This status occurs when you select Delete it, and generate
a new copy in Step 2.

— Library indicates one of the following for each module:

?

Click Check to determine if there is existing source or object code.
Blank indicates that a check was made, but there is no existing code.

Indicates that source code exists. If the S is black, the source code is in the
current library. If the S'is red, tls®urce code is in another library. To view the
location of the source code, place the mouse pointer over the S.

Indicates that compiled (object) code exists. If the C is black, theesoade
is in the current library. If the C is red, the source code is in another library. To
view the location of the source code, place the mouse pointer over the C.

— 80 -

Using the Business-Object-Super-Model

Step 4: Create Another Package (Optional)

You can define the parameters for up to 12 packages.

» To create another package:
1 Click Next or Add.
2 Complete each additional package as described in previous steps.

Step 5: Generate the Modules

» To generate the modules:

1 Click Finish.
The Code window is displayed.

2 Select File > Generate or click the Generate icon on the toolbar.
The Generate window is displayed, showing the generation process:

£ Generate BUSINESS-OBJECT-SUPER-MODEL CUSTOMER =] E3

Maodule [Type | Stakus [Errar
CLSTOMER. Super Specificakion

Opening conneckion ko server, ﬂ
Sending specification,

Skarting generate server,

[MITIATE of Service COMSTRUCT-SERYICE successful

" of
concel |

| | SPECDEMO on 17,60 L

Generate Window

— 81—

Construct Spectrum SDK Reference

The module status pane displays the names of the modules as they are generated and
stowed by the Business-Object-Super-Model. The messages pane provides a status re-
port of the generation process, including any error messages that may occur. When all
modules have been generated and stowed, a confirmation message is displayed.

Note: Click Cancel to terminate the generation process at any time.

Generation Subsystem

In the Generation subsystem, you can either generate in batch or generate from the main
menu. (Generation is automatically done in batch in the Construct Windovfagetg

Tip: If you are generating multiple modules, generate in batch to avoid tying up sys-
tem resources.

» To generate the modules from the @extion main menu:

Note: If the super model specification is not currently in the Natural Construct edit
buffer, read it into Natural Construct and proceed.

1 Enter “G” in the Function field.
The Business-Object-Super-Model specification is saved and the specifications for the
individual modules arereated and saved.

» To generate modules in batch:

=

Save the super model specification on the Natural Construct Generation main menu.

2 Invoke the NCSTBGEN utility.
For information about this utility, sédultiple Generation Utility , Natural Construct
Generation

3 Specify the name under which you saved your super model specification and the model
name: Business-Object-Super-Model.

4 Generate the modules.

— 82 —

Using the Business-Object-Super-Model

Troubleshooting

After using the Business-Object-Super-Model toagate the radules in a package, re-
view the generation status report to reconcile any errors that may have occurred. The
following table lists possible errors and solutions:

Error Solution

A module was generated, but not Correct the error and regenerate the module
stowed because of a missing DDM. using its model specification.

A generation error ocected because Correct the error and regenerate the module
of a missing dependent module. using its model specification.

Generation errors affected several Correct the errors and regenerate the
modules. modules as follows:

1 Re-read the super model specifioat
into Construct Spectrum.

2 Mark the modules that require
regeneration.

3 Repeat the generation steps until all
modules have been successfully
generated and stowed.

Compilation errors in the super model-Ensure that the SYNERR parameter is set to
generated code caused cycling. ON in your user profile NATPARM.

— 83—

Construct Spectrum SDK Reference

—84-—

USING ACTIVEX BUSINESS OBJECTS

This chapter describes ActiveX business objects (ABOSs). It contains step-by-step in-
structions to use the ABO Project wizard and ABO wizard. It also describes how to
customize your generated ABOs.

The following topicsare covered:
» Overview, page 86
» Using the ABO Project Wizard, page 87
» Using the ABO Wizard, page 92
« Customizing the ABO, page 98

— 85—

Construct Spectrum SDK Reference

Overview

An ABO is a Visual Basic class. This class wraps the Spectrum calls required to com-
municate with a Natural subprogram exposed by a subprogram proxy. It exposes a set
of interfaces that pvide a consistent and familiar infgce to Natural coponents and

make the subprogram easy to use. You must generate an ABO for each of the Natural

subprograms used in your application.
An ABO project contains the ABOs used by your application, as well dsathework

components supplied by Construct Spectrum. Use the ABO Projeatditb generate
your ABO project and then use the ActiveX Business Object wizard to generate the

ABOs.

— 86 —

Using ActiveX Business Objects

Using the ABO Project Wizard

This section describes how to use the ABO Project wizard to create an ABO project, as
well as the framework components Construct Spectrum adds to the project.

Create the ABO Project

» To create the ABO project:

1 Start Visual Basic.
The New Project window is displayed:

New Project 1

Mew ;Existingi Hecenti

r — = ey -
] . % 3 M
> N
Standard EXE Activer EXE Active DLL Ackiver Spectrurn ABO
Contkrol Project
" " " & L
S\ S\ S\
o P P | |
Spectrum Web VB Application wE Wizard Ackivey Bickives
Praject Wizard Manager Document DIl Dacumnent Exe
Pem 4 Pea 4 Pem 4 Pea 4 Pem 4 ..I.j

Open
Cancel

Help

i

[Don't show this dialog in the future

New Project Window

2 Select Spectrum ABO Project.

3 Click Open.
The ABO Project wizard is displayed.

— 87 —

Construct Spectrum SDK Reference

4 Click Next.
The Choose Project Directory windasvdisplayed:

ABO Project Wizard i |

Choose Project Directory

Please enter 5 project name and choose the lecstion where the project’s
files wil be stored.

Name: |»=Hom1'axl

Locakion: |E;15pcctmnaopmjnc:sl.paoprnicct J

Select Template Directory

[Spectrum 4.4.1 =]
Cancel | < Back | Nest > | b |

ABO Project Wizard — Choose ProjectrBitory

5 Enter your project name and the location to store your project.
Store the project in the same directory in which your web applications are stored.

6 Click Next.
If you keep the default directory or specify a directory that does not exist, the following
window is displayed:

Construct Spectrum El

@ Path does naot exisks ' SpeckrumABOProjects\ABOProject’, Do vou wish ko create it?

Yes Mo Zancel

Create New Directory

— 88 —

Using ActiveX Business Objects

7 Click Yes to create the new directory.
The Ready to Create New ABO Projadhdow is displayed:

ABD Project Wizard [x|

Ready To Create New ABO Project

¥ou can invake a wizard at the successful creation of your
new projeck, Simply select the desired wizard and ensure that
‘Trvoke Wizard' is checked,

‘Wizards:
AR Wizard

¥ Irvoke Wizard

Click Finish to generate your new ABD project.

Cancel | < Back [dext = |

ABO Project Wizard — Ready To Create New ABO Project
8 Select the wizard.

9 Select Invoke Wi4ard.
This option launches the ABO wizard after the project is created.

— 89 —

Construct Spectrum SDK Reference

10 Click Finish.
The generated ABO project is displayed in Project Explorer:

ABO Project in Project Explorer

—90 -

Using ActiveX Business Objects

Framework Components for the ABO Project

The following table describes the Construct Spectrum framework components that are
included in the generated ABO project:

Component Description
Errors.bas Provides error-raising capabilities for the ActiveX component.
Globals.bas Contains definitions, variables, and helproutines used by the

generated ABOs.

LIFDefinitions.bas Is empty in a new ABO project. It becomes populated with
Natural data area definitions when ABOs are added to the project
using the ABO wzard.

Utility.bas Contains procedures that can be used in any type of Visual Basic
application. For example, Subst performs substitutions into a
string and is useful for developing international applications:

‘This is the message that contains substitution
placeholders.

"This message might come from a resource file in the
case of a localized app.

smsg = "Value must be in the range %1 to %2."
MsgBox Subst(smsg, 100, 10000), vbExclamation

—91 -

Construct Spectrum SDK Reference

Using the ABO Wizard

After creating the ABO project, use the ABO (ActiveX Business Object) wizard to gen-
erate an ABO for each Natural subprogram used in your application. TAass

installed as a Visual Basic Add-In. In addition to generating a new ABO, you can use
the ActiveX Business Object wizard to regenerate an existing ABO or display an exist-
ing ABO to examine its specifications.

» To generate an ABO and add it to the project:

1 Select Wizards > ActiveX Business Object from the Spectrum menu.
The ActiveX Business Object Wizard is displayed:

ActiveX Business Object Wizard

ActiveX Business Object Wizard

This wizard will guide wou through the process of creating
or modifying an Activer Busingss Object (AEOD),

% .'? Zancel

ActiveX Business Object Wizard

— 02 —

Using ActiveX Business Objects

2 Click Next.
The Select Subprogram Proxy window is displayed:

ActiveX Business Object Wizard E

Select subprogram proxy

Enter the name of the Spectrum subprogran proxy For this ABD.,

Subprogram procy: || J

Steplibs: [sPECDEMO
SYSTEM(1,1)
SYTEML, 1)

R el Cancel | < Back | et = | Einist |

ActiveX Business Object Wizard — Select Subprogram Proxy

Note: Forinformation about using the Spectrum Cache viewer or Configuration ed-
itor, seeFeatures of the Wizards page 49.

3 Enter the name of the subprogram proxy for the ABO.
You can also specify the name of a steplib.

4 Click Next.
The wizard performs the fallving processing:

— Reads the **SAG lines of the subprogram to extract the model name
— Reads the logical key names (for an object browse subprogram)

— Reads the **SAG lines of the subprogram proxy to extract the domain, object, ver-
sion, subprogram name, and 1:V overrides

— Accesses the Spectrum files to retrieve the method names linked to this subprogram
proxy

— 03—

Construct Spectrum SDK Reference

The Confirm Details window is displayed:

ActiveX Business Object Wizard

Confirm details.

Here are the details about the subprogram vou have selected:

Library: SPECDEMO(17,60)
Maodel: SUBPROGRAM-PRORY

@
@
@ Title: Subprogram prowy For...

@ Domain: DEMO

@ Object: CUSTOMER (1.1.1)

@ Methods: DELETE, EXISTS, GET, INITIALIZE, MEXT, STORE, UPDY
= CUSTMSO (Subprogram)

Library: SPECDEMO{17,60)

Madel: OBIECT-MAINT-SLEBP

Title: Object ‘customer’'

Primary File: MCST-CUSTOMER

Primary Key: CUSTOMER-NUMBER.

Type: Object maintenance subprogram

[oy]

ah i Cancel < Back Mext = | |

ActiveX Business Object Wizard — Confirm Details

This window shows the library, model name, title, domain, object, and methods for the
subprogram proxy, as well as information about the proxy’s subprogram.

Confirm that everything is correct.
To select a different pKy, click Back.

— 94—

Using ActiveX Business Objects

6 Click Next.
The Customize the ABO's Interface window is displayed:

ActiveX Business Object Wizard

Customize the ABQO's interface.

Wwhat name would yvou like bo use For the Wisual Basic class?

|Cust0merMaint

Generate inko the projeck: Change...

Click, Customize Properties ko wiew or customize the properties that wil
be generated.

Custornize Properties. ..

[v Generate ICSTPersist

v Generate ICSTPropertyInfo

5@ ';? Cancel < Back Mext =

ActiveX Business Object Wizard — Customize the ABO'sliface

Verify the default name supplied for the ABO and change it if desired.

Verify that the ABO will be generated into the correct project.
To change the project, click Change and select a different project.

9 Click Customize Properties to customize the ABO'’s properties.
For more information, se@ustomizing the ABQO, page 98.

10 Verify the status of the ICSTPersist option.
This option allows the ABO to save its instance data at runtime and restore it later.

— 05 —

Construct Spectrum SDK Reference

11 Check the status of the ICSTPropertylnfo option.

12

This option provides extended information about the properties exposed by the ABO.

This information can be accessed at runtime. It includes:

Click Next

property name
VB data type

number of decimal places for numeric property

length of the data
logical format

read-only or not read-only

number of dimensions in anray

number of occurrences in each dimension

The Ready to Generavgndow is displayed:

ActiveX Business Object Wizard [x|

Ready to generate.

Click the Generate button to do a test generate, This allows wou to:

+ Preview the generated code before updating wour WE project,
+ Compare regenerated code ko the original code,
+ ‘Wiew the generate report,

Click Finish to update your ¥isual Basic project.

After the wizard is finished, do wou want to restart it bo generate
another AEOT

i~ Yes
% Mo

Cancel | < Back | [dext = | Einish

ActiveX Business Object Wizard — Ready to Generate

— 06 —

Using ActiveX Business Objects

13 Do one of the following:

— Click Generate to view the generation report.
If you have a code comparison utility installed and configured for use with Construct
Spectrum, you can also coamg the nely generated code with code from an earlier
generation of the module. For information about using a code comparison utility, see
Use Reports with a Code Comparison Toppage 67. For information about the
generation report, ségenerating and Reviewing Reportspage 63.

— Click Finish to complete the generation.
When generation is complete, a message window informs you of the success or fail-
ure of the operation. If there were problems with the generation, the window
prompts you to view the generation report.

14 Generate an ABO for each Natural subprogram used in your application.

— 97 —

Construct Spectrum SDK Reference

Customizing the ABO

You can customize the ABO’s properties in the Customize Properties window or in the
supplied user exits. These options are described in the following sections.

Customize Properties Generated for the ABO

» To customize or view the ABO interface:

You can customize or view the ABO interface beforeggeting the ABO.

1 Click Customize Properties in the Customize ABOs Properties window.
The Customize Properties window is displayed:

Customize Properties

Field

01 CUSTM3A

02 CUSTOMER-NUMEER (NS)
02 BUSINESS-MAME (A30)
02 PHOME-MUMBER. (M10)
02 MAILING-ADDRESS

03 M-STREET (A25)

03 M-CITY (A20)

03 M-PROVINCE (A20)

03 M-POSTAL-CODE (A8)
02 SHIPPING-ADDRESS

03 5-STREET (A25)

03 S-CITY (A20)

03 5-PROVINCE {A20)

03 S5-POSTAL-CODE (A6)
02 CONTACT (A30)
02 CREDIT-RATING (43)
02 CREDIT-LIMIT (P11.2)

|Gen.| Property Mame

Cuskomertumber
BusinessMame
Phonetumber

MStreet
MCiky
MProvince
MPostalCode

S5kreet
SCity
SProvince
SPostalCode
Contack
CreditRating
CreditLimik

Data Type

Long
Skring
Phone{999-999-9999)

Skring
Skring
Skring
PostalCode(A9a943)

Skring

Skring

Skring
PostalCode(A9a943)
Skring

Skring

Currency

Getilet

Getilek
Getilek
Getilek

Getilek
Getilek
Getilek
Getilek

Getilek
Getilek
Getilek
Getilek
Getilek
Getilek
Getflet

| opt, |«

=l

Cancel ;

Customize Properties Window

By default, the wizard generates properties for the fields in the object PDA for an object
maintenance subprogram and in the key and row PDA for an object browse subpro-
gram. For all other subprograms, the wizard generates properties for the entire PDA.

If the subprogram is an object maintenance subprogram, the wizard displays the method
names and their generated derivations, of which the method names can be customized.
If the subprogram is a browse subprogram, the wizard displays the logical key hames.

— 08 —

Using ActiveX Business Objects

You can customize the derived property names, data types, and get/let (read/write) sta-
tus. Using the check boxes in the Generate column, specify which properties should be
generated. Any fields that have been changed from the default are highlighted.

The options in the Customize Properties window are:

Column Description

Field Name of the field in the Natural data area.

Gen Indicates whether default properties are generated. Deselect the
properties you do not want to generate.

Property Name Name of the property generated for the Natural field.

Data Type Native Visual Basic data type the property is declared as.

Get/Let Get returns the value of a property; Let sets a property value.

Opt Indicates whether added methods or properties are generated for

the arrayThis option is applicable to MUs and PEs only. For more
information, see the following section.

Opt Column

To view additional properties for MUs and PEs:

Click the Opt cell for the field.
The Browse button is displayed.

Click Browse.
The Options window is displayed:

ptions |

Method or Property |Gen, | Mame |
Insert_MsgData

Delete_MsgData

Clear_MsgData

MsgData_Counter

MsgData_Long

Cloze |

Options Window

— 99 —

Construct Spectrum SDK Reference

Extra properties are generated for the ABO class by default. You have the option of
manually renaming each method or property name. The Multi-line text block property
is only available for alphanumeric MUs. This allows users to edit all the elements of an
array at one time, in on@gtinuous text string. For more information, §aestomizing

HTML Before Generation, Construct Spectrum SDK for Web Applications

Customize the ABO within User Exits

You can also customize the ABO within user exits. The following user exits are sup-
plied in the generated ABO.

GetAppService_.SetMethodAndBlocks

Use this exit to override the default method names and block numbers in the
GetAppService_ procedure.

ICSTBrowseObject_LogicalKeylnfo.Extra

This exit resides in the Property Get LogicalKeylnfo procedure in the ICSTBrowseOb-
ject interface. The procedureguides information at runtime about the logical keys
supported by the ABO. Use this exit to define additional logical keys that you have add-
ed to the ABO manually.

Note: This exit is only available in browse ABOs.

ICSTPersist_InstanceData.Get.Extra
Use this exit to persist additional module-level variables.

Note: This exit is only available if you generate the ABO with the ICSTPersist in-
terface.

ICSTPersist_InstanceData.Let.Extra

Use this exit to restore the additional module-level variables that were persisted in the
ICSTPersist_InstanceData.Get.Extra user exit.

Note: This exit is only available if you generate the ABO with the ICSTPersist in-
terface.

—-100 -

Using ActiveX Business Objects

ICSTPropertylnfo_Propertylnfo.Get.Extra

This exit resides in the Property Get Propertylnfo procedure in the ICSTPropertylnfo
interface. This proceduregrides information at runtime about the properties in the
ABO's class. Use this exit to define additional properties that you added to the ABO
class manually.

Note: This exitis only available if you generate the ABO with the ICSTPropertyinfo
interface.

<CounterPropertyName>.Get.NullList

This is a dynamically generated user exit. Every array counter property procedure that
is generated will have this user exit.

Array counter property procedures contain code that determines the nuratrayafc-
currences that are used. This code examines each occurrence of the array and checks
whether certain fields are empty. If one of theskl§iés not empty, the code considers

the array occurrence to be used.

Use this exit to specify the fields that should be checked and the values that the fields
should have to be congrkd empty. The wizard always generates sample code into this
exit consisting of the field names and the empty values. You can change the sample
code after generating.

Tip: Because coded user exits are always preserved when regenerating, delete the ex-
isting exit if you want the wizard to regemate the sample.

-101 -

Construct Spectrum SDK Reference

-102 -

USING THE SUBPROGRAM-PROXY MODEL

This chapter describes the subprogram proxy, how to generate proxies using the Sub-
program-Proxy model, and how to customize the proxy. It also contains information
about adding a method to an application service definition, overriding block handling,
versioning, and debugging.

The following topicsare covered:
« Overview, page 104
» Generating a Subprogram Proxy page 105
« Generating Methods page 111
» Overriding Block Handling, page 116
« Creating Multiple Versions, page 120
» Support for Trace Options, page 120

-103 -

Construct Spectrum SDK Reference

Overview

Typically, you will use the Subprogram-Proxy model when tailoring an existing appli-
cation. The major functions of this model are to generate:

« A subprogram proxy that interacts with the Spectrum dispatch service and the target
Natural subprogram.

» The application service definition entry needed in the Administration subsystem.

The subprogram proxy acts as a bridge between the Spectrum dispatch service and a
specific subprogram. When a request is initiated from a dialog or web page to the server
(for example, when a user updates a customer record), information is sent from the cli-
ent to the subprogram proxy on the server. The subprogram proxy then calls the
appropriate object subprogram to fulfill the request.

The subprogram proxy is also responsible for converting data between the network
transfer format and the native Natural data format used isuihierogram’s PDA. It
also provides optimized data block handling and creates application service definitions.

You must generate a subprogram proxy for each subprogram included in your applica-
tion. You can create subprogram proxies using the VB-Client-Server-Super-Model, the
Subprogram-Proxy model, or the Business-Object-Super-Model.

If you are creating a new application or haeefprmed extasive changes to your ap-
plication file relationships, use the super models to generate your application. The
Business-Object super model generates object maintenance and browse subprograms,
their PDAs, and subprogram proxies. For more informationlJségy the Business-
Object-Super-Model, page 71.

The VB-Client-Server-Super-Model generates the same Natural modules as the Busi-
ness-Object super model, as well as the Visual Basic modules needed by client/server
applications.

Accessing System Files

To generate a subprogram proxy, the Subprogram-Proxy model requires access to the
unsecured data in the Administration subsystem files. It uses this data to provide an ac-
tive help listing for the Domain field in Standard Parameters. Additionally, this model

creates or updates the application service definition for the specified object subprogram.

The subsystem file containing the unsecured data must be available either through an
LFILE designation in your Natural startup or through the Natural nucleus used in the
session in which you are generating (NT-FILE parameter must be specified).

- 104 -

Using the Subprogram-Proxy Model

Generating a Subprogram Proxy

U000 Vv

This section describes how to generate a subprogram proxy and considerations to be
aware of when generating the proxy.

To generate a subprogram proxy:

Step 1: Specify Standard Parameterspage 106.

Step 2: Specify the Number of Occurrences Returneghage 108.
Step 3: Add User Exits page 109.

Step 4: Generate the Subprogram Proxypage 110.

Before using the Subprogram-Proxy model, consider the following:

Maintain one application service definition for each business object

An application service definition specifies the methods and the subprogram from which
each method is executed for a business object. The application service definition is cre-
ated or updated when you generate a subprogram proxy.

To maintain one application service definition for each business object, ensure that the
domain name, object name, and version nurabethe same whegou generate each
subprogram proxy for the business object. For example, if you have a Customer busi-
ness object that has both a maintenance and a browse function, generate one
subprogram proxy for the maintenance function and one for the browse function. To en-
sure that only one application service definition is created for both the maintenance and
browse functions, specify the same domain, object, and version when you specify the
model parameters for each subprogram proxy.

For more information, seBenerating Methods page 111.

Define 1:V variables

When generating a subprogram proxy, pay special attention to subprograms that have
1.V variables (such as object browse subprograms). Subprograms use the Natural 1:V
notation to define the row parameter that allows an arbitrary number of records to be
returned to the client. To minimize the number of calls to the server, you normally want
as many records as possible returned for each server request. However, the more
records requested, the longer it takes to satisfy each request. Also ensure you do not
specify more occurrences than will fit within the maximum 32K communication area
available for each request.

—-105 -

Construct Spectrum SDK Reference

Step 1: Specify Standard Parameters

» To specify standard parameters for the subprogram proxy:
1 Invoke the Subprogram-Proxy wizard.
2 Select Standard Parameters:

SUBPROGRAM-PROXY Wizard EH

B et Standard Parameters

Standard
Parameters Module:; CLISTMSP [SPECDEMO on 17,600

Firniish System: [DEMO

Title: |Su|:u|:uru:ugram prioey For Cust

Description: [This subprogram prosy supports the customer J
order mainkenance system

[

Subprogram: [CUSTMSO Edit 1:4
Overrides
Damain: DEMO

Object name: [CUSTOMER

Version: 1.1.1

[Generate trace code
[Compress network data
[Encrypt netwaork data

Yalidate Zancel < Back | Mext = | Finish

Subprogram-Proxy Wizard — Standard Parameters

This window is similar for all model wizards. For information about the parameters and
options, see the online help.

Tip: Follow the Construct Spectrum naming conventions and use “MSP” for the last
three characters of a maintenance subprogram proxy or “BSP” for the last three
characters of a browse subprogram proxy. This will make it easier to identify the
subprogram proxy when listing modules.

—-106 -

Using the Subprogram-Proxy Model

3 Specify the following parameters for the subprogram proxy:

Parameter Description

Subprogram Name of the subprogram for which the proxy is being
generated. For example, to generate a subprogram proxy for
the ORDMSO Customer Order subprogram, enter
“ORDMSO".

Domain Name of the domain. To set up security for your applications,

Object name

Version

Note:

Generate
trace code

Compress data

Encrypt data

link selected groups of users to each domain.

Name of the business object. For example, a customer
information business object can be called “Customer”. For
more information, se€reating Multiple Versions, page 120.

Version level of your package. This number consists of three
parts: version, release, and SM level.

One application service definition is created for both a
maintenance and a browse dialog if the domain, object, and
version values are identical on this panel for their respective
subprogram proxies.

Use this option if you are developing an early iteration of your
application or if runtime errors are occurring in the application.
This option adds code to the proxy that can help you determine
the cause of a parameter format error.

If your application is stable, do not generate trace code. This
improves the performance of your subprogram proxy and
reduces the amount of generated code.

Use this option if the proxy transmits large volumes of data,
such as a browse subprogram proxy.

Use this option if the proxy transmits sensitive data to the
client.

-107 -

Construct Spectrum SDK Reference

Note: The Compress data and Encrypt data fields apply only to data sent to the cli-
ent. If you are creating a client/server application, you can enable compression
and encryption for data sent from the client to the server by marking the Com-
press data and Encrypt data fields on the Standard Parameters panel for the
VB-Maint-Object or VB-Browse-Object model (depending on the type of di-
alog youare creating). Ifou are generating a Web service, you can enable
compression and encryption by modifying the NaturalCommunication node
in the Web.config file and setting the Encrypt and Compress attributes appro-
priately. For more information, sékS to Natural Communication Securi-

ty, Natural Business Services SDK for .NET Web Services

Step 2: Specify the Number of Occurrences Returned

» To specify the maximum number of occurrences to return for each request:

1

Next, specify the maximum number of 1:V arrays that can be returned to the client for
each request. A 1:V array can consist of either one-dimensional data, such as a list of

repeating values, or two-dimensional data, such as a row of record data.

For maximum efficiency, specify 20 occurrences for each subprogram structure (PDA).

Click Edit 1:V Overridsin the Standard Parameters window.

If no fields in the target subprogram use the 1:V notation, a message is presented
indicating this. Otherwise, the model determines these values and displays a window

listing their names. For example:

Edit 1:V Ovenides |
|Skruckure |Field | OCCUrrences
1 [CUSBRROW ROV

Refresh |

Cancel

Edit 1:V Overrides Window

-108 -

Using the Subprogram-Proxy Model

Note: If you are using the Subprogram-Proxy model in the Generation subsystem to
generate your subprogram proxy, press PF5 (1:V) on the Standard Parameters
panel to access the 1:V Overrides panel.

2 Specify the maximum number of occurrences that can be returned to the client with
each call to the server.
Click Refresh to update the information by making another call to the server.

3 Click OK to return to the Standard Parameters window.

Step 3: Add User Exits

After supplying model parameters, you can customize the generation results by creating
user exit code for the module. For example, you can use user exits to modify block han-
dling or add block handling for new methods.

» To add user exits:

1 Click Finish in the Standard Parameters window.
The user exits available for the Subprogram-Proxy model are displayed:

=+ SUBPRDGRAM-PROXY CUSTORD

2 [CHANGE-HISTORY -
LOCAL-DATA
DH-EREOR-M3G-NE
START-0F-PROGRAN
SER-TEACE -COMMAND S
EEFORE-CALL-OBJECT
&FTER-CALL-OBJECT
SET-DATA-LENGTH
EE FORE -EXFAND - INPUT
A FTER-EXPAND- INPUT —
SET-RETURN-ELOCES
EEFORE-COMERES S -0UTEUT
& FTER-COMFRE S5 - OUTPUT
ISCELLANEQUS-SUBROUTINES
ND-0F-PROGRAM

i i i sl G
B T b T Tl T T Y

o=

Ny

=

e R e
e e L A Y

Line 1 Col1 CHAMNGE MCSTDEMO on 1000,1002

User Exits for the Subprogram-Proxy Model

—-109 -

Construct Spectrum SDK Reference

The icon on the left indicates whether sample code is generated for the user exit.
Right-click the user exit and select Generate Sample from the shortcut menu.
Modify the code as required.

You can also generate sample code from the user exit list by selecting User Exit List
from the View menu or clicking the View button.

» To generate sample code:

=

Select the user exit.
2 Click Generate sample.

Note: You can also add new user exits and write code for them. For information, see
Invoke User Exit Editor Function, Natural Construct Generation

Step 4. Generate the Subprogram Proxy

» To generate the subprogram proxy:

1 Select Generate from the File menu or click the Generate button on the toolbar.
The Generate window is displayed, showing module and status information.

2 When generation completes successfully, select Siaduale name>from the File
menu.

Once generation has completed, the following two items exist:
» The generated subprogram proxy.
» The application service definition in the Administration subsystem.

-110 -

Using the Subprogram-Proxy Model

Generating Methods

The subprogram proxy generates a method for each of the actions supported by an ob-
ject subprogram. The application service definition includes the following methods:

Object Method

Maintenance Delete
Exists
Get
Initialize
Next
Store
Update

Browse Browse

Any other type Default

If a subprogram proxy is generated using the same domain, business object, and version
as another subprogram proxy, the new methods are also added to the application service
definition. This allows a single application service definition to access both the mainte-
nance and browse functions of a business object.

-111 -

Construct Spectrum SDK Reference

Access the Application Service Definitions

s
1

To view application service definition records:

Invoke the Administration main menu.

Enter “AA” in the Function field.

The Application Administration main menu is displayed.

Enter “MM” in the Function field.

The Application Administration Maintenance menu is displayed.
Enter “AS” in the Function field.

The Maintain Application Service Definitions panel is displayed:

BSIF__MP Construct Spectrum Administration Subsystem BSIF__11
Jan 30 Maintain Application Service Definitions 3:15 PM

Action (A,B,C,D,M,N,P)

..DEMO____*
PRODUCT
01/01/01
PRODUCT
Default subprogram proxy: PRODMSP_
Steplibs................ *
Subprogram
01 Method Name Proxy Steplibs *
1 BROWSE PRODBSP_
2 DELETE
3 EXISTS
4 GET
5 INITIALIZE
Command:
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref bkwrd frwrd main

Appl Srvc Definition DEMO-PRODUC displayed successfully

Maintain Application Service Definitions Panel

Use this panel to add a method.

-112 -

Using the Subprogram-Proxy Model

Add a Method

wl\)l—‘v

=

You can add custom methods to a maintenance or browse object. For example, if your
maintenance object requires special processing that is not provided by one of the sup-
plied methods, you can add a new method to implement the processing.

To add a new method:

Step 1: Create the Methog page 113.

Step 2: Update the Application Service Definitionpage 113.

Step 3: Update the Library Image File page 114.

Optionally, you can transmit only the data required for the custom method when the
method is invoked. For more information about optimizing the handling of data for cus-
tom method, se®verriding Block Handling, page 116.

Step 1: Create the Method

To create the method:

Define the method in the USER-DEFINED-FUNCTIONS user exit for the subprogram
and save your changes.

If the subprogram does notreently include this user exit, regenerate it using the
Object-Maint-Subp model and select the USER-DEFINED-FUNCTIONS user exit.

For information about using the Object-Maint-Subp model and user exi®5eet-
Maint Models, Natural Construct Generation

Step 2: Update the Application Service Definition

To update the application service definition:
Type “M” in Action.

Type the domain, object, and version of the application service definition you are
updating in the appropriate fields.

Type the name of the method in Method Name.
Use the name that was specified when the method was created and added to the
maintenance subprogram user exit.

If the subprogram proxy for this business object’'s method is different fromethald
subprogram proxy specified for the business object, type the new subprogram proxy
name in Subprogram Proxy; otherwise, leave the field blank.

If the steplib for this business object’'s method iedént from the defat steplib
specified for the domain, provide the new steplib name in Steplibs.

Press Enter.
The method is added to the application service definition.

-113 -

=

Construct Spectrum SDK Reference

Step 3: Update the Library Image File

The library image file (LIF) resides gmour client and must be updated with the valid
methods for a business object. To update the LIF, download the subprogram proxy to
the Visual Basic project for the application and Construct Spectrum automatically adds
the new method.

To update the library image file with the method:
Open the project for your application in Visual Basic.

Select Download Generated Modules from the Construct Spectrum Add-In menu.
For more information, sdeownloading the Generated ModulesConstruct Spectrum
SDK for Client/Server Applications

Download the subprogram proxy definition to your project.
A maintenance subprogram proxy has the suffix “MSP” and a browse subprogram
proxy has the suffix “BSP”.

Save your changes and run the project.
The new method is available for use in your application.

For web applications, you must regenerate the ABO, page handler and HTML template.
For more information, se@reating and Customizing a Page HandlerandCreating

and Customizing an HTML Template, Construct Spectrum SDK for Web

Applications

114 -

Using the Subprogram-Proxy Model

Override the Steplib Chain for the Domain

All business obijects in an application service definition share the same domain. All
business objects within a domain are accessed using the domain’s steplib chain. You

can, however, override the steplib chain for each business object or method defined in
your application service definition.

» To override the steplib chain for the domain:

1 Access the Maintain Application Service Definitions panel:

BSIF__MP Construct Spectrum Administration Subsystem BSIF__11
Jan 30 Maintain Application Service Definitions 3:15 PM

Action (A,B,C,D,M,N,P)

Default subprogram proxy: PRODMSP_
Steplibs : *

Subprogram
01 Method Name Proxy Steplibs *

1 BROWSE PRODBSP_
2 DELETE
3 EXISTS
4 GET
5 INITIALIZE
Command:
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref bkwrd frwrd main
Appl Srvc Definition DEMO-PRODUC displayed successfully

Maintain Application Service Definitions Panel

For more information about this panel, gemess the Application Service Defini-
tions, page 112.

2 Display the application service definition you want to modify.
Type “M” in Action.

For each method or business object that requires a special steplib, specify the steplib
name in Steplibs.

5 Press Enter to update the application service definition.

-115 -

Construct Spectrum SDK Reference

Overriding Block Handling

The subprogram proxy optimizes level 1 parameter block handling for the default meth-
ods provided with your object maintenance and object browse subprograms. This
optimization ensures that only the required data for a particular method is sent from the
server to the client. This section describes #fault block handling provided with the
subprogram proxy and how to override this block handling, if necessary.

Default Block Handling

The following tables define which level 1 blocks are sent for each default method in
your maintenance and browse subprograms.

Maintenance Subprogram Blocks Sent to Server

Function Business Business Restricted CDAOBJ2 CDPDA-M
Object Object Data (function) (message)
Data Key

DELETE X X X

EXISTS X X

GET X X

INITIALIZE X

NEXT X X

STORE X X

UPDATE X X X

-116 -

Using the Subprogram-Proxy Model

Maintenance Subprogram Blocks Returned to Client

Function Business Business Restricted CDAOBJ2 CDPDA-M
and Flags Object Object Data (function) (message)
Data Key

DELETE and

(Error = True or X X
Return Object =

False)

DELETE and
(Clear After = X X X
False)

GET and X X
Exists = False

EXISTS X X

NEXT and X
Exists = False

STORE and

(Error = True or X X
Return Object =

False)

STORE and

(Clear After = X X X
False and

Derived Data =

False)

UPDATE and

(Error = True or X X
Return Object =

False)

UPDATE and

(Clear After = X X X
False and

Derived Data =

False)

All Other X X X X
Combinations

-117 -

Construct Spectrum SDK Reference

Browse Subprogram Blocks Sent to Server

Function Key Data Row Data Restricted CDBRPDA CDPDA-M
Data (function) (message)
BROWSE X X X

Browse Subprogram Blocks Returned to Client

Function Key Data Row Data Restricted CDBRPDA CDPDA-M
Data (function) (message)
BROWSE X X X X X
Specify Overrides

You can override the default block handling rules listed in the previous tables and pro-
vide your own rules. For example, if you add a new method, you can specify which
blocks are sent to the client. By default, custom methods transmit all data blocks.

To override the default block handling:

Define the custom block handling on the server.

Define the custom block handling on the client.

Step 1: Define Block Handling On Server

You can set block handling overrides for every level 1 data block in a subprogram'’s pa-
rameter data. Define these overrides in the SET-RETURN-BLOCKS user exit for the
subprogram proxy and regenerate the proxy. For information about regenerating, see
Generating a Subprogram Proxy page 105.

Disable a Block Unconditionally

» To disable a block unconditionally so that it is never sent to the client:

1
2

Select the SET-RETURN-BLOCKS user exit for the subprogram proxy.

Reset any block indicator that is not to be sent to the client.
Block indicators identify a data block and are named #PDA.RBknamewhere
blocknames the name of the level 1 variable that defines the block.

Note: Code the statements in this user exit as part of a DECIDE FOR statement.

