
for Client/Server Applications
Version 5.3

September 2008

Construct Spectrum SDK ™

ion
and

s of
Order Number: SPV530-021IBW

This document applies to the Construct Spectrum SDK for Client/Server Applications Vers
5.3 and to all subsequent releases. Specifications contained herein are subject to change
these changes will be reported in subsequent release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation
Department at the following e-mail address: Documentation@softwareag.com.

Copyright © Software AG, September 2008. All rights reserved.

Software AG and/or all Software AG products are either trademarks or registered trademarks of
Software AG. Other products and company names mentioned herein may be the trademark
their respective owners.

. . 14
 .
 . . 1
 . 16
 16

 . . 17
.
 . . 18
 . . 18
. . 19
 . . 19
. . .

 . . 22
. . 23
 . 26
 . . 27
.
 . . 30
. . 31
. . 31
 . 32
 . 32
 . 32
. . 32
 . . 32
. . 33
33
 . 33
 . . 33
. . 33
 . . 34
. . 34
 . 34
TABLE OF CONTENTS

PREFACE
Prerequisite Knowledge.
Structure of this Guide. .. 14
How to Use this Guide .6

To Create a New Client/Server Application .
To Move an Existing Application to a Client/Server Architecture

Document Conventions .
Other Resources. 18

Related Documentation .
Construct Spectrum .
Natural Construct.

Other Documentation .
Related Courses . 19

1. INTRODUCTION
What is Construct Spectrum? .

Development Environments .
Architecture of a Client/Server Application .

Mainframe Server .
Windows . . 28

Overview of the Development Procedure .
Step 1: Plan Your Application.

Decide What to Show the User .
Keep Window Design Simple .

Number and Structure of Windows .
Content of Each Window .

Plan Your Code .
Use a Consistent Style .
Anticipate Translation Issues.

Step 2: Set Up Your Mainframe Environment .
Predict Definitions .
Steplib Chains and Domains .
Security for Domains, Steplibs, Users, and Groups .

Step 3: Generate Application Components .
Using the Super Model .
Using Individual Models .
– 3 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

. . 34

. . . 34

. . 34
 . 35
. . 35
. . 35
 . 36
. . 36
 . 36

. . 3
 . . 40
. . 42
 . . 43
 . . 43
 . . 45
. . 47
 . 50
. . 51
. . 51
 . 53
 . .
. . 54
 . 54
. . 55
 . 57
 . . 57
. . 61
. .
. . 63
.
. . 65
 . 66
 . 67
 . . 67
. . 68
. 68
 . . 69
 . 69
Deciding Which Modules to Generate .
Generation Process .

Server Modules .
Client Modules .

Setting Up Your Project .
Transferring Your Generated Code to the Project.

Step 4: Customize Your Application and Environment .
Step 5: Test and Debug Your Application .
Step 6: Deploy Your Application .

2. USING THE DEMO APPLICATION
Overview . 38
Prerequisites . 9
Opening the Construct Spectrum Demo Project .

Understanding the Construct Spectrum Add-In .
Understanding the Demo Project. .

Framework Components .
Generated Modules .

Running the Demo Application.
Application Interface .

Menu Options .
Toolbar Options.
Application Workspace .
Status Bar. 54

Additional Options .
Error Notification Options. .
Remote Dispatch Service Options.

Tour of the Demo Application .
Opening a Business Object .
Maintaining a Business Object .

Validations. 61
Business Data Types (BDTs) .
Grids . . 64

Nested Grids .
Nested Drop-Down Grids .
Keyboard Shortcuts for Grids .

Browsing For a Business Object .
Select Data From a Browse Window .

Open a Browse Window from the File Menu .
Open a Second Order. .
Open Foreign File Information .
– 4 –

___ Table of Contents

. . 71

. . 71
 . 72

.

. . 80
 . . 82
 . . 82
. . 83
. . 84
 . . 85
 . . 86
. . 86
. . 86
. . . 88
 . . 90
 . . 93
. 93
. . 93
. . . 94
. . 94
. . . 95
 . . 97
 . . 98

 100

 .
 .
. 106
 . 107
. 109

 110
. 110
 110
. 111
Specify Browse Customization Options .
Specify Selection Options .
Specify Display Options .

Troubleshooting. .. . 75

3. USING THE SUPER MODEL TO GENERATE APPLICATIONS
Overview . 78
Before You Begin . 80

Establish a Naming Convention .
Understand the Object Factory .
Which Modules to Generate .

For a Maintenance Dialog .
For a Browse Dialog .
Dependent Models .

Generating with the Super Model .
Construct Windows Interface .

Step 1: Invoke the Super Model Wizard .
Step 2: Define General Package Parameters .
Step 3: Define Specific Package Parameters. .
Step 4: Generate the Modules .

Generating Modules from the Model Wizard .
Generating Modules in Batch .

Generation Subsystem.
Step 1: Invoke the Super Model .
Step 2: Define General Package Parameters .
Step 3: Define Specific Package Parameters. .
Step 4: Generate the Modules .

Troubleshooting. .. 100
Transferring Your Application to the Client .

4. CREATING A CONSTRUCT SPECTRUM PROJECT
Overview . 102
Are You Ready? .103
Creating the Project . 104

Prior to Downloading .
Downloading the Generated Modules .

Hand-Coding the Object Factory.
What’s Next?. 110

Modify the Dialogs .
Test the Application .
Deploy the Application .
Setting Up Security .
– 5 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

. 114
 . 115
. 116
. 117
 . 117
 . 117
 . 118
. 118
. 118
 . 122
. 125
. 128
. 129
 129
 130

. 131
. 131
 . 132
. 132
 132
 132
 133
 133
 133
 133
4
 136
7
38
. 139
. 142
 142
 142

 . 143
 144
 144
. 145
 . 145
 145
. 145
. 146
5. CREATING AND CUSTOMIZING MAINTENANCE DIALOGS
Overview of the Maintenance Dialog .

Ways to Generate Maintenance Dialogs .
Prerequisites .
Using Individual Models to Generate Maintenance Modules.

Generate the Object Maintenance Subprogram and PDAs .
Generate the Maintenance Subprogram Proxy .
Generate the Visual Basic Maintenance Object .

Add Business Validations .
Add Browse Functions .

Generate the Maintenance Dialog .
Downloading Client Modules .
Integrating a New Maintenance Dialog.
Strategies for Customizing a Maintenance Dialog .

Doing the Predict Data Dictionary Work Up Front. .
Choosing an Appropriate Place to Add Hand-Written Code .
Adding New User Exits.
Making a Copy Before You Regenerate .

Customizing on the Server .
Deriving Variable Names .

Deriving GUI Control Names .
GUI Control Identifier .
Object Identifier. .
Field Identifier .

Deriving Label Captions for GUI Controls .
Overriding GUI Controls. .

Step 1: Search for GUI Keywords in Field Definitions. 13
Generate a ComboBox Control to Display External Values

Step 2: Search for GUI Keywords on Verification Definitions. 13
Step 3: Search for Business Data Type Keywords in Field Definitions 1
Step 4: Use Default Derivation .

Repeating Field Threshold.
Option Button Threshold .
Foreign Field Threshold .

Setting Generation GUI Standards .
Controlling the Size of a Maintenance Dialog .

Overflow Conditions .
Customizing on the Client .

Creating Calculated Fields .
Does a GUI Control Exist for the Calculated Field? .
Coding the Calculation .

Integrating Maintenance and Browse Functions .
– 6 –

___ Table of Contents

 146
. 147
 148
 149
 . 150
 . 151
. 152
. 152
 156
. 164
. 165
. 165
 166
 167

. 168
 169
 170
 172
. . 173

. 176

. 176
. . 176
. 177
. 178
. 178
 . 178
 . 179
 . 180
. 180
 . 180
. 180
. 181
 . 182
 . 182
. 182
85
 188

 . 189
. 189
Validating Data Using the Visual Basic Maintenance Object.
Tailoring the Maintenance Dialog.

Working with Overflow Frames .
Multi-column Layout. .
Tabbed Layout .
State-Dependent Layout .

Adding a New Field by Hand .
Add a Scalar Field by Hand.
Add a Regular Grid Column for a Field .

Removing a Field by Hand .
Using the Grid .

Nested Grids .
Nested Drop-Down Grids .
Displaying Grids .
Resizing Grids .

Adding Sound to Error Notifications .
Understanding How a Sound File is Associated With an Error

Multilingual Support for Maintenance Dialogs. .
Uploading Changes to the Server .

6. CREATING AND CUSTOMIZING BROWSE DIALOGS
Overview of the Browse Dialog .

About Browse Dialogs .
The Browse Process .

Browse Object Subprogram.
Browse Object Subprogram Proxy .
Visual Basic Browse Object .

Data Cache. .
Framework Components .

Creating a Browse Dialog .
Setting up Predict for the Browse Dialog .

Business Data Types .
Descriptive Fields .

Using Models to Generate Browse Modules.
Generating the Browse Subprogram and PDAs .
Generating the Subprogram Proxy .
Generating the Visual Basic Browse Object .
Defining Alternate Browse Data Sources . 1

Downloading the Client Modules .
Updating the Project .

Extend Object Factory .
– 7 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

. 190

. 190
. 190
 . 190
 190
. 190
. 191
 191

 . 191
. 194
 . 195
 . 197
. 198
. 198
 199
200

 202
 203
. 203
 203
 204

 . 204
 . 205
. 205
 . 206

. 208

. 211
 . 21
.
 214
 .
. 217
. . 21
 .
 . 219
. 220
Customizing on the Client .
Adding Command Handlers .
Customizing the Generic Browse Dialog .
Understanding the BrowseManager Class. .

Display the Browse Dialog .
Support a Browse Command Handler .
Return a Specific Row of Data .
Return All Rows of Data .

Using the BrowseManager .
BrowseManager Methods .

Understanding Browse Command Handlers .
Creating Browse Command Handlers .
Coding the Custom Browse Command Handler .

Enabling Commands on the Browse Toolbar and Menu.
Coding the UICommandTarget() Method .
Marking Updated Rows Using the UpdateListViewIcons Method.

7. MOVING EXISTING APPLICATIONS TO CONSTRUCT SPECTRUM
Overview . 202
Moving Natural Construct Object Applications .
Moving Natural Construct Non-Object Applications .

Step 1: Set Up Your Server Environment .
Step 2: Evaluate Your Application Data .
Step 3: Set up Predict Definitions (Optional) .
Step 4: Generate the Client/Server Modules .
Step 5: Update Object Subprograms with Business Rules .

Considerations for Implementing Business Rules.
Step 6: Set Up and Run Your Construct Spectrum Project .

8. UNDERSTANDING AND CUSTOMIZING THE CLIENT FRAMEWORK
Introduction to the Client Framework .
About Box . 210

Customizing the About Box .
Application Preferences. .2
Application Settings . 213

Customizing the Application Settings .
Browse Support . 215
Internationalization Support .
Maintenance Classes . 8

Grid Support .218
Menu and Toolbar Support .

Understanding Menu and Toolbar Command Handling .
– 8 –

___ Table of Contents

 . 221
. 221
 . 222
 . 222
 . 223
 . 224
. 224
. 226
 . 227
 . 228
 . 229
 229
. 230
. 230
 233
. 233
 233
 . 234
. 237
 . 240
 241

 242

 . 244
 . 244
. 245
. 246
. 246
 247
250
. 250
. . 252
 . 253
 . 255
 . 256
. 2
. . 25
. 258

Class Summary .
Defining, Sending, and Handling Commands.

Step 1: Declare a Global Instance of the UICommands Class
Step 2: Define the Commands .
Step 3: Code Menu and Toolbar Events to Send the Commands
Step 4: Code the Command Handlers .
Step 5: Link the Commands to the Command Handlers .

Updating User Interface Controls .
Step 1: Code Events to Update the Menu Controls .
Step 2: Code the Logic that Determines the State of a Command
Step 3: Code Events to Update the Toolbar Buttons .

Displaying a Disabled Bitmap. .
Displaying a Message .
Update Cycles .

Additional Methods For Command Handling. .
Unhooking Commands .

Customizing the Menu and Toolbar in the Client Framework
Changing the Menu Structure .
Example of Changing the Menu Bar and Its Menu Items.
Changing the Toolbar Structure .
Example of Adding Buttons to the Toolbar .

MDI (Multiple-Document Interface) Frame Form .
Object Factory . 243

Understanding the Open Dialog .
Understanding the Object Factory. .
Using the Object Factory.
Example of Using the Object Factory .
Customizing the Object Factory .
Setting Up Object/Action Combinations and Forms. .
Making Your Application Aware of New Business Objects.

Step 1: Update the InitializeOpenDialog Procedure .
Step 2: Update the CreateForm Procedure .
Step 3: Update the GetBrowser Procedure .
Step 4: Update the BrowserExists Procedure .

Spectrum Dispatch Client Support .
Logon Dialog. 58
Error Messages . 8
Dispatcher Selection Window .

Utility Procedures .. 259
– 9 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

. 262
. 262
. 262
. 263

 266
. 266
. 266
 267
7
 268
 269
269
. 270
 . 271
 272

 . 272
 273

276
 277

 277
 278
 .
. 280
 . 281
 282

 . 282
. 282
 . 283
. 283
. 283
 284
 284
. 285
. 285
 285
 287
9. VALIDATING YOUR DATA
Overview . 262

Basic Data Type Validation.
Business Data Type Validation .
Local Business Validation .
Business Object Validation .

Client Validation . 264
Validation in Maintenance Dialogs .

Using BDTs .
Hand-Coded Validations in Generated Dialogs .

Validation in Visual Basic Maintenance Objects .
Adding Validations in the CLIENT-VALIDATIONS User Exit 26
Validations from Predict .

Creating Verification Rules in Predict .
Deciding Where To Implement a Validation Rule .

Coding User Type Rules .
Order of Precedence in Data Validation .
Validation Error Handling. .

Framework Components .
Handling Business Object Validation Errors .

10. INTEGRATING BROWSE AND MAINTENANCE FUNCTIONS
Overview . 276

Drill-Down Capabilities from a Browse Dialog .
Active Help on Maintenance Dialogs .

Primary Key Field Active Help .
Foreign Field Active Help .

Design Objectives . 280
Application Component Independence .
Simplified Generated Components .

Overview of Foreign Key Field Relationships .
Fields that can be Used in a Foreign Key Relationship. .

Simple Field.
Repeating Field .

When Not to Use a Foreign Field Relationship.
List of Values is Static.
List of Values is Small. .
List of Values Contains Two Choices Only .

Foreign Field Support in Maintenance Dialogs.
GUI Control Representations of Foreign Fields .

Foreign Fields in the Primary Part of a Maintenance Dialog
GUI Controls in a Grid .
– 10 –

___ Table of Contents

 288
 289
. 289
 290
 291
 292

 292
. 293
 . 294
 294
. 294

 296
 297

. . 3
 .
. 3

. 302

 . 302
. 303
. 303
 . 303
 . 30
 . 304
 . 304

 . 305
. 306
. 306
 . 307
 .
. 308
 . 308
. 309
 310
 . 311
How Construct Spectrum Determines Which GUI Control to Use.
Displaying Descriptions for a Foreign Field .

Examples of Descriptive Fields .
Supporting Multiple Descriptive Values and Derived Values

How Foreign Field Descriptions Are Refreshed .
Supporting Code for Drop-Down Lists .

Initializing a Drop-Down List .
Support for Value Selection .

Supporting Code for Command Buttons .
Initializing a Command Button .
Click Events on the Command Button .

11. INTERNATIONALIZING YOUR APPLICATION
Planning Your Internationalized Application .
Internationalizing Using the Client Framework .
Resource File Syntax. 00

Text Values . 300
Binary Values . 00
Links . 301

Using the Internationalization Components .
Methods .. 302

GetResourceGroup .
LocalizeForm.
LoadBinaryResource .
LoadStringResource .
Message .4
MessageEx. .
SetDefaultMessageGroup .

Properties . 305
Language .
LanguageRegistryKey .
LanguageINIKey .
ResourceFilePath .

Hints for Developers .308
Setting the Language Automatically .
Strategy for Using Resource Files and Groups .
Starting an Application in a Specific Language .

Associating Windows Locale Setting with a Language .
Changing Language at Runtime .
– 11 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

 314

. 316
 317
 319
. . 324

.331
APPENDIX A: MODIFYING CONSTRUCT SPECTRUM MODELS313
VB-Maint-Dialog Model .
VB API . 316

Components of the VB API.
How the VB API Works .
GUI Controls with the VB API .
Parameter Data Areas (PDAs) Used .

INDEX .
– 12 –

__
P

pment

rces
PREFACE

Construct Spectrum SDK for Client/Server Applications is designed to help developers
create and customize applications using the Construct Spectrum software develo
kit (SDK) and Visual Basic.

This preface will help you get the most out of the documentation and find other sou
of information about creating Construct Spectrum applications.

The following topics are covered:

• Prerequisite Knowledge, page 14

• Structure of this Guide, page 14

• How to Use this Guide, page 16

• Document Conventions, page 17

• Other Resources, page 18
– 13 –

Construct Spectrum SDK for Client/Server Applications _____________________________
P

s or

o use

t

.

t.
Prerequisite Knowledge
Construct Spectrum SDK for Client/Server Applications does not provide information
about the following topics. We assume that you are either familiar with these topic
have access to other sources of information about them.

• Natural Construct

• Microsoft Visual Basic

• Predict

• Natural programming language and environment

• Entire Broker

• Entire Net-Work

Structure of this Guide
This section describes the contents of each chapter. For information about how t
this guide, see How to Use this Guide, page 16.

The chapters in Construct Spectrum SDK for Client/Server Applications are:

Chapter Title Topics

1 Introduction , page 21 Describes the components of Construc
Spectrum and the architecture of the
client/server applications you can create
with the software development kit (SDK)

2 Using the Demo
Application , page 37

Provides a guided tour of a demo
application created using Construct
Spectrum.

3 Using the Super
Model to Generate
Applications, page 77

Describes how to generate all of the
application modules required to create a
Construct Spectrum client/server
application using the super model (VB-
Client-Server-Super-Model).

4 Creating a Construct
Spectrum Project,
page 101

Describes the process of setting up a
Construct Spectrum project on the clien

5 Creating and
Customizing
Maintenance Dialogs,
page 113

Provides step-by-step instructions for
generating the modules required to
maintain server information from a
maintenance dialog on the client.
– 14 –

__ Preface
P

e

t
6 Creating and
Customizing Browse
Dialogs, page 175

Provides step-by-step instructions for
generating the modules required to
provide browse services from the client.

7 Moving Existing
Applications to
Construct Spectrum,
page 201

Describes how to move existing Natural
Construct-generated server-based
applications to a client/server architectur
using the Construct Spectrum models.

8 Understanding and
Customizing the
Client Framework,
page 207

Describes how to customize the client
framework supplied with Construct
Spectrum while developing your
Construct Spectrum application.

9 Validating Your Data ,
page 261

Outlines the data validation facilities
provided with Construct Spectrum.

10 Integrating Browse
and Maintenance
Functions, page 275

Explains how browse and maintenance
functions are integrated. It includes
information about linking and using
browses from a maintenance dialog.

11 Internationalizing
Your Application ,
page 295

Describes the tools provided by Construc
Spectrum to help you write
internationalized applications.

Appendix A Appendix A:
Modifying Construct
Spectrum Models,
page 313

Provides a guideline to follow when
creating new models based on the VB-
Maint-Dialog model.

Chapter Title Topics (continued)
– 15 –

Construct Spectrum SDK for Client/Server Applications _____________________________
P

l Ba-

docu-

o run
ap-

 can

 con-

om-
e and

ing

lient/
pli-

itec-
How to Use this Guide
Construct Spectrum SDK for Client/Server Applications describes how to create and
customize client/server applications using the Construct Spectrum SDK and Visua
sic. In particular, it provides information about:

• Creating new client/server applications

• Moving existing server-based applications to a client/server architecture

The following sections describe how to use this and related Construct Spectrum
mentation to perform these tasks.

To Create a New Client/Server Application
If you want to use Construct Spectrum’s tools to create a client/server application t
on Windows 95 or Windows NT, we recommend that you first read the following ch
ters in Construct Spectrum SDK Reference:

• Introduction
Contains an overview of the product, development process, and applications you
develop.

• Setting up the Mainframe Environment
Contains detailed information on how to define domains and security options that
trol what data application users can access on the mainframe.

Construct Spectrum SDK for Client/Server Applications contains detailed information
on using the VB-Client-Server-Super-Model to generate all of your application’s c
ponents. It describes how to set up a Visual Basic project, customize maintenanc
browse dialogs, and internationalize your application.

As you customize and regenerate application components, you will find the follow
chapters in Construct Spectrum SDK Reference useful:

• Using the Subprogram-Proxy Model

• Using Business Data Types (BDTs)

• Debugging Your Client/Server Application

• Deploying Your Client/Server Application

To Move an Existing Application to a Client/Server
Architecture

Before moving any existing server-based applications to the Construct Spectrum c
server architecture, gain familiarity with Construct Spectrum by creating a new ap
cation. For information, see Overview of the Development Procedure, page 30.

To learn how to migrate existing server-based applications to a client/server arch
ture, see Moving Existing Applications to Construct Spectrum, page 201.
– 16 –

__ Preface
P

er.

s,

ts,

ng

ts

a
 by
Document Conventions
This documentation uses the following typographical conventions:

Example Description

Introduction Bolded text in cross references indicates chapter and section
titles.

“A” Items within quotation marks indicate values you must ent

Browse model,
GotFocus, Enter

Mixed case text indicates names of:
• Natural Construct and Construct Spectrum editors, field

files, functions, models, panels, parameters, subsystems,
variables, and dialogs

• Visual Basic classes, constants, controls, dialogs, even
files, menus, methods, properties, and variables

• Keys

Alt+F1 A plus sign (+) between two key names indicates that you
must press the keys together to invoke a function. For
example, Alt+F1 means hold down the Alt key while pressi
the F1 key.

CHANGE-HISTORY Uppercase text indicates the names of Natural command
keywords, command operands, data areas, helproutines,
libraries, members, parameters, programs, statements,
subprograms, subroutines, user exits, and utilities.

Construct Spectrum
SDK for Client/
Server Applications,
variable name

Italicized text indicates:
• Book titles
• Placeholders for information you must supply

[variable] In syntax and code examples, values within square bracke
indicate optional items.

{WHILE|UNTIL} In syntax examples, values within brace brackets indicate
choice between two or more items; each item is separated
a vertical bar (|).
– 17 –

Construct Spectrum SDK for Client/Server Applications _____________________________
P

 about
cu-
t
. You

struct

s. It

ed in-
ns.

 and

 sys-
ctrum

ick
ces
Other Resources
This section provides information about other resources you can use to learn more
Construct Spectrum and Natural Construct. For more information about these do
ments and courses, contact the nearest Software AG office or visit the website a
www.softwareag.com to order documents or view course schedules and locations
can also use the website to email questions to Customer Support.

Related Documentation
This section lists other documentation in the Construct Spectrum and Natural Con
documentation set.

Construct Spectrum
• Construct Spectrum SDK for Web Applications

This documentation is for developers creating the web components of application
describes how to use the Construct Spectrum wizards in Visual Basic to generate
HTML templates, page handlers, and object factory entries. It also contains detail
formation about customizing, debugging, deploying, and securing web applicatio

• Construct Spectrum SDK Reference
This documentation is for developers creating Natural modules and ActiveX Business
Objects to support applications that will run in the Natural mainframe environment
a Windows environment and/or an internet server.

• Construct Spectrum Messages
This documentation is for application developers, application administrators, and
tem administrators who want to investigate messages returned by Construct Spe
runtime and SDK components.

• Construct Spectrum Reference
This documentation is for application developers and administrators who need qu
access to information about Construct Spectrum application programming interfa
(APIs) and utilities.
– 18 –

__ Preface
P

rsion
m-

te ap-

al

struc-

ting

e sup-

re

eat-
Natural Construct
• Natural Construct Installation Guide for Mainframes

This guide provides essential information for installing and setting up the latest ve
of Natural Construct, which is required to operate the Construct Spectrum progra
ming environment.

• Natural Construct Generation
This documentation describes how to use the Natural Construct models to genera
plications that will run in a mainframe environment.

• Natural Construct Administration and Modeling
This documentation describes how to use the Administration subsystem of Natur
Construct and how to create new models.

• Natural Construct Help Text
This documentation describes how to create online help for applications that run on
server platforms.

• Natural Construct Getting Started Guide
This guide introduces new users to Natural Construct and provides step-by-step in
tions to create several common processes.

Other Documentation
This section lists documents published by WH&O International:

• Natural Construct Tips & Techniques
This book provides a reference of tips and techniques for developing and suppor
Natural Construct applications.

• Natural Construct Application Development User’s Guide
This guide describes the basics of generating Natural Construct modules using th
plied models.

• Natural Construct Study Guide
This guide is intended for programmers who have never used Natural Construct.

Related Courses
In addition to the documentation, the following courses are available from Softwa
AG:

• A self-study course on Natural Construct fundamentals

• An instructor-led course on building applications with Natural Construct

• An instructor-led course on modifying the existing Natural Construct models or cr
ing your own models
– 19 –

Construct Spectrum SDK for Client/Server Applications _____________________________
P

– 20 –

__
1

re of
DK).
e de-
INTRODUCTION

This chapter describes the components of Construct Spectrum and the architectu
the client/server applications you can create with the software development kit (S
An overview of the steps involved in developing an application prepares you for th
tailed procedures in the chapters that follow.

The following topics are covered:

• What is Construct Spectrum?, page 22

• Architecture of a Client/Server Application, page 26

• Overview of the Development Procedure, page 30
– 21 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

s well
onents

2, and

ry
l mod-
 Visual
fine

ation.

 secu-

 into a
erver,

e serv-
a

ations
What is Construct Spectrum?
Construct Spectrum comprises a set of middleware and framework components, a
as integrated tools, that use the specifications you supply to generate all the comp
of distributed applications.

Construct Spectrum works with other products in the following partnership:

• Natural is an open server that provides access to databases such as Adabas, DB
VSAM

• Predict provides a comprehensive repository

• Entire Broker provides message-oriented communication

You define and manage data and business rules for your application in a reposito
managed by Predict. Using Natural Construct, you can then generate the Natura
ules that process data. Using Construct Spectrum SDK, you can also generate the
Basic client code and download the appropriate components to the client. You de
the security privileges in the Administration subsystem and then deploy the applic

Construct Spectrum includes two components for delivering the performance and
rity that mission-critical applications require:

• Spectrum Dispatch Client (SDC) on the client

• Spectrum dispatch service on the mainframe server

When the client makes a communication request, the SDC translates the request
compact, secure message and transmits it to the server via Entire Broker. On the s
the Spectrum dispatch service converts the incoming request for processing by th
er application while enforcing multi-level security. Construct Spectrum then uses
similar technique to return the processed result to the client.

This documentation describes how to generate and customize client/server applic
using the Construct Spectrum SDK. Refer to Construct Spectrum SDK Reference for in-
formation about:

• Setting up your application environment on the mainframe

• Using business data types (BDTs)

• Debugging and deploying your application

• Creating client/server applications without Construct Spectrum
– 22 –

__ Introduction
1

 the

d ap-
Development Environments
As you develop applications, you will be working in at least three environments: the
Administration subsystem, Construct Windows interface, and Visual Basic (using
Construct Spectrum Add-In).

Use the Construct Spectrum Administration subsystem to manage the system an
plication data for your applications:

Construct Spectrum Administration Main Menu

 BS__MAIN ***** Construct Spectrum Administration Subsystem ***** CDLAYMN1
 Jul 30 - Main Menu - 10:14 AM

 Functions

 SA System Administration
 AA Application Administration

 ? Help
 . Terminate

 Function __

 Command ___
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit flip main
– 23 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

 Gen-
Use the wizards in the Construct Windows interface on your PC to generate Natural and
Visual Basic modules for your application:

New Specification Window in the Construct Windows Interface

The wizards available in the Construct Windows interface are also available in the
eration subsystem in your Natural Construct mainframe environment.
– 24 –

__ Introduction
1

 you
Use the Construct Spectrum Add-In in Visual Basic to create projects, download mod-
ules from the mainframe server, and set configuration options:

Construct Spectrum Options on the Add-Ins Menu

Information about how to access and use these environments is presented where
need it throughout the documentation.
– 25 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

COM-
e

hich
Architecture of a Client/Server Application
Construct Spectrum generates high-performance, distributed components using
enabled clients to access Natural application servers. The following diagram shows th
architecture of a Construct Spectrum client/server application:

Architecture of a Construct Spectrum Client/Server Application

The following sections describe these components according to the platforms on w
the components run.

Windows

Entire Net-Work or TCP/IP

Mainframe Server

Spectrum
Administration

Security Service

Subprogram Proxy

Natural Subprogram

Entire Broker

Spectrum Dispatch Service

Dispatch
Service

Data

Entire Broker

Spectrum Dispatch Client

Visual Basic Business Object

GUI Dialog

Library
Image

File

Generated
Spectrum
System
– 26 –

__ Introduction
1

me
 from

er-

 data

t

he

um
atch

nd
Mainframe Server

Component Description

Natural
subprograms

Perform maintenance and browse functions on the mainfra
server. The same set of business objects can be accessed
character-based Natural applications, client/server
applications, and web applications. This ensures that the
integrity of business data is preserved, independent of the
presentation layer.

Natural subprograms may be either written by hand or
generated by Construct models. The VB-Client-Server-Sup
Model, Object-Maint-Subprogram, and Object-Browse-
Subprogram models generate subprograms and parameter
areas (PDAs) for client/server applications.

Subprogram
proxy

Acts as a bridge between a specific subprogram and the
Spectrum dispatch service. It performs a number of vital
functions, including translating parameter data into a forma
that can be transmitted between client and server, issuing
CALLNATs to subprograms, and validating the format and
length of data received from the client.

For more information, see Generating a Subprogram Proxy,
Construct Spectrum SDK Reference.

Spectrum
dispatch services

Ensure that the current user is allowed to perform the requested
function. Once the service has performed user authentication,
it activates the correct Natural subprogram to handle the
request. After the target subprogram finishes processing, t
results are transferred back to the client. Depending on user
options, the service may also be required to compress and
decompress and/or encrypt and decrypt messages.

Dispatch service
data

Information defined and maintained in the Construct Spectr
Administration subsystem and accessed by Spectrum disp
services anywhere on the network via Entire Broker.

Spectrum
administration

Allows system administrators, application administrators, a
application developers to set up and manage system and
application environments.
– 27 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

ed in

. It
on,
may

at
,

sue

h
on,
Windows
Construct Spectrum client/server applications run on Windows or Windows NT.

Security service Checks client requests against the security settings defin
the Administration subsystem. This stand-alone service
operates independently of the Spectrum dispatch services
allows the security service to process, in one central locati
the requests of several Spectrum dispatch services, which
be located on nodes throughout the network.

Entire Broker Transfers messages between Windows and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Component Description

Entire Broker Transfers messages between the client and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Spectrum Dispatch
Client (SDC)

Component Object Model (COM) middleware component th
enables client/server applications to read from, and write to
variables in a Natural parameter data area (PDA) and to is
CALLNAT statements to Natural subprograms. Its main
functions are simulating PDAs and CALLNATs,
encapsulating Entire Broker calls, and controlling database
transactions. As the client counterpart of Spectrum dispatc
services, it is also responsible for data marshaling, encrypti
compression, error-handling, and all Entire Broker
communication.

For more information, see Using the Spectrum Dispatch
Client, Construct Spectrum SDK Reference.

Component Description (continued)
– 28 –

__ Introduction
1

r

e

r

s

h a
m
ser

 and
Library image
files (LIFs)

Define information to the client component of a client/serve
application that it needs to assemble data and call the
mainframe server. This file contains the following
information:
• Parameter data area (PDA) definitions that specify

information required for communication with the server.
They are an image of the PDAs used by the Natural
subprograms.

• Application service definitions that specify to the client th
names of the available subprograms.

• Steplib definitions. The SDC allows chaining of library
image files. The entries are used to point to other library
image files in the same directory. The SDC checks all
library image files in the chain for the required paramete
or application service definition.

Visual Basic
business object

Visual Basic class that acts as an intermediary between a
dialog and the Spectrum Dispatch Client. This class invoke
the methods of subprograms on behalf of dialogs and
instantiates all the data areas required to communicate wit
subprogram. Visual Basic business objects can also perfor
local data validation to provide immediate feedback to the u
without involving a network call.

GUI dialogs Represent graphical interface screens that communicate with
the user and interact with the Visual Basic business objects
other framework components to implement business
processes.

Component Description (continued)
– 29 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

ation
racter
user

ns,
Overview of the Development Procedure
If you are creating a new application, you must decide on the nature of your applic
and its uses. If you are planning to reuse an existing application, evaluate the cha
screen displays and decide how to improve them using the power of a graphical
interface.

Note: For more information about reusing existing Natural Construct applicatio
see Moving Existing Applications to Construct Spectrum , page 201.

� To develop an application:

� Step 1: Plan Your Application, page 31

� Step 2: Set Up Your Mainframe Environment, page 33

� Step 3: Generate Application Components, page 34

� Step 4: Customize Your Application and Environment, page 36

� Step 5: Test and Debug Your Application, page 36

� Step 6: Deploy Your Application, page 36

The following sections describe these steps in detail.
– 30 –

__ Introduction
1

 pro-

tion,
a-

t you

eed
as the

lient
our

ned
y pos-
ret.
t sav-

to
ecif-

 re-
. To
ult
Step 1: Plan Your Application
Decide what the main purpose of your application is and what features you must
vide to address it. After you determine the core features, consider the advanced
functionality you may want to provide.

Decide What to Show the User
Before you begin creating a new application, decide on the purpose of your applica
how it will be presented to the user, and how it will communicate with other applic
tions. Decide what you want users to do with your application and determine wha
need to provide in your application so that they can do it.

During the planning stages of your project, identify and itemize what the user will n
to do. Then, design what the users will see when they use your application, such
content, number, and order of windows in the application.

Plan to help your users, who will have varying degrees of experience with your c
environment. Consider providing online help tailored for the level of knowledge of y
typical user. You may choose to include all three types of online help:

• context-sensitive help

• task help

• window-level help

Provide customized error messages that are clear and informative. If you’ve plan
your application, the chances of error are reduced. Since you cannot plan for ever
sibility, plan how your application will inform users about an action it cannot interp
For example, you may want to display a message if a user tries to exit a file withou
ing the changes made during an edit session.

Note: Many error messages provided by Construct Spectrum will be available
your users. However, you must provide error messages for application-sp
ic windows.

Design windows that are clear and intuitive. Try to give users all information they
quire to complete a task. Provide meaningful prompts and labels on GUI windows
help minimize the amount of information your users need to provide, pre-set defa
values.
– 31 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

irst

:

m-

 ac-
n,
tine
 for

inol-
Keep Window Design Simple
When designing windows for your application, keep the window design simple. F
determine the number and structure of windows, then determine the content.

Number and Structure of Windows

When designing the number and structure of windows, consider the following tips

• Have one main window from which the user can initiate all of the main tasks.

• Provide secondary windows for additional information the user must specify to co
plete a task.

• Avoid a lot of nested windows, which can:

– make a simple task look complex

– clutter the user’s screen (especially if the more than one application is open)

– cause the user to become lost

Content of Each Window

When determining the content of each window, consider the following tips:

• Group related information together

• Use graphic images and icons to identify tasks or complement the words

• Position information in a neat, logical manner

• Position common information in the same place throughout your application. This
makes it easier for your users to navigate.

Plan Your Code
After designing the application windows, decide what code is required to support
tions users will perform with your application. When you generate your applicatio
Construct Spectrum supplies many actions and default values. While several rou
tasks are predefined and contain default attributes, you must explicitly set others
your application.

Use a Consistent Style
To help your users learn to navigate through your application, use consistent term
ogy. To help minimize confusion, use consistent mnemonics in all application
windows.
– 32 –

__ Introduction
1

lated
t

ing
r dif-

. Fre-

,

sing
-ob-

ron-
ules.
ess
”. For

ngs,
r each

hin the
Anticipate Translation Issues
When planning your application, consider whether the user interface will be trans
into other languages. Construct Spectrum supplies translation facilities to suppor
translation.

To minimize the effort required for translation, anticipate any issues when design
your application. For example, you may have to change mnemonic characters fo
ferent languages (if you are using mnemonics) or translation may change the size
requirements for window text (such as text boxes, labels, and command buttons)
quently, translated text is longer than the original text.

For more information, see Internationalizing Your Application , page 295.

Step 2: Set Up Your Mainframe Environment
Before you can create a Construct Spectrum application, ensure that Predict definitions
steplib chains, domains, users, groups, and security settings are defined.

Predict Definitions
Set up file and field definitions in Predict for all database applications generated u
Construct Spectrum. This includes your application files and their intra- and inter
ject relationships. For more information, see Setting Up Predict Definitions,
Construct Spectrum SDK Reference.

Steplib Chains and Domains
Define the steplib chains and domains for your applications. The application envi
ment includes users, application libraries, business objects, and associated mod
Users are combined into larger entities called “groups”. Application libraries, busin
objects, and associated modules are combined into larger entities called “domains
more information, see Step 1: Define the Steplib Chain, and Step 2: Define the Do-
main, Construct Spectrum SDK Reference.

Security for Domains, Steplibs, Users, and Groups
Define user IDs for users of your application, the groups to which each user belo
and security privileges for each user. Then, assign users and security privileges fo
group. Finally, grant groups applicable access to the domain for your application.
Granting access to a domain enables users to access the objects and methods wit
domain. For more information, see Step 3: Define Security for the Domain, Construct
Spectrum SDK Reference.
– 33 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

ct
tion.

om-
-

ro-
an
, see

t exist
inte-
indow

 or

ging
al
bp
Step 3: Generate Application Components
After planning your application and setting up your environment, use the Constru
Spectrum models to generate the application-specific components of your applica
These components interact with the client framework components to form your c
plete application. To generate your application modules, use either the VB-Client
Server-Super-Model or the individual models.

Using the Super Model
Use the VB-Client-Server-Super-Model to quickly create a new application or add a
graphical front-end to an existing application. For more information, see Using the Su-
per Model to Generate Applications, page 77.

Using Individual Models
Use the individual models to fine-tune your application. Using individual models p
vides more opportunity to create unique model specifications. Additionally, you c
add user exit code to further refine your application modules. For more information
Creating and Customizing Maintenance Dialogs, page 113, and Creating and Cus-
tomizing Browse Dialogs, page 175.

Deciding Which Modules to Generate
Regardless of how you generate your application modules, the same modules mus
to create a client/server application. These modules are grouped by function: ma
nance or browse. To application users, these functions are displayed as either a w
or dialog.

For a description of the modules that must be generated for either a maintenance
browse function, see Using the Super Model to Generate Applications, page 77.

Generation Process
The following sections describe how the server and client modules function.

Server Modules

Modules for the server portion of your application are generated in Natural, levera
the existing Natural Construct object methodology. You can reuse existing Natur
Construct modules generated using the Object-Maint-Subp or Object-Browse-Su
model as components of a client/server application.

For more information about moving existing applications, see Moving Existing Appli-
cations to Construct Spectrum, page 201.
– 34 –

__ Introduction
1

r.
 in the

asic

, you
sing

-

,

load
struct

 and
Client Modules

Modules for the client portion of your application are also generated on the serve
These modules are generated as Visual Basic code and stored as text members
Natural library in which you generate them. When you are ready to set up your appli-
cation on the client, use the Construct Spectrum Add-In to download the Visual B
source code from the generation library to your client.

As you become more experienced in developing Construct Spectrum applications
will want to create modules (or regenerate existing ones to add customizations) u
individual models. The two types of objects you will create with Construct Spectrum
are Visual Basic maintenance objects and Visual Basic browse objects.

You can access the models that generate application components either in the Genera
tion subsystem on the server or in the Construct Windows interface. In both cases,
modules are generated on the server.

For more information about using the super model, see Using the Super Model to
Generate Applications, page 77.

For more information about generating with individual models, see:

• Creating and Customizing Maintenance Dialogs, page 113

• Creating and Customizing Browse Dialogs, page 175

• Generating a Subprogram Proxy, Construct Spectrum SDK Reference

Setting Up Your Project
When you create a new project using the Construct Spectrum Add-In in Visual Basic
Construct Spectrum automatically adds the client framework components to a standard
Visual Basic project. For more information, see Creating a Construct Spectrum
Project, page 101.

Transferring Your Generated Code to the Project
Use the Construct Spectrum Add-In from the Visual Basic Add-Ins menu to down
your generated components to the client. The components are added to your Con
Spectrum project, which includes the client framework components.

After integrating the generated components into your project, you can modify them
test your application. The following section describes this in more detail.

For more information about transferring your application to the client, see Download-
ing the Generated Modules, page 107.
– 35 –

Construct Spectrum SDK for Client/Server Applications _____________________________
1

face

r test
, all lo-

s that

begin
your

Visu-

t be
Step 4: Customize Your Application and Environment
After creating your application, use Visual Basic on the client to tailor the user inter
for your application.

For more information about customizing your application, see:

• Understanding and Customizing the Client Framework, page 207

• Creating and Customizing Maintenance Dialogs, page 113

• Creating and Customizing Browse Dialogs, page 175

Step 5: Test and Debug Your Application
As your application becomes more stable, thoroughly test each component. In you
plan, include tests for each of the objects and their associated actions, each form
cal validations, and all remote methods.

While you can fix many errors you may encounter while creating your application on
the client, you must fix others on the server. Construct Spectrum supplies method
help track the origin and reason for errors. For more information, see Debugging Your
Client/Server Application, Construct Spectrum SDK Reference.

Once satisfied with the appearance and robustness of your application, you can
to deploy your application for users. The following section describes how to make
application accessible to users.

Step 6: Deploy Your Application
Deploy your Construct Spectrum applications in the same way as you deploy any
al Basic application.

� To deploy your client/server application:

1 Create the executable file.

2 Collect the files to be installed.

3 Create a set of installation disks.

4 Install the client application on the user’s PC.

5 Run the application.

Note: To run the application, the Construct Spectrum runtime environment mus
installed on the user’s PC.

For more information, see Deploying Your Client/Server Application, Construct
Spectrum SDK Reference.
– 36 –

__
2

 Spec-
apter
ns
USING THE DEMO APPLICATION

This chapter provides a guided tour of a demo application created using Construct
trum. It also describes the underlying structure of the demo application. Use this ch
to familiarize yourself with the basic features available for client/server applicatio
created with Construct Spectrum.

The following topics are covered:

• Overview, page 38

• Prerequisites, page 39

• Opening the Construct Spectrum Demo Project, page 40

• Running the Demo Application, page 47

• Tour of the Demo Application, page 57

• Troubleshooting, page 75
– 37 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

 is de-
with
s en-
 been
our
ion
rucial

imple
owse

Overview
The demo application is a Customer order maintenance program. This application
signed to demonstrate the features and functions of a typical application created
Construct Spectrum. As a demo application, certain “real-world” features, such a
suring invoice numbers are sequential or order numbers are not duplicated, have
left out. You can add this type of application-specific checking when customizing y
applications. Use the demo application to become familiar with using the applicat
controls and components. Understanding the potential of Construct Spectrum is c
to planning and developing an application that meets your needs.

Construct Spectrum is a flexible tool and your generated applications can be as s
or complex as you require. Additionally, you can implement features, such as a br
lookup, in many different ways. Therefore, you can give your applications a look and
feel that is best suited to your organization’s needs.
– 38 –

__ Using the Demo Application
2

sing

rver

emo
figure

NR)
 on

your
in-

 have
Prerequisites
Ensure the following items are in place before you begin generating applications u
Construct Spectrum:

� Installation and configuration is complete.
Ensure that all client and server software has been installed.

� Entire Net-Work kernel is running on your PC (if you are using Entire Net-Work).
An Entire Net-Work kernel that enables communication between the client and se
must be running on your PC.

� Your PC is attached to an Entire Broker node.
Your PC must be attached to an Entire Broker node that enables access to the d
database files and modules on the server. Use Spectrum Service Manager to con
the Entire Broker node.

� The demo project’s AppSettings.bas file is set up correctly.
The AppSettings.bas file must specify the database ID (DBID) and file number (F
of the FUSER file in which you installed the Construct Spectrum demo application
the server. The default Natural library name for the demo application is SYSNBSDE.

The AppSettings.bas file for the demo project is located in the same directory as
demo application files. You can modify this file using a text editor, such as the W
dows Notepad editor.

Consult with your system administrator to ensure that all of the listed prerequisites
been met before using the Construct Spectrum demo project.
– 39 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

ect is
ion.

 if
appli-
ctrum

 Start

 it is
Opening the Construct Spectrum Demo Project
This section describes how to open the Construct Spectrum demo project. A proj
a container for all of the components required in the client portion of your applicat
All Construct Spectrum projects, including the demo project, are created using the Con-
struct Spectrum Add-In in Visual Basic. Use this add-in to create the project and,
necessary, to download the required components from the server. For the demo
cation, these two steps are done for you. The demo project and the Construct Spe
Add-In are described in more detail later in this section.

Note: Ensure that all of the prerequisites described in Prerequisites, page 39, have
been met before opening the demo project.

� To open the demo project:

1 Select Programs > Construct Spectrum > Construct Order Entry Project from the
menu.

Opening the Demo Application

The Construct Spectrum demo project is displayed. If Visual Basic is not running,
also opened.
– 40 –

__ Using the Demo Application
2

pile

oject.
The project window contains references to all of the components required to com
and run your demo application:

Construct Spectrum Demo Project

Tip: You can set up an icon or shortcut to open the Construct Spectrum demo pr
For information, refer to your Windows help.

Once you have opened the project, you must run it to create a working application. This
is described in Running the Demo Application, page 47.
– 41 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

on of

dy

t. For

the
ved

er
n

ID
Understanding the Construct Spectrum Add-In
Use the Construct Spectrum Add-In to manage the development of the client porti
your application. It is available from the Add-Ins menu on the Visual Basic menu:

Construct Spectrum Add-In

The Construct Spectrum Add-In options are:

Add-In Option Description

Download
Generated Modules

Downloads generated modules from the server to your
application project. For the demo application, this has alrea
been done.

Upload Modules Preserves user exit code that has been added on the clien
example, if you add user exit code to a Visual Basic
maintenance object on the client, use this option to upload
business object module to the server so the code is preser
upon future regenerations of the business object.

Create New Project Creates a project for your Construct Spectrum client/serv
application. For the demo application, this has already bee
done.

Preferences Allows you to select a remote dispatch service. To allow
access to the mainframe for downloading, enter your user
and password in the appropriate fields.

About Identifies the Construct Spectrum version level you are using
and contains PC resource information, such as available
memory.
– 42 –

__ Using the Demo Application
2

l cli-

uded
 gen-

ts pro-
truct

 using

the
Understanding the Demo Project
The demo project contains all client components required to make a fully functiona
ent/server application. The client components consist of framework components and
generated modules. These are briefly described in the following sections. Also incl
in the following sections are diagrams showing both a framework component and a
erated module as they appear before and after the project is run.

Framework Components
Framework components are reusable application components. These componen
vide a skeleton of functionality that interacts with generated and hand-coded Cons
Spectrum modules to create a client/server application. When you create a project
the Create New Project option on the Construct Spectrum Add-In menu, framework
components are automatically included in your project.

The following example shows one of the framework components in your project:
Construct Spectrum Multiple Document Interface (MDI) frame:

MDI Frame Before Running Project
– 43 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

r to

usiness
ore in-
When you run the project to create your demo application, the frame looks simila
the following example:

MDI Frame After Running Project

Use this window to access standard options, such as Open or Close, as well as b
objects and maintenance actions such as Update, Delete, Move, and Next. For m
formation, see Understanding and Customizing the Client Framework, page 207.
– 44 –

__ Using the Demo Application
2

 num-
ules
pro-
 those
he

ject:
Generated Modules
Generated modules are specific to your application. For example, the demo has a
ber of windows to maintain customer orders and products. Other generated mod
include, but are not limited to, Visual Basic maintenance and browse objects, sub
gram proxies, and PDA definitions. Generated modules are created on the server;
required on the client are downloaded to your Construct Spectrum project using t
Download Generated Modules option on the Visual Basic Add-Ins menu.

The generated modules required for the demo have already been downloaded for you.
The following diagram shows one of the generated components in your demo pro
the Order Maintenance window:

Order Maintenance Form Before Running the Project
– 45 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

ar to

 For
When you run the project to create your demo application, the window looks simil
the following example:

Order Maintenance Form After Running the Project

Use this window to maintain customer order information for your demo application.
more information, see Overview of the Development Procedure, page 30.
– 46 –

__ Using the Demo Application
2

e
 with

Running the Demo Application
This section describes how to run the demo application to add, delete, and updat
records to your Customer Order demo application. Experiment to become familiar
the user interface and various features that you get with any Construct Spectrum
application.

This section also contains information about some of the standard features that you get
with every application developed with Construct Spectrum.

� To create the demo application:

1 Open the demo project as described in Opening the Construct Spectrum Demo
Project, page 40.

2 Select Start from the Run menu.

3 Click OK.
Do not type a user ID or password in this window; the default user ID for the demo
application is SYSTEM and no password is required.
– 47 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

ment
 can
ent.
When the project successfully compiles, the MDI frame is displayed:

MDI Frame

You can use the demo application as long as the Visual Basic development environ
is running. Steps 4 to 7 describe how to create an executable file from which you
use the demo application independent of the Visual Basic development environm

4 Select End from the Run menu.
The MDI frame closes.
– 48 –

__ Using the Demo Application
2

irec-

 file,
5 Select Make EXE File from the File menu.
The Make Project window is displayed:

Make Project Window

By default, the executable file (DEMO.exe) is saved in the ConstructOrderEntry d
tory in your Demo folder.

6 To save the executable file to another directory or with a different name, type new
information in this window. When you are ready to replace the existing executable
click OK.
The executable file is compiled and saved.

7 Locate and execute the file using the Run option on the Taskbar.
Alternatively, you can create a Windows shortcut to the file and double-click the
shortcut icon.
When the Logon window is displayed, click OK to start the demo application.
– 49 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

pec-
truct

intain
ing
Application Interface
This section describes the user interface provided by default with all Construct S
trum applications. The first window displayed when you start the demo is the Cons
Spectrum Multiple Document Interface (MDI) frame. This is the workspace from which
you manage your business objects, such as:

• Order object

• Customer object

• Product object

• Warehouse object

• Province object

Note: The Province object is a table in a Predict validation rule.

