
Natural Business Services

Natural Construct Object Models

Version 8.2.1

November 2013



This document applies to Natural Business Services Version 8.2.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2006-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: NBS-OBJECTMODELS-821-20131119



Table of Contents

Preface ................................................................................................................................ v
1 Overview of Object-Oriented Development ................................................................... 1

Define Natural Construct Objects .............................................................................. 2
Define Object Relationships in Predict ...................................................................... 5

2 Using the Object-Browse Models .................................................................................. 13
Introduction .............................................................................................................. 14
Object-Browse-Subp Model ..................................................................................... 15
Object-Browse-Static Model ..................................................................................... 31
Object-Browse-Dialog Model ................................................................................... 36
Object-Browse-Dialog-Driver Model ....................................................................... 94
Object-LDA Model ................................................................................................... 96
Object-Browse-Select-Subp Model ......................................................................... 101

3 Using the Object-Generic-Subp Model ........................................................................ 111
Introduction ............................................................................................................ 112
Parameters for the Object-Generic-Subp Model .................................................... 112
User Exits for the Object-Generic-Subp Model ...................................................... 115

4 Using the Object-Maint Models ................................................................................... 125
Introduction ............................................................................................................ 126
Object-Maint-Subp and Object-Maint-Enhanced-Subp Models ............................ 128
Object-Maint-Dialog Model ................................................................................... 152
Object-Maint-Dialog-Subp Model .......................................................................... 167

iii



iv



Preface

Natural Construct Object Models describes the Object series of models. These models generate the
Natural subprograms used by Natural Business Services.

This documentation is intended for developers who are familiar withNatural Construct andwant
to use the Object series of models to create the business service subprograms.

Natural Construct Object Models covers the following topics:

Provides an overview of object-oriented development. Includes
information on defining Natural Construct objects and defining object
relationships in Predict.

Overview of Object-Oriented
Development

Describes theObject-Browse series ofmodels and how to use themodels
to generate the browse components of an object-browse process. It also
contains information on changing the default PF-key style.

Using the Object-Browse Models

Describes the Object-Generic-Subp model, which generates a business
service (subprogram) associated with up to 10 subprograms and 20
methods.

Using the Object-Generic-Subp
Model

Describes the Object-Maint series of models and how to use the models
to generate the maintenance components of an object-maintenance
process.

Using the Object-Maint Models

v



vi



1 Overview of Object-Oriented Development

■ Define Natural Construct Objects ......................................................................................................... 2
■ Define Object Relationships in Predict ................................................................................................... 5

1



The concept behind object-oriented development is that an application consists of object modules
(Natural subprograms) and dialog modules (Natural programs or subprograms). The object
module builds an object-level interface to a complex data structure, while the dialog module
communicates with the end user and invokes methods (data actions) implemented by the object
module.

Note: Formore information on object-oriented development, seeDesignMethodology,Natural
Construct Generation.

Because object implementation is hidden in object-oriented development, applications:

■ Are simplified
■ Can use more complex data models
■ Aremore reliable and easier tomaintain because semantic integrity is enforcedwithin the object

An important aspect of object orientation and component-based, client/server development is the
granularity of application components. Componentswith coarse granularity tend to contain large-
scale, complex operations that provide much functionality from a single request. However, they
usually do not allow the calling program to fine-tune the object’s behavior or request additional
functionality.

On the other hand, finely grained components allow greater control over how their functions are
performed, but they often place an additional burden on the calling program as it has to call the
object multiple times in a procedural fashion. Well-conceived objects strike a balance between
these approaches to optimize ease-of-use and performance.

For maximum reusability, components should achieve a separation of dialog handling from
business logic. This distinction allows for consistent handling of business rules, regardless of
whether the rules are enforced from a GUI dialog, a browser, a mainframe screen, or through a
batch process. Similarly, by distinctly separating business logic from database access, it is much
easier to change the underlying database technology without affecting the business logic within
applications.

Define Natural Construct Objects

An object is a group of related entities that must be maintained within a single transaction. This
section discusses some of the characteristics all objects possess and describes how to define intra-
object relationships (relationships that define the bounds of an object), and inter-object relationships
(relationships between two objects) in Predict. The following diagram illustrates the difference
between inter-object and intra-object relationships:

Natural Construct Object Models2

Overview of Object-Oriented Development



1. Customer object

2. Products object

3. Order object

In this example, Customer (1) and Products (2) are related toOrder (3) via inter-object relationships.
The Order object is defined by two intra-object relationships between all objects.

When defining the entities within an object, you should follow certain rules. These rules are de-
scribed in the following sections:

■ Level 1 (Primary) File Rules
■ Level 2 (Secondary) File Rules
■ Level 3 (Tertiary) File Rules
■ Level 4 (Quaternary) File Rules
■ Primary Key Relationships

Level 1 (Primary) File Rules

All objectsmust have a single primary header file that contains a unique primary keyfield.Although
you do not need to define the primary key with the unique option in the database (since the sub-
program ensures its uniqueness), we recommend that you do. The primary key can be a descriptor
or superdescriptor.

The primary file of a maintenance object must contain a hold field. This field is used internally by
the object-maintenance subprogram to logically hold an occurrence of an object between a Get
action and a corresponding Update or Delete action. The subprogram tests and updates this field
to determine whether the object was updated or deleted by another user. The following table lists
the valid data types for the hold field and the value assigned for each type:

3Natural Construct Object Models

Overview of Object-Oriented Development



Value Assigned at UpdatingHold Field Format

*TIMXT

*TIMEA10

*TIMESTMPB8

*TIMNN7

*TIMX (DB2 timestamp format)A26

Increase current value by 1.If format is none of the above, it must be numeric.

Level 2 (Secondary) File Rules

The primary file can be related tomultiple secondary files with cardinality 1:1, 1:C (1 to optionally
1), 1:N (1 to many), or 1:CN (1 to, optionally, many). Specify the maximum value for N.

Level 3 (Tertiary) File Rules

The secondary files can be related to multiple tertiary files with cardinality 1:1, 1:C, 1:N, or 1:CN.
Tertiary files cannot contain multiple-valued fields (MUs) within periodic groups (PEs).

Level 4 (Quaternary) File Rules

The tertiary files can be related to multiple quaternary files with cardinality 1:1, 1:C, 1:N or 1:CN.
Quaternary files cannot contain MUs or PEs.

Primary Key Relationships

Each sub-entity (any level under the primary file)must contain a key (descriptor or superdescriptor)
that relates the entity to its parent entity. Because each primary key for a sub-entity (child entity)
must be prefixed by the primary key of the parent entity and usually contains a suffix (used to
return the sub-entities in sorted order), the primary key grows in length as you move down an
object from the primary file to the secondary, tertiary, and quaternary files.

The following example shows the primary and secondary file keys for a Customer object:

KeyFile

Customer-NumberPrimary

Customer-Number + Contact-NameSecondary

The following example shows the primary, secondary, and tertiary file keys for an Order object:

Natural Construct Object Models4

Overview of Object-Oriented Development



KeyFile

Order-NumberPrimary

Order-Number + Order-Line-NumberSecondary

Order-Number + Order-Line-Number + Distribution-Line-NumberTertiary

Define Object Relationships in Predict

Use the Predict Modify File Relation panel to define intra-object and inter-object relationships in
Predict. The following topics are covered:

■ Intra-Object Relationships
■ Inter-Object Relationships

Intra-Object Relationships

The following example shows the Predict Modify File Relation panel with information entered
for an intra-object relationship:

 16:44:22                 *****  P r e d I c t *****                            
                           - Modify File Relation -                             
 File relation ... NCST-ORDER-HAS-LINES             Modified: 13-10-21 at 15:40 
 Type ...........* N  Natural Construct                   by: DEVPM             
 Keys ..                                                                Zoom: N 
                                                                                
 Cardinality ..* 1  : N                                                         
 File 1                                               Minimum ... 1             
   File ID ....* NCST-ORDER-HEADER                    Average ... 1.00          
   Field ID ...* ORDER-NUMBER                         Maximum ... 1             
 File 2                                               Minimum ...               
   File ID ....* NCST-ORDER-LINES                     Average ... 5.00          
   Field ID ...* ORDER-LINE-KEY                       Maximum ... 30            
 Constraint attributes                                                          
   Update type .....* N  re-Number suffix                                       
   Delete type .....* C  Cascade                                                
   Constraint name ..                                                           
 Usage ........*    (none)                                                      
                                                                                
 Abstract     Zoom: N                                                           
                                                                                
                                                                                
 EDIT:   Owner: N   Desc: N                                                     ↩

The following table describes the fields on this panel and the values specified or displayed in each
field for an intra-object relationship:

5Natural Construct Object Models

Overview of Object-Oriented Development



DescriptionField

Relationship ID name. This name should not match the name of any entity within the
object or any of their attributes.

File relation

Relationship type. Natural Construct models process type N (Natural Construct)
relationships.

Note: For relational databases, type R relationships are also processed.

Type

Keywords. This is an optional field.Keys

Cardinality

Cardinality of File 1. For an intra-object relationship, specify "1" in this field.File 1

Name of the file on the left side of the 1 to many (1:N) relationship.File-ID

Primary key for File 1. The key can be a descriptor or superdescriptor.

Note: For relational databases, the key can be a compound key.

Field-ID

Minimum number of occurrences of a record in File 1. For an intra-object relationship,
specify "1" in this field.

Minimum

Average number of occurrences of a record in File 1. For an intra-object relationship,
specify "1" in this field.

Average

Maximum number of occurrences of a record in File 1. For an intra-object relationship,
specify "1" in this field.

Maximum

Cardinality of File 2. For an intra-object relationship, specify one of the following codes:File 2

■ 1

If an occurrence of a record in File 1must be related to exactly one occurrence of a record
in File 2 and vice versa.

■ C

If a record in File 1 can be related to zero or one record in File 2, but a record in File 2
must be related to one record in File 1.

■ N

If an occurrence of a record in File 1 must be related to one or more occurrences of a
record in File 2, but an occurrence of a record in File 2 must be related to exactly one
occurrence of a record in File 1.

■ CN

If an occurrence of a record in File 1 can be related to zero or more occurrences of a
record in File 2, but an occurrence of a record in File 2 must be related to exactly one
occurrence of a record in File 1.

Name of the file on the right side of the 1 to many relationship. This file is always
subordinate to File 1.

File-ID

Natural Construct Object Models6

Overview of Object-Oriented Development



DescriptionField

Primary key for File 2. The key can be a descriptor or superdescriptor (or compound key).

The length of this key must be greater than or equal to the length of File 1. If the length
is greater, the key must be either a superdescriptor or a redefined field. The sum of the

Field-ID

lengths of the underlying fields that prefix the superdescriptor or redefinition must also
match the length of File 1.

Minimum number of occurrences of a record in File 2 for each occurrence of a record in
File 1. For an intra-object relationship, specify one of the following:

Minimum

■ "1" for 1:1 cardinality
■ "0" for C or CN cardinality
■ "N" for minimum value of N for N cardinality

The generated subprogram ensures that this minimum cardinality is satisfied.

Average number of occurrences of a record in File 2 for each occurrence of a record in File
1. This value is not used by Natural Construct.

Average

Maximum number of occurrences of a record in File 2 for each occurrence of a record in
File 1. This value defines the upper bounds of the object.

Note: When setting these maximum values, remember that generated objects must fit
within the available memory.

Maximum

Rules for updating the primary keys for sub-entities or testing for the existence or deletion
of a sub-entity record.

In the following example, you do not have to specify the line number for each order line
because line numbers are determined by the position of the line within the Order object:

Update type

Object: Order
Primary File Key: Order-Number
Secondary File Key: Order-Number + Order-Line-

Number
Tertiary File Key: Order-Number + Order-Line-

Number + Distribution-Line-Number

In the following example, the secondary file contains contact names for the Customer
object and has a key of Customer-Number + Contact-Name. Specify the suffix portion of
the secondary file key:

Object: Customer
Primary File Key: Customer-Number
Secondary File Key: Customer-Number + Contact-Name

The distinction between the two types of relationships is identified by theUpdate constraint
type. For an intra-object relationship, specify one of the following codes:

■ C (Cascade)

7Natural Construct Object Models

Overview of Object-Oriented Development



DescriptionField

Suffix portion of the sub-entity key represents data you must specify. The
object-maintenance subprogram determines whether to save the sub-entity to the
database (irrespective of the values of other non-primary key attributes) by the existence
of a key suffix value.

■ L (Suffix is a line number)

Suffix portion of the sub-entity key, which is a line assigned by the object-maintenance
subprogram, is determined by the occurrence of the sub-entity within the object array.
The existence of any non-primary key attribute within an occurrence of the sub-entity
determines whether to save the sub-entity.

■ N (Renumber suffix)

This option is similar to L, except the object-maintenance subprogram collapses empty
lines (lines containing only null-valued attributes) and subsequent lines are renumbered.

Delete constraint type. For intra-object relationships, specify "C" (Cascade), since one of
the properties of an object is that all sub-entities must be deleted if the primary header
file is deleted.

Delete type

This field is not used by Natural Construct.Constraint name

Inter-Object Relationships

In addition to defining relationships within objects, you can also define relationships and specify
referential integrity constraints between objects. For example, you can prohibit the addition of an
order for a customer who does not have a record in the Customer file (Customer object). Similarly,
you can prevent the deletion of a customer who has outstanding orders in the Order file (Order
object).

All referential integrity relationships must relate a foreign key of one object to a primary key of
another object. The following example shows the Predict Modify File relation panel with inform-
ation entered for an inter-object relationship:

Natural Construct Object Models8

Overview of Object-Oriented Development



 16:54:26                 *****  P r e d I c t *****                            
                           - Modify File relation -                             
 File relation ... NCST-CUSTOMER-ORDER-HEADER       Modified: 13-10-21 at 13:29 
 Type ...........* N  Natural Construct                   by: DEVNG             
 Keys ..                                                                Zoom: N 
                                                                                
 Cardinality ..* 1  : CN                                                        
 File 1                                               Minimum ...               
   File ID ....* NCST-CUSTOMER                        Average ... 1.00          
   Field ID ...* CUSTOMER-NUMBER                      Maximum ... 1             
 File 2                                               Minimum ...               
   File ID ....* NCST-ORDER-HEADER                    Average ... 50.00         
   Field ID ...* ORDER-CUSTOMER-NUMBER                Maximum ...               
 Constraint attributes                                                          
   Update type .....* R  Restrict                                               
   Delete type .....* R  Restrict                                               
   Constraint name ..                                                           
 Usage ........*    (none)                                                      
                                                                                
 Abstract     Zoom: N                                                           
                                                                                
                                                                                
 EDIT:   Owner: N   Desc: N                                                     ↩

The following table describes the fields on this panel and the values specified or displayed in each
field for an inter-object relationship:

DescriptionField

Relationship ID name. This name should not match the name of any entity within the
object or any of their attributes.

File relation

Relationship type. Natural Construct models process type N (Natural Construct)
relationships.

Note: For relational databases, type R relationships are also processed.

Type

Keywords. This is an optional field.Keys

Cardinality

Cardinality for File 1. For inter-object relationships, specify one of the following codes:File 1

■ 1

If the value of the foreign key (File 2) must match the value of the primary key (File
1).

■ C

If the value of the foreign key (File 2) can be blank, but if a value is specified, it must
match the value of the primary key (File 1). In other words, only a non-null value in
the foreign key needs to match the value of the primary key.

9Natural Construct Object Models

Overview of Object-Oriented Development



DescriptionField

For example, for C:N cardinality for the NCST-CUSTOMER file, it is not necessary to
specify a value in the ORDER-CUSTOMER-NUMBER field in the
NCST-ORDER-HEADER file. However, if a value is specified, it must have a
corresponding value in the CUSTOMER-NUMBERfield in theNCST-CUSTOMERfile.
An order does not require a customer (perhaps to signify an internal order), but if a
customer is specified, it must be a valid customer.

Note: If the foreign key is amember of a periodic group and/or amultiple-valued field,
1:CN cardinality for File 1 implies that all occurrences are required andC:CN cardinality
for File 1 implies that all occurrences are optional.

Name of the primary file for the object to which the foreign key in File 2 is related.File-ID

Primary key for File 1. The key can be a descriptor or superdescriptor.

Note: For relational databases, the key can be a compound key.

Field-ID

Minimum number of occurrences of a record in File 1. For an inter-object relationship,
specify "1" or "0" (based on the value specified for the cardinality of File 1).

Minimum

Average number of occurrences of a record in File 1. For an inter-object relationship,
specify "1". This value is not used by Natural Construct during code generation.

Average

Maximum number of occurrences of a record in File 1. For an inter-object relationship,
specify "1".

Maximum

Cardinality of File 2. For an intra-object relationship, specify one of the following codes:File 2

■ C

If a record in File 1 can be related to a maximum of one record in File 2, but a record
in File 2 must be related to one record in File 1. The value of the primary key (File 1)
can be blank, but if a value is specified, it must have a corresponding value in the
foreign key (File 2).

For example, for 1:C cardinality for the NCST-ORDER-HEADER file, each customer
specified in the CUSTOMER-NUMBER field of the NCST-CUSTOMER file can have
either zero or one order specified in the ORDER-CUSTOMER-NUMBER field in the
NCST-ORDER-HEADER file.

If an occurrence of a record in File 1 must be related to exactly one occurrence of a
record in File 2 and vice versa.

■ CN

If a record in File 1 does not have to be specified, but if a record is specified, it can
match zero, one, or many records in File 2 (1:CN or C:CN cardinality).