-118 -

Using the Subprogram-Proxy Model

3 Add the following code:

WHEN #SPC-TRUE
RESET #PDA.#RB-BLOCKNAME/* Unconditional assignment

Send Blocks to the Client Conditionally

» To conditionally send blocks to the client:

In the SET-RETURN-BLOCKS user exit for the subprogram proxy, add a DECIDE
clause that resets certain block selectors based on a condition. For example:

*SAG DEFINE EXIT SET-RETURN-BLOCKS

/* Do not return restricted data on a delete

WHEN CDAOBJ2.#FUNCTION = CDLMMETH.DELETE
RESET #PDA.#RB-CUSTMSR

/* Do not return object or restricted data on existence check

WHEN CDAOBJ2.#FUNCTION = CDLMMETH.EXISTS
RESET #PDA.#RB-CUSTMSA

#PDA #RB-CUSTMSR
*SAG END-EXIT

Adhere to the flbowing guidelines when assigning the blocks:

« Know the name of each block you are assigning.
The format is #PDA.#RBlocknamewhereblocknamas the name of the level 1 field.

» Reset only those blocks that are not to be returned to the client.

Step 2: Define Block Handling On Client

For information about defining block handling on the client,S&@ 3: Update the
Library Image File, page 114.

-119 -

Construct Spectrum SDK Reference

Creating Multiple Versions

You can create new versions of a subprogram proxy without affecting older versions.
The version number specified when entering the model input parameters is part of the
key used to store the associated application service definition. Versioning allows you to
maintain a system withoaffecting exiing applications. Each request issued from the
client includes its required version number.

Note: When creating a new version of a subprogram proxy, use a new name. Other-
wise, the existing version is overwritten.

Security Implications

Security definitions do not include the version number. This means that if the only thing
about the subprogram proxy that changes is the version number, it will automatically be
included in existing security definitions for the domain and business object name spec-
ified. If it requires a new security definition, the subprogram proxy domain or business
object name should be changed to force the creation of a new application service defi-
nition. This new application service definition can then be secured as necessary.

Support for Trace Options

Subprogram proxies automatically support the DATASIZES and INITIALIZE trace
options. These options return the size of the data blocks and their initialized values and
are useful when debugging an application. You can add additional trace options in the
USER-TRACE-COMMANDS user exit for the subprogram proxy.

For more information, seeebugging Your Client/Server Application, page 161.

-120 -

USING BUSINESS DATA TYPES (BDTS)

This chapter describes business data types (BDTs) as they relate to client/server and
web applications. It describes the composition of BDTs and how to create and use them.

The following topicsare covered:
« Overview, page 122
» Understanding and Using BDTs page 123
» Creating and Customizing BDTs page 141

-121 -

Construct Spectrum SDK Reference

Overview

The first section of this chapter is of particular interest to users of BDTs. It discusses
the concept of BDTs in general terms and gives you a good understanding of the bene-
fits of using BDTs and how they work. The second section is of interest to authors of
BDTs. It discusses how to create and customize BDTs in both the client/server and web
framework components.

BDTs provide a way to present data to the user in a format that is consistent and based
on business conventions rather than on programming language conventions. For exam-
ple, a BDT can format a phone number with dashes (-) or some other delimiter value so
that it is easily recognized by the user as a phone number.

To accomplish this, BDTs convert data values between simple internal Visual Basic
data types (such as String, Long, Currency, Date, and Boolean) and values that are dis-
played to the user in a browse or maintenance dialog.

Construct Spectrum also uses BDTs to create sample strings to calculate the length of
GUI controls.

-122 -

Using Business Data Types (BDTSs)

Understanding and Using BDTs

There is some commolity between BDTs that are used in client/server applications
and web applications. The following sections discuss BDTs as they relate to both the
client/server and web framework components.

Benefits of Using BDTs

Using business data types offers three primary benefits:

Consistency
BDTs ensure that a specific data type is displayed in the same format throughout the
application.

Flexibility
BDTs recognize a variety of input formats which makes using the application easier.
Accuracy

BDTs centralize the validation code for a data type and provide a consistent mechanism
for returning validation error messages.

Relationship With Visual Basic Data Types

The relationship between Visual Basic data types and business data types is many-to-
many. That is, a Visual Basic Double variable can represent more than one BDT, such
as Phone Number, AMEX Number, or Currency. Conversely, a Phone Number BDT
could be mapped to Visual Basic String, Double, or Float variables. The Visual Basic
data types to which a BDT can be applied depend on the epasahs written into the
BDT's conversion routine.

e —— Phone Number
String Sate

o i i . —— Currency

Visual Basic |y BDT Business Data

Double Data Type Conversion Type

ouble —— —

Routines ——AMEXNumber

Fost —— Postal Code
Integer sen

Relationship Between Visual Basic Data Types And BDTs

-123 -

Construct Spectrum SDK Reference

Construct Spectrum includes a set of standard BDTs. You can use these BDTs as they
are or you can customize them. You can also write your own BDTSs. If there is a piece
of information whose format you are constantly validating, consider writing a BDT to
handle it. Once a BDT has been created, you can use it in other applications.

Composition of a BDT

A BDT is composed of a name, a conversion routine, and the list of modifiers it can use.

Name

Applications need only the name of the appropriate BDT to perform the conversion to
and from a display value.

Conversion Routine

The conversion routine converts data between an internal Visual Basic data type and a
displayable format.

The BDTConversion object is used internally by BDT conversion routines. When the
application calls one of the BDT controller’s conversion methods, the controller creates
a BDTConversion object and initializes it with details about the conversion requested.
For example, the BDT controller will supply the BDT name, any modifiers associated
with it, and any Natural format provided. The BDT controller then calls the conversion
routine for the specified BDT, passing the BDTConversion object as a parameter.

The conversion routine uses the properties of the BDTConversion object to determine
what type of conversion to perform (convert to display, convert from displaygatec
sample string), to get information about the modifiers used, the Natural format speci-
fied, and to return the converted value.

Modifiers

Use modifiers to override the default conversions that arf®pned by a BDT's con-
version routine.

—124 -

Using Business Data Types (BDTSs)

Elements of a BDT

Each time an application uses a business data type, it involves a number of elements.
The following sections describe these elements and how they relate to BDTSs.

BDT Controller

The BDT controller knows about all the BDTs that the application uses. This is because
the application registers all of its BDTs with the BDT controller when the application

is started. Whenever an application uses a BDT, it relies on the BDT controller to locate
and call the associated conversion routine as follows:

1 The application calls the BDT controller and passes it all the necessary parameters,
including the name of the BDT and the value to be converted.

The BDT controller locates the conversion routine for the BDT.

3 The BDT controller calls the conversion routine, forwarding the parameters from the
application.

The conversion routine does the conversion and returns the result to the BDT controller.
The BDT controller returns the result to the application.

The application needs only the name of the BDT to accomplish the required conversion.
The BDT controller is declared in the client/server framework as follows:

Public BDT As New BDTController

In the web framework, the BDTController object is a global multi-use object, meaning
that you can invoke properties and methods of this class as if they were global functions.
You do not have to create an instance of this class first because one will automatically
be created.

How the Client Framework Uses BDTs

The client framework use BDTs to display values read from a NaturalDataArea object
on the client. The values are then displayed in GUI controls. The following diagram
shows the process of reading a value from a NaturalDataArea object on the client, dis-
playing it in a GUI control where the user can modify the value, and copying the new
value back to NaturalDataArea on the client. Once the value is copied back to the client,
it can be sent to the server. The BDT in the following diagram is named DATE and is
applied to the BIRTH-DATE field:

—-125 -

Construct Spectrum SDK Reference

Date 1: Read BIRTH-DATE file
l_ Variant <—|

@ 2: Convert to Natural Data Area
Display 01 CUSTOMER

Date 02 NUMBER(N6)

Displayed in 02/27/1954 Date BDT 02 NAME(A30)

Text Box Conversion 8% .E?A'RTH'DATE(D)
Routine

3: Read from 4: Convert From Date 5: Write
TextBox.Text Display Variant BIRTH-DATE field

Processing Date BDT Applied to BIRTH-DATE Field

1 Reading the field value from the Natural data area returns a Visual Basic Variant data
type.

2 This value is formatted for display by the Date BDT'’s conversion routine through a call
to ConvertToDisplay. The result is a String value.

3 The string is displayed on a form by assigning it to a GUI control. The value displayed
in the text box can be edited by the user.

4 When the user is finished editing, the edited value is read from the Text property for the
TextBox control.

5 This string is converted back to a variant by the Date BDT'’s conversion routine through
a call to ConvertFromDisplay. If the string does not contain a valid date, or the
conversion routine cannot interpret the user’s valugecty, an error is returned.

6 The new value is assigned back to the field in the Natural dedaahich can then be
sent to the server, for example, in the case of an update to the server database.

In a web application, BDTs are implemented internally. To change the BDT used by a
field, you can define a user exit. For information, Geistomizing a Page Handler
Construct Spectrum SDK for Web Applications

Conversion Routines

When an application uses a BDT, the BDT controller calls the conversion routine. The
conversion routine offers three services thga the appearance of data:

« Converts the value in a Visual Basic data type to display in business format.
« Converts the value from its business format display to a Visual Basic data type.

« Creates a sample display value that is representative of the display values produced by
the BDT.

In applying the second service, the conversion routine returns an error message if an in-
appropriate value is passed to it.

-126 -

Using Business Data Types (BDTSs)

ConvertToDisplay Method

The ConvertToDisplay method converts a value from a Visual Basic data type to a dis-
play format. This method takes the value, and either the name of a BDT or a Natural
format, and returns a string that is formatted for display. The syntax is:

Function ConvertToDisplay(RawData As Variant, _
Optional BDTName As String, _
Optional NatFormatLength As String _
) As String

For example, in a client/server application:

txtBirthDate.Text = BDT.ConvertToDisplay(custpda("BIRTH-DATE"), _

"Date")
You can specify a BDT name, a Natural format, or both. If you do not specify a BDT
name, the BDT controller uses the Natural format (for example, N6) to choose an ap-
propriate BDT first, and then calls that BDT’s conversion routine.

If you do specify a BDT name, that BDT's conversion routine can use the optional Nat-
ural format to further refine how it performs the conversion or interprets the data. For
example, the Numeric BDT uses the Natural format to determine how many decimal
places to display. The Date BDT uses the Natural format as follows:

If the Natural format is D, interpret the variant data as a date.

If the Natural format is N6, P6, or A6, interpret the variant data as a date in the format
YYMMDD.

If the Natural format is N8, P8, or A8, interpret the variant data as a date in the format
YYYYMMDD.

-127 -

Construct Spectrum SDK Reference

ConvertFromDisplay Method

The ConvertFromDisplay method converts a value from a display format to a Visual
Basic data type. This method takes the display value, and either the name of a BDT or
a Natural format, and returns a variant value that can be manipulated further by the ap-
plication. The syntax is:

Function ConvertFromDisplay(FormattedData As String, _
Optional BDTName As String, _
Optional NatFormatLength As String _
) As Variant

For example, in a client/server application:

custpda("BIRTH-DATE") = BDT.ConvertFromDisplay(txtBirthDate. Text, _

IIDatell)
You can specify a BDT name, a Natural format, or both. Using these optional parame-
ters has the same result as in ConvertToDisplay.

ConvertinPlace Method

The ConvertinPlace method allows you to validate and reformat a value in a GUI con-
trol, such as in a LostFocus event. This method takes a formatted vakfertance,

internally calls ConvertFromDisplay, and then passes the result back to ConvertToDis-
play which returns the new formatted result. For example, in a client/server application:

Private Sub txtBirthDate_LostFocus()
Dim stemp As String

stemp = txtBirthDate.Text
BDT.ConvertIinPlace stext, "Date"
txtBirthDate.Text = stemp

End Sub

When the user moves out of the field, the field value is validated and, if vakdois
matted according to the date format used by the BDT. For example, if a user enters “feb
5", the input is reformatted to the date format chosen, such as 2/5/1999, when the user
leaves the field. The syntax is:
Function ConvertinPlace(ByRef FormattedData As String, _

Optional BDTName As String, _

Optional NatFormatLength As String _
) As Variant

You can specify a BDT name, a Natural format, or both. Using these optional parame-
ters has the same result as in ConvertToDisplay.

The returned value is the value returned by the internal call to ConvertFromDisplay, so
you can perform adtional processing on the value entered by the user.

-128 -

Using Business Data Types (BDTSs)

CreateSampleString Method

The CreateSampleString method creates a sample displayable value for each BDT. This
sample value can be used as a template to determine the dimensions of the associated
control or to determine how wide a column in a browse dialog must be to display the
BDT value. The syntax is:

Function CreateSampleString(Optional BDTName As String, _

Optional NatFormatLength As String _

) As String
You can specify a BDT name, a Natural format, or both. Using optional parameters al-
lows you to further refine how the BDT performs the conversion or interprets the data.

You can use the returned value to calculate the required width of a ListView control col-
umn or a TextBox control used to display this business data type.

Modifiers

The processing performed by a BDT can be refined using special modifiers. Each busi-
ness data type defines its own set of modifiers to provide the flexibility it needs.

Individual modifiers are segated by commas, and eachdifier must be introduced
by a name. Modifiers have names such as TRIM, CASE, DEC, and ROUND.

In calls to the conversion routines, use the fornmak=value , wherename is the mod-

ifier you want to use anghiue controls the behavior of the conversion routine for the
given modifier. Append modifiers to the BDT name parameter with commas. The fol-
lowing code invokes the Numeric BDT'’s conversion routine and uses the DEC modifier
to specify that two decimal places should be displayed in the value and the ZERO mod-
ifier to suppress display of the value when it is 0.

For example, in a client/server application:

txtHours.Text = BDT.ConvertToDisplay(dblHours, _
"Numeric,DEC=2,ZERO=0FF")

For more information about the modifiers supported by each BDBR3&s Supplied
With Construct Spectrum, page 133.

-129 -

Construct Spectrum SDK Reference

Natural Formats

When you omit the BDT name in calls to the ConvertToDisplay, ConvertFromDisplay,
ConvertinPlace, or CreateSampleString method, you must provide the Natural format.
The BDT controller uses this format to choose which BDT to use for the conversion. It
does this by calling a Natural-to-BDT mapper function. This function provides the most
appropriate BDT to use for each Natural format.

The mapper function must be registered with the BDT controller. In the client/server
framework, the mapper is implemented as #hoe of the StandardBDTs class and is

registered in its SelfRegister method. For more informationkRegéster a BDT, page
145.

For information about registering BDTs in the web environmentRegéster BDTs in
the Web Framework, page 151.

-130 -

Using Business Data Types (BDTSs)

Handling Errors Returned from a BDT Conversion
Routine

The BDT controller has four properties that return error information from the conver-
sion routines. These properties can be examined after a call to ConvertFromDisplay or
ConvertinPlace. The BDT conversion routines place information in these properties if
a conversion error occurs. The application can then examine the properties on return
from the call and display therror to the user:

Property Contents

ErrorCode Numeric error code. Each BDT can define its own error codes. The
application makes program flow decisions based on this value.

ErrorMsg Error message. This message should provide useful information.
ErrorPos Position of the first invalid cteacter.
ErrorLen Number of invalid characters.

To show the user where invalid charactmne, an pplication can use the ErrorPos and
ErrorLen properties to set the SelStart and SellLength properties of a TextBox control.

Example code using error information properties in a client/server application

Private Sub txtBirthDate_LostFocus ()
Dim sdate As String

sdate = txtBirthDate.Text

BDT.ConvertIinPlace sdate, "Date"

If BDT.ErrorCode Then
txtBirthDate.SelStart = BDT.ErrorPos
txtBirthDate.SelLength = BDT.ErrorLen
MsgBox BDT.ErrorMsg, vbExclamation
txtBirthDate.SetFocus

Else
txtBirthDate.Text = sdate

End If

End Sub

Warning:
A conversion routine may set ErrorPaos, but not ErrorLen. In the sample code above, it
will not cause problems.

-131 -

Construct Spectrum SDK Reference

How Web Applications Use BDTs

Construct Spectrum web applications use BDTs as a way to format and validate user
input for display on web pages. No formatting or validation is done in the web browser,
instead the work is done on the web server inside of the Spectrum web application com-
ponent, ABOInterface. To determine whddBs to use, the page handler queries the
ABO at runtime for the logical format each property provides. These logical foaneats
translated into BDT names. You can override the translation and logical formats of
properties in the BDT.Overrides user exit.

For example, in a page handler:
Private Sub ICSTPageHandler_lInitialize(...)

With m_ABOInterface
Set .ABOObject = m_ABO

.Init ERR_SESSION_KEY, m_RequestData.Session, m_RequestData.Request
'<cst:EXIT Name="BDT.Overrides">
' For the CustomerPhoneNumber property use a phone BDT.
.BDT("CustomerPhoneNumber") = "Phone"
' Use an alpha BDT for the logical format PostalCode.
.LogicalFormatBDT ("PostalCode") = "Alpha”
‘</cstEXIT>
End With
End Sub
When a maintenance or browse HTML template is parsed and FIELD tags are detected,

the value to be displayed is formatted using the correct BDT.

When a user submits a web page that includes properties on an HTML form to be up-
dated, the ABOInterface component is usedpdate these properties. Part of the
process includes validating the data included on the form before updating the property.
If a BDT validation error occurs, the property is flagged for an error and the user's ac-
tion is cancelled. When the web page is returned to the user, the properties in error are
highlighted in red (Internet Explorer) or an error graphic is displayed next to the field
(Netscape Navigator) and the error messages are displayed atttime bbthe page.

For more information, sgeustomizing a Page HandlerConstruct Spectrum SDK for
Web Applications

-132 -

Using Business Data Types (BDTSs)

BDTs Supplied With Construct Spectrum

This section describes the standard BDTs supplied with Construct Spectrum. The fol-
lowing sections describes each BDT, lists the modifiers it supports, and describes what
each modifier does.

Alpha
Apply the Alpha BDT to alphanumeric data.

Modifier Description

TRIM=L|T|LT Trims leading spaces (L), trailing spaces (T), or leading and
trailing spaces (LT). Default is no trimming. This affects
ConvertToDisplay and ConvertFromDisplay behavior.

CASE=U|L Forces the text into uppercase (U) or lowercase (L). Default is to
not change the case. This affects Convdbi$play and
ConvertFromDisplay behavior.

Boolean

Apply the Boolean BDT to data that can have a value of either False or True.

Modifier Description

EM=<False>|<True> Displays the <False> string for False and the <True> string
for True. Default is EM=False|True. ConvertFromDisplay
compares the formatted data to the <False> and <True>
strings and recognizes a match if the value matches
unambiguously to the beginning of either string. This is not
case-sensitive.

The following examples show various types of edit mask
values, user input, and each result.

EM Value Formatted Value Raw Value
EM=False|True T True

t True

tr True

TRU True

F False

false False

yes Error: Invalid

<blank> Error: Invalid

-133 -

Construct Spectrum SDK Reference

Modifier

Description (continued)

EM=True|False true False

F True
EM=0ff|On off False

on True

o] Error: Ambiguous
EM=|X X True

<blank> False

XX Error: Invalid

Time

Apply the Time BDT to any time value. The Time BDT supports the following Natural

formats:

Natural Visual Basic Description

Format Data Type

T Date, Variant If the value is Null, ConvertToDisplay returns

an empty string.
N7 or P7 Long, Single, Double,Numeric value is interpreted as HHMMSST.
or Currency

A7 String Alpha value is interpreted as HHMMSST.

Numeric

Apply the Numeric BDT to any numeric data.

Modifier

Description

DEC=

ROUND=

GS=0OFF|ON

Forces the display af decimal places. Default is to display as
many decimal places as there are significant decimal digits when
the Natural format is not provided, or to use a fixed humber of
decimal places if the Natural format is provided. In this latter case,
use DEC=1 to ignore the Natural format and display significant
decimal digits only.

Rounds the value todecimal places. Ifiis negative, it rounds to
the left of the decimal place. Default is no rounding.

Used to suppress (OFF) or display (ON) group separators
(thousands sepators). Default is GS=0OFF.

~134-

Using Business Data Types (BDTSs)

Modifier

Description (continued)

ZERO=OFF|ON

Suppresses (OFF) or displays (ON) zero values. Default is
ZERO=OFF.

SIGN=OFF|ON Suppresses (OFF) or displays (ON) the sign for positive numbers.
Default is SIGN=OFF.

MULT=n ConvertToDisplay multiplies the raw value by
ConvertFromDisplay divides the value byefore returning the
raw value.n can be any positive or negative numeric value except
zero. Default is MULT=1.

SCIENTIFIC= Displays the value in normal (OFF) or scientific notation (ON).

OFF|ON Default is SCIENTIFIC=OFF.

EM=xxx Any format string understood by the Visual Basic Format function.
ConvertToDisplay uses the Format function to format the value
according to that format string.

STRICT= Used by ConvertFromDisplay to determine how to deal with non-

OFF|ON numeric characters in the formatted value. OFF quietly discards
non-numeric characters and ON generates an error if the value
contains non-numeric characters. The defaultis STRICT=0ON. Has
no effect on ConvertToDisplay.

Currency

Apply the Currency BDT to any crency values.

Modifier

Description

ZERO=OFF|ON

Suppresses (OFF) or displays (ON) zero values. Default is
ZERO=ON.

-135-

Date

Construct Spectrum SDK Reference

Apply the Date BDT to any date value. The Date BDT supports the following Natural
formats.
Natural Visual Basic Description
Format Data Type
Dand T Date, Variant If the value is Null, ConvertToDisplay returns
an empty string.
N6 or P6 Long, Single, Double,Numeric value is interpreted as YYMMDD.
or Currency
N8 or P8 Long, Single, Double,Numeric value is interpreted as
or Currency YYYYMMDD.
A6 String Alpha value is interpreted as YYMMDD.
A8 String Alpha value is interpreted as YYYYMMDD.

-136 -

Using Business Data Types (BDTSs)

Referencing BDTs in Predict

You can attach a BDT name to a field in Predict by adding a keyword with the same
name as the BDT and prefix it with ‘BDT_'". For example, to cause an N8 field to be
treated as a date value when displayed on a browse or maintenance dialog, add the
BDT_DATE keyword to the field.

The following table lists the BDT keywords loaded into Predict during installation:

BDT Predict Keyword
Alpha BDT_ALPHA
Boolean BDT_BOOLEAN
Currency BDT_CURRENCY
Date BDT_DATE
Numeric BDT_NUMERIC
Phone BDT_PHONE

PostalCode =~ BDT_POSTALCODE
Time BDT_TIME
ZipCode BDT_ZIPCODE

-137 -

Construct Spectrum SDK Reference

Defining BDTs

One of the most poerful things about BDTs is that you can customize existing BDTs
or createyour own. If there is information whose format you are constantly validating,
consider writing a BDT to handle it. A perfect case for a customized BDT might be an
organization-specific account number.

To define a BDT, you must provide the following:
+ Name for the BDT
« List of modifiers it will support
« Display format it will use
« Natural formats it will support
« Variant data types it will support

Tip: To maintain consistency, follow the naming convention used in the Construct
Spectrum client framework: use short names consisting of one or two words and
mixed case (capitalize the first letter of each word).

Name

A BDT name can be any consecutive string of characters except commas. Leading and
trailing spaces are ignored, and epgase antbwercase are considered identical.

Modifiers

Individual modifiers are segrated by commas and each modifier is introduced by a

name. Modifiers have names such as TRIM, CASE, DEC, and ROUND. Modifier

names can be any consecutive string of characters except commas or equal signs. Lead-
ing and trailing spaces are ignored; uppercase and lowercase aremhgiéntical.

Natural Formats

In addition to modifiers, all BDT handlers can be passed the format and length of the
Natural variable that will receive the contents of the converted strings. For example, the
BDT handlers can use this information to apply truncation rules or insert defaults.

When you omit the BDT name in calls to ConvertToDisplay, ConvertFromDisplay,
ConvertinPlace, and CreateSampleString, you must provide the Natural format. The
BDT controller uses the Natural format to choose which BDT to use for the conversion.
It does this by calling a Natural-to-BDT mapper function supplied in the Construct
Spectrum client framework. The mapper function must also be registered with the BDT
controller.

-138 -

Using Business Data Types (BDTSs)

Variant Data Types

When converting from formatted data to raw data, decide what type of variant to use for
the raw data. Using a phone number BDT, for example, you can return the phone num-
ber as a Visual Basic Double, String, Currency, or an array. As all of these data types
have enough precision to store all digits of a phone number, choose a data type that is
convenient for an application programmer.

The returned data type may also depend on the Natural format passed to the conversion
routine. For example, a seven-digit telephone number with area code can be stored in
an A10 field or an N10 or P10 field. The conversion routine can return a String variant

if the Natural format is A and a Double variant if the Natural format is N or P.

-139 -

Construct Spectrum SDK Reference

Returning Conversion Error Information

Conversion routines return conversion error information to the BDT controller in the
error properties of the BDTConversion object. The BDMtmller copies these prop-

erties to its own properties having the same names. The client application examines the
error properties of the BDT controller to determine if an error occurred.

When returning error information, the most important property to set in the conversion
routine is ErrorCode. If this property is not set, the BDT controller and the client appli-
cation do not know that an error has occurred because they make program flow
decisions based on ErrorCode.

If you set ErrorCode, also set ErrorMsg, giving the client application a message to dis-
play to the user. To provide the most information to the client application, set ErrorPos
and then optionally set ErrorLen.

When converting from formatted data to raw data, your conversion routine can range
from very forgiving in the input allowed to very strict. For example, a forgiving conver-
sion routine may throw away any non-numericreleters in a numeric BDWithout
returning arerror,while a strict conversion routine might require the input to match a
rigid format to be converted without error.

A forgiving conversion routine is easier to code because it contains comparatively few
validations. Coding a strict conversion takes more time and may be more difficult to if
the routine must examine the input character-by-character to determine if it is valid.
However, your error messages can be more informative.

—140 -

Using Business Data Types (BDTSs)

Handling Runtime Errors

Your conversion routine should use Visual Basic runtamer hadling to trap any

runtime errors that may occur. If they are not trapped by the conversion routine, Visual
Basic transfers the error up the call chain to the first enabled error handler. The BDT
controller that called the conversion routine has an enabled error handler and converts
the error into &H80040206 — An unhandled runtime error occurred when calling the
method %1 in object %2:Error %3, %4.

The client application is typically not prepared to handle a runtime error that occurs in
a conversion routine that it called indirectly. Téfere, it is imperative thatisual Ba-

sic runtime errors are trapped in the conversion routines and translated into BDT-
specific errors that are documented and returned in the error properties of
BDTConversion.

Creating and Customizing BDTs

This section discusses how to create and customize BDTs. The client/server and web
frameworks use an open hitecture that allows you to add business data types tailored
to your application specifications.

BDTs and the Client/Server Framework

This section discusses how the client/server framework uses BDTs. For information
about creating BDTs for the web framework, B&Ts and the Web Framework
page 150.

Understanding the BDT Objects

The Construct Spectrum client framework has two objects that support BDTs: BDT-
Controller and BDTConversion. The properties and methods of these objects are shown
in the following diagram:

-141 -

Construct Spectrum SDK Reference

Key
[/

Object
popary
Method

RegisterBDT ConvertToDisplay
DeregisterBDT ConvertFromDisplay
GetBDTRoutine ConvertinPlace
BDTController }_RegisterNaturaIBDTMapper CreateSampleString
GetBDT ErrorCode
ErrorMsg
ErrorPos
ErrorLen
Conversion FormatLength
BDTConversion FormattedData Format
RawData Length
Modifiers Decimals
Modifier BDTName
HasModifier SetBDTName
ErrorCode ErrorPos
ErrorMsg ErrorLen

Properties and Methods of the BDT Objects

The BDTController object is used by the application to register its BDTs (the startup
code in the Construct Spectrum cliér@mework doeshis for you) and to call BDT
conversion routines.

Each of the ConvertToDisplay, ConvertFromDisplay, ConvertinPlace, and CreateSam-
pleString methods and the ErrorCode, ErrorMsg, ErrorPos, and ErrorLen error
properties are discussed in separate sections in this chapter. The remaining methods are
related to registering BDTs, which is describedRiygister a BDT, page 145.

~142 -

Using Business Data Types (BDTSs)

Create BDT Conversion Routines

BDT conversion routines must be implemented as public methods of an OLE automa-
tion object. This object can reside in an in-process server, an out-of-process server, or
as a class in the Visual Basic project.

All BDT conversion routines must have the following syntax:
Public Sub xxx(BDTC As BDTConversion)
wherexxxcan be any name.

The following table describes all of the properties and methods of the BDTConversion
object for the client/server framework. For the examples, assume the following call was
made:

strHours = BDT.ConvertToDisplay(dblHours, _

"Numeric,ZERO=0OFF,ROUND=2,STRICT=ON", _
|IN3.2II)

Property or Method Description

Conversion Tells the conversion routine what type of conversion to
perform. Can be one of the falving constants:

bdtConvertToDisplay
bdtConvertFromDisplay
bdtCreateSampleString

FormattedData and Is one of the following:

RawData « When Conversion = bdtConvertToDisplay, the
conversion routineeads the value in RawData, formats
it for display, and assigns the formatted string value to
FormattedData.

« When Conversion = bdtCreateSampleString, the
conversion routine assigns a sample string to
FormattedData. For example:

With BDTC
Select Case .Conversion
Case bdtConvertFromDisplay
.RawData = cvtToRaw(.FormattedData)
Case bdtConvertToDisplay
.FormattedData = cvtToDisp(.RawData)
Case bdtCreateSampleString
.FormattedData = createSample()
End Select
End With

Modifiers Returns the number of modifiers specified by the caller. In
the example, Modifiers returns 3.

—-143 -

Construct Spectrum SDK Reference

Property or Method

Description (continued)

Modifier

Note:

HasModifier

FormatLength

Format, Length, and
Decimals

BDTName

Note:

SetBDTString

ErrorCode, ErrorMsg,
ErrorPos, and ErrorLen

Returns the value of a specific modifier or can be used to
enumerate the modifiers used. In the example:

With BDTC
Print .Modifier("ZERO") ' Prints "OFF"
Print .Modifier(1) ' Prints "ZERO"
Print .Modifier(2) ' Prints"ROUND"
Print .Modifier(.Modifier(1))' Prints "OFF"
End With

Modifier names, such as ZERO or ROUND, are passed to
the BDT conversion routine in upfraseYou do not have

to use case-sensitive string comparisons when checking
which modifiers were used.

Returns True if a specified modifier was used and False if
not. In the example:
With BDTC

Print .HasModifier("ZERO") ' Prints True

Print .HasModifier("ROUND") ' Prints True

Print .HasModifier("DEC") ' Prints False

Print .HasModifier("#$%"&") ' Prints False
End With

Returns the Natural format string used in the call. In the
example, FormatLength returns N3.2.

Returns the format, length, and decimal portions,
respectively, of the Natural format string used in the call.
In the example, Format contains N, Length contains 3, and
Decimals contains 2.

Returns the name of the BDT from the call. Inthe example,
BDTName contains Numeric.

BDT names are passed to the BDT conversion routine
with the capitalization used when the BDT was registered.
For example, if RegisterBDT was called to register the
BDT miIxEdCase, and then ConvertToDisplay was called
for the BDT MixedCase, BDTC.BDTName contains
mIxXEdCase.

Changes the BDT name and modifiers in the
BDTConversion object.

Contain error information. The conversion routine should
assign values to these properties if a conversion error
occurred.

—144 —

Using Business Data Types (BDTSs)

To see how these properties and methods are used in BDTs, examine the conversion
routines in the StandardBDTs.cls and CustomBDTSs.cls modules.

Register a BDT

To make a BDT available to an application, the BDT controller needs to know about
the BDT. This is done by registering the BDT with the BDT controller. To register the
BDT, tell the BDT controller the name of the BDT and provide a pointer to the conver-
sion routine. Conversion routines must be implemented as methods of an OLE
automation object. To invoke a method, you must have a reference to the object in an
object variable. The pointer to the BDT conversion routine consists afremek to an
object and the name of a public method in that object.

The registration process is shown in this example from the Construct Spectrum client
framework.This code creates the BDT controller and instantiates the objects that con-
tain the BDT conversion routines:

Public BDT As New BDTController
Private Sub InitializeBDTs()

Dim StandardBDTs As New StandardBDTs
Dim CustomBDTs As New CustomBDTs

StandardBDTs.SelfRegister BDT
CustomBDTs.SelfRegister BDT

End Sub

The registration actually occurs in the SelfRegister methods. The following example
shows registration within the StandardBDTs class:

Public Sub SelfRegister(BDT As BDTController)
BDT.RegisterBDT "Alpha", Me, "Convert_Alpha"
BDT.RegisterBDT "Boolean”, Me, "Convert_Boolean"
BDT.RegisterBDT "Numeric", Me, "Convert_Numeric"
BDT.RegisterBDT "Currency”, Me, "Convert_Currency"
BDT.RegisterBDT "DateTime", Me, "Convert_DateTime"
End Sub
In the RegisterBDT method, the first parameter is the name of the BDT, the second pa-
rameter is the object reference, and the third parameter is the name of a conversion

routine in the object (a public method).

The BDT controller maintains a list of all BDT names internally along with the object
reference and method to call for each.

—145 -

Construct Spectrum SDK Reference

Deregister a BDT

To deregister one or more BDTSs, call the DeregisterBDT method as follows:

BDT.DeregisterBDT ' Deregisters all BDTs.
BDT.DeregisterBDT Me ' Deregisters only the BDTs in the

' specified object.
BDT.DeregisterBDT Me, "Numeric" 'Deregisters only the Numeric BDT in

' the specified object.
Deregistering BDTs is useful if you need to releasesédirences to an object so that
the object can be destroyed. You can then recreate the objecti@gister all BDTs
it implements.

Locate the Conversion Routine for a BDT

To locate the conversion routine for a given BDT, use the GetBDTRoutine to return the
object reference and riid name of the conversion routine. The syntax is:

Sub GetBDTRoutine(BDTName As String, _
ByRef Handler As Object, _
ByRef ProcName As String)

If the BDT name has not been registered, Handler will contain Nothing and ProcName
will contain an empty string on return.

—146 -

Using Business Data Types (BDTSs)

Create a Natural-to-BDT Mapper

The BDT controller calls a Natural to BDT mapper function when the application uses
a conversion function and a Natural format is provided, instead of the name of a BDT.
The mapper provides the most appropriate BDT to use for each Natural format.

A mapper function must be registered with the BDT controller just as BDTs are regis-
tered. In Construct Spectrum, the mapper is implemented as a method of the
StandardBDTs class and is registered in its SelfRegister method as follows:

Public Sub SelfRegister(BDT As BDTController)
BDT.RegisterNaturalBDTMapper Me, "NaturalBDTMapper"
End Sub

Public Function NaturalBDTMapper(Format As String, _
Length As Long, _
Decimals As Integer) As String

Dim sbdtstring As String

'BDT name was not provided. Pick a default BDT name based on the
" Natural format.

Select Case Format

Case "A": sbdtstring = BDT_ALPHA & ", TRIM=LT"
Case "B": shdtstring = BDT_ALPHA

Case "D": sbdtstring = BDT_DATE

Case "F": shdtstring = BDT_NUMERIC

Case "I": shdtstring = BDT_NUMERIC

Case "L": shdtstring = BDT_BOOLEAN

Case "N": sbdtstring = BDT_NUMERIC

Case "P": shdtstring = BDT_NUMERIC

Case "T": shdtstring = BDT_TIME

End Select

NaturalBDTMapper = shdtstring

End Function

The GetBDT method of the BDT controller returns the name of the BDT used for the
given Natural format. Using the mapper in the previous example:

Print BDT.GetBDT("D") ' Prints "Date"
Print BDT.GetBDT("L") ' Prints "Boolean"
Print BDT.GetBDT("N6") ' Prints "Numeric"
Print BDT.GetBDT("N6.2") ' Prints "Numeric"

- 147 -

Construct Spectrum SDK Reference

Other Considerations

The following sections contain other considerations when creating BDTSs.

Use One Conversion Routine with Multiple BDTs

When you register a BDT, you can use the same function pointer for multiple BDTs.
For example:

BDT.RegisterBDT "AccountNumber", Me, "Convert_Numbers"

BDT.RegisterBDT "DeptNumber”, Me, "Convert_Numbers"

BDT.RegisterBDT "GroupNumber", Me, "Convert_Numbers"

BDT.RegisterBDT "FileNumber", Me, "Convert_Numbers"

When the application uses the BDT, the conversion routine checks the BDT name to

determine what conversion to perform:

Public Sub Convert_Numbers (BDTC As BDTConversion)
Select Case BDTC.BDTName
Case "AccountNumber"

Case "DeptNumber"”, "GroupNumber"
Ca.s"e "FileNumber"

En.c.i.SeIect
End Sub

Placement of the Conversion Routine

When you create a new BDT conversion routine, you can add it to an existing class or
you can create a new class. Using the client framework, adding the conversion routine
to the existing StandardBDTs or CustomBDTs module requires the fewest changes to
the code. You need only add a method and then change the SelfRegister method to reg-
ister the new BDT.

