for Client/Server Applications
Version 5.3
September 2008

Construct Spectrum SDK

Order Number: SPV530-021I1BW

This document applies to the Construct Spectrum SDK for Client/Server Applications Version
5.3 and to all subsequent releases. Specifications contained herein are subject to change and
these changes will be reported in subsequent release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation
Department at the following e-mail address: Documentation@softwareag.com.

Copyright © Software AG, September 2008. All rights reserved.

Software AG and/or all Software AGqgatucts are either trademarks or registl trademarks of
Software AGOther products and company names mentioned herein may be the trademarks of
their respective owners.

TABLE OF CONTENTS

PREFACE
Prerequsite KNnowledge. e 14
Structure of this GuUIde. 14. ..
Howto UsethisGuide e 6....1
To Create a New Client/Server Application 16
To Move an Existing Application to a Client/Server Architecture. 16
Document CONVENLIONS it e e 17
Other RESOUICES.o e e e 18. ..
Related Documentationt 18
CONSIIUCE SPECIIUM . . . o e e e e e e 18
Natural CoNStIUCE.o e e 19
Other DocumeNntation i e e e 19
Related CoUISES.o 19.....

1. INTRODUCTION

What is ConStruCt SPeCtrUM? e e e 22
Development ENVIrONMENtS e 23
Architecture of a Client/Server Application i 26
Mainframe Server 27
WiNAOWSo 28. ..
Overview of the Development Procedure i i 30
Step 1: Plan Your Application. e 31
Decide Whatto Showthe User e 31
Keep Window Design Simple e e 32
Number and Structure of Windows. 32
Content of Each Window e 32
Plan Your Code 32
UseaConsistent Style. i e 32
Anticipate Translation ISSUES.t e 33
Step 2: Set Up Your MaframeEnvironment 33
Predict Definitions. e 33
Steplib Chainsand Domains it e e e e 33
Security for Domains, Steplibs, Users, and Groups, 33
Step 3: Generate Application Components i 34
Using the Super Model e 34
Using Individual Models. 34

Construct Spectrum SDK for Client/Server Applications

Deciding Which Modules to Generatec. ... 34
Generation ProCeSSot 34
Server Modules 34
Client ModUules 35
Setting Up Your Project e e 35
Transferring Your Generated Code to the Project. 35
Step 4: Customize Your Application and Environment 36
Step 5: Test and Debug Your Application 36
Step 6: Deploy Your Application 36
2. USING THE DEMO APPLICATION
OV IV W . . o oottt e e e e e 38.
PrerequBites e e e 9....3
Opening the Construct Spectrum Demo Project. i, 40
Understanding the Construct Spectrum Add-In 42
Understanding the Demo Project. i e 43
Framework ComponeNntSottt e 43
Generated Modules 45
Running the Demo Application. e 47
Application InBrface. e 50
MeENU OPLIONS . .. e e 51
Toolbar OptioNS. e e 51
Application WoOrKSPaCe o oot e e e 53
StatUS Bar. . .. e 54....
Additional Options 54
Error Notification Options. i 54
Remote Dispatch Service Options. i 55
Tour of the Demo Application e e e e 57
Openinga Business Object e 57
Maintaining a Business ObjecCt i e 61
Validations. 61. ...
Business Data Types (BDTS)ottt e e et 63
GriOS o 64. ..
Nested Grids 65
Nested Drop-Down Grids i e e e 66
Keyboard Shortcuts for Grids i 67
Browsing For a Business Object. 67
Select Data From a Browse Window e 68
Open a Browse Window fromthe FileMenu 68
Open a Second Order.t e e e 69
Open Foreign File Information i 69

Table of Contents

Specify Browse Customization Optionsttt 71
Specify Selection OptioNs i e 71
Specify Display Options i e e 72

Troubleshooting. 75..

USING THE SUPER MODEL TO GENERATE APPLICATIONS

OV W . . o oot w e 18
Before You Begin e 80. ..
Establish a Naming Convention i 80
Understand the Object Factory i e e 82
Which Modules to Generate 82
Fora Maintenance Dialog oot e 83
ForaBrowse Dialog oo o oot e e 84
Dependent Models. o e e 85
Generating with the Super Model e 86
Construct Windows Interface 86
Step 1: Invoke the Super Model Wizard 86
Step 2: Define General Package Parameters. 88
Step 3: Define Specific Package Parameters. 90
Step 4: Generatethe Modules i e 93
Generating Modules from the Model Wizard 93
Generating Modules inBatch 93
Generation SUDSYStEM e 94
Step 1: Invoke the SuperModel e 94
Step 2: Define General Package Parameters. 95
Step 3: Define Specific Package Parameters. 97
Step 4: Generatethe Modules i e 98
Troubleshooting. e, 100. .
Transferring Your Applicationtothe Client. 100

CREATING A CONSTRUCT SPECTRUM PROJECT

OV IV W . . o ottt e 102.

Are YoU Ready? i e 103. ..

Creating the Project. i e e e 104. ..
Priorto Downloading e 106

Downloading the Generated Modules. i 107
Hand-Coding the Object Factory. i e e 109

What's NeXt?. . . e 110..
Modify the Dialogso e 110
Testthe Application i e 110
Deploy the Application e 110
SettiNng Up SECUNLY . .. oot e 111

Construct Spectrum SDK for Client/Server Applications

5. CREATING AND CUSTOMIZING MAINTENANCE DIALOGS

Overview of the Maintenance Dialog i e i 114
Ways to Generate Maintenance Dialogs i 115
PreregUBItES e 116
Using Individual Models to Generate Maintenance Modules. 117
Generate the Object Maintenance SubprogramandPDAs 117
Generate the Maintenance Subprogram Proxy, 117
Generate the Visual Basic Maintenance Object 118
Add Business Validations 118
Add Browse FUNCLIONS e 118
Generate the Maintenance Dialog. it 122
Downloading Client Modules e e e e 125
Integrating a New Maintenance Dialog. i i e e 128
Strategies for Customizing a Maintenance Dialog 129
Doing the Predict Data Dictionary Work Up Front. 129
Choosing an Appropriate Place to Add Hand-WrittenCode 130
Adding New User EXItS.ot e e e 131
Making a Copy Before You Regenerate i, 131
Customizing ONthe SerVer e e 132
Deriving Variable Names i e 132
Deriving GUI Control Names i e e e e 132
GUI Control Identifier. 132
Object Identifier.o e 133
Field Identifier. 133
Deriving Label Captionsfor GUI Controls. 133
Overriding GUI Controls. i e e e e e 133
Step 1: Search for GUI K&vords in Field Definitions. 134
Generate a ComboBox Control to Display External Values. 136
Step 2: Search for GUI K&vords on Verification Definitions. 137
Step 3: Search forusiness Data Type Keywords in Field Definitions 138
Step 4: Use Default Derivation i e e 139
Repeating Field Threshold. i 142
Option Button Threshold. e e 142
Foreign Field Threshold 142
Setting Generation GUI Standards e 143
Controlling the Size of a Maintenance Dialog, 144
Overflow Conditions e 144
Customizingonthe Client. i e e e 145
Creating Calculated Fields i i e 145
Does a GUI Control Exist for the Calculated Field?. 145
Coding the Calculation i e e e 145
Integrating Maintenance and Browse Functions. 146

Table of Contents

Validating Data Using the Visual Basic Maintenance Object. 146
Tailoring the Maintenance Dialog. i e i 147
Working with Overflow Frames e 148
Multi-column Layout. o 149
Tabbed Layout. e 150
State-Dependent Layoutt 151
Addinga New FieldbyHand 152
Add a Scalar Fieldby Hand. 152
Add a Regular Grid ColumnforaField 156
Removinga Fieldby Hand i 164
Usingthe Grid o e e 165
Nested Grids 165
Nested Drop-Down Grids i e e e e 166
Displaying Grids i e 167
RESIZING GridS e 168
Adding Sound to Error Notifications i 169
Understanding How a Sound File is Associated WithanError 170
Multilingual Support for Maintenance Dialogs. 172
Uploading Changestothe Server i 173
6. CREATING AND CUSTOMIZING BROWSE DIALOGS
Overview of the Browse Dialog i e e 176
About Browse Dialogs e 176
The Browse ProCess e 176
Browse Object Subprogram. it e 177
Browse Object Subprogram ProxXy i e 178
Visual Basic Browse Object i 178
Data Cache. 178
Framework ComponentSottt 179
Creatinga Browse Dialogo e e 180
Setting up Predict forthe Browse Dialog i 180
BUSINESS Data TYPES . . o it ittt et et e e e 180
Descriptive Fields e 180
Using Models to Generate Browse Modules. 181
Generating the Browse Subprogramand PDAS 182
Generating the Subprogram Proxy i 182
Generating the Visual Basic Browse Object. it 182
Defining Alternate Browse Data SIESt 185
Downloading the Client Modules i i 188
Updating the Project e e 189
Extend Object Factory. i 189

Construct Spectrum SDK for Client/Server Applications

Customizingonthe Client. i e e e e e 190
Adding Command Handlers i e 190
Customizing the Generic Browse Dialog i 190
Understanding the BrowseManager Class. i, 190

Display the Browse Dialog i e e 190
Support a Browse Command Handler. 190
Returna SpecificRowof Data i e e 191
Return AllRows of Data. 191
Using the BrowSeManagerottt e e et e e 191
BrowseManager Methods i e 194

Understanding Browse Command Handlers. 195
Creating Browse Command Handlers. i, 197
Coding the Custom Browse Command Handler. 198

Enabling Commands on the Browse Toolbarand Menu. 198
Coding the UlICommandTarget() Method. 199
Marking Updated Rows Using the UpdateListViewlcons Method. 200

7. MOVING EXISTING APPLICATIONS TO CONSTRUCT SPECTRUM

OV IV W . . oottt e 202.
Moving Natural Construct Object Applications 202
Moving Natural Construct Non-Object Applications 203
Step 1: Set Up Your Server Environment i 203
Step 2: Evaluate Your ApplicationData. i 203
Step 3: Set up Predict Definitions (Optional) 204
Step 4: Generate the Client/Server Modules 204
Step 5: Update Object Subprograms with BusinessRules 205
Considerations for Implementing BusinessRules. 205
Step 6: Set Up and Run Your Construct Spectrum Project. 206

8. UNDERSTANDING AND CUSTOMIZING THE CLIENT FRAMEWORK

Introduction to the Client Framework. 208
ADOUL BOX s 210.
Customizing the AbOUt BOX oo e 211
Application Preferences. i i e 2...21
Application Settingso e e 213...
Customizing the Application Settings. e 214
BroWSe SUPPOIt. . oo e 215. ..
Internationalization SUPPOIt i e 217
Maintenance ClasSesSottt 8....21
Grid SUPPOIt . .o e 218. ..
Menu and Toolbar SUPPOrt 219
Understanding Menu and Toolbar Command Handling........................ 220

Table of Contents

Class SUMMAIYt e e e e e e e e 221
Defining, Sending, and Handling Commands. 221
Step 1: Declare a Global Instance of the UICommands Class 222
Step 2: Definethe Commands. i e 222
Step 3: Code Menu and Toolbar Events to Send the Commands 223
Step 4: Code the Command Handlers 224
Step 5: Link the Commands to the Command Handlers. 224
Updating User Interface Controls i e e e 226
Step 1: Code Events to Update the Menu Controls. 227
Step 2: Code the Logic that Determines the State ofa Command 228
Step 3: Code Events to Update the Toolbar Buttons. 229
Displaying a Disabled Bitmap. oot e 229
Displaying aMessageo vttt e e e e 230
Update CyCles oo 230
Additional Methods For Command Handling. 233
Unhooking Commandst e e e 233
Customizing the Menu and Toolbar in the Client Framework 233
Changing the Menu Structure i e e e e e 234
Example of Changing the Menu Barand lts Menu ltems. 237
Changing the Toolbar Structure i i 240
Example of Adding Buttonstothe Toolbar 241
MDI (Multiple-Document Interface) Frame Form 242
ObjeCt FaCtOry . . oot e e 243. .
Understandingthe OpenDialog i i 244
Understanding the Object Factory. ittt e et e e e 244
Using the Object Factory. i e e e e e 245
Example of Using the Object Factory. 246
Customizing the Object Factory i e i 246
Setting Up Object/Action Combinationsand Forms. 247
Making Your Application Aware of New Business Objects. 250
Step 1: Update the InitializeOpenDialog Procedure 250
Step 2: Update the CreateForm Procedure i, 252
Step 3: Update the GetBrowser Procedure 253
Step 4: Update the BrowserExists Procedure 255
Spectrum Dispatch Client SUPPOIt i e 256
Logon Dialog.o 58... 2
ErrOr MBSSagES . . . ottt 8...25
Dispatcher Selection Window i e e 258
Utility Procedures i e, 259. .

Construct Spectrum SDK for Client/Server Applications

9. VALIDATING YOUR DATA

OV IV W . . o ottt e 262.
Basic Data Type Validation. i e 262
Business Data Type Validation it e e 262
Local Business Validation. 262
Business Object Validation i e e 263
Client Validation e 264 .
Validation in Maintenance Dialogs. i 266
USINg BDTS. .ottt e e e e 266
Hand-Coded Validations in Generated Dialogs 266
Validation in Visual Basic Maintenance Objects 267
Adding Validations in the CLIENT-VALIDATIONS UserExit 267
Validations from Predict 268
Creating Verification Rules in Predict 269
Deciding Wtere To Implementa ValidationRule 269
CodingUserType RUles e e e 270
Order of Precedence in Data Validation 271
Validation Error Handling. o e 272
Framework ComponentSt e e 272
Handling Business Object Validation Errors 273

10. INTEGRATING BROWSE AND MAINTENANCE FUNCTIONS

OV IV W . . o ottt e 276.
Drill-Down Capabilities froma Browse Dialog 276
Active Help on Maintenance Dialogs it e 277

Primary Key Field Active Help. 277
Foreign Field Active Help. i e 278

Design ObjJeCtiVESt 280. ..
Application Component Independence i i e e 280
Simplified Generated COMPONENtS ittt ettt e 281

Overview of Foreign Key Field Relationships 282
Fields that can be Used in a Foreign Key Relationship. 282

Simple Field. 282
Repeating Field e 283
When Not to Use a Foreign Field Relationship. 283
Listof Valuesis StatiC. 283
Listof Valuesis Small. 284
List of Values Contains Two Choices Only 284

Foreign Field Support in Maintenance Dialogs. 285

GUI Control Representations of Foreign Fields 285
Foreign Fields in the Primary Part of a Maintenance Dialog 285
GUIControls ina Grid e 287

— 10 -

Table of Contents

How Construct Spectrum Determines Which GUI ControltoUse. 288
Displaying Descriptions fora Foreign Field. 289
Examples of Descriptive Fields. 289
Supporting Multiple Descriptive Values and Derived Values 290
How Foreign Field Descriptions Are Refreshed 291
Supporting Code for Drop-Down Lists. i e e 292
Initializing a Drop-Down List i e 292
Support for Value Selection e 293
Supporting Code for Command BUttons.ttt 294
Initializing a Command Button e 294
Click Events onthe Command Buttonc. ... 294
11. INTERNATIONALIZING YOUR APPLICATION
Planning Your Internationalized Application 296
Internationalizing Using the Client Framework, 297
Resource File Syntax. 00... 3
TeXtValues 300. ..
Binary Values 00... 3
LiNKS .« . s 301
Using the Internationalization Components, 302
Methods e 302. .
GetRESOUICEGIOUP . . .ttt e e 302
LocalizeForm. 303
LoadBinaryRESOUICEottt it e e e e 303
LoadStriNgRESOUICEot e e e e 303
MBS S . . o ot 4 ... 30
MESSaAgEEX. . . . i e 304
SetDefaultMessageGroUD . . . oo vt e e 304
Properties. 305..
LaNQUAgE o 305
LanguageRegistryKey i e 306
LanguagelINIKeY 306
ResourceFilePath. e 307
Hints for Developers e e 308. ..
Setting the Language Automatically. i . 308
Strategy for Using Resource Filesand Groups.ttt it 308
Starting an Application in a Specific Language 309
Associating Windows Locale Setting withalLanguage 310
Changing Language at Runtime i 311

—11 -

Construct Spectrum SDK for Client/Server Applications

APPENDIX A: MODIFYING CONSTRUCT SPECTRUM MODELS. 313

VB-Maint-Dialog Model. e 314
VB AP . e 316
Components of the VB APIL. e 316
How the VB APIWOrKS 317
GUI Controls withthe VB AP 319
Parameter Data Areas (PDAsS) Used i i e 324
IND X . . 331

—12 —

PREFACE

Construct Spectrum SDK for Client/Server Applicatimndesigned to help developers
create and customize applications using the Construct Spectrum software development
kit (SDK) and Visual Basic.

This preface will help you get the most out of the documentation and find other sources
of information about creating Construct Spectrum applications.

The following topicsare covered:
» Prerequisite Knowledge page 14
» Structure of this Guide, page 14
+ How to Use this Guide page 16
« Document Conventions page 17
» Other Resourcespage 18

— 13-

Construct Spectrum SDK for Client/Server Applications

Prerequisite Knowledge

Construct Spectrum SDK for Client/Server Applicatidoes not provide information

about the following topics. We assume that you are either familiar with these topics or

have access to other sources of information about them.

« Natural Construct

« Microsoft Visual Basic

« Predict

« Natural programming language and environment

« Entire Broker

« Entire Net-Work

Structure of this Guide

This section describes the contents of each chapter. For information about how to use

this guide, seélow to Use this Guide page 16.

The chapters i€onstruct Spectrum SDK for Client/Server Applicatiars

Chapter

Title

Topics

1

Introduction , page 21

Using the Demo
Application, page 37

Using the Super
Model to Generate
Applications, page 77

Creating a Construct
Spectrum Project,
page 101

Creating and
Customizing
Maintenance Dialogs
page 113

—14 -

Describes the components of Construct
Spectrum and the architecture of the
client/server applications you careate
with the software development kit (SDK).

Provides a guided tour of a demo
applicationcreatedusing Construct
Spectrum.

Describes how to generate all of the
application modules required toeate a
Construct Spectrum client/server
application using the super model (VB-
Client-Server-Super-Model).

Describes the process of setting up a
Construct Spectrum project on the client.

Provides step-by-step instructions for
generating the modules required to
maintain server information from a
maintenance dialog on the client.

Preface

Chapter Title Topics (continued)

6 Creating and Provides step-by-step instructions for
Customizing Browse generating the modules required to
Dialogs, page 175 provide browse services from the client.

7 Moving Existing Describes how to move existing Natural
Applications to Construct-generated senvbased
Construct Spectrum, applications to a client/server architecture
page 201 using the Construct Spectrum models.

8 Understanding and Describes how to customize the client
Customizing the framework supplied with Construct
Client Framework, Spectrum while developing your
page 207 Construct Spectrum application.

9 Validating Your Data, Outlines the data validation facilities
page 261 provided with Construct Spectrum.

10 Integrating Browse Explains how browse and maintenance
and Maintenance functions are integrated. It ihles
Functions, page 275 information about linking and using

browses from a maintenance dialog.

11 Internationalizing Describes the tools provided by Construct
Your Application, Spectrum to help you write
page 295 internationalized applications.

Appendix A Appendix A: Provides a guideline to follow when

Modifying Construct
Spectrum Models
page 313

creating new models based on the VB-
Maint-Dialog model.

— 15—

Construct Spectrum SDK for Client/Server Applications

How to Use this Guide

Construct Spectrum SDK for Client/Server Applicatidascribes how to create and
customize client/server applications using the Construct Spectrum SDK and Visual Ba-
sic. In particular, it provides information about:

Creating new client/server applications
Moving existing server-based applications to a client/seararitecture

The following sections describe how to use this and related Construct Spectrum docu-
mentation to perform these tasks.

To Create a New Client/Server Application

If you want to use Construct Spectrum’s tools to create a client/server application to run
on Windows 95 or Windows NT, we recommend that you first read the following chap-
ters inConstruct Spectrum SDK Reference

Introduction
Contains an overview of the product, development process, and applications you can
develop.

Setting up the Mainframe Environment
Contains detailed information on how to define domains and security options that con-
trol what data application users can access on the mainframe.

Construct Spectrum SDK for Client/Server Applicatioostains detailed information

on using the VB-Client-Server-Super-Model to generate all of your application’s com-
ponents. It describes how to set up a Visual Basic project, customize maintenance and
browse dialogs, and internationalize your application.

As you customize and regenerate application components, you will find the following
chapters inConstruct Spectrum SDK Referemuseful:

Using the Subprogram-Proxy Model
Using Business Data Types (BDTs)
Debugging Your Client/Server Application
Deploying Your Client/Server Application

To Move an Existing Application to a Client/Server
Architecture

Before moving any existing server-based applications to the Construct Spectrum client/
server architecture, gain familiarity with Construct Spectrum by creating a new appli-
cation. For information, se@verview of the Development Procedurgpage 30.

To learn how to migrate existing server-based applications to a client/server architec-
ture, seeMoving Existing Applications to Construct Spectrum page 201.

—16 -

Preface

Document Conventions

This documentation uses the following typographical conventions:

Example Description

Introduction Bolded text in crossfezencesndicates chapter and section
titles.

‘A" Items within quotation marks indicate values you must enter.

Browse model,
GotFocus, Enter

Alt+F1

CHANGE-HISTORY

Construct Spectrum
SDK for Client/
Server Applications
variable name

[variable]

{WHILE|UNTIL}

Mixed case text indicates names of:

« Natural Construct and Construct Spectrum editors, fields,
files, functions, models, panelsanameterssubsystems,
variables, and dialogs

» Visual Basic classes, constants, controls, dialogs, events,
files, menus, methods, properties, and variables

* Keys

A plus sign (+) between two key names indicates that you
must press the keys together to invoke a function. For
example, Alt+F1 means hold down the Alt key while pressing
the F1 key.

Uppercase texindicates the names of Natural command
keywords, command operands, data areas, helproutines,
libraries, members, parameters, programs, statements,
subprograms, subroutines, user exits, and utilities.

Italicized text indicates:
» Book titles
» Placeholders for information you must supply

In syntax and code examples, values within square brackets
indicate optional items.

In syntax examples, values within brace brackets indicate a

choice between two or more items; each item is separated by
a vertical bar (]).

- 17 -

Construct Spectrum SDK for Client/Server Applications

Other Resources

This section provides information about other resources you can use to learn more about
Construct Spectrum and Natural Construct. For more information about these docu-
ments and courses, contact the nearest Software AG office or visit the website at
www.softwareag.com to order documents or view course schedules and locations. You
can also use the website to email questions to Customer Support.

Related Documentation

This section lists other documentation in the Construct Spectrum and Natural Construct
documentation set.

Construct Spectrum

» Construct Spectrum SDK for Web Applications
This documentation is for developers creating the web components of applications. It
describes how to use the Construct Spectrum wizards in Visual Basic to generate
HTML templates, page handlers, and object factory entries. It also contains detailed in-
formation about customizing, debugging, deploying, and securing web applications.

» Construct Spectrum SDK Reference
This documentation is for developergating Natural mdules and ActiveX Business
Objects to support applications that will run in the Natural mainframe environment and
a Windows environment and/or an internet server.

« Construct Spectrum Messages
This documentation is for application developers, application administrators, and sys-
tem administrators who want to investigate messages returned by Construct Spectrum
runtime and SDK components.

» Construct Spectrum Reference
This documentation is for application developers and administrators who need quick
access to information about Construct Spectrum application programming interfaces
(APIs) and utilities.

— 18 —

Preface

Natural Construct

» Natural Construct Installation Guide for Mainframes
This guide provides essential information for installing and setting up the latest version
of Natural Construct, which is required to operate the Construct Spectrum program-
ming environment.

» Natural Construct Generation
This documentation describes how to use the Natural Construct models to generate ap-
plications that will run in a mainframe environment.

« Natural Construct Administration and Modeling
This documentation describes how to use the Administration subsystem of Natural
Construct and how to create new models.

» Natural Construct Help Text
This documentation describes how teate online help forgplications that run on
server platforms.

« Natural Construct Getting Started Guide
This guide introduces new users to Natural Construct and provides step-by-step instruc-
tions to ceate several common processes.

Other Documentation
This section lists documents published by WH&O International:

» Natural Construct Tips & Techniques
This book provides a reference of tips and techniques for developing and supporting
Natural Construct applications.

» Natural Construct Application Development User's Guide
This guide describes the basics of generating Natural Construct modules using the sup-
plied models.

» Natural Construct Study Guide
This guide is intended for programmers who have never used Natural Construct.

Related Courses

In addition to the documentation, the following courses are available from Software
AG:

« A self-study course on Natural Construct fundamentals
« An instructor-led course on building applications with Natural Construct

« An instructor-led course on modifying the existing Natural Construct models or creat-
ing your own models

—19 —

Construct Spectrum SDK for Client/Server Applications

— 20 -

INTRODUCTION

This chapter describes the components of Construct Spectrum and the architecture of
the client/server applications you can create with the software development kit (SDK).
An overview of the steps involved in developing an application prepares you for the de-
tailed procedures in the chapters that follow.

The following topicsare covered:

What is Construct Spectrum? page 22

Architecture of a Client/Server Application, page 26
Overview of the Development Procedurgpage 30

- 21—

Construct Spectrum SDK for Client/Server Applications

What is Construct Spectrum?

Construct Spectrum comprises a set of middleware and framework components, as well
as integrated tools, that use the specifications you supply to generate all the components
of distributed applications.

Construct Spectrum works with other products in the following partnership:

« Natural is an open server that provides access to databases such as Adabas, DB2, and
VSAM

« Predict provides a comprehensive repository
» Entire Broker provides message-oriented communication

You define and manage data and business rules for your application in a repository
managed by Predict. Using Natural Construct, you can then generate the Natural mod-
ules that process data. Using Construct Spectrum SDK, you can also generate the Visual
Basic client code and download the appropriate components to the client. You define
the security privileges in the Administration subsystem and then deploy the application.

Construct Spectrum includes two components for delivering the performance and secu-
rity that mission-critical applications require:

» Spectrum Dispatch Client (SDC) on the client
» Spectrum dispatch service on the mainframe server

When the client makes a communication request, the SDC translates the request into a
compact, secure message and transmits it to the server via Entire Broker. On the server,
the Spectrum dispatch service converts the incoming request for processing by the serv-
er application while enforcing multi-level security. Construct Spectrum then uses a
similar technique to return the processed result to the client.

This documentation describes how to generate and customize client/server applications
using the Construct Spectrum SDK. Refe€Ctmstruct Spectrum SDK Referefigein-
formation about:

« Setting up your application environment on the mainframe

» Using business data types (BDTs)

« Debugging and deploying your application

» Creating client/server applications without Construct Spectrum

— 22—

Introduction

Development Environments

As you develop applications, you will be working in at leastdhmvironments: the
Administration subsystem, Construct Windows interface, and Visual Basic (using the
Construct Spectrum Add-In).

Use the Construct Spectrum Administration subsystem to manage the system and ap-
plication data for your applications:

BS__MAIN ***** Construct Spectrum Administration Subsystem ***** CDLAYMN1
Jul 30 - Main Menu - 10:14 AM

Functions

SA System Administration
AA Application Administration

? Help
. Terminate
Function o
Command
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
help retrn quit flip main

Construct Spectrum Administration Main Menu

— 23—

Construct Spectrum SDK for Client/Server Applications

Use the wizards in the Construct Windowsiface oryour PC to generate Natural and
Visual Basic modules for your application:

15-‘, Construct O] x|
Filz [y e -
M Mew Specification |J

o
Create in Library: ISF‘ECDEMO |

Packages | Matural I Yisual Basic I Al Models I

/B-CLIENT-SERVER-SUPER-MODEL

MATURAL-BUSINESS-OBIECTS

aenerakte many modules wikh jusk a Few simple o
parameters.,

Cancel

Ii

New Specification Window in the Construct Windows Ifaee

The wizards available in the Construct Windows interface are also available in the Gen-
eration subsystem in your Natural Construct rframe eévironment.

— 24—

Introduction

Use the Construct Spectrum Add-In in Visual Basicréate projectsjownload mod-
ules from the mainframe server, and set configuration options:

w5, Microzoft Yisual Basic

Fil= Edit “ew Project Format Debug Rum Query Diagram Tools Spectrum | Add-Ins Window Help

IIE'E.'E|@'E| 2 Eﬁ|ﬂ N|E9§'}@J\&‘] Yisual Data Manager. ..

”L_E'L E G B A : ‘ CUPS=— |/‘ S 5 i &dd-In Manager. ..
Bl

Download Generated Modules. .. Construck Spectrum
General |

|+:'§

i)
Ll
il

Upload Modules. ..

Create Mew Projeck, ..

Preferences. ..

Aboot

Construct Spectrum Options on the Add-Ins Menu

Information about how to access and use these environments is presented where you
need it throughout the documentation.

—25_

Construct Spectrum SDK for Client/Server Applications

Architecture of a Client/Server Application

Construct Spectrum generates high-performance, distributed components using COM-
enabled clients to access Naturgblégation servers. The following diagram shows the
architecture of a Construct Spectrum client/server application:

Windows . []Generated
GUI Dialog [Spectrum

l System

Visual Basic Business Object

Entire Broker

Entire Net-Work or TCP/IP

Mainframe Server

Entire Broker

— N

Subprogram Proxy

Natural Subprogram

Architecture of a Construct Spectrum Client/Server Application

The following sections describe these components according to the platforms on which
the components run.

— 26—

Introduction

Mainframe Server

Component

Description

Natural
subprograms

Subprogram
proxy

Spectrum
dispatch services

Dispatch service
data

Spectrum
administration

Perform maintenance and browse functions on the mainframe
server. The same set of business objects can be accessed from
character-based Natural applications, client/server
applications, and web applications. This ensures that the
integrity of business data is preserved, independent of the
presentation layer.

Natural subprograms may be either written by hand or
generated by Construct models. The VB-Client-Server-Super-
Model, Object-Maint-Subprogram, and Object-Browse-
Subprogram models generate subprograms and parameter data
areas (PDASs) for client/server applications.

Acts as a bridge between a specific subprogram and the
Spectrum dispatch service. It performs a number of vital
functions, including translating parameter data into a format
that can be transmitted between client and server, issuing
CALLNATSs to subprograms, and validating the format and
length of data received from the client.

For more information, sg@enerating a Subprogram Proxy
Construct Spectrum SDK Reference

Ensure that the current user is allowedadgrm the requested
function. Once the service has performed user autheanti¢at

it activates the correct Natural subprogram to handle the
request. After the target subprogram finishes processing, the
results are transfeed back to the client. Depding on user
options, the service may also be required to compress and
decompress and/or encrypt and decrypt messages.

Information defined and maintained in the Construct Spectrum
Administration subsystem and accessed by Spectrum dispatch
services anywhere on the network via Entire Broker.

Allows system administrators, application administrators, and
application developers to set up and manage system and
application environments.

— 27 —

Construct Spectrum SDK for Client/Server Applications

Component

Description (continued)

Security service

Entire Broker

Checks client requests against the security settings defined in
the Administration subsystem. This stand-alone service
operates independently of the Spectrum dispatch services. It
allows the security service to process, in one central location,
the requests of several Spectrum dispatch services, which may
be located on nodes throughout the network.

Transfers messages between Windows and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Windows

Construct Spectrum client/server applications run on Windows or Windows NT.

Component

Description

Entire Broker

Spectrum Dispatch
Client (SDC)

Transfers messages between the client and the Natural
environment. Entire Broker can be configured to use either
native TCP/IP or Entire Net-Work as the transport layer.

Component Object Model (COM) middleware component that
enables client/server applications to read from, and write to,
variables in a Natural parameter data area (PDA) and to issue
CALLNAT statements to Natural subprograms. Its main
functionsare simulating PAs and CALLNATS,

encapsulating Entire Broker calls, and controlling database
transactions. As the client counterpart of Spectrum dispatch
services, it is also responsible for data marshaling, encryption,
compression, error-handling, and all Entire Broker
communication.

For more information, sédsing the Spectrum Dispatch
Client, Construct Spectrum SDK Reference

— 28 —

Introduction

Component

Description (continued)

Library image
files (LIFs)

Visual Basic
business object

GUI dialogs

Define information to the client component of a client/server
application that it needs to assemble data and call the
mainframe server. This file contains the following
information:

« Parameter data area (PDA) definitions that specify
information required for communication with the server.
They are an image of the PDAs used by the Natural
subprograms.

» Application service definitions that specify to the client the
names of the available subprograms.

» Steplib definitions. The SDC allows chaining of library
image files. The entries are used to point to other library
image files in the same directory. The SDC checks all
library image files in the chain for the required parameter
or application service definition.

Visual Basic class that acts as an intermediary between a
dialog and the Spectrum Dispatch Client. This class invokes
the methods of subprograms on behalf of dialogs and
instantiates all the data areas required to communicate with a
subprogram. Visual Basic business objects can also perform
local data validation to provide immediate feedback to the user
without involving a network call.

Represent graphical irfece screens that conumicate with
the user and interact with the Visual Basic business objects and
other framework components to implement business
processes.

— 29 —

Construct Spectrum SDK for Client/Server Applications

Overview of the Development Procedure

I I N I N W 74

If you are creating a new application, you must decide on the nature of your application
and its uses. If you are planning to reuse an existing application, evaluate the character
screen displays and decide how to improve them using the power of a graphical user
interface.

Note: For more information about reusing existing Natural Construct applications,
seeMoving Existing Applications to Construct Spectrum, page 201.

To develop an application:

Step 1: Plan Your Application, page 31

Step 2: Set Up Your Mainframe Environment page 33

Step 3: Generate Application Componentspage 34

Step 4: Customize Your Application and Environment page 36
Step 5: Test and Debug Your Application page 36

Step 6: Deploy Your Application page 36

The following sections describe these steps in detail.

— 30 -

Introduction

Step 1: Plan Your Application

Decide what the main purpose of your application is and what features you must pro-
vide to address it. After you determine the core features, consider the advanced
functionality you may want to provide.

Decide What to Show the User

Before you begin creating a new application, decide on the purpose of your application,
how it will be presented to the user, and how it will communicate with other applica-
tions. Decide what you want users to do with your application and determine what you
need to provide in your application so that they can do it.

During the planning stages of your project, identify and itemize what the user will need
to do. Then, design what the users will see when they use your application, such as the
content, number, and order of windows in the application.

Plan to help your users, who will have varying degrees of experience with your client
environment. Consider providing online help tailored for the level of knowledge of your
typical user. You may choose to include all three types of online help:

» context-sensitive help
« task help
« window-level help

Provide customized error messages that are clear and informative. If you've planned
your application, the chances of error are reduced. Since you cannot plan for every pos-
sibility, plan how your application will inform users about an action it cannot interpret.
For example, you may want to display a message if a user tries to exit a file without sav-
ing the changes made during an edit session.

Note: Many error messages provided by Construct Spectrum will be available to
your users. However, you must provide error messages for application-specif-
ic windows.

Design windows that are clear and intuitive. Try to give users all information they re-
guire to complete a task. Provide meaningful prompts and labels on GUI windows. To
help minimize the amount of information your users need to provide, pre-set default
values.

— 31 -

Construct Spectrum SDK for Client/Server Applications

Keep Window Design Simple

When designing windows for your application, keep the window design simple. First
determine the number and structure of windows, then determine the content.

Number and Structure of Windows
When designing the number and structure of windows, consider the following tips:

Have one main window from which the user can initiate all of the main tasks.

Provide secondary windows for additional information the user must specify to com-
plete a task.

Avoid a lot of nested windows, which can:

— make a simple task look complex

— clutter the user’s screen (especially if the more than one application is open)
— cause the user to become lost

Content of Each Window

When determining the content of each window, consider the following tips:
Group related information together

Use graphic images and icons to identify tasks or complement the words
Position information in a neat, logical manner

Position common information in the same place throughout your application. This
makes it easier for your users to navigate.

Plan Your Code

After designing the application windows, decide what code is required to support ac-
tions users will perform with your application. When you generate your application,
Construct Spectrum supplies many actions and default values. While several routine
tasks are predefined and contain default attributes, you must explicitly set others for
your application.

Use a Consistent Style

To help your users learn to navigate through your application, use consistent terminol-
ogy. To help minimize confusion, use consistent mnemonics in all application
windows.

— 32 -

Introduction

Anticipate Translation Issues

When planning your application, consider whether the user interface will be translated
into other languages. Construct Spectrum supplies translation facilities to support
translation.

To minimize the effort required for translation, anticipate any issues when designing
your application. For example, you may have to change mnemonic characters for dif-
ferent lamguages (if you are using mnemonics) or translation may change the size
requirements for window text (such as text boxes, labels, and command buttons). Fre-
guently, translated text is longer than the original text.

For more information, sdaternationalizing Your Application , page 295.

Step 2: Set Up Your Mainframe Environment

Before you canrmeate a Construct Spectrupypdication, ensure that Predict definitions,
steplib chains, domains, users, groups, and security settings are defined.

Predict Definitions

Set up file and field definitions in Predict for all database applications generated using
Construct Spectrum. This includes your application files and their intra- and inter-ob-
ject relationships. For more information, setting Up Predict Definitions

Construct Spectrum SDK Reference

Steplib Chains and Domains

Define the steplib chains and domains for your applications. The application environ-
ment includes users, application libraries, business objects, and associated modules.
Users are combined into larger entities called “groups”. Application libraries, business
objects, and associated modules are combined into larger entities called “domains”. For
more information, se8tep 1: Define the Steplib ChaipnandStep 2: Define the Do-

main, Construct Spectrum SDK Reference

Security for Domains, Steplibs, Users, and Groups

Define user IDs for users of your application, the groups to which each user belongs,
and security privileges for each user. Then, assign users and security privileges for each
group. Finally, grant groups applicable access to the domain for your application.
Granting @cess to a domain enables users to access the objects and methods within the
domain. For more information, s8éep 3: Define Security for the DomainConstruct
Spectrum SDK Reference

— 33—

Construct Spectrum SDK for Client/Server Applications

Step 3: Generate Application Components

After planning your application and setting up your environment, use the Construct
Spectrum models to generate the application-specific components of your application.
These components interact with the client framework components to form your com-
plete application. To generate your application modules, use either the VB-Client-
Server-Super-Model or thadividual models.

Using the Super Model

Use the VB-Client-Server-Super-Modelduickly create a new applidan or add a
graphical front-end to an existing application. For more information,Jsiegy the Su-
per Model to Generate Applications page 77.

Using Individual Models

Use the individual models to fine-tune your application. Using individual models pro-
vides more opportunity to create uniqgue model specifications. Additionally, you can
add user exit code to further refine your application modules. For more information, see
Creating and Customizing Maintenance Dialogspage 113, an@reating and Cus-
tomizing Browse Dialogs page 175.

Deciding Which Modules to Generate

Regardless of how you generate your application modules, the same modules must exist
to create a client/server application. These modules are grouped by function: mainte-
nance or browse. To application users, these functions are displayed as either a window
or dialog.

For a description of the modules that must be generated for either a maintenance or
browse function, sedsing the Super Model to Generate Applicationspage 77.

Generation Process

The following sections describe how the server and client modules function.

Server Modules

Modules for the server portion of your application are generated in Natural, leveraging
the existing Natural Construct object methodology. You can reuse existing Natural
Construct modules generated using the Object-Maint-Subp or Object-Browse-Subp
model as components of a client/server application.

For more information about moving existing applications Meeing Existing Appli-
cations to Construct Spectrum page 201.

— 34—

Introduction

Client Modules

Modules for the client portion of your application are also generated on the server.
These modules are generated as Visual Basic code and stored as text members in the
Natural library in which you generate them. When youraagly to set up your appli-

cation on the client, use the Construct Spectrum Add-In to download the Visual Basic
source code from the generation library to your client.

As you become more experienced in developing Construct Spectrum applications, you
will want to create modules (or regenerate existing ones to add customizations) using
individual models. The two types of objects you wikkate with ©@nstruct Spectrum

are Visual Basic maintenance objects and Visual Basic browse objects.

You can access the models thatgate aplication components either in the Genera-
tion subsystem on the server or in the Construct Windowdante Inboth cases,
modules are generated on the server.

For more information about using the super modelUsseg the Super Model to
Generate Applications page 77.

For more information about generating with individual models, see:
Creating and Customizing Maintenance Dialogspage 113

Creating and Customizing Browse Dialogspage 175

Generating a Subprogram Proxy Construct Spectrum SDK Reference

Setting Up Your Project

When youcreate a new projeassing the Construct Spectrum Add-In in Visual Basic,
Construct Spectrum automatically adds the cliEmmhework conponents to a standard
Visual Basic project. For more information, séeeating a Construct Spectrum
Project, page 101.

Transferring Your Generated Code to the Project

Use the Construct Spectrum Add-In from the Visual Basic Add-Ins menu to download
your generated components to the client. The components are added to your Construct
Spectrum project, which includes the client framework components.

After integrating the generated components into your project, you can modify them and
test your application. The following section describes this in more detail.

For more information about transferring your application to the clienDeemload-
ing the Generated Modulespage 107.

— 35—

Construct Spectrum SDK for Client/Server Applications

Step 4: Customize Your Application and Environment

After creating your application, use Visual Basic on the client to tailor the user interface
for your application.

For more information about customizing your application, see:
Understanding and Customizing the Client Framework page 207
Creating and Customizing Maintenance Dialogspage 113
Creating and Customizing Browse Dialogspage 175

Step 5: Test and Debug Your Application

As your application becomes more stable, thoroughly test each component. In your test
plan, include tests for each of the objects and their associated actions, each form, all lo-
cal validations, and all remote methods.

While you can fix manrrors you may encounterhile creating your application on

the client, you must fix others on the server. Construct Spectrum supplies methods that
help track the origin and reason for errors. For more informatioeleegging Your
Client/Server Application, Construct Spectrum SDK Reference

Once satisfied with the appearance and robustness of your application, you can begin
to deploy your application for users. The following section describes how to make your
application accessible to users.

Step 6: Deploy Your Application

mwal—‘v

Deploy your Construct Spectrum applications in the same way as you deploy any Visu-
al Basic application.

To deploy your client/server application:

Create the executable file.

Collect the files to be installed.

Create a set of installation disks.

Install the client application on the user’s PC.

Run the application.

Note: To run the application, the Construct Spectrum runtime environment must be
installed on the user’s PC.

For more information, sdeeploying Your Client/Server Application, Construct
Spectrum SDK Reference

— 36 —

USING THE DEMO APPLICATION

This chapter provides a guided tour of a demo application created using Construct Spec-
trum. It also describes the underlying structure of the demo application. Use this chapter
to familiarize yourself with the basic features available for client/server applications
created with Construct Spectrum.

The following topicsare covered:
» Overview, page 38
» Prerequisites page 39
» Opening the Construct Spectrum Demo Projecgtpage 40
* Running the Demo Application page 47
» Tour of the Demo Application, page 57
« Troubleshooting, page 75

— 37 -

Construct Spectrum SDK for Client/Server Applications

Overview

The demo application is a Customer order maintenance program. This application is de-
signed to demonstrate the features and functions of a typical application created with
Construct Spectrum. As a demo application, certain “real-world” features, such as en-
suring invoice numbers are sequential or order numbers are not duplicated, have been
left out. You can add this type of application-specific checking when customizing your
applications. Use the demo application to become familiar with using the application
controls and components. Understanding the potential of Construct Spectrum is crucial
to planning and developing an application that meets your needs.

Construct Spectrum is a flexible tool and your generated applications can be as simple
or complex as you require. Additionally, you can implement features, such as a browse
lookup, in many dferent ways. Thereforgjou can give your applications a look and

feel that is best suited to your organization’s needs.

— 38 —

Using the Demo Application

Prerequisites

Ensure the following items are in place before you begin generating applications using
Construct Spectrum:

Q Installation and configuration is complete.
Ensure that all client and server software has been installed.

Q Entire Net-Work kernel is running on your PC (if you are using Entire Net-Work).
An Entire Net-Work kernel that enables communication between the client and server
must be running on your PC.

O Your PC is attached to an Entire Broker node.
Your PC must be attached to an Entire Broker node that enables access to the demo
database files and modules on the server. Use Spectrum Service Manager to configure
the Entire Broker node.

Q The demo project’s AppSettings.bas file is set upezdly.
The AppSettings.bas file must specify the database ID (DBID) and file number (FNR)
of the FUSER file in which you installed the Construct Spectrum demo application on
the server. The default Natural library name for the depplication is SYSNBSDE.

The AppSettings.bas file for the demo project is located in the same directory as your
demo application files. You can modify this file using a text editor, such as the Win-
dows Notepad editor.

Consult with your system administrator to ensure that all of the listed prerequisites have
been met before using the Construct Spectrum demo project.

— 39—

Construct Spectrum SDK for Client/Server Applications

Opening the Construct Spectrum Demo Project

This section describes how to open the Construct Spectrum demo project. A project is
a container for all of the components required in the client portion of your application.
All Construct Spectrum projects, including the demo project,ra@ed usg the Con-

struct Spectrum Add-In in Visual Basic. Use this add-in to create the project and, if
necessary, to download the required components from the server. For the demo appli-
cation, these two steps are done for you. The demo project and the Construct Spectrum
Add-In are described in more detail later in this section.

Note: Ensure that all of therprequisites described Rrerequisites page 39, have

been met before opening the demo project.

To open the demo project:

Select Programs > Construct Spectrum > Construct Order Entry Project from the Start
menu.

J

2 ‘windows NT Explorer

(O[]
(1

L

Winip
= Administrative Tools [Common] *

Mew Office Document =} Adabe 4
< ; =) Adobe Acrobat »
e Open Office Document = Adobe Acrobat 4.0 E

. =) AdobePS 5

R oo f5 CONSTRUCT Spectum 2 BrokeiDriver
E ﬁ Cocuments = Construct Windows Interface DE'" Change Pazsword
E éujé - .= ENTIRE Connection 3.1.2 [@ Congtruct Order Entry
i .= ENTIRE METWORE v2.3.1.1 B Construct Order Entry Project
E &j Find =) Entirei g‘ Diagnostics
IE @ i =) Microzoft Visual Basic B.0 B GCD
[= Morton Antivig] GCD Project
E 72| Bun.. =) Startup Remate Clock
E = Windows NT 4.0 Option Pack Remote Clock With Dispatcher
; Q,JJ e = WinZip B Spectum Service Manager

S& Microzaft Binder g Translations

Opening the Demo Application

The Construct Spectrum demo project is displayed. If Visual Basic is not running, it is
also opened.

— 40 -

Using the Demo Application

The project window contains references to all of the components required to compile
and run your demo application:

DEMO - Microsoft Visual Basic [design]
Fil= Edit Wiew Inget Bun Joolz Addin: Help

DEMOD x|
Wiew Form Wiew Code I
[About_frm frrrdibot =

[BrowseDialogOptions frBrowseDialogD ptios:
ti° CUSTMCDY . Frm frrm CUUSTOMER

[ErrorPreferences_frm
E ErrorTip_frm

[GenericBrowse_frm

. GenericMDIBrowse. h

frnE rrarPreferences
frmErrarTip
frnGenencBowse

frrnGenerichd DI Browse

frnGndSizelnfo

[GridSizelnfo.frm
4 Main.frm frrnkd ain
[Open.frm frm0pen

¢ %l ORD-MCDV frm fir_ORDER

. PRODMCDY frm frm_PRODUCT LI

Construct Spectrum Demo Project

Tip: You can set up an icon or shortcut to open the Construct Spectrum demo project.
For information, refer tgour Windows help.

Once you have opened the project, you must rurcitdate a working ggication. This
is described ilRunning the Demo Application page 47.

—41 -

Construct Spectrum SDK for Client/Server Applications

Understanding the Construct Spectrum Add-In

Use the Construct Spectrum Add-In to manage the development of the client portion of
your application. It is available from the Add-Ins menu on the Visual Basic menu:

5, Project] - Microsoft Yisual Basic [design]

File Edit “iew Project Format Debug Run Query Diagram Tools Spectrum | Add-Ins Window Help

B = =

b Bt Yisual Data Manager. ..

Add-In Manager. ..

Download Generated Modules. .. Canstruck Speckrum

Upload Modules. ..
Create Mew Project. ..
Preferences. ..

About

Construct Spectrum Add-In

The Construct Spectrum Add-In optioae:

Add-In Option

Description

Download
Generated Modules

Upload Modules

Create New Project

Preferences

About

Downloads generated modules from the server to your
application project. For the demo application, this has already
been done.

Preserves user exit code that has been added on the client. For
example, if you add user exit code to a Visual Basic
maintenance object on the client, use this option to upload the
business object module to the server so the code is preserved
upon future regenerations of the business object.

Creates a project for your Construct Spectrum client/server
application. For the demo application, this has already been
done.

Allows you to select a remote dispatch service. To allow
access to the mainframe for downloading, enter your user ID
and password in the appropriate fields.

Identifies the Construct Spectrum version level gmiusing
and contains PC resource information, such as available
memory.

—42 -

Using the Demo Application

Understanding the Demo Project

The demo project contains all client components required to make a fully functional cli-
ent/server application. The client components consiaofework components and
generated modules. These are briefly described in the following sections. Also included
in the following sections are diagrams showing both a framework component and a gen-
erated module as they appear before and after the project is run.

Framework Components

Framework components are reusable application components. These components pro-
vide a skeleton of functionality that interacts with generated and hand-coded Construct
Spectrum modules to create a client/server application. When you create a project using
the Create New Project aph on the Construct Spectrum Add-In menu, framework
components are automatically included in your project.

The following example shows one of the framework components in your project: the
Construct Spectrum Multiple Document Irfece (MDI) frame:

Project] - frmM ain [MDIForm] [Read Oniy)
.W.Hﬁlﬁume

MDI Frame Before Running Project

—43 -

Construct Spectrum SDK for Client/Server Applications

When you run the project to create your demo application, the frame looks similar to
the following example:

iﬁ' Construct Demo .ﬁ.pplil&itiﬂn
File Edit Actions Options ‘Window Help

2 MU et e 1 2 M 2 i f =X [NE A =

922199 [O13PM

MDI Frame After Running Project

Use this window to access standard options, such as Open or Close, as well as business
objects and maintenance actions such as Update, Delete, Move, and Next. For more in-
formation, se&Jnderstanding and Customizing the Client Framework page 207.

— 44 —

Using the Demo Application

Generated Modules

Generated modules are specific to your application. For example, the demo has a num-
ber of windows to maintain customer orders and products. Other generated modules
include, but are not limited to, Visual Basic maintenance and browse objects, subpro-
gram proxies, and PDA definitions. Generated modules are created on the server; those
required on the client are downloaded to your Construct Spectrum project using the
Download Generated Modules option on the Visual Basic Add-Ins menu.

The generated modules required for the demo hagady been downloaded for you.
The following diagram shows one of the generated components in your demo project:
the Order Maintenance window:

im. Projectl

- frm_ORDER [Furm]h

=% Order Maintenance

........

Order Maintenance Form Before Running the Project

— 45—

Construct Spectrum SDK for Client/Server Applications

When you run the project to create your demo application, the window looks similar to
the following example:

2] Construct Demo Application h
Eile Edit Actions Optionz ‘window Help

@ b= xo| 7| 08la D] @(al e S

i Order Maintenance [123]

=] E3

Order Mumber: 123

Order Amaunt: |$3nn.nn

Order D ate: IEIﬂ E/33
Custarner Mumnber: I'I 23 j

Warehouze |d: I.-'l‘-.EIE j Warehouze A2
lroice Mumber: |34
Delivery [nstructions: Confirm delivery with Jack Fendlel
Froduct: |
Froduct 1d Line Description Quantity | nit Cogt
1112 Stainless steel ralings 10
2
3
4
E

S) I i -
e I _*I_I

| 9/22/93 [0216PM

Order Maintenance Form After Running the Project

Use this window to maintain customer order information for your demo application. For
more information, se®verview of the Development Procedurepage 30.

— 46 —

Using the Demo Application

Running the Demo Application

This section describes how to run the demo application to add, delete, and update
records to your Customer Order demo application. Experiment to become familiar with
the user interface and various features that you get with any Construct Spectrum
application.

This section also contains information about some of the stafeddtdes that you get
with every application developed with Construct Spectrum.
» To create the demo application:

1 Open the demo project as describe®pening the Construct Spectrum Demo
Project, page 40.

2 Select Start from the Run menu.

Click OK.
Do not type a user ID or password in this window; tfadlt user ID for the demo
application is SYSTEM and no password is required.

—47 -

Construct Spectrum SDK for Client/Server Applications

When the project successfully compiles, the Miaime is déplayed:

iﬁ' Consztruct Demo Application

Eile Edit Action: Options “window Help

@] 4|zl@| x| 7] Blelnlell e e S8

3/22/99 | 0217 P 4

MDI Frame

You can use the demo application as long as the Visual Basic development environment
is running. Steps 4 to 7 describe how to create an executable file from which you can
use the demo application independent of the Visual Basic development environment.

Select End from the Run menu.
The MDI frame closes.

— 48—

Using the Demo Application

5 Select Make EXE File from the File menu.
The Make Project window is displayed:

Make Project |

Save in: |gm j | IfFl Eszss

[“mzzetup.t [HtrlHelp [pzfonts [
1 Acrobat3 [Inetpub [15ag [
71 Al 25i 3 K.pcmg 3 SpectiumdBOPojects |
1 Audio 3 by Documents 3 SpectumiwebProjects |
_1Dos [Nedtres =3 Temp

] Exchange = Frogram Filez = unzipped

| |

File name: IEIr-:Ier E ntry. e K.
Cancel
Help

Options...

ek,

Make Project Window

By default, the executable file (DEMO.exe) is saved in the ConstructOrderEntry direc-
tory in your Demo folder.

6 To save the executable file to another directory or with awdifft name, type new
information in this window. When you are ready to replace the existing executable file,
click OK.

The executable file is compiled and saved.