For example, for 1:CN cardinality for the NCST-ORDER-HEADER file, a customer
specified in the CUSTOMER-NUMBER field in the NCST-CUSTOMER file can have
0, 1, or many orders specified in the ORDER-CUSTOMER-NUMBER field in the
NCST-ORDER-HEADER file.

Name of the secondary file that has a foreign key related to File 1.File-ID

Natural Construct Object Models10

Overview of Object-Oriented Development



DescriptionField

Foreign key for File 2. The length of this key must be equal to the length of the key for
File 1.

Field-ID

Minimum number of occurrences of a record in File 2 for each occurrence of a record
in File 1. For an inter-object relationship, specify "0" in this field.

Minimum

This value is not used by Natural Construct.Average

For an inter-object relationship, specify themaximumnumber of occurrences of a record
in File 2 for each occurrence of a record in File 1.

Note: Natural Construct does not check this value to ensure it is not exceeded.

Maximum

Constraint
attributes

For an inter-object relationship, specify "R" (Restrict).Update type

For an inter-object relationship, specify "R" (Restrict) to enforce the Restricted Delete
rule (for information, see Support for Foreign Referential Constraints).

Delete type

This field is not used by Natural Construct.Constraint name

Support for Foreign Referential Constraints

Natural Construct supports two types of foreign referential constraints (inter-object relationships):

■ Restricted Update for Insertion (RUI) rule

When adding or updating an object entity with a foreign key related to the primary key for a
related object, the action is allowed only when the value of the foreign key is either null or equal
to the value of the primary key for the related object.

■ Restricted Delete (RD) rule

When deleting an object entitywith a primary key that is used as a foreign key in a related object,
the action is allowed only when the value of the primary key does not match any values of the
foreign key for the related object.

Support for Predict Automatic Rules

Object-oriented methodology makes a distinction between data access and dialog. All data is
validated and manipulated within the object-maintenance subprogram, whereas the object-
maintenance dialog program communicates with the object by sending messages and parameters
through the interface provided by the object parameter data area (PDA).

Since maps used by the object-maintenance dialog program do not refer to data fields directly,
Natural cannot incorporate Predict automatic rules into the fields on thesemaps. To support object-
oriented methodology, the object-maintenance subprogram incorporates the Predict automatic
rules in its generated code.

11Natural Construct Object Models

Overview of Object-Oriented Development



Conventions for Automatic Rules

■ When an error occurs, the rule should assign either the message text or number to MSG-
INFO.##MSG or MSG-INFO.##MSG-NR, respectively. Optionally, the rule should also assign
dynamic substitution data to MSG-INFO.##MSG-DATA(*) and then perform an ESCAPE
ROUTINE. Natural Construct generates the code required to handle the error processing.

■ Within the rule, specify the field name attached to the rule as "&1&".

Note: Only Predict verification ruleswithVE-STATUS = "N" (Natural Construct) are included.

Features of Automatic Rules

■ You can attach a rule to any field, including amultiple-valued field (MU), a periodic group (PE),
or anMUwithin a PE. No reference to occurrences of the array is required since the rule should
not have any knowledge of what type of field it is attached to. When the rule is attached to an
MU or PE, Natural Construct generates additional code to handle the array.

■ A rule can declare and use external local data areas (LDAs). These LDAs can be used by another
rule or by the host subprogram, sinceNatural Construct recognizes suchusage and only generates
the declaration for the LDA once.

■ If a rule needs inline local data, that datamust belong to a level 1 structure called #PRD-rulename,
where rulename is the name of the Predict rule. This is necessary to avoid naming conflicts.

■ If you want to maintain all data semantic processing within Predict and reuse any generic data
processing that can be shared by multiple fields within an application, automatic rules can
eliminate the need for user exit routines.

Natural Construct Object Models12

Overview of Object-Oriented Development



2 Using the Object-Browse Models

■ Introduction .................................................................................................................................... 14
■ Object-Browse-Subp Model ............................................................................................................... 15
■ Object-Browse-Static Model .............................................................................................................. 31
■ Object-Browse-Dialog Model ............................................................................................................. 36
■ Object-Browse-Dialog-Driver Model .................................................................................................... 94
■ Object-LDA Model ........................................................................................................................... 96
■ Object-Browse-Select-Subp Model .................................................................................................... 101

13



The Object-Browse series of models generate the modules for an object-browse process. The gen-
eratedmodules provide easy access to database tables in a transparent and flexibleway, regardless
ofwhere data resides andwhether data is used to create amainframe screen, GUI dialog, hardcopy
report, Web page, spreadsheet, or business service. The modules are also ideal when access to the
data is required for validation purposes.

Note: For more information on object-oriented development, seeOverview of Object-Ori-
ented Development.

Introduction

TheObject-Browsemodels encapsulate database calls within a Natural subprogram that provides
a high-level, flexible interface for retrieving rows. Some features of the generated browsemodules
include:

■ Support for logical keys that combine multiple key components.
■ Support for multiple logical keys within a single browse object.
■ Support for complex wildcard handling to retrieve a range of records.
■ Ability to efficiently read a large number of records and return them to the caller inmanageable
(configurable) blocks — without relying on the database to perform the necessary cursor man-
agement and without requiring that the connection to the browse object remain active between
calls.

■ Ability to browse by a repeating key (MU/PE) and by superdescriptors containing repeating
components.

■ Ability to begin browsing from a particular instance of a non-unique key.
■ Ability to combine ascending and descending components within a single logical key.
■ Ability to toggle between histogrammode and normal mode, depending on whether or not the
caller wants distinct key values to be returned.

■ Ability to confine a search by locking portions of the key.
■ Ability to determine themost efficient record selection logic based on the specified search criteria.

TheObject-Browsemodels generate severalmodules required for client/server applications. These
include:

Natural Construct Object Models14

Using the Object-Browse Models



Modules GeneratedModel

Object-Browse-Subp ■ Object-browse subprogram
■ Object parameter data area (defines returned row data)
■ Key parameter data area (defines search key values)
■ Restricted parameter data area (private data used internally by the browse object
to maintain context)

Object-Browse-Static ■ Object-browse static subprogram
■ Static object parameter data area

The Object-Browse models also generate several data areas. For example, all object-browse sub-
programs access the CDPDA-M data area for message information and the CDBRPDA data area
for standard parameters. For information, see Parameters for the Object-Browse-Subp Model.

The following diagram illustrates how to implement the components of a browse object in a cli-
ent/server configuration:

Object-Browse-Subp Model

The Object-Browse-Subp model generates the browse subprogram for an object, as well as three
parameter data areas: the object PDA (defines returned row data), key PDA (defines search key
values), and the restricted PDA (private data used internally by the browse object to maintain
context).

To view examples of an object-browse subprogram and its PDAs generated using the Object-
Browse-Subp model, refer to CUSBRSUB, CUSBRROW, CUSBRKEY, and CUSBRPRI in the Nat-

15Natural Construct Object Models

Using the Object-Browse Models



ural Construct demo system. The demo system also contains CUSBRPGM, an example of a dialog
module that calls other modules. For more information, see Parameters for the Object-Browse-
Subp Model.

This section covers the following topics:

■ Use Multiple Browse Keys
■ Use Compound Browse Keys with Multiple Components
■ Specify Minimum and Maximum Key Values
■ Allow Lower Case Input Values
■ Use Wildcard Characters
■ Read Consecutive Sets of Records
■ Position to a Specific Record
■ Example of Using an Object-Browse Subprogram
■ Parameters for the Object-Browse-Subp Model
■ User Exits for the Object-Browse-Subp Model

Use Multiple Browse Keys

You can define a single browse object that can return records using multiple sort orders. The
calling object must indicate the sort order by assigning the CDBRPDA.SORT-KEY field. If this
field is not assigned, the default sort order is used (the first logical key defined in the specification).

The sort keys cannot be arbitrarily chosen. Each browse object supports a predefined number of
sort key values, which are specified at generation.

The sort key values represent logical key names that may map to more than one key component.
For example, a browse object may support the following key configurations for the NCST-CUS-
TOMER file:

Sort OrderPhysical KeysLogical Sort Key

AscendingBUSINESS-NAMENAME

DescendingBUSINESS-NAMENAME-BACKWARDS

Ascending

Ascending

BUSINESS-NAME

CUSTOMER-WAREHOUSE-ID

NAME-WAREHOUSE

AscendingCUSTOMER-NUMBERCUSTOMER-NUMBER

DescendingCUSTOMER-NUMBERCUSTOMER-NUMBER-BACKWARDS

The union of all physical keys is always passed to the browse object as starting values. In this ex-
ample, BUSINESS-NAME,CUSTOMER-WAREHOUSE-ID, andCUSTOMER-NUMBERare always
passed to the browse object. Depending on the value of SORT-KEY, one or more of these starting
values are processed by the browse object.

For an example of multiple sort keys, see Example of Using an Object-Browse Subprogram.

Natural Construct Object Models16

Using the Object-Browse Models



Use Compound Browse Keys with Multiple Components

To browse by compound keys that involve many components, define the browse object so that it
requires a prefix. If you specify a logical sort key that contains many key components and do not
specify a prefix or starting value, browsing begins at the first record on file and continues to the
last.

You can also specify two prefixes for the sort key. Using the COMPANY and DIVISION fields as
an example, users must specify exact values for these fields, and all rows returned must pertain
to this company and division. While this may reduce the flexibility of the browse object, the res-
ulting database accesses are much more efficient.

Note: When browsing Adabas or VSAM files by a single superdescriptor, efficiency is not
affected by specifying prefix key components. When more than three components are re-
quired (and for maximum efficiency), define the logical key as a superdescriptor.

For an example of prefix keys, see Example of Using an Object-Browse Subprogram.

When generating browse objects that access relational tables, there is a limit of four unbounded
(non prefix) keys. If you want to browse by compound keys with more than four components,
define the browse object so that it requires specific (absolute) values for the leading components.
To do this, specify a number of prefix components so that the total number of key components
minus the prefix components is less than or equal to four. This optimizes the generated SELECT
statements.

Note: When browsing Adabas or VSAM files by a logical key with multiple components,
the maximum number of unbounded keys permitted is three.

For example, assume a logical sort key called ACCOUNT-NUMBER that is made up of the key
components: COMPANY, DIVISION, COST-CENTER, ACCOUNT-CODE, and PROJECT. If you
specify this sort key for a browse object, one of the following conditions must be met:

■ The key is defined as an Adabas or VSAM superdescriptor. In this case, a prefix component is
not required.

■ The key is defined as a compound key or a series of individual keys within a relational table.
In this case, you must specify a minimum of one prefix component.

■ The key is defined as a series of individual fields on an Adabas or VSAM table. In this case, you
must specify at least two prefix components.

17Natural Construct Object Models

Using the Object-Browse Models



Specify Minimum and Maximum Key Values

Programs generated using the Browse models allow you to provide a starting and ending value
for the browse. The combination of the minimum and maximum keys creates a logical window
within the file. The program will not browse before or after these values.

Client code for an object-browse subprogramallows the same functionality asminimum/maximum
key values do for browse programs. For example, when browsing from an order header to the
order lines, you can restrict the selection to that order number only. To include this functionality
in an object-browse subprogram, specify the Limit components and Prefix components options
in the Optional Parameters panel (seeDefine Optional Parameters).

You can also change the range option for the object-browse subprogram on the client (for example,
you can specify a starts with value).

Additionalminimum/maximum functionality can be codedwithin user exits (for example, READ-
INPUT-CRITERIA).

Tip: Generated browse programs use only one key, which handles both ascending and
descending order. This allows you to specifyminimumandmaximumkey values. However,
an object-browse subprogram handles up to six keys. If your object-browse subprogram
only requires one key (or at the most two keys, one representing ascending and the other
representing descending order for the same database field), you can take advantage of the
Transform-Browse model to implement the minimum/maximum key functionality. For
example, you can generate a browse program containing these options and then use the
Transform-Browse model to transform the browse program into an object-browse subpro-
gram. This feature, however, is not exposed on the specification panels so the values can
only be changed bymanually changing the **SAG lines that contain these values. For more
information about transforming browse modules, see Transform-Browse Model, Natural
Construct Generation.

Allow Lower Case Input Values

By default, Natural Construct-generated object-browse subprograms convert the starting values
for all supplied alphanumeric key components (contained in the KEY parameter data area) to
upper case. If the input values may include lower case characters, you can use the Predict Modify
Field panel to add the ALLOW-LOWER-CASE keyword to the key components you do not want
converted.

For example, if the database contains both upper case and lower case values, such as iXpress and
IBM for the BUSINESS-NAME field, you can add the ALLOW-LOWER-CASE keyword to the
field as follows:

Natural Construct Object Models18

Using the Object-Browse Models



21:08:57             *****  P R E D I C T  8.2.1  *****              2013-08-12
                               - Modify Field -                                 
 Field ID ........ BUSINESS-NAME                    Modified 2013-08-12 at 20:47
 File ID ......... NCST-CUSTOMER                          by CNDSHE1            
 Keys .. DESCRIPTION,ALLOW-LOWER-CASE                                    Zoom: N
                                                                               
 Ty L Field ID                         F Cs Length   Occ   D U DB S NAT-l Cnv   
 *- - -------------------------------- *- * -------- ----- * * -- * ----- ---   
    1 BUSINESS-NAME                    A    30.0           D   XZ N ↩

Users can then search for lower case or upper case values. For example, "I*" for iXpress and "I*"
for IBM.

You should only use theALLOW-LOWER-CASEkeyword if the data stored in the database contains
lower case characters. Otherwise, Natural Construct will not convert input values that should be
converted. For example, assume the database contains keys for the Canadian provinces: BC, NB,
NS, ON, etc. By default, if a user enters "n*" as a search value, NB and NS are returned (even
though these begin with upper case "N"). If you add the ALLOW-LOWER-CASE keyword to the
field, no records are returned because there are no values matching a lower case "n".

Use Wildcard Characters

Normally, users enter a starting value in the key input field for a browse object. For all alphanu-
meric fields, users can specifywildcard characters to limit the range of records returned.Wildcard
characters may only be used for single keys or in the last specified field of a compound key. These
characters must always be the last character specified in the input field. Valid wildcard characters
are:

DescriptionWildcard Character

Returns keys that begin with the value preceding the *.*

Returns keys that are less than the value preceding the <.<

Returns keys that are greater than the value preceding the >.>

Returns keys that are equal to the value preceding the =.=

In addition to specifying wildcard support for the browse object, you can indicate the key value
to be used as a starting value, ending value, prefix, etc., by setting a wildcard option.

19Natural Construct Object Models

Using the Object-Browse Models



Read Consecutive Sets of Records

A browse object can be called many times to read consecutive sets of records. This ensures that
the caller is returned the next set of records. This feature is achieved by means of a restricted data
area, where the browse object stores data as the last sort key, the last starting value, the last row
returned, etc. If the browse object is called repeatedly using the same sort key value and start
values, it assumes the user wants to resume where the last call left off.

The search is automatically restarted if the user specifies a new sort key, start value, range option,
etc. The user can request an explicit restart using the same search criteria.

Note: For more information about the restricted data area, see Parameters Passed to the
Object-Browse Subprogram.

Position to a Specific Record

When reading records by non-unique key values, the user can specify a particular record from
which browsing begins. To achieve this, each row must contain a unique key value (or unique
combination of keys). For Adabas files, the ISN of the record is used. When starting a browse, the
user can specify a starting value (SMITH, for example) and a value to uniquely identify the exact
SMITH (ISN 9238). For more information, see CDBRPDA.

Example of Using an Object-Browse Subprogram

The following example uses a telephone directory to illustrate how the various features of the
browse object can be combined tomeet typical data access requirements. For example, a telephone
company has a database consisting of the following columns:

1 AREA-CODE (N3)
1 CITY (A30)
1 NAME (A30)
1 STREET (A30)
1 PHONE-NUMBER (N7)

The browse object can be defined with the following logical keys and components:

Key ComponentsLogical Key

AREA-CODE + CITY + NAME + STREETKey 1

AREA-CODE + NAME + CITYKey 2

Since a telephone operator providing directory assistance typically deals with a single area code,
the AREA-CODE can be defined as a prefix component at generation, so that all searches are re-
stricted to one area code.

If the caller supplies a city, the operator can use Key 1 and specify the city, increasing the number
of prefix components to two at runtime. Since exact valuesmust be supplied for all prefix compon-

Natural Construct Object Models20

Using the Object-Browse Models



ents, these are normally assigned programmatically, for example, by allowing the operator to
choose from a list of valid cities.

If the exact spelling of the name is known, the operator can also supply this information and des-
ignate a third prefix component. If the exact name is not known, the operator can supply a partial
name and a wildcard character, for example, "THOM*".

If the city is not known, the operator can use Key 2 to help find possible cities. If it is an Adabas
or VSAM file, the Histogram option can be used to avoid returning duplicate rows.

Parameters for the Object-Browse-Subp Model

TheObject-Browse-Subpmodel has two specification panels: Standard Parameters andAdditional
Parameters. This section describes these panels. The following topics are covered:

■ Standard Parameters Panel
■ Additional Parameters Panel
■ Parameters Passed to the Object-Browse Subprogram

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

 CUBOMA                 Object-Browse-Subp Multi-Module                 CUBOMA0 
 Oct 02                       Standard Parameters                        1 of 2 
                                                                                
  Module ............. OBJBRSUB                                                 
  System ............. CST821S_________________________                         
                                                                                
  Title .............. Object Browse ...________                                
  Description ........ This subprogram is used to encapsulate data access_____  
                       for ...________________________________________________  
                       _______________________________________________________  
                       _______________________________________________________  
                                                                                
  Message numbers .... _                                                        
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help  retrn quit                                            right main   ↩

This panel is similar for all models. For a description of this panel, see Common Fields on the
Standard Parameters Panel.