Warning:

When you save the updated version of the class, ensure that you do not overwrite the
version in the Construct Spectrum client framework directory, unless you want the up-
date to affect all existing and new projects that point to that class.

If you create a new class, change the Initiali2éB procedure in the Startup module to
instantiate the class and call its SelfRegister method.

—148 -

Using Business Data Types (BDTSs)

Override a Supplied BDT

When the same BDT name is registered with the BDT controller more than once, the
last one registered is used. This feature can be used if you want to replace a supplied
BDT (conversion routine) with your own. As long as you register your BDT conversion
routine last, it will be called instead of the supplied one.

If you are replacing a supplied BDT routine with your own, you can use the GetB-
DTRoutine method to get the pointer to therent BDT routine before registering your
own and call the original BDT routine in certain cases:

Private m_OldHandler As Object
Private m_OIldProcName As String

Public Sub SelfRegister(BDT As BDTController)

' Save the pointer to the old routine.
BDT.GetBDTRoutine "Currency”, m_OIldHandler, m_OldProcName
BDT.RegisterBDT "Currency”, Me, "Convert_Currency"

End Sub
Public Sub Convert_Currency(BDTC As BDTConversion)

With BDTC
Select Case .Conversion
Case bdtConvertToDisplay
' Custom conversion.

Case Else
' Call the old routine.
InvokeMethod m_OldHandler, m_OldProcName, Array(BDTC)
End Select
End With

End Sub

This example uses the InvokeMethod procedure in the Construct Spectrum client
framework. The l@okeMethod procedure can call any public method of any object by
passing in a reference to tbbject and the name of the method in a string.

Reference BDTs in Your Application

Each BDT in the StandardBDTs and CustomBDTs classes of the client framework has
an associated named constant in BDTSupport.bas. The name of the constant is the same
as the name of the BDT except it is in uppercase and prefixed wiXii “B Instead of

using the BDT name directly through the application, use the named constant. This al-
lows the Visual Basic compiler to check that the BDT is defined in the framework.

When youcreateyour own BDTSs, ensure that you add the named constants to
BDTSupport.bas.

—149 -

Construct Spectrum SDK Reference

BDTs and the Web Framework

The Construct Spectrum web framework uses objects in the BDTLIib6 object library to
support BDTs. The following diagram shows these objects, as well as their properties

and methods:

ConvertFromDisplay RegistryRootKey
ConvertToDisplay ErrorCode
ConvertInPlace ErrorMsg
k CreateSampleString ErrorPos
N CreateSortableString ErrorLen
RegisterBDT DeregisterBDT
RegisterNaturalBDTMapper GetBDT
GetBDTRoutine
BDTName Reset
Conversion SetBDTName
BDTConversion @7 FormattedData | FormatLength
RawData Length
Format Decimals Key
Modifier Object
Count
Add
Remove
Item
L >/ BDTModifier i— Name
Value

‘ IBDT

@7 Convert
SelfRegister
‘ IBDTMapper @—{ NaturalBDTMapper

Methods and Properties for the Web Framework Objects

—-150 -

Using Business Data Types (BDTSs)

Implement BDTs in the Web Framework

In the Construct Spectrum web framework, BDT conversion routines reside inside a Vi-
sual Basic class module that implements the IBDT interface. This type of Visual Basic
class is called a BDT class, which:

+ Implements the IBDT int#ace
« Contains a BDT conversion routine
The IBDT interface has two methods:

Method Description

Convert The BDT controller calls this method to perform a conversion. It
passes in a BDTConversion object that contains details about the
conversion to begrformed.

SelfRegister In this method, the BDT class must tell the BDT controller the names
of the BDTs that it implements.

The following sections describe the steps to implement a BDT in a web framework.

Register BDTs in the Web Framework

When an application needs to use a BDT, it calls the BDT controller and specifies the
name of the BDT it wants to use (such as Boolean). The BDT controller knows how to
locate and call the BDT conversion routine by registering the BDT class with the BDT
controller.

This allows the BDT controller to associate the name of a BDT with a BDT class. When
the BDT controller needs to call the conversion routine, it creates an instance of the
BDT class, gets a reference to the class’ IBDT interface, anityfoels the Convert
method.

Use one of the following techniques to register BDT classes with the BDT controller:
Register BDT classes using the Windows Registry

2 Explicitly register BDT classes
The following sections describe each of these options.

—-151 -

Construct Spectrum SDK Reference

Register BDT Classes Using the Windows Registry

The first technique for registering a BDT class is to use the Windows Registry to list all
of the BDT classes installed on the PC. For the standard BDTs supplied with the web
framework, the fobbwing excerpt from the Registry shows how this is done:

HKEY_LOCAL_MACHINE

Software
Software AG
Business Data Types

Alpha
ProgID = StandardBDTs6.BDTAIpha

AlphaMultiline
ProgID = StandardBDTs6.BDTAIphaMultiline

Boolean

ProgID = StandardBDTs6.BDTBoolean

Notice the names of the BDTs under the Business Data Types key. Each BDT key con-
tains a ProgID string value that tells the BDT controller the programmatic ID (progID)

of the class that implements the BDT conversion routine. Knowing the progID allows
the BDT controller tacreate an instance of the BDT class.

The following example shows how the BDT controller locates and calls the BDT con-
version routine for the Boolean BDT:

The BDT controller looks up the ProgID value under the Boolean key and finds the
name “StandardBDTs6.BDTBoolean”.

It uses the Visual Basic CreateObject function to create an instance of this class. By
using the facilities of COM, CreateObject loads the ActiveX DLL that implements the
BDT class (StandardBDTs6.dll) and creates an instance of the BDT class
(BDTBoolean).

The BDT controller calls the SelfRegister method in the IBDT interface implemented
by the BDT class. For example:
Private Sub IBDT_SelfRegister(BDT As BDTController)

BDT.RegisterBDT "Boolean”, Me
End Sub
The BDT class calls the BDT controller’'s RegisterBDT method, passing in the name of
the BDT and an object referenceitself.

The RegisterBDT method in the BDT controller stores the BDT name and the object
reference in an internal table. The BDT controller uses this table as a cache to store
object references so it doesn’'t have to create a new instance of the BDT class each time
the application uses the BDT.

The BDT controller now has aference to an instance of the BDT class, and calls the
Convert method in the class’ IBDT aerface.

The next time the application uses the Boolean BDT, the BDT controller looks at its in-
ternal table first and finds the BDT name and object reference. It can then call the
Convert method immediately without having to perform the previous steps.

-152 -

Using Business Data Types (BDTSs)

Placing BDT classes in an ActiveX DLL and using the Windows Registry to list them
has the following advantages:

BDT classes can be shared by many applications. By implementing BDT classes in an
ActiveX DLL, they can be developed, tested, and enhanced separate from any
application.

An application that needs to use BDTs does not have to explicitly register all of the
BDTs that it will use. The BDT controller simply locates and loads the BDT class con-
taining the conversion routine dynamically at runtime whenever it is needed.

BDTs can be added to a PC by installing the ActiveX DLL that contains them and then
registering the new BDTs to the BDT controller by adding Registry keys under
HKEY_LOCAL_MACHINE\Software\Software AG\Business Data Types.

Explicitly Register BDT Classes

The second technique for registering a BDT class is to explicitly call the BDT control-
ler's RegisterBDT method in your application’s startup code. For example:

Public Sub Main

' Register the BDTs used by the application.
RegisterBDT "Phone", New BDTPhone
RegisterBDT "ZipCode", New BDTZipCode
RegisterBDT "UPC", New BDTUPC

' Show the application's main form.
frmMain.Show

End Sub

In this example, the RegisterBDT method is called. For each BDT, the name of the BDT
and a reference to amstance of the BDT class that implements the BDT conversion
routine is passed. The BDT controller stores the BDT name and reference in its internal
table in a similar way as it does with the Windows Registry.

Because the BDT controller is a global, multi-use object, it can be invoked with its
properties and methods (such as RegisterBDT) as if they were global functions.

Explicitly registering BDT classes in your application has the following advantages:

You can create private BDTs that are available only inside your application. They can
be developed, tested, and enhanced with your application.

Extra keys do not need to be added to the Windows Registry to tell the BDT controller
about the BDTs.

—-153 -

Construct Spectrum SDK Reference

BDT Conversion Object

In the Construct Spectrum web framewaork, BDT conversion routines reside inside BDT
classes. The following table describes the properties and methods of the BDT Conver-
sion object. In the examples used in the table, assume the following call was made:

strHours = ConvertToDisplay(dblHours, _

"Numeric,ZERO=0OFF,ROUND=2,STRICT=ON", _
IIN3.2|I)

Property or Method Description

Conversion Tells the conversion routine what type of conversion to
perform. Can be one of the falving constants:

bdtConvertToDisplay
bdtConvertFromDisplay
bdtCreateSampleString

FormattedData and Should be one of the following:

RawData « When Conversion = bdtConvertFromDisplay, the
conversion routine reads the value in FormattedData,
converts it into a Visual Basic data type, and assigns the
new value to RawData.

» When Conversion = bdtConvertToDisplay, the
conversion routineeads the value in RawData, formats
it for display, and assigns the formatted string value to
FormattedData.

« When Conversion = bdtCreateSampleString, the
conversion routine assigns a sample string to
FormattedData. For example:

With BDTC
Select Case .Conversion
Case bdtConvertFromDisplay
.RawData = cvtToRaw(.FormattedData)
Case bdtConvertToDisplay
.FormattedData = cvtToDisp(.RawData)
Case bdtCreateSampleString
.FormattedData = createSample()
End Select
End With

Modifier.Count Returns the number of modifiers specified by the caller. In
the example, Modifier.Count returns 3.

Modifier Returns the value of a specific modifier or can be used to
enumerate the modifiers used. In the example:

With BDTC
Print .Modifier("ZERO") ' Prints "OFF"
Print .Modifier(1) ' Prints "ZERO"
Print .Modifier(2) ' Prints"ROUND"
Print .Modifier(.Modifier(1))' Prints "OFF"
End With

— 154 -

Using Business Data Types (BDTSs)

Property or Method

Description (continued)

Note:

FormatLength

Format, Length, and
Decimals

BDTName

Note:

SetBDTString

ErrorCode, ErrorMsg,
ErrorPos, and ErrorLen

Modifier names, such as ZERO or ROUND, are passed to
the BDT conversion routine in uppraseYou do not have

to use case-sensitive string comparisons when checking
which modifiers were used.

Returns the Natural format string used in the call. In the
example, FormatLength returns N3.2.

Returns the format, length, and decimal portions,
respectively, of the Natural format string used in the call.
In the example, Format contains N, Length contains 3, and
Decimals contains 2.

Returns the name of the BDT from the call. In the example,
BDTName contains Numeric.

BDT names are passed to the BDT conversion routine
with the capitalization used when the BDT was registered.
For example, if RegisterBDT was called to register the
BDT miIxEdCase, and then ConvertToDisplay was called
for the BDT MixedCase, BDTC.BDTName contains
mIxXEdCase.

Changes the BDT name and modifiers in the
BDTConversion object.

Contain error information. The conversion routine should
assign values to these properties if a conversion error
occurred.

—155 -

Construct Spectrum SDK Reference

Create the BDT Class

A different class module is usually used for each BDT. You can also group a set of re-
lated BDTs in a class module toesh conversion utines or code. For example, a BDT
called PartNumber might be implemented by a class called BDTPartNumber. You can
name your class as desired.

The basic structure of a BDT class when implemented in Visual Basic is:
Option Explicit

Implements IBDT

Private Sub IBDT_Convert(BDTC As BDTConversion)

Select Case BDTC.Conversion

Case bdtConvertToDisplay
BDTC.FormattedData = ...

Case bdtConvertFromDisplay
BDTC.RawData = ...

Case bdtCreateSample String
BDTC.FormattedData = ...
Case bdtCreateSortableString
BDTC.FormattedData = ...

End Select

End Sub

Private Sub IBDT_SelfRegister(BDT As BDTController)

BDT.RegisterBDT "<BDT name>", Me
End Sub
The BDT conversion routine is implemented in the IBDT_Convert procedure. It uses
the properties of the BDTConversion object to determine what type of conversion to
perform (onvert to display, convert from display, create sample string, or create sort-
able string), to get information about the modifiers used, the Natural format specified,
and to return the converted value.

You can examine the BDT classes in the StandardBDTs sample project to see how these
properties and methods are used in BDTs.

- 156 —

Using Business Data Types (BDTSs)

Other BDT Controller Methods
To deregister one or more BDTSs, call the DeregisterBDT method as follows:

DeregisterBDT ' Deregisters all BDTSs.
DeregisterBDT Me ' Deregisters only the BDTs in the
' specified object.
DeregisterBDT Me, "Numeric" ' Deregisters only the Numeric BDT in
' the specified object.
Deregistering BDTs is useful if you need to releasesédirences to an object so that
the object can be destroyed. The object can then be recreated and re-registered with all

the BDTs it implements.

If the conversion routine for a given BDT needs to be located, use the GetBDTRoutine
to return the object reference of the BDT class that implementsitiversion routine.

The syntax is:

Sub GetBDTRoutine(ByVal BDTName As String, ByRef Handler As IBDT)

If the BDT name has not been regigtd, Handler @antains Nothing on return.

Create a Natural-to-BDT Mapper

The BDT controller calls the Natural to BDT mapper function when the application
uses a conversion function and provides the Natural format, instead of the name of a
BDT. The mapper provides the most appropriate BDT to use for each Natural format.

A mapper function must be registered with the BDT controller as BDTs are registered.
Using the Windows Registry technique, use the following Registry key:

HKEY_LOCAL_MACHINE
Software
Software AG
Business Data Types
NaturalBDTMapper
ProglD=StandardBDTs6.NaturalBDTMapper

You can also explicitly register the mapper function using the RegisterNaturalBDT-
Mapper function:

Public Sub Main

RegisterNaturalBDTMapper New NaturalBDTMapper

' Show the application's main form.
frmMain.Show

End Sub

- 157 -

Construct Spectrum SDK Reference

This class must implement the IBDTMapper interface. The following example shows
how the mapper function is implemented in the StandardBDTs sample project:

Option Explicit
Implements IBDTMapper
Private Function IBDTMapper_NaturalBDTMapper(Format As String, _

Length As Long, _
Decimals As Integer) _

As String

Select Case Format
Case "A"

IBDTMapper_NaturalBDTMapper = "Alpha, TRIM=T"
Case "B", "C"

IBDTMapper_NaturalBDTMapper = "HexBytes"
Case "D"

IBDTMapper_NaturalBDTMapper = "Date"
Case "F", "I", "N", "P"

IBDTMapper_NaturalBDTMapper = "Numeric"
Case "L"

IBDTMapper_NaturalBDTMapper = "Boolean"
Case "T"

IBDTMapper_NaturalBDTMapper = "DateTime"
End Select

End Function

The NaturalBDTMapper method must return the most appropriate BDT to use for the
given Natural format/length specified.

Once a mapper function has been registered, the GetBDT method of the BDT controller
returns the name of the BDT used for the Natural format. Using the previous mapper:

Print GetBDT("D") ' Prints "Date"
Print GetBDT("L") ' Prints "Boolean"
Print GetBDT("N6") ' Prints "Numeric"

—158 -

Using Business Data Types (BDTSs)

Create One BDT Class with Multiple BDTs

One BDT class can implement BDT conversion routines for multiple BDTs. For
example:
Private Sub IBDT_SelfRegister(BDT As BDTController)

RegisterBDT "AccountNumber", Me

RegisterBDT "DeptNumber", Me

RegisterBDT "GroupNumber", Me

RegisterBDT "FileNumber", Me
End Sub

When the application uses the BDT, the conversion routine checks the BDT name as
follows to determine what conversion to perform:

Public Sub IBDT_Convert(BDTC As BDTConversion)
Select Case BDTC.BDTName

Case "AccountNumber"
Select Case BDTC.Conversion

Case "DeptNumber", "GroupNumber"
Select Case BDTC.Conversion

Case "FileNumber"
Select Case BDTC.Conversion

End Select

End Sub

—159 -

Construct Spectrum SDK Reference

—-160 —

DEBUGGING YOUR CLIENT/SERVER
APPLICATION

This chapter describes how to debug client/server applications created using Construct
Spectrum.

The following topicsare covered:
« Overview, page 162
» Types of Errors, page 165
» Generating Debug Data page 167
* Running Spectrum Dispatch Services Onlingpage 174
» Using Natural Debugging Toolspage 175
» Debugging Tools on the Client and Servempage 177
« Troubleshooting, page 183
For related information, see:

» Construct Spectrum Messadesa list of each Construct Spectrum error with possible
causes and solutions.

» Natural documentation
Refer to the Natural documentation for infotina on the Natural Debugging facility.

» Microsoft Visual Basic Programmer’s Guide
Refer to the Delyging chapter for information on the debugging environment for Vi-
sual Basic applications, including the kinds of errordediint modes, and the
debugging tools available.

-161 -

Construct Spectrum SDK Reference

Overview

Client/server applications are more complex than traditional, single-platform applica-
tions. Multiple computers are connected together, requiring a communication layer that
opens the door for new types of errors. In client/server applications, errors can occur in
more than one place. Server components must be developed as callable routines without
a user interface. Data values have different internal representations on the client and on
the server. All of these distributed computing issues for client/server applications allow
more room for errors.

Because it is not always apparent where the errors occur, debugging client/server appli-
cations can be more difficult than debugging single-platform applications. Errors may
occur within the client softare, the server software, thetwerk layer, or a combina-

tion of these. To simplify the debugging process, the client framework provides tools
and procedures you can use to debug your applications.

Communication Errors

Communication errors occur during a remote call from the client application to the sub-
program. Each remote call involves many individual software components and data
files. Some software components run on the client, while others run on the server. With
so many components and different platforms involved in every call, the potential for er-
ror is greater than in non-client/server applications. A high-level list of the components
involved in a remote call includes:

« application service definitions
« client application

» EntireX Communicator

» EntireX Communicator stub
» EntireX Net-Work

» library image files

+ Spectrum Dispatch Client

» Spectrum dispatch service
« Spectrum security service

« subprogram proxy

» subprogram

Communication Error Handling

Because the client application initiates every remote call, it is also necessary to transfer
back to the client application any error that does occur. The client application takes cor-
rective action or it displays the error message to the user.

-162 -

Debugging Your Client/Server Application

Error messages return to the client application in all but the most ser@rsituaibns.

The Spectrum Dispatch Client makes the error details available to the cpéoaapn
through its error properties ErrorSource, ErrorNumber, ErrorMessage, and ErrorValue.
If DisplayErrors is set to True, the Spectrum Dispatch Client will also display the error
message in a message box.

Severe error situations that prevent ¢her message from gy returned to the client
application include:

« An interruption in the EntireX Net-Work communication between client and server.
» EntireX Communicator ends.
« EntireX Communicator times out during the subprogram execution.
« The subprogram or a Spectrum service ends the Spectrum dispatch service.
If a message cannot be returned to the client, it is written to the communication log.

For a complete list of communication errors and how to resolve ther@osestruct
Spectrum Messages

Traditional Debugging Tools
In Natural applications, logic errors are diagnosed using one of two techniques:

+ Temporarily add WRITE, DISPLAY, or INPUT statements to show the contents of
variables and the execution sequence of the program logic.

» Use the Natural Debugging facility to step through the code and the variable contents.

When a client application invokes Natural services, these traditional debugging tools
are not available. Both of these traditional debugging techniques pause the execution of
the program for user input. However, because dispatch services run in batch mode by
default, no I/O statements are possible. Nevertheless, the Spectrum dispatch service
may have reported Natural runtime errors or unexpected values back to the client. Each
of these requires investigation.

-163 -

Construct Spectrum SDK Reference

Construct Spectrum Debugging Tools
The debugging tools supplied with Construct Spectrum allow you to:

« Save the data for client requests to a Natural library on the server. This data can then be
used to recreate the request on the server and rulini¢ oviou can then use all of the
traditional Natural debugging facilities to diagnose problems. For information, see
Generating Debug Data page 167, andsing Natural Debugging Tools page 175.

» Use output statements, including WRITE, PRINT, and DISPLAY, in your Natural sub-
programs to write data to the Natural source buffer and save the source buffer to a
Natural library. You can then examine this data after the call returns to the client. Use
this technique if you do not need to run client requests online. For informatidbesee
erating Debug Datg page 167, andsing Natural Debugging Toolspage 175.

« Examine the data transmitted between the client and the server. For information, see
RequestProperty Property, page 186.

+ Examine the data expected by a subprogram proxy. Use this feature if you suspect the
data formats used by the client and server components differ. For informati@i; see
agnostics Window page 177.

~164 -

Debugging Your Client/Server Application

Types of Errors

Errors that are returned by the Spectrum Dispatch Client (SDC) fall into two categories:
runtime errors and communication errors. A third category, Spectrum system messages,
are not returned to the SDC. These messages must be viewed in the Spectrum Admin-
istration subsystem.

While most errors can be fixed on the client, others must be fixed on the server. Con-
struct Spectrum provides methods that help you track the origin and reason for errors.
These methods allow you to determine what needs to be fixed and where the repair must
be made. The types efrorsyou will encounter while designing your Construct Spec-
trum client/server application are:

« Visual Basic runtimesrrors

« Communication errors

« Natural runtime errors

» Construct Spectrusmrelated errors

« Errors that do not return an error message

This chapter describes the Construct Spectrum tools and procedures to help debug these
last three types of errors: Natural runtime errors, Construct Spectrum-related errors, and
errors that dmot return arerror message.

Visual Basic Runtime Errors

Visual Basic runtimerrors can be trapped biging the Visual Basic On Error state-

ment. These errors are the easiest to resolve because they occur in your Construct
Spectrum application in Visual Basic and allow you to use the Visual Basic-provided
debugging features to pinpoint the problem. Runtime errors are always caused by pro-
gramming errors in your code or by some problem related to the client environment,
such as a missing file.

Note: You also code business validations in your Visual Basic maintenance objects
to raise runtimerrors when a \alation fails. The Construct Spectrum client
framework traps these errors and displays thepopsup messages attached
to a GUI control.

For more information about validating your data,\éakdating Your Data, Construct
Spectrum SDK for Client/Server ApplicatioRsr a complete list of runtime errors and
how to resolve them, s&onstruct Spectrum Messages

- 165 -

Construct Spectrum SDK Reference

Communication Errors

Communicatiorerrors occur when there areptems establishing a connection to the
server. These errors are returned by the Spectrum Dispatch Client’s error properties. If
ErrorSource contains “ETB”, a communication error has occurred.

For more information, se€onstruct Spectrum Messagédso refer to the EntireX
Communicator Error Reference documeiotat

Natural Runtime Errors

Natural runtime errors may occur in your subprograms. These errors are always re-
turned to the client application by the Spectrum Dispatch Client. When the client
application uses the CallNat method of the Spectrum Dispatch Client’s dispatcher ob-
ject to call a remote subprogram and the CallNat is returned, check the dispatcher
object’s error properties. If ErrorSource contains “NAT”, a Natural runtime error has
occurred.

Construct Spectrum-Related Errors

These errors are returned by the Spectrum Dispatch Client. If ErrorSource contains
“SPE", a Construct Spectrum-related error has occurred.

For more information, including a complete list of Construct Spectrum errors and how
to resolve themseeConstruct Spectrum Messages

Errors that Do Not Return an Error Message

These errors do not return an error message, but they can cause your program to behave
unexpectedly.

- 166 —

Debugging Your Client/Server Application

Generating Debug Data

Generating debug data is a service provided by the Spectrum dispatch service. The
Spectrum dispatch service automatically saves the sorgaammtents to the Natural
system file. The source area’s contents aregdad based on values found in the trace
options set on the client. Values assigned in your user record determine the location and
name of the stored debug data.

For information, se&pecify Where to Save Debug Datpage 172.

Note: If you intend to use the Trace function, you must install Construct Spectrum
with printer 2 and 3 assigned to batch. For more information, see the main-
frame installation guide.

Save Parameter and Debug Data

For each request handled by the Spectrum dispatch service, it is possible to save the pa-
rameters passed in or out of the subprogram proxy. These parameter values are saved
to a text member within the Natural System file. It is also possible to save data that the
application code gamatesmto the source area.

The Spectrum Dispatch Client and Spectrum dispatch server support a trace option that
determines how much debug data is saved during a remote CallNat. The trace option is
set on the client before issuing the CallNat method. The Spectrum dispatch server then
examines the trace option during the CallNat to determine how much data to save.

Set Trace Options

» To set a trace option:

1 Place a break point in the Visual Basic code just before the Dispatcher.CallNat method
as follows:

— For amaintenance dialog, in the InvokeRemoteMethod function of the Visual Basic
maintenance object.

— For a browse dialog, in the CallDBLayer function of the BrowseBase class.

2 Enter “SetTraceOptions Dispatcher” in the Visual Basic Debug window, where
Dispatcher is theaference variable of Rispatcher object.
The Trace Options window is displayed:

- 167 —

Construct Spectrum SDK Reference

(%] Subprogram Proxy Trace Options

E ‘) Canhcel 1
= 1 - Data zent bo subprogram prosy will be saved

{~ 2 -Data received from subprogram prozy will be zaved
{3 - Data zent to and received from subprogrann prosy will be zaved
{~ 4 - Data will be zaved only if an eror occurs

= 5 - Data generated by application code will be saved

— Trace Option 2 Subprogram prosy conyersion efrofe————————

{* 0-FRetum as NATURAL min-time errors

{1 - RBetumn as Interface emars with full details

[T Beset trace options after call

Remote Dispatch Server Trace Options Window

3 Use this window to set trace option 1 or 2.
The following sections describe each of these options.

Trace Option(1)
Trace Option(1) controls how you save data to the Natural system file.

Trace Option(1) causes the Spectrum dispatch service to issue an END TRANSAC-
TION command. As a result of the END TRANSACTION, the current data is saved to
the debug file.

You can assign Trace Option(1) one of the following values:

Value Result
0 No tracing. Nothing is written to the Natural system file.
1 Spectrum dispatch service saves only dataived from the client and sent

to the subprogram proxy and writes it to the system file.

2 Spectrum dispatch service saves only data received from the subprogram
proxy and returned to the client and writes it to the system file.

3 Spectrum dispatch service saves both the data received from and the data
returned to the client.

- 168 —

Debugging Your Client/Server Application

Value Result (continued)

4 Server saves data only when a Natural runtime error occurs in the server
application. The data saved will be the contents of the subprogram proxy
parameters at the time the error occurred. These values may differ from the
values sent to the subprogram proxy.

5 Any data that the subprogram proxy or the subprogram writes to the
Natural source area is saved.

Note: When using trace option(1) = 3 and a subprogram that clears the source area
is called, data received from the client is lost. Only data transmitted to the cli-
ent is saved. In this case, use value 1 to save data received from the client.

If a subprogram writes data to a source area, it is then saved by the dispatcher. To write
to the source area, the application subprograms must contain a printer definition, such
asDEFINE PRINTER (DEBUG=1) OUTPUT ‘SOURCE’ . The subprogram can then write out
debug data using Natural DISPLAY, WRITE, and PRINT statements.

By default, all generated subprogram proxies contain a printer definition allowing de-
bug data to be written to the source afidds eliminates the need for you to place this
code in the generated proxy if you need to allow generation of application debug data
from inside the generated proxy routine.

To write debug data to the source area, you will write code to the beginning of the mod-
ule that will write the debug data (the START-OF-PROGRAM user exit if using
Construct-generated code). To view a sample of this default and tailored codesee

ate Debug Data page 170.

For more information about the subprogram proxy \4sag the Subprogram-Proxy
Model, page 103.

-169 -

Construct Spectrum SDK Reference

Create Debug Data

The following example shows code samples of how to include debug information in
your applications and code samples of what you might see returned.

IF *LEVEL EQ 1 THEN

DEFINE PRINTER(DEBUG=1) OUTPUT 'SOURCE'
END-IF
FORMAT(DEBUG) PS=0 LS=250 SG=OFF ZP=OFF AD=Z
To create better, more readable debug information, the DEFINE PRINTER statement
should be bounded by an IF condition that does not execute in application subprograms.
The DEFINE PRINTER statement is still required in each module that is expected to
perform WRITE statenm@s in the source area. However, based on the IF statement, the
code is never executed; it only exists to allow for the definition of a logical printer name
for the debugging target. By disallowing execution of the DEFINE PRINTER statement
in application code, the print queue remains open across all subprograms using it. Each
DEFINE PRINTER closes the print queue. While no information is lost, a new page
header is forced each time, causing less readable debug data to be produced.

Example of debug code in a series of subprograms

Subprogram 1 (SUBP1)
WRITE *PROGRAM

Subprogram 2 (SUBP2)
WRITE *PROGRAM

Subprogram 3 (SUBP3)
WRITE *PROGRAM

Subprogram 4 (SUBP4)
WRITE *PROGRAM

Results when debugging using the IF statement

SUBP1
SUBP2
SUBP3
SUBP4

-170 -

Debugging Your Client/Server Application

Results when debugging without using the IF statement

*/
Page 1

SUBP1
*/

Page 1
SUBP2
*/

Page 1
SUBP3
*/

Page 1

SUBP4
Use any output statement to generate information into the source area:

WRITE (DEBUG) NOTITLE ‘Prompt 1." #VAR1
or

PRINT (DEBUG) NOTITLE ‘Prompt 2" #VAR2
or

DISPLAY (DEBUG) NOTITLE ‘Prompt 3:" #VAR3

Note: The Natural subprograms called from the client execute in batch Natural pro-
cesses. The output will go to the printer or terminal unless you redirect the out-
put to the source area using the DEFINE PRINTER statement.

For more information about using the debug data saved with Trace Option(13jisge
Natural Debugging Tools page 175.

-171 -

Construct Spectrum SDK Reference

Trace Option(2)

This option controls how the generated subprogram proxies handle ramtiong It
works in conjunction with the Genate Trace Code field of the subprogram proxy spec-
ification. It is used to help uncover the cause of data format and data length
incompatibilities between the client and the server.

You can assign Trace Option(2) one of the following values:

Value Result

0 All errors occurring whin the subprogram proxy are handled as normal
Natural runtime errors. As a result, control does not return to the Spectrum
dispatch service and the current Error Transaction is invoked. The default
error transa@bn returns a message to the client and restarts the Spectrum
dispatch service.

1 Format conversion errors are trapped in an ON ERROR block of the
generated subprogram proxy. A Natural runtime error does not occur for
these errors, so the Spectrum dispatch service resumes control after the ON
ERROR processing. If this option is used in conjunction with the Generate
Trace Code parameter of the subprogram proxy, the field name and data
values that triggered the error are returned to the Spectrum dispatch service
and transferred to the client.

Tip: Using Trace Option(2)=0 while running a Spectrum dispatch service online can
be an effective way of determining runtime problems.

Specify Where to Save Debug Data

Settings in your user record determine where debug information is stored and how file
names are determined. User records are maintained in the Administration subsystem.

Access the Maintain User Table Panel

» To access the Maintain User Table panel:

1 Enter “SA” in the Function field on Administration Subsystem main menu.
The System Administration main menu is displayed.

2 Enter “MM” in the Function field on the System Administration main menu.
The System Administration Maintenance menu is displayed.

-172 -

Debugging Your Client/Server Application

3 Enter “US” in the Function field on the System Administration Maintenance menu.
The Maintain User Table panel is displayed:

BSUS__MP Construct Spectrum Administration Subsystem BSUS__ 11
Apr 14 Maintain User Table 1:45 PM

Action (A,B,C,.D,M,N,P) _
User ID......... . SYSTEM__

Password.................

Name..................... DEFAULT SYSTEM USER (NO PASSWORD)
Debug Library............ SYSSPEC_

Debug Filename..........: U ('T'imestamp; 'U'ser ID)

Preferred Language......: 01

GroupS.........ooo....... SYSTEM_ *

Direct Command:
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

confm help retrnquit flip pref main flip pref
main
User flip pref main

User SYSTEM displayed successfully

Maintain User Table Panel

Debug Library is the name of the Natural library where the debug file is saved. If no
library is specified or if user information is provided by Natural security, the library
name defaults to the current user ID. Debug Filename can be:

Value Result
T File name is determined by concatenating “T” with the current time value.
U File name is the same as the current user ID.

To view the generated debug members, use the Natural EDIT or LIST command.

-173 -

Construct Spectrum SDK Reference

Running Spectrum Dispatch Services Online

Instead of using trace option (1) with assigned value 5 (which writes to tteesoaa),

you can use a Natural session to initiate the service online. Initiating a dispatch service
from a Natural session allows /O to the terminal. This method is similar to the debug-
ging method discussed Pebugging Tools on the Client and Servempage 177, but

the Natural session running the dispatch service cannot perform any other tasks.

This type of dispatch Service stays active and locks control of your online Natural ses-
sion until you send it a shutdown request or until it times out because of server non-
activity.

» To start a server online:

Invoke Natural using the SYSSPEC profile.

2 Enter the following command at the Next prompt in the SYSSPEC library:

=

‘START servicename’

Note: You can also specify the Natural startup parameters in a Natural profile. For
more information, see the méiame installation guide.

Use the INPUT Statement as a Debugging Tool

If you decide to run the dispatch service online, use the INPUT statement for debug-

ging. The INPUT statement allows you to interrupt and restart the execution of code.

Use these interruptions to generate a printed copy of the INPUT statement or to copy
the INPUT statement to the source argth a %C command.

If application tracing is set (trace option 1 = 5), the dispatch service writes the inputs
copied to the sourcareainto the designated debug source member.

Tip: To guarantee that others using the same services do not generate terminal 1/0
when running the service online, bound your debug statementswitdER =
‘youruser|D’ THEN andeND-IF . As long asyouruserID’ is set to theUsER
of the session in which the dispatch service has been initiated online, only your
online dispatch service generates messages to the terminal.

Tip: When running a server online, you can shut it down using the EntireX Commu-
nicator console shutdown command. It is best to use a unique server class/server
name/service to ensure that you do not shut down another server inadvertently.

—174 -

Debugging Your Client/Server Application

Using Natural Debugging Tools

Debugging client/server applications can be difficeltduse of their distributed nature.

To make the debugging process easier, Construct Spectrum includes an invoke subpro-
gram proxy function that simulates client calls. Using this function lets you reproduce
problems like runtime errorgithout the added complexity of communication between

the client and server.

To help you use Natural to simulate client calls, the client component of generated ap-
plications can tell the server application component that data being transmitted must be
saved on the server. Using this server-based data to drive the server component allows
you access to Natural debugging techniques, such as embedded INPUT or WRITE
statements. In addition, by executing the server component locally on the server ma-
chine, you can use the Natural Debugging Facility.

For more information, se8enerating Debug Data page 167.

For information on using the Natural Debugging facility, see the Natural Utilities
documentation.

Invoke Subprogram Proxies Online

Once the debug data exists on the server, use the Invoke Proxy function in the Admin-
istration subsystem to invoke the same subprogram proxy that the client attempted to
call. The function uses the debug data to perform the function the client originally re-
guested. Once execution of the target proxy begins, one of two things can happen:

Result Response

A runtime error occurs The system traps this error and presents it as a message on
the Invoke Proxy panel.

No runtime error occurs The Invoke Proxy panel displays a message indicating that
execution of the proxy completed successfully.

If you added debug code to the target proxy and subprogram, the system is able to
present the terminal output of these statements.

If the problem is not a runtime error, use the Natural Debudgiility to place break
and watch points in the target code. You can monitor these points using the Invoke
Proxy function to examine variable contents and line-by-line execution.

—-175 -

Construct Spectrum SDK Reference

Access the Invoke Proxy Function

The Invoke Proxy function is one of the options accessible through the Application Ad-

ministration main menu.

To access the Invoke Proxy function:

Enter “AA” in the Function field on the Administration Subsystem main menu.

The Application Administration main menu is displayed.