7 Locate and execute the file using the Run option on the Taskbar.
Alternatively, you can create a Windows shortcut to the file and double-click the
shortcut icon.
When the Logon window is displayed, click OK to start the demo application.

— 49—

Construct Spectrum SDK for Client/Server Applications

Application Interface

This section describes the user interface provided by default with all Construct Spec-
trum applications. The first window displayed when you start the demo is the Construct
Spectrum Multiple Document Intiace (MDI) frameThis is the workspace from which

you manage your business objects, such as:

» Order object

» Customer object

» Product object

+ Warehouse object
» Province object

Note: The Province object is a table in a Predict validation rule.

On the MDI frame, you can select an object for an action, such as to open it to maintain
or browse records. The MDI frame consists of the components shown in the following

example:
7! CONSTRUCT Demo Application [_ O] x|
Menu —— File Edit Action: Option: ‘Window Help
Toolbar ——— E’“I 4w x| il Bileo|m | w I > | @I
Application
Workspace —
Status Bar — 6/24/97 |O1:EB8PM 4

MDI Frame Window

— 50 -

Using the Demo Application

Menu Options
The following table describes each menu option in the MDI Frame window

Menu Option Description

File Contains options to open or close a business object, log off, or exit
the application.

Edit Contains options to cut, copy, paste, undo or delete typing. Also
contains options to add or delete rows of information; for example,
when maintaining a customer order, you can add or delete rows of
order information.

Actions Contains methods for working with your application, for example,
methods to add, delete, or get an object record. The methods
available from this menu correspond to the methods associated
with the business object.

Options Contains notification options for handling errors when they are
encountered. For example, when an error occurs, you can chose to
be notified by a sound, an error message, or both. Also contains a
Services option to select between éiffint dispatch services. For
an example, se&dditional Options, page 54.

Window Contains options to manage the windows that are currently open on
your MDI frame. For example, you can move between open
windows using this menu.

Help Contains options to access help for your application. Also contains
an About option from which you can display standard information
about the application as well as standard system resource
information.

Toolbar Options

Toolbar button options are available for the most commonly used menu options. These
are described in the following table.

— 51 -

Construct Spectrum SDK for Client/Server Applications

Note: To display the name of a toolbar button, place your cursor on the button for at
least two seconds; a tooltip containing the name is displayed.

Toolbar Button

Description

&

X & |@ [|=

| 5

R

= [2

e |2

Displays the Open dialog, where you can select a business object
and one of its associated actions for opening.

Cuts the selection to the Windows Clipboard.

Copies the selection to the Windows Clipboard.

Pastes the selection to the Windows Clipboard.

Deletes the selected characters.

Undoes the last typing sequence you did; for example, if you delete
a line of information using the Backspace key, clicking this button
restores the line of information.

Displays online help for Construct Spectrum.

Adds a new record.

Retrieves a listing of records from the server. You can select a
record from the list to do some further action to it.

Clears the currently displayed record from your desktop. If there
are unsaved changes, you will be asked to save them; otherwise,
changes will be lost.

Deletes the current record.

Retrieves the specified record.

Retrieves the next record. If there are unsaved changes to the
currently displayed record, you will be asked to save them;
otherwise, they will be lost.

— 52 —

Using the Demo Application

Toolbar Button Description (continued)

Updates the currently displayed record to the server database.

=i

Prints the selected object in the MDI frame.

Application Workspace

The Application workspace is where you work with your business objects. When you
open one or more business objects, such as a customer ordearehawge browse ob-
ject, they are displayed on this workspace:

I'E' Construct Demo Application O] =
File Edit Actions Option: Window Help

= e x|o| 2| ol D] m|al ¢ 6| S

ity |T|:|rn:|r'|tu
Province: IDntarin RS Bmwse k 5
Postal Code; Ii
YWarehouze D | Dezcription |
“hipping Street: IW a0z Warehouze A02
chona i IW
Shipping Province: W
Shipping Postal Code: Ii
Cantact: Im
Credit Rating. |3_ Selection Key Fange Filker
Credi Limit [$20.000.01 [Werchause ID < b= =] optens | se |
Dizcount 22 12.00 Warshouse [0
Warehouge |d: W E IF
| ar. | Cancel |

| Records displayed: 1

| 942299 | D1E2PM

Open Documents on the Application Workspace

— 53—

Construct Spectrum SDK for Client/Server Applications

The MDI frame is a parent window to all business objects. You can manage your busi-
ness objects through the MDI frame. For example, you can move between open objects
using the MDI window menu commands. The previous diagram depicts a number of
open objects on the application wor&sp.

Status Bar

The status bar displays messages and information about the current state of your appli-
cation. For example, if you attempt an action that is not currently available, the status
bar displays the following message:

| This command is not available | | | 4417497

Status Bar

Additional Options

The following sections describe additional options available from the MDI frame:
« Error notification options
+ Remote dispatch service options

Error Notification Options

Users can specify how they are to be notified when an error is encountered while using
an application. For example, users can specify that the text box containing the error be
highlighted and that information about the error be displayed immediately or only when
the text box is selected.

» To modify erromotification options:

1 Start the Demo.exe file createdRunning the Demo Application page 47.
The Logon window is displayed.

2 Click OK.
The Construct Demo Application MDiame is dsplayed.

— 54—

Using the Demo Application

3

4

=

On the Options menu, click Validation Errors.
The Error Notification window is displayed:

®] Error Hutiﬁcat‘*:m Options

Alfter receiving an object ermar, do pou
want to

¥ Display popup emor message: Cancel 1

[T Dizplay hidedshow instructions

[T Dizplay sound icon
[~ Play audia erar message

¥ Highlight colar an ermar figld

Set Foreground Set Background] m

Error Notification Options

Select the check box(es) corresponding to the error naotification options you want to
enable.

If you selected the Highlight color on the error field option, choose the highlight colors
by clicking the Set Foreground and Set Background buttons.

Later in this chapter, you will experiment with text box validations by entering incorrect
values in a text box. At this point, try experimenting with your error notification op-
tions. Text box validations are described/mlidations, page 61.

Remote Dispatch Service Options

Spectrum dispatch services can be set up for distinct units in your organization. For ex-
ample, you could have one Spectrum dispatch service for your inventory control users
and another one for your payroll users. Users who have been set up to access multiple
Spectrum dispatch services do so by selecting the appropriate service from the MDI
frame.

To select a remote dispatch service:
Start the Demo.exe file that you createdRiitmning the Demo Application page 47.

Click OK.
The Construct Demo Application MDiame is dsplayed.

— 55 —

Construct Spectrum SDK for Client/Server Applications

3 Select Service from the Options menu.
The Select Remote Dispatch Service window is displayed:

Select Remote Dispatch Service k |

Q 5 Select a remote dispatch service. oK

AL

Cancel

Service: DISPATCHER-QAS? - Dispatcher

Select Remote Service Dispatch Services Window

4 Select the Spectrum dispatch service you want to use.
Any open windows on the Mffame are closed angu are prompted to save any
unsaved changes.

You can now access the business objects available from the specified Spectrum dis-
patch service.

— 56 -

Using the Demo Application

Tour of the Demo Application

This section describes many of the features and functions of the demo application by
taking you on a guided tour of the customer order maintenance and browse functions.
Some features are provided by default with every Construct Spectrum-generated appli-
cation, while others are based on the Predict setup of your application files and fields
on the server. Both types of features are identified in the following sections. For Predict
features, you are also provided with information about the set up required to make the
features available.

This section also contains a listing of the standard keyboard shortcuts available with all
Construct Spectrum applications.

Your tour of the demo application involves working with customer orders. You will
maintain and browse customer orders. As you do this, you will perform various tasks to
give you an idea of what the application can do. You should be able to develop appli-
cations thaare at least as functiolharich as the demo application. At this point, do not
worry about the details of how things work, but try to get an understanding of what fea-
tures you can provide in your own application.

Opening a Business Object

In this section, you will open an order business object. It will be used to demonstrate
most of the Construct Spectrdeatures described in the remainder of this chapter.
» To open a customer order business object:

1 Start the Demo.exe file createdRunning the Demo Application page 47.
The Logon window is displayed.

2 Click OK.
The Construct Demo Application MDiame is dsplayed.

— 57 —

Construct Spectrum SDK for Client/Server Applications

3 Select Open from the File menu.
The Select a Dialog window is displayed:

(5] gelect a Dialog |
Objects: Actions:
ki aintenance
Browse
Praduct
Warehousze
Province

Bz] I Cancel

Select a Dialog Window

4 Select Order from the Objects column.
The available actions for the Order object are displayed in the Actions column.

5 Select Maintenance from the Actions column.

Note: This procedure assumes you are opening a business object for maintenance.
To browse for a record, select Browse from the Actions column.

— 58 —

6 Click OK.

The Order Maintenance window is displayed:

iﬁ' Construct Demo Application
File Edit Action: Optionz ‘Window Help

| blElal <o 7] Be DTl e S

&% Order Maintenance

Order Humber: I

Order Amalint; I

Order Date: I—
Cusztarner Murnber: I— j
W arehouse |d: I_ j
Ireemice Mumnber: I—

Using the Demo Application

IS[=] E3

Drelivery [nstructions:

Product:
Product [d Line D'ezcription Cuantity | Uit Cost Total Cost
1
2
3
4
E
EEDSt Aot |Project| Dist &mount |2
enker
1
=

-

| 972299 [0223PM

Order Maintenance Window

— 59 —

Construct Spectrum SDK for Client/Server Applications

7 Click Next.
The first customer order record is displayed:

ak Order Maintenance [512) = E

Order Mumber: A12

Order Amadint; IEEE.EIEI

Order D ate: W
Cuztormer Mumber: |123— j
Warehousze |d: W j
[reeice Murnber: |1—

Deliveny Instructions: Confirmn delivery with Jack Fendler.
Froduct:
Froduct Id Line Descrption Cuantity | Unit Cost Total Cost [
1{11711 [ran ralings 24 12.00 288.00
2
K]
4
E -
Diztribution [2];
Lost ficct (Project| Dist Amount |2
Center
1|t 231 |5
4| I B

| 9/23/99 | 0212 PM

Order Maintenance Window With an Open Order

The following section describes some of the standard features of the demo application
by using an order object.

— 60—

Using the Demo Application

Maintaining a Business Object

This section demonstrates some of the standard features available to help users maintain
their business objects. This section covers:

» Validations
» Business data types (BDTs)
» Grids

The features described in this section are demonstrated using the customer order object
opened iMpening a Business Objegtpage 57.

Tip: In addition to experimenting with the features described in this section, try add-
ing, updating, and deleting a customer order.

Validations

When a LostFocus event is triggered in a text box, it is validated. For example, when a
user types a value in a text box and tabs to the next text box, a LostFocus event is trig-
gered and the teXtox is validated. Four types of validations occur on the client:

+ Basic data type
These validations verify that the format and length of an entered value is acceptable for
the particular field.

» Business data type (BDTS)
These validations ensure that data is formatted consistently and in a way that is easily
understood. For example, if all dates in your organization should be formatted with for-
ward slash (/) delimiters, you can assign a BDT to format such values. If a user enters
a valid date without forward slash delimiters, the BDT formats the date when a LostFo-
cus event occurs in the date text box. BDT validations are descriBegsiimess Data
Types (BDTs) page 63.

» Local business type
These validations are based on your business rules. For example, a local business vali-
dation can ensure that one of a finite set of valid values is allowed in the field, such as
a valid province code. A more complex local business validation could calculate the
provincial tax amount on an order based on the province codeednt

« Foreign field type
When a field in a maintenance window is a key field in a foreign file, Construct Spec-
trum generates code to validate the field using the foreign file. For example, the Order
window in the demo application has a Warehouse ID text box that is a key field in the
Warehouse file. When a LostFocus event is triggered in the Warehouse ID text box,
Construct Spectrum verifies that thea¥¥house ID entered is a valid ID. For more in-
formation about foreign field validations, seegrating Browse and Maintenance
Functions, page 275.

For more information about basic data type, business data type, and local business type
validations, se&alidating Your Data, page 261.

— 61—

Construct Spectrum SDK for Client/Server Applications

» To test how a validation works:

1 Open an Order object.
For information, se®pening a Business Obje¢tpage 57.

Type an invalid warehouse ID in Warehouse ID.

Select Update from the Actions menu.
The Warehouse ID text box is highlighted and, depending on how your Error

w

Notification options are set up, an error message is displayed. Or you can select the

highlighted text box to display the message. For more informatioi; rsee
Notification Options, page 54.

iﬁ' Construct Demo Application
File Edit Achons Optionz ‘window Help

= % |ml| x|o| 72| bElar|D| @R e S

=] E3

&l Order Maintenance [512] H
Order Mumber: A1z
Order Amount: | 15000.00

Order D ate: IW -
Customer Mumber: I'I23— j SAGA Software, Inc.

Wharehouse [d: u j Warehouse AT

[reeaice Mumber: I'I—

Delivery Instructions: IEanirm delivery with Jack Fendler. _ILI
3

4 |

| 9/22/93 [0233PM

Validation in the Warehouse ID Text Box

4 To correct the problem, type a valid warehouse ID in the text box (or select a valid

warehouse from the drop-down list box).
5 Select Update from the Actions menu.

— 62 —

Using the Demo Application

Business Data Types (BDTS)

Business data types (BDTs) help ensure that information is displayed in a way that is
consistent and easy to understand. For example, a BDT can reformat a telephone num-
ber that was entered without dashes or round a numeric value.

Construct Spectrum comes with a number of predefined BDTs you can customize and
attach to any field based on your business requirements. When a user enters a value in
the field, formatting is applied automatically when a lost focus event occurs (for exam-
ple, when the user selects another field or option).

» To test how a BDT works:

1 Open a Customer Order object.
For information, se®pening a Business Obje¢tpage 57.

2 Place your cursor in the Order Amount text box and type “1500":

E' Construct Demo Application h

Eile Edit Actions Optionz ‘window Help

@ b= x| 7| 08la| D@ (el er] S

&l Order Maintenance [123]]

Order Mumber: 123

Order Amovint; |1 500 -
« | _"I_I

| 9/22/93 [023PM

Value Before BDT Formatting Occurs

— 63—

Construct Spectrum SDK for Client/Server Applications

3 Click outside the Order Amount text box.

The value you entered is formatted with a decimal and two trailing zeros:

&) Construct Demo Albpli
File Edit Actions Options ‘window Help

= b|Eee| xo] 2] fElelDlmial» (=] S

&l Order Maintenance [123]

Order Mumber: 123

Order Amount: |$1 50000 -
4| | _’l_l

| | 9/22/93 [0236PM

Value After BDT Formatting Occurs

Enter an alphabetical character in the Order Amount text box to see what happens. In
this case, the BDT for Order Amount was set up to convert alphabetical characters to
zeros. Optionally, aerror can beidplayed if alphabetical characten®e entered.

Grids

Grids display rows of related information about a business object. The Order object
contains the Product grid, which displays the individual lines for a particular customer
order. Each row corresponds to a separate order line. In the following diagram, there is
one order line, Cat Nuggets, for the customer order:

Line Dezcription Quantity | Uit

11187361 [CAT NUGGETS 10 [

Grid Showing Order Lines for a Customer Order

Experiment with the grid by adding and deleting additional order lines.

— 64—

Using the Demo Application

s
1

I\)I—‘VU\) N

I\)I—‘V

To add an order line:

Open a Customer Order object.
For information, se®pening a Business Obje¢tpage 57.

Place your cursor on an empty order line and complete the cells.
Use the horizontal scroll bar to access additional information on the grid.

Select Update from the Actions menu.

To add a new order line between two lines:
Select the row immediately above the location where you want to add a new row.

Select Insert Row from the Edit menu.
An empty row is added below the selected row.

To delete an order line:
Select the order line.

Select Delete Row from the Edit menu.
The selected order line is deleted.

Grids can also be linked to browse functions and nested grids. For information on using
a browse window from a grid, sBeowsing For a Business Objectpage 67. See the
following section for information on nested grids.

Nested Grids

Nested grids show additional information related to a row or a single cell in a grid. The
Order object has a nested grid containing the distribution information for each order
line. The Distribution grid is nested to each order line in the Product grid. In the follow-
ing example, two distribution lines are set up for the Cat Nuggets order:

EI:':'St Acct | Project | Disgt Amount =
ehber

1(11 521 |Ad 1500.00—
214 (333 |84 75.00)
3

4 -

Nested Grid Showing Distribution for an Order Line

Select the first order line in the order object and then another order line; notice that the
Distribution grid changes depending on which order line you select. This is because you
can have multiple lines of distribution for each order line. To accomplish this, the dis-
tribution grid was set up as a nested grid.

— 65—

Construct Spectrum SDK for Client/Server Applications

Nested Drop-Down Grids

You can set up a nested grid to “drop down” for a cell within a grid. When a user selects
the cell, the drop-down grid displays additional information. For example, suppose you
had a grid showing customer accounts and one of the grid cells showed the first of up
to five lines of the customer’s address. You could set up a nested grid containing the
remaining lines of address information.

The demo application does not have a drop-down grid. The following procedure con-
tains a diagram of a sample drop-down grid to show you what one looks like.

Tip: Cells containing drop-down grids are identified with gray shading and an occur-
rence number in brackets () for each repeating value in the grid.

» To display a drop-down grid:

1 Select the cell containing a drop-down grid.
A down arrow is displayed in the cell.

2 Select the dowarrow.
The drop-down grid is displayed:

|nzome:
Currency| Annual Banus -
code zalamy I~
1|0 BEOO0 [1]BEZ2 b
2(1Us 53000 [1]900 Drop-down
3|COM 7000 (111200 column —
41T 35000 [3]75 ~| - placeholder for
[T drop-down grid
1023
™\

\— Drop-down grid

for repeating
field (Bonus)

Sample Drop-Down Grid

To learn more about working with drop-down grids, Kegboard Shortcuts for
Grids, page 67.

— 66 —

Using the Demo Application

Keyboard Shortcuts for Grids

The first two keyboard shortcuts apply to a selected grid row. Select a grid row by high-
lighting the number to the left of the grid row. The remaining shortcuts apply only to

nested drop-down grids.

Keystroke Action

Del Deletes the selected row of information from a grid. If
the row has child grids, these are also deleted.

Ins Inserts a blank row above the selected row. If the selected

Alt+Down Arrow
Alt+Up Arrow or Esc

Shift+Alt+Down Arrow

Shift+Alt+Up Arrow

row has child grids, these are also inserted.
Displays the drop-down grid.
Hides the drop-down grid.

Displays the next value in a drop-down column without
displaying the entire drop-down grid.

Displays the previous value in a drop-down column
without displaying the entire drop-down grid.

Browsing For a Business Object

Browses enable you to search for and select records. For example, if you want to update
an order but do not remember the order number, you can locate and select the order us-
ing the order browse. Construct Spectrum provides a number of methods to browse for
a business object. Browse windows can be invoked as a menu option or from a mainte-
nance window. This section describes some of the ways users can browse for data, as
well as some of the features available to customize a browse. This section covers:

Selecting a business object from a browse window

Specifying browse customization options

— 67 —

Construct Spectrum SDK for Client/Server Applications

Select Data From a Browse Window

This section describes a number of ways to search for andepeaals from a lmwse
window. You can open a browse window directly from the File menu or from a main-
tenance window.

Open a Browse Window from the File Menu

To open a browse window from the File menu:

Select Open from the File menu.
The Select an Object/Action window is displayed.

Select Orders from the Object list box.
The available actions for the Order object are displayed in the Actions list box.

Select Browse from Actions.

Click OK.
The Order Browse window is displayed:
Order Browse |_ O] x|
Order Nurnber | Order Amount | Order Date | Cuztarner Number | —
1 $1.135.00 342599 10003
141 $545.00 5/3/99 2
122 $10.880.00 8129 33333
123 210496 33333
T $1.500.00 202395 1000
991 $1.500.00 121798 33333
1111 $1.500.00 219/99 10003
1234 $1.500.00 749493 11111
9121 $2.350.00 342599 1
111112 $2.160.00 3/19/99 11111 j
Optiong | Get |
Order Mumber
M
Delete | Update... | ok | Cancel |
Records displayed: 159 EQD
Order Browse Window
Click Get.

A list of orders is displayed in the window.
Select an order.

Click Update.
The Order Maintenance window is displayed with the selected order.

— 68 —

Using the Demo Application

Tip: The Update and Delete options in the Order Browse windere areated by add-
ing Update and Delete commands to the command handler for the demo applica-
tion. For information about adding these and other command&ysatng and
Customizing Browse Dialogspage 175.

Open a Second Order

To browse for and open a second order:

Open an order to perform a maintenance activity.
For information, se®pening a Business Obje¢tpage 57.

Select Browse from the Actions menu.
The Order Browse window is displayed.

Click Get.
A list of customer orders is displayed in the window.

Select another order.

Click OK.
Details for the selected order are displayed in the maintenance window.

Open Foreign File Information

When a maintenance dialog contains text box or grid information that is defined in a
another file (foreign file), Construct Spectrum automatically adds a browse function to
the foreign field or grid information. For example, the Order Maintenance window in-
cludes the Customer Number text box, which is defined in the Customer file. You can
initiate a browse from this field to locate and select a customer number for an order. In
the following procedure, you will browse the Customer file from the Order Mainte-
nance window.

— 69 —

Construct Spectrum SDK for Client/Server Applications

» To open the Customer Browse window from the Order Maintenance window:

=

Open the Order Maintenance window.

2 Select the Down arrow to the right of the Customer Number text box.
The Customer Browse window is displayed:

Customer Browse H=]
Cuztarner Number | Business Mame | Phaone Numberl “Warehouse [D | —
1000 Jourmepmen Fabricating [519] 224-6422 B32
10002 Les Rivers Custom Fabricating [519) 623-6860 113
10003 MOMJEM STELL IMC. [519) 624-5623 113
10004 STEELFALCO IMC. [519) 623-6850 111
10005 CamMERIDGE T.W STERED [519) 623-2435 ERA
10006 FAUL'S VINEYARDS [519) 233-6230 222
10007 STaMDARD TOOL AWND DIE [519) 623-166 222
10008 TOYD TIRE CAMNADA, IMC [519) 623-2340 222
10009 AUTOWORKS [519) 623-6860 222
10010 TIEM 5UN [519) 623-6850 544 j
Custamer Humber
10001
Orders... | ok Cancel |
Records displayed; 20

Customer Browse Window

3 Click Get.
A list of customer records is displayed.

4 Select a customer number.

Click OK.
The selected customer number is displayed in Customer Number in the Order
Maintenance window.

The Order Maintenance window also has a browse window linked to the Product grid.
Use this browse to select a product.
» To open the Product browse window from the Product grid:

1 Click a cell in the first column of the grid.
A Down arrow is displayed:

Product |d Line Description Buantity | Unit-=
1187361 « | CAT NUGGETS 10 1
2
a3 L4

4 | v[]

Grid with Down Arrow Displayed

— 70 -

Using the Demo Application

2 Click the Down arrow.
The Product browse is displayed with a list of products.

Select a product.
4 Click OK.

The selected product is displayed in the Product grid in the Order Maintenance window.

Specify Browse Customization Options

Construct Spectrum-generated browse dialogs include options that enable you to nar-

row your search criteria and to customize the information displayed in the browse
window. The following topics are covered in this section:

» Specifying selection options
» Specifying display options

Specify Selection Options

You can specify selection options to display as many or as few records as you want.

» To specify selection options:

1 Open theOrder Browse window.
For information, se&elect Data From a Browse Windowpage 68.

2 Click Options.
The Browse Dialog Options window is displayed with the Key Options tab selected:

=] Browse Dialog Options

{ Kee Optins | Cohumn iy |

Selection Key Range Filter Fixed Fields

Order Mumber __‘:_j §>= __:_j ;D :.j

[¥ Show Selection Key
[+ Show Range Option

[T Save Keps Settings

lTi Cancel Apply

Browse Options — Key Options Tab

3 Ensure that Show Selection Key and Show Range Options are selected.

— 71 -

o N o O

Construct Spectrum SDK for Client/Server Applications

Click OK.
The Browse Options window closes and the Order Browse window is displayed.

Select Customer Number from the Selection Key drop-down list box.
Select the greater than symbol (>) from the Range Filter drop-down list box.
Type “777" in Order Number.

Click Get (or press Enter).
The Order Browse window displays all customer order numbers greater than 777:

@] 0rder Browse =]
Order Humber i Order Amount i Order D ate i C
T $1.500.00
1234 $1.500.00 L
111112 $12.210.00
111113 $7.915.00
1213 $39,000.00 -
1 | 3
Selection Key Range Filker
;Drder Mumber :j ;>= :j Options i
Order Mumber
i?‘??
Ok Cancel
Fecords dizplayed: 12 EQD

Order Browse Window

Specify your own selection options by experimenting with Selection Key, Range Filter,
and Order Number.

Specify Display Options

You can customize your browse window to show as many or few columns of informa-
tion as required.

To customize the display options for your browse window:

Open the Order Browse window.
For information, se&elect Data From a Browse Windowpage 68.

Click Options.
The Browse Options window is displayed.

— 72—

Using the Demo Application

3 Select the Column Visibility tab:

=] Browse Dialog Options

Key Option

Data Columns ;
[Order Mumber

| Order &mourt

| Order Date

| Customer Number
|'warehousze D

| Invaice Mumber

| Order Timestamp

| CHtdelivery Instructions
| Deliveny Instuctions
 |Urnique I1d

¥ Save Data Column Settings

ok i Cancel Apply

Browse Options — Column Visibility Tab

4 Clear all check boxes except Order Number, Order Amount, and Customer Number.

Clear the Save Data Columns check box.
To save your column selections on closing the Order Browse window, select this check
box.

— 73—

Construct Spectrum SDK for Client/Server Applications

6 Click OK.

The Order Browse window is displayed with the Order Number, Order Amount, and
Customer Number columns only:

@] 0rder Browse _ (O]
Order Humber i Order Amount i Cuztomer Mumber 1 -
T $1.500.00 1000
1234 $1.500.00 11111
111112 $12.210.00 11111 —
111113 $7.915.00 22222
1213 $3,000.00 10001
200004 $7.573.00 10001 ;_j
Selection Key Range Filker
;Drder Mumber :j ;>= :j Get
Order Mumber
i?‘?‘?
Ok Cancel
Fecords dizplayed: 12 EQD

Order Browse After Specifying Display Options

Specify other display options by experimenting with the values on the Column Visibil-
ity tab in the Browse Options window.

— 74—

Using the Demo Application

Troubleshooting

If you encounteerrorswhile using the demo application, ensure that all prerequisites
listed inPrerequisites page 39have been met. Your system administrator can help

you with this.
In diagnosing the problem, ensure that the client and server components have been in-
stalled correctly.

— 75—

Construct Spectrum SDK for Client/Server Applications

— 76 —

USING THE SUPER MODEL TO GENERATE
APPLICATIONS

This chapter describes how to geaite all of the gplication modules required toeate
a Construct Spectrum client/server application using the super model (VB-Client-Serv-
er-Super-Model).

The following topicsare covered:
» Overview, page 78
» Before You Begin page 80
« Generating with the Super Mode| page 86
« Troubleshooting, page 100
« Transferring Your Application to the Client , page 100

— 77 —

Construct Spectrum SDK for Client/Server Applications

Overview

The super model, VB-Client-Server-Super-Model, is designed to be used as part of a
rapid application development (RAD) process, where it is important to be able to gen-
erate a working client/server application from a minimum of input parameters.

The super model drives the generation of all the required modules for a client/server ap-
plication using a single high-level model specification. For example, given a set of
database file names defined in Predict, all the client and server modules required for ful-
ly functioning maintenance and browse services can be generated.

A single super model specification can generate all of the maintenance and browse
modules required for up to 12 packages. A package contains the modules required to
provide both browse and maintenance services for a business object. For example, the
modules that make up the maintenance and browse services for a Customer Order busi-
ness object are referred to as a package.

If you are credhg a new application, or adding a graphical front-end to an existing ap-
plication, the fastest way to do this is by using the super model. The super model
invokes each of the models necessary to produce the modules for your application:

Super Model
(high level specification)

A Generate
Models (up to 9) for
each
Business Object Object
Factory

Generate
Module6

Module5
| Module4

| Module3

| Module2
| Module 1

Module11
| Module10
| Module9
| Module8
| Module 7

Super Model Generation Overview

Tip: The super model does not allow you to specify user exits. To specify user exits,
regenerate using the specific model that supports the desired user exit.

— 78 —

Using the Super Model to Generate Applications

Using the super model, you can specify one or more high-level specifications. Each
high-level specification corresponds to a business object such as a Customer Order ob-
ject. Together, these specifications define the business objects in your client/server
application. Next, select the models to run for each high-level specification. These mod-
els, using information derived from the business object’s Predict file and field
definitions, supply the specifications required to produce the Visual Basic and Natural
modules for your application.

Because the super model requires few specifications, it uses many default values. If
necessary, you can fine-tune and customize a module by re-generating it individually.
Re-generating with the individual model enables you tride default values, add ad-
ditional specifications, and add user exit code.

Another advantage to using the super model is that you can select to create an object
factory module that defines all business objects within the application. The object fac-
tory performs many functions, for example, it enables you to use the Open dialog by
providing the names of all business objects within the application along with the actions
they support.

Tip: If your application requires more than 12 packages, generate with the super mod-
el as many times as necessary to create all of the required modules.

Typically, you will use the super model to generate application modules when you de-
velop the first iteration of your application. As you refine your application, you will
likely need to regenerate certain application modules. In most cases, you will regenerate
these modules separately using the individual models. Step-by-step instructions for
generating application modules with the individual models are provided in the follow-
ing documentation:

Generating a Subprogram Proxy Construct Spectrum SDK Reference
Object-Maint Models, Natural Construct Generation

— 79—

Construct Spectrum SDK for Client/Server Applications

Before You Begin

Before using the super model, do some planning and research to make your generation
procedure go smoothly. This preparation includes:

» Establish a naming convention

» Determine the domain name

» Understand the object factory

» Determine the Predict default values

» Decide which modules to generate
These tasks are described in the following sections.

Establish a Naming Convention

Establishing a naming convention is important because modules for up to 12 packages
can be created with the super model at one time. A haming convention allows you to
easily identify the package a module belongs to and what type of module it is.

If you use the super model, all the modules belonging to a paekaggven the four-
character prefix you assign. If you assigrrefig that is less than four characters, the
prefix is padded with dashes.

The module name suffix is defaulted by the super model. The suffix identifies the mod-
ule type and can be up to four characters in length.

The following diagram shows the default naming conventions for a generated module:

“M" for Maintenance or
“B” for Browse

“C"for Client or

“S” for Server
“CUST”" for Customer "
Identifies the purpose of
the module
CUSTMCDV
Four-character prefix Four-character suffix
assigned by you assigned by system

Naming Conventions for a Generated Module

— 80 -

Using the Super Model to Generate Applications

Note: These naming conventions apply only to modules generated by the super

model.

The following table lists the default suffixes for modules generated by the super model:

Default Suffix Module
MSD Object maintenance subprogram
MSA Object PDA (parameter data area)
MSR Restricted PDA
Note: You cannot select the PDAs individually for generation. They are
generated by the Object-Maint-Subp model.
MSP Subprogram proxy for the object maintenance subprogram
MCPV Visual Basic maintenance object
MCDV Maintenance dialog
BSO Object browse subprogram
BKEY Key PDA
BROW Row PDA
BPRI Restricted PDA
Note: You cannot select the PDAs individually for generation. They are
generated by the Object-Browse-Subp model.
BSP Subprogram proxy for the object browse subprogram
BCPV Visual Basic browse object

Tip: You can override a default name by typing over the default value in the super
model specifications.

— 81—

Construct Spectrum SDK for Client/Server Applications

Understand the Object Factory

Each Construct Spectrum application contains a module called the object factory. The
purpose of the object factory is to make an application aware of its objects and the ac-
tions, such as a maintenance or browse action, associated with the objects. Each
application also has an Open dialog (Open.frm) that enables users to select an object
and one of its acwesponding actions. When a user displays the Open dialog, the object
factory populates it with a list of the application objects and their associated actions.

The super model allows you to generate an object factory. During subsequent iterations
of your application, you have the option of regenerating an object factory with the super
model or modifying the existing object factory by hand.

Tip: Because the super model can generate modules for up 12 business objects at one
time, you must use the super model multiple times if your application includes
more than 12 business objects. In this situation, generate a unique object factory
each time and then merge each object factory into a single object factory module.

For more information, se@ustomizing the Object Factory page 246.

Which Modules to Generate

A package consists of two groups of modules, each bundling services for either a main-
tenance or browse function. For either group of services to be complete, all the modules
belonging to a group must be geated and ddépyed. The modules are generated on

the server but are deployed to either the server or the client.

You may choose to gerateonly certain modules. For example, if you already have an
existing maintenance subprogram and you only want to generate a maintenance dialog,
generate the following models: Subprogram-Proxy, VB-Maint-Object, and VB-Maint-
Dialog. Later, if you decide to generate only a browse dialog, select only the Obiject-
Browse-Subp, Subprogram-Proxy, and VB-Browse-Object models.

Tip: If you want to allow users to browse the business objects in the package, you must
generate browse dialogs. Additionally, you must generate browse dialogs for the
package if the business obiject is linked by a foreign field relationship to another
business object. Foreign field relationships enable a user to browse and select key
field values for foreign fields in a browse window. For more informationlrsee
tegrating Browse and Maintenance Functionspage 275.

— 82 —

Using the Super Model to Generate Applications

For a Maintenance Dialog

The following table shows the modules you must generate to implement a client/server
maintenance dialog. When you generate these modules individually, rather than using
the super model, generate them in the order shown.

Module

Model Name

Result

Object maintenance
subprogram,

object PDA,
restricted PDA

Object maintenance
subprogram proxy

Visual Basic
maintenance object

Visual Basic
maintenance dialog

Object factory

Object-Maint-Subp

Subprogram-Proxy

VB-Maint-Object

VB-Maint-Dialog

VB-Client-Server-
Super-Model

Subprogram used to maintain a
business object. This model also
generates the PDA and restricted
PDA for the object.

Proxy used to communicate
information between the
Spectrum Dispatch Service and
an object maintenance
subprogram.

Visual Basic class instantiated by
a maintenance dialog to
encapsulate calls to the Spectrum
Dispatch Client and implement
local validations.

Dialog that provides the
graphical interface between the
maintenance application and the
user.

Visual Basic module that
identifies all business objects
within an application and
instantiates objects upon request.

— 83—

Construct Spectrum SDK for Client/Server Applications

For a Browse Dialog

The following table shows the modules you must generate to implement a client/server
browse dialog. When you generate these modules individually, rather than using the su-
per model, generate them in the order shown.

Module Model Result

Object browse Object-Browse-Subp Natural subprogram used to
subprogram, encapsulate access to data on the
key PDA, row PDA, server and return records as a
restricted PDA series of rows. The parameter

data areas (PDAs) communicate
information to and from an object
browse subprogram.

Object browse Subprogram Proxy Proxy used to communicate

subprogram proxy information between the
Spectrum Dispatch Service and
an object browse subprogram.

Visual Basic VB-Browse-Object For each object browse

browse object subprogram on the server, you
must generate a supporting
Visual Basic class. This class
describes the object browse
subprogram to the BrowseBase
class, which in turn provides
information to a browse dialog
that is configured at runtime.

Object factory VB-Client-Server- Visual Basic code module that
Super-Model or identifies all business objects
hand coded within an application and

instantiates objects upon request.

Unlike maintenance subprograms, which use a specific Visual Basic form for each
maintenance dialog, all generated browse subprograms use the same underlying browse
form. This browse dialog form communicates with a BrowseBase class to obtain infor-
mation needed to configure itself for a particular browse subprogram and to retrieve
data from the BrowseBase class.

Although many obijects ietact to produce a twse dialog, most of these are standard,
reusable client framework components. For more information about browse processes,
seeCreating and Customizing Browse Dialogspage 175.

—84-—

Using the Super Model to Generate Applications

Dependent Models

Some models that are used to generate individual modules have dependencies on one
another. This means you have to generate the modules in an established order.

Note: If you use the super model to generate all modules for a client/server object,
the order of generation is managed for you.

The following table shows the dependencies between models:

Model and Module Prerequisite Module

Object-Maint-Subp None
Object maintenance subprogram

Subprogram-Proxy Object maintenance subprogram
Object maintenance subprogram proxy

VB-Maint-Object Object maintenance subprogram proxy
Visual Basic maintenance object

VB-Maint-Dialog Visual Basic maintenance object
Visual Basic maintenance dialog

Object-Browse-Subp None
Object browse subprogram

Subprogram-Proxy Object browse subprogram
Object browse subprogram proxy

VB-Browse-Object Object browse subprogram proxy
Visual Basic browse object

— 85—

Construct Spectrum SDK for Client/Server Applications

Generating with the Super Model

Generating with the super model involves four main tasks:
Invoking the super model to create a new specification.
Defining general parameters.

Defining specific package parameters.

A W N P

Generating the modules.

Each task is described in the following sections, along with the steps you must follow
to complete the task.

The super model is available in both the Construct Windowsfatte on the client and
the Generation subsystem on the server.

— If you are using the model wizard, eenstruct Windows Interface, page 86
— If you are using the model on the server,Geeeration Subsystempage 94
If you encounter problems, s&eoubleshooting, page 100.

Construct Windows Interface

The following sections describe the steps to generate the super model in the Construct
Windows interface.

Step 1: Invoke the Super Model Wizard

» To invoke the wizard:

1 Select New from the File menu.
The Create New Specification window is displayed.

2 Double-click VB-Client-Server-Super-Model on the Packages tab.
The model wizard is displayed.

— 86 —

Using the Super Model to Generate Applications

3 Click Standard Parameters in the wizardigator.
The Standard Parameters window is displayed:

YB-CLIENT-SERVER-SUPER-MODEL Wizard 1

B sta Standard Parameters
Standard
Parameters Module: ;|
bFactory S ECULE |SPECDEMO
B New package
E PACRAs Title: iSuper Spec for. ..
Finish
Description: |Descripkion, .. ___r_j

[T Message numbers

YWalidake] Cancel < Back. | Mexk = | Einish

VB-Client-Server-Super-Model Wizard — Standard Parameters Window

This window is similar for all models. The parameters are descrii@drieral Model
Specifications Natural Construct Generation

To use message numbers rather than message text for all REINPUT and INPUT mes-
sages in the generated subprogram, select Message numbers.

Click Next to proceed to Step 2.

— 87 —

Construct Spectrum SDK for Client/Server Applications

Step 2: Define General Package Parameters

Use the Packages and Object Factory window to specify the domain, object factory, and
generation preferences for your application:

VB-CLIENT-SERVER-SUPER-MODEL Wizard E E3

. Start Packages and Object Factory

Standard i

. S —— Daomin: DEMO
Packages and

D Dbject Object Factory module: JOFACTORY

Factory
W New package vl e

Finish [v Generate package modules

If package modules exisk;
{* Regenerate them, preserving all custom code

" Delete therm and generate new copies

YWalidake Cancel « Back. | Mext = | Einish

VB-Client-Server-Super-Model — Packages and Object Factory Window

» To define the general package parameters:

1 Select a domain from Domain.
For more information, sédnderstand the Object Factory, page 82.

2 Select “OFACTORY” from Object factory module.

Tip: Use “OFACTORY” to identify your object factory as this is the default name
used by the client framework.

3 Select Generate object factory to generate the object factory.
For more information about the object factory, Beelerstand the Object Factory,
page 82.

— 88 —

Using the Super Model to Generate Applications

Note: If you do not generate an object factory module, you must code it by hand on
the client (se€ustomizing the Ofect Factory, page 246).

Select Generate package modules to generate the package modules.
Do one of the following:
If you are creating a new specification, click Next to proceed to the next step.

If modules already exist for the super model specification, select one of the following
options:

— By default, Regegrate it, preseing all custom code is selected. When you regen-
erate existing modules, any modified parameters in the specification will not be used
during the regeneration. However, the model will:

— Keep user exits
— Apply updates from Predict (such as a new field or a BDT keyword)
— Apply updates that have been added to the model’'s code frames

— To replace all existing modules with newly generated ones, click Delete it and gen-
erate a new copy.

In the following step, you can select the modules you want to regenerate or replace.

— 89 —

Construct Spectrum SDK for Client/Server Applications

Tip: If you are regenerating some, but not all, modules for a package and have added
custom actions that need to be reflected in the object factory:

1 Regenerate the modules.

2 In a separate procedure, regeneratetiject factory. Similarly, if you are
adding modules to an existing package (for example, adding modules to
support a browse service), generate the new modules first and, in a separate
procedure, regenerate the object factory.

3 When you regegrate thebject factory, select Generate object factory, but do
not select Generate package modules.

4 When you define the specific package parameters (see Step 3), select all of the
modules in your package so that the object factory is updated with the required
information about your package.

Step 3: Define Specific Package Parameters

Specify details for each package in your application:

YE-CLIEMT-SERVER-SUPER-MODEL Wizard 1
. Start Package prefix: iDRD
Standard PREDICT wiew: ;NCST-ORDER-HEF&DER ,____j Defaulks ;
neLers

Par

Primary: kesy: ;DRDER-NUMBER i

Hold Field: ;DRDER-TIMESTHMF‘ i

Description: ;Drder| Add i Delete i
Finish

Package modules:

Module | Gen, | Model [Girfo | Library

QORD-MS0 [Object Maintenance Subprogram R ?

ORD-MIP [Spectrum Maintenance Proxy R ? ?

ORD-MCPY [VE Maintenance Class R ? ?

CR.D-MCD [%E Maintenance Form R 2 ?

ORD-BS0 [Object Browse Subprogram R ? ?

ORD-ESP [Spectrum Browse Proxy R ? ?

ORD-BCPY [VE Browse Class R ? ?

Yalidate] Cancel < Back. | Mexk = | Einish |

VB-Client-Server-Super-Model Wizard — New Package Window

—90 -

Using the Super Model to Generate Applications

=

Py N Ry

If you are working on an existing super model specification, the packages are displayed
in the wizard navigator. Click a package in the wizandgegtor to view it, or click Next

to proceed through the packages.

To add a new package:

Do one of the following:

— While viewing the last package, click Next or Add.

— Click New Package in the wizard navigator.

To delete an existing package:
Select the package.
Click Delete.

To define specific package parameters:

Specify a package prefix.

This prefix will be used to identify each module generated for the package. The prefix
can be up to four characters long and should enable you to easily identify the package
to which the generated modules belong. The importance of establishing a logical
naming convention is explained Establish a Naming Convention page 80. Once

you provide a prefix for a new package, the Package modules grid is populated.

Specify a Predict view.
Provide the primary key, hold field, and object description.

Tip: Click Defaults to use default values for these fields. You can also specify your
own default override values using Predict keywords. Rather than typing these
values directly, set up your file definition in Predict to default the required values.
For more information, se®etting Up Predict Definitions Construct Spectrum
SDK Reference.

Determine which package modules to generate.
The Package modules grid contains the following information:

Column Description

Module All of the modules that can be generated with the super model are
listed. Each module is identified by the package prefix, followed by the
standard suffix for the module type. For more information about
suffixes, sedstablish a Naming Convention page 80.

Gen. Use the check boxes to specify which modules will be generated. For
more information, se®/hich Modules to Generate page 82.

—91 -

Construct Spectrum SDK for Client/Server Applications

Column Description (continued)

Model Individual models the super model invokes to generate the package
modules. Although seven models are listed, up to 12 modules can be
generated. The Object-Browse-Subp model generates a subprogram,
key PDA, row PDA, and restricted PDA. The Object-Maint-Subp
model generates a subprogram, object PDA, and restricted PDA.

G/R/O » “G”indicates that modules do not currently exist in source form and
will be generated and saved in the current library.

+ “R”indicates that modules currently exist in source form and will
be regenerated and saved in the current library. This status occurs
when you select Regenerate it, preserving custom code, while
defining the general package parameters.

« “O”indicates that modules currently exist in source form and will
be overwritten and saved in the current library. This status occurs
when you select Delete it, and generate a new copy while defining
the general package parameters.

Library Displays any of the following information:

« A gquestion mark (?) indicates that you must click Check to
determine if there is existing sae or corpiled (object) code for
the module.

« No content indicates that a check has been made, dratigno
existing code for the module.

« “S”indicates that sowe code eists. If the “S” is black, the source
code is in the current library. If the “S” is red, the source code is in
another library. To view the location of the source code, place the
mouse pointer over the “S.” A pop-up window shows thelypor
libraries.

« “C”indicates that compiled (object) code exists. If the “C” is black,
the source code is in the current library. If the “C” is red, the source
code is in another library. To view the location of the source code,
place the mouse pointer over the “C.” A pop-up window shows the
library or libraries.

5 After specifying the parameters for all packages, do one of the following:

— Click Finish to proceed to the Code window, where you can view the specification
lines. The super model does not allow you to specify user exits. To specify user ex-
its, regenerate using the specific model which supports the desired user exit. When
you have finished viewing the Code window, proceed to Step 4.

— Click Generate to proceed to Step 4.

— 02 —

Using the Super Model to Generate Applications

U\)I\)I—‘V

Step 4: Generate the Modules

You have two options for generating the modules: you can generate in batch or you can
generate from the model wizard.

Tip: If you are generating a number of modules, generate in batch to avoid tying up
system resources.

Generating Modules from the Model Wizard

When you click Generate in the previous step, the following process occurs as the super
model generates:

The super model specification is saved.
All the specifications for the individual modules are created and saved.

The Generate window is displayed. The Module pane provides information such as the
module name, type, and action status. The Message pane provides a scrollable list of
status messages from the server regarding the generation process. The Message pane
displays the word “Done” when generation is complete.

To terminate the generation process, click Cancel.

Generating Modules in Batch

To generate in batch:
Select Save from the File menu to save the specification.
In a mainframe session, log onto the library where the specification is saved.

Use the NCSTBGEN utility in batch to generate, specifying the name of your super
model specification and the model name: VB-Client-Serveresiwndel.

For information about using this utility, skRiltiple Generation Utility , Natural Con-
struct Generation

— 03—

Construct Spectrum SDK for Client/Server Applications

Generation Subsystem

The following sections describe the steps to generate the super model in the Generation
subsystem.

Step 1: Invoke the Super Model

» To invoke the super model:

1 Type “M" in the Function field of the Natural Construct Generation main menu.

2 Type an eight-character name for the super model specification in Module.
This name identifies the super model specification you are creating. The name should

be descriptive so you can easily identify it as the super model specification for the
application you arereatng.

3 Enter “VB-Client-Server-Super-Model” in the Model field.
Alternatively, you can enter “VB-C". The Standard Parameters panel is displayed:

CUSSMA VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMAO
May 28 Standard Parameters 1of3

Module OE-SPEC_

System DEMO

Title «oeenenee Multi-Object spec

Description Order Entry demo system for Spectrum

Message numbers X

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
right help retrn quit right main

Super Model Multi-Module — Standard Parameters Panel

4 Specify the standard parameters and press PF11 (right).
The Standard Parameters panel is similar for all models. For information about the
fields on this panel, sggeneral Model SpecificationsNatural Construct Generation

— 94—

Using the Super Model to Generate Applications

=

Step 2: Define General Package Parameters

Use the General Package Parameters panel to specify the application packages for
which you want to generate modules. You can generate up to 12 packages at a time:

CUSSMB VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMBO
May 28 General Package Parameters 20f3

Domaincccceeennees DEMO____ *

Gen object factory X Object factory module OFACTORY *

Only gen object factory _ Replace existing modules ... _

Package prefix Predict view

ORD- NCST-ORDER-HEADER *

CUST NCST-CUSTOMER

PROD NCST-PRODUCT.

WH-- NCST-WAREHOUSE

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
right help retrn quit left right main

Super Model Multi-Object Specification — General Package Parameters Panel

If you added custom actions that need to be reflected in the object factory, you can re-
generate selected modules.

To regenerate some, but not all modules for a package:

Regenerate the modules.

In a separate procedure, regenerate the object factory. Similarly, dfrgading
modules to an existing package, generate the new modules first, and in a separate
procedure, regenerate the object factory.

When you regenerate the object factory, select the Gen object factory field and the Only
gen object factory field.

When you define the specific package parameters, select modules in your package so
the object factory is updated with all required information.
To define general package parameters:

Type the domain name for this application in the Domain field.

To display a list of domains from which to select a value, place the cursor in the field
and press PF1. You must enter a value in this field. For more information about
domains, se&nderstand the Object Factory page 82.

To generate an object factory module, mark Gen object factory.
For more information, sddnderstand the Object Factory, page 82.

— 05 —

Construct Spectrum SDK for Client/Server Applications

Note: If you do not generate an object factory module, you must code it by hand on
the client. This procedure is describedinstomizing the Object Factory,
page 246.

Type “OFACTORY” in the Object factory module field.

Tip: Use “OFACTORY” to identify your object factory as this is the default name
used by the client framework.

To generate only an object factory module, without regenerating any other modules,
mark the Only gen object factory field. You must also select the package modules for
which the object factory will be generatedStep 3: Define Specific Package Param-
eters page 97.

If you are using the super model to regenerate modules, you must decide whether you
want to replace or regeneratdsting modules. If you select the Replace existing
modules option, the super model will replace any existing modules, including their user
exit code. If you do not select this option, it will regenerate the existing modules but not
the user exit code.

When you regenerate an existing module, any modified parameters in the specification
will not be used during the regeneration. However, the model will:

— Keep user exits
— Apply updates from Predict (such as a new field or a BDT keyword)
— Apply updates that have been added to the model's code frames

Type the prefix that will be added to each module generated for this package in the
Package prefix field.

The prefix can be up to four characters in length and should enable you to easily identify
the package to which the generated modules belong. The importance of establishing a
logical naming convention is explainedistablish a Naming Convention page 80.

Type the primary file name for which the package is being generated in the Predict view
field.
This is the file that represents your business object. This file must exist in Predict.

When you have added all of the primary files to be included in your application,
together with a prefix name for each of the files, press Enter or PF11 to display the
Specific Package Parameters panel.

— 06 —

Using the Super Model to Generate Applications

=

Step 3: Define Specific Package Parameters

Use the Specific Package Parameters panel to specify generation details for each pack-
age included in your application.

VB-CLIENT-SERVER-SUPER-MODEL Multi-module CUSSMCO
May 28 Specific Package Parameters 30f3

>>01 Package prefix ORD-

Predict view NCST-ORDER-HEADER *
Primary key ORDER-NUMBER *
Hold field ORDER-TIMESTAMP *
Description Order

---- Modules to Generate

Model Module Source Object G/R/O
X Maint Object Subp ORD-MSO_ * G
X Maint Object Proxy ORD-MSP_ G
X Maint VB Object ORD-MCPV G
X Maint VB Dialog ORD-MCDV G
X Browse Object Subp ORD-BSO_ G
X Browse Object Proxy ORD-BSP_ G
X Browse VB Object ORD-BCPV G

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
help retrn quit selct bkwrd frwrd left main

Super Model Multi-Module — Specific Package Parameters Panel

Note: You must complete this panel for each package in your application.

You can scroll through the packages in the application. The Package prefix field auto-
matically shows thengfix defined on the General Package Parameters panel for the
first package. The >> field shows which package rsenily displayed.

To scroll between packages, do one of the following:

— Press PF8 (frwrd) and PF7 (bkwrd)

— Enter a package number in the field following the two angle brackets (>>)
To define specific package parameters:

Specify a Predict view.

Specify the primary key, hold field, and object description of your package file in the
Primary key, Hold field, and Description fields, respectively.

— 97 —

=

3

Construct Spectrum SDK for Client/Server Applications

Tip: Based on how the file is defined in Predict, the super model attempts to provide
default values for these fields. You can also specify your own default override
values using Predict keywords. Rather than typing these values directly, set up
your file definition in Predict to default the required values. For information, see
Setting Up Predict Definitions Construct Spectrum SDK Reference

If you are generatinigoth a maintenance and a browse function for this package, press
PF5 (selct) to select all modules. Otherwise, mark each one you want to generate. For
information about determining which modules to generate\\dgeh Modules to

Generate page 82.

Note: Although only seven models are displayed on this screen, up to 12 modules
can be generated. The Browse-Object-Subp model creates three additional
modules: Key PDA, Row PDA, and Restricted PDA. The Maint-Object-Subp
model generates two additional modules: Object PDA and Restricted PDA.

If you marked the Replace existing modules field on the General Package Parameters
panel, any existing modules marked for generation will be replaced, including user exit
code. For these modules, “O” is displayed in the G/R/O field. If you did not mark this
field, existing modules will be regenerated and user exit code will be preserved. For
these modules, “R” is displayed in the G/R/O field.

Press PF8 (frwrd) to display the next package in your application.
Complete the panel as described in Steps 1 and 2. When you have entered tipesifica
for all of your packages, return to the Natural ConstructeGsion main menu.

Save your super model specification.
You are now ready to generate the modules.

Step 4: Generate the Modules

You have two options for generating modules using the super model: you can generate
in batch or you can generate from the main menu.

Tip: If you are generating a number of modules, generate in batch to avoid tying up
system resources.

To generate from the Natural Construct Generation main menu:
Type “R” in the Function field.

Type the name of the super model specification in the Module field and press Enter.
This reads the super model specification into Natural Construct.

Enter “G” in the Function field.

— 08 —

Using the Super Model to Generate Applications

=

The following steps occur as the super model generates:
The super model specification is saved.
The specifications for the individual modules are created and saved.

The standard generation status window is displayed. You will also see a generated mod-
ule status panel that lists the modules as #reygenerated and stowed.

When all of the modules have been generated and stowed, a summary report is dis-
played listing the status of each module that was@gded and detaig anyerrors that
may have occurred.

To generate in batch:

Save the specification from the Natural Construct Generation main menu.

Use the NCSTBGEN utility in batch to generate, specifying the name of your super
model specification, and the model name: VB-Client-Server-Super-Model.