21Natural Construct Object Models

Using the Object-Browse Models



Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

 CUBOMB                 Object-Browse-Subp Multi-Module                 CUBOMB0 
 Oct 02                      Additional Parameters                       2 of 2 
                                                                                
  Predict view ............. ________________________________ *                 
    Natural (DDM) .......... ________________________________                   
    Program view ........... ________________________________                   
                                                                                
    Logical keys                 Key components                      Option     
  1 ____________________________ ________________________________ *     _       
  2 ____________________________ ________________________________ *     _       
  3 ____________________________ ________________________________ *     _       
  4 ____________________________ ________________________________ *     _       
  5 ____________________________ ________________________________ *     _       
  6 ____________________________ ________________________________ *     _       
                                                                                
                                           Generate   Source     Object         
  Object PDA ............... OBJBRROW *        X                                
  Key PDA .................. OBJBRKEY *        X                                
  Restricted PDA ........... OBJBRPRI *        X                                
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit        optns                         left  userX main   ↩

Use this panel to specify additional parameters for your object-browse subprogram. The fields on
this panel are:

DescriptionField

Name of the Predict view used by the browse subprogram. The specified view must be
defined in Predict. This view determines which fields are generated into the row PDA
returned to the caller.

After selecting the view, the first six key components in the view are displayed.

Predict view

Tip: If you only want to use a subset of fields in the DDM, create a Predict view that only
contains these fields. The generated object-browse subprogram and PDAs will contain this
subset of fields.

Name of the data definition module (DDM) that corresponds to the primary file. If you do
not specify a DDM, the DDM name defaults to the primary file name.

The Predict definition of the primary file determineswhich fields are included in theDEFINE
DATA section of the generated code. The format of the generated code in theDEFINEDATA
section has the following structure:

Natural
(DDM)

1 Primary-file-name VIEW OF Data-definition-module
2 fields pulled from Predict of Primary-file-name

Natural Construct Object Models22

Using the Object-Browse Models



DescriptionField

Name of the view for the primary file in the object-browse subprogram. If you specify this
parameter, you must define the view in the LOCAL-DATA user exit or a local data area

Programview

(LDA). User-defined views must contain all fields defined as key components, as well as a
field that uniquely identifies a record.

If you do not specify a programname, a view is automatically generated containing all fields
in the Predict view. TheMAX. OCCURS value in Predict determines howmany occurrences
of MU/PE fields are included.

Key(s) that determines the sort order of the returned records. You can define a browse object
that returns records using up to six sort orders. The calling program indicates the sort order

Logical keys

by assigning CDBRPDA.SORT-KEY. If a sort key value is not assigned, the first logical key
is used as the default.

The logical key names canmap to as many as five components. If a logical key contains only
one component, the logical key name is optional. If you do not specify a logical key name,
this field defaults to the name of the key component.

If the key field contains MU or PE fields, the rows returned also contain an index value that
identifies which occurrence of the MU/PE field satisfies the read condition.

Key components for a logical key that maps to more than one component. You can add key
components and set options in the Optional Parameters window. To display this window,
press PF5 (optns) or mark the Option field and select Enter.

Using this window, you can add as many as five components and specify options for them.
For information, see Define Optional Parameters.

Key
components

To define key components, specify either one superdescriptor or multiple individual
descriptors.

Note: When browsing by non-unique keys, performance will deteriorate with each call to
the browse object that returns keys identical to the previous call. Avoid defining keys for
which a large number of records correspond to each key value. For example, a key consisting
of CITY + NAME results in more efficient access than just CITY alone.

A plus sign (+) indicates that options have been set for the logical key. To display theOptional
Parameters window, press PF5 (optns) or mark the Option field and select Enter. For more
information, see Define Optional Parameters.

Option

Object PDA that defines the rows returned to the browse object and the columns within
each row. The generated object PDA contains one column for each field defined in the

Object PDA

specified Predict view (as well as additional columns). You can edit the generated object
PDA to alter the list of fields returned by the subprogram.

When creating a new specification, this field is filled in by default with the first five bytes
of the module name, plus the suffix "ROW".

For more information, seeObject PDA.

23Natural Construct Object Models

Using the Object-Browse Models



DescriptionField

Key PDA that contains all of the components contained in the logical keys, as well as a
unique ID field.

When creating a new specification, this field is filled in by default with the first five bytes
of the module name, plus the suffix "KEY".

Key PDA

For more information, see Key PDA (Search Key).

Restricted PDA that stores data, such as the last sort key, the last starting value, the last row
returned, etc. so that the next set of consecutive records is returned to the caller. The contents
of this data area should not be altered by the calling module.

When creating a new specification, this field is filled in by default with the first five bytes
of the module name, plus the suffix "PRI".

Restricted
PDA

For more information, see Restricted PDA.

If the PDA source and/or object code is found in theNatural steplib chain, this field displays
the name of the library where the source and/or object code is located. If a generated PDA
is not found, it is generated by default (and this field is marked and protected).

Generate

Name of the first library in which the source code for the module is found. The source code
may exist in multiple libraries in the Natural steplib chain.

If the source code resides in the current library, regenerating itwill execute a STOWcommand
and overwrite the previous version.

Source

Name of the first library in which the object code for the module is found. The object code
for the module may exist in multiple libraries in the Natural steplib chain.

If the object code resides in the current library, regenerating it will execute a STOWcommand
and overwrite the previous version.

Object

Note: If the Generate field is marked, the PDAs specified in this window are generated and
stowed when the object-browse subprogram is generated — regardless of whether the
subprogram is stowed.

Define Optional Parameters

You can define optional parameters for your object-browse subprogram.

To define optional parameters, either:

1 Press PF5 (optns) on the Additional Parameters panel.

Or:

Mark the Option field for a logical key and select Enter.

The Optional Parameters window is displayed. For example:

Natural Construct Object Models24

Using the Object-Browse Models



     CUBOMBA                     Natural Construct                     CUBOMBA0 ↩
  
     Sep 12                     Optional Parameters                      1 of ↩
1   
                                                                              ↩
    
                  Logical keys                                                ↩
    
             >> 1 ____________________________                                ↩
    
                                                                              ↩
    
                    Key components                       Descending           ↩
    
                    PERSONNEL-ID____________________ *       _                ↩
    
                    ________________________________ *       _                ↩
    
                    ________________________________ *       _                ↩
    
                    ________________________________ *       _                ↩
    
                    ________________________________ *       _                ↩
    
                                                                              ↩
    
                    Histogram support ............ _                          ↩
    
                    Limit components ............. __                         ↩
    
                    Prefix components ............ __                         ↩
    
     Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF ↩
  
           help  retrn quit                    bkwrd frwrd                   ↩
ma   ↩

Note: If you marked the Option field for a logical key, that key is displayed in this
window. To view other logical keys, press PF8 (frwrd) and PF7 (bkwrd).

2 Use the following fields to define the additional parameters:

DescriptionField

Name of the logical key for which you are defining options.Logical keys

Scroll indicator. You can enter the number of a logical key in this field to scroll to
that key.

>> 1

Components of the key. Each logical key can have up to five components.Key components

25Natural Construct Object Models

Using the Object-Browse Models



DescriptionField

To have the key component values listed in descending sequence in the generated
browse, mark this option. Otherwise, values are sorted in ascending sequence.

Note: For Adabas and VSAM files, all components of a logical key must use the
same sort order.

Descending

If this parameter is marked, the browse has an additional histogram version of
one or more logical key values. This allows the calling program to request a

Histogramsupport

histogram be returned. Rather than returning all of the predefined columns of the
browse object, only the specific key column is returned, along with a count of the
number of records containing the key value.

Note: This option is only allowedwhen the associated key has one key component.

Number of components of a superdescriptor (compound key) used in the logical
key (if the relational database table contains a superdescriptor with many
components).

To restrict the number of components, specify the limit in this field. For example,
to use the first two components of the superdescriptor, enter "2".

Limit components

Note: Using fewer components in the key may make accessing the key more
efficient.

Prefix used for components of a superdescriptor (compound key).

When browsing by compound keys that have many components, you can define
the browse object so that it requires specific values for the leading components.
This optimizes the generated SELECT statements.

Prefix components

Note:

1. For more information about prefix components, see Use Compound Browse
Keys with Multiple Components.

2. When browsing Adabas or VSAM files by a single superdescriptor, efficiency
is not affected by specifying prefix key components.

Parameters Passed to the Object-Browse Subprogram

Generated object-browse subprograms accept parameters from the following parameter data areas
(PDAs):

DEFINE DATA
PARAMETER USING CUSBRKEY /* Search key values
PARAMETER USING CUSBRROW /* Returned row data
PARAMETER USING CUSBRPRI /* Private (restricted) data
PARAMETER USING CDBRPDA /* Generic browse object parameters
PARAMETER USING CDPDA-M /* Msg info

END-DEFINE

Natural Construct Object Models26

Using the Object-Browse Models



These data areas are described in the following sections:

■ Key PDA (Search Key)
■ Object PDA
■ Restricted PDA
■ CDBRPDA
■ CDPDA-M

Key PDA (Search Key)

Each browse object can support multiple logical keys, where a logical key is comprised of one or
more key components. The key PDAdefines the union of all fields that are components of a logical
key. Additionally, the generated key PDA contains a field that can be used to begin the browse at
a specific record.

The logical key definitions and sort order for the sample key PDA are:

Sort OrderPhysical Key(s)Logical Sort Key

AscendingBUSINESS-NAMENAME

DescendingBUSINESS-NAMENAME-BACKWARDS

Ascending

Ascending

BUSINESS-NAME

CUSTOMER-WAREHOUSE-ID

NAME-WAREHOUSE

AscendingCUSTOMER-NUMBERCUSTOMER-NUMBER

DescendingCUSTOMER-NUMBERCUSTOMER-NUMBER-BACKWARDS

The following example shows the sample key PDA:

  1 CUSBRKEY                             /* All key components         
    2 BUSINESS-NAME               A   20                               
    2 CUSTOMER-WAREHOUSE-ID       A    3                               
    2 CUSTOMER-NUMBER             N    5                               
    2 UNIQUE-ID                   P   10 /* Unique row id              ↩

When calling the browse object, the caller can assign starting values for the fields that make up
the sort key. The range option (described in CDBRPDA) determines whether the specified key
value represents a starting value, ending value, exact value, or prefix. By default (when range
option = 0), the specified value is assumed to be a starting value for columns that are sorted in
ascending sequence and an ending value for columns that are sorted in descending sequence.

The default range option also allows users to specify wildcard characters (for example, <, >, *, and
=).

27Natural Construct Object Models

Using the Object-Browse Models



Object PDA

The object PDA contains one field for each field defined in the specified Predict view. These fields
are defined within a 1:V structure so the browse object can support an arbitrary number of return
rows. The following example shows a generated object PDA:

    1 CUSBRROW                                           
    2 ROW                                     (1:V)      
    3 CUSTOMER-NUMBER                  N    5            
    3 BUSINESS-NAME                    A   30            
    3 PHONE-NUMBER                     N   10            
    3 MAILING-ADDRESS                                    
    4 M-STREET                         A   25            
    4 M-CITY                           A   20            
    4 M-PROVINCE                       A   20            
    4 M-POSTAL-CODE                    A    6            
    3 SHIPPING-ADDRESS                                   
    4 S-STREET                         A   25            
    4 S-CITY                           A   20            
    4 S-PROVINCE                       A   20            
    4 S-POSTAL-CODE                    A    6            
    3 CONTACT                          A   30            
    3 CREDIT-RATING                    A    3            
    3 CREDIT-LIMIT                     P 11.2            
    3 DISCOUNT-PERCENTAGE              P  3.2            
    3 CUSTOMER-WAREHOUSE-ID            A    3            
    3 CUSTOMER-TIMESTAMP               T                 
    3 COUNT                            I    4            
    3 UNIQUE-ID                        P   10            ↩

Note: The Predict STRUCT parameter indicates whether to generate periodic groups with
the occurrences at the structure or individual field level.

In addition to fields defined in the Predict view, the object PDA contains an additional field called
UNIQUE-ID. This field uniquely identifies a row in the object PDA. If the row is from an Adabas
file, the record ISN uniquely identifies the file. For other file types, the primary key is used. Some
additional fieldsmay be generated into the object PDA, depending on the keys and options selected.
These fields are:

■ COUNT

If one ormore keys support the Histogram option, the COUNT field is added to the object PDA.
This field is assigned the number of rows that match the returned key value during Histogram
processing.

■ MU-PE-MATCH-INDEX

If one or more keys is a multiple-valued (MU) field and/or an element of a periodic group (PE)
or a superdescriptor containing such a field, the MU-PE-MATCH-INDEX field is added to the

Natural Construct Object Models28

Using the Object-Browse Models



object PDA. The contents of the field indicate which occurrence of the repeating field resulted
in the current row being returned.

Restricted PDA

To determine state information, all browse objects are passed information that the object PDA
maintains internally. This data should not be disturbed by the caller.

CDBRPDA

The fields in this data area control the behavior of the browse object. The following table shows
the structure of the CDBRPDA parameter data area:

DescriptionField

1 CDBRPDA

2 INPUTS

Currently not used, always pass 0.3 METHOD (N1)

Name of the logical key for the browse sort order. Starting values may
be supplied for the physical keys that make up this key. If no sort key
is provided, the first defined logical key is used.

3 SORT-KEY (A32)

If this field is true, only distinct key values are returned, along with a
count of the number of records having the key. This option is ignored
if the browse does not support a histogram for the specified sort key.

3 HISTOGRAM (L)

Override for the default number of leading fixed key values for the
logical key.

To increase the default number of leading fixed key values for the
logical key, specify the number in this field. All key values supplied

3LEADING-FIXED-COMPONENTS
(N2)

up to the specified number of components must match the value in
the return row.

Maximum number of rows requested to be returned for the current
call. This number must be less than or equal to the number of rows
allocated.

3 ROWS-REQUESTED (N4)

3 RANGE-OPTION (N2) ■ 0 = DEFAULT (embedded wildcard in key)
■ 1 = LESS-THAN
■ 2 = LESS-THAN-OR-EQUAL
■ 3 = EQUAL
■ 4 = GREATER-THAN-OR-EQUAL
■ 5 = GREATER-THAN
■ 6 = BEGINS-WITH

29Natural Construct Object Models

Using the Object-Browse Models



DescriptionField

Note: For relational database searches, increasing this number (and
thereby specifyingmore absolute values)will improve the performance
of the search.

If this flag is set, browsing by a non-unique key begins at a specified
record.

You can specify from which record to begin browsing. For example,
if browsing theNCST-CUSTOMERfile by BUSINESS-NAME, you can

3 USE-UNIQUE-ID (L)

specify to begin at the SMITHwith ISN 1234. All prior SMITH records
are not returned.

This feature is primarily used to simulate backward scrolling. For
non-Adabas files, the primary key determines uniqueness. If there is
no primary key, the record sequence is used.

2 INPUT-OUTPUTS

If this flag is set, the browse object begins a new browse even though
the starting keymay not have changed. This field is reset by the called
browse object.

3 RESTART (L)

2 OUTPUTS

Number of rows returned. This number will be less than or equal to
the ROWS-REQUESTED value.

3 ACTUAL-ROWS-RETURNED
(N4)

This flag is set when all rows in the database matching the selection
criteria have been displayed.

3 END-OF-DATA (L)

CDPDA-M

This parameter data area contains standard message information for the browse object.

User Exits for the Object-Browse-Subp Model

The following example shows the User Exits panel for the Object-Browse-Subp model:

Natural Construct Object Models30

Using the Object-Browse Models



  CSGSAMPL               OBJECT-BROWSE-SUBP Multi-Module                  CSGSM0 
 Aug 18                            User Exits                            1 of 1 
                                                                                
                User Exits             Exists    Sample   Required Conditional  
     -------------------------------- -------- ---------- -------- ------------ 
  _  NAT-DOCS                                                           X
  _  CHANGE-HISTORY                            Subprogram                       
  _  PARAMETER-DATA                             Example                         
  _  LOCAL-DATA                                                                 
  _  START-OF-PROGRAM                                                           
  _  READ-INPUT-CRITERIA                       Subprogram               X       
  _  END-OF-PROGRAM                                                             
  _  ADDITIONAL-INITIALIZATIONS                 Example                         
  _  BEFORE-ROW-ASSIGNMENT                      Example                         
  _  AFTER-ROW-ASSIGNMENT                       Example                         
  _  SELECT-STATEMENTS                         Subprogram               X       
                                 
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit                    bkwrd frwrd                          ↩

Notes:

1. For information about these user exits, seeUser Exits for the GenerationModels,Natural Construct
Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

Object-Browse-Static Model

You can create a browse object as part of a client/server application. This object communicates
with the server via a remote procedure call (RPC).

To create a browse object that communicates via a remote procedure call (RPC):

1 Create the static object-browse subprogram.

2 Create the RPC subprogram.

Because the RPC subprogram cannot process parameter values having occurrences defined using
1:V, create at least one static subprogram and object PDA to replace 1:V with a fixed-length value
for the ROW parameter. To generate the static subprogram and its object PDA, use the Object-
Browse-Static model.