Enter “IP” in the Function field on the System Administration main menu.
The Invoke Proxy panel is displayed:

BSSIDBGP Construct Spectrum Administration Subsystem BSSIDBG1

May 08 Invoke Proxy 09:03 AM

Debug Library: DEVDG____
Member : DEVIM___
DBID:__
FNR:__

Direct Command:

help retrn quit flip

Enter-PF1---PF2---PF3-—-PF4--PF5---PF6-

--PF7---PF8---PF9---PF10--PF11--PF12---
main

Invoke Proxy Panel

Using this panel, you can activate the Natural Debugging facility orgué statements

(INPUT, WRITE, DISPLAY, or
nose the error.

PRINT) in the Natural server modules to help diag-

By default, the system uses the FUSER or FNAT defined for the session when retriev-

ing the debug data, depending

on thedlifp name. To use an alternate FUSER or

FNAT, specify the values in the DBID and FNR fields.

Tip: Manually change the data in the debug member to generate a runtime error. Use
this test either to ensure that runtime situations can be handled properly by the
system or to force execution of code that occurs only in the case of ramtone

-176 -

Debugging Your Client/Server Application

Debugging Tools on the Clieanhd Server

The following sections describe debugging tools you can use on the client and tools you
can use on the server.

Diagnostics Window

Application developers use the Diagnostics window during application development to
diagnose parameter alignment problems between the client and server.

When invoking remote Natural subprograms from a client application, the parameters
must match in both size and format on both sides of the call. The Diagnostics window
obtains information about the remote subprogram. By examining the Dispatcher.Re-
guestProperty array after invoking Dispatcher.CallNat, the Spectrum Dispatch Client
can give you information about the local call.

The following table summarizes the information:

Returned by Diagnostics Program

Equivalent SDC Property

Number of level 1 blocks in the
parameter data of the subprogram.

Name of each block (corresponds to
the level 1 field or structure name).

Expanded size of data in each block.

Total size of the parameter data.

Image of the initialized parameter data.

Dispatcher.RequestProperty _
(“Request.DataAreas”)

Dispatcher.RequestProperty _
(“Request.DataArea(2)"”).Name

Dispatcher.RequestProperty _
(“Request.DataArea(2)")._
PackedDatalength

Not applicable.

Dispatcher.RequestProperty _
(“Request.DataArea(2)")._
PackedData

-177 -

Construct Spectrum SDK Reference

The following example shows the Diagnostics window:

[#] Diagnostics [_ [3] x|

File

H_'Hl Data Sizes I Initizhize: D ata I

— Remate Dizpatch Server

Service: |DISPATCHER - Default Dispatcher v |

Uger 1D: ISYSTEM
Paszword: I

— Subprogram Prosy Details
Domain: [DEMD

Object: [CUSTOMER
Yersion: I'I.'|.1
Method: [GET

| Get Diagnostics D ata I

Diagnostics Window, Subprogram Proxy Tab

Use this window to simulate a CallNat by providing all the Spectrum dispatch service
parameters necessary to do the CallNat.

» To use the Diagnostics window:

1 Enter your user ID and password.
These values are required for all remote requests.

2 Enterthe domain name, object name, version number, and method name to identify the
subprogram you want to call.
You can obtain this information from the Administration subsystem or from ttaeylib
image file (LIF) for your application.

3 Click Get Diagnostics Data to submit the request.
If the request is successful, the Data Sizes tab shows information about the level 1
blocks and the Initialize Data tab shows an image of the initialized parameter data.

-178 —

Debugging Your Client/Server Application

The following examples show the tabs for the DEMO/CUSTOMER/1.1.1/GET request:

[# Diagnostics
Eile

Offzet MName Size ___L_j
1 CUSTHMSA ZEZ
ZE63 CUSTHMSA-TID 3
Z59 CUSTHMEE zl
z90 CDAOETZ 35
3zk5 MEG-INFO zz k5
Total: E43

Diagnostics Window, Data Sizes Tab

-179 -

Construct Spectrum SDK Reference

[# Diagnostics
Eile

Subprogram Prosy | Data Sizes

1 [+00000 +000o000o0oo0 |
51 | |
101 |
151 |
Z01 | +00000000000. 004+000_ 00 ooo|
ZE1 1 000000000000+4+00000+4+00000000000000000000
301] oooooooooo0000000000
3E1
401
451
E0l

n o

Pozition: Lenath:

|
| +000o0

|

| +000+000+000

Diagnostics Window, Initialize Data Tab

The Initialize Data tab shows the expanded version of the parameter data. If you high-
light a portion of text, the position and length of the highlighted seatieshown at

the bottom of the window. You can use this information to help determine parameter
alignment problems. In the example above, notice the first line of text on the right side
of the window that reads “+0000000000". If you know something about the format of
the parameter data, you can infer that this value represents the PHONE-NUMBER field,
an N10 field, in the Customer object. You can then compare the format of this data to
the data sent to the server.

—180 -

Debugging Your Client/Server Application

Translations Program

Construct Spectrum uses its own ASCII/EBCDIC translation tables to convert data
when the client and server use different character sets. In most cases, you do not need
to know anything about these tables. However, when your subprograms seceive
non-printable characters in alpha fields (format A), you may want to know what the
translation tables do with those characters.

The Translations program shows you exactly how each byte value is translated from
one character set to the other. The translation tables group the 256 characters in each
character set into three sets:

Set Description

Printable characters Characters exist in both character sets; there is a well-defined
mapping from one d@racter set to thether.

Preserved characters Characters have no correspondiractdr in the other
character set and their byte values are the same in both
character sets. For example, character 0 in ASCIl is also
character O in EBCDIC, and 255 is 255.

Altered characters Characters have no correspondim@cters in the other
character set and their byte values are different in both
character sets because the byte value is already being used by
a printable character in one of the sets.

The Translations program uses colors to identify these three sets of characters. The fol-
lowing example shows the Translation Mappings window in shades of gray:

-181 -

Construct Spectrum SDK Reference

|§| Transzlation Mappings

[Printable I Frezerved [Alered
1] 1 2 3 4] B 7 a 9 By B C] E F

B0 FF[@ 82| 83 94| 85| 86| 87| 83 83 T 92 93 94| 195
95 97| 98| 93| A1 A2 A3 Ad| &S| AR| AF| AB| A3 CO| C1 Cz2
20([SB()50) C3| C4| C5(CE| C¥| C8&| C3| DO|. 2E|(«<3C|([28|+2B| D1
L26(D2| D3| D4| DE| DE| DF| DB DI| EO|! 21 ($24|=24() 29|: 3B|™ BE
-0\ #2F| E2| E3| E4| ES| EG| EF| EB| ES3(I 7C|. 2C|=®25|_G5F|>3E(? 3F
FOof F F2| F3| F4| F&5| FE| F7| F8| F9(: 3&|#23|@40|" 27 |=30 ™ 22

m M 5 O W - o oo -l M = L3 D

Translation Mappings Window

-182 -

Debugging Your Client/Server Application

Troubleshooting

This section provides quick access to the most common components you can check
when troubleshooting.

Registry Usage
The default framework stores preferences under thewolg Windows registry key:

HKEY_CURRENT_USER
Software
Software AG
CST Frameworks

The name of this key is set in the AppSettings.bas module. It can be changed to any oth-
er key in HKEY_CURRENT_USER.

Other framework components store applicatioefgrences isubkeys of this key:

Component Sub-Key Constant in CSTObjectConstants.bas
Browse BrowseObjects BROWSE_SUBKEY

Maintenance MaintPreferences MANTENANCE_SUBKEY
preferences

The following SDC preferences are stored as values under the main registry key:

Value Name Description
DispatchService Name of the dispatch service to use. This dispatch service
name is one of the names in SDC.ini.
UserlD User ID to use in calls to the dispatch service.
SDC.ini

The SDC.ini file stores Spectrum service definitions on the client. It is located in the
Windows directory. To edit the SDC.ini, use the Spectrum Service Manager.

Tip: The order of the Spectrum service definitions in this file is irrelevant.

-183 -

Construct Spectrum SDK Reference

SDCApp.ini

In the Windows directory, you can use this file to specify which dispatcher to use if
there is no DispatchService entry in the registry. This functionality is netgignused
because the network error window lets you select a dispatch definition interactively.
The syntax is:

[SDC]
DefaultDispatcher=<name from SDC.ini>

In the project directory, you can use this file to override the default LIF directory (which
is the directory where the project is stored). The syntax is:

[SDC]
LibraryPath=<full pathname of a LIF directory>

Check for Necessary DLLs

The Ping function of the Spectrum Service Manager is the best tool to use to check that
DLLs required by Spectrum are installed and are in the path. Pinging checks for the fol-
lowing DLLs (in this order):

BROKERVB.DLL (from ETB\BIN)
CDED32.DLL (from Windows\System)

Construct Spectrum Add-In

The Construct Spectrum Add-In always uses the following registry key for the SDC
preferences:

HKEY_CURRENT_USER

Software

Software AG
Construct Spectrum Add-In

When you download or upload files, the Construct Spectrum Add-In uses a default li-
brary name, DBID, and FNR. It reads these fldppSettings.bas whenever you open
a new project or use the Construct Spectrum Add-In for the first time in a Visual Basic
session.

If you change these settings in AppSettings.bas, save the project and then restart Visual
Basic to have the Construct Spectrum Add-In re-read these settings.

Visual Basic knows about the Construct Spectrum Add-In because of the following
lines in Windows\VBADDIN.INI:

[Add-Ins32]
ConstructAddIn5.Connector=1

—184 -

Debugging Your Client/Server Application

Useful SDC Properties

The SDC has many properties you can check when you get an SDC runtime error or a
communication error. Use the Visual Basic Debug Immediate function to examine
these properties. Some of these are displayed in the Network Error window.

Application Object

Property Description

LIFDirectory Directory where the SDC looks for LIF files. Defaults to
project directory (or when running an EXE, where the EXE is
located). May be overridden with the SDCApp.ini file in the
same directory.

MainLibrary Name of the main LIF file. Set in AppSettings.bas, with the
DefaultLibrary variable.

UserlD User ID to use in calls to the dispatch service.

NaturalDataArea Object

Property Description

LibrarylmageFile Name of the LIF file from which the data area definition was
loaded.

Definition Dataarea defiition as read from the LIF file.

PackedData Wire-buffer representation of the field values in the data area.

PackedDatalength Size of the wire buffer representation (in characters).

Name Name of the data area. The name may contain other

components if this data area wasated by using the FieldRef
method of another NaturalDataArea object, or if the data area
contains 1:V fields.

—-185 -

Construct Spectrum SDK Reference

Dispatcher Object

Property Description

ErrorSource One of ETB, NAT, or SPE.

ErrorNumber Error number, formatted according to the error source.
ErrorMessage Error message.

ErrorValue() Substitution parameter for the message.

RequestProperty Property

The SDCLib.Dispatcher object has a property called RequestProperty that returns in-
formation gathered during the last CallNat. The syntax for this property is:

RequestProperty(PropertyName As String) As Variant

The following property names are defined (the last column indicates whether this prop-
erty is shown in the Network Error window):

Value Name Data Type Description X

Request.AppService String Name of the application serviKe
definition (CUSTOMER, for
example). This is the first
parameter of the CallNat
method. The application service
definition is looked up in the LIF
files.

Request.DataAreas Integer Number of Natural data areaX
parameters passéauto the
CallNat method.

Request.DataAreg(Natural data 1 <=i<= Request.DataAreas. X
area Returns a reference to a
NaturalDataArea object passed
to the CallNat method.

Request.BlocksOut String Block header and data blocks (in
wire-buffer format) passed to the
subprogram proxy.

Request.BlocksIn String Blocks header and data blocks
(in wire buffer format) received
from the subprogram proxy.

—186 —

Value Name (continued)

Data Type

Debugging Your Client/Server Application

Description X

Request.Domain

Request.Object

Request.Version

Request.Method

Request.InsideTransaction

Request.DataOut

Request.RawDataln

Request.Dataln

Request.ReceivedData

Packet.CountOut

String

String

Long

String

Boolean

Byte Array

Byte Array

Byte Array

String

Integer

—-187 -

Domain name read from the X
application service definition.

Object name read from the X
application service definition.

Version number read from th&
application service definition.

Method name specified in theX
CallNat (or DEFAULT if not
specified). The number of
blocks and the blocks to send
are looked up in the application
service definition.

True if StartTransaction wa
called. All requests are sentto a
dedicated dispatcher.

ul dispatcher request, starting
with the request protocol bytes
and the format byte.

Binarysponse data received
from the dispatcher, after all
packets are assembled. Starts
with the response protocol bytes
and format byte.

Dispatcher respe message,
after decryption, expansion,
and translation to ASCII.
Starts with the 4-digit
dispatcher message number.

Request.Data converted to a
string with the
StrConv(Request.Dataln,
vbUnicode) function. If the
dispatcher message number is
“0000”, contains the same as
Request.Blockslin.

Number of packets sent to the
dispatcher.

Construct Spectrum SDK Reference

Value Name (continued) Data Type Description X
Packet.DataOui(Byte Array @) can be from 1 to
Packet.CountOut. The bytes sent
for packet.
Packet.Countin Integer Number of packets received.
Packet.Dataln] Byte Array @) can be from 1 to
Packet.CountIn. The bytes
received for packat
ETB.ConversationsID String Control block values for the last
EntireX Communicator call.
ETB.Token String Generated to be unique.
ETB.UserlD String Always “SPECTRUM-

DISPATCH-CLIENT™.

—188 —

DEPLOYING YOUR CLIENT/SERVER
APPLICATION

Once a Construct Spectrum project is developed and tested, the new application can be
copied and installed on as many client machines as required. This chapter provides an
overview of this procedure, as well as differemmsicerations to keep in mind when
deploying your client/server application.

The following topicsare covered:
« Transferring Data, page 190
« Distributing Your Application , page 191

—-189 -

Construct Spectrum SDK Reference

Transferring Data

Your test and development files mayfeli from your poduction environment. Before
deploying your application, copy the definitions from your test or development file on
the mainframe tgour production environment. To copy the file, either:

» Use the supplied data transfer utilities.
or

» Use the Administration subsystem to copy them manually.

Data Transfer Utilities

To copy definitions quickly, use the data trimsitilities. You can use these utilities to
copy domains and groups between one Spectrum system file and another.

Administration Subsystem

If desired, you can manually define and maintain the domain, application service defi-
nitions, and steplib information in the Administration subsystem.

For information about identifying where your application libraries reside on the server,
seeStep 1: Define the Steplib Chainpage 43.

For information on grouping application objects and servicesStge2: Define the
Domain, page 45.

For information on defining the domain, business object, and version of a Visual Basic
business object, séccess the Application Service Definitionspage 112.

—-190 -

Deploying Your Client/Server Application

Distributing Your Application

’

O 0o0do

To distribute your application:

Step 1: Create the Executable Filegpage 191

Step 2: Colect Files For Installation, page 191

Step 3: Install the Client Application, page 192

Step 4: Run the Application page 192

The following sections describe each of these steps in detail.

Step 1: Create the Executable File

’

1
2

The first step is to create the file to execute the application.

To create the executable file:
Open Visual Basic.
Select Make EXE File from the File menu.

Step 2: Collect Files For Installation

Next, collect the following files for installation on the target PC:

The executable file created in the previous step.

All runtime support files required by the executable file.

The library image files (istalled in the same directory as the executable file).

Any resource files your application accesses from Resource class for the client frame-
work and any sound files used by validatemors.

Any other data files used by your Construct Spectrum application.

Note: If the target PC has the Visual Basic runtime support files installed, you need
only copy the executable and the library image files to the target PC.

The procedure to ready your files for installation differs depending on whether you are
creating an installation tape, installing from disk, or using a server to copy files to the
target PC.

To create a professional setup program for your application, use the Package and De-
ployment wizard in Visual Basic or another setup toolkit. These programs ensure that
all required support files are included with your setup program. As with any external
data file used by the application, you must add the library image files to your setup pro-
gram manually.

-191 -

Construct Spectrum SDK Reference

Warning:

The Package and Deployment wizard detects that your client application uses the Spec-
trum Dispatch Client (SDC) and lists it as one of your application support files. Because
the SDC is installed separately on the targety®QG must remove the check mark from

the SDC in the list so it is not included with your setup program.

Step 3: Install the Client Application

Once you have a set of distribution files, you can install the client application on the
target PC. This procedure differs depending on whether you are creating an installation
tape, installation disks, or using a server to copy your files to the target PC. It also dif-
fers depading on which setup toolkit was usedcteateyour setup program.

There are no pregaisites for installing the client application.

Step 4: Run the Application
Before running the client application, ensure:

» The Spectrum Dispatch Client is installed on the target PC.

« That either EntireX Net-Work is installed and configured to access EntireX Communi-
cator or EntireX Communicator is configured to use TCP/IP.

You can now run your newly installed application on the target PC. If installation was
successful, your application behaves identically to your tested application in your de-
velopment environment.

If an error message is displayed, Bebugging Your Client/Server Application,
page 161, for possible causes.

Note: While all error messages are displayed on the client, some conditions can be
remedied only by a system administrator on the mainframe.

-192 -

USING THE SPECTRUM DISPATCH CLIENT

This chapter describes the Spectrum Dispatch Client (SDC), a key component of Con-
struct Spectrum development. The SDC allows you to make calls from a client to
Natural subprograms running on a server.

The following topicsare covered:
» Overview, page 194
» Calling a Natural Subprogram, page 195
» Spectrum DispatchClient Components page 197
« Advanced Features page 228
For related information, see:

« Creating Applications Without the Framework, page 235
This chapter describes the process of creating applications using Construct Spectrum
without using the client framework.

-193 -

Construct Spectrum SDK Reference

Overview

The SDC gives application developers the ability to make calls from a client to Natural
subprograms running on a server. The following examples show a parameter data area
and code for a Natural subprogram.

Example of the parameter data area for the CUSTN Natural subprogram

DEFINE DATA
PARAMETER USING NCUSTPDA
PARAMETER USING NCUSTPDR
PARAMETER USING CDAOBJ
PARAMETER USING CDPDA-M

END-DEFINE

Example of Natural code to call CUSTN

DEFINE DATA
LOCAL USING NCUSTPDA
LOCAL USING NCUSTPDR
LOCAL USING CDAOBJ
LOCAL USING CDPDA-M

END-DEFINE

*

ASSIGN NCUSTPDA.CUSTOMER-NUMBER = 10001
ASSIGN CDAOBJ.#FUNCTION = 'GET'
CALLNAT 'CUSTN' NCUSTPDA NCUSTPDR CDAOBJ CDPDA-M

END
Using the SDC, you can write similar Visual Basic code that declares these Natural data

areas, assigns values to the fields in the dat@saperforms aALLNAT, and then ex-
amines the data areas to determine the results.

Note: The examples presented throughout this chapter use Visual Basic as a model
for creating applications. You may choose to use another OLE-compliant pro-
gramming tool with Construct Spectrum.

~194 -

Using the Spectrum Dispatch Client

Calling a Natural Subprogram

’

O 0o0do

To call a Natural subprogram from the client:

Step 1. Create Parameter Data Area Instancepage 195
Step 2: Assign Values to the Fieldgpage 195

Step 3: Use the CallNat Method on the Clientpage 196
Step 4: Check the Success of the CALLNATpage 196
The following sections describe these steps in detail.

Step 1. Create Parameter Data Area Instances

s
1

To create the PDA instances:

Declare the variables for the Natural data areas expectgolnysubprogram.
For example:

Dim ncustpda As NaturalDataArea

Dim ncustpdr As NaturalDataArea

Dim cdaobj As NaturalDataArea

Dim cdpda_m As NaturalDataArea

In this example, the variable names are similar to the names of the external PDAs. For
CDPDA-M, the dash character was changed taraterscore because the dash is not

valid in a Visual Basic variable name.

Associate the name of the Natural data area with each variable.
To do this, call a routine that creates an instance of a Natural data area. For example:

Set ncustpda = SDCApp.Allocate("NCUSTPDA")
Set ncustpdr = SDCApp.Allocate("NCUSTPDR")
Set cdaobj = SDCApp.Allocate("CDAOBJ")

Set cdpda_m = SDCApp.Allocate("CDPDA-M")

This example calls the Allocate method of the SDCApp object (described later in the
chapter).

Step 2: Assign Values to the Fields

This step sets up the input parameters for the call. To assign values to the fields in the
PDAs, read and write the fields in the data areas.

The following example writes one field in each of the NCSTPDA and CDAOBJ data
areas:

ncustpda.Field("CUSTOMER-NUMBER") = 10001
cdaobj.Field("#FUNCTION") = "GET"

In this example, the NaturalDategaobject’s Field property reads and writes the fields.

—-195 -

Construct Spectrum SDK Reference

Step 3: Use the CallNat Method on the Client

This step uses the CallNat method to call a remote subprogram. The following example
uses a communications object called Dispatcher:

Dispatcher.CallNat "CUSTN", ncustpda, ncustpdr, cdaobj, cdpda_m
where:

CUSTN Is the name of the Natural subprogram to call.

ncustpda Are the names of the data areas pagstedthe subprogram.
ncustpdr

cdaobj

cdpda_m

The syntax of the CallNat method on the Dispatcher resembles a CALLNAT in a Nat-
ural program.

Step 4. Check the Success of the CALLNAT

Because this CALLNAT occurs between two machines over a network, an error may
occur. To confirm the success of the CALLNAT, examine the error properties for the
Dispatcher object. The Successful property is True if the CALLNAT succeeded. If the
Successful property is False, check the ErrorNumber, ErrorSource, and ErrorMessage
properties to find out what went wrong.

The following example checks the success of the CALLNAT:

If Dispatcher.Successful Then
' The call was successful. Read the fields in the data areas.

Else
MsgBox "An error occurred." & _
" Number =" & Dispatcher.ErrorNumber & _
" Source =" & Dispatcher.ErrorSource & _
" Message =" & Dispatcher.ErrorMessage
End If

Summary

The previous examples illustrate the process of calling Natural subprograms from the
client. There are many other details you must first specify before this example can run
successfully. These include defining the Natural data areas (see Step 1), locating and
invoking the Natural subprogram (see Step 3), and initializing the SDCApp and Dis-
patcher objects. These steps are described later in this chapter.

—-196 -

Using the Spectrum Dispatch Client

Spectrum Dispatch Client Components

The SDC provides the following key functions:
» Natural data area simulation
» Client/server communication
The following components provide Natural dataaasimulation:

Component Description

Data area defitions Define fields in the Natural data areas used by your client

applications.
Data area allocator Reads data area difits and ceates data arazbjects.
Data areabjects Provide properties and methodeetid and write Natural data

areas for your client application.

The following components provide client/server communication:

Component Description

Application service Define the Natural subprograms called by your client

definitions application.

Dispatch service Define the parameters required to communicate with the
definitions Spectrum dispatch service.

Dispatcher objects Provide properties and methods egeicit with the Spectrum

dispatch service.

For more information, se@onstruct Spectrum Messages
The following sections provide more details about each of these components.

-197 -

Construct Spectrum SDK Reference

Natural Data Area Simulation

When a client application calls a Natural subprogram, it uses parameter data areas
(PDASs) to pass parameters to the subprogram and receive parameters from the subpro-
gram. Using Construct Spectrum, you can simulate Natural data areas in Visual Basic.

The SDC components that provide this capability are the data area definitions, the data
area allocator, and the data area objects:

Data Area
Definitions

Definitions are read by the Data Area Allocator

Data Area
Allocator

The Data Area Allocator creates instances of data area objects

Data Area
Objects

Components Used to Simulate Natural Data Areas

Data Area Definitions

Data area definitions use the same syntax as an inlineudstan Natural code. These
definitions are stored in library image files.

For information, setibrary Image Files and the Steplib Chain page 227.

—-198 -

Using the Spectrum Dispatch Client

Example of the NCUSTPDA data area definition

[DataArea NCUSTPDA]
01 CUSTOMER
02 CUSTOMER-NUMBER (N5)
02 BUSINESS-NAME (A30)
02 PHONE-NUMBER (N10)
02 MAILING-ADDRESS
03 M-STREET (A25)
03 M-CITY (A20)
03 M-PROVINCE (A20)
03 M-POSTAL-CODE (A6)
02 SHIPPING-ADDRESS
03 S-STREET (A25)
03 S-CITY (A20)
03 S-PROVINCE (A20)
03 S-POSTAL-CODE (A6)
02 CONTACT (A30)
02 CREDIT-RATING (A3)
02 CREDIT-LIMIT (P11.2)
02 DISCOUNT-PERCENTAGE (P3.2)
02 CUSTOMER-WAREHOUSE-ID (A3)
02 CUSTOMER-TIMESTAMP (T)
01 CUSTOMER-ID (N5)
01 REDEFINE CUSTOMER-ID
02 STRUCTURE
03 CUSTOMER-NUMBER (N5)

The SDC supports the following features in a data area definition:
All Natural field formats: A, B, C,D, F,I,L,N,P,and T

Scalar fields

One, two, and three-dimsional arrays

Structures

Structure arrays

Redefinitions, including the FILLER keyword

Arrays with a variable number of occurrences (1:V)

—-199 -

Construct Spectrum SDK Reference

Data Area Simulation Objects

Many different SDQobjectsare inwlved in data area simulation. These objects and
their properties and methods are illustrated in the following object diagram:

@ Initialize MainLibrary
Application LIFDirectory Show
FieldRef() Name PackedData Reset
Field() PackedDataLength |FieldDefs
| Allocate —Y wINaturalDataArea |) —GetField Definition CheckFieldSpec
SetField LibrarylmageFile |Copy
ValueBuffer Show
Level LevelTypeTrail FullName
Structure Redefined LineType
A
FieldDef() —%|NaturalFieldDef ’ ——Name Rank 0cc)
A FormatLength DefinedRank VBLength
Format Fromindex() VBOffset
DataArea-
Definition Length Thrulndex()
Decimals DisplayLine
Name CheckFieldSpec
Definition VFieldCount
-ParseDataArea —-|DataAreaDefinition LibrarylmageFile [ResolveVs S Key
FieldDefs PackedDatalength Object Object
ParseFieldSpec [Structure IndexOcc() Method Method
A - -
NaturalFieldSpec ’ —FieldSpec Indices IndexFrom() Property Property
FieldName IndexType() IndexThru() Property() | Array property
FullName

SDC Objects Involved in Data Area Simulation

—200 -

Using the Spectrum Dispatch Client

Application Object

The application object is one of the externally-creatable objects exposed by the SDC. It
has the following properties and methods related to data area simulation:

Property or Method Description

Initialize method Tells the SDC the name of the library image file directory
and name of the main library.

LIFDirectory property Returns the name of the library image file directory set
with the Initialize method.

MainLibrary property Returns the name of the main library set with the Initialize
method.

Allocate method Allocates a NaturalDataea object.

Show method Displays a pop-up window showing the values of all fields

in one or more data areas (values can be edited).

ParseDataArea method Similar to Allocate, but creates a DataAreaDefinition
object that can be used to parse a data area. The
DataAreaDefinition does not store field values.

A client application peates onglobal instance of the application object and uses it to
create NaturalDataArea objects.

Example of declaring and initializing the application object

Public SDCApp As SDCLib6.Application

Public Sub Main
Set SDCApp = New SDCLib6.Application
SDCApp.Initialize App.Path, "LIBRARY"
End Sub
This example createsgobal Application object called SDCApp and then uses the ob-
ject’s Initialize method to set the library image file directory and main library.

For more information on the library image file directory and the main libraryl,isee
brary Image Files and the Steplib Chain page 227.

—-201 -

Construct Spectrum SDK Reference

Create NaturalDataArea Objects

The data area allocator reads data area definitions from library image files. It then cre-
ates NaturalDataArea objects that know the structure of their data area definitions and
allow you to read and write fields in their datza.

To create NaturalDataArea objects:

Call the Allocate method of the Application object.
The Allocate method has the following syntax:

Function Allocate (DataAreaName As String, _
ParamArray VSubstitutions() As Variant) _
As NaturalDataArea

where:
DataAreaName Is the name of a Natural data area.
VSubstitutions Is the parameter used when the data area has one or more 1.V

arrays. For information, sdeV Fields, page 233.

NaturalDataArea Class

The data area allocator creates data area objects that are instances of the NaturalDataAr-
ea class. Each object knows the structure of its own data area definition and allows you
to read and write fields in that data area.

The NaturalDataArea class defines the properties and methods of the simulated Natural
data areas. Each instance of this class stores details about its structure and maintains the
field values for a single Natural data area. A client application can create as many in-
stances of the same or different data areas as required.

-202 -

Using the Spectrum Dispatch Client

The properties and methods of the NaturalDataArea class are:

Property or Method

Description

CheckFieldSpec
property

Copy method

DataAreaDefinition
property

Definition property

Field property

Checks whether a field name is defined in the data area.
Raises a runtime error if the field name is not valid. For
example:

dataareal.CheckFieldSpec "CUSTOMER-NUMBER"
dataareal.CheckFieldSpec "ROW(1)"

Creates a copy of a NaturalDataArea object with the same
definition and the same field values. Field values changed
in one do not affect the other. For example:

Dim datal As NaturalDataArea

Dim data2 As NaturalDataArea

' Allocate a data area.

Set datal = Nat.Allocate2 (DATAAREA_CSASTD)
' Create a copy of this data area.

Set data2 = datal.Copy()

Provides information about the structure of a Natural data
area, such as the name, format, length, and level number of
each field.

Returns a multiple-line string containing the data area
definition as read from the library image file.

Reads and writes the value in a field. This property
receives a field name as a parameter. If the field is part of
an array, also specifpdex values as part of the field
name. For example:

With dataareal
.Field("CUSTOMER-NUMBER") = 10001
.Field("PHONE-NUMBER(1)") = "4165551234"
Field("STREET(1,1)") = "134 Hill Blvd."
.Field("CUSTOMER-NAME") = sname

End With

- 203 -

Construct Spectrum SDK Reference

Property or Method

Description (continued)

FieldDef property

FieldDefs property

FieldRef property

GetField method

LibrarylmageFile
property

Name property

PackedData property

Returns a NaturalFieldDef object defining a field. (For
information, sedlaturalFieldDef Class page 210.) If the
field is part of an array, any specified index values are
ignored. For example:

Dim flddef As NaturalFieldDef

Set flddef = dataareal.FieldDef("M-CITY")
If flddef.FormatLength = "A20" Then

End If
' The following two lines do the same thing.

Set flddef = dataareal.FieldDef("SALARY")
Set flddef = dataareal.FieldDef("SALARY(1)")

You can also enumerate fields in the dat@ausing a
numeric index instead of a string field name. For example:
For i =1 to dataareal.FieldDefs

Print dataareal.FieldDef(i).Name
Next

Returns the number of field definitions in the data area
definition.

Creates a new NaturalDataArea object containing a subset
of the fields. For information, sédeldRef Property,
page 228.

Reads the value in a field. Similar to the Field property,
except index values are not specified as part of the field
name but as optional parameters. For example:

With dataareal
Print .GetField("CUSTOMER-NUMBER")
Print .GetField("PHONE-NUMBER", 1)

Print .GetField("STREET", 1, 1)
End With

Returns the full file name of the library image file from
which the data area definition was loaded.

Returns the name of the data area represented by the
object. This name was passed to the Allocate method.

Returns field values for the data area §shanameric
string. Assigning an alphanumeric string to this property
replaces the field values in the data area with the values in
the string. The length of the string must be the defined. The
following example copies all field values from one data
area to another:

dataarea2.PackedData = dataareal.PackedData

—204 -

Using the Spectrum Dispatch Client

Property or Method

Description (continued)

PackedDatalength
property

Reset method

SetField method

Show method

ValueBuffer property

Returns the length of the packed data. For example:

If Len(pdata) <> dataareal.PackedDatalLength Then
MsgBox "The packed data is not" & _
"the right length."
Else
dataareal.PackedData = pdata
End If

Resets the fields in the dega # their default values. For
example:

dataareal.Reset

You can also pass a field name into the Reset method to
reset only that field. For example:

dataareal.Reset "CUSTOMER-NUMBER"

You can also reset structures and multiple occurrences of
an array. For example:
dataareal.Reset "CUSTOMER"

dataareal.Reset "STREET(*,*)"
dataareal.Reset "STREET(1,*)"

Writes the value in a field. Similar to the Field property,
except index values are not specified as part of the field
name but as optional parameters. For example:

With dataareal
.SetField 10001, "CUSTOMER-NUMBER"
.SetField "4165551234", "PHONE-NUMBER", 1

.SetField "134 Hill Blvd.", "STREET", 1, 1
End With

Displays a pop-up window showing the values of all fields
in the data area. The syntax is:
object .Show

You can edit the field values.

Sets or returns@py of the internal block of memory that
stores field values (the value buffer). Use this property to
copy a field value from one dasaea to aather. For
example:

datal .ValueBuffer = data? .ValueBuffer

— 205 -

Construct Spectrum SDK Reference

Case Sensitivity

Field names passed into the procedures of the NaturalDataArea class are not case-sen-
sitive. You can type the field name in uppercase, toase, or mixed case.

Tip: To be consistent with Natural, specify all field names in uppercase.

Alphanumeric Fields

When reading an alphanumeric field (format A), the returned value does not contain
trailing blanks. If a field contains only blanks, the value is returned as an empty string.
When assigning a value to a field, the value is truncated if it is longer than the field or
padded with spaces (internally) if it is shorter than the field.

Fully Qualified Field Names

Whenever a field name is passed into the procedures of the NaturalDataArea class or
DataArea, the field name can include the level 1 structure name as a qualifier. The level
1 structure name, however, is required if there is more than one field with the same
name in the same data area.

Example of using the level 1 structure name as a qualifier

01 CDAPROXY
02 DATA-LENGTH(14)
02 DOMAIN(AS)

02 OBJECT(A32)
02 METHOD(A32)

01 CDAOBJ

02 OBJECT(A20)

With dataarea
.Field("DOMAIN") = "TEST"
.Field("CDAPROXY.OBJECT") = "EMPLOYEE"
.Field("CDAOBJ.OBJECT") = "EMPLOYEE"
End With

— 206 -

Using the Spectrum Dispatch Client

Redefined Fields

The SDC allows you to redefine fields, arrays, and structures just as in Natural.

Example of a redefined field

01 ACCOUNT(A12)
01 REDEFINE ACCOUNT
02 COST-CENTER(A3)
02 ACCT(A4)
02 PROJECT(A5)
When the Cost-Center, Acct, or Project fields are updated, the changeriflalsted
in the Account field. Similarly, when the Account field is changed, the Cost-Center, Ac-

ct, and Project fields are updated.

Redefinitions that change the format or interpretation of data may introduce side effects
that are implementation dependent.

Example of the side effects of using redefined fields

01 OBJECT-VERSION(N6)
02 VERSION(N2)
02 RELEASE(N2)
02 MAINT-LEVEL(N2)

With myver

.Field("VERSION") = 2

.Field("RELEASE") = 1

Field("MAINT-LEVEL") = 1

Print .Field("OBJECT-VERSION")' Prints: 20101

.Field("RELEASE") = -1

Print .Field("OBJECT-VERSION")' Prints: <implementation defined>
End With

Errors When Compiling

When cataloging a Natural module, the Natural compiler checks whether fieldedefe

to in Natural source code are actually part of the data area. If a field name is not valid,
if the wrong number of index values is specified for aayafield, or if the data type is

not compatible, the Natural compiler generates a compile error.

The Visual Basic compiler cannot check for themers because it doest have
knowledge of Natural. Because the SDC provides a ruritiateral simulation layer, a
Visual Basic developer will not discover an invalid field name until the statement that
uses it is executed.

- 207 -

Construct Spectrum SDK Reference

Read Arrays and Structures

You must specify the necessary index values when reading or writing one, two, or three-
dimensional arrays. The following examples show two different ways to read array
fields.

Example of reading arrays with the GetField method

01 BROWSE-RECORDS(1:20)
02 NAME(A5)
02 OTHER-COLUMNS(A20/1:5)
o1 ...

For irow =1 To 20
Print .GetField("NAME", irow);"";

Foricol=1To5
Print .GetField("OTHER-COLUMNS", irow , icol);""
Next
Print
Next

Example of specifying a field with occurrences

Print .Field("OTHER-COLUMNS(" & irow & "," & icol & ")")

If the field has more than one dimension, specify the index values with a comma sepa-
rating them in the Field property. You can also read a structure field and return it as a
Byte array (ashough the entire structure is defined as a B1 array). This is useful when
moving occurrences of a structure array.

The following example shows how tead and write occurrences of a structure array.
This example shuffles occurrences of the Item array down to simulate deleting the oc-
currence number stored in the Deleteltem variable.