For information about using this utility, skRiltiple Generation Utility , Natural Con-
struct Generation

— 99 —

Construct Spectrum SDK for Client/Server Applications

Troubleshooting

After generating with the super model, review the generation status report to reconcile
any errors that may have occurred.

« If a module was generated but not stowed because of a missing DDM, you can regen-
erate the missing modules at a later time after correctingrtbe

» If there was a generation error for a specifisdule because of a missing dependent
module, you can regenerate the individual module from its model specification after
correcting the error.

« If the generation errors affect several of thexitial modules, you may find it easier
to regenerate them from the original super model specification after correcting the error.
Read the original super model specification into Natural Construct and mark only those
modules that require regeneration. Then repeat the generation step until all the modules
have been successfully generated and stowed.

Tip: Ensure that SYNERR=ON in your user profile NATPARM. Otherwise, compila-
tion errors in the gearated code may cause dpgl.

Transferring Your Application to the Client

If you have successfully generated all the modules of a package, or minimally all the
modules of a browse or maintenance function, youeady to download your client
application modules to the PC and complete the procassaihg a client/server
application.

Using Visual Basic and the Construct Spectrum Add-In, you will set up a Construct
Spectrum project, download application modules to your project, and compile the
project to create a fully functional client/server application. These ateptescribed

in Creating a Construct Spectrum Project page 101.

—-100 -

CREATING A CONSTRUCT SPECTRUM
PROJECT

This chapter describes the process of setting up a Construct Spectrum project on your
client. Follow the instructions in this chapter once you have generated your application
modules on the server and are ready to download them to the client. This chapter also
describes how to test, deploy, and set up security for your application.

The following topicsare covered:
« Overview, page 102
« Are You Ready? page 103
« Creating the Project, page 104
« Downloading the Generated Modulespage 107
+ What's Next?, page 110

-101 -

Construct Spectrum SDK for Client/Server Applications

Overview

All Visual Basic client/server projects that use Construct Spectrum must include the
Construct Spectrum client framework. Client framework components are reusable ap-
plication components that provide a skeleton of functionality that interacts with
generated and hand-coded Construct Spectrum modules to create a client/server
application.

The client framework also includes forms, classes, procedures, global variables, and
constants that are ated anong various generated modules. This reduces the size of the
generated modules and allows the modules tyaet through the shared cpaonents.

Construct Spectrum includes an Add-In that extends the Visual Basic Add-Ins menu
with commands to:

« Create a project and add the client framework components to the project.

» Download generated modules from the server to the client and automatically add them
to your project.

» Upload generated modules from the client to the server when you have customized the
modules and need to regenerate them, preserving all of your customizations.

The following example shows the Construct Spectrum Add-In:

i, Project] - Microsoft Yisual Basic [design]

Eile Edit “iew Project Format Debug Bun Query Diagram Tools Spectrumn Add-Ins Window Help
=8 5 - = H b i Yisual Data Managet. ..

add-In Manager. ..

Download Generated Modules. ., Construck Speckrum

Upload Modules. ..
Create Mew Project...

Preferences...

About

Construct Spectrum Add-In

-102 -

Creating a Construct Spectrum Project

Are You Ready?

Before using the Construct Spectrum Add-In to create a new project and download gen-
erated modules, ensure that the following prerequisites have been met:

O You used the super model to generate the client and server modules of your application.
For information, se&Jsing the Super Model to Generate Applicationspage 77.

Q You know the library name, the database ID (DBID), and the file number (FNR) of the
FUSER containing the lifary whereyour generated modules reside.

Q A Spectrum dispatch service is running.

-103 -

Construct Spectrum SDK for Client/Server Applications

Creating the Project

Use the Construct Spectrum Add-In to create a new project with all the necessary client
framework components or to add client framework porrents to an existing project.

» To create a Construct Spectrum project:

(=Y

Start Visual Basic.

2 Select Create New Project from ther@truct Spectrum submenu.
The Create New Project window is displayed:

Create New Project
Please specify the main Matural ibrany for this project. oK.
tain library: |SPECDEMO DEID: |50 FHR: |‘|25
= Cancel
Project
~

(+ Create a new project

Project filename;

CASpectumtDemospptDemo.vbp Browsze.

Create New Project Window

3 Type the name of the library containing your generated modules and the database ID
(DBID) and file number (FNR) of the library’s FUSER file.
This information will be used as the default whenever you want to download or upload
generated modules and will be stored in the AppSettings.bas module in your project.

4 Select the folder and project name from Project filename.
Click OK.

Note: Alternatively, you can click the Browse button to display a window from
which you can select a folder and enter the name of your project.

- 104 -

Creating a Construct Spectrum Project

6 Select Open.
The Create New Project window is displayed:

Create New Project
Please specify the main Matural library for thiz project. oK. |
i i ; CBID: FNR:
M ain librany: | D | F | Cancel
Project
~

(+ Create a new project

Project filename;

CASpectumtDemosppiDemo.vbp

Create New Project Window

7 Click OK.
Construct Spectrum creates the new project and prompts you to open it:

Construct Spectrum Add-In

@ Do wou want to open the new project’?

Prompt to Open New Project

8 Click Yes to open your new project.

Most client framework components are not copied to your project folder. Instead, your
Construct Spectrum project points to the FrameWrk5 folder in your Construct Spectrum
Install directory. You can see this by choosing a client framework component such as
Open.frm and choosing the Save As command on the Visual Basic File menu. These
client framework components are shared among all projects created with the Construct
Spectrum Add-In. Be aare that if you change one of these sharedooorents and save

it back to the FrameWrk5 directory, you coulddffecting other projects.

For more information about customizing client framework components)rsager-
standing and Customizing the Client Framework page 207.

—-105 -

Construct Spectrum SDK for Client/Server Applications

The following client framework components are copied to your project folder because
they are different for every application.

Name Description

OFactory.bas Contains the object factory, which identifies all business objects
within an application and instantiates objects upon request.

AppSettings.bas Contains application-specific settings, such as the application
name, library name, DBID, and FNR. You can change these
settings by editing them in the module.

The Construct Spectrum Add-In also creates a new library image file for pplicaa
tion and paces it in the project folder. The name tustfile will be the library name
with a “.lif” extension.

After the Construct Spectrum Add-In creates your project, you can run it and test the
default functionality provided by the clieftamework. For more information, sé-
derstanding and Customizing the Client Framework page 207.

Prior to Downloading

» To allow access to the mdiame:

1 Select Remote Dispatch Service Preferences.
The Remote Dispatch Services Preferences window is displayed:

Remote Dizpatch Service Preferences

. Select aremote dispatch service and enter your user I:l
i 10 and password.,

Cancel

Service:

User ID:
Passward:

Remote Dispatch Service Peeénces Widow

2 Enter your user ID and password.

—-106 -

Creating a Construct Spectrum Project

Downloading the Generated Modules

Next, download the client modules gzated by the super model and add them to your
project.
» To download the client modules and add them to your project:

1 Select Construct Spectrum > Download Generated Modules from the Add-In menu.
The Download Generated Modules window is displayed:

Download Modules
Litrary: SPECDEMD] DBID: [50 ENR: [125
Module name: |" Cancel

Mame | Tupe | Model | Lser ID | Date / Time |
Download program modules inta project dirgctan: |E:'\Speclrum'\Dema&pp Change
Diownload definitions into ibrany image: file: |E:'\F'rogram Filez\Microzoft Wisual StudichWEBISSYSSPEC Change
0 modules listed 4 0 modules zelacted

Download Generated Modules Window

Use this window to list the modules in a given library on the server and to select one or
more modules to download. The library name, DBID (database ID), and FNR (file num-
ber) default to the values entered for the last project created. If necéggarthe

library name, DBID, and FNR that was specified for the project to which you are
downloading.

2 Enter the package prefix followed by an asterisk in the Module name field.

Click List.
After a few seconds, a list of modules that match the module name pattern you entered
are displayed and the List button changes to Download.

Tip: If you know the name of the module you want to download, type it in Module
name. When you click List or press Enter, the module is downloaded.

-107 -

Construct Spectrum SDK for Client/Server Applications

Tip: To view your list in a different order, click a column header. The list is sorted ac-
cording to the header item. If the list is already sorted, selecting the same header
toggles the sort order between ascending and descending.

The following table lists the modules to download:

Module Description
Parameter data Parameter data area (PDA) definitions in a library image file.
areas PDAs gemrated umg the super model have “MSA”, “MSR”,

“BKEY”, “BROW”, and “BPRI” suffixes.

Application service Application service definitions in a library image file. Modules

definitions have “App Service” type and “SUBPROGRAM-PROXY”
model in the list. Subprogram proxies generated using the
super model have “MSP” and “BSP” suffixes.

Visual Basic Dialog definitions that are saved in the project folder with the

forms extension “.frm” and automatically added to the project. Forms
generated using the super model have a “MCDV"” suffix.

Visual Basic Modules saved in the project folder with a “.cls” extension and

classes automatically added to the project. Classes generated using the

super model have “MCPV” and “BCPV” suffixes.

Object factory Visual Basic code module that identifies all business objects
within an application and instantiates objects upon request.
The name of this module is entered on the first panel of the
super model. When downloaded, it is saved in the project
folder with the extension “.bas”.

Tip: The lower part of the Download Generated Modules window shows the name of
the project folder to which the modules will be downloaded and the name of the
library image file where défitions will be saved. To change either of these, se-
lect the corresponding Change button.

4 Do one of the following:
— Select one or more modules from the list.
— Type the module names in Module name.
5 Click Download or press Enter.

-108 -

Creating a Construct Spectrum Project

Hand-Coding the Object Factory

If you generated the object factory using the super model and downloaded it, you should
be able to run your application without having to do any hand-coding. On the File menu,
select Open to invoke the Open dialog; the objects and actions that you generated
should be listed in the window.

If you did not generate an object factory, you must code it by hand. If you generated
multiple object factories for your application, you must do some hand-coding to merge
each object factory into one object factory module. For informationCee®mizing

the Object Factory, page 246.

—-109 -

Construct Spectrum SDK for Client/Server Applications

What's Next?

Once you have created the project and downloaded the generated components, you can
modify the dialogs, test and deploy the application, or set up security.

Modify the Dialogs

If this is an early iteration of your application, keep your dialog customizations to a min-
imum because you will lose these customizations when you regenerate the dialog.
There are some modificafis, however, that you need to do so that you can evaluate
your application moreffectively. For more information, sé@egrating a New Main-
tenance Dialog page 128.

Test the Application
At this point, compile and run your application. Test the following things:

« On the File menu, click Open and test all objects and their associated actions to ensure
each invokes the correct form.

+ Check that each dialog displays@xtly and thayou have moved the controls in over-
flow frames onto the dialog form or onto separate tabs of a tab control.

« Test any local validations that were generated into the maintenance objects.
» Invoke and test the remote methods: Get, Next, Update, Add, and Delete.

Note: The first communication to the server typically takes a few seconds. This is
because the EntireX Communicator and DLLs must be loaded into memory
and initialized. Subsequent calls to the server will be faster.

For more information, se@ebugging Your Client/Server Application, Construct
Spectrum SDK Reference

Deploy the Application

Once your application has been tested, you can distribute it to your users. The procedure
to deploy your application include:

« Creating the executable

» Collect the files to be installed
» Install the client application

* Run the application

For more information, sdeeploying Your Client/Server Application, Construct
Spectrum SDK Reference

-110 -

Creating a Construct Spectrum Project

Setting Up Security

Before allowing users to work with your application, you must implement security for
their environment by defining the users to a group. If users require different access priv-
ileges, set up one group for each type of user. Set up your application security based on
these groups.

Grant access to business objects by group and domain combination. You can grant a
particular group/domain combinationaess to as many or as few business objects as
necessary. Additionally, you can grant access to only specific methods within a group/
domain and business object combination.

-111 -

Construct Spectrum SDK for Client/Server Applications

-112 -

CREATING AND CUSTOMIZING
MAINTENANCE DIALOGS

This chapter provides step-by-step instructions for generating the modules required to
maintain server information from a maintenance dialog on the client. It describes how
to generate the necessary modules, download them to the client, integrate them into an
existing Construct Spectrum project, and maintain server database information from
your maintenance dialog. Also included is information on how to customize the main-
tenance dialog. It provides conceptual information, suggestions on the best way to
approach customization problems, and step-by-step instructions for particular custom-
ization tasks.

The following topicsare covered:
» Overview of the Maintenance Dialogpage 114
» Prerequisites page 116
» Using Individual Models to Generate Maintenance Modulespage 117
» Downloading Client Modules page 125
» Integrating a New Maintenance Dialog page 128
« Strategies for Customizing a Maintenance Dialogpage 129
« Customizing on the Server page 132
» Customizing on the Client page 145
» Uploading Changes to the Servempage 173

-113 -

Construct Spectrum SDK for Client/Server Applications

Overview of the Maintenance Dialog

Maintenance dialogs are built on the foundation provided by the existing Natural Con-
struct object methodology. A maintenance dialog generated with Construct Spectrum
can share data access modules with aacie@r-based maintenanceld@

The modules that must be generatedréate a wding Construct Spectrum mainte-
nance dialog are:

Object maintenance PDA

Object maintenance PDR

Object maintenance subprogram

Maintenance subprogram proxy

Visual Basic maintenance object

Visual Basic maintenance dialog

The following example shows the relationship between these generated modules:

Server ' Client

Maintenance
Object PDR

Maintenance Maintenance Visual Basic Visual Basic
Object [€«—»| Subprogram [«—>»{Maintenancej«—¥»|Maintenance

— Subprogram Proxy Object Dialog

Maintenance
Object PDA

Relationships Between Client and Server Maintenance Components

-114 -

Creating and Customizing Maintenance Dialogs

Ways to Generate Maintenance Dialogs

Each module that a maintenance dialog requires can be generated with the VB-Client-
Server-Super-Model or generated one at a tisieg individual models. To determine
which generation approach is best for you, consider the following guidelines:

« If you are creating a new application or a new business object, use the super model.

« If you are making major changes to the Predict file definitions of one or more business
objects in an existing application, use the super model.

« If you want more control over the generation results, such as customized code for user
exits, use the individual models.

This chapter describes how to generate maintenance modules from the individual mod-
els. For information about using the super modelUséag the Super Model to
Generate Applications page 77.

The first part of this chapter describes the tasks required to create a maintenance dialog.
These include:

Use the Construct models to generate modules.
Download the modules to the client using the Construct Spectrum Add-In.
3 Integrate a new maintenance dialog into your application.

Once you have completed these steps, it is time to compile the application and test the
new maintenance dialog.

The second part of this chapter discusses various strategies for customizing a mainte-
nance dialog and different customization mechanisms available on both the client and
server. It also describes how to upload client changes to the server.

-115 -

Construct Spectrum SDK for Client/Server Applications

Prerequisites

Before generating a module for a maintenance dialog, use this checklist to ensure that
the following prerequisites are met:

Q The necessary Predict file(s) are creatémh@with any relevant Predict definitions
such as file relationships and verification rules.

Q An object PDA, a restricted PDA, and an object maintenance subprogram exist for the
target Predict file(s). If these modules do not exist as part of a previously generated
Construct Spectrum applicatiorreate thermow. For information, se@bject-Maint
Models, Natural Construct Generation

Q The Entire Net-Work kernel is running on your client (if you are using Entire Net-
Work) so that you caaccess the server used by the Spectrum dispatch service and the
Spectrum security service. Your system administrator should ensure that this
prerequisite is met.

Q A Spectrum dispatch service and security service are set up to service requests from
your client. To determine whether these services are available, ping the service using
the Spectrum Service Manager. Your system administrator should ensure that these
services are available on the client.

(]

You are set up as a user with a password to access the Construct Spectrum environment.

Q Youcreated a Construct Spectrum projecyolfi have not done soreate oneow. For
information, se&reating a Construct Spectrum Project page 101.

-116 -

Creating and Customizing Maintenance Dialogs

Using Individual Models to Generate Maintenance
Modules

The modules required to run a maintenance dialog share many files and parameters. If
you are using individual models to generate your maintenance modules, you must gen-
erate the models in a specific order. Each model reads the source code generated by
earlier models to make generation decisions.

Generate the dialog models in the following order:
Object-Maint-Subp model (object maintenance subprogram)
Subprogram-Proxy model (maintenance subprogram proxy)
VB-Maint-Object model (Visual Basic maintenance object)

A W N P

VB-Maint-Dialog model (maintenance dialog)

Tip: Use the same four-character prefix to name all generated modules relasetd to a
gle business objecthis convention makes it easier to select modules for down-
loading. For example, to download all client modules related to a Customer
business object, type “CUST*” (where “*” is the wildcardachcter) to narrow
the list of available items to those starting with CUST.

The models are available in the Generation subsystem.

Generate the Object Maintenance Subprogram and PDAs

The Object-Maint-Subp model generates a subprogram to maintain a business object.
This model also generates the PDA and restricted PDA for the object. Beferatiyen

a module for a maintenance dialog, ensure that an object PDA, a restricted PDA and an
object maintenance subprogram exists for the target Predict file(s).

For more information, se€reate the Object Maintenance Subprogram and PDAs
Natural Construct Generation

Generate the Maintenance Subprogram Proxy

The subprogram proxy accesses the generated object maintenance subprogram from the
client application. It calls an object maintenance subprogram, which fulfills a request

on behalf of a maintenance dialog. Itis also responsible for converting data between the
network transfer format and the Natural data format used in the object maintenance
PDA and restricted object maintenance PDA. Typically, you will not have to customize

or provide any user exit code for this model — just generate and catalog it. For infor-
mation, sed&senerating a Subprogram Proxy Construct Spectrum SDK Reference

-117 -

Construct Spectrum SDK for Client/Server Applications

Generate the Visual Basic Maintenance Object

The VB-Maint-Object model generates a Visual Basic maintenance object that provides
maintenance dialogs with access to the business object data and methods in the Spec-
trum Dispatch Client.

Add Business Validations

A Visual Basic maintenance object is an ideal place to code simple business validations
such as verification rules. The model provides the CLIENT-VALIDATION user exit
for this purpose.

The VB-Maint-Object model also extracts verification rules that are attached to your
Predict file and field definitions and generates validation code into a subroutine called
“Validate”. The following code example illustrates the type of validation code that
would be generated if the Predict verification type, Range, was attached to a field called
“CUSTOMER-NUMBER”.

Example of validation code generated by the VB-Maint-Object model

Case "CUSTOMER-NUMBER"
If Value < 2 or Value > 4 Then
Err.Raise Number:=csterrValueOutOfRange, _
Source:=OBJECT_PDA_NAME, _
Description:=csterrValueOutOfRangeMsg

For more information about validating data, S&didating Your Data, page 261.

Add Browse Functions

The VB-Maint-Object model also generates methods that enable your maintenance di-
alog to have browse functions automatically linked to the primary key and all foreign
keys in the dialog. For more information, $etegrating Browse and Maintenance
Functions, page 275.

-118 -

Creating and Customizing Maintenance Dialogs

Use the VB-Maint-Object model or wizard to generate the maintenance object. The fol-
lowing example shows the Standard Parameters for the VB-Maint-Object wizard:

VB-MAINT-0BJECT Wizard 1

B sta Standard Parameters
Standard . ;‘“""‘“‘“‘“‘“‘“‘“‘“‘“‘
Parameters Module: CLISTORD
Finish System: |DErMC
Title: ;'-.-'isual Basic Maint Object
Descripkion: This Wisual Basic business object is For the ___r__j

Customer maintenance syskem

Subprogram proxy: ;ELISTMSF‘ s ;

[~ Compress network data
[Encrypt network data

Extra PDA: i ;
YWalidake] Cancel] < Back. | Mexk = | Einish

VB-Maint-Object Wizard — Standard Parameters

The Module, System, Title, and Description paramedegssimilar for all models and
wizards. These parameters are describégdneral Model SpecificationsNatural
Construct Generatian

The additional parameters on this paze:

Parameter Description

Subprogram proxy Name of the subprogram proxy that communicates with the
object browse subprogram for this Visual Basic browse obiject.

Compress network Indicates whether the parameters sent to the server are
data compressed to reduce transmission time.

-119 -

Construct Spectrum SDK for Client/Server Applications

Parameter Description
Encrypt network Indicates whether the parameters sent to the server are
data encrypted. Encryption secures sensitive data.

Extra PDA Additional parameter for your maintenance object subprogram

(for example, to update foreign field descriptions on a
maintenance dialog without having to make an extra call to the
server). For more information about defining extra PDAs, see
How Foreign Field Descriptions Are Refreshedpage 291.

Note:

The Compress data and Encrypt data flags only apply to data sent from the cli-
ent to the server. To enable compression and encryption for data sent from the
server to the client, set the Compress data and Encrypt data flags in the sub-
program proxy, which is described@enerating a Subprogram Proxy
Construct Spectrum SDK Reference

-120 -

Creating and Customizing Maintenance Dialogs

After supplying model parameters, you can customize the generation results by creating
user exit code for the module. The following example shows the available user exits in
the Code window for a Visual Basic maintenance object:

/2 Construct - [VB-MAINT-OBJECT CUST] O[]
|[8@ Fle Edt View Window Help =181 x]
[DwHe @7t =RX M8 EE D

% |CHANGE-HISTORY -

% [PUBLIC-PROPERTIES

4 |CONSTANTS-AND-TYPES

% |[PRIVATE-INSTANCE-VARTABLES

% [PUBLIC-PROPERTY-PROCEDURES

AFTER-BROWSE-EY- FOREIGN-KEY
AFTER-BROWSE-EY-0BJECT-KEY

AFTER-GET-FOREIGN-FEY-DESC

£ |PUBLIC-METHODS

% [PRIVATE-PROCEDURES

% |INVOKE-CUSTOM-LOCAL-METHODS
% [EFINE-CUSTOM-LOCAL-METHODS
% |CLIENT-VALIDATIONS

é{ FOREIGH-FEY-O0VEERIDE _ILI
4

|Line 1 Col1 CHANGI|SPECDEMO on 1000, 1002
| | | GLEST 4

Code Window — VB-Maint-Object Ward

The 3 icon indicates that sample code can be generated for the user exit. To do so,
right-click the user exit and select Geate Sample from the shortcut me¥ou can
then modify the code as required.

For more information about the user exits, dser Exits for the Generation Models
Natural Construct Generation

-121 -

Construct Spectrum SDK for Client/Server Applications

Generate the Maintenance Dialog

The VB-Maint-Dialog model generates a maintenance dialog that provides users with

a graphical user interface to data and a business object (the object maintenance subpro-
gram) on the server. A maintenance dialog is used to maintain information for a given
business object. The dialog can support any object PDAs that can be generated.

All tailoring for maintenance dialogs should berformed wihin the Visual Basic en-
vironment. In most cases, you will have to reposition and resize the GUI controls on the
form. By default, the VB-Maint-Dialog model generates GUI controls in two columns
with labels on the left and input controls on the right. The need for visual tailoring is
especially evident when generating dialogs that have many fields. For more information
about tailoring forms, sdategrating a New Maintenance Dialog page 128.

Unlike other Construct Spectrum models, the VB-Maint-Dialog model does not support
full regeneration capabilities and, teéore, sipplies few user exits. You can, however,

add your own user exits to preserve hand-written code and to minimize the changes re-
guired after regenerating your dialogs.

Customizations made to Visual Basic forms are not preserved during regeneration. If
this is an early @ration of the application, limit any modifications to those described in
the following table:

Modification Description
Correcting overflow Overflow conditions occur when there are more fields
conditions than can be displayed on a dialog. Unless yatecbthe

problem, these fields will be hidden. For more
information, se®verflow Conditions, page 144.

Resizing grid controls A grid control is a table with rows and columns that
displays related information on a dialog. For example, a
list of line items on a purchase order dialog. You can
adjust the size of a grid to suit your GUI layout. For more
information, sedresizing Grids page 168.

Before regenerating a maintenance dialog 3testegies for Customizing a Mainte-
nance Dialog page 129, for information about saving customizations in your
maintenance dialog.

-122 -

Creating and Customizing Maintenance Dialogs

You can use the VB-Maint-Dialog model in the @gation subsystem on the server or
use the model wizard in the Construct Windowsrifiaice. The fobwing example
shows the StandarcaPameters for the VB-Maint-Dialog wizard:

VB-MAINT-DIALOG Wizard 1

B stan Standard Parameters
stonderd TR e
Finish System: |DEMOC
Title: |Cbiect Dislog
Descripkion: This Form is used ko maintain the Customer __?__j
systeml

WE-Maint-Cbjeck: iCLISTMCF"I.I' i
abbreviated object il:ust

descripkion:

Window caption: ;Custumer

Yalidate i Cancel] < Back | Mexk = | Einish

VB-Maint-Dialog Wizard — Standard Parameters

The Module, System, Title, and Description parameters are descriGetaral Mod-
el Specifications Natural Construct Generation

-123 -

Construct Spectrum SDK for Client/Server Applications

The additional parameters in this window are:

Parameters Description

VB-Maint-Object Name of the Visual Basic maintenance object. Click the
browse button to select a module.

Abbreviated object Used in naming GUI controls on a form generated by the VB-

description Maint-Dialog model. For example, a GUI control for a field
named CUSTOMER-NUMBER in an object named Customer
might have a GUI control name of
txt CUST_CustomerNumber, where CUST represents the
abbreviated object description. The default value for the
abbreviated object description is the first four characters of the
module name.

Window caption Caption for the resulting maintenance dialog.

Once the required modules are generated, you can download them to your client.

Note: Ensure that all modules generated on the server are cataloged before down-
loading to the client.

—124 -

Creating and Customizing Maintenance Dialogs

Downloading Client Modules

After generating all required maintenance modules, you must download the modules re-
guired on the client. The following table lists the modules that are required on the client
and provides a brief description of their roles.

Model Module Visual Basic Description
Suffix Extension
Object-Maint-PDA MSA n/a Encapsulates a business object.

This parameter data area
definition is incorporated into
the library image file used by
the project.

Object-Maint-PDA-R MSR n/a Contains private data used by
the business object. This
restricted PDA definition is
incorporated into the library
image file used by the project.

Subprogram-Proxy MSP n/a Communicates information
between the Spectrum dispatch
service and an object
maintenance subprogram. Also
updates the library image file
with application service
definitions containing
information about the
subprogram methods and data.

VB-Maint-Object MCPV .Cls Communicates with the object
subprogram on the server on
behalf of the maintenance
dialog. Also implements
validations on the client.

VB-Maint-Dialog MCDV frm Provides the graphical
interface between the
maintenance application and
the user.

Note: The module suffixes listed in the table are suggestions only. However, when
generating with the super model, modudes given these suffix names auto-
matically.

—-125 -

Construct Spectrum SDK for Client/Server Applications

» To download modules from the server to the client:

1 Open the Construct Spectrum project that you are updating.
For information about setting up a project, €geating a Construct Spectrum
Project, page 101.

2 Select Download Generated Modules from the Construct Spectrum Add-In.
The Download Modules window is displayed:

I;' Download Modules

Librms [DEVDAG peio: 19 ENR: [25

Module name: ;" Cancel

Mame ; Type i todel ; Usger D ; Date / Time i

Daownload program modules into project directon: i:\F‘rogram Files\COMNSTRUCT SpectrumiDemoz\Devdag Change i

Daownload definitions inta library image file: I Files\COMSTRUCT SpectumtDemosiDevdaghSystem. i Change 1

0 modules listed £ 0 modules selected

Download Modules Window

3 Ensure that you are pointing to themast Natural library and FUSER'stem file on
the server.
If the default values in Library, DBID (database ID), and FNR (file number) do not
specify the server library from which you want to download, type thecovalues in
these fields.

Tip: The project folder to which the modules will be downloaded and the name of the
library image file where defitions will be updated are shown in text boxes at the
bottom of the window. To change either of these, select tiresponding
Change button.

4 Enter a pattern (such as CUST*) in the Module name text box to list all modules
matching that pattern.

5 Click List or press Enter.
A list of server modules is displayed. The maintenance modules you generated will be
among them.

-126 -

Creating and Customizing Maintenance Dialogs

6 Select the maintenance modules you generated and click Download.
You can identify the maintenance modules based on their module suffixes, which are
shown in the table at the beginning of this section.

The Visual Basic maintenance object and the maintenance dialog (.frm file) are auto-
matically added to your Construct Spectrum project.

For more information about downloading modules to the client and about setting up a
Construct Spectrum project, s€eeating a Construct Spectrum Project page 101.

For more information about tailoring on the client, $adoring the Maintenance Di-
alog, page 147.

-127 -

Construct Spectrum SDK for Client/Server Applications

Integrating a New Maintenance Dialog

If you are creating a new maintenance dialog and want to add it to an existing Construct
Spectrum application, hand-code the object factory to link the maintenance dialog to
your application. You need to hand-code the object factory only if you are adding a new
dialog to your application or you have changed the actions available for an existing
business object. An example of changing the available actions for a business object is a
situation where you add a maintenance action to a business object that had been avail-
able to the user only through a browse action.

Tip: To determine whether you need to hand-code the object faatmyss the Open
dialog and select each object and its associated action. If the selected object action
does not open or if the Open dialog does not display all of the object actions, do
some hand-coding to add the required object actions.

For information about hand-coding the object factory,Gestomizing the Obect
Factory, page 246.

-128 -

Creating and Customizing Maintenance Dialogs

Strategies for Customizing a Maintenance Dialog

This section describes some strategies you can use to redeffethexjuired to main-
tain your maintenance dialogs. These include:

« Doing the Predict data dictionary work up front

» Choosing the most appropriate place to add hand-written code
+ Adding new user exits

« Making a copy of your changes

Doing the Predict Data Dictionary Work Up Front

Before tailoring the dialog, ensure that your data design is sound. If your data design is
unstable, but you want to test the functionality of your dialog, consider postponing tai-
loring tasks such as creating calculated fields arrasging the out of your dialog

until your data design is stable.

Construct Spectrum has added new points of integration with Predict that make it pos-
sible to generate robust dialogs with minimal tailoring, provided you take the time to
enter the information into Predict. Following are some ways that you can enhance your
generated dialog by providing Predict information:

« Entervalues for Headerl, 2, and 3 in the field definitions. The VB-Maint-Dialog model
uses this information to generate meaningful label captions. For more information
about how label captiorexe derived, sePeriving Variable Names page 132.

» Create and attach table status verifications to fields whenever you know there is a finite
set of valid values. The model uses verifications to decide what type of GUI control to
generate. If a table status verification is attached to the field, the modeakeatd@her
a ComboBox or a Frame and series of option buttons. The code that gets generated for
these types of controls is thfent than the code generated for TextBox adsti-or
information about using Predict verification rules, ®erriding GUI Controls , page
133.

» Supply GUI and BDT keywords to help the model determine which type of GUI control
to use or to fine-tune the behavior of a TextBox control. For information about how Pre-
dict keywords #ect GUI generabn, seeOverriding GUI Controls , page 133.

-129 -

Construct Spectrum SDK for Client/Server Applications

Choosing an Appropriate Place to Add Hand-Written Code

There are many places in a Construct Spectrum-generated dppltcaplace custom

code — like a Visual Basic maintenance object or in a separate Visual Basic module
that you add to the application. When adding custom code to a maintenance dialog, de-
termine if this code can be placed elseveghandstill work.

The primary reason for placing code in the dialog is to have the ability to respond di-
rectly to specific events. In such cases, you have no choice but to put code in the dialog.
However, rather than writing 10 or 20 lines of event code directly in the dialog, write
one line of code in the form that calls a routine in another module that can do the work
for you. The following examples illustrate the difference between these approaches.

Significant impact on dialog code

Private Sub txt_ EMPL_Salary_Change()
‘my custom code - start
Dim Result As String
If CCur(txt_EMPL_Salary.Text) > 100000 Then
txt_EMPL_Salary.BackColor = vbRed
txt_EMPL_Salary.ForeColor = vbYellow
Result = InformAuthorities(EmployeeName)
Select Case Result
Case “EmployeeHasAcknowledged”
PublishSalaryAtPressRelease EmployeeName
Case “Salarylsincorrect”
Beep
Case “TerminateEmployee”
PerformAction “DELETE”
End Select
End If
‘my custom code -end

If DetectChanges Then
ObjectChanged = True
End If
End Sub

Minimal impact on dialog code

Private Sub txt_ EMPL_Salary_Change()
‘my custom code - start
CheckSalary EmployeeName
‘my custom code -end

If DetectChanges Then
ObjectChanged = True
End If
End Sub
Using the second approach simplifies and minimizes the modifications that you must
re-implement if the dialog is regenerated.

-130 -

Creating and Customizing Maintenance Dialogs

Adding New User EXxits

Unlike other Natural Construct and Construct Spectrum models, the VB-Maint-Dialog
model comes with few predefined user exits. You can, however, add your own user ex-
its to the dialog code. These user exits are saved when yoeratgour maintenance
dialog and, therefore, reduce the effort required to maintain your dialogs on an ongoing
basis.

» To add new user exits to the maintenance dialog:

1 Define the user exit.
Each custom user exit must be delimited with comment lines that indicate where your
custom code begins and ends. Use the standard ‘SAG DEFINE&b€Iand ‘SAG
END-EXIT’ delimiters to mark the beginning and ending of your user exit. Provide a
unique name for the user exit. A good convention to follow is to name the user exit after
the code block in which it is found. For example, if you add custom code to the lost
focus event for the txt. CUST_CustomerNumber GUI control, use the following
delimiters to block your custom code:

‘SAG DEFINE EXIT txt_ CUST_CustomerNumber_LostFocus
txt_ CUST_CustomerNumber.ForeColor = vbGreen
‘SAG END-EXIT
2 Upload, regenerate, and download the maintenance dialog.
Before regenerating the dialog, upload the dialog to the server to preserve your custom
coding changes. After regenerating, download the maintenance dialog.

Note: You cannot preserve tailoring to the visual appearance of a maintenance dia-
log with usr-defined usensts.

3 Reposition user exit code.
As part of the regeneration process, the user exits you created earlier are moved to the
bottom of the maintenance dialog’s source area. Move each user exit code block to the
appropriate location in code. This should be an easy task if you have named the user
exits after the code blocks in which they belong.

Making a Copy Before You Regenerate

If many changes have been made to your data design, or other changes on the server
have had an impact on your dialog, decide whether to implement the changes by hand
or to generate a new copy of your form. If you generate a new copy of the form, you
must re-implement any tailoring you have done. This decision depends on which ap-
proach represents less work for you.

If you decide to generate a new copy of your dialog, save your old dialog wifera di
ent name. You can view the old dialog while tailoring the new dialog. Additionally, you
can cut and paste code from one dialog to the other.

-131 -

Construct Spectrum SDK for Client/Server Applications

Customizing on the Server

This section describes the mechanisms available on the server for customizing your
maintenance dialog.

Deriving Variable Names

When performing customizations to a maintenance dialog, it is useful to understand
how variable names are derived. This will help you maintain a consistent naming con-
vention and make it easier for you to determine what the code is doing.

Deriving GUI Control Names

GUI control names are made up of three components: a GUI Control Identifier, an Ob-
ject Identifier, and a Field Identifier. Each one is separated by underscores. For
example, a field called CUSTOMER-NUMBER on a Customer file might be represent-
ed by a TextBox GUI control named txt CUST_CustomerNumber.

GUI Control Identifier

A GUI control identifier is a three-chacter abbreviation in the GUbnotrol name that
uniquely identifies the GUI control type. The following table lists the different types of
GUI controls (along with their abbreviations) that are used in a typical Construct Spec-
trum project:

GUI Control Abbreviation GUI Control Abbreviation
CheckBox chk Label Ibl
ComboBox cbo ListBox Ist
CommandButton cmd Menu mnu
Form frm OptionButton opt
Frame fra StatusBar sta

Grid grd, ddg TextBox txt

-132 -

Creating and Customizing Maintenance Dialogs

Object Identifier

An object identifier is a four-character abbreviation that uniquely identifies the business
object represented in the dialog. The object identifier is obtained from the Abbreviated
Object Description parameter of the VB-Maint-Dialog model. By default, this value
contains the first four clracters of the dialog form (.frm file) namidsing the Object
Identifier as a component of the GUI control name is useful if you want to represent
more than one business object in a single dialog.

Field Identifier

A field identifier uniquely identifies a field within a business object. The name is de-
rived from the Predict field name — converting the letters to mixed case and removing
any characters whichre illegal in Visual Basic, such hgphens. The field identifier

for grid controls that are derived fromiiatobject relationships are obtained from the
Predict relationship name.

Deriving Label Captions for GUI Controls

A label caption is a name that identifies a GUI control to the user. The label caption is
usually displayed to the left of an associated input GUI control, for example, a text box.
The caption for the label is obtained from one of two places. First, the model looks for
header information stored in Predict’s Elementary Field definition. If none is found, the

label caption is derived from the field name in the same way the field Identifier is cre-

ated. Label captions for grid controls that are derived from intra-object relationships are
obtained from the Predict relationship name.

Overriding GUI Controls

The VB-Maint-Dialog model must choose the appropriate GUI control to represent
your field as it is defined in Predict. This includes representing complex data, such as
one-to-many relationships. To accomplish this, the model employs derivation logic
based on information such as a field’s data type, the number of occurrences, whether it
is in a repeating group of fields, etc. The following steps in this section describe the der-
ivation logic. Each topic is included in the same order in which the logic is applied by
the model.

In addition to this default derivation logic, the model provides several mechanisms for
you to override the default selection of a GUI control for a given field. Téxesde-
scribed in steps 1, 2, and 3.

-133 -

Construct Spectrum SDK for Client/Server Applications

Note:

An asterisk (*) appended to any GUI control name in this section indicates

that the GUI control could also apply to a column of a grid, depending on the
cardinality of the associated field. Therefore, TextBox* can be read as Text-
Box or TextBoxColumn. For more information about using GUI controls with

grid columns, sebsing the Grid, page 165.

Step 1: Search for GUI Keywords in Field Definitions

The model starts by looking for specific keywords that begin with GUI in the Predict
field definition. The following example shows a hypothetical M-PROVINCE field be-
ing mapped to a ComboBox using the GUI_COMBOBOX keyword:

12:53:21 ook Predict 3.4.0 Hn 02-01-28
- Modify Field -
Field ID M-PROVINCE Modified: 97-01-16 at 09:32
File ID NCST-CUSTOMER by: DEVMT1
Keys .. GUI_COMBOBOX Zoom: N

Ty L Field name F Length Occ D U DB N NAT-I
*_ . -

*

2 M-PROVINCE A 20.0 X4 N

Natural attributes
Headerl Province
Header2

Header3
Edit mask ..
Comments Zoom: N

EDIT: Owner: N Desc: N * Veri: N MORE Attr.: N

Predict Modify Field Panel

~134-

Creating and Customizing Maintenance Dialogs

The model recognizes the following keywords:

GUI Control Description
GUI_ALPHA Generates a TextBoxontrol with the MultiLine property set
MULTILINE

GUI_CHECKBOX

GUI_COMBOBOX

GUI_NULL

GUI_OPTION
BUTTON

to True. This gives the GUI control the feel of a mini-word
processor. The control will word-wrap its contents and provide
scroll bars as required.

Use this keyword to represent a repeating alphanumeric field
as a single piece of information such as a long description.

Generates a CheckBox* control. This keyword can be used in
combination with a field of any format. If a table verification
with two or more values is attached to the data field, the first
value represents false and the second value represents true. If
no verification is attached to the field, the model derives true
and false values based on the field format. If the field is
alphanumeric, blank represents false and non-blank represents
true.

When updating the object PDA, the Visual Basic maintenance
dialog uses “X” to represent true. If the field is numeric, zero
represents false and non-zero represents true. When updating
the object PDA, the maintenance dialog uses 1 to represent
true.

Generates a drop-down ComboBox* control. This model looks
for a table-style verification. If one has been set up, the values
are used as the entries for the combo box. If a verification does
not exist, the model generates one dummy entry for the combo
box.

Generate a dummy entry if the combo box is to be populated
with data from an external source such as a PC onlyshr

For information about populating a combo box with external
data, se&enerate a ComboBox Control to Display

External Values, page 136.

Prevents the generation of a GUI control definition for the field
or any code pertaining to the field. Use this keyword if you
defined fields that should not be displayed in the dialog.

Generates a frame and a series of OptionButtons. The model
uses the table-style verification attached to the field. For this
keyword to work, you must attach values to the table-style
verification becauseach of the values maps to aniopt

button.

-135-

wl\)l—‘v

Construct Spectrum SDK for Client/Server Applications

GUI Control

Description (continued)

GUI_PROTECTED

GUI_TEXTBOX

Treats the associated field as read-only. The user cannot
modify the contents of the field. This keyword can be used in
conjunction with the other keywords described in this section
except when the GUI_NULL keyword is used.

Use this keyword if the contents of the field is to be determined
programmatically, as with a calculated field. For more
information about calculated fields, s@esating Calculated
Fields, page 145.

Generates a TextBox*. Text box GUI controls can have BDT
(business data types) definitions attached to them. For more
information about using BDTs with text box GUI controls, see
Step 3: Search for Business Data Type Keywords in Field
Definitions, page 138.

Note: Option buttons are not supported in a grid control. If the
GUI_OPTIONBUTTON keyword is attached to the field definition and the
field is part of a repeating group of fields (PE) or is a stand-alone repeating
field (MU), it is mapped to a ComboBox instead of OptionButtons.

Generate a ComboBox Control to Display External Values

Use the GUI_COMBOBOX keyword in Predict to force generation of a ComboBox
control that displays values from an external source (for example, a LAN database).

To set up a ComboBox control to display values from an external source:

Set up a field definition for the field in Predict.
Add the GUI_COMBOBOX keyword to the Predict field definition.

On the client, write code in the Form_Load event for the dialog to populate the
ComboBox with values by reading the external source when the form is loaded.

-136 -

Creating and Customizing Maintenance Dialogs

Step 2: Search for GUI Keywords on Verification Definitions

If the model did not derive a GUI control in Step 1, it looks next for a GUI keyword in
any attached table-style verifications. However, it only considers the
GUI_COMBOBOX and GUI_OPTIONBUTTON keywords as valid. Other keywords
are ignored.

The following example shows a hypothetical VALID-PROVINCE verification being
mapped to a ComboBox using the GUI_COMBOBOX keyword:

13:12:21 wakk Predict 3.4.1 xvr 02-01-28

- Modify Verification -
Verification ID . VALID-PROVINCE Modified: 97-01-28 at 13:11
Status Natural Construct by: DEVMT
Keys .. GUI_COMBOBOX Zoom: N
Format * A Alphanumeric Modifier Zoom: N
TYpe e *T Table of values

Message nr 1112
Replacement 1 ...
Replacement 2 ...
Replacement 3 ...
Message text

Comments Zoom: N Values *Zoom: N
British Columbia BC

Alberta ALTA

Saskatchewan SASK

Manitoba MAN

Ontario ONT

Quebec QC

New Brunswick NB

EDIT: Owner: N Desc: N * Rule: N

Predict Modify Verification Panel

Tip: Improve the readability of a verification value by adding its concise term in the
Comments field. Construct Spectrum displays the comment value in the drop-
down combo box or caption name of an option button. In the previous panel, the
full name of each province has beenegatl in the Comment field that corre-
sponds to its database verification value. If comment values are not supplied, the
database verification values are displayed.

Consider attaching a GUI keyword to a verification definition, rather than a field defi-
nition, to implement a standard GUI representation for any field using the same type of
verification. This also eliminates the need to assign the keyword to each field definition.
You can override the GUI keyword on the verification definition by supplying one for
the field definition. For more information, see the description for the
GUI_OPTIONBUTTON and GUI_COMBOBOX keywords 8tep 1: Search for

GUI Keywords in Field Definitions, page 134.

For more information about verifications, séalidating Your Data, page 261.

-137 -

Construct Spectrum SDK for Client/Server Applications

Step 3: Search for Business Data Type Keywords in Field
Definitions

If the model could not derive a GUI control in Step 1 or 2, it next looks for a Business
Data Type (BDT) keyword in the Predict field definition (shown in Step 1). Since you

can augment the standard set of supplied BDTs with your own BDTs, the model will

accept any keyword which begins with BDT.

If the model finds a BDT-prefixed keyword in the field definition, it uses a TextBox
GUI control to represent the field. Additionally, the model looks in the keyword com-
ments for an actual BDT type and modifier. If a BDT exists in the comments, it is used.

Example of a BDT type with a modifier specified in the keyword comments

BDT=BDT_NUMERIC

MOD="ZERO=OFF"

If no BDT or modifier is found, the model uses the BDT implied by the keyword itself.
If no modifier was specified with the BDT, the BDT manager in the Construct Spectrum
client framework defaults a modifier.

You can ceateyour own BDT keywords which only exist on the server and map them
to combinations of BDTs and modifiers on the client PC. For example, you could create
two BDT keywords, BDT_NUMERIC_ZERO and BDT_NUMERIC_ROUND.

Attach the BDT_NUMERIC_ZERO keyword to the field definition
The comments of the BDT_NUMERIC_ZERO keyword could contain
BDT=BDT_NUMERIC and MOD="ZERO=0ON".

Attach the BDT_NUMERIC_ROUND keyword to the field definition
The comments of the BDT_NUMERIC_ROUND keyword could contain
BDT=BDT_NUMERIC and MOD="ROUND=0ON".

-138 -

Creating and Customizing Maintenance Dialogs

Step 4: Use Default Derivation

If the model is unable to derive a GUI control in Step 1, 2, or 3, it uses its built-in GUI
derivation logic. This logic is described pictorially in the following diagrams.

Key Use u?er Taé)ping3 from ves User
i Step L, z, or Mapping?
D Date ' T Time (ensure it is valid) PpIng
N Numeric P Packed
| Integer F Float No
A Alphanumeric
Group Field Type
No @b Yes
r v Data

Grid Frame
in Repeating

@d—No
Group?
Yes
No @ Yes

Field?
Y Y
CheckBox Dropdown Grid,
Format £ olumn CheckBox Column[€5 \Jomat
D, T,N,P, D, T,N,P,
I, F,A I, F,A
Dropdown
ComboBox Grid,
Column ComboBox [€ (€8
Column
No
A 4 Tt . O o v
Regular) en Gl ¢ + Drop-down Grid : [Dropdown Grid,
Column with - ' Columns | Regular Column
BDT | Tttt | T with BDT

Default Derivation of GUI Control — Part 1 of 2

-139 -

Construct Spectrum SDK for Client/Server Applications

Repeating
Field?

CheckBox <—L—No

D, T,N, P,
I,F, A
Yes
Label,
TextBox [€—No
with LDT
Yes
Frame, 1to Number of
number of |« 4 table values
Option Buttons 8

e . 5 or more 5or Number of 4 or
+ Scalar GUI ; v more occurances less
Controls . Label,
"""""" ‘ ComboBox
Label, Grid, X
CheckBox |«L @ Label, number of L Format
Column CheckBoxes
D, T,N,P, D, T,N,P,
I,F, A I, F.A
v
Label, Grid, Label,
ComboBox number of
Column ComboBoxes
Key
D Date T Time P R E b No
N Numeric P Packed : 1-Column , ! GUI Control
| Integer F Float * Grid Controls : Label, Grid, L Amays Label, number
A Alphanumeric . : Regu_lar of TextBoxes
Column with BDT with BDT

Default Derivation of GUI Control — Part 2 of 2

The previous diagram illustrates that the choice of GUI control(s) used to represent a
database field depends on several threshold variables. You can control these threshold
points at a corporate level; that is, your default threshold values affect all Visual Basic

maintenance dialogs. This is accomplished by using Construct’s corporate defaulting
mechanism.

—140 -

Creating and Customizing Maintenance Dialogs

The corporate defaults that affect Construct Spectrum'’s choice of a GUI control are de-
scribed in the following sections:

Repeating Field Threshold page 142
Option Button Threshold, page 142
Foreign Field Threshold page 142

To assign a corporate default:

Use the following code example as a guide to assigning a corpefatétd/alue.
The example illustrates how a work file number and column delimiter values are
defaulted.

Example of assigning corporate defaults

/~k
/* Retrieve all model constants that are stored using the standard
/* defaulting method.
INCLUDE CCDEFLTN "MAX-OPTION-BUTTON-COUNT™
'CUMDPDA #MAX-OPTION-BUTTON-COUNT'
INCLUDE CCDEFLTN "MAX-MU-COUNT" 'CUMDPDA.#MAX-MU-COUNT"
INCLUDE CCDEFLTN "MAX-DIALOG-WIDTH"
'CUMDPDA #PDA-MAX-DIALOG-WIDTH'
INCLUDE CCDEFLTN "MAX-DIALOG-HEIGHT"
'CUMDPDA #PDA-MAX-DIALOG-HEIGHT'
INCLUDE CCDEFLTN "'FK-AS-COMBO-THRESH-HOLD"
'CUMDPDA #PDA-FK-AS-COMBO-THRESH-HOLD'
** Note that there are 3 separate INCLUDE members: one for numeric
** defaults (CCDEFLTN), one for alphanumeric defaults (CCDEFLTA), and
** one for logical defaults (CCDEFLTL)
** Continue normal processing and the initial values may have been
** overridden by a corporate-supplied defaulting routine.

To apply the changes corporation-wide, you must add the initial variable name and its
initial value in the CSXDEFLT user exit routine.

Note: The internal defaulting mechanism may ffeected when you ughis default-
ing mechanism to initialize the specification panel default keyword. Use the
same keyword for both mechanisms. The specification panel default keyword
overrides the internal default keyword.

-141 -

Construct Spectrum SDK for Client/Server Applications

Repeating Field Threshold

A repeating field that is not in a repeating group of fields is represented either by a GUI
control array, such as amray of textboxes, or by a acolumn Grid control.

The choice of GUI control depends on the MAX-MU-COUNT default value. If the
number of occurrences of a repeating field is less than or equal to MAX-MU-COUNT,
the field will be represented with a GUI control array.

The VB-Maint-Dialog model copies the MAX-MU-COUNTethult value into the
#MAX-MU-COUNT variable of the model PDA (CUMDDPA) in the modeli®men-
eration subprogram (CUMDPR).

Option Button Threshold

A scalar field that has a table verification attached to it is represented either by a Frame
and series of OptionButtons or by a Label and ComboBox.

The choice of GUI control depends on the MAX-OPTION-BUTTON-COUNT thresh-
old default value. If the number of table verification values is less than or equal to
MAX-OPTION-BUTTON-COUNT, the field will be represented with a Frame and
OptionButtons.

The VB-Maint-Dialog model copies the MAX-OPTION-BUTTON-COUNT default
value into the #MAX-OPTION-BUTTON-COUNT variable of the model PDA (CUM-
DDPA) in the model’s pre-generation subprogram (CUMDPR).

Foreign Field Threshold

If a scalar field represents a foreign field in another file, the maintenance dialog pro-
vides additional GUI controls to allow the selection of these foreign values. The
maintenance dialog will either provide a button that opens a modal browse dialog or
generate a ComboBox and populate it at form-load time.

The choice of GUI control depends partially on the FK-AS-COMBO-THRESH-HOLD
default. If the number of foreign key values is less than or equal to FK-AS-COMBO-
THRESH-HOLD, the field is represented with a ComboBox.

The VB-Maint-Dialog model copies the FK-AS-COMBO-THRESH-HOLD default
value into the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the model PDA
(CUMDPDA) in the model's pre-generation subprogram (CUMDPR).

For more information about how foreign fieldee representedith GUI controls, see
Integrating Browse and Maintenance Functionspage 275.

—-142 -

Creating and Customizing Maintenance Dialogs

Setting Generation GUI Standards

Construct generation technology enables you to standardize your code. Construct Spec-
trum extends the benefits of standardization to the GUI realm. Default values for
properties of GUI controls, such as Font and ForeColor, are centrally established. This
means that if your company standard is to use a 10 pt. Arial font for all labels on GUI
screens, you need only change one line of code.

Construct Spectrum uses a series of utility Natural subprograms to control generation
of GUI dialogs. Collectively, these subprograms are known as the Visual Basic API.
For each type of GUI control supported, there is a property default subprogram which
is responsible for supplying default properties for that GUI control. The Visual Basic
API always calls the property default subprogram for a GUI control before generating
the definition for the GUI control. For example, the Visual Basic API callnats CSVB-
DLBL, the property default subprogram for Label GUI controls, before generating the
definition for a label. This subprogram sets the default Height of a Label with the fol-
lowing line of code:

ASSIGN CSVALCTN.HEIGHT = 285

The following table lists the GUI controls supported by Construct Spectrum and the as-
sociated property default subprogram for the GUI control.

GUI Control Subprogram GUI Control Subprogram
CheckBox CSVBDCHK ComboBox CSVvBDCBO
CommandButton CSVBDCMD Form CSVBDFRM
Frame CSVBDFRA Grid CSVBDGRD
Label CSVBDLBL ListBox CSVBDLST
OptionButton CSVBDOPT StatusBar CSVBDSTA
TextBox CSVBDTXT Timer CSVBDTMR

You can change the default assignments made in any of the property default subpro-
gram standards through the Generated Maintenance classes API. For information, see
Utility Subroutines on the Client, Construct Spectrum Reference

Note: Some properties, such as Top, Left, and Caption, are dependent on the data
field associated with the GUI control or the field's relative position in a Pre-
dict file. Do not attempt to provide standards for this type of control. The mod-
el controls the values for this type of property and will override any changes
you specify.

—-143 -

Construct Spectrum SDK for Client/Server Applications

Controlling the Size of a Maintenance Dialog

You can control the maximum dimensions of generated dialogs by specifying corporate
default values. Generated dialogs will not exceed these dimensions. The maximum
height and width values are supplied in a unit of measurement known as TWIPS. The
following table shows the TWIP value equivalent of pixels for common monitor
resolutions.