The following example shows a subprogram generated by the Object-Browse-Static model:

31Natural Construct Object Models

Using the Object-Browse Models



> > + Subprogram CUSBR020 Lib SYSCSTDE
Top ....+....1....+....2....+....3....+....4....+....5....+....6....+....7..
0010 **SAG GENERATOR: OBJECT-BROWSE-STATIC VERSION: 8.2.1
0020 **SAG TITLE: Object Browse Static ...
0030 **SAG SYSTEM: SYSCSTDE
0040 **SAG DESCS(1): Object Browse Static for ....
0050 **SAG SUBPROGRAM-NAME: CUSBRSUB
0060 **SAG STATIC-OBJECT-PDA: CUSBP020
0070 **SAG STATIC-OCCURRENCES: 00020
0080 ********************************************************
0090 * Program : CUSBR020
0100 * System : SYSCSTDE
0110 * Title : Object Browse Static ...
0120 * Generated: Oct 13,13 at 01:03 PM by SAG
0130 * Function : Object Browse Static for ....
0140 *
0150 *
0160 *
0170 * History
0180 ********************************************************
0190 DEFINE DATA
0200 PARAMETER USING CUSBRKEY
0210 PARAMETER USING CUSBP020
0220 PARAMETER USING CUSBRPRI
0230 PARAMETER USING CDBRPDA
0240 PARAMETER USING CDPDA-M
0250 LOCAL
0260 01 #PROGRAM (A8)
0270 END-DEFINE
0280 PROG. /* to allow escape from routine.
0290 REPEAT
0300 *
0310 PERFORM INITIALIZATIONS
0320 CALLNAT 'CUSBRSUB'
0330 CUSBRKEY
0340 CUSBRROW
0350 CUSBRPRI
0360 CDBRPDA
0370 MSG-INFO
0380 *
0390 ********************************************************
0400 DEFINE SUBROUTINE INITIALIZATIONS
0410 ********************************************************
0420 *
0430 ASSIGN #PROGRAM = *PROGRAM
0440 *
0450 END-SUBROUTINE /* INITIALIZATIONS
0460 *
0470 ESCAPE BOTTOM(PROG.) IMMEDIATE
0480 END-REPEAT /* PROG.
0490 END

Natural Construct Object Models32

Using the Object-Browse Models



The following example shows an object PDA generated by the Object-Browse-Static model:

  1 CUSBRROW                                                              
  2 ROW                            (1:20)                                 
  3 CUSTOMER-NUMBER                 N  5                                  
  3 BUSINESS-NAME                   A  30                                 
  3 PHONE-NUMBER                    N  10                                 
  3 MAILING-ADDRESS                                                       
  4 M-STREET                        A  25                                 
  4 M-CITY                          A  20                                 
  4 M-PROVINCE                      A  20                                 
  4 M-POSTAL-CODE                   A  6                                  
  3 SHIPPING-ADDRESS                                                      
  4 S-STREET                        A  25                                 
  4 S-CITY                          A  20                                 
  4 M-STREET                        A  25                                 
  4 M-CITY                          A  20                                 
  4 M-PROVINCE                      A  20                                 
  4 M-POSTAL-CODE                   A  6                                  
  3 SHIPPING-ADDRESS                                                      
  4 S-STREET                        A  25                                 
  4 S-CITY                          A  20                                 
  4 S-PROVINCE                      A  20                                 
  4 S-POSTAL-CODE                   A  6                                  
  3 CONTACT                         A  30                                 
  3 CREDIT-RATING                   A  3                                  
  3 CREDIT-LIMIT                    P  11.2                               
  3 DISCOUNT-PERCENTAGE             P  3.2                                
  3 CUSTOMER-WAREHOUSE-ID           A  3                                  
  3 CUSTOMER-TIMESTAMP              T                                     
  3 COUNT                           I  4                                  
  3 UNIQUE-ID                       P  10                                 ↩

Note: To view the specifications for these examples, refer to the CUSBRSUB (Object-Browse-
Subp) and CUSBR020 (Object-Browse-Static) subprograms in the Natural Construct demo
system.

This section covers the following topics:

■ Parameters for the Object-Browse-Static Model

33Natural Construct Object Models

Using the Object-Browse Models



■ User Exits for the Object-Browse-Static Model

Parameters for the Object-Browse-Static Model

The Object-Browse-Static model has one specification panel, the Standard Parameters panel.

Note: An object-browse subprogram must exist before you can create its corresponding
static object-browse subprogram.

Standard Parameters Panel

The following example shows the only specification panel for the Object-Browse-Static model:

 CUBRMA                 Object-Browse-Static Subprogram                 CUBRMA0 
 Oct 02                       Standard Parameters                        1 of 1 
                                                                                
   Module ............. ________                                                
   System ............. CST821S_________________________                        
                                                                                
   Title .............. Object Browse Static ..._                               
   Description ........ Object Browse Static for ...._________________________  
                        ______________________________________________________  
                        ______________________________________________________  
                        ______________________________________________________  
                                                                                
                                       Source      Object                       
   Object Browse Subp . ________ *                                              
   Object PDA .........                                                         
                                                                                
                                                                                
                             PDA       Generate    Source      Object           
   Static Occurrences . 10_  ________      _                                    
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main  help  retrn quit                                            userX main   ↩

The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel.

The fields in the lower portion of this panel are:

Natural Construct Object Models34

Using the Object-Browse Models



DescriptionField

Name of the object-browse subprogram called by the static object-browse subprogram.
The object-browse subprogram must currently exist.

After you enter the object-browse subprogram name, Natural Construct fills in the
default values.

Object Browse
Subp

Nameof the object PDA for the object-browse subprogram.Natural Construct determines
this name based on the specified object-browse subprogram name.

Object PDA

Name of the first library in which source code for themodule is found. The source code
may exist in multiple libraries in the Natural steplib chain.

Source

Name of the first library in which object code for the module is found. The object code
may exist in multiple libraries in the Natural steplib chain.

Object

Number of occurrences the static object-browse subprogram returns. By default, it
returns 10 occurrences.

Static Occurrences

Name of the static object PDA for the object-browse subprogram. By default, Natural
Construct creates a name composed of the first four bytes of the module name, plus
"Pnnn", where nnn is the number of occurrences.

If the specified static object PDA already exists in the current library, an additional field
is displayed, which you can mark to have the module regenerated. If the static object
PDA does not exist, it is automatically generated.

PDA

Mark this field to generate the PDA. If the PDA does not already exist, this field is
marked by default.

Generate

Name of the first library in which source code for themodule is found. The source code
may exist in multiple libraries in the Natural steplib chain.

If the source code resides in the current library and you regenerate the module, the
module is stowed and the previous version is overwritten.

Source

Name of the first library in which object code for the module is found. The object code
may exist in multiple libraries in the Natural steplib chain.

If the object code resides in the current library and you regenerate the module, the
module is stowed and the previous version is overwritten.

Object

User Exits for the Object-Browse-Static Model

The following example shows the User Exits panel for the Object-Browse-Static model:

35Natural Construct Object Models

Using the Object-Browse Models



 CSGSAMPL               Object-Browse-Static Subprogram                  CSGSM0 
 Oct 02                            User Exits                            1 of 1 
                                                                                
                User Exits             Exists    Sample   Required Conditional  
     -------------------------------- -------- ---------- -------- ------------ 
  _  NAT-DOCS                                                           X
  _  CHANGE-HISTORY                            Subprogram                       
  _  PARAMETER-DATA                             Example                         
  _  LOCAL-DATA                                 Example                         
  _  START-OF-PROGRAM                                                           
  _  ADDITIONAL-INITIALIZATIONS                 Example                         
  _  END-OF-PROGRAM                                                             
                                                                                  ↩
                                                           
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit                    bkwrd frwrd                          ↩

Notes:

1. For information about these user exits, seeUser Exits for the GenerationModels,Natural Construct
Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

Object-Browse-Dialog Model

Using the Object-Browse-Dialogmodel, you can create character-based dialogs to workwith your
object-browse subprograms. These dialogs provide an interim step in the progression from cent-
ralized to client/server applications. You can create object subprograms that users access from a
character-based dialog. These same object subprograms can be accessed from a GUI client using
Construct Spectrum or another client/server technology.

The Object-Browse-Dialog model preserves most of the functionality of the Browse and Browse-
Select series ofmodels.When usedwith other object-browsemodels (Object-Browse-Dialog-Driver
and Object-Browse-Subp, for example), this model creates browse programs, subprograms, or
helproutines — with or without selection capabilities.

In addition, the Object-Browse-Dialog model:

■ Provides user exit modules to support the regeneration of user exits. User exit models generate
text member modules you can use with the User-Exit statement model to generate user exits.
For information, see User Exit Models.

■ Supports international applications. The model can generate text in any language for which
translations are available in the SYSERR library. SYSERR references are replaced by text dynam-
ically at runtime. The model can also generate modules that support cursor translation, which
allows users to translate prompts and headings while running the generated application. For

Natural Construct Object Models36

Using the Object-Browse Models



information, see Define International Parameters and Use SYSERR References for Headings
and Prompts.

■ Contains mechanisms for handling PF-key and action parameters, which allowmore flexibility
when customizing applications.

This section covers the following topics:

■ Uses for Object-Browse Dialogs
■ Change the Default PF-key Style
■ Example of a Generated Object-Browse Dialog
■ Parameters for the Object-Browse-Dialog Model
■ User Exits for the Object-Browse-Dialog Model

Uses for Object-Browse Dialogs

Object-browse dialogs display record values on the screen. The record values are retrieved by an
object-browse subprogram. Users can scroll backward, forward, left, and right when using the
generated dialogs. These dialogs are useful to an application as:

■ Stand-alone programs invoked from a menu by an object-browse dialog driver.
■ Active helproutines invoked by an object-browse dialog driver to display a list of valid values
for a field and allow the user to select one.

■ Subprograms called from another program, such as a maintenance program.

When a selection column is added to the dialog, users can:

■ Select multiple records on the same panel.
■ Apply actions to the selected records.

Export and Report Options

Object-browse dialogs support export and report functions. The export data functionwrites records
with delimiters to an ASCII file and downloads the file to a user’s PC, where it can be inserted
into a spreadsheet orword processor program. (This feature requires Entire Connection.) The report
data function sends records to a local printer.

The layout of the export and report functions are independent of the screen layout. You can design
andgenerate the layouts using the EXPORT-DATA-FIELDS, INPUT-KEY, REPORT-DATA-FIELDS,
and WRITE-DATA-FIELDS user exits (available by entering SAMPLE in the User Exit editor). Or
you can use the user exit models to create regeneratable text members you can generate into the
User Exit editor using the User-Exit statement model. For more information, seeUser Exit Models
and User-Exit Statement Model.

37Natural Construct Object Models

Using the Object-Browse Models



Change the Default PF-key Style

A generated object-browse dialog module and browse module use different styles of PF-keys. To
use the browse style of PF-keys in the generation of all new object-browse dialogs, remove the
comment indicators from the following line in the CUBDC subprogram:

CUBDPDA.#PDAX-USE-BROWSE-PFKEYS := TRUE

To use the browse style of PF-keys for existing object-browse dialogs:

1. Remove the comment indicators from the following line in the CUBDR subprogram:

CUBDPDA.#PDAX-USE-BROWSE-PFKEYS := TRUE

2. Use the SYSMAIN utility to copy the object code for CUBDR to the SYSLIBS library.

3. Regenerate all object-browse dialogs using the NCSTBGEN batch generator.

Note: Although you can use the same procedure to define object-browse dialog style PF-
keys for all transformedmodules (by specifyingCUBDPDA.#PDAX-USE-BROWSE-PFKEYS
:= FALSE), this may interfere with the specifications in the user exit code.

Example of a Generated Object-Browse Dialog

The following example shows the first panel of a typical browse panel generated using the Object-
Browse-Dialog model:

      NCPRDOBD                  Table Subsystem                                  
      Oct 15                    Select Product                           1 of 2  
                                                                                 
       Product            Description            Reorder point    Unit cost      
      ---------- ------------------------------ ---------------- ------------    
        111111   DOG FOOD                              5000           110.00     
        111116   CHEESE DOODLE                           70             0.15     
        145688   HOT CHOCOLATE DRINK                    300            10.00     
        187361   CAT NUGGETS                             70           150.00     
        199210   COOPER GLOVES                           50           100.00     
        222222   BIRD SEED                               88            50.00     
        256733   OATS AND BARLEY CEREAL                  22            20.00     
        324597   COOPER GLOVES                          100           100.00     
        333333   DOG BONES                               22            50.00     
        335977   DOMESTIC KITTY LITTER                   40             7.00     
        342723   ORANGE DRINK CRYSTALS                 4000            15.00     
        444444   CORN FLAKES                           1000             1.22     
      Product .... ______                                                        
      Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF 
            help  retrn quit             exprt bkwrd frwrd reprt left  right ma  ↩

Natural Construct Object Models38

Using the Object-Browse Models



To reposition the data, users enter a value in the input field near the bottom of the panel (Product).
If the key is alphanumeric or numeric, users can include a wildcard character (*, >, or <) to limit
the range of records displayed.

Modules generated using theObject-Browse-Dialogmodel support an export PF-key, which routes
a delimited report to an ASCII file on the user’s PC. These modules also support a report PF-key,
which routes a report to a printer. Users can use these PF-keys, along with wildcard characters,
to generate a report based on a range of records. Export data and report data support are optional.

To view the specifications for the Object-Browse-Dialog model example, refer to the NCPRDOBD
program in the Natural Construct demo system.

Parameters for the Object-Browse-Dialog Model

The Object-Browse-Dialog model accepts parameters from the following parameter data areas:

DescriptionData Area

Parameter data area (PDA) containing all fields that are components of the logical keys
supported by the object-browse subprogram. Additionally, the generated key PDA contains
a field you can use to request that the browse begin from a specific record.

You can also use the key PDA to return the selected value in the PROCESS-SELECTED-RECORD
user exit.

Key PDA

PDA containing fields that control the behavior of the object-browse subprogram, such as the
sort key, the numbers of records requested, the range option, and the actual number of records
returned. For information, see CDBRPDA.

CDBRPDA

External PDA containing standard parameters for dialogs.CDPDA-D

External PDA containing standard parameters for exchanging message information.CDPDA-M

External PDA containing global information shared with the object-browse subprogram.CDPDA-P

Note: You can specify additional parameters in the PARAMETER-DATA user exit.

TheObject-Browse-Dialogmodel has two specification panels: StandardParameters andAdditional
Parameters. This section describes these panels. The following topics are covered:

■ Standard Parameters Panel
■ Additional Parameters Panel
■ Define PF-Keys

39Natural Construct Object Models

Using the Object-Browse Models



■ Define Actions

Standard Parameters Panel

The following example shows the first specification panel:

 CUBDMA                 OBJECT-BROWSE-DIALOG Subprogram                 CUBDMA0 
 Mar 30                       Standard Parameters                        1 of 2 
                                                                                
   Module ............. TEST____                                                
   System ............. DEMO___________________________                        
                                                                                
   Title .............. Object Browse Dialog for_                               
   Description ........ This dialog is used for the object browse ..._________  
                        ______________________________________________________  
                        ______________________________________________________  
                        ______________________________________________________  
                                                                                
   First heading ...... __________________________________________________ *    
                                                                                
   Second heading ..... __________________________________________________ *    
                                                                                
                                                                                
   Do not populate first input screen ................. _                       
   Generate page title (when not on input map) ........ _                       
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit              pfkey             intnl left  right main   ↩

The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel.

The fields in the lower portion of this panel are:

DescriptionField

Indicates whether default data is automatically entered in the fields on the
first input screen. This option can be used to provide consistency between

Do not populate first input
screen

Natural Construct-generated browse and object-browsemodules. By default,
the first input screen is not populated for a generated browse module and is
populated for a generated object-browse-dialog module.

Indicateswhether to automatically code the page titlewhen amap is not being
used. By default, the page title is coded for a generated browse module and
is not coded for a generated object-browse-dialog module.

Generate page title (when
not on input map)

Note: These fields are used by the Transform-Browsemodel to determine how to transform
aNatural Construct-generated browsemodule into object-browsemodules. For information

Natural Construct Object Models40

Using the Object-Browse Models



about transforming browsemodules, see Transform-BrowseModel,Natural Construct Genera-
tion.

Define or Customize PF-Keys

To define or customize the PF-keys used by your object-browse dialog:

1 Press PF6 (pfkey) on the Standard Parameters panel.

The PF-Key Parameters window is displayed:

CUBDMAB Natural Construct CUBDMAB0
Dec 19 PF-Key Parameters 1 of 1

Key ID template .... MC 1___ * Object browse dialog template

Key ID NAMED Subprogram Subroutine
__ ____ PF1 help ________ _______________________________
__ ____ PF2 retrn ________ _______________________________
__ ____ * PF3 quit ________ * _______________________________
__ ____ * PF4 trans ________ * _______________________________
__ ____ * PF5 actns ________ * _______________________________
__ ____ * PF6 exprt ________ * _______________________________
__ ____ PF7 bkwrd ________ _______________________________
__ ____ PF8 frwrd ________ _______________________________
__ ____ * PF9 reprt ________ * _______________________________
__ ____ * PF10 left ________ * _______________________________
__ ____ * PF11 right ________ * _______________________________
__ ____ * PF12 main ________ * _______________________________

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
help retrn quit mai

2 Use this window to do one of the following:

■ Specify the name of a key template containing a pre-defined group of single PF-keys
■ Override the default PF-keys by specifying individual PF-keys, their positions, and the
names of the subprograms or subroutines that perform the keys functions

3 Select Enter to confirm the changes.

Specify a Key Template

To specify a key template, do one of the following:

■ Type the name of a Natural Construct or application-specific key template in the Key ID
template field and select Enter.

41Natural Construct Object Models

Using the Object-Browse Models



Or:

Press the help PF-key when the cursor is in the Key ID template field to select from a list of
available key templates (both Natural Construct and application-specific).