Example of a data area definition

01 ITEM(1:10)
02 NUMBER (N5)
02 DESCRIPTION (A30)
02 UNIT-COST (P7.2)
02 QUANTITY (N5)
02 TOTAL-COST (P7.2)

- 208 -

Using the Spectrum Dispatch Client

Example of reading occurrences of the Item array

With dataareal
For i = Deleteltem + 1 To 10
Field"ITEM(" & i-1 &")") = .Field("ITEM(" & i & ")")
Next
End With

Runtime Errors

Many different untime errors can result from using NaturalDataArea objects.

DataDefinitionArea Class

This class provides information about the structure of a Natural data area, such as the
name, format, length, and level number of each field. The NaturalDataArea and
DataAreaDefinition classes have many properties in common because they both store
the definition of a Natural data area. However, unlike the NaturalDataArea class, the
DataAreaDefinition class does not store field values.

The SDC provides two ways tweate an instance of a DataAreabgion: using the
ParseDataArea method of the Application class to parse an inline data area definition
or using a data area definition in an external LIF file. Optionally, you can use the
DataAreaDefinition property of a NaturalDataArea object. In the SDC, a Natural-
DataArea object uses a DataAreaDeifari object to store the structure of the data area.
The DataAreaDefinition property returns a reference to that DataAreaDefinition object.

Property or Method Description

CheckFieldSpec Checks whether a field name is defined in the data area. Raises
property a runtime error if the field name is not valid. For example:

dataareal.CheckFieldSpec "CUSTOMER-NUMBER"
dataareal.CheckFieldSpec "ROW(1)"

Definition property Returns a multiple-line string containing the entire atata
definition as read from the library image file.

FieldDef property Returns a NaturalFieldDef object defining a field. For
information, seéNaturalFieldDef Class page 210.

- 209 -

Construct Spectrum SDK Reference

Property or Method

Description (continued)

FieldDefs property

PackedDatalength
property

Returns the number of field definitions in the data area
definition.

Returns the length of the packed data. For example:

If Len(pdata) <> dataareal.PackedDatalength Then
MsgBox "The packed data is not" & _
"the right length."
Else
dataareal.PackedData = pdata
End If

NaturalFieldDef Class

NaturalFieldDef is an SDC class that returns the definition for a single field in a data
area definition. The FieldDef property of the NaturalDataArea class creates and returns
an instance of the NaturalFieldDef class. All properties defined by thisatiasead-

only. These properties are:

Property

Description

Decimals

DefinedRank

Format

FormatLength

Returns the decimal length portion of the Natural format. If the
format is not numeric or packed numeric, it returns 0. Returns
0, 0, 2, and 0 in the FormatLength example.

Returns the number of dimensions of the field in theadeaa
definition. This property works similar to the Rank property,
except it returns the number of dimensions regardless of any
structure arrays it might be part of.

Returns the Natural format character. Returns N, A, P, and D
in the FormatLength example.

Returns the format and length of the field in Natural syntax.
Returns N6, A20, P8.2, and D for the following example:

With employee
Print .FieldDef("PID").FormatLength
Print .FieldDef("FIRST-NAME").FormatLength
Print .FieldDef("SALARY").FormatLength
Print .FieldDef("HIRE-DATE").FormatLength
End With

-210 -

Using the Spectrum Dispatch Client

Property

Description (continued)

FromIndex and
Thrulndex

FullName

Length

Level

LevelTypeTrail

Returns the low and high index values for each dimension of
an array field. Returns 1,10 and 5,7 in thedwihg example:
01 VALUES(N10/1:10,5:7)
With data.FieldDef("VALUES")
Fori=1To .Rank
Print .Fromindex(i) & ":" & .Thrulndex(i)

Next
End With

Returns the fully qualified field name (includes the level 1
structure name).

Returns the length portion of the Natural format. If the format
is D, L, or T, it returns 0. Length returns 6, 20, 8, and 0 in the
FormatLength example.

Returns the field’s level number in the data aremnitieh.

Returns a string that determines the nesting of this field in the
data area definition. This string has one character for each
level. Each character can be one of the following:

« F (field)
» S (structure)
* R (redefine)
« X (filler)

-211 -

Construct Spectrum SDK Reference

Property

Description (continued)

LevelTypeTrail
(continued)

Name

Occ

Rank

Redefined

Structure

Thrulndex

For the following data area example:

01 ROW-COUNT (N2)
01 ROW (1:10)
02 ID (N6)
02 ACCOUNT-NO (A16)
02 REDEFINE ACCOUNT-NO
03 DIVISION (A4)
03 FILLER 1X
03 GROUP (A5)
03 FILLER 1X
03 ENTITY (A5)

LevelTypeTrail returns:

Print .FieldDef("ROW-COUNT").LevelTypeTrail
' Prints "F"

Print .FieldDef("ROW").LevelTypeTrail

' Prints "S"

Print .FieldDef("ID").LevelTypeTrall

' Prints "SF"

Print .FieldDef("ACCOUNT-NO").LevelTypeTrail
' Prints "SF"

Print .FieldDef("DIVISION").LevelTypeTrail

' Prints "SRF"

Print .FieldDef(7).LevelTypeTrail

' Prints "SRX"

Returns the name of the Natural field.

Returns the number of occurrences for each dimension of an
array field.

Returns whether the field is a scalar field or part of an array.
Rank indicates the number of index values that must be used
when reading or writing the field values:

» 0 (scalar)

+ 1 (one-dimensional array)
+ 2 (two-dimensional array)
» 3 (three-dimensionalreay)

Returns True if the field is redefined later in the data area
definition.

Returns the structure name if the field is part of a level 1
structure.

See FromIndex.

-212 -

Using the Spectrum Dispatch Client

Client/Server Communication

The other major function of the SDC is client/server communication. Many compo-
nents work together to enable client/server communication. These include:

» Application service definitions
» Dispatcher objects
» Dispatcher service definitions
The following sections describe these components in more detail.

Level 1 Block Optimization

Before you can understand application service definitions, you must understand level 1
block optimization. The SDC and the subprogram proxies implement this performance
optimization feature to minimize the amount of data that is transmitted between the cli-
ent and server for each remote CALLNAT.

With level 1 block optimization, each level 1 field in the parameter data of the Natural
subprogram becomes a numbered block. Each block can contain one or more Natural
fields, structures, or structure arrays. Instead of sending all parameter data between the
client and server for each remote CALLNAT, the SDC and Spectrum dispatch service
transmit a subset of the blocks in each direction.

To understand why this is useful, consider the following. For most Natural subpro-
grams, each field in the parameter data carsbigiaed a dectional attribute to indicate
whether a field passes data into the subprogram, out of the subprogram, or both.

Note: These directional attributes are not supported by Natural. However, they may
be defined in the application service definitions supported by the SDC and
coded in user exits in subprogram proxies.

The following table summarizes these directional attributes:

Directional Attribute Description

IN Passed from the caller to the subprogram.
ouT Returned from the subprogram to the caller.
IN/OUT Passed from the caller to the subprogram, optionally

modified by the subprogram, and then returned to the caller.

-213 -

Construct Spectrum SDK Reference

If the parameter data is organized such that each block (level 1 field) contains only In,
Out, or In/Out parameters, then the SDC can use level 1 block optimization to send only
the In and In/Out parameters to the subprogram proxy. The subprogram proxy can send
only the Out and In/Out parameters back to the client. In some cases, the size of the In
or Out parameters is small compared to the total size of the parameter data. Level 1
block optimization can make a significantfelience to the size of the datdrxptrans-

mitted over your network.

Note: This block optimization feature does not allow directional attributes to be as-
signed at a level of granularity finer than level 1 fields.

Occasionally, it may not be possible to assign a static directional attributeremagter
because it may change itsalition depending on the values of other parameters. This
is illustrated in the following example:

Example of parameter data for a Natural Construct object subprogram

DEFINE DATA
01 CUSTOMER [* Object PDA
02 CUSTOMER-NUMBER (N5)
02 BUSINESS-NAME (A30)
02 PHONE-NUMBER (N10)

01 NCUSTPDA-ID
02 .
01 NCUSTPDR

01 CDAOBJ
02 #FUNCTION (A15)

01 MSG-INFO
02

END-DEFINE

The object PDA is either In, Out, or In/Out, depending on the #FUNCTION flag in
CDAOBJ. When #FUNCTION contains Get, the object PDA contains data returned
from the subprogram to the caller, so it is an Out parameter. When #FUNCTION con-
tains Update, the caller is passing data in the object PDA to the subprogram, and
depending on whether the subprogram performs edits on the data, the subprogram may
also return updated values in the object PDA, so itis either an In or an In/Out parameter.

When using level 1 block optimization, thender always decides which blocks are sent
to the receiver. Sender and receiver differs from client and server because the client and
server are both senders and receivers.

—214-

Using the Spectrum Dispatch Client

Client Server
1. Request
Client is sender 4©—> Server is receiver
2. Response

Client is receiver 4—07 Server is sender

Client and Server are Both Sender and Receiver

When arequest is sent to the server, the client is the sender and the server is the receiver.
When the response is sent to the client, the server is the sender and the client is the
receiver.

In the example above,ftkrent-sized dipses show how the size of the request data may
be different from the size of the response data because the set of blocks may be
different.

Application Service Definitions

Application service definitions are defined on the server in the Administration sub-
system and on the client in a library image file. The following table compares the
information stored on the server and on the client:

Information Stored on Client Stored on Server
Domain name X X
Object name X X
Object version number X X
Method names X X
Name of subprogram proxy to X

call for each method

Steplib chain to use when calling a X

subprogram

—-215-

Construct Spectrum SDK Reference

Information Stored on Client Stored on Server

Number of level 1 fields in the X
parameter data area for each
method’s subprogram

Name of the level 1 fields sent to X
the server for each method

Example of an application service definition in a library image file

[AppService CUSTOMER]
Domain=DEMO
Object=CUSTOMER
Version=4.4.1
Method=BROWSE,,4,1+3+4
Method=DEFAULT,,5,1+2+3+4+5
Method=DELETE,,5,2+3+4
Method=EXISTS,,5,2+4
Method=GET,,5,2+4
Method=INITIALIZE,,5,4
Method=NEXT,,5,2+4
Method=STORE,,5,1+4
Method=UPDATE,,5,1+3+4

where:

[AppService CUSTOMER] Introduces the application service definition and
identifies the application service definition name.

Domain, Object, and Identify the application service definition in the
Version Administration subsystem.
Method Defines a method within the application service.

-216 -

Using the Spectrum Dispatch Client

Each method line contains four values separated by commas:
A logical method name used in your Visual Basic code.

A physical method name that corresponds to a method name in the application service
definition on the server. If this name is the same as the logical method name, it can be
omitted, as in the example above.

The number of level 1 fields in the parameter data of the subprogram associated with
the method. In the example above, the subprogram for the Browse method has four level
1 fields in its parameter data, and the subprograms for all other methods have five level
1 fields in their parameter data areas.

The names of level 1 fields sent to the server for the method. In the previous example,
only the first, third, and fourth level 1 fields are sent to the server when calling the
Browse method.

The application service definitions on the client and server work together to allow a cli-
ent application to identify which subprogram to call on the server. To use the CallNat
method on the client, do not specify a Natural subprogram to call. Instead, specify the
name of an application service definition. The SDC uses this name to look up the do-
main name, object name, and version number, and passes these values to the Spectrum
dispatch service running on the server. The dispatch service uses the values to look up
the subprogram proxy to call.

The following example shows a CallNat method on the client using the application ser-
vice definition from the previous example:

Dispatcher.CallNat "CUSTOMER.GET", ncustpda, ncustpda_id, ncustpdr, _
cdaobj, cdpda_m

Notice how the GET method name is appended to the CUSTOMER application service
name. If you do not specify a method name in the CallNat, the SDC uses the DEFAULT
method name and this method must exist in the application service definition.

-217 -

Construct Spectrum SDK Reference

Dispatcher Objects and Dispatch Service Definitions

Dispatcher is an SDC class that handles communication between the client and server.

It contains the networking components of the SDC.
The properties, methods, and related objects of the Dispatcher class are:

Application

Dispatcher objectare createdsing the CreateDispatcher method of the Application
object.

—CreateDispatcher

—DispatchServices —>| DispatcherServices Ij

Key
Object] Object
Initialize UserlD Method
LIFDirectory Password Propery
roper
MainLibrary Language pery
PasswordEmpty |BrokerSession Property() | Array property
NewPassword - - -
DispatchService |StartTransaction |[ErrorSource
CallNat Commit ErrorNumber
CallSystem Abort ErrorMessage
Compress TransactionActive |ErrorValue()
Encrypt Timeout Successful
TraceCommand |DisplayRetry DisplayErrors
TraceOption() RetryMessage Retry
[/
' —TraceAutoReset [RequestProperty() |RetryPossible
ID
Service —>|DispatcherProperties Ij Property()
j Refresh
|—Service()
Count
ServicesFile
Refresh

Dispatcher Objects

Example of creating Dispatcher objects

Dim Dispatcher As Dispatcher
Set Dispatcher = SDCApp.CreateDispatcher()

-218 -

Using the Spectrum Dispatch Client

The properties and methods of the Dispatcher object are separated into the following
functional groups:

Service selection

Remote subprogram invocation

Timeout, retry, and resume handling

Compression and encryption

Tracing

Database transaction control

Error reporting

The following sections describe each of these groups in more detail.

Service Selection

You may have multiple Spectrum dispatch services running on one or more server plat-
forms simultaneously. There could even bifedént types of Spectrunigpatch

services, each with its owrefhults, security settings, FUSER, and so on running at the
same time. Before sending any request, the client must first identify which Spectrum
dispatch service to connect to. You do this by setting the DispatchService property to
the ID of a valid Spectrum dispatch service.

The available dispatch services are defined in the Administration subsystem on the
server platform. On the client, these dispatch services are defined with the Spectrum
Service Manager.

Each dispatch service definition specifies the following values:
EntireX Communicator 1D

Server class

Server name

Service

If you are familiar with EntireX Communicator, you will recognize that this combina-
tion of values uniquely identifies an EntireX Communicator service. Each Spectrum
dispatch service is actually an EntireX Communicator service.

-219 -

Construct Spectrum SDK Reference

Remote Subprogram Invocation

To send a request to the Spectrum dispatch service, use the CallNat and CallSystem
methods. These methods return True if the call was successful and False if the call was
unsuccessful.

The CallNat method invokes a Natural subprogram on the server.

Syntax of the CallNat method

Function CallNat (ByVal AppServiceName As String, _

ParamArray DataAreas() As Variant) As Boolean
The name of the application service is always required. Following this name, you can
specify zero or more instances of the NaturalDataArea class passed as parameters to the
target subprogram. The parameters are passed by reference. When the subprogram re-
turns, any changes the subprogram made to fields in the datawredso available in
the NaturalDataArea objects. To take advantage of level 1 block optimization, you can
include a method name in the firgrameter.

Example of implementing level 1 block optimization

Dispatcher.CallNat "CUSTN.GET", custpda, custpda_id, custpdr, _
cdaobj, cdpdam

where:
GET Is the method name appended to the subprogram name. Use a period (.)

to separate the two. Only the blocks specified in the method definition
are sent to the server in the request data.

Use the CallSystem method to send system commands to the Spectrum dispatch service
or to invoke an arbitrary proxy.

—-220 -

Using the Spectrum Dispatch Client

Syntax of the CallSystem method

Function CallSystem (ByVal DomainName As String, _
ByVal ObjectName As String, _
ByVal Version As Long, _
ByVal MethodName As String, _
ByVal SendData As String, _
ByRef ReceiveData As String) As Boolean

where:

CallSystem Is the method that allows you to send system commands directly to the
Spectrum dispatch service or invoke an arbitrary subprogram proxy by
specifying its domain, object, version, and method.

Timeout, Retry, and Resume Handling

The CallNat and CallSystem methods do not return until the server sends back a re-
sponse. Inféect, your calling @plication is locked up while the server is processing the
request.

If the server does not respond, your application may not regain control and the user will
have to terminate the application. For this reason, the Dispatcher object has a request
timeout. The timeout indicates the maximum number of seconds to wait for the server
to respond. When the specified number of seconds elapse, the dispatcher does one of
two things:

Returns control to your calling application.
or

Asks the user whether or not to continue waiting.

Use the DisplayRetry property to tell the Dispatcher object what to do. To return control

to your calling application, set DisplayRetry to False. To ask the user whether to con-
tinue waiting, set DisplayRetry to True and, optionally, set the RetryMessage property
to a message string that is displayed to a user. The default message is: “The server is not
responding. Would you like to continue waiting?”

The Timeout property determines the timeout duration in seconds and can be set to any
value from -1 to 32767. Zero (0) returns control to the client application immediately.
Negative one (1) is the default and uses the timeout value specified in the dispatch
service definition.

Tip: You can use the Spectrum Service Manager to change this timeout value.

—-221 -

Construct Spectrum SDK Reference

The following flowchart illustrates the life-cycle of a full request and response
combination:

CallNat or
CallSystem

Is
this a resume
situation

Are
we resuming

the send
?

No

Yes

Send request data
to dispatch service

Did
a Broker
error occur

user want to
continue waiting
?

Start time-out Display “Continue
counter waiting?” prompt

l<
<

Did
a Broker
error occur

Has
time-out been
exceeded

response data
been received No

Set “‘resumable”
Yes flag

(Returnto caller
with resumable
Return to caller Return to caller error
; ___émor J
successful with error

Life Cycle of a Full Request/Response Combination
Showing Timeout Functionality

error class 7,
36, 37, 74, or
215

A 4

A

This example illustrates the SDC's ability to resume the processing of a request because
of a timeout or a recoverable EntireX Communicator error.

Some EntireX Communicator errors, such as resource shortages or a temporary inter-
ruption in EntireX Network, are recoverable. If sucheator occurs in the middle of
processing a request, either when sending the request data to the server or receiving the
response data from the server, the SDC can retumrtbeto the cailhg application,

which can then decide whether to resume the request or not.

—-222 -

Using the Spectrum Dispatch Client

To determine if the request is resumable, check the RetryPossible property after return-
ing from the call. If this property returns True, you may set the Retry property to True
and then reissue the call.

Example of resuming a call

Do
If .CallNat("CUSTN.GET", custpda, custpda_id, custpdr, _
cdaobj, cdpdam) Then
' Request was successful.
Exit Do
Else
smsg = "The following error occurred: " & _
.ErrorSource & ":" & .ErrorNumber & " -" & _
.ErrorMessage & vbLf & vbLf & _
"Click OK to try again or Cancel to quit."
If MsgBox(smsg, vbOkCancel) = vbCancel Then
Exit Do
End If
If .RetryPossible Then .Retry = True
End If
Loop
If an error occurs in this example, the error message is displayed to the user, along with
a prompt asking if the user wants to try again. If the user chooses to try again, the same

call is performed.

What happens during the second call depends on the setting of the Retry property. If the
error is resumable (RetryPsikle is True), set Retry to True and the previous request is
resumed. If the error is not resumable (RetryPossible is False), the second call initiates
an entirely new request.

Compression and Encryption

The SDC can compress or encrypt the request data it sends to the Spectrum dispatch
service.

Compression can significantly reduce the size of the data. This can reduce the transmis-
sion time, especially over slow network connections such as dialup connections. The
compression algorithm reduces sequences of repeating characters, which are quite com-
mon when the request and response data contain partially-filled Naturareasa

To enable compression, set the Compress property to True. To enable encryption, set
the Encrypt property to True. These properties remain set until you change them.

Note: These properties only compress and encrypt the request data sent from the cli-
ent to the Spectrum dispatch service. The decision to compress or encrypt the
response data is made in the subprogram proxy on the server.

- 223 -

Construct Spectrum SDK Reference

Tracing

Tracing options allow you to track the data transmission to and from the server. You set
these tracing options, depending on the type of data you want to trace, by setting the
properties of the Dispatcher object.

The following Dispatcher object properties are available torae¢options:
TraceOption array property with indices 1 to 15.
TraceCommand string property.

TraceAutoReset Boolean property, which automatically resets the trace options after
the call to the Spectrum dispatch service.

For more information about setting tracing options and understanding the result, see
Debugging Your Client/Server Application, page 161.

Database Transaction Control

Each request sent to the Spectrum dispatch service can be handled by a ddfsrent ¢

of the Spectrum dispatch service. While processing a request, you have exclusive access
to the server. Once the server sends the response data back to the client, the server is
available for your next request or a request sent by someone else.

The SDC also gives you exclusigecess to a specific server across more than one re-
guest. To have this exclusive access, you must specify when you want to start having
exclusive access to a server and when you are finished with it. While you have exclusive
access, the server is dedicated to your client application and only accepts requests from
you. No other client application can send requests to that server (unless you pass a ref-
erence to the Dispatcher object for another client application). Try to release the server
as soon as possible, as you are preventing others from using it and there may be a lim-
ited number of servers running.

When you have exclusive access to a server, you can also issue END TRANSACTION
or BACKOUT TRANSACTION statements from the client application and be assured
that only your requests are affected. The Dispatcher class has three methods and one
property to support exclusive use of a server:

Method or Property Description

StartTransaction method Tells the Dispatcher object that you want exclusive
access to a server.

Commit method Sends a request to the server to issue an END
TRANSACTION statement and releases the server.

Abort method Sends a request to the server to issue a BACKOUT
TRANSACTION statement and releases the server.

TransactionActive property Returns True if you have exclusieess to a server.

—224 -

Using the Spectrum Dispatch Client

Each Spectrum dispatch service has a transaction timeout value that ensures a client ap-
plication does not have exclusive access to the server for too long. The timeout period
begins as soon as the server sends the response data back to the client application. If the
client application does not send any more requests to the server within the timeout pe-
riod, the server issues a BACKOUT TRANSACTION statement and returns to the
server pool. If this happens, the client application is not notified until it tries to send the
next request. The request fails with an sdcerrTransactionTermarabed

Note: The transaction timeout period is set on the Maintain Services panels in the
Administration subsystem.

To prevent transaction timeout, try to send all requests in succession and then release
the server. If your application interacts with the user between requests (or if an error oc-
curs and you display it to the user), there is a greater possibility of transaction timeout
occurring because the user may not respond immediately.

The server is also automatically released when the Dispatcher object is destroyed (after
all object references to it are released).

Error Reporting

Errors that can occur in the Dispatcher object include:

Error Types Description

Runtime errors Raised using the standard OLE automation error handling
mechanism. For more information about runtime errors, see
Deploying Your Client/Server Application, page 189, or
Construct Spectrum Messages

Communication Occur during a remote call from the client application to the

errors subprogram. Error details are returned inettrer properties of
the Dispatcher object: ErrorSource, ErrorNumber,
ErrorMessage, ErrorValues, and Successful. For more
information about communicatiarors, se®eploying Your
Client/Server Application, page 189, o€onstruct Spectrum
Messages

- 225 -

Construct Spectrum SDK Reference

User Identification and Authentication

The Application object has ©@dD, Pa&sword, and Language properties. These proper-
ties must be set before the first request is sent to the server, but may be changed at any
time after that. These properties are:

Application Properties Description

UserlD Identifieswho you are to the server.

Password Provides authentication of your user ID.
PasswordEmpty Returns whether the Password property is set.
Language Identifies internationalized servers.

If the server uses security, it can authenticate the user ID and password for each request
and then check whether the user has the necessary permissions to execute the request.
If the server does not use security, any user ID and password assigned to these proper-
ties is ignored.

To indicate the spoken language, assign one of the Natural *\LANGUAGE codes to the
Language property. This code is sent to the server with each request. Whenever the
server returns a message string, it looks up the correct translation based on the code.

- 226 -

Using the Spectrum Dispatch Client

Library Image Files and the Steplib Chain

Library image files (LIFs) are special text files that contain SDC definitions. Each LIF
contains up to ttee different types of defitions:

« Data area defitions
For more information, séeata Area Definitions, page 198.

» Application service definitions
For more information, se&pplication Service Definitions page 215.

« Steplib definitions

Syntax of the steplib definition

[StepLibs]

CST441S

SYSTEM

A steplib definition allows multiple applications to share a set of LIFs. Each application
may have its own main library, which contains just the definitions specific to that ap-
plication. Shared definitions can be placed in other LIFs, which can be included in each
application’s steplib chain.

When searching for data area and application service definitions, the SDC first exam-
ines the main library’s LIF. If it does not find the definition there, it looks for a steplib
definition in the file. If it finds the steplib definition, it examines the LIFs for the librar-
ies in the steplib definition, beginning with the first LIF on the list.

- 227 -

Construct Spectrum SDK Reference

Advanced Features

The following sections introduce two advanced features you can use when developing
your applications. It includes:

Feature Description

FieldRef Property Defines objects as parameters without duplicating data areas to
pass objects to a Natural CALLNAT.

1.v Defines arrays with variable numbers of occurrences.

FieldRef Property

The CallNat method of the Dispatcher class only accepts NaturalDataArea objects as
parameters to pass $abprograms. You can, however, pass individual fields to a sub-
program in Natural code.

Example of passing individual fields to a subprogram

ASSIGN CBROWSEA.COUNT =10
CALLNAT 'CUSTB' CBROWSEA.COUNT
CBROWSEA.ROWS(*)

In this example, one field and all occurrences of an array are passed into a subprogram.

Example of how NOT to pass parameters to subprograms

Dim cbrowsea As NaturalDataArea

Set cbrowsea = SDCApp.Allocate("CBROWSEA")

cbrowsea.Field("COUNT") = 10

Dispatcher.CallNat "CUSTB", cbrowsea.Field("COUNT"), _
cbrowsea.Field("ROWS(*)")

In this example, the field values in CBROWSBEF passed to the Dispatcher object’s
CallNat method.

CBROWSEA

COUNT
ROWS(1:10) l

v
Dispatcher.CallNat “CUSTB”, cbrowsea.Field(“COUNT"), cbrowsea.Field(“ROWS.(I)")

CBROWSEA Fields Passed to the CallNat Method

- 228 -

Using the Spectrum Dispatch Client

The problem with this example is that the Field property returns a value, not an object.
The second and subsequent parameters to the CallNat method must be NaturalDataArea
objects. Because the Field property returns a value, the CallNat method encounters a
runtime parameter type mismatch error.

Note: The reason the CallNat method accepts only objects as parameters is so the
dispatcher can maintain references to the objects and update them when the
response comes back from the server.

A better way to simulate Natural code is to create separate NaturalDataArea objects for
each parameter yare sading to the subprogram. The following example illustrates
these differences:

Example of creating separate NaturalDataArea objects for each parameter

Dim cbrowsea As NaturalDataArea
Dim mycount As NaturalDataArea
Dim myrows As NaturalDataArea

Set cbrowsea = SDCApp.Allocate("CBROWSEA")
Set mycount = SDCApp.Allocate("CBA-C") ' 01 COUNT(N3)
Set myrows = SDCApp.Allocate("CBA-R") '01 ROWS(A32/1:10)

cbrowsea.Field("COUNT") = 10

' Copy the CBROWSEA fields into the temporary data areas.
mycount.Field("COUNT") = cbrowsea.Field("COUNT")
myrows.Field("ROWS") = cbrowsea.Field("ROWS")

Dispatcher.CallNat "CUSTB", mycount, myrows

' Copy the fields from the temporary data areas back into CBROWSEA.

cbrowsea.Field("COUNT") = mycount.Field("COUNT")

cbrowsea.Field("ROWS") = myrows.Field("ROWS")

In this example, the two newly-defined objects (mycount and myrows) are Natural-
DataArea objects containing copies of COUNT and ROWS respectively. These two
objects are then passed into the CallNat method:

- 229 -

Construct Spectrum SDK Reference

CBROWSEA

o COUNT
ROWS(1:10)

mycount v myrows

COUNT ROWS(1:10)

' ||

Dispatcher.CallNat "CUSTB", mycount, myrows

CBROWSEA Fields Defined as Objects to the CallNat Method

This example shows how to create additional data areas for the individual fields passed
to the subprogram. These data areas must be initialized from the CBROWSEA data area
before issuing the CALLNAT. After the CALLNAT, the data areas must be copied

back into CBROWSEA. This code looks quite different from the original Natural code.

A better solution is to create a pointer to a field within a NaturalDataArea object and
pass that pointer to the CallNat method of the Dispatcher objfartieély passing the

field by reference. Construct Spectrum provides the FieldRef property to do that. This
property of the NaturalDataArea class creates an instance of the NaturalDataArea ob-
ject that does not contain its own data, but rather points to a field in the data area that
created it.

Syntax of the FieldRef property

Function FieldRef (ByVal FieldName As String) As NaturalDataArea
where:

FieldName Is the field the FieldRef property points to.

The FieldRef property creates a newstance of the NaturalDataArea object with the
same field definitions as the field indicated by FieldName. However, any time a field

in the new data area is read or written, the field in the original data area is accessed. This
effectively createswo data aeas refeiing to the same data.

-230 -

Using the Spectrum Dispatch Client

Data area object Data area object
Internal * Pointer to the .
representation] data in
of the field ' another data .
values in this ' area object
dataarea | | | crroniioiioes ’
Other internal Other internal
variables variables

Using the FieldRef Property to Create Two
Data Areas that Refer to the Same Data

You can now rewrite your original Visual Basic code using the FieldRef property in-
stead of the Field property.

Example of using the FieldRef property

Dim cbrowsea As NaturalDataArea

Set cbrowsea = SDCApp.Allocate("CBROWSEA")

cbrowsea.Field("COUNT") = 10

Dispatcher.CallNat "CUSTB", cbrowsea.FieldRef("COUNT")
cbrowsea.FieldRef("ROWS")

In this example, the FieldRef property creates a temporary NaturalDataArea object that
is passed to the CallNat method. Each temporary data area contains a pointer to the orig-
inal data.

CBROWSEA

o COUNT
ROWS(1:10)

mycount v myrows

Dispatcher.CallNat "CUSTB", cbrowsea.FieldRef("*COUNT"), cbrowsea.FieldRef(*“ROWS”)

Using the FieldRef Property to Create Two
Data Areas that Refer to the Same Data

-231-

Construct Spectrum SDK Reference

Example of using the CUSTA Natural data area

01 CUSTOMER-NUMBER(NS5)
01 FIRST-NAME(A20)
01 LAST-NAME(A20)
01 MAILING-ADDRESS

02 STREET(A30)

02 CITY(A20)

02 PROVINCE(A20)

02 POSTAL-CODE(A6)
01 SHIPPING-ADDRESS

02 STREET(A30)

02 CITY(A20)

02 PROVINCE(A20)

02 POSTAL-CODE(A6)

You can use the FieldRef property to obtain a pointer to the Mailing-Address or Ship-

ping-Address structures so you can process them individually, as the following example
shows:

Example of Visual Basic code

Dim mycust As NaturalDataArea
Dim mycustref As NaturalDataArea

Set mycust = SDCApp.Allocate("CUSTA")

Fori=1To2
Ifi=1Then
Set mycustref = mycust.FieldRef("MAILING-ADDRESS")
Else
Set mycustref = mycust.FieldRef("SHIPPING-ADDRESS")
End If

' At this point, mycustref is an alias to either the mailing
" address or the shipping address fields of the mycust data area.

With mycustref
Print .Field("STREET")
Print .Field("CITY")
Print .Field("PROVINCE")
Print .Field("POSTAL-CODE")
End With
Next

This example did not specify the level 1 structure name to qualify the field name when
reading the Street, City, Province, or Postal-Code fields. This is because the Natural-
DataArea object returned by the FieldRef property only contains definitions for the
Mailing-Address or Shipping-Address fields.

-232 -

Using the Spectrum Dispatch Client

1:V Fields

In a Natural parameter data area, you may specify an array with a variable number of
occurrences by using the index notation 1:V.

Example of specifying an array
01 #ROWS(1:V)
02...

Some of the library image files may already contain similar data area definitions. How-
ever, you must specify the number of occurrences for eactchéade an instance of

this data eea. Specify the number of occurrenceaibing the optional VSubstitutions
parameter when you call tigplication.Allocate method.

Example of specifying the number of occurrences for your array

Function Allocate (ByVal DataAreaName As String, _
ParamArray VSubstitutions() As Variant) _
As NaturalDataArea

For your arays to operate successfully, you must provide a value for each V in the data
area definition or a runtime error will occur. The parameters following DataAreaName
in the Allocate call are called a V substitution list. The following examples illustrate an
Allocate call.

Example of a PDA

[TESTPDA]

01 PARM1(A5)

01 PARM2(A3/1: V,1: V)
01 PARM3(1: V)

02 PARM4(N3/1: V)

Example of instantiating the PDA

[TESTPDA]

01 PARM1(A5)

01 PARM2(A3/1: 10,1: 5)
01 PARM3(1: 20)

02 PARM4(N3/1: 5)

Example of calling the Allocate method

Set nda = SDCApp.Allocate("TESTPDA", _
"PARM2", 10, 5, _
"PARM3", 20, _
"PARM4", 5)

- 233 -

Construct Spectrum SDK Reference

In this example, the V substitution list consists of groups of parameters. Each group
identifies a field and provides the substitution values for the 1:V specifications for that
field. There must be as many groups as there are fields with 1:V specifications.

You can also store the V substitution list in an array and pass the array as a parameter
to the Allocate method.

Example of passing the array to the Allocate method

Dim vlist(1 To 7) As Variant

vlist(1) = "PARM2": vlist(2) = 10: vlist(3) =5
vlist(4) = "PARM3": vlist(5) = 20
vlist(6) = "PARMA4": vlist(7) = 5

Set nda = SDCApp.Allocate("TESTPDA", vlist)

When you read the FieldDef property to obtain the lower and upper boundarodgn
defined with 1:V, 1 is returned for the lower bound and the value specified for that
field’s V is returned for the upper bound.

Example of obtaining the upper and lower bounds of an array

With nda.FieldDef("PARMA4")
Print .FromIndex(1) & ":" & .Thrulndex(1) ' Prints "1:20"
Print .Fromindex(2) & ":" & .Thrulndex(2) ' Prints "1:5"
End With

You can create instances of the same data area with different numbers of occurrences.

Example of using the same data area with varying numbers of occurrences

Dim datal As NaturalDataArea
Dim data2 As NaturalDataArea

Set datal = SDCApp.Allocate("#ROWS", 15)
Set data2 = SDCApp.Allocate("#ROWS", 100)

With datal.FieldDef("#ROWS")

Print .FromIndex(1) & ":" & .Thrulndex(1) ' Prints "1:15"
End With
With data2.FieldDef("#ROWS")

Print .Fromindex(1) & ":" & .Thrulndex(1) ' Prints "1:100"
End With

Note: The size of the data area must be no greater than allowed by Natural.

—234 -

CREATING APPLICATIONS WITHOUT THE
FRAMEWORK

This chapter describes how to create a Construct Spectrum application without using
Construct-generated framework components. Working through the steps of creating a
simple application, you will learn how to create and deploy your application. While the
simple application is designed to run using Microsoft’s Visual Basic, you can use any
other development tool that fully supports OLE automation.

The following topicsare covered:
« Setting Up the Server Componentspage 236
» Generating Subprogram Proxies page 240
« Creating the Library Image Files (LIFs), page 244
« Developing the Client Application page 248

For information about creating Construct Spectrum applications using components gen-
erated using earlier versions of Natural ConstructMméng Existing Applications
to Construct Spectrum, Construct Spectrum SDK for Client/Server Applications

—-235-

Construct Spectrum SDK Reference

Setting Up the Server Components

The following sections describe how to set up the server-side components to prepare an
environment for the client to be able to communicate with the server. You can create
the server-side components entirely within the Natural environment.

Create or Select Application Services

When creating new application services or selecting existing services for deployment
in a client/server environment, ensure that the Natural subprograms follow certain rules.
Natural subprograms primarily execute as remote services in environments where no
input and output devices are defined. Therefore, there are some restrictions imposed on
your Natural programs.

The following sections identify issues to consider when you are developing new appli-
cation services or adapting existing services for a client/server environment.

No Terminal I/O

Avoid the use of all commands that require input from the user or write information to
any external source other than a database file. This includes the INPUT statement as
well as the WRITE, PRINT, and DISPLAY statements.

While the INPUT statement cannot be used to input data from the user, you can use the
statement to retrieve data that was stacked using the STACK TOP DATA statement.

Only use the WRITE, PRINT, and DISPLAY statements to write information to the
Natural source area for the purpose of debugging your application. If you are running
servers in batch mode, you can send these statements to the batch output queue. The
data is only viewable after the batch job ends. For informatiorlekagging Your
Client/Server Application, page 161.

Subprogram Interface

Construct Spectrum is only able to communicate with application services that are im-
plemented as subprograms. If necessary, you may invoke programs from inside the
called subprograms by using the FETCH RETURN statement.