Resolution In Pixels TWIPS — Small Fonts TWIPS — Large Fonts

(factor of 15) (factor of 12)
640 x 480 9600 x 7200 7680 x 5760
800 x 600 12000 x 9000 9600 x 7200
1024 x 768 15360 x 11520 12288 x 9216
1280 x 1024 19200 x 15360 15360 x 12288

Know the lowest resolution monitor your application will be used on and generate dia-
logs to fit that monitor. You can set default values for the maximum height and width
of your dialog by using Construct’s corporate defaulting mechanism. The default values
are MAX-DIALOG-HEIGHT and MAX-DIALOG-WIDTH.

The VB-Maint-Dialog model obtains these defaults in its pre-generation subprogram
(CUMDPR) and copies them into the #PDA-MAX-DIALOG-HEIGHT and #PDA-
MAX-DIALOG-WIDTH variables of the model PDA (CUMDPDA).

For information about changing a corporate default valueSta®4: Use Default Der-
ivation, page 139.

Overflow Conditions

Overflow conditions occur when a dialog cannot display all of its controls. Consider the
following scenario. You are developing an application on a monitor with a resolution
of 9600 x 7200 TWIPS and you generate a dialog that reaches a height of 10000 TWIPs.
When you open the dialog in the Visual Basic editing environment, a third of the GUI
controls extend off the bottom of thereen.This is known as an overflow condition.

The only way to work with the hidden GUI controls is to select the control from the
Properties panel and manually manipulate their Left and Top properties — not a visual
solution. For information about correcting overflow conditions,Weeking with

Overflow Frames, page 148.

—144 —

Creating and Customizing Maintenance Dialogs

Customizing on the Client

This section describes the different mechanisms available on the client platform for cus-
tomizing the generation results of a Visual Basic maintenance object and a maintenance
dialog.

Creating Calculated Fields

Creating GUI controls whose values are based on the values of other GUI controls is a
common customization task. This task involves modifications to both the maintenance
dialog and the Visual Basic maintenance object.

For information about deriving values from a foreign field on a maintenance dialog, see
Supporting Multiple Descriptive Values and Derived Valuespage 290.

Does a GUI Control Exist for the Calculated Field?

The first step in creating a calculated field is to ensure that a GUI control exists on the
maintenance dialog to hold the calculated value. If the field is defined in Predict, it will
already exist in the dialog. Make sure that the control is not enabled. If the control is a
scalar GUI control, such as a TextBox or ComboBox, set the control's Enabled property
to False. If the control is a grid, modify the code in the IG@adNameésrid (where
GridNameis a unique variable) routine.

Tip: Add the GUI_PROTECTED keyword to a calculated field in Predict. This key-
word can be added to both input and output-only fields.

If a GUI control does not exist to hold the calculated value and it will not be stored in
the database, add the GUI control by hand. For information about adding a GUI control
by hand, seddding a New Field by Hand page 152.

Coding the Calculation

The calculation must be triggered whenever the value of one of the fields involved in
the calculation changes. Use the LostFocus event to trigger such a calculation.

Note: The calculation should not be performed in the dialog code. Keep customized
code in the dialog to a minimum. Rather, add the calculation code to the Vi-
sual Basic maintenance object. The function call might look similar to the fol-
lowing example.

—145 -

Construct Spectrum SDK for Client/Server Applications

Example of a function call in the maintenance dialog

txt_Empl_Pay.Text = InternalObject. _

Calc_Pay(CLng(txt_Empl_Rate.Text), CLng(txt_Empl_Hours.Text))
The function can alsaccept the parameters required to perform the caiooland re-
turn the result, such as in the following example.

Example of calculation code in the Visual Basic maintenance object

Public Function Calc_Pay(Rate As Long, Hours as Long) As Currency
Calc_Pay = Rate * Hours
End Function

Integrating Maintenance and Browse Functions

When a foreign key field is included in a Predict defined file and you generate a main-
tenance dialog for the file, Construct Spectrum automatically includes browse
capabilities for the foreign field. A browse linked to a maintenance dialog can be im-
plemented as a drop-down list or as a dialog.

For more information about how maintenance and browse functions are integrated, see
Integrating Browse and Maintenance Functionspage 275.

Validating Data Using the Visual Basic Maintenance Object

The Visual Basic maintenance object is an ideal place to code simple business valida-
tions. The model provides the CLIENT-VALIDATION user exit for this purpose.
Coding validations on the client reduces the number of data emtms inyour dialog

before the data is transmitted across the network, thus enhancing the overall perfor-
mance of your application. Avoid coding validations in the Visual Basic maintenance
object that involve network calls; these could trigger a network call every time you
change focus from one field to the next. For more information about validating your da-
ta, seeValidating Your Data, page 261.

—146 -

Creating and Customizing Maintenance Dialogs

Tailoring the Maintenance Dialog

This section describes how to tailor your maintenance dialog. It contains information
about tailoring the dialog’s appearance, adding and removing fields, and working with
special types of fields. The most common tailoring task is altering the layout of GUI
controls as they were gerated in the dialog. By default, GUI controls are generated in
two columns from top to bottom, with labels on the left and input controls on the right.
The following example shows a typical generated maintenance dialog:

N Order Maintenance [123131) ==
Order Number: I'I 233

Dirder Amount; |e350.00

Order Date: |E|4.-"1 497

Customer Mumber: |1UUU1 j JOURMEYMEM FAERICATING

‘wharshouse |d |11 |TORONTO CENTRAL WAREHOUSE =l

Invoice Mumber: |231 20

Delivery Instructions: tust be delivered between 1 and 6 PM,

Product:

P'DlddUCt Lire Description Quantity | Unit Cost Total Cost -2
1/3245 |COOPER GLOVES 40 100.00 4000.00=—
2/E220 |SOYAFLOUR 100 43.50 4350.00
3 0 0.00 no0-

4| | »
Diigtribution [1]:
ECc-&l Acct |Project | Dist &mount |-=
enter

1/7C 100 |05 50,007
270 105 |05 50.00
3 0.00
4 000>

Typical Generated Maintenance Dialog

When tailoring the dialog’s appearance, the changes should enhance the usability of the
application. For example, group related fields so the user can easily see that they are
related. The user should be able to move from field to field in a way that coincides with
how they would logically erform their taks.

There are many reans to alter the appearance of your dialog, such as conforming to

layout standards used by your organization. For example, there may be users whose
monitor resolution is 640 by 400 pixels and your organization wants all applications to
run effectively on these users’ machines. For information oergéing dialogs based

on monitor resolution, seeontrolling the Size of a Maintenance Dialogpage 144.

- 147 -

Construct Spectrum SDK for Client/Server Applications

Following are several suggestions on how to lay out your maintenance dialogs so that
they meet your organization’s requirements. Each suggestion contains a diagram that
depicts the layout. Each diagram is based on layout changes that were applied to the
generated maintenance dialog shown previously.

Note: Many of the procedures described in this section require you to perform tasks
specific to Visual Basic. For more information, refer to the documentation that
comes with Visual Basic.

Working with Overflow Frames

Overflow conditions occur when a dialog cannot display all of its controls. When an
overflow condition is encountered by the VB-Maint-Dialog model, it responds by gen-
erating a Frame control that is the same size as the dialog itself. The frame overlays the
other GUI controls in the dialog. The model then continuegsgeing new GUI con-

trols in the Frame container control. If the first frame becomes filled, the model
generates another frame. The process continues until all the fields in the Predict file are
represented by a GUI control.

The following example shows what a dialog looks like when an overflow condition is
encountered:

™ Overflow Frame 1

Poztal Code: I

Contact: I

Credit Rating: l—

Credit Limit: —
Dizcount Percentage: I—

Default ' arehouse |d: l—

Dialog Overflow Conditions

When a dialog gearates ovetdbw frames, earrange the GUlamtrols using one of the
layouts described in this section. This will largely be a job of cutting and pasting GUI
controls from the overflow frame(s) onto the dialog itself.

—148 —

Creating and Customizing Maintenance Dialogs

» To work with an overflow frame:

1

=

Open the Construct Spectrum project containing the dialog form (.frm) file you want to
modify.

Select the dialog form > View Form from the Project window.
The dialog is displayed.

Make the dialog as large as you can and drag the frame to a free area of the screen.
All of the controls within the frame are moved as well. If the frame is blocking your
view of other controls, shrink the size of the frame.

Rearrange the GUI controls using one of thelay described in the following sections.

Multi-column Layout

Use a multi-column layout when your dialog contains a large number of fields. For ex-
ample, if a dialog will be too long and can be wider.

To create a multi-column layout:
Drag some of your GUI controls over treate a saand column of information.

If one or two fieldsaresignificantly wider than others and are impeding your attempts

to create a second column, consider shrinking the width of these controls. Users can still
type in large data values although they cannot see the entire value in the field.

The following example shows the same maintenance dialog presented at the beginning
of this section, this time in a two-column layout:

Custarer Murmber: I Credit R ating: I
Buziness Mame: I Credit Limit: I
Phane Mumber I Dizcount Percentage: I
Contact: I Warehouse |d: I
Street: I Streat: I
City: I City: I
Province: | Pravince: |
Postal Cade: I Fostal Code: I
A

Maintenance Dialog in a Multi-Column Layout

—149 —

Construct Spectrum SDK for Client/Server Applications

Tabbed Layout

If your dialog is larger than you would like andtth is not sufficient room to create
multiple columns, consider placing some or most of the GUI controls inside tab pages.
To create a layout with tab pages:

Using the Sheridan tab which comes with Visual Basic Professional Edition, move GUI
controls to a tab page by cutting them from the dialog (or overflow frame)

Select the tab control and paste the GUI controls onto the tab.
You can now drag them to the appropriate location.

Tip: To place a group of GUI controls on the same tab page, cut and paste all the con-
trols at the same time. The GUI controls will maintain there position relative to
one another. In gemal, donot place key field(s) on a tab page. Key field(s)
should always be visible and easily accessible.

The following example shows the same maintenance dialog presented at the beginning
of this section, this time in a tabbed layout:

Cuztomer Mumber: I

General Information | bt ailing Address I Shipping Address |

Businezs Mame: I

Phane Hurmber I

Contact: I

Credit Bating: I

Credit Limit: |

Dizcount Percentage: I
Warehouse Id: I

A

Maintenance Dialog with Tab Pages

—-150 -

Creating and Customizing Maintenance Dialogs

State-Dependent Layout

A state-dependent layout is the most difficult type of layout to create. Use this layout
when many of the fields in the dialog are mutually exclusive (displayed and enabled
only when the dialog is in a specific state).

To create a state-dependent layout:

Add a State field to the dialog.
This field is always visible and controls them@nt state.

Assign other fields in the dialog to a specific state.

Move the GUI controls on the screen so that fields belonging to one state overlap those
in the other states.

Write code to make the fields from one state visible and the fields from the other states
invisible whenever the state field changes.

Tip: It may be easier to creatwo frames and place the state-dependent fields inside
the frames. Make the frameisible or invisible depending on the current state.

In the following example, there is a new GUI control called Address Toggle; its label
is Primary Address. This GUI control is the State field. It controls when to display Mail-
ing Address information and when to display Shipping Address information:

-1
Customer Number: l— Credit Rating: l_
Business Name: | Credit Lirnit: I—
Phone Number l— Discount Percentage: l—
Cantact: I ‘W arehouse |d: l_
Frimary Address: % Mailing Address € Shipping Address
Street: I
City: I
Province: I
Postal Code: l—
o 4

Maintenance Dialog with a State-Dependent Layout

-151 -

Construct Spectrum SDK for Client/Server Applications

Adding a New Field by Hand

If you add a new field to your Predict file definition and haveady generated a dialog,
it may be more efficient to manually add the new field, rather than regenerating the di-
alog. This is especially true if you have already tailored the generated form.

The tasks required to add a new field to a dialog by hand vary depending on the cardi-
nality of the field (whether the field can display one, two, or more dimensions of
information). One-dimensional information is displayed within a scalar GUI control.
Information with two, three, or four dimensions is displayed either in a column in a grid
control or in a control@ay such as an array of text boxes.

Add a Scalar Field by Hand

A scalar GUI control represents one-dimensional information. Most controls in a dialog
are scalar; for example, a name, an address, or an order numtypicaky represent-

ed with scalar fields.

To add a scalar field:

Determine the type of GUI control to represent your new database field. GUI controls
for scalar data include:

TextBox

ComboBox
CheckBox
Frame with a group of OptionButtons.

Drag the desired type of GUI control onto the dialog from the Visual Basic toolbox.
Add a label and GUI control input name for the control.

Tip: Choose your names based on the naming conventions used by other Construct
Spectrum GUI controls. For information about Construct Spectrum naming con-
ventions, se®eriving Variable Names page 132.

Follow the instructions provided in this section for the type of control you are adding.
These procedures contain information abaaating event code blocks for the new
control and about adding code to some standard subroutines to implement the control.

A ComboBox control utilizes a single drop-down list from which users can select a val-
ue. The user cannot, however, type additional values in the list. The client framework
includes the ComboClass.cls, which is useful for populating ComboBox GUI controls
and Combo columns of a grid. The ComboClass allows you to define pairs of values: a
database value and a display value.

-152 -

Creating and Customizing Maintenance Dialogs

If the new database field is a repeating field (MU field), create a control and use the
same techniques described in this section. Ensure that the code blocks use an Index pa-
rameter. Control arrays are zero-based whereas array information stored in the Object
PDA is one-based.

To add a TextBox GUI control for a field:

Add a new assignment statement to the CopyObjectToForm subroutine.
This copies the Object PDA field value to the GUI control. The following code is a
sample assignment statement:

txt CUST_NewField.Text =
BDT.ConvertToDisplay(.Field("NEW-FIELD"), _
NatFormatLength:="A6")

Add a new case statement to the CheckRemoteError subroutine.

This statement enables the dialog to assign an error object to the field if the maintenance
object subprogram on the server encountered a validation error for the field. The
following code is a sample case statement:

Case "NEW-FIELD": Set ErrControl = txt. CUST_NewField

Add Change event code for the new GUI control.

This code indicates to the dialog that the value of the field has changed. It also indicates
that at least one field in the business object has changed. The following code is a sample
Change event:

Private Sub txt_ CUST_NewField_Change()
ValueChanged = True
ObjectChanged = True

End Sub

Add GotFocus event code for the new GUI control.
This code displays an error tip for the field if there is an object error attached to the field.
The following code is a sample GotFocus event:

Public Sub txt_ CUST_BusinessName_GotFocus()
ValueChanged = False
cstSelectContents
CSTUtils.cstDisplayErrorTip Me

End Sub

—-153 -

Construct Spectrum SDK for Client/Server Applications

5 Add LostFocus event code for the new GUI control.
If the user changed the value of the control, this code removes anyerppestfrom
the control and assigns the control’s value to the field in the Object PDAelf@was
detected during the assignment, an object error is applied to the control. The following
code shows an example of the LostFocus event:

Public Sub txt_ CUST_NewField_LostFocus()
Dim Value As String
CSTUtils.ErrorTip.HideErrorTip
If ValueChanged Then
ErrorMsg ="
RemoveUnneededControlErrors Me, _
txt_CUST_NewField, ValueChanged
Value = txt. CUST_NewField.Text
ValidAssignment Value, InternalObject, _
"NEW-FIELD", ErrorMsg, NatFormatLength:="A6"
txt_ CUST_NewkField.Text = Value
If ErrorMsg <> "" Then
ParseErrorString ErrorMsg, ErrorNr, ErrorSrc
SetObjectError Me, txt_ CUST_NewField, ErrorNr, _
ErrorMsg, ErrorSrc

End If
End If
End Sub

» To add a ComboBox GUI control for a field:

1 Add code to the Form_Load event to load and initialize a ComboClass instance with the
valid values. The following code is a sample load/initialize statement:

ProvList.Load cbo_CUST_Prov
ProvList.Addltem "British Columbia”

Note: If you are loading values from an external source, such as a PC connected to
your LAN, code the necessary logic to load these values now.

2 Add code to the CopyObjectToForm subroutine to update the ComboBox with values.
The update is accomplished by assigning a value from the ComboClass.cls to the
Listindex property of the ComboBox control. The following is a sample statement to
update the ComboBox with values:

cbo_CUST_Prov.Listindex = ProvList.GetIndex(.Field("PROV"))

3 Add code to update the business object when the selected value of the ComboBox is
changed, as occurs when a Click event is triggered.
The following is a sample statement executed on the client to update the business object
with a new database value:

Value = _
ProvList.DBValue(cbo_CUST_Prov.ltemData(cbo_CUST_Prov.Listindex))
ValidAssignment Value, InternalObject, "PROV", ErrorMsg, _

NatFormatLength:="A20"

— 154 -

Creating and Customizing Maintenance Dialogs

1

2

3

4

For more information about using the ComboClassMsagatenance ClassesCon-
struct Spectrum Reference

To add a CheckBox field:

Note: The sample code for this procedure assumes that the new database field is Al-
phanumeric.

Add a new assignment statement to the CopyObjectToForm subroutine.
This copies the object PDA's field value to the GUI control. The following code is a
sample assignment statement:

chk_CUST_NewrField.Value = lIf(.Field("NEW-FIELD") <>"", _
vbChecked, vbUnchecked)

Add a new case statement to the CheckRemoteError subroutine.

This statement enables the dialog to assigareor object to the field if the object
maintenance subprogram on the server encountered a validatiofor the field. The
following code is a sample case statement:

Case "NEW-FIELD": Set ErrControl = chk_CUST_NewField

Add Click event code for the new GUI control.

The functions performed in the Click event are to indicate that the field value has
changed, remove any object errors from the control, assign the new value to the Object
PDA (client’s version), set an object error for the control ieemor was enguntered

during the assignment, and finally display an error tip i€aor is attached to the

control. The following code shows an example of the Click event:

Private Sub chk_CUST_NewField_Click()
Dim ErrorMsg As String

Public Sub chk_CUST_NewField_GotFocus()
ValueChanged = False
cstSelectContents
CSTUtils.cstDisplayErrorTip Me

End Sub

End If
NewFieldNdx = Index
CSTUtils.cstDisplayErrorTip Me
End If
End Sub

Add GotFocus event code for the new GUI control.
This code displays an error tip for the field if there is an object error attached to the field.
The following code is a sample GotFocus event:

Public Sub chk_CUST_NewField_GotFocus(Index As Integer)
ValueChanged = False
cstSelectContents
CSTUtils.cstDisplayErrorTip Me

End Sub

—155 -

Construct Spectrum SDK for Client/Server Applications

Add a Regular Grid Column for a Field

Grid controls are used to represent two, three, or four-dimensional information. If the
field you are adding is part of a grid, you must perform modifications to the column in-
dexing values of some of the grid variables. For information about manipulating grid
controls, sed&Jsing the Grid, page 165.

Each column within a grid is associated with a database field. The grid code must know
the relative position of a column to identify its associated database field. Therefore,
when adding a grid column, you must adjust the column indices in the dialog code as
described in the following steps.

To add a Regular Grid Column for a field:

In the Global Declarations section, increase the MAX_GridName_COLS constant by
one.

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_NCSTORDERHASLINES COLS 8
Const MAX_NCSTORDERHASLINES ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS =9
Const MAX_INCOME_ROWS = 30

In the CheckRemoteError sub sectionraase the Err@lumn value in the case
statement for every field in the same grid with a higher column number than the new
column.

Sample code before

Case "SALARY"
Set ErrControl = IncomeGrid
ErrColumn =4

Case "BONUS"
Set ErrControl = IncomeGrid
ErrColumn = 5

Sample code after

Case "SALARY"
Set ErrControl = IncomeGrid
ErrColumn =4

Case "NEW-FIELD"
Set ErrControl = IncomeGrid
ErrColumn =5

Case "BONUS"
Set ErrControl = IncomeGrid
ErrColumn = 6

- 156 —

Creating and Customizing Maintenance Dialogs

3

Inthe grd_ObjectName_GridName_UpdateObject sub section (where ObjectName and
GridName are unique variables), iease the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
FieldName = "SALARY(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

Case 5
FieldName = "BONUS(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

Sample code after

Case 4
FieldName = "SALARY(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2" Case 5
FieldName = "NEW-FIELD(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "A10"

Case 5
FieldName = "BONUS(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. If the new
column is not to be modified, include the Modifiable:=False parameter.

Sample code before

.ColumnAdd "Product/Suffix", BDT_ALPHA, "A2"
.ColumnAdd "Line/Description", BDT_ALPHA, "A40"

Sample code after

.ColumnAdd "Product/Suffix", BDT_ALPHA, "A2"
.ColumnAdd "New/Field", BDT_ALPHA, "A5", Modifiable:=False
.ColumnAdd "Line/Description", BDT_ALPHA, "A40"

In the CopyGridNameToForm subroutine, for each assignment statement within the for
loop(s), incease the second index of the array variable on the left side of ifyerasat

if the column number is higher than the new column.

Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new

field is defined on the database, add an assignment statement for the field.

- 157 -

6

Construct Spectrum SDK for Client/Server Applications

Sample code before

IncomeGrid.GridData(i, 4) = _
BDT.ConvertToDisplay(.GetField("SALARY", i)
NatFormatLength:="P9.2")

IncomeGrid.GridData(i, 5 =_
BDT.ConvertToDisplay(.GetField("BONUS", i)
NatFormatLength:="P9.2")

Sample code after

IncomeGrid.GridData(i, 4) = _
BDT.ConvertToDisplay(.GetField("SALARY", i)
NatFormatLength:="P9.2")

IncomeGrid.GridData(i, 5) = _
BDT.ConvertToDisplay(.GetField("NEW-FIELD", i)
NatFormatLength:="A10")

IncomeGrid.GridData(i, 6) = _
BDT.ConvertToDisplay(.GetField("BONUS", i)
NatFormatLength:="P9.2")

In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNumber
by one if there is an If or Elself statement, such as If CurrCol=ColumnNumber, where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

Elself CurrCol = 5Then
If KeyCode = ..

Sample code after

Elself CurrCol = 6 Then
If KeyCode = ..

To add a ComboBox Grid Column for a field:

In the Form_Load event, add code to populate the ComboClass object for the selection
list associated with the new field.

Sample code

NewFieldList.Load NewFieldColumn
NewFieldList.AddItem "CDN", "Canadian Dollar"
NewFieldList.AddItem "USA", "American Dollar"
NewFieldList.AddItem "GER", "German Mark"
NewFieldList.AddItem "FRA", "French Franc"

In the Global Declarations section, declare a variable as type Column. This variable is
used in the Form_Load event and the Load_GridName_Grid sub. Alsage the
MAX_GridName_COLS constant by one.

—158 -

Creating and Customizing Maintenance Dialogs

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS =38
Const MAX_INCOME_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS =9

Const MAX_INCOME_ROWS = 30
Private NewFieldColumn As Column

In the CheckRemoteError sub sectionraase the Err@lumn value in the case
statement for every field in the same grid which has a higher column number than the
new column.

Sample code before

Case "SALARY"
Set ErrControl = IncomeGrid
ErrColumn =4

Case "BONUS"
Set ErrControl = IncomeGrid
ErrColumn = 5

Sample code after

Case "SALARY"
Set ErrControl = IncomeGrid
ErrColumn =4

Case "NEW-FIELD"
Set ErrControl = IncomeGrid
ErrColumn =5

Case "BONUS"
Set ErrControl = IncomeGrid
ErrColumn = 6

Inthe grd_ObjectName_GridName_UpdateObject sub section (where ObjectName and
GridName are unique variables), iease the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
FieldName = "SALARY(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

Case 5
FieldName = "BONUS(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

—159 -

Construct Spectrum SDK for Client/Server Applications

Sample code after

Case 4
FieldName = "SALARY(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

Case 5
FieldName = "NEW-FIELD(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "A10"

Case 6
FieldName = "BONUS(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

5 Inthe LoadGridNameGrid sub section, add a call to the ColumnAdd method. If the new
column is not to be modified, include thiedifiable:=False parameter. In this
example, the Presentation argument is set to dbgSortedComboBox. It is this setting
which makes the column behave like a ComboBox.

Sample code before

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"
.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

Sample code after

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"

.ColumnAdd "New/Field", BDT_ALPHA, "A10", _
Presentation:=dbgSortedComboBox

.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

6 Inthe CopyGridNameToForm sub section, for each assignment statement within the for
loop(s), incease the second index of the array variable on the left side of iyerasat
if the column number is higher than the new column.
Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new
field is defined on the database, add an assignment statement for the field.

Sample code before

IncomeGrid.GridData(i, 4) = _
BDT.ConvertToDisplay(.GetField("SALARY", i)
NatFormatLength:="P9.2")

IncomeGrid.GridData(i, 5 =_
BDT.ConvertToDisplay(.GetField("BONUS", i)
NatFormatLength:="P9.2")

—-160 —

Creating and Customizing Maintenance Dialogs

Sample code after

IncomeGrid.GridData(i, 4) = _
BDT.ConvertToDisplay(.GetField("SALARY", i)
NatFormatLength:="P9.2")

IncomeGrid.GridData(i, 5) = _
BDT.ConvertToDisplay(.GetField("NEW-FIELD", i)
NatFormatLength:="A10")

IncomeGrid.GridData(i, 6) = _
BDT.ConvertToDisplay(.GetField("BONUS", i)
NatFormatLength:="P9.2")

In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNumber
by one if there is an If or Elself statement such as If CurrCadlar@Number where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

Elself CurrCol = 5Then
If KeyCode = ..

Sample code after

Elself CurrCol = 6 Then
If KeyCode = ..

To add a CheckBox Grid Column for a field:

In the Global Declarations section, declare constants to represent true and false database
values. This variable is used in the grd_GridName_UpdateObject and
CopyGridNameToForm subs. Also increase the MAX_GridName_COLS constant by
one.

Sample code before

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS =38
Const MAX_INCOME_ROWS = 30

Sample code after

Public IncomeGrid As New TrueGridClass
Const MAX_INCOME_COLS =9

Const MAX_INCOME_ROWS = 30

Const NEWFIELD_FALSE_CONST ="AAA"
Const NEWFIELD_TRUE_CONST = "BBB"

-161 -

Construct Spectrum SDK for Client/Server Applications

In the CheckRemoteError subsection, increase the ErrColumn value in the case
statement for every field in the same grid which has a higher column number than the
new column.

Sample code before

Case "SALARY"
Set ErrControl = IncomeGrid
ErrColumn =4

Case "BONUS"
Set ErrControl = IncomeGrid
ErrColumn = 5

Sample code after

Case "SALARY"
Set ErrControl = IncomeGrid
ErrColumn =4

Case "NEW-FIELD"
Set ErrControl = IncomeGrid
ErrColumn =5

Case "BONUS"
Set ErrControl = IncomeGrid
ErrColumn = 6

Inthe grd_ObjectName_GridName_UpdateObject sub section (where ObjectName and
GridName are unique variables), iease the case value for every field whose
associated column comes after the new column. If the new field is reflected in the
database, add a case statement for it.

Sample code before

Case 4
FieldName = "SALARY(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

Case 5
FieldName = "BONUS(" & IncomeRow & ")"
Value = grd_EMPL_Income.Columns(Collndex).Value
NatFormatLength = "P9.2"

-162 -

Creating and Customizing Maintenance Dialogs

Sample code after

Case 4

FieldName = "SALARY(" & IncomeRow & ")"

Value = grd_EMPL_Income.Columns(Collndex).Value

NatFormatLength = "P9.2"

Case 5

FieldName = "NEW-FIELD(" & IncomeRow & ")"

Value = lIf(grd_EMPL_Income.Columns(Colindex).Value = _
TRUE_STRING, NEWFIELD_TRUE_CONST, _
NEWFIELD_FALSE_CONST)

NatFormatLength = "A10"

Case 6

FieldName = "BONUS(" & IncomeRow & ")"

Value = grd_EMPL_Income.Columns(Collndex).Value

NatFormatLength = "P9.2"

In the LoadGridNameGrid sub section, add a call to the ColumnAdd method. In this
example, the BDT argument is setto BDT_BOOLEAN, regardless of the format of the
underlying database field. It is this setting which makes the column behave like a
CheckBox.

Sample code before

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"
.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

Sample code after

.ColumnAdd "Salary", BDT.GetBDT("P9.2"), "P9.2"
.ColumnAdd "New/Field", BDT_BOOLEAN, "A10"
.ColumnAdd "Bonus", BDT.GetBDT("P9.2"), "P9.2"

In the CopyGridNameToForm sub section, for each assignment statement within the for
loop(s), incease the second index of the array variable on the left side of iyerasat

if the column number is higher than the new column.

Depending on the cardinality of the grid's data, this will either take the form of
GridNameGrid.GridData(i, 1) or GridNameArray(GridNameRow)(i, 1). If the new

field is defined on the database, add an assignment statement for the field.

Sample code before

IncomeGrid.GridData(i, 4) = _
BDT.ConvertToDisplay(.GetField("SALARY", i)
NatFormatLength:="P9.2")

IncomeGrid.GridData(i, 5 =_
BDT.ConvertToDisplay(.GetField("BONUS", i)
NatFormatLength:="P9.2")

-163 -

6

Construct Spectrum SDK for Client/Server Applications

Sample code after

IncomeGrid.GridData(i, 4) = _
BDT.ConvertToDisplay(.GetField("SALARY", i), _
NatFormatLength:="P9.2")

If NEWFIELD_FALSE_CONST =0 Then

IncomeGrid.GridData(i, 5) = _
lIf(.GetField("NEW-FIELD", i) <>, _
TRUE_STRING, FALSE_STRING)
Else
IncomeGrid.GridData(i, 5) = _
lIf(.GetField("NEW-FIELD", i) = NEWFIELD_TRUE_CONST, _
TRUE_STRING, FALSE_STRING)

End If

IncomeGrid.GridData(i, 6) = _
BDT.ConvertToDisplay(.GetField("BONUS", i)
NatFormatLength:="P9.2")

In the grd_ObjectName_GridName_KeyDown section, increase the ColumnNumber
by one if there is an If or Elself statement such as If CurrCadlar@Number where
ColumnNumber is greater than or equal to the number of the new column.

Sample code before

Elself CurrCol = 5Then
If KeyCode = ..

Sample code after

Elself CurrCol = 6 Then
If KeyCode = ..

Removing a Field by Hand

The steps required to remove a field are the reverse of those for adding a field. To re-
move a scalar field by hand, sédd a Scalar Field by Hand page 152, and reverse

the procedure. To remove a grid column field by handAskeka Regular Grid Col-

umn for a Field, page 156, and reverse the procedure.

~164 -

Creating and Customizing Maintenance Dialogs

Using the Grid

Construct Spectrum supports business object data with up tdifeensions. Business
objects with two or more dimensions are referred to as complex business objects. The
VB-Maint-Dialog model uses the True DBGrid control to present complex objects in
dialogs. To the user, the grid is displayed as a table with each row displaying a unique
record, for example, a customer order line. Each column in the grid displays a specific
type of information, such as a name, a quantity, a price, and so on. Th&atmwork

comes with the TrueGridClass.cls — a class that encapsulates the True DBGrid control
and shields the developer from many of the intricacies of using the grid.

You can write your own code to use Construct Spectrum’s TrueGridClass.cls, you can
write code to directly manipulate the True DBGrid control, or you can customize the
TrueGridClass.cls to meet your specific needs. For information about the methods and
property interfaces of the TrueGridClass.cls, aintenance ClassesConstruct
Spectrum ReferencEor information about working with the True DBGrid directly, re-

fer to the TrueGriddlder located in Spectrum SDK.

Nested Grids

A single grid can only display data which has the same cardinality — that is, the same
number of dimensions. Therefore, if a business object contains both twareadlith
mensional information, two grids are required to display all the data.

The demo application (described in Chapter 2) contains an Order Entry example that is
a complex business object. The Order Entry example has two grids: one showing order
line details and one showing distribution details for each order line. Using the Order En-
try as an example, consider the following diagram which shows the relationships
between the Order object files and the GUI controls.

/— various scalar GUI
controls

NCST-ORDER-HEADER +

3 .
n]
Order Lines grid
) control
NCST-ORDER-LINES “—-—__,
A
@
Distribution grid
(L)
R 2
NCST-DISTRIBUTIONS -

Relationship Between a Complex Business Object and GUI Controls In a Grid

- 165 -

Construct Spectrum SDK for Client/Server Applications

In this example, there is a one-to-many relationship between the Order Lines grid and
the Distributions grid. The Distributions grid is said to be nested within the Order Lines
grid. Because itis nested, it only displays the rows that are related to the row that is cur-
rently selected in the Order Lines grid.

Nested Drop-Down Grids

A drop-down grid is a special type of nested grid that can be used to display nested in-
formation. Drop-down gridare used when there isiagle repeating field (an MU

field) within a block of grid information. In the following data definition example, the
Address field maps to a drop-down grid.

01 EMPLOYEE-INFO(1:10)

02 NAME(A10)

02 ADDRESS(A20/1:3)

02 SALARY(P10.2)

Drop-down grids appear to drop-down out of a parent grid. @henp grid has a place-
holder column from which to invoke a drop-down grid. This colunmeferred to as a
drop-down column. Drop-down columns are distinguished from other grid columns be-
cause each cell contains a down button from which drop-down data is accessed and
because drop-down data is prefixed with an occurrence number:

|nzome:
Currency| Annual Banus -
code zalamy I~
1|0 BEOO0 [1]BEZ2 b
2(1Us 53000 [1]900 Drop-down
3|COM 7000 (111200 column —
41T 35000 [3]75 ~| - placeholder for
[T drop-down grid
1023
™\

\— Drop-down grid

for repeating
field (Bonus)

Drop-Down Grid

Nested drop-down grids differ from regular grids in two major ways. First, the GUI con-
trol name is prefixed with ddg rather than grd. Second, the size and position of the
nested drop-down grid is controlled by the code at runtime. Therefore, do not tailor the
size and position of the drop-down grid.

- 166 —

Creating and Customizing Maintenance Dialogs

Note: Nested drop-down grids share the same container as their parent grid, that is,
the grid from which the nested drop-down grid is accessed.

Displaying Grids

When the VB-Maint-Dialog model gerates a gridantrol in the dialog, it does not set

the grid’s properties and, therefore, the grid does not appear properly formatted within
the Visual Basic design environment. The following example shows what the grid looks
like in the Visual Basic design environment:

|
*|

P[Dduct ...

Unformatted Grid

Instead, the model generates a subroutine, called LoadGridNameGrid, which is called
from the Form_Load event at runtime. One load subroutine is generated for each grid
in the dialog. Each load subroutine is responsible for formatting a grid before it is dis-
played to the user. The load subroutine makes a call to the TrueGridClass.cls Load
method to initialize the grid. It then calls the class ColumnAdd method for each field
column to be added to the grid. When the Load subroutine is finished executing, the grid
is displayed as follows:

Line Description Quantity | Unit-

1(187361 CAT MUGGETS 10 -
2

3 -

< | v [

Formatted Grid

For more information about the load and add methoddvlaggenance ClassesCon-
struct Spectrum Reference

- 167 —

Construct Spectrum SDK for Client/Server Applications

Resizing Grids

The load subroutine describedAdd a Regular Grid Column for a Field, page 156,
makes one final method call (SetWidth) to the TrueGridClass.cls to resize the width of
the grid based on the length and format of the fields represented in the grid. The True-
GridClass.cls makes the grid as wide as required to display all the columns of
information, unless it exceeds the right border of the dialog. In this case, a horizontal
scroll bar is displayed on the grid, allowing you to scroll the grid to see hidden fields.

Because the TrueGridClass.cls automatically resizes the grid, this can cause problems
when working on the layout of other GUI controls surrounding the grid. For example,

if you want to place GUI controls to the right of the grid, it is difficult to determine at
design time whether the grid will overlap the controls at runtime.

You can deal with this situation in two ways: resize the grid using the Grid Sizing In-
formation window or resize the grid manually. The first option involves working with
the automatic grid resizing feature. The second option involves disabling this feature
and sizing your grid manually. Use the second option when you require more control
over the width of your grid and do not require all grid columns to be visible at once.

To resize your grid using the Grid Sizing Information window:

Run the application.
As the dialog loads, the Grid Sizing Information window is displayed:

®] Grid Sizing Information

The fallowing information can be uzed to reszize the grid contralz on your
form in the YB design environment. The coordinates represent the width
and height required to dizplay each grid without scroll bars.

MOTE: To suppress dizplay of thiz informational dialog, remove the
DigplayGridSizinalnfo call in the form's Form_Activate event code.

Grid Mame "afidth Height -
ard_Ordid_MestOrderH aslines 172

ard_Ordbd_MestLineH azDistribution 305 2670

Grid Sizing Information Window

This modal window indicates how big to make grids on your form at design time so all
grid information is visible and scroll bars are not necessary. Note this information and
stop the running application.

Re-enter the Visual Basic design mode and resize the grid(s) based on the information
you gathered from the Grid Sizing Information window.

Now you can determine where you can safely place other GUI controls that are in close
proximity to the grid.

- 168 —

Creating and Customizing Maintenance Dialogs

3 Suppress the display of the Grid Sizing Information window when you no longer need
this information.
To suppress the window, comment out the following event code in the Form_Activate
event:

If Not RepressGridSizingDisplay Then
DisplayGridSizingInfo
RepressGridSizingDisplay = True
End If

» To resize your grid manually:

1 Disable automatic grid resizing by commenting out the SetWidth call in the load
subroutine.
Commenting out this call will not affect the calculated width of each column but will
keep the grid from resizing itself to make all columns visible.

2 Resize the height and width of the grid manually in the Visual Basic design
environment.

Tip: Atruntime, if there are more columns than can be displayed in the specified
width, a horizontal scroll bar is displayed at the bottom of the grid. Users can
click the scroll bar to see the remaining columns.

3 Comment out the code that displays the Grid Sizing Information window (as described
in the previous procedure).

Adding Sound to Error Notifications

This section describes how to add sound support to your error notification information.
When afield is in error, a Construct Spectrum application can notify the user in several
ways. First, the background color of the field can be set tffexetit color such as red.
Second, when the user tabs into the field, the application can display an error tip which
looks similar to a Windows tooltip. Construct Spectrum also gives you the option of in-
cluding sound information with an error.

A Construct Spectrum application can play an error sound file that you provide when
the user tabs into a field which is in error or when the user clicks on the sound icon in
an error tip. These options can be set by the user.

For more information about setting error notificatioafprences, sddsing the Demo
Application, page 37.

Construct Spectrum uses the .wav file formatgioorsound files. You can use the
Windows Sound Recorder application to record .wav files for your application errors.

-169 -

Construct Spectrum SDK for Client/Server Applications

Note: If no error sound file exists for a specific GUI control @nebr, no sand icon
is displayed in the error tip — even if the user has selected the sound icon as
an error notification geference.

Understanding How a Sound File is Associated With an Error

When an error sound is to be played, a Construct Spectrum application uses a pre-de-
fined convention to associate a .wav file with a specific error. The components required
to create this association are outlined in the following table:

Error Component Source of Error Description
Component

Sound File Path ERROR_SOUND_ Location of the .wav files. (declared
PATH constant in CSTObjectConstants.bas). If the

constant is empty, the application
defaults to the value of App.Path.

Language Indicator Res.Language Language indicator. By default,
Construct Spectrum applications use
the language indicators used by
Natural (for example, 1=English,
2=German, 3=French).

For a list of language indicatorsfee
to System Variables in the Natural
documentation.

-170 -

Creating and Customizing Maintenance Dialogs

Error Component Source of Error Description (continued)
Component

Error Source ObjectError. Error source. Construct Spectrum
MsgType applications recognize four distinct

error sources:

» Business data type (BDT) errors

» Spectrum Dispatch Client (SDC)
errors

» Local business validatiogrrors
(originating in a Visual Basic
maintenance object)

« Server errors (dginating in an
object subprogram)

Valid error source values are
represented by constants stored in
CSTObjectConstants.bas. These
constantsre:

+ ERROR_SOURCE_SDC

+ ERROR_SOURCE_BDT

+ ERROR_SOURCE_VALIDATE
+ ERROR_SOURCE_SERVER

Error Number ObjectError. Error within the specified error
ErrorNr source.

Sound File Delimiter SOUND_FILE_ Character used to delimit the
DELIMITER components of an erreound file.
constant

These components are assembled as follows:

Sound File Path +\ + Language Indicator + Sound File Delimiter + Error Source +
Sound File Delimiter + Error Number + .wav

The following example shows how the application attempts to associate a .wav file with
an error:

Example input

ERROR_SOUND_PATH #$lank

Res.Language = 1

ObjectError.MsgType = ERROR_SOURCE_SDC (1)
ObjectError.ErrorNr = 522
SOUND_FILE_DELIMITER ="-"

-171 -

Construct Spectrum SDK for Client/Server Applications

Example output

C:\Program Files\Construct Spectrum\MyApp\1-1-522.wav

Tip: Errors that originate in the SDC, BDT, or local validation layers are raised using
Visual Basic’s Err object. The error number used when raisirngrtbeis derived
by adding the Visual Basic vbObjectError constant to a unique application-spe-
cific number. Look at the constants defined in CSTConst.bas for examples. These
errors are all handled in the ValidAssignment subroutine in the BDTSupport.bas
module. To make the error number more readable (adding vbObjectError produc-
es a large, negative number), the subroutine subtracts vbObjectError from the er-
ror number. Therefore, the original, unique, appiaaspecific number is used
to associate a .wav file with an error.

Multilingual Support for Maintenance Dialogs

Construct Spectrum provides support for multilingual applications. To set up a multi-
lingual application, create language specific resource files for the application.

The generated maintenance dialog and Visual Basic maintenance object have code that
looks for resources in the application directory in a resource file called App. For each
supported language, create App.* resource files (where * is the language code). The
generated dialogs will then use the resource files.

For more information about setting up multilingual applications]rseenationaliz-
ing Your Application, page 295.

-172 -

Creating and Customizing Maintenance Dialogs

Uploading Changes to the Server

=

Sometimes changes occur on the server, such as changes to the Predict file and field def-
initions used by your maintenance dialog. It is often easier to regenerattethedc

modules than to implement the changes by hand. This includes modules that were gen-
erated for the client — specifically, Visual Basic maintenance objects.

If you have tailored a Visual Basic maintenance object or a maintenance dialog on the
client (for example, by adding user exit code), upload the client version of the Visual
Basic maintenance object or maintenance dialog to the server to preserve the user exit
code during regeneration. Once regeneration is complete, you can download the regen-
erated module(s).

Tip: Before regenerating a maintenance dialog,3testegies for Customizing a
Maintenance Dialog page 129, for information about saving customizations in
your maintenance dialog.

To upload changes to the server:
Open the Construct Spectrum project that contains the changes you are uploading.

Select Upload Generated Modules from the Construct Spectrum Add-In.
The Upload Modules window is displayed:

@] ypload Modules

Library: }DEVDM DBID: [13 ENR: a5
Cancel !
=

Filename i Mame 1 todel 1 Type

@ CUSTBCPY CustomerBrovwse YwB-BEROwWSE-OBJECT “WB Class

BicUe { fm_CUSTOMER WE-MAINT-DIALOG WE Form

@ Cus Customer YWE-MAINT-0BJECT WB Class

@ ORD-BCPY OrderBromze WB-EROwWSE-OBJECT WB Clasz —
B3 ORD-MCDV frm_ORDER WB-MAINT-DIALDG B Farm

[&] ORD-MCPY Order WEB-MaAINT-OBJECT YB Class

@ PRODECPY ProductBrowse WB-BEROWSE-OBJECT WB Clasz :j

Upload Modules Window

The library name, DBID (database ID), and FNR (file number) default to the values en-
tered for the last open project. If necessary, type the library name, DBID, and FNR for
the server library tavhich you are uploading.

Click Upload.
The selected modules are uploaded to the server.

-173 -

Construct Spectrum SDK for Client/Server Applications

—-174 -

CREATING AND CUSTOMIZING BROWSE
DIALOGS

This chapter provides step-by-step instructions for generating the modules required to
provide browse services from the client. It describes how tergemthe necessary
modules, download the client modules to your PC, integrate the new browse modules
into an existing Construct Spectrum project, and display server database information
from a browse dialog. Also included is information about modifying the components so
that you can customize the features and functions of the resulting browse dialog.

The following topicsare covered:
» Overview of the Browse Dialogpage 176
» Creating a Browse Dialog page 180
» Customizing on the Client page 190
» Understanding Browse Command Handlerspage 195

—-175 -

Construct Spectrum SDK for Client/Server Applications

Overview of the Browse Dialog

A browse dialog provides users with lists of data. Typically, this data is shown within
a browse dialog and represents rows of information from a remote database table.
Browse dialogs can also be set up to display data that is obtained locally — from a PC
server connected to your network, for example.

About Browse Dialogs

The underlying structure of a browse dialog is different from that of a maintenance di-
alog. Unlike maintenance dialogs, which use a unique Visual Basic form for each
maintenance object in your application, all generated browse dialogs use the same un-
derlying browse form that is supplied with the Construct Spectrum client framework.
This generic form communicates with other client framework components and with the
browse modules you generate to configure itself at runtime for a particular object
browse subprogram and to retrieve data. The browse dialog that is displayed to the user
is the result of this process.

Although you cannot modify a browse dialog directly, you can influence its behavior
based on:

» How the data file(s) used in the browse are set up in Predict
» Options you choose when you geate bowse modules

» Customized code you write to work with your generated browse modules and their re-
lated client framework components

The Browse Process

The browse dialog that a user works with is configured dynamically at runtime. Unlike
maintenance dialogs, which have a unique form that corresponds to each dialog, there
is no unique form that corresponds to each browse dialog. Rather, a browse dialog is
configured at runtime based on the interaction of the following:

» Object browse subprogram

» Object browse subprogram proxy
» Visual Basic browse object

» Client framework components

-176 -

Creating and Customizing Browse Dialogs

The following diagram illustrates these components:

Server = Client

Browse Browse Visual Basic Visual Basic
Object [€«—»| Subprogram{«—» Browse [€«—» Browse
Subprogram Proxy Object Dialog
A A
\ 4 \ 4
Browse
Database Framework
Components

Components Included in the Browse Process

The features and functions of a particular browse dialog depend on how these compo-
nents are configured. You can modify these components to influence the features and
functions of a browse dialog.

Browse Object Subprogram

The browse object subprogram reads database records on the server and returns them to
the client. Each browse subprogram can support multiple keys to allow the user to select
the most appropriate access path to retrieve the desired records.

Generate a browse object subprogram using the Object-Browse-Subp model. You can
specify overrides to many of the default values selected by the model before generating
or regenerating. For example, you can specify the keys available for accessing records
displayed in your browse dialog.

The characteristics gfour browse object subprogram depend on the relationships be-
tween the related database files and fields. You can perform a number of modifications
to the metadata that describes these relationships using Predict. For more information,
seeUnderstanding Browse Command Handlerspage 195.

-177 -

Construct Spectrum SDK for Client/Server Applications

Browse Object Subprogram Proxy

A subprogram proxy is required to access the browse object subprogram from the client
application. The subprogram proxy calls an object subprogram that fulfills a data re-
guest on behalf of a browse request. It is also responsible for converting data between
the network trarfer format and the Natural variable used by the parameters of the
browse object subprogram.

You can make a number of changes to the subprogram proxy that affect the functioning
of your browse dialog. Most of these changes are related to how browse information is
transmitted between the client and server. For information about customizing the sub-
program proxy, seesing the Subprogram-Proxy Mode] Construct Spectrum SDK
Reference

Visual Basic Browse Object

The Visual Basic browse object delivers information about the columns and keys sup-
ported by the browse subprogram to the client framework components.

The Visual Basic browse object is generated by the VB-Browse-Object model for a spe-
cific database file. It uses the BrowseBase classédatte with other parts of the client
framework and with thepplication. The Visual Basic browse object instantiates and
initializes a BrowseBase object. The initialization performed by the Visual Basic
browse object sets up definitions for:

logical farch keys
formatting information for data columns
optionally, inserts data into the data cache for static lists

It also sets up a data cache area on the client to save the results of multiple requests to
minimize network congestion and speed up the re-display of previously fetched data.
The data cache is an object in its own right.

Data Cache

The data cache is populated by the BrowseBase object Fetch method when a user spec-
ifies a starting value and presses the Get button. This triggers a remote CallNat that
reads records from a database and returns them to the client. As records are received,
they are added to the data cache. From the data cache, they are transferstieva Li

control on the browse dialog where the user sees the data. If the user requests the next
(contiguous) set of records, they are retrieved from the server and appended to the data
cache and ListView. This process continues until the user repositions the view to a new
location in the file by selecting a new starting value or changing the key value. When-
ever the user repositions the view, the data cache and ListView are cleared and a new
list of rows is presented.

-178 —

Creating and Customizing Browse Dialogs

The data cache mechanism is significant for the following reasons:

It enables the user to scroll backward through previously viewed data without having to
rereacthis data from the server.

Because the data cache represents a copy of the data, it may notrafleayshe cur-
rent state of data on the server. For example, if cached records are updated or deleted,
the user must issue a&fResh command to obtain the new values.

It is possible to read server data into the data cache and retrieve it programmatically,
without having to invoke a browse dialog. For more informationBsee/se Classes
Construct Spectrum Reference

The data cache can be saved in memory when a browse dialog is closed and restored
when the browse dialog is requested again. This alleviates the need to continually re-
trieve the same browse data from the server.

Framework Components

Several client framework components wtokether to provide browsing services at
runtime. These components are encapsulated in a single class, the BrowseManager
class. This class provides an interface to perform comnmmsimg activities, for ex-
ample, to get a specific row of information, get all rows of information, or display a
modal or MDI browse dialog.

Internally, the BrowseManager uses several framework components, the most impor-
tant of which is the browse dialog. There are two versions of the dialog: a modal
(GenericBrowse.frm) and an MDI (GenericMDIBrowse.frm) dialog. Each dialog is dy-
namically configured at runtime to display specific browse data. This process is
described inJnderstanding Browse Command Handlerspage 195.

For more information about the BrowseManager classieaese ClassesConstruct
Spectrum Reference

-179 -

Construct Spectrum SDK for Client/Server Applications

Creating a Browse Dialog

The following tasks are required to create a browse dialog. Once you have completed
these steps, you are ready to compile the application in Visual Basic and test the new
browse dialog.

» Review and optionally modify Predict set up
» Use the Construct models to generate modules
« Download the modules to the client using the Construct Spectrum Add-In
» Update the Construct Spectrum project
These tasks are described in detail in the following sections.

Setting up Predict for the Browse Dialog

Prior to generating the modules of your browse diategain attibutes can be defined
within Predict to extend the functionality of what is generated. You can modify any of
these attributes in Predict and regenerate your browse modules to implement your
changes. For information about regenerating browse modafes toConstruct Spec-
trum SDK Reference

Business Data Types

Browses make use of business data types (BDTs) to format the data that is shown within
the ListView control of the browse dialog. If you want special formatting of the browse
data, add business data types to the fields within Predict prior to generating the browse
components. For more information, 4¢&®ing Business Data Types (BDTsLon-

struct Spectrum SDK Reference.

Descriptive Fields

When a browse is initiated from a field on a maintenance dialog, it is referred to as a
foreign key browse. For example, the Construct Spectrum demo application has a for-
eign key browse set up for the Warehouse field located on the Order maintenance
dialog. When a foreign key browse is initiated, only the foreign key values (warehouse
numbers in this case) are displayed unless you designate other fields in the foreign file
as descriptive in Predict.

In the demo application, the WAREHOUSE-NAME field is designated as descriptive.
When you browse on the Warehouse field from the Order maintenance dialog, ware-
house numbers and their corresponding names are displayed so that users can easily
select the appropriate warehouse. For more information about linking browse and main-
tenance functions, seetegrating Browse and Maintenance Functionspage 275.

—180 -

Creating and Customizing Browse Dialogs

Using Models to Generate Browse Modules

Each module that a browse dialog requires can be generated with the VB-Client-Server-
Super-Model, or you can generate them one at a time using the individual models. Use
the following guidelines to determine which generation approach is appropriate for you.

« If you are creating a new application or a new object, use the super model.

« If you changed the file structure of a previously generated application, use the super
model.

« If you want finer control over the generation results, such as hand-coding user exits, use
the individual models.

This section describes how to generate a browse module from the individual models.
For information about using the super model,\dsiag the Super Model to Generate
Applications, page 77.

Generating browse modules involves the following steps, which must be performed in
this order:

1 Use the Object-Browse-Subp model to generate the object browse subprogram and
supporting parameter data areas (PDAS) on the server.

2 Use the Subprogram Proxy model to generate a proxy that enables the clemeso a
the browse subprogram.

3 Usethe VB-Browse-Object model to generate a Visual Basic browse class that supports
the generated browse subprogram.

4 Extend the application’s object factory to include references to the browse business
object.

5 Create a command handler and link it to the object factory if the browse dialog is to
support record selection and action buttons.

These steps are described in more detail in the following sections.

Tip: Use the same four-character prefix to name all generated modules belonging to a
single objectThis convention makes it easier to select modules for downloading.
For example, to download all client modules related to a Customer object, type
“CUST*" (where “*" is the wildcard character) to narrow the list of available
items to those starting with CUST.

-181 -

Construct Spectrum SDK for Client/Server Applications

Generating the Browse Subprogram and PDAs

A browse subprogram reads database records on the server and returns them to the cli-
ent. Each browse subprogram requires three application-specific parameter data areas
that contain information that is passed to,ameived from, the subprogram. Each

browse subprogram can support multiple keys to allow the user to select the most ap-
propriate access path to retrieve the desired records.

The Object-Browse-Subp model is used to generate the object browse subprogram and
its three supportinggrameter data areas: *BPRI, *BROW, andBY, where * rep-
resents a prefix that you specify.

For a detailed description of this model, §dgect-Browse Models Natural Con-
struct Generation

Generating the Subprogram Proxy

A subprogram proxy is required to access the generated browse subprogram (or any
other subprogram) on the server from the client application. The subprogram proxy is
responsible for converting data between the network transfer format and the Natural pa-
rameter data format used by the browse subprogram.