On the MDI frame, you can select an object for an action, such as to open it to ma
or browse records. The MDI frame consists of the components shown in the follow
example:

MDI Frame Window

Menu

Toolbar

Application

Status Bar

Workspace
– 50 –

__ Using the Demo Application
2

hese

exit

so
le,
s of

le,

d

se to
ns a

n on

ins
on
Menu Options
The following table describes each menu option in the MDI Frame window

Toolbar Options
Toolbar button options are available for the most commonly used menu options. T
are described in the following table.

Menu Option Description

File Contains options to open or close a business object, log off, or
the application.

Edit Contains options to cut, copy, paste, undo or delete typing. Al
contains options to add or delete rows of information; for examp
when maintaining a customer order, you can add or delete row
order information.

Actions Contains methods for working with your application, for examp
methods to add, delete, or get an object record. The methods
available from this menu correspond to the methods associate
with the business object.

Options Contains notification options for handling errors when they are
encountered. For example, when an error occurs, you can cho
be notified by a sound, an error message, or both. Also contai
Services option to select between different dispatch services. For
an example, see Additional Options , page 54.

Window Contains options to manage the windows that are currently ope
your MDI frame. For example, you can move between open
windows using this menu.

Help Contains options to access help for your application. Also conta
an About option from which you can display standard informati
about the application as well as standard system resource
information.
– 51 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

or at

ject

lete
on

re
ise,

Note: To display the name of a toolbar button, place your cursor on the button f
least two seconds; a tooltip containing the name is displayed.

Toolbar Button Description

Displays the Open dialog, where you can select a business ob
and one of its associated actions for opening.

Cuts the selection to the Windows Clipboard.

Copies the selection to the Windows Clipboard.

Pastes the selection to the Windows Clipboard.

Deletes the selected characters.

Undoes the last typing sequence you did; for example, if you de
a line of information using the Backspace key, clicking this butt
restores the line of information.

Displays online help for Construct Spectrum.

Adds a new record.

Retrieves a listing of records from the server. You can select a
record from the list to do some further action to it.

Clears the currently displayed record from your desktop. If the
are unsaved changes, you will be asked to save them; otherw
changes will be lost.

Deletes the current record.

Retrieves the specified record.

Retrieves the next record. If there are unsaved changes to the
currently displayed record, you will be asked to save them;
otherwise, they will be lost.
– 52 –

__ Using the Demo Application
2

you

.

Application Workspace
The Application workspace is where you work with your business objects. When
open one or more business objects, such as a customer order or a warehouse browse ob-
ject, they are displayed on this workspace:

Open Documents on the Application Workspace

Updates the currently displayed record to the server database

Prints the selected object in the MDI frame.

Toolbar Button Description (continued)
– 53 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

 busi-
bjects
r of

r appli-
atus

using
or be
hen
The MDI frame is a parent window to all business objects. You can manage your
ness objects through the MDI frame. For example, you can move between open o
using the MDI window menu commands. The previous diagram depicts a numbe
open objects on the application workspace.

Status Bar
The status bar displays messages and information about the current state of you
cation. For example, if you attempt an action that is not currently available, the st
bar displays the following message:

Status Bar

Additional Options
The following sections describe additional options available from the MDI frame:

• Error notification options

• Remote dispatch service options

Error Notification Options
Users can specify how they are to be notified when an error is encountered while
an application. For example, users can specify that the text box containing the err
highlighted and that information about the error be displayed immediately or only w
the text box is selected.

� To modify error notification options:

1 Start the Demo.exe file created in Running the Demo Application, page 47.
The Logon window is displayed.

2 Click OK.
The Construct Demo Application MDI frame is displayed.
– 54 –

__ Using the Demo Application
2

 to

lors

ect
-

or ex-
sers
ultiple
DI
3 On the Options menu, click Validation Errors.
The Error Notification window is displayed:

Error Notification Options

4 Select the check box(es) corresponding to the error notification options you want
enable.

5 If you selected the Highlight color on the error field option, choose the highlight co
by clicking the Set Foreground and Set Background buttons.

Later in this chapter, you will experiment with text box validations by entering incorr
values in a text box. At this point, try experimenting with your error notification op
tions. Text box validations are described in Validations, page 61.

Remote Dispatch Service Options
Spectrum dispatch services can be set up for distinct units in your organization. F
ample, you could have one Spectrum dispatch service for your inventory control u
and another one for your payroll users. Users who have been set up to access m
Spectrum dispatch services do so by selecting the appropriate service from the M
frame.

� To select a remote dispatch service:

1 Start the Demo.exe file that you created in Running the Demo Application, page 47.

2 Click OK.
The Construct Demo Application MDI frame is displayed.
– 55 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

 dis-
3 Select Service from the Options menu.
The Select Remote Dispatch Service window is displayed:

Select Remote Service Dispatch Services Window

4 Select the Spectrum dispatch service you want to use.
Any open windows on the MDI frame are closed and you are prompted to save any
unsaved changes.

You can now access the business objects available from the specified Spectrum
patch service.
– 56 –

__ Using the Demo Application
2

n by
tions.
 appli-
elds
edict
e the

ith all

ll
ks to
ppli-
t

t fea-

rate
Tour of the Demo Application
This section describes many of the features and functions of the demo applicatio
taking you on a guided tour of the customer order maintenance and browse func
Some features are provided by default with every Construct Spectrum-generated
cation, while others are based on the Predict setup of your application files and fi
on the server. Both types of features are identified in the following sections. For Pr
features, you are also provided with information about the set up required to mak
features available.

This section also contains a listing of the standard keyboard shortcuts available w
Construct Spectrum applications.

Your tour of the demo application involves working with customer orders. You wi
maintain and browse customer orders. As you do this, you will perform various tas
give you an idea of what the application can do. You should be able to develop a
cations that are at least as functionally rich as the demo application. At this point, do no
worry about the details of how things work, but try to get an understanding of wha
tures you can provide in your own application.

Opening a Business Object
In this section, you will open an order business object. It will be used to demonst
most of the Construct Spectrum features described in the remainder of this chapter.

� To open a customer order business object:

1 Start the Demo.exe file created in Running the Demo Application, page 47.
The Logon window is displayed.

2 Click OK.
The Construct Demo Application MDI frame is displayed.
– 57 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

ance.
3 Select Open from the File menu.
The Select a Dialog window is displayed:

Select a Dialog Window

4 Select Order from the Objects column.
The available actions for the Order object are displayed in the Actions column.

5 Select Maintenance from the Actions column.

Note: This procedure assumes you are opening a business object for mainten
To browse for a record, select Browse from the Actions column.
– 58 –

__ Using the Demo Application
2

6 Click OK.
The Order Maintenance window is displayed:

Order Maintenance Window
– 59 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

ation
7 Click Next.
The first customer order record is displayed:

Order Maintenance Window With an Open Order

The following section describes some of the standard features of the demo applic
by using an order object.
– 60 –

__ Using the Demo Application
2

aintain

 object

dd-

en a
is trig-

le for

asily
 for-
nters
stFo-

ss vali-
ch as
he

ec-
rder
 the
ox,
-

s type
Maintaining a Business Object
This section demonstrates some of the standard features available to help users m
their business objects. This section covers:

• Validations

• Business data types (BDTs)

• Grids

The features described in this section are demonstrated using the customer order
opened in Opening a Business Object, page 57.

Tip: In addition to experimenting with the features described in this section, try a
ing, updating, and deleting a customer order.

Validations
When a LostFocus event is triggered in a text box, it is validated. For example, wh
user types a value in a text box and tabs to the next text box, a LostFocus event
gered and the text box is validated. Four types of validations occur on the client:

• Basic data type
These validations verify that the format and length of an entered value is acceptab
the particular field.

• Business data type (BDTs)
These validations ensure that data is formatted consistently and in a way that is e
understood. For example, if all dates in your organization should be formatted with
ward slash (/) delimiters, you can assign a BDT to format such values. If a user e
a valid date without forward slash delimiters, the BDT formats the date when a Lo
cus event occurs in the date text box. BDT validations are described in Business Data
Types (BDTs), page 63.

• Local business type
These validations are based on your business rules. For example, a local busine
dation can ensure that one of a finite set of valid values is allowed in the field, su
a valid province code. A more complex local business validation could calculate t
provincial tax amount on an order based on the province code entered.

• Foreign field type
When a field in a maintenance window is a key field in a foreign file, Construct Sp
trum generates code to validate the field using the foreign file. For example, the O
window in the demo application has a Warehouse ID text box that is a key field in
Warehouse file. When a LostFocus event is triggered in the Warehouse ID text b
Construct Spectrum verifies that the Warehouse ID entered is a valid ID. For more in
formation about foreign field validations, see Integrating Browse and Maintenance
Functions, page 275.

For more information about basic data type, business data type, and local busines
validations, see Validating Your Data , page 261.
– 61 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

the

d
� To test how a validation works:

1 Open an Order object.
For information, see Opening a Business Object, page 57.

2 Type an invalid warehouse ID in Warehouse ID.

3 Select Update from the Actions menu.
The Warehouse ID text box is highlighted and, depending on how your Error
Notification options are set up, an error message is displayed. Or you can select
highlighted text box to display the message. For more information, see Error
Notification Options, page 54.

Validation in the Warehouse ID Text Box

4 To correct the problem, type a valid warehouse ID in the text box (or select a vali
warehouse from the drop-down list box).

5 Select Update from the Actions menu.
– 62 –

__ Using the Demo Application
2

at is
e num-

 and
alue in
xam-
Business Data Types (BDTs)
Business data types (BDTs) help ensure that information is displayed in a way th
consistent and easy to understand. For example, a BDT can reformat a telephon
ber that was entered without dashes or round a numeric value.

Construct Spectrum comes with a number of predefined BDTs you can customize
attach to any field based on your business requirements. When a user enters a v
the field, formatting is applied automatically when a lost focus event occurs (for e
ple, when the user selects another field or option).

� To test how a BDT works:

1 Open a Customer Order object.
For information, see Opening a Business Object, page 57.

2 Place your cursor in the Order Amount text box and type “1500”:

Value Before BDT Formatting Occurs
– 63 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

s. In
rs to

ct
mer
ere is
3 Click outside the Order Amount text box.
The value you entered is formatted with a decimal and two trailing zeros:

Value After BDT Formatting Occurs

Enter an alphabetical character in the Order Amount text box to see what happen
this case, the BDT for Order Amount was set up to convert alphabetical characte
zeros. Optionally, an error can be displayed if alphabetical characters are entered.

Grids
Grids display rows of related information about a business object. The Order obje
contains the Product grid, which displays the individual lines for a particular custo
order. Each row corresponds to a separate order line. In the following diagram, th
one order line, Cat Nuggets, for the customer order:

Grid Showing Order Lines for a Customer Order

Experiment with the grid by adding and deleting additional order lines.
– 64 –

__ Using the Demo Application
2

.

using

 The
er

low-

t the
e you
 dis-
� To add an order line:

1 Open a Customer Order object.
For information, see Opening a Business Object, page 57.

2 Place your cursor on an empty order line and complete the cells.
Use the horizontal scroll bar to access additional information on the grid.

3 Select Update from the Actions menu.

� To add a new order line between two lines:

1 Select the row immediately above the location where you want to add a new row

2 Select Insert Row from the Edit menu.
An empty row is added below the selected row.

� To delete an order line:

1 Select the order line.

2 Select Delete Row from the Edit menu.
The selected order line is deleted.

Grids can also be linked to browse functions and nested grids. For information on
a browse window from a grid, see Browsing For a Business Object, page 67. See the
following section for information on nested grids.

Nested Grids

Nested grids show additional information related to a row or a single cell in a grid.
Order object has a nested grid containing the distribution information for each ord
line. The Distribution grid is nested to each order line in the Product grid. In the fol
ing example, two distribution lines are set up for the Cat Nuggets order:

Nested Grid Showing Distribution for an Order Line

Select the first order line in the order object and then another order line; notice tha
Distribution grid changes depending on which order line you select. This is becaus
can have multiple lines of distribution for each order line. To accomplish this, the
tribution grid was set up as a nested grid.
– 65 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

lects
 you
of up
 the

con-

cur-
Nested Drop-Down Grids

You can set up a nested grid to “drop down” for a cell within a grid. When a user se
the cell, the drop-down grid displays additional information. For example, suppose
had a grid showing customer accounts and one of the grid cells showed the first
to five lines of the customer’s address. You could set up a nested grid containing
remaining lines of address information.

The demo application does not have a drop-down grid. The following procedure
tains a diagram of a sample drop-down grid to show you what one looks like.

Tip: Cells containing drop-down grids are identified with gray shading and an oc
rence number in brackets () for each repeating value in the grid.

� To display a drop-down grid:

1 Select the cell containing a drop-down grid.
A down arrow is displayed in the cell.

2 Select the down arrow.
The drop-down grid is displayed:

Sample Drop-Down Grid

To learn more about working with drop-down grids, see Keyboard Shortcuts for
Grids, page 67.

Drop-down
column —
placeholder for
drop-down grid

Drop-down grid
for repeating
field (Bonus)
– 66 –

__ Using the Demo Application
2

high-
 to

pdate
der us-
se for
ainte-
ta, as

s:

ted

ut
Keyboard Shortcuts for Grids

The first two keyboard shortcuts apply to a selected grid row. Select a grid row by
lighting the number to the left of the grid row. The remaining shortcuts apply only
nested drop-down grids.

Browsing For a Business Object
Browses enable you to search for and select records. For example, if you want to u
an order but do not remember the order number, you can locate and select the or
ing the order browse. Construct Spectrum provides a number of methods to brow
a business object. Browse windows can be invoked as a menu option or from a m
nance window. This section describes some of the ways users can browse for da
well as some of the features available to customize a browse. This section cover

• Selecting a business object from a browse window

• Specifying browse customization options

Keystroke Action

Del Deletes the selected row of information from a grid. If
the row has child grids, these are also deleted.

Ins Inserts a blank row above the selected row. If the selec
row has child grids, these are also inserted.

Alt+Down Arrow Displays the drop-down grid.

Alt+Up Arrow or Esc Hides the drop-down grid.

Shift+Alt+Down Arrow Displays the next value in a drop-down column witho
displaying the entire drop-down grid.

Shift+Alt+Up Arrow Displays the previous value in a drop-down column
without displaying the entire drop-down grid.
– 67 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

ain-
Select Data From a Browse Window
This section describes a number of ways to search for and open records from a browse
window. You can open a browse window directly from the File menu or from a m
tenance window.

Open a Browse Window from the File Menu

� To open a browse window from the File menu:

1 Select Open from the File menu.
The Select an Object/Action window is displayed.

2 Select Orders from the Object list box.
The available actions for the Order object are displayed in the Actions list box.

3 Select Browse from Actions.

4 Click OK.
The Order Browse window is displayed:

Order Browse Window

5 Click Get.
A list of orders is displayed in the window.

6 Select an order.

7 Click Update.
The Order Maintenance window is displayed with the selected order.
– 68 –

__ Using the Demo Application
2

plica-

n a
n to
 in-
 can
er. In
-

Tip: The Update and Delete options in the Order Browse window were created by add-
ing Update and Delete commands to the command handler for the demo ap
tion. For information about adding these and other commands, see Creating and
Customizing Browse Dialogs, page 175.

Open a Second Order

� To browse for and open a second order:

1 Open an order to perform a maintenance activity.
For information, see Opening a Business Object, page 57.

2 Select Browse from the Actions menu.
The Order Browse window is displayed.

3 Click Get.
A list of customer orders is displayed in the window.

4 Select another order.

5 Click OK.
Details for the selected order are displayed in the maintenance window.

Open Foreign File Information

When a maintenance dialog contains text box or grid information that is defined i
another file (foreign file), Construct Spectrum automatically adds a browse functio
the foreign field or grid information. For example, the Order Maintenance window
cludes the Customer Number text box, which is defined in the Customer file. You
initiate a browse from this field to locate and select a customer number for an ord
the following procedure, you will browse the Customer file from the Order Mainte
nance window.
– 69 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

grid.
� To open the Customer Browse window from the Order Maintenance window:

1 Open the Order Maintenance window.

2 Select the Down arrow to the right of the Customer Number text box.
The Customer Browse window is displayed:

Customer Browse Window

3 Click Get.
A list of customer records is displayed.

4 Select a customer number.

5 Click OK.
The selected customer number is displayed in Customer Number in the Order
Maintenance window.

The Order Maintenance window also has a browse window linked to the Product
Use this browse to select a product.

� To open the Product browse window from the Product grid:

1 Click a cell in the first column of the grid.
A Down arrow is displayed:

Grid with Down Arrow Displayed
– 70 –

__ Using the Demo Application
2

dow.

 nar-

ant.

d:
2 Click the Down arrow.
The Product browse is displayed with a list of products.

3 Select a product.

4 Click OK.
The selected product is displayed in the Product grid in the Order Maintenance win

Specify Browse Customization Options
Construct Spectrum-generated browse dialogs include options that enable you to
row your search criteria and to customize the information displayed in the browse
window. The following topics are covered in this section:

• Specifying selection options

• Specifying display options

Specify Selection Options

You can specify selection options to display as many or as few records as you w

� To specify selection options:

1 Open the Order Browse window.
For information, see Select Data From a Browse Window, page 68.

2 Click Options.
The Browse Dialog Options window is displayed with the Key Options tab selecte

Browse Options — Key Options Tab

3 Ensure that Show Selection Key and Show Range Options are selected.
– 71 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

:

ilter,

rma-
4 Click OK.
The Browse Options window closes and the Order Browse window is displayed.

5 Select Customer Number from the Selection Key drop-down list box.

6 Select the greater than symbol (>) from the Range Filter drop-down list box.

7 Type “777” in Order Number.

8 Click Get (or press Enter).
The Order Browse window displays all customer order numbers greater than 777

Order Browse Window

Specify your own selection options by experimenting with Selection Key, Range F
and Order Number.

Specify Display Options

You can customize your browse window to show as many or few columns of info
tion as required.

� To customize the display options for your browse window:

1 Open the Order Browse window.
For information, see Select Data From a Browse Window, page 68.

2 Click Options.
The Browse Options window is displayed.
– 72 –

__ Using the Demo Application
2

ber.

heck
3 Select the Column Visibility tab:

Browse Options — Column Visibility Tab

4 Clear all check boxes except Order Number, Order Amount, and Customer Num

5 Clear the Save Data Columns check box.
To save your column selections on closing the Order Browse window, select this c
box.
– 73 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

nd

ibil-
6 Click OK.
The Order Browse window is displayed with the Order Number, Order Amount, a
Customer Number columns only:

Order Browse After Specifying Display Options

Specify other display options by experimenting with the values on the Column Vis
ity tab in the Browse Options window.
– 74 –

__ Using the Demo Application
2

es
p

en in-
Troubleshooting
If you encounter errors while using the demo application, ensure that all prerequisit
listed in Prerequisites, page 39, have been met. Your system administrator can hel
you with this.

In diagnosing the problem, ensure that the client and server components have be
stalled correctly.
– 75 –

Construct Spectrum SDK for Client/Server Applications _____________________________
2

– 76 –

__
3

erv-
USING THE SUPER MODEL TO GENERATE
APPLICATIONS

This chapter describes how to generate all of the application modules required to create
a Construct Spectrum client/server application using the super model (VB-Client-S
er-Super-Model).

The following topics are covered:

• Overview, page 78

• Before You Begin, page 80

• Generating with the Super Model, page 86

• Troubleshooting, page 100

• Transferring Your Application to the Client , page 100
– 77 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

 of a
gen-

er ap-
f
or ful-

se
ed to
le, the
r busi-

 ap-
l
n:

xits,
Overview
The super model, VB-Client-Server-Super-Model, is designed to be used as part
rapid application development (RAD) process, where it is important to be able to
erate a working client/server application from a minimum of input parameters.

The super model drives the generation of all the required modules for a client/serv
plication using a single high-level model specification. For example, given a set o
database file names defined in Predict, all the client and server modules required f
ly functioning maintenance and browse services can be generated.

A single super model specification can generate all of the maintenance and brow
modules required for up to 12 packages. A package contains the modules requir
provide both browse and maintenance services for a business object. For examp
modules that make up the maintenance and browse services for a Customer Orde
ness object are referred to as a package.

If you are creating a new application, or adding a graphical front-end to an existing
plication, the fastest way to do this is by using the super model. The super mode
invokes each of the models necessary to produce the modules for your applicatio

Super Model Generation Overview

Tip: The super model does not allow you to specify user exits. To specify user e
regenerate using the specific model that supports the desired user exit.

Models (up to 9) for
each

Business Object

Super Model
(high level specification)

Generate

Module6
Module5

Module4

Module3
Module2

Module 1

Object
Factory

Generate

Module12
Module11

Module10

Module9
Module8

Module 7
– 78 –

___________________________________ Using the Super Model to Generate Applications
3

ch
der ob-
er

 mod-

tural

s. If
ally.

-

bject
t fac-
 by
tions

 mod-

u de-
l
erate

for
ow-
Using the super model, you can specify one or more high-level specifications. Ea
high-level specification corresponds to a business object such as a Customer Or
ject. Together, these specifications define the business objects in your client/serv
application. Next, select the models to run for each high-level specification. These
els, using information derived from the business object’s Predict file and field
definitions, supply the specifications required to produce the Visual Basic and Na
modules for your application.

Because the super model requires few specifications, it uses many default value
necessary, you can fine-tune and customize a module by re-generating it individu
Re-generating with the individual model enables you to override default values, add ad
ditional specifications, and add user exit code.

Another advantage to using the super model is that you can select to create an o
factory module that defines all business objects within the application. The objec
tory performs many functions, for example, it enables you to use the Open dialog
providing the names of all business objects within the application along with the ac
they support.

Tip: If your application requires more than 12 packages, generate with the super
el as many times as necessary to create all of the required modules.

Typically, you will use the super model to generate application modules when yo
velop the first iteration of your application. As you refine your application, you wil
likely need to regenerate certain application modules. In most cases, you will regen
these modules separately using the individual models. Step-by-step instructions
generating application modules with the individual models are provided in the foll
ing documentation:

• Generating a Subprogram Proxy, Construct Spectrum SDK Reference

• Object-Maint Models, Natural Construct Generation
– 79 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

ration

kages
u to

mod-

dule:
Before You Begin
Before using the super model, do some planning and research to make your gene
procedure go smoothly. This preparation includes:

• Establish a naming convention

• Determine the domain name

• Understand the object factory

• Determine the Predict default values

• Decide which modules to generate

These tasks are described in the following sections.

Establish a Naming Convention
Establishing a naming convention is important because modules for up to 12 pac
can be created with the super model at one time. A naming convention allows yo
easily identify the package a module belongs to and what type of module it is.

If you use the super model, all the modules belonging to a package are given the four-
character prefix you assign. If you assign a prefix that is less than four characters, the
prefix is padded with dashes.

The module name suffix is defaulted by the super model. The suffix identifies the
ule type and can be up to four characters in length.

The following diagram shows the default naming conventions for a generated mo

Naming Conventions for a Generated Module

C U STM C D V

Four-cha ra cter pre fix
assig ned b y you

Four-cha ra cter su ffix
assigne d by syste m

“M ” for M a intena nce or
“B ” fo r B ro wse

“C ” fo r C lie nt or
“S ” fo r S erve r

Iden tifies the pu rp ose of
the m od ule

“CU S T” for C ustom e r
– 80 –

___________________________________ Using the Super Model to Generate Applications
3

r

odel:

er

re

re
Note: These naming conventions apply only to modules generated by the supe
model.

The following table lists the default suffixes for modules generated by the super m

Tip: You can override a default name by typing over the default value in the sup
model specifications.

Default Suffix Module

MSD
MSA
MSR

Object maintenance subprogram
Object PDA (parameter data area)
Restricted PDA

Note: You cannot select the PDAs individually for generation. They a
generated by the Object-Maint-Subp model.

MSP Subprogram proxy for the object maintenance subprogram

MCPV Visual Basic maintenance object

MCDV Maintenance dialog

BSO
BKEY
BROW
BPRI

Object browse subprogram
Key PDA
Row PDA
Restricted PDA

Note: You cannot select the PDAs individually for generation. They a
generated by the Object-Browse-Subp model.

BSP Subprogram proxy for the object browse subprogram

BCPV Visual Basic browse object
– 81 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

. The
e ac-

bject
ject
ns.

tions
uper

 at one
es
ctory
dule.

main-
dules

an
ialog,
int-
ct-

 must
r the
ther
ct key

Understand the Object Factory
Each Construct Spectrum application contains a module called the object factory
purpose of the object factory is to make an application aware of its objects and th
tions, such as a maintenance or browse action, associated with the objects. Each
application also has an Open dialog (Open.frm) that enables users to select an o
and one of its corresponding actions. When a user displays the Open dialog, the ob
factory populates it with a list of the application objects and their associated actio

The super model allows you to generate an object factory. During subsequent itera
of your application, you have the option of regenerating an object factory with the s
model or modifying the existing object factory by hand.

Tip: Because the super model can generate modules for up 12 business objects
time, you must use the super model multiple times if your application includ
more than 12 business objects. In this situation, generate a unique object fa
each time and then merge each object factory into a single object factory mo

For more information, see Customizing the Object Factory, page 246.

Which Modules to Generate
A package consists of two groups of modules, each bundling services for either a
tenance or browse function. For either group of services to be complete, all the mo
belonging to a group must be generated and deployed. The modules are generated on
the server but are deployed to either the server or the client.

You may choose to generate only certain modules. For example, if you already have
existing maintenance subprogram and you only want to generate a maintenance d
generate the following models: Subprogram-Proxy, VB-Maint-Object, and VB-Ma
Dialog. Later, if you decide to generate only a browse dialog, select only the Obje
Browse-Subp, Subprogram-Proxy, and VB-Browse-Object models.

Tip: If you want to allow users to browse the business objects in the package, you
generate browse dialogs. Additionally, you must generate browse dialogs fo
package if the business object is linked by a foreign field relationship to ano
business object. Foreign field relationships enable a user to browse and sele
field values for foreign fields in a browse window. For more information, seeIn-
tegrating Browse and Maintenance Functions, page 275.
– 82 –

___________________________________ Using the Super Model to Generate Applications
3

erver
using

d

y

t.
For a Maintenance Dialog
The following table shows the modules you must generate to implement a client/s
maintenance dialog. When you generate these modules individually, rather than
the super model, generate them in the order shown.

Module Model Name Result

Object maintenance
subprogram,
object PDA,
restricted PDA

Object-Maint-Subp Subprogram used to maintain a
business object. This model also
generates the PDA and restricte
PDA for the object.

Object maintenance
subprogram proxy

Subprogram-Proxy Proxy used to communicate
information between the
Spectrum Dispatch Service and
an object maintenance
subprogram.

Visual Basic
maintenance object

VB-Maint-Object Visual Basic class instantiated b
a maintenance dialog to
encapsulate calls to the Spectrum
Dispatch Client and implement
local validations.

Visual Basic
maintenance dialog

VB-Maint-Dialog Dialog that provides the
graphical interface between the
maintenance application and the
user.

Object factory VB-Client-Server-
Super-Model

Visual Basic module that
identifies all business objects
within an application and
instantiates objects upon reques
– 83 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

erver
he su-

h
rowse

nfor-
ve

d,
sses,

e

t.
For a Browse Dialog
The following table shows the modules you must generate to implement a client/s
browse dialog. When you generate these modules individually, rather than using t
per model, generate them in the order shown.

Unlike maintenance subprograms, which use a specific Visual Basic form for eac
maintenance dialog, all generated browse subprograms use the same underlying b
form. This browse dialog form communicates with a BrowseBase class to obtain i
mation needed to configure itself for a particular browse subprogram and to retrie
data from the BrowseBase class.

Although many objects interact to produce a browse dialog, most of these are standar
reusable client framework components. For more information about browse proce
see Creating and Customizing Browse Dialogs, page 175.

Module Model Result

Object browse
subprogram,
key PDA, row PDA,
restricted PDA

Object-Browse-Subp Natural subprogram used to
encapsulate access to data on th
server and return records as a
series of rows. The parameter
data areas (PDAs) communicate
information to and from an object
browse subprogram.

Object browse
subprogram proxy

Subprogram Proxy Proxy used to communicate
information between the
Spectrum Dispatch Service and
an object browse subprogram.

Visual Basic
browse object

VB-Browse-Object For each object browse
subprogram on the server, you
must generate a supporting
Visual Basic class. This class
describes the object browse
subprogram to the BrowseBase
class, which in turn provides
information to a browse dialog
that is configured at runtime.

Object factory VB-Client-Server-
Super-Model or
hand coded

Visual Basic code module that
identifies all business objects
within an application and
instantiates objects upon reques
– 84 –

___________________________________ Using the Super Model to Generate Applications
3

n one

ject,
Dependent Models
Some models that are used to generate individual modules have dependencies o
another. This means you have to generate the modules in an established order.

Note: If you use the super model to generate all modules for a client/server ob
the order of generation is managed for you.

The following table shows the dependencies between models:

Model and Module Prerequisite Module

Object-Maint-Subp
Object maintenance subprogram

None

Subprogram-Proxy
Object maintenance subprogram proxy

Object maintenance subprogram

VB-Maint-Object
Visual Basic maintenance object

Object maintenance subprogram proxy

VB-Maint-Dialog
Visual Basic maintenance dialog

Visual Basic maintenance object

Object-Browse-Subp
Object browse subprogram

None

Subprogram-Proxy
Object browse subprogram proxy

Object browse subprogram

VB-Browse-Object
Visual Basic browse object

Object browse subprogram proxy
– 85 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

llow

struct
Generating with the Super Model
Generating with the super model involves four main tasks:

1 Invoking the super model to create a new specification.

2 Defining general parameters.

3 Defining specific package parameters.

4 Generating the modules.

Each task is described in the following sections, along with the steps you must fo
to complete the task.

The super model is available in both the Construct Windows interface on the client and
the Generation subsystem on the server.

– If you are using the model wizard, see Construct Windows Interface, page 86

– If you are using the model on the server, see Generation Subsystem, page 94

If you encounter problems, see Troubleshooting, page 100.

Construct Windows Interface
The following sections describe the steps to generate the super model in the Con
Windows interface.

Step 1: Invoke the Super Model Wizard

� To invoke the wizard:

1 Select New from the File menu.
The Create New Specification window is displayed.

2 Double-click VB-Client-Server-Super-Model on the Packages tab.
The model wizard is displayed.
– 86 –

___________________________________ Using the Super Model to Generate Applications
3

 mes-
3 Click Standard Parameters in the wizard navigator.
The Standard Parameters window is displayed:

VB-Client-Server-Super-Model Wizard — Standard Parameters Window

This window is similar for all models. The parameters are described in General Model
Specifications, Natural Construct Generation.

To use message numbers rather than message text for all REINPUT and INPUT
sages in the generated subprogram, select Message numbers.

Click Next to proceed to Step 2.
– 87 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

, and

Step 2: Define General Package Parameters
Use the Packages and Object Factory window to specify the domain, object factory
generation preferences for your application:

VB-Client-Server-Super-Model — Packages and Object Factory Window

� To define the general package parameters:

1 Select a domain from Domain.
For more information, see Understand the Object Factory, page 82.

2 Select “OFACTORY” from Object factory module.

Tip: Use “OFACTORY” to identify your object factory as this is the default name
used by the client framework.

3 Select Generate object factory to generate the object factory.
For more information about the object factory, see Understand the Object Factory,
page 82.
– 88 –

___________________________________ Using the Super Model to Generate Applications
3

d on

ing

n-
used

 gen-

ce.
Note: If you do not generate an object factory module, you must code it by han
the client (see Customizing the Object Factory, page 246).

4 Select Generate package modules to generate the package modules.

5 Do one of the following:

• If you are creating a new specification, click Next to proceed to the next step.

• If modules already exist for the super model specification, select one of the follow
options:

– By default, Regenerate it, preserving all custom code is selected. When you rege
erate existing modules, any modified parameters in the specification will not be
during the regeneration. However, the model will:

– Keep user exits

– Apply updates from Predict (such as a new field or a BDT keyword)

– Apply updates that have been added to the model’s code frames

– To replace all existing modules with newly generated ones, click Delete it and
erate a new copy.

In the following step, you can select the modules you want to regenerate or repla
– 89 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

dded

rate

do

of the
uired
Tip: If you are regenerating some, but not all, modules for a package and have a
custom actions that need to be reflected in the object factory:

1 Regenerate the modules.

2 In a separate procedure, regenerate the object factory. Similarly, if you are
adding modules to an existing package (for example, adding modules to
support a browse service), generate the new modules first and, in a sepa
procedure, regenerate the object factory.

3 When you regenerate the object factory, select Generate object factory, but
not select Generate package modules.

4 When you define the specific package parameters (see Step 3), select all
modules in your package so that the object factory is updated with the req
information about your package.

Step 3: Define Specific Package Parameters
Specify details for each package in your application:

VB-Client-Server-Super-Model Wizard — New Package Window
– 90 –

___________________________________ Using the Super Model to Generate Applications
3

layed

refix
ckage

ur
se
es.

the

 For
If you are working on an existing super model specification, the packages are disp
in the wizard navigator. Click a package in the wizard navigator to view it, or click Next
to proceed through the packages.

� To add a new package:

1 Do one of the following:

– While viewing the last package, click Next or Add.

– Click New Package in the wizard navigator.

� To delete an existing package:

1 Select the package.

2 Click Delete.

� To define specific package parameters:

1 Specify a package prefix.
This prefix will be used to identify each module generated for the package. The p
can be up to four characters long and should enable you to easily identify the pa
to which the generated modules belong. The importance of establishing a logical
naming convention is explained in Establish a Naming Convention, page 80. Once
you provide a prefix for a new package, the Package modules grid is populated.

2 Specify a Predict view.

3 Provide the primary key, hold field, and object description.

Tip: Click Defaults to use default values for these fields. You can also specify yo
own default override values using Predict keywords. Rather than typing the
values directly, set up your file definition in Predict to default the required valu
For more information, see Setting Up Predict Definitions, Construct Spectrum
SDK Reference.

4 Determine which package modules to generate.
The Package modules grid contains the following information:

Column Description

Module All of the modules that can be generated with the super model are
listed. Each module is identified by the package prefix, followed by
standard suffix for the module type. For more information about
suffixes, see Establish a Naming Convention, page 80.

Gen. Use the check boxes to specify which modules will be generated.
more information, see Which Modules to Generate, page 82.
– 91 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

tion
r ex-
hen

ge
 be
am,

nd

ill
urs

ill
rs
ing

 in
he

k,
rce
de,
he
5 After specifying the parameters for all packages, do one of the following:

– Click Finish to proceed to the Code window, where you can view the specifica
lines. The super model does not allow you to specify user exits. To specify use
its, regenerate using the specific model which supports the desired user exit. W
you have finished viewing the Code window, proceed to Step 4.

– Click Generate to proceed to Step 4.

Model Individual models the super model invokes to generate the packa
modules. Although seven models are listed, up to 12 modules can
generated. The Object-Browse-Subp model generates a subprogr
key PDA, row PDA, and restricted PDA. The Object-Maint-Subp
model generates a subprogram, object PDA, and restricted PDA.

G/R/O • “G” indicates that modules do not currently exist in source form a
will be generated and saved in the current library.

• “R” indicates that modules currently exist in source form and w
be regenerated and saved in the current library. This status occ
when you select Regenerate it, preserving custom code, while
defining the general package parameters.

• “O” indicates that modules currently exist in source form and w
be overwritten and saved in the current library. This status occu
when you select Delete it, and generate a new copy while defin
the general package parameters.

Library Displays any of the following information:

• A question mark (?) indicates that you must click Check to
determine if there is existing source or compiled (object) code for
the module.

• No content indicates that a check has been made, but there is no
existing code for the module.

• “S” indicates that source code exists. If the “S” is black, the source
code is in the current library. If the “S” is red, the source code is
another library. To view the location of the source code, place t
mouse pointer over the “S.” A pop-up window shows the library or
libraries.

• “C” indicates that compiled (object) code exists. If the “C” is blac
the source code is in the current library. If the “C” is red, the sou
code is in another library. To view the location of the source co
place the mouse pointer over the “C.” A pop-up window shows t
library or libraries.

Column Description (continued)
– 92 –

___________________________________ Using the Super Model to Generate Applications
3

u can

 up

 super

s the
ist of
e pane

er
Step 4: Generate the Modules
You have two options for generating the modules: you can generate in batch or yo
generate from the model wizard.

Tip: If you are generating a number of modules, generate in batch to avoid tying
system resources.

Generating Modules from the Model Wizard

When you click Generate in the previous step, the following process occurs as the
model generates:

• The super model specification is saved.

• All the specifications for the individual modules are created and saved.

• The Generate window is displayed. The Module pane provides information such a
module name, type, and action status. The Message pane provides a scrollable l
status messages from the server regarding the generation process. The Messag
displays the word “Done” when generation is complete.

To terminate the generation process, click Cancel.

Generating Modules in Batch

� To generate in batch:

1 Select Save from the File menu to save the specification.

2 In a mainframe session, log onto the library where the specification is saved.

3 Use the NCSTBGEN utility in batch to generate, specifying the name of your sup
model specification and the model name: VB-Client-Server-Super-Model.

For information about using this utility, see Multiple Generation Utility , Natural Con-
struct Generation.
– 93 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

ration

ould
e

:

e
Generation Subsystem
The following sections describe the steps to generate the super model in the Gene
subsystem.

Step 1: Invoke the Super Model

� To invoke the super model:

1 Type “M” in the Function field of the Natural Construct Generation main menu.

2 Type an eight-character name for the super model specification in Module.
This name identifies the super model specification you are creating. The name sh
be descriptive so you can easily identify it as the super model specification for th
application you are creating.

3 Enter “VB-Client-Server-Super-Model” in the Model field.
Alternatively, you can enter “VB-C”. The Standard Parameters panel is displayed

Super Model Multi-Module — Standard Parameters Panel

4 Specify the standard parameters and press PF11 (right).
The Standard Parameters panel is similar for all models. For information about th
fields on this panel, see General Model Specifications, Natural Construct Generation.

 CUSSMA VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMA0
 May 28 Standard Parameters 1 of 3

 Module OE-SPEC_
 System DEMO____________________________

 Title Multi-Object spec________
 Description Order Entry demo system for Spectrum___________________

 Message numbers X

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help retrn quit right main
– 94 –

___________________________________ Using the Super Model to Generate Applications
3

for
ime:

el

n re-

te

 Only

ge so

ield
Step 2: Define General Package Parameters
Use the General Package Parameters panel to specify the application packages
which you want to generate modules. You can generate up to 12 packages at a t

Super Model Multi-Object Specification — General Package Parameters Pan

If you added custom actions that need to be reflected in the object factory, you ca
generate selected modules.

� To regenerate some, but not all modules for a package:

1 Regenerate the modules.

2 In a separate procedure, regenerate the object factory. Similarly, if you are adding
modules to an existing package, generate the new modules first, and in a separa
procedure, regenerate the object factory.

3 When you regenerate the object factory, select the Gen object factory field and the
gen object factory field.

4 When you define the specific package parameters, select modules in your packa
the object factory is updated with all required information.

� To define general package parameters:

1 Type the domain name for this application in the Domain field.
To display a list of domains from which to select a value, place the cursor in the f
and press PF1. You must enter a value in this field. For more information about
domains, see Understand the Object Factory, page 82.

2 To generate an object factory module, mark Gen object factory.
For more information, see Understand the Object Factory, page 82.

CUSSMB VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMB0
May 28 General Package Parameters 2 of 3

 Domain DEMO____ *
 Gen object factory X Object factory module OFACTORY *
 Only gen object factory _ Replace existing modules ... _

 Package prefix Predict view
 ORD- NCST-ORDER-HEADER_______________ *
 CUST NCST-CUSTOMER___________________
 PROD NCST-PRODUCT____________________
 WH-- NCST-WAREHOUSE__________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________
 ____ ________________________________

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
right help retrn quit left right main
– 95 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

d on

les,
s for

r you

 user
t not

ation

he

entify
hing a

 view

.

e
Note: If you do not generate an object factory module, you must code it by han
the client. This procedure is described in Customizing the Object Factory,
page 246.

3 Type “OFACTORY” in the Object factory module field.

Tip: Use “OFACTORY” to identify your object factory as this is the default name
used by the client framework.

To generate only an object factory module, without regenerating any other modu
mark the Only gen object factory field. You must also select the package module
which the object factory will be generated in Step 3: Define Specific Package Param-
eters, page 97.

4 If you are using the super model to regenerate modules, you must decide whethe
want to replace or regenerate existing modules. If you select the Replace existing
modules option, the super model will replace any existing modules, including their
exit code. If you do not select this option, it will regenerate the existing modules bu
the user exit code.

When you regenerate an existing module, any modified parameters in the specific
will not be used during the regeneration. However, the model will:

– Keep user exits

– Apply updates from Predict (such as a new field or a BDT keyword)

– Apply updates that have been added to the model’s code frames

5 Type the prefix that will be added to each module generated for this package in t
Package prefix field.
The prefix can be up to four characters in length and should enable you to easily id
the package to which the generated modules belong. The importance of establis
logical naming convention is explained in Establish a Naming Convention, page 80.

6 Type the primary file name for which the package is being generated in the Predict
field.
This is the file that represents your business object. This file must exist in Predict

7 When you have added all of the primary files to be included in your application,
together with a prefix name for each of the files, press Enter or PF11 to display th
Specific Package Parameters panel.
– 96 –

___________________________________ Using the Super Model to Generate Applications
3

 pack-

auto-
e

the
Step 3: Define Specific Package Parameters
Use the Specific Package Parameters panel to specify generation details for each
age included in your application.

Super Model Multi-Module — Specific Package Parameters Panel

Note: You must complete this panel for each package in your application.

You can scroll through the packages in the application. The Package prefix field
matically shows the prefix defined on the General Package Parameters panel for th
first package. The >> field shows which package is currently displayed.

� To scroll between packages, do one of the following:

– Press PF8 (frwrd) and PF7 (bkwrd)

– Enter a package number in the field following the two angle brackets (>>)

� To define specific package parameters:

1 Specify a Predict view.

2 Specify the primary key, hold field, and object description of your package file in
Primary key, Hold field, and Description fields, respectively.

 VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMC0
 May 28 Specific Package Parameters 3 of 3

 >> 01 Package prefix ORD-

 Predict view NCST-ORDER-HEADER_______________ *
 Primary key ORDER-NUMBER____________________ *
 Hold field ORDER-TIMESTAMP_________________ *
 Description Order_______________

 ---- Modules to Generate --

 Model Module Source Object G/R/O
 X Maint Object Subp ORD-MSO_ * G
 X Maint Object Proxy ORD-MSP_ G
 X Maint VB Object ORD-MCPV G
 X Maint VB Dialog ORD-MCDV G
 X Browse Object Subp ORD-BSO_ G
 X Browse Object Proxy ORD-BSP_ G
 X Browse VB Object ORD-BCPV G

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit selct bkwrd frwrd left main
– 97 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

vide
de
t up
ee

ress
e. For

les
nal
bp
A.

eters
r exit
this
or

ca

erate

 up

ter.
Tip: Based on how the file is defined in Predict, the super model attempts to pro
default values for these fields. You can also specify your own default overri
values using Predict keywords. Rather than typing these values directly, se
your file definition in Predict to default the required values. For information, s
Setting Up Predict Definitions, Construct Spectrum SDK Reference.

3 If you are generating both a maintenance and a browse function for this package, p
PF5 (selct) to select all modules. Otherwise, mark each one you want to generat
information about determining which modules to generate, see Which Modules to
Generate, page 82.

Note: Although only seven models are displayed on this screen, up to 12 modu
can be generated. The Browse-Object-Subp model creates three additio
modules: Key PDA, Row PDA, and Restricted PDA. The Maint-Object-Su
model generates two additional modules: Object PDA and Restricted PD

If you marked the Replace existing modules field on the General Package Param
panel, any existing modules marked for generation will be replaced, including use
code. For these modules, “O” is displayed in the G/R/O field. If you did not mark
field, existing modules will be regenerated and user exit code will be preserved. F
these modules, “R” is displayed in the G/R/O field.

4 Press PF8 (frwrd) to display the next package in your application.
Complete the panel as described in Steps 1 and 2. When you have entered specifitions
for all of your packages, return to the Natural Construct Generation main menu.

5 Save your super model specification.
You are now ready to generate the modules.

Step 4: Generate the Modules
You have two options for generating modules using the super model: you can gen
in batch or you can generate from the main menu.

Tip: If you are generating a number of modules, generate in batch to avoid tying
system resources.

� To generate from the Natural Construct Generation main menu:

1 Type “R” in the Function field.

2 Type the name of the super model specification in the Module field and press En
This reads the super model specification into Natural Construct.

3 Enter “G” in the Function field.
– 98 –

___________________________________ Using the Super Model to Generate Applications
3

 mod-

dis-

er
The following steps occur as the super model generates:

• The super model specification is saved.

• The specifications for the individual modules are created and saved.

• The standard generation status window is displayed. You will also see a generated
ule status panel that lists the modules as they are generated and stowed.

• When all of the modules have been generated and stowed, a summary report is
played listing the status of each module that was generated and detailing any errors that
may have occurred.

� To generate in batch:

1 Save the specification from the Natural Construct Generation main menu.

2 Use the NCSTBGEN utility in batch to generate, specifying the name of your sup
model specification, and the model name: VB-Client-Server-Super-Model.

For information about using this utility, see Multiple Generation Utility , Natural Con-
struct Generation.
– 99 –

Construct Spectrum SDK for Client/Server Applications _____________________________
3

ncile

egen-

ter

error.
hose
dules

ila-

 the

ct

Troubleshooting
After generating with the super model, review the generation status report to reco
any errors that may have occurred.

• If a module was generated but not stowed because of a missing DDM, you can r
erate the missing modules at a later time after correcting the error.

• If there was a generation error for a specific module because of a missing dependent
module, you can regenerate the individual module from its model specification af
correcting the error.

• If the generation errors affect several of the individual modules, you may find it easier
to regenerate them from the original super model specification after correcting the
Read the original super model specification into Natural Construct and mark only t
modules that require regeneration. Then repeat the generation step until all the mo
have been successfully generated and stowed.

Tip: Ensure that SYNERR=ON in your user profile NATPARM. Otherwise, comp
tion errors in the generated code may cause cycling.

Transferring Your Application to the Client
If you have successfully generated all the modules of a package, or minimally all
modules of a browse or maintenance function, you are ready to download your client
application modules to the PC and complete the process of creating a client/server
application.

Using Visual Basic and the Construct Spectrum Add-In, you will set up a Constru
Spectrum project, download application modules to your project, and compile the
project to create a fully functional client/server application. These steps are described
in Creating a Construct Spectrum Project, page 101.
– 100 –

__
4

 your
ation
r also
CREATING A CONSTRUCT SPECTRUM
PROJECT

This chapter describes the process of setting up a Construct Spectrum project on
client. Follow the instructions in this chapter once you have generated your applic
modules on the server and are ready to download them to the client. This chapte
describes how to test, deploy, and set up security for your application.

The following topics are covered:

• Overview, page 102

• Are You Ready?, page 103

• Creating the Project, page 104

• Downloading the Generated Modules, page 107

• What’s Next?, page 110
– 101 –

Construct Spectrum SDK for Client/Server Applications _____________________________
4

he
e ap-

r

and
 the

nu

them

d the
Overview
All Visual Basic client/server projects that use Construct Spectrum must include t
Construct Spectrum client framework. Client framework components are reusabl
plication components that provide a skeleton of functionality that interacts with
generated and hand-coded Construct Spectrum modules to create a client/serve
application.

The client framework also includes forms, classes, procedures, global variables,
constants that are shared among various generated modules. This reduces the size of
generated modules and allows the modules to interact through the shared components.

Construct Spectrum includes an Add-In that extends the Visual Basic Add-Ins me
with commands to:

• Create a project and add the client framework components to the project.

• Download generated modules from the server to the client and automatically add
to your project.

• Upload generated modules from the client to the server when you have customize
modules and need to regenerate them, preserving all of your customizations.

The following example shows the Construct Spectrum Add-In:

Construct Spectrum Add-In
– 102 –

___ Creating a Construct Spectrum Project
4

 gen-

cation.

 the
Are You Ready?
Before using the Construct Spectrum Add-In to create a new project and download
erated modules, ensure that the following prerequisites have been met:

� You used the super model to generate the client and server modules of your appli
For information, see Using the Super Model to Generate Applications, page 77.

� You know the library name, the database ID (DBID), and the file number (FNR) of
FUSER containing the library where your generated modules reside.

� A Spectrum dispatch service is running.
– 103 –

Construct Spectrum SDK for Client/Server Applications _____________________________
4

client

e ID

load
ject.
Creating the Project
Use the Construct Spectrum Add-In to create a new project with all the necessary
framework components or to add client framework components to an existing project.

� To create a Construct Spectrum project:

1 Start Visual Basic.

2 Select Create New Project from the Construct Spectrum submenu.
The Create New Project window is displayed:

Create New Project Window

3 Type the name of the library containing your generated modules and the databas
(DBID) and file number (FNR) of the library’s FUSER file.
This information will be used as the default whenever you want to download or up
generated modules and will be stored in the AppSettings.bas module in your pro

4 Select the folder and project name from Project filename.

5 Click OK.

Note: Alternatively, you can click the Browse button to display a window from
which you can select a folder and enter the name of your project.
– 104 –

___ Creating a Construct Spectrum Project
4

your
trum
h as
ese

struct

6 Select Open.
The Create New Project window is displayed:

Create New Project Window

7 Click OK.
Construct Spectrum creates the new project and prompts you to open it:

Prompt to Open New Project

8 Click Yes to open your new project.

Most client framework components are not copied to your project folder. Instead,
Construct Spectrum project points to the FrameWrk5 folder in your Construct Spec
Install directory. You can see this by choosing a client framework component suc
Open.frm and choosing the Save As command on the Visual Basic File menu. Th
client framework components are shared among all projects created with the Con
Spectrum Add-In. Be aware that if you change one of these shared components and save
it back to the FrameWrk5 directory, you could be affecting other projects.

For more information about customizing client framework components, see Under-
standing and Customizing the Client Framework, page 207.
– 105 –

Construct Spectrum SDK for Client/Server Applications _____________________________
4

use

 the

jects

tion

The following client framework components are copied to your project folder beca
they are different for every application.

The Construct Spectrum Add-In also creates a new library image file for your applica-
tion and places it in the project folder. The name of this file will be the library name
with a “.lif” extension.

After the Construct Spectrum Add-In creates your project, you can run it and test
default functionality provided by the client framework. For more information, see Un-
derstanding and Customizing the Client Framework, page 207.

Prior to Downloading
� To allow access to the mainframe:

1 Select Remote Dispatch Service Preferences.
The Remote Dispatch Services Preferences window is displayed:

Remote Dispatch Service Preferences Window

2 Enter your user ID and password.

Name Description

OFactory.bas Contains the object factory, which identifies all business ob
within an application and instantiates objects upon request.