No Global Data Area (GDA)

Called services do not normally define a global data area (GDA), as the contents of the
GDAs used by a subprograane not preserved between calewever, you can use
GDAs to overcome a shortage of local data area (LDA) storage when necessary.

- 236 -

Creating Applications Without the Framework

Parameter Data Area (PDA) Data Size Limitation

All data transmitted between the client and server is converted into printable characters.
For example, an 12 integer requires 6 bytes of data during transmission: a sign byte and
five digits. The size of this converted data cannot exceed 32K. When checking or cata-
loging a subprogram proxy, Natural displaysearor if the size of the converted data
exceeds 32K.

Subprogram Behavior

All subprograms invoked as application services must return to the calling routine. The
subprogram, and any called routines, cannot execute STOP, FETCH, or TERMINATE
statements. They should also avoid statementsffieat the caller, such as RELEASE
STACK, STACK COMMAND, STACK DATA, and RELEASE VARIABLES. Called
subprograms should not modify the *ERROR-TA value.

Externalize Parameters

The best design strategy is to externally define the parameters of your subprogram prox-
ies. Only when the parameters are externally defined carathepter data areas
(PDASs) be downloaded and incorporated into the Spectrum Dispatch Client.

However, Construct Spectrum does allow you to generate subprogram proxies for sub-
programs that define their parameters inline. If the subprogram accepts or returns large
amounts of data that is strictly input parameters or output parameters, consider grouping
all input parameters into one level 1 structure and all output parameters into another lev-
el 1 structure. Group parameters that are both input and output into a third level 1

structure. This allows data being sent between the client and the server to be optimized
so that only input data is sent to the server and only output data is returned to the client.

Timing Issues

Some application services perform tasks that require extensive processing. The length
of time spent in the application service affects the timeout valiggeted in a client

system. If an application requires extensive time to execute, it may be necessary to de-
fine and associate such long-running processes with Spectrum dispatch services that use
inflated timeout values. These resource-intensive application services can execute un-
der a specially-configured dispatch service. This includes defining special services in
the EntireX Communicator attribute files.

- 237 -

Construct Spectrum SDK Reference

Example of Creating a Simple Natural Subprogram

This section describes how to create a small application service agchigetine asso-
ciated subprogram proxy.

» To create your server-based components for the sample application:

1 Create a parameter data area named GCDA.
Use the following configuration and compile the PDA in the SAMPLE library:

Parameter GCDA Library SAMPLE DBID 17 FNR 38
Command >+
I TL Name F Leng Index/InitEM/Name/Comment
All - -
1 GCD-DATA
2 #OPERAND-1 I 4
2 #OPERAND-2 I 4
2 #RESULT 1 4
----- Current Source Size: 143 Free: 43402 ---------=---n-=--nm- S4 L1

Example of GCDA Parameter Data Area

For an example of this modulesfer to SAMR.E_A in the SYSSPEC library.

- 238 -

Creating Applications Without the Framework

2 Type the following code in the Natural editor and compile it as a Natural subprogram
named GCDN in the SAMPLE library:

> >+ Subprogram GCDN Lib SAMPLE
Top ..+..l..+..2.+..3...+.4..+.5..+..Mode Struct..
0010
0020 ** This module accepts numbers as input paramters and returns the
0030 ** greatest common divisor as the result.
0040
0050 DEFINE DATA
0060 PARAMETER USING GCDA /* Input and output parameters
0070 LOCAL
0080 01 #TEMP(14) /* Local variable used in calculation
0090 END-DEFINE
0100 **
0110 ** Repeat while the second operand value is not equal to 0.
0120 REPEAT
0130 WHILE #OPERAND-2 NE 0
0140 DIVIDE #OPERAND-2 INTO #OPERAND-1 REMAINDER #TEMP
0150 ASSIGN #OPERAND-1 = #OPERAND-2
0160 ASSIGN #OPERAND-2 = #TEMP
0170 END-REPEAT
0180 **
0190 ASSIGN #RESULT = #OPERAND-1
0200 END
....+..Current Source Size: 799 Char. Free: 42970 ...+...S21 L1

Example of GCDN Natural Subprogram

For an example of this modulefer to SAMR.E_N in the SYSSPEC library.

—-239 -

Construct Spectrum SDK Reference

Generating Subprogram Proxies

The following sections describe how to make the newly-created GCDN Natural subpro-
gram accessible from the client. To do this, generate a subprogram proxy using the
Subprogram-Proxy model.

Subprogram-Proxy Model

The Subprogram-Proxy model is available in the Generation subsystem on the server
and as a model wizard in the Construct Windowsrfate. In the example, the model
wizard is used.

For more information about using the model, dsing the Subprogram-Proxy Mod-
el, page 103.

» To generate a subprogram proxy for the GCDN subprogram:

=

Access the Standard Parameters window for the Subprogram-Proxy wizard.
2 Enter the following information in the window:

Note: Many of the input values for the Subprogram-Proxy model are automatically
determined and set by the model itself.

—240 -

Creating Applications Without the Framework

SUBPROGRAM-PROXY Wizard 1

B et Enter the standard parameters for this model
Standard
Parameters Moadule: D
Finish Swsterm: |pEro
Title: ;Subprngram proxy Far GO

Description: |This subprogram prowy communicates with the ___r__j
radule that calculates the greatest cammaon
divisor of bwo numbers

Subprogram: iGCDN s i Edit 1:¥ I
Cverrides
Dannain: iS.ﬁ.MF‘LE 1

Object name: iGCDN|

Mersion: 31.1.1

[T Generate trace code

[T Compress nebwaork data
[~ Encrypt network data

YWalidake] Cancel] < Back. | Mexk = | Einish

Subprogram-Proxy Wizard — Standard Parameters

3 Generate and stow the GCD subprogram proxy.
Generation creates two new items:

— the generated GCD subprogram proxy
— the application service definition (generated into the Administration subsystem)

—241 -

Construct Spectrum SDK Reference

Application Service Definition

=

The application service definition is automatically created when you generate a subpro-
gram proxy using the Subprogram-Proxy model. It defines the name and location of the
target subprogram to the Spectrum dispatch service, as well as which methods the target
subprogram supports.

The target subprogram can be any Natural subprogram, althougltdenany advan-
tages to creating the subprogram using the Object-Maint-Subp and Object-Browse-
Subp models.

To tailor your application service definition, use the following procedure. The example
uses the GCD subprogram proxy.

To customize the gemated aplication service definition:

Access the Administration subsystem main menu.

Enter “AA” in the Function field.
The Application Administration main menu is displayed.

Enter “MM” in the Function field.
The Application Administration Maintenance menu is displayed.

Enter “AS” in the Function field.
The Maintain Application Service Definitions panel is displayed.

Type the following values in the fields indicated:
— “D"in the Action field

— “SAMPLE" in the Domain field

— “GCD” in the Object field

— “01/01/01” in the Version field

—242 -

Creating Applications Without the Framework

6 Press Enter.
The application service definition associated with GCD is displayed:

BSIF__MP Construct Spectrum Administration Subsystem BSIF__11
June 27 Maintain Application Service Definitions 3:15PM

Action (A,B,C,D,M,N,P)

Domain..... .:SAMPLE____ *

Object... : GCDN

Version..... :01/01/01

Description.............: GCDN

Default subprogram proxy: GCD_

Steplibs................: *

Subprogram

01 Method Name Proxy Steplibs *

1 DEFAULT

2

3

4

5
Command:
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
confm help retrn quit flip pref bkwrd frwrd main

Appl Srvc Definition DEMO-PRODUC displayed successfully

Example of the Application Service Definition Panel

The application service definition for GCD was generated with one method — Default.
The Default method is generated automatically for each application service definition

unless the target Natural subprogram wagggedising either the Object-Maint-Subp
or Object-Browse-Subp model.

The definition does not specify a steplib, although one is required to access the target
subprogram. Because the specified domain, SAMPLE, has a steplib defined, the appli-

cation service definition also uses SAMPLE by default. For more informatioStsge
1: Define the Steplib Chain page 43.

—243 -

Construct Spectrum SDK Reference

Creating the Library Image Files (LIFs)

Before you can call the target subprogram from the client application, you must create
a file on the client that describes the subprogram and any parameter data areas it uses.
This file is called a library image file (LIF) because it contains an image (or a copy) of
the Natural objects in your application library on the server platform. Definitions of all
objects used in the client application must be in the LIF. If your client application uses
objects from multiple libaries on the serveypu must create one LIF for eachrhby.

The file name for a LIF is the same as the name of the library, plus the extension .LIF.
For example, the LIF for the CSTDEMO library is CSTDEMO.LIF. All LIFs the client
application uses must be stored in the same LIF directory on your PC (or on a network
file server).

Each application can have its own LIF directory, or multiple applications can share a
single LIF directory containing many different LIFs.

The following sections describe how to use the Construct Spectrum Add-In in Visual
Basic to create and tailor LIFs for your application. Use the Download function to
download LIF definitions from an application library on the server to your client.

Construct Spectrum Add-In

Use the Construct Spectrum Add-In to download the subprogram and parameter data
area (PDA) definitions to a library image file.

Before You Start

» Ensure that you know the library name, database ID (DBID), and file number (FNR) of
the FUSER system file. This file resides on the server and contains the subprogram you
created earlier in an applicationrgny in the FUSER file.

» Choose or create a LIF directory on your PC for the library image file.
Note: You will create the client application in thisréctory in a later step.

« Ensure that you know the name of the subprogram proxy and all PDAs used by the
subprogram.

« Ensure that the Spectrum Dispatch Client is installed and configured properly. For in-
formation, see the installation guide.

— 244 —

Creating Applications Without the Framework

Download Definitions

» To download the definitions:

1 Start Visual Basic if it is not already running.

2 Select Construct Spectrum > Download Generated Modules from the Visual Basic

Add-Ins menu.
The Download Modules window is displayed:

';' Download Modules

Librany: 3 oBID: [0 ENR: [0
Module name: i" Cancel ;
MHane 1 Type ; tdodel 1 Uzer ID 1 Date / Time ;

Diownload program modules into project directong: i Change ;

Download definitions into ibrany image file; i Change

0 modules listed / 0 modules selected

Download Window

3 Type the following values in the fields indicated:
— Name of the application libry in Library
— Database ID in DBID
— File number of the FUSER file containing the library in FNR

Note: If you have already used the Download function, the DBID, FNR, and library
name used for that download are filled in automatically.

—245 -

Construct Spectrum SDK Reference

4 Enter “GCD*” in Module name to list all modules beginning with “GCD” in the library:

@' Download Modules]
Library: [sPEC2 DBID: [17 ENR: [23
Module name: IGED" Cancel |

Mame | Type | fdodel | [Jzer D | Date / Time |

Download program modules into project directony: IE:'\My Documents Change |
Download definitions into library image file: IE:'xMy DocumentshSPECDZ. Change |

0 modules listed / 0 modules selected

Searching the Module Field in the Download Window

5 Click List.

After a few seconds, a list of the modules matching the wildcard pattern is displayed. If
an error message is displayed, Besvnloading the Client Modules Construct
Spectrum SDK for Client/Server Applications.seeConstruct Spectrum Messages

Note: Only subprogram proxies and PDAs are displayed. Other Natural object types,

such as programs, maps, and copy code members, are not displayed because
they cannot be downloaded.

— 246 —

Creating Applications Without the Framework

6 Select all subprogram proxies and PDAs associated with your subprogram.

Tip: To select more than one item on the list, use the standard Windows multiple-se-
lect actions (Shift-Click and Ctrl-Click), or use the mouse to drag a marquee
around the items you want to select.

7 Click Download.
The selected modules are downloaded.

8 Click Close to close the Download Modules window.

If an error message is displayed during the download processpsstuct Spectrum
Messagesgor information about resolving the error.

The download process creates a new library image file in the LIF directory or updates
an existing LIF. The following section describes how to develop a client application that
uses the LIF definitions to call the subprogram on the server.

— 247 -

Construct Spectrum SDK Reference

Developing the Client Application

(I I A B O A 74

This section describes the minimum requirements to develop a client application that
calls your subprogram. Although the example uses Microsoft's Visual Basic for devel-
opment, you can use any development tool that supports OLE automation.

This section assumes you are familiar with the following OLE automation concepts. If
any of these are unfamiliar, refer to the appropriate documentation for the development
tool you are using:

OLE Automation Term Definition

object library (or type library) Provides definitions of all the objects, methods, and
properties exposed by an OLE automation server.

externally ceatable object Object prsed by an OLE automation server that can
be created outside the server.

dependent object Object exposed by an OLE automation server that can
only be accessed using a method of a higher-level
object, such as an externally-creatable object.

To develop your client application:

Step 1: Create a New Projecgtpage 249

Step 2: Add a Reference to the SDC Obiject Librarypage 249

Step 3: Write Code to Initialize the SDC page 250

Step 4: Create the User Interfacepage 251

Step 5: Write Code to Call the Subprogram page 252

Step 6: Run the Application page 253

The following sections describe each of these steps in more detail.

— 248 —

Creating Applications Without the Framework

Step 1: Create a New Project

» To create a new project:
1 Start Visual Basic.

2 Create a new Standard EXE project.
Save all project components in the LIF directory you created earlier. This makes
keeping track of all project components easier.

Step 2: Add a Reference to the SDC Object Library

Before you can use objects in the Spectrum Dispatch Client (SDC), you must add a ref-
erence to its object library in your Visual Basic project.
» To add a reference to tldject library for the Spectrum Dispatch Client:

1 Select References from thedis menu.
The References wiow is displayed.

2 Ensure that the Construct Spectrum Dispatch Client (VB6) is selected:

References - spsspec.vbp

Available References: oK
Construck Form Objects ﬂ Zancel
Caonstruck Model Developrment Objects

Construck Matural Models B
Caonstruck Spectrum ABD Foundation classes
Zonstruck Spectrum Add-In (VBS)

Browse,..

+|

Construck Spectrum ETE Queus Manager Priarity
Construck Spectrum Generation Services

Construck Spectrum Order Entry Package ﬂ
Construck Speckrum Standard BDTs

Construck Spectrum Utility Objects

Zonstruck Spectrum Web Component Library JJ
-
3

i

Help

|Cnnstruct Soeckrum YWwizard Manaaer
4

Construct Spectrum Dispatch Client (WEG)

Location: CACST431050Ce. dil
Language: Standard

References \ividow

» To view the object library:

1 Select Object Browser from the View menu.
The Object Browser window is displayed.

2 Select SDCLIib from Libraries/Projects.

—249 -

Construct Spectrum SDK Reference

Step 3: Write Code to Initialize the SDC

» To initialize the SDC:

1 Select Add Module from the Project menu.
A new module is added to your Construct Spectrum project.

2 Add the following code to the module:

Public SDCApp As New SDCLib6.Application
Public Dispatcher As SDCLib6.Dispatcher

Public Sub Main

SDCApp.Initialize App.Path, "CSTDEMO"
SDCApp.UserID = "GUEST"

Set Dispatcher = SDCApp.CreateDispatcher()
Dispatcher.DisplayErrors = True

Form1.Show
End Sub

where:

Application

App.Path

Dispatcher
Forml

Initialize method

Set Dispatcher =
CreateDispatcher()

GUEST

Is an externally-creatable object exposed by the Spectrum
Dispatch Client. It is used to create @tther objects.

Is a Visual Basic property that returns the name of the directory
containing your saved project. In this example, the project is
stored in the LIF directory.

App.Path returns the name of the directory where your
executable project is located. Your library image file must
always be in that directory.

Is an object used to communicate with the server platform.
Contains the user interface for the client application.

Tells the SDC the name of the LIF directory and name of the
application library. Together, these two values tell the SDC the
name of the library image file.

Creates a Dispatcher object with methods that allow you to call
the subprogram on the server. If the DisplayErrors property is
set to True, the Dispatcher object automatically displays
communication errors. You do not have to write additional
code to display errors.

Is a predefined user ID in the Administration subsystem
containing the required security definitions for this example.
Every call to the server platform requires the caller’'s user ID
to be known.

- 250 -

Creating Applications Without the Framework

This code creates two object variables used throughout the application: SDCApp and
Dispatcher.

3 Select <App.Name> Properties from the Project menu.
The General tab in the Project Properties window is displayed.

4 Select “Sub Main” from the Startup Object field:

Project] - Project Properties

General lMake] Eompile] Cnmpnnent] Debugging]

Project Type: Startup Object:

[Standard ExE =]

Project Mame:

| Projectl

Project Help
Help File Name: Context 10

| I o

Project Description:

Threading Model

q

I

W Upgrade Activer Controls ~

¢ =

171

Ok | Cancel | Help

Project Properties Window

Step 4. Create the User Interface

» To create the user interface for the client application:
1 Ensure Forml is open in design mode.

2 Add three TextBox controls and a CommandButtontcol, aranged as follows:

Example of the Layout of Form 1

- 251 -

Construct Spectrum SDK Reference

3 Set the control properties as follows:

Control Property Value

Textl (Name) txtOperandl
Text <empty>

Text2 Type txtOperand2
Text <empty>

Text3 Type txtResult
Text <empty>

CommandButton Type cmdCalculate
Caption Calculate

Step 5: Write Code to Call the Subprogram

» To code the Click event of the command button to call the subprogram:

1 Double-click the Command button.
The Code window is displayed.

2 Add the following code to the cmdCalculate Click procedure:

Private Sub cmdCalculate_Click()
Dim parms As NaturalDataArea
Set parms = SDCApp.Allocate("GCDA")

parms("#OPERAND-1") = Val(txtOperandl.Text)
parms("#OPERAND-2") = Val(txtOperand2.Text)

Screen.MousePointer = vbHourglass
Dispatcher.CallNat "GCDN", parms
Screen.MousePointer = vbDefault

If Dispatcher.Successful Then
txtResult.Text = parms("#RESULT")

End If
End Sub
This code declares and allocates a Natural data area corresponding to the PDA expected
by your subprogram. Next, it assigns the numeric values in txtOperandl and
txtOperand2 to the #OPERAND-1 and #OPERAND-2 fields in the ata@. It then
calls the subprogram with the CallNat method for the Dispatcher object. The mouse
pointer changes to an hourglass icon for the duration of this call. Finally, if the call is
successful, the contents of the Result field are displayed in txtResult. If the call is un-
successful, the Dispatcher object automatically displays the error message (because you
set the DisplayErrors property to True).

- 252 -

Creating Applications Without the Framework

Step 6: Run the Application

wl\)l—‘v

Note: Before running the application, save the project. This ensures that the
App.Path property in Sub Main returns therect directory for therlitialize
call.

Tip: If you forget to save a new project, App.Path returns the working directory from
which you started Visual Basic. However, when you save to disk, App.Path re-
turns the name of the directory in which the project file is saved.

To run the application:
Press F5.
Type a number into each operand text box.

Click Calculate.
The result is displayed in Result.

Note: The first call to the communication server platform will take a few seconds as
the EntireX Communicator DLLs must be loaded into memory and initialized.
Subsequent calls are much faster.

The Dispatcher object may display the following error in the cmdCalculate_Click
procedure:

Numeric overflow

Possible cause
The value being assigned to the #OPERAND-1 or #OPERAND-2 field is too large for
the Natural format.

Resolution
Enhance the code to check that values entered by thimtostre text boxes are not too
large for the Natural format.

If the Dispatcher object displays an error, Bebugging Your Client/Server Appli-
cation, page 161, o€onstruct Spectrum Messadesinformation about resolving the
error.

For information about packaging the client application and installing it on another PC,
seeDeploying Your Client/Server Application, page 189.

Close the window to return to design mode when you are finished testing the
application.

- 253 -

Construct Spectrum SDK Reference

— 254 -

APPENDIX A: GLOSSARY

The following terms are used throughout the Construct Spectrum documentation set.
Each term is listed with its meaning.

Term

Definition

active server page
(ASP) script

ActiveX business
object (ABO)

ActiveX DLL

application library

application service
definition

application services

architecture

browse command
handler

browse data cache

Script that activates the WebApp.cls page handler, which
opens the specified web page.

Visual Basic class that represents a Natural business object on
the client. The ABO wraps the Spectrum calls required to
communicate with the Natural subprogram exposed by a
subprogram proxy.

Data link library mntaining one or more ABOs. It is used to
package and deploy web applications.

Natural library containing the server application components
of a client/server application.

Definition in the Construct Spectrum Administration
subsystem that identifies the methods exposed by a
subprogram. The definition is created automatically by the
Subprogram-Proxy model. You can modify these settings on
the Maintain Application Service Definition panel in the
Construct Spectrum Administration subsystem.

Natural subprogram implementing methods that can be called
as remote services.

High-level description of the organization of functional
responsibilities within a system. The architecture conveys
information about the general structure of systems. It defines
relationships between system components, but not the
implementation of components.

Defines the commands linked to a browse dialog. It also acts
as the initial target of commands, typically redirecting them to
other application components. See alsmmand handler,

page 257.

Area containing database records returned from the server.
Records are usually displayed in a browse dialog.

— 255 -

Construct Spectrum SDK Reference

Term

Definition (continued)

browse dialog

browse process

business data
type (BDT)

BDT class

BDT controller
class

BDT controller
object

BDT modifier

BDT procedure

Generic GUI browse window called to display any browse data
residing on a mainframe or PC.

Process by whiddmework components and generated
browse components retrieve data and, optionally, display it in
a browse dialog.

For example, a browse process can retrieve rows of data,
search for specific values, and then perform calculations and
conditional processing. Users can display the results in a
browse dialog, if desired.

Type validation on the client that applies business semantics to
a field. Typically, BDTs are used to format field data specified
by the user.

For example, if an application has an input field to enter a
phone number, you can associate a BDT with the field to
reformat the number with hyphens. A user can enter
“7053332112". When the user moves to the next field or
performs another action, the number is automiyica
reformatted as 705-333-2112.

Construct Spectrum supplies standard BDTs, which you can
customize, or you can create your own. BDT modiferes
added to the keyword components of a field in Predict.

Collection of all BDT procedures.

Collection of methods available to members of a BDT class.
See als®BDT class

Supplied client framework component that is an instance of the
BDT controller class and uses the methods available to that
class. Each application declares a BDT controller object,
which records and maintains a list of names for each BDT and
points to the BDT definition. See albasiness data type

(BDT), page 256.

Additional logic users supply to modify the formatting or

validation rules for a BDT. For example, BTD_NUMERIC
ensures that only numeric values are entered in aYieldcan
also add a modifier to round numeric values. To increase
flexibility, each BDT defines its own modifiers.

Code that implements a BDT.

— 256 —

Appendix A: Glossary

Term

Definition (continued)

business object

Business-Object-
Super-Model model

Business-Object-
Super-Model wizard
cardinality

child model

client application

client framework

code block

command block

command handler

Conceptual abstraction that groups the attributes and behaviors
associated with a business entity, such as Customer or Order.
See alsd/isual Basic business obje¢tpage 269.

Model (available in the Construct Windows interface and
Generation subsystem) that generates multiple modules for
both web or client/server applications that do not use the
Construct Spectrum client framework.

Wizard that generates maintenance and browse subprograms
and subprogram proxies for business objects.

Number of dimensions of information. Information with the
same number of dimensions has the same cardinality.

Individual model for which a super model (parent model)
collects parameters and generates specifications.

Portion of a Construct Spectrum client/server application that
runs on a Windows platform.

Supplied set of cooperating Visual Basic classes that form a
reusable design. It provides a skeleton of functionality, which
you can customize or fill with generated and hand-coded
Visual Basic modules.

The client framework reduces the size of generated
components and allows them to interact. It includes forms,
classes, procedures, global variables, and constants that are
shared among generated application components. It supplies
both client and server components.

One or more lines of code in a Visual Basic module that can be
manipulated in the code editor as a block.

Code block that tells the Natural Construct nucleus to treat the
text within the block as a separate module and to apply the
specified command to the block. Super models use command
blocks to generate multiple modules.

Object, generally a Visual Basic class, that processes a
command. The client framework calls command handlers
when a user clicks a menu command or toolbar button. One
command handler can handle multiple commands. See also
command handler list page 258andhook, page 261.

— 257 -

Construct Spectrum SDK Reference

Term Definition (continued)
command List of command handlers for each command ID. The last
handler list command handler hooked to a command ID is called first. See

command ID

complex redefine

compression

Construct
Spectrum

Construct
Spectrum Add-In

Construct Spectrum
Administration
subsystem

database record

DBID

alsohook, page 261.

Unigue identifier for an application-specific command sent
when a user clicks a menu command or toolbar button. Define
these commands by specifying a single command ID as
“constant” for each unique menu and toolbar command.

Redefinition of a data area containing multiple data types,
multiple redefinitions of a data field, or multiple levels of
redefined fields.

Reduce the byte size required to transmit data to and from the
client and server. Data is compressed when it is sent and then
decompressed when it reaches its destination. This reduces the
size of data transmissions and improves network performance.

Application consisting of a client and server component. The
client component is a Construct Spectrum application running
in Visual Basic. The server component is a set of subprograms
accessed remotely by the client component.

Customized functionality added to the Visual Basic
environment.

Mainframe subsystem used to maintain and query tables
defining Construct Spectrum application services and security.

Logical view of database information. A database record can
be comprised of one or more logically related database files or
tables. Construct Spectrum represents database information in
parameter data areadRs).

Acronym for database ID, which is the number identifying the
server database containing application components.

— 258 -

Term

Appendix A: Glossary

Definition (continued)

debugging tools

dependent object

deployment

dialog
dispatcher or
dispatch service

domain

double-byte
character set
(DBCS)

download data

encapsulation

encryption

Utilities you can use to locate and analyze logic errors. You
can simulate client calls online and use traditional debugging
tools, such as:

» Trace options, which allow you to save data from a client
call to a file on the server and then use the data to recreate
situations that caused errors.

« Input and output statements, such as INPUT, PRINT, and
WRITE, which allow you to step through the program for
testing purposes.

» Natural Debugging facility, which you can use to establish
a debug environment. For information, see the Natural
Debuggingdfacility in the Natural documentation.

Object exposed by an OLE automation server that can only be
created using the method of a higher-level object. See also
externally-creatable object page 260.

Movement of an application from a development environment
to a production environment.

GUI form running on the client.

Server component used to broker communications between
server components and client framework components. See also
Spectrum dispatch servicepage 267.

Entity that defines a collection of related business objects (for
example, Test, Admin, and Sales).

Related collection of characters in some non-Latin languages
that require two bytes to display.

Transfer (copy) modules from the server to the client.

Technique in object-oriented programming in which the
internal implementation details of an object are hidden from
users of the object. Methods control how the object data is
manipulated. Encapsulation allows internal implementations
to change withoutféecting the way an object is used
externally.

Encoding data so it is unusable for individuals without access
to the decryption algorithms. Construct Spectrum allows you
to encrypt sensitive data, such as payroll information, during
network transmission. Data is decrypted when it reaches its
destination.

— 259 -

Construct Spectrum SDK Reference

Term

Definition (continued)

EntireX
Communicator
service settings

EntireX
Communicator stub
event

externally-creatable
object

field

FNR

foreign key

form

form section

framework
templates

generate

Collection of EntireX Communicateelated parameters,
including EntireX Communicator ID, server class, server
name, and service.

EntireX Communicator DLL on a Windows platform.

Action recognized by an object, such as pressing a key or
clicking a mouse. You write code to respond to events.

Object exposed by an OLE automation server that can be
created outside the server. See alspendent object page
259.

Component of a database record. The term affeog to areas
on a panel in which values are entered.

Acronym for the file number that identifies a specific server
database file containing application components.

Key field pointing to a record in an external file. For example,
the demo application has an Order file containing a foreign key
to the Warehouse field in the Warehouse file. Foreign keys can
be set up with a browse function, enabling users to search for
and select values.

Window (dialog) that acts as the interface for ppliaation.

You add controls and graphics to a form to create the effect you
want. Construct Spectrum supplies forms in the client
framework and generates form modules for business object
maintenance dialogs.

When you run a project, forms are compiled into GUI dialogs
that the user interacts with while using the application. Some
forms, such as the generic BrowseDialog form, are
dynamically configured at runtime by the client framework to
alter the look of the form.

Form definitions are saved in files with the extension .frm.

Portion of a web page containing a block of related
information.

Structure or container supplied for applications. These
customizable templates include header, footer, navigation bar,
messages area, and constants.

Process of producing code from specifications.

- 260 —

Appendix A: Glossary

Term

Definition (continued)

generated
module

generation
data cache

grid

grid control

group
GUI

GUI control
override

hook

host

HTML fragment
HTML template

HTML Template

wizard

Generated component for either the client or server portion of
an application. Generated server modules include Natural
subprograms, subprogram proxies, and parameteatkda.
Generated client modules include object factories, dialogs, and
maintenance objects.

In-memory hierarchical data structure that allows you to
quickly retrieve stored generation data.

Displays 2-dimensional data for a client/server applicationin a
table format.

One-dimensional data shows one type of data, such as a phone
number, name, or quantity. Two-dimensional data shows
additional information in a grid or table. For example, the

detail lines on an order can be displayed in a grid with each
grid row corresponding to a unique line item. Each column in
the grid corresponds to a discrete piece of information about
the line, such as an item name, price, or quantity.

GUI control that displays related information in a table format.
For example, purchase order line items can be displayed in a
grid. The grid control supplied with Construct Spectrum sizes
itself to the minimal width required to display all grid
components. You can configure the grid control as desired.

Collection of users defined in the Administration subsystem.
Acronym for graphical user intexte.

Use Predict keywords to force a GUI control derivation. See
alsokeyword, page 262.

Associate a command handler object with a command ID. See
alsocommand handler, page 257command handler list
page 258, andommand ID, page 258.

Seeserver, page 266.
Portion of HTML that is not a complete web page.

HTML that may contain replacement tags, whieh
dynamically exchanged for content or nested HTML templates
at runtime.

Wizard used to generate HTML templates.

- 261 -

Construct Spectrum SDK Reference

Term

Definition (continued)

http request
instantiation
internationalization
job control
language (JCL)

keyword

Level 1 data
block

Level 1 data
block optimization

library image
file (LIF)

LIF definitions
module

localization

lookups

maintenance
dialog

Parameterized list of named value pairs sent by a browser
client to a web application.

Process ofeating arinstance of a class. The result is an
object.

Adapting an application to make it easy to localize. See also
localization, page 262.

Command language used for batch jobs that tells the computer
what to do.

Predict metadata type that acts as a label or identifier.

Level one field or structure and its subfields in a Natural
parameter data area (PDA).

Technique to improve the performance of client/server
applications by reducing the volume of data transmitted across
a network. Rather than sending all data blocks associated with
an object, only the required blocks are sent.

File that defines Natural definitions used by the Spectrum
Dispatch Client.

BAS module in a Visual Basic project containing the
definitions for application services, parameter da¢as, and
subprograms.

Process of translating and adapting a software product for use
in a different language or country.

Return descriptive information when a user requests a browse
dialog or enters a value in a foreign key field on a maintenance
dialog. For example, assume the Warehouse Number field is a
foreign key field in the Order dialog andaféhouse Name is
a descriptive field attached to the foreign key value. When a
user enters a valid warehouse number, the lookup returns the
name of the warehouse for display in the dialog.

GUI dialog from which a user can perform one or more actions
on a business object. For example, a Customer Order object
can be represented on a maintenance dialog. Using this dialog,
an authorized user can add, delete, or update customer order
information.

- 262 -

Appendix A: Glossary

Term

Definition (continued)

MDI child

MDI frame

MDI parent

menu

menu bar

metadata

method

model

module

Window or dialog opened from an MDI parent window in a
client/server application. For example, the Order maintenance
dialog in the demo application is an MDI child to the MDI
frame window.

Standard Visual Basic MDI frame supplied with the Construct
Spectrum client framework.

MDI window from which other windows are opened and
displayed in a client/server application. The MEme
supplied with the clientramework is an MDI parent.

On a mainframe server, a panel or window listing available
functions. To access a function, users enter a value in an input
field or move the cursor to a value and press Enter.

In Windows, a pull-down dialog listing the available functions.
To access a function, users select an option from the menu
using the cursor or a keystroke combination.

Displays the menus available for user selection. By default,
Construct Spectrum client/server applications contain File,
Edit, Actions, Window, and Help menus on the menu bar, each
containing standard menu commands.

Information about data. Metadata describes how physical data
is formatted and interrelated. It includes descriptions of data
elements, data files, and relationships between data entities.
Typically, metadata is maintained in a repository known as a
data dictionary, such as Predict.

Procedure that operates on an object and is implemented
internally by the object. For example, the Update method
updates a Customer Order object after changes to the order
information.

Template used to generate modules. Each model contains one
or more specification panels. Using these panels, you can
specify parameters for a desired module and then generate the
corresponding code. Natural Construct provides numerous
models, including the Object-Maint-Subpd Subprogram-

Proxy models.

Single application component, such as a hand-coded Natural
program, subprogram, or dadeea or a Natural Construct-
generated program, subprogram, data area, or subprogram

proxy.

- 263 -

Construct Spectrum SDK Reference

Term Definition (continued)
multi-level Security you can define at a high level or at a detailed level
security affecting many objects. For example, you can apply multi-

multiple-document
interface (MDI)

Natural Construct
nucleus

Natural Debugging
facility

navigation bar
node

nucleus

object

object factory
Object Factory

wizard

object library

OLE

level security to domains, objects, and methods.

Microsoft Windows paradigm for presenting windows
whereby a parent window can encompass one or more child
windows. See alshDI child , page 263, aniDI parent,

page 263.

Sophisticated driver program that invokes the model
subprograms at the appropriate time in the generation process
and performs furttons common to all models, such as opening
windows and performing PF-key functions. The nucleus
communicates with the model subprograms through standard
parameter data aread)Rs). These PDAs contain fields
assigned by Natural Construct, as well as fields required by a
model.

Utility available in a Natural environment to help you locate
and analyse logierrors. To access the fatjl use the Invoke
Proxy function in the Administration subsystem. The
subprogram proxy sets up an online environment that
simulates the client/server environment and allows you to use
all the features of the Natural Debugging facility.

Menu bar on a web page containing links to other pages or
actions.

Individual computer or, occasionally, another type of machine
in a network.

Sedlatural Construct nucleus, page 264.

Any application component, such as a form or record. A
business object is a group of services related to a common
business entity, such as Customer, Order, or Department.

Visual Basic module that identifies all objects and methods in
an application and instantiates objects upon request.

Visual Basic Add-In that updates an object factory in a
Construct Spectrum web application.

Provides definitions for all the objects, methods, and
properties exposed by an OLE automation server. See also
type library , page 268.

Acronym for object linking and embedding.

— 264 -

Term

Appendix A: Glossary

Definition (continued)

OLE automation
server
overflow condition

package

page handler

Page Handler
wizard

parent model
parse area

ping

platform

project

project group

property

regenerate/preserve

status

Code component that passes objects to other applications so
they can programmatically manipulate the objects.

Situation where there are more fields than can be displayed on
a dialog.

Collection of all modules necessary to implement a business
object. A package combines components and classes to
provide both browse and maintenance services for a database
table. It is composed of a set of modules generated from a
multi-module geerration. An application is made up of one or
more packages.

Visual Basic class that exchanges replacement tags on an
HTML template with database content or another HTML
template.

Construct Spectrum Add-In that generates page handlers for
web applications.

Super model that collects parameters for child models and
generates specifications.

Code in a page handler that locates and exchanges HTML
replacement tags.

Request sent to a service to determine whether the service is
running.

Piece of equipment that, together with its operating system,
serves as a base on which you can build other systems. For
example, an MVS mainframe computer can serve as a platform
for a large accounting system.

Collection of files used to build an application in Visual Basic.

Collection of two or more Visual Basic projects, for example,
web and ABO projects. A project group uses a .vbg extension.

Characteristic of an object, such as size, caption, or color. In
Construct Spectrum, it refers to the data settings or attributes
for an object in Visual Basic.

Status indicating whether a code block in a module is
regenerated or preserved during regeneration of the module. If
you mark a block to be regenerated, it is replaced or deleted. If
you mark a block to be preserved, it is not changed during
regeneration.

— 265 -

Construct Spectrum SDK Reference

Term

Definition (continued)

remote call

replacement tag

resource

run
security cache

server

server application

service

service exit

service log
shutdown

software
development kit
(SDK)

Spectrum
client/server
application

Spectrum Control
record

Spectrum Dispatch

Client (SDC)

Communication with an object residing in a different location,
such as a server.

HTML tag that is replaced with database content or another
HTML template when the web page is assembled. Some
replacement tags can be used to remove existing sections of
HTML. For example, you can use a security tag to specify
content that only certain users can access.

Text or binary value that can be localized. See also
localization, page 262.

Execute or invoke a module or application.
File used to store recently-accessed security data.