For information about gemating a subprogram proxy, sgsing the Subprogram-
Proxy Model, Construct Spectrum SDK Reference

Generating the Visual Basic Browse Object

Each object browse subprogram that will lbeessed by users requires a supporting
class generated using the VB-Browse-Object model. This class delivers information
about the columns and keys supported by the browse subprogram to the client frame-
work, which then populates the browse dialog with the requested information.

You can use the VB-Browse-Object model in the Generation subsystem on the server
or the VB-Browse-Object wizard in the Construct Windowsrfatee on the client.

-182 -

Creating and Customizing Browse Dialogs

The following example shows the standard parameters in the VB-Browse-Object
wizard:

VB-BROWSE-OBJECT Wizard 1

B sta Standard Parameters
Standard ;"‘“‘“‘“‘“‘“‘“
Parameters Module: CUSTORD
Finish System: |DErMC
Title: ;'-.-'B Erowse Ohiject|
Descripkion: Encapsulates Wisual Basic Browse services for ___r__j

customer system

Subprogram proxy: ;ELISTBSP s ;

Ohiject class: ;Custumerﬁmwse

[~ Compress network data

[Encrypt network data

YWalidake] Cancel] < Back. | Mexk = | Einish

VB-Browse-Object Wizard — Standard Parameters

Standard parameters are similar for all model wizards. The common parameters (Mod-
ule, System, Title, and Description) are describe@emeral Model Specifications
Natural Construct GeneratiorThe additional parameters are:

Parameter Description

Subprogram proxy Name of the subprogram proxy that communicates with the
object browse subprogram for this Visual Basic browse obiject.

Object class Name for the generated browse class to be used within Visual
Basic.

-183 -

Construct Spectrum SDK for Client/Server Applications

Parameter Description

Compress network Indicates whether the parameters sent to the server are

data compressed to reduce transmission time. Compression is
typically not required for a Visual Basic browse object because
parameters sent to the server tend to be small. Enabling
compression in this situation may actually increase demands
on system resources because the overhead associated with
invoking compression routines is not offset by the reduced
volume of data being transferred.

Encrypt network Indicates whether the parameters sent to the server are

data encrypted. Encryption is used to secure sensitive data.
Typically, this check box is not selected because browse data
requests sent to the server usually do not contain sensitive
information.

Note: The Compression and Encryption options apply only to data sent from the cli-
ent to the server. To enable compression and encryption for data sent from the
server to the client, select the Compression and Encryption options for the
Subprogram-Proxy model. For information, $&gng the Subprogram-

Proxy Model, Construct Spectrum SDK Reference

—184 -

Creating and Customizing Browse Dialogs

After supplying model parameters, you can customize the generation results by creating
user exit code for the module. The following example shows the User Exit List for the
VB-Browse-Object model:

Uszer Exit List 1

Mame i Sample % i Reguired “ﬂw ; Conditional
{CHAMGE-HISTORY Example
IMITIALIZE-SEARCH-KEYS Example
INSERT-RWWS Subprogram
Go To Rt Close

User Exit List

For more information about user exits, &8k=r Exits for the Generation Models
Natural Construct Generation

Defining Alternate Browse Data Sources

The VB-Browse-Object model is used to retrieve server database records by making re-
guests to a generated object browse subprogram. There may be times when you want to
allow browsing of data that is not defined in a server database file. Instead, you may
have data that is defined within files or hard-coded on a client. In such cases, you can
present this data to the user with amiface that is similar to thedwse inerface they

are familiar with.

To generate this type of browse dialog, use the VB-Browse-Local-Data-Object model
in the Generation subsystem on the server or the VB-Browse-Local-Data-Object wizard
in the Construct Windows interface on the client.

—-185 -

Construct Spectrum SDK for Client/Server Applications

The following example shows the standard parameters for the VB-Browse-Local-Data-
Object wizard:

YB-BROWSE-LOCAL-DATA-OBJECT Wizard 1

B sta Standard Parameters
Standard ;"‘“‘“‘“‘“‘“‘“
Parameters Module: CLISTORD
Finish System: |DErMC
Title: ;Eruwse Province Data
Descripkion: This Browse object supports brovesing of ___r__j

hard-coded province data

PREDICT wiew: ;PRO'I.I'INCE-TP.BLE 000 i

Ohiject class: ;F‘rwinceBrnwsel

YWalidake] Cancel] < Back. | Mexk = | Einish

VB-Browse-Local-Data-Object Wizard — Standard Parameters

Standard parameters are similar for all model wizards. The common parameters (Mod-
ule, System, Title, and Description) are describe@emeral Model Specifications
Natural Construct Generation

—186 —

Creating and Customizing Browse Dialogs

The additional parameters are:

Parameter Description

Predict view Name of a Predict view (optional). The VB-Browse-Local-Data-
Object model allows you to define your file within Predict as a
means to document the required field names, field lengths, and
column headings. Be aware, however, that no physical file is
required to support this model. If you do not want to create a
definition of your browse fields within a Predict file, you must
define your browse fields in the ADD-COLUMNS user exit as in
the following example.

Object class Name of the generated browse class to be used within Visual Basic.

Example of adding browse field definitions in the ADD-COLUMNS user exit

DEFINE EXIT ADD-COLUMNS

' AddColumn Name, Heading, Business Data Type, Format, Show by Default

AddColumn "STATE-CODE", "State Code", ™, "A2", True

AddColumn "STATE", "State Name", "", "A40", True

AddColumn "TAX", "Sales Tax", BDT_PERCENT, "N2.2", False

END-EXIT

In the previous example, the browse dialog shows the State Code and State Name by
default; however, the user could modify the options to also display the Sales Tax col-
umn. A BDT has been associated with the Sales Tax column to provide special

formatting.

Additionally, you need to add code to the INSERT-ROWS user exit. This user exit de-
fines data that is to be shown in the browse by calling the AddData method as in the
following example.

Example of defining browse data in the INSERT-ROWS user exit

DEFINE EXIT ADD-COLUMNS

' AddData Unique ID, State code, State, Sales tax

AddData "1", "ALBA", "Alabama"”, 8.0

AddData "2", "AK", "Alaska", 5.5

etc.

END-EXIT

In addition to the values to be displayed in the browse window, the first parameter of
the AddData method must contain a unique value that is used as an internal record

identifier.

—-187 -

Construct Spectrum SDK for Client/Server Applications

Downloading the Client Modules

After generating all required browse modules on the server, you must download the cli-
ent modules. The following table describes which modules are required on the client:

Model Module Visual Basic Description
Suffix extension

Object-Browse-Subp BKEY n/a Updates the library image file
BPRI with parameter definitions.
BROW

Subprogram-Proxy BSP n/a Updates the library image file

with application service
definitions describing the
object subprogram browse
method and data it requires.

VB-Browse-Object BCPV .Cls Delivers information about the
columns and key fields
supported by the browse
subprogram to the client
framework components.

Note: The module suffix names listed in the previous table are suggested names
only. However, when you generate with the super model, modules are given
these suffix names automatically.

» To download modules to the client:

1 Open the Construct Spectrum project that you are updating.
For information, se€reating a Construct Spectrum Project page 101.

On the Construct Spectrum submenu, click Download Generated Modules.
Ensure you are pointing to the correct library and FUSER on the server.

4 List the modules from the library you want to download by using wildcard notation (*)
in the File Download text box and then click List.
A list of modules on the server is displayed, showing thegted bowse modules.

5 Select the modules you generated and click Download.
You can identify browse modules based on their module suffixes, which are shown in
the table at the beginning of this section. The Visual Basic browse object is
automatically added to your Construct Spectrum project.

For more information on downloading modules to the client and setting up a Construct
Spectrum project, sdéreating a Construct Spectrum Project page 101.

—188 —

Creating and Customizing Browse Dialogs

Updating the Project

There may be times where you wantufmate the project using the extend object fac-
tory. The following discusses when you would need to hand-code the object factory,
and how to determine if you need to.

Extend Object Factory

You must hand-code the object factory only if you are adding a new browse dialog to
your application or you have changed the actions available for an existing business ob-
ject. An example of changing the available actions for a business object is when you
add a browse action to a business object that had been available to the user only through
a maintenance action.

Tip: To determine whether you need to hand-code the object factory, invoke the Open
dialog and select each object and its associated action. If the selected object action
does not display, do some hand-coding to add the required object actions.

For more information, se@ustomizing the Object Factory page 246.

—-189 -

Construct Spectrum SDK for Client/Server Applications

Customizing on the Client

Although you cannot modify browse dialogs directly, there are customizations you can
make on the client to modify or enhance the behavior of a browse dialog.

Adding Command Handlers

If the browse dialog is to support action buttons tleafggm specialized processing on
the selected records, define and create command handlers for these buttons.

For more information about adding command handlers for your browse dialddn-see
derstanding Browse Command Handlerspage 195.

Customizing the Generic Browse Dialog

The generic browse dialog is the dialog from which all browse dialogs are configured
at runtime. This dialog can be customized through the Browse Dialog API. For more
information, sedBrowse ClassesConstruct Spectrum Reference

Understanding the BrowseManager Class

Every Construct Spectrum application contains a Visual Basic class called the Browse-
Manager. This class encapsulates the handling of browse services in a single class.
Application components use instances of this class as described in the following
sections.

Display the Browse Dialog

The BrowseManager creates a browse dialog, links it to a specific browse data source,
and formats the dialog to display the data. The dialog can be a modal or an MDI child
dialog. Additionally, the dialog can be formatted to begin browsing with a specific key
field and key field value.

Support a Browse Command Handler

The BrowseManager can link a custom browse command handler to a browse dialog.
Browse command handlers add features to your browse form such as:

« Command buttons

» Toolbar buttons enabled on the MDI frame

Actions for double-click or the Enter key

« Menus that are activated by the right mouse button

—-190 -

Creating and Customizing Browse Dialogs

Return a Specific Row of Data

The BrowseManager returns a specific browse row of data from a data source, based on
a key name and key value. An example of a data source is a Natural database residing
on your server.

Return All Rows of Data

The BrowseManager returns all data rows in a specified table from a data source.

Using the BrowseManager

Applications use the global function, GetBrowser(tablename), to create instances of the
BrowseManager class for a specific database file. GetBgyyahich is located in the
object factory, creates, initializes, and returns a reference to a BrowseManager object.
The tablename parameter is a logical name that identifies which Visual Basic browse
object to use when it initializes the BrowseManager. For more informatioblsieg

the Object Factory, page 245.

Some of the application components that use the BrowseManager class are:
+ Object factory
» Visual Basic browse object
+ Maintenance dialogs
» Custom browse command handlers

-191 -

Construct Spectrum SDK for Client/Server Applications

The following diagram shows how a Customer maintenance dialog can use the Browse-
Manager class:

C_ustomer Object Browse Customer Browse Browse
Maintenance . .
. Factory Manager Browse Object Base Dialog
Dialog
1
2
3

v

v

Interaction Required to Display a Browse Dialog

Each numbered step in the diagram is described below:

The user requests a browse from the Customer maintenance dialog. In this example, the
user requests to browse a list of customers on the CUSTOMER file. The maintenance
dialog calls the GetBrowser function in the object factory with the parameter
“CUSTOMER?”.

The object factory creates a CustomerBrowse Visual Basic browse object. This object
contains information unigue to the Customer browse such as:

— Column names and captions
— Column formats and business data types (BDTs) used to format data for display
— Key names and captions

Settings from the CustomerBrowse Visual Basic browse object are used to configure a
BrowseBase object.

The object factory instantiates a BrowseManager.

The BrowseManager object is initialized by setting its BrowseBase property to point to
the BrowseBase object created in Step 3.

A reference to the initialized BwseManager is returned to the Customer maintenance
dialog. At this point, the BrowseManager is configured to support the services of the
Customer browse.

-192 -

Creating and Customizing Browse Dialogs

7 The user’s initial request to browse a list of customers can be fulfilled. The list of
customers is displayed in a modal dialog. To do this, the following command is sent
from the Customer maintenance dialog:

BrMgr.ModalBrowseForm("CUSTOMER")

8 The BrowseManager configures and displays a modal browse dialog listing the
customers from the Customer file.

9 Any actions requested from the browse dialog are handled by the BrowseManager. For
example, if the user selects a customer record and then selects the OK button, the
browse dialog is closed and the selected record is returned to the Customer maintenance
dialog.

Tip: You can customize the BrowseManager class to support new properties and
methods. However, do not modify the iriteces of the current ntteods supported
by the BrowseManager.

The following diagram depicts the structure of the BrowseManager:

Key

ones J
| BrowseManager Ij

) — Property
eowemese |,

% CommandHandler g

BrowseByObjectKey() »{ BrowseDialog
MDIBrowseForm() » BrowseDialog
ModalBrowseForm() »{ BrowseDialog

GetRow()

Object

Method() Method

v

GetAllRows()

»

Internal Structure of the BrowseManager Class

The BrowseManager class bundles browsing functionality into several methods. These
methods are only enabled when the BrowseBase property has been set to an initialized
BrowseBase object. A command handler object is an optional property that can be used
to enhance the functionality of browse forms created by the BrowseManager class.

-193 -

Construct Spectrum SDK for Client/Server Applications

BrowseManager Methods

This table lists the methods or servicéeied by the BrowseManager:

Service

Description

BrowseByObjectKey

MDIBrowseForm

ModalBrowseForm

GetRow

GetAllRows

Creates a modal browse dialog. The dialog’s search key
value(s) are set to the values in a parameter reference to a
NaturalDataArea object, where the NaturalDataArea is the
key structure used by maintenance dialogs.

If a row is selected, maps the key values in the row to the
NaturalDataArea parameter and returns True.

Creates a child MDI (multiple-document ifdee) bowse
dialog based on the GenericMDIBrowse.frm client
framework component. Optionally, links a command
handler to the dialog. Returns a reference to the dialog.

Creates a modal browse dialog based on the
GenericBrowse.frm cliedftamework component.
Optionally, sets the form’s search key to a key specified in
a parameter. If a row is selected, returns a reference to the
BrowseDataCache object.

Clears the data cache in the BrowseBase object unless it is
a static browse (fixed number of rows). Sets the
BrowseBase object search key to the key specified in a
parameter. If a row is succeghy retrieved and stored,
returns a reference to thed®vseDataCache obiject.

Clears the data cache in the BrowseBase object. If all rows
are successfully retrieved from the datarseureturns a
reference to the BrowseDataCache obiject.

For more information about BrowseManager methodsBseese ClassesConstruct

Spectrum Reference

~194 -

Creating and Customizing Browse Dialogs

Understanding Browse Command Handlers

Browse Command handlers are custom objects you create to handle commands origi-
nating from browse dialogs. They can be used to add command buttons to a browse
dialog, enable toolbar buttons on the MDI frame, set default actions for double-click
and the Enter key, and to display menus activated by the right mouse button.

All browse command handlers must implement certain public methods and properties.
These are supplied in a sample browse command handler class template you can copy
and use as a starting point to create your own browse command handlers.

Tip: Use the browse command handler class template, BrowseCmdHandler.cls locat-
ed in the Construct Spectrum client Framework directory as the starting point for
creating your own browse command handler.

The following diagram illustrates how a browse command handler object interacts with
other objects in your application:

Object Factor Command Browse Browse Browse
) y Handler Manager Base Dialog
1
2
3
4
5
6
7
8
Other 9
Application
Components
I

Browse Command Handler Overview

Each numbered step in the diagram is described below:

1 The object factory creates a BrowseBase object which is initialized with a specific
Visual Basic browse object. Interaction between the BrowseBase and browse objects is
described ilJsing the BrowseManagerpage 191.

2 The object factory creates the browse command handler.

—-195 -

Construct Spectrum SDK for Client/Server Applications

The object factory creates a BrowseManager object and links it to the command handler
and the BrowseBase object.

BrowseManager creates the browse dialog.

BrowseManager initializes the command handler witHereace to the browse diiay
and the BrowseBase object.

BrowseManager adds a command button, menu item or both for each supported
command handler command.

BrowseManager sets the default command if the command handler supports one. This
command is invoked by dousklicking or pressing Enter on a selected row.

When a user initiates a command on the browse dialog that is handled by a command
handler, the command handler is notified.

The command is executed.
Other features you can implement with a command handler include:

A browse dialog.
Users can drill down into more detailed information using a browse dialog.

A link to a maintenance dialog.

Users can invoke a maintenance dialog that is populated with a row selected from a
browse dialog. To view an example of this, refer to the Order browse window set up in
the demo application. From the Order browse window, users can select a row and then
select the Update button to open the Order maintenance window.

A delete function.

Users can delete a database record from a browse dialog. The Order browse window in
the demo application also includes an example of this function. To delete a record in the
demo application, the user selects a row and then the Delete button. The record corre-
sponding to that row is deleted. To accomplish this, the Order maintenance dialog
object is invoked behind the scenes and used to delete the record.

—-196 -

Creating and Customizing Browse Dialogs

Creating Browse Command Handlers

The steps to create a browse command handler and link it to your application are de-
scribed below. Once youeaate the command handler, youshsupply the code to
customize the command handler. This is describé&tbiting the Custom Browse
Command Handler, page 198.

» To create a browse command handler and link it to your application:

1 Create a Visual Basic class that implements the browse command handler.
Copy the sample BrowseCmdHandler.cls template in the client framework directory to
use as a starting point.

2 Make the application aware of the browse command handler by copying and modifying
the following code in the GetBrowser() function.
The GetBrowser() function creates th@®seManager object for the particular browse
dialog created at runtime and is part of the object factory.

Public Function GetBrowser(TableName As String) As BrowseManager
Dim BrMgr As New BrowseManager

' Return a browser object for the requested table.
Select Case TableName
Case "NCST-ORDER-HEADER"
Set BrMgr.BrowseObject = New OrderBrowse
BrMgr.Caption = "Query Orders"
' Copy and Modify this block of code to hook in a browse command handler
-—2>>
' Setting this property will attach the OrderAsBrowseTarget object
' to the BrowseManager to handle any commands originating from
' the browse.
Set BrMgr.CommandHandler = New OrderAsBrowseTarget

<<

Now that you have created a custom command handler and linked it to your application,
see thdollowing section.

-197 -

Construct Spectrum SDK for Client/Server Applications

Coding the Custom Browse Command Handler

A command handler is an object that implements two special public methods: UICom-
mandState() and UICommadTarget(). These two methods are the hooks into the client
framework corponents that allow commands to be triggered, intercepted, and handled
throughout your application. These methods are described in more d&afinimg,
Sending, and Handling Commandspage 221.

When a command handler is linked to a browse dialog, the dialog notifies the applica-
tion framework that it needs to handle commands linked to the Command IDs in the
command handler. For example, the framework would be notified whenever the Print
toolbar button or menu command is clicked in the browse dialog.

If the command IDs of the browse command handler match any of those on the MDI
toolbar or menu, those commands are hooked by the browse dialog. When a user clicks
on the hooked toolbar button or selects the hooked menu item, the command in the
browse command handler is trigygd.

Note: Commands that are to be hooked into the MDI toolbar or menu must already
exist on or be added to the MDI frame.

Enabling Commands on the Browse Toolbar and Menu

An important decision to make when coding the UICommandState() and UICommand-
Target() methods is whether or not you want the handled commands to be enabled by
the toolbar buttons and menu on the MDI frame. To enable these commands on the MDI
frame, asign the proper command IDs to each command in your command handler.
The correct command ID is determined by rhatg it with the corresponding com-

mand ID assigned to the command you want to hook in the fkdbie.

The following code sample shows how you would enable commands on the toolbar and
menu by assigning command IDs.

Sample code from the CommandHandler template that assigns command IDs:

Private Sub Class_lInitialize()

" Initialize The commands supported by this command handler.
CommandHandlers(1).ID = CMD_ACTIONS_UPDATE
CommandHandlers(1).Caption = "Update..."
CommandHandlers(2).ID = CMD_ACTIONS_DELETE
CommandHandlers(2).Caption = "Delete"

End Sub

—-198 -

Creating and Customizing Browse Dialogs

Tip: If you want to internationalize your application, avoid hard-coding text strings
like Caption = “Update” . For more information, sdaternationalizing Your
Application, page 295.

Coding the UICommandTarget() Method

This method contains a Select statement, with a Case statement for every command ID
that is handled by the command handler. You can add any code in these Case statements
to implement the handling of a specific command. The following example is an excerpt
from a command handler designed to update a data row:

Sample CommandHandler code to update a row (record)

Select Case Cmd.ID
Case CMD_ACTIONS_ UPDATE

' For each selected row in the cached data ...
For SelRow = 1 To m_BrowseBase.Cache.SelectedCount

' Create and initialize a new Order Maint Object.
Set maintObj = New Order
Set maintObj.Dispatcher = CreateDispatcher()

" Initialize the Key in the Order Maint Object from
' selected row from the Visual Basic browse object's cached data.
maintObj.Field("ORDER-NUMBER") = _
m_BrowseBase.Cache.GetValue("ORDER-NUMBER", _
SelRow, _
BR_SELECTED_DATA, _
BR_RAW_DATA)

' Move the KeyData from the KeyPDA to the ObjectPDA.
maintObj.MoveByNameKey MOVE_DATA_TO_KEY

' Create a new Order Maint Form.
Set frm = New frm_Order

' Link the Order object to the Order Form.
Set frm.InternalObject = maintObj

' Display this form.

frm.Show
Next

—-199 -

Construct Spectrum SDK for Client/Server Applications

Marking Updated Rows Using the UpdatelListViewlcons Method

If your command handling changedfeat the data diplayed in the browse dialog when

the user executes the command, decide how to reflect the updated data in the browse
form. You can use the State property of a BrowseDataRow to mark the row as being
updated. This property is used by the browse dialog when its Form_Activate event is
triggered.

Alternatively, you can programmatically refresh the browse dialog’s ListView with
small icons by calling the UpdateListViewlcons method in the browse form. If a State
ID has been assigned to a row, the browse dialog checks to see if this is the ID of a small
icon in a global image list, found on the browse form. If the State ID matches the ID of
one of the small icons in the image list, the icon is placed beside the row on the browse
dialog.

Example code for marking updated rows with small icons

' Mark a row in the browse object as being "Updated" with a small
"icon.
m_BrowseBase.Cache.Rows.Selectedltem(Index).State = _
BR_MARK_ROW_UPDATED

' Refresh the browse dialog’s listview to display small icons beside
' rows that have been updated.
m_BrowseForm.UpdateListViewlcons

—200 -

MOVING EXISTING APPLICATIONS TO
CONSTRUCT SPECTRUM

This chapter describes how to move existing Natural Construetrgtexl server-based
applications to a client/server architecture using the Construct Spectrum models. To
move existing Natural applications to a client/server architecture without using the
models, se€reating Applications Without the Framework, Construct Spectrum

SDK Reference

The following topicsare covered:
» Overview, page 202
« Moving Natural Construct Object Applications, page 202
« Moving Natural Construct Non-Object Applications, page 203

—-201 -

Construct Spectrum SDK for Client/Server Applications

Overview
There ardwo scenarios that you may encounter when moving your Natural Construct-

generated applications to Construct Spectrum:

« Moving applications eated with the Naturald@hstruct Object models (Object-Maint-
Subp and Object-Browse-Subp)

« Moving applications created without the Natural Construct Object models

The Object models enable you to generate encapsulated applications. Applications cre-
ated with Construct Spectrum take advantage of this object approach.

Moving Natural Construct Object Applications

If you have existing Natural Construct applications developed with the object models
(Object-Maint-Subp and Object-Browse-Subp), much of the work involved in creating
a client/server application hageddy been completed.

To create a Construct Spectrum client/server application from existing Natural Con-
struct Object applications, complete the following steps:

1 Set up your server environment.
For information, seére You Ready?, page 103.

2 Set up Predict definitions (optional).
For information, se&etting Up Predict Definitions Construct Spectrum SDK
Reference

3 Regenerate your Object-Maint-Subp modules and generate the remaining client/server
modules.
For information, se&Jsing the Super Model to Generate Applicationspage 77.

4 Set up and run your Construct Spectrum project.
For information, se€reating a Construct Spectrum Project page 101.

-202 -

Moving Existing Applications to Construct Spectrum

Moving Natural Construct Non-Object Applications

Y

(I I N I W

Natural Construct applications generated with the Maint and Browse models must be
modified to conform to the object-based structure required by Construct Spectrum.

To create a Construct Spectrum client/server application from non-object Natural
Construct applications:

Step 1: Set Up Your Server Environmentpage 203

Step 2: Evaluate Your Application Datg page 203

Step 3: Set up Predict Definitions (Optional) page 204

Step 4: Generate the Client/Server Modulespage 204

Step 5: Update Object Subprograms with Business Rulepage 205

Step 6: Set Up and Run Your Construct Spectrum Projegtpage 206

The following sections describe these steps.

Step 1. Set Up Your Server Environment

Before moving your application, ensure that your server is set up so that you can create
and use client/server applications with Construct Spectrum.

To set up your server, perform the steps outlinerainYou Ready?, page 103.

Step 2: Evaluate Your Application Data

Determine whether the files and fields that define your application data conform to an
object-based relational database structure. If they do not, modify them to conform to
this structure to take advantage of the Object-Maint models. For example, you must de-
termine which database files should logically be grouped into business objects and
establish relationships between related files and fields.

For information about organizing your database files in an object-based and relational
manner, seBesign Methodology andUse of Predict in Natural Construct Natural
Construct Generatian

- 203 -

Construct Spectrum SDK for Client/Server Applications

Step 3: Set up Predict Definitions (Optional)

Some Predict set up tasks relate specifically to Construct Spectrum. For example, you
can attach special keywords to a field to define its corresponding GUI control on the
client dialog. These tasks are optional because Construct Spectrum applies default logic
to determine hoveach fieldwill be implemented on the client.

For information about these tasks, Setting Up Predict Definitions Construct Spec-
trum SDK Reference

Tip: Postpone these optional tasks until you have created and tested at least a first it-
eration of your client/server application and are ready to fine-tune it.

Step 4: Generate the Client/Server Modules

To get an iteration of your client/server application up and running quickly, use the su-
per model to generate modules for your client/server application. Generate modules for
each business object, such as a Customer object and an Order object.

Generate the modules by selecting the models listed in the following table. The first
four models generate the modules required for maintenance services, such as updating
or adding Customer records. The remainimgétmodels generate the modules required

for browse services, such as looking up and selecting a customer record for an action.

Model Module Source Type

Object-Maint-Subp Object maintenance subprogram Natural subprogram
and required PDAs

Subprogram-Proxy Object maintenance subprogram Natural subprogram
proxy

VB-Maint-Object Visual Basic maintenance object Visual Basic class

VB-Maint-Dialog Visual Basic maintenance dialog Visual Basic form

Object-Browse-Subp Object browse subprogram and Natural subprogram
required data areas

Subprogram-Proxy Object browse subprogram proxy Natural subprogram

VB-Browse-Object Visual Basic browse object Visual Basic class

The modules must be generated in the order shown.

—204 -

Moving Existing Applications to Construct Spectrum

Tip: Although you can generate all of the models listed in the previous table separate-
ly, use the super model to quicldyeate a first itetdon of your application. The
super model automatically generates these models in the correct order.

For information about using the super model,\dsiag the Super Model to Generate
Applications, page 77.

Step 5: Update Object Subprograms with Business Rules

U\)I\)I—‘V

You must update your newly generated object maintenance modules with any business
rules from your previous applications — those applications that weated wibout

the Object Maintenance model. You must compare the business rules, which are con-
tained in the user exits, in your previous application and decide how they should be
incorporated into the user exits in your new application.

As you complete the procedure described below(dgect-Maint Models, Natural
Construct GenerationThis chapter contains information about generating an object
maintenance subprogram and working with its user exits.

To update your object maintenance subprogram with business rules:

Regenerate the maintenance subprogram using the Object-Maint-Subp model.
Update the user exits with your business rules.

Compile the subprogram.

Considerations for Implementing Business Rules

When you have a working client/server application and are ready to refine your appli-
cation, pay special attention to the procedures devoted to refining the implementation
of your business rules. For information about implementing business rul¥s|ske-

ing Your Data, page 261.

Because your client/server application was initially a non-object application, you prob-
ably have all of your business rules coded in the Maint model user exits. Consider
placing as many of these rules as possible in other locations, such as:

The Predict verification rules linked to your field definitions
The Visual Basic maintenance object user exits
The object maintenance subprogram user exits

For example, some verification rules can be implemented or duplicated on the client
through the Visual Basic maintenance object. Business data types can also be used to
validate data. These techniques improve trdopmance of/our application because
validations occur on the client, therefore, avoiding a call to the server.

— 205 -

Construct Spectrum SDK for Client/Server Applications

Note: If users can access your application from a non-GUI environment, such as a
character-based display terminal, validations set up on the client should also
be implemented on the server. This ensures that validations are consistent no
matter where the @fication is accessed from.

Step 6: Set Up and Run Your Construct Spectrum Project

Once your client and server modules have been generated on the server, set up a Con-
struct Spectrum project on the client using the Construct Spectrum Add-In. Then
download the client modules to your project, run the project, test it, and modify it as
required. For information, sdereating a Construct Spectrum Project page 101.

— 206 -

UNDERSTANDING AND CUSTOMIZING THE
CLIENT FRAMEWORK

This chapter describes how to customize the client framework supplied with Construct
Spectrum. It describes what each framework component is, where you use it, a concep-
tual overview of how it works, and procedures for customizing the component.

The following topicsare covered:
» Introduction to the Client Framework, page 208
+ About Box, page 210
» Application Preferences page 212
« Application Settings, page 213
« Browse Support page 215
» Internationalization Support, page 217
» Maintenance Classespage 218
» Menu and Toolbar Support, page 219
« MDI (Multiple-Document Interface) Frame Form, page 242
+ Object Factory, page 243
» Spectrum DispatchClient Support, page 256
« Utility Procedures, page 259

- 207 -

Construct Spectrum SDK for Client/Server Applications

Introduction to the Client Framework

When you select Create New Project from the Construct Spectrum Add-In menu, Con-
struct Spectrum adds the clidramework components to a standatidual Basic

project. The client framework is made up of many files that display in your applica-
tion’s project window. Each component consists of one or more Visual Basic forms,
modules, or classes. The following example shows the client framework components
for a Spectrum project:

iew Form Yiew Code i
. About.frm frrsbowt
9. BrowseDialogOptions.frm frmBrowzelialogd ptions
5. EnmorPreferences_frm frmE rrorPreferences
5 EnmorTip_frm frmErmorTip
. GenericBrowse. frm frmGenencBrowse
t; GenericMDIBrowse_ frm frmGenenckdDIBrowse
5 GrndSizelnfo.frm frmGndSizelnfo
4 Main.frm frrabd air
9 Open.frm frm0pen
5. SDCDialog.frm frmSDCDialog
E TraceOptions. frm frm T race0ptions
[&] BrowseBase.cls BrowseB asze
@ BrowszeDialogB aze._cls BrowzelDialogl aze
@ BrowszeManager.cls Browszeh anager
[&] CustomBDTs.cls CustomBDT s
[&] StandardBDTs._cls StandardBD T =
[&] TrueGridClass.cls TruelGndClass
u’% AppSettings_bas AppSettings
u’% BDTSupport_bas BOTSupport
a% C5TConst.bas ConstructConstants
a% C5TObjectConstants.bas ConstructdbjectConztants
u’% C5TUtils.bas C5TUtils
u’% OFactory.bas ObjectFacton
a% SDCSupport_bas SOCSupport
a% Startup.bas Startup
u’% UlCommandConstantz.bas UICarmmandConstants

Client Framework Components for a Construct Spectrum Project

- 208 -

Understanding and Customizing the Client Framework

These files are grouped into logical client framework components. The components are
described in this chapter and referred to throughout the Construct Spectrum
documentation.

Additional client framework components are provided in an OLE automation server
(CSTVBFW.dII) as classes. You can browse these OLE classes by selecting Object
Browser from the View menu in Visual Basic.

Each component is described in more detail in the following sections.

Note: For information about creating a new project, Gegating a Construct
Spectrum Project, page 101.

- 209 -

Construct Spectrum SDK for Client/Server Applications

About Box

The client framework includes a standard About box form. This form contains an icon,
application title, application version information, licensed user and company name, se-
rial number, copyright notices, and a System Info button to invoke the standard
Windows system information applet.

The user invokes the About box by selecting the About command on the Help menu:

(3] Ahout _ O] x|

............ |bILizensedOwner

............ |bILizensedCompany

............ Seral Mumber: bl enalMumber

Default About Box Supplied with the Construct Spectrum Client Framework

You can customize the About box as desired. For example, you can include your appli-
cation’s icon, product name, company name, trademark, or copyright notices.

Component Description

About.frm Contains the About box form.

The IbIMessagesway, IblLicensedOwner, IblLicensedCompany, IblSerialNumber,
and IblWarning valueare place holders foustom messages you code in the Load
event for About.frm.

-210-

Understanding and Customizing the Client Framework

Customizing the About Box

You can customize the About box for each of your applications.

Tip: To customize the About box, edit the default About box and us®ahe Ascom-
mand on thd-ile menu to save the tailored About box to your project directory.

You can customize the following features:

To Change Follow this Procedure

Application name 1 Open the AppSettings.bas file.

or window title 2 Change the gAppSettings.ApplicationName variable to
change the application name that is displayed at the top of
the dialog.

Copyright notice 1 Open the Form_Load event file.

2 Change the IbIMessages variable by adding one or more
lines of text to change the copyright notice.

Note: The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.

Icon 1 Open the Form editor.

2 Load a different bitmap into the Picture property of the
imgApplicationBitmap control to change the icon that is
displayed in the upper left corner of the About box.

Licensed owner, 1 Open the Form_Load event file.
Company, or 2 Change the text assigned to the IblLicencedOwner,
Serial Number IblLicensedCompany, and IblSerialNumber label controls.

Note: The client framework does not provide any specific
functionality for licensing your applications. These label
controls are informational only.

Version text 1 Openthe Form_Load event file.

2 Change the IbIMessages variable by adding one or more
lines of text to change the version text.

Note: The dialog automatically grows vertically to accommodate
any amount of text assigned to this variable.

-211 -

Construct Spectrum SDK for Client/Server Applications

Application Preferences

The application pferences client framework cqronents are made up of a group of
classes that allow you to define the settings of each of your applications. Use these
classes to add, read, and update user or applicatitergmees.

Applications frequently require the ability to maintain persistent settings over multiple
executions of an application. For example, you may want your application to save win-
dow positions when a user shuts down the application. When the user restarts the
application, the windows appear in the same place on the desktop. You may also want
your application to save internal configuration information, suchrastdry names or
timeout values.

The application prierences praide a high-end intéace for deiining the metastructure

of persistent settings and for reading and writing setting values. Yef@arences sep-

arate settings into two logical categories: user-specific settings and application settings.
Each user ID that logs on to Windows has its own copy of the user-specific settings.
Application settings are constant for all users.

The metastructure for settings can also legduchical, similar to a directory tree on a

disk. Each node on the settings tree structure can contain any number of settings or sub-
nodes (analogous to files and subedtories, respectively). A sub-node itself can con-

tain settings and sub-nodes. This makes it easy to group settings in the most appropriate
structure.

The application preferences use thmdws registry to store the metastructure and the
values of all the settings. The Windows registry is encapsulated in the implementation
of the application preferences and is not exposed through the pubifadeteof the
settings’ classes. This insulates the application from the specific requirements of read-
ing and writing to a specific storage medium.

The following table describes the application prefices client framework cgronents
supplied with CSTVBFW.dII.

Component Description

Setting Creates and manipulates an individual setting

SettingList Creates and manipulates a SettingList, which is an aggregation of
SettingLists and Settings objects

SettingLists Contains a collection of SettingLists

Settings Contains a collection of Settings

For more information about customizing applicationf@rences, segnderstanding
Application Preferences Construct Spectrum Reference.

-212 -

Understanding and Customizing the Client Framework

Application Settings

The application settings client framework components allow you to specify your appli-
cation’s window title and other values that control how the application starts. These
values are used by other client framework componentsidimg) the About box, the
Spectrum Dispatch Client, and the Construct Spectrum Add-In.

Component Description

AppSettings.bas Contains the application-specific settings, such as the
application name, main library, and whether to force the user
to logon at application startup.

Startup.bas Contains the Sub Main procedure and other global variables.
Every Construct Spectrum application has one Sub Main
procedure which is the first procedure that gets executed when
your application starts running.

For more information, see:

About Box, page 210

Spectrum DispatchClient Support, page 256
Overview of the Development Procedurgpage 30.

-213 -

Construct Spectrum SDK for Client/Server Applications

Customizing the Application Settings

The InitAppSettings procedure in the AppSettings.bas file contains settings that deter-
mine the name of the application, how the application starts up (whether the Logon
form is displayed), and where applicatioef@rences arstored.

You can change the InitAppSettings by editing this procedure.

Example of a customized InitAppSettings procedure

Public Sub InitAppSettings()

With gAppSettings
.ApplicationName = "Construct Demo Application"

.ForceLogonAtStartup = False
.RememberUserID = True

.RegistryKey = "Software\SoftwareAG\CST"

" Add-In Defaults
.DefaultLibrary = "CSTDemo"

.DBID =17
.FNR =38
End With

End Sub

where:

ApplicationName Is the name displayed in the MDI frame form'’s title bar
and the About box.

ForceLogonAtStartup If True, the Logon dialog is displayed when the application
starts. This option is useful when more than one person
uses the same PC and you want to ensure that each person
uses their own user ID.

RememberUserID If True, the client framework saves the most recent user ID
in the Windows Registry and recalls it when displaying the
Logon dialog.

RegistryKey Is the root node in the Windows Registry where

application preferences are saved. Thestemaces are
saved in HKEY_CURRENT_USER under this key.

—214-

DefaultLibrary

DBID, FNR

Browse Support

Understanding and Customizing the Client Framework

Is the name of the main Natural libravith which this
application is associated. Construct Spectrum uses this
setting to derive the name of the primary library image file
containing the Natural dataes and applicain service
definitions used by the application.

Is the default database ID and file number for the
Construct Spectrum download and upload functions.

The browse support client framework components are used to implement the browse di-
alog, a generic browse form used to display all browses.

The following table describes the browse support components supplied with Construct
Spectrum. All of these components are stored in the CSTVBFWithithe exception

of classes (.cls), dialogs (.frm), and standard module files (.bas) which are included as
part of the client framework in your application’s project window.

Component

Description

ApplicationControl

ApplicationControls

BrowseBase.cls

BrowseDataCache
BrowseDataColumn
BrowseDataColumns
BrowseDataRow
BrowseDataRows

BrowseDialogBase.cls

Contains theferences to the bwse dialog’s button,
including its tag, index, command handler, caption,
and button.

Contains a collection of browse dialog’s application
control objects.

Contains all of the code common to generated browse
objects and is a client component accessible in source
code format in the project window.

Stores browse data.

Contains definitions of a table column.
Contains a collection of columns.

Contains definitions and values of a table row.
Contains a collection of rows.

Contains all of the code common to both the MDI
child and standalone versions of the browse dialog and
is a client component accessible in source code format
in the project window.

—-215-

Construct Spectrum SDK for Client/Server Applications

Component

Description (continued)

BrowseDialogOptions.frm

BrowseManager.cls

ColumnDisplay

ColumnsDisplay

FieldKey
FieldKeys

GenericBrowse.frm

GenericMDIBrowse.frm

KeyMatch

KeyMatches
LogicalCombo
LogicalKey
LogicalKeys

Allows users to customize theeapance of the
browse dialog. It is a client component accessible in
source code format in the project window.

Simplifies using the browse dialog for common
functions such as selection of a foreign key value.

Contains definition data for a displayed column,
including ColumnName, ColumnCaption,
ColumnWidth, and Visible.

Contains a collection of browse dialog’s
ColumnDisplay objects.

Defines a field used as a component in a logical key.
Contains a collection of field keys.

Contains the standalone version of the browse dialog
and is a client component accessible in source code
format in the project window.

Contains the MDI child version of the browse dialog
and is a client component accessible in source code
format in the project window.

Defines a search key’s associated text box attributes,
including FieldName, Columnindex, Controlindex,
Visible, Enabled, Locked, Validated, and Fixed.

Contains a collection of KeyMatch objects.
Defines an internal combo box object.
Defines a key used to browse a database table.

Contains a collection of logical keys.

For more information, se@verview of the Browse Dialogpage 176, in this documen-
tation, andBrowse ClassesConstruct Spectrum Reference

-216 -

Understanding and Customizing the Client Framework

Internationalization Support

The internationalization support client framework components make it easy to create
applications that will be deployed in more than one language. These internationaliza-
tion components enable you to develop internationalized applications.

The following table describes the internationalization support client framework compo-
nents supplied with CSTVBFW.dII:

Component Description
Resource Reads resources from resource files.
ResourceGroup Returns a list of resources in a resource group.

These client framework components prowae with the ability to store text and

graphics used throughout the application separate from the compiled executable. This
allows you to change them without accessing the source code of the application. Forms
are designed to contain as little code as possible to provide this feature.

Tip: You do not need to build internationalization components into your design when
creating small applications or applications that will only ever be used in one lo-
cale. These internationalization components are optional.

For more information about internationalization supportsegnationalizing Your
Application, page 295.

-217 -

Construct Spectrum SDK for Client/Server Applications

Maintenance Classes

These client framework components allow you to manipulate items in combo boxes us-
ing the key and description, as well as use the grid to change the look of your generated
maintenance dialogs. The following components are supplied with Construct Spectrum:

Component Description

ComboClass Contains a key list and a descriptive list that map to a combo
box. It includes methods which allow you to access their
information, including the Add and Load methods.

GridSizelnfo.frm Helps the application developer size the grid columns to the
best width. This form is displayed from a geated
maintenance dialog’s Activate event.

TrueGridClass.cls Simplifies the use of TrueDBGrid control in unbound mode.

For more information, se®trategies for Customizing a Maintenance Dialogpage
129, in this documentation, aiMhintenance ClassesConstruct Spectrum Reference

Grid Support

To display array data and data from secondary and tertiary files, generated maintenance
dialogs use the Apex TrueDBGrid custom control. The grid client framework compo-
nents centralize some of the code required by TrueDBGrid so you do not have to repeat
code in each generated maintenance dialog.

The client framework provides a TrueDBGrid helper class containing most of the mun-
dane code required to use this control in unbound mode, significantly reducing the
amount of code you must provide with the form.

Note: Using a TrueDBGrid control in unbound mode usually requires many lines of
event code to handle displaying and editing data, inserting and deleting rows,
and setting cell-level attributes such as color.

At design time, you only need to instantiate this class for each TrueDBGrid control on
the form and delegate the important events (such as UnboundReadData,
UnboundWriteData, and FetchCellStyle) to the equivalent methods in the class. At
runtime, you can load the helper class instance with data that will be displayed in the
cells of the grid. For more information, se&ategies for Customizing a Mainte-

nance Dialog page 129, in this documentation, aidintenance ClassesConstruct
Spectrum Reference

-218 -

Understanding and Customizing the Client Framework

Menu and Toolbar Support

The menu and toolbar client framework components allow you to dynamically change
their states between enabled and disabled, and checked and unchecked. The menu and
toolbar command classes provide a robust mechanism for locating and calling the code
that will execute when the user selects a menu command (such as File > Open) or clicks
a toolbar button.

In a multiple-document interface (MDI) application, there is only one menu bar on the
MDI frame window with typically one or more toolbars. In the Construct Spectrum cli-
ent framework, the MDI frame wdow “owns” the menu bar and toolbars. It contains

the code that is executed when the user selects a menu command or clicks a toolbar but-
ton. However, what the executing code does often depends on what type of MDI child
window is active. Often you will find it more appropriate to have the MDI child window
itself contain the code that does the actual processing of the command. This allows the
MDI frame window to be generic and contain only processing that is independent of the
active MDI child window.

This client framework component allows you to design the menu and toolbar structure
of an application on the MOtame form, and then program each MDI chilchddw to

“hook into” the menu commands and toolbar buttons it wants to process itself. This im-
proves functionality for the user and reduces your maintenance.

The menu and toolbar command-handlirgnework components implement a mech-
anism that centralizes the code required to determine if a menu command needs to be
enabled or disabled, and checked or unchecked. The following table describes the sup-
plied menu and toolbar clieframework components:

Component Description

UlCommands Class that implements menu and toolbar command
handling. UICommands is stored in CSTVBFW.dII.

UlCommandConstants.bas File that defines the command IDs used to uniquely
identify an end-user function in the application.

UlCmd Class containing information about a single command.
UICmd is stored in CSTVBFW.dII.

-219 -

Construct Spectrum SDK for Client/Server Applications

Understanding Menu and Toolbar Command Handling

This section provides a conceptual overview of the command handlers that you need to
understand before beginning to customize your application’s menu and toolbar. The
following section describes the steps to take to customize your menu and toolbar using
the client framework.

The client framework classes that allow menu controls and toolbar buttons to be pro-
grammed to send application-specific commands such as FileOpen, EditPaste, or
GridlnsertRow are described in this section. These commands are intercepted by com-
mand handlers, which can be any form or object in the application. The command
handler can also automatically update the enabled or disabled state and checked or un-
checked state of menu commands and toolbar buttons.

The MDI frame, browse dialog, and generated maintenance dialogs all use this com-
mand handling to process menu and toolbar button clicks in a single, unified fashion.

This section:
» Provides a summary of the classes
« Describes how to define, send, and handle commands
» Describes how to update user-nidéee controls
» Describes additional methods for command handling

For more information about menu and toolbar supportMss=®u and Toolbar Sup-
port, page 219.

For more information about using a command handler to customize your browse dia-
logs, sedJnderstanding Browse Command Handlerspage 195.

—-220 -

Understanding and Customizing the Client Framework

Class

Summary

This section illustrates the classes that implement the command handler.

SendCommand Key

HookCommand S
UlCommands]7 UnHookCommand Obiject

ReleaseHooksByObject
Propert Property

ReleaseHooksByCommand
StartUpdateCycle Method() Method
EndUpdateCycle
UpdateCyclelD

ID

Enabled

JO
" —command uiCmd ’ Checked
DisabledReason
GetCurrentState

UlCommandTarget
Command Handler I/ UlCommandState

Classes in the Command Handler

The following sections describe many of the classes and their associated methods used
to tailor the menu controls and toolbar buttons using the command handler.

Defining, Sending, and Handling Commands

(I I R N IR 4

This section describes how these application-specific comnaaadiefinedhow

menus and toolbars are programmed to send the commands, and how they are intercept-
ed by command handlers.

To define, send, and handle menu and toolbar commands:

Step 1: Declare a Global Instance of the UICommands Clasgage 222

Step 2: Define the Commandspage 222

Step 3: Code Menu and Toolbar Events to Send the Commandsage 223

Step 4: Code the Command Handlerspage 224

Step 5: Link the Commands to the Command Handlerspage 224

These steps are described in the following sections.

—-221 -

Construct Spectrum SDK for Client/Server Applications

Step 1: Declare a Global Instance of the UICommands Class

Declare a global variable of the UICommands class. This class is the prinexfgtdat
to this command-handling client framework component. This variable will be used by
various client framework components of the application.

Example of declaring a global variable

Public gUICmds As New UlCommands

Note: The UlCommandConstants.bas clifnaimework component declares this
variable.

Step 2: Define the Commands

Define the application-specific commands your menu items and toolbar buttons will be
sending. You will define these commands by defining named constants:

Public Const CMD_FILE_NEW As String = "FileNew"
Public Const CMD_FILE_OPEN As String = "FileOpen"
Public Const CMD_FILE_SAVE As String = "FileSave"

These constants are called command IDs. Their values are entirely up to you; your code

will never refer to the values directly, only the constant names. Define one command
ID for each unique menu and toolbar command.

—-222 -

Understanding and Customizing the Client Framework

S L

Step 3: Code Menu and Toolbar Events to Send the Commands

Before you begin this step, ensure that your application has a menu or a toolbar structure
from which you intend to send commands.

To code menu events to send commands:

Write Click events for the menu controls.

To code toolbar events to send commands:

Write ButtonClick events for the toolbar controls.

Example of coding the menu and toolbar events for three commands

Private Sub mnuFileNew_Click()
gulCmds. SendCommandCMD_FILE_NEW
End Sub

Private Sub mnuFileOpen_Click()
gulCmds. SendCommandCMD_FILE_OPEN
End Sub

Private Sub mnuFileSave_Click()
gulCmds. SendCommandCMD_FILE_SAVE
End Sub

' For toolbar buttons, use the Tag property to store the
' command ID you want the button to send.

Private Sub Form_Load()
With tbrMain
.Buttons("NEW").Tag = CMD_FILE_NEW
.Buttons("OPEN").Tag = CMD_FILE_OPEN
.Buttons("SAVE").Tag = CMD_FILE_SAVE

End With
End Sub

Private Sub tbrMain_ButtonClick(ByVal Button As Button)

If Button.Tag <> "" Then

gUICmds. SendCommandButton.Tag

End If
End Sub
As you can see from this example, you can easily send the same command from both a
menu control and a toolbar button. The event code uses the SendCommand method of
the UICommands class to send a specific command ID from each control. In the follow-
ing step, define the command handlers that receive these commands.

- 223 -

Construct Spectrum SDK for Client/Server Applications

Step 4: Code the Command Handlers

Provide the code that will be executed for each command. This code will reside in a
command handler object, which can be a Visual Basic form, a Visual Basic class, or an
OLE object. The only requirement for this object is that it must have a public method
called UICommandTarget with the following declaration:

Public Sub UICommandTarget(Cmd As UICmd, ByRef ForwardToNext As Boolean)

When a menu control or toolbar button’s click event calls SendCommand, the UICom-
mands class eventually calls the UICommandTarget method. Into this method is passed
a UICmd object which contains information about the command received.

UlCommandTarget usually has a Select Case Cmd.ID statement so it can handle more
than one command and perform specific processing for each command.

Example of coding a command handler

Select Case Cmd. ID
Case CMD_FILE_NEW
' Processing for the File|]New command.

Case CMD_FILE_OPEN
' Processing for the File|Open command.

Case CMD_FILE_SAVE
' Processing for the File|Save command.

é.nd Select

Step 5: Link the Commands to the Command Handlers

Next, tell the UICommands class what the command handler is for each command ID.
This action is calleiooking a command. When you hook a command, specify the com-
mand handler object and a list of command IDs.

Example of linking the command handler to the command 1D

With gUICmds
HookCommandfrmMDIFrame, CMD_FILE_NEW, CMD_FILE_OPEN, _
CMD_FILE_SAVE ...

End With

The HookCommand method of the UICommands class links the command handler with
one or more command IDs. This method can be called any time during the execution of
the program. Once a command has been hooked by a command handler, the link is es-
tablished between the GUI control that sends the command and the code that receives
and processes the command.

—224 -

Understanding and Customizing the Client Framework

More than one object can hook a given command ID. The UICommands class stores a
list of command handlers for each command ID (the command handler list). The last
command handler to be hooked to a command ID is called first. If this command han-
dler decides not to perform the processing for the command, it can set the
ForwardToNext output parameter to True before returning, to tell the UICommands
class to send the command to the next command handler (the one that hooked the com-
mand second last). This sequence continues until ForwardToNext is set to False (the
default) or all command handlers in the list have been called.

If a command handler is hooked to a command ID and HookCommand is called again
for the same command handler and command ID, the command handler will be moved
to the front of the list, instead of being in the list twice.

The SendCommand method in the UICommands is actually implemented as shown in
the following pseudocode.

Pseudocode demonstrating how the SendCommand method works

Sub SendCommand(CmdID As Variant)
Look up the command handler list for the given CmdID
For each object, cmdtarget, in the list
Set ForwardToNext to False
Call cmdtarget.UICommandTarget(Cmd, ForwardToNext)
If ForwardToNext is False
Exit the loop
End If
End For
End Sub

When an object no longer wants to hook a command ID, you can call the
UnHookCommand method of UICommands to break the link between the command ID
and the command handler. UICommands will remove the object from the command
handler list.

Example of unlinking the command ID and the command handler

With gUICmds
UnHookCommandirmMDIFrame, CMD_FILE_NEW, CMD_FILE_OPEN, _
CMD_FILE_SAVE ...
End With

- 225 -

Construct Spectrum SDK for Client/Server Applications

Updating User Interface Controls

U000 Vv

When a user opens a menu, the menu commands that are not currently valid are visibly
disabled. The object that processes a command (the command handler object) also de-
cides whether or not the command is valid. The UICommands class implements a
mechanism whereby it asks the command handler object whether a given command is
valid or not. Modify the event code to customize the actions that are performed when
the user selects a menu item or clicks a toolbar button.

To update user ietface ontrols:

Step 1: Code Events to Update the Menu Controlpage 227

Step 2: Code the Logic that Determines the State of a Commanplage 228

Step 3: Code Events to Update the Toolbar Buttonpage 229

These steps are described in the following sections.

- 226 -

Understanding and Customizing the Client Framework

Step 1: Code Events to Update the Menu Controls

Write event code that enables or disables the menu items just before the menu is dis-
played to the user. Take advantage of the Click event of a menu control, such as the File
menu or Edit menu, as a place to include your event code. Visual Basic calls this event
just before displaying the menu to the user.

Example of updating menu controls before the menu is displayed to the user

Private Sub mnuFile_Click()
SetMenuState mnuFileNew, CMD_FILE_NEW
SetMenuState mnuFileOpen, CMD_FILE_OPEN
SetMenuState mnuFileSave, CMD_FILE_SAVE

Enldl Sub

Private Sub SetMenuState(mnu As Menu, CmdID As Variant)
With guICmds. CommandCmdID)

GetCurrentState
mnu.Enabled = . Enabled
mnu.Checked = . Checked
End With
End Sub
where:
Command Returns a UICmd object that contains information for a given

CmdID. This is the same UICmd object that was passed to
UlCommandTarget.

GetCurrentState Causes UlCommands to call the command handler object
again, but this time the command handler will not process the
command, but will return whether or not the command is valid
and whether or not it should be checked. These settings can
then be read from the Enabled and Checked properties when
GetCurrentState returns.