AppSettings.bas Contains application-specific settings, such as the applica
name, library name, DBID, and FNR. You can change these
settings by editing them in the module.
– 106 –

___ Creating a Construct Spectrum Project
4

ur

u.

ne or
um-

tered

e
Downloading the Generated Modules
Next, download the client modules generated by the super model and add them to yo
project.

� To download the client modules and add them to your project:

1 Select Construct Spectrum > Download Generated Modules from the Add-In men
The Download Generated Modules window is displayed:

Download Generated Modules Window

Use this window to list the modules in a given library on the server and to select o
more modules to download. The library name, DBID (database ID), and FNR (file n
ber) default to the values entered for the last project created. If necessary, type the
library name, DBID, and FNR that was specified for the project to which you are
downloading.

2 Enter the package prefix followed by an asterisk in the Module name field.

3 Click List.
After a few seconds, a list of modules that match the module name pattern you en
are displayed and the List button changes to Download.

Tip: If you know the name of the module you want to download, type it in Modul
name. When you click List or press Enter, the module is downloaded.
– 107 –

Construct Spectrum SDK for Client/Server Applications _____________________________
4

 ac-
ader

e of
 the
e-

le.

s

e
s

nd
 the

cts
.

Tip: To view your list in a different order, click a column header. The list is sorted
cording to the header item. If the list is already sorted, selecting the same he
toggles the sort order between ascending and descending.

The following table lists the modules to download:

Tip: The lower part of the Download Generated Modules window shows the nam
the project folder to which the modules will be downloaded and the name of
library image file where definitions will be saved. To change either of these, s
lect the corresponding Change button.

4 Do one of the following:

– Select one or more modules from the list.

– Type the module names in Module name.

5 Click Download or press Enter.

Module Description

Parameter data
areas

Parameter data area (PDA) definitions in a library image fi
PDAs generated using the super model have “MSA”, “MSR”,
“BKEY”, “BROW”, and “BPRI” suffixes.

Application service
definitions

Application service definitions in a library image file. Module
have “App Service” type and “SUBPROGRAM-PROXY”
model in the list. Subprogram proxies generated using the
super model have “MSP” and “BSP” suffixes.

Visual Basic
forms

Dialog definitions that are saved in the project folder with th
extension “.frm” and automatically added to the project. Form
generated using the super model have a “MCDV” suffix.

Visual Basic
classes

Modules saved in the project folder with a “.cls” extension a
automatically added to the project. Classes generated using
super model have “MCPV” and “BCPV” suffixes.

Object factory Visual Basic code module that identifies all business obje
within an application and instantiates objects upon request
The name of this module is entered on the first panel of the
super model. When downloaded, it is saved in the project
folder with the extension “.bas”.
– 108 –

___ Creating a Construct Spectrum Project
4

hould
enu,
d

ted
erge
Hand-Coding the Object Factory
If you generated the object factory using the super model and downloaded it, you s
be able to run your application without having to do any hand-coding. On the File m
select Open to invoke the Open dialog; the objects and actions that you generate
should be listed in the window.

If you did not generate an object factory, you must code it by hand. If you genera
multiple object factories for your application, you must do some hand-coding to m
each object factory into one object factory module. For information, see Customizing
the Object Factory, page 246.
– 109 –

Construct Spectrum SDK for Client/Server Applications _____________________________
4

ou can

min-
g.
te

nsure

-

 is
ory

edure
What’s Next?
Once you have created the project and downloaded the generated components, y
modify the dialogs, test and deploy the application, or set up security.

Modify the Dialogs
If this is an early iteration of your application, keep your dialog customizations to a
imum because you will lose these customizations when you regenerate the dialo
There are some modifications, however, that you need to do so that you can evalua
your application more effectively. For more information, see Integrating a New Main-
tenance Dialog, page 128.

Test the Application
At this point, compile and run your application. Test the following things:

• On the File menu, click Open and test all objects and their associated actions to e
each invokes the correct form.

• Check that each dialog displays correctly and that you have moved the controls in over
flow frames onto the dialog form or onto separate tabs of a tab control.

• Test any local validations that were generated into the maintenance objects.

• Invoke and test the remote methods: Get, Next, Update, Add, and Delete.

Note: The first communication to the server typically takes a few seconds. This
because the EntireX Communicator and DLLs must be loaded into mem
and initialized. Subsequent calls to the server will be faster.

For more information, see Debugging Your Client/Server Application, Construct
Spectrum SDK Reference.

Deploy the Application
Once your application has been tested, you can distribute it to your users. The proc
to deploy your application include:

• Creating the executable

• Collect the files to be installed

• Install the client application

• Run the application

For more information, see Deploying Your Client/Server Application, Construct
Spectrum SDK Reference.
– 110 –

___ Creating a Construct Spectrum Project
4

 for
 priv-
ed on

nt a
as
roup/
Setting Up Security
Before allowing users to work with your application, you must implement security
their environment by defining the users to a group. If users require different access
ileges, set up one group for each type of user. Set up your application security bas
these groups.

Grant access to business objects by group and domain combination. You can gra
particular group/domain combination access to as many or as few business objects
necessary. Additionally, you can grant access to only specific methods within a g
domain and business object combination.
– 111 –

Construct Spectrum SDK for Client/Server Applications _____________________________
4

– 112 –

__
5

ed to
how
nto an
om
ain-

to
stom-
CREATING AND CUSTOMIZING
MAINTENANCE DIALOGS

This chapter provides step-by-step instructions for generating the modules requir
maintain server information from a maintenance dialog on the client. It describes
to generate the necessary modules, download them to the client, integrate them i
existing Construct Spectrum project, and maintain server database information fr
your maintenance dialog. Also included is information on how to customize the m
tenance dialog. It provides conceptual information, suggestions on the best way
approach customization problems, and step-by-step instructions for particular cu
ization tasks.

The following topics are covered:

• Overview of the Maintenance Dialog, page 114

• Prerequisites, page 116

• Using Individual Models to Generate Maintenance Modules, page 117

• Downloading Client Modules, page 125

• Integrating a New Maintenance Dialog, page 128

• Strategies for Customizing a Maintenance Dialog, page 129

• Customizing on the Server, page 132

• Customizing on the Client, page 145

• Uploading Changes to the Server, page 173
– 113 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

Con-
trum

:

Overview of the Maintenance Dialog
Maintenance dialogs are built on the foundation provided by the existing Natural
struct object methodology. A maintenance dialog generated with Construct Spec
can share data access modules with a character-based maintenance dialog.

The modules that must be generated to create a working Construct Spectrum mainte-
nance dialog are:

• Object maintenance PDA

• Object maintenance PDR

• Object maintenance subprogram

• Maintenance subprogram proxy

• Visual Basic maintenance object

• Visual Basic maintenance dialog

The following example shows the relationship between these generated modules

Relationships Between Client and Server Maintenance Components

Server Client

Maintenance
Object PDR

Maintenance
Subprogram

Proxy

Visual Basic
Maintenance

Object

Maintenance
Object PDA

Maintenance
Object

Subprogram

Visual Basic
Maintenance

Dialog
– 114 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

lient-

del.

ness

r user

l mod-

dialog.

st the

ainte-
t and
Ways to Generate Maintenance Dialogs
Each module that a maintenance dialog requires can be generated with the VB-C
Server-Super-Model or generated one at a time using individual models. To determine
which generation approach is best for you, consider the following guidelines:

• If you are creating a new application or a new business object, use the super mo

• If you are making major changes to the Predict file definitions of one or more busi
objects in an existing application, use the super model.

• If you want more control over the generation results, such as customized code fo
exits, use the individual models.

This chapter describes how to generate maintenance modules from the individua
els. For information about using the super model, see Using the Super Model to
Generate Applications, page 77.

The first part of this chapter describes the tasks required to create a maintenance
These include:

1 Use the Construct models to generate modules.

2 Download the modules to the client using the Construct Spectrum Add-In.

3 Integrate a new maintenance dialog into your application.

Once you have completed these steps, it is time to compile the application and te
new maintenance dialog.

The second part of this chapter discusses various strategies for customizing a m
nance dialog and different customization mechanisms available on both the clien
server. It also describes how to upload client changes to the server.
– 115 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

e that

r the
ted

d the

from
sing

ese

nment.
Prerequisites
Before generating a module for a maintenance dialog, use this checklist to ensur
the following prerequisites are met:

� The necessary Predict file(s) are created, along with any relevant Predict definitions
such as file relationships and verification rules.

� An object PDA, a restricted PDA, and an object maintenance subprogram exist fo
target Predict file(s). If these modules do not exist as part of a previously genera
Construct Spectrum application, create them now. For information, see Object-Maint
Models, Natural Construct Generation.

� The Entire Net-Work kernel is running on your client (if you are using Entire Net-
Work) so that you can access the server used by the Spectrum dispatch service an
Spectrum security service. Your system administrator should ensure that this
prerequisite is met.

� A Spectrum dispatch service and security service are set up to service requests
your client. To determine whether these services are available, ping the service u
the Spectrum Service Manager. Your system administrator should ensure that th
services are available on the client.

� You are set up as a user with a password to access the Construct Spectrum enviro

� You created a Construct Spectrum project. If you have not done so, create one now. For
information, see Creating a Construct Spectrum Project, page 101.
– 116 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

ers. If
t gen-
d by

 a
n-

bject.

nd an

om the
est
n the
ce
ize
for-
Using Individual Models to Generate Maintenance
Modules

The modules required to run a maintenance dialog share many files and paramet
you are using individual models to generate your maintenance modules, you mus
erate the models in a specific order. Each model reads the source code generate
earlier models to make generation decisions.

Generate the dialog models in the following order:

1 Object-Maint-Subp model (object maintenance subprogram)

2 Subprogram-Proxy model (maintenance subprogram proxy)

3 VB-Maint-Object model (Visual Basic maintenance object)

4 VB-Maint-Dialog model (maintenance dialog)

Tip: Use the same four-character prefix to name all generated modules related tosin-
gle business object. This convention makes it easier to select modules for dow
loading. For example, to download all client modules related to a Customer
business object, type “CUST*” (where “*” is the wildcard character) to narrow
the list of available items to those starting with CUST.

The models are available in the Generation subsystem.

Generate the Object Maintenance Subprogram and PDAs
The Object-Maint-Subp model generates a subprogram to maintain a business o
This model also generates the PDA and restricted PDA for the object. Before generating
a module for a maintenance dialog, ensure that an object PDA, a restricted PDA a
object maintenance subprogram exists for the target Predict file(s).

For more information, see Create the Object Maintenance Subprogram and PDAs,
Natural Construct Generation.

Generate the Maintenance Subprogram Proxy
The subprogram proxy accesses the generated object maintenance subprogram fr
client application. It calls an object maintenance subprogram, which fulfills a requ
on behalf of a maintenance dialog. It is also responsible for converting data betwee
network transfer format and the Natural data format used in the object maintenan
PDA and restricted object maintenance PDA. Typically, you will not have to custom
or provide any user exit code for this model — just generate and catalog it. For in
mation, see Generating a Subprogram Proxy, Construct Spectrum SDK Reference.
– 117 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

vides
 Spec-

tions
it

ur
alled

alled

ce di-
ign
Generate the Visual Basic Maintenance Object
The VB-Maint-Object model generates a Visual Basic maintenance object that pro
maintenance dialogs with access to the business object data and methods in the
trum Dispatch Client.

Add Business Validations
A Visual Basic maintenance object is an ideal place to code simple business valida
such as verification rules. The model provides the CLIENT-VALIDATION user ex
for this purpose.

The VB-Maint-Object model also extracts verification rules that are attached to yo
Predict file and field definitions and generates validation code into a subroutine c
“Validate”. The following code example illustrates the type of validation code that
would be generated if the Predict verification type, Range, was attached to a field c
“CUSTOMER-NUMBER”.

Example of validation code generated by the VB-Maint-Object model

...
Case "CUSTOMER-NUMBER"
 If Value < 2 or Value > 4 Then
 Err.Raise Number:=csterrValueOutOfRange, _
 Source:=OBJECT_PDA_NAME, _
 Description:=csterrValueOutOfRangeMsg
...

For more information about validating data, see Validating Your Data , page 261.

Add Browse Functions
The VB-Maint-Object model also generates methods that enable your maintenan
alog to have browse functions automatically linked to the primary key and all fore
keys in the dialog. For more information, see Integrating Browse and Maintenance
Functions, page 275.
– 118 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

e fol-

he
ct.
Use the VB-Maint-Object model or wizard to generate the maintenance object. Th
lowing example shows the Standard Parameters for the VB-Maint-Object wizard:

VB-Maint-Object Wizard — Standard Parameters

The Module, System, Title, and Description parameters are similar for all models and
wizards. These parameters are described in General Model Specifications, Natural
Construct Generation.

The additional parameters on this panel are:

Parameter Description

Subprogram proxy Name of the subprogram proxy that communicates with t
object browse subprogram for this Visual Basic browse obje

Compress network
data

Indicates whether the parameters sent to the server are
compressed to reduce transmission time.
– 119 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

e cli-
m the
 sub-

am

the
ee
Note: The Compress data and Encrypt data flags only apply to data sent from th
ent to the server. To enable compression and encryption for data sent fro
server to the client, set the Compress data and Encrypt data flags in the
program proxy, which is described in Generating a Subprogram Proxy,
Construct Spectrum SDK Reference.

Encrypt network
data

Indicates whether the parameters sent to the server are
encrypted. Encryption secures sensitive data.

Extra PDA Additional parameter for your maintenance object subprogr
(for example, to update foreign field descriptions on a
maintenance dialog without having to make an extra call to
server). For more information about defining extra PDAs, s
How Foreign Field Descriptions Are Refreshed, page 291.

Parameter Description
– 120 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

eating
its in

 so,
After supplying model parameters, you can customize the generation results by cr
user exit code for the module. The following example shows the available user ex
the Code window for a Visual Basic maintenance object:

Code Window — VB-Maint-Object Wizard

The icon indicates that sample code can be generated for the user exit. To do
right-click the user exit and select Generate Sample from the shortcut menu. You can
then modify the code as required.

For more information about the user exits, see User Exits for the Generation Models,
Natural Construct Generation.
– 121 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

 with
subpro-
iven

n the
ns
 is
ation

port
r,
es re-

n. If
 in

 a

re
Generate the Maintenance Dialog
The VB-Maint-Dialog model generates a maintenance dialog that provides users
a graphical user interface to data and a business object (the object maintenance
gram) on the server. A maintenance dialog is used to maintain information for a g
business object. The dialog can support any object PDAs that can be generated.

All tailoring for maintenance dialogs should be performed within the Visual Basic en-
vironment. In most cases, you will have to reposition and resize the GUI controls o
form. By default, the VB-Maint-Dialog model generates GUI controls in two colum
with labels on the left and input controls on the right. The need for visual tailoring
especially evident when generating dialogs that have many fields. For more inform
about tailoring forms, see Integrating a New Maintenance Dialog, page 128.

Unlike other Construct Spectrum models, the VB-Maint-Dialog model does not sup
full regeneration capabilities and, therefore, supplies few user exits. You can, howeve
add your own user exits to preserve hand-written code and to minimize the chang
quired after regenerating your dialogs.

Customizations made to Visual Basic forms are not preserved during regeneratio
this is an early iteration of the application, limit any modifications to those described
the following table:

Before regenerating a maintenance dialog, see Strategies for Customizing a Mainte-
nance Dialog, page 129, for information about saving customizations in your
maintenance dialog.

Modification Description

Correcting overflow
conditions

Overflow conditions occur when there are more fields
than can be displayed on a dialog. Unless you correct the
problem, these fields will be hidden. For more
information, see Overflow Conditions, page 144.

Resizing grid controls A grid control is a table with rows and columns that
displays related information on a dialog. For example,
list of line items on a purchase order dialog. You can
adjust the size of a grid to suit your GUI layout. For mo
information, see Resizing Grids, page 168.
– 122 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

r
You can use the VB-Maint-Dialog model in the Generation subsystem on the server o
use the model wizard in the Construct Windows interface. The following example
shows the Standard Parameters for the VB-Maint-Dialog wizard:

VB-Maint-Dialog Wizard — Standard Parameters

The Module, System, Title, and Description parameters are described in General Mod-
el Specifications, Natural Construct Generation.
– 123 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

.

wn-

B-

er

the
The additional parameters in this window are:

Once the required modules are generated, you can download them to your client

Note: Ensure that all modules generated on the server are cataloged before do
loading to the client.

Parameters Description

VB-Maint-Object Name of the Visual Basic maintenance object. Click the
browse button to select a module.

Abbreviated object
description

Used in naming GUI controls on a form generated by the V
Maint-Dialog model. For example, a GUI control for a field
named CUSTOMER-NUMBER in an object named Custom
might have a GUI control name of
txt_CUST_CustomerNumber, where CUST represents the
abbreviated object description. The default value for the
abbreviated object description is the first four characters of
module name.

Window caption Caption for the resulting maintenance dialog.
– 124 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

es re-
lient

hen
-

ct.

y

h

.

t
Downloading Client Modules
After generating all required maintenance modules, you must download the modul
quired on the client. The following table lists the modules that are required on the c
and provides a brief description of their roles.

Note: The module suffixes listed in the table are suggestions only. However, w
generating with the super model, modules are given these suffix names auto
matically.

Model Module
Suffix

Visual Basic
Extension

Description

Object-Maint-PDA MSA n/a Encapsulates a business obje
This parameter data area
definition is incorporated into
the library image file used by
the project.

Object-Maint-PDA-R MSR n/a Contains private data used b
the business object. This
restricted PDA definition is
incorporated into the library
image file used by the project.

Subprogram-Proxy MSP n/a Communicates information
between the Spectrum dispatc
service and an object
maintenance subprogram. Also
updates the library image file
with application service
definitions containing
information about the
subprogram methods and data

VB-Maint-Object MCPV .cls Communicates with the objec
subprogram on the server on
behalf of the maintenance
dialog. Also implements
validations on the client.

VB-Maint-Dialog MCDV .frm Provides the graphical
interface between the
maintenance application and
the user.
– 125 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

t

f the
e

ill be
� To download modules from the server to the client:

1 Open the Construct Spectrum project that you are updating.
For information about setting up a project, see Creating a Construct Spectrum
Project, page 101.

2 Select Download Generated Modules from the Construct Spectrum Add-In.
The Download Modules window is displayed:

Download Modules Window

3 Ensure that you are pointing to the correct Natural library and FUSER system file on
the server.
If the default values in Library, DBID (database ID), and FNR (file number) do no
specify the server library from which you want to download, type the correct values in
these fields.

Tip: The project folder to which the modules will be downloaded and the name o
library image file where definitions will be updated are shown in text boxes at th
bottom of the window. To change either of these, select the corresponding
Change button.

4 Enter a pattern (such as CUST*) in the Module name text box to list all modules
matching that pattern.

5 Click List or press Enter.
A list of server modules is displayed. The maintenance modules you generated w
among them.
– 126 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

 are

uto-

up a
6 Select the maintenance modules you generated and click Download.
You can identify the maintenance modules based on their module suffixes, which
shown in the table at the beginning of this section.

The Visual Basic maintenance object and the maintenance dialog (.frm file) are a
matically added to your Construct Spectrum project.

For more information about downloading modules to the client and about setting
Construct Spectrum project, see Creating a Construct Spectrum Project, page 101.

For more information about tailoring on the client, see Tailoring the Maintenance Di-
alog, page 147.
– 127 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

struct
g to
 new
g
ct is a
 avail-

action
, do
Integrating a New Maintenance Dialog
If you are creating a new maintenance dialog and want to add it to an existing Con
Spectrum application, hand-code the object factory to link the maintenance dialo
your application. You need to hand-code the object factory only if you are adding a
dialog to your application or you have changed the actions available for an existin
business object. An example of changing the available actions for a business obje
situation where you add a maintenance action to a business object that had been
able to the user only through a browse action.

Tip: To determine whether you need to hand-code the object factory, access the Open
dialog and select each object and its associated action. If the selected object
does not open or if the Open dialog does not display all of the object actions
some hand-coding to add the required object actions.

For information about hand-coding the object factory, see Customizing the Object
Factory, page 246.
– 128 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

ign is
 tai-

t pos-
 to
 your

del

 finite
ol to

ted for

trol
 Pre-
Strategies for Customizing a Maintenance Dialog
This section describes some strategies you can use to reduce the effort required to main-
tain your maintenance dialogs. These include:

• Doing the Predict data dictionary work up front

• Choosing the most appropriate place to add hand-written code

• Adding new user exits

• Making a copy of your changes

Doing the Predict Data Dictionary Work Up Front
Before tailoring the dialog, ensure that your data design is sound. If your data des
unstable, but you want to test the functionality of your dialog, consider postponing
loring tasks such as creating calculated fields or rearranging the layout of your dialog
until your data design is stable.

Construct Spectrum has added new points of integration with Predict that make i
sible to generate robust dialogs with minimal tailoring, provided you take the time
enter the information into Predict. Following are some ways that you can enhance
generated dialog by providing Predict information:

• Enter values for Header1, 2, and 3 in the field definitions. The VB-Maint-Dialog mo
uses this information to generate meaningful label captions. For more information
about how label captions are derived, see Deriving Variable Names, page 132.

• Create and attach table status verifications to fields whenever you know there is a
set of valid values. The model uses verifications to decide what type of GUI contr
generate. If a table status verification is attached to the field, the model will create either
a ComboBox or a Frame and series of option buttons. The code that gets genera
these types of controls is different than the code generated for TextBox controls. For
information about using Predict verification rules, see Overriding GUI Controls , page
133.

• Supply GUI and BDT keywords to help the model determine which type of GUI con
to use or to fine-tune the behavior of a TextBox control. For information about how
dict keywords affect GUI generation, see Overriding GUI Controls , page 133.
– 129 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ule
g, de-

 di-
ialog.

rite
work
es.

ust
Choosing an Appropriate Place to Add Hand-Written Code
There are many places in a Construct Spectrum-generated application to place custom
code — like a Visual Basic maintenance object or in a separate Visual Basic mod
that you add to the application. When adding custom code to a maintenance dialo
termine if this code can be placed elsewhere and still work.

The primary reason for placing code in the dialog is to have the ability to respond
rectly to specific events. In such cases, you have no choice but to put code in the d
However, rather than writing 10 or 20 lines of event code directly in the dialog, w
one line of code in the form that calls a routine in another module that can do the
for you. The following examples illustrate the difference between these approach

Significant impact on dialog code

Private Sub txt_EMPL_Salary_Change()
 ‘my custom code - start
 Dim Result As String
 If CCur(txt_EMPL_Salary.Text) > 100000 Then
 txt_EMPL_Salary.BackColor = vbRed
 txt_EMPL_Salary.ForeColor = vbYellow
 Result = InformAuthorities(EmployeeName)
 Select Case Result
 Case “EmployeeHasAcknowledged”
 PublishSalaryAtPressRelease EmployeeName
 Case “SalaryIsIncorrect”
 Beep
 Case “TerminateEmployee”
 PerformAction “DELETE”
 End Select
 End If
 ‘my custom code -end

 If DetectChanges Then
 ObjectChanged = True
 End If
End Sub

Minimal impact on dialog code

Private Sub txt_EMPL_Salary_Change()
 ‘my custom code - start
 CheckSalary EmployeeName
 ‘my custom code -end

 If DetectChanges Then
 ObjectChanged = True
 End If
End Sub

Using the second approach simplifies and minimizes the modifications that you m
re-implement if the dialog is regenerated.
– 130 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

log
er ex-

oing

your

 a
 after
st

stom

 dia-

 to the
to the
user

erver
 hand
ou

 ap-

i
ou
Adding New User Exits
Unlike other Natural Construct and Construct Spectrum models, the VB-Maint-Dia
model comes with few predefined user exits. You can, however, add your own us
its to the dialog code. These user exits are saved when you regenerate your maintenance
dialog and, therefore, reduce the effort required to maintain your dialogs on an ong
basis.

� To add new user exits to the maintenance dialog:

1 Define the user exit.
Each custom user exit must be delimited with comment lines that indicate where
custom code begins and ends. Use the standard ‘SAG DEFINE EXIT abc’ and ‘SAG
END-EXIT’ delimiters to mark the beginning and ending of your user exit. Provide
unique name for the user exit. A good convention to follow is to name the user exit
the code block in which it is found. For example, if you add custom code to the lo
focus event for the txt_CUST_CustomerNumber GUI control, use the following
delimiters to block your custom code:

‘SAG DEFINE EXIT txt_CUST_CustomerNumber_LostFocus
 txt_CUST_CustomerNumber.ForeColor = vbGreen
‘SAG END-EXIT

2 Upload, regenerate, and download the maintenance dialog.
Before regenerating the dialog, upload the dialog to the server to preserve your cu
coding changes. After regenerating, download the maintenance dialog.

Note: You cannot preserve tailoring to the visual appearance of a maintenance
log with user-defined user exits.

3 Reposition user exit code.
As part of the regeneration process, the user exits you created earlier are moved
bottom of the maintenance dialog’s source area. Move each user exit code block
appropriate location in code. This should be an easy task if you have named the
exits after the code blocks in which they belong.

Making a Copy Before You Regenerate
If many changes have been made to your data design, or other changes on the s
have had an impact on your dialog, decide whether to implement the changes by
or to generate a new copy of your form. If you generate a new copy of the form, y
must re-implement any tailoring you have done. This decision depends on which
proach represents less work for you.

If you decide to generate a new copy of your dialog, save your old dialog with a dffer-
ent name. You can view the old dialog while tailoring the new dialog. Additionally, y
can cut and paste code from one dialog to the other.
– 131 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

our

nd
 con-

 Ob-

ent-

 of
pec-
Customizing on the Server
This section describes the mechanisms available on the server for customizing y
maintenance dialog.

Deriving Variable Names
When performing customizations to a maintenance dialog, it is useful to understa
how variable names are derived. This will help you maintain a consistent naming
vention and make it easier for you to determine what the code is doing.

Deriving GUI Control Names
GUI control names are made up of three components: a GUI Control Identifier, an
ject Identifier, and a Field Identifier. Each one is separated by underscores. For
example, a field called CUSTOMER-NUMBER on a Customer file might be repres
ed by a TextBox GUI control named txt_CUST_CustomerNumber.

GUI Control Identifier

A GUI control identifier is a three-character abbreviation in the GUI control name that
uniquely identifies the GUI control type. The following table lists the different types
GUI controls (along with their abbreviations) that are used in a typical Construct S
trum project:

GUI Control Abbreviation GUI Control Abbreviation

CheckBox chk Label lbl

ComboBox cbo ListBox lst

CommandButton cmd Menu mnu

Form frm OptionButton opt

Frame fra StatusBar sta

Grid grd, ddg TextBox txt
– 132 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

ness
ated
e

nt

e-
ving

e

on is
 box.
s for
 the
cre-
s are

t
h as
ic
ther it
 der-
 by

s for
Object Identifier

An object identifier is a four-character abbreviation that uniquely identifies the busi
object represented in the dialog. The object identifier is obtained from the Abbrevi
Object Description parameter of the VB-Maint-Dialog model. By default, this valu
contains the first four characters of the dialog form (.frm file) name. Using the Object
Identifier as a component of the GUI control name is useful if you want to represe
more than one business object in a single dialog.

Field Identifier

A field identifier uniquely identifies a field within a business object. The name is d
rived from the Predict field name — converting the letters to mixed case and remo
any characters which are illegal in Visual Basic, such as hyphens. The field identifier
for grid controls that are derived from intra-object relationships are obtained from th
Predict relationship name.

Deriving Label Captions for GUI Controls
A label caption is a name that identifies a GUI control to the user. The label capti
usually displayed to the left of an associated input GUI control, for example, a text
The caption for the label is obtained from one of two places. First, the model look
header information stored in Predict’s Elementary Field definition. If none is found,
label caption is derived from the field name in the same way the field Identifier is
ated. Label captions for grid controls that are derived from intra-object relationship
obtained from the Predict relationship name.

Overriding GUI Controls
The VB-Maint-Dialog model must choose the appropriate GUI control to represen
your field as it is defined in Predict. This includes representing complex data, suc
one-to-many relationships. To accomplish this, the model employs derivation log
based on information such as a field’s data type, the number of occurrences, whe
is in a repeating group of fields, etc. The following steps in this section describe the
ivation logic. Each topic is included in the same order in which the logic is applied
the model.

In addition to this default derivation logic, the model provides several mechanism
you to override the default selection of a GUI control for a given field. These are de-
scribed in steps 1, 2, and 3.
– 133 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

s
 the
ext-
ith

ict
e-
Note: An asterisk (*) appended to any GUI control name in this section indicate
that the GUI control could also apply to a column of a grid, depending on
cardinality of the associated field. Therefore, TextBox* can be read as T
Box or TextBoxColumn. For more information about using GUI controls w
grid columns, see Using the Grid, page 165.

Step 1: Search for GUI Keywords in Field Definitions
The model starts by looking for specific keywords that begin with GUI in the Pred
field definition. The following example shows a hypothetical M-PROVINCE field b
ing mapped to a ComboBox using the GUI_COMBOBOX keyword:

Predict Modify Field Panel

12:53:21 ***** P r e d i c t 3.4.1 ***** 02-01-28
 - Modify Field -
 Field ID M-PROVINCE Modified: 97-01-16 at 09:32
 File ID NCST-CUSTOMER by: DEVMT1
 Keys .. GUI_COMBOBOX Zoom: N

 Ty L Field name F Length Occ D U DB N NAT-l
 *- - -------------------------------- *- -------- ----- * * -- * -----
 2 M-PROVINCE A 20.0 X4 N

 Natural attributes
 Header1 Province
 Header2
 Header3
 Edit mask ..
 Comments Zoom: N

 EDIT: Owner: N Desc: N * Veri: N MORE Attr.: N
– 134 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

de

ld
.

d in

st
e. If
e

ents

ce
ro
ting
t

ks
es

oes
bo

ed

l

ld

del
is

The model recognizes the following keywords:

GUI Control Description

GUI_ALPHA
MULTILINE

Generates a TextBox* control with the MultiLine property set
to True. This gives the GUI control the feel of a mini-word
processor. The control will word-wrap its contents and provi
scroll bars as required.

Use this keyword to represent a repeating alphanumeric fie
as a single piece of information such as a long description

GUI_CHECKBOX Generates a CheckBox* control. This keyword can be use
combination with a field of any format. If a table verification
with two or more values is attached to the data field, the fir
value represents false and the second value represents tru
no verification is attached to the field, the model derives tru
and false values based on the field format. If the field is
alphanumeric, blank represents false and non-blank repres
true.

When updating the object PDA, the Visual Basic maintenan
dialog uses “X” to represent true. If the field is numeric, ze
represents false and non-zero represents true. When upda
the object PDA, the maintenance dialog uses 1 to represen
true.

GUI_COMBOBOX Generates a drop-down ComboBox* control. This model loo
for a table-style verification. If one has been set up, the valu
are used as the entries for the combo box. If a verification d
not exist, the model generates one dummy entry for the com
box.

Generate a dummy entry if the combo box is to be populat
with data from an external source such as a PC on your LAN.
For information about populating a combo box with externa
data, see Generate a ComboBox Control to Display
External Values, page 136.

GUI_NULL Prevents the generation of a GUI control definition for the fie
or any code pertaining to the field. Use this keyword if you
defined fields that should not be displayed in the dialog.

GUI_OPTION
BUTTON

Generates a frame and a series of OptionButtons. The mo
uses the table-style verification attached to the field. For th
keyword to work, you must attach values to the table-style
verification because each of the values maps to an option
button.
– 135 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ing

x
e).

 in
on

ed

T
re
e
Note: Option buttons are not supported in a grid control. If the
GUI_OPTIONBUTTON keyword is attached to the field definition and the
field is part of a repeating group of fields (PE) or is a stand-alone repeat
field (MU), it is mapped to a ComboBox instead of OptionButtons.

Generate a ComboBox Control to Display External Values

Use the GUI_COMBOBOX keyword in Predict to force generation of a ComboBo
control that displays values from an external source (for example, a LAN databas

� To set up a ComboBox control to display values from an external source:

1 Set up a field definition for the field in Predict.

2 Add the GUI_COMBOBOX keyword to the Predict field definition.

3 On the client, write code in the Form_Load event for the dialog to populate the
ComboBox with values by reading the external source when the form is loaded.

GUI_PROTECTED Treats the associated field as read-only. The user cannot
modify the contents of the field. This keyword can be used
conjunction with the other keywords described in this secti
except when the GUI_NULL keyword is used.

Use this keyword if the contents of the field is to be determin
programmatically, as with a calculated field. For more
information about calculated fields, see Creating Calculated
Fields, page 145.

GUI_TEXTBOX Generates a TextBox*. Text box GUI controls can have BD
(business data types) definitions attached to them. For mo
information about using BDTs with text box GUI controls, se
Step 3: Search for Business Data Type Keywords in Field
Definitions, page 138.

GUI Control Description (continued)
– 136 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

 in

s

g

he
p-
, the

, the

efi-
pe of
ition.
for
Step 2: Search for GUI Keywords on Verification Definitions
If the model did not derive a GUI control in Step 1, it looks next for a GUI keyword
any attached table-style verifications. However, it only considers the
GUI_COMBOBOX and GUI_OPTIONBUTTON keywords as valid. Other keyword
are ignored.

The following example shows a hypothetical VALID-PROVINCE verification bein
mapped to a ComboBox using the GUI_COMBOBOX keyword:

Predict Modify Verification Panel

Tip: Improve the readability of a verification value by adding its concise term in t
Comments field. Construct Spectrum displays the comment value in the dro
down combo box or caption name of an option button. In the previous panel
full name of each province has been entered in the Comment field that corre-
sponds to its database verification value. If comment values are not supplied
database verification values are displayed.

Consider attaching a GUI keyword to a verification definition, rather than a field d
nition, to implement a standard GUI representation for any field using the same ty
verification. This also eliminates the need to assign the keyword to each field defin
You can override the GUI keyword on the verification definition by supplying one
the field definition. For more information, see the description for the
GUI_OPTIONBUTTON and GUI_COMBOBOX keywords in Step 1: Search for
GUI Keywords in Field Definitions, page 134.

For more information about verifications, see Validating Your Data , page 261.

13:12:21 ***** P r e d i c t 3.4.1 ***** 02-01-28
 - Modify Verification -
 Verification ID . VALID-PROVINCE Modified: 97-01-28 at 13:11
 Status Natural Construct by: DEVMT
 Keys .. GUI_COMBOBOX Zoom: N

 Format* A Alphanumeric Modifier Zoom: N
 Type* T Table of values
 Message nr 1112
 Replacement 1 ...
 Replacement 2 ...
 Replacement 3 ...
 Message text

 Comments Zoom: N Values * Zoom: N
 British Columbia BC
 Alberta ALTA
 Saskatchewan SASK
 Manitoba MAN
 Ontario ONT
 Quebec QC
 New Brunswick NB
 EDIT: Owner: N Desc: N * Rule: N
– 137 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ess
ou

will

x
m-
sed.

elf.
rum

em
eate
Step 3: Search for Business Data Type Keywords in Field
Definitions
If the model could not derive a GUI control in Step 1 or 2, it next looks for a Busin
Data Type (BDT) keyword in the Predict field definition (shown in Step 1). Since y
can augment the standard set of supplied BDTs with your own BDTs, the model
accept any keyword which begins with BDT.

If the model finds a BDT-prefixed keyword in the field definition, it uses a TextBo*
GUI control to represent the field. Additionally, the model looks in the keyword co
ments for an actual BDT type and modifier. If a BDT exists in the comments, it is u

Example of a BDT type with a modifier specified in the keyword comments

BDT=BDT_NUMERIC
MOD=”ZERO=OFF”

If no BDT or modifier is found, the model uses the BDT implied by the keyword its
If no modifier was specified with the BDT, the BDT manager in the Construct Spect
client framework defaults a modifier.

You can create your own BDT keywords which only exist on the server and map th
to combinations of BDTs and modifiers on the client PC. For example, you could cr
two BDT keywords, BDT_NUMERIC_ZERO and BDT_NUMERIC_ROUND.

• Attach the BDT_NUMERIC_ZERO keyword to the field definition
The comments of the BDT_NUMERIC_ZERO keyword could contain
BDT=BDT_NUMERIC and MOD=”ZERO=ON”.

• Attach the BDT_NUMERIC_ROUND keyword to the field definition
The comments of the BDT_NUMERIC_ROUND keyword could contain
BDT=BDT_NUMERIC and MOD=”ROUND=ON”.
– 138 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

UI
Step 4: Use Default Derivation
If the model is unable to derive a GUI control in Step 1, 2, or 3, it uses its built-in G
derivation logic. This logic is described pictorially in the following diagrams.

Default Derivation of GUI Control — Part 1 of 2

User
Mapping?Yes

Use user mapping from
step 1, 2, or 3

(ensure it is valid)

No

Field Type

Data

Group

Scalar?

Grid Frame

YesNo

in Repeating
Group?

Repeating
Field?

YesNo

Format
CheckBox
Column

Table
Verification?

D, T, N, P,
I, F,A

No

ComboBox
Column

No

Yes

L

Regular
Column with

BDT

Format
Dropdown Grid,

CheckBox Column

D, T, N, P,
I, F,A

Dropdown
Grid,

ComboBox
Column

Yes

L

Dropdown Grid,
Regular Column

with BDT

Table
Verification?

2

Drop-down Grid
ColumnsGrid Columns

No

D Date T Time
N Numeric P Packed
I Integer F Float
A Alphanumeric

Key

Yes
– 139 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

nt a
eshold
asic
lting

, P,

mber
oxes
DT

e
ion?

at
Default Derivation of GUI Control — Part 2 of 2

The previous diagram illustrates that the choice of GUI control(s) used to represe
database field depends on several threshold variables. You can control these thr
points at a corporate level; that is, your default threshold values affect all Visual B
maintenance dialogs. This is accomplished by using Construct’s corporate defau
mechanism.

Repeating
Field?

Yes

NoFormatCheckBox

Table
Verification?

D, T, N, P,
I, F, A

Number of
table values

Yes

Frame,
number of

Option Buttons

Label,
ComboBox

5 or more

Label,
TextBox
with LDT

Number of
occurances

4 or
less

L

No

1 to
4

Format
Label, Grid,
CheckBox
Column

Table
Verification?

D, T, N, P,
I, F, A

No

Label, Grid,
ComboBox

Column
Yes

L

Label, Grid,
Regular

Column with BDT

D, T, N
I, F,A

No

Label,
number of

ComboBoxes
Yes

Label, nu
of TextB

with B

Tabl
Verificat

5 or
more

D Date T Time
N Numeric P Packed
I Integer F Float
A Alphanumeric

Key

1

Scalar GUI
Controls

1-Column
Grid Controls

GUI Control
Arrays

Form
Label, number of

CheckBoxes
L

– 140 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

re de-

d its

the
ord
The corporate defaults that affect Construct Spectrum’s choice of a GUI control a
scribed in the following sections:

• Repeating Field Threshold, page 142

• Option Button Threshold, page 142

• Foreign Field Threshold, page 142

� To assign a corporate default:

1 Use the following code example as a guide to assigning a corporate default value.
The example illustrates how a work file number and column delimiter values are
defaulted.

Example of assigning corporate defaults

/*
/* Retrieve all model constants that are stored using the standard
/* defaulting method.
INCLUDE CCDEFLTN '''MAX-OPTION-BUTTON-COUNT'''
 'CUMDPDA.#MAX-OPTION-BUTTON-COUNT'
INCLUDE CCDEFLTN '''MAX-MU-COUNT''' 'CUMDPDA.#MAX-MU-COUNT'
INCLUDE CCDEFLTN '''MAX-DIALOG-WIDTH'''
 'CUMDPDA.#PDA-MAX-DIALOG-WIDTH'
INCLUDE CCDEFLTN '''MAX-DIALOG-HEIGHT'''
 'CUMDPDA.#PDA-MAX-DIALOG-HEIGHT'
INCLUDE CCDEFLTN '''FK-AS-COMBO-THRESH-HOLD'''
 'CUMDPDA.#PDA-FK-AS-COMBO-THRESH-HOLD'
** Note that there are 3 separate INCLUDE members: one for numeric
** defaults (CCDEFLTN), one for alphanumeric defaults (CCDEFLTA), and
** one for logical defaults (CCDEFLTL)
** Continue normal processing and the initial values may have been
** overridden by a corporate-supplied defaulting routine.

To apply the changes corporation-wide, you must add the initial variable name an
initial value in the CSXDEFLT user exit routine.

Note: The internal defaulting mechanism may be affected when you use this default-
ing mechanism to initialize the specification panel default keyword. Use
same keyword for both mechanisms. The specification panel default keyw
overrides the internal default keyword.
– 141 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

 GUI

NT,

rame

h-

-

ro-

 or

D
O-

Repeating Field Threshold

A repeating field that is not in a repeating group of fields is represented either by a
control array, such as an array of text boxes, or by a one-column Grid control.

The choice of GUI control depends on the MAX-MU-COUNT default value. If the
number of occurrences of a repeating field is less than or equal to MAX-MU-COU
the field will be represented with a GUI control array.

The VB-Maint-Dialog model copies the MAX-MU-COUNT default value into the
#MAX-MU-COUNT variable of the model PDA (CUMDDPA) in the model’s pre-gen-
eration subprogram (CUMDPR).

Option Button Threshold

A scalar field that has a table verification attached to it is represented either by a F
and series of OptionButtons or by a Label and ComboBox.

The choice of GUI control depends on the MAX-OPTION-BUTTON-COUNT thres
old default value. If the number of table verification values is less than or equal to
MAX-OPTION-BUTTON-COUNT, the field will be represented with a Frame and
OptionButtons.

The VB-Maint-Dialog model copies the MAX-OPTION-BUTTON-COUNT default
value into the #MAX-OPTION-BUTTON-COUNT variable of the model PDA (CUM
DDPA) in the model’s pre-generation subprogram (CUMDPR).

Foreign Field Threshold

If a scalar field represents a foreign field in another file, the maintenance dialog p
vides additional GUI controls to allow the selection of these foreign values. The
maintenance dialog will either provide a button that opens a modal browse dialog
generate a ComboBox and populate it at form-load time.

The choice of GUI control depends partially on the FK-AS-COMBO-THRESH-HOL
default. If the number of foreign key values is less than or equal to FK-AS-COMB
THRESH-HOLD, the field is represented with a ComboBox.

The VB-Maint-Dialog model copies the FK-AS-COMBO-THRESH-HOLD default
value into the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the model PDA
(CUMDPDA) in the model’s pre-generation subprogram (CUMDPR).

For more information about how foreign fields are represented with GUI controls, see
Integrating Browse and Maintenance Functions, page 275.
– 142 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

 Spec-

. This
GUI

ation
PI.
hich
sic
ting
B-
 the
fol-

e as-

pro-
n, see

data
re-
od-

ges
Setting Generation GUI Standards
Construct generation technology enables you to standardize your code. Construct
trum extends the benefits of standardization to the GUI realm. Default values for
properties of GUI controls, such as Font and ForeColor, are centrally established
means that if your company standard is to use a 10 pt. Arial font for all labels on
screens, you need only change one line of code.

Construct Spectrum uses a series of utility Natural subprograms to control gener
of GUI dialogs. Collectively, these subprograms are known as the Visual Basic A
For each type of GUI control supported, there is a property default subprogram w
is responsible for supplying default properties for that GUI control. The Visual Ba
API always calls the property default subprogram for a GUI control before genera
the definition for the GUI control. For example, the Visual Basic API callnats CSV
DLBL, the property default subprogram for Label GUI controls, before generating
definition for a label. This subprogram sets the default Height of a Label with the
lowing line of code:

ASSIGN CSVALCTN.HEIGHT = 285

The following table lists the GUI controls supported by Construct Spectrum and th
sociated property default subprogram for the GUI control.

You can change the default assignments made in any of the property default sub
gram standards through the Generated Maintenance classes API. For informatio
Utility Subroutines on the Client, Construct Spectrum Reference.

Note: Some properties, such as Top, Left, and Caption, are dependent on the
field associated with the GUI control or the field’s relative position in a P
dict file. Do not attempt to provide standards for this type of control. The m
el controls the values for this type of property and will override any chan
you specify.

GUI Control Subprogram GUI Control Subprogram

CheckBox CSVBDCHK ComboBox CSVBDCBO

CommandButton CSVBDCMD Form CSVBDFRM

Frame CSVBDFRA Grid CSVBDGRD

Label CSVBDLBL ListBox CSVBDLST

OptionButton CSVBDOPT StatusBar CSVBDSTA

TextBox CSVBDTXT Timer CSVBDTMR
– 143 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

orate
m
 The

 dia-
idth
lues

am

r the
ion
WIPs.

UI

e
isual
Controlling the Size of a Maintenance Dialog
You can control the maximum dimensions of generated dialogs by specifying corp
default values. Generated dialogs will not exceed these dimensions. The maximu
height and width values are supplied in a unit of measurement known as TWIPS.
following table shows the TWIP value equivalent of pixels for common monitor
resolutions.

Know the lowest resolution monitor your application will be used on and generate
logs to fit that monitor. You can set default values for the maximum height and w
of your dialog by using Construct’s corporate defaulting mechanism. The default va
are MAX-DIALOG-HEIGHT and MAX-DIALOG-WIDTH.

The VB-Maint-Dialog model obtains these defaults in its pre-generation subprogr
(CUMDPR) and copies them into the #PDA-MAX-DIALOG-HEIGHT and #PDA-
MAX-DIALOG-WIDTH variables of the model PDA (CUMDPDA).

For information about changing a corporate default value, see Step 4: Use Default Der-
ivation, page 139.

Overflow Conditions
Overflow conditions occur when a dialog cannot display all of its controls. Conside
following scenario. You are developing an application on a monitor with a resolut
of 9600 x 7200 TWIPS and you generate a dialog that reaches a height of 10000 T
When you open the dialog in the Visual Basic editing environment, a third of the G
controls extend off the bottom of the screen. This is known as an overflow condition.
The only way to work with the hidden GUI controls is to select the control from th
Properties panel and manually manipulate their Left and Top properties — not a v
solution. For information about correcting overflow conditions, see Working with
Overflow Frames, page 148.

Resolution In Pixels TWIPS — Small Fonts
(factor of 15)

TWIPS — Large Fonts
(factor of 12)

640 x 480 9600 x 7200 7680 x 5760

800 x 600 12000 x 9000 9600 x 7200

1024 x 768 15360 x 11520 12288 x 9216

1280 x 1024 19200 x 15360 15360 x 12288
– 144 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

r cus-
nance

ls is a
ance

, see

n the
 will
l is a
perty

y-

d in
ntrol

d in

ized
 Vi-
 fol-
Customizing on the Client
This section describes the different mechanisms available on the client platform fo
tomizing the generation results of a Visual Basic maintenance object and a mainte
dialog.

Creating Calculated Fields
Creating GUI controls whose values are based on the values of other GUI contro
common customization task. This task involves modifications to both the mainten
dialog and the Visual Basic maintenance object.

For information about deriving values from a foreign field on a maintenance dialog
Supporting Multiple Descriptive Values and Derived Values, page 290.

Does a GUI Control Exist for the Calculated Field?
The first step in creating a calculated field is to ensure that a GUI control exists o
maintenance dialog to hold the calculated value. If the field is defined in Predict, it
already exist in the dialog. Make sure that the control is not enabled. If the contro
scalar GUI control, such as a TextBox or ComboBox, set the control’s Enabled pro
to False. If the control is a grid, modify the code in the LoadGridNameGrid (where
GridName is a unique variable) routine.

Tip: Add the GUI_PROTECTED keyword to a calculated field in Predict. This ke
word can be added to both input and output-only fields.

If a GUI control does not exist to hold the calculated value and it will not be store
the database, add the GUI control by hand. For information about adding a GUI co
by hand, see Adding a New Field by Hand, page 152.

Coding the Calculation
The calculation must be triggered whenever the value of one of the fields involve
the calculation changes. Use the LostFocus event to trigger such a calculation.

Note: The calculation should not be performed in the dialog code. Keep custom
code in the dialog to a minimum. Rather, add the calculation code to the
sual Basic maintenance object. The function call might look similar to the
lowing example.
– 145 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ain-

im-

d, see

alida-

for-
nce
u
r da-
Example of a function call in the maintenance dialog

txt_Empl_Pay.Text = InternalObject. _
 Calc_Pay(CLng(txt_Empl_Rate.Text), CLng(txt_Empl_Hours.Text))

The function can also accept the parameters required to perform the calculation and re-
turn the result, such as in the following example.

Example of calculation code in the Visual Basic maintenance object

Public Function Calc_Pay(Rate As Long, Hours as Long) As Currency
 Calc_Pay = Rate * Hours
End Function

Integrating Maintenance and Browse Functions
When a foreign key field is included in a Predict defined file and you generate a m
tenance dialog for the file, Construct Spectrum automatically includes browse
capabilities for the foreign field. A browse linked to a maintenance dialog can be
plemented as a drop-down list or as a dialog.

For more information about how maintenance and browse functions are integrate
Integrating Browse and Maintenance Functions, page 275.

Validating Data Using the Visual Basic Maintenance Object
The Visual Basic maintenance object is an ideal place to code simple business v
tions. The model provides the CLIENT-VALIDATION user exit for this purpose.
Coding validations on the client reduces the number of data entry errors in your dialog
before the data is transmitted across the network, thus enhancing the overall per
mance of your application. Avoid coding validations in the Visual Basic maintena
object that involve network calls; these could trigger a network call every time yo
change focus from one field to the next. For more information about validating you
ta, see Validating Your Data , page 261.
– 146 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

tion
with
UI
 in
ght.

 of the
 are

 with

 to
ose
s to
Tailoring the Maintenance Dialog
This section describes how to tailor your maintenance dialog. It contains informa
about tailoring the dialog’s appearance, adding and removing fields, and working
special types of fields. The most common tailoring task is altering the layout of G
controls as they were generated in the dialog. By default, GUI controls are generated
two columns from top to bottom, with labels on the left and input controls on the ri
The following example shows a typical generated maintenance dialog:

Typical Generated Maintenance Dialog

When tailoring the dialog’s appearance, the changes should enhance the usability
application. For example, group related fields so the user can easily see that they
related. The user should be able to move from field to field in a way that coincides
how they would logically perform their tasks.