Override the Default PF-Keys

To override the default single PF-keys:

1 Type the ID for the single PF-key in the PF-key IDfield associatedwith the appropriate position
on the PF-key line.

Or:

Press the help PF-keywhen the cursor is in the PF-key ID field associatedwith the appropriate
position on the PF-key line to select from a list of single PF-keys (both Natural Construct and
application-specific).

2 In the corresponding Subprogram or Subroutine field, type the name of the subprogram or
subroutine that is invoked when the key is pressed.

3 Select Enter.

Change the Reserved PF-Keys

You cannot change the reserved PF-keys: PF1 (help), PF2 (retrn), PF7 (bkwrd), and PF8 (frwrd).

Use the Null PF-Key

The null PF-key (PF0) disables the default PF-key in the position to which you assign it. Use this
keywhen youwant to disable the functionality of a PF-key and not replace it with another function.
For example, to disable PF12 (main), enter "PF0 null" in the corresponding Key ID field in the PF-
Key Parameters window.

Define International Parameters

To define international parameters for your object-browse dialog, press PF9 (intnl) on the Standard
Parameters panel. The International Parameters window is displayed. For a description of this
window, see Define International Parameters.

Natural Construct Object Models42

Using the Object-Browse Models



Additional Parameters Panel

The following example shows the second specification panel:

   CUBDMB                 Object-Browse-Dialog Subprogram                  CUBDMB0
   Jan 29                      Additional Parameters                        2 of 2
                                               Source      Object                 
     Object browse subp ....... ________ *                                        
       Object PDA ............. ________ *                                        
       Key PDA ................ ________ *                                        
     Object LDA ............... ________ *                                        
                                                                                  
     Input key ................ ________________________________ *                
       Prompt ................. ____________________________________________ *    
                                                                                  
     Records displayed ........ 10__                                              
     Selection column format .. _ __ *                                            
     Input using map .......... ________ *                                        
     Horizontal panels ........ 1_                                                
     Backward scroll pages .... 10                                                
                                                                                  
     Export data support ...... _                                                 
     Report data support ...... _                                                 
     Use BROWSE-SELECT actions. _                                                 
                                                                                  
   Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
         help  retrn quit        windw actns scrn              left  userX main   ↩

Use this panel to specify additional parameters and options for the browse dialog. The fields on
this panel are:

DescriptionField

Name of the object-browse subprogram used by the generated module to retrieve
records for display. Field-level help is available to select an object-browse subprogram.

Note: Use the Object-Browse-Subp model to generate the object-browse subprogram.

Object browse
subp

Name of the object parameter data area (PDA) used by the generated module. Natural
Construct supplies this value by default, based on the name of the object-browse
subprogram. Field-level help is available to select an object PDA.

Object PDA

Name of the key parameter data area (PDA) used by the generated module. The key
PDA is comprised of all fields that are components of the logical keys supported by

Key PDA

the specified object-browse subprogram. Natural Construct supplies this value by
default, based on the name of the object-browse subprogram. Field-level help is available
to select a key PDA.

Name of the object local data area (LDA) used by the generated module. The object
LDA contains the default field headings used when generating user exits. Field-level
help is available to select an object LDA.

Object LDA

43Natural Construct Object Models

Using the Object-Browse Models



DescriptionField

Name of the logical key by which scrolling takes place in the generated module. The
specified key must be defined in the key PDA. Field-level help is available to select an
input key.

Input key

Field prompt (name) displayed for the input key when the module is invoked. This
name can either be text or a SYSERR reference (with or without formatting). Field-level

Prompt

help is available to select an existing SYSERR number or create a new SYSERR entry.
For more information, see Use SYSERR References for Headings and Prompts.

Number of records displayed on the screen at one time. By default, the generated
module displays 10 records at one time.

Records displayed

Indicates the format for the selection column. The following formats are available:Selection column
format

■ A (alphanumeric) 1–253 units
■ B (binary) 1–126 units
■ C (attribute control)
■ D (date)
■ F (floating point) 4, 8 units
■ I (integer) 1, 2, 4 units
■ L (logical)
■ N (numeric, unpacked) 1–29 units, 1–7 decimals
■ P (numeric, packed) 1–29 units, 1–7 decimals
■ T (time)

Name of the layout map used by the generated module. Natural Construct supplies
many layout maps you can use with the supplied models. Field-level help is available
to select a map.

Input using map

Number of panels used by the generated module. Users can display the next panel by
pressing the right PF-key; they can return to the previous panel by pressing the left
PF-key. By default, the module uses one horizontal panel.

Horizontal panels

Maximum number of scroll pages supported by the module. By default, the module
supports 10 scroll pages; users can scroll forward and backwardwithin a 10-page range.

Backward scroll
pages

If they scroll forward 11 pages, page 1 is forced out of the range and they cannot scroll
back to it.

Note: Natural Construct-generated modules do not allow backward scrolling through
data that has not been previously scrolled through in a forward direction.

When this field is selected, records are exported to a work file (instead of the screen).
Users can use thesework files in other environments or on other platforms (for example,

Export data
support

in a PC spreadsheet application). To export the generated report to a work file, users
specify a starting value and press the export PF-key.

When generating the module, you must indicate which records to export by defining
the EXPORT-DATA-FIELDS user exit using one of the following methods:

Natural Construct Object Models44

Using the Object-Browse Models



DescriptionField

■ Use the Export-Data-Fields user exitmodel to generate the exit (thismodel is available
on the mainframe only)

■ Select anddefine the EXPORT-DATA-FIELDSuser exit by right-clicking the generated
the module in the Natural for Windows editor

You can customize the work file number and delimiter character (character used to
delimit fields on the report) for your site.

Note: If you mark this field and do not define the EXPORT-DATA-FIELDS user exit,
Natural Construct generates a default WRITE WORK FILE statement that includes all
fields in the specified input key.

When this field is selected, records are exported to a local printer (instead of the screen).
To print the generated report, users specify a starting value and press the report PF-key.

When generating the module, you must indicate which records to export by defining
the REPORT-DATA-FIELDS user exit using one of the following methods:

Report data
support

■ Use the Report-Data-Fields user exitmodel to generate the exit (thismodel is available
on the mainframe only)

■ Select anddefine the REPORT-DATA-FIELDSuser exit by right-clicking the generated
the module in the Natural for Windows editor

Note: If you mark this field and do not define the REPORT-DATA-FIELDS user exit,
Natural Construct generates a default WRITE statement that includes all fields in the
specified input key.

When this field is selected, the browse dialog uses the same actions as those used by a
Browse-Selectmodel. For information, seeDefine or Customize Browse-SelectActions.

Use
BROWSE-SELECT
actions

This section covers the following topics:

■ Change the Default Window Settings
■ Define or Customize Standard Actions
■ Define or Customize Browse-Select Actions

45Natural Construct Object Models

Using the Object-Browse Models



■ Define Screen Layout Parameters

Change the Default Window Settings

To change the default window settings for your object-browse dialog:

■ Press PF5 (windw) on the Additional Parameters panel.

The Window Parameters window is displayed. For a description of this window, see Change
the Default Window Settings.

Define or Customize Standard Actions

To define or customize the standard actions used by your object-browse dialog:

1 Press PF6 (actns) on the Additional Parameters panel.

The Action Parameters window is displayed:

CUBDMBA Natural Construct CUBDMBA0
Dec 30 Action Parameters 1 of 1

Template ........... MC 1___ * Object browse dialog template

Action ID Action Subprogram Subroutine
__ ____ * add ________ * ________________________________
__ ____ * detail ________ * ________________________________
__ ____ * display ________ * ________________________________
__ ____ * modify ________ * ________________________________
__ ____ * purge ________ * ________________________________
__ ____ * select ________ * ________________________________
__ ____ *
__ ____ *
__ ____ *
__ ____ *
__ ____ *
__ ____ *
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12

help retrn quit main

2 Use this window to do one of the following:

■ Specify the name of an action template (pre-defined group of single actions).
■ Override the default actions by specifying single actions and the names of the subprograms
or subroutines that perform the actions.

Natural Construct Object Models46

Using the Object-Browse Models



Specify an Action Template

To specify an action template:

■ Type the name of a Natural Construct or application-specific action template in the Template
field and select Enter.

Or:

Press the help PF-key when the cursor is in the Template field to select from a list of available
action templates (both Natural Construct and application-specific).

Override the Default Actions

To override the default single actions:

1 Type the ID for the single action in the appropriate Action ID field.

Or:

Press the help PF-key when the cursor is in the Action ID field to select from a list of single
actions (both Natural Construct and application-specific).

2 In the corresponding Subprogram or Subroutine field, type the name of the subprogram or
subroutine that is invoked when the action is requested.

3 Select Enter.

Define or Customize Browse-Select Actions

You can define Browse-Select-style actions for your object-browse dialog, as opposed to the
standard actions for the object-browse dialog (for example, add, detail, display, modify, purge,
and select).

To define or customize Browse-Select-style actions for your object-browse dialog:

1 Mark the Use BROWSE-SELECT actions field on the Additional Parameters panel.

2 Press PF6 (actns).

The Action Parameters window is displayed:

47Natural Construct Object Models

Using the Object-Browse Models



   CUBDMD                 Object-Browse-Dialog Subprogram              CUBDMD0  
   Jun 08                      Action Parameters                        1 of 1  
                                                                              ↩
  
    _ Add        _ Browse     _ Clear      _ Display    _ Modify              ↩
  
    _ Next       _ Purge      _ Copy       _ Recall     _ Replace             ↩
  
    _ Select     _ Detail     _ Former                                        ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
                                                                              ↩
  
   Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1  
         help  retrn quit                                                  mai  

This window displays the actions used by a Browse-Select model.

Note: For DB2 users, the Former action is disabled in this window.

3 Mark the actions you want to expose on your object-browse dialog.

4 Select Enter to confirm the changes.

Natural Construct Object Models48

Using the Object-Browse Models



Define Screen Layout Parameters

To define the screen layout parameters for your object-browse dialog:

1 Press PF7 (scrn) on the Additional Parameters panel.

The Screen Layout Parameters window is displayed:

CUBDMBB           Natural Construct           CUBDMBB0 
Feb 07         Screen Layout Parameters         1 of 1 
                                                       
                                                       
         Screen header lines .......... 2_             
         Field heading lines .......... 1_             
         Underline headings ........... X              
         Blank lines after headings ... __             
         Record display lines ......... 1_             
         Input key lines .............. 1_             
                  Position . Bottom ... X              
                             Top ...... _              
         Starting column .............. __             
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8--- 
      help  retrn quit  test                           ↩

2 Use the fields in thiswindow to define how information is displayed on your generated object-
browse dialog.

The fields in this window are:

DescriptionField

Number of screen heading lines displayed when your generated module
is invoked. By default, two lines are reserved for screen headings.

Screen header lines

Number of field heading lines displayed when your generated module is
invoked. By default, one line is reserved for each field heading line.

Field heading lines

When this field is selected, field headings are underlined when the
generated module is invoked. By default, this field is selected and field
headings are underlined on the generated dialog.

Underline headings

Number of blank lines inserted after the field heading lines. For example,
if you specify 1 in this field, one blank line is inserted below each field
heading line.

Blank lines after headings

Number of screen lines required to display each record and its attributes.
By default, one line is reserved for each record.

Record display lines

Number of screen lines required to display input keys. By default, one line
is reserved for each input key.

Input key lines

Position

49Natural Construct Object Models

Using the Object-Browse Models



DescriptionField

When this field is selected, the input key lines are displayed at the bottom
of the screen. By default, the input key lines are displayed at the bottom
of the generated dialog.

Bottom

When this field is selected, the input key lines are displayed at the top of
the screen.

Top

Number of the column in which the selection column begins.Starting column

3 Select Enter to confirm the changes.

Test the Modified Screen Layout

You can view a test version of the window with the characteristics specified in the Screen Layout
Parameters window.

To test the modified screen layout:

■ Press PF4 (test).

Define PF-Keys

You can specify a PF-key’s position on the PF-key line, the Natural variable name used in the
generated code, and international support for the text displayed on the PF-key line. You can also
use a pre-defined set of PF-keys (called a key template), which you can select from a list of existing
key templates or create on your own.

Note: For information on defining the Natural variable name used in the generated code,
see Defining PF-Keys for Generated Applications, Natural Construct Generation.

To access PF-keys for your applications, Natural Construct provides two APIs (Application Pro-
gramming Interfaces) and six methods in the CD--PFK module. Within this module, you can:

■ Create new methods and APIs to access PF-keys
■ Define single PF-keys and their attributes
■ Define sets of PF-keys and attributes (key templates)

Any model can use the CD--PFK module during the modify and generation phases.

To define PF-keys:

■ Press PF6 (pfkey) on the Standard Parameters panel for the Object-Browse-Dialog model.

The PF-Key Parameters window is displayed, from which you can select a key template or
single PF-keys for your dialog. For more information, see Define or Customize PF-Keys.

Natural Construct Object Models50

Using the Object-Browse Models



Note: If the object-browse dialog module was generated by the Transform-Browse
model, the PF6 (pfkey) option is not available. For more information, see Change the
Default PF-key Style and PF-Key Styles.

Define Single PF-Keys

Single PF-keys perform specific functions at runtime. Typically, they are used to add one or two
functions to the standard PF-key set supplied by a model.

Single PF-keys are divided into two types and maintained in separate lists: PF-keys used by the
Natural Construct models (identified by an SC prefix) and application-specific PF-keys that you
create (identified by an SA prefix). You can use any single PF-key with any model.

The attributes of a single PF-key are:

DescriptionAttribute

Type of PF-key and whether the key is defined by Natural Construct or
by the user. Valid single source IDs are defined in the CD--PFKM local
data area. They are:

SOURCE-ID

■ SC (Single Construct)
■ SA (Single Application)

Internal identifier for a single PF-key. Valid single PF-key IDs are defined
in the CD--PFKM local data area.

PFKEY-ID

Position of a single PF-key on the PF-key line (for example, PF2 for the
return PF-key). The value in this field is assigned to
PFKEY-POSITION-VARIABLE in the generated code.

PFKEY-POSITION

Natural variable used in the generated code to refer to the position of a
single PF-key (for example, #PF-RETURN for the return PF-key).

PFKEY-POSITION-VARIABLE

Natural variable containing the name displayed for a single PF-key at
runtime (for example, #RETURN-NAME for the return PF-key).

PFKEY-NAME-VARIABLE

Text or SYSERR reference used to identify a single PF-key. The value in
this field is assigned to PFKEY-NAME-VARIABLE in the generated code.

Note: If you use SYSERR references, text is retrieved from the CSTPFK
library in SYSERR.

PFKEY-NAME

The generated contents of PFKEY-NAME depend on the international
parameters defined for the model. You can generate text in a specific
language or generate SYSERR references. By default, English text is
generated.

Text or SYSERR reference used as a long description of a single PF-key.PFKEY-NAME-LONG

51Natural Construct Object Models

Using the Object-Browse Models



DescriptionAttribute

Status code for a single PF-key. This code determines if a single PF-key
may be overridden by the user. Valid status codes are:

PFKEY-STATUS

■ C (Conditional; PF-key is reserved by the model and is conditional on
the selection of options)

■ O (Optional; PF-key can be overridden by the user)
■ R (Required; PF-key is required by the model)

Note: The values specified in these fields are used for defaulting purposes. In most cases,
these values can be overridden by the user.

Natural Construct Single PF-Keys

Natural Construct single PF-keys are defined in the CD--PFKM local data area and the CD--PFK
module. There are 34 Natural Construct single PF-keys provided.

The default constant that identifies the current number of PF-keys is defined in CD--PFKM as
follows:

*
* * Default constants

1 CD--PFKD
2 MAX-SPC I 2 CONST<34> /* Max CST singl

Natural Construct single PF-key IDs are defined in CD--PFKM as follows:

Natural Construct Object Models52

Using the Object-Browse Models



* *
* * Construct Single Pfkey Id List
I 2 SPC-PFKEY-ID I 2 (1:MAX-SPC)

R 2 SPC-PFKEY-ID /* REDEF. BEGIN :
* * /* Construct list

3 HELP-PFKEY I 2 /* Pfkey Id 1
3 RETURN-PFKEY I 2 /* Pfkey Id 2
3 BACKWARD-PFKEY I 2 /* Pfkey Id 3
3 FORWARD-PFKEY I 2 /* Pfkey Id 4
3 LEFT-PFKEY I 2 /* Pfkey Id 5
3 RIGHT-PFKEY I 2 /* Pfkey Id 6
3 QUIT-PFKEY I 2 /* Pfkey Id 7
3 MAIN-PFKEY I 2 /* Pfkey Id 8
3 FLIP-PFKEY I 2 /* Pfkey Id 9
3 PLACE-PFKEY I 2 /* Pfkey Id 10
3 HARDCOPY-PFKEY I 2 /* Pfkey Id 11
3 EXPORT-PFKEY I 2 /* Pfkey Id 12
3 PREFERENCES-PFKEY I 2 /* Pfkey Id 13
3 CONFIRM-PFKEY I 2 /* Pfkey Id 14
3 DIRECT-COMMAND-PFKEY I 2 /* Pfkey Id 15
3 ADD-PFKEY I 2 /* Pfkey Id 16
3 BROWSE-PFKEY I 2 /* Pfkey Id 17
3 CLEAR-PFKEY I 2 /* Pfkey Id 18
3 COPY-PFKEY I 2 /* Pfkey Id 19
3 DETAIL-PFKEY I 2 /* Pfkey Id 20
3 DISPLAY-PFKEY I 2 /* Pfkey Id 21
3 MODIFY-PFKEY I 2 /* Pfkey Id 22
3 NEXT-PFKEY I 2 /* Pfkey Id 23
3 PURGE-PFKEY I 2 /* Pfkey Id 24
3 RECALL-PFKEY I 2 /* Pfkey Id 25
3 REPLACE-PFKEY I 2 /* Pfkey Id 26
3 SELECT-PFKEY I 2 /* Pfkey Id 27
3 ACTIONS-PFKEY I 2 /* Pfkey Id 28
3 REPORT-PFKEY I 2 /* Pfkey Id 29
3 TRANSLATE-PFKEY I 2 /* Pfkey Id 30
3 NULL-PFKEY I 2 /* Pfkey Id 31
3 STORE-PFKEY I 2 /* Pfkey Id 32
3 UPDATE-PFKEY I 2 /* Pfkey Id 33
3 MAINTAIN-PFKEY I 2 /* Pfkey Id 34

Note: The internal ID is derived from the occurrence of each PF-keywithin the SPC-PFKEY-
ID array.