If you disable a menu control in its parent’s Click event (the parent is the submenu that
contains the menu control), Visual Basic disables the menu control when the menu is
displayed. You can do the same thing with the Checked property for the menu control.

- 227 -

Construct Spectrum SDK for Client/Server Applications

Step 2: Code the Logic that Determines the State of a Command

The logic that determines whether a command is enabled or disabled and checked or
unchecked resides in the command handler in a public method called
UlCommandState. It must have the following declaration:

Public Sub UICommandState(Cmd As UICmd, ByRef ForwardToNext As Boolean)

The UICommandState method is called by UICommands whenever GetCurrentState is
called as shown in the following example:

Example of using the UICommandState method

With Cmd
Select Case . ID
Case CMD_FILE_NEW
' Code that determines if this command is valid.
. Enabled = some condition
Case CMD_FILE_OPEN
' Code that determines if this command is valid.
Enabled = some condition
Case CMD_FILE_SAVE
' Code that determines if this command is valid.
If some condition Then
. Enabled = True
Else

Enabled =False
DisabledReason = "the document has not changed since” & _
“it was saved"
End If
End Select
End With

In the previous example, the Select Case Cmd.ID statement enables the method to han-
dle more than one command and provide specific processing for each command. The
Enabled property can be setto True or False. If Enabled is set to False, you can also set
the DisabledReason property to provide a message to the user explaining why the com-
mand is not available. You also have the option of setting the Checked property to True
or False.

Similar to UICommandTarget, if the command handler object is not required to deter-
mine the state of the command, it can set the ForwardToNext parameter to True before
returning, instructing UICommands to invoke the next object in the command handler
list.

If a command has at least one object in its command handler list, the object will be En-
abled and Unchecked. You only need to provide handling in UICommandState when
you want to disable or check a command. If a command’s command handler list is emp-
ty, GetCurrentState will return Disabled and Unchecked.

- 228 -

Understanding and Customizing the Client Framework

Step 3: Code Events to Update the Toolbar Buttons

Add code to enable or disable toolbar buttons. Thezeseveral different ways to
present disabled toolbar buttons to the user:

Display a message. When the user clicks the button, either a window with a message is
displayed or the message is displayed on the status bar.

Show a toolbar button with a disabled bitmap so that the user can immediately see the
button is disabled. The client framework uses this approach.

Displaying a Disabled Bitmap

If you decide to display a disabled bitmap, you must continually update the button im-
age. To update the button image, use a Timer control on the form and include the event
code as indicated in the following example:

Example of adding a Timer control to update the Button image

Private Sub tmrToolbarUpdate_Timer()
Dim i As Integer
Dim btn As Button

For Each btn In tbrMain.Buttons
If btn.Tag <> "" Then
With gUICmds.Command(btn.Tag)
. GetCurrentState
btn.Enabled = . Enabled
If btn.Style = tborCheck Then
btn.Value = IIf(. Checked , thrPressed,
tbrUnpressed)
End If
End With
End If
Next
End Sub

The previous example updates all the toolbar buttons that have command IDs assigned
to them by the Tag property. Set the timer interval so that this event executes frequently.
An interval of 250 ms ensures that the toolbar button bitmaps do not lag too far behind
the application’s state. Timer evemt® only triggered when the applicat becomes

idle. This is advantageous because it does not take away processing time from the run-
ning application to update the toolbar buttons, but it is disadvantageous because it
continues to update the toolbar button bitmaps when your application is idle.

- 229 -

Construct Spectrum SDK for Client/Server Applications

Displaying a Message

If you decide not to update the toolbar button bitmaps continually, leave the buttons en-
abled and instead display a message when the user clicks on a disabled button.

Example of displaying a message after the Click event on a disabled menu item

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
Dim smsg as string
If Button.Tag <>"" Then
With gUICmds.Command(Button.Tag)
. GetCurrentState
If. Enabled Then
gUICmds. SendCommandButton.Tag
Else
smsg = "This command is not available"
If. DisabledReason <> "" Then
smsg = smsg & " because " & . DisabledReason
End If
DisplayStatusBarMessage smsg
End If
End With
End If
End Sub
When the user clicks a toolbar button, the code determines whether or not the button is
valid. If it is valid, it executes the event code. If it is not valid, it displays a message on

the status bar, explaining to the user why the button is disabled.

Update Cycles

When the GetCurrentState method is called repeatedly for each menu item on a menu
or for each button on a toolbar, the application’s state does not change between the first
call and the last call to GetCurrentState because the only thread of execution is busy. If,
however, one of the UICommandState methods yields the CPU with a DoEvents or
calls a Windows function that yields, for example, with a blocked DDE request, the
Construct Spectrum application could be recesd allaving its state to change.

Assuming that the UICommandState methods do not act in this way, it is possible to
optimize the code that executes within these methods by using the concept of an update
cycle.

During an update cycle, it is known that the application’s state will not change. There-
fore, at the beginning of an update cycle, you can look up all of the information about
the application’s state that the UICommandState methods will need. Instead of looking
this up for each command ID that needs the information, you can look it up once, store
the information in Static variables, and use it several times.

For example, the validity of the Edit menu commands Undo, Cut, Copy, Paste, Delete,
and Select All, all depend on the control that currently has focus. You could write the
following code to determine the state of each of these commands at once.

-230 -

Understanding and Customizing the Client Framework

Example of code that determines the state of multiple commands simultaneously

bcanundo = False
bcancut = False
bcancopy = False
bcanpaste = False
bcandelete = False
bcanselectall = False

Set ctl = Screen.ActiveControl
If Not (ctl Is Nothing) Then
Select Case TypeName(ctl)
Case "TextBox", "MaskEdBox"
bcanundo = (SendMessage(ctl.hwnd, EM_CANUNDO, 0, ByVal 0&) <> 0)
bcancut = (ctl.SelLength > 0)
bcancopy = bcancut
bcanpaste = Clipboard.GetFormat(vbCFText)
bcandelete = bcancut
bcanselectall = (ctl.Text <>"")
End Select
End If

You may only want to run this code at the beginning of each update cycle because dur-
ing the update cycle the application’s state will not change. To set the update cycle,
bracket the calls to GetCurrentState with a call to SgatateCycle and a call to End-
UpdateCycle as shown in the following example:

Example of setting the update cycle

Private Sub mnuEdit_Click()
gUICmds.StartUpdateCycle

SetMenuState mnuEditUndo, CMD_EDIT_UNDO

SetMenuState mnuEditCut, CMD_EDIT_CUT
SetMenuState mnuEditCopy, CMD_EDIT_COPY
SetMenuState mnuEditPaste, CMD_EDIT_PASTE
SetMenuState mnuEditDelete, CMD_EDIT _DELETE

SetMenuState mnuEditSelectAll, CMD_EDIT_SELECT_ALL
gUICmds.EndUpdateCycle
End Sub

StartUpdateCycle assigns an update cycle ID (a 32-bit integer), which will be constant
until the call to EndUpdateCycle. The code that determines the state of the edit com-
mands will now only be executed when the update cycle ID changes, as shown in the
following example:

-231-

Construct Spectrum SDK for Client/Server Applications

Example of changing the update cycle ID

Dim ctl As Control

Static llastupdateedit As Long
Static bcanundo As Boolean
Static bcancut As Boolean
Static bcancopy As Boolean
Static bcanpaste As Boolean
Static bcandelete As Boolean
Static bcanselectall As Boolean

With Cmd
Select Case .ID

Case CMD_EDIT_UNDO, _
CMD_EDIT_CUT, _
CMD_EDIT_COPY, _
CMD_EDIT_PASTE, _
CMD_EDIT_DELETE, _
CMD_EDIT_SELECT_ALL
If llastupdateedit <> gUICmds.UpdateCyclelD then
llastupdateedit = gUICmds.UpdateCyclelD

bcanundo = False
bcancut = False
bcancopy = False
bcanpaste = False
bcandelete = False
bcanselectall = False

Set ctl = Screen.ActiveControl
If Not (ctl Is Nothing) Then
Select Case TypeName(ctl)
Case "TextBox", "MaskEdBox"
bcanundo =(SendMessage(ctl.hwnd, EM_CANUNDO, _
0, Byval 0&) <> 0)
bcancut = (ctl.SelLength > 0)
bcancopy = bcancut
bcanpaste = Clipboard.GetFormat(vbCFText)
bcandelete = bcancut
bcanselectall = (ctl. Text <>"")

End Select
End If

End If
Select Case .ID
Case CMD_EDIT_UNDO: .Enabled = bcanundo
Case CMD_EDIT_CUT: .Enabled = bcancut
Case CMD_EDIT_COPY: .Enabled = bcancopy
Case CMD_EDIT_PASTE: .Enabled = bcanpaste

Case CMD_EDIT_DELETE: .Enabled = bcandelete
Case CMD_EDIT_SELECT_ALL: .Enabled = bcanselectall
End Select
End Select
End With

-232 -

Understanding and Customizing the Client Framework

Additional Methods For Command Handling

This section describes other methods of UICommands you can use with your
application.

Unhooking Commands

To remove an object from all command handler lists, regardless of command ID, you
must release all references to it. The UICommands class provides the
ReleaseHooksByObject method as illustrated in the following syntax example.

Syntax of the ReleaseHooksByObject method

Sub ReleaseHooksByObject(HookObject As Object)

Pseudocode showing how the ReleaseHooksByObject method works

For all commands
If HookObiject is in this command's command handler list
Remove it from the list
End If
End For
To empty the command handler list for a given command, use the ReleaseHooksBYy-

Command method provided with the UICommands class:

Sub ReleaseHooksByCommand(CmdID As Variant)
where:

CmdID As Variant Is replaced with one of the previously-defined command IDs
(for example, CMD_EDIT_UNDO).

Customizing the Menu and Toolbar in the Client Framework

This section describes how to tailor the menu items and the toolbar buttons. You will
learn how to model your changes on the code in the client framework’s multiple-docu-
ment interface (MDI) frame form.

For more information about tailoring the menu items,Gleanging the Menu Struc-
ture, page 234.

For more information about tailoring the buttons on the toolbarCkaaging the
Toolbar Structure, page 240.

For information about how to change the states of the menu items and the toolbar be-
tween enabled and disabled, and checked or uncheckadhderstanding Menu and
Toolbar Command Handling, page 220.

- 233 -

Construct Spectrum SDK for Client/Server Applications

Changing the Menu Structure

The multiple-document interface (MDI) frame form in the client framework has a pre-
defined menu structure. You may change this menu structure by following the pattern
used in the MDI frame form.

For more information about the MDI frame form, the command IDs, command han-
dlers, and update cycles, dérderstanding Menu and Toolbar Command
Handling, page 220.

The pattern supplied with the MDI frame form is implemented with the following code
requirements:

« Each menu item control sends a command ID through event code. The event code for
all menu item controls is identical except for the command ID constant.

Example of event code for three commands on File menu and two commands on Edit
menu

Private Sub mnuFileOpen_Click()
gulCmds.SendCommand CMD_FILE_OPEN
End Sub

Private Sub mnuFileClose_Click()
gulCmds.SendCommand CMD_FILE_CLOSE
End Sub

Private Sub mnuFileExit_Click()
gulCmds.SendCommand CMD_FILE_EXIT
End Sub

Private Sub mnuEditCut_Click()
gulCmds.SendCommand CMD_EDIT_CUT
End Sub

Private Sub mnuEditCopy_Click()
gulCmds.SendCommand CMD_EDIT_COPY
End Sub

+ The command IDs are all defined in a global module called UICommandConstants.bas.

Example of UICommandConstants.bas where all command IDs are defined

Public Const CMD_FILE_OPEN = "FileOpen"
Public Const CMD_FILE_CLOSE = "FileClose"
Public Const CMD_FILE_EXIT = "FileExit"

Public Const CMD_EDIT_CUT = "EditCut"
Public Const CMD_EDIT_COPY = "EditCopy"

« When the MDI frame form is loaded, the command IDs akéed into the command
classes.

—234 -

Understanding and Customizing the Client Framework

Example of hooking the commands IDs into the command classes

Private Sub MDIForm_Load ()
With gUICmds
.HookCommand Me, CMD_FILE_OPEN, _
CMD_FILE_CLOSE, _
CMD_FILE_EXIT

.HookCommand Me, CMD_EDIT_CUT, _
CMD_EDIT_COPY
End With
End Sub

Note: Although you can hook all command IDs with one call to the HookCommand
method, the previous example illustrates how to group the command IDs by
category — File commands and Edit commands.

Each menu item has a parent menu control. This control's Click eventis triggered when
the user chooses the menu. Use the Click event to enable or disable and check or un-
check each menu item.

Example of using the Click event to control menu items

Private Sub mnuFile_Click()
gUICmds.StartUpdateCycle
SetMenuState mnuFileOpen, CMD_FILE_OPEN
SetMenuState mnuFileClose, CMD_FILE_CLOSE
SetMenuState mnuFileExit, CMD_FILE_EXIT
guUlCmds.EndUpdateCycle

End Sub

Private Sub mnuEdit_Click()
gUICmds.StartUpdateCycle
SetMenuState mnuEditCut, CMD_EDIT_CUT
SetMenuState mnuEditCopy, CMD_EDIT_COPY
guUlCmds.EndUpdateCycle

End Sub

The previous example calls SetMenuState for each item on the menu. These calls are
bracketed by StddpdateCycle and EndUpdateCycle.

Finally, you must code the UICommandTarget and UICommandState procedures in
each form that will be receiving these command IDs. You can model your procedures
on the procedures used by the MDI frame form and Visual Basic maintenance objects
generated with Natural Construct.

—-235-

Construct Spectrum SDK for Client/Server Applications

Example of UICommandTarget and UICommandState procedures used by MDI
frame form

Public Sub UICommandTarget(Cmd As UICmd, ForwardToNext As Boolean)
Select Case Cmd.ID

Case CMD_FILE_OPEN
frmOpen.Show vbModal

Case CMD_FILE_CLOSE
Unload Screen.ActiveForm

Case CMD_FILE_EXIT
Unload Me

Case CMD_EDIT_CUT
With Screen.ActiveControl
Clipboard.SetText .SelText
.SelText=""
End With
Case CMD_EDIT_COPY
Clipboard.SetText Screen.ActiveControl.SelText

End Select
End Sub

Public Sub UICommandState(Cmd As UICmd, ForwardToNext As Boolean)
Dim frm As Form
Dim ctl As Control

Static llastupdateedit As Long
Static bcancut As Boolean
Static bcancopy As Boolean

With Cmd

Select Case .ID

Case CMD_FILE_CLOSE
.Enabled = False
.DisabledReason = "there are no child windows open
Set frm = Screen.ActiveForm
If Not (frm Is Nothing) Then

.Enabled = IsMDIChild(frm)

End If

Case CMD_EDIT_CUT, _
CMD_EDIT_COPY
If llastupdateedit <> gUICmds.UpdateCyclelD Then
llastupdateedit = gUICmds.UpdateCycleID
bcancut = False
bcancopy = False

Set ctl = Screen.ActiveControl
If Not (ctl Is Nothing) Then
Select Case TypeName(ctl)
Case "TextBox", "MaskEdBox"
bcancut = (ctl.SelLength > 0)
bcancopy = bcancut
End Select
End If
End If

- 236 -

Understanding and Customizing the Client Framework

Select Case .ID
Case CMD_EDIT_CUT: .Enabled = bcancut
Case CMD_EDIT_COPY: .Enabled = bcancopy
End Select
End Select
End With
End Sub

Example of Changing the Menu Bar and Its Menu Items

The following example adds a new menu called View to the menu bar and includes
commands that allow you to toggle the toolbar and status bar on and off.

» To add a View menu to the menu bar with the menu items Toolbar and Status Bar:

1 Use Visual Basic's menu editor to add the following menu controls to the MDI frame
form.

Menu Caption Menu Control Name

View mnuView
Toolbar mnuViewToolbar
Status Bar mnuViewStatusBar

Note: The rest of this example assumes the previous menu structure has been added.

- 237 -

Construct Spectrum SDK for Client/Server Applications

Captior; I&Status Bar K.

0

M arme: I rnnuiewStatusB ar Carncel

[rides: I Shortzut; I[Nu:une]
HelpContextD: II:I MegotiatePozition: [0-Mone |*

[T Checked X Enabled X isible [windowlist

ﬂﬂﬂ ‘_ﬂe:-:t || |nzert || Delete I

RS elect Al Chrl+2, +

] [

<Elnzert B ow

New View menu
. tatuz Bar

fbctions
B rawse
< RClear +

Example of the New Menu View Added to the Menu Bar

2 Define command IDs in UICommandConstants.bas:

Public Const CMD_VIEW_TOOLBAR = "ViewToolbar"
Public Const CMD_VIEW_STATUSBAR = "ViewStatusBar"

The names of these constants and their values can be anything you choose, but try to
follow the conventions established in the code.
3 Code the event handlers for the menu controls:

Private Sub mnuViewToolbar_Click()
gulCmds.SendCommand CMD_VIEW_TOOLBAR
End Sub

Private Sub mnuViewStatusBar_Click()

gulCmds.SendCommand CMD_VIEW_STATUSBAR
End Sub

- 238 -

Understanding and Customizing the Client Framework

Hook the command IDs into the command classes:

Private Sub MDIForm_Load ()
With gUICmds

" HookCommand Me, CMD_VIEW_TOOLBAR, _
CMD_VIEW_STATUSBAR

End With
End Sub
Add code to the Click event of the menu control on the menu bar to update the state of
the menu controls:

Private Sub mnuView_Click()
gUICmds.StartUpdateCycle

SetMenuState mnuViewToolbar, CMD_VIEW_TOOLBAR
SetMenuState mnuViewStatusBar, CMD_VIEW_STATUSBAR

gUlCmds.EndUpdateCycle
End Sub
Lastly, add code to the UICommandTarget and UICommandState procedures in the
MDI frame form to handle thegeo new command IDs:

Public Sub UICommandTarget(Cmd As UICmd, ForwardToNext As Boolean)
Select Case Cmd.ID

Case CMD_VIEW_TOOLBAR
tbrMain.Visible = Not tbrMain.Visible

Case CMD_VIEW_STATUSBAR
sbrMain.Visible = Not sbrMain.Visible

End Select
End Sub

Public Sub UICommandState(Cmd As UICmd, ForwardToNext As Boolean)
With Cmd
Select Case .ID

Case CMD_VIEW_TOOLBAR
.Checked = tbrMain.Visible
Case CMD_VIEW_STATUSBAR
.Checked = sbrMain.Visible

End Select
End With
End Sub
By using the command handler, you do not need to set the menu controls’ Checked
properties when you toggle the visibility of the toolbar or status bar. Instead, read the
current visibility state in the UICommandState method. If another piece of code chang-
es the visibility state, that other code is not required to toggle the menu’s Checked

property.

—-239 -

Construct Spectrum SDK for Client/Server Applications

Changing the Toolbar Structure

The toolbar follows the structure defined by the MDI frame form, just as the Menu does.

For more information about the MDI frame form structure,dederstanding Menu
and Toolbar Command Handling, page 220.

The toolbar is a control of type Toolbar, from the Windows Common Controls library,
with the name tbrMain.

The button rangement is defined at design time using the Toolbar Control Properties
window. The images on the buttons are stored in the ilstMain image list control on the
MDI frame form. Each toolbar button is linked to a specific numeric index in the image

list.

The Tag property of each toolbar button contains the command ID that is sent by that
button. The command IDs may be the same as ardift from those used on the menu.
These Tag properties are setwigh the following code in the form’s Load event:

Example of Tag properties defined in the Load event

With tbrMain
.Buttons("OPEN").Tag = CMD_FILE_OPEN
.Buttons("CUT").Tag = CMD_EDIT_CUT
End With

The previous example uses a string key to uniquely identify each toolbar button. This
key makes it easy to get a reference to a specifibao button.

Note: Another way to setthe Tag property is by using the Toolbar Control Properties
window, although this solution is less desirable. First, in the Toolbar Control
Properties window, specify a hard-coded value in the dialog (in code you
would use a named constant). Second, if you hand code the value in the dialog,
you cannot use Visual Basic’'sageh function to search for it, kiag your
code more difficult to review, change, and scan for dependencies.

When a toolbar button is clicked, the ButtonClick event checks whether the button
should be enabled or not, and then sends the command ID if it is enabled. This code is
generic and does not have to be changed if the buttons on the toolbar are changed.

The following example uses the ButtonClick event to check whether the button is en-
abled or not and sends the command ID if it is enabled.

—240 -

Understanding and Customizing the Client Framework

Example of checking the button’s state

Private Sub tbrMain_ButtonClick(ByVal Button As Button)
Dim smsg As String

If Button.Tag <>"" Then
With gUICmds.Command(Button.Tag)
.GetCurrentState
If .Enabled Then
gUICmds.SendCommand Button.Tag
Else
smsg = "This command is not available"
If .DisabledReason <>"" Then
smsg = smsg & " because " & .DisabledReason
End If
DisplayStatusBarMessage smsg
End If
End With
End If
End Sub

Example of Adding Buttons to the Toolbar

In this example, two new buttons are placed on the toolbar to correspond to the menu
commands Insert Row and Delete Row on the Edit menu. These commands already
have command IDs and command handlers.

For more information about defining command ID constants and command handlers,
seeExample of Changing the Menu Bar and Its Menu Itemspage 237.

» To add two buttons to the toolbar:

1 Display the Image List Control Properties window for the image list control called
ilstMain and add the bitmaps of your choice to the two new buttons. Make a note of the
numeric index of these bitmaps.

2 Display the Toolbar Control Properties window and add the new buttons. Give each
button a string key, ToolTip text, and assign the image number from the first step.

3 Set the buttons’ Tag properties in the MEaAme form’s Load event. The
mnuEditinsertRow and mnuEditDeleteRow controls in the Click event send the
command IDs CMD_EDIT_INSERT_ROW and CMD_EDIT_DELETE_ROW,
respectively. Use these command IDs when assigning the Tag properties:

With tbrMain

Buttons("INSERT_ROW").Tag = CMD_EDIT_INSERT_ROW
.Buttons("DELETE_ROW").Tag = CMD_EDIT_DELETE_ROW

End With
There aranow two new buttons on the toolbar that behave identically to the Insert Row
and Delete Row commands on the Edit menu.

—-241 -

Construct Spectrum SDK for Client/Server Applications

MDI (Multiple-Document Interface) Frame Form

Construct Spectrum supplies the MDI (Multiple-Documengtiatce) frame form,

which includes a standard menu bar, toolbar, and status bar for your application. Use
the MDI frame form as a starting point for creating your own menu or tailoring your
toolbars. You can customize the menu and toolbars for each application — or use the
MDI frame form as is.

All generated maintenance dialog® dsplayed as child windows within the MDI
frame form. The fdbwing table describes the components of the NtBxine form:

Component Description

MDIFrame.frm Contains the MDI frame form, which includes the following:

Menu Bar Contains File, Edit, Actions, Window, and Help menus, each
containing the standard menu commands.

Toolbar Contains buttons thatrcespond to most of the menu commands
and can be customized by the user.

Status Bar Contains panels for a message, various status indicators, and the
current date and time.

For more information, sedultiple-Document Interface (MDI) Applications in the
Microsoft Visual Basic documentation.

—242 -

Understanding and Customizing the Client Framework

Object Factory

The object factory client framework components are used by many of the generated
Construct Spectrum modules, as well as by other client framework objects and forms.
The purpose of the object factory is to make the client portion of your application aware
of all of its Visual Basic business objects and their associated actions. The Open dialog
uses the object factory to display a list of all available Visual Basic business objects for
selection.

The following table describes the objéattory and Open dialog components supplied
with Construct Spectrum:

Component Description

Open.frm Contains the Open dialog.

OpenAction Describes a single action of a Visual Basic business object in your
application.

OpenObject Describes a single Visual basic business object in your application.

OpenObijects Contains all Visual Basic business objects in your application.

OFactory.bas Contains the object factory.

The objects and actions are displayed in the Open dialog. The user selects an object, se-
lects one of the actions for that object, and then clicks OK to display the form.

(@] Select a Dialog O] x|
CObjeete - oo oo ool hmhiens ool
. |lztObjects | lstéctions

p LA ¢ S0 e 000 s 00cconeooe ot TER B B

Default Open.frm Supplied with your Construct Spectrum Project

— 243 -

Construct Spectrum SDK for Client/Server Applications

Understanding the Open Dialog

The Open dialog provides the user with a convenient method of selecting the type of
window he or she would like to open. The Open dialog displays two lists: one showing

the main business objects, such as customers, accounts, and orders, and the other show-
ing the actions available for the business object selected in the first list. For example, if
Orders is selected in the first list, then Maintain, Browse, Show pending orders, and
Print end-of-day report may appear in the second list. Each item may also have a short
description, which is shown when the user selects the item.

You do not modify the Open dialog. Instead, update the object factory by providing the
list of objects for the first list and the associated actions for the second list, and then
writing the code that is executed when each object and action combination is selected.
This code will load and display a form generated by Natural Construct.

The Open dialog uses the object factory for two purposes:
+ To determine which objects and actions are supported by an application
» To instantiate a form

For more information, se@ustomizing the Object Factory page 246, an@ustom-
izing the Menu and Toolbar in the Client Framework page 233.

Understanding the Object Factory

Every Construct Spectrum application contains an object factory. The object factory is
the central repository in your application where instances of Visual Basic business ob-
jects are created for use by othertfwors of the application. The super model generates
the initial object factory based on the objects defined to the model. As new objects are
added, the object factory is typically extended by hand-coding new ogfectnces.

Because all Visual Basic business objects are created in the object factory, all other ap-
plication components that use the services of these objects can compile and execute,
even if the business objects they interact with have not been added to the application.
For more information about using the object factory to instantiate Visual Basic business
objects that have not yet been added to your applicatioExsaaple of Using the Ob-

ject Factory, page 246.

Application components that use the services of the object factory include:
» Construct Spectrum client framework components:
— Open dialog

— BrowseManager class
For more information, sddsing the BrowseManagerpage 191, andnderstand-
ing Browse Command Handlers page 195.

— 244 —

Understanding and Customizing the Client Framework

» Visual Basic maintenance business object
For more information about the forms and classes generated by the VB-Maint-Object
model, se€reating and Customizing Maintenance Dialogspage 113. For more in-
formation about the forms and classes generated by the VB-Maint-Dialog model, see
Strategies for Customizing a Maintenance Dialogpage 129.

» Visual Basic browse business object
For more information about the forms and classes associated with Visual Basic browse
business objects, sédout Browse Dialogs page 176 andnderstanding Browse
Command Handlers page 195.

» Custom-created modules such as browse command handlers
For information, se&nderstanding Browse Command Handlerspage 195.

Application components that require a specific form or object to implement a service
(for example, creating a browse dialog that allows your users to browse customer
records) use the object factory. Instead of each component creating its own instances of
these objects, components send a request to the object factory to create the objects and
return a reference.

Using the Object Factory

The object factory exposes four procedures (functions and subroutiaeajeglobal
to your application. As you create your application, use these procedures to:

+ Make the application aware of all its Visual Basic business objects.
» Create instances of Visual Basic business objects (forms or objects).
» Query the availability of Visual Basic business objects.

The following table describes the procedures in the object factory:

Service Description

InitializeOpenDialog() Creates a list of the application’s Visual Basic
business objects and the actions they support. The
Open dialog uses this service.

CreateFormformID) As Form Creates a form to support a Visual Basic business
object (either a Visual Basic browse or
maintenance object) and returns a reference to the
form. The Open dialog uses this service.

BrowserExists{ableNameAs Confirms with True or False whether a Visual
Boolean Basic browse object exists for a database table.
GetBrowser{ableNamgAs Creates a specific Visual Basic browse object for
BrowseManager a database table. Next, the specified browse object

creates and initializeskamowse base object.
Finally, the object factory returns a reference to
the BrowseManager object.

— 245 -

Construct Spectrum SDK for Client/Server Applications

Example of Using the Object Factory

An Order Maintenance form can invoke an Order Browse form. To accomplish this, the
Order Maintenance form uses the services of the Order Browse object.

If an Order Maintenance form directly instantiates an Order Browse object (instead of
using the object factory), it could not be compiled without including the Order Browse
object as part of the application. However, by conditionally creating an Order Browse
object with the objediactory, you will be able to compile the form, even if the Order
Browse object has not yet been added to the application.

At execution time, the Order Maintenance form uses a global function,
BrowserExists(tablename), exposed by the object factory, to determine if the object fac-
tory can create an instance of the Order Browse object. Only if the object factory returns
True to this request does the form enable the features supported by the Order Browse
object.

The TableName parameter used with the BrowserExists() function is the name of the
database table implemented by a Visual Basic business object.

Customizing the Object Factory

When you add new business objects to your application, such as maintenance forms or
browse objects, you must update the object factory to make the application aware of
these new objects. You must either add code manually to the standard object factory
module or generate a new object factory using the super model.

If you generated and downloaded the obfactory (OFACTORY, although you may
have given it a dierent name)you should be able to run your application, choose Open
on the File menu, and see the objects and actions you generated.

Downloaded formsare added to yourdhstruct Spectrum project. However, if you did
not generate the object factory or if you are adding a form to an existing project, you
must write a small amount of code by hand to link each new form to the client frame-
work. Once linked, the Open dialog is able to load, initialize, and display the form. The
following sections describe how to code the object factory by hand.

— 246 —

Understanding and Customizing the Client Framework

Setting Up Object/Action Combinations and Forms

The client framework uses an object-action metaphor to select a particular form to dis-
play. As the application developer, you must decide which types of objects can be
manipulated by the application, such as Customers, Orders, and Inventory. Next you
must decide which actions will be supported for each object, such as Maintain, Browse,
or Show Delinquents. Each object-action combination will have a form associated with
it, either generated or created by hand.

You must write code to define all of the objects, the actions for each object, and which
form to load and initialize for each object-action combination. All of the code resides
in a module called OFactory.bas in your Construct Spectrum project.

i ObjectFactory [_ O] x|

Object: I[Eeneral] j Praoc: IInitiaIizerenDialug j

B

Pubhlic Sub InitializeOpenDialog()
' Creates & global collection of business package descriptions.

' Each business package description contains the package's name,
' & descriptive comment, and & list of actions supported by the package.

' Each entry in the list of supported services, contains the service
' name, & description, and an ID which unigquely identifies the

' service within the entire application.

Dim obhj Az OpenChiject

' Create & new global instance of the Opendbiects collection.
Set gOpendbhjects = New OpenChijects

'obdd & new business package to the Opendhiects collection.
'Set obi = gOpendbiects. bdd ("Customer™, "Customer™)

' obdd the serwvices supported by this business package.
'olj.Add "Maintensnee”, "Customer MNaintenance”, "Customer M1T
'olj.Add "Browse", "Browse Custowmers", "Customer B1T

' To add a new business package: (1) Copy this code block ——————————= -
Vo2 TUneorment and modify the lines in this code block as required.
'obdd & new business obiject to the OpenCbijects collection.
'Set obi = gOpendbiects. Add ("<object name>", "<object description=>™)
' obdd the serwvices supported by this business package.
'obi.bidd "<actionl nawmex", "<actionl descriptions®, "<actionl ID=M
'obi.bidd "<actiong namex", "<action? descriptions", "<action2 ID=M
D e <<

Default Code in the OFactory.bas

— 247 —

Construct Spectrum SDK for Client/Server Applications

The relationship between the Open dialog, the procedures in the OFactory.bas file, and
the newly-created form are important to understand as you plan the customization of the
object factory. The following diagram clarifies these relationships:

Open Dialog
1 Get object/action details 3 Get new florm instance 5 Display form
InitializeOpenDialog CreateForm | | Newly-Created Form
2 User selects an object/action 4 Load and initialize form

combination

Interaction Between Open Dialog, Procedures in OFactory.bas,
and Newly-Created Form

— 248 —

Understanding and Customizing the Client Framework

Example of the default OFactory.bas client framework component

Option Explicit

'"PUBLIC Module Variables

Public gOpenObjects As OpenObjects

'"PUBLIC Procedures

Public Sub InitializeOpenDialog()
Dim obj As OpenObject
Set gOpenObjects = New OpenObjects

Set obj = gOpenObjects.Add("Customer”, "These are our customers.")
obj.Add "Maintain", "Customer maintenance", "CUSTMAINT"
obj.Add "Browse", "Display a list of all customers.", "CUSTBROWSE"

Set obj = gOpenObjects.Add("Order", "These are our orders.")
obj.Add "Maintain", "Order maintenance", "ORDERMAINT"
obj.Add "Browse", "Display a list of all orders.", "ORDERBROWSE"

End Sub

Public Function CreateForm(FormID As Variant) As Form
Dim frm As Form

Select Case FormID
Case "CUSTMAINT"
Set frm = New frmCustomerMaint

Case "CUSTBROWSE"
Set frm = New frmCustomerBrowse

Case "ORDERMAINT"
Set frm = New frmOrderMaint

Case "ORDERBROWSE"
Set frm = New frmOrderBrowse

' Add additional form variants here.
'‘Case ...
Case Else
ASSERT False, "The Object Factory was passed an " & _
"unknown form ID: " & FormID
Exit Function
End Select
Set CreateForm = frm

End Function

— 249 —

Construct Spectrum SDK for Client/Server Applications

Making Your Application Aware of New Business Objects

When you add new business objects to your application, such as maintenance forms or
browse objects, you must update the object factory to make the application aware of
these new objects. You must either add code manually to the standard object factory
module or generate a new object factory using the super model.

For more information abouteating the objedactory using the super model, désing
the Super Model to Generate Applicationspage 77.

If you choose to update the object factory manually, you will have to update each of the
associated object factory procedures. The steps outlined below describe how to update
these procedures.

To link your object factory module with the clieiihmework:

Step 1: Update the InitializeOpenDialog Procedurgpage 250

Step 2: Update the CreateForm Proceduregpage 252

Step 3: Update the GetBrowser Procedurepage 253

I W W WA 74

Step 4: Update the BrowserExists Procedurgage 255
These steps are described in the following sections.

Step 1: Update the InitializeOpenDialog Procedure

The purpose of this procedure is to create a list of aNiteal Basic business objects
known to the application. This list is implemented as a Visual Basic collection of Ope-
nObjects types, and the objects contained in this colleat®f OpaObject types.

Both of these class definitions are supplied with the Construct Spectrumficimet

work. You can use the Object Browser in Visual Basic to view the public methods and
properties of these objects.

For more information, refer tdonstruct Spectrum Reference

- 250 -

Understanding and Customizing the Client Framework

=

Example of the InitializeOpenDialog procedure

Public Sub InitializeOpenDialog()
Dim obj As OpenObject

' Create a new global instance of the OpenObjects collection.
Set gOpenObjects = New OpenObjects

' Add the Customer business object and its actions.

Set obj = gOpenObjects.Add("Customer", "Customer")

obj.Add "Maintenance", "Customer Maintenance", "Customer_M1"
obj.Add "Browse", "Browse Clients", "Client_B1"

' Add the Order business object and its actions.

Set obj = gOpenObjects.Add("Order", "Order")

obj.Add "Maintenance", "Order Maintenance", "Order_M1"
obj.Add "Browse", "Browse Orders", "Order_B1"

' To add a new business object copy this code block and
"uncomment and modify lines as required ---------------------- >>

'Set obj = gOpenObjects.Add("<object name>", "<description>")
'obj.Add "<action1 name>", "<description>", "<action1 ID>"
'obj.Add "<action2 name>", "<description>", "<action2 ID>"

‘<< —

End Sub

In the above example, there are two Visual Basic business objects known to the appli-
cation — Customer and Order.

To add a new object to the application:

Copy the commented lines delimited by #veows (shown in bold above).

Uncomment the line to add a new business object to the OpenObjects collection.
Change the object name and description to pertain to your Visual Basic business object.

For each action supported by your Visual Basic business object (such as Maintenance,
Browse, or Reports), copy and uncomment a line to add the action.

— Change the action name and action description to pertain to the specific action.
— Change the form ID to uniquely identify the action within the entire application.

- 251 -

Construct Spectrum SDK for Client/Server Applications

Step 2: Update the CreateForm Procedure

This function takes a form ID as a parameter and returns a reference to a Construct
Spectrum form that implements the requested business action. To handle the creation
of the Visual Basic form that implements the action, add a new case statement for each
form ID you have added to your InitializeOpenDialog procedure.

Example of the CreateForm procedure

Public Function CreateForm(FormID As Variant) As Form

Dim frm As Form
Dim BrMgr As BrowseManager

' For every possible action supported by the business objects in
' the application, instantiate a form to service the action.

Select Case FormID

' Copy this case for each new maintenance form ---------------- >>
Case "Customer_M1"

' Create a new Customer maintenance form.

Set frm = New frm_Customer
‘<< -—

' Copy this case for each new browse form ---------------eoeo-- >>
Case "Customer_B1"
' Create a new Browse Manager object for the Customer Browse
' Object.
Set BrMgr = GetBrowser("NCST-CUSTOMER")
' Ask the Browse Manager object to create a new Customer
' Browse form.
Set frm = BrMgr.MDIBrowserForm
‘<< -—

Case Else
ASSERT False, "The Object Factory was passed an " & _
"unknown form ID: " & FormID
Exit Function
End Select

Set CreateForm = frm

End Function

» To add support for a new Visual Basic maintenance business object action:

1

Copy the commented code block delimited by the arrows for the maintenance action (as
shown in bold above).

Modify the line to add a case statement for the action. Change the FormID in the Case
line to match the ID of the Visual Basic maintenance business object’s action.

Modify the line that creates a maintenance form. Change the name of the form to the
name of the form generated by the VB-Maint-Dialog model for the new Visual Basic
business object.

- 252 -

Understanding and Customizing the Client Framework

» To add support for a new Visual Basic browse business object action:

1 Copy the commented code block delimited by the arrows for the browse action (as
shown in bold italics above).

2 Uncomment the line that adds a case statement for this action. Change the FormID in
the case statement to match the form ID of the Visual Basic browse business object’s
action.

3 Uncomment the line that uses the GetBrowser(TableName) function to return a
reference to an initialized BrowseManager object. Change the TableName parameter to
the name of the database table for which the Visual Basic business object was
generated.

4 Uncomment the line that uses the MDIBrowser method of the BrowseManager object
to return a reference to an MDI browse form.

Step 3: Update the GetBrowser Procedure

When you add a new Visual Basic business object that supports a browse action, you
must add a new case statement to this function to initialize and return a BrowseManager
object. Use the GetBrowser procedure to return a referencendiatizied BrowseM-
anager object. Client framework components use this function to requéstesce to

a BrowseManager object used to request browse services (such as displaying a MDI
browse or modal browse form or performing a lookup request).

For more information about the BrowseManager,@egtomizing the Generic
Browse Dialog page 190.

- 253 -

Construct Spectrum SDK for Client/Server Applications

Example of the GetBrowser() function

Public Function GetBrowser(TableName As String) As Browser
Dim BrMgr As New BrowseManager

' Return a browser object for the requested table.

Select Case TableName

' Copy this code block to add support for a new Browse ------ >>
Case "NCST-CUSTOMER"

' Create a New Customer Browse Object.
Dim CustomerBrowse As New CustomerBrowse

' Set the BrowseManagers base object to the Customer
' Browse Object's BaseObiject.
Set BrMgr.BrowseObject = CustomerBrowse.BaseObject

' Assign the Caption property of the BrowseManager.
BrMgr.Caption = "Query Customers"

Case "NCST-ORDER-HEADER"
Set BrMgr.BrowseObject = New OrderBrowse
BrMgr.Caption = "Query Orders"

End Select

Set GetBrowser = BrMgr

End Function

<<

» To add support for a new Visual Basic browse business object action:

1
2

Copy the commented code block delimited by the arrows (as shown in bold above).

Modify the line that adds the new case statement. Change the name of the table to the
name of the database table implemented by the new Visual Basic browse business
object.

Modify the line that ceates the new specificdwse object. Change the instance name

and class name of the specific browse object to the name of the class that was generated
by the VB-Browse-Object model for the new business object. This is the class that
initializes a generic base browse object, with for example the column names, formats,
captions, and key names specific to a particular Visual Basic browse business object.

Modify the line that sets the BrowseMamr#'g BaseObject property to the BaseObject
property of the specific browse. Change the specific browse object name to the class
name of the specific browse object generated by the VB-Browse-Object model for the
new Visual Basic browse business object.

Modify the line that assignhs BrowseManager's Caption property.
Change the caption to describe the Visual Basic browse business object.

If your application supports multiple languages at runtime|rgeenationalizing
Using the Client Framework page 297, for more information about how you can
internationalize the caption.

— 254 -

Understanding and Customizing the Client Framework

Step 4: Update the BrowserExists Procedure

When you add a new Visual Basic business object that supports a browse action to your
application, you must add a new case statement to the BrowseEXxists procedure to make
the browse known to all the other components in your application.

Other application components nevelerediredly to a specific Visual Basic browse
business object. Instead, they refer to the browse via the tablename for which the spe-
cific Visual Basic browse business object has been implemented. This allows
application components that use the services of browse objects to compile and execute
even if the browse objects have not yet been added to your project.

Example of the BrowserExists procedure

Public Function BrowserExists(TableName As String) As Boolean

' Optimistic
BrowserExists = True

' Check if there is a browse object for the requested table name.
Select Case TableName

' Copy this line to add support for a new browse ---- >>
Case "NCST-CUSTOMER"
' <<

Case "NCST-ORDER-HEADER"
Case Else

BrowserExists = False
End Select

End Function

Note: Table names used in this function must match those in the GetBrowser func-
tion. Table names must be the view names documented in Predict.

To add support for a new browse:
Copy the code block delimited by the arrows (as shown in bold above).

Modify the line that adds a new case statement. Change the database table name to the
name of the table implemented by the Visual Basic business object. Make sure that this
is the same table name that is referred to in the GetBrowser{jdiuffiar this Visual

basic browse business object.

— 255 -

Construct Spectrum SDK for Client/Server Applications

Spectrum Dispatch Client Support

The Spectrum Dispatch Client (SDC) client framework components provide function-
ality that integrates the rest of the client framework and the generated code with the
Spectrum Dispatch Client. Consider these client framework components to be helper
components that simplify using the Spectrum Dispatch Client.

The Spectrum Dispatch Client uses one generic dialog to display varying information
based on need. A Construct Spectrum application uses the dialog in three distinct ways:

« To prompt the user for a Construct Spectrum user ID and password when a remote
CallNat returns a security error

» To display communication error messages to your user
« To prompt the user to specify a dispatch service for the application
These components are described in the following sections.

The following table describes the Spectrum Dispatch Client dialog client framework
components supplied with Construct Spectrum:

Component Description

SDCDialog.frm Prompts the user for logon credentials, selects dispatch
services, and displays errors arising in the Spectrum Dispatch
Client.

TraceOptions.frm Sets trace options for a remote call. For more information, see

Debugging Your Client/Server Application, Construct
Spectrum SDK Reference

SDCSupport.bas Encapsulates common Spectrum Dispatch Client procedures.

— 256 —

Understanding and Customizing the Client Framework

(=] Subprogram Proxy Trace Options _ O] x|
-~ Trace Option 1; S ave data tranzmitted between client and server - 0k I:
= 0-Mone e :

_ - Cancel |

£~ 1 -Data zent to subprogram prozy will be saved C—

= 2 -Data received from subprogram prozy will be saved B,

£~ 3 -Data zent to and received from subprogram prozy will be saved

= 4 -Data will be zaved only if an erar occurs B,

= 5-Data generated by application code will be saved

-~ Trace Option 2 Subprogram proxy Conyersion emors—————————————« « -« « .+« + . .
= 0- Return az NATURAL run-time erars e
= 1 - Return az Interface erars with full details

- Ressttiace optionsaftercall o

7777 blPrompt

Lot e e e ——

Lo e e e e e e .
. Cancel | .
: EEWICE ICbDSEWiCE =iloccacaaaaas -

SDCDialog.frm supplied with Construct Spectrum Client Framework

The client framework uses the SDCDialog.frm to supply all three of these features.

— 257 -

Construct Spectrum SDK for Client/Server Applications

Logon Dialog

The Logon dialog provides a convenient way of obtaining a user ID and password from
the current user. The user ID and password are required for all calls to back-end Natural
services to ensure that the user is authorized to access each service.

By default, the Logon dialog displays when the application starts and whenever a “No
Permission to Execute Function” error occurs.

Error Messages

Error messages returned by the Spectrum Dispatch Client are displayed by the client
framework using the SDCDIiag form. For information about messageser toCon-
struct Spectrum Messages

Dispatcher Selection Window

The client framework displays the Dispatcher Selection window to allow users to select
which dispatcher to associate with their current application.

For more information about the Spectrum Dispatch ClientSpeetrum Dispatch
Client Components Construct Spectrum SDK Reference

— 258 -

Understanding and Customizing the Client Framework

Utility Procedures

The utility procedures in the client framework are functions and subroutines accessed
by many other components of the client framework. For example, client framework
components access the utility procedures to center a form onrées sparse strgs,
calculate minimum and maximum values, test assertions, and set the mouse pointer

appearance.

CSTUtils.bas is the client framework component containing the utility procedures and
global constants. The following table provides a brief description of each procedure:

Utility

Description

AppendSlash

ArrayDimensions
ASSERT
CenterForm

CreateArray
CreateStringArray
CSTFormat

Message

CSTSelect
Contents

CSTSubst

FileExists

FindFirst

FixupRTF

GetPrivateProfile
StringVB

Appends a backslash to the end of a directory name, if
necessary.

Returns the number of dimensions iaraay.
Tests an assertion.
Centers a form relative to the screen or to another form.

Creates and returns a one-, two-, or three-dimensicmab#
variants.

Creates and returns a one-, two-, or three-dimensiayaba
variants, but creates amray of stings.

Formats a message in a CDPDA-M or CSASTD data area by
performing the substitutions.

Highlights the contents of a TextBox control by setting the
SelStart and SelLength properties. This procedure can be
called in the GotFocus event for the TextBox to simulate
Windows behavior of selecting text when you Tab to a field.

Substitutes values into a string marked with the Construct :n:
substitution place holders.

Tests if a file exists by attempting to open the file.

Searches a string for the first occurrence of a character in a set
of characters.

Changes any embedded backslashachers in a sing to two
backslashes so that the string can be displayed properly in a
RichTextBox control.

Reads a string value in a Windows .INI file. This procedure is
a Visual Basic wrapper around the Windows
GetPrivateProfileString function.

— 259 -

Construct Spectrum SDK for Client/Server Applications

Utility Description (continued)

GetWindows Returns the name of the Windows directory. This procedure is

DirectoryVB a wrapper around the Windows GetWindowsDirectory
function.

IsForeground Returns True if the application is currently the foreground
Application application and False if not. Use this function to execute code
only if the application is currently active.

IsMDIChild Returns whether or not a form is an MDI child window.

Max Returns the maximum of two values.

Min Returns the minimum of two values.

MoveFormSafely Moves a non-MDI child form to a new location on the screen,
ensuring that the entire form is displayed.

PadLeft Pads a string on the left with spaces or any character to a
specified width.

PadRight Pads a string on the right with spaces or any character to a
specified width.

ResizeForm Resizes a form so that its client area is the specified gme. If
know how big the client area needs to be, call this procedure to
resize the form.

SetUppercaseStyle Sets the Windows style bit for a TextBox control so that the

control converts all text to upper case.

For more information about the utility procedures, d8kty Subroutines on the Cli-
ent, Construct Spectrum Reference

- 260 —

VALIDATING YOUR DATA

This chapter outlines the data validation facilities provided with Construct Spectrum.
The following topicsare covered:

« Overview, page 262

« Client Validation, page 264

« Creating Verification Rules in Predict, page 269
» Order of Precedence in Data Validationpage 271
« Validation Error Handling , page 272

- 261 -

Construct Spectrum SDK for Client/Server Applications

Overview

Construct Spectrum-generated applications provide a framework for data validation de-
signed to ensure the integrity of your information. Construct Spectrum applies four
levels of data validation. Before adding or changing any data, Construct Spectrum ap-
plies basic data type checking, business data type checking, local business validation,
and business object validation.

Errors arising from any of these data validation levels are displayed on the client.

Basic Data Type Validation

The Spectrum Dispatch Clieneorms basic data type lidation. It uses the format

and length associated with each field in your object PDA to ensure that the value being
assigned to a field will not result in a type mismatch, an overflow condition, or an un-
derflow condition.

Business Data Type Validation

The second level of validation is business data type (BDT) validation. BDTs allow data
to be displayed in a format that is based on business language conventions rather than
on programming language conventions. For example, a variable with a Visual Basic
data type of Double will display as a phone number if it is assigned the BDT named
BDT_PHONE.

BDT validation ensures that the user input conforms to the Visual Basic data type and
to the business semantics attached to the BDT. In the example above, BDT validation
checks that the user input makes sense as a phone number.

Local Business Validation

Local business validation applies simple business rules to data. This level of validation
is coded within the Visual Basic maintenance object and is performed on the client.
Typical local business validations include range checking, domain checking, and calcu-
lating required values. Database access is not recommended within local business
validations.

- 262 -

Validating Your Data

Business Object Validation

Business Object Validation is performed in the object maintenance subprogram on the
server. This subprogram ensures that the data entered by a user is correct before it is
committed to the database. Any local business validation should also be coded in the

object maintenance subprogram. Coding on both client and server is crucial if client ap-
plications written for another environment (for example, a chardztsednterface)

share the same object maintenance subprogram for data access.

Form code

Step 1

On the client, the user invokes the update method,
triggering transmission of the object to the server. Case ACTION_UPDATE

Sub PerformAction

v

InternalObject.InvokeMethod "UPDATE", iflags

Sub CheckRemoteError

Step 2

client.

The object maintenance subprogram validates the
object before actually performing an update to the
database. If errors are encountered, the database is
not updated and an error message is returned to the Object Maintenance subprogram

Case "CUSTOMER-NUMBER"
Set ErrControl = txt_ CUST_CustomerNumber

v

DEFINE SUBROUTINE HOLD-OBJECT

PERFORM EDIT-OBJECT /* Pre-edit object header
PERFORM CHECK-AND-UPDATE-OBJECT /* Check and update children
DECIDE ON EVERY VALUE CDAOBJ2.#FUNCTION

VALUE 'UPDATE'

Step 3

If an error was raised by the object maintenance
subprogram, the form creates an object error and
attaches it to the appropriate GUI control

ASSIGN NCST-CUSTOMER.CUSTOMER-TIMESTAMP = *TIMX
UPDATE(HOLD-PRIME.)

A 4

Typical Client Validation Cycle

You can write custom validation code in user exits for the object maintenance subpro-
gram or you can attach Predict verification rules that the Object-Maint-Subp model will
include in the generated module. For more informationCseating Verification

Rules in Predict, page 269.

Tip: If you have both GUI and character dialogs, both can use the object maintenance
subprogram to access database information. Ensure that any client validations are
replicated in the subprogram.

- 263 -

Construct Spectrum SDK for Client/Server Applications

Client Validation

Data assignment from the form to the client’s copy of the object PDA triggess th
types of client validation: basic data type validation, BDT validation, and local business
validation. It is the attempt to update the object PDA that triggers the validations. The
form keeps the client’s object PDA up to date by attempting to update its data when:

« A LostFocus event occurs on a TextBox
» A Click event occurs on a CheckBox, ComboBox, or OptionButton
« An AfterColumnEdit event occurs on a grid column

— 264 -

Validating Your Data

The following example illustrates the data validation logic initiated when one of these
events is triggred:

The text box GUI control has an
associated FieldName and BDTName.

»

P If an error occurs in step 2, 3, or 4, the form

Customer Number: [1234 D attaches an ObjectError to the GUI control,

.) ACME Consultin causing a pop-up validation message to be
Business Name: | g displayed to the user.

LostFocus event in generated maint. form
Dim TextBoxValue As String

Step 1 — Read text entered by user —_ | TextBoxValue = TextBox.Text
intoa string variable and start the ValidAssignment TextBoxValue, BDTName, ErrorMessage

validation process.

; ValidAssignment in module BDTSupport.bas
Step 2 — Convert value to an internal : Dim vnt As Variant

Visual Basic qata type by calling the \ vnt = BDT.ConvertFromDisplay(TextBoxValue, BDTName)
BDT conversion routine. :

Step 3 — Assign the value to the field /

in the generated maintenance object, N Ficld property procedure in generated VB maint. object
triggering local business validations. : ;

MaintObject.Field(FieldName) = vnt

Validate FieldName, Value

Validate procedure in generated VB maint. object

Select Case FieldName
Case "CUSTOMER-NUMBER"
If Value < 1000 Or Value > 3999 Then
Err.Raise csterrValueMustBeIlnRange, _
OBJECT_PDA_NAME, _
"The customer number must be in the " & _

Step 4 — Assign the value to the field End it “range 1000 to 3999."
in the object PDA, triggering SDC oo .

validations. \
Step 5 — Read the value from the : '

; |ObjectPDA.FieId(FieIdName) = Value
field in the object PDA, to get any 1
conversions the SDC applies to the | ;
value, such as rounding, and retum \ vnt = MaintObject.Field(FieldName)
the value to the form. :

Step 6 — Convert the value back to a //'
display format by calling the BDT
conversion routine.

Step 7 — Assign the value back to the _w
TextBox control so the user can see it.

TextBoxValue = BDT.ConvertToDisplay(vnt, BDTName)

TextBox.Text = TextBoxValue

Triggering Validation in the Form

— 265 -

Construct Spectrum SDK for Client/Server Applications

Validation in Maintenance Dialogs

All validation is triggered from the form. Form code is responsible for linking BDT val-
idations to specific GUI controls and for responding to validagioars.

Using BDTs

The VB-Maint-Dialog model generatesfdult BDT assignments for each GUI control
on your form. You can override these assignments by attaching your own BDT key-
words to Predict field definitions. For details on linking BDTs to GUI controls within
Predict, se€€ustomizing on the Serverpage 132.