There are many reasons to alter the appearance of your dialog, such as conforming
layout standards used by your organization. For example, there may be users wh
monitor resolution is 640 by 400 pixels and your organization wants all application
run effectively on these users’ machines. For information on generating dialogs based
on monitor resolution, see Controlling the Size of a Maintenance Dialog, page 144.
– 147 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

 that
 that
 the

asks
that

an
en-

ys the

le are

 is

UI
Following are several suggestions on how to lay out your maintenance dialogs so
they meet your organization’s requirements. Each suggestion contains a diagram
depicts the layout. Each diagram is based on layout changes that were applied to
generated maintenance dialog shown previously.

Note: Many of the procedures described in this section require you to perform t
specific to Visual Basic. For more information, refer to the documentation
comes with Visual Basic.

Working with Overflow Frames
Overflow conditions occur when a dialog cannot display all of its controls. When
overflow condition is encountered by the VB-Maint-Dialog model, it responds by g
erating a Frame control that is the same size as the dialog itself. The frame overla
other GUI controls in the dialog. The model then continues generating new GUI con-
trols in the Frame container control. If the first frame becomes filled, the model
generates another frame. The process continues until all the fields in the Predict fi
represented by a GUI control.

The following example shows what a dialog looks like when an overflow condition
encountered:

Dialog Overflow Conditions

When a dialog generates overflow frames, rearrange the GUI controls using one of the
layouts described in this section. This will largely be a job of cutting and pasting G
controls from the overflow frame(s) onto the dialog itself.
– 148 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

t to

en.
r

.

r ex-

ts
n still

inning
� To work with an overflow frame:

1 Open the Construct Spectrum project containing the dialog form (.frm) file you wan
modify.

2 Select the dialog form > View Form from the Project window.
The dialog is displayed.

3 Make the dialog as large as you can and drag the frame to a free area of the scre
All of the controls within the frame are moved as well. If the frame is blocking you
view of other controls, shrink the size of the frame.

4 Rearrange the GUI controls using one of the layouts described in the following sections

Multi-column Layout

Use a multi-column layout when your dialog contains a large number of fields. Fo
ample, if a dialog will be too long and can be wider.

� To create a multi-column layout:

1 Drag some of your GUI controls over to create a second column of information.

2 If one or two fields are significantly wider than others and are impeding your attemp
to create a second column, consider shrinking the width of these controls. Users ca
type in large data values although they cannot see the entire value in the field.
The following example shows the same maintenance dialog presented at the beg
of this section, this time in a two-column layout:

Maintenance Dialog in a Multi-Column Layout
– 149 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ges.

 GUI

e con-
 to

inning
Tabbed Layout

If your dialog is larger than you would like and there is not sufficient room to create
multiple columns, consider placing some or most of the GUI controls inside tab pa

� To create a layout with tab pages:

1 Using the Sheridan tab which comes with Visual Basic Professional Edition, move
controls to a tab page by cutting them from the dialog (or overflow frame)

2 Select the tab control and paste the GUI controls onto the tab.
You can now drag them to the appropriate location.

Tip: To place a group of GUI controls on the same tab page, cut and paste all th
trols at the same time. The GUI controls will maintain there position relative
one another. In general, do not place key field(s) on a tab page. Key field(s)
should always be visible and easily accessible.

The following example shows the same maintenance dialog presented at the beg
of this section, this time in a tabbed layout:

Maintenance Dialog with Tab Pages
– 150 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

out
led

those

tates

ide
.

bel
ail-
State-Dependent Layout

A state-dependent layout is the most difficult type of layout to create. Use this lay
when many of the fields in the dialog are mutually exclusive (displayed and enab
only when the dialog is in a specific state).

� To create a state-dependent layout:

1 Add a State field to the dialog.
This field is always visible and controls the current state.

2 Assign other fields in the dialog to a specific state.

3 Move the GUI controls on the screen so that fields belonging to one state overlap
in the other states.

4 Write code to make the fields from one state visible and the fields from the other s
invisible whenever the state field changes.

Tip: It may be easier to create two frames and place the state-dependent fields ins
the frames. Make the frames visible or invisible depending on the current state

In the following example, there is a new GUI control called Address Toggle; its la
is Primary Address. This GUI control is the State field. It controls when to display M
ing Address information and when to display Shipping Address information:

Maintenance Dialog with a State-Dependent Layout
– 151 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

,
e di-

cardi-

l.
grid

alog

trols

x.

truct
con-

ing.

ntrol.

 val-
ork

rols
es: a
Adding a New Field by Hand
If you add a new field to your Predict file definition and have already generated a dialog
it may be more efficient to manually add the new field, rather than regenerating th
alog. This is especially true if you have already tailored the generated form.

The tasks required to add a new field to a dialog by hand vary depending on the
nality of the field (whether the field can display one, two, or more dimensions of
information). One-dimensional information is displayed within a scalar GUI contro
Information with two, three, or four dimensions is displayed either in a column in a
control or in a control array such as an array of text boxes.

Add a Scalar Field by Hand

A scalar GUI control represents one-dimensional information. Most controls in a di
are scalar; for example, a name, an address, or an order number are typically represent-
ed with scalar fields.

� To add a scalar field:

1 Determine the type of GUI control to represent your new database field. GUI con
for scalar data include:

– TextBox

– ComboBox

– CheckBox

– Frame with a group of OptionButtons.

2 Drag the desired type of GUI control onto the dialog from the Visual Basic toolbo

3 Add a label and GUI control input name for the control.

Tip: Choose your names based on the naming conventions used by other Cons
Spectrum GUI controls. For information about Construct Spectrum naming
ventions, see Deriving Variable Names, page 132.

4 Follow the instructions provided in this section for the type of control you are add
These procedures contain information about creating event code blocks for the new
control and about adding code to some standard subroutines to implement the co

A ComboBox control utilizes a single drop-down list from which users can select a
ue. The user cannot, however, type additional values in the list. The client framew
includes the ComboClass.cls, which is useful for populating ComboBox GUI cont
and Combo columns of a grid. The ComboClass allows you to define pairs of valu
database value and a display value.
– 152 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

the
dex pa-
bject

nance

icates
ample

field.
If the new database field is a repeating field (MU field), create a control and use
same techniques described in this section. Ensure that the code blocks use an In
rameter. Control arrays are zero-based whereas array information stored in the O
PDA is one-based.

� To add a TextBox GUI control for a field:

1 Add a new assignment statement to the CopyObjectToForm subroutine.
This copies the Object PDA field value to the GUI control. The following code is a
sample assignment statement:

txt_CUST_NewField.Text =
 BDT.ConvertToDisplay(.Field("NEW-FIELD"), _
 NatFormatLength:="A6")

2 Add a new case statement to the CheckRemoteError subroutine.
This statement enables the dialog to assign an error object to the field if the mainte
object subprogram on the server encountered a validation error for the field. The
following code is a sample case statement:

Case "NEW-FIELD": Set ErrControl = txt_CUST_NewField

3 Add Change event code for the new GUI control.
This code indicates to the dialog that the value of the field has changed. It also ind
that at least one field in the business object has changed. The following code is a s
Change event:

Private Sub txt_CUST_NewField_Change()
 ValueChanged = True
 ObjectChanged = True
End Sub

4 Add GotFocus event code for the new GUI control.
This code displays an error tip for the field if there is an object error attached to the
The following code is a sample GotFocus event:

Public Sub txt_CUST_BusinessName_GotFocus()
 ValueChanged = False
 cstSelectContents
 CSTUtils.cstDisplayErrorTip Me
End Sub
– 153 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

wing

h the

ed to

lues.
e
 to

ox is

 object
5 Add LostFocus event code for the new GUI control.
If the user changed the value of the control, this code removes any object errors from
the control and assigns the control’s value to the field in the Object PDA. If an error was
detected during the assignment, an object error is applied to the control. The follo
code shows an example of the LostFocus event:

Public Sub txt_CUST_NewField_LostFocus()
 Dim Value As String
 CSTUtils.ErrorTip.HideErrorTip
 If ValueChanged Then
 ErrorMsg = ""
 RemoveUnneededControlErrors Me, _
 txt_CUST_NewField, ValueChanged
 Value = txt_CUST_NewField.Text
 ValidAssignment Value, InternalObject, _
 "NEW-FIELD", ErrorMsg, NatFormatLength:="A6"
 txt_CUST_NewField.Text = Value
 If ErrorMsg <> "" Then
 ParseErrorString ErrorMsg, ErrorNr, ErrorSrc
 SetObjectError Me, txt_CUST_NewField, ErrorNr, _
 ErrorMsg, ErrorSrc

 End If
 End If
End Sub

� To add a ComboBox GUI control for a field:

1 Add code to the Form_Load event to load and initialize a ComboClass instance wit
valid values. The following code is a sample load/initialize statement:

ProvList.Load cbo_CUST_Prov
ProvList.AddItem "British Columbia"
…

Note: If you are loading values from an external source, such as a PC connect
your LAN, code the necessary logic to load these values now.

2 Add code to the CopyObjectToForm subroutine to update the ComboBox with va
The update is accomplished by assigning a value from the ComboClass.cls to th
ListIndex property of the ComboBox control. The following is a sample statement
update the ComboBox with values:

cbo_CUST_Prov.ListIndex = ProvList.GetIndex(.Field("PROV"))

3 Add code to update the business object when the selected value of the ComboB
changed, as occurs when a Click event is triggered.
The following is a sample statement executed on the client to update the business
with a new database value:

Value = _
 ProvList.DBValue(cbo_CUST_Prov.ItemData(cbo_CUST_Prov.ListIndex))
ValidAssignment Value, InternalObject, "PROV", ErrorMsg, _
 NatFormatLength:="A20"
– 154 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

 is Al-

 a

bject

field.
For more information about using the ComboClass, see Maintenance Classes, Con-
struct Spectrum Reference.

� To add a CheckBox field:

Note: The sample code for this procedure assumes that the new database field
phanumeric.

1 Add a new assignment statement to the CopyObjectToForm subroutine.
This copies the object PDA’s field value to the GUI control. The following code is
sample assignment statement:

chk_CUST_NewField.Value = IIf(.Field("NEW-FIELD") <> "", _
 vbChecked, vbUnchecked)

2 Add a new case statement to the CheckRemoteError subroutine.
This statement enables the dialog to assign an error object to the field if the object
maintenance subprogram on the server encountered a validation error for the field. The
following code is a sample case statement:

Case "NEW-FIELD": Set ErrControl = chk_CUST_NewField

3 Add Click event code for the new GUI control.
The functions performed in the Click event are to indicate that the field value has
changed, remove any object errors from the control, assign the new value to the O
PDA (client’s version), set an object error for the control if an error was encountered
during the assignment, and finally display an error tip if an error is attached to the
control. The following code shows an example of the Click event:

Private Sub chk_CUST_NewField_Click()
 Dim ErrorMsg As String

Public Sub chk_CUST_NewField_GotFocus()
 ValueChanged = False
 cstSelectContents
 CSTUtils.cstDisplayErrorTip Me
End Sub

 End If
 NewFieldNdx = Index
 CSTUtils.cstDisplayErrorTip Me
 End If
End Sub

4 Add GotFocus event code for the new GUI control.
This code displays an error tip for the field if there is an object error attached to the
The following code is a sample GotFocus event:

Public Sub chk_CUST_NewField_GotFocus(Index As Integer)
 ValueChanged = False
 cstSelectContents
 CSTUtils.cstDisplayErrorTip Me
End Sub
– 155 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

 the
n in-
rid

know
re,
e as

t by

ew
Add a Regular Grid Column for a Field

Grid controls are used to represent two, three, or four-dimensional information. If
field you are adding is part of a grid, you must perform modifications to the colum
dexing values of some of the grid variables. For information about manipulating g
controls, see Using the Grid, page 165.

Each column within a grid is associated with a database field. The grid code must
the relative position of a column to identify its associated database field. Therefo
when adding a grid column, you must adjust the column indices in the dialog cod
described in the following steps.

� To add a Regular Grid Column for a field:

1 In the Global Declarations section, increase the MAX_GridName_COLS constan
one.

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_NCSTORDERHASLINES_COLS = 8
Const MAX_NCSTORDERHASLINES_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 9
Const MAX_INCOME_ROWS = 30

2 In the CheckRemoteError sub section, increase the ErrColumn value in the case
statement for every field in the same grid with a higher column number than the n
column.

Sample code before

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 5

Sample code after

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "NEW-FIELD"
 Set ErrControl = IncomeGrid
 ErrColumn = 5
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 6
– 156 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

e and

 new

e for
3 In the grd_ObjectName_GridName_UpdateObject sub section (where ObjectNam
GridName are unique variables), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"

Sample code after

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2" Case 5
 FieldName = "NEW-FIELD(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "A10"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"

4 In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. If the
column is not to be modified, include the Modifiable:=False parameter.

Sample code before

.ColumnAdd "Product/Suffix", BDT_ALPHA, "A2"

.ColumnAdd "Line/Description", BDT_ALPHA, "A40"

Sample code after

.ColumnAdd "Product/Suffix", BDT_ALPHA, "A2"

.ColumnAdd "New/Field", BDT_ALPHA, "A5", Modifiable:=False

.ColumnAdd "Line/Description", BDT_ALPHA, "A40"

5 In the CopyGridNameToForm subroutine, for each assignment statement within th
loop(s), increase the second index of the array variable on the left side of the assignment
if the column number is higher than the new column.
Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.
– 157 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ber
ere

ction

ble is
Sample code before

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
 IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

Sample code after

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("NEW-FIELD", i), _
 NatFormatLength:="A10")
IncomeGrid.GridData(i, 6) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

6 In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNum
by one if there is an If or ElseIf statement, such as If CurrCol=ColumnNumber, wh
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

ElseIf CurrCol = 5 Then
 If KeyCode = ..

Sample code after

ElseIf CurrCol = 6 Then
 If KeyCode = ..

� To add a ComboBox Grid Column for a field:

1 In the Form_Load event, add code to populate the ComboClass object for the sele
list associated with the new field.

Sample code

NewFieldList.Load NewFieldColumn
NewFieldList.AddItem "CDN", "Canadian Dollar"
NewFieldList.AddItem "USA", "American Dollar"
NewFieldList.AddItem "GER", "German Mark"
NewFieldList.AddItem "FRA", "French Franc"

2 In the Global Declarations section, declare a variable as type Column. This varia
used in the Form_Load event and the Load_GridName_Grid sub. Also increase the
MAX_GridName_COLS constant by one.
– 158 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

n the

e and

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 8
Const MAX_INCOME_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 9
Const MAX_INCOME_ROWS = 30
Private NewFieldColumn As Column

3 In the CheckRemoteError sub section, increase the ErrColumn value in the case
statement for every field in the same grid which has a higher column number tha
new column.

Sample code before

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 5

Sample code after

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "NEW-FIELD"
 Set ErrControl = IncomeGrid
 ErrColumn = 5
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 6

4 In the grd_ObjectName_GridName_UpdateObject sub section (where ObjectNam
GridName are unique variables), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
– 159 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

 new

ing

e for
Sample code after

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "NEW-FIELD(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "A10"
Case 6
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"

5 In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. If the
column is not to be modified, include the Modifiable:=False parameter. In this
example, the Presentation argument is set to dbgSortedComboBox. It is this sett
which makes the column behave like a ComboBox.

Sample code before

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

Sample code after

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "New/Field", BDT_ALPHA, "A10", _
 Presentation:=dbgSortedComboBox
.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

6 In the CopyGridNameToForm sub section, for each assignment statement within th
loop(s), increase the second index of the array variable on the left side of the assignment
if the column number is higher than the new column.
Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.

Sample code before

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
 IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")
– 160 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

ber

tabase

t by
Sample code after

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("NEW-FIELD", i), _
 NatFormatLength:="A10")
IncomeGrid.GridData(i, 6) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

7 In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNum
by one if there is an If or ElseIf statement such as If CurrCol = ColumnNumber where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

ElseIf CurrCol = 5 Then
 If KeyCode = ..

Sample code after

ElseIf CurrCol = 6 Then
 If KeyCode = ..

� To add a CheckBox Grid Column for a field:

1 In the Global Declarations section, declare constants to represent true and false da
values. This variable is used in the grd_GridName_UpdateObject and
CopyGridNameToForm subs. Also increase the MAX_GridName_COLS constan
one.

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 8
Const MAX_INCOME_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS = 9
Const MAX_INCOME_ROWS = 30
Const NEWFIELD_FALSE_CONST = "AAA"
Const NEWFIELD_TRUE_CONST = "BBB"
– 161 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

n the

e and

2 In the CheckRemoteError subsection, increase the ErrColumn value in the case
statement for every field in the same grid which has a higher column number tha
new column.

Sample code before

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 5

Sample code after

Case "SALARY"
 Set ErrControl = IncomeGrid
 ErrColumn = 4
Case "NEW-FIELD"
 Set ErrControl = IncomeGrid
 ErrColumn = 5
Case "BONUS"
 Set ErrControl = IncomeGrid
 ErrColumn = 6

3 In the grd_ObjectName_GridName_UpdateObject sub section (where ObjectNam
GridName are unique variables), increase the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
– 162 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

his
f the

e for
Sample code after

Case 4
 FieldName = "SALARY(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"
Case 5
 FieldName = "NEW-FIELD(" & IncomeRow & ")"
 Value = IIf(grd_EMPL_Income.Columns(ColIndex).Value = _
 TRUE_STRING, NEWFIELD_TRUE_CONST, _
 NEWFIELD_FALSE_CONST)
 NatFormatLength = "A10"
Case 6
 FieldName = "BONUS(" & IncomeRow & ")"
 Value = grd_EMPL_Income.Columns(ColIndex).Value
 NatFormatLength = "P9.2"

4 In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. In t
example, the BDT argument is set to BDT_BOOLEAN, regardless of the format o
underlying database field. It is this setting which makes the column behave like a
CheckBox.

Sample code before

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

Sample code after

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "New/Field", BDT_BOOLEAN, "A10"

.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

5 In the CopyGridNameToForm sub section, for each assignment statement within th
loop(s), increase the second index of the array variable on the left side of the assignment
if the column number is higher than the new column.
Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.

Sample code before

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
 IncomeGrid.GridData(i, 5) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")
– 163 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ber

o re-

Sample code after

IncomeGrid.GridData(i, 4) = _
 BDT.ConvertToDisplay(.GetField("SALARY", i), _
 NatFormatLength:="P9.2")
If NEWFIELD_FALSE_CONST = 0 Then
 IncomeGrid.GridData(i, 5) = _
 IIf(.GetField("NEW-FIELD", i) <> "", _
 TRUE_STRING, FALSE_STRING)
Else
 IncomeGrid.GridData(i, 5) = _
 IIf(.GetField("NEW-FIELD", i) = NEWFIELD_TRUE_CONST, _
 TRUE_STRING, FALSE_STRING)
End If
IncomeGrid.GridData(i, 6) = _
 BDT.ConvertToDisplay(.GetField("BONUS", i), _
 NatFormatLength:="P9.2")

6 In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNum
by one if there is an If or ElseIf statement such as If CurrCol = ColumnNumber where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

ElseIf CurrCol = 5 Then
 If KeyCode = ..

Sample code after

ElseIf CurrCol = 6 Then
 If KeyCode = ..

Removing a Field by Hand
The steps required to remove a field are the reverse of those for adding a field. T
move a scalar field by hand, see Add a Scalar Field by Hand, page 152, and reverse
the procedure. To remove a grid column field by hand, see Add a Regular Grid Col-
umn for a Field, page 156, and reverse the procedure.
– 164 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

. The
 in
nique
cific

ontrol

 can
he
s and

-

ame

hat is
 order
r En-

Using the Grid
Construct Spectrum supports business object data with up to four dimensions. Business
objects with two or more dimensions are referred to as complex business objects
VB-Maint-Dialog model uses the True DBGrid control to present complex objects
dialogs. To the user, the grid is displayed as a table with each row displaying a u
record, for example, a customer order line. Each column in the grid displays a spe
type of information, such as a name, a quantity, a price, and so on. The client framework
comes with the TrueGridClass.cls — a class that encapsulates the True DBGrid c
and shields the developer from many of the intricacies of using the grid.

You can write your own code to use Construct Spectrum’s TrueGridClass.cls, you
write code to directly manipulate the True DBGrid control, or you can customize t
TrueGridClass.cls to meet your specific needs. For information about the method
property interfaces of the TrueGridClass.cls, see Maintenance Classes, Construct
Spectrum Reference. For information about working with the True DBGrid directly, re
fer to the TrueGrid folder located in Spectrum SDK.

Nested Grids

A single grid can only display data which has the same cardinality — that is, the s
number of dimensions. Therefore, if a business object contains both two and three-di-
mensional information, two grids are required to display all the data.

The demo application (described in Chapter 2) contains an Order Entry example t
a complex business object. The Order Entry example has two grids: one showing
line details and one showing distribution details for each order line. Using the Orde
try as an example, consider the following diagram which shows the relationships
between the Order object files and the GUI controls.

Relationship Between a Complex Business Object and GUI Controls In a Grid

NCST-DISTRIBUTIONS

NCST-ORDER-LINES

NCST-ORDER-HEADER

various scalar GUI
controls

Distribution grid

Order Lines grid
control

(1,n)

(1)

(1)

(1,n)
– 165 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

 and
ines
is cur-

ted in-

e

s be-
and

on-
e
r the
In this example, there is a one-to-many relationship between the Order Lines grid
the Distributions grid. The Distributions grid is said to be nested within the Order L
grid. Because it is nested, it only displays the rows that are related to the row that
rently selected in the Order Lines grid.

Nested Drop-Down Grids

A drop-down grid is a special type of nested grid that can be used to display nes
formation. Drop-down grids are used when there is a single repeating field (an MU
field) within a block of grid information. In the following data definition example, th
Address field maps to a drop-down grid.

01 EMPLOYEE-INFO(1:10)
 02 NAME(A10)
 02 ADDRESS(A20/1:3)
 02 SALARY(P10.2)

Drop-down grids appear to drop-down out of a parent grid. The parent grid has a place-
holder column from which to invoke a drop-down grid. This column is referred to as a
drop-down column. Drop-down columns are distinguished from other grid column
cause each cell contains a down button from which drop-down data is accessed
because drop-down data is prefixed with an occurrence number:

Drop-Down Grid

Nested drop-down grids differ from regular grids in two major ways. First, the GUI c
trol name is prefixed with ddg rather than grd. Second, the size and position of th
nested drop-down grid is controlled by the code at runtime. Therefore, do not tailo
size and position of the drop-down grid.

Drop-down
column —
placeholder for
drop-down grid

Drop-down grid
for repeating
field (Bonus)
– 166 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

at is,

ithin
oks

alled
 grid
 dis-
ad
eld
e grid
Note: Nested drop-down grids share the same container as their parent grid, th
the grid from which the nested drop-down grid is accessed.

Displaying Grids

When the VB-Maint-Dialog model generates a grid control in the dialog, it does not set
the grid’s properties and, therefore, the grid does not appear properly formatted w
the Visual Basic design environment. The following example shows what the grid lo
like in the Visual Basic design environment:

Unformatted Grid

Instead, the model generates a subroutine, called LoadGridNameGrid, which is c
from the Form_Load event at runtime. One load subroutine is generated for each
in the dialog. Each load subroutine is responsible for formatting a grid before it is
played to the user. The load subroutine makes a call to the TrueGridClass.cls Lo
method to initialize the grid. It then calls the class ColumnAdd method for each fi
column to be added to the grid. When the Load subroutine is finished executing, th
is displayed as follows:

Formatted Grid

For more information about the load and add methods, see Maintenance Classes, Con-
struct Spectrum Reference.
– 167 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

th of
 True-

ntal
lds.

blems
ple,
 at

 In-
ith
ture
trol
e.

o all
 and

ation

close
Resizing Grids

The load subroutine described in Add a Regular Grid Column for a Field, page 156,
makes one final method call (SetWidth) to the TrueGridClass.cls to resize the wid
the grid based on the length and format of the fields represented in the grid. The
GridClass.cls makes the grid as wide as required to display all the columns of
information, unless it exceeds the right border of the dialog. In this case, a horizo
scroll bar is displayed on the grid, allowing you to scroll the grid to see hidden fie

Because the TrueGridClass.cls automatically resizes the grid, this can cause pro
when working on the layout of other GUI controls surrounding the grid. For exam
if you want to place GUI controls to the right of the grid, it is difficult to determine
design time whether the grid will overlap the controls at runtime.

You can deal with this situation in two ways: resize the grid using the Grid Sizing
formation window or resize the grid manually. The first option involves working w
the automatic grid resizing feature. The second option involves disabling this fea
and sizing your grid manually. Use the second option when you require more con
over the width of your grid and do not require all grid columns to be visible at onc

� To resize your grid using the Grid Sizing Information window:

1 Run the application.
As the dialog loads, the Grid Sizing Information window is displayed:

Grid Sizing Information Window

This modal window indicates how big to make grids on your form at design time s
grid information is visible and scroll bars are not necessary. Note this information
stop the running application.

2 Re-enter the Visual Basic design mode and resize the grid(s) based on the inform
you gathered from the Grid Sizing Information window.
Now you can determine where you can safely place other GUI controls that are in
proximity to the grid.
– 168 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

eed

vate

ill

n

ibed

tion.
veral

hich
f in-

hen
n in

ors.
3 Suppress the display of the Grid Sizing Information window when you no longer n
this information.
To suppress the window, comment out the following event code in the Form_Acti
event:

If Not RepressGridSizingDisplay Then
 DisplayGridSizingInfo
 RepressGridSizingDisplay = True
End If

� To resize your grid manually:

1 Disable automatic grid resizing by commenting out the SetWidth call in the load
subroutine.
Commenting out this call will not affect the calculated width of each column but w
keep the grid from resizing itself to make all columns visible.

2 Resize the height and width of the grid manually in the Visual Basic design
environment.

Tip: At runtime, if there are more columns than can be displayed in the specified
width, a horizontal scroll bar is displayed at the bottom of the grid. Users ca
click the scroll bar to see the remaining columns.

3 Comment out the code that displays the Grid Sizing Information window (as descr
in the previous procedure).

Adding Sound to Error Notifications
This section describes how to add sound support to your error notification informa
When a field is in error, a Construct Spectrum application can notify the user in se
ways. First, the background color of the field can be set to a different color such as red.
Second, when the user tabs into the field, the application can display an error tip w
looks similar to a Windows tooltip. Construct Spectrum also gives you the option o
cluding sound information with an error.

A Construct Spectrum application can play an error sound file that you provide w
the user tabs into a field which is in error or when the user clicks on the sound ico
an error tip. These options can be set by the user.

For more information about setting error notification preferences, see Using the Demo
Application , page 37.

Construct Spectrum uses the .wav file format for error sound files. You can use the
Windows Sound Recorder application to record .wav files for your application err
– 169 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

n as

re-de-
uired

Note: If no error sound file exists for a specific GUI control and error, no sound icon
is displayed in the error tip — even if the user has selected the sound ico
an error notification preference.

Understanding How a Sound File is Associated With an Error
When an error sound is to be played, a Construct Spectrum application uses a p
fined convention to associate a .wav file with a specific error. The components req
to create this association are outlined in the following table:

Error Component Source of Error
Component

Description

Sound File Path ERROR_SOUND_
PATH constant

Location of the .wav files. (declared
in CSTObjectConstants.bas). If the
constant is empty, the application
defaults to the value of App.Path.

Language Indicator Res.Language Language indicator. By default,
Construct Spectrum applications use
the language indicators used by
Natural (for example, 1=English,
2=German, 3=French).

For a list of language indicators, refer
to System Variables in the Natural
documentation.
– 170 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

+

 with
These components are assembled as follows:

Sound File Path + \ + Language Indicator + Sound File Delimiter + Error Source
Sound File Delimiter + Error Number + .wav

The following example shows how the application attempts to associate a .wav file
an error:

Example input

ERROR_SOUND_PATH = blank
Res.Language = 1
ObjectError.MsgType = ERROR_SOURCE_SDC (1)
ObjectError.ErrorNr = 522
SOUND_FILE_DELIMITER = "-"

Error Source ObjectError.
MsgType

Error source. Construct Spectrum
applications recognize four distinct
error sources:
• Business data type (BDT) errors
• Spectrum Dispatch Client (SDC)

errors
• Local business validation errors

(originating in a Visual Basic
maintenance object)

• Server errors (originating in an
object subprogram)

Valid error source values are
represented by constants stored in
CSTObjectConstants.bas. These
constants are:
• ERROR_SOURCE_SDC
• ERROR_SOURCE_BDT
• ERROR_SOURCE_VALIDATE
• ERROR_SOURCE_SERVER

Error Number ObjectError.
ErrorNr

Error within the specified error
source.

Sound File Delimiter SOUND_FILE_
DELIMITER
constant

Character used to delimit the
components of an error sound file.

Error Component Source of Error
Component

Description (continued)
– 171 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

ing

pe-
hese
.bas
duc-

he er-

ulti-

de that
ach

The
Example output

C:\Program Files\Construct Spectrum\MyApp\1-1-522.wav

Tip: Errors that originate in the SDC, BDT, or local validation layers are raised us
Visual Basic’s Err object. The error number used when raising the error is derived
by adding the Visual Basic vbObjectError constant to a unique application-s
cific number. Look at the constants defined in CSTConst.bas for examples. T
errors are all handled in the ValidAssignment subroutine in the BDTSupport
module. To make the error number more readable (adding vbObjectError pro
es a large, negative number), the subroutine subtracts vbObjectError from t
ror number. Therefore, the original, unique, application-specific number is used
to associate a .wav file with an error.

Multilingual Support for Maintenance Dialogs
Construct Spectrum provides support for multilingual applications. To set up a m
lingual application, create language specific resource files for the application.

The generated maintenance dialog and Visual Basic maintenance object have co
looks for resources in the application directory in a resource file called App. For e
supported language, create App.* resource files (where * is the language code).
generated dialogs will then use the resource files.

For more information about setting up multilingual applications, see Internationaliz-
ing Your Application , page 295.
– 172 –

____________________________________ Creating and Customizing Maintenance Dialogs
5

eld def-

e gen-

n the
ual
er exit
regen-

 in

g.

s en-
 for
Uploading Changes to the Server
Sometimes changes occur on the server, such as changes to the Predict file and fi
initions used by your maintenance dialog. It is often easier to regenerate the affected
modules than to implement the changes by hand. This includes modules that wer
erated for the client — specifically, Visual Basic maintenance objects.

If you have tailored a Visual Basic maintenance object or a maintenance dialog o
client (for example, by adding user exit code), upload the client version of the Vis
Basic maintenance object or maintenance dialog to the server to preserve the us
code during regeneration. Once regeneration is complete, you can download the
erated module(s).

Tip: Before regenerating a maintenance dialog, see Strategies for Customizing a
Maintenance Dialog, page 129, for information about saving customizations
your maintenance dialog.

� To upload changes to the server:

1 Open the Construct Spectrum project that contains the changes you are uploadin

2 Select Upload Generated Modules from the Construct Spectrum Add-In.
The Upload Modules window is displayed:

Upload Modules Window

The library name, DBID (database ID), and FNR (file number) default to the value
tered for the last open project. If necessary, type the library name, DBID, and FNR
the server library to which you are uploading.

3 Click Upload.
The selected modules are uploaded to the server.
– 173 –

Construct Spectrum SDK for Client/Server Applications _____________________________
5

– 174 –

__
6

ed to

ules
tion
s so
CREATING AND CUSTOMIZING BROWSE
DIALOGS

This chapter provides step-by-step instructions for generating the modules requir
provide browse services from the client. It describes how to generate the necessary
modules, download the client modules to your PC, integrate the new browse mod
into an existing Construct Spectrum project, and display server database informa
from a browse dialog. Also included is information about modifying the component
that you can customize the features and functions of the resulting browse dialog.

The following topics are covered:

• Overview of the Browse Dialog, page 176

• Creating a Browse Dialog, page 180

• Customizing on the Client, page 190

• Understanding Browse Command Handlers, page 195
– 175 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

thin
e.
a PC

e di-

e un-
rk.
 the

e user

ior

ir re-

like
 there
g is
Overview of the Browse Dialog
A browse dialog provides users with lists of data. Typically, this data is shown wi
a browse dialog and represents rows of information from a remote database tabl
Browse dialogs can also be set up to display data that is obtained locally — from
server connected to your network, for example.

About Browse Dialogs
The underlying structure of a browse dialog is different from that of a maintenanc
alog. Unlike maintenance dialogs, which use a unique Visual Basic form for each
maintenance object in your application, all generated browse dialogs use the sam
derlying browse form that is supplied with the Construct Spectrum client framewo
This generic form communicates with other client framework components and with
browse modules you generate to configure itself at runtime for a particular object
browse subprogram and to retrieve data. The browse dialog that is displayed to th
is the result of this process.

Although you cannot modify a browse dialog directly, you can influence its behav
based on:

• How the data file(s) used in the browse are set up in Predict

• Options you choose when you generate browse modules

• Customized code you write to work with your generated browse modules and the
lated client framework components

The Browse Process
The browse dialog that a user works with is configured dynamically at runtime. Un
maintenance dialogs, which have a unique form that corresponds to each dialog,
is no unique form that corresponds to each browse dialog. Rather, a browse dialo
configured at runtime based on the interaction of the following:

• Object browse subprogram

• Object browse subprogram proxy

• Visual Basic browse object

• Client framework components
– 176 –

__ Creating and Customizing Browse Dialogs
6

mpo-
s and

them to
select

u can
rating
cords

be-
tions
ation,
The following diagram illustrates these components:

Components Included in the Browse Process

The features and functions of a particular browse dialog depend on how these co
nents are configured. You can modify these components to influence the feature
functions of a browse dialog.

Browse Object Subprogram
The browse object subprogram reads database records on the server and returns
the client. Each browse subprogram can support multiple keys to allow the user to
the most appropriate access path to retrieve the desired records.

Generate a browse object subprogram using the Object-Browse-Subp model. Yo
specify overrides to many of the default values selected by the model before gene
or regenerating. For example, you can specify the keys available for accessing re
displayed in your browse dialog.

The characteristics of your browse object subprogram depend on the relationships
tween the related database files and fields. You can perform a number of modifica
to the metadata that describes these relationships using Predict. For more inform
see Understanding Browse Command Handlers, page 195.

Server Client

Browse
Subprogram

Proxy

Visual Basic
Browse
Object

Browse
Framework

Components

Browse
Object

Subprogram

Visual Basic
Browse
Dialog

Database
– 177 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

client
re-
tween

oning
ion is
 sub-

 sup-

 spe-
t
d

ests to
ata.

r spec-
hat
eived,
i
e next
e data
 new
hen-
a new
Browse Object Subprogram Proxy
A subprogram proxy is required to access the browse object subprogram from the
application. The subprogram proxy calls an object subprogram that fulfills a data
quest on behalf of a browse request. It is also responsible for converting data be
the network transfer format and the Natural variable used by the parameters of the
browse object subprogram.

You can make a number of changes to the subprogram proxy that affect the functi
of your browse dialog. Most of these changes are related to how browse informat
transmitted between the client and server. For information about customizing the
program proxy, see Using the Subprogram-Proxy Model, Construct Spectrum SDK
Reference.

Visual Basic Browse Object
The Visual Basic browse object delivers information about the columns and keys
ported by the browse subprogram to the client framework components.

The Visual Basic browse object is generated by the VB-Browse-Object model for a
cific database file. It uses the BrowseBase class to interface with other parts of the clien
framework and with the application. The Visual Basic browse object instantiates an
initializes a BrowseBase object. The initialization performed by the Visual Basic
browse object sets up definitions for:

• logical search keys

• formatting information for data columns

• optionally, inserts data into the data cache for static lists

It also sets up a data cache area on the client to save the results of multiple requ
minimize network congestion and speed up the re-display of previously fetched d
The data cache is an object in its own right.

Data Cache

The data cache is populated by the BrowseBase object Fetch method when a use
ifies a starting value and presses the Get button. This triggers a remote CallNat t
reads records from a database and returns them to the client. As records are rec
they are added to the data cache. From the data cache, they are transferred to a LstView
control on the browse dialog where the user sees the data. If the user requests th
(contiguous) set of records, they are retrieved from the server and appended to th
cache and ListView. This process continues until the user repositions the view to a
location in the file by selecting a new starting value or changing the key value. W
ever the user repositions the view, the data cache and ListView are cleared and
list of rows is presented.
– 178 –

__ Creating and Customizing Browse Dialogs
6

ng to

eleted,

ally,

tored
y re-

ger

a

por-

dy-
The data cache mechanism is significant for the following reasons:

• It enables the user to scroll backward through previously viewed data without havi
reread this data from the server.

• Because the data cache represents a copy of the data, it may not always reflect the cur-
rent state of data on the server. For example, if cached records are updated or d
the user must issue a Refresh command to obtain the new values.

• It is possible to read server data into the data cache and retrieve it programmatic
without having to invoke a browse dialog. For more information, see Browse Classes,
Construct Spectrum Reference.

• The data cache can be saved in memory when a browse dialog is closed and res
when the browse dialog is requested again. This alleviates the need to continuall
trieve the same browse data from the server.

Framework Components
Several client framework components work together to provide browsing services at
runtime. These components are encapsulated in a single class, the BrowseMana
class. This class provides an interface to perform common browsing activities, for ex-
ample, to get a specific row of information, get all rows of information, or display
modal or MDI browse dialog.

Internally, the BrowseManager uses several framework components, the most im
tant of which is the browse dialog. There are two versions of the dialog: a modal
(GenericBrowse.frm) and an MDI (GenericMDIBrowse.frm) dialog. Each dialog is
namically configured at runtime to display specific browse data. This process is
described in Understanding Browse Command Handlers, page 195.

For more information about the BrowseManager class, see Browse Classes, Construct
Spectrum Reference.
– 179 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

leted
 new

y of
ur

within
se

rowse

s a
a for-
e
use
n file

ive.
are-
asily

main-
Creating a Browse Dialog
The following tasks are required to create a browse dialog. Once you have comp
these steps, you are ready to compile the application in Visual Basic and test the
browse dialog.

• Review and optionally modify Predict set up

• Use the Construct models to generate modules

• Download the modules to the client using the Construct Spectrum Add-In

• Update the Construct Spectrum project

These tasks are described in detail in the following sections.

Setting up Predict for the Browse Dialog
Prior to generating the modules of your browse dialog, certain attributes can be defined
within Predict to extend the functionality of what is generated. You can modify an
these attributes in Predict and regenerate your browse modules to implement yo
changes. For information about regenerating browse modules, refer to Construct Spec-
trum SDK Reference.

Business Data Types
Browses make use of business data types (BDTs) to format the data that is shown
the ListView control of the browse dialog. If you want special formatting of the brow
data, add business data types to the fields within Predict prior to generating the b
components. For more information, see Using Business Data Types (BDTs), Con-
struct Spectrum SDK Reference.

Descriptive Fields
When a browse is initiated from a field on a maintenance dialog, it is referred to a
foreign key browse. For example, the Construct Spectrum demo application has
eign key browse set up for the Warehouse field located on the Order maintenanc
dialog. When a foreign key browse is initiated, only the foreign key values (wareho
numbers in this case) are displayed unless you designate other fields in the foreig
as descriptive in Predict.

In the demo application, the WAREHOUSE-NAME field is designated as descript
When you browse on the Warehouse field from the Order maintenance dialog, w
house numbers and their corresponding names are displayed so that users can e
select the appropriate warehouse. For more information about linking browse and
tenance functions, see Integrating Browse and Maintenance Functions, page 275.
– 180 –

__ Creating and Customizing Browse Dialogs
6

erver-
. Use
 you.

per

s, use

els.

d in

nd

ports

ss

 to

g to a
ing.
ype
Using Models to Generate Browse Modules
Each module that a browse dialog requires can be generated with the VB-Client-S
Super-Model, or you can generate them one at a time using the individual models
the following guidelines to determine which generation approach is appropriate for

• If you are creating a new application or a new object, use the super model.

• If you changed the file structure of a previously generated application, use the su
model.

• If you want finer control over the generation results, such as hand-coding user exit
the individual models.

This section describes how to generate a browse module from the individual mod
For information about using the super model, see Using the Super Model to Generate
Applications, page 77.

Generating browse modules involves the following steps, which must be performe
this order:

1 Use the Object-Browse-Subp model to generate the object browse subprogram a
supporting parameter data areas (PDAs) on the server.

2 Use the Subprogram Proxy model to generate a proxy that enables the client to access
the browse subprogram.

3 Use the VB-Browse-Object model to generate a Visual Basic browse class that sup
the generated browse subprogram.

4 Extend the application’s object factory to include references to the browse busine
object.

5 Create a command handler and link it to the object factory if the browse dialog is
support record selection and action buttons.

These steps are described in more detail in the following sections.

Tip: Use the same four-character prefix to name all generated modules belongin
single object. This convention makes it easier to select modules for download
For example, to download all client modules related to a Customer object, t
“CUST*” (where “*” is the wildcard character) to narrow the list of available
items to those starting with CUST.
– 181 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

 the cli-
 areas

t ap-

m and

 any
xy is
al pa-

ion
ame-

erver
Generating the Browse Subprogram and PDAs
A browse subprogram reads database records on the server and returns them to
ent. Each browse subprogram requires three application-specific parameter data
that contain information that is passed to, or received from, the subprogram. Each
browse subprogram can support multiple keys to allow the user to select the mos
propriate access path to retrieve the desired records.

The Object-Browse-Subp model is used to generate the object browse subprogra
its three supporting parameter data areas: *BPRI, *BROW, and *BKEY, where * rep-
resents a prefix that you specify.

For a detailed description of this model, see Object-Browse Models, Natural Con-
struct Generation.

Generating the Subprogram Proxy
A subprogram proxy is required to access the generated browse subprogram (or
other subprogram) on the server from the client application. The subprogram pro
responsible for converting data between the network transfer format and the Natur
rameter data format used by the browse subprogram.

For information about generating a subprogram proxy, see Using the Subprogram-
Proxy Model, Construct Spectrum SDK Reference.

Generating the Visual Basic Browse Object
Each object browse subprogram that will be accessed by users requires a supporting
class generated using the VB-Browse-Object model. This class delivers informat
about the columns and keys supported by the browse subprogram to the client fr
work, which then populates the browse dialog with the requested information.

You can use the VB-Browse-Object model in the Generation subsystem on the s
or the VB-Browse-Object wizard in the Construct Windows interface on the client.
– 182 –

__ Creating and Customizing Browse Dialogs
6

(Mod-

he
ct.

isual
The following example shows the standard parameters in the VB-Browse-Object
wizard:

VB-Browse-Object Wizard — Standard Parameters

Standard parameters are similar for all model wizards. The common parameters
ule, System, Title, and Description) are described in General Model Specifications,
Natural Construct Generation. The additional parameters are:

Parameter Description

Subprogram proxy Name of the subprogram proxy that communicates with t
object browse subprogram for this Visual Basic browse obje

Object class Name for the generated browse class to be used within V
Basic.
– 183 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

 cli-
m the
e

se

ds
th

ata

Note: The Compression and Encryption options apply only to data sent from the
ent to the server. To enable compression and encryption for data sent fro
server to the client, select the Compression and Encryption options for th
Subprogram-Proxy model. For information, see Using the Subprogram-
Proxy Model, Construct Spectrum SDK Reference.

Compress network
data

Indicates whether the parameters sent to the server are
compressed to reduce transmission time. Compression is
typically not required for a Visual Basic browse object becau
parameters sent to the server tend to be small. Enabling
compression in this situation may actually increase deman
on system resources because the overhead associated wi
invoking compression routines is not offset by the reduced
volume of data being transferred.

Encrypt network
data

Indicates whether the parameters sent to the server are
encrypted. Encryption is used to secure sensitive data.
Typically, this check box is not selected because browse d
requests sent to the server usually do not contain sensitive
information.

Parameter Description
– 184 –

__ Creating and Customizing Browse Dialogs
6

eating
 the

ing re-
ant to
ay
 can

odel
izard
After supplying model parameters, you can customize the generation results by cr
user exit code for the module. The following example shows the User Exit List for
VB-Browse-Object model:

User Exit List

For more information about user exits, see User Exits for the Generation Models,
Natural Construct Generation.

Defining Alternate Browse Data Sources
The VB-Browse-Object model is used to retrieve server database records by mak
quests to a generated object browse subprogram. There may be times when you w
allow browsing of data that is not defined in a server database file. Instead, you m
have data that is defined within files or hard-coded on a client. In such cases, you
present this data to the user with an interface that is similar to the browse interface they
are familiar with.

To generate this type of browse dialog, use the VB-Browse-Local-Data-Object m
in the Generation subsystem on the server or the VB-Browse-Local-Data-Object w
in the Construct Windows interface on the client.
– 185 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

ata-

(Mod-
The following example shows the standard parameters for the VB-Browse-Local-D
Object wizard:

VB-Browse-Local-Data-Object Wizard — Standard Parameters

Standard parameters are similar for all model wizards. The common parameters
ule, System, Title, and Description) are described in General Model Specifications,
Natural Construct Generation.
– 186 –

__ Creating and Customizing Browse Dialogs
6

e by
 col-

it de-
 the

r of
rd

a-

d

n

Basic.
The additional parameters are:

Example of adding browse field definitions in the ADD-COLUMNS user exit

DEFINE EXIT ADD-COLUMNS
'
' AddColumn Name, Heading, Business Data Type, Format, Show by Default
AddColumn "STATE-CODE", "State Code", "", "A2", True
AddColumn "STATE", "State Name", "", "A40", True
AddColumn "TAX", "Sales Tax", BDT_PERCENT, "N2.2", False
END-EXIT

In the previous example, the browse dialog shows the State Code and State Nam
default; however, the user could modify the options to also display the Sales Tax
umn. A BDT has been associated with the Sales Tax column to provide special
formatting.

Additionally, you need to add code to the INSERT-ROWS user exit. This user ex
fines data that is to be shown in the browse by calling the AddData method as in
following example.

Example of defining browse data in the INSERT-ROWS user exit

DEFINE EXIT ADD-COLUMNS
'
' AddData Unique ID, State code, State, Sales tax
AddData "1", "ALBA", "Alabama", 8.0
AddData "2", "AK", "Alaska", 5.5
etc.
END-EXIT

In addition to the values to be displayed in the browse window, the first paramete
the AddData method must contain a unique value that is used as an internal reco
identifier.

Parameter Description

Predict view Name of a Predict view (optional). The VB-Browse-Local-Dat
Object model allows you to define your file within Predict as a
means to document the required field names, field lengths, an
column headings. Be aware, however, that no physical file is
required to support this model. If you do not want to create a
definition of your browse fields within a Predict file, you must
define your browse fields in the ADD-COLUMNS user exit as i
the following example.

Object class Name of the generated browse class to be used within Visual
– 187 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

e cli-
ient:

es
iven

 (*)

n in

truct

le

e
Downloading the Client Modules
After generating all required browse modules on the server, you must download th
ent modules. The following table describes which modules are required on the cl

Note: The module suffix names listed in the previous table are suggested nam
only. However, when you generate with the super model, modules are g
these suffix names automatically.

� To download modules to the client:

1 Open the Construct Spectrum project that you are updating.
For information, see Creating a Construct Spectrum Project, page 101.

2 On the Construct Spectrum submenu, click Download Generated Modules.

3 Ensure you are pointing to the correct library and FUSER on the server.

4 List the modules from the library you want to download by using wildcard notation
in the File Download text box and then click List.
A list of modules on the server is displayed, showing the generated browse modules.

5 Select the modules you generated and click Download.
You can identify browse modules based on their module suffixes, which are show
the table at the beginning of this section. The Visual Basic browse object is
automatically added to your Construct Spectrum project.

For more information on downloading modules to the client and setting up a Cons
Spectrum project, see Creating a Construct Spectrum Project, page 101.

Model Module
Suffix

Visual Basic
extension

Description

Object-Browse-Subp BKEY
BPRI
BROW

n/a Updates the library image file
with parameter definitions.

Subprogram-Proxy BSP n/a Updates the library image fi
with application service
definitions describing the
object subprogram browse
method and data it requires.

VB-Browse-Object BCPV .cls Delivers information about th
columns and key fields
supported by the browse
subprogram to the client
framework components.
– 188 –

__ Creating and Customizing Browse Dialogs
6

c-
ry,

g to
ss ob-
you
hrough

pen
action
Updating the Project
There may be times where you want to update the project using the extend object fa
tory. The following discusses when you would need to hand-code the object facto
and how to determine if you need to.

Extend Object Factory
You must hand-code the object factory only if you are adding a new browse dialo
your application or you have changed the actions available for an existing busine
ject. An example of changing the available actions for a business object is when
add a browse action to a business object that had been available to the user only t
a maintenance action.

Tip: To determine whether you need to hand-code the object factory, invoke the O
dialog and select each object and its associated action. If the selected object
does not display, do some hand-coding to add the required object actions.

For more information, see Customizing the Object Factory, page 246.
– 189 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

 can

e

red
ore

wse-
ss.

urce,
child
key

alog.
Customizing on the Client
Although you cannot modify browse dialogs directly, there are customizations you
make on the client to modify or enhance the behavior of a browse dialog.

Adding Command Handlers
If the browse dialog is to support action buttons that perform specialized processing on
the selected records, define and create command handlers for these buttons.

For more information about adding command handlers for your browse dialog, seUn-
derstanding Browse Command Handlers, page 195.

Customizing the Generic Browse Dialog
The generic browse dialog is the dialog from which all browse dialogs are configu
at runtime. This dialog can be customized through the Browse Dialog API. For m
information, see Browse Classes, Construct Spectrum Reference.

Understanding the BrowseManager Class
Every Construct Spectrum application contains a Visual Basic class called the Bro
Manager. This class encapsulates the handling of browse services in a single cla
Application components use instances of this class as described in the following
sections.

Display the Browse Dialog
The BrowseManager creates a browse dialog, links it to a specific browse data so
and formats the dialog to display the data. The dialog can be a modal or an MDI
dialog. Additionally, the dialog can be formatted to begin browsing with a specific
field and key field value.

Support a Browse Command Handler
The BrowseManager can link a custom browse command handler to a browse di
Browse command handlers add features to your browse form such as:

• Command buttons

• Toolbar buttons enabled on the MDI frame

• Actions for double-click or the Enter key

• Menus that are activated by the right mouse button
– 190 –

__ Creating and Customizing Browse Dialogs
6

ed on
siding

.

of the

bject.
wse
Return a Specific Row of Data
The BrowseManager returns a specific browse row of data from a data source, bas
a key name and key value. An example of a data source is a Natural database re
on your server.

Return All Rows of Data
The BrowseManager returns all data rows in a specified table from a data source

Using the BrowseManager
Applications use the global function, GetBrowser(tablename), to create instances
BrowseManager class for a specific database file. GetBrowser(), which is located in the
object factory, creates, initializes, and returns a reference to a BrowseManager o
The tablename parameter is a logical name that identifies which Visual Basic bro
object to use when it initializes the BrowseManager. For more information, see Using
the Object Factory, page 245.