Natural Construct single PF-key IDs (referenced in CD--PFKM) are defined in the CD--PFK
module as follows:

53Natural Construct Object Models

Using the Object-Browse Models



*
* Single key initial values Construct

01 SINGLE-CST
02 INITIAL-VALUES (A150/1:MAX-SPC)

* Position \Pos var.\ Name variable/Name/ Name long/ Status override
* \ \ _/ \ _/ /
* \ \ \ \ \ /
* \ \ \ \ \ __________/
* \ \ \ \ \ /

INIT (1)<'PF1/#PF-HELP/#HELP-NAME/*8001.1/*8001.2/O'>
(2)<'PF2/#PF-RETURN/#RETURN-NAME/*8002.1/*8002.2/O'>
(3)<'PF7/#PF-BACKWARD/#BACKWARD-NAME/*8003.1/*8003.2/O'>
(4)<'PF8/#PF-FORWARD/#FORWARD-NAME/*8004.1/*8004.2/O'>
(5)<'PF10/#PF-LEFT/#LEFT-NAME/*8005.1/*8005.2/O'>
(6)<'PF11/#PF-RIGHT/#RIGHT-NAME/*8006.1/*8006.2/O'>
(7)<'PF3/#PF-QUIT/#QUIT-NAME/*8007.1/*8007.2/O'>
(8)<'PF12/#PF-MAIN/#MAIN-NAME/*8008.1/*8008.2/O'>
(9)<'PF5/#PF-FLIP/#FLIP-NAME/*8009.1/*8009.2/O'>
(10)<'PF6/#PF-PLACE/#PLACE-NAME/*8010.1/*8010.2/O'>
(11)<'PF9/#PF-HARDCOPY/#HARDCOPY-NAME/*8011.1/*8011.2/O'>
(12)<'PF6/#PF-EXPORT/#EXPORT-NAME/*8012.1/*8012.2/O'>
(13)<'PF6/#PF-PREFERENCE/#PREFERENCE-NAME/*8013.1/*8013.2/O'>
(14)<'ENTR/#PF-CONFIRM/#CONFIRM-NAME/*8014.1/*8014.2/O'>
(15)<'PF41/#PF-DIRECT-CMD/#DIRECT-CMD-NAME/*8015.1/*8015.2/O'>
(16)<'PF25/#PF-ADD/#ADD-NAME/*8016.1/*8016.2/O'>
(17)<'PF26/#PF-BROWSE/#BROWSE-NAME/*8017.1/*8017.2/O'>
(18)<'PF27/#PF-CLEAR/#CLEAR-NAME/*8018.1/*8018.2/O'>
(19)<'PF28/#PF-COPY/#COPY-NAME/*8019.1/*8019.2/O'>
(20)<'PF29/#PF-DETAIL/#DETAIL-NAME/*8020.1/*8020.2/O'>
(21)<'PF30/#PF-DISPLAY/#DISPLAY-NAME/*8021.1/*8021.2/O'>
(22)<'PF31/#PF-MODIFY/#MODIFY-NAME/*8022.1/*8022.2/O'>
(23)<'PF32/#PF-NEXT/#NEXT-NAME/*8023.1/*8023.2/O'>
(24)<'PF33/#PF-PURGE/#PURGE-NAME/*8024.1/*8024.2/O'>
(25)<'PF34/#PF-RECALL/#RECALL-NAME/*8025.1/*8025.2/O'>
(26)<'PF35/#PF-REPLACE/#REPLACE-NAME/*8026.1/*8026.2/O'>
(27)<'PF36/#PF-SELECT/#SELECT-NAME/*8027.1/*8027.2/O'>
(28)<'PF5/#PF-ACTIONS/#ACTIONS-NAME/*8028.1/*8028.2/O'>
(29)<'PF9/#PF-REPORT/#REPORT-NAME/*8029.1/*8029.2/O'>
(30)<'PF4/#PF-TRANSLATE/#TRANSLATE-NAME/*8030.1/*8030.2/O'>
(31)<'PF0/#PF-NULL/#NULL-NAME/*8031.1/*8031.2/O'>
(32)<'PF4/#PF-STORE/#STORE-NAME/*8032.1/*8032.2/O'>
(33)<'PF4/#PF-UPDATE/#UPDATE-NAME/*8033.1/*8033.2/O'>
(34)<'PF4/#PF-MAINTAIN/#MAINTAIN-NAME/*8034.1/*8034.2/O'>

Notes:

1. SYSERR references are defined in the CSTPFK library in SYSERR; this library is reserved for
PF-key attribute definitions.

2. All models using this mechanism generate the PF-key attributes inline. To reflect any changes
to the PF-key definitions, you must regenerate the module.

Natural Construct Object Models54

Using the Object-Browse Models



Application-Specific Single PF-Keys

Application-specific single PF-keys are defined in the CD--PFKM local data area and the CD--PFK
module. There are two sample single PF-keys provided.

The default constant that identifies the current number of single PF-keys is defined in CD--PFKM
as follows:

*
* * Default constants

1 CD--PFKD
2 MAX-SPA I 2 CONST<2> /* Max App single pfkey

Application-specific single PF-keys are defined in CD--PFKM as follows:

* *
* * Application Single Pfkey Id List
I   2 SPA-PFKEY-ID                     I    2 (1:MAX-SPA)
  R 2 SPA-PFKEY-ID                            /* REDEF. BEGIN : SPA-PFKEY-ID
  * *                                         /* Application list
    3 SAMPLE-PFKEY1                    I    2 /* Pfkey Id 1
    3 SAMPLE-PFKEY2                    I    2 /* Pfkey Id 2  ↩

Note: The internal ID is derived from the occurrence of each PF-keywithin the SPA-PFKEY-
ID array.

Application-specific single PF-key IDs (referenced in CD--PFKM) are defined in the CD--PFK
module as follows:

*
* Single key initial values Application

01 SINGLE-APP
02 INITIAL-VALUES (A113/1:MAX-SPA)

* Position \Pos var.\ Name variable/Name/ Name long/ Status override
* \ \ _/ \ _/ /
* \ \ \ \ \ /
* \ \ \ \ \ __________/
* \ \ \ \ \ /

INIT (1)<'PF5/#PF-JUMP/#JUMP-NAME/*9001.1/*9001.2/O'>
(2)<'PF9/#PF-STOP/#STOP-NAME/*9002.1/*9002.2/O'>

Notes:

1. SYSERR references are defined in the CSTPFK library in SYSERR; this library is reserved for
PF-key attribute definitions. User-defined SYSERR references start at 9000. Formore information,
see the online help.

2. Allmodels using the PF-keymechanism generate the PF-key attributes inline. To reflect changes
to the PF-key definitions, you must regenerate the module.

55Natural Construct Object Models

Using the Object-Browse Models



To add an application-specific single PF-key:

1 Increase the MAX-SPA default constant by one in the CD--PFKM local data area.

For example, change the MAX-SPA line in the following:

*
* * Default constants

1 CD--PFKD
2 MAX-SPA I 2 CONST<2> /* Max App single pfkey

to:

2 MAX-SPA I 2 CONST<3> /* Max App single pfkey

2 Add the internal PF-key name to the redefinition of the SPA-PFKEY-ID array in CD--PFKM.

For example:

* *
* * Application Single Pfkey Id List
I   2 SPA-PFKEY-ID                     I    2 (1:MAX-SPA)
  R 2 SPA-PFKEY-ID                            /* REDEF. BEGIN : SPA-PFKEY-ID
  * *                                         /* Application list
    3 SAMPLE-PFKEY1                    I    2 /* Pfkey Id 1
    3 SAMPLE-PFKEY2                    I    2 /* Pfkey Id 2
*
* add new single pfkey redefine
*
    3 NEW-KEY                          I    2 /* Pfkey Id 3 ↩

3 Edit the SPA-PFKEY-ID array to initialize the internal ID value.

For example:

11:59:15 ***** EDIT FIELD ***** 13-10-16
- Initial Values - Single Mode -

Local CD--PFKM Library CSTDEM
Command +

Index SPA-PFKEY-ID(I2/1:3)
---------------------- --------------------------------------------------
(1) 1
(2) 2
*
* add new single pfkey internal id
*
(3) 3

Natural Construct Object Models56

Using the Object-Browse Models



4 Stow CD--PFKM.

5 Define the attributes of the application-specific single PF-key IDs in the CD--PFK module
(referenced in CD--PFKM).

For example, add the INIT clause for the new occurrence of INIT-VALUES:

* Single key initial values Application
01 SINGLE-APP

02 INITIAL-VALUES (A113/1:MAX-SPA)
* Position \Pos var.\ Name variable/Name/ Name long/ Status override
* \ \ _/ \ _/ /
* \ \ \ \ \ /
* \ \ \ \ \ __________/
* \ \ \ \ \ /

INIT (1)<'PF5/#PF-JUMP/#JUMP-NAME/*9001.1/*9001.2/O'>
(2)<'PF9/#PF-STOP/#STOP-NAME/*9002.1/*9002.2/O'>

*
* add new single pfkey attributes
*

(3)<’PFnn/#PF-name/#key-NAME/*9003.1/*9003.2/O’>

Note: You can use either SYSERR references or text for the NAME and NAME-LONG
values. User-defined SYSERR references start at 9000. For more information, see the
online help.

6 Stow CD--PFK.

Define Key Templates

A key template is a group of single PF-keys relevant to a given model. If a model supports PF-key
parameters, the logical grouping (template) can be displayed to the user as default values. The
user can then customize the template as desired.

Key templates are divided into two types and maintained on separate lists: key templates used
by theNatural Constructmodels (identified by anMCprefix) and application-specific key templates
that you create (identified by anMAprefix). You can use any single PF-keywith any key template.

The attributes for a key template are:

DescriptionAttribute

Type of key template and whether the template is defined by Natural
Construct or user-defined. Valid source IDs are defined in the CD--PFKM
local data area. They are:

SOURCE-ID

■ MC (Model Construct)
■ MA (Model Application)

57Natural Construct Object Models

Using the Object-Browse Models



DescriptionAttribute

Internal identifier for a key template. Valid key templates are defined in
the CD--PFKM local data area.

PFKEY-ID

Text or SYSERR reference used as a long description of the key template.

Note: If you use SYSERR references, the text is retrieved from the CSTPFK
library in SYSERR.

NAME

Key template containing a group of single PF-key definitions.

Note: The maximum number of PF-keys assigned to one key template is
12.

MODEL-PFKEY-VALUES

Source IDs for the single PF-keys in the key template.SOURCE-ID

Internal identifiers for single PF-keys in the key template.PFKEY-ID

Override positions for single PF-keys in the key template. If you do not
specify an override position, the position value for that single PF-key is
assigned to this field.

PFKEY-POSITION-OVERRIDE

Override statuses for single PF-keys in the key template. If you do not
specify an override status, the status value for the single PF-key is assigned
to this field.

PFKEY-STATUS-OVERRIDE

Note: The values in these fields are used for defaulting purposes. In most cases, you can
override these attributes.

Natural Construct Key Templates

Natural Construct key templates are defined in the CD--PFKM local data area and the CD--PFK
module. There is one Natural Construct key template provided.

The default constant that identifies the current number of key templates is defined in CD--PFKM
as follows:

*
* * Default constants

1 CD--PFKD
2 MAX-MPC I 2 CONST<1> /* Max CST model pfkeys

Natural Construct key templates are defined in CD--PFKM as follows:

* *
* * Construct Model Pfkey Id List
I 2 MPC-PFKEY-ID I 2 (1:MAX-MPC)

R 2 MPC-PFKEY-ID /* REDEF. BEGIN : MPC-PFKEY-ID
* * /* Construct list

3 OBJECT-BROWSE-DIALOG I 2 /* Model pfkey Id 1

Natural Construct Object Models58

Using the Object-Browse Models



Note: The internal ID is derived from the occurrence of each key template within the MPC-
PFKEY-ID array.

Natural Construct key templates (referenced in CD--PFKM) are defined in the CD--PFK module
as follows:

*
* Model pfkey initial values Construct

01 MODEL-CST
02 INITIAL-MODEL-VALUES (A40/1:MAX-MPC)

* model source id/model pfkey id/ model name /
* / __________/ /
* / / ________________/
* / / /
* / / /

INIT (1) <'MC/0001/*8501.1'>
*
*

02 INITIAL-MODEL-PFKEY-VALUES (A15/1:MAX-MPC,1:12)
* Model\ source id/single pfkey id/position override/status override
* \ / _________/ / /
* \ / / ______________________/ /
* \ | / / ____________________________________/
* \ / / / /

INIT (1,1) <'SC/0001/ /R'>
(1,2) <'SC/0002/ /R'>
(1,3) <'SC/0007/ /O'>
(1,4) <'SC/0030/ /C'>
(1,5) <'SC/0028/ /C'>
(1,6) <'SC/0012/ /C'>
(1,7) <'SC/0003/ /R'>
(1,8) <'SC/0004/ /R'>
(1,9) <'SC/0029/ /C'>
(1,10)<'SC/0005/ /C'>
(1,11)<'SC/0006/ /C'>
(1,12)<'SC/0008/ /O'>

Application-Specific Key Templates

Application-specific key templates are defined in the CD--PFKM local data area and the CD--PFK
module. One sample key template is provided.

The default constant that identifies the current number of key templates is defined in CD--PFKM
as follows:

59Natural Construct Object Models

Using the Object-Browse Models



*
* * Default constants

1 CD--PFKD
2 MAX-MPA I 2 CONST<1> /* Max App model pfkeys

Application-specific key templates are defined in CD--PFKM as follows:

* *
* * Application Model Pfkey Id List
I 2 MPA-PFKEY-ID I 2 (1:MAX-MPA)

R 2 MPA-PFKEY-ID /* REDEF. BEGIN : MPA-PFKEY-ID
* * /* Application list

3 SAMPLE-MODEL I 2 /* Model pfKey Id 1

Note: The internal ID is derived from the occurrence of each key template within the MPA-
PFKEY-ID array.

Application-specific key templates (referenced in CD--PFKM) are defined in the CD--PFKmodule
as follows:

*
* Model key initial values Application

01 MODEL-APP
02 INITIAL-MODEL-VALUES (A40/1:MAX-MPA)

* source id/key id/ key name /
* / __/ /
* / / ______/
* / / /
* / / /

INIT (1) <'MA/0001/*9501.1'>
*

02 INITIAL-MODEL-PFKEY-VALUES (A15/1:MAX-MPA,1:12)
* Model\ source id/single key id/position override/status override
* \ / _________/ / /
* \ / / _______________________/ /
* \ / / / _____________________________________/
* \ / / / /

INIT (1,1) <'SA/0001/ /R'>
(1,2) <'SA/0002/ /R'>
(1,3) <'SC/0003/ /O'>
(1,4) <'SC/0004/ /R'>
(1,5) <'SC/0005/ /C'>
(1,6) <'SC/0007/ /O'>
(1,7) <'SC/0008/ /O'>
(1,8) <'SC/0009/ /O'>

To add an application-specific key template:

1 Increase the MAX-MPA default constant by one in the CD--PFKM local data area.

Natural Construct Object Models60

Using the Object-Browse Models



For example, change the MAX-MPA line in the following:

*
* * Default constants

1 CD--PFKD
2 MAX-MPA I 2 CONST<1> /* Max App model pfkeys

to:

2 MAX-MPA I 2 CONST<2> /* Max App model pfkeys

2 Add the internal key template name to the redefinition of the MPA-PFKEY-ID array in CD--
PFKM.

For example:

* *
* * Application Model Pfkey Id List
I 2 MPA-PFKEY-ID I 2 (1:MAX-MPA)

R 2 MPA-PFKEY-ID /* REDEF. BEGIN : MPA-PFKEY-ID
* * /* Application list

3 SAMPLE-MODEL I 2 /* Model pfkey Id 1
*
* add new model redefine
*

3 NEW-MODEL I 2 /* New Model pfkey Id 2

3 Edit the MPA-PFKEY-ID array to initialize the internal ID value.

For example:

11:59:15 ***** EDIT FIELD ***** 13-10-16
- Initial Values - Single Mode -

Local CD--PFKM Library CSTDEM
Command +

Index MPA-PFKEY-ID(I2/1:2)
---------------------- --------------------------------------------------
(1) 1
*
* add new model internal id
*
(2) 2

4 Stow CD--PFKM.

5 Define the attributes of the application-specific key template in the CD--PFK module (refer-
enced in CD--PFKM).

61Natural Construct Object Models

Using the Object-Browse Models



For example, add the INIT clause for the new occurrence of INIT-MODEL-VALUES:

*
* Model key initial values Application

01 MODEL-APP
02 INITIAL-MODEL-VALUES (A40/1:MAX-MPA)

* source id/key id/ key name /
* / __/ /
* / / ______/
* / / /
* / / /

INIT (1) <'MA/0001/*9501.1'>
*
* add new model attributes
*

INIT (2) <'MA/0002/*9502.1'>

6 Define the key template IDs in the CD--PFK module (referenced in CD--PFKM).

For example, add the INIT clause for the newoccurrence of INITIAL-MODEL-PFKEY-VALUES:

02 INITIAL-MODEL-PFKEY-VALUES (A15/1:MAX-MPA,1:12)
* Model\ source id/single key id/position override/status override
* \ / _________/ / /
* \ / / _______________________/ /
* \ / / / _____________________________________/
* \ / / / /

INIT (1,1) <'SA/0001/ /R'>
(1,2) <'SA/0002/ /R'>
(1,3) <'SC/0003/ /O'>
(1,4) <'SC/0004/ /R'>
(1,5) <'SC/0005/ /C'>
(1,6) <'SC/0007/ /O'>
(1,7) <'SC/0008/ /O'>
(1,8) <'SC/0009/ /O'>

*
* add new model group of single pfkey ids
*

(2,1) <'SC/0006/ /R'>
(2,2) <'SA/0001/ /C'>
(2,3) <'SC/0012/ /O'>
(2,4) <'SA/0002/ /R'>
(2,5) <'SC/0031/ /C'>

7 Stow CD--PFK.

Natural Construct Object Models62

Using the Object-Browse Models



Select PF-Keys and Key Templates

You can display helproutine windows listing valid IDs for the single PF-keys and key templates.
The CU-PSOBD helproutine (listing the single PF-key IDs) is invoked by the CU-PSH driver. The
CU-PMOBD helproutine (listing the key templates) is invoked by the CU-PMH driver. You can
also create your own helproutine drivers and pass a different set of parameters.