You can override BDT assignments directly in the generated form. However, this meth-
od is not recommende®verriding BDTs within the form is a customization that will
be lost when you replace the existing form with a newlyegated vesion.

If there are no BDTs that gvide the business semantics your application needs, you
can create a custom BDT. For information on creating custom BDTElséeg Busi-
ness Data Types (BDTs)Construct Spectrum SDK Reference

Hand-Coded Validations in Generated Dialogs

If you have specialized validations that must be executed immediately in response to an
event, write the code in a maintenance dialog to perform the validations.

If you write hand-coded validations, you can still take advantage of the form’s standard
error handling technique. For information, s¥@lidation Error Handling , page 272.

Note: Hand-coding validations is not recommended under most circumstances.
These customizations will be lost if you replace the existing form with a newly
generated version. To keep your validations after regeneration, write valida-
tion code in the user exit.

The maintenance dialog invokes a Validate method in the Visual Basic maintenance ob-
ject every time a GUI control attempts to update a value in the client’s copy of the object
PDA. Writing validation code in the Validate method rather than directly in the form
should meet most of your validation requirements. The dialog also contains standard
code which checks for validation errors raised in the Visual Basic maintenance object.

— 266 —

Validating Your Data

Validation in Visual Basic Maintenance Objects

You can code local business validations in Visual Basic maintenance objects. Each time
the maintenance dialog attempts to update a value in the Visual Basic maintenance ob-
ject, it invokes a standard validation subroutine (Validate) in the Visual Basic
maintenance object. You can hand-code validations in the CLIENT-VALIDATIONS
user exit of the Validate subroutine, or you can use Predict verification rules to validate
data.

Regardless of how it gets into the Validate subroutine, there are two basic components
to the validation:

» A case statement indicating the field requiring validation. This statement includes the
test for a particular condition.

« Code that raises an error if the field value fails the validation.

Adding Validations in the CLIENT-VALIDATIONS User Exit

Use the CLIENT-VALIDATIONS user exit located in the Validate subroutine for the
VB-Maint-Object model to write custom validations. Although this custom code can be
added to the user exit on the server, you can also use Visual Basic's GUI editing envi-
ronment to supply your code. The following illustration shows a typical entry in the
CLIENT-VALIDATIONS user exit:

Example of validation code in the CLIENT-VALIDATIONS user exit

'SAG DEFINE EXIT CLIENT-VALIDATIONS
Case "CUSTOMER-NUMBER"
If Value = 1010 And _
m_ObjectData.Field("CREDIT-LIMIT") > 1000 Then
Err.raise Number:=csterrCustomerOnProbation, _
Description:= "Credit limit too high, on probation", _
Source:=OBJECT_PDA NAME
End If
'SAG END-EXIT
End Select

In this example, the value for the field to be updated in the client’s object PDA is stored
in the Valuevariable. If you require the values from other fields in the object PDA for
your validation, use the Spectrum Dispatch Client’s Field or GetField methods as illus-
trated in the previous code example.

— 267 —

Construct Spectrum SDK for Client/Server Applications

Warning:

If your validations require remote database access, it is strongly recommended that you
do not code these validations in the Visual Basic maintenance object. A Construct Spec-
trum application operates in a synchronous manner, which means the user must wait for
validations in the Visual Basic maintenance object to complete execution before control
returns to the dialog for further interaction.

Validations from Predict

Generated validations that are based on Predict verification rules are checked immedi-
ately after your hand-written validations in the CLIENT-VALIDATIONS user exit.

These generated validations use the same structure as is shown in the hand-written code
example earlier in this chapter. For more informationeating Verification Rules

in Predict, page 269.

— 268 —

Validating Your Data

Creating Verification Rules in Predict

Verification rules that youreate in Predict to use with applicats generated by Con-
struct Spectrum follow the same guidelines that traditional Natural Construct
applications use. For example, all verification rules intended for use during generation
must be of type N.

Note: To set verification rules to type N in Predict, use the GEN CST command in
the Predict rule editor.

For a complete discussion on using verification rules with traditional Natural Construct
applications, se®se of Predict in Natural Construct, Natural Construct Generation

Construct Spectrum uses verification rules to generate GUI control definitions as well
as to generate business validations that might be implemented in either the maintenance
object (in Visual Basic), the object maintenance subprogram (in Natural), or in both.
The validations are duplicated to provide immediagglback on the client and to have

a centralized implementation of validations on the server.

When creating Predict verification rules for applications using Construct Spectrum,
take advantage of new syntax that makes your verification rules easier to reuse and eas-
ier to define in Predict.

Deciding Where To Implement a Validation Rule

Conventionally, validation rules are kept together in a single module. However, since
sending the client’s object data to the server for validation takes time, validating a rule
on the client can save transmission time.

You can implement a validation rule in the object maintenance subprogram only, or you
can implement it both in the object maintenance subprogram and in the Visual Basic
maintenance object. To decide on which of these two option to choose, determine what
types of information a rule requires to do its validation. Use the following guidelines to
help you decide:

« If the rule needs to look up data on a foreign file, implement the rule in the object main-
tenance subprogram for ready access to the foreign file.

- If the rule performs calculaths on data within the object’s data, it may be more effi-
cient to perform this validation in the Visual Basic maintenance object.

Include the rules placed in the Visual Basic maintenance object in the object mainte-
nance subprogram for use by character interfapécapions.

- 269 —

Construct Spectrum SDK for Client/Server Applications

Coding User Type Rules

Construct Spectrum introduces a new syntax convention for coding type U (User) rules.
This convention allows a single rule to contain a Visual Basic implementation or a Nat-
ural and Visual Basic implementation.

Rules defined in Visual Basic are delimited by code blocks. Use the following syntax
in the Predict rule editor taeate a code block for\disual Basic rule:

Example of code block for a Visual Basic rule

>>BEGIN RULE VB

Visual Basic implementation of the VE rule here.

>>END-RULE

Any rule code that is not delimited within a language-specific code block will be as-
sumed to be a rule coded in Natural, since Natural rules do not require code block
delimiters. To keep code looking consistent, Natural rules can also be delimited.

Example of code block for a Natural rule

>>BEGIN RULE NATURAL
Natural implementation of the VE rule here.
>>END-RULE

A rule can consist of several code blocks for both Visual Basic and Natural.

Example of code blocks for using both Visual Basic and Natural

>>BEGIN RULE VB

15t part of Visual Basic implementation of the VE rule.
>>END-RULE

>>BEGIN RULE NATURAL

15t part of Natural implementation of the VE rule.
>>END-RULE

>>BEGIN RULE VB

2nd part of Visual Basic implementation of the VE rule.
>>END-RULE

** By default, this code is Natural code because it is
** not delimited by a language-specific code block.

3 part of Natural implementation of the VE rule.

- 270 -

Validating Your Data

When combining Visual Basic and Natural rules, you cannot use nested language-spe-
cific code blocks. For example:

Use This: NOT This:

>>BEGIN RULE VB >>BEGIN RULE NATURAL VE rule...

15t part of Visual Basic rule... >>BEGIN RULE VB

>>END-RULE This VB code block is invalid
>>END-RULE

>>BEGIN RULE NATURAL >>END-RULE

15t part of Natural rule...

>>END-RULE

Order of Precedence in Data Validation

Data validation is triggered under two conditions: attempted assignment to the client’s
copy of the object PDA and attempted database update using the Update or Add method
of the object maintenance subprogram.

Each of these conditions triggers different layers of the Construct Spectrum data vali-
dation model:

« Data assignment to the client’s object PDA.
In this stream of data validation, the order of validation is executed as follows:

— BDT validation
— local business validation
— basic data type validation

« Database update using the object maintenance subprogram.
In this stream of data validation, only Business Object Validation is executed.

For clarification, see the illustrations Business Object Validation page 263.

-271 -

Construct Spectrum SDK for Client/Server Applications

Validation Error Handling

Client validation is always initiated with a call to the generic ValidAssignment subrou-
tine. This call occurs in an event code block (usually a lost focus event) that assigns a
GUI control’s value to the client’'s object PDA. There are a number of stepbaw f

for each assignment.

» To assign a GUI Control's value to the client’s object PDA:

1 Hide any error tips that may be attachecdhis GUI control.
This is accomplished by calling the HideErrorTip subroutine in CSTUTILS.

2 Remove any Error Objects from the GUI control.
This is accomplished by calling the RemoveUnneededControlErrors subroutine.

3 Initiate local data validation and assign the value to the client’s object PDA.
This is accomplished by calling the ValidAssignment subroutine.

4 Test to see if any validation errors occurred during the assignment attempt.
This is accomplished by checking whether ErrorMsg contains a value. If errors
occurred, attach an Object Error to the GUI control by calling the ParseErrorString and
SetObjectError subroutines.

Framework Components

The validation error handling framework components are used to implement the mech-
anism that displays pop-up validation errors in browse and maintenance dialogs.

For example, when the user enters data into a field and cursors to the next field, the data
is checked to ensure it is valid. If the data is not valid because it violates a business rule
or cannot be interpreted properly (such as when non-numeric data is entered into a nu-
meric field), the field that contains the error is highlighted with an error color and a pop-
up message is displayed next to the field. The user is not locked into the field until the
error is corrected and canrdmue entering or editing data in other fields. At any point,

the user can return to the highlighted field or fields and corre@rtbes.

The following table describes the validation error handling components in the Construct
Spectrum client framework:

Component Description

ErrorPreferences.frm Adws users to customize how validation errors are
presented.

ErrorTip.frm Displays the pop-up validation error message.

- 272 -

Validating Your Data

Component Description

ObjectError Keeps track of the information for a single validation
error on a form.

ObjectErrors Tracks the validati@rors on a generated
maintenance form; each generated maintenance form
declares one instance of this class.

Handling Business Object Validation Errors

Business Object Validation errors are returned to the form in the message PDA, CDP-
DA-M. If an error was returned from the server, the CheckRemoteError subroutine in
the form tests the value of the ERROR-FIELD variable to match it up with a GUI
control.

If the field is associated with a GUI control, an Object Error is attached to the GUI con-
trol. Otherwise the form displays a message box showing the description of the general
error.

The following code illustrates this process:

Select Case InternalObject.Msg.Field("ERROR-FIELD")
Case "BUSINESS-NAME"

Set ErrControl = txt_ CUST_BusinessName
Case "PHONE-NUMBER"

Set ErrControl = txt. CUST_PhoneNumber

End Select
If ErrControl Is Nothing Then
MsgBox cstFormatMessage(InternalObject.Msg), vbinformation
Else
With InternalObject.Msg
SetObjectError Me, ErrControl, .Field("MSG-NR"), ErrMsg, _
ERROR_SOURCE_SERVER, ErrColumn, _
.Field("ERROR-FIELD-INDEX1"), _
.Field("ERROR-FIELD-INDEX2"), _
.Field("ERROR-FIELD-INDEX3")
End With
End If

- 273 -

Construct Spectrum SDK for Client/Server Applications

- 274 -

INTEGRATING BROWSE AND MAINTENANCE
FUNCTIONS

This chapter explains how browse and maintenance functions are integrated. It includes
information about linking and using browses from a maintenance dialog.

The following topicsare covered:
« Overview, page 276
» Design Objectivespage 280
« Overview of Foreign Key Field Relationshipspage 282
» Foreign Field Support in Maintenance Dialogspage 285

- 275 -

Construct Spectrum SDK for Client/Server Applications

Overview

Providing applications with tightly integrated browse and maintenance functions makes
it easier for users to navigate through an application and to find the information they
need. The two main benefits that integrated browse and maintenance functions provide
are:

« Drill-down capabilities from a browse dialog. For example, to invoke a maintenance di-
alog or another browse from within a browse dialog.

« Active help from maintenance dialogs to aid in selection of primary and foreign fields.
These topics are discussed in the following sections.

Drill-Down Capabilities from a Browse Dialog

Users commonly use browse dialogs to navigate within an application. For example, a
user might select a customer from a Customer browse dialog, drill-down to another
browse dialog to see outstanding orders for the customer, select an order, and drill-
down to a maintenance dialog to update the order.

You can support this functionality with Construct Spectrum by hand-coding a browse
command handler to define the commands supported by a particular browse dialog.
You must also add code to the target of these commands, which are typically other ap-
plication components such as a maintenance dialog or a Visual Basic maintenance
object.

For information about creating Browse Command HandlerdJaderstanding
Browse Command Handlers page 195.

Tip: To see some examples of browse command handler sourceafedé) the Cus-
tomerBrowseCommands.cls and OrderAsBrowseTarget.cls files in your Con-
struct Spectrum Order Entry demo application.

- 276 —

Integrating Browse and Maintenance Functions

Active Help on Maintenance Dialogs

Users can select valid values from dialog fields that are enalilecctive help. Con-
struct Spectrum maintenance dialogs provide built-in support for two types of active
help: primary key field and foreign key field active help.

Primary Key Field Active Help

Primary key field active help is available for all business objects for which maintenance
and browse dialogs were generated. When a maintenance dialog is opened, it verifies
whether a browse was generated for its primary key field. If one was, it enables the
browse toolbar button and browse menu command on the MDI frame. When a user
clicks the browse toolbar button or selects the browse menu command, a modal browse
window for the business object is displayed:

@] Customer Browsze

Cuztomer Mumber i Buzinezs Mame i Phone Numl:ueri Ai
A0004 ACME RESOURCES [519] 623-6350
A0005 ACME LAMD [519) 740-3064 -]
A000& ACME SURVEY [519) 740-3064
A0007 ACME RESEARCH [519) 740-3064
A001z2 ACME COMSULTING [519) 623-6850 =

a | _:_I—J

Selection Key Fange Filter
;Eustumer Murmber :_j ;>= :_j O ptionz i et i

Cuztomer Humber

;33333

(] Cancel

Records digplaved: 10 EOD

Modal Browse Window

The window displays a list of existing records in the database. Users can maintain a
record by dould-clicking the record or by highlighting a row and clicking OK.

- 277 —

Construct Spectrum SDK for Client/Server Applications

Foreign Field Active Help

Most maintenance dialogse linked by foreign relaihships. These relationships, also
known as inter-object relationships, link a field in a dialog to the primary field of anoth-
er dialog. In the demo application, for example, the Order dialog has a Customer
Number field. To be valid, the Customer Number must exist on the Customer database
table. This rule is defined by an inter-object relationship that specifies the two tables
involved (Order and Customer), the linked fields, the cardinality, and other optional
information.

Maintenance dialogs automatically support active help for foreign fields in the follow-
ing ways:

By providing a button beside the text box.
When a user clicks the button, a window is displayed to select foreign values:

Order Numnber: I
Order Amaunt: | —
& Cystomer Browse [[O]
Order D ate: l | |
Cuztomer Mumber Buziness Mame Phon =
Customer Number. | | y| T CAMERIDGE TV STERED 519 _|
e el I I 2 JOURMEYMEM FABRICATI... 519
: 10001 JOURMEYMEM FAERICATI... [519)
Invoice Mumber: | 10002 LES RIVERS CUSTOM FAE... [519)
Drelivery Instructions: | 10003 I _ILI
4 4
Selection Key R ange Filter
I Customer Humber j I = j Options | Get |
Customer Mumber
Product: I
Product Id Line Descript
7 Ok Cancel |
g | Records displaved: 20 | 4
T T
o |

Active Help From a Foreign Field

Descriptive information can also be returned with the selected value. For example, the
customer’s name can be returned with the customer number.

For more information about returning descriptions with foreign fieldsDsg@aying
Descriptions for a Foreign Field page 289.

- 278 —

Integrating Browse and Maintenance Functions

« By automatically efresling a foreign field description when a user types a value direct-

ly into a foreign field.
When the LostFocus event occurs in the field, the foreign field is looked up and the de-

scription is updated in the maintenance dialog.

» By retrieving all of the values and descriptions for a foreign fieldahain the data-

base.

This method is used by the maintenance dialog to create a drop-down list of all the al-
lowed values for a foreign field. This feature is used only if the foreign file contains a
small set of stable records.

Warehouse |d: I'I'I'I TOROMTO CEMTRAL WAREHOLSE ﬂ
[nwvoice Humber: 23120 EHDES?:SDFII;HEEEDEEEPE[TD —

: . WATERLOOD WaAREHOUSIMNG LTD.
Deliven Instructions: Lzt be KITCHEMER a4 TERLOD WAREHOLSE
BRAMT WAREHOUSING AND STORAGE
Errsw s CEMTRAL WAREHOUSE
Product: SHMITH LIMITED e
| | Praduct i SO FOOD IMC.

1A

Active Help From a Drop-down List

- 279 -

Construct Spectrum SDK for Client/Server Applications

Design Objectives

Construct Spectrum meets two design objectives that simplify the integration of main-
tenance and browse components:

» Application component independence
« Simplified gererated components
These objectiveare discussed in thelfowing sections.

Application Component Independence

An important design objective when integrating discrete application objects like main-
tenance and browse dialogs is to limit the impact this has on existing application
objects. To achieve this, there must be a minimal amount of coupling between applica-
tion components. Less coupling means that changes to one application component are
less likely to affect the other.

To achieve minimal coupling, Construct Spectrum uses the object factory as the single
integration point for all new application components. Only the oligetbry needs to

be aware of new application objects. As new business olgeztdded to youmppli-

cation, they are published as available for use by other business objects through the
object factory interface.

For more information about the object factory, €dgect Factory, page 243.

Tip: To view the source code for the demo application’s object facteigy, 1o the
OFACTORY .bas file.

Maintenance dialogs request browsing services through the object factory interface. Us-
ing parameters such as table names or oglghiip names, the maintenance dialog
specifies which file is required for the browse. If the file is not available, the object fac-
tory informs the requesting maintenance dialog, allowing it to disable that functionality.
This architecture allows an application to be developed incrementally so that you can
test it throughout the development cycle.

To view an example of how this code works, refer to the code for the EnableForeign-
Keys subroutine in the CUSTMCDV.frm maintenance dialog form in the demo
application.

—280 -

Integrating Browse and Maintenance Functions

Simplified Generated Components

Another objective is to reduce the complexity of generated components, making them
easier to customize. The amount of code required to integrate maintenance and browse
processes is greatly reduced by using the BrowseManager framework class. It encapsu-
lates most of the common functionality involved in using browse processes.

To see how the BrowseManager has been implemented, refer to the code in the Browse-
Manager.cls client framework class. For more information about the BrowseManager,
seeUnderstanding Browse Command Handlerspage 195.

- 281 -

Construct Spectrum SDK for Client/Server Applications

Overview of Foreign Key Field Relationships

A foreign key field with an update constraint is a field in a maintenance dialog that must
be set to a value that already exists in a foreign file. This field is the foreign file’s pri-
mary key field.

A foreign key field relationship links two independent files, such as an Order and Cus-
tomer file. This is also called an inter-object relationship. Conversetg; afject
relationships define relationships within a file, for example, a relationship between two
fields in a Customer file.

Foreign key field relationshigre business rules that can defii¢h update and delete
constraints. However, with respect to integrating maintenance and browse functions,
only foreign key field relationships that define update constraints are important.

For more information on inter-object and intra-object relationshipd)esign Meth-
odology, Natural Construct Generation

Fields that can be Used in a Foreign Key Relationship

This section describes the foreign field relationships supported by the Object-Maint-
Subp model. Relationships supported by Construct Spectrum are also noted.

Simple Field

This is the simplest type of foreign field relationship in which the format and length of
the fields on both sides of the relationships are equal and the fields are not repeating.
Simple field relationships are supported by Construct Spectrum.

CN:1 File: Customer
Field: Customer-Number

File: Order
Field: Order-Customer-Number

fA
\

Simple Field Relationship

The relationship shown in this diagram is between an Order and a Customer file. The
update constraint is placed on the order. The business rule says each order must have
exactly one customer number to be a valid order, and a customer number dan-be re
enced by zero or many orders.

- 282 -

Integrating Browse and Maintenance Functions

Repeating Field

This is a relationship between a one-dimensional repeating field and either a scaler field
or another one-dimensional repeating field. Repeating field relationships are supported
by Construct Spectrum.

File: Course CN:C File: Instructor
Field: Instructor-ID(1:5) Field: ID-Number

gaN

Repeating Field Relationship

The relationship shown in this diagram is between a course and an instructor file. The
update constraint is placed on the course. The business rule says a course can have zero
to five instructors. An instructor can teach zero or many courses.

Note: The format and length of the relationship fields must be the same on both sides
of the relationship.

When Not to Use a Foreign Field Relationship

This section describes situations where defining a foreign field relationship is not a
good solution. For each situation described, a better alternative is given.

Do not use foreign field relationships to enforce valid values when:
» the list of values is static
» the list of values is small
» there are only two choices

List of Values is Static

In most foreign relationships, both files involved in the relationship are dynamic. It is
not a good solution to create a file for the sole purpose of enforcing that valid values are
entered from a static list. For example, you would not create a Province file to contain
a list of valid provinces that could be entered on an order as shown in the following

diagram:
File: Order-Header , CN:1 File: Provinces
Field: Order-Province) Field: Province

An Unlikely Foreign Field Relationship

- 283 -

Construct Spectrum SDK for Client/Server Applications

A better solution is to attach a table verification rule to thee®Ribvince field. Con-
struct Spectrum generates a drop-down list for the Order-Province field and populates
it with the valid provinces in the verification rule.

There may be Vi reasons to create a Province file. For example, to maintain province-
specific business rules for calculating sales tax. In this case, a foreign field relationship
is appropriate.

List of Values is Small

Another case where you would not use a foreign field relationship is tcerdgemall
set of values for a field. For example, a Payment-Type field might only have possible
values of Cash, Check, MC, Visa, or AMEX.

Again, defining a table verification rule is a more appropriate solution. Using the veri-
fication rule, Construct Spectrum would generate option buttons for this field.

List of Values Contains Two Choices Only

If there are only two choices for a given field, do not define a foreign field relationship.
Instead, link a verification rule to the field. Construct Spectrunegeas either ofmn
buttons or a check box for the field.

—284 -

Integrating Browse and Maintenance Functions

Foreign Field Support in Maintenance Dialogs

This section describes the foreign field support provided by maintenance dialogs gen-
erated with Construct Spectrum.

Two main objectives of linking foreign field lookup support into maintenance dialogs
are to:

» Provide a way for users to select valid values for a foreign key field in a maintenance
dialog.
When a field value is selected, it must be returned and displayed in the dialog, option-
ally, with other descriptive fields.

« Provide a way for updating the maintenance dialog with descriptive information asso-
ciated with the foreign field.
When a foreign field value is entered in a maintenance dialog without using the browse
mechanism (for example, by typing directly into a text box), any values associated with
the foreign field, such as a descriptive field, must be updated in the maintenance dialog
automatically.

GUI Control Representations of Foreign Fields

This section describes the GUI controls Construct Spectrum uses to represent foreign
field relationships in maintenance dialogs. Construct Spectrum deals with foreign fields
differently depenihg on whether the foreign field is located in the primary part of the
maintenance dialog or on a secondary, tertiary, or quaternary part of the dialog. Second-
ary, tertiary, and quaternary information is always represented on a grid control in a
maintenance dialog. This section describes how foreign fields are represented in each
case.

Foreign Fields in the Primary Part of a Maintenance Dialog

The primary part of a maintenance dialog is any location in the dialog that is not part of
a grid. A foreign field on the primary part of a maintenance dialog that has a link to a
foreign file can be of any data type.

All foreign fields in the primary part of a maintenance dialog can be represented by a
single text box type GUI control. Any GUI Controlavide keywords that have been
specified in Predict to force the type of control that should represent a field are ignored
if the field is linked to a foreign file.

For more information, se@verriding GUI Controls , page 133.

Tip: Construct Spectrum does not generate browse support for Boolean fields in a
maintenance dialog. Validations for Boolean fields are better handled with veri-
fication rules or by adding validation code to the Visual Basic maintenance ob-
ject.

— 285 -

Construct Spectrum SDK for Client/Server Applications

To provide users with a method to look up valid values for foreign fields from a main-
tenance dialog, use a button or drop-down list. The following example shows a foreign
field using a button:

Cuztorner Mumber: I'l 11 j

Foreign Field as Text Box and Lookup Button

When a user clicks the button, a browse window listing the foreign field values is dis-
played. If a descriptive field is associated with the foreign field, a description is also
displayed:

Customer Humber: I'I'I'I'I1 j QUAKER DATS

Foreign Field as Text Box, Lookup Button, and Description

The following example shows a foreign field with a drop-down list:

Warehouze |d: RRR

Foreign Field as a Drop-Down List

The drop-down list contains a list of the foreign field values or descriptions. If a descrip-
tive field is associated with the foreign field, the list contains the descriptions:

Warehouse |d: |555 I DOM'S GOLD DEPOT j

Foreign Field as a Text Box With Descriptions In Drop-down List

— 286 —

Integrating Browse and Maintenance Functions

GUI Controls in a Grid

Grids in a maintenance dialog display secondary, tertiary, and quaternary information.
Consider an Order business object that is normalized by linking an Order Header file
record to 1 to 30 Order Line file records, creating a complex business object. The Order
Lines part of this business object is represented by a grid control in the dialog. A foreign
field relationship can be defined between the Order-Line-Product-Id field in the Order
Line file and the primary field, Product-Id, in the Product file. This discussion also ap-

plies to foreign field relationships that are linked with repeating fields, since these fields
are represented as grid controls.

When a column in a grid represents a foreign field value, a button is placed in the grid
to support looking up new values. Either a new value can be typed directly into the grid
cell or the button can be clicked to invoke a modal browse window:

Product [d Line Dezcription Quantity | Uit
1187361 »|CAT MUGGETS 10 -

3 -
1] | »

Foreign Field in a Grid with Lookup Button Displayed

Note: Currently, drop-down lists for foreign field values are not supported in grids.
Description fields are also not supported for foreign fields in a grid.

— 287 -

Construct Spectrum SDK for Client/Server Applications

How Construct Spectrum Determines Which GUI Control to
Use

Foreign fields within a grid control are always represented with a lookup button that
opens a modal browse window when clicked.

When generating a GUI control to represent a foreign field in a maintenance dialog,
Construct Spectrum searches for special properties of the foreign file to determine the
type of control to use. Depending on these properties, either a drop-down list or a look-
up button is used.

A drop-down list is generated for a foreign field if both of these conditions are met:

The data dictionary specifies that the average record count property for the foreign file
contains on agrage X records, where X islbe the threshold determined by the model
to be the limit for a drop-down list. The default is 50 records. A value of zero is ignored.

Tip: To change the default value, change the FK-AS-COMBO-THRESH-HOLD val-
ue in the Natural Construct CSXDEFLT model defaulting subprogram. The VB-
Maint-Dialog model copies the FK-AS-COMBO-THRESH-HOLD default value
to the #PDA-FK-AS-COMBO-THRESH-HOLD variable of the model PDA
(CUMDPDA) in the model’s pre-generation subprogram (CUMDPR).

The data dictionary specifies that the file volatility property of the foreign file is either
Stable or Fixed.

If both of these conditions are not met, or you have not set these file properties, or you
are using a version of Predict that is prior to 3.3.2, a lookup buttonésajed instead.
A lookup button displays a modal browse window when it is clicked.

— 288 —

Integrating Browse and Maintenance Functions

’

1
2

’

1
2

Displaying Descriptions for a Foreign Field

At generation time, the VB-Maint-Dialog model searches for a descriptive field associ-
ated with any foreign field. If a descriptive field is found, it is displayed in the dialog
with the foreign field. To find out how the VB-Maint-Dialog model displays descriptive
fields, sed~oreign Fields in the Primary Part of a Maintenance Dialogpage 285.

Note: Construct Spectrum can generate only one descriptive field value for each for-
eign key value in a maintenance dialog.

You can designate that a field be descriptive whenever itdeereced in a folign file
relationship, or you can designate the field as descriptive only when it is referenced by
a particular file. This is useful when different descriptions are needed for different for-
eign field relationships.

Note: Descriptive fields are not available for foreign fields in a grid.

To make a field descriptive in all situations:
Access Predict.

Attach the DESCRIPTION keyword to the field in the foreign file.
All such fields are displayed whenever the file iierenced in a foiign field browse.

To make a field descriptive only when referenced by a particular file:
Access Predict.

Attach a keyword to the field that matches the name of the file.

For example, to make the WAREHOUSE-NAME field descriptive only when a user
browses from a dialog that was geated for the ORDER fileink the ORDER

keyword to the WAREHOUSE-NAME field in the foreign file.

Note: These keywords must be defined in Predict before you can attach them to a
descriptive field.

Examples of Descriptive Fields
Suppose your application contains a CUSTOMER file with the following fields:

CUSTOMER-ID(N6)
CUSTOMER-NAME(A20)
PHONE-NUMBER(N10)
ADDRESS(A50)

—289 -

’

1

Construct Spectrum SDK for Client/Server Applications

Whenever the CUSTOMER-ID field is used in a foreign field browse, you want to show
the customer name to help identify the customer. To do this, link the DESCRIPTION
keyword to the CUSTOMER-NAME field. The CUSTOMER-NAME field is now set
up as a descriptive field whenever CUSTOMER-ID is used as a foreign field.

Suppose the CUSTOMER-ID field is a foreign field in the ORDER file. When the cus-
tomer ID is entered for an order, you wantltsplay the address instead of the name.
To do this, add the ORDER keyword to the ADDRESS field. The ADDRESS field is
now descriptive only when refenced by the ORDER file.

Supporting Multiple Descriptive Values and Derived Values

You can retrieve multiple values with a foreign field lookup. For example, you may
want to retrieve additional descriptive information or you may need to derive or calcu-
late values in other fields in the maintenance dialog based on values in the foreign file.

Construct Spectrum enables you to do this because each foreign field lookup returns a
reference to the BwseDataCache object containing the row that was selected through
the foreign field lookup.

To retrieve additional values with a foreign field lookup:

Add some code to extract the descriptive value from the BrowseDataCache object.
Base your code on the sample in the grd_OrdM_NcstOrderHasLines_ButtonClick
event procedure on the Ord-Mcdv.frm maintenance form in the demo application.

To derive or calculate values in your maintenance dialog based on the foreign lookup
information:

Add code to the AFTER-FOREIGN-KEY-LOOKUP user exit for the VB-Maint-Object
model to code the updates to your business object.

This ensures that the cached copy of your business object’s data that is maintained on
the client reflects what is displayed in the maintenance dialog. Base your code on the
sample in the AFTER-FOREIGN-KEY-LOOKUP user exit in Ord-Mcpv.cls in the

demo application.

—-290 -

Integrating Browse and Maintenance Functions

How Foreign Field Descriptions Are Refreshed

Any control in a maintenance dialadfected by a change in value of a fgrefield
needs to be refreshed when a Get or Clear action occurs. This includes foreign field de-
scriptions as well as any field whose value is derived from a foreign field.

Generated maintenance dialogs include a function called RefreshForeignKeys. This
function refreshes the foreign field description when a Get or Clear action occurs. The
RefreshForeignField function calls the server and retrieves a description each time a
Get or Clear action occurs. This reduces application performance slightly. To avoid this
extra call, you can do hand-coding to have the description returned directly from the ob-
ject subprogram when a Get or Clear action occurs.

To refresh a foreign field descriptions without an extra call to the server:

In the object subprogram, add code to the PARAMETER-DATA user exit to define an
extra parameter data area (PDA). Within this PDA, add a parameter for each foreign
field that requires a description.

In the object subprogram, add code to the EXTENDED-RI-VIEWS user exit to define
the views of the foreign file.

To view an example of this codefer to the ORD-MS@bject subprogram in the
SPECDEMO Natural library.

In the object subprogram, add code to the AFTER-GET user exit to populate the
parameter you added in Step 1 with foreign field descriptions after a Get action occurs.

In the Visual Basic maintenance object, specify the name of the extra parameter data
area that you added in Step 1 in the Extra PDA parameter.

To view example code that uses the Extra PDA parameter, refer to the code supplied in
the Visual Basic maintenance object (Ord-Mcpv.cls) in the demo application. In this ex-
ample, the extra PDA, ORD-XPDA is defined.

In the maintenance dialog form (.frm file), add code to te&rdshForgnKeys
subroutine to extract the description values from the Visual Basic maintenance object
when the user selects a Get or Cleaioacbccurs.

The following code example is taken from the Ord-Mcdv.frm Order dialog in the Con-
struct Spectrum demo application. In the following example code, the dialog is updated
with the description of the Customer Number foreign field when a Get or Clear action
occurs. The name of the Customer Number field is NcstCustomerOrderHeader and the
name of the description field is ORDER-BUSINESS-NAME.

Note: The Order dialog has another foreign field, the Warehouse ID field (Ncst-
Warehouseorderheader). Because this field is set up as a drop-down ComboB-
oXx, both the warehouse ID and warehouse description values already exist on
the client. Therefore, no hand-coding is required to avoid a call to the server
for a Get or Clear action.

-291 -

Construct Spectrum SDK for Client/Server Applications

Example of updating a foreign field description after a Get or Clear action

Private Sub RefreshForeignKeys()
' RefreshNcstCustomerorderheader
RefreshNcstWarehouseorderheader

' Post generate code ----------------- >>
' This code is added to optimize foreign key description
" handling.

With InternalObject

' Customer Business Name
Ibl_OrdM_NcstCustomerOrderHeader.Caption = _
BDT.ConvertToDisplay(.GetField("ORDER-BUSINESS-NAME"), _
BDT_ALPHA, "A30")

End With
' Post generate code ----------------- <<

End Sub

Note: The RefreshNcstCustomerorderheader sub is still used on a lost-focus event
for the Customer Number field to lookup a new Customer Number field de-
scription.

Supporting Code for Drop-Down Lists

This section describes how Construct Spectrum supports a drop-down list for foreign
fields in a maintenance dialog. Read this section before hand-coding foreign field drop-
down lists.

Initializing a Drop-Down List

Maintenance dialogs that use drop-down lists to support foreign field lookups use in-
stances of a Construct Spectrum framework class called the Combol@ksOne
instance of this class is instantiated for each foreign field drop-down list used to support
a foreign field. A ComboClass object contains value description pairs. Each pair holds
the foreign field value and its corresponding description.

For more information on the ComboClass class Ma@atenance ClassesConstruct
Spectrum Reference

Code is generated in the dialog’s Load event to read all the rows from eaemcedd
foreign file. The Load event uses the Visual Basic browse object to read the rows. The
Load event then populates each drop-down list with the foreign field descriptions or for-
eign field values.

-292 -

Integrating Browse and Maintenance Functions

Note: Each referenced foreign file must have a cgponding Visual Basic browse
object or the dialog's Load event cannot read records from the file.

Populating the foreign field drop-down lists in this way delays the initial opening of a
dialog until all foreign field records are retrieved from the database. However, the ob-
ject factory is optimized to read the remote database only the first time it is requested
by the application. Thereafter, the data is cagielally, so that there is no delay when
the dialog is opened again and the same data is required.

A VB-Browse-Object, generated for the foreign file that is intended to be looked up,
must be available in order to support lookups. Since an application can be built incre-
mentally, there is a possibility that a required VB-Browse-Object is not yet available.
In this case, such a list will be disabled.

Support for Value Selection

Event code is generated to support selecting foreign field values from either the drop-
down list or by typing a new value. In both cases, the list and the text box controls are
synchronized with the choice made. For example, clicking on a description in a foreign
field drop-down list updates the contents of the foreign field text box to match the field
value for the selected description. Likewise, typing a new value into the foreign field
text box will, on a LostFocus event, cause the corresponding description to display in
the list.

If you enter an invalid value when typing in the foreign field text box, the list displays

a blank indicating that this value is not in the local cache of valid values. Subsequent
edit checks in the server object subprogram when the user selects the Update action will
either pass or fail the value based on a live check of the foreign file’s database.

-293 -

Construct Spectrum SDK for Client/Server Applications

Supporting Code for Command Buttons

This section describes how Construct Spectrum supports command buttons for foreign
fields in a maintenance dialog. One situation where you may want to add command but-
tons for a foreign field is when other fields in the dialog derive their values from the
foreign field. You could add a command button to allow users to update derived fields
when a foreign field value changes. Read this section before hand-coding command
buttons for foreign fields.

Initializing a Command Button

The maintenance dialog’s Load event enables all the foreign field lookup command but-
tons in the dialog. This code verifies that a Visual Basic browse object exists to support
each foreign field lookup button in the dialog. With incremental development, it is pos-
sible that some required Visual Basic browse objects are not available in the
application. If a required browse object is not found, the button is made invisible.

Click Events on the Command Button

If a maintenance dialog contains a foreign field lookup button, it also contains event
code to handle the button’s click event. This code invokes the BrowseByForeignKey
method of the Visual Basic maintenance object, passing the name of the foreign field
relationship as agrameter.

A Visual Basic maintenance object handles all the logic required to work with a browse
dialog linked to a foreign field. For example, when a user selects a new foreign field
value from a foreign field browse window, the selected value is updated by the mainte-
nance object in its internal Natural PDA. Aarnce is passed back to the
BrowseDataCache object. If the user does not select a value, BrowseDataCache is set
to Nothing.

Methods exposed by the BrowseDataCache object and its dependent objects are used
by the maintenance dialog code in the Click event following the BrowseByForeignKey
call to retrieve the newly selected foreign field descriptions and update these in the
dialog.

—294 -

INTERNATIONALIZING YOUR APPLICATION

This chapter describes the tools provided by Construct Spectrum to help you write in-
ternationalized applications. It also describes how taeash tool. Preparg

applications so they readily translate into different languages ultimately saves develop-
ment time.

The following topicsare covered:
« Planning Your Internationalized Application, page 296
» Internationalizing Using the Client Framework, page 297
» Resource File Syntaxpage 300
» Using the Internationalization Components page 302
« Hints for Developers page 308
For related information, see:

» Resource Classegonstruct Spectrum Reference

- 295 -

Construct Spectrum SDK for Client/Server Applications

Planning Your Internationalized Application

Whether you are creating your Construct Spectrum application in two or more languag-
es or considering translating the application in the future, design the application to take
advantage of the internationalization client framework components supplied with Con-
struct Spectrum.

Tip: You do not need to build internationalization components into your design when
creating small applications or applications used in one location only. These inter-
nationalization components are optional.

To write internationalized applications, identify all text strings and graphics in the ap-
plication that must be translated. These text strings and graphics include:

» window titles

» labels and prompts

* menu commands

» messages displayed to the user

« formatting strings for dates, times, andrency values
« toolbar button bitmaps

- icons

Organizing the text strings and graphics and copying them to external files is the first

step in preparing an application for internationalization. You can then write code to load

the files into the application at runtime. Translating the files into the required language

localizes the application. Using this approach to localization means you alter the appli-
cation’s executable file only when adding another language option.

- 296 -

Internationalizing Your Application

Internationalizing Using the Client Framework

A Construct Spectrum project supplies internationalization client framework compo-
nents, making it easy to create applications you can deploy in more than one language.
The client framework stores text and graphics for an apitaeparate from the com-

piled executable code. This allows you to change these attributes without accessing
source code for the application. To provide this feature, forms are designed to contain
as little code as possible.

The two internationalization client framework components included with your Con-
struct Spectrum project are:

« Resource, which reads resources from resource files.
» ResourceGroup, which returns a list of resources in a resource group.
The following list describes the components and how to use them:

« Text strings and graphics copied into external files are referred to as resources, the ex-
ternal files as resource files. To localize an application, translate the resource files into
the required language.

« Each resource is identified by a resource identifier (RID) and has a type (string or bina-
ry) and value.

» Resources are collected into resource groups. Assign each resource groupca resou
group identifier (RGID).

» Both resource groups and their resources are defined in resource files. Each resource
file has a name, which is the same as the file name without the path or extension. For
example, a resource file may have a file name such as thevifadj:

c:\MyProjects\SpectrumDemo\Forms.1

where:

C:\MyProjects\SpectrumDemo is the path.
Forms is the file name.

.1 is the extension.

Note: Resource files have a proprietary format. They are coded differently from
Windows resource files maintained in a Windows resource editor.

» Resource files are organized in language sets. There is one language set for each user
language (such as English, German, or French) the application supports. Each set con-
tains one or more resource files. Each user language is identified with a 1-, 2-, or 3-
character language code that is also used for the file name extension. All the resource
files in a language set have the same file name extension.

- 297 -

Construct Spectrum SDK for Client/Server Applications

An application uses only one language set at a time. The current language setting deter-
mines which language set the application uses. You can specify to use the same
language codes as Natural (1=English, 2=German, 3=French...).

Language sets, resource files, resewgoups, and resources form a four-level hierar-
chy, as shown in the following example:

Example Type
English (language code “1") Language set
Framework.1 File
frmOpen Group
IblObjects.Caption Resource
IblActions.Caption Resource
cmdOK.Caption Resource
cmdCancel.Caption Resource
frmBrowseDialogOptions Group
IblLogicalKeyPrompt.Caption Resource
frmAbout Group
imgApplicationBitmap.Picture Resource
GeneratedForms.1 File
frmCustomer Group
IblICustomerName.Caption Resource
frmOrder Group
IblOrderNumber.Caption Resource
Messages.1 File
General Group
EndOfData Resource
ActionInvalid Resource
German (language set with language code “2") Language set
Framework.2 File
frmOpen Group
IblObjects.Caption Resource
IblActions.Caption Resource
cmdOK.Caption Resource
cmdCancel.Caption Resource
frmBrowseDialogOptions Group
IblLogicalKeyPrompt.Caption Resource
frmAbout Group
imgApplicationBitmap.Picture Resource
GeneratedForms.2 File
frmCustomer Group
IblICustomerName.Caption Resource
frmOrder Group
IblOrderNumber.Caption Resource
Messages.2 File
General Group
EndOfData Resource
ActionInvalid Resource

French (language set with language code “3") Language set

The client framework uses a resource file path (similar to a DOS file search path) to
search for resource files. The path is specified in the application startup code.

- 298 -

Internationalizing Your Application

Instead of providing a type and a value for a resource, you can link it to another re-
source. When the resource is accessed, the application gets the type and value by
following the link. The type and value can link to another resource with its own type
and value, and so on.

Links allow you to specify the value for a resource once and use that value in many lo-
cations. For example, if you have OK and Cancel buttons in many different dialogs and
you want to change the captions on these buttons in all dialogs, you could define two
resources that provide the captions and link to them from all the dialogs.

Links must terminate in a type and value pair. Circular lamesnot allowed.

—-299 -

Construct Spectrum SDK for Client/Server Applications

Resource File Syntax

Resource files are text files that use a syntax identical to Windows INI files. Resource
groups are specified like INI file sections, and resources are specified like INI file keys.

Specify resource IDs to the left of the equal sign, and specify resource values to the right
of the equal sign.

Text Values
Specify text values with quotation mark delimiters, for example:

EndOfDataMsg="There are no more records that match the search criteria."

To include non-printing characters in text values, specify them with one of the escape
sequences listed below. Note that these escape sequences are case-sensitive:

Escape Sequence Non-printing Character

\nl CR-LF character combination (ASCII 450,
\cr CR character (ASCII 43)

\If LF character (ASCII 16y

\tb Tab character (ASCII;9)

\nnn Character corresponding to ANSI caaay,

Note: The “10” notation above indicates decimal numbering.

\\ Backslash character.

Binary Values

Specify binary values as either a sequence of hex characters or as a reference to an ex-
ternal file. For a sequence of hex digits, use the value "BIN:" followed by the byte
values. For an external file, use the value "FILE:" followed by the file name and an op-
tional hex starting position and hex length, for example:

Image1=BIN:01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF 10
Image2=FILE:FileOpen.bmp
Image3=FILE:Icons.dat,1F00,0300

Note: External files must reside in the same directory as the resource file.

- 300 -

Internationalizing Your Application

Links

A resource value may be linked to another resource. To create a link, specify “LINK:”
followed by the name of the resource file (optional), the resource group (optional), and
the resource ID. Use commas to separate the names of the resource file, group and ID,
for example:

cmdOK.Caption=LINK:Global,GUIControls,OKButton
The commas must be included even if you omit an optional name, for example:
IbIHeader(1).Caption=LINK:,,IbIPrompt(1).Caption

If you omit the resource group, the resource file must be omitted too. In this case, the
resource ID is assumed to be in the same resource file and group. If the resource file is
omitted, but the resource group is provided, the resource ID is assumed to be in the same
resource file, for example:

IbIPrompt(1).Caption=LINK:,frmCustomerBrowse,IbIPrompt(1).Caption

-301 -

Construct Spectrum SDK for Client/Server Applications

Using the Internationalization Components

The Resource class provides methods to read resources from resource files and to re-
duce the effort needed to localize an application.

The Construct Spectrum client framework declares and initializes an instance of this
class in Startup.bas, for example:

Public Res As New CST.Resource

For more information about these methods and propertieRessrirce Classe<on-
struct Spectrum Reference

Methods

The Resource class uses the following methods to localize applications:
+ GetResourceGroup
» LocalizeForm
+ LoadBinaryResource
» LoadStringResource
 Message
 MessageEx
» SetDefaultMessageGroup

GetResourceGroup

This method creates a ResourceGroup object that returns a list of the resources in a re-
source group.

The syntax is:

Set result = object.GetResourceGroup(ResourceFile, ResourceGroup)

If the resource file does not exist or if the resource group does not exist in the resource
file, this method returns “Nothing”.

-302 -

Internationalizing Your Application

LocalizeForm

This method localizes a form by iterating through all of the nes®uin the specified
resource group and loading each resource into a corresponding control property.

The syntax is:

Sub LocalizeForm(Form As Form, _

ResourceFile As String, _

ResourceGroup As String)
This method works with text and graphic properties. For example, the resources might
look like this:

Form.Caption="Construct Demo Application"
mnuFile.Caption="&File"
mnuFileOpen.Caption="&0pen..."
imgApplicationBitmap.Picture=FILE:App.ico

This method is very powerful; one line of code in your form will localize all the visual
GUI controls on your form. To use this method, call it from your form’s Load event.
The following example uses a resce file called Forms whichontains resource
groups with the same names as the forms in your application (Me.Name):

Private Sub Form_Load ()
Res.LocalizeForm Me, "Forms", Me.Name
End Sub

LoadBinaryResource

This method loads the specified resource and returns it as arBgyelareturnNull
if the resource cannot be found.

The syntax is:

Function LoadBinaryResource(ResourceFile As String, _
ResourceGroup As String, _
ResourcelD As String) As Variant

LoadStringResource

This method loads the specified resource and returns it as a string. It returns an empty
string if the resource cannot be found.

The syntax is:

Function LoadStringResource(ResourceFile As String, _
ResourceGroup As String, _
ResourcelD As String) As String

-303 -

Construct Spectrum SDK for Client/Server Applications

Message

This method returns a resource identified by a resource ID. The resource file and re-
source group are not specified in this method; they are specified by calling the
SetDefaultMessageGroup method.

The syntax is:

result = object .Message(ResourcelD, DefaultMessage, Substitutions...)

Before using this method, you must set the default resource file and resource group by
calling the SetDefaultMessageGroup method. Once you have set the default resource
file and group, you can call the Message method repeatedly without having to specify

the resource file and resource group each time.

The Substitutions argument is optional. Use it to pass as many substitution parameters
as are required by the message. If you do not pass enough substitution parameters, the
remaining ones in the message will be replaced by “***”,

MessageEx

This method returns a resource identified by a resource file,rasgoup, and re-
source ID.

The syntax is:

result = object .MessageEx(ResourceFile, ResourceGroup, ResourcelD, _
DefaultMessage, Substitutions...)

The Substitutions argument is optional. Use it to pass as many substitution parameters
as are required by the message. If you do not pass enough substitution parameters, the
remaining ones in the message will be replaced by “***”,

SetDefaultMessageGroup

This method sets the default resmaifile and reource group used by the Message
method when loading resources.

The syntax is:

object .SetDefaultMessageGroup ResourceFile, ResourceGroup

~304 -

Internationalizing Your Application

Properties

This section discusses the properties of the Resource class used in localizing an appli-
cation. These properties include:

« Language

« LanguageRegistryKey
« LanguagelNIKey

» ResourceFilePath

Specifying Language, LanguageRegistryKey, and LanguagelNIKey properties sets the
language code used for all resource lookups. The most recently set of these three prop-
erties overrides the settings of the other two properties. Use ResourceFilePath to specify
a search path for seurces.

Language
This property sets the language code used for all resource lookups.
The syntax is:

Language As String

You must define a mapping between language codes and user languages. For example,
you could choose to use the same language codes that Natural uses (1 for English, 2 for
German, 3 for French...).

When accessing a resource, the Resource class uses this language code as a file name
extension to obtain the file name of the resource file. For example, if Language contains
“1” and you use the following method:

strResource = Res.LoadStringResource(“Forms”, “frmOpen”, “Caption”)

the resource class looks for a file called “Form.1” in the resource path.

Read this property to obtain therment language setting if either LanguageRegistryKey
or LanguagelNIKey has been used to specify the language setting.

- 305 -

Construct Spectrum SDK for Client/Server Applications

LanguageRegistryKey

The language code is automaticatyad fromthis Windows Registry key.

The syntax is:

LanguageRegistryKey As String

Use LanguageRegistryKey to specify a valid registry key, beginning with one of:
HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

and ending with a value name. For example:

.LanguageRegistryKey = "HKEY_CURRENT_USER\" & _
"Software\" & _
"SoftwareAG\" & _
"CST Frameworks\" &
"Language”

For every call to LocalizeForm, LoadStringResource, or LoadBinaryResource, the cur-
rent value of this setting will be read to determine which language set to use.

LanguagelNIKey

This property is similar to LanguageRegistryKey, but the language setting is automati-
cally read from this .INI key.

The syntax is:

LanguagelNIKey As String
Use LanguagelNIKey to specify a valid .INI file, section, and key name, each separated
by a Tab character. For example:

.LanguagelNIKey = "C:\Windows\CST411.INI" & vbTab & _
"Settings" & vbTab & _
"Language"

- 306 —

Internationalizing Your Application

ResourceFilePath
This property sets the resource file path used to search for resource files.

The syntax is:

ResourceFilePath As String
Paths are separated by the semicolon character. For example:
.ResourceFilePath = "W\SERVER\Resources;" &

"C:\Program Files\Demos\Demo1"

Setting the ResourceFilePath property allows resource files to reside in multiple loca-
tions. You will want to store resource files used by mafffgmint gplications on a
shared network resource and store application-specific resource files in that applica-
tion’s directory.

-307 -

Construct Spectrum SDK for Client/Server Applications

Hints for Developers

The following sections provide information to help you use Construct Spectrum’s in-
ternationalizing features to the maximum advantage.

Setting the Language Automatically

The Resource class reads the current language setting and uses that information to ac-
cess the language set. This choice is made before the Resource class loads any
resources. This structure allows you to centralize the language setting and have changes
to that setting automatically reflected across all applications.

To set language automatically, ensure that all applications using ther&estass

share a standard LanguageRegistryKey or LanguagelNIKey. If all applications stan-
dardize on a specific Registry key or .INI file key to store the current language, then
changing the language in one application sets the language in all applications.

Strategy for Using Resource Files and Groups

To organize resource files and groups efficiently, use one resource file for each major
component (or layer) of the application being localized. For example, you might sepa-
rate your resources into the following files:

» resources used by all framework components
» resources used by all application-specific components

» resources shared by afilication components and layers, for example, OK and Cancel
button prompts. Link other resources to the resources in this file.

Within each resource file, consider using one resource group for the GUI controls of
each form. This approach makes it easy to use the LocalizeForm method. Then use an-
other resource group for messages and other resources that are not necessarily linked to
GUI control properties, for example, .Caption or .Text.

Construct Spectrum supplies two resource files that implement internationalization of
framework components and shargublication components. These files are called
Fwk.* and Global.* respectively.

The Visual Basic maintenance models (VB-Maint-Dialog and VB-Maint-Object) are
designed to generate code that looks for resources in a resource file called App.*. Par-
tition the resources for your application using this scheme.

By default, the Construct Spectrum framework looks for resource files in the applica-
tion directory. If youare devioping an international application, you will need to
ensure that all necessary resource files reside in the application directory. If you follow
the recommended partitioning of resources described above, you need to copy the
Fwk.* and Global.* resource files from the Framewrk directory to your application di-
rectory. Next, you need to create App.* resource files and create resources for your
application-specific forms and messages.

- 308 -

Internationalizing Your Application

Starting an Application in a Specific Language

Construct Spectrum applications provide the ability to start in a specific language. By
interrogating the Windows locale setting and mapping it to a language code, you can
specify a language other than English.

When each form in the application is loaded, its Form_Load event calls a Localize
method. The Localize method converts the form so it is displayed in the language indi-
cated by the Windows locale setting.

Tip: You may want to test your application with a different Windows locale setting to
ensure that all captions on the application forms are properly formatted.

» To change your Windows locale setting:

1 Select Settings > Control Panel from the Start menu.
The Control Panel window is displayed.

2 Select Regional Settings.
The Regional Settings Properties window is displayed:

—-309 -

Construct Spectrum SDK for Client/Server Applications

Regional Settings Properties H ’
Regional Settings INumberI Eurrenu:_l,ll Tirre I Date I [rpLat Lu:u:alesl

b any programs support international zettings. Changing the Regional
Settings affects the way these programs dizplay and sort dates, times,
curmency, and numnbers.

Englizh [United States)

[T Set as system default locale

| ak. I Cancel Spniy

Specifying the Language in the Regional Settings Properties Window

3 Select the desired locale from the drop-down list in the Regional Settings tab.

Associating Windows Locale Setting with a Language

The Windows locale setting is mapped to a language code by the GetUserDefaultNAT-
LangCode function (located in CSTUtils.bas). This function returns a Language code,
using the same language codes as Natural (for example, 1=English and 2=German)
based on the Windows locale setting. Use this value to set Res.Language, where Res is
a global reference to the Resource class. The mapping of locale setting to language code
is implemented with the MAPPING constant, as depicted in the following code
example:

-310 -

Internationalizing Your Application

Example of using the MAPPING constant

Public Function GetUserDefaultNATLangCode() As Integer

' This constant defines the mapping between Windows language IDs and

' Natural language codes. Entries have the format nn=ww, where nn is
'the Natural language code and ww is the Windows language ID.