Some of the application components that use the BrowseManager class are:

• Object factory

• Visual Basic browse object

• Maintenance dialogs

• Custom browse command handlers
– 191 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

owse-

le, the
ance

bject

ay

ure a

nt to

ce
the
The following diagram shows how a Customer maintenance dialog can use the Br
Manager class:

Interaction Required to Display a Browse Dialog

Each numbered step in the diagram is described below:

1 The user requests a browse from the Customer maintenance dialog. In this examp
user requests to browse a list of customers on the CUSTOMER file. The mainten
dialog calls the GetBrowser function in the object factory with the parameter
“CUSTOMER”.

2 The object factory creates a CustomerBrowse Visual Basic browse object. This o
contains information unique to the Customer browse such as:

– Column names and captions

– Column formats and business data types (BDTs) used to format data for displ

– Key names and captions

3 Settings from the CustomerBrowse Visual Basic browse object are used to config
BrowseBase object.

4 The object factory instantiates a BrowseManager.

5 The BrowseManager object is initialized by setting its BrowseBase property to poi
the BrowseBase object created in Step 3.

6 A reference to the initialized BrowseManager is returned to the Customer maintenan
dialog. At this point, the BrowseManager is configured to support the services of
Customer browse.

Object
Factory

Customer
Maintenance

Dialog

Browse
Manager

Customer
Browse Object

Browse
Base

Browse
 Dialog

1

2

3

4

5

6

7

8

9

– 192 –

__ Creating and Customizing Browse Dialogs
6

ent

r. For
e
nance

d

hese
ialized
 used
s.
7 The user’s initial request to browse a list of customers can be fulfilled. The list of
customers is displayed in a modal dialog. To do this, the following command is s
from the Customer maintenance dialog:

BrMgr.ModalBrowseForm("CUSTOMER")

8 The BrowseManager configures and displays a modal browse dialog listing the
customers from the Customer file.

9 Any actions requested from the browse dialog are handled by the BrowseManage
example, if the user selects a customer record and then selects the OK button, th
browse dialog is closed and the selected record is returned to the Customer mainte
dialog.

Tip: You can customize the BrowseManager class to support new properties an
methods. However, do not modify the interfaces of the current methods supported
by the BrowseManager.

The following diagram depicts the structure of the BrowseManager:

Internal Structure of the BrowseManager Class

The BrowseManager class bundles browsing functionality into several methods. T
methods are only enabled when the BrowseBase property has been set to an init
BrowseBase object. A command handler object is an optional property that can be
to enhance the functionality of browse forms created by the BrowseManager clas

GetAllRows()

BrowseManager

CommandHandler

BrowseBase

BrowseDialogBrowseByObjectKey()

BrowseDialogMDIBrowseForm()

BrowseDialog
ModalBrowseForm()

GetRow()

Property

Method() Method

Property

Object

Key

Object
– 193 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

ey
to a
he

e

 in
 the

 it is

ws
BrowseManager Methods
This table lists the methods or services offered by the BrowseManager:

For more information about BrowseManager methods, see Browse Classes, Construct
Spectrum Reference.

Service Description

BrowseByObjectKey Creates a modal browse dialog. The dialog’s search k
value(s) are set to the values in a parameter reference
NaturalDataArea object, where the NaturalDataArea is t
key structure used by maintenance dialogs.

If a row is selected, maps the key values in the row to th
NaturalDataArea parameter and returns True.

MDIBrowseForm Creates a child MDI (multiple-document interface) browse
dialog based on the GenericMDIBrowse.frm client
framework component. Optionally, links a command
handler to the dialog. Returns a reference to the dialog.

ModalBrowseForm Creates a modal browse dialog based on the
GenericBrowse.frm client framework component.
Optionally, sets the form’s search key to a key specified
a parameter. If a row is selected, returns a reference to
BrowseDataCache object.

GetRow Clears the data cache in the BrowseBase object unless
a static browse (fixed number of rows). Sets the
BrowseBase object search key to the key specified in a
parameter. If a row is successfully retrieved and stored,
returns a reference to the BrowseDataCache object.

GetAllRows Clears the data cache in the BrowseBase object. If all ro
are successfully retrieved from the data source, returns a
reference to the BrowseDataCache object.
– 194 –

__ Creating and Customizing Browse Dialogs
6

 origi-
se

ick

rties.
n copy

locat-
t for

 with

cts is
Understanding Browse Command Handlers
Browse Command handlers are custom objects you create to handle commands
nating from browse dialogs. They can be used to add command buttons to a brow
dialog, enable toolbar buttons on the MDI frame, set default actions for double-cl
and the Enter key, and to display menus activated by the right mouse button.

All browse command handlers must implement certain public methods and prope
These are supplied in a sample browse command handler class template you ca
and use as a starting point to create your own browse command handlers.

Tip: Use the browse command handler class template, BrowseCmdHandler.cls
ed in the Construct Spectrum client Framework directory as the starting poin
creating your own browse command handler.

The following diagram illustrates how a browse command handler object interacts
other objects in your application:

Browse Command Handler Overview

Each numbered step in the diagram is described below:

1 The object factory creates a BrowseBase object which is initialized with a specific
Visual Basic browse object. Interaction between the BrowseBase and browse obje
described in Using the BrowseManager, page 191.

2 The object factory creates the browse command handler.

Object Factory Browse
Manager

Command
Handler

Browse
Base

Browse
Dialog

1

2

6

7

3

8

9

4
5

Other
Application

Components
– 195 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

ndler

. This

mand

 a
p in
 then

ow in
in the
corre-
g
3 The object factory creates a BrowseManager object and links it to the command ha
and the BrowseBase object.

4 BrowseManager creates the browse dialog.

5 BrowseManager initializes the command handler with a reference to the browse dialog
and the BrowseBase object.

6 BrowseManager adds a command button, menu item or both for each supported
command handler command.

7 BrowseManager sets the default command if the command handler supports one
command is invoked by double-clicking or pressing Enter on a selected row.

8 When a user initiates a command on the browse dialog that is handled by a com
handler, the command handler is notified.

9 The command is executed.

Other features you can implement with a command handler include:

• A browse dialog.
Users can drill down into more detailed information using a browse dialog.

• A link to a maintenance dialog.
Users can invoke a maintenance dialog that is populated with a row selected from
browse dialog. To view an example of this, refer to the Order browse window set u
the demo application. From the Order browse window, users can select a row and
select the Update button to open the Order maintenance window.

• A delete function.
Users can delete a database record from a browse dialog. The Order browse wind
the demo application also includes an example of this function. To delete a record
demo application, the user selects a row and then the Delete button. The record
sponding to that row is deleted. To accomplish this, the Order maintenance dialo
object is invoked behind the scenes and used to delete the record.
– 196 –

__ Creating and Customizing Browse Dialogs
6

 de-

ry to

fying

e

tion,
Creating Browse Command Handlers
The steps to create a browse command handler and link it to your application are
scribed below. Once you create the command handler, you must supply the code to
customize the command handler. This is described in Coding the Custom Browse
Command Handler, page 198.

� To create a browse command handler and link it to your application:

1 Create a Visual Basic class that implements the browse command handler.
Copy the sample BrowseCmdHandler.cls template in the client framework directo
use as a starting point.

2 Make the application aware of the browse command handler by copying and modi
the following code in the GetBrowser() function.
The GetBrowser() function creates the BrowseManager object for the particular brows
dialog created at runtime and is part of the object factory.

Public Function GetBrowser(TableName As String) As BrowseManager

 Dim BrMgr As New BrowseManager

 ' Return a browser object for the requested table.
 Select Case TableName
 Case "NCST-ORDER-HEADER"
 Set BrMgr.BrowseObject = New OrderBrowse
 BrMgr.Caption = "Query Orders"
' Copy and Modify this block of code to hook in a browse command handler
-- >>
' Setting this property will attach the OrderAsBrowseTarget object
' to the BrowseManager to handle any commands originating from
' the browse.
 Set BrMgr.CommandHandler = New OrderAsBrowseTarget
' --
<<

Now that you have created a custom command handler and linked it to your applica
see the following section.
– 197 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

om-
ent
dled

lica-
the
rint

DI
 clicks
he

ady

and-
ed by
 MDI

ler.

r and
Coding the Custom Browse Command Handler
A command handler is an object that implements two special public methods: UIC
mandState() and UICommandTarget(). These two methods are the hooks into the cli
framework components that allow commands to be triggered, intercepted, and han
throughout your application. These methods are described in more detail in Defining,
Sending, and Handling Commands, page 221.

When a command handler is linked to a browse dialog, the dialog notifies the app
tion framework that it needs to handle commands linked to the Command IDs in
command handler. For example, the framework would be notified whenever the P
toolbar button or menu command is clicked in the browse dialog.

If the command IDs of the browse command handler match any of those on the M
toolbar or menu, those commands are hooked by the browse dialog. When a user
on the hooked toolbar button or selects the hooked menu item, the command in t
browse command handler is triggered.

Note: Commands that are to be hooked into the MDI toolbar or menu must alre
exist on or be added to the MDI frame.

Enabling Commands on the Browse Toolbar and Menu
An important decision to make when coding the UICommandState() and UIComm
Target() methods is whether or not you want the handled commands to be enabl
the toolbar buttons and menu on the MDI frame. To enable these commands on the
frame, assign the proper command IDs to each command in your command hand
The correct command ID is determined by matching it with the corresponding com-
mand ID assigned to the command you want to hook in the MDI frame.

The following code sample shows how you would enable commands on the toolba
menu by assigning command IDs.

Sample code from the CommandHandler template that assigns command IDs:

Private Sub Class_Initialize()

 ' Initialize The commands supported by this command handler.
 CommandHandlers(1).ID = CMD_ACTIONS_UPDATE
 CommandHandlers(1).Caption = "Update..."
 CommandHandlers(2).ID = CMD_ACTIONS_DELETE
 CommandHandlers(2).Caption = "Delete"

End Sub
– 198 –

__ Creating and Customizing Browse Dialogs
6

s

nd ID
ements
erpt
Tip: If you want to internationalize your application, avoid hard-coding text string
like Caption = “Update” . For more information, see Internationalizing Your
Application , page 295.

Coding the UICommandTarget() Method

This method contains a Select statement, with a Case statement for every comma
that is handled by the command handler. You can add any code in these Case stat
to implement the handling of a specific command. The following example is an exc
from a command handler designed to update a data row:

Sample CommandHandler code to update a row (record)

Select Case Cmd.ID
Case CMD_ACTIONS_UPDATE

 ' For each selected row in the cached data ...
 For SelRow = 1 To m_BrowseBase.Cache.SelectedCount

 ' Create and initialize a new Order Maint Object.
 Set maintObj = New Order
 Set maintObj.Dispatcher = CreateDispatcher()

 ' Initialize the Key in the Order Maint Object from
 ' selected row from the Visual Basic browse object's cached data.
 maintObj.Field("ORDER-NUMBER") = _
 m_BrowseBase.Cache.GetValue("ORDER-NUMBER", _
 SelRow, _
 BR_SELECTED_DATA, _
 BR_RAW_DATA)

 ' Move the KeyData from the KeyPDA to the ObjectPDA.
 maintObj.MoveByNameKey MOVE_DATA_TO_KEY

 ' Create a new Order Maint Form.
 Set frm = New frm_Order

 ' Link the Order object to the Order Form.
 Set frm.InternalObject = maintObj

 ' Display this form.
 frm.Show
 Next
– 199 –

Construct Spectrum SDK for Client/Server Applications _____________________________
6

owse
ing

nt is

tate
 small
D of
owse
Marking Updated Rows Using the UpdateListViewIcons Method

If your command handling changes affect the data displayed in the browse dialog when
the user executes the command, decide how to reflect the updated data in the br
form. You can use the State property of a BrowseDataRow to mark the row as be
updated. This property is used by the browse dialog when its Form_Activate eve
triggered.

Alternatively, you can programmatically refresh the browse dialog’s ListView with
small icons by calling the UpdateListViewIcons method in the browse form. If a S
ID has been assigned to a row, the browse dialog checks to see if this is the ID of a
icon in a global image list, found on the browse form. If the State ID matches the I
one of the small icons in the image list, the icon is placed beside the row on the br
dialog.

Example code for marking updated rows with small icons

' Mark a row in the browse object as being "Updated" with a small
' icon.
 m_BrowseBase.Cache.Rows.SelectedItem(Index).State = _
 BR_MARK_ROW_UPDATED

' Refresh the browse dialog’s listview to display small icons beside
' rows that have been updated.
m_BrowseForm.UpdateListViewIcons
– 200 –

__
7

 To
e
MOVING EXISTING APPLICATIONS TO
CONSTRUCT SPECTRUM

This chapter describes how to move existing Natural Construct-generated server-based
applications to a client/server architecture using the Construct Spectrum models.
move existing Natural applications to a client/server architecture without using th
models, see Creating Applications Without the Framework, Construct Spectrum
SDK Reference.

The following topics are covered:

• Overview, page 202

• Moving Natural Construct Object Applications, page 202

• Moving Natural Construct Non-Object Applications, page 203
– 201 –

Construct Spectrum SDK for Client/Server Applications _____________________________
7

ruct-

-

s cre-

els
ting

n-

erver
Overview
There are two scenarios that you may encounter when moving your Natural Const
generated applications to Construct Spectrum:

• Moving applications created with the Natural Construct Object models (Object-Maint
Subp and Object-Browse-Subp)

• Moving applications created without the Natural Construct Object models

The Object models enable you to generate encapsulated applications. Application
ated with Construct Spectrum take advantage of this object approach.

Moving Natural Construct Object Applications
If you have existing Natural Construct applications developed with the object mod
(Object-Maint-Subp and Object-Browse-Subp), much of the work involved in crea
a client/server application has already been completed.

To create a Construct Spectrum client/server application from existing Natural Co
struct Object applications, complete the following steps:

1 Set up your server environment.
For information, see Are You Ready?, page 103.

2 Set up Predict definitions (optional).
For information, see Setting Up Predict Definitions, Construct Spectrum SDK
Reference.

3 Regenerate your Object-Maint-Subp modules and generate the remaining client/s
modules.
For information, see Using the Super Model to Generate Applications, page 77.

4 Set up and run your Construct Spectrum project.
For information, see Creating a Construct Spectrum Project, page 101.
– 202 –

_______________________________ Moving Existing Applications to Construct Spectrum
7

s
t be
.

reate

o an
 to
st de-
d

ional
Moving Natural Construct Non-Object Application
Natural Construct applications generated with the Maint and Browse models mus
modified to conform to the object-based structure required by Construct Spectrum

� To create a Construct Spectrum client/server application from non-object Natural
Construct applications:

� Step 1: Set Up Your Server Environment, page 203

� Step 2: Evaluate Your Application Data, page 203

� Step 3: Set up Predict Definitions (Optional), page 204

� Step 4: Generate the Client/Server Modules, page 204

� Step 5: Update Object Subprograms with Business Rules, page 205

� Step 6: Set Up and Run Your Construct Spectrum Project, page 206

The following sections describe these steps.

Step 1: Set Up Your Server Environment
Before moving your application, ensure that your server is set up so that you can c
and use client/server applications with Construct Spectrum.

To set up your server, perform the steps outlined in Are You Ready?, page 103.

Step 2: Evaluate Your Application Data
Determine whether the files and fields that define your application data conform t
object-based relational database structure. If they do not, modify them to conform
this structure to take advantage of the Object-Maint models. For example, you mu
termine which database files should logically be grouped into business objects an
establish relationships between related files and fields.

For information about organizing your database files in an object-based and relat
manner, see Design Methodology, and Use of Predict in Natural Construct, Natural
Construct Generation.
– 203 –

Construct Spectrum SDK for Client/Server Applications _____________________________
7

, you
the
lt logic

irst it-

e su-
es for

rst
dating
ed
ction.

m

Step 3: Set up Predict Definitions (Optional)
Some Predict set up tasks relate specifically to Construct Spectrum. For example
can attach special keywords to a field to define its corresponding GUI control on
client dialog. These tasks are optional because Construct Spectrum applies defau
to determine how each field will be implemented on the client.

For information about these tasks, see Setting Up Predict Definitions, Construct Spec-
trum SDK Reference.

Tip: Postpone these optional tasks until you have created and tested at least a f
eration of your client/server application and are ready to fine-tune it.

Step 4: Generate the Client/Server Modules
To get an iteration of your client/server application up and running quickly, use th
per model to generate modules for your client/server application. Generate modul
each business object, such as a Customer object and an Order object.

Generate the modules by selecting the models listed in the following table. The fi
four models generate the modules required for maintenance services, such as up
or adding Customer records. The remaining three models generate the modules requir
for browse services, such as looking up and selecting a customer record for an a

The modules must be generated in the order shown.

Model Module Source Type

Object-Maint-Subp Object maintenance subprogram
and required PDAs

Natural subprogram

Subprogram-Proxy Object maintenance subprogram
proxy

Natural subprogram

VB-Maint-Object Visual Basic maintenance object Visual Basic class

VB-Maint-Dialog Visual Basic maintenance dialog Visual Basic form

Object-Browse-Subp Object browse subprogram and
required data areas

Natural subprogram

Subprogram-Proxy Object browse subprogram proxy Natural subprogra

VB-Browse-Object Visual Basic browse object Visual Basic class
– 204 –

_______________________________ Moving Existing Applications to Construct Spectrum
7

rate-

iness

 con-
be

t

ppli-
ation

rob-
r

ent
sed to
Tip: Although you can generate all of the models listed in the previous table sepa
ly, use the super model to quickly create a first iteration of your application. The
super model automatically generates these models in the correct order.

For information about using the super model, see Using the Super Model to Generate
Applications, page 77.

Step 5: Update Object Subprograms with Business Rules
You must update your newly generated object maintenance modules with any bus
rules from your previous applications — those applications that were created without
the Object Maintenance model. You must compare the business rules, which are
tained in the user exits, in your previous application and decide how they should
incorporated into the user exits in your new application.

As you complete the procedure described below, see Object-Maint Models, Natural
Construct Generation. This chapter contains information about generating an objec
maintenance subprogram and working with its user exits.

� To update your object maintenance subprogram with business rules:

1 Regenerate the maintenance subprogram using the Object-Maint-Subp model.

2 Update the user exits with your business rules.

3 Compile the subprogram.

Considerations for Implementing Business Rules
When you have a working client/server application and are ready to refine your a
cation, pay special attention to the procedures devoted to refining the implement
of your business rules. For information about implementing business rules, see Validat-
ing Your Data, page 261.

Because your client/server application was initially a non-object application, you p
ably have all of your business rules coded in the Maint model user exits. Conside
placing as many of these rules as possible in other locations, such as:

• The Predict verification rules linked to your field definitions

• The Visual Basic maintenance object user exits

• The object maintenance subprogram user exits

For example, some verification rules can be implemented or duplicated on the cli
through the Visual Basic maintenance object. Business data types can also be u
validate data. These techniques improve the performance of your application because
validations occur on the client, therefore, avoiding a call to the server.
– 205 –

Construct Spectrum SDK for Client/Server Applications _____________________________
7

as a
also
nt no

a Con-

as
Note: If users can access your application from a non-GUI environment, such
character-based display terminal, validations set up on the client should
be implemented on the server. This ensures that validations are consiste
matter where the application is accessed from.

Step 6: Set Up and Run Your Construct Spectrum Project
Once your client and server modules have been generated on the server, set up
struct Spectrum project on the client using the Construct Spectrum Add-In. Then
download the client modules to your project, run the project, test it, and modify it
required. For information, see Creating a Construct Spectrum Project, page 101.
– 206 –

__
8

truct
ncep-
UNDERSTANDING AND CUSTOMIZING THE
CLIENT FRAMEWORK

This chapter describes how to customize the client framework supplied with Cons
Spectrum. It describes what each framework component is, where you use it, a co
tual overview of how it works, and procedures for customizing the component.

The following topics are covered:

• Introduction to the Client Framework , page 208

• About Box, page 210

• Application Preferences, page 212

• Application Settings, page 213

• Browse Support, page 215

• Internationalization Support , page 217

• Maintenance Classes, page 218

• Menu and Toolbar Support, page 219

• MDI (Multiple-Document Interface) Frame Form , page 242

• Object Factory, page 243

• Spectrum Dispatch Client Support, page 256

• Utility Procedures, page 259
– 207 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

 Con-

-
s,

ents
Introduction to the Client Framework
When you select Create New Project from the Construct Spectrum Add-In menu,
struct Spectrum adds the client framework components to a standard Visual Basic
project. The client framework is made up of many files that display in your applica
tion’s project window. Each component consists of one or more Visual Basic form
modules, or classes. The following example shows the client framework compon
for a Spectrum project:

Client Framework Components for a Construct Spectrum Project
– 208 –

______________________________ Understanding and Customizing the Client Framework
8

ts are

er
ect
These files are grouped into logical client framework components. The componen
described in this chapter and referred to throughout the Construct Spectrum
documentation.

Additional client framework components are provided in an OLE automation serv
(CSTVBFW.dll) as classes. You can browse these OLE classes by selecting Obj
Browser from the View menu in Visual Basic.

Each component is described in more detail in the following sections.

Note: For information about creating a new project, see Creating a Construct
Spectrum Project, page 101.
– 209 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

con,
e, se-

nu:

appli-
About Box
The client framework includes a standard About box form. This form contains an i
application title, application version information, licensed user and company nam
rial number, copyright notices, and a System Info button to invoke the standard
Windows system information applet.

The user invokes the About box by selecting the About command on the Help me

Default About Box Supplied with the Construct Spectrum Client Framework

You can customize the About box as desired. For example, you can include your
cation’s icon, product name, company name, trademark, or copyright notices.

The lblMessagesArray, lblLicensedOwner, lblLicensedCompany, lblSerialNumber,
and lblWarning values are place holders for custom messages you code in the Load
event for About.frm.

Component Description

About.frm Contains the About box form.
– 210 –

______________________________ Understanding and Customizing the Client Framework
8

ry.

 of

e

s.

e
Customizing the About Box
You can customize the About box for each of your applications.

Tip: To customize the About box, edit the default About box and use the Save As com-
mand on the File menu to save the tailored About box to your project directo

You can customize the following features:

To Change Follow this Procedure

Application name
or window title

1 Open the AppSettings.bas file.
2 Change the gAppSettings.ApplicationName variable to

change the application name that is displayed at the top
the dialog.

Copyright notice 1 Open the Form_Load event file.
2 Change the lblMessages variable by adding one or mor

lines of text to change the copyright notice.

Note: The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.

Icon 1 Open the Form editor.

2 Load a different bitmap into the Picture property of the
imgApplicationBitmap control to change the icon that is
displayed in the upper left corner of the About box.

Licensed owner,
Company, or
Serial Number

1 Open the Form_Load event file.

2 Change the text assigned to the lblLicencedOwner,
lblLicensedCompany, and lblSerialNumber label control

Note: The client framework does not provide any specific
functionality for licensing your applications. These label
controls are informational only.

Version text 1 Open the Form_Load event file.
2 Change the lblMessages variable by adding one or mor

lines of text to change the version text.

Note: The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.
– 211 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

se

iple
 win-
e
 want

tings.
gs.

or sub-
n-
priate

he
ation

 read-

n of
Application Preferences
The application preferences client framework components are made up of a group of
classes that allow you to define the settings of each of your applications. Use the
classes to add, read, and update user or application preferences.

Applications frequently require the ability to maintain persistent settings over mult
executions of an application. For example, you may want your application to save
dow positions when a user shuts down the application. When the user restarts th
application, the windows appear in the same place on the desktop. You may also
your application to save internal configuration information, such as directory names or
timeout values.

The application preferences provide a high-end interface for defining the metastructure
of persistent settings and for reading and writing setting values. Your preferences sep-
arate settings into two logical categories: user-specific settings and application set
Each user ID that logs on to Windows has its own copy of the user-specific settin
Application settings are constant for all users.

The metastructure for settings can also be hierarchical, similar to a directory tree on a
disk. Each node on the settings tree structure can contain any number of settings
nodes (analogous to files and sub-directories, respectively). A sub-node itself can co
tain settings and sub-nodes. This makes it easy to group settings in the most appro
structure.

The application preferences use the Windows registry to store the metastructure and t
values of all the settings. The Windows registry is encapsulated in the implement
of the application preferences and is not exposed through the public interfaces of the
settings’ classes. This insulates the application from the specific requirements of
ing and writing to a specific storage medium.

The following table describes the application preferences client framework components
supplied with CSTVBFW.dll.

For more information about customizing application preferences, see Understanding
Application Preferences, Construct Spectrum Reference.

Component Description

Setting Creates and manipulates an individual setting

SettingList Creates and manipulates a SettingList, which is an aggregatio
SettingLists and Settings objects

SettingLists Contains a collection of SettingLists

Settings Contains a collection of Settings
– 212 –

______________________________ Understanding and Customizing the Client Framework
8

ppli-
se

er

les.

hen
Application Settings
The application settings client framework components allow you to specify your a
cation’s window title and other values that control how the application starts. The
values are used by other client framework components, including the About box, the
Spectrum Dispatch Client, and the Construct Spectrum Add-In.

For more information, see:

• About Box, page 210

• Spectrum Dispatch Client Support, page 256

• Overview of the Development Procedure, page 30.

Component Description

AppSettings.bas Contains the application-specific settings, such as the
application name, main library, and whether to force the us
to logon at application startup.

Startup.bas Contains the Sub Main procedure and other global variab
Every Construct Spectrum application has one Sub Main
procedure which is the first procedure that gets executed w
your application starts running.
– 213 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

eter-
on

r

tion
n
rson

r ID
e
Customizing the Application Settings
The InitAppSettings procedure in the AppSettings.bas file contains settings that d
mine the name of the application, how the application starts up (whether the Log
form is displayed), and where application preferences are stored.

You can change the InitAppSettings by editing this procedure.

Example of a customized InitAppSettings procedure

Public Sub InitAppSettings()

 With gAppSettings
 .ApplicationName = "Construct Demo Application"

 .ForceLogonAtStartup = False
 .RememberUserID = True

 .RegistryKey = "Software\SoftwareAG\CST"

 ' Add-In Defaults
 .DefaultLibrary = "CSTDemo"
 .DBID = 17
 .FNR = 38
 End With

End Sub

where:

ApplicationName Is the name displayed in the MDI frame form’s title ba
and the About box.

ForceLogonAtStartup If True, the Logon dialog is displayed when the applica
starts. This option is useful when more than one perso
uses the same PC and you want to ensure that each pe
uses their own user ID.

RememberUserID If True, the client framework saves the most recent use
in the Windows Registry and recalls it when displaying th
Logon dialog.

RegistryKey Is the root node in the Windows Registry where
application preferences are saved. These preferences are
saved in HKEY_CURRENT_USER under this key.
– 214 –

______________________________ Understanding and Customizing the Client Framework
8

se di-

truct

ed as

s
le

n

wse
rce

nd
at
Browse Support
The browse support client framework components are used to implement the brow
alog, a generic browse form used to display all browses.

The following table describes the browse support components supplied with Cons
Spectrum. All of these components are stored in the CSTVBFW.dll, with the exception
of classes (.cls), dialogs (.frm), and standard module files (.bas) which are includ
part of the client framework in your application’s project window.

DefaultLibrary Is the name of the main Natural library with which this
application is associated. Construct Spectrum uses thi
setting to derive the name of the primary library image fi
containing the Natural data area and application service
definitions used by the application.

DBID, FNR Is the default database ID and file number for the
Construct Spectrum download and upload functions.

Component Description

ApplicationControl Contains the references to the browse dialog’s button,
including its tag, index, command handler, caption,
and button.

ApplicationControls Contains a collection of browse dialog’s applicatio
control objects.

BrowseBase.cls Contains all of the code common to generated bro
objects and is a client component accessible in sou
code format in the project window.

BrowseDataCache Stores browse data.

BrowseDataColumn Contains definitions of a table column.

BrowseDataColumns Contains a collection of columns.

BrowseDataRow Contains definitions and values of a table row.

BrowseDataRows Contains a collection of rows.

BrowseDialogBase.cls Contains all of the code common to both the MDI
child and standalone versions of the browse dialog a
is a client component accessible in source code form
in the project window.
– 215 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

-

n

y.

log
e

g
e

es,
For more information, see Overview of the Browse Dialog, page 176, in this documen
tation, and Browse Classes, Construct Spectrum Reference.

BrowseDialogOptions.frm Allows users to customize the appearance of the
browse dialog. It is a client component accessible i
source code format in the project window.

BrowseManager.cls Simplifies using the browse dialog for common
functions such as selection of a foreign key value.

ColumnDisplay Contains definition data for a displayed column,
including ColumnName, ColumnCaption,
ColumnWidth, and Visible.

ColumnsDisplay Contains a collection of browse dialog’s
ColumnDisplay objects.

FieldKey Defines a field used as a component in a logical ke

FieldKeys Contains a collection of field keys.

GenericBrowse.frm Contains the standalone version of the browse dia
and is a client component accessible in source cod
format in the project window.

GenericMDIBrowse.frm Contains the MDI child version of the browse dialo
and is a client component accessible in source cod
format in the project window.

KeyMatch Defines a search key’s associated text box attribut
including FieldName, ColumnIndex, ControlIndex,
Visible, Enabled, Locked, Validated, and Fixed.

KeyMatches Contains a collection of KeyMatch objects.

LogicalCombo Defines an internal combo box object.

LogicalKey Defines a key used to browse a database table.

LogicalKeys Contains a collection of logical keys.

Component Description (continued)
– 216 –

______________________________ Understanding and Customizing the Client Framework
8

ate
liza-

po-

. This
orms

hen
 lo-
Internationalization Support
The internationalization support client framework components make it easy to cre
applications that will be deployed in more than one language. These internationa
tion components enable you to develop internationalized applications.

The following table describes the internationalization support client framework com
nents supplied with CSTVBFW.dll:

These client framework components provide you with the ability to store text and
graphics used throughout the application separate from the compiled executable
allows you to change them without accessing the source code of the application. F
are designed to contain as little code as possible to provide this feature.

Tip: You do not need to build internationalization components into your design w
creating small applications or applications that will only ever be used in one
cale. These internationalization components are optional.

For more information about internationalization support, see Internationalizing Your
Application , page 295.

Component Description

Resource Reads resources from resource files.

ResourceGroup Returns a list of resources in a resource group.
– 217 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

s us-
rated
trum:

nance
po-
epeat

un-
e

s of
ows,

l on

t
 the

bo

he

e.
Maintenance Classes
These client framework components allow you to manipulate items in combo boxe
ing the key and description, as well as use the grid to change the look of your gene
maintenance dialogs. The following components are supplied with Construct Spec

For more information, see Strategies for Customizing a Maintenance Dialog, page
129, in this documentation, and Maintenance Classes, Construct Spectrum Reference.

Grid Support
To display array data and data from secondary and tertiary files, generated mainte
dialogs use the Apex TrueDBGrid custom control. The grid client framework com
nents centralize some of the code required by TrueDBGrid so you do not have to r
code in each generated maintenance dialog.

The client framework provides a TrueDBGrid helper class containing most of the m
dane code required to use this control in unbound mode, significantly reducing th
amount of code you must provide with the form.

Note: Using a TrueDBGrid control in unbound mode usually requires many line
event code to handle displaying and editing data, inserting and deleting r
and setting cell-level attributes such as color.

At design time, you only need to instantiate this class for each TrueDBGrid contro
the form and delegate the important events (such as UnboundReadData,
UnboundWriteData, and FetchCellStyle) to the equivalent methods in the class. A
runtime, you can load the helper class instance with data that will be displayed in
cells of the grid. For more information, see Strategies for Customizing a Mainte-
nance Dialog, page 129, in this documentation, and Maintenance Classes, Construct
Spectrum Reference.

Component Description

ComboClass Contains a key list and a descriptive list that map to a com
box. It includes methods which allow you to access their
information, including the Add and Load methods.

GridSizeInfo.frm Helps the application developer size the grid columns to t
best width. This form is displayed from a generated
maintenance dialog’s Activate event.

TrueGridClass.cls Simplifies the use of TrueDBGrid control in unbound mod
– 218 –

______________________________ Understanding and Customizing the Client Framework
8

nge
nu and
 code
 clicks

 the
 cli-
s
ar but-

child
w
s the
f the

ture

s im-

-
 to be
e sup-

d

ely

d.
Menu and Toolbar Support
The menu and toolbar client framework components allow you to dynamically cha
their states between enabled and disabled, and checked and unchecked. The me
toolbar command classes provide a robust mechanism for locating and calling the
that will execute when the user selects a menu command (such as File > Open) or
a toolbar button.

In a multiple-document interface (MDI) application, there is only one menu bar on
MDI frame window with typically one or more toolbars. In the Construct Spectrum
ent framework, the MDI frame window “owns” the menu bar and toolbars. It contain
the code that is executed when the user selects a menu command or clicks a toolb
ton. However, what the executing code does often depends on what type of MDI
window is active. Often you will find it more appropriate to have the MDI child windo
itself contain the code that does the actual processing of the command. This allow
MDI frame window to be generic and contain only processing that is independent o
active MDI child window.

This client framework component allows you to design the menu and toolbar struc
of an application on the MDI frame form, and then program each MDI child window to
“hook into” the menu commands and toolbar buttons it wants to process itself. Thi
proves functionality for the user and reduces your maintenance.

The menu and toolbar command-handling framework components implement a mech
anism that centralizes the code required to determine if a menu command needs
enabled or disabled, and checked or unchecked. The following table describes th
plied menu and toolbar client framework components:

Component Description

UICommands Class that implements menu and toolbar comman
handling. UICommands is stored in CSTVBFW.dll.

UICommandConstants.bas File that defines the command IDs used to uniqu
identify an end-user function in the application.

UICmd Class containing information about a single comman
UICmd is stored in CSTVBFW.dll.
– 219 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

ed to
he
using

pro-
r
 com-

d
 or un-

om-
ion.

 dia-
Understanding Menu and Toolbar Command Handling
This section provides a conceptual overview of the command handlers that you ne
understand before beginning to customize your application’s menu and toolbar. T
following section describes the steps to take to customize your menu and toolbar
the client framework.

The client framework classes that allow menu controls and toolbar buttons to be
grammed to send application-specific commands such as FileOpen, EditPaste, o
GridInsertRow are described in this section. These commands are intercepted by
mand handlers, which can be any form or object in the application. The comman
handler can also automatically update the enabled or disabled state and checked
checked state of menu commands and toolbar buttons.

The MDI frame, browse dialog, and generated maintenance dialogs all use this c
mand handling to process menu and toolbar button clicks in a single, unified fash

This section:

• Provides a summary of the classes

• Describes how to define, send, and handle commands

• Describes how to update user-interface controls

• Describes additional methods for command handling

For more information about menu and toolbar support, see Menu and Toolbar Sup-
port , page 219.

For more information about using a command handler to customize your browse
logs, see Understanding Browse Command Handlers, page 195.
– 220 –

______________________________ Understanding and Customizing the Client Framework
8

s used

tercept-
Class Summary
This section illustrates the classes that implement the command handler.

Classes in the Command Handler

The following sections describe many of the classes and their associated method
to tailor the menu controls and toolbar buttons using the command handler.

Defining, Sending, and Handling Commands
This section describes how these application-specific commands are defined, how
menus and toolbars are programmed to send the commands, and how they are in
ed by command handlers.

� To define, send, and handle menu and toolbar commands:

� Step 1: Declare a Global Instance of the UICommands Class, page 222

� Step 2: Define the Commands, page 222

� Step 3: Code Menu and Toolbar Events to Send the Commands, page 223

� Step 4: Code the Command Handlers, page 224

� Step 5: Link the Commands to the Command Handlers, page 224

These steps are described in the following sections.

UICommands

GetCurrentState

DisabledReason

Checked

Enabled

ID

ReleaseHooksByCommand

ReleaseHooksByObject

UnHookCommand

HookCommand

SendCommand

UICommandTarget

UICommandState

UICmd

Command Handler

Command

StartUpdateCycle

EndUpdateCycle

UpdateCycleID

Property

Method() Method

Property

Object

Key

Object
– 221 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

 by

ill be

r code
and
Step 1: Declare a Global Instance of the UICommands Class
Declare a global variable of the UICommands class. This class is the primary interface
to this command-handling client framework component. This variable will be used
various client framework components of the application.

Example of declaring a global variable

Public gUICmds As New UICommands

Note: The UICommandConstants.bas client framework component declares this
variable.

Step 2: Define the Commands
Define the application-specific commands your menu items and toolbar buttons w
sending. You will define these commands by defining named constants:

Public Const CMD_FILE_NEW As String = "FileNew"
Public Const CMD_FILE_OPEN As String = "FileOpen"
Public Const CMD_FILE_SAVE As String = "FileSave"
...

These constants are called command IDs. Their values are entirely up to you; you
will never refer to the values directly, only the constant names. Define one comm
ID for each unique menu and toolbar command.
– 222 –

______________________________ Understanding and Customizing the Client Framework
8

s
ucture

both a
hod of
llow-
Step 3: Code Menu and Toolbar Events to Send the Command
Before you begin this step, ensure that your application has a menu or a toolbar str
from which you intend to send commands.

� To code menu events to send commands:

1 Write Click events for the menu controls.

� To code toolbar events to send commands:

1 Write ButtonClick events for the toolbar controls.

Example of coding the menu and toolbar events for three commands

Private Sub mnuFileNew_Click()
 gUICmds. SendCommand CMD_FILE_NEW
End Sub

Private Sub mnuFileOpen_Click()
 gUICmds. SendCommand CMD_FILE_OPEN
End Sub

Private Sub mnuFileSave_Click()
 gUICmds. SendCommand CMD_FILE_SAVE
End Sub

...

' For toolbar buttons, use the Tag property to store the
' command ID you want the button to send.

Private Sub Form_Load()
 With tbrMain
 .Buttons("NEW").Tag = CMD_FILE_NEW
 .Buttons("OPEN").Tag = CMD_FILE_OPEN
 .Buttons("SAVE").Tag = CMD_FILE_SAVE
 ...
 End With
End Sub

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
 If Button.Tag <> "" Then
 gUICmds. SendCommand Button.Tag
 End If
End Sub

As you can see from this example, you can easily send the same command from
menu control and a toolbar button. The event code uses the SendCommand met
the UICommands class to send a specific command ID from each control. In the fo
ing step, define the command handlers that receive these commands.
– 223 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

n a
or an
hod

om-
assed

 more

d ID.
om-

r with
ion of
k is es-
ceives
Step 4: Code the Command Handlers
Provide the code that will be executed for each command. This code will reside i
command handler object, which can be a Visual Basic form, a Visual Basic class,
OLE object. The only requirement for this object is that it must have a public met
called UICommandTarget with the following declaration:

Public Sub UICommandTarget(Cmd As UICmd, ByRef ForwardToNext As Boolean)

When a menu control or toolbar button’s click event calls SendCommand, the UIC
mands class eventually calls the UICommandTarget method. Into this method is p
a UICmd object which contains information about the command received.

UICommandTarget usually has a Select Case Cmd.ID statement so it can handle
than one command and perform specific processing for each command.

Example of coding a command handler

Select Case Cmd. ID
Case CMD_FILE_NEW
 ' Processing for the File|New command.
 ' ...
Case CMD_FILE_OPEN
 ' Processing for the File|Open command.
 ' ...
Case CMD_FILE_SAVE
 ' Processing for the File|Save command.
 ' ...
...
End Select

Step 5: Link the Commands to the Command Handlers
Next, tell the UICommands class what the command handler is for each comman
This action is called hooking a command. When you hook a command, specify the c
mand handler object and a list of command IDs.

Example of linking the command handler to the command ID

With gUICmds
 . HookCommand frmMDIFrame, CMD_FILE_NEW, CMD_FILE_OPEN, _
 CMD_FILE_SAVE ...

End With

The HookCommand method of the UICommands class links the command handle
one or more command IDs. This method can be called any time during the execut
the program. Once a command has been hooked by a command handler, the lin
tablished between the GUI control that sends the command and the code that re
and processes the command.
– 224 –

______________________________ Understanding and Customizing the Client Framework
8

res a
last
han-

ds
e com-
 (the

gain
oved

wn in

d ID
nd
More than one object can hook a given command ID. The UICommands class sto
list of command handlers for each command ID (the command handler list). The
command handler to be hooked to a command ID is called first. If this command
dler decides not to perform the processing for the command, it can set the
ForwardToNext output parameter to True before returning, to tell the UIComman
class to send the command to the next command handler (the one that hooked th
mand second last). This sequence continues until ForwardToNext is set to False
default) or all command handlers in the list have been called.

If a command handler is hooked to a command ID and HookCommand is called a
for the same command handler and command ID, the command handler will be m
to the front of the list, instead of being in the list twice.

The SendCommand method in the UICommands is actually implemented as sho
the following pseudocode.

Pseudocode demonstrating how the SendCommand method works

Sub SendCommand(CmdID As Variant)
 Look up the command handler list for the given CmdID
 For each object, cmdtarget, in the list
 Set ForwardToNext to False
 Call cmdtarget.UICommandTarget(Cmd, ForwardToNext)
 If ForwardToNext is False
 Exit the loop
 End If
 End For
End Sub

When an object no longer wants to hook a command ID, you can call the
UnHookCommand method of UICommands to break the link between the comman
and the command handler. UICommands will remove the object from the comma
handler list.

Example of unlinking the command ID and the command handler

With gUICmds
 . UnHookCommand frmMDIFrame, CMD_FILE_NEW, CMD_FILE_OPEN, _
 CMD_FILE_SAVE ...
End With
– 225 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

visibly
lso de-
a
and is
hen
Updating User Interface Controls
When a user opens a menu, the menu commands that are not currently valid are
disabled. The object that processes a command (the command handler object) a
cides whether or not the command is valid. The UICommands class implements
mechanism whereby it asks the command handler object whether a given comm
valid or not. Modify the event code to customize the actions that are performed w
the user selects a menu item or clicks a toolbar button.

� To update user interface controls:

� Step 1: Code Events to Update the Menu Controls, page 227

� Step 2: Code the Logic that Determines the State of a Command, page 228

� Step 3: Code Events to Update the Toolbar Buttons, page 229

These steps are described in the following sections.
– 226 –

______________________________ Understanding and Customizing the Client Framework
8

 dis-
e File

event

 that
nu is
ntrol.

en

t
the
lid
n
en
Step 1: Code Events to Update the Menu Controls
Write event code that enables or disables the menu items just before the menu is
played to the user. Take advantage of the Click event of a menu control, such as th
menu or Edit menu, as a place to include your event code. Visual Basic calls this
just before displaying the menu to the user.

Example of updating menu controls before the menu is displayed to the user

Private Sub mnuFile_Click()
 SetMenuState mnuFileNew, CMD_FILE_NEW
 SetMenuState mnuFileOpen, CMD_FILE_OPEN
 SetMenuState mnuFileSave, CMD_FILE_SAVE
 ...
End Sub

Private Sub SetMenuState(mnu As Menu, CmdID As Variant)
 With gUICmds. Command(CmdID)
 . GetCurrentState
 mnu.Enabled = . Enabled
 mnu.Checked = . Checked
 End With
End Sub

If you disable a menu control in its parent’s Click event (the parent is the submenu
contains the menu control), Visual Basic disables the menu control when the me
displayed. You can do the same thing with the Checked property for the menu co

where:

Command Returns a UICmd object that contains information for a giv
CmdID. This is the same UICmd object that was passed to
UICommandTarget.

GetCurrentState Causes UICommands to call the command handler objec
again, but this time the command handler will not process
command, but will return whether or not the command is va
and whether or not it should be checked. These settings ca
then be read from the Enabled and Checked properties wh
GetCurrentState returns.
– 227 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

d
d or

ate is

to han-
. The
lso set
 com-

 True

eter-
efore
dler

e En-
hen
 emp-
Step 2: Code the Logic that Determines the State of a Comman
The logic that determines whether a command is enabled or disabled and checke
unchecked resides in the command handler in a public method called
UICommandState. It must have the following declaration:

Public Sub UICommandState(Cmd As UICmd, ByRef ForwardToNext As Boolean)

The UICommandState method is called by UICommands whenever GetCurrentSt
called as shown in the following example:

Example of using the UICommandState method

With Cmd
 Select Case . ID
 Case CMD_FILE_NEW
 ' Code that determines if this command is valid.
 . Enabled = some condition
 Case CMD_FILE_OPEN
 ' Code that determines if this command is valid.
 . Enabled = some condition
 Case CMD_FILE_SAVE
 ' Code that determines if this command is valid.
 If some condition Then
 . Enabled = True
 Else
 . Enabled = False
 . DisabledReason = "the document has not changed since” & _
 “it was saved"
 End If
 End Select
End With

In the previous example, the Select Case Cmd.ID statement enables the method
dle more than one command and provide specific processing for each command
Enabled property can be set to True or False. If Enabled is set to False, you can a
the DisabledReason property to provide a message to the user explaining why the
mand is not available. You also have the option of setting the Checked property to
or False.

Similar to UICommandTarget, if the command handler object is not required to d
mine the state of the command, it can set the ForwardToNext parameter to True b
returning, instructing UICommands to invoke the next object in the command han
list.

If a command has at least one object in its command handler list, the object will b
abled and Unchecked. You only need to provide handling in UICommandState w
you want to disable or check a command. If a command’s command handler list is
ty, GetCurrentState will return Disabled and Unchecked.
– 228 –

______________________________ Understanding and Customizing the Client Framework
8

age is

e the

 im-
 event

igned
ently.
hind

e run-
 it
Step 3: Code Events to Update the Toolbar Buttons
Add code to enable or disable toolbar buttons. There are several different ways to
present disabled toolbar buttons to the user:

• Display a message. When the user clicks the button, either a window with a mess
displayed or the message is displayed on the status bar.

• Show a toolbar button with a disabled bitmap so that the user can immediately se
button is disabled. The client framework uses this approach.

Displaying a Disabled Bitmap

If you decide to display a disabled bitmap, you must continually update the button
age. To update the button image, use a Timer control on the form and include the
code as indicated in the following example:

Example of adding a Timer control to update the Button image

Private Sub tmrToolbarUpdate_Timer()
 Dim i As Integer
 Dim btn As Button

 For Each btn In tbrMain.Buttons
 If btn.Tag <> "" Then
 With gUICmds.Command(btn.Tag)
 . GetCurrentState
 btn.Enabled = . Enabled
 If btn.Style = tbrCheck Then
 btn.Value = IIf(. Checked , tbrPressed,
 tbrUnpressed)
 End If
 End With
 End If
 Next
End Sub

The previous example updates all the toolbar buttons that have command IDs ass
to them by the Tag property. Set the timer interval so that this event executes frequ
An interval of 250 ms ensures that the toolbar button bitmaps do not lag too far be
the application’s state. Timer events are only triggered when the application becomes
idle. This is advantageous because it does not take away processing time from th
ning application to update the toolbar buttons, but it is disadvantageous because
continues to update the toolbar button bitmaps when your application is idle.
– 229 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

s en-

ton is
e on

menu
e first
sy. If,
 or
e

 to
pdate

ere-
bout
king

store

lete,
 the
Displaying a Message

If you decide not to update the toolbar button bitmaps continually, leave the button
abled and instead display a message when the user clicks on a disabled button.

Example of displaying a message after the Click event on a disabled menu item

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
 Dim smsg as string
 If Button.Tag <> "" Then
 With gUICmds.Command(Button.Tag)
 . GetCurrentState
 If . Enabled Then
 gUICmds. SendCommand Button.Tag
 Else
 smsg = "This command is not available"
 If . DisabledReason <> "" Then
 smsg = smsg & " because " & . DisabledReason
 End If
 DisplayStatusBarMessage smsg
 End If
 End With
 End If
End Sub

When the user clicks a toolbar button, the code determines whether or not the but
valid. If it is valid, it executes the event code. If it is not valid, it displays a messag
the status bar, explaining to the user why the button is disabled.

Update Cycles

When the GetCurrentState method is called repeatedly for each menu item on a
or for each button on a toolbar, the application’s state does not change between th
call and the last call to GetCurrentState because the only thread of execution is bu
however, one of the UICommandState methods yields the CPU with a DoEvents
calls a Windows function that yields, for example, with a blocked DDE request, th
Construct Spectrum application could be re-entered allowing its state to change.

Assuming that the UICommandState methods do not act in this way, it is possible
optimize the code that executes within these methods by using the concept of an u
cycle.

During an update cycle, it is known that the application’s state will not change. Th
fore, at the beginning of an update cycle, you can look up all of the information a
the application’s state that the UICommandState methods will need. Instead of loo
this up for each command ID that needs the information, you can look it up once,
the information in Static variables, and use it several times.