The helproutines are available by invoking online help for the single PF-keys or the key templates
in the PF-Key Parameters window. The following examples show the Select Key ID and the Select
Template windows:

CU-PSOBD Natural Construct
Dec 19 Select Key ID 1 of 1

Key ID Key Name Position Description
-------- ------------ ------------ --------------------------------

_ SC0001 help PF1 Display available help
_ SC0002 retrn PF2 Return to previous screen
_ SC0003 bkwrd PF7 Scroll backward
_ SC0004 frwrd PF8 Scroll forward
_ SC0005 left PF10 Scroll left
_ SC0006 right PF11 Scroll right
_ SC0007 quit PF3 Terminate the application
_ SC0008 main PF12 Return to main menu
_ SC0009 flip PF5 Toggle between action and pfkeys
_ SC0010 place PF6 Position to place
_ SC0011 hcopy PF9 Hardcopy records
_ SC0012 exprt PF6 Export records
Key ID ..... ______
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12

help retrn quit bkwrd frwrd main

CU-PMOBD Natural Construct
Dec 19 Select Template 1 of 1

Template Description
-------- --------------------------------

_ MC0001 Object browse dialog template
_ MA0001 User model template

End of Data

Template ... ______
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7

help retrn quit bkw

63Natural Construct Object Models

Using the Object-Browse Models



All PF-keys are defined and controlled by the CD--PFKmodule. To access the PF-keys, themodule
supports six different methods and two APIs (Application Programming Interfaces): CDSPPFK
and CDAPPFK. You can also add your own APIs and methods to the CD--PFK module.

CD--PFKModule

The CD--PFK module controls the PF-keys. The PF-keys and the methods that access the PF-keys
are defined in this module. CD--PFK accepts the following parameters:

DescriptionData Area

Parameter data area (PDA) containing the following fields:CD1VPFKA

■ API-NAME (A8)
■ INPUTS (A1/1:V)
■ INPUT-OUTPUTS (A1/1:V)
■ OUTPUTS (A1/1:V)

The value specified in the API-NAME field determines how the INPUTS, INPUT-OUTPUTS,
and OUTPUTS fields are redefined internally. For more information, refer to CD--PFK.

External PDA containing standard parameters for exchanging message information.CDPDA-M

PF-Key Methods

PF-key methods are defined in the CD--PFKM local data area. For example:

* *
* * Defined methods for CD--PFK
I 2 METHODS A 2 (1:MAX-PM)
R 2 METHODS /* REDEF. BEGIN : METHODS

3 SINGLE-PFKEY A 2
3 MODEL-PFKEYS A 2
3 ALL-SINGLE-PFKEYS A 2
3 ALL-MODEL-PFKEYS A 2
3 ALL-PFKEYS A 2
3 MODEL-PFKEY-DETAIL A 2

The supported PF-key methods are:

DescriptionMethod

Retrieves attributes for the specified single PF-key ID. For an example of using
this method, refer to the CUBDMAB module.

SINGLE-PFKEY

Retrieves attributes for the specified key template (group of single PF-key IDs
and their attributes). For an example of using thismethod, refer to theCUBDMAB
module.

MODEL-PFKEYS

Retrieves all single PF-key IDs. For an example of using this method, refer to
the CU-PSOBS module.

ALL-SINGLE-PFKEYS

Natural Construct Object Models64

Using the Object-Browse Models



DescriptionMethod

Retrieves all key templates. For an example of using this method, refer to the
CU-PMOBS module.

ALL-MODEL-PFKEYS

Retrieves all single PF-key IDs and key templates.ALL-PFKEYS

Retrieves the attributes for the specified key template, but not the attributes for
the group of single PF-keys. For an example of using this method, refer to the
CUBDMAB module.

MODEL-PFKEY-DETAIL

PF-Key APIs

The following PF-key API (Application Programming Interface) modules interface with the CD--
PFK module:

■ CDSPPFK

The CDSPPFK API module passes one occurrence of a PF-key ID and its attributes to the CD--
PFK module. CDSPPFK accepts the following parameters:
■ CDSPPFKA

Parameter data area (PDA) containing the following fields:

Redefined AsField

INPUTS (A1/9) ■ METHOD (A2)
■ VERSION (N1)
■ SOURCE-ID (A2)
■ PFKEY-ID (N4)

INPUT-OUTPUTS (A1/113) ■ PFKEY-POSITION (A4)
■ PFKEY-POSITION-VARIABLE
(A32)

■ PFKEY-NAME-VARIABLE (A32)
■ PFKEY-NAME (A12)
■ PFKEY-NAME-LONG (A32)
■ PFKEY-STATUS (A1)

OUTPUTS (A1/68) ■ METHOD-LIBRARY (A8)
■ METHOD-DESCRIPTION (A60)

■ CDPDA-M

External PDA containing standard parameters for exchanging message information.

Note: For an example of using this API, refer to the CUBDMAB module.

65Natural Construct Object Models

Using the Object-Browse Models



■ CDAPPFK

The CDAPPFK API module passes 12 occurrences of PF-key IDs and their attributes to the CD-
-PFK module. CDAPPFK accepts the following parameters:
■ CDAPPFKA

Parameter data area (PDA) containing the following fields:

Redefined AsField

INPUTS (A1/15) ■ METHOD (A2)
■ VERSION (N1)
■ START-SOURCE-ID (A2)
■ START-PFKEY-ID (N4)
■ MAX-PFKEY-REQUESTED (N4)
■ RESTRICT-SOURCE-ID (A2)

INPUT-OUTPUTS (A1/1428) ■ PFKEY-ARRAY (1:12)

Redefined as:
■ PFKEY-IDENTIFIER (A6)

Redefined as:
■ PFKEY-SOURCE-ID (A2)
■ PFKEY-PFKEY-ID (N4)

■ PFKEY-POSITION (A4)
■ PFKEY-POSITION-VARIABLE
(A32)

■ PFKEY-NAME-VARIABLE (A32)
■ PFKEY-NAME (A12)
■ PFKEY-NAME-LONG (A32)
■ PFKEY-STATUS (A1)

OUTPUTS (A1/72) ■ METHOD-LIBRARY (A8)
■ METHOD-DESCRIPTION (A60)
■ MAX-PFKEY-RETURNED (N4)

■ CDPDA-M

External PDA containing standard parameters for exchanging message information.

Note: For an example of using this API, refer to the CUBDMAB module.

Natural Construct Object Models66

Using the Object-Browse Models



Define Actions

You can specify which Natural variable names are used in the generated code, the valid action
codes, and whether international support is available for displaying the action text. You can also
use a pre-defined set of actions (called an action template), which you can select from a list of ex-
isting action templates or create on your own.

To access actions for your applications, Natural Construct provides two APIs (Application Pro-
gramming Interfaces) and six methods in the CD--ACT module. Within this module, you can:

■ Create new methods and APIs to access actions
■ Define single actions and their attributes
■ Define sets of actions and their attributes (action templates)

Any model can use the CD--ACT module during the modify and generation phases.

To define actions, press PF6 (actns) on the Additional Parameters panel for the Object-Browse-
Dialog model. The Action Parameters window is displayed, from which you can select an action
template or single actions for your dialog. Formore information, seeDefine or Customize Standard
Actions.

Define Single Actions

Single actions execute specific functions at runtime. They are divided into two types andmaintained
on separate lists: actions used by the Natural Construct models (identified by an SC prefix) and
application-specific actions that you create (identified by an SA prefix). You can use any single
action with any model.

The attributes for a single action are:

DescriptionAttribute

Type of action and whether the action is defined by Natural Construct or
by the user. Valid single source IDs are defined in the CD--ACTM local data
area. They are:

SOURCE-ID

■ SC (Single Construct)
■ SA (Single Application)

Internal identifier for a single action. Valid single action IDs are defined in
the CD--ACTM local data area.

ACTION-ID

Natural variable containing the name displayed for a single action at runtime
(for example, #ADD-NAME for the Add action).

ACTION-NAME-VARIABLE

Text or SYSERR reference used to identify a valid code for a single action.
The specified code is used for action validation.

ACTION-CODE

67Natural Construct Object Models

Using the Object-Browse Models



DescriptionAttribute

Text or SYSERR reference used to identify a single action. The value in this
field is assigned to ACTION-NAME-VARIABLE in the generated code.

Note: If you use SYSERR references, text is retrieved from the CSTACT
library in SYSERR.

ACTION-NAME

Note: Thegenerated contents ofACTION-NAMEdependon the international
parameters defined for themodel. You can generate text in a specific language
or generate SYSERR references. By default, English text is generated.

Text or SYSERR reference used as a long description of a single action.ACTION-NAME-LONG

Status code for a single action. This code determines if a single action may
be overridden by the user. Valid status codes are:

ACTION-STATUS

■ C (Conditional; action is reserved by the model and is conditional on the
selection of options)

■ O (Optional; action can be overridden by the user)
■ R (Required; action is required by the model)

Note: The values specified in these fields are used for defaulting purposes. In most cases,
these values can be overridden by the user.

Natural Construct Single Actions

Natural Construct single actions are defined in the CD--ACTM local data area and CD--ACT
module. There are 12 Natural Construct single actions provided.

The default constant that identifies the current number of actions is defined in CD--ACTM as fol-
lows:

*
* * Default constants

1 CD--ACTD
2 MAX-SAC I 2 CONST<12> /* Max CST single act.

Natural Construct single action IDs are defined in CD--ACTM as follows:

Natural Construct Object Models68

Using the Object-Browse Models



* *
* * Construct Single Action Id List

I 2 SAC-ACTION-ID I 2 (1:MAX-SAC)
R 2 SAC-ACTION-ID /* REDEF. BEGIN : SAC-ACTION-ID
* * /* Construct list

3 ADD-ACTION I 2 /* Action Id 1
3 BROWSE-ACTION I 2 /* Action Id 2
3 CLEAR-ACTION I 2 /* Action Id 3
3 COPY-ACTION I 2 /* Action Id 4
3 DETAIL-ACTION I 2 /* Action Id 5
3 DISPLAY-ACTION I 2 /* Action Id 6
3 MODIFY-ACTION I 2 /* Action Id 7
3 NEXT-ACTION I 2 /* Action Id 8
3 PURGE-ACTION I 2 /* Action Id 9
3 RECALL-ACTION I 2 /* Action Id 10
3 REPLACE-ACTION I 2 /* Action Id 11
3 SELECT-ACTION I 2 /* Action Id 12

Note: The internal ID is derived from the occurrence of each actionwithin the SAC-ACTION-
ID array.

Natural Construct single action IDs (referenced in CD--ACTM) are defined in the CD--ACT
module as follows:

*
* Single key initial values Construct

01 SINGLE-CST
02 INITIAL-VALUES (A95/1:MAX-SAC)

* action name variable/action code/action name/act. name long/status
* / ____/ / / /
* / / ________/ / /
* / / / _______________/ /
* / / / / ____________________/
* / / / / /

INIT (1)<'#ADD/*8001.1/*8001.2/*8001.3/O'>
(2)<'#BROWSE/*8002.1/*8002.2/*8002.3/O'>
(3)<'#CLEAR/*8003.1/*8003.2/*8003.3/O'>
(4)<'#COPY/*8004.1/*8004.2/*8004.3/O'>
(5)<'#DETAIL/*8005.1/*8005.2/*8005.3/O'>
(6)<'#DISPLAY/*8006.1/*8006.2/*8006.3/O'>
(7)<'#MODIFY/*8007.1/*8007.2/*8007.3/O'>
(8)<'#NEXT/*8008.1/*8008.2/*8008.3/O'>
(9)<'#PURGE/*8009.1/*8009.2/*8009.3/O'>
(10)<'#RECALL/*8010.1/*8010.2/*8010.3/O'>
(11)<'#REPLACE/*8011.1/*8011.2/*8011.3/O'>
(12)<'#SELECT/*8012.1/*8012.2/*8012.3/O'>

Notes:

69Natural Construct Object Models

Using the Object-Browse Models



1. SYSERR references are defined in the CSTACT library in SYSERR; this library is reserved for
action attribute definitions.

2. All models using this functionality generate the action attributes inline. To reflect changes to
the action definitions, you must regenerate the module.

Application-Specific Single Actions

Application-specific single actions are defined in the CD--ACTM local data area and the CD--ACT
module. There are two sample single actions provided. You can expand this list as required.

The default constant that identifies the current number of single actions is defined in CD--ACTM
as follows:

*
* * Default constants

1 CD--ACTD
2 MAX-SAA I 2 CONST<2> /* Max App single act.

Application-specific single actions are defined in CD--ACTM as follows:

* *
* * Application Single Action Id
I 2 SAA-ACTION-ID I 2 (1:MAX-SAA)

R 2 SAA-ACTION-ID /* REDEF. BEGIN : SAA-ACTION-ID
* * /* Application list

3 SAMPLE-ACTION1 I 2 /* Action Id 1
3 SAMPLE-ACTION2 I 2 /* Action Id 2

Note: The internal ID is derived from the occurrence of each actionwithin the SAA-ACTION-
ID array.

Application-specific single actions (referenced in CD--ACTM) are defined in the CD--ACTmodule
as follows:

*
* Single action initial values Application

01 SINGLE-APP
02 INITIAL-VALUES (A90/1:MAX-SAA)

* action name variable/action code/action name/act. name long/status
* / ____/ / / /
* / / ________/ / /
* / / / _______________/ /
* / / / / ____________________/
* / / / / /

INIT (1)<'#GET/*9001.1/*9001.2/*9001.3/O'>
(2)<'#SKIP/*9002.1/*9002.2/*9002.3/O'>

Natural Construct Object Models70

Using the Object-Browse Models



Note: SYSERR references are defined in the CSTACT library in SYSERR; this library is re-
served for action attribute definitions. User-defined SYSERR references start at 9000. For
more information, see the online help.

To add an application-specific single action:

1 Increase the MAX-SAA default constant by one in the CD--ACTM local data area.

For example, change the MAX-SAA line in the following:

*
* * Default constants

1 CD-ACTD
2 MAX-SAA I 2 CONST<2> /* Max App single act.

to:

 2 MAX-SAA                          I    2 CONST<3> /* Max App single act. ↩

2 Add the internal action name to the redefinition of the SAA-ACTION-ID array inCD--ACTM.

For example:

* *
  * * Application Single Action Id
I   2 SAA-ACTION-ID                    I    2 (1:MAX-SAA)
  R 2 SAA-ACTION-ID                           /* REDEF. BEGIN : SAA-ACTION-ID
  * *                                         /* Application list
    3 SAMPLE-ACTION1                   I    2 /* Action Id 1
    3 SAMPLE-ACTION2                   I    2 /* Action Id 2
*
* add new single ACTION redefine
*
    3 NEW-ACTION                       I    2 /* Action Id 3 ↩

3 Edit the SAA-ACTION-ID array to initialize the internal ID value.

For example:

71Natural Construct Object Models

Using the Object-Browse Models



11:59:15 ***** EDIT FIELD ***** 13-10-16
- Initial Values - Single Mode -

Local CD-ACTM Library CSTDEM
Command +

Index SAA-ACTION -ID(I2/1:3)
---------------------- --------------------------------------------------
(1) 1
(2) 2
*
* add new single action internal ID
*
(3) 3

4 Stow CD-ACTM.

5 Define the attributes of the application-specific single action IDs in the CD--ACT module
(referenced in CD--ACTM).

For example, add the INIT clause for the new occurrence of INIT-VALUES:

* Single action initial values Application
01 SINGLE-APP

02 INITIAL-VALUES (A90/1:MAX-SAA)
* action name variable/action code/action name/act. name long/status
* / ____/ / / /
* / / ________/ / /
* / / / _______________/ /
* / / / / ____________________/
* / / / / /

INIT (1)<'#GET/*9001.1/*9001.2/*9001.3/O'>
(2)<'#SKIP/*9002.1/*9002.2/*9002.3/O'>

*
* add new single action attributes
*

(3)<’#NEW-ACTION/*9003.1/*9003.2/*9003.3/O’>

Note: You can use either SYSERR references or text for the NAME and NAME-LONG
values. User-defined SYSERR references start at 9000. For more information, see the
online help.