Const MAPPING = "01=09,02=07,03=12,04=10,05=16,06=19,07=31,... "

é.nd Function

Changing Language at Runtime

To support changing the user language at runtime:

The user interface must ilicle a function to change the language, for example, a menu
command, keystroke combination, or button.

Each form must implement a localization procedure that localizes the form, perhaps by
calling the LocalizeForm method.

The localization procedure must be called both when the form loads and whenever the
user changes the language at runtime. To implement changing the language at runtime,
declare the localization procedure as public. When the user changes the language, the
event code iterates through all loaded forms and calls their |labatizaocedures, as
shown in the following example:

Public Sub LocalizeAllLoadedForms
' Called whenever the user changes the language at runtime.
Dim frm As Form
For Each frm In Forms
' Use an error handler in case the form doesn't have a
' Localize procedure.
On Error Resume Next
frm.Localize
On Error Goto 0
Next
End Sub

Note: The client framework includes the LocalizeAllLoadedForms procedure and
all generated forms support the Localize method. However, you must code the
user interface command to invoke this proceduyeif are developing an ap-
plication that can change language at runtime.

-311-

Construct Spectrum SDK for Client/Server Applications

-312 -

APPENDIX A: MODIFYING CONSTRUCT
SPECTRUM MODELS

This appendix provides a guideline to follow when creating new models based on the
VB-Maint-Dialog model. Use this appendix to learn about the relationships among the
components used to generate maintenance dialogs.

The following topicsare covered:
+ VB-Maint-Dialog Model, page 314
« VB API, page 316
+ How the VB APl Works, page 317
+ GUI Controls with the VB API, page 319
+ Parameter Data Areas (PDAs) Usedhage 324

-313 -

Construct Spectrum SDK for Client/Server Applications

VB-Maint-Dialog Model

A variety of components participate in the generation of Visual Basic maintenance di-
alogs. The illustration of the model architecture for the VB-Maint-Dialog model shows
the relationships among these components. Use this illustration as a guide if you plan
to change the VB-Maint-Dialog model or create your own GUI models:

CMDA9
Ii (code frame)
CUMDNKY CUMDPR CUMDN1
(driver - key (pre-gen) (driver)
generation)
v
CUMDN3 l
(driver for gpﬂ?iﬁ
redic
CPUXPAND) () CUMDNS
v » (grid event
CPUXPAND l code driver)
CUMDNA
(build grid
v array) i
CUMDNS CPU-0BJ2
(driver for (Predict API)
CUMDN2)
v v v v v v v ! v
CPU-0BJ2 CUMDNE CUMDNJ CUMDND CUMDNI CUMDN9 CUMDNB CUMDNH CUMDNG CUMDNO
(Predict API) | | (change label)| | (focuson grid | | (validate grid | | (highlight grid | | (grid variable || (grid actions) (obtain grid (grid event (grid event
error cell) action) error cell) declaration) column info) code) code, contd.)
I
¢ i ¢ ¢ ¢ | M | M M |
CUMDNR CUMDN4 CUMDN7 CUMDNN CUMDNL N\ L
(driver for (copy object to (control event (MU (Option Button —
CUMDN2) form) logic) declarations) declarations) f
Y Y Y Y CUMDNC CUMDNF
CUMDNG6 CUMDNS8 CUMDNK CUMDNM (grid utiity - (grid utiity -
v v (check remote (combobox (call Combo (set Option forward backward
CUMDN2 error) population) Load) Button values) recurse) recurse)
(GUI defns) I I 7 I I
CSVUDERV
»| (GUI control
derivation)
Y
CUMDNTYP © VBAPI..
(VB API driver)p - = - - - - - 4 »

Architecture of the VB-Maint-Dialog Model

As the illustration shows, many of the routines are called by CPU-OBJ2. CPU-OBJ2
accepts a Predict file name and a subprogram name. CPU-OBJ2 calls this subprogram
for each field in the Predict file. The subprograms generate segments of code based on
the Predict information that is passed by CPU-OBJ2. For example, CUMDN4 generates
Visual Basic code that copies the contents of each field to a related GUI control.

-314 -

Appendix A: Modifying Construct Spectrum Models

Example of generated code

Private Sub CopyObjectToForm

InhibitValidations = True
On Error GoTo FormAssignmentError
With InternalObject
txt_Empl_Personnelld.Text = _
BDT.ConvertToDisplay(.Field("PERSONNEL-ID"), _
NatFormatLength:="A8")
txt_Empl_FirstName.Text = _
BDT.ConvertToDisplay(.Field("FIRST-NAME"), _
NatFormatLength:="A20")

-315-

Construct Spectrum SDK for Client/Server Applications

VB API

The VB-Maint-Dialog model uses a series of Natural subprograms that generate Visual
Basic definitions into the source area. Collectively, these Natural subprograms are
called the VB API. The VB-Maint-Dialog model uses the VB API to generate the visual
definition — the various GUI controls — of a Visual Basic maintenance dialog. If your
models generate Visual Basic forms, they can also use the VB API.

Components of the VB API

Three components exist for each type of GUI corgugported by the VB API:
» A subprogram to assign user-defined default values for the properties of a GUI control.
« An LDA to store the Visual Basic default values for the properties of a GUI control.
« A subprogram to write the GUI definition to the soeiarea.

A series of PDAs store property information for GUI control definitions. GUI control
properties are grouped by function intéfelient PDAs. For example, all GUI control
properties related to font are stored in the CSVAFONT PDA. Any GUI control that im-
plements font properties declares the font PDA, CSVAFONT.

To see the list of GUI controls supported by the VB API,GEk Controls with the
VB API, page 319. For each GUI control, the table in this section indicates:

» The subprogram responsible for assigning user defaults.
» The subprogram responsible for writing the GUI definition to thecsoarea.
+ The PDAs that must be passed to these subprograms.

-316 -

Appendix A: Modifying Construct Spectrum Models

How the VB API Works

» Yo use the VB API with a model you create:

1 Call the user default subprogram.
The user default subprogram assigns your organization’s defaults for GUI control
properties. With this subprogram, you can write code to assign default values once —
not in every subprogram that uses the VB API. For example, suppose your organization
requires the field captions in all dialogs to be in an eight-point MS Sans Serif font.
Writing the following code in the user default subprogram CSVBDLBL (for Label GUI
controls) assigns the organization’s required values.

Example of code in the user default subprogram

COMPRESS #DOUBLE-QUOTE 'MS Sans Serif #DOUBLE-QUOTE
INTO CSVAFONT.FONT_NAME LEAVING NO SPACE
ASSIGN CSVAFONT.FONT_SIZE = 8

For more information, se®etting Generation GUI Standards page 143.

2 Assign any GUI control properties that are application-specific.
For example, the Caption property of the Label GUI control varies because it is based
on the name of the database field with which it is associated. Therefore, you would not
want to assign this type of GUI control property in the control’'s default subprogram.

Example of assigning a value to the Caption property

CSVAFRMT.CAPTION := CPA-ODAT.FIELD-NAME

For another example, refer to the CUMDNTYP driver program for the VB-Maint-Dia-
log model.

3 Call the Create subprogram that writes the GUI definition to the source area.
The Create subprogram compares the value assigned to a particular GUI control
property with the default value used by Visual Basic. If the assigned value differs from
the Visual Basic default value, the Create subprogram generates the property
assignment into the source area. However, if the assigned value matches the Visual
Basic default value, the Create subprogram savesesauea space kspppressing
generation of the property assignment.

Consider the FONT_NAME and FONT_SIZE properties set in the earlier example. Vi-
sual Basic's default property values for a Label GUI control are an eight-point font and
a MS Sans Serif font. The Label GUI control definition (generated by CSVBCLBL)
shown below does not include assignments for the font name and size.

-317 -

Construct Spectrum SDK for Client/Server Applications

Example of using default values

Begin VB.Label Ibl_Empl_Personnelld
Caption = "Personnel/id:"

AutoSize = -1

Left =100

Top = 295

Height = 285

Width = 1073
End

-318 -

GUI Controls with the VB API

The following table lists the GUI controls the VB-Maint-Dialog model uses. Also in-
cluded are the subprogram names and parameter data areas (PDA) associated with each

GUI control:

GUI Control User Default

Create

Appendix A: Modifying Construct Spectrum Models

PDAs

CheckBox CSVBDCHK

3DCheckBox

CSVBD3CH

CSvBDCBO

ComboBox

CommandButton CSVBDCMD

CSVBCCHK

CSVBCS3CH

CSVBCCBO

CSVBCCMD

-319 -

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

CSVACMBO
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVATBOX
CSASTD

CUMDATYP
CSVACOMN
CSVABUTN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD

Construct Spectrum SDK for Client/Server Applications

GUI Control User Default Create

PDAs (continued)

3Dcommand CSvBD3CD CSVBC3CD
Button

Form CSVBDFRM CSVBCFRM

Frame CSVBDFRA CSVBCFRA

3DFrame CSVBD3FR CSVBC3FR

Label CSVBDLBL CSVBCLBL

-320 -

CUMDATYP
CSVALCTN
CSVACOM
CSVA3CMD
CSASTD

CUMDATYP
CSVACOMN
CSVADDE
CSVAFONT
CSVAFORM
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

CUMDATYP
CSVA3DI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSASTD

CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

GUI Control

User Default

Create

Appendix A: Modifying Construct Spectrum Models

PDAs (continued)

ListBox

MDIForm

Menu

OptionButton

3DOptionButton

CSVBDLST

CSVBDMFM

CSVBDMNU

CSVBDOPT

CSvBD30OP

CSVBCLST

CSVBCMFM

CSVBCMNU

CSVBCOPT

CSVBC30P

-321-

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVALBOX
CSVALCTN
CSVAMOUS
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVALCTN
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFRMT
CSVAMENU
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

CUMDATYP
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATOGL
CSASTD

Construct Spectrum SDK for Client/Server Applications

GUI Control User Default Create

PDAs (continued)

StatusBar CSVBDSTA CSVBCSTA

TextBox CSVBDTXT CSVBCTXT

Timer CSVBDTMR CSVBCTMR

3DPanel CSVBD3PN CSVBC3PN

TrueDBGrid CSVBDGRD CSVBCGRD

-322 -

CUMDATYP
CSVACOMN
CSVA3DI
CSVAFOCS
CSVALCTN
CSVASTAT
CSASTD

CUMDATYP
CSVACOMN
CSVADDE
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALCTN
CSVAMOUS
CSVATBOX
CSVAWNDW
CSASTD

CUMDATYP
CSVACOMN
CSVALCTN
CSVATIME
CSASTD

CUMDATYP
CSVA3DI
CSVA3DPN
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAFRMT
CSVALABL
CSVALCTN
CSVAMOUS
CSASTD

CUMDATYP
CSVACOMN
CSVALCTN
CSVAFOCS
CSVAGRID
CSASTD

GUI Control

User Default

Create

Appendix A: Modifying Construct Spectrum Models

PDAs (continued)

Toolbar

CSVBDTLB

CSVBCTLB

CUMDATYP
CSVA3DI
CSVACOMN
CSVAFOCS
CSVAFONT
CSVAMOUS
CSVATOOL
CSASTD

-323 -

Construct Spectrum SDK for Client/Server Applications

Parameter Data Areas (PDAs) Used

The following table lists the PDAs used with the VB-Maint-Dialog model. Included are
the properties associated with each PDA and the GUI controls that use the PDA. These
PDAs are also crossferenced by GUI control andibprogram inGUI Controls with

the VB API, page 319.

Some of the properties are identified with superscript numbers. When a GUI control is
shown with a superscript number, the corresponding property is not used. For example,
the first PDA in the following table has a BackColor property identified with a super-
script number of 1. The GUI control 3DCheckBox field also has a superscript value of
1. This means that the 3DCheckBox field does not use a BackColor property.

PDA Name Properties Used By GUI Control

CSVACOMN BackColof CheckBox

(common information) Enabled '3(,:Dc;rk1)ecl;3kBo>%L
omboBox
Index’ CommandButton

Namé Form?®
Tag® Frame

Visible 3DFramé
Label
ListBox

MDIForm?3:6
Menu
OptionButton
3DOptionButtort
StatusBa}2:3:4:5:6
TextBox

Timer6

3DPanel

TrueGridPro
ToolBar

—-324 -

PDA Name

Appendix A: Modifying Construct Spectrum Models

Properties

Used By GUI Control

CSVAFOCS
(focus information)

CSVATOGL
(toggle information)

CSVAFRMT
(text formatting
information)

HeIpContextIlj
TablndeX
TabStop

Value

Alignmentt
BorderStylé
Caption3

-325-

CheckBox
3DCheckBox
ComboBox
CommandButton

MDIForm? 3

Ment? 3
OptionButton
3DOptionButton

StatusBat3
TextBox

3DPanet
TrueGridPro

ToolBar 3

CheckBox
3DCheckBox
OptionButton
3DOptionButton

CheckBo¥
3DCheckBox
CommandButtoh?
Formt

Frame-2

3DFramé
Label

MDIForm?+2
Menut2
OptionButtorf
3DOptionButtor
TextBox®
3DPanet
TrueGridPrd-3

Construct Spectrum SDK for Client/Server Applications

PDA Name

Properties

Used By GUI Control

CSVAMOUS

CSVAFONT
(font information)

DraglcoriL
DragModé
MousePointet

FontBold'
Fontltalic
FontNamé
FontSizé
FontStrikethrd
FontTranspareﬁt
FontUnderliné
Font3D?
ForeColo?

- 326 -

CheckBox
3DCheckBox
ComboBox
CommandButton

Formt2

Frame

3DFrame

Label

ListBox
OptionButton
3DOptionButton
TextBox

3DPanel
TrueGridProToolBar

CheckBoxX"?
3DCheckBof
ComboBo¥$-8
CommandButtofr®?°
Form?

Framé-8
3DFramé&
Labef-8
ListBox®-8
OptionButtor?*8
3DOptionButtof
TextBoxX-8
3DPanéf
TrueGridPr§-8
ToolBaff:8?

Appendix A: Modifying Construct Spectrum Models

PDA Name Properties Used By GUI Control
CSVALCTN Left! CheckBox
(location information) LeftDerive 3DCheckBox
Top? ComboBox
TopDerive CommandButton
. Form
He!ghﬁ , Frame
HeightDerive 3DFrame
Width? Label
WidthDerive ListBox
MDIForm
OptionButton
3DOptionButton
StatusBar
TextBox
Timer*
3DPanel
TrueGridPro
CSVA_DDE] Linkitem® Formt3
(DDE information) LinkMode? LabelTextBox
LinkTimeouf
CSVAFORM AutoRedraw Form
(form control ControlBox
information) DrawMode
DrawStyle
DrawWidth
FillColor
FillStyle
KeyPreview
MaxButton
MDIChild
MinButton
Picture
CSVALABL AutoSizéd Label
3
(label control BackStylé 3DPanet
information)
WordWrap
CSVAMENU Checked Menu
(menu control ShortCut WindowList
information)

-327 -

Construct Spectrum SDK for Client/Server Applications

PDA Name Properties Used By GUI Control
CSVABUTN Cancel CommandButton
(command button Default
control information)
CSVALBOX Columng ListBox
(listbox control MultiSelec? ComboBox2
information)
Sorted
CSVASTAT _Version StatusBar
(status bar _ExtentX
information) _ExtentY
_StockProps
SimpleText
2,34
(textbox control MaxLengtr? ComboBox
information) Y
MultiLine
PasswordChér
Text
CSVATIME Interval Timer
(timer control
information)
CSVACMBO Style ComboBox
(combobox control
information)
CSV_Af3D|) AIign1 3DPanet
(3D information) Outliné? 3DFramé?
ShadowColo? Toolbar+*
ShadowStyl&
CSVAWNDW ClipControlst Form®
(window information) lcor? Framé-34
Scrollbars MDIForm!
WindowStaté TextBox:2+4

-328 -

Appendix A: Modifying Construct Spectrum Models

PDA Name Properties Used By GUI Control
CSVA3DPN Bevellnner 3DPanel
(3D panel information) BevelOuter

BevelWidth

BorderWidth

FloodColor

FloodPercent

FloodShowPct

FloodType

RoundedCorners
CSVAGRID OLEODbjectBlob Grid
(TrueDBGrid control
information)
CSVA3CMD

-329 -

Construct Spectrum SDK for Client/Server Applications

-330 -

INDEX

A

Active help
drop-down list
diagram, 279
for maintenance dialogs, 277
foreign field help, 278
primary key help, 277
Adding a new field by hand
on maintenance dialog, 152
Add-Ins Menu
options, 25
Appendix
SeeModifying Spectrum models
AppendSlash
utility procedure, 259
Application interface
demo project, 50
Application settings
AppSettings.bas
definition, 213
customizing, 214
Startup.bas
definition, 213
understanding, 213, 215
ApplicationName
description, 214
AppSettings.bas
description, 106
See als@pplication settings, 213
Architecture
Construct Spectrum applications, 26
ArrayDimensions
utility procedure, 259
ASSERT
utility procedure, 259
Assigning
corporate defaults, 141

-331-

BDT_PHONE

business data type, 262

Browse

modules
downloading to project, 188

support
ApplicationControl, 215
ApplicationControls, 215
BrowseBase.cls, 215
BrowseDataCache, 215
BrowseDataColumn, 215
BrowseDataColumns, 215
BrowseDataRow, 215
BrowseDataRows, 215
BrowseDialogBase.cls, 215
BrowseDialogOptions.frm, 216
BrowseManager.cls, 216
ColumnDisplay, 216
ColumnsDisplay, 216
FieldKey, 216
FieldKeys, 216
GenericBrowse.frm, 216
GenericMDIBrowse.frm, 216
KeyMatch, 216
understanding, 215

Browse Command handlers

coding, 198
enabling browse commands, 198
example of code to assign command
IDs, 198
example of code to mark updated
rows, 200
example of code to update, 199
creaing, 197
diagram of Browse Command handler
interaction, 195
drill-down capabilities, 276

Construct Spectrum SDK for Client/Server Applications

Browse dialogs
browse object subprogram, 177
browse object subprogram proxy, 178
components of
client framework components, 176
object browse subprogram, 176
object browse subprogram proxy, 176
Visual Basic browse object, 176
creating with individual models, 175
diagram of components, 177
drilling down from, 276
framework components, 179
integrating with maintenance dialogs,
275
see alsantegrating browse and
maintenance dialogs
modules required for, 84
prereqisites for generating with
individual models, 181
purpose, 176
Visual Basic browse object, 178
data cache, 178
Browse object
See alsd/isual Basic browse object
seeVisual Basic browse object
subprogram
generating, 182
Browse subprogram proxy
generating, 182

BrowseManager class
BrowseManager methods
list of services, 194

BrowserExists procedure
(TableName) As Boolean, 245
example code, 255
updating, 255

Browsing for business objects
customizing browse options, 71
demo project, 68

Business data types
demo project, 63
setting up in Predict

example code for, 138

-332-

C

Calculated fields
code examples, 145
creaing, 145
CenterForm
utility procedure, 259

CheckBox field
adding to maintenance dialog, 155

CheckBox grid column
adding to maintenance dialog, 161
Checklists
Construct Spectrum project, 103
creaing browse dialogs with individual
models, 181
creaing maintenance dialogs with
individual models, 116
moving non-object based applications to
Construct Spectrum, 203
moving object-based applications to
Construct Spectrum, 202
super model generation, 80

Client framework
customizing
application settings, 214
menu and toolbar
Seemenu and toolbar, 233
object factory, 246
diagram of components, 208
internationalizing
Seelnternationalizing, 302
introduction, 208
multiple-document interface, 242
object factory, 243
Resource class, 302
initializing an instance, 302
understanding and customizing, 207
utility procedures, 259
Client modules
generation overview, 35

Client/server applications
architecture, 26

CLIENT-VALIDATIONS user exit
validating data, 267

Index

ComboBox GUI control
adding to maintenance dialog, 154

Command buttons
foreign field support, 294
Command handlers
browse
drill-down capabilities, 276

Commands
defining, sending, and handling, 221

Compressing data
enabling for client to server
transmissions, 119-120, 184

Construct Spectrum
creating your application, 34
description, 22
moving Natural Construct applications
to, 16

Construct Spectrum Add-In
overview, 42

Construct Spectrum applications
diagram of architecture, 26

Construct Spectrum project
creating, 104
downloading generated components to,
107
prereqisites, 103
setting up, 101
Construct Spectrum SDK
documentation, 18
documentation and course information,
18
Conventions
typographical
used in this guide, 17
Corporate defaults
assigning, 141
Courses
related Natural Construct, 19

Create a New Project window
description, 104

CreateArray
utility procedure, 259

CreateForm procedure
description, 252
example code, 252
updating, 252

-333 -

CreateStringArray

utility procedure, 259
Creating

applications, 34

calculated fields, 145

Construct Spectrum applications, 16

Construct Spectrum Project, 104
CSTFormatMessage

utility procedure, 259
CSTSelectContents

utility procedure, 259

CSTSubst

utility procedure, 259
CSTUtils.bas

utility procedures, 259
CSTVBFW.dII

customizing client framework
components, 209

CSXDEFLT
changing values in model default
subprogram, 288

Customizing
application and environment, 36
browse dialog
display options, 71
recommendations for a new
application, 190
browse dialogs, 195
BrowseManager methods, 194
diagram of internal structure, 193
on the client
SeeCustomizing on the client, 195
on the server
SeeCustomizing on the server, 195
understanding Browse Command
handlers
SeeBrowse Command handlers,
195
using BrowseManager class, 192
business data types, 180
descriptive fields, 180
maintenance dialog
overriding default GUI control
selection, 133
server options, 131
server tasks, 132
strategies for, 129
user-defined user exits, 131

Construct Spectrum SDK for Client/Server Applications

Customizing browse dialogs
using the BrowseManager class, 191
diagram of intera@bn to display a
browse dialog, 192

Customizing on the client

understanding the BrowseManager class

displaying the browse dialog, 190
returning a specific row of data, 191
returning all rows of data, 191
supporting a browse command
handler, 190
Customizing on the server
browse object Predict setup, 195

D

Data compression
enabling for client to server
transmissions, 119-120, 184
Data encryption
enabling for client to server
transmissions, 120, 184
Data sources
defining alternate, 185
Database ID
specifying in a new project, 104
DBID
description, 215
number
specifying in a new project, 104
Debugging
client/server applications, 36
Default GUI derivation logic, 137, 139
diagram, 139-140
DefaultLibrary
description, 215
Defaults
used by super model, 80
Defining
alternate browse data sources, 185
example code, 187
general package parameters, 95
specific package parameters, 97
Demo application
application interface, 50
browsing for business objects, 68
business data types, 63

-334-

customizing browse options, 71
drop-down grids, 66

foreign fields on a maintenance dialog,
69

generated modules, 45

grids, 64

maintaining a business object, 61
making the .EXE file, 49

nested grids, 65

opening a business object, 57
overview, 38, 43

remote dispatch service options, 55
running, 47

troubleshooting, 75

validations, 62

Dependencies between models, 85
Deploying

procedure, 36
Deploying applications

overview, 36

Derivation logic
GUI controls, 132

Descriptions
foreign fields, 289
refreshing, 291

Developing Client/Server Applications
how to use guide, 16
layout, 14

Development environments
description, 23

Development process
steps involved in developing an
application, 30

Dialogs, browse
seeBrowse dialogs

Dialogs, maintenance
seeMaintenance dialogs

Dispatch service data
role on mainframe server, 27

Dispatch services
options, 55
Dispatcher
Selection window
SeeSpectrum Dispatch Client, 258
Dispatcher Selection window
customizing client framework
components, 258

Index

Displaying
grids, 167
Documentation
related Construct Spectrum SDK, 18
related Natural Construct, 18—19
Domains
setting up application environment, 33
specifying in super model, 95
Downloading
browse modules to the client, 188
Download Generated Modules window,
107
Downloading Modules window, 126
generated components to project, 107
maintenance modules to the client, 125
Drilling down from a browse dialog, 276
Drop-down grids
demo project, 66
Drop-down list
representing a foreign field, 286
dialog, 286
Drop-down lists
active help from
diagram, 279
foreign field support, 292

E

Encrypting data
enabling
client to server transmissions, 120,
184
Entire Broker
role on mainframe server, 28
Error notifications
adding support for sound, 169
ErrorPreferences.frm
description, 272
ErrorTip.frm
description, 272
EXE file
making for demo project, 49
Existing applications
moving to Construct Spectrum, 201

-335-

External data
accesimg with VB-Browse-Local-Data-
Object model, 185
displaying in a generated combo box,
136
example code for accessing, 187

F

Field help

active help, 277
File number

specifying in a new project, 104
FileExists

utility procedure, 259

FindFirst

utility procedure, 259
FixupRTF

utility procedure, 259
FK-AS-COMBO-THRESH-HOLD

changing default value, 288
FNR

description, 215

FNR number
specifying in a new project, 104
ForcelLogonAtStartup
description, 214

Foreign fields
active help, 278
case for not using, 283
diagram, 283
corporate default threshold, 141
default GUI controls, 288
demo project, 69
displaying descriptions, 289
GUI controls used to represent, 285
multiple descriptive values, 290
refreshing descripins, 291
repeating relationships, 283
diagrams of, 283
representing in
drop-down lists, 286
grids, 287
lookup buttons, 286
supported relationships, 282
diagram, 282
supporting code
command buttons, 294
drop-down lists, 292

Construct Spectrum SDK for Client/Server Applications

G

G/R/O
in super model wizard, 92

Generated code
transferring to the project, 35

Generating
browse subprogram proxy, 182
individual models, 34
maintenance dialog, 122
maintenance subprogram proxy, 117
object factory
considerations for, 82
super model, 93, 98
diagram of, 78
new package, 90
overview, 78
packages and object factory, 88
specific packages, 90
super model wizard
Standard Parameters window, 87
Visual Basic browse object, 182
Visual Basic maintenance object, 118

Generation process

overview of server/client modules, 34
GetBrowser

TableName As BrowseManager, 245

GetBrowser procedure
example code, 254
updating, 253

GetPrivateProfileStringVB
utility procedure, 259

GetWindowsDiectoryVB
utility procedure, 260
Grid
representing a foreign field, 287
diagram, 287
Grids
column
adding to maintenance dialog, 156
demo project, 64
diagram
formatted grid, 167
unformatted grid, 167
displaying, 167
Grid Sizing Information window, 168

- 336 —

keyboard shortcuts, 67
resizing, 168
using, 165
GUI
generation standards
defining, 143
GUI controls
default controls for foreign fields, 288
default derivation logic, 137, 139
diagram, 139-140
derivation logic, 132
keywords, 135
naming conventions, 132
overriding default selection, 133
representing foreign fields, 285
GUI dialog
role on Windows platform, 29
GUI_ALPHA MULTILINE keyword
description, 135
GUI_CHECKBOX keyword
description, 135
GUI_COMBOBOX keyword
description, 135
GUI_NULL keyword
description, 135
GUI_OPTION BUTTON keyword
description, 135
GUI_PROTECTED keyword
description, 136
GUI_TEXTBOX keyword
description, 136

H

Help
Seeonline help, 31
HKEY_CLASSES_ROOT
language registry, 306
HKEY_CURRENT_USER
language registry, 306
HKEY_LOCAL_MACHINE
language registry, 306
HKEY_USERS
language registry, 306

Index

Individual models
when to use, 34

InitAppSettings procedure
example, 214

InitializeOpenDialog procedure
code example, 251
description, 245, 250
updating, 250
Integrating browse and maintenance
dialogs, 275
design objectives, 280
drilling down from a browse dialog, 276
overview, 276, 280, 282
see alsd-oreign fields, 275
Interface
demo project, 50
Internationalizing
generated applications, 295
hints for developers, 308
automatically setting the language,
308
changing language at runtime, 311
using resource files and groups, 308
maintenance dialogs, 172
methods, 302
GetResourceGroup, 302
LoadBinaryResource, 302
LoadStringResource, 302
LocalizeForm, 302—-303
Message, 302
MessageEx, 302
SetDefaultMessageGroup, 302
planning considerations, 296
list of translatable items, 296
properties, 305
Language, 305
LanguageINIKey, 306
LanguageRegistryKey, 306
ResourceFilePath, 307
related client framework components
Resource, 297
ResourceGroup, 297
using the client framework, 297
where to find related information, 295

Invoking
super model, 86, 94

-337 -

IsForegroundApplication
utility procedure, 260
IsMDIChild
utility procedure, 260

K

Key field active help, 277
Keyboard shortcuts for grids, 67

Keywords
business data type, 138
GUI control, 135
verification rule, 137

L

Label captions
GUI controls, 133

Language sets
resource files, 297
LanguageRegistryKey
description, 306
HKEY_CLASSES_ROOT, 306
HKEY_CURRENT_USER, 306
HKEY_LOCAL_MACHINE, 306
HKEY_USERS, 306
Library image files
role on Windows platform, 29
LoadBinaryResource method
description, 303

LoadStringResource
description, 303

Logon dialog
description, 258
See als@pectrum Dispatch Client, 258

Lookup button
representing a foreign field, 286
diagram of, 286

M

Maintaining a business object
demo project, 61

Maintenance dialogs
abbreviated object description, 133
active help for, 277
adding new field by hand, 152
controlling default size, 144

Construct Spectrum SDK for Client/Server Applications

customizing on the server, 132
integrating with browse dialogs, 275
see alsdntegrating browse and
maintenance dialogs
internationalizing, 172
model
using, 122
modules required for, 83
object identifier, 133
prereqisites for generating with
individual models, 116
Maintenance modules
relationships between, 114
to download to project, 125
Maintenance object
see

Maintenance object subprogram
generating, 116

Maintenance subprogram proxy
generating, 117

Max
utility procedure, 260

MDI
See multiple-document interface, 242

MDIFrame.frm
description, 242
Menu
bar
definition, 242
structure
Seemenus and toolbars, 234

Menus and toolbars

command handling
class summary, 221
coding, 224
defining, sending, and handling, 221
linking commands, 224
understanding, 220
unhooking commands, 233
user interface controls, 226

customizing, 233
menu bar example, 237
menu editor window, 238
menu structure, 234
toolbar button example, 241
toolbar structure, 240

demo application, 51

support
UlCmd, 219
UlCommandConstants.bas, 219
UlCommands, 219

Message method

description, 304

MessageEx method

description, 304

Methods

coding the UICommandTarget(), 199
internationalizing

See alsdnternationalizing, 302
marking updated rows, 200

Min

utility procedure, 260

Modal browse window

example, 277

Models

deciding which to use, 34
dependencies between, 85

Modifying

Spectrum models, 313
example of generated code, 315
GUI controls with VB API, 319
how the VB API works, 317
parameter data area (PDA) used, 324
VB API, 316
components

See alsd/B API
VB-Maint-Dialog model, 314
VB-Maint-Dialog model architecture,
314

Modules

custom-created, 245
deciding which to generate with super
model, 82
naming conventions, 80
diagram, 80
to download to project, 108
uploading changes to the server, 129

Monitor resolution

effect on didog size, 144

MoveFormSafely

utility procedure, 260

Multi-column layout

creaing on dialog, 149
example, 149

Index

Multilingual support Open dialog
Seelnternationalizing, 172 understanding, 244

Multiple descriptive values for a foreign Open.frm

field, 290 definition, 243

Multiple Gereration utility OpenAction, 243
using with super model, 93 OpenObject, 243

Multiple-document interface OpenObjects, 243

procedures
Mll\)/lleFr:Srgg:rr;lez 42 BrowserExists(TableName) As
’ Boolean, 245

Status Bar, 242
Toolbar, 242
understanding, 242

CreateForm(formID) As Form, 245
GetBrowser(TableName) As
BrowseManager, 245
InitializeOpenDialog(), 245

N relationship diagram, 248
]) selecting to generate in super model, 95
Naming conventions selecting to generate in super model
GUI controls, 132 wizard, 88
super model, 80 understanding, 243-244
diagram, 80 using, 245
Natural Construct applications example, 246
moving to Construct Spectrum, 16 Object maintenance subprogram
Natural subprogram description, 83
role on mainframe server, 27 seeMaintenance object subprogram,
Nested grids 116
demo project, 65 Object maintenance subprogram proxy
diagram of relationships, 165 description, 83
drop-down Object-based applications
dla}graTéé% moving to Construct Spectrum, 202
using, iact- -
using, 165 Object-Browse-Subp model

description, 84
ObjectError

description, 273
ObjectErrors
@) description, 273
Object-Maint-Subp model

description, 83

Non-object based applications
moving to Construct Spectrum, 203

Object browse subprogram, 182
description, 84
key PDA description, 84 OFactory.bas
restricted PDA description, 84 description, 106, 243
row PDA description, 84 example, 247

Object browse subprogram proxy OLE automation server
description, 84 customizing client framework

Object factory components, 209

considerations for generating, 82 Online help
customizing, 246 context-sensitive, 31

new business objects, 250 providing in client/server applications,

OFactory.bas, 243 31
code, 249 task-oriented, 31

OFactory.bas window, 247 window-level, 31

-339 -

Construct Spectrum SDK for Client/Server Applications

Open dialog

overview, 243

relationship diagram, 248

understanding, 244
Open.frm

definition, 243

example, 243
OpenAction

description, 243

Opening a business object

demo project, 57
OpenObject

description, 243
OpenObjects

description, 243

Option button threshold
corporate default, 141

Overflow conditions

correcting, 144, 148

correcting in a dialog, 122

example, 148

working with overflow frames, 149
Overriding default GUI control selection,
133

P

Packages
generating with super model, 82
specifying parameters
general, 88
general parameters, 95
specific parameters, 90, 97
specifying prefix in super model wizard,
91
PadLeft
utility procedure, 260

PadRight
utility procedure, 260

Parameter data areas
generating for browse object
subprogram, 182
generating for maintenance object
subprogram, 116

Planning your application
consistent style, 32
content of windows, 32

—340 -

deciding what to show users, 31
number and structure of windows, 32
planning code, 32
setting up your project, 35
simple window design, 32
translation issues, 33
Predict definitions
setting up application environment, 33

Predict Modify Verification panel
description, 137

Predict set up tasks
default GUI controls, 129
headers, 129
keywords, 129

Prerequisites
Construct Spectrum project, 103
demo application, 39
developing client/server applications, 14
super model, 80

Preserving
user exits, 129
Primary keys
active help for, 277
Product integration
Adabas, 22
Construct Spectrum, 22
DB2, 22
Entire Broker, 22
Natural, 22
Predict, 22
VSAM, 22

Projects
opening the demo, 40
see alsdConstruct Spectrum project,
101

Prompt to Open New Project window
description, 105

R

Regenerating existing modules

using super model, 96

using super model wizard, 89
RegistryKey

description, 214
Relationships

between maintenance modules, 114

Index

RememberUserID
description, 214

Remote dispatch service options
demo project, 55
Removing field
by hand from maintenance dialog, 164

Repeating field threshold
corporate default, 141

Repeating foreign fields
represented in a grid, 287
diagram, 287
supported relationships, 283
diagram of, 283

Replacing existing modules
using super model, 96
using super model ward, 89

ResizeForm
utility procedure, 260
Resizing
grids, 168
Resizing grids
controls in a dialog, 122
Resource files
composition, 297
creating links, 301
filename example, 297
path
purpose, 298
specifying binary values, 300
specifying text values, 300
how to include non-printing
characters, 300
syntax, 300

Resource groups
identifiers (RGID), 297
purpose, 297

Resource identifiers (RID)
composition, 297

Resources
linking, 299

S

Scalar field

adding to maintenance dialog, 152
SDC

SeeSpectrum Dispatch Client, 256

—-341 -

SDCDialog.frm
description, 256
dialog, 257
Security
considerations for a new application,
111
setting up domains, steplibs, users, and
groups, 33
Server
customizing maintenance dialogs, 132

Server modules
generation overview, 34

Server-based applications
moving to Construct Spectrum, 201

SetDefaultMessage method
description, 304

Setting up
Construct Spectrum project, 101
Predict file definitions, 133

SetUppercaseStyle
utility procedure, 260

Shortcuts
keyboard shortcuts for grids, 67

Simple foreign field relationships, 282
diagram, 282

Sound
adding to erronotifications, 169
support for error notifications, 169

Sound support
overview, 170

Spectrum administration
role on mainframe server, 27

Spectrum Dispatch Client
client frameworksupport, 256
error messages, 258
SDCDialog.frm, 256
example dialog, 257
SDCSupport.bas, 256
TraceOptions.frm, 256
example dialog, 257
Spectrum Dispatch Client (SDC)
overview, 22
Spectrum dispatch service
overview, 22
role on mainframe server, 27
Spectrum security services
role in Construct Spectrum applications,
28

Construct Spectrum SDK for Client/Server Applications

Startup.bas
Seeapplication settings, 213

State-dependent layout
creating on dialog, 151
example, 151
Status bar
definition, 242
demo application, 54
Steplib chains
setting up application environment, 33
Strategies for customizing maintenance
dialogs, 129
Sub Main procedure
customizing client framework
components, 213

Subprogram proxies
generating for a browse dialog, 182
generating for a maintenance dialog,
117
Subprogram proxy
role on mainframe server, 27
Subprogram-Proxy model
description, 83-84
Super model
defaults, 80
defining general package parameters, 95
defining specific package parameters,
97
General Package Parameters panel, 95
generating
in batch, 93
using weard, 93
generating application modules, 34
generation function, 98
generation overview, 78
diagram of, 78
invoking, 86, 94
invoking the model wizard, 86
Package modules grid in wizard, 91
prereqisites, 80
regenerating existing modules, 89
replacing existing modules, 89
Standard Parameters panel, 94
troubleshooting, 100
using message numbers, 87
when to use, 78
which modules to generate, 82

—342 -

Super model wizard
New Package window, 90
Packages and Object Factory window,
88

T

Tabbed layout
creaing on dialog, 150
example, 150

Testing applications
recommendatins for testing new
application, 110

TextBox GUI control
adding to maintenance dialog, 153

Thresholds
foreign field, 142
option button, 142
repeating field, 142

Toolbar
buttons, 229
customizing

Seemenus and toolbars, 240
definition, 242
demo application, 51

TraceOptions.frm
dialog, 257
example, 257

Transferring
generated code to the client, 35

TWIPS monitor values
description, 144

Typographical conventions
used in this guide, 17

U

UlCmd
definition, 219
UlCommandConstants.bas
defining commands, 238
definition, 219
UlCommands
class, 222
definition, 219

Index

Uploading
changes to the server, 129
Uploading Modules window, 173

User exits
preserving changes by uploading to the
server, 129
user-defined for maintenance dialog,
131

User Exits panel
VB-Browse-Object model, 185

User type rules
coding, 270
example of code for Natural rule, 270
example of code for Visual Basic rule,
270
example of code using Visual Basic and
Natural, 270

Utility procedures
AppendSlash, 259
ArrayDimensions, 259
ASSERT, 259
CenterForm, 259
CreateArray, 259
CreateStringArray, 259
CSTFormatMessage, 259
CSTSelectContents, 259
CSTSubst, 259
CSTUtils.bas, 259
description, 259
FileExists, 259
FindFirst, 259
FixupRTF, 259
GetPrivateProfileStringVB, 259
GetWindowsDirectoryVB, 260
IsForegroundApplication, 260
IsMDIChild, 260
Max, 260
Min, 260
MoveFormSafely, 260
PadLeft, 260
PadRight, 260
ResizeForm, 260
SetUppercaseStyle, 260

- 343 -

Vv

Validating data
creaing Predict verification rules, 269
diagram of a validation cycle, 263
examples in demo project, 62
in maintenance dialogs, 266
hand-coding in generated dialogs, 266
using BDTs, 266
in Visual Basic maintenance objects,
267
using CLIENT-VALIDATIONS user
exit, 267
using Predict, 268
on the client
diagram of triggering validation, 265
order of precedence, 271
typed of validations, 262
types of data validation
business data type, 262
business object, 263
local business, 262

Validation error handling
ErrorPreferences.frm, 272
ErrorTip.frm, 272
ObjectError, 273
ObjectErrors, 273

Validation errors
in business object validations, 273
example of code, 273
on the client, 272
Variable names
deriving, 132
VB API
components, 316
LDA storing Visual Basic default
values, 316
PDAs for GUI control definitions, 316
subprogram to assign default values,
316
subprogram to write GUI definition,
316
description, 316
GUI controls, 319
3DCheckBox, 319
3Dcommand Button, 320
3DFrame, 320
3DOptionButton, 321
3DPanel, 322
CheckBox, 319

Construct Spectrum SDK for Client/Server Applications

ComboBox, 319
CommandButton, 319
Form, 320
Frame, 320
Label, 320
ListBox, 321
MDIForm, 321
Menu, 321
OptionButton, 321
StatusBar, 322
TextBox, 322
Timer, 322
Toolbar, 323
TrueDBGrid, 322
PDAs
CSASTD, 319
CSVA3CMD, 320
CSVA3DI, 320
CSVA3DPN, 322
CSVABUTN, 319
CSVACMBO, 319
CSVACOMN, 319
CSVADDE, 320
CSVAFOCS, 319
CSVAFONT, 319
CSVAFRMT, 319
CSVAGRID, 322
CSVALABL, 320
CSVALCTN, 319
CSVAMENU, 321
CSVAMOUS, 319
CSVASTAT, 322
CSVATBOX, 319
CSVATIME, 322
CSVATOGL, 319
CSVATOOL, 323
CSVAWNDW, 320
CUMDATYP, 319
using with a custom model, 317
example of code in user default
subprogram, 317
example of code to assign value to
Caption property, 317
example of code using default values,
318

— 344 -

VB-Browse-Local-Data-Object model
accesig alternate data sources with,
185, 187
Standard Parameters, 186

VB-Browse-Object model
description, 84

VB-Maint-Dialog model
description, 83

VB-Maint-Object model
description, 83
Verification rules
keywords, 137
Predict, 269
where to implement, 269
coding user type rules, 270

Visual Basic browse object
adding support, 253-254
business object, 245
description, 84
generating, 182

Visual Basic business objects
role on Windows platform, 29

Visual Basic maintenance object
business object, 245
description, 83
generating, 118

w

Windows platform
role of Entire Broker, 28
Working environment
Construct Spectrum, 22

	Table of Contents
	Preface
	Prerequisite Knowledge
	Structure of this Guide
	How to Use this Guide
	To Create a New Client/Server Application
	To Move an Existing Application to a Client/Server Architecture

	Document Conventions
	Other Resources
	Related Documentation
	Construct Spectrum
	Natural Construct

	Other Documentation
	Related Courses

	Introduction
	What is Construct Spectrum?
	Development Environments

	Architecture of a Client/Server Application
	Mainframe Server
	Windows

	Overview of the Development Procedure
	Step 1: Plan Your Application
	Decide What to Show the User
	Keep Window Design Simple
	Number and Structure of Windows
	Content of Each Window

	Plan Your Code
	Use a Consistent Style
	Anticipate Translation Issues

	Step 2: Set Up Your Mainframe Environment
	Predict Definitions
	Steplib Chains and Domains
	Security for Domains, Steplibs, Users, and Groups

	Step 3: Generate Application Components
	Using the Super Model
	Using Individual Models
	Deciding Which Modules to Generate
	Generation Process
	Server Modules
	Client Modules

	Setting Up Your Project
	Transferring Your Generated Code to the Project

	Step 4: Customize Your Application and Environment
	Step 5: Test and Debug Your Application
	Step 6: Deploy Your Application

	Using the Demo Application
	Overview
	Prerequisites
	Opening the Construct Spectrum Demo Project
	Understanding the Construct Spectrum Add-In
	Understanding the Demo Project
	Framework Components
	Generated Modules

	Running the Demo Application
	Application Interface
	Menu Options
	Toolbar Options
	Application Workspace
	Status Bar

	Additional Options
	Error Notification Options
	Remote Dispatch Service Options

	Tour of the Demo Application
	Opening a Business Object
	Maintaining a Business Object
	Validations
	Business Data Types (BDTs)
	Grids
	Nested Grids
	Nested Drop-Down Grids
	Keyboard Shortcuts for Grids

	Browsing For a Business Object
	Select Data From a Browse Window
	Open a Browse Window from the File Menu
	Open a Second Order
	Open Foreign File Information

	Specify Browse Customization Options
	Specify Selection Options
	Specify Display Options

	Troubleshooting

	Using the Super Model to Generate Applications
	Overview
	Before You Begin
	Establish a Naming Convention
	Understand the Object Factory
	Which Modules to Generate
	For a Maintenance Dialog
	For a Browse Dialog
	Dependent Models

	Generating with the Super Model
	Construct Windows Interface
	Step 1: Invoke the Super Model Wizard
	Step 2: Define General Package Parameters
	Step 3: Define Specific Package Parameters
	Step 4: Generate the Modules
	Generating Modules from the Model Wizard
	Generating Modules in Batch

	Generation Subsystem
	Step 1: Invoke the Super Model
	Step 2: Define General Package Parameters
	Step 3: Define Specific Package Parameters
	Step 4: Generate the Modules

	Troubleshooting
	Transferring Your Application to the Client

	Creating a Construct Spectrum Project
	Overview
	Are You Ready?
	Creating the Project
	Prior to Downloading

	Downloading the Generated Modules
	Hand-Coding the Object Factory

	What’s Next?
	Modify the Dialogs
	Test the Application
	Deploy the Application
	Setting Up Security

	Creating and Customizing Maintenance Dialogs
	Overview of the Maintenance Dialog
	Ways to Generate Maintenance Dialogs

	Prerequisites
	Using Individual Models to Generate Maintenance Modules
	Generate the Object Maintenance Subprogram and PDAs
	Generate the Maintenance Subprogram Proxy
	Generate the Visual Basic Maintenance Object
	Add Business Validations
	Add Browse Functions

	Generate the Maintenance Dialog

	Downloading Client Modules
	Integrating a New Maintenance Dialog
	Strategies for Customizing a Maintenance Dialog
	Doing the Predict Data Dictionary Work Up Front
	Choosing an Appropriate Place to Add Hand-Written Code
	Adding New User Exits
	Making a Copy Before You Regenerate

	Customizing on the Server
	Deriving Variable Names
	Deriving GUI Control Names
	GUI Control Identifier
	Object Identifier
	Field Identifier

	Deriving Label Captions for GUI Controls

	Overriding GUI Controls
	Step 1: Search for GUI Keywords in Field Definitions
	Generate a ComboBox Control to Display External Values

	Step 2: Search for GUI Keywords on Verification Definitions
	Step 3: Search for Business Data Type Keywords in Field Definitions
	Step 4: Use Default Derivation
	Repeating Field Threshold
	Option Button Threshold
	Foreign Field Threshold

	Setting Generation GUI Standards
	Controlling the Size of a Maintenance Dialog
	Overflow Conditions

	Customizing on the Client
	Creating Calculated Fields
	Does a GUI Control Exist for the Calculated Field?
	Coding the Calculation

	Integrating Maintenance and Browse Functions
	Validating Data Using the Visual Basic Maintenance Object
	Tailoring the Maintenance Dialog
	Working with Overflow Frames
	Multi-column Layout
	Tabbed Layout
	State-Dependent Layout

	Adding a New Field by Hand
	Add a Scalar Field by Hand
	Add a Regular Grid Column for a Field

	Removing a Field by Hand
	Using the Grid
	Nested Grids
	Nested Drop-Down Grids
	Displaying Grids
	Resizing Grids

	Adding Sound to Error Notifications
	Understanding How a Sound File is Associated With an Error

	Multilingual Support for Maintenance Dialogs

	Uploading Changes to the Server

	Creating and Customizing Browse Dialogs
	Overview of the Browse Dialog
	About Browse Dialogs
	The Browse Process
	Browse Object Subprogram
	Browse Object Subprogram Proxy
	Visual Basic Browse Object
	Data Cache

	Framework Components

	Creating a Browse Dialog
	Setting up Predict for the Browse Dialog
	Business Data Types
	Descriptive Fields

	Using Models to Generate Browse Modules
	Generating the Browse Subprogram and PDAs
	Generating the Subprogram Proxy
	Generating the Visual Basic Browse Object
	Defining Alternate Browse Data Sources

	Downloading the Client Modules
	Updating the Project
	Extend Object Factory

	Customizing on the Client
	Adding Command Handlers
	Customizing the Generic Browse Dialog
	Understanding the BrowseManager Class
	Display the Browse Dialog
	Support a Browse Command Handler
	Return a Specific Row of Data
	Return All Rows of Data

	Using the BrowseManager
	BrowseManager Methods

	Understanding Browse Command Handlers
	Creating Browse Command Handlers
	Coding the Custom Browse Command Handler
	Enabling Commands on the Browse Toolbar and Menu
	Coding the UICommandTarget() Method
	Marking Updated Rows Using the UpdateListViewIcons Method

	Moving Existing Applications to Construct Spectrum
	Overview
	Moving Natural Construct Object Applications
	Moving Natural Construct Non-Object Applications
	Step 1: Set Up Your Server Environment
	Step 2: Evaluate Your Application Data
	Step 3: Set up Predict Definitions (Optional)
	Step 4: Generate the Client/Server Modules
	Step 5: Update Object Subprograms with Business Rules
	Considerations for Implementing Business Rules

	Step 6: Set Up and Run Your Construct Spectrum Project

	Understanding and Customizing the Client Framework
	Introduction to the Client Framework
	About Box
	Customizing the About Box

	Application Preferences
	Application Settings
	Customizing the Application Settings

	Browse Support
	Internationalization Support
	Maintenance Classes
	Grid Support

	Menu and Toolbar Support
	Understanding Menu and Toolbar Command Handling
	Class Summary
	Defining, Sending, and Handling Commands
	Step 1: Declare a Global Instance of the UICommands Class
	Step 2: Define the Commands
	Step 3: Code Menu and Toolbar Events to Send the Commands
	Step 4: Code the Command Handlers
	Step 5: Link the Commands to the Command Handlers

	Updating User Interface Controls
	Step 1: Code Events to Update the Menu Controls
	Step 2: Code the Logic that Determines the State of a Command
	Step 3: Code Events to Update the Toolbar Buttons
	Displaying a Disabled Bitmap
	Displaying a Message
	Update Cycles

	Additional Methods For Command Handling
	Unhooking Commands

	Customizing the Menu and Toolbar in the Client Framework
	Changing the Menu Structure
	Example of Changing the Menu Bar and Its Menu Items
	Changing the Toolbar Structure
	Example of Adding Buttons to the Toolbar

	MDI (Multiple-Document Interface) Frame Form
	Object Factory
	Understanding the Open Dialog
	Understanding the Object Factory
	Using the Object Factory
	Example of Using the Object Factory
	Customizing the Object Factory
	Setting Up Object/Action Combinations and Forms
	Making Your Application Aware of New Business Objects
	Step 1: Update the InitializeOpenDialog Procedure
	Step 2: Update the CreateForm Procedure
	Step 3: Update the GetBrowser Procedure
	Step 4: Update the BrowserExists Procedure

	Spectrum Dispatch Client Support
	Logon Dialog
	Error Messages
	Dispatcher Selection Window

	Utility Procedures

	Validating Your Data
	Overview
	Basic Data Type Validation
	Business Data Type Validation
	Local Business Validation
	Business Object Validation

	Client Validation
	Validation in Maintenance Dialogs
	Using BDTs
	Hand-Coded Validations in Generated Dialogs

	Validation in Visual Basic Maintenance Objects
	Adding Validations in the CLIENT-VALIDATIONS User Exit
	Validations from Predict

	Creating Verification Rules in Predict
	Deciding Where To Implement a Validation Rule
	Coding User Type Rules

	Order of Precedence in Data Validation
	Validation Error Handling
	Framework Components
	Handling Business Object Validation Errors

	Integrating Browse and Maintenance Functions
	Overview
	Drill-Down Capabilities from a Browse Dialog
	Active Help on Maintenance Dialogs
	Primary Key Field Active Help
	Foreign Field Active Help

	Design Objectives
	Application Component Independence
	Simplified Generated Components

	Overview of Foreign Key Field Relationships
	Fields that can be Used in a Foreign Key Relationship
	Simple Field
	Repeating Field

	When Not to Use a Foreign Field Relationship
	List of Values is Static
	List of Values is Small
	List of Values Contains Two Choices Only

	Foreign Field Support in Maintenance Dialogs
	GUI Control Representations of Foreign Fields
	Foreign Fields in the Primary Part of a Maintenance Dialog
	GUI Controls in a Grid
	How Construct Spectrum Determines Which GUI Control to Use
	Displaying Descriptions for a Foreign Field
	Examples of Descriptive Fields
	Supporting Multiple Descriptive Values and Derived Values

	How Foreign Field Descriptions Are Refreshed

	Supporting Code for Drop-Down Lists
	Initializing a Drop-Down List
	Support for Value Selection

	Supporting Code for Command Buttons
	Initializing a Command Button
	Click Events on the Command Button

	Internationalizing Your Application
	Planning Your Internationalized Application
	Internationalizing Using the Client Framework
	Resource File Syntax
	Text Values
	Binary Values
	Links

	Using the Internationalization Components
	Methods
	GetResourceGroup
	LocalizeForm
	LoadBinaryResource
	LoadStringResource
	Message
	MessageEx
	SetDefaultMessageGroup

	Properties
	Language
	LanguageRegistryKey
	LanguageINIKey
	ResourceFilePath

	Hints for Developers
	Setting the Language Automatically
	Strategy for Using Resource Files and Groups
	Starting an Application in a Specific Language
	Associating Windows Locale Setting with a Language

	Changing Language at Runtime

	Appendix A: Modifying Construct Spectrum Models
	VB-Maint-Dialog Model
	VB API
	Components of the VB API

	How the VB API Works
	GUI Controls with the VB API
	Parameter Data Areas (PDAs) Used

	Index