For example, the validity of the Edit menu commands Undo, Cut, Copy, Paste, De
and Select All, all depend on the control that currently has focus. You could write
following code to determine the state of each of these commands at once.
– 230 –

______________________________ Understanding and Customizing the Client Framework
8

e dur-
le,

stant
om-
n the
Example of code that determines the state of multiple commands simultaneously

bcanundo = False
bcancut = False
bcancopy = False
bcanpaste = False
bcandelete = False
bcanselectall = False

Set ctl = Screen.ActiveControl
If Not (ctl Is Nothing) Then
 Select Case TypeName(ctl)
 Case "TextBox", "MaskEdBox"
 bcanundo = (SendMessage(ctl.hwnd, EM_CANUNDO, 0, ByVal 0&) <> 0)
 bcancut = (ctl.SelLength > 0)
 bcancopy = bcancut
 bcanpaste = Clipboard.GetFormat(vbCFText)
 bcandelete = bcancut
 bcanselectall = (ctl.Text <> "")
 End Select
End If

You may only want to run this code at the beginning of each update cycle becaus
ing the update cycle the application’s state will not change. To set the update cyc
bracket the calls to GetCurrentState with a call to StartUpdateCycle and a call to End-
UpdateCycle as shown in the following example:

Example of setting the update cycle

Private Sub mnuEdit_Click()
 gUICmds.StartUpdateCycle

 SetMenuState mnuEditUndo, CMD_EDIT_UNDO
 '---
 SetMenuState mnuEditCut, CMD_EDIT_CUT
 SetMenuState mnuEditCopy, CMD_EDIT_COPY
 SetMenuState mnuEditPaste, CMD_EDIT_PASTE
 SetMenuState mnuEditDelete, CMD_EDIT_DELETE
 '---
 SetMenuState mnuEditSelectAll, CMD_EDIT_SELECT_ALL

 gUICmds.EndUpdateCycle
End Sub

StartUpdateCycle assigns an update cycle ID (a 32-bit integer), which will be con
until the call to EndUpdateCycle. The code that determines the state of the edit c
mands will now only be executed when the update cycle ID changes, as shown i
following example:
– 231 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

Example of changing the update cycle ID

Dim ctl As Control
Static llastupdateedit As Long
Static bcanundo As Boolean
Static bcancut As Boolean
Static bcancopy As Boolean
Static bcanpaste As Boolean
Static bcandelete As Boolean
Static bcanselectall As Boolean

With Cmd
 Select Case .ID
 ...
 Case CMD_EDIT_UNDO, _
 CMD_EDIT_CUT, _
 CMD_EDIT_COPY, _
 CMD_EDIT_PASTE, _
 CMD_EDIT_DELETE, _
 CMD_EDIT_SELECT_ALL
 If llastupdateedit <> gUICmds.UpdateCycleID then
 llastupdateedit = gUICmds.UpdateCycleID

 bcanundo = False
 bcancut = False
 bcancopy = False
 bcanpaste = False
 bcandelete = False
 bcanselectall = False

 Set ctl = Screen.ActiveControl
 If Not (ctl Is Nothing) Then
 Select Case TypeName(ctl)
 Case "TextBox", "MaskEdBox"
 bcanundo =(SendMessage(ctl.hwnd, EM_CANUNDO, _
 0, ByVal 0&) <> 0)
 bcancut = (ctl.SelLength > 0)
 bcancopy = bcancut
 bcanpaste = Clipboard.GetFormat(vbCFText)
 bcandelete = bcancut
 bcanselectall = (ctl.Text <> "")
 End Select
 End If
 End If
 Select Case .ID
 Case CMD_EDIT_UNDO: .Enabled = bcanundo
 Case CMD_EDIT_CUT: .Enabled = bcancut
 Case CMD_EDIT_COPY: .Enabled = bcancopy
 Case CMD_EDIT_PASTE: .Enabled = bcanpaste
 Case CMD_EDIT_DELETE: .Enabled = bcandelete
 Case CMD_EDIT_SELECT_ALL: .Enabled = bcanselectall
 End Select
 End Select
End With
– 232 –

______________________________ Understanding and Customizing the Client Framework
8

 you

By-

 will
ocu-

r be-

Ds
Additional Methods For Command Handling
This section describes other methods of UICommands you can use with your
application.

Unhooking Commands
To remove an object from all command handler lists, regardless of command ID,
must release all references to it. The UICommands class provides the
ReleaseHooksByObject method as illustrated in the following syntax example.

Syntax of the ReleaseHooksByObject method

Sub ReleaseHooksByObject(HookObject As Object)

Pseudocode showing how the ReleaseHooksByObject method works

For all commands
 If HookObject is in this command's command handler list
 Remove it from the list
 End If
End For

To empty the command handler list for a given command, use the ReleaseHooks
Command method provided with the UICommands class:

Sub ReleaseHooksByCommand(CmdID As Variant)

Customizing the Menu and Toolbar in the Client Framework
This section describes how to tailor the menu items and the toolbar buttons. You
learn how to model your changes on the code in the client framework’s multiple-d
ment interface (MDI) frame form.

For more information about tailoring the menu items, see Changing the Menu Struc-
ture, page 234.

For more information about tailoring the buttons on the toolbar, see Changing the
Toolbar Structure, page 240.

For information about how to change the states of the menu items and the toolba
tween enabled and disabled, and checked or unchecked, see Understanding Menu and
Toolbar Command Handling, page 220.

where:

CmdID As Variant Is replaced with one of the previously-defined command I
(for example, CMD_EDIT_UNDO).
– 233 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

pre-
ttern

n-

de

e for

dit

s.bas.
Changing the Menu Structure
The multiple-document interface (MDI) frame form in the client framework has a
defined menu structure. You may change this menu structure by following the pa
used in the MDI frame form.

For more information about the MDI frame form, the command IDs, command ha
dlers, and update cycles, see Understanding Menu and Toolbar Command
Handling, page 220.

The pattern supplied with the MDI frame form is implemented with the following co
requirements:

• Each menu item control sends a command ID through event code. The event cod
all menu item controls is identical except for the command ID constant.

Example of event code for three commands on File menu and two commands on E
menu

Private Sub mnuFileOpen_Click()
 gUICmds.SendCommand CMD_FILE_OPEN
End Sub

Private Sub mnuFileClose_Click()
 gUICmds.SendCommand CMD_FILE_CLOSE
End Sub

Private Sub mnuFileExit_Click()
 gUICmds.SendCommand CMD_FILE_EXIT
End Sub

Private Sub mnuEditCut_Click()
 gUICmds.SendCommand CMD_EDIT_CUT
End Sub

Private Sub mnuEditCopy_Click()
 gUICmds.SendCommand CMD_EDIT_COPY
End Sub

• The command IDs are all defined in a global module called UICommandConstant

Example of UICommandConstants.bas where all command IDs are defined

Public Const CMD_FILE_OPEN = "FileOpen"
Public Const CMD_FILE_CLOSE = "FileClose"
Public Const CMD_FILE_EXIT = "FileExit"

Public Const CMD_EDIT_CUT = "EditCut"
Public Const CMD_EDIT_COPY = "EditCopy"

• When the MDI frame form is loaded, the command IDs are hooked into the command
classes.
– 234 –

______________________________ Understanding and Customizing the Client Framework
8

nd
 by

hen
r un-

ls are

 in
ures
jects
Example of hooking the commands IDs into the command classes

Private Sub MDIForm_Load ()
 With gUICmds
 .HookCommand Me, CMD_FILE_OPEN, _
 CMD_FILE_CLOSE, _
 CMD_FILE_EXIT

 .HookCommand Me, CMD_EDIT_CUT, _
 CMD_EDIT_COPY
 End With
End Sub

Note: Although you can hook all command IDs with one call to the HookComma
method, the previous example illustrates how to group the command IDs
category — File commands and Edit commands.

• Each menu item has a parent menu control. This control’s Click event is triggered w
the user chooses the menu. Use the Click event to enable or disable and check o
check each menu item.

Example of using the Click event to control menu items

Private Sub mnuFile_Click()
 gUICmds.StartUpdateCycle
 SetMenuState mnuFileOpen, CMD_FILE_OPEN
 SetMenuState mnuFileClose, CMD_FILE_CLOSE
 SetMenuState mnuFileExit, CMD_FILE_EXIT
 gUICmds.EndUpdateCycle
End Sub

Private Sub mnuEdit_Click()
 gUICmds.StartUpdateCycle
 SetMenuState mnuEditCut, CMD_EDIT_CUT
 SetMenuState mnuEditCopy, CMD_EDIT_COPY
 gUICmds.EndUpdateCycle
End Sub

The previous example calls SetMenuState for each item on the menu. These cal
bracketed by StartUpdateCycle and EndUpdateCycle.

• Finally, you must code the UICommandTarget and UICommandState procedures
each form that will be receiving these command IDs. You can model your proced
on the procedures used by the MDI frame form and Visual Basic maintenance ob
generated with Natural Construct.
– 235 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

Example of UICommandTarget and UICommandState procedures used by MDI
frame form

Public Sub UICommandTarget(Cmd As UICmd, ForwardToNext As Boolean)
 Select Case Cmd.ID

 Case CMD_FILE_OPEN
 frmOpen.Show vbModal
 Case CMD_FILE_CLOSE
 Unload Screen.ActiveForm
 Case CMD_FILE_EXIT
 Unload Me

 Case CMD_EDIT_CUT
 With Screen.ActiveControl
 Clipboard.SetText .SelText
 .SelText = ""
 End With
 Case CMD_EDIT_COPY
 Clipboard.SetText Screen.ActiveControl.SelText

 End Select
End Sub

Public Sub UICommandState(Cmd As UICmd, ForwardToNext As Boolean)
 Dim frm As Form
 Dim ctl As Control

 Static llastupdateedit As Long
 Static bcancut As Boolean
 Static bcancopy As Boolean

 With Cmd
 Select Case .ID
 Case CMD_FILE_CLOSE
 .Enabled = False
 .DisabledReason = "there are no child windows open"
 Set frm = Screen.ActiveForm
 If Not (frm Is Nothing) Then
 .Enabled = IsMDIChild(frm)
 End If

 Case CMD_EDIT_CUT, _
 CMD_EDIT_COPY
 If llastupdateedit <> gUICmds.UpdateCycleID Then
 llastupdateedit = gUICmds.UpdateCycleID
 bcancut = False
 bcancopy = False

 Set ctl = Screen.ActiveControl
 If Not (ctl Is Nothing) Then
 Select Case TypeName(ctl)
 Case "TextBox", "MaskEdBox"
 bcancut = (ctl.SelLength > 0)
 bcancopy = bcancut
 End Select
 End If
 End If
– 236 –

______________________________ Understanding and Customizing the Client Framework
8

es

r:

me

added.
 Select Case .ID
 Case CMD_EDIT_CUT: .Enabled = bcancut
 Case CMD_EDIT_COPY: .Enabled = bcancopy
 End Select
 End Select
 End With
End Sub

Example of Changing the Menu Bar and Its Menu Items
The following example adds a new menu called View to the menu bar and includ
commands that allow you to toggle the toolbar and status bar on and off.

� To add a View menu to the menu bar with the menu items Toolbar and Status Ba

1 Use Visual Basic’s menu editor to add the following menu controls to the MDI fra
form.

Note: The rest of this example assumes the previous menu structure has been

Menu Caption Menu Control Name

View mnuView

Toolbar mnuViewToolbar

Status Bar mnuViewStatusBar
– 237 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

try to
Example of the New Menu View Added to the Menu Bar

2 Define command IDs in UICommandConstants.bas:

Public Const CMD_VIEW_TOOLBAR = "ViewToolbar"
Public Const CMD_VIEW_STATUSBAR = "ViewStatusBar"

The names of these constants and their values can be anything you choose, but
follow the conventions established in the code.

3 Code the event handlers for the menu controls:

Private Sub mnuViewToolbar_Click()
 gUICmds.SendCommand CMD_VIEW_TOOLBAR
End Sub

Private Sub mnuViewStatusBar_Click()
 gUICmds.SendCommand CMD_VIEW_STATUSBAR
End Sub

New View menu
– 238 –

______________________________ Understanding and Customizing the Client Framework
8

ate of

the

ed
 the
ang-
d
4 Hook the command IDs into the command classes:

Private Sub MDIForm_Load ()
 With gUICmds
 ...
 .HookCommand Me, CMD_VIEW_TOOLBAR, _
 CMD_VIEW_STATUSBAR
 ...
 End With
End Sub

5 Add code to the Click event of the menu control on the menu bar to update the st
the menu controls:

Private Sub mnuView_Click()
 gUICmds.StartUpdateCycle

 SetMenuState mnuViewToolbar, CMD_VIEW_TOOLBAR
 SetMenuState mnuViewStatusBar, CMD_VIEW_STATUSBAR

 gUICmds.EndUpdateCycle
End Sub

6 Lastly, add code to the UICommandTarget and UICommandState procedures in
MDI frame form to handle these two new command IDs:

Public Sub UICommandTarget(Cmd As UICmd, ForwardToNext As Boolean)
 Select Case Cmd.ID
 ...
 Case CMD_VIEW_TOOLBAR
 tbrMain.Visible = Not tbrMain.Visible
 Case CMD_VIEW_STATUSBAR
 sbrMain.Visible = Not sbrMain.Visible
 ...
 End Select
End Sub

Public Sub UICommandState(Cmd As UICmd, ForwardToNext As Boolean)
 With Cmd
 Select Case .ID
 ...
 Case CMD_VIEW_TOOLBAR
 .Checked = tbrMain.Visible
 Case CMD_VIEW_STATUSBAR
 .Checked = sbrMain.Visible
 ...
 End Select
 End With
End Sub

By using the command handler, you do not need to set the menu controls’ Check
properties when you toggle the visibility of the toolbar or status bar. Instead, read
current visibility state in the UICommandState method. If another piece of code ch
es the visibility state, that other code is not required to toggle the menu’s Checke
property.
– 239 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

oes.

ry,

rties
 the

age

 that
.

This

rties
trol

ialog,

n
ode is
ed.

 en-
Changing the Toolbar Structure
The toolbar follows the structure defined by the MDI frame form, just as the Menu d

For more information about the MDI frame form structure, see Understanding Menu
and Toolbar Command Handling, page 220.

• The toolbar is a control of type Toolbar, from the Windows Common Controls libra
with the name tbrMain.

• The button arrangement is defined at design time using the Toolbar Control Prope
window. The images on the buttons are stored in the ilstMain image list control on
MDI frame form. Each toolbar button is linked to a specific numeric index in the im
list.

• The Tag property of each toolbar button contains the command ID that is sent by
button. The command IDs may be the same as or different from those used on the menu
These Tag properties are set up with the following code in the form’s Load event:

Example of Tag properties defined in the Load event

With tbrMain
 .Buttons("OPEN").Tag = CMD_FILE_OPEN
 .Buttons("CUT").Tag = CMD_EDIT_CUT
End With

The previous example uses a string key to uniquely identify each toolbar button.
key makes it easy to get a reference to a specific toolbar button.

Note: Another way to set the Tag property is by using the Toolbar Control Prope
window, although this solution is less desirable. First, in the Toolbar Con
Properties window, specify a hard-coded value in the dialog (in code you
would use a named constant). Second, if you hand code the value in the d
you cannot use Visual Basic’s search function to search for it, making your
code more difficult to review, change, and scan for dependencies.

• When a toolbar button is clicked, the ButtonClick event checks whether the butto
should be enabled or not, and then sends the command ID if it is enabled. This c
generic and does not have to be changed if the buttons on the toolbar are chang

The following example uses the ButtonClick event to check whether the button is
abled or not and sends the command ID if it is enabled.
– 240 –

______________________________ Understanding and Customizing the Client Framework
8

enu
ady

lers,

f the

ch
.

ow
Example of checking the button’s state

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
 Dim smsg As String

 If Button.Tag <> "" Then
 With gUICmds.Command(Button.Tag)
 .GetCurrentState
 If .Enabled Then
 gUICmds.SendCommand Button.Tag
 Else
 smsg = "This command is not available"
 If .DisabledReason <> "" Then
 smsg = smsg & " because " & .DisabledReason
 End If
 DisplayStatusBarMessage smsg
 End If
 End With
 End If
End Sub

Example of Adding Buttons to the Toolbar
In this example, two new buttons are placed on the toolbar to correspond to the m
commands Insert Row and Delete Row on the Edit menu. These commands alre
have command IDs and command handlers.

For more information about defining command ID constants and command hand
see Example of Changing the Menu Bar and Its Menu Items, page 237.

� To add two buttons to the toolbar:

1 Display the Image List Control Properties window for the image list control called
ilstMain and add the bitmaps of your choice to the two new buttons. Make a note o
numeric index of these bitmaps.

2 Display the Toolbar Control Properties window and add the new buttons. Give ea
button a string key, ToolTip text, and assign the image number from the first step

3 Set the buttons’ Tag properties in the MDI frame form’s Load event. The
mnuEditInsertRow and mnuEditDeleteRow controls in the Click event send the
command IDs CMD_EDIT_INSERT_ROW and CMD_EDIT_DELETE_ROW,
respectively. Use these command IDs when assigning the Tag properties:

With tbrMain
 ...
 .Buttons("INSERT_ROW").Tag = CMD_EDIT_INSERT_ROW
 .Buttons("DELETE_ROW").Tag = CMD_EDIT_DELETE_ROW
 ...
End With

There are now two new buttons on the toolbar that behave identically to the Insert R
and Delete Row commands on the Edit menu.
– 241 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

 Use
ur
e the

s

d the
MDI (Multiple-Document Interface) Frame Form
Construct Spectrum supplies the MDI (Multiple-Document Interface) frame form,
which includes a standard menu bar, toolbar, and status bar for your application.
the MDI frame form as a starting point for creating your own menu or tailoring yo
toolbars. You can customize the menu and toolbars for each application — or us
MDI frame form as is.

All generated maintenance dialogs are displayed as child windows within the MDI
frame form. The following table describes the components of the MDI frame form:

For more information, see Multiple-Document Interface (MDI) Applications in the
Microsoft Visual Basic documentation.

Component Description

MDIFrame.frm Contains the MDI frame form, which includes the following:

Menu Bar Contains File, Edit, Actions, Window, and Help menus, each
containing the standard menu commands.

Toolbar Contains buttons that correspond to most of the menu command
and can be customized by the user.

Status Bar Contains panels for a message, various status indicators, an
current date and time.
– 242 –

______________________________ Understanding and Customizing the Client Framework
8

ted
rms.

ware
ialog

ts for

d

ect, se-

your

ation.

.

Object Factory
The object factory client framework components are used by many of the genera
Construct Spectrum modules, as well as by other client framework objects and fo
The purpose of the object factory is to make the client portion of your application a
of all of its Visual Basic business objects and their associated actions. The Open d
uses the object factory to display a list of all available Visual Basic business objec
selection.

The following table describes the object factory and Open dialog components supplie
with Construct Spectrum:

The objects and actions are displayed in the Open dialog. The user selects an obj
lects one of the actions for that object, and then clicks OK to display the form.

Default Open.frm Supplied with your Construct Spectrum Project

Component Description

Open.frm Contains the Open dialog.

OpenAction Describes a single action of a Visual Basic business object in
application.

OpenObject Describes a single Visual basic business object in your applic

OpenObjects Contains all Visual Basic business objects in your application

OFactory.bas Contains the object factory.
– 243 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

e of
ing
r show-
le, if
nd
 short

 the
en
cted.

ry is
s ob-
es
s are

er ap-
cute,
tion.

ness
Understanding the Open Dialog
The Open dialog provides the user with a convenient method of selecting the typ
window he or she would like to open. The Open dialog displays two lists: one show
the main business objects, such as customers, accounts, and orders, and the othe
ing the actions available for the business object selected in the first list. For examp
Orders is selected in the first list, then Maintain, Browse, Show pending orders, a
Print end-of-day report may appear in the second list. Each item may also have a
description, which is shown when the user selects the item.

You do not modify the Open dialog. Instead, update the object factory by providing
list of objects for the first list and the associated actions for the second list, and th
writing the code that is executed when each object and action combination is sele
This code will load and display a form generated by Natural Construct.

The Open dialog uses the object factory for two purposes:

• To determine which objects and actions are supported by an application

• To instantiate a form

For more information, see Customizing the Object Factory, page 246, and Custom-
izing the Menu and Toolbar in the Client Framework, page 233.

Understanding the Object Factory
Every Construct Spectrum application contains an object factory. The object facto
the central repository in your application where instances of Visual Basic busines
jects are created for use by other portions of the application. The super model generat
the initial object factory based on the objects defined to the model. As new object
added, the object factory is typically extended by hand-coding new object references.

Because all Visual Basic business objects are created in the object factory, all oth
plication components that use the services of these objects can compile and exe
even if the business objects they interact with have not been added to the applica
For more information about using the object factory to instantiate Visual Basic busi
objects that have not yet been added to your application, see Example of Using the Ob-
ject Factory, page 246.

Application components that use the services of the object factory include:

• Construct Spectrum client framework components:

– Open dialog

– BrowseManager class
For more information, see Using the BrowseManager, page 191, and Understand-
ing Browse Command Handlers, page 195.
– 244 –

______________________________ Understanding and Customizing the Client Framework
8

ject

 see

owse

ice
r
ces of
cts and

he

ss

the

.

r
ect

• Visual Basic maintenance business object
For more information about the forms and classes generated by the VB-Maint-Ob
model, see Creating and Customizing Maintenance Dialogs, page 113. For more in-
formation about the forms and classes generated by the VB-Maint-Dialog model,
Strategies for Customizing a Maintenance Dialog, page 129.

• Visual Basic browse business object
For more information about the forms and classes associated with Visual Basic br
business objects, see About Browse Dialogs, page 176 and Understanding Browse
Command Handlers, page 195.

• Custom-created modules such as browse command handlers
For information, see Understanding Browse Command Handlers, page 195.

Application components that require a specific form or object to implement a serv
(for example, creating a browse dialog that allows your users to browse custome
records) use the object factory. Instead of each component creating its own instan
these objects, components send a request to the object factory to create the obje
return a reference.

Using the Object Factory
The object factory exposes four procedures (functions and subroutines) that are global
to your application. As you create your application, use these procedures to:

• Make the application aware of all its Visual Basic business objects.

• Create instances of Visual Basic business objects (forms or objects).

• Query the availability of Visual Basic business objects.

The following table describes the procedures in the object factory:

Service Description

InitializeOpenDialog() Creates a list of the application’s Visual Basic
business objects and the actions they support. T
Open dialog uses this service.

CreateForm(formID) As Form Creates a form to support a Visual Basic busine
object (either a Visual Basic browse or
maintenance object) and returns a reference to
form. The Open dialog uses this service.

BrowserExists(TableName) As
Boolean

Confirms with True or False whether a Visual
Basic browse object exists for a database table

GetBrowser(TableName) As
BrowseManager

Creates a specific Visual Basic browse object fo
a database table. Next, the specified browse obj
creates and initializes a browse base object.
Finally, the object factory returns a reference to
the BrowseManager object.
– 245 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

, the

d of
se

wse
r

t fac-
turns
owse

f the

ms or
e of
tory

en

you
me-
The
Example of Using the Object Factory
An Order Maintenance form can invoke an Order Browse form. To accomplish this
Order Maintenance form uses the services of the Order Browse object.

If an Order Maintenance form directly instantiates an Order Browse object (instea
using the object factory), it could not be compiled without including the Order Brow
object as part of the application. However, by conditionally creating an Order Bro
object with the object factory, you will be able to compile the form, even if the Orde
Browse object has not yet been added to the application.

At execution time, the Order Maintenance form uses a global function,
BrowserExists(tablename), exposed by the object factory, to determine if the objec
tory can create an instance of the Order Browse object. Only if the object factory re
True to this request does the form enable the features supported by the Order Br
object.

The TableName parameter used with the BrowserExists() function is the name o
database table implemented by a Visual Basic business object.

Customizing the Object Factory
When you add new business objects to your application, such as maintenance for
browse objects, you must update the object factory to make the application awar
these new objects. You must either add code manually to the standard object fac
module or generate a new object factory using the super model.

If you generated and downloaded the object factory (OFACTORY, although you may
have given it a different name), you should be able to run your application, choose Op
on the File menu, and see the objects and actions you generated.

Downloaded forms are added to your Construct Spectrum project. However, if you did
not generate the object factory or if you are adding a form to an existing project,
must write a small amount of code by hand to link each new form to the client fra
work. Once linked, the Open dialog is able to load, initialize, and display the form.
following sections describe how to code the object factory by hand.
– 246 –

______________________________ Understanding and Customizing the Client Framework
8

o dis-
e
 you
wse,

 with

hich
es
Setting Up Object/Action Combinations and Forms
The client framework uses an object-action metaphor to select a particular form t
play. As the application developer, you must decide which types of objects can b
manipulated by the application, such as Customers, Orders, and Inventory. Next
must decide which actions will be supported for each object, such as Maintain, Bro
or Show Delinquents. Each object-action combination will have a form associated
it, either generated or created by hand.

You must write code to define all of the objects, the actions for each object, and w
form to load and initialize for each object-action combination. All of the code resid
in a module called OFactory.bas in your Construct Spectrum project.

Default Code in the OFactory.bas
– 247 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

e, and
 of the
The relationship between the Open dialog, the procedures in the OFactory.bas fil
the newly-created form are important to understand as you plan the customization
object factory. The following diagram clarifies these relationships:

 Interaction Between Open Dialog, Procedures in OFactory.bas,
and Newly-Created Form

5 Display form1 Get object/action details

Open Dialog

CreateForm

3 Get new form instance

4 Load and initialize form2 User selects an object/action
combination

Newly-Created FormInitializeOpenDialog
– 248 –

______________________________ Understanding and Customizing the Client Framework
8

Example of the default OFactory.bas client framework component

Option Explicit

'==
' P U B L I C Module Variables
'==

Public gOpenObjects As OpenObjects

'==
' P U B L I C Procedures
'==

Public Sub InitializeOpenDialog()

 Dim obj As OpenObject

 Set gOpenObjects = New OpenObjects

 Set obj = gOpenObjects.Add("Customer", "These are our customers.")
 obj.Add "Maintain", "Customer maintenance", "CUSTMAINT"
 obj.Add "Browse", "Display a list of all customers.", "CUSTBROWSE"

 Set obj = gOpenObjects.Add("Order", "These are our orders.")
 obj.Add "Maintain", "Order maintenance", "ORDERMAINT"
 obj.Add "Browse", "Display a list of all orders.", "ORDERBROWSE"

End Sub

Public Function CreateForm(FormID As Variant) As Form
 Dim frm As Form

 Select Case FormID
 Case "CUSTMAINT"
 Set frm = New frmCustomerMaint

 Case "CUSTBROWSE"
 Set frm = New frmCustomerBrowse

 Case "ORDERMAINT"
 Set frm = New frmOrderMaint

 Case "ORDERBROWSE"
 Set frm = New frmOrderBrowse

 ' Add additional form variants here.
 'Case ...
 Case Else
 ASSERT False, "The Object Factory was passed an " & _
 "unknown form ID: " & FormID
 Exit Function
 End Select
 Set CreateForm = frm

End Function
– 249 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

ms or
e of
tory

f the
pdate

pe-

 and
Making Your Application Aware of New Business Objects
When you add new business objects to your application, such as maintenance for
browse objects, you must update the object factory to make the application awar
these new objects. You must either add code manually to the standard object fac
module or generate a new object factory using the super model.

For more information about creating the object factory using the super model, see Using
the Super Model to Generate Applications, page 77.

If you choose to update the object factory manually, you will have to update each o
associated object factory procedures. The steps outlined below describe how to u
these procedures.

� To link your object factory module with the client framework:

� Step 1: Update the InitializeOpenDialog Procedure, page 250

� Step 2: Update the CreateForm Procedure, page 252

� Step 3: Update the GetBrowser Procedure, page 253

� Step 4: Update the BrowserExists Procedure, page 255

These steps are described in the following sections.

Step 1: Update the InitializeOpenDialog Procedure
The purpose of this procedure is to create a list of all the Visual Basic business objects
known to the application. This list is implemented as a Visual Basic collection of O
nObjects types, and the objects contained in this collection are of OpenObject types.
Both of these class definitions are supplied with the Construct Spectrum client frame-
work. You can use the Object Browser in Visual Basic to view the public methods
properties of these objects.

For more information, refer to Construct Spectrum Reference.
– 250 –

______________________________ Understanding and Customizing the Client Framework
8

appli-

bject.

ance,

n.

.

Example of the InitializeOpenDialog procedure

Public Sub InitializeOpenDialog()

 Dim obj As OpenObject

 ' Create a new global instance of the OpenObjects collection.
 Set gOpenObjects = New OpenObjects

 ' Add the Customer business object and its actions.
 Set obj = gOpenObjects.Add("Customer", "Customer")
 obj.Add "Maintenance", "Customer Maintenance", "Customer_M1"
 obj.Add "Browse", "Browse Clients", "Client_B1"

 ' Add the Order business object and its actions.
 Set obj = gOpenObjects.Add("Order", "Order")
 obj.Add "Maintenance", "Order Maintenance", "Order_M1"
 obj.Add "Browse", "Browse Orders", "Order_B1"

 ' To add a new business object copy this code block and
 ' uncomment and modify lines as required ---------------------->>

 'Set obj = gOpenObjects.Add("<object name>", "<description>")
 'obj.Add "<action1 name>", "<description>", "<action1 ID>"
 'obj.Add "<action2 name>", "<description>", "<action2 ID>"
 ' <<---

End Sub

In the above example, there are two Visual Basic business objects known to the
cation — Customer and Order.

� To add a new object to the application:

1 Copy the commented lines delimited by the arrows (shown in bold above).

2 Uncomment the line to add a new business object to the OpenObjects collection.
Change the object name and description to pertain to your Visual Basic business o

3 For each action supported by your Visual Basic business object (such as Mainten
Browse, or Reports), copy and uncomment a line to add the action.

– Change the action name and action description to pertain to the specific actio

– Change the form ID to uniquely identify the action within the entire application
– 251 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

uct
ation
 each

n (as

Case

 the
sic
Step 2: Update the CreateForm Procedure
This function takes a form ID as a parameter and returns a reference to a Constr
Spectrum form that implements the requested business action. To handle the cre
of the Visual Basic form that implements the action, add a new case statement for
form ID you have added to your InitializeOpenDialog procedure.

Example of the CreateForm procedure

Public Function CreateForm(FormID As Variant) As Form

 Dim frm As Form
 Dim BrMgr As BrowseManager

 ' For every possible action supported by the business objects in
 ' the application, instantiate a form to service the action.

 Select Case FormID

 ' Copy this case for each new maintenance form ---------------->>
 Case "Customer_M1"
 ' Create a new Customer maintenance form.
 Set frm = New frm_Customer
 ' <<---

 ' Copy this case for each new browse form --------------------->>
 Case "Customer_B1"
 ' Create a new Browse Manager object for the Customer Browse
 ' Object.
 Set BrMgr = GetBrowser("NCST-CUSTOMER")
 ' Ask the Browse Manager object to create a new Customer
 ' Browse form.
 Set frm = BrMgr.MDIBrowserForm
 ' <<---

 Case Else
 ASSERT False, "The Object Factory was passed an " & _
 "unknown form ID: " & FormID
 Exit Function
 End Select

 Set CreateForm = frm

End Function

� To add support for a new Visual Basic maintenance business object action:

1 Copy the commented code block delimited by the arrows for the maintenance actio
shown in bold above).

2 Modify the line to add a case statement for the action. Change the FormID in the
line to match the ID of the Visual Basic maintenance business object’s action.

3 Modify the line that creates a maintenance form. Change the name of the form to
name of the form generated by the VB-Maint-Dialog model for the new Visual Ba
business object.
– 252 –

______________________________ Understanding and Customizing the Client Framework
8

s

ID in
ect’s

ter to

bject

, you
nager

MDI
� To add support for a new Visual Basic browse business object action:

1 Copy the commented code block delimited by the arrows for the browse action (a
shown in bold italics above).

2 Uncomment the line that adds a case statement for this action. Change the Form
the case statement to match the form ID of the Visual Basic browse business obj
action.

3 Uncomment the line that uses the GetBrowser(TableName) function to return a
reference to an initialized BrowseManager object. Change the TableName parame
the name of the database table for which the Visual Basic business object was
generated.

4 Uncomment the line that uses the MDIBrowser method of the BrowseManager o
to return a reference to an MDI browse form.

Step 3: Update the GetBrowser Procedure
When you add a new Visual Basic business object that supports a browse action
must add a new case statement to this function to initialize and return a BrowseMa
object. Use the GetBrowser procedure to return a reference to an initialized BrowseM-
anager object. Client framework components use this function to request a reference to
a BrowseManager object used to request browse services (such as displaying a
browse or modal browse form or performing a lookup request).

For more information about the BrowseManager, see Customizing the Generic
Browse Dialog, page 190.
– 253 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

e).

to the
ss

e
erated
t
ats,

ject.

ct
lass
r the
Example of the GetBrowser() function

Public Function GetBrowser(TableName As String) As Browser
Dim BrMgr As New BrowseManager
 ' Return a browser object for the requested table.
 Select Case TableName

 ' Copy this code block to add support for a new Browse ------ >>
 Case "NCST-CUSTOMER"

 ' Create a New Customer Browse Object.
 Dim CustomerBrowse As New CustomerBrowse

 ' Set the BrowseManagers base object to the Customer
 ' Browse Object's BaseObject.
 Set BrMgr.BrowseObject = CustomerBrowse.BaseObject

 ' Assign the Caption property of the BrowseManager.
 BrMgr.Caption = "Query Customers"
 ' -- <<
 Case "NCST-ORDER-HEADER"
 Set BrMgr.BrowseObject = New OrderBrowse
 BrMgr.Caption = "Query Orders"
 End Select
 Set GetBrowser = BrMgr
End Function

� To add support for a new Visual Basic browse business object action:

1 Copy the commented code block delimited by the arrows (as shown in bold abov

2 Modify the line that adds the new case statement. Change the name of the table
name of the database table implemented by the new Visual Basic browse busine
object.

3 Modify the line that creates the new specific browse object. Change the instance nam
and class name of the specific browse object to the name of the class that was gen
by the VB-Browse-Object model for the new business object. This is the class tha
initializes a generic base browse object, with for example the column names, form
captions, and key names specific to a particular Visual Basic browse business ob

4 Modify the line that sets the BrowseManager’s BaseObject property to the BaseObje
property of the specific browse. Change the specific browse object name to the c
name of the specific browse object generated by the VB-Browse-Object model fo
new Visual Basic browse business object.

5 Modify the line that assigns BrowseManager’s Caption property.
Change the caption to describe the Visual Basic browse business object.

6 If your application supports multiple languages at runtime, see Internationalizing
Using the Client Framework, page 297, for more information about how you can
internationalize the caption.
– 254 –

______________________________ Understanding and Customizing the Client Framework
8

o your
 make

 spe-

ecute

unc-

 to the
at this
Step 4: Update the BrowserExists Procedure
When you add a new Visual Basic business object that supports a browse action t
application, you must add a new case statement to the BrowseExists procedure to
the browse known to all the other components in your application.

Other application components never refer directly to a specific Visual Basic browse
business object. Instead, they refer to the browse via the tablename for which the
cific Visual Basic browse business object has been implemented. This allows
application components that use the services of browse objects to compile and ex
even if the browse objects have not yet been added to your project.

Example of the BrowserExists procedure

Public Function BrowserExists(TableName As String) As Boolean

 ' Optimistic
 BrowserExists = True

 ' Check if there is a browse object for the requested table name.
 Select Case TableName

 ' Copy this line to add support for a new browse ---- >>
 Case "NCST-CUSTOMER"
 ' --- <<
 Case "NCST-ORDER-HEADER"
 Case Else
 BrowserExists = False
 End Select

End Function

Note: Table names used in this function must match those in the GetBrowser f
tion. Table names must be the view names documented in Predict.

� To add support for a new browse:

1 Copy the code block delimited by the arrows (as shown in bold above).

2 Modify the line that adds a new case statement. Change the database table name
name of the table implemented by the Visual Basic business object. Make sure th
is the same table name that is referred to in the GetBrowser() function for this Visual
basic browse business object.
– 255 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

ion-
the
lper

tion
 ways:

te

rk

tch

, see

ures.
Spectrum Dispatch Client Support
The Spectrum Dispatch Client (SDC) client framework components provide funct
ality that integrates the rest of the client framework and the generated code with
Spectrum Dispatch Client. Consider these client framework components to be he
components that simplify using the Spectrum Dispatch Client.

The Spectrum Dispatch Client uses one generic dialog to display varying informa
based on need. A Construct Spectrum application uses the dialog in three distinct

• To prompt the user for a Construct Spectrum user ID and password when a remo
CallNat returns a security error

• To display communication error messages to your user

• To prompt the user to specify a dispatch service for the application

These components are described in the following sections.

The following table describes the Spectrum Dispatch Client dialog client framewo
components supplied with Construct Spectrum:

Component Description

SDCDialog.frm Prompts the user for logon credentials, selects dispatch
services, and displays errors arising in the Spectrum Dispa
Client.

TraceOptions.frm Sets trace options for a remote call. For more information
Debugging Your Client/Server Application, Construct
Spectrum SDK Reference.

SDCSupport.bas Encapsulates common Spectrum Dispatch Client proced
– 256 –

______________________________ Understanding and Customizing the Client Framework
8

s.
TraceOptions.frm Supplied With Your Construct Spectrum Application

SDCDialog.frm supplied with Construct Spectrum Client Framework

The client framework uses the SDCDialog.frm to supply all three of these feature
– 257 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

 from
atural

 “No

lient

elect
Logon Dialog
The Logon dialog provides a convenient way of obtaining a user ID and password
the current user. The user ID and password are required for all calls to back-end N
services to ensure that the user is authorized to access each service.

By default, the Logon dialog displays when the application starts and whenever a
Permission to Execute Function” error occurs.

Error Messages
Error messages returned by the Spectrum Dispatch Client are displayed by the c
framework using the SDCDialog form. For information about messages, refer to Con-
struct Spectrum Messages.

Dispatcher Selection Window
The client framework displays the Dispatcher Selection window to allow users to s
which dispatcher to associate with their current application.

For more information about the Spectrum Dispatch Client, see Spectrum Dispatch
Client Components, Construct Spectrum SDK Reference.
– 258 –

______________________________ Understanding and Customizing the Client Framework
8

ssed
rk

ter

 and
re:

 by

.

t :n:

a set

 a

 is
Utility Procedures
The utility procedures in the client framework are functions and subroutines acce
by many other components of the client framework. For example, client framewo
components access the utility procedures to center a form on the screen, parse strings,
calculate minimum and maximum values, test assertions, and set the mouse poin
appearance.

CSTUtils.bas is the client framework component containing the utility procedures
global constants. The following table provides a brief description of each procedu

Utility Description

AppendSlash Appends a backslash to the end of a directory name, if
necessary.

ArrayDimensions Returns the number of dimensions in an array.

ASSERT Tests an assertion.

CenterForm Centers a form relative to the screen or to another form.

CreateArray Creates and returns a one-, two-, or three-dimensional array of
variants.

CreateStringArray Creates and returns a one-, two-, or three-dimensional array of
variants, but creates an array of strings.

CSTFormat
Message

Formats a message in a CDPDA-M or CSASTD data area
performing the substitutions.

CSTSelect
Contents

Highlights the contents of a TextBox control by setting the
SelStart and SelLength properties. This procedure can be
called in the GotFocus event for the TextBox to simulate
Windows behavior of selecting text when you Tab to a field

CSTSubst Substitutes values into a string marked with the Construc
substitution place holders.

FileExists Tests if a file exists by attempting to open the file.

FindFirst Searches a string for the first occurrence of a character in
of characters.

FixupRTF Changes any embedded backslash characters in a string to two
backslashes so that the string can be displayed properly in
RichTextBox control.

GetPrivateProfile
StringVB

Reads a string value in a Windows .INI file. This procedure
a Visual Basic wrapper around the Windows
GetPrivateProfileString function.
– 259 –

Construct Spectrum SDK for Client/Server Applications _____________________________
8

 is

de

en,

 a

f
e to

the
For more information about the utility procedures, see Utility Subroutines on the Cli-
ent, Construct Spectrum Reference.

GetWindows
DirectoryVB

Returns the name of the Windows directory. This procedure
a wrapper around the Windows GetWindowsDirectory
function.

IsForeground
Application

Returns True if the application is currently the foreground
application and False if not. Use this function to execute co
only if the application is currently active.

IsMDIChild Returns whether or not a form is an MDI child window.

Max Returns the maximum of two values.

Min Returns the minimum of two values.

MoveFormSafely Moves a non-MDI child form to a new location on the scre
ensuring that the entire form is displayed.

PadLeft Pads a string on the left with spaces or any character to a
specified width.

PadRight Pads a string on the right with spaces or any character to
specified width.

ResizeForm Resizes a form so that its client area is the specified size. Iyou
know how big the client area needs to be, call this procedur
resize the form.

SetUppercaseStyle Sets the Windows style bit for a TextBox control so that
control converts all text to upper case.

Utility Description (continued)
– 260 –

__
9

m.
VALIDATING YOUR DATA

This chapter outlines the data validation facilities provided with Construct Spectru
The following topics are covered:

• Overview, page 262

• Client Validation , page 264

• Creating Verification Rules in Predict, page 269

• Order of Precedence in Data Validation, page 271

• Validation Error Handling , page 272
– 261 –

Construct Spectrum SDK for Client/Server Applications _____________________________
9

n de-
r
 ap-

ation,

being
 un-

data
r than
sic
ed

 and
ation

ation
nt.
alcu-

ss
Overview
Construct Spectrum-generated applications provide a framework for data validatio
signed to ensure the integrity of your information. Construct Spectrum applies fou
levels of data validation. Before adding or changing any data, Construct Spectrum
plies basic data type checking, business data type checking, local business valid
and business object validation.

Errors arising from any of these data validation levels are displayed on the client.

Basic Data Type Validation
The Spectrum Dispatch Client performs basic data type validation. It uses the format
and length associated with each field in your object PDA to ensure that the value
assigned to a field will not result in a type mismatch, an overflow condition, or an
derflow condition.

Business Data Type Validation
The second level of validation is business data type (BDT) validation. BDTs allow
to be displayed in a format that is based on business language conventions rathe
on programming language conventions. For example, a variable with a Visual Ba
data type of Double will display as a phone number if it is assigned the BDT nam
BDT_PHONE.

BDT validation ensures that the user input conforms to the Visual Basic data type
to the business semantics attached to the BDT. In the example above, BDT valid
checks that the user input makes sense as a phone number.

Local Business Validation
Local business validation applies simple business rules to data. This level of valid
is coded within the Visual Basic maintenance object and is performed on the clie
Typical local business validations include range checking, domain checking, and c
lating required values. Database access is not recommended within local busine
validations.
– 262 –

___ Validating Your Data
9

n the
 it is
 the

nt ap-

bpro-
l will

ance
ns are
Business Object Validation
Business Object Validation is performed in the object maintenance subprogram o
server. This subprogram ensures that the data entered by a user is correct before
committed to the database. Any local business validation should also be coded in
object maintenance subprogram. Coding on both client and server is crucial if clie
plications written for another environment (for example, a character-based interface)
share the same object maintenance subprogram for data access.

Typical Client Validation Cycle

You can write custom validation code in user exits for the object maintenance su
gram or you can attach Predict verification rules that the Object-Maint-Subp mode
include in the generated module. For more information, see Creating Verification
Rules in Predict, page 269.

Tip: If you have both GUI and character dialogs, both can use the object mainten
subprogram to access database information. Ensure that any client validatio
replicated in the subprogram.

Form code

Sub PerformAction
…
Case ACTION_UPDATE
 InternalObject.InvokeMethod "UPDATE", iflags
…

Sub CheckRemoteError
…
Case "CUSTOMER-NUMBER"
 Set ErrControl = txt_CUST_CustomerNumber
…

Object Maintenance subprogram

DEFINE SUBROUTINE HOLD-OBJECT
…
 PERFORM EDIT-OBJECT /* Pre-edit object header
 PERFORM CHECK-AND-UPDATE-OBJECT /* Check and update children
 DECIDE ON EVERY VALUE CDAOBJ2.#FUNCTION
 VALUE 'UPDATE'
 ASSIGN NCST-CUSTOMER.CUSTOMER-TIMESTAMP = *TIMX
 UPDATE(HOLD-PRIME.)
…

Step 3
If an error was raised by the object maintenance
subprogram, the form creates an object error and
attaches it to the appropriate GUI control

Step 2
The object maintenance subprogram validates the
object before actually performing an update to the
database. If errors are encountered, the database is
not updated and an error message is returned to the
client.

Step 1
On the client, the user invokes the update method,
triggering transmission of the object to the server.
– 263 –

Construct Spectrum SDK for Client/Server Applications _____________________________
9

ess
 The
en:
Client Validation
Data assignment from the form to the client’s copy of the object PDA triggers three
types of client validation: basic data type validation, BDT validation, and local busin
validation. It is the attempt to update the object PDA that triggers the validations.
form keeps the client’s object PDA up to date by attempting to update its data wh

• A LostFocus event occurs on a TextBox

• A Click event occurs on a CheckBox, ComboBox, or OptionButton

• An AfterColumnEdit event occurs on a grid column
– 264 –

___ Validating Your Data
9

ese
The following example illustrates the data validation logic initiated when one of th
events is triggered:

Triggering Validation in the Form

Business Name:

Customer Number:

ACME Consulting

1234

Step 7 — Assign the value back to the
TextBox control so the user can see it.

Step 6 — Convert the value back to a
display format by calling the BDT
conversion routine.

Step 5 — Read the value from the
field in the object PDA, to get any
conversions the SDC applies to the
value, such as rounding, and return
the value to the form.

Step 4 — Assign the value to the field
in the object PDA, triggering SDC
validations.

Step 3 — Assign the value to the field
in the generated maintenance object,
triggering local business validations.

If an error occurs in step 2, 3, or 4, the form
attaches an ObjectError to the GUI control,
causing a pop-up validation message to be
displayed to the user.

Step 1 — Read text entered by user
into a string variable and start the
validation process.

Step 2 — Convert value to an internal
Visual Basic data type by calling the
BDT conversion routine.

The text box GUI control has an
associated FieldName and BDTName.

Dim vnt As Variant

vnt = BDT.ConvertFromDisplay(TextBoxValue, BDTName)

MaintObject.Field(FieldName) = vnt

ValidAssignment in module BDTSupport.bas

Select Case FieldName
Case "CUSTOMER-NUMBER"
 If Value < 1000 Or Value > 3999 Then
 Err.Raise csterrValueMustBeInRange, _
 OBJECT_PDA_NAME, _
 "The customer number must be in the " & _
 "range 1000 to 3999."
 End If

Validate procedure in generated VB maint. object

ObjectPDA.Field(FieldName) = Value

vnt = MaintObject.Field(FieldName)

TextBoxValue = BDT.ConvertToDisplay(vnt, BDTName)

TextBox.Text = TextBoxValue

Dim TextBoxValue As String

TextBoxValue = TextBox.Text
ValidAssignment TextBoxValue, BDTName, ErrorMessage

LostFocus event in generated maint. form

Validate FieldName, Value

Field property procedure in generated VB maint. object
– 265 –

Construct Spectrum SDK for Client/Server Applications _____________________________
9

al-

l
y-

in

eth-
l

ou

 to an

dard

.
wly
ida-

e ob-
bject
m
ard

bject.
Validation in Maintenance Dialogs
All validation is triggered from the form. Form code is responsible for linking BDT v
idations to specific GUI controls and for responding to validation errors.

Using BDTs
The VB-Maint-Dialog model generates default BDT assignments for each GUI contro
on your form. You can override these assignments by attaching your own BDT ke
words to Predict field definitions. For details on linking BDTs to GUI controls with
Predict, see Customizing on the Server, page 132.

You can override BDT assignments directly in the generated form. However, this m
od is not recommended. Overriding BDTs within the form is a customization that wil
be lost when you replace the existing form with a newly generated version.

If there are no BDTs that provide the business semantics your application needs, y
can create a custom BDT. For information on creating custom BDTs, see Using Busi-
ness Data Types (BDTs), Construct Spectrum SDK Reference.

Hand-Coded Validations in Generated Dialogs
If you have specialized validations that must be executed immediately in response
event, write the code in a maintenance dialog to perform the validations.

If you write hand-coded validations, you can still take advantage of the form’s stan
error handling technique. For information, see Validation Error Handling , page 272.

Note: Hand-coding validations is not recommended under most circumstances
These customizations will be lost if you replace the existing form with a ne
generated version. To keep your validations after regeneration, write val
tion code in the user exit.

The maintenance dialog invokes a Validate method in the Visual Basic maintenanc
ject every time a GUI control attempts to update a value in the client’s copy of the o
PDA. Writing validation code in the Validate method rather than directly in the for
should meet most of your validation requirements. The dialog also contains stand
code which checks for validation errors raised in the Visual Basic maintenance o
– 266 –

___ Validating Your Data
9

 time
ce ob-

S
idate

nents

 the

e
 be

 envi-
e

ored
for
illus-
Validation in Visual Basic Maintenance Objects
You can code local business validations in Visual Basic maintenance objects. Each
the maintenance dialog attempts to update a value in the Visual Basic maintenan
ject, it invokes a standard validation subroutine (Validate) in the Visual Basic
maintenance object. You can hand-code validations in the CLIENT-VALIDATION
user exit of the Validate subroutine, or you can use Predict verification rules to val
data.

Regardless of how it gets into the Validate subroutine, there are two basic compo
to the validation:

• A case statement indicating the field requiring validation. This statement includes
test for a particular condition.

• Code that raises an error if the field value fails the validation.

Adding Validations in the CLIENT-VALIDATIONS User Exit
Use the CLIENT-VALIDATIONS user exit located in the Validate subroutine for th
VB-Maint-Object model to write custom validations. Although this custom code can
added to the user exit on the server, you can also use Visual Basic’s GUI editing
ronment to supply your code. The following illustration shows a typical entry in th
CLIENT-VALIDATIONS user exit:

Example of validation code in the CLIENT-VALIDATIONS user exit

'SAG DEFINE EXIT CLIENT-VALIDATIONS
 Case "CUSTOMER-NUMBER"
 If Value = 1010 And _
 m_ObjectData.Field("CREDIT-LIMIT") > 1000 Then
 Err.raise Number:=csterrCustomerOnProbation, _
 Description:= "Credit limit too high, on probation", _
 Source:=OBJECT_PDA_NAME
 End If
'SAG END-EXIT
 End Select
…

In this example, the value for the field to be updated in the client’s object PDA is st
in the Value variable. If you require the values from other fields in the object PDA
your validation, use the Spectrum Dispatch Client’s Field or GetField methods as
trated in the previous code example.
– 267 –

Construct Spectrum SDK for Client/Server Applications _____________________________
9

at you
 Spec-
ait for
ntrol

medi-

n code
Warning:
If your validations require remote database access, it is strongly recommended th
do not code these validations in the Visual Basic maintenance object. A Construct
trum application operates in a synchronous manner, which means the user must w
validations in the Visual Basic maintenance object to complete execution before co
returns to the dialog for further interaction.

Validations from Predict
Generated validations that are based on Predict verification rules are checked im
ately after your hand-written validations in the CLIENT-VALIDATIONS user exit.
These generated validations use the same structure as is shown in the hand-writte
example earlier in this chapter. For more information, see Creating Verification Rules
in Predict, page 269.
– 268 –

___ Validating Your Data
9

ation

d in

ruct

 well
nance
th.

,
d eas-

ince
 rule

r you
sic

 what
s to

ain-

i-

nte-
Creating Verification Rules in Predict
Verification rules that you create in Predict to use with applications generated by Con-
struct Spectrum follow the same guidelines that traditional Natural Construct
applications use. For example, all verification rules intended for use during gener
must be of type N.

Note: To set verification rules to type N in Predict, use the GEN CST comman
the Predict rule editor.

For a complete discussion on using verification rules with traditional Natural Const
applications, see Use of Predict in Natural Construct, Natural Construct Generation.

Construct Spectrum uses verification rules to generate GUI control definitions as
as to generate business validations that might be implemented in either the mainte
object (in Visual Basic), the object maintenance subprogram (in Natural), or in bo
The validations are duplicated to provide immediate feedback on the client and to have
a centralized implementation of validations on the server.

When creating Predict verification rules for applications using Construct Spectrum
take advantage of new syntax that makes your verification rules easier to reuse an
ier to define in Predict.

Deciding Where To Implement a Validation Rule
Conventionally, validation rules are kept together in a single module. However, s
sending the client’s object data to the server for validation takes time, validating a
on the client can save transmission time.