Computer that provides services to another computer (called a
client) and responds to requests for services. On multitasking
machines, a process that provides services to another process
is called a server.

Application that runs on a server machine.

Software service that runs on a server. Several services can run
on one server.

Exposed exit routine called by the Spectrum dispatch service;
it can be replaced by a user-supplied routine.

File used to store service log data.
Command sent to a service to terminate the service.

Seetoolkit, page 268.

Application created using the Construct Spectrum wizards and
add-ins. Users access mainframe business functions and data
through a Visual Basic component running on a Windows
platform.

Record that is created daily and contains system control and
statistic data for a Spectrum dispatch service.

Provides the Construct Spectrum data exchange, which
facilitates calls from a client to Natural subprograms running
on a server.

— 266 —

Appendix A: Glossary

Term

Definition (continued)

Spectrum dispatch
service

Spectrum security
service

Spectrum Service
Manager

Spectrum service
settings
Spectrum web
application
Spectrum web
framework

Status bar

steplib chain

Sub Main
procedure

subprogram
proxy

super model

target module

Middleware component that encapsulates EntireX
Communicator calls on the server, provides directory services,
enforces security, and invokes backend Natural services.

Component of the Administration subsystem that controls
access to application libraries, objects, and methods.

Client tool supplied with Construct Spectrum that allows you
to specify which Spectrum services the client uses to
communicate with the server.

Collection of parameters used to configure a Spectrum service.

Application created using the Construct Spectrum wizards and
add-ins. It allows users to access mainframe business functions
and data from a web browser.

Group of Visual Basic modules and classes that collaborate to
dynamically generate web pages.

Area that displays status information about a selected item,
application, or business object in a client/server application. It
contains sections for a message, status indicators, and the
current date and time. Status bars are also displayed at the
bottom of an MDI form.

Hierarchy of Natural libraries that determines the location
from which modules are executed.

First Visual Basic procedure executed when you run a
Construct Spectrum application. Each Visual Basic
application has one Sub Main procedure.

Natural subprogram called by a Spectrum dispatch service to
translate data formats between the client and a Natural
subprogram on the server. Each subprogram requires a
subprogram proxy, which allows Construct Spectrum to
provide a common interface to any subprogram.

Model that generates multiple components of a Construct
Spectrum client/server or web application. Using a minimum
number of input parameters, a super model determines the
specifications for all models required to generate individual
components of a package. See glaokage page 265.

Semrget subprogram, page 268.

— 267 —

Construct Spectrum SDK Reference

Term

Definition (continued)

target object
target subprogram
template parser

toolbar

toolbar button

toolkit

trace options

type library

upload data

variant

VB-Client-Server-
Super-Model model

Searget subprogram, page 268.
Any Natural subprogram.
Class used to parse HTML or other templates.

Bar that provides quick access to commonly used commands
in an application. A user clicks the appropriate toolbar button
to perform the a@bn it represents. Any action that can be
performed from aoolbar can also be invoked from a menu.

Icon on a toolbar that allows users to perform an action.

Set of related and reusable classes that provide general-
purpose functionality. An application incorporates classes
from one or more toolkits.

Toolkits, or softvare deviopment kits (SDKs), emphasize

code reuse and are the object-oriented equivalent of subroutine
libraries. For example, a toolkit can be a collection of classes
for lists, associative tables, or stacks.

Options that specify how to trace messages sent between the
client and server.

Library containing definitions for all objects, methods, and
properties exposed by the OLE automation server. See also
object library , page 264.

Transfer modules from the client to the server.

Visual Basic term identifying a late-binding data type.
Variants allow Construct Spectrum subroutines or functions to
accept differentypes of data. The exact type is determined
when they receive the value\isual Basic.

Model that generates all modules required for a fully
functional client/server application. The super model can
generate all modules required for maintenance and browse
services for up to 12 business objects at a time. Sesigiso
model, page 267.

— 268 —

Term

Appendix A: Glossary

Definition (continued)

verification
rules

Visual Basic
browse object

Visual Basic
business object

Visual Basic
maintenance object

Web Super wizard

web class

web application ASP

wildcard

Predict-defined business rules that are implemented in the
object subprogram on the server and the maintenance object on
the client. They also providesthult values for derived fields
represented by GUI controls, such as check boxes, option
buttons, or drop-down combo boxes.

You can use verification rules torfie users to make a

selection based on one or more choices. For example, if an
application has an input field for the state name, you can attach
a verification rule to the field in Predict so that only valid state
names are accepted.

Visual Basic class that configures an instance of a browse base
class. This class delivers information about the columns and
keys supported by the browse subprogram to the client
framework, which configures and displays the browse dialog
at runtime. See alsdisual Basic business obje¢tpage 269.

Conceptual browse or maintenance object comprised of class
modules or objects with a domain on the client. It implements
business rules and encapsulates communication with the
Spectrum Dispatch Client (SDC).

Visual Basic class instantiated by a maintenance dialog to:
» encapsulate calls to the SDC
« implement validation in the maintenance dialog

See alsd/isual Basic business objecabove.

@nstruct Spectrum Add-In to Visual Basic that generates
multiple HTML templates and page handlers for a web
application.

Visual Basic class that responds to requests for a web page
(ASP requests).

ASRactive server page) script used to instantiate a Spectrum
web application.

Character or symbol that qualifies a selection, such as “*”, “<”,
or “>". For example, using a value followed by an asterisk (*)
indicates a range of file names beginning with that value. To
list all modules that begin with “Maint”, enter “Maint*” as the
selection criteria.

- 269 —

Construct Spectrum SDK Reference

Term Definition (continued)

XML extract Extract information from Predict and other sources, which is
stored on the client as metadata in XML format. This includes
information about business objects, as well as the formatting
used by wizards to build application components. See also
metadata, page 263.

- 270 -

APPENDIX B: UTILITIES

This chapter describes the utility subprograms supplied with the Spectrum Administra-
tion subsystem. To invoke these subprograms, you must be in the SYSSPEC library.

The following topicsare covered:
» Response Subprogrampage 272
» Spectrum Interface Subprogram page 278
« Conversation Factory Utility, page 289
» Character Translation Subprogram, page 290
« Multi-Tasking Verification Utility , page 291
» Log Utilities, page 292

-271 -

Construct Spectrum SDK Reference

Response Subprogram

The SPUREPLY subprogram is mainly used by servers to send responses back to a cli-
ent. The response can be defined as a SYSERR message or a hardcoded text string.

Features and Benefits
SPUREPLY has the following benefits and features:
« Defines a standard protocol for exchanging messages.
« Enables messages to be multilingual if you define them in SYSERR.
» Performs message substitution of :1::2::3: within SYSERR messages.
» Can send other information in addition to a message.

Response Length Limitation

The maximum supported response length is 5000 bytes.

Supported Methods

SPUREPLY supports the following methods (defined in SPLREPLY). One of these
methods must be assigned to the SPAREPLY.METHOD parameter before calling

SPUREPLY:
Method Description
SEND-REPLY Sends a single message reply, with the End of

Conversation option.

SEND-WITHOUT-EOC Sends a multi-part reply. Use the SEND-REPLY method
to send the last message of the reply.

LOOKUP-MESSAGE Looks up the error message text, but does not send it.

SEND-MESSAGE-ONLY Sends the message text without the standard protocol
information.

SEND-MESSAGE-ONLY- Same as SEND-MESSAGE-ONLY, but does not include
WITHOUT-EOC End of Conversation option.

- 272 -

Appendix B: Utilities

Message Protocol

All messages sent to the client use the following protocol:

Message Protocol

SIGNATURE(A6) MSG111 constant. Defines the structure of the serfdrbuf

RESPONSE- Response code passed to SPUREPLY in SPAREPLY.
CODE(N4) Successful responses use a response code of zero. Other
predefined response codes are:

+ 001 (Replica ID was not matched)
« 9999 (Natural runtime error)

REPLICA-ID(A32) Replica ID passed from SPAETB.

SPECTRUM- Passed from SPAETB.
SERVICE(A32)

SYSERR- Name of the SYSERR library containing the message.
LIBRARY(A8)

MSG-NR(N4) Number of the SYSERR message.

MESSAGE(A1/1:V) Message area of send buffer. In most cases réaisoatains
a message looked up in SYSERR by SPUREPLY. Additional
information can also be passed in this area.

Call Interface
SPUREPLY supports the following interface:

PARAMETER USING SPAREPLY /* Specific parameters
PARAMETER [* The message portion of the send buffer
01 SPAREPM
02 INPUT-OUTPUTS

03 BUFFER-LENGTH (12)

03 MSG-BUFFER (A1/1:V)
PARAMETER USING SPAETB /* Parameters to SPUETB
PARAMETER USING ETBCB /* Standard broker control block
PARAMETER USING CDPDA-M /* Standard message area

These data areas are described in the following sections.

- 273 -

Construct Spectrum SDK Reference

SPAREPLY Data Area

This data area is passed to SPUREPLY. It containsotltmning data:

Parameter SPAREPLY Library S441

DBID 17FNR 60

3 EMBEDDED-MSG-INFO

EE

4 MSG-START |
4 MSG-LENGTH |

Command >+
I TL Name F Leng Index/InitEM/Name/Comment
Top - -
*
*
* Data Area Name: SPAREPLY Function
* Created on....: Jun 12, 02 ========
* Created by....: SAG This data area is passed to
* SPUREPLY which is used to
* send a reply back to a client.
*
* The reply structure is
* defined in SPLREP.
1 SPAREPLY
2 INPUTS
3 METHOD | 1/*See SPLREPLY
3 RESPONSE-CODE N 4 /* This response, use zero for
* /* successful response.
3 SYSERR-INFO
4 MSG-NR N 4 /* SYSERR Message number
4 SYSERR-LIBRARY A 8 /* Defaults to SYSSPEC
4 MSG-DATA A 32 (1:3) /* Subs. values
* /* May contain *NNNN references

3 TRANSLATE L /* Translate character set. If
* /* currently EBCDIC, message
* /* will be translated to ASCII
* /* and vise-versa.

/* when the message to be looked

/* up is only a portion of the

[* data to be sent. In this case

/* you must indicate where the

/* message is in the send buffer

2 /* Byte location of start of msg
2 /* Total length of message

/* portion

/* This structure is only used

SPAREPLY Data Area

The fields in this data area are:

Field Name

Description

METHOD (I1)

RESPONSE-CODE (N4)
MSG-NR (N4)

Indicates whether you want to perform a send with
EOC, send without EOC, or just look up the message
text. Assign a value from SPLREPLY.

Contains the response code value sent to the client.

If a message is looked up in SYSERR, contains the
message number.

—274 -

Appendix B: Utilities

Field Name

Description (continued)

SYSERR-LIBRARY (A8)

MSG-DATA (A32/1:3)

TRANSLATE (L)

MSG-START (12)

MSG-LENGTH (12)

Name of the library in which to look up messages. By
default, all messages are looked up in the SYSSPEC
library. If this is not true, specify the hidry name.

Contains up to three values for substitution into the
message. These values replace the :1::2::3:
placeholders in the SYSERR message. Substitution
values can be looked up in SYSERR by specifying
message data in *nnnn format.

Indicates whether the message is translgted
EBCDIC to ASCII or vice versa).

If the message retrieved from SYSERR represents
only a portion of the data to be sent, indicates the
starting position of the message portion of the send
buffer.

Indicates the length of the message portion of the send
buffer. This field is only required when MSG-START
is assigned.

- 275 -

Construct Spectrum SDK Reference

SPAREPM Data Area

This data area is an example of

a standard message area that can be passed to SPURE-

PLY. Use SPAREPM to send messages up to 250 characters in length. After SYSERR
messages are looked up, the resulting message text is returned in this parameter. The
values in SPAREPLY.MSG-START and SPAREPLY.MSG-LENGTH determine

where the message is assigned.

If these values are zero, the message is returned, starting

at position 1 and continuing to SPAREPM.BUFFER-LENGTH.
The SPAREPM data area contains the following fields:

DBID 17FNR 60
>+

F Leng Index/InitEM/Name/Comment

cal SPAREPM Library S441
Command
I TL Name
All -

*

Function

Created on....: Jun 12, 02
Created by....: SAG

*
* This data area can be used as
* the second parameter to

* SPUREPLY. When a message number
* is passed to SPUREPLY, the

* message text is returned in

* this parameter.

* Alternatively, the message to

* be sent can be passed to

* SPUREPLY using this parameter.

1 SPAREPM

2 INPUT-OUTPUTS

3 BUFFER-LENGTH I 2 INIT<250>
3 MSG-BUFFER A 1(1:250)

R 3 MSG-BUFFER
4 MSG-STRING A 250

----- Current Source Size: 1201 Free: 100104

SPAREPM Data Area

To send information other than a standard message, copy SPAREPM and define the
fields you want to send (up to 5000 bytes). To reflect the size of data to be sent, assign

the BUFFER-LENGTH field.

- 276 —

Appendix B: Utilities

Example of a call

/*

/* SYSSPEC/1001: Invalid request:1:sent to:2:expecting:3:
ASSIGN SPAREPLY.MSG-NR = 1001

ASSIGN SPAREPLY.MSG-DATA(1) = #COMMAND

ASSIGN SPAREPLY.MSG-DATA(2) = *PROGRAM

ASSIGN SPAREPLY.MSG-DATA(3) = "CREATE™

ASSIGN SPAREPLY.RESPONSE-CODE = 1 /* Invalid command
PERFORM SEND-MESSAGE

*

DEFINE SUBROUTINE SEND-MESSAGE

*

IF #1-AM-ASCII NE #CLIENT-IS-ASCII THEN
ASSIGN SPAREPLY.TRANSLATE = TRUE
END-IF
ASSIGN SPAREPLY.METHOD = SPLREPLY.SEND-REPLY /* Send with eoc
CALLNAT 'SPUREPLY' SPAREPLY
SPAREPM
SPAETB
ETBCB
MSG-INFO
END-SUBROUTINE /* SEND-MESSAGE

Example of send buffer

MSG1110001ATTACH-MANAGER--BOB218EC55E1AEOL AURORA-CONVERSATIONFACTORY
SYSSPEC 1001Invalid request CMD SH sent to SPSCFACT expecting 'CREATE'

where:

MSG111 Is the message signature.
0001 Is the response code.
ATTACH-MANAGER-- Is the server replica ID.
BOB218EC55E1AEOL

AURORA-CONVERSATION-FACTORY Is the Spectrum service.

SYSSPEC Is the name of the SYSERR library used.
1001 Is the SYSERR message number.
Invalid request CMD SH sent to Is the message text.

SPSCFACT expecting 'CREATE'

- 277 —

Construct Spectrum SDK Reference

Spectrum Interface Subprogram

Writing robust servers can be a complex task. There are ptmgjble errors that can
occur, and ensuring that each error is handled in the proper way is very difficult. Some
errors are caused bys@urceshortages, so it is desirable to retry the call again after a
brief pause. Other errors are fatal amduld result in the server shutting down. Still
other errors, like wait timeouts, are normal and expected.

To help simplify and standardize the task of writing servers, Construct Spectrum sup-
plies a subprogram that wraps the EntireX Communicator ACI calls. This wrapper
subprogram, called SPUETB, handles many situations that have to be coded to make
direct EntireX Communicator calls. To ensure that errors are handled and logged prop-
erly, use SPUETB for all EntireX Communicator calls.

Features and Benefits
The following sections contain a summary of the capabilititsed by SRETB.

EntireX Communicator Error Handling

Most EntireX Communicator errors are handled internally by SPUETB. If the areors
due to resource shortages, SPUETB pauses for two seconds and then tries the call again.
The subprogram continues to retry the call for up to 20 seconds.

When implementing server receive loops, SPUETB handles all wait timeouts (EntireX
Communicator error 74) and returns to the receive state.

Fatal errors cause the server tatslown if SPUETB is granted shutdown permission.

SPUETB can also handle message lemgtbrs and return a message to the sender in-
dicating that the message was too long.

Error Logging

All errors returned from EntireX Communicatelogged in the Spectrum Communi-
cation Log. Use this log to help detect problems with your programs or environment.

Shutdown Requests

SPUETB responds to shutdown requests from EntireX Communicator. These requests
can be initiated using the EntireX Communicator Control Center.

Server Timeouts

Whenever the server has neteived a message for the length of time specified on the
service record, the server shuts down.

- 278 —

Appendix B: Utilities

Command Handling

SPUETB registers for the CMD service and responds to all command requests. Com-
mand requests include the CMD CALLNAT command, which allows you to supply the
name of the subprogram call.

SPUETB Interface

SPUETB is called using the following interface:

DEFINE DATA
PARAMETER USING SPAETB /* Specific Parameters
PARAMETER USING ETBCB /* Standard broker control block
PARAMETER
01 SEND-BUFFER(A1/1:V)
01 RECEIVE-BUFFER(A1/1:V)
01 RESERVED-AREA(A1/1:V) /* Reserved for SPUETB use
PARAMETER USING CDPDA-M /* Standard message area
END-DEFINE

As in a direct call to EntireX Communicator, the caller is responsible for filling in the
EntireX Communicator control block. Additionally, the caller can specify the degree of
error haadling and support for common functions handled by SPUETB.

The data areas are described in the following sections.

- 279 -

Construct Spectrum SDK Reference

Data Areas

SPAETB Data Area

Parameter SPAETB Library S441
Command >+
I TL Name F Leng Index/InitEM/Name/Comment
Top - -
*
*
* Data Area Name: SPAETB Function
* Created on....: May 05, 02 ========
* Created by....: SAG This data area is passed to
* SPUETB which is used to
* encapsulate calls to EntireX
* Communicator. Use SPLETB to assign
* constant values.
1 SPAETB
2 FORCE-PDA A 1(1:V) /* This field is only here
* /* to force the caller to create
* /* a separate LDA to call SPUETB
* /* rather than using SPAETB.
* /* This way, initial values can
* /* be placed in the LDA so that
* /* defaults get assigned.
2 INPUTS
3 METHOD I 1/%0=Normal call
* /* See SPLETB for other methods
3 ENCAPSULATED-FUNCTIONS /* Set desired functions ...
4 SUPPORT-SERVER-COMMANDS L /* SPUETB will automatically
* /* register a command service
* /* whenever a regular service is
* /* registered. CMD is used as the
* /* EntireX Communicator service name.
* /* SPUETB will handle all
* /* command requests directly.
4 ALTER-RECEIVE-SERVICE L /* Automatically change the
* /* service name on receive to
* /* an "' to allow commands
4 SHUTDOWN-PERMISSION L /*If true, SPUETB is allowed to
* /* shutdown the server directly.
* /* See SHUT-DOWN-REASONS
4 SHUTDOWN-REASONS /* Set desired shutdown reasons:
* /* only set after method 6
5 EXPLICIT-SHUTDOWN L /* Shutdown request from EntireX
* /* Communicator or from Spectrum console.
5 TIMEOUT-REACHED L /*See TIMEOUT-HANDLING
5 TERMINAL-ERROR L /*Non-recoverable EntireX Communicator error.

—280 -

Appendix B: Utilities

4 TIMEOUT-HANDLING I 4 /*0 = Return all timeouts so
/* that caller can handle
/* >0= Reissue call for this
/* many seconds. Set to
/* max desired idle period.
/* -1= Reissue call indefinitely
/* -1is normally used by
/* ATTACH servers which
/* should run forever.

* ok ok ok ok ok b

3 ERROR-HANDLING

4 HANDLE-TRUNCATION-ERROR L /* SPUETB will respond to
* /* ETB error 00200094. This
/* won't be sent back to caller
4 RESERVED A 8 /* Reserved for future.
4 USE-SPECTRUM-ERROR-LOG L /*Log all errors on the Spec.
* /* file. Warning, this will
* /* cause an ET to be issued.
4 WRITE-ERRORS-TO-CONSOLE L /* CALL 'CMWTO' with errors
4 WRITE-ERRORS-TO-PRINT-FILE-O0 L /* Write errors to Natural
* /* print file O
4 MAX-RETRY-TIME I 2 /* Number of seconds to continue
*

/* to retry call in the event of an

* /* EntireX Communicator resource shortage.
* /* Defaults to 20 seconds.
4 MESSAGE-DATA /* These fields are used to
* /* build helpful error messages
* /* when EntireX Communicator calls fail.
5 CALLING-PROGRAM A 8/* Name of caller.
5 SPECTRUM-SERVICE A 32 /* Name of spectrum service
* [* if known.
5 CALL-DESC A 32 /* Description of the call
2 INPUT-OUTPUTS
3 REPLICA-ID A 32 /* Assigned at first LOGON
* /* do not adjust
3 CLIENT-MODE L /*In this mode, errors need
* /* not be logged and checks for
* /* EntireX Communicator error cycles
* /* are not performed.
3 OPTION A 50 /* SPUETB option
2 OUTPUTS
3 RESULT I 1/*See SPLETB
* /* 0 = Normal request
* /* 1 = Attach request
* /* 2 = Command request
* /* 3 = Timeout
* [* 4 = Non-terminal error
* [*5 = Terminal error
*

/* 6 = Restarting after error.

SPAETB Data Area

- 281 -

Construct Spectrum SDK Reference

The fields in the SPAETB data area are:

Field Name Description

FORCE-PDA (A1/1:V) Due to the number of input settings that must be
assigned before calling SPUETB, the predéd
method of assigning them is to use supplied LDAS,
initialized with common defaults settings. The
following LDAs are supplied:

+ SPAETBC (used by EntireX Communicator client
programs)

+ SPAETBS (used by EntireX Communicator
server programs)

METHOD (I11) Determines the type of processirgrfprmed by
SPUETB. Assign the method values using one of the
constants in SPLETB.METHODS.

SPLETB.NORMAL-CALL Used for all EntireX Communicator calls except
LOGON, REGISTER, DEREGISTER, and
LOGOFF.

SPLETB.LOGON Uses the value of SPAETB.SPECTRUM-SERVICE
to look up the EntireX Communicator ID, user ID,
and corresponding password with which to log on to
EntireX Communicator. It also executes the EntireX
Communicator Logon function.

SPLETB.REGISTER- Uses SPAETB.SPECTRUM-SERVICE to look up
SERVER the EntireX Communicator 1D, Server Class, Server
Name, and Service and uses these values to Register
with EntireX Communicator. If the SUPPORT-
SERVER-COMMANDS parameter is set to TRUE,
this method also registers an additional service,
CMD, to accept commands.

SPLETB.SHUTDOWN- Invokes the EntireX Communicator Deregister and

SERVER Logoff functions. It is used by servers only. Always
issue a shutdown request before ending server
programs. Assign SHUTDOWN-
PERMISSION=TRUE if you want SPUETB to
perform ashutdown automatically.

SPLETB.LOG-SUPPLIED- Requests that an application error be logged by

ERROR SPUETB. Thesrror must be passed in the MSG-
INFO.##MSG field of the CDPDA-M data area. The
message is logged to locations specified in the
SPAETB.ERROR-HANDLING structure.

- 282 -

Appendix B: Utilities

Field Name

Description (continued)

SPLETB.LOG-Natural-
ERROR

SPLETB.GET-SERVICE-
DEFAULTS

SPLETB.LOGOFF

SUPPORT-SERVER-
COMMANDS (L)

ALTER-RECEIVE-SERVICE
(L)

SHUTDOWN-PERMISSION
(L)

EXPLICIT-SHUTDOWN
(L)

Only called from ON ERROR blocks or error
transactions (assign to *ERROR-TA). Tells SPUETB
to log the last Natural error that occurred. The error is
logged to locations specified in the
SPAETB.ERROR-HANDLING structure.

Assigns the following fields based on the values
established at the time of the initial LOGON method.
« ETBCB.BROKER-ID

« ETBCB.SERVER-CLASS

« ETBCB.SERVER-NAME ETBCB.SERVICE,

- ETBCB.USER-ID

« ETBCB.TOKEN

« ETBCB.SECURITY-TOKEN

« SPAETB.TIMEOUT-HANDLING

+ SPAETB.SPECTRUM-SERVICE

Performs an EntireX Communicator Logoff function.
For other methodsefer to SPETB.

Tells SPUETB to automatically support command
services such as PING, SHUTDOWN, etc. SPUETB
automatically registers a separate service using CMD
as the service name. All command requests are
handled by SPUETB; the caller need not code any
specific support for commands.

Used in conjunction with SUPPORT-SERVER-
COMMANDS. If this field is set to true, SPUETB
automatically changes the service name specified on
any receive function to an asterisk (*). This allows the
receive to be satisfied by either a request for the main
service or a request for the command service.

If true, SPUETB can shutdown theroent program.
Normally, it is only set for server programs. To
determine which events allow SPUETB to shutdown
the running server, assign the fields in
SPAETB.SHUTDOWN. SPUETB always logs any
errors prior to shutting down.

Allows SPUETB to shutdown the server as a result of
an explicit SHUTDOWN command.

- 283 -

Construct Spectrum SDK Reference

Field Name

Description (continued)

TIMEOUT-REACHED (L)

TERMINAL-ERROR (L)

TIMEOUT-HANDLING (14)

RESERVED (A8)

USE-SPECTRUM-ERROR-
LOG (L)

WRITE-ERRORS-TO-
CONSOLE (L)

WRITE-ERRORS-TO-
PRINT-FILE O(L)

MAX-RETRY-TIME (12)

CALLING-PROGRAM
(A8)

Allows SPUETB to shutdown the server when the
server timeout value is reached. This timeout value is
passed inthe TIMEOUT-HANDLING parameter and
defaulted from the Server Timeout field on the
Spectrum service record.

Allows SPUETB to shutdown the server in response
to a fatal EntireX Communicator error.

Tells SPUETB how to handle timeouts when
executing EntireX Communicator RECEIVE
functions. Can be one of the following:
- -1
Execute forever (use SPLETB.NO-TIME-LIMIT)
to assign this value.
- 0
Return to the caller after the first receive timeout.
° >O
Execute for this many seconds, then either return
to the caller or execute shutdown processing
(based on SHUTDOWN-PERMISION and
TIMEOUT-REACHED parameters).

This field is derived from the Server Timeout value
on the Spectrum service record. If no server timeout
is specified, the following efaults are used:

» Services without Attach Servers -1
« Services with Attach Servers 1200 (= 20 minutes)

Reserved for future use.

Logs all errors to the Spectrum log file.

Writes all errors to the operator console.

Writes all errors to Print file O.

Indicates the length of time to continue trying to
execute a EntireX Communicator call in the event of
a resource shortage. This defaults to 20 seconds.

Identifies the caller of SPUETB. This name is used
when loggingerror messages.

—284 -

Appendix B: Utilities

Field Name Description (continued)

SPECTRUM-SERVICE To use the Logon and Register methods of SPUETB,

(A32) specify the name of the Spectrum service in this field.
Also used when writing error messages.

CALL-DESC (A32) Free-format description of the call used when logging
error messages.

REPLICA-ID(A32) Replica id assigned to the server (output field only).

CLIENT-MODE(L) If this flag is set, SPUETB does not log errors and

checks for EntireX Communicator error cycles are
not performed.

RESULT (I11) Interpreted after the call to determine the results of
the call. The SPLETB data area defines the following
constants to check the results:

« NORMAL-REQUEST
EntireX Communicator call completed normally.

« ATTACH-REQUEST
EntireX Communicator call resulted in an Attach
request. Only returned to Attach Services.

« TIMEOUT
Receive timeout was reached andtdbwn
permission for timeouts was not granted to
SPUETB.

+ NON-TERMINAL-ERROR
Non-terminal EntireX Communicator error
occurred. This error isudomatically logged by
SPUETB. See ETBCB.ERROR-CODE.

+ TERMINAL-ERROR
Terminal EntireX Communicator error occurred,
but shutdown permission was not granted to
SPUETB. Theerror is aitomatically logged.

ETBCB Data Area

ETBCB is a standard data area representing the fields that must be passed to EntireX
Communicator when using the EntireX Communicator ACI. The calling program
should use ETBCB12 or ETBCB13, depending on the version of the stub in use.

SEND-BUFFER

The send buffer is used in conjunction with the EntireX Communicator Send function.
The size of this buffer must be greater than or equal to the value of ETBCB.SEND-
LEN.

— 285 -

Construct Spectrum SDK Reference

RECEIVE-BUFFER

The receive buffer is used in conjunction with the EntireX Communicator Receive
function or blocked Sends. The size of this buffer must be greater than or equal to the
value of ETBCB.RECEIVE-LEN.

RESERVED-AREA

This pass area is reserved for future use. Define and pass the SPAETBP.NOT-USED(*)
parameter in place of this parameter.

CDPDA-M

This is a standard message area. Whenever SPUETB encounters a non-recoverable er-
ror, it returns with therror text in MSG-INFO.##MSG and MSG-INFO.#2RURN-
CODE is assigned “E".

Using SPUETB

For an example of using SPUETRfer to the SPSTIMS Timestamp Server example.
If you need to do your own character set translation (because your messages contain a
mixture of printable and binary datagfer to SPSTIMS?2.

CMD TRACE

The TRACE command enables and disables tracing of a running server. This feature is
used in conjunction with the CSUDEBI utility. The TRACE command accepts a RID
to target the command to a specific replica.

There are two separate forms of the TRACE comunghe one you choose depends on
whether you want to enable or disable tracing.

» To enable tracing:
1 Use the CMD TRACE LOCATION=n [options] command.

» To disable tracing:
1 Use the CMD TRACE OFF command.

— 286 —

Appendix B: Utilities

Valid Keywords

Valid trace loctions are defined in the CSLDEBUG local data area in SYSCST. The
following table shows thedce kgwords:

Keyword Description

QHANDLE A valid queue handle is required when setting the message
location to 10. This is a quoted value consisting:

'bkrid,user-ID, token, (unpacked)security-token,
conv-ID'

ERROR-TRIGGER Forces a runtime error at a specified point within the running
server. Errors can only be triggered on lines dnatcurrently
being traced. The syntax of the value assigned to this field is:

Program,Line,NATnnnn,Skip'

where:

* Program is the name of the program where the runtime
error is to be triggered.

» Line is the line number where tlegror is to be triggered.
* NATnnnn is the error to be triggered.

» Skip is used if the error is not to be triggered on the next
execution of the statement, but rather after executing the
statement this many times.

FILTER-MASK A100 string of 0 and 1 values. “1” is used to represent
statements that are to be traced. Each mask character is
related to a constant in the SPLTRACE local data area.

FILTER-PROGRAM List of up to five programs (in quotes and separated by
commas) used to limit the programs that produce trace
output. You can use special characters in the program name
to serve as pattern-matching characters. For details, refer to
the PATTERN option for the Natural EXAMINE statement.

Example of enabling tracing

CMD TRACE
RID=BBCBO0B5A1BD5AF9F201FACBOB5A14D5AF9F201,LOCATION=10,QHANDLE='"BKR045
,SPSCFACT,AAC
BOB5A1BD5AF9F201FACBO0B5A14D5AF9F201,0000000000000000000000000000000000
000000000000000000000000000000,0000000000000220’,ERROR-
TRIGGER='SPUETB,5420,NAT0082’,FILTER-MASK=1000110000000010000
00010000000110000000000000000000000000000000000000,FILTER-
PROGRAM='SPU*,SP?SEC’

— 287 -

Construct Spectrum SDK Reference

Trace Response

The trace response is normally a confirmation message indicating whether the trace re-
guest was successful. The response uses the SPUREPLY protocol (MSG111).

Test the Trace Facility
To test the trace functions, use the CMD CALLNAT SPUTRTST command.

CMD CALLNAT

It is possible to CALLNAT any subprogram, provided the subprogram implements a
generic interface. This interface is defined akfes:

DEFINE DATA
PARAMETER USING SPACALLN /* Standard callnat parameters
PARAMETER USING SPAREPLY /* Reply message parameters
PARAMETER
01 RECEIVE-SEND-BUFFER(A1/1:15000)

END-DEFINE

The CALLNAT command takes the form:

CMD CALLNAT subpname parameter_string
where:

Subpname Is the name of the subprogram you want to CALLNAT.

parameter_string Is any set of characters to be passed to the spdifieogram
using the RECEIVE-SEND-BUFFER.

For an example of how to write a new CALLNAT irfiacesubprogram, rier to the
SPUCMDT subprogram.

— 288 —

Appendix B: Utilities

Conversation Factory Utility

Construct Spectrum includes a facility called a Conversation Factory. This facility
works in conjunction with high-level callnat and message queue APIs to facilitate the
simple transfer of data between two platforms. The benédfidreal by the ©nversation
Factory and supporting APIs include:

» Allow communication between a client and server without knowledge of EntireX Com-
municator ACI.

« Allow a conversation to be established between two processes, each acting as clients.

» Support multiple concurrent conversations between the same two participants. For ex-
ample, the Construct generate server listens for specifications on one conversation and
cancels requests on another.

« Are used in conjunction with servers launched from the client to establish a conversa-
tion between the client who launched a service and the service itself.

On the server, the Conversation Factory consists of the following four subprograms:

Subprogram Description

SQUOPEN Opens a new conversation.

SQUSEND Sends information from one end of the conversation to the other.
SQURECV Receives information.

SQUCLOSE Closes the conversation.

For an example of how to use the Conversation Factory APIs, refer to the SQEXAMPL
subprogram.

—289 -

Construct Spectrum SDK Reference

Character Translation Subprogram

When writing your own servers, it is sometimes necessary to perform character-set
translation. The preferred approach to character translation is to use the translation rou-
tines assigned to the EntireX Communicator service in the EntireX Communicator
Attribute file. However, sometimes you may want to send a message that contains a
mixture of binary and printable data where only a portion of the message is to be trans-
lated. Use the SPUTLATE subprogram for this purpose.

SPUTLATE allows you to pass in a string, along with aayaof character pdsons to

be translated. Itis supplied in source form. For an example of calling SPUTLATE, refer
to SPSTIMS2.

Determine a Character Set

Sometimes a server receives a message it cannot interpret. Normally, the server returns
areply to the sender indicating that the message is invalid. If the serfanpsits own
translation, it needs to know thearhcter set of the received message so that the reply
can be sent back in the client’s character set. SPUASQI$ determine whether a

string of characters is ASCII or EBCDIC format. For an example of calling SPUASCII,
refer to SPSTIMS2.

—-290 -

Appendix B: Utilities

Multi-Tasking Verification Utility

Use this utility to verify that ADALNK has been configured to be re-entrant and that
the Natural batch nucleus that uses it is also re-entrant. A re-entrant Natural nucleus is
required to run Spectrum services in a batch multi-tasking environment.

To start multiple Natural subtasks, use JCL to run the supplied Natural module,
TESTTASK, in batch (as documented3tep 2: Verify Natural Subtask Support in

the mainframe installation guide). If your Natural nucleus is re-entranfl TESK

will successfully start Natural subtask sessions that will execute the TESTSTSK pro-
gram, which will then write trace information to workfile 1 showing the execution
status of the subtasks. Otherwise, the job that runs TESTTASK will not end and will
have to be manually cancelled.

-291 -

Construct Spectrum SDK Reference

Log Utilities

Construct Spectrum supplies several utilities for archiving and deleting log data. Most
of the parametergaly to all log archive utilities.

Spectrum Log Utilities

The following Spectrum log utilities are supplied with Construct Spectrum:

Utility Description

BSBLARCP Allows the Spectrum Log data to be archived to a work file and
optionally deleted from the Spectrum Log based on a date. It
also generates a log record of the archive process.

This utility has the following input fields:
Input End Date Indicates the last LOG date to be archived.

Full Report Indicates which details to display.
« Todisplay full details of all data being logged, enter “F”
(full).
» To show only the main log information, enter “B” (brief).

Delete After Indicates whether to delete log records after they are archived.
Archive
BSBLRESP Restores data to the Spectrum Log file. It uses the entire log

data created by the BSBLARCP utility. It also generates a log
record of the restore process.

This utility has the following input field:

Full Report Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).
» To show only the main log information, enter “B” (brief).

-292 -

Appendix B: Utilities

Construct Spectrum Control Record Log Utilities

The following Control record utilities are supplied with Construct Spectrum:

Utility

Description

BSCTARCP

Input End Date

Full Report

Delete After
Archive

BSCTRESP

Full Report

Allows the Spectrum Control Record log data to be archived to
a work file and, optionally, deleted from the Spectrum Control
Record log based on a date. It also generates a log record of the
archive process.

This utility has the following input fields:
Indicates the last LOG date to be archived.

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Spectrum Control Record log file. It uses
the entire log data created by the BSCTARCP utility. It also
generates a log record of the restore process.

This utility has the following input field:

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).
» To show only the main log information, enter “B” (brief).