You can implement a validation rule in the object maintenance subprogram only, o
can implement it both in the object maintenance subprogram and in the Visual Ba
maintenance object. To decide on which of these two option to choose, determine
types of information a rule requires to do its validation. Use the following guideline
help you decide:

• If the rule needs to look up data on a foreign file, implement the rule in the object m
tenance subprogram for ready access to the foreign file.

• If the rule performs calculations on data within the object’s data, it may be more eff
cient to perform this validation in the Visual Basic maintenance object.

Include the rules placed in the Visual Basic maintenance object in the object mai
nance subprogram for use by character interface applications.
– 269 –

Construct Spectrum SDK for Client/Server Applications _____________________________
9

ules.
 Nat-

tax

s-
k
Coding User Type Rules
Construct Spectrum introduces a new syntax convention for coding type U (User) r
This convention allows a single rule to contain a Visual Basic implementation or a
ural and Visual Basic implementation.

Rules defined in Visual Basic are delimited by code blocks. Use the following syn
in the Predict rule editor to create a code block for a Visual Basic rule:

Example of code block for a Visual Basic rule

>>BEGIN RULE VB
Visual Basic implementation of the VE rule here.
>>END-RULE

Any rule code that is not delimited within a language-specific code block will be a
sumed to be a rule coded in Natural, since Natural rules do not require code bloc
delimiters. To keep code looking consistent, Natural rules can also be delimited.

Example of code block for a Natural rule

>>BEGIN RULE NATURAL
Natural implementation of the VE rule here.
>>END-RULE

A rule can consist of several code blocks for both Visual Basic and Natural.

Example of code blocks for using both Visual Basic and Natural

>>BEGIN RULE VB

1st part of Visual Basic implementation of the VE rule.
>>END-RULE

>>BEGIN RULE NATURAL

1st part of Natural implementation of the VE rule.
>>END-RULE

>>BEGIN RULE VB

2nd part of Visual Basic implementation of the VE rule.
>>END-RULE

** By default, this code is Natural code because it is
** not delimited by a language-specific code block.

3rd part of Natural implementation of the VE rule.
– 270 –

___ Validating Your Data
9

e-spe-

ent’s
ethod

 vali-
When combining Visual Basic and Natural rules, you cannot use nested languag
cific code blocks. For example:

Use This: NOT This:

>>BEGIN RULE VB >>BEGIN RULE NATURAL VE rule…

1st part of Visual Basic rule… >>BEGIN RULE VB
>>END-RULE This VB code block is invalid

>>END-RULE
>>BEGIN RULE NATURAL >>END-RULE

1st part of Natural rule…
>>END-RULE

Order of Precedence in Data Validation
Data validation is triggered under two conditions: attempted assignment to the cli
copy of the object PDA and attempted database update using the Update or Add m
of the object maintenance subprogram.

Each of these conditions triggers different layers of the Construct Spectrum data
dation model:

• Data assignment to the client’s object PDA.
In this stream of data validation, the order of validation is executed as follows:

– BDT validation

– local business validation

– basic data type validation

• Database update using the object maintenance subprogram.
In this stream of data validation, only Business Object Validation is executed.

For clarification, see the illustrations in Business Object Validation, page 263.
– 271 –

Construct Spectrum SDK for Client/Server Applications _____________________________
9

rou-
ns a

 and

ech-

e data
s rule
 a nu-
pop-
il the
t,

truct

Validation Error Handling
Client validation is always initiated with a call to the generic ValidAssignment sub
tine. This call occurs in an event code block (usually a lost focus event) that assig
GUI control’s value to the client’s object PDA. There are a number of steps to follow
for each assignment.

� To assign a GUI Control’s value to the client’s object PDA:

1 Hide any error tips that may be attached to this GUI control.
This is accomplished by calling the HideErrorTip subroutine in CSTUTILS.

2 Remove any Error Objects from the GUI control.
This is accomplished by calling the RemoveUnneededControlErrors subroutine.

3 Initiate local data validation and assign the value to the client’s object PDA.
This is accomplished by calling the ValidAssignment subroutine.

4 Test to see if any validation errors occurred during the assignment attempt.
This is accomplished by checking whether ErrorMsg contains a value. If errors
occurred, attach an Object Error to the GUI control by calling the ParseErrorString
SetObjectError subroutines.

Framework Components
The validation error handling framework components are used to implement the m
anism that displays pop-up validation errors in browse and maintenance dialogs.

For example, when the user enters data into a field and cursors to the next field, th
is checked to ensure it is valid. If the data is not valid because it violates a busines
or cannot be interpreted properly (such as when non-numeric data is entered into
meric field), the field that contains the error is highlighted with an error color and a
up message is displayed next to the field. The user is not locked into the field unt
error is corrected and can continue entering or editing data in other fields. At any poin
the user can return to the highlighted field or fields and correct the errors.

The following table describes the validation error handling components in the Cons
Spectrum client framework:

Component Description

ErrorPreferences.frm Allows users to customize how validation errors are
presented.

ErrorTip.frm Displays the pop-up validation error message.
– 272 –

___ Validating Your Data
9

CDP-
e in

con-
neral

n

rm
Handling Business Object Validation Errors
Business Object Validation errors are returned to the form in the message PDA,
DA-M. If an error was returned from the server, the CheckRemoteError subroutin
the form tests the value of the ERROR-FIELD variable to match it up with a GUI
control.

If the field is associated with a GUI control, an Object Error is attached to the GUI
trol. Otherwise the form displays a message box showing the description of the ge
error.

The following code illustrates this process:

Select Case InternalObject.Msg.Field("ERROR-FIELD")
Case "BUSINESS-NAME"
 Set ErrControl = txt_CUST_BusinessName
Case "PHONE-NUMBER"
 Set ErrControl = txt_CUST_PhoneNumber
…
End Select
If ErrControl Is Nothing Then
 MsgBox cstFormatMessage(InternalObject.Msg), vbInformation
Else
 With InternalObject.Msg
 SetObjectError Me, ErrControl, .Field("MSG-NR"), ErrMsg, _
 ERROR_SOURCE_SERVER, ErrColumn, _
 .Field("ERROR-FIELD-INDEX1"), _
 .Field("ERROR-FIELD-INDEX2"), _
 .Field("ERROR-FIELD-INDEX3")
 End With
End If

ObjectError Keeps track of the information for a single validatio
error on a form.

ObjectErrors Tracks the validation errors on a generated
maintenance form; each generated maintenance fo
declares one instance of this class.

Component Description
– 273 –

Construct Spectrum SDK for Client/Server Applications _____________________________
9

– 274 –

__
10

ludes
INTEGRATING BROWSE AND MAINTENANCE
FUNCTIONS

This chapter explains how browse and maintenance functions are integrated. It inc
information about linking and using browses from a maintenance dialog.

The following topics are covered:

• Overview, page 276

• Design Objectives, page 280

• Overview of Foreign Key Field Relationships, page 282

• Foreign Field Support in Maintenance Dialogs, page 285
– 275 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

akes
ey
ovide

e di-

lds.

le, a
er
ill-

wse
og.
er ap-
ce

n-
Overview
Providing applications with tightly integrated browse and maintenance functions m
it easier for users to navigate through an application and to find the information th
need. The two main benefits that integrated browse and maintenance functions pr
are:

• Drill-down capabilities from a browse dialog. For example, to invoke a maintenanc
alog or another browse from within a browse dialog.

• Active help from maintenance dialogs to aid in selection of primary and foreign fie

These topics are discussed in the following sections.

Drill-Down Capabilities from a Browse Dialog
Users commonly use browse dialogs to navigate within an application. For examp
user might select a customer from a Customer browse dialog, drill-down to anoth
browse dialog to see outstanding orders for the customer, select an order, and dr
down to a maintenance dialog to update the order.

You can support this functionality with Construct Spectrum by hand-coding a bro
command handler to define the commands supported by a particular browse dial
You must also add code to the target of these commands, which are typically oth
plication components such as a maintenance dialog or a Visual Basic maintenan
object.

For information about creating Browse Command Handlers, see Understanding
Browse Command Handlers, page 195.

Tip: To see some examples of browse command handler source code, refer to the Cus-
tomerBrowseCommands.cls and OrderAsBrowseTarget.cls files in your Co
struct Spectrum Order Entry demo application.
– 276 –

____________________________________ Integrating Browse and Maintenance Functions
10

ive

nce
rifies
he
er

rowse

n a
Active Help on Maintenance Dialogs
Users can select valid values from dialog fields that are enabled with active help. Con-
struct Spectrum maintenance dialogs provide built-in support for two types of act
help: primary key field and foreign key field active help.

Primary Key Field Active Help
Primary key field active help is available for all business objects for which maintena
and browse dialogs were generated. When a maintenance dialog is opened, it ve
whether a browse was generated for its primary key field. If one was, it enables t
browse toolbar button and browse menu command on the MDI frame. When a us
clicks the browse toolbar button or selects the browse menu command, a modal b
window for the business object is displayed:

Modal Browse Window

The window displays a list of existing records in the database. Users can maintai
record by double-clicking the record or by highlighting a row and clicking OK.
– 277 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

o
oth-

base
les
al

ow-

, the
Foreign Field Active Help
Most maintenance dialogs are linked by foreign relationships. These relationships, als
known as inter-object relationships, link a field in a dialog to the primary field of an
er dialog. In the demo application, for example, the Order dialog has a Customer
Number field. To be valid, the Customer Number must exist on the Customer data
table. This rule is defined by an inter-object relationship that specifies the two tab
involved (Order and Customer), the linked fields, the cardinality, and other option
information.

Maintenance dialogs automatically support active help for foreign fields in the foll
ing ways:

• By providing a button beside the text box.
When a user clicks the button, a window is displayed to select foreign values:

Active Help From a Foreign Field

Descriptive information can also be returned with the selected value. For example
customer’s name can be returned with the customer number.

For more information about returning descriptions with foreign fields, see Displaying
Descriptions for a Foreign Field, page 289.
– 278 –

____________________________________ Integrating Browse and Maintenance Functions
10

ct-

e de-

e al-
s a
• By automatically refreshing a foreign field description when a user types a value dire
ly into a foreign field.
When the LostFocus event occurs in the field, the foreign field is looked up and th
scription is updated in the maintenance dialog.

• By retrieving all of the values and descriptions for a foreign field that are in the data-
base.
This method is used by the maintenance dialog to create a drop-down list of all th
lowed values for a foreign field. This feature is used only if the foreign file contain
small set of stable records.

Active Help From a Drop-down List
– 279 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

ain-

ain-

plica-
nt are

ingle

 the

e. Us-

 fac-
lity.
 can

ign-
Design Objectives
Construct Spectrum meets two design objectives that simplify the integration of m
tenance and browse components:

• Application component independence

• Simplified generated components

These objectives are discussed in the following sections.

Application Component Independence
An important design objective when integrating discrete application objects like m
tenance and browse dialogs is to limit the impact this has on existing application
objects. To achieve this, there must be a minimal amount of coupling between ap
tion components. Less coupling means that changes to one application compone
less likely to affect the other.

To achieve minimal coupling, Construct Spectrum uses the object factory as the s
integration point for all new application components. Only the object factory needs to
be aware of new application objects. As new business objects are added to your appli-
cation, they are published as available for use by other business objects through
object factory interface.

For more information about the object factory, see Object Factory, page 243.

Tip: To view the source code for the demo application’s object factory, refer to the
OFACTORY.bas file.

Maintenance dialogs request browsing services through the object factory interfac
ing parameters such as table names or relationship names, the maintenance dialog
specifies which file is required for the browse. If the file is not available, the object
tory informs the requesting maintenance dialog, allowing it to disable that functiona
This architecture allows an application to be developed incrementally so that you
test it throughout the development cycle.

To view an example of how this code works, refer to the code for the EnableFore
Keys subroutine in the CUSTMCDV.frm maintenance dialog form in the demo
application.
– 280 –

____________________________________ Integrating Browse and Maintenance Functions
10

them
rowse
capsu-

rowse-
ger,
Simplified Generated Components
Another objective is to reduce the complexity of generated components, making
easier to customize. The amount of code required to integrate maintenance and b
processes is greatly reduced by using the BrowseManager framework class. It en
lates most of the common functionality involved in using browse processes.

To see how the BrowseManager has been implemented, refer to the code in the B
Manager.cls client framework class. For more information about the BrowseMana
see Understanding Browse Command Handlers, page 195.
– 281 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

ust
pri-

Cus-

 two

ns,

int-

 of
ting.

 The
t have
 re
Overview of Foreign Key Field Relationships
A foreign key field with an update constraint is a field in a maintenance dialog that m
be set to a value that already exists in a foreign file. This field is the foreign file’s
mary key field.

A foreign key field relationship links two independent files, such as an Order and
tomer file. This is also called an inter-object relationship. Conversely, intra-object
relationships define relationships within a file, for example, a relationship between
fields in a Customer file.

Foreign key field relationships are business rules that can define both update and delete
constraints. However, with respect to integrating maintenance and browse functio
only foreign key field relationships that define update constraints are important.

For more information on inter-object and intra-object relationships, see Design Meth-
odology, Natural Construct Generation.

Fields that can be Used in a Foreign Key Relationship
This section describes the foreign field relationships supported by the Object-Ma
Subp model. Relationships supported by Construct Spectrum are also noted.

Simple Field
This is the simplest type of foreign field relationship in which the format and length
the fields on both sides of the relationships are equal and the fields are not repea
Simple field relationships are supported by Construct Spectrum.

Simple Field Relationship

The relationship shown in this diagram is between an Order and a Customer file.
update constraint is placed on the order. The business rule says each order mus
exactly one customer number to be a valid order, and a customer number can befer-
enced by zero or many orders.

CN:1File: Order
Field: Order-Customer-Number

File: Customer
Field: Customer-Number
– 282 –

____________________________________ Integrating Browse and Maintenance Functions
10

r field
orted

. The
ve zero

sides

 a

t is
s are
tain
g
Repeating Field
This is a relationship between a one-dimensional repeating field and either a scale
or another one-dimensional repeating field. Repeating field relationships are supp
by Construct Spectrum.

Repeating Field Relationship

The relationship shown in this diagram is between a course and an instructor file
update constraint is placed on the course. The business rule says a course can ha
to five instructors. An instructor can teach zero or many courses.

Note: The format and length of the relationship fields must be the same on both
of the relationship.

When Not to Use a Foreign Field Relationship
This section describes situations where defining a foreign field relationship is not
good solution. For each situation described, a better alternative is given.

Do not use foreign field relationships to enforce valid values when:

• the list of values is static

• the list of values is small

• there are only two choices

List of Values is Static
In most foreign relationships, both files involved in the relationship are dynamic. I
not a good solution to create a file for the sole purpose of enforcing that valid value
entered from a static list. For example, you would not create a Province file to con
a list of valid provinces that could be entered on an order as shown in the followin
diagram:

An Unlikely Foreign Field Relationship

CN:CFile: Course
Field: Instructor-ID(1:5)

File: Instructor
Field: ID-Number

CN:1File: Order-Header
Field: Order-Province

File: Provinces
Field: Province
– 283 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

lates

nce-
ship

ible

eri-

hip.
A better solution is to attach a table verification rule to the Order-Province field. Con-
struct Spectrum generates a drop-down list for the Order-Province field and popu
it with the valid provinces in the verification rule.

There may be valid reasons to create a Province file. For example, to maintain provi
specific business rules for calculating sales tax. In this case, a foreign field relation
is appropriate.

List of Values is Small
Another case where you would not use a foreign field relationship is to enforce a small
set of values for a field. For example, a Payment-Type field might only have poss
values of Cash, Check, MC, Visa, or AMEX.

Again, defining a table verification rule is a more appropriate solution. Using the v
fication rule, Construct Spectrum would generate option buttons for this field.

List of Values Contains Two Choices Only
If there are only two choices for a given field, do not define a foreign field relations
Instead, link a verification rule to the field. Construct Spectrum generates either option
buttons or a check box for the field.
– 284 –

____________________________________ Integrating Browse and Maintenance Functions
10

 gen-

gs

nce

tion-

sso-

owse
 with
ialog

reign
ields
he
cond-
 a

 each

rt of
to a

by a

ored

 a
eri-
ob-
Foreign Field Support in Maintenance Dialogs
This section describes the foreign field support provided by maintenance dialogs
erated with Construct Spectrum.

Two main objectives of linking foreign field lookup support into maintenance dialo
are to:

• Provide a way for users to select valid values for a foreign key field in a maintena
dialog.
When a field value is selected, it must be returned and displayed in the dialog, op
ally, with other descriptive fields.

• Provide a way for updating the maintenance dialog with descriptive information a
ciated with the foreign field.
When a foreign field value is entered in a maintenance dialog without using the br
mechanism (for example, by typing directly into a text box), any values associated
the foreign field, such as a descriptive field, must be updated in the maintenance d
automatically.

GUI Control Representations of Foreign Fields
This section describes the GUI controls Construct Spectrum uses to represent fo
field relationships in maintenance dialogs. Construct Spectrum deals with foreign f
differently depending on whether the foreign field is located in the primary part of t
maintenance dialog or on a secondary, tertiary, or quaternary part of the dialog. Se
ary, tertiary, and quaternary information is always represented on a grid control in
maintenance dialog. This section describes how foreign fields are represented in
case.

Foreign Fields in the Primary Part of a Maintenance Dialog
The primary part of a maintenance dialog is any location in the dialog that is not pa
a grid. A foreign field on the primary part of a maintenance dialog that has a link
foreign file can be of any data type.

All foreign fields in the primary part of a maintenance dialog can be represented
single text box type GUI control. Any GUI Control override keywords that have been
specified in Predict to force the type of control that should represent a field are ign
if the field is linked to a foreign file.

For more information, see Overriding GUI Controls , page 133.

Tip: Construct Spectrum does not generate browse support for Boolean fields in
maintenance dialog. Validations for Boolean fields are better handled with v
fication rules or by adding validation code to the Visual Basic maintenance
ject.
– 285 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

ain-
reign

 dis-
so

crip-
To provide users with a method to look up valid values for foreign fields from a m
tenance dialog, use a button or drop-down list. The following example shows a fo
field using a button:

Foreign Field as Text Box and Lookup Button

When a user clicks the button, a browse window listing the foreign field values is
played. If a descriptive field is associated with the foreign field, a description is al
displayed:

Foreign Field as Text Box, Lookup Button, and Description

The following example shows a foreign field with a drop-down list:

Foreign Field as a Drop-Down List

The drop-down list contains a list of the foreign field values or descriptions. If a des
tive field is associated with the foreign field, the list contains the descriptions:

Foreign Field as a Text Box With Descriptions In Drop-down List
– 286 –

____________________________________ Integrating Browse and Maintenance Functions
10

tion.
 file
rder

reign
rder
 ap-
ields

 grid
 grid

ds.
GUI Controls in a Grid
Grids in a maintenance dialog display secondary, tertiary, and quaternary informa
Consider an Order business object that is normalized by linking an Order Header
record to 1 to 30 Order Line file records, creating a complex business object. The O
Lines part of this business object is represented by a grid control in the dialog. A fo
field relationship can be defined between the Order-Line-Product-Id field in the O
Line file and the primary field, Product-Id, in the Product file. This discussion also
plies to foreign field relationships that are linked with repeating fields, since these f
are represented as grid controls.

When a column in a grid represents a foreign field value, a button is placed in the
to support looking up new values. Either a new value can be typed directly into the
cell or the button can be clicked to invoke a modal browse window:

Foreign Field in a Grid with Lookup Button Displayed

Note: Currently, drop-down lists for foreign field values are not supported in gri
Description fields are also not supported for foreign fields in a grid.
– 287 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

at

g,
e the
 look-

t:

n file
l
red.

al-
VB-
e

er

r you
How Construct Spectrum Determines Which GUI Control to
Use
Foreign fields within a grid control are always represented with a lookup button th
opens a modal browse window when clicked.

When generating a GUI control to represent a foreign field in a maintenance dialo
Construct Spectrum searches for special properties of the foreign file to determin
type of control to use. Depending on these properties, either a drop-down list or a
up button is used.

A drop-down list is generated for a foreign field if both of these conditions are me

1 The data dictionary specifies that the average record count property for the foreig
contains on average X records, where X is below the threshold determined by the mode
to be the limit for a drop-down list. The default is 50 records. A value of zero is igno

Tip: To change the default value, change the FK-AS-COMBO-THRESH-HOLD v
ue in the Natural Construct CSXDEFLT model defaulting subprogram. The
Maint-Dialog model copies the FK-AS-COMBO-THRESH-HOLD default valu
to the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the model PDA
(CUMDPDA) in the model’s pre-generation subprogram (CUMDPR).

2 The data dictionary specifies that the file volatility property of the foreign file is eith
Stable or Fixed.

If both of these conditions are not met, or you have not set these file properties, o
are using a version of Predict that is prior to 3.3.2, a lookup button is generated instead.
A lookup button displays a modal browse window when it is clicked.
– 288 –

____________________________________ Integrating Browse and Maintenance Functions
10

soci-
g

ve

h for-

d by
t for-

er

to a
Displaying Descriptions for a Foreign Field
At generation time, the VB-Maint-Dialog model searches for a descriptive field as
ated with any foreign field. If a descriptive field is found, it is displayed in the dialo
with the foreign field. To find out how the VB-Maint-Dialog model displays descripti
fields, see Foreign Fields in the Primary Part of a Maintenance Dialog, page 285.

Note: Construct Spectrum can generate only one descriptive field value for eac
eign key value in a maintenance dialog.

You can designate that a field be descriptive whenever it is referenced in a foreign file
relationship, or you can designate the field as descriptive only when it is reference
a particular file. This is useful when different descriptions are needed for differen
eign field relationships.

Note: Descriptive fields are not available for foreign fields in a grid.

� To make a field descriptive in all situations:

1 Access Predict.

2 Attach the DESCRIPTION keyword to the field in the foreign file.
All such fields are displayed whenever the file is referenced in a foreign field browse.

� To make a field descriptive only when referenced by a particular file:

1 Access Predict.

2 Attach a keyword to the field that matches the name of the file.
For example, to make the WAREHOUSE-NAME field descriptive only when a us
browses from a dialog that was generated for the ORDER file, link the ORDER
keyword to the WAREHOUSE-NAME field in the foreign file.

Note: These keywords must be defined in Predict before you can attach them
descriptive field.

Examples of Descriptive Fields

Suppose your application contains a CUSTOMER file with the following fields:

 CUSTOMER-ID(N6)
 CUSTOMER-NAME(A20)
 PHONE-NUMBER(N10)
 ADDRESS(A50)
– 289 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

how
ON
t

cus-
.
 is

y
lcu-

n file.

rns a
ugh

ct.

.

kup

ct

ed on
 the
Whenever the CUSTOMER-ID field is used in a foreign field browse, you want to s
the customer name to help identify the customer. To do this, link the DESCRIPTI
keyword to the CUSTOMER-NAME field. The CUSTOMER-NAME field is now se
up as a descriptive field whenever CUSTOMER-ID is used as a foreign field.

Suppose the CUSTOMER-ID field is a foreign field in the ORDER file. When the
tomer ID is entered for an order, you want to display the address instead of the name
To do this, add the ORDER keyword to the ADDRESS field. The ADDRESS field
now descriptive only when referenced by the ORDER file.

Supporting Multiple Descriptive Values and Derived Values

You can retrieve multiple values with a foreign field lookup. For example, you ma
want to retrieve additional descriptive information or you may need to derive or ca
late values in other fields in the maintenance dialog based on values in the foreig

Construct Spectrum enables you to do this because each foreign field lookup retu
reference to the BrowseDataCache object containing the row that was selected thro
the foreign field lookup.

� To retrieve additional values with a foreign field lookup:

1 Add some code to extract the descriptive value from the BrowseDataCache obje
Base your code on the sample in the grd_OrdM_NcstOrderHasLines_ButtonClick
event procedure on the Ord-Mcdv.frm maintenance form in the demo application

� To derive or calculate values in your maintenance dialog based on the foreign loo
information:

1 Add code to the AFTER-FOREIGN-KEY-LOOKUP user exit for the VB-Maint-Obje
model to code the updates to your business object.
This ensures that the cached copy of your business object’s data that is maintain
the client reflects what is displayed in the maintenance dialog. Base your code on
sample in the AFTER-FOREIGN-KEY-LOOKUP user exit in Ord-Mcpv.cls in the
demo application.
– 290 –

____________________________________ Integrating Browse and Maintenance Functions
10

ld de-

his
 The
e a
 this
e ob-

 an
ign

fine

curs.

data

lied in
s ex-

bject

on-
ated
tion
d the

-
boB-

ist on
rver
How Foreign Field Descriptions Are Refreshed
Any control in a maintenance dialog affected by a change in value of a foreign field
needs to be refreshed when a Get or Clear action occurs. This includes foreign fie
scriptions as well as any field whose value is derived from a foreign field.

Generated maintenance dialogs include a function called RefreshForeignKeys. T
function refreshes the foreign field description when a Get or Clear action occurs.
RefreshForeignField function calls the server and retrieves a description each tim
Get or Clear action occurs. This reduces application performance slightly. To avoid
extra call, you can do hand-coding to have the description returned directly from th
ject subprogram when a Get or Clear action occurs.

� To refresh a foreign field descriptions without an extra call to the server:

1 In the object subprogram, add code to the PARAMETER-DATA user exit to define
extra parameter data area (PDA). Within this PDA, add a parameter for each fore
field that requires a description.

2 In the object subprogram, add code to the EXTENDED-RI-VIEWS user exit to de
the views of the foreign file.
To view an example of this code, refer to the ORD-MSO object subprogram in the
SPECDEMO Natural library.

3 In the object subprogram, add code to the AFTER-GET user exit to populate the
parameter you added in Step 1 with foreign field descriptions after a Get action oc

4 In the Visual Basic maintenance object, specify the name of the extra parameter
area that you added in Step 1 in the Extra PDA parameter.

To view example code that uses the Extra PDA parameter, refer to the code supp
the Visual Basic maintenance object (Ord-Mcpv.cls) in the demo application. In thi
ample, the extra PDA, ORD-XPDA is defined.

5 In the maintenance dialog form (.frm file), add code to the RefreshForeignKeys
subroutine to extract the description values from the Visual Basic maintenance o
when the user selects a Get or Clear action occurs.

The following code example is taken from the Ord-Mcdv.frm Order dialog in the C
struct Spectrum demo application. In the following example code, the dialog is upd
with the description of the Customer Number foreign field when a Get or Clear ac
occurs. The name of the Customer Number field is NcstCustomerOrderHeader an
name of the description field is ORDER-BUSINESS-NAME.

Note: The Order dialog has another foreign field, the Warehouse ID field (Ncst
Warehouseorderheader). Because this field is set up as a drop-down Com
ox, both the warehouse ID and warehouse description values already ex
the client. Therefore, no hand-coding is required to avoid a call to the se
for a Get or Clear action.
– 291 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

vent
e-

eign
drop-

 in-

pport
olds

. The
r for-
Example of updating a foreign field description after a Get or Clear action

Private Sub RefreshForeignKeys()
 ' RefreshNcstCustomerorderheader
 RefreshNcstWarehouseorderheader

 ' Post generate code ----------------->>
 ' This code is added to optimize foreign key description
 ' handling.
 With InternalObject

 ' Customer Business Name
 lbl_OrdM_NcstCustomerOrderHeader.Caption = _
 BDT.ConvertToDisplay(.GetField("ORDER-BUSINESS-NAME"), _
 BDT_ALPHA, "A30")

 End With
 ' Post generate code -----------------<<

End Sub

Note: The RefreshNcstCustomerorderheader sub is still used on a lost-focus e
for the Customer Number field to lookup a new Customer Number field d
scription.

Supporting Code for Drop-Down Lists
This section describes how Construct Spectrum supports a drop-down list for for
fields in a maintenance dialog. Read this section before hand-coding foreign field
down lists.

Initializing a Drop-Down List
Maintenance dialogs that use drop-down lists to support foreign field lookups use
stances of a Construct Spectrum framework class called the ComboClass class. One
instance of this class is instantiated for each foreign field drop-down list used to su
a foreign field. A ComboClass object contains value description pairs. Each pair h
the foreign field value and its corresponding description.

For more information on the ComboClass class, see Maintenance Classes, Construct
Spectrum Reference.

Code is generated in the dialog’s Load event to read all the rows from each referenced
foreign file. The Load event uses the Visual Basic browse object to read the rows
Load event then populates each drop-down list with the foreign field descriptions o
eign field values.
– 292 –

____________________________________ Integrating Browse and Maintenance Functions
10

f a
 ob-
sted

p,
cre-
le.

rop-
s are
eign
field
eld
y in

ys
ent

on will
Note: Each referenced foreign file must have a corresponding Visual Basic browse
object or the dialog’s Load event cannot read records from the file.

Populating the foreign field drop-down lists in this way delays the initial opening o
dialog until all foreign field records are retrieved from the database. However, the
ject factory is optimized to read the remote database only the first time it is reque
by the application. Thereafter, the data is cached globally, so that there is no delay when
the dialog is opened again and the same data is required.

A VB-Browse-Object, generated for the foreign file that is intended to be looked u
must be available in order to support lookups. Since an application can be built in
mentally, there is a possibility that a required VB-Browse-Object is not yet availab
In this case, such a list will be disabled.

Support for Value Selection
Event code is generated to support selecting foreign field values from either the d
down list or by typing a new value. In both cases, the list and the text box control
synchronized with the choice made. For example, clicking on a description in a for
field drop-down list updates the contents of the foreign field text box to match the
value for the selected description. Likewise, typing a new value into the foreign fi
text box will, on a LostFocus event, cause the corresponding description to displa
the list.

If you enter an invalid value when typing in the foreign field text box, the list displa
a blank indicating that this value is not in the local cache of valid values. Subsequ
edit checks in the server object subprogram when the user selects the Update acti
either pass or fail the value based on a live check of the foreign file’s database.
– 293 –

Construct Spectrum SDK for Client/Server Applications _____________________________
10

reign
d but-
e
elds
and

d but-
pport
pos-

nt
ey

field

wse
eld
inte-

 is set

 used
Key
e
Supporting Code for Command Buttons
This section describes how Construct Spectrum supports command buttons for fo
fields in a maintenance dialog. One situation where you may want to add comman
tons for a foreign field is when other fields in the dialog derive their values from th
foreign field. You could add a command button to allow users to update derived fi
when a foreign field value changes. Read this section before hand-coding comm
buttons for foreign fields.

Initializing a Command Button
The maintenance dialog’s Load event enables all the foreign field lookup comman
tons in the dialog. This code verifies that a Visual Basic browse object exists to su
each foreign field lookup button in the dialog. With incremental development, it is
sible that some required Visual Basic browse objects are not available in the
application. If a required browse object is not found, the button is made invisible.

Click Events on the Command Button
If a maintenance dialog contains a foreign field lookup button, it also contains eve
code to handle the button’s click event. This code invokes the BrowseByForeignK
method of the Visual Basic maintenance object, passing the name of the foreign
relationship as a parameter.

A Visual Basic maintenance object handles all the logic required to work with a bro
dialog linked to a foreign field. For example, when a user selects a new foreign fi
value from a foreign field browse window, the selected value is updated by the ma
nance object in its internal Natural PDA. A reference is passed back to the
BrowseDataCache object. If the user does not select a value, BrowseDataCache
to Nothing.

Methods exposed by the BrowseDataCache object and its dependent objects are
by the maintenance dialog code in the Click event following the BrowseByForeign
call to retrieve the newly selected foreign field descriptions and update these in th
dialog.
– 294 –

__
11

e in-

elop-
INTERNATIONALIZING YOUR APPLICATION

This chapter describes the tools provided by Construct Spectrum to help you writ
ternationalized applications. It also describes how to use each tool. Preparing
applications so they readily translate into different languages ultimately saves dev
ment time.

The following topics are covered:

• Planning Your Internationalized Application , page 296

• Internationalizing Using the Client Framework, page 297

• Resource File Syntax, page 300

• Using the Internationalization Components, page 302

• Hints for Developers, page 308

For related information, see:

• Resource Classes, Construct Spectrum Reference
– 295 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

uag-
 take
Con-

hen
inter-

 ap-

 first
 load
age

appli-
Planning Your Internationalized Application
Whether you are creating your Construct Spectrum application in two or more lang
es or considering translating the application in the future, design the application to
advantage of the internationalization client framework components supplied with
struct Spectrum.

Tip: You do not need to build internationalization components into your design w
creating small applications or applications used in one location only. These
nationalization components are optional.

To write internationalized applications, identify all text strings and graphics in the
plication that must be translated. These text strings and graphics include:

• window titles

• labels and prompts

• menu commands

• messages displayed to the user

• formatting strings for dates, times, and currency values

• toolbar button bitmaps

• icons

Organizing the text strings and graphics and copying them to external files is the
step in preparing an application for internationalization. You can then write code to
the files into the application at runtime. Translating the files into the required langu
localizes the application. Using this approach to localization means you alter the
cation’s executable file only when adding another language option.
– 296 –

__ Internationalizing Your Application
11

o-
uage.

-
ing
ntain

-

he ex-
s into

 bina-

ou

ource
. For

h user
et con-
 3-
ource
Internationalizing Using the Client Framework
A Construct Spectrum project supplies internationalization client framework comp
nents, making it easy to create applications you can deploy in more than one lang
The client framework stores text and graphics for an application separate from the com
piled executable code. This allows you to change these attributes without access
source code for the application. To provide this feature, forms are designed to co
as little code as possible.

The two internationalization client framework components included with your Con
struct Spectrum project are:

• Resource, which reads resources from resource files.

• ResourceGroup, which returns a list of resources in a resource group.

The following list describes the components and how to use them:

• Text strings and graphics copied into external files are referred to as resources, t
ternal files as resource files. To localize an application, translate the resource file
the required language.

• Each resource is identified by a resource identifier (RID) and has a type (string or
ry) and value.

• Resources are collected into resource groups. Assign each resource group a resrce
group identifier (RGID).

• Both resource groups and their resources are defined in resource files. Each res
file has a name, which is the same as the file name without the path or extension
example, a resource file may have a file name such as the following:

c:\MyProjects\SpectrumDemo\Forms.1

Note: Resource files have a proprietary format. They are coded differently from
Windows resource files maintained in a Windows resource editor.

• Resource files are organized in language sets. There is one language set for eac
language (such as English, German, or French) the application supports. Each s
tains one or more resource files. Each user language is identified with a 1-, 2-, or
character language code that is also used for the file name extension. All the res
files in a language set have the same file name extension.

where:

C:\MyProjects\SpectrumDemo is the path.

Forms is the file name.

.1 is the extension.
– 297 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

 deter-

r-

 to
An application uses only one language set at a time. The current language setting
mines which language set the application uses. You can specify to use the same
language codes as Natural (1=English, 2=German, 3=French…).

• Language sets, resource files, resource groups, and resources form a four-level hiera
chy, as shown in the following example:

• The client framework uses a resource file path (similar to a DOS file search path)
search for resource files. The path is specified in the application startup code.

Example Type

English (language code “1”)
 Framework.1
 frmOpen
 lblObjects.Caption
 lblActions.Caption
 cmdOK.Caption
 cmdCancel.Caption
 frmBrowseDialogOptions
 lblLogicalKeyPrompt.Caption
 frmAbout
 imgApplicationBitmap.Picture
 GeneratedForms.1
 frmCustomer
 lblCustomerName.Caption
 frmOrder
 lblOrderNumber.Caption

Language set
File
Group
Resource
Resource
Resource
Resource
Group
Resource
Group
Resource
File
Group
Resource
Group
Resource

 Messages.1
 General
 EndOfData
 ActionInvalid

File
Group
Resource
Resource

German (language set with language code “2”)
 Framework.2
 frmOpen
 lblObjects.Caption
 lblActions.Caption
 cmdOK.Caption
 cmdCancel.Caption
 frmBrowseDialogOptions
 lblLogicalKeyPrompt.Caption
 frmAbout
 imgApplicationBitmap.Picture
 GeneratedForms.2
 frmCustomer
 lblCustomerName.Caption
 frmOrder
 lblOrderNumber.Caption
 Messages.2
 General
 EndOfData
 ActionInvalid
French (language set with language code “3”)
...

Language set
File
Group
Resource
Resource
Resource
Resource
Group
Resource
Group
Resource
File
Group
Resource
Group
Resource
File
Group
Resource
Resource
Language set
– 298 –

__ Internationalizing Your Application
11

e-
y

pe

ny lo-
 and
 two
• Instead of providing a type and a value for a resource, you can link it to another r
source. When the resource is accessed, the application gets the type and value b
following the link. The type and value can link to another resource with its own ty
and value, and so on.

Links allow you to specify the value for a resource once and use that value in ma
cations. For example, if you have OK and Cancel buttons in many different dialogs
you want to change the captions on these buttons in all dialogs, you could define
resources that provide the captions and link to them from all the dialogs.

Links must terminate in a type and value pair. Circular links are not allowed.
– 299 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

urce
eys.

 right

cape

 an ex-

 op-
Resource File Syntax
Resource files are text files that use a syntax identical to Windows INI files. Reso
groups are specified like INI file sections, and resources are specified like INI file k

Specify resource IDs to the left of the equal sign, and specify resource values to the
of the equal sign.

Text Values
Specify text values with quotation mark delimiters, for example:

EndOfDataMsg="There are no more records that match the search criteria."

To include non-printing characters in text values, specify them with one of the es
sequences listed below. Note that these escape sequences are case-sensitive:

Binary Values
Specify binary values as either a sequence of hex characters or as a reference to
ternal file. For a sequence of hex digits, use the value "BIN:" followed by the byte
values. For an external file, use the value "FILE:" followed by the file name and an
tional hex starting position and hex length, for example:

Image1=BIN:01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
Image2=FILE:FileOpen.bmp
Image3=FILE:Icons.dat,1F00,0300

Note: External files must reside in the same directory as the resource file.

Escape Sequence Non-printing Character

\nl CR-LF character combination (ASCII 13101010)

\cr CR character (ASCII 1310)

\lf LF character (ASCII 1010)

\tb Tab character (ASCII 910)

\nnn Character corresponding to ANSI code nnn10

Note: The “10” notation above indicates decimal numbering.

\\ Backslash character.
– 300 –

__ Internationalizing Your Application
11

K:”
 and
nd ID,

, the
 file is
 same
Links
A resource value may be linked to another resource. To create a link, specify “LIN
followed by the name of the resource file (optional), the resource group (optional),
the resource ID. Use commas to separate the names of the resource file, group a
for example:

cmdOK.Caption=LINK:Global,GUIControls,OKButton

The commas must be included even if you omit an optional name, for example:

lblHeader(1).Caption=LINK:,,lblPrompt(1).Caption

If you omit the resource group, the resource file must be omitted too. In this case
resource ID is assumed to be in the same resource file and group. If the resource
omitted, but the resource group is provided, the resource ID is assumed to be in the
resource file, for example:

lblPrompt(1).Caption=LINK:,frmCustomerBrowse,lblPrompt(1).Caption
– 301 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

 to re-

this

in a re-

ource
Using the Internationalization Components
The Resource class provides methods to read resources from resource files and
duce the effort needed to localize an application.

The Construct Spectrum client framework declares and initializes an instance of
class in Startup.bas, for example:

Public Res As New CST.Resource

For more information about these methods and properties, see Resource Classes, Con-
struct Spectrum Reference.

Methods
The Resource class uses the following methods to localize applications:

• GetResourceGroup

• LocalizeForm

• LoadBinaryResource

• LoadStringResource

• Message

• MessageEx

• SetDefaultMessageGroup

GetResourceGroup
This method creates a ResourceGroup object that returns a list of the resources
source group.

The syntax is:

Set result = object.GetResourceGroup(ResourceFile, ResourceGroup)

If the resource file does not exist or if the resource group does not exist in the res
file, this method returns “Nothing”.
– 302 –

__ Internationalizing Your Application
11

ight

al
t.

mpty
LocalizeForm
This method localizes a form by iterating through all of the resources in the specified
resource group and loading each resource into a corresponding control property.

The syntax is:

Sub LocalizeForm(Form As Form, _
 ResourceFile As String, _
 ResourceGroup As String)

This method works with text and graphic properties. For example, the resources m
look like this:

Form.Caption="Construct Demo Application"
mnuFile.Caption="&File"
mnuFileOpen.Caption="&Open..."
imgApplicationBitmap.Picture=FILE:App.ico
...

This method is very powerful; one line of code in your form will localize all the visu
GUI controls on your form. To use this method, call it from your form’s Load even
The following example uses a resource file called Forms which contains resource
groups with the same names as the forms in your application (Me.Name):

Private Sub Form_Load ()
 Res.LocalizeForm Me, "Forms", Me.Name
End Sub

LoadBinaryResource
This method loads the specified resource and returns it as a Byte array. It returns Null
if the resource cannot be found.

The syntax is:

Function LoadBinaryResource(ResourceFile As String, _
 ResourceGroup As String, _
 ResourceID As String) As Variant

LoadStringResource
This method loads the specified resource and returns it as a string. It returns an e
string if the resource cannot be found.

The syntax is:

Function LoadStringResource(ResourceFile As String, _
 ResourceGroup As String, _
 ResourceID As String) As String
– 303 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

 re-

up by
urce

ecify

eters
rs, the

eters
rs, the
Message
This method returns a resource identified by a resource ID. The resource file and
source group are not specified in this method; they are specified by calling the
SetDefaultMessageGroup method.

The syntax is:

result = object .Message(ResourceID, DefaultMessage, Substitutions...)

Before using this method, you must set the default resource file and resource gro
calling the SetDefaultMessageGroup method. Once you have set the default reso
file and group, you can call the Message method repeatedly without having to sp
the resource file and resource group each time.

The Substitutions argument is optional. Use it to pass as many substitution param
as are required by the message. If you do not pass enough substitution paramete
remaining ones in the message will be replaced by “***”.

MessageEx
This method returns a resource identified by a resource file, resource group, and re-
source ID.

The syntax is:

result = object .MessageEx(ResourceFile, ResourceGroup, ResourceID, _
 DefaultMessage, Substitutions...)

The Substitutions argument is optional. Use it to pass as many substitution param
as are required by the message. If you do not pass enough substitution paramete
remaining ones in the message will be replaced by “***”.

SetDefaultMessageGroup
This method sets the default resource file and resource group used by the Message
method when loading resources.

The syntax is:

object .SetDefaultMessageGroup ResourceFile, ResourceGroup
– 304 –

__ Internationalizing Your Application
11

 appli-

ts the
e prop-
pecify

ample,
, 2 for

e name
tains

y
Properties
This section discusses the properties of the Resource class used in localizing an
cation. These properties include:

• Language

• LanguageRegistryKey

• LanguageINIKey

• ResourceFilePath

Specifying Language, LanguageRegistryKey, and LanguageINIKey properties se
language code used for all resource lookups. The most recently set of these thre
erties overrides the settings of the other two properties. Use ResourceFilePath to s
a search path for resources.

Language
This property sets the language code used for all resource lookups.

The syntax is:

Language As String

You must define a mapping between language codes and user languages. For ex
you could choose to use the same language codes that Natural uses (1 for English
German, 3 for French…).

When accessing a resource, the Resource class uses this language code as a fil
extension to obtain the file name of the resource file. For example, if Language con
“1” and you use the following method:

strResource = Res.LoadStringResource(“Forms”, “frmOpen”, “Caption”)

the resource class looks for a file called “Form.1” in the resource path.

Read this property to obtain the current language setting if either LanguageRegistryKe
or LanguageINIKey has been used to specify the language setting.
– 305 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

 cur-

mati-

rated
LanguageRegistryKey
The language code is automatically read from this Windows Registry key.

The syntax is:

LanguageRegistryKey As String

Use LanguageRegistryKey to specify a valid registry key, beginning with one of:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_USERS

and ending with a value name. For example:

.LanguageRegistryKey = "HKEY_CURRENT_USER\" & _
 "Software\" & _
 "SoftwareAG\" & _
 "CST Frameworks\" & _
 "Language"

For every call to LocalizeForm, LoadStringResource, or LoadBinaryResource, the
rent value of this setting will be read to determine which language set to use.

LanguageINIKey
This property is similar to LanguageRegistryKey, but the language setting is auto
cally read from this .INI key.

The syntax is:

LanguageINIKey As String

Use LanguageINIKey to specify a valid .INI file, section, and key name, each sepa
by a Tab character. For example:

.LanguageINIKey = "C:\Windows\CST411.INI" & vbTab & _
 "Settings" & vbTab & _
 "Language"
– 306 –

__ Internationalizing Your Application
11

oca-

ica-
ResourceFilePath
This property sets the resource file path used to search for resource files.

The syntax is:

ResourceFilePath As String

Paths are separated by the semicolon character. For example:

.ResourceFilePath = "\\SERVER\Resources;" & _
 "C:\Program Files\Demos\Demo1"

Setting the ResourceFilePath property allows resource files to reside in multiple l
tions. You will want to store resource files used by many different applications on a
shared network resource and store application-specific resource files in that appl
tion’s directory.
– 307 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

 in-

 to ac-

anges

an-
en

ajor
epa-

cel

 of
se an-

nked to

n of

re
. Par-

ica-

llow
e
 di-
ur
Hints for Developers
The following sections provide information to help you use Construct Spectrum’s
ternationalizing features to the maximum advantage.

Setting the Language Automatically
The Resource class reads the current language setting and uses that information
cess the language set. This choice is made before the Resource class loads any
resources. This structure allows you to centralize the language setting and have ch
to that setting automatically reflected across all applications.

To set language automatically, ensure that all applications using the Resource class
share a standard LanguageRegistryKey or LanguageINIKey. If all applications st
dardize on a specific Registry key or .INI file key to store the current language, th
changing the language in one application sets the language in all applications.

Strategy for Using Resource Files and Groups
To organize resource files and groups efficiently, use one resource file for each m
component (or layer) of the application being localized. For example, you might s
rate your resources into the following files:

• resources used by all framework components

• resources used by all application-specific components

• resources shared by all application components and layers, for example, OK and Can
button prompts. Link other resources to the resources in this file.

Within each resource file, consider using one resource group for the GUI controls
each form. This approach makes it easy to use the LocalizeForm method. Then u
other resource group for messages and other resources that are not necessarily li
GUI control properties, for example, .Caption or .Text.

Construct Spectrum supplies two resource files that implement internationalizatio
framework components and shared application components. These files are called
Fwk.* and Global.* respectively.

The Visual Basic maintenance models (VB-Maint-Dialog and VB-Maint-Object) a
designed to generate code that looks for resources in a resource file called App.*
tition the resources for your application using this scheme.

By default, the Construct Spectrum framework looks for resource files in the appl
tion directory. If you are developing an international application, you will need to
ensure that all necessary resource files reside in the application directory. If you fo
the recommended partitioning of resources described above, you need to copy th
Fwk.* and Global.* resource files from the Framewrk directory to your application
rectory. Next, you need to create App.* resource files and create resources for yo
application-specific forms and messages.
– 308 –

__ Internationalizing Your Application
11

. By
 can

e
 indi-

 to
Starting an Application in a Specific Language
Construct Spectrum applications provide the ability to start in a specific language
interrogating the Windows locale setting and mapping it to a language code, you
specify a language other than English.

When each form in the application is loaded, its Form_Load event calls a Localiz
method. The Localize method converts the form so it is displayed in the language
cated by the Windows locale setting.

Tip: You may want to test your application with a different Windows locale setting
ensure that all captions on the application forms are properly formatted.

� To change your Windows locale setting:

1 Select Settings > Control Panel from the Start menu.
The Control Panel window is displayed.

2 Select Regional Settings.
The Regional Settings Properties window is displayed:
– 309 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11

NAT-
ode,
an)
 Res is
e code
Specifying the Language in the Regional Settings Properties Window

3 Select the desired locale from the drop-down list in the Regional Settings tab.

Associating Windows Locale Setting with a Language
The Windows locale setting is mapped to a language code by the GetUserDefault
LangCode function (located in CSTUtils.bas). This function returns a Language c
using the same language codes as Natural (for example, 1=English and 2=Germ
based on the Windows locale setting. Use this value to set Res.Language, where
a global reference to the Resource class. The mapping of locale setting to languag
is implemented with the MAPPING constant, as depicted in the following code
example:
– 310 –

__ Internationalizing Your Application
11

enu

ps by

er the
ntime,
e, the

nd
e the
-

Example of using the MAPPING constant

Public Function GetUserDefaultNATLangCode() As Integer
...
 ' This constant defines the mapping between Windows language IDs and
 ' Natural language codes. Entries have the format nn=ww, where nn is
 ' the Natural language code and ww is the Windows language ID.
 Const MAPPING = "01=09,02=07,03=12,04=10,05=16,06=19,07=31,… "
...
End Function

Changing Language at Runtime
To support changing the user language at runtime:

• The user interface must include a function to change the language, for example, a m
command, keystroke combination, or button.

• Each form must implement a localization procedure that localizes the form, perha
calling the LocalizeForm method.

• The localization procedure must be called both when the form loads and whenev
user changes the language at runtime. To implement changing the language at ru
declare the localization procedure as public. When the user changes the languag
event code iterates through all loaded forms and calls their localization procedures, as
shown in the following example:

Public Sub LocalizeAllLoadedForms
 ' Called whenever the user changes the language at runtime.
 Dim frm As Form
 For Each frm In Forms
 ' Use an error handler in case the form doesn't have a
 ' Localize procedure.
 On Error Resume Next
 frm.Localize
 On Error Goto 0
 Next
End Sub

Note: The client framework includes the LocalizeAllLoadedForms procedure a
all generated forms support the Localize method. However, you must cod
user interface command to invoke this procedure if you are developing an ap
plication that can change language at runtime.
– 311 –

Construct Spectrum SDK for Client/Server Applications _____________________________
11
– 312 –

__
A

 the
 the
APPENDIX A: MODIFYING CONSTRUCT
SPECTRUM MODELS

This appendix provides a guideline to follow when creating new models based on
VB-Maint-Dialog model. Use this appendix to learn about the relationships among
components used to generate maintenance dialogs.

The following topics are covered:

• VB-Maint-Dialog Model , page 314

• VB API , page 316

• How the VB API Works, page 317

• GUI Controls with the VB API , page 319

• Parameter Data Areas (PDAs) Used, page 324
– 313 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

e di-
ws
 plan

J2
ogram
ed on
rates
VB-Maint-Dialog Model
A variety of components participate in the generation of Visual Basic maintenanc
alogs. The illustration of the model architecture for the VB-Maint-Dialog model sho
the relationships among these components. Use this illustration as a guide if you
to change the VB-Maint-Dialog model or create your own GUI models:

Architecture of the VB-Maint-Dialog Model

As the illustration shows, many of the routines are called by CPU-OBJ2. CPU-OB
accepts a Predict file name and a subprogram name. CPU-OBJ2 calls this subpr
for each field in the Predict file. The subprograms generate segments of code bas
the Predict information that is passed by CPU-OBJ2. For example, CUMDN4 gene
Visual Basic code that copies the contents of each field to a related GUI control.

CUMDNC
(grid utility -

forward
recurse)

CUMDNS
(grid event
code driver)

CUMDNF
(grid utility -
backward
recurse)

CUMDNO
(grid event

code, contd.)

CUMDNG
(grid event

code)

CUMDNM
(set Option

Button values)

CUMDNN
(MU

declarations)

CUMDNL
(Option Button
declarations)

CUMDNK
(call Combo

Load)

CUMDNH
(obtain grid
column info)

CPU-OBJ2
(Predict API)

CUMDNJ
(focus on grid

error cell)

CUMDNB
(grid actions)

CUMDND
(validate grid

action)

CUMDN9
(grid variable
declaration)

CUMDNE
(change label)

CUMDNI
(highlight grid

error cell)

CPU-OBJ2
(Predict API)

CUMDN7
(control event

logic)

CUMDN6
(check remote

error)

CUMDN4
(copy object to

form)

CSVUDERV
(GUI control
derivation)

VB API ...CUMDNTYP
(VB API driver)

CUMDNR
(driver for
CUMDN2)

CUMDN2
(GUI defns)

CUMDN8
(combobox
population)

CPU-OBJ2
(Predict API)

CUMDNA
(build grid

array)

CUMDPR
(pre-gen)

CUMDN1
(driver)

CUMDN5
(driver for
CUMDN2)

CPUXPAND

CUMDN3
(driver for

CPUXPAND)

CUMDNKY
(driver - key
generation)

CMDA9
(code frame)
– 314 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

Example of generated code

Private Sub CopyObjectToForm

 InhibitValidations = True
 On Error GoTo FormAssignmentError
 With InternalObject
 txt_Empl_PersonnelId.Text = _
 BDT.ConvertToDisplay(.Field("PERSONNEL-ID"), _
 NatFormatLength:="A8")
 txt_Empl_FirstName.Text = _
 BDT.ConvertToDisplay(.Field("FIRST-NAME"), _
 NatFormatLength:="A20")
 …
– 315 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

isual
e
ual

our

ntrol.

l.

ol

 im-
VB API
The VB-Maint-Dialog model uses a series of Natural subprograms that generate V
Basic definitions into the source area. Collectively, these Natural subprograms ar
called the VB API. The VB-Maint-Dialog model uses the VB API to generate the vis
definition — the various GUI controls — of a Visual Basic maintenance dialog. If y
models generate Visual Basic forms, they can also use the VB API.

Components of the VB API
Three components exist for each type of GUI control supported by the VB API:

• A subprogram to assign user-defined default values for the properties of a GUI co

• An LDA to store the Visual Basic default values for the properties of a GUI contro

• A subprogram to write the GUI definition to the source area.

A series of PDAs store property information for GUI control definitions. GUI contr
properties are grouped by function into different PDAs. For example, all GUI control
properties related to font are stored in the CSVAFONT PDA. Any GUI control that
plements font properties declares the font PDA, CSVAFONT.

To see the list of GUI controls supported by the VB API, see GUI Controls with the
VB API , page 319. For each GUI control, the table in this section indicates:

• The subprogram responsible for assigning user defaults.

• The subprogram responsible for writing the GUI definition to the source area.

• The PDAs that must be passed to these subprograms.
– 316 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

l
ce —
ation

t.
UI

ased
d not
m.

ia-

rom

ual

. Vi-
 and
)
How the VB API Works
� Yo use the VB API with a model you create:

1 Call the user default subprogram.
The user default subprogram assigns your organization’s defaults for GUI contro
properties. With this subprogram, you can write code to assign default values on
not in every subprogram that uses the VB API. For example, suppose your organiz
requires the field captions in all dialogs to be in an eight-point MS Sans Serif fon
Writing the following code in the user default subprogram CSVBDLBL (for Label G
controls) assigns the organization’s required values.

Example of code in the user default subprogram

COMPRESS #DOUBLE-QUOTE 'MS Sans Serif' #DOUBLE-QUOTE
 INTO CSVAFONT.FONT_NAME LEAVING NO SPACE
ASSIGN CSVAFONT.FONT_SIZE = 8

For more information, see Setting Generation GUI Standards, page 143.

2 Assign any GUI control properties that are application-specific.
For example, the Caption property of the Label GUI control varies because it is b
on the name of the database field with which it is associated. Therefore, you woul
want to assign this type of GUI control property in the control’s default subprogra

Example of assigning a value to the Caption property

CSVAFRMT.CAPTION := CPA-ODAT.FIELD-NAME

For another example, refer to the CUMDNTYP driver program for the VB-Maint-D
log model.

3 Call the Create subprogram that writes the GUI definition to the source area.
The Create subprogram compares the value assigned to a particular GUI control
property with the default value used by Visual Basic. If the assigned value differs f
the Visual Basic default value, the Create subprogram generates the property
assignment into the source area. However, if the assigned value matches the Vis
Basic default value, the Create subprogram saves source area space by suppressing
generation of the property assignment.

Consider the FONT_NAME and FONT_SIZE properties set in the earlier example
sual Basic’s default property values for a Label GUI control are an eight-point font
a MS Sans Serif font. The Label GUI control definition (generated by CSVBCLBL
shown below does not include assignments for the font name and size.
– 317 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

Example of using default values

Begin VB.Label lbl_Empl_PersonnelId
 Caption = "Personnel/id:"
 AutoSize = -1
 Left = 100
 Top = 295
 Height = 285
 Width = 1073
End
– 318 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

n-
ith each
GUI Controls with the VB API
The following table lists the GUI controls the VB-Maint-Dialog model uses. Also i
cluded are the subprogram names and parameter data areas (PDA) associated w
GUI control:

GUI Control User Default Create PDAs

CheckBox CSVBDCHK CSVBCCHK CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

3DCheckBox CSVBD3CH CSVBC3CH CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

ComboBox CSVBDCBO CSVBCCBO CSVACMBO
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVATBOX
CSASTD

CommandButton CSVBDCMD CSVBCCMD CUMDATYP
CSVACOMN
CSVABUTN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD
– 319 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

3Dcommand
Button

CSVBD3CD CSVBC3CD CUMDATYP
CSVALCTN
CSVACOM
CSVA3CMD
CSASTD

Form CSVBDFRM CSVBCFRM CUMDATYP
CSVACOMN
CSVADDE
CSVAFONT
CSVAFORM
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

Frame CSVBDFRA CSVBCFRA CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

3DFrame CSVBD3FR CSVBC3FR CUMDATYP
CSVA3DI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD

Label CSVBDLBL CSVBCLBL CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

GUI Control User Default Create PDAs (continued)
– 320 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

ListBox CSVBDLST CSVBCLST CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

MDIForm CSVBDMFM CSVBCMFM CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVALCTN
CSVAWNDW
CSASTD

Menu CSVBDMNU CSVBCMNU CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVAMENU
CSASTD

OptionButton CSVBDOPT CSVBCOPT CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

3DOptionButton CSVBD3OP CSVBC3OP CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

GUI Control User Default Create PDAs (continued)
– 321 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

StatusBar CSVBDSTA CSVBCSTA CUMDATYP
CSVACOMN
CSVA3DI
CSVAFOCS
CSVALCTN
CSVASTAT
CSASTD

TextBox CSVBDTXT CSVBCTXT CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATBOX
CSVAWNDW
CSASTD

Timer CSVBDTMR CSVBCTMR CUMDATYP
CSVACOMN
CSVALCTN
CSVATIME
CSASTD

3DPanel CSVBD3PN CSVBC3PN CUMDATYP
CSVA3DI
CSVA3DPN
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

TrueDBGrid CSVBDGRD CSVBCGRD CUMDATYP
CSVACOMN
CSVALCTN
CSVAFOCS
CSVAGRID
CSASTD

GUI Control User Default Create PDAs (continued)
– 322 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

Toolbar CSVBDTLB CSVBCTLB CUMDATYP
CSVA3DI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAMOUS
CSVATOOL
CSASTD

GUI Control User Default Create PDAs (continued)
– 323 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

are
hese

rol is
mple,
er-
e of
Parameter Data Areas (PDAs) Used
The following table lists the PDAs used with the VB-Maint-Dialog model. Included
the properties associated with each PDA and the GUI controls that use the PDA. T
PDAs are also cross-referenced by GUI control and subprogram in GUI Controls with
the VB API, page 319.

Some of the properties are identified with superscript numbers. When a GUI cont
shown with a superscript number, the corresponding property is not used. For exa
the first PDA in the following table has a BackColor property identified with a sup
script number of 1. The GUI control 3DCheckBox field also has a superscript valu
1. This means that the 3DCheckBox field does not use a BackColor property.

PDA Name Properties Used By GUI Control

CSVACOMN
(common information)

BackColor1

Enabled2

Index3

Name4

Tag5

Visible6

CheckBox

3DCheckBox1

ComboBox
CommandButton
Form3

Frame
3DFrame1

Label
ListBox
MDIForm1,3,6

Menu
OptionButton
3DOptionButton1

StatusBar1,2,3,4,5,6

TextBox
Timer1,6

3DPanel
TrueGridPro
ToolBar
– 324 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

CSVAFOCS
(focus information)

HelpContextID1

TabIndex2

TabStop3

CheckBox
3DCheckBox
ComboBox
CommandButton
MDIForm2, 3

Menu2, 3

OptionButton
3DOptionButton
StatusBar1,3

TextBox
3DPanel3

TrueGridPro

ToolBar2, 3

CSVATOGL
(toggle information)

Value CheckBox
3DCheckBox
OptionButton
3DOptionButton

CSVAFRMT
(text formatting
information)

Alignment1

BorderStyle2

Caption3

CheckBox2

3DCheckBox2

CommandButton1,2

Form1

Frame1,2

3DFrame2

Label

MDIForm1,2

Menu1,2

OptionButton2

3DOptionButton2

TextBox3

3DPanel2

TrueGridPro1,3

PDA Name Properties Used By GUI Control
– 325 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

CSVAMOUS DragIcon1

DragMode2

MousePointer3

CheckBox
3DCheckBox
ComboBox
CommandButton
Form1,2

Frame
3DFrame
Label
ListBox
OptionButton
3DOptionButton
TextBox
3DPanel
TrueGridProToolBar

CSVAFONT
(font information)

FontBold1

FontItalic2

FontName3

FontSize4

FontStrikethru5

FontTransparent6

FontUnderline7

Font3D8

ForeColor9

CheckBox6,9

3DCheckBox6

ComboBox6,8

CommandButton6,8,9

Form8

Frame6,8

3DFrame6

Label6,8

ListBox6,8

OptionButton6,8

3DOptionButton6

TextBox6.8

3DPanel6

TrueGridPro6,8

ToolBar6,8,9

PDA Name Properties Used By GUI Control
– 326 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

CSVALCTN
(location information)

Left1

LeftDerive
Top2

TopDerive
Height3

HeightDerive
Width4

WidthDerive

CheckBox
3DCheckBox
ComboBox
CommandButton
Form
Frame
3DFrame
Label
ListBox
MDIForm
OptionButton
3DOptionButton
StatusBar
TextBox
Timer3,4

3DPanel
TrueGridPro

CSVADDE
(DDE information)

LinkItem1

LinkMode2

LinkTimeout3

Form1,3

LabelTextBox

CSVAFORM
(form control
information)

AutoRedraw
ControlBox
DrawMode
DrawStyle
DrawWidth
FillColor
FillStyle
KeyPreview
MaxButton
MDIChild
MinButton
Picture

Form

CSVALABL
(label control
information)

AutoSize1

BackStyle2

WordWrap3

Label
3DPanel2,3

CSVAMENU
(menu control
information)

Checked
ShortCut

Menu
WindowList

PDA Name Properties Used By GUI Control
– 327 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

CSVABUTN
(command button
control information)

Cancel
Default

CommandButton

CSVALBOX
(listbox control
information)

Columns1

MultiSelect2

Sorted3

ListBox
ComboBox1,2

CSVASTAT
(status bar
information)

_Version
_ExtentX
_ExtentY
_StockProps
SimpleText

StatusBar

CSVATBOX
(textbox control
information)

HideSelection1

MaxLength2

MultiLine3

PasswordChar4

Text5

TextBox
ComboBox1,2,3,4

CSVATIME
(timer control
information)

Interval Timer

CSVACMBO
(combobox control
information)

Style ComboBox

CSVA3DI
(3D information)

Align1

Outline2

ShadowColor3

ShadowStyle4

3DPanel4

3DFrame1,2

Toolbar3,4

CSVAWNDW
(window information)

ClipControls1

Icon2

Scrollbars3

WindowState4

Form3

Frame2,3,4

MDIForm1

TextBox1,2,4

PDA Name Properties Used By GUI Control
– 328 –

________________________________ Appendix A: Modifying Construct Spectrum Models
A

CSVA3DPN
(3D panel information)

BevelInner
BevelOuter
BevelWidth
BorderWidth
FloodColor
FloodPercent
FloodShowPct
FloodType
RoundedCorners

3DPanel

CSVAGRID
(TrueDBGrid control
information)

OLEObjectBlob Grid

CSVA3CMD

PDA Name Properties Used By GUI Control
– 329 –

Construct Spectrum SDK for Client/Server Applications _____________________________
A

– 330 –

INDEX

A
Active help

drop-down list
diagram, 279

for maintenance dialogs, 277
foreign field help, 278
primary key help, 277

Adding a new field by hand
on maintenance dialog, 152

Add-Ins Menu
options, 25

Appendix
See Modifying Spectrum models

AppendSlash
utility procedure, 259

Application interface
demo project, 50

Application settings
AppSettings.bas

definition, 213
customizing, 214
Startup.bas

definition, 213
understanding, 213, 215

ApplicationName
description, 214

AppSettings.bas
description, 106
See also application settings, 213

Architecture
Construct Spectrum applications, 26

ArrayDimensions
utility procedure, 259

ASSERT
utility procedure, 259

Assigning
corporate defaults, 141

B
BDT_PHONE

business data type, 262
Browse

modules
downloading to project, 188

support
ApplicationControl, 215
ApplicationControls, 215
BrowseBase.cls, 215
BrowseDataCache, 215
BrowseDataColumn, 215
BrowseDataColumns, 215
BrowseDataRow, 215
BrowseDataRows, 215
BrowseDialogBase.cls, 215
BrowseDialogOptions.frm, 216
BrowseManager.cls, 216
ColumnDisplay, 216
ColumnsDisplay, 216
FieldKey, 216
FieldKeys, 216
GenericBrowse.frm, 216
GenericMDIBrowse.frm, 216
KeyMatch, 216
understanding, 215

Browse Command handlers
coding, 198

enabling browse commands, 198
example of code to assign command
IDs, 198
example of code to mark updated
rows, 200
example of code to update, 199

creating, 197
diagram of Browse Command handler
interaction, 195
drill-down capabilities, 276
– 331 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

o
Browse dialogs
browse object subprogram, 177
browse object subprogram proxy, 178
components of

client framework components, 176
object browse subprogram, 176
object browse subprogram proxy, 176
Visual Basic browse object, 176

creating with individual models, 175
diagram of components, 177
drilling down from, 276
framework components, 179
integrating with maintenance dialogs,
275

see also integrating browse and
maintenance dialogs

modules required for, 84
prerequisites for generating with
individual models, 181
purpose, 176
Visual Basic browse object, 178

data cache, 178
Browse object

See also Visual Basic browse object
see Visual Basic browse object
subprogram

generating, 182
Browse subprogram proxy

generating, 182
BrowseManager class

BrowseManager methods
list of services, 194

BrowserExists procedure
(TableName) As Boolean, 245
example code, 255
updating, 255

Browsing for business objects
customizing browse options, 71
demo project, 68

Business data types
demo project, 63
setting up in Predict

example code for, 138

C
Calculated fields

code examples, 145
creating, 145

CenterForm
utility procedure, 259

CheckBox field
adding to maintenance dialog, 155

CheckBox grid column
adding to maintenance dialog, 161

Checklists
Construct Spectrum project, 103
creating browse dialogs with individual
models, 181
creating maintenance dialogs with
individual models, 116
moving non-object based applications t
Construct Spectrum, 203
moving object-based applications to
Construct Spectrum, 202
super model generation, 80

Client framework
customizing

application settings, 214
menu and toolbar

See menu and toolbar, 233
object factory, 246

diagram of components, 208
internationalizing

See Internationalizing, 302
introduction, 208
multiple-document interface, 242
object factory, 243
Resource class, 302

initializing an instance, 302
understanding and customizing, 207
utility procedures, 259

Client modules
generation overview, 35

Client/server applications
architecture, 26

CLIENT-VALIDATIONS user exit
validating data, 267
– 332 –

___ Index
ComboBox GUI control
adding to maintenance dialog, 154

Command buttons
foreign field support, 294

Command handlers
browse

drill-down capabilities, 276
Commands

defining, sending, and handling, 221
Compressing data

enabling for client to server
transmissions, 119–120, 184

Construct Spectrum
creating your application, 34
description, 22
moving Natural Construct applications
to, 16

Construct Spectrum Add-In
overview, 42

Construct Spectrum applications
diagram of architecture, 26

Construct Spectrum project
creating, 104
downloading generated components to,
107
prerequisites, 103
setting up, 101

Construct Spectrum SDK
documentation, 18
documentation and course information,
18

Conventions
typographical

used in this guide, 17
Corporate defaults

assigning, 141
Courses

related Natural Construct, 19
Create a New Project window

description, 104
CreateArray

utility procedure, 259
CreateForm procedure

description, 252
example code, 252
updating, 252

CreateStringArray
utility procedure, 259

Creating
applications, 34
calculated fields, 145
Construct Spectrum applications, 16
Construct Spectrum Project, 104

CSTFormatMessage
utility procedure, 259

CSTSelectContents
utility procedure, 259

CSTSubst
utility procedure, 259

CSTUtils.bas
utility procedures, 259

CSTVBFW.dll
customizing client framework
components, 209

CSXDEFLT
changing values in model default
subprogram, 288

Customizing
application and environment, 36
browse dialog

display options, 71
recommendations for a new
application, 190

browse dialogs, 195
BrowseManager methods, 194
diagram of internal structure, 193
on the client

See Customizing on the client, 195
on the server

See Customizing on the server, 195
understanding Browse Command
handlers

See Browse Command handlers,
195

using BrowseManager class, 192
business data types, 180
descriptive fields, 180
maintenance dialog

overriding default GUI control
selection, 133
server options, 131
server tasks, 132
strategies for, 129
user-defined user exits, 131
– 333 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

Customizing browse dialogs
using the BrowseManager class, 191

diagram of interaction to display a
browse dialog, 192

Customizing on the client
understanding the BrowseManager class

displaying the browse dialog, 190
returning a specific row of data, 191
returning all rows of data, 191
supporting a browse command
handler, 190

Customizing on the server
browse object Predict setup, 195

D
Data compression

enabling for client to server
transmissions, 119–120, 184

Data encryption
enabling for client to server
transmissions, 120, 184

Data sources
defining alternate, 185

Database ID
specifying in a new project, 104

DBID
description, 215
number

specifying in a new project, 104
Debugging

client/server applications, 36
Default GUI derivation logic, 137, 139

diagram, 139–140
DefaultLibrary

description, 215
Defaults

used by super model, 80
Defining

alternate browse data sources, 185
example code, 187

general package parameters, 95
specific package parameters, 97

Demo application
application interface, 50
browsing for business objects, 68
business data types, 63

customizing browse options, 71
drop-down grids, 66
foreign fields on a maintenance dialog,
69
generated modules, 45
grids, 64
maintaining a business object, 61
making the .EXE file, 49
nested grids, 65
opening a business object, 57
overview, 38, 43
remote dispatch service options, 55
running, 47
troubleshooting, 75
validations, 62

Dependencies between models, 85
Deploying

procedure, 36
Deploying applications

overview, 36
Derivation logic

GUI controls, 132
Descriptions

foreign fields, 289
refreshing, 291

Developing Client/Server Applications
how to use guide, 16
layout, 14

Development environments
description, 23

Development process
steps involved in developing an
application, 30

Dialogs, browse
see Browse dialogs

Dialogs, maintenance
see Maintenance dialogs

Dispatch service data
role on mainframe server, 27

Dispatch services
options, 55

Dispatcher
Selection window

See Spectrum Dispatch Client, 258
Dispatcher Selection window

customizing client framework
components, 258
– 334 –

___ Index
Displaying
grids, 167

Documentation
related Construct Spectrum SDK, 18
related Natural Construct, 18–19

Domains
setting up application environment, 33
specifying in super model, 95

Downloading
browse modules to the client, 188
Download Generated Modules window,
107
Downloading Modules window, 126
generated components to project, 107
maintenance modules to the client, 125

Drilling down from a browse dialog, 276
Drop-down grids

demo project, 66
Drop-down list

representing a foreign field, 286
dialog, 286

Drop-down lists
active help from

diagram, 279
foreign field support, 292

E
Encrypting data

enabling
client to server transmissions, 120,
184

Entire Broker
role on mainframe server, 28

Error notifications
adding support for sound, 169

ErrorPreferences.frm
description, 272

ErrorTip.frm
description, 272

EXE file
making for demo project, 49

Existing applications
moving to Construct Spectrum, 201

External data
accessing with VB-Browse-Local-Data-
Object model, 185
displaying in a generated combo box,
136
example code for accessing, 187

F
Field help

active help, 277
File number

specifying in a new project, 104
FileExists

utility procedure, 259
FindFirst

utility procedure, 259
FixupRTF

utility procedure, 259
FK-AS-COMBO-THRESH-HOLD

changing default value, 288
FNR

description, 215
FNR number

specifying in a new project, 104
ForceLogonAtStartup

description, 214
Foreign fields

active help, 278
case for not using, 283

diagram, 283
corporate default threshold, 141
default GUI controls, 288
demo project, 69
displaying descriptions, 289
GUI controls used to represent, 285
multiple descriptive values, 290
refreshing descriptions, 291
repeating relationships, 283

diagrams of, 283
representing in

drop-down lists, 286
grids, 287
lookup buttons, 286

supported relationships, 282
diagram, 282

supporting code
command buttons, 294
drop-down lists, 292
– 335 –

Construct Spectrum SDK for Client/Server Applications _____________________________________
G
G/R/O

in super model wizard, 92
Generated code

transferring to the project, 35
Generating

browse subprogram proxy, 182
individual models, 34
maintenance dialog, 122
maintenance subprogram proxy, 117
object factory

considerations for, 82
super model, 93, 98

diagram of, 78
new package, 90
overview, 78
packages and object factory, 88
specific packages, 90

super model wizard
Standard Parameters window, 87

Visual Basic browse object, 182
Visual Basic maintenance object, 118

Generation process
overview of server/client modules, 34

GetBrowser
TableName As BrowseManager, 245

GetBrowser procedure
example code, 254
updating, 253

GetPrivateProfileStringVB
utility procedure, 259

GetWindowsDirectoryVB
utility procedure, 260

Grid
representing a foreign field, 287

diagram, 287
Grids

column
adding to maintenance dialog, 156

demo project, 64
diagram

formatted grid, 167
unformatted grid, 167

displaying, 167
Grid Sizing Information window, 168

keyboard shortcuts, 67
resizing, 168
using, 165

GUI
generation standards

defining, 143
GUI controls

default controls for foreign fields, 288
default derivation logic, 137, 139

diagram, 139–140
derivation logic, 132
keywords, 135
naming conventions, 132
overriding default selection, 133
representing foreign fields, 285

GUI dialog
role on Windows platform, 29

GUI_ALPHA MULTILINE keyword
description, 135

GUI_CHECKBOX keyword
description, 135

GUI_COMBOBOX keyword
description, 135

GUI_NULL keyword
description, 135

GUI_OPTION BUTTON keyword
description, 135

GUI_PROTECTED keyword
description, 136

GUI_TEXTBOX keyword
description, 136

H
Help

See online help, 31
HKEY_CLASSES_ROOT

language registry, 306
HKEY_CURRENT_USER

language registry, 306
HKEY_LOCAL_MACHINE

language registry, 306
HKEY_USERS

language registry, 306
– 336 –

___ Index
I
Individual models

when to use, 34
InitAppSettings procedure

example, 214
InitializeOpenDialog procedure

code example, 251
description, 245, 250
updating, 250

Integrating browse and maintenance
dialogs, 275

design objectives, 280
drilling down from a browse dialog, 276
overview, 276, 280, 282
see also Foreign fields, 275

Interface
demo project, 50

Internationalizing
generated applications, 295
hints for developers, 308

automatically setting the language,
308
changing language at runtime, 311
using resource files and groups, 308

maintenance dialogs, 172
methods, 302

GetResourceGroup, 302
LoadBinaryResource, 302
LoadStringResource, 302
LocalizeForm, 302–303
Message, 302
MessageEx, 302
SetDefaultMessageGroup, 302

planning considerations, 296
list of translatable items, 296

properties, 305
Language, 305
LanguageINIKey, 306
LanguageRegistryKey, 306
ResourceFilePath, 307

related client framework components
Resource, 297
ResourceGroup, 297

using the client framework, 297
where to find related information, 295

Invoking
super model, 86, 94

IsForegroundApplication
utility procedure, 260

IsMDIChild
utility procedure, 260

K
Key field active help, 277
Keyboard shortcuts for grids, 67
Keywords

business data type, 138
GUI control, 135
verification rule, 137

L
Label captions

GUI controls, 133
Language sets

resource files, 297
LanguageRegistryKey

description, 306
HKEY_CLASSES_ROOT, 306
HKEY_CURRENT_USER, 306
HKEY_LOCAL_MACHINE, 306
HKEY_USERS, 306

Library image files
role on Windows platform, 29

LoadBinaryResource method
description, 303

LoadStringResource
description, 303

Logon dialog
description, 258
See also Spectrum Dispatch Client, 258

Lookup button
representing a foreign field, 286

diagram of, 286

M
Maintaining a business object

demo project, 61
Maintenance dialogs

abbreviated object description, 133
active help for, 277
adding new field by hand, 152
controlling default size, 144
– 337 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

4

customizing on the server, 132
integrating with browse dialogs, 275

see also Integrating browse and
maintenance dialogs

internationalizing, 172
model

using, 122
modules required for, 83
object identifier, 133
prerequisites for generating with
individual models, 116

Maintenance modules
relationships between, 114
to download to project, 125

Maintenance object
see

Maintenance object subprogram
generating, 116

Maintenance subprogram proxy
generating, 117

Max
utility procedure, 260

MDI
See multiple-document interface, 242

MDIFrame.frm
description, 242

Menu
bar

definition, 242
structure

See menus and toolbars, 234
Menus and toolbars

command handling
class summary, 221
coding, 224
defining, sending, and handling, 221
linking commands, 224
understanding, 220
unhooking commands, 233
user interface controls, 226

customizing, 233
menu bar example, 237
menu editor window, 238
menu structure, 234
toolbar button example, 241
toolbar structure, 240

demo application, 51

support
UICmd, 219
UICommandConstants.bas, 219
UICommands, 219

Message method
description, 304

MessageEx method
description, 304

Methods
coding the UICommandTarget(), 199
internationalizing

See also Internationalizing, 302
marking updated rows, 200

Min
utility procedure, 260

Modal browse window
example, 277

Models
deciding which to use, 34
dependencies between, 85

Modifying
Spectrum models, 313

example of generated code, 315
GUI controls with VB API, 319
how the VB API works, 317
parameter data area (PDA) used, 32
VB API, 316

components
See also VB API

VB-Maint-Dialog model, 314
VB-Maint-Dialog model architecture,
314

Modules
custom-created, 245
deciding which to generate with super
model, 82
naming conventions, 80

diagram, 80
to download to project, 108
uploading changes to the server, 129

Monitor resolution
effect on dialog size, 144

MoveFormSafely
utility procedure, 260

Multi-column layout
creating on dialog, 149
example, 149
– 338 –

___ Index

5

Multilingual support
See Internationalizing, 172

Multiple descriptive values for a foreign
field, 290
Multiple Generation utility

using with super model, 93
Multiple-document interface

MDIFrame.frm, 242
Menu Bar, 242
Status Bar, 242
Toolbar, 242

understanding, 242

N
Naming conventions

GUI controls, 132
super model, 80

diagram, 80
Natural Construct applications

moving to Construct Spectrum, 16
Natural subprogram

role on mainframe server, 27
Nested grids

demo project, 65
diagram of relationships, 165
drop-down

diagram, 166
using, 166

using, 165
Non-object based applications

moving to Construct Spectrum, 203

O
Object browse subprogram, 182

description, 84
key PDA description, 84
restricted PDA description, 84
row PDA description, 84

Object browse subprogram proxy
description, 84

Object factory
considerations for generating, 82
customizing, 246

new business objects, 250
OFactory.bas, 243

code, 249
OFactory.bas window, 247

Open dialog
understanding, 244

Open.frm
definition, 243

OpenAction, 243
OpenObject, 243
OpenObjects, 243
procedures

BrowserExists(TableName) As
Boolean, 245
CreateForm(formID) As Form, 245
GetBrowser(TableName) As
BrowseManager, 245
InitializeOpenDialog(), 245

relationship diagram, 248
selecting to generate in super model, 9
selecting to generate in super model
wizard, 88
understanding, 243–244
using, 245

example, 246
Object maintenance subprogram

description, 83
see Maintenance object subprogram,
116

Object maintenance subprogram proxy
description, 83

Object-based applications
moving to Construct Spectrum, 202

Object-Browse-Subp model
description, 84

ObjectError
description, 273

ObjectErrors
description, 273

Object-Maint-Subp model
description, 83

OFactory.bas
description, 106, 243
example, 247

OLE automation server
customizing client framework
components, 209

Online help
context-sensitive, 31
providing in client/server applications,
31
task-oriented, 31
window-level, 31
– 339 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

4

Open dialog
overview, 243
relationship diagram, 248
understanding, 244

Open.frm
definition, 243
example, 243

OpenAction
description, 243

Opening a business object
demo project, 57

OpenObject
description, 243

OpenObjects
description, 243

Option button threshold
corporate default, 141

Overflow conditions
correcting, 144, 148
correcting in a dialog, 122
example, 148
working with overflow frames, 149

Overriding default GUI control selection,
133

P
Packages

generating with super model, 82
specifying parameters

general, 88
general parameters, 95
specific parameters, 90, 97

specifying prefix in super model wizard,
91

PadLeft
utility procedure, 260

PadRight
utility procedure, 260

Parameter data areas
generating for browse object
subprogram, 182
generating for maintenance object
subprogram, 116

Planning your application
consistent style, 32
content of windows, 32

deciding what to show users, 31
number and structure of windows, 32
planning code, 32
setting up your project, 35
simple window design, 32
translation issues, 33

Predict definitions
setting up application environment, 33

Predict Modify Verification panel
description, 137

Predict set up tasks
default GUI controls, 129
headers, 129
keywords, 129

Prerequisites
Construct Spectrum project, 103
demo application, 39
developing client/server applications, 1
super model, 80

Preserving
user exits, 129

Primary keys
active help for, 277

Product integration
Adabas, 22
Construct Spectrum, 22
DB2, 22
Entire Broker, 22
Natural, 22
Predict, 22
VSAM, 22

Projects
opening the demo, 40
see also Construct Spectrum project,
101

Prompt to Open New Project window
description, 105

R
Regenerating existing modules

using super model, 96
using super model wizard, 89

RegistryKey
description, 214

Relationships
between maintenance modules, 114
– 340 –

___ Index

d

,
RememberUserID
description, 214

Remote dispatch service options
demo project, 55

Removing field
by hand from maintenance dialog, 164

Repeating field threshold
corporate default, 141

Repeating foreign fields
represented in a grid, 287

diagram, 287
supported relationships, 283

diagram of, 283
Replacing existing modules

using super model, 96
using super model wizard, 89

ResizeForm
utility procedure, 260

Resizing
grids, 168

Resizing grids
controls in a dialog, 122

Resource files
composition, 297
creating links, 301
filename example, 297
path

purpose, 298
specifying binary values, 300
specifying text values, 300

how to include non-printing
characters, 300

syntax, 300
Resource groups

identifiers (RGID), 297
purpose, 297

Resource identifiers (RID)
composition, 297

Resources
linking, 299

S
Scalar field

adding to maintenance dialog, 152
SDC

See Spectrum Dispatch Client, 256

SDCDialog.frm
description, 256
dialog, 257

Security
considerations for a new application,
111
setting up domains, steplibs, users, an
groups, 33

Server
customizing maintenance dialogs, 132

Server modules
generation overview, 34

Server-based applications
moving to Construct Spectrum, 201

SetDefaultMessage method
description, 304

Setting up
Construct Spectrum project, 101
Predict file definitions, 133

SetUppercaseStyle
utility procedure, 260

Shortcuts
keyboard shortcuts for grids, 67

Simple foreign field relationships, 282
diagram, 282

Sound
adding to error notifications, 169
support for error notifications, 169

Sound support
overview, 170

Spectrum administration
role on mainframe server, 27

Spectrum Dispatch Client
client framework support, 256
error messages, 258
SDCDialog.frm, 256

example dialog, 257
SDCSupport.bas, 256
TraceOptions.frm, 256

example dialog, 257
Spectrum Dispatch Client (SDC)

overview, 22
Spectrum dispatch service

overview, 22
role on mainframe server, 27

Spectrum security services
role in Construct Spectrum applications
28
– 341 –

Construct Spectrum SDK for Client/Server Applications _____________________________________

Startup.bas
See application settings, 213

State-dependent layout
creating on dialog, 151
example, 151

Status bar
definition, 242
demo application, 54

Steplib chains
setting up application environment, 33

Strategies for customizing maintenance
dialogs, 129
Sub Main procedure

customizing client framework
components, 213

Subprogram proxies
generating for a browse dialog, 182
generating for a maintenance dialog,
117

Subprogram proxy
role on mainframe server, 27

Subprogram-Proxy model
description, 83–84

Super model
defaults, 80
defining general package parameters, 95
defining specific package parameters,
97
General Package Parameters panel, 95
generating

in batch, 93
using wizard, 93

generating application modules, 34
generation function, 98
generation overview, 78

diagram of, 78
invoking, 86, 94
invoking the model wizard, 86
Package modules grid in wizard, 91
prerequisites, 80
regenerating existing modules, 89
replacing existing modules, 89
Standard Parameters panel, 94
troubleshooting, 100
using message numbers, 87
when to use, 78
which modules to generate, 82

Super model wizard
New Package window, 90
Packages and Object Factory window,
88

T
Tabbed layout

creating on dialog, 150
example, 150

Testing applications
recommendations for testing new
application, 110

TextBox GUI control
adding to maintenance dialog, 153

Thresholds
foreign field, 142
option button, 142
repeating field, 142

Toolbar
buttons, 229
customizing

See menus and toolbars, 240
definition, 242
demo application, 51

TraceOptions.frm
dialog, 257
example, 257

Transferring
generated code to the client, 35

TWIPS monitor values
description, 144

Typographical conventions
used in this guide, 17

U
UICmd

definition, 219
UICommandConstants.bas

defining commands, 238
definition, 219

UICommands
class, 222
definition, 219
– 342 –

___ Index

6

Uploading
changes to the server, 129
Uploading Modules window, 173

User exits
preserving changes by uploading to the
server, 129
user-defined for maintenance dialog,
131

User Exits panel
VB-Browse-Object model, 185

User type rules
coding, 270
example of code for Natural rule, 270
example of code for Visual Basic rule,
270
example of code using Visual Basic and
Natural, 270

Utility procedures
AppendSlash, 259
ArrayDimensions, 259
ASSERT, 259
CenterForm, 259
CreateArray, 259
CreateStringArray, 259
CSTFormatMessage, 259
CSTSelectContents, 259
CSTSubst, 259
CSTUtils.bas, 259
description, 259
FileExists, 259
FindFirst, 259
FixupRTF, 259
GetPrivateProfileStringVB, 259
GetWindowsDirectoryVB, 260
IsForegroundApplication, 260
IsMDIChild, 260
Max, 260
Min, 260
MoveFormSafely, 260
PadLeft, 260
PadRight, 260
ResizeForm, 260
SetUppercaseStyle, 260

V
Validating data

creating Predict verification rules, 269
diagram of a validation cycle, 263
examples in demo project, 62
in maintenance dialogs, 266

hand-coding in generated dialogs, 26
using BDTs, 266

in Visual Basic maintenance objects,
267

using CLIENT-VALIDATIONS user
exit, 267
using Predict, 268

on the client
diagram of triggering validation, 265

order of precedence, 271
typed of validations, 262
types of data validation

business data type, 262
business object, 263
local business, 262

Validation error handling
ErrorPreferences.frm, 272
ErrorTip.frm, 272
ObjectError, 273
ObjectErrors, 273

Validation errors
in business object validations, 273

example of code, 273
on the client, 272

Variable names
deriving, 132

VB API
components, 316

LDA storing Visual Basic default
values, 316
PDAs for GUI control definitions, 316
subprogram to assign default values,
316
subprogram to write GUI definition,
316

description, 316
GUI controls, 319

3DCheckBox, 319
3Dcommand Button, 320
3DFrame, 320
3DOptionButton, 321
3DPanel, 322
CheckBox, 319
– 343 –

Construct Spectrum SDK for Client/Server Applications _____________________________________
ComboBox, 319
CommandButton, 319
Form, 320
Frame, 320
Label, 320
ListBox, 321
MDIForm, 321
Menu, 321
OptionButton, 321
StatusBar, 322
TextBox, 322
Timer, 322
Toolbar, 323
TrueDBGrid, 322

PDAs
CSASTD, 319
CSVA3CMD, 320
CSVA3DI, 320
CSVA3DPN, 322
CSVABUTN, 319
CSVACMBO, 319
CSVACOMN, 319
CSVADDE, 320
CSVAFOCS, 319
CSVAFONT, 319
CSVAFRMT, 319
CSVAGRID, 322
CSVALABL, 320
CSVALCTN, 319
CSVAMENU, 321
CSVAMOUS, 319
CSVASTAT, 322
CSVATBOX, 319
CSVATIME, 322
CSVATOGL, 319
CSVATOOL, 323
CSVAWNDW, 320
CUMDATYP, 319

using with a custom model, 317
example of code in user default
subprogram, 317
example of code to assign value to
Caption property, 317
example of code using default values,
318

VB-Browse-Local-Data-Object model
accessing alternate data sources with,
185, 187
Standard Parameters, 186

VB-Browse-Object model
description, 84

VB-Maint-Dialog model
description, 83

VB-Maint-Object model
description, 83

Verification rules
keywords, 137
Predict, 269
where to implement, 269

coding user type rules, 270
Visual Basic browse object

adding support, 253–254
business object, 245
description, 84
generating, 182

Visual Basic business objects
role on Windows platform, 29

Visual Basic maintenance object
business object, 245
description, 83
generating, 118

W
Windows platform

role of Entire Broker, 28
Working environment

Construct Spectrum, 22
– 344 –

	Table of Contents
	Preface
	Prerequisite Knowledge
	Structure of this Guide
	How to Use this Guide
	To Create a New Client/Server Application
	To Move an Existing Application to a Client/Server Architecture

	Document Conventions
	Other Resources
	Related Documentation
	Construct Spectrum
	Natural Construct

	Other Documentation
	Related Courses

	Introduction
	What is Construct Spectrum?
	Development Environments

	Architecture of a Client/Server Application
	Mainframe Server
	Windows

	Overview of the Development Procedure
	Step 1: Plan Your Application
	Decide What to Show the User
	Keep Window Design Simple
	Number and Structure of Windows
	Content of Each Window

	Plan Your Code
	Use a Consistent Style
	Anticipate Translation Issues

	Step 2: Set Up Your Mainframe Environment
	Predict Definitions
	Steplib Chains and Domains
	Security for Domains, Steplibs, Users, and Groups

	Step 3: Generate Application Components
	Using the Super Model
	Using Individual Models
	Deciding Which Modules to Generate
	Generation Process
	Server Modules
	Client Modules

	Setting Up Your Project
	Transferring Your Generated Code to the Project

	Step 4: Customize Your Application and Environment
	Step 5: Test and Debug Your Application
	Step 6: Deploy Your Application

	Using the Demo Application
	Overview
	Prerequisites
	Opening the Construct Spectrum Demo Project
	Understanding the Construct Spectrum Add-In
	Understanding the Demo Project
	Framework Components
	Generated Modules

	Running the Demo Application
	Application Interface
	Menu Options
	Toolbar Options
	Application Workspace
	Status Bar

	Additional Options
	Error Notification Options
	Remote Dispatch Service Options

	Tour of the Demo Application
	Opening a Business Object
	Maintaining a Business Object
	Validations
	Business Data Types (BDTs)
	Grids
	Nested Grids
	Nested Drop-Down Grids
	Keyboard Shortcuts for Grids

	Browsing For a Business Object
	Select Data From a Browse Window
	Open a Browse Window from the File Menu
	Open a Second Order
	Open Foreign File Information

	Specify Browse Customization Options
	Specify Selection Options
	Specify Display Options

	Troubleshooting

	Using the Super Model to Generate Applications
	Overview
	Before You Begin
	Establish a Naming Convention
	Understand the Object Factory
	Which Modules to Generate
	For a Maintenance Dialog
	For a Browse Dialog
	Dependent Models

	Generating with the Super Model
	Construct Windows Interface
	Step 1: Invoke the Super Model Wizard
	Step 2: Define General Package Parameters
	Step 3: Define Specific Package Parameters
	Step 4: Generate the Modules
	Generating Modules from the Model Wizard
	Generating Modules in Batch

	Generation Subsystem
	Step 1: Invoke the Super Model
	Step 2: Define General Package Parameters
	Step 3: Define Specific Package Parameters
	Step 4: Generate the Modules

	Troubleshooting
	Transferring Your Application to the Client

	Creating a Construct Spectrum Project
	Overview
	Are You Ready?
	Creating the Project
	Prior to Downloading

	Downloading the Generated Modules
	Hand-Coding the Object Factory

	What’s Next?
	Modify the Dialogs
	Test the Application
	Deploy the Application
	Setting Up Security

	Creating and Customizing Maintenance Dialogs
	Overview of the Maintenance Dialog
	Ways to Generate Maintenance Dialogs

	Prerequisites
	Using Individual Models to Generate Maintenance Modules
	Generate the Object Maintenance Subprogram and PDAs
	Generate the Maintenance Subprogram Proxy
	Generate the Visual Basic Maintenance Object
	Add Business Validations
	Add Browse Functions

	Generate the Maintenance Dialog

	Downloading Client Modules
	Integrating a New Maintenance Dialog
	Strategies for Customizing a Maintenance Dialog
	Doing the Predict Data Dictionary Work Up Front
	Choosing an Appropriate Place to Add Hand-Written Code
	Adding New User Exits
	Making a Copy Before You Regenerate

	Customizing on the Server
	Deriving Variable Names
	Deriving GUI Control Names
	GUI Control Identifier
	Object Identifier
	Field Identifier

	Deriving Label Captions for GUI Controls

	Overriding GUI Controls
	Step 1: Search for GUI Keywords in Field Definitions
	Generate a ComboBox Control to Display External Values

	Step 2: Search for GUI Keywords on Verification Definitions
	Step 3: Search for Business Data Type Keywords in Field Definitions
	Step 4: Use Default Derivation
	Repeating Field Threshold
	Option Button Threshold
	Foreign Field Threshold

	Setting Generation GUI Standards
	Controlling the Size of a Maintenance Dialog
	Overflow Conditions

	Customizing on the Client
	Creating Calculated Fields
	Does a GUI Control Exist for the Calculated Field?
	Coding the Calculation

	Integrating Maintenance and Browse Functions
	Validating Data Using the Visual Basic Maintenance Object
	Tailoring the Maintenance Dialog
	Working with Overflow Frames
	Multi-column Layout
	Tabbed Layout
	State-Dependent Layout

	Adding a New Field by Hand
	Add a Scalar Field by Hand
	Add a Regular Grid Column for a Field

	Removing a Field by Hand
	Using the Grid
	Nested Grids
	Nested Drop-Down Grids
	Displaying Grids
	Resizing Grids

	Adding Sound to Error Notifications
	Understanding How a Sound File is Associated With an Error

	Multilingual Support for Maintenance Dialogs

	Uploading Changes to the Server

	Creating and Customizing Browse Dialogs
	Overview of the Browse Dialog
	About Browse Dialogs
	The Browse Process
	Browse Object Subprogram
	Browse Object Subprogram Proxy
	Visual Basic Browse Object
	Data Cache

	Framework Components

	Creating a Browse Dialog
	Setting up Predict for the Browse Dialog
	Business Data Types
	Descriptive Fields

	Using Models to Generate Browse Modules
	Generating the Browse Subprogram and PDAs
	Generating the Subprogram Proxy
	Generating the Visual Basic Browse Object
	Defining Alternate Browse Data Sources

	Downloading the Client Modules
	Updating the Project
	Extend Object Factory

	Customizing on the Client
	Adding Command Handlers
	Customizing the Generic Browse Dialog
	Understanding the BrowseManager Class
	Display the Browse Dialog
	Support a Browse Command Handler
	Return a Specific Row of Data
	Return All Rows of Data

	Using the BrowseManager
	BrowseManager Methods

	Understanding Browse Command Handlers
	Creating Browse Command Handlers
	Coding the Custom Browse Command Handler
	Enabling Commands on the Browse Toolbar and Menu
	Coding the UICommandTarget() Method
	Marking Updated Rows Using the UpdateListViewIcons Method

	Moving Existing Applications to Construct Spectrum
	Overview
	Moving Natural Construct Object Applications
	Moving Natural Construct Non-Object Applications
	Step 1: Set Up Your Server Environment
	Step 2: Evaluate Your Application Data
	Step 3: Set up Predict Definitions (Optional)
	Step 4: Generate the Client/Server Modules
	Step 5: Update Object Subprograms with Business Rules
	Considerations for Implementing Business Rules

	Step 6: Set Up and Run Your Construct Spectrum Project

	Understanding and Customizing the Client Framework
	Introduction to the Client Framework
	About Box
	Customizing the About Box

	Application Preferences
	Application Settings
	Customizing the Application Settings

	Browse Support
	Internationalization Support
	Maintenance Classes
	Grid Support

	Menu and Toolbar Support
	Understanding Menu and Toolbar Command Handling
	Class Summary
	Defining, Sending, and Handling Commands
	Step 1: Declare a Global Instance of the UICommands Class
	Step 2: Define the Commands
	Step 3: Code Menu and Toolbar Events to Send the Commands
	Step 4: Code the Command Handlers
	Step 5: Link the Commands to the Command Handlers

	Updating User Interface Controls
	Step 1: Code Events to Update the Menu Controls
	Step 2: Code the Logic that Determines the State of a Command
	Step 3: Code Events to Update the Toolbar Buttons
	Displaying a Disabled Bitmap
	Displaying a Message
	Update Cycles

	Additional Methods For Command Handling
	Unhooking Commands

	Customizing the Menu and Toolbar in the Client Framework
	Changing the Menu Structure
	Example of Changing the Menu Bar and Its Menu Items
	Changing the Toolbar Structure
	Example of Adding Buttons to the Toolbar

	MDI (Multiple-Document Interface) Frame Form
	Object Factory
	Understanding the Open Dialog
	Understanding the Object Factory
	Using the Object Factory
	Example of Using the Object Factory
	Customizing the Object Factory
	Setting Up Object/Action Combinations and Forms
	Making Your Application Aware of New Business Objects
	Step 1: Update the InitializeOpenDialog Procedure
	Step 2: Update the CreateForm Procedure
	Step 3: Update the GetBrowser Procedure
	Step 4: Update the BrowserExists Procedure

	Spectrum Dispatch Client Support
	Logon Dialog
	Error Messages
	Dispatcher Selection Window

	Utility Procedures

	Validating Your Data
	Overview
	Basic Data Type Validation
	Business Data Type Validation
	Local Business Validation
	Business Object Validation

	Client Validation
	Validation in Maintenance Dialogs
	Using BDTs
	Hand-Coded Validations in Generated Dialogs

	Validation in Visual Basic Maintenance Objects
	Adding Validations in the CLIENT-VALIDATIONS User Exit
	Validations from Predict

	Creating Verification Rules in Predict
	Deciding Where To Implement a Validation Rule
	Coding User Type Rules

	Order of Precedence in Data Validation
	Validation Error Handling
	Framework Components
	Handling Business Object Validation Errors

	Integrating Browse and Maintenance Functions
	Overview
	Drill-Down Capabilities from a Browse Dialog
	Active Help on Maintenance Dialogs
	Primary Key Field Active Help
	Foreign Field Active Help

	Design Objectives
	Application Component Independence
	Simplified Generated Components

	Overview of Foreign Key Field Relationships
	Fields that can be Used in a Foreign Key Relationship
	Simple Field
	Repeating Field

	When Not to Use a Foreign Field Relationship
	List of Values is Static
	List of Values is Small
	List of Values Contains Two Choices Only

	Foreign Field Support in Maintenance Dialogs
	GUI Control Representations of Foreign Fields
	Foreign Fields in the Primary Part of a Maintenance Dialog
	GUI Controls in a Grid
	How Construct Spectrum Determines Which GUI Control to Use
	Displaying Descriptions for a Foreign Field
	Examples of Descriptive Fields
	Supporting Multiple Descriptive Values and Derived Values

	How Foreign Field Descriptions Are Refreshed

	Supporting Code for Drop-Down Lists
	Initializing a Drop-Down List
	Support for Value Selection

	Supporting Code for Command Buttons
	Initializing a Command Button
	Click Events on the Command Button

	Internationalizing Your Application
	Planning Your Internationalized Application
	Internationalizing Using the Client Framework
	Resource File Syntax
	Text Values
	Binary Values
	Links

	Using the Internationalization Components
	Methods
	GetResourceGroup
	LocalizeForm
	LoadBinaryResource
	LoadStringResource
	Message
	MessageEx
	SetDefaultMessageGroup

	Properties
	Language
	LanguageRegistryKey
	LanguageINIKey
	ResourceFilePath

	Hints for Developers
	Setting the Language Automatically
	Strategy for Using Resource Files and Groups
	Starting an Application in a Specific Language
	Associating Windows Locale Setting with a Language

	Changing Language at Runtime

	Appendix A: Modifying Construct Spectrum Models
	VB-Maint-Dialog Model
	VB API
	Components of the VB API

	How the VB API Works
	GUI Controls with the VB API
	Parameter Data Areas (PDAs) Used

	Index