-293 -

Construct Spectrum SDK Reference

Domain Log Utilities

The following domain log utilities are supplied with Construct Spectrum:

Utility

Description

BSDOARCP

Input End Date

Full Report

Delete After
Archive

BSDORESP

Full Report

Allows the Domain log data to &echived to a work file and,
optionally, deleted from the Domain log based on a date. It also
generates a log record of the archive process.

This utility has the following input fields:
Indicates the last LOG date to be archived.

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Domain log file. It uses the entire log data
created by the BSDOARCP utility. It also generates a log
record of the restore process.

This utility has the following input field:

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).
» To show only the main log information, enter “B” (brief).

—294 -

Appendix B: Utilities

Spectrum Group Log Utilities

The following group log utilities are supplied with Construct Spectrum:

Utility

Description

BSGRARCP

Input End Date

Full Report

Delete After
Archive

BSGRRESP

Full Report

Allows the Spectrum Group log data to be archived to a work
file and, optionally, deleted from the Spectrum Group log,
based on a date. It also generates a log record of the archive
process.

This utility has the following input fields:
Indicates the last LOG date to be archived.

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the Spectrum Group log file. It uses the entire
log data created by the BSGRARCP utility. It also generates a
log record of the restore process.

This utility has the following input field:

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).
» To show only the main log information, enter “B” (brief).

- 295 -

Construct Spectrum SDK Reference

Application Service Definition Log Utilities

The following Application Service Definition utilitiegresupplied with Construct

Spectrum:
Utility Description
BSIFARCP Allows the Application Service Definition log data to be
archived to a work file and, optionally, deleted from the
Application Service Definition log based on a date. It also
generates a log record of the archive process.
This utility has the following input fields:
Report type Indicates which report type to display.
« Toinclude information related to the interface and method
data, enter “F” (full).
« Todisplay only the log for the application service header
information, enter “B” (brief).
Delete After Indicates whether to delete log records after they are archived.
Archive
BSIFRESP Restores data to the Application Service Definition log file. It
uses the entire log data created by the BSIFARCP utility. It
also generates a log record of the restoration process.
This utility has the following input field:
Report type Indicates which report type to display.

« Toinclude information related to the interface and method
data, enter “F” (full).

« Todisplay only the log for the application service header
information, enter “B” (brief).

- 296 -

Appendix B: Utilities

Spectrum Steplib Log Utilities

The following utilitiesaresupplied with Construct Spectrum:

Utility

Description

BSSDARCP

Input End Date

Full Report

Delete After
Archive

BSSDRESP

Full Report

Allows the Spectrum Steplib log data t@lmhived to a work
file and, optionally, deleted from the Spectrum Steplib log
based on a date. It also generates a log record of the archive
process.

This utility has the following input fields:
Indicates the last LOG date to be archived.

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).

» To show only the main log information, enter “B” (brief).

Indicates whether to delete log records after they are archived.

Restores data to the EntireX Communicator Steplib log file. It
uses the entire log data created by the BSSDARCP utility. It
also generates a log record of the restore process.

This utility has the following input field:

Indicates which details to display.

« Todisplay full details of all data being logged, enter “F”
(full).

» To show only the main log information, enter “B” (brief).

- 297 -

Construct Spectrum SDK Reference

User and Group Log Utilities

The following utilitiesaresupplied with Construct Spectrum:

Utility Description

BSUSARCP Allows the User and Group log data to be archived to a work
file and, optionally, deleted from the User and Group log based
on a date. It also generates a log record of the archive process.

This utility has the following input fields:

Report type Indicates which report type to display.
« Toinclude information related to the interface and method
data, enter “F” (full).
« Todisplay only the log for the application service header
information, enter “B” (brief).

Delete After Indicates whether to delete log records after they are archived.
Archive
BSUSRESP Restores data to the User and Group log file. It uses the entire

log data created by the BSUSARCP utility. It also generates a
log record of the restore process.

This utility has the following input field:

Report type Indicates which report type to display.
« Toinclude information related to the interface and method
data, enter “F” (full).
» Todisplay only the log for the application service header
information, enter “B” (brief).

- 298 -

INDEX

Numerics

1:V fields
example of a PDA, 233
example of calling the Allocate method,
233
example of code to specify an array, 233
example of code to specify number of
occurrences, 233
example of instantiating the PDA, 233
example of obtaining the bounds of an
array, 234
example of passing an array, 234
example of using the same data area, 234
1:V overrides
Edit 1
V Overrides window, 108
1:V variables
Subprogram proxies
1:V variable considerations, 108

A

ABO interface
customizing, 98
ABO project
components, 91
creating, 87
ABO wizard
using, 92
Active server page (ASP) script
definition of, 255
ActiveX business object (ABO)
definition of, 255
with Microsoft IS, 35
ActiveX DLL
definition of, 255

—-299 -

Adding
methods
application service definitions, 113
user exits
Subprogram-Proxy model, 106, 109

Altered characters
Translations program, 181

Application library
definition of, 255

Application objects
troubleshooting, 185

Application service definition
definition of, 255

Application service definitions
accesimg, 112
adding a method, 113
Maintain Application Service
Definitions panel, 112
methods, 111

Application services
creaing and selecting server
components, 236
definition of, 255
external parameters, 237
global data areas, 236
parameter data areas, 237
subprogram behavior, 237
subprogram intéace, 236
terminal I/O, 236
timing issues, 237
Applications
client/server
deploying, 191
Construct Spectrum
client/server, 28
web, 28
creaing without using clienframework
setting up server components, 236

Construct Spectrum SDK Reference

Architecture
Construct Spectrum
diagram, 29
definition of, 255
ASCI| character set

Browse process
definition of, 256

Browse subprogram proxy
number of occurrences returned, 108
specifying number of occurrences, 106

translating, 31

BSBLARCP

log utility, 292
B BSBLRESP
log utility, 292
BDT class BSCTARCP
definition of, 256 log utility

BDT controller
calling conversion routines, 126
convert from display, 128
convert to display, 127
converting in-place, 128

Control record, 293

BSCTRESP
log utility

Control record, 293

; BSDOARCP
creating sample values, 129 log utility
error information properties, 131 domain. 294
ErrorCode, 131 '
ErrorLen, 131 BSDORESP
ErrorMsg, 131 log utility
ErrorPos, 131 domain, 294
example of code, 131 BSGRARCP
syntax example, 125 log utility
using Natural formats, 130 group, 295
BDT controller class BSGRRESP
definition of, 256 log utility
BDT controller object group, 295
definition of, 256 BSIFAF_Q(_:P
BDT modifier log utility

definition of, 256

BDT procedure
definition of, 256

BDT_DATE

Application Service Definition, 296

BSIFRESP
log utility

Application Service Definition, 296

Predict keyword, 137 BiSDUAtﬁCP
BDTs (business data types) g utity
overview, 122 steplib, 297
. BSSDRESP
Block handling log utility
default methods, 116 :
overriding, 116 steplib, 297
P BSUSARCP
specifying on the server, 118 log utility

Browse command handler
definition of, 255
Browse data cache
definition of, 255
Browse dialog
definition of, 256

—300 -

user and group, 298

BSUSRESP
log utility

user and group, 298

Index

Business data type (BDT) objects
BDTController, 141
BDTConversion, 141
diagram of properties and methods, 142

Business data types (BDTS)
benefits of using, 123
client framework, 124-125
composition
conversion routine, 124
modifiers, 124
name, 124
creating
modifiers, 138
name, 138
Natural formats supported, 138
returning appropriate variant types,
139
customizing and creating, 138
definition of, 256
handling runtime errors, 141
one conversion routine with multiple
BDTs, 148
overriding, 149
overview, 122
placing the conversion routine, 148
referencing
in your application, 149
Predict, 150
registering, 145
example of code, 145
retrieving error information, 149
setting up in Predict, 40
supplied with Construct Spectrum
Alpha, 133
Boolean, 133
Currency, 135
Date, 136
Numeric, 134
Time, 134
used by client framework
diagram, 126
using modifiers, 129
Visual Basic, 123
diagram, 123
Business object
definition of, 257
setting up in Predict, 42

-301 -

Business-Object-Sgn-Model

before using, 73
application environment, 75
default values in Predict, 73
model defaults, 73
naming conventions, 74

generating packages, 76
general package parameters, 78
specific package parameters, 79
standard parameters, 77

overview, 72

when to use, 72

Business-Object-Sugp-Model wizard
definition of, 257

C

CallNat method
syntax, 220
CALLNAT simulation
Spectrum Dispatch Client, 33
CallSystem method
syntax, 221
Cardinality
definition of, 257
Character set
determining, 290
translating, 31
Character sets
translating, 290
Character Ul
on mainframe server, 30
Checklists
application creation, 38
Child model
definition of, 257
Client applications
definition of, 257
developing
code to call subprogram, 252
creating the user intiace, 251
running applications, 253
Client calls
simulate for debugging, 175
Client framework
definition of, 257

Construct Spectrum SDK Reference

Client/Server application
creating using Construct Spectrum tools,
17
creating without Construct Spectrum, 17

Code
preserving customizations to generated
code, 58
protecting
using implied user exits, 58
using the cst
PRESERVE tag, 58
Code block
definition of, 257

Command block
definition of, 257

Command handler list
definition of, 258

Command handlers
definition of, 257

Command ID
definition of, 258

Communication errors
handling, 162
possible origins, 162
retrieving information, 163
severe, 163

Complex redefine
definition of, 258

Components
framework
ABO project, 91
Compression
definition of, 258

Configuration editor
invoking, 50

Configuration Profiles tab
Configuration editor, 50

Construct Spectrum
courses, 19
definition of, 258
glossary of terms, 255
Construct Spectrum Add-In
definition of, 258
Construct Spectrum Administration
subsystem
definition of, 258

-302 -

Construct Spectrum applications
creaing without using clienframework
setting up server components, 236

Construct Spectrum SDK Reference
layout, 14

Conventions
used in this documentation, 18

Conversation Factory
transferring data between two platforms,
289
Conversion routines
creaing, 143
handling errors, 131
properties and methods, 143, 154
Courses
Construct Spectrum, 19

Creating
applications, 195
assign values to fields in parameter
data areas, 195
example of code to write to data
areas, 195
check success of CALLNAT, 196
example of code to check CallNat,
196
create parameter data area instances,
195
example of code declaring
variables, 195
example of creating a data area, 195
use the CallNat method on the client,
196
example of code to use the CallNat
method, 196
domain for your application, 39
Customizing
ABO
using user exits, 100
properties generated for the ABO, 98

D

Data encryption/de-encryption
Construct Spectrum applications, 31
Data Sizes tab
Diagnostics window, 179

Index

Data translation
system functions, 32
Database record
definition of, 258
DBID
definition of, 258
Debug data
Debug Library field, 173
generating, 167
writing to the source area

example of code in subprograms, 170
example of results from IF statement,

170
example of results without IF
statement, 171
Debugging

client/server applications, 162
list of error sources, 162
runtime errors, 167
traditional tools, 163-164

communication errors, 167

returning information, 32

Debugging tools
client/server
Diagnostics window, 177
Translations program, 181
definition of, 259
INPUT statement, 174
simulating client calls, 175
traditional
DISPLAY statements, 163
INPUT statements, 163
Natural Debugging facility, 163
WRITE statements, 163

Defaulting from Predict
business object description, 42
GUI controls, 40
hold field, 41
primary key, 41

DEFINE PRINTER statement
using, 170

Defining
domain for your application, 45
security for your application, 47
steplib chain for your application, 43

Dependent object
definition of, 259

-303 -

Deploying

client/server applications, 191
collect files for installation, 191
create the executable file, 191
install the client application, 192
run the application, 192

Deployment

definition of, 259

Descriptions

defaulting for business objects, 42

Determining

character set, 290

Development environments

Construct Spectrum Add-Ins
Visual Basic, 26

Construct Spectrum Administration

subsystem, 24

Construct Spectrum options
Add-Ins menu, 26

Construct Windows intéace, 25

creaing a web application, 27

integrated tools, 23

using an HTML editor, 27

Development process

overview, 36

Diagnostics window

Data Sizes tab, 179

description, 177

Initialize Data tab, 180

Subprogram Proxy tab, 178

summary of diagnostic information, 177
using, 178

Dialog

definition of, 259

Dispatch service

definition of, 259

Dispatch service data

on mainframe server, 31

Dispatcher

definition of, 259

Dispatcher objects

troubleshooting, 186

Distributing

client/server applications, 191
collect files for installation, 191
create the executable file, 191
install the client application, 192
run the application, 192

Construct Spectrum SDK Reference

Documentation

related, 18
Domain
defining, 45

defining security, 47
definition of, 259

Double-byte character set (DBCS)
definition of, 259

Download data
definition of, 259

E

EBCDIC character set
translating, 31
EDIT command
Natural
view generated debug members, 173

Enabling trace options in subprogram
proxy, 107
Encapsulation

definition of, 259

Encrypt and decrypt data
system functions, 32

Encryption
definition of, 259

Encryption/de-encryption of data
Construct Spectrum applications, 31
EntireX Communicator
ACI calls
wrapping, 278
encapsulation of calls, 33
on mainframe server, 31
on Windows platform, 33
service settings
definition of, 260
stub
definition of, 260
with Microsoft IS, 35

Error categories
communication, 165
debugging client/server applications,
165
runtime, 165
Spectrum system messages, 165

~304 -

Error handling
system functions, 32
Errors.bas
description, 91
ETBCB data area
description, 285
Event
definition of, 260
Externally-creatable object
definition of, 260

F

Field
definition of, 260

Field headings
setting up in Predict, 39

FieldRef property
diagram of creatg two data eeas, 231
diagram of fields defined as objects to
CallNat, 230
diagram of fields passed to CallNat, 228
diagram of using, 231
example, 231
example of code to pass individual
fields, 228
example of using the CUSTA Natural
data area, 232
example of Visual Basic code, 232
syntax, 230

File volume information
specifying in Predict, 42

FNR
definition of, 260

Foreign key
definition of, 260

Form
definition of, 260

Framework components
ABO project, 91

G

Generate
definition of, 260

Generated module
definition of, 261

Index

Generating
debug data, 167
saving parameter and debug data, 167
Generate Trace Code field, 172
package modules
Generation subsystem, 82
subprogram proxy, 105-106
Generation data cache
definition of, 261
Global data areas
application services, 236
Global settings
configuration profile, 50
Globals.bas
description, 91
Grid
definition of, 261
Grid control
definition of, 261
Group
definition of, 261
Grouping related business objects, 45

GUI
definition of, 261

GUI control override
definition of, 261
GUI controls
setting up in Predict, 40
GUI dialog
on Windows platform, 34

H

Hold field default
setting up in Predict, 41
Hook
definition of, 261
Host
definition of, 261
HTML fragment
definition of, 261
HTML template
definition of, 261
HTML Template wizard
definition of, 261
http request
definition of, 262

- 305 -

Initialize Data tab
Diagnostics window, 180
INPUT statement
use as debugging tool, 174
Instantiation
definition of, 262
Internationalization
definition of, 262
Internet/intranet
supported browsers, 35
Invoke Proxy
function
accessing, 176
panel
description, 176
Invoking
Configuration editor, 50

J

Job control language (JCL)
definition of, 262

K

Keys

defaulting primary, 41
Keyword

definition of, 262

Knowledge
assumed, 14

L

Level 1 block optimization
description, 213
diagram of client and server as sender
and receiver, 215
directional attributes
example, 214
list of directional attributes, 213

Level 1 data block
definition of, 262

Level 1 data block optimization
definition of, 262

Construct Spectrum SDK Reference

Libraries

adding to your steplib chain, 44
Library image file (LIF)

definition of, 262

simulated PDAs, 33
LIF definitions module

definition of, 262
LIFDefinitions.bas

description, 91
LIST command

Natural

view generated debug members, 173

Localization

definition of, 262
Log utilities

supplied with Construct Spectrum, 292
Lookups

definition of, 262

M

Maintain Domains Table panel
description, 46
Maintain Steplib Table panel
description, 44
Maintain User Table panel
accessing, 172
Maintenance dialog
definition of, 262
Maintenance subprogram proxy
level 1 blocks sent for default methods,
116
Mapper function
description, 130
MDI child
definition of, 263
MDI frame
definition of, 263
MDI parent
definition of, 263
Menu
definition of, 263
Menu bar
definition of, 263

- 306 —

Message handling
system functions, 32

Message protocol
MESSAGE(AL), 273
MSG-NR(N4), 273
REPLICA-ID(A32), 273
RESPONSE-CODE(N4), 273
SIGNATURE(A®6), 273
SPECTRUM-SERVICE(A32), 273
SYSERR-LIBRARY(A8), 273
Metadata
definition of, 263

Method
Abort, 224
adding
application service definitions, 113
updating application service
definitions, 113
updating LIFs, 114
Allocate, 201
Commit, 224
definition of, 263
GetField, 204
Initialize, 201
Reset, 205
SetField, 205
StartTransaction, 224
Middleware
relationship with Construct Spectrum,
22
Model
definition of, 263

Module
definition of, 263

Multi-level security
definition of, 264

Multiple-document intgface (MDI)
definition of, 264

Multi-tasking verification utility
description, 291

N

Natural Construct nucleus
definition of, 264

Index

Natural data area
simulation, 198
Allocate method, 201
application object properties or
methods, 201
creating NaturalDataArea objects, 202
data area definitions, 198
definition, 198
diagram of components, 198
diagram of objects in data area
simulation, 200
example of a data area definition, 208
example of code for data area
definition, 199
example of code for redefining, 207
example of code to declare and
initialize the application object, 201
example of code using structure name
as a qualifier, 206
example of reading arrays with the
GetField method, 208
example of reading occurrences of the
Item array, 209
example of specifying a field with
occurrences, 208
example of using redefined fields, 207
Initialize method, 201
LIFDirectory property, 201
list of features in data area definitions,
199
MainLibrary property, 201
NaturalDataArea class, 202—-203
NaturalDataArea object, 206
NaturalFieldDef class, 210
simulation objects, 200
syntax for Allocate method, 202
Natural Debugging facility
definition of, 264
Natural security
user information, 173
Natural source areas
writing information to, 236
Natural subprograms
example of creating, 238—-239
PDA, 238
on mainframe server, 30
NaturalDataArea object
troubleshooting, 185

-307 -

Navigation bar
definition of, 264
Node
definition of, 264
marking for refresh, 70
removing from cache, 70
Nucleus
definition of, 264

O

Object

definition of, 264
Object factory

definition of, 264
Object Factory wizard

definition of, 264
Object library

definition of, 264
OLE

definition of, 264
OLE automation server

definition of, 265
Options window

customizing the ABO

description, 99

Overflow condition

definition of, 265
Overriding

1:V variables, 108

domain steplib chain, 115

P

Package
definition of, 265

Page handler
definition of, 265

Page Handler wizard
definition of, 265

Parameter alignment problems
diagnosing, 177

Parameter and debug data
accesimg the Maintain User Table
panel, 172
using, 172

Construct Spectrum SDK Reference

Parameter data areas (PDAS)
application services
data size limitations, 237
example of creating, 238
simulation by Spectrum Dispatch Client,
33

Parameters
externalizing, 237

Parent model
definition of, 265

Parse area
definition of, 265
Partner products
Construct Spectrum, 22
Ping
definition of, 265
Platform
definition of, 265
Predict data dictionary
relationship with Construct Spectrum,
22

Predict set up tasks
business data types, 40
default business object description, 42
default GUI controls, 40
default hold field, 41
default primary key, 41
field headings, 39
file volume information, 42
verification rules, 40, 42
Prerequsites
assumed knowledge, 14
Preserving characters
Translation program, 181
Primary keys
defaulting from Predict, 41
Printable characters
Translation program, 181
Programming languages
incorporating with Construct Spectrum,
23

Project
definition of, 265
Project group
definition of, 265

- 308 -

Properties
CheckFieldSpec, 203, 209
Decimals, 210
DefinedRank, 210
Definition, 203, 209
Field, 203
FieldDef, 204, 209
FieldDefs, 204, 210
FieldRef, 204
Format, 210
FormatLength, 210
FromIndex, 211
Length, 211
Level, 211
LevelTypeTrail, 211
LibrarylmageFile, 204
LIFDirectory, 201
MainLibrary, 201
Name, 204, 212
PackedData, 204
PackedDatalength, 205, 210
Rank, 212
Redefined, 212
Structure, 212
Thrulndex, 211-212
TransactionActive, 224

Property
definition of, 265

R

Regenerate/preserve status
definition of, 265
Remote call
definition of, 266
Replacement tag
definition of, 266
Reports
using, 63
RequestProperty properties
Spectrum Dispatch Client, 186
Resource
definition of, 266
Run
definition of, 266
Running
applications, 253

Index

Runtime errors
listing, 165
results, 175

S

Security
defining for a domain, 47
Security cache
definition of, 266
Security services
on mainframe server, 31
Sending
responses back to client, 272
Server
components
setting up for communication with
client, 236
definition of, 266
Server application
definition of, 266
Service
definition of, 266
Service exit
definition of, 266
Service log
definition of, 266
Set up checklists
seeChecklists, 38
Setting
trace options, 167
Setting up
security for your application, 43
Settings for Profile tab
Configuration editor, 52
Shutdown
definition of, 266
Software deviepment kit (SDK)
definition of, 266
SPAETB data area
description, 280
Specifying
block handling on the server, 118
defaults
hold key, 41
primary key, 41

—-309 -

general package parameters
Business-Object-Sgp-Model, 78

overrides, 118

specific package parameters
Business-Object-Sgp-Model, 79, 81

standard parameters
Business-Object-Sgp-Model, 77

Spectrum administration

on mainframe server, 31

Spectrum client/server application

definition of, 266

Spectrum Control record

definition of, 266

Spectrum Dispatch Client

advanced features, 228
1to V fields, 233
FieldRef property, 228
application service definitions, 215
example in a library image file, 216
CALLNAT simulation, 33
client/server communication, 213
application service, 197
components, 197
data area simulation, 198
level 1 block optimization, 213
client/server communication
components
definitions, 197
dispatch service definitions, 197
Dispatcher objects, 197
creaing applications, 195
data area simulation cqranents, 197
data area allocator, 197
data area definitions, 197
data area objects, 197
database transaction control, 34
Dispatcher objects and dispatch service
definitions, 218
compression and encryption, 223
database transaction control, 224
diagram of Dispatcher objects, 218
diagram of timeout functionality, 222
example of code to create Dispatcher
objects, 218
example of implementing level 1
block optimization, 220
example of resuming a call, 223
list of error types, 225

Construct Spectrum SDK Reference

remote subprogram invocation, 220
service selection, 219
timeout, retry, and resume handling,
221
tracing, 224
user identification and authentication
application properties, 226
encapsulation of EntireX Communicator
calls, 33
functions
client/server communication, 197
Natural data area simulation, 197
initializing
Project Properties dialog, 251
library image files and the steplib chain,
227
syntax of the steplib definition, 227
overview, 194
properties, 185
with Microsoft IIS, 35
Spectrum Dispatch Client (SDC)
definition of, 266
on Windows platform, 33
Spectrum dispatch service
definition of, 267
on mainframe server, 31
running online, 174
Spectrum security service
definition of, 267
Spectrum security services
on mainframe server, 31
Spectrum Service Manager
definition of, 267
Spectrum service settings
definition of, 267
Spectrum web application
definition of, 267
Spectrum web framework
definition of, 267
Spectrum XML Cache Viewer
overview, 68
refreshing, 70
SPSTLATE utility, 290

-310 -

SPUETB subprogram
wrapping EntireX Communicator ACI
calls, 278
SPUREPLY subprogram
sending responses back to client, 272
Status bar
definition of, 267

Steplib chain
defining, 43
definition of, 267

Sub Main procedure
definition of, 267

Subprogram proxies
generating using model, 240
invoking online, 175
setting trace code option, 107
Spectrum dispatch service, 31
Subprogram proxy
definition of, 267
methods generated, 111
on mainframe server, 30
overview
application service definition methods
SeeApplication service definitions,
111
prerequisites
Construct Spectrum Administration
subsystem data files, 111
generating subprograms and object
PDAs, 111
versioning, 120
security implications, 120
Subprogram Proxy tab
Diagnostics window, 178

Subprogram-Proxy model
adding user exits, 109
overview, 104
standard parameters, 106
using, 105

Subprograms
behavior, 237
interfacing, 236

Super model
definition of, 267

Index

T

Target module
definition of, 267

Target object
definition of, 268

Target subprogram
definition of, 268

Template parser

definition of, 268
Timing issues

application services, 237
Toolbar

definition of, 268

Toolbar button
definition of, 268

Toolkit
definition of, 268

Tools

debugging

client/server applications, 163

Trace options

definition of, 268

setting, 167

Subprogram Proxy Trace Options

window, 168
Trace-Option(1)

description, 168
Trace-Option(2)

description, 172

Generate Trace Code field, 172

valid values, 172

Transferring
data between two platforms, 289

Translating
character sets, 31, 290

Translation Mappings window
description, 182

Translations program
ASCII/EBCDIC, 181
character sets, 181

altered, 181

preserved, 181

printable, 181
translation tables, 181

Troubleshooting
Construct Spectrum Add-In, 184
Construct Spectrum dispatch client
properties, 185

Type library
definition of, 268

U

Updating
application service definitions, 113
LIF files, 114

Upload data
definition of, 268

User exits
customizing the ABO, 100

User interface
creaing, 251
example form, 251
Utilities
log, 292
multi-tasking verification, 291
sending responses back to client
SPUREPLY subprogram, 272
transferring data between two platforms
Conversation Factory, 289
translating character sets
SPSTLATE subprogram, 290
wrapping EntireX Communicator ACI
calls
SPUETB subprogram, 278
Utility.bas
description, 91

Vv

Variant
definition of, 268
VB-Client-Server-Super-Model
definition of, 268
Verification rules
definition of, 269
setting up in Predict, 40, 42
Visual Basic browse object
definition of, 269
Visual Basic business object
definition of, 269
on Windows platform, 34

Construct Spectrum SDK Reference

Visual Basic maintenance object
definition of, 269

Volume information
seeFile volume information

w

Web application
with Microsoft IS, 35

Web application ASP
definition of, 269

Web class
definition of, 269

Web Super wizard
definition of, 269

Wildcard
definition of, 269

Wrapping
EntireX Communicator ACI calls, 278

X

XML extract
definition of, 270

-312 -

	Preface
	Prerequisite Knowledge
	Purpose and Structure of this Guide
	How to Use this Guide
	Create a Web Application
	Create a Client/Server Application
	Without Using the Client Framework

	Other Resources
	Related Documentation
	Construct Spectrum
	Natural Construct

	Other Documentation
	Related Courses

	Introduction
	What is Construct Spectrum?
	Partner Products
	Data Dictionary and Repository
	Middleware
	Programming Languages
	Multiple Development Environments

	Construct Spectrum Development Environments
	Administration Subsystem
	Construct Windows Interface
	Visual Basic
	Client/Server Applications
	Web Applications

	Types of Construct Spectrum Applications
	Architecture of Construct Spectrum Applications
	Mainframe Server Components
	System Functions

	Windows Components
	Internet Information Server (IIS) Components
	Internet/Intranet Components

	Overview of the Development Process

	Setting up the Mainframe Environment
	Overview
	Setting Up Predict Definitions
	Field Headings
	Business Data Types (BDTs)
	Default GUI and HTML Controls
	Verification Rules
	Default Primary Keys and Hold Fields
	Define a Default Primary Key
	Define a Default Hold Key

	Default Business Object Description
	Descriptive Browse Fields
	File Volume Information in Client/Server Applications

	Creating a Domain and Setting Up Security
	Step 1: Define the Steplib Chain
	Step 2: Define the Domain
	Step 3: Define Security for the Domain

	Features of the Wizards
	Using the Configuration Editor
	Invoke the Configuration Editor
	Modify the Profile Settings
	Create a New Configuration Profile
	Modify the Path Settings

	Working with Code
	Implied User Exits
	Preserve Customizations to Generated Code

	Regenerating Modules
	Regenerate Individual Modules
	Regenerate Multiple Modules
	Regenerate External Files

	Editing Modules
	Generating and Reviewing Reports
	Access Reports
	Review a Stored Report
	Specify Report Detail

	Use Reports with a Code Comparison Tool

	Using The Spectrum Cache
	Overview
	Mark Nodes to be Refreshed
	Remove Nodes From the Spectrum Cache

	Using the Business-Object-Super- Model
	Overview
	Before You Begin
	Check the Model Defaults
	Set up Default Values in Predict
	Establish a Naming Convention
	Set Up the Application Environment

	Generating Packages
	Step 1: Define the Standard Parameters
	Step 2: Define the General Package Parameters
	Step 3: Define the Specific Package Parameters
	Step 4: Create Another Package (Optional)
	Step 5: Generate the Modules
	Generation Subsystem

	Troubleshooting

	Using ActiveX Business Objects
	Overview
	Using the ABO Project Wizard
	Create the ABO Project
	Framework Components for the ABO Project

	Using the ABO Wizard
	Customizing the ABO
	Customize Properties Generated for the ABO
	Opt Column

	Customize the ABO within User Exits
	GetAppService_.SetMethodAndBlocks
	ICSTBrowseObject_LogicalKeyInfo.Extra
	ICSTPersist_InstanceData.Get.Extra
	ICSTPersist_InstanceData.Let.Extra
	ICSTPropertyInfo_PropertyInfo.Get.Extra
	<CounterPropertyName>.Get.NullList

	Using the Subprogram-Proxy Model
	Overview
	Accessing System Files
	Generating a Subprogram Proxy
	Step 1: Specify Standard Parameters
	Step 2: Specify the Number of Occurrences Returned
	Step 3: Add User Exits
	Step 4: Generate the Subprogram Proxy

	Generating Methods
	Access the Application Service Definitions
	Add a Method
	Step 1: Create the Method
	Step 2: Update the Application Service Definition
	Step 3: Update the Library Image File

	Override the Steplib Chain for the Domain

	Overriding Block Handling
	Default Block Handling
	Maintenance Subprogram Blocks Sent to Server
	Maintenance Subprogram Blocks Returned to Client
	Browse Subprogram Blocks Sent to Server
	Browse Subprogram Blocks Returned to Client

	Specify Overrides
	Step 1: Define Block Handling On Server
	Disable a Block Unconditionally
	Send Blocks to the Client Conditionally

	Step 2: Define Block Handling On Client

	Creating Multiple Versions
	Security Implications

	Support for Trace Options

	Using Business Data Types (BDTs)
	Overview
	Understanding and Using BDTs
	Benefits of Using BDTs
	Relationship With Visual Basic Data Types
	Composition of a BDT
	Name
	Conversion Routine
	Modifiers

	Elements of a BDT
	BDT Controller
	How the Client Framework Uses BDTs

	Conversion Routines
	ConvertToDisplay Method
	ConvertFromDisplay Method
	ConvertInPlace Method
	CreateSampleString Method

	Modifiers
	Natural Formats

	Handling Errors Returned from a BDT Conversion Routine
	How Web Applications Use BDTs
	BDTs Supplied With Construct Spectrum
	Alpha
	Boolean
	Time
	Numeric
	Currency
	Date

	Referencing BDTs in Predict
	Defining BDTs
	Name
	Modifiers
	Natural Formats
	Variant Data Types

	Returning Conversion Error Information
	Handling Runtime Errors
	Creating and Customizing BDTs
	BDTs and the Client/Server Framework
	Understanding the BDT Objects

	Create BDT Conversion Routines
	Register a BDT
	Deregister a BDT
	Locate the Conversion Routine for a BDT
	Create a Natural-to-BDT Mapper
	Other Considerations
	Use One Conversion Routine with Multiple BDTs
	Placement of the Conversion Routine
	Override a Supplied BDT
	Reference BDTs in Your Application

	BDTs and the Web Framework
	Implement BDTs in the Web Framework
	Register BDTs in the Web Framework
	Register BDT Classes Using the Windows Registry
	Explicitly Register BDT Classes

	BDT Conversion Object
	Create the BDT Class
	Other BDT Controller Methods
	Create a Natural-to-BDT Mapper

	Create One BDT Class with Multiple BDTs

	Debugging Your Client/Server Application
	Overview
	Communication Errors
	Communication Error Handling

	Traditional Debugging Tools
	Construct Spectrum Debugging Tools

	Types of Errors
	Visual Basic Runtime Errors
	Communication Errors
	Natural Runtime Errors
	Construct Spectrum-Related Errors
	Errors that Do Not Return an Error Message

	Generating Debug Data
	Save Parameter and Debug Data
	Set Trace Options
	Trace Option(1)
	Create Debug Data

	Trace Option(2)

	Specify Where to Save Debug Data
	Access the Maintain User Table Panel

	Running Spectrum Dispatch Services Online
	Use the INPUT Statement as a Debugging Tool

	Using Natural Debugging Tools
	Invoke Subprogram Proxies Online
	Access the Invoke Proxy Function

	Debugging Tools on the Client and Server
	Diagnostics Window
	Translations Program

	Troubleshooting
	Registry Usage
	SDC.ini
	SDCApp.ini
	Check for Necessary DLLs
	Construct Spectrum Add-In
	Useful SDC Properties
	Application Object
	NaturalDataArea Object
	Dispatcher Object
	RequestProperty Property

	Deploying Your Client/Server Application
	Transferring Data
	Data Transfer Utilities
	Administration Subsystem

	Distributing Your Application
	Step 1: Create the Executable File
	Step 2: Collect Files For Installation
	Step 3: Install the Client Application
	Step 4: Run the Application

	Using the Spectrum Dispatch Client
	Overview
	Calling a Natural Subprogram
	Step 1: Create Parameter Data Area Instances
	Step 2: Assign Values to the Fields
	Step 3: Use the CallNat Method on the Client
	Step 4: Check the Success of the CALLNAT
	Summary

	Spectrum Dispatch Client Components
	Natural Data Area Simulation
	Data Area Definitions
	Data Area Simulation Objects
	Application Object
	Create NaturalDataArea Objects
	NaturalDataArea Class
	Case Sensitivity
	Alphanumeric Fields
	Fully Qualified Field Names
	Redefined Fields
	Errors When Compiling
	Read Arrays and Structures
	Runtime Errors

	DataDefinitionArea Class
	NaturalFieldDef Class
	Client/Server Communication
	Level 1 Block Optimization

	Application Service Definitions
	Dispatcher Objects and Dispatch Service Definitions
	Service Selection
	Remote Subprogram Invocation
	Timeout, Retry, and Resume Handling
	Compression and Encryption
	Tracing
	Database Transaction Control
	Error Reporting

	User Identification and Authentication
	Library Image Files and the Steplib Chain

	Advanced Features
	FieldRef Property
	1:V Fields

	Creating Applications Without the Framework
	Setting Up the Server Components
	Create or Select Application Services
	No Terminal I/O
	Subprogram Interface
	No Global Data Area (GDA)
	Parameter Data Area (PDA) Data Size Limitation
	Subprogram Behavior
	Externalize Parameters
	Timing Issues

	Example of Creating a Simple Natural Subprogram

	Generating Subprogram Proxies
	Subprogram-Proxy Model
	Application Service Definition

	Creating the Library Image Files (LIFs)
	Construct Spectrum Add-In
	Before You Start
	Download Definitions

	Developing the Client Application
	Step 1: Create a New Project
	Step 2: Add a Reference to the SDC Object Library
	Step 3: Write Code to Initialize the SDC
	Step 4: Create the User Interface
	Step 5: Write Code to Call the Subprogram
	Step 6: Run the Application

	Appendix A: Glossary
	Appendix B: Utilities
	Response Subprogram
	Features and Benefits
	Response Length Limitation
	Supported Methods
	Message Protocol
	Call Interface
	SPAREPLY Data Area
	SPAREPM Data Area

	Spectrum Interface Subprogram
	Features and Benefits
	EntireX Communicator Error Handling
	Error Logging
	Shutdown Requests
	Server Timeouts
	Command Handling

	SPUETB Interface
	Data Areas
	SPAETB Data Area
	ETBCB Data Area
	SEND-BUFFER
	RECEIVE-BUFFER
	RESERVED-AREA
	CDPDA-M

	Using SPUETB
	CMD TRACE
	Valid Keywords

	Trace Response
	Test the Trace Facility
	CMD CALLNAT

	Conversation Factory Utility
	Character Translation Subprogram
	Determine a Character Set

	Multi-Tasking Verification Utility
	Log Utilities
	Spectrum Log Utilities
	Construct Spectrum Control Record Log Utilities
	Domain Log Utilities
	Spectrum Group Log Utilities
	Application Service Definition Log Utilities
	Spectrum Steplib Log Utilities
	User and Group Log Utilities

	Index