6 Stow CD--ACT.

Natural Construct Object Models72

Using the Object-Browse Models



Define Action Templates

An action template is a group of single actions relevant to a givenmodel. If amodel supports action
parameters, the logical grouping (template) can be displayed to the user as default values. The
user can then customize the template as desired.

Action templates are divided into two types and maintained on separate lists: action templates
used by theNatural Constructmodels (identified by anMCprefix) and application-specific action
templates that you create (identified by anMAprefix). All single actions are available for all action
templates.

The attributes of an action template are:

DescriptionAttribute

Type of action template and whether the template is defined by Natural
Construct or user-defined. Valid source IDs are defined in the CD--ACTM
local data area. They are:

SOURCE-ID

■ MC (Model Construct)
■ MA (Model Application)

Internal identifier for an action template. Valid action templates are defined
in the CD--ACTM local data area.

ACTION-ID

Text or SYSERR reference used as a long description of the action template.

Note: If you use SYSERR references, the text is retrieved from the CSTACT
library in SYSERR.

NAME

Action template containing a group of single action definitions.

Note: The maximum number of actions assigned to one action template
is 12.

MODEL-ACTION-VALUES

Source IDs for single actions in the action template.SOURCE-ID

Internal identifiers for single actions in the action template.ACTION-ID

Override statuses for single actions in the action template. If you do not
specify an override status, the status value for the single action is assigned
to this field.

ACTION-STATUS-OVERRIDE

Note: The values in these fields are used for defaulting purposes. In most cases, you can
override these attributes.

Natural Construct Action Templates
Natural Construct action templates are defined in the CD--ACTM local data area and the CD-
-ACT module. There is one Natural Construct action template provided.

The default constant that identifies the current number of action templates is defined in CD--
ACTM as follows:

73Natural Construct Object Models

Using the Object-Browse Models



*
* * Default constants

1 CD--ACTD
2 MAX-MAC I 2 CONST<1> /* Max CST model act.

Natural Construct action templates are defined in CD-ACTM as follows:

* *
* * Construct action template Id List
I 2 MAC-ACTION-ID I 2 (1:MAX-MAC)

R 2 MAC-ACTION-ID /* REDEF. BEGIN : MAC-ACTION-ID
* * /* Construct list

3 OBJECT-BROWSE-DIALOG I 2 /* action template Id 1

Note: The internal ID is derived from the occurrence of each action within the MAC-
ACTION-ID array.

Natural Construct action templates (referenced in CD--ACTM) are defined in the CD--ACT
module as follows:

*
* action template initial values Construct

01 MODEL-CST
02 INITIAL-MODEL-VALUES (A40/1:MAX-MAC)

* model source ID/action template ID/model name/
* / ___________/ /
* / / _______________/
* / / /
* / / /

INIT (1) <'MC/0001/*8501.1'>
*
*

02 INITIAL-MODEL-ACTION-VALUES (A10/1:MAX-MAC,1:24)
* Model\ source ID/action ID/status override
* \ / _____/ /
* \ / / ___________________/
* \ / / /

INIT (1,1) <'SC/0001/ '>
(1,2) <'SC/0005/ '>
(1,3) <'SC/0006/ '>
(1,4) <'SC/0007/ '>
(1,5) <'SC/0009/ '>
(1,6) <'SC/0012/ '>

Application-Specific Action Templates
Application-specific action templates are defined in the CD--ACTM local data area and the
CD--ACT module. There is one sample action template provided.

The default constant that identifies the current number of action templates is defined in CD--
ACTM as follows:

Natural Construct Object Models74

Using the Object-Browse Models



*
* * Default constants

1 CD-ACTD
2 MAX-MAA I 2 CONST<1> /* Max App model act.

Application-specific action templates are defined in CD-ACTM as follows:

* *
* * Application action template Id List
I 2 MAA-ACTION-ID I 2 (1:MAX-MAA)

R 2 MAA-ACTION-ID /* REDEF. BEGIN : MAA-ACTION-ID
* * /* Application list

3 SAMPLE-MODEL I 2 /* action template Id 1

Note: The internal ID is derived from the occurrence of each action within the MAA-
ACTION-ID array.

Application-specific action templates (referenced in CD--ACTM) are defined in the CD--ACT
module as follows:

*
* action template initial values Application

01 MODEL-APP
02 INITIAL-MODEL-VALUES (A40/1:MAX-MAA)

* source ID/action ID/ model name /
* / _____/ /
* / / ___________/
* / / /
* / / /

INIT (1) <'MA/0001/*9501.1'>
*
*

02 INITIAL-MODEL-ACTION-VALUES (A15/1:MAX-MAA,1:24)
* Model\ source ID/action ID/status override/
* \ / _____/ /
* \ / / ___________________/
* \ / / /

INIT (1,1) <'SC/0012/C'>
(1,2) <'SC/0010/ '>
(1,3) <'SC/0008/ '>
(1,4) <'SC/0006/ '>
(1,5) <'SC/0004/ '>
(1,6) <'SC/0002/ '>
(1,7) <'SA/0001/ '>
(1,8) <'SC/0003/ '>
(1,9) <'SA/0002/ '>
(1,10)<'SC/0009/ '>
(1,11)<'SC/0008/ '>
(1,12)<'SC/0011/ '>

75Natural Construct Object Models

Using the Object-Browse Models



To add an application-specific action template:

1 Increase the MAX-MAA default constant by one in the CD--ACTM local data area.

For example, change the MAX-MAA line in the following:

*
* * Default constants

1 CD--ACTD
2 MAX-MAA I 2 CONST<1> /* Max App model act.

to:

2 MAX-MAA I 2 CONST<2> /* Max App model act.

2 Add the internal action template name to the redefinition of the MAA-ACTION-ID array in
CD--ACTM.

For example:

* *
* * Application action template Id List
I 2 MAA-ACTION-ID I 2 (1:MAX-MAA)

R 2 MAA-ACTION-ID /* REDEF. BEGIN : MAA-ACTION-ID
* * /* Application list

3 SAMPLE-MODEL I 2 /* action template Id 1
*
* add new model redefine
*

3 NEW-MODEL I 2 /* New action template Id 2

3 Edit the MAA-ACTION-ID array to initialize the internal ID value.

For example:

11:59:15 ***** EDIT FIELD ***** 13-10-16
- Initial Values - Single Mode -

Local CD-ACTM Library CSTDEM
Command +

Index MAA-ACTION -ID(I2/1:2)
---------------------- --------------------------------------------------
(1) 1
*
* add new model internal ID
*
(2) 2

Natural Construct Object Models76

Using the Object-Browse Models



4 Stow CD--ACTM.

5 Define the attributes of the application-specific action template in the CD--PFK module (ref-
erenced in CD--ACTM).

For example, add the INIT clause for the new occurrence of INIT-MODEL-VALUES:

*
* action template initial values Application

01 MODEL-APP
02 INITIAL-MODEL-VALUES (A40/1:MAX-MAA)

* source ID/action ID/ model name /
* / _____/ /
* / / ___________/
* / / /
* / / /

INIT (1) <'MA/0001/*9501.1'>
*
* add new model attributes
*

INIT (2) <'MA/0002/*9502.1'>

6 Define the action template IDs in the CD--ACT module (referenced in CD--ACTM).

For example, add the INIT clause for the new occurrence of INITIAL-MODEL-ACTION-
VALUES:

77Natural Construct Object Models

Using the Object-Browse Models



02 INITIAL-MODEL-ACTION-VALUES (A15/1:MAX-MAA,1:24)
* Model\ source ID/action ID/status override/
* \ / _____/ /
* \ / / ___________________/
* \ / / /

INIT (1,1) <'SC/0012/C'>
(1,2) <'SC/0010/ '>
(1,3) <'SC/0008/ '>
(1,4) <'SC/0006/ '>
(1,5) <'SC/0004/ '>
(1,6) <'SC/0002/ '>
(1,7) <'SA/0001/ '>
(1,8) <'SC/0003/ '>
(1,9) <'SA/0002/ '>
(1,10)<'SC/0009/ '>
(1,11)<'SC/0008/ '>
(1,12)<'SC/0011/ '>

*
* add new action template of single action IDs
*

(2,1) <'SC/0009/R'>
(2,2) <'SA/0002/ '>
(2,3) <'SC/0011/O'>
(2,4) <'SA/0001/ '>
(2,5) <'SC/0010/C'>

7 Stow CD-ACT.

Select Actions and Action Templates

You can display helproutine windows listing valid IDs for single actions and action templates.
The CU-ASOBDhelproutine (listing the single actions) is invoked by the CU-ASHdriver. The CU-
AMOBD helproutine (listing the action templates) is invoked by the CU-AMH driver. You can
also create your own helproutine drivers and pass a different set of parameters.

The helproutines are available by invoking online help for the single actions or the action templates
in the Action Parameters window. The following examples show the Select Action ID and Select
Template windows:

Natural Construct Object Models78

Using the Object-Browse Models



CU-ASOBD Natural Construct
Dec 29 Select Action ID 1 of 1

Action ID Action name Action code Description
---------- ------------ ------------ --------------------------------

_ SC0001 add ADD Add a record
_ SC0002 browse BROWSE Browse a list of records
_ SC0003 clear CLEAR Clear contents from screen
_ SC0004 copy COPY Copy existing record
_ SC0005 detail DETAIL Show record details
_ SC0006 display DISPLAY Display a record
_ SC0007 modify MODIFY Modify an existing record
_ SC0008 next NEXT Display next record
_ SC0009 purge PURGE Purge a record
_ SC0010 recall RECALL Recall the purged record
_ SC0011 replace REPLACE Replace the record
_ SC0012 select SELECT Select a record
Action ID .. ______
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12

help retrn quit bkwrd frwrd main

CU-AMOBD Natural Construct
Dec 29 Select Template 1 of 1

Template Description
---------- --------------------------------

_ MC0001 Object browse dialog template
_ MA0001 User model template

End of Data

Template ... ______
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7

help retrn quit bkw

Access Actions and Methods

All actions are defined and controlled by the CD--ACTmodule. To access the actions, the module
supports six different methods and two APIs (Application Programming Interfaces): CDSAACT
and CDAAACT. You can also add your own APIs and methods to the CD--ACT module.

The CD--ACT module controls the actions. The actions and the methods that access the actions
are defined in this module. CD--ACT accepts the following parameters:

79Natural Construct Object Models

Using the Object-Browse Models



DescriptionData Area

Parameter data area (PDA) containing the following fields:CD1VACTA

■ API-NAME (A8)
■ INPUTS (A1/1:V)
■ INPUT-OUTPUTS (A1/1:V)
■ OUTPUTS (A1/1:V)

The value specified in the API-NAMEfield determines how the INPUTS, INPUT-OUTPUTS,
andOUTPUTSfields are redefined internally. Formore information, see theCD--ACTmodule.

External PDA containing standard parameters for exchanging message information.CDPDA-M

Action Methods
Action methods are defined in the CD--ACTM local data area. For example:

* *
* * Defined methods for CD--ACT
I 2 METHODS A 2 (1:MAX-AM)

R 2 METHODS /* REDEF. BEGIN : METHODS
3 SINGLE-ACTION A 2
3 MODEL-ACTIONS A 2
3 ALL-SINGLE-ACTIONS A 2
3 ALL-MODEL-ACTIONS A 2
3 ALL-ACTIONS A 2
3 MODEL-ACTION-DETAIL A 2

The supported action methods are:

DescriptionMethod

Retrieves attributes for the specified single action. For an example of using
this method, refer to the CUBDMBAmodule.

SINGLE-ACTION

Retrieves attributes for the specified action template (group of single action
IDs and their attributes). For an example of using this method, refer to the
CUBDMBAmodule.

MODEL-ACTIONS

Retrieves all single action IDs. For an example of using this method, refer
to the CU-ASOBS module.

ALL-SINGLE-ACTIONS

Retrieves all action templates. For an example of using this method, refer
to the CU-AMOBS module.

ALL-MODEL-ACTION

Retrieves all single actions and action templates.ALL-ACTIONS

Retrieves the attributes for the specified action template, but not the
attributes for the group of single actions. For an example of using this
method, refer to the CUBDMBAmodule.

MODEL-ACTION-DETAIL

Natural Construct Object Models80

Using the Object-Browse Models



Action APIs
Two action API (Application Programming Interface) modules interface with the CD--ACT
module:
■ CDSAACT

The CDSAACT API module passes one occurrence of an action ID and its attributes to the
CD--ACT module. CDSAACT accepts the following parameters:
■ CDSAACTA

Parameter data area (PDA) containing the following fields:

Redefined AsField

INPUTS (A1/9) ■ METHOD (A2)
■ VERSION (N1)
■ SOURCE-ID (A2)
■ ACTION-ID (N4)

INPUT-OUTPUTS (A1/89) ■ ACTION-NAME-VARIABLE
(A32)

■ ACTION-CODE(A12)
■ ACTION-NAME (A12)
■ ACTION-NAME-LONG (A32)
■ ACTION-STATUS (A1)

OUTPUTS (A1/68) ■ METHOD-LIBRARY (A8)
■ METHOD-DESCRIPTION (A60)

■ CDPDA-M

External PDA containing standard parameters for exchanging message information.

Note: For an example of using this API, refer to the CUBDMBAmodule.

■ CDAAACT

The CDAAACT API module passes 12 occurrences of action IDs and their attributes to the
CD--ACT module. CDAAACT accepts the following parameters:

Parameter data area (PDA) containing the following fields:
■ CDAAACTA

81Natural Construct Object Models

Using the Object-Browse Models



Redefined AsField

INPUTS (A1/15) ■ METHOD (A2)
■ VERSION (N1)
■ START-SOURCE-ID (A2)
■ START-ACTION-ID (N4)
■ MAX-ACTION-REQUESTED(N4)
■ RESTRICT-SOURCE-ID (A2)

INPUT-OUTPUTS (A1/1140) ■ ACTION-ARRAY (1:12)

Redefined as:
■ ACTION-IDENTIFIER (A6)

Redefined as:
■ ACTION-SOURCE-ID (A2)
■ ACTION-ACTION-ID (N4)

■ ACTION-NAME-VARIABLE
(A32)

■ ACTION-CODE (A12)
■ ACTION-NAME (A12)
■ ACTION-NAME-LONG (A32)
■ ACTION-STATUS (A1)

OUTPUTS (A1/72) ■ METHOD-LIBRARY (A8)
■ METHOD-DESCRIPTION (A60)
■ MAX-ACTION-RETURNED (N4)

■ CDPDA-M

External PDA containing standard parameters for exchanging message information.

Note: For an example of using this API, refer to the CUBDMBAmodule.

Natural Construct Object Models82

Using the Object-Browse Models



User Exits for the Object-Browse-Dialog Model

The following examples show the User Exits panels for the Object-Browse-Dialog model:

 CSGSAMPL                      Natural Construct                         CSGSM0 
 Nov 21                            User Exits                            1 of 1 
                                                                                
                User Exit              Exists    Sample   Required Conditional  
     -------------------------------- -------- ---------- -------- ------------ 
  _  NAT-DOCS                                                           X
  _  CHANGE-HISTORY                            Subprogram                       
  _  PARAMETER-DATA                             Example                         
  _  LOCAL-DATA                                Subprogram                       
  _  DEFINE-REPORT-PRINTER                                              X       
  _  START-OF-PROGRAM                                                           
  _  WRITE-COLUMN-HEADERS                       Example                         
  _  REPORT-HEADERS                                                     X       
  _  REPORT-COLUMN-HEADERS                                              X       
  _  USER-DEFINED-METHODS                       Example                         
  _  BEFORE-CHECK-PFKEYS                                                        
  _  BEFORE-CALLNAT-SUBPROGRAMS                                                 
  _  AFTER-CALLNAT-SUBPROGRAMS                                                  
  _  WRITE-DATA-FIELDS                         Subprogram                       
  _  EXPORT-COLUMN-HEADERS                                                      
  _  EXPORT-DATA-FIELDS                        Subprogram                       
  _  BEFORE-CHECK-ERROR                         Example  
  _  ADDITIONAL-TRANSLATIONS                                                    
  _  BEFORE-OBJECT-CALL                                                         
  _  AFTER-OBJECT-CALL                                                          
  _  REPORT-DATA-FIELDS                        Subprogram                       
  _  ADDITIONAL-INITIALIZATIONS                 Example                         
  _  BEFORE-INPUT                                                               
  _  SCREEN-HEADERS                             Example                 X       
  _  INPUT-KEY                                 Subprogram               X       
  _  AFTER-INPUT                                                                
  _  BEFORE-PROCESS-ACTIONS                                                     
  _  AFTER-PROCESS-ACTIONS                                                      
  _  PROCESS-SELECTED-RECORD                    Example                 X       
  _  DEFINE-TRANSLATION-HEADERS                                         X       
  _  TRANSLATE-SCREEN-HEADERS                   Example                 X       
  _  TRANSLATE-INPUT-KEY                                                X       
  _  ADDITIONAL-TRANSLATE-MAP                                 
  _  TRANSLATE-COLUMN-HEADERS                                                   
  _  ADDITIONAL-TRANSLATE-TEXT                                                  
  _  MISCELLANEOUS-SUBROUTINES                                                  
  _  END-OF-PROGRAM  
                                                                                  ↩
                  
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 frwrd help  retrn quit                    bkwrd frwrd ↩

83Natural Construct Object Models

Using the Object-Browse Models



Using the user exit models, you can create regeneratable Export-Data-Fields, Input-Key, Report-
Data-Fields, and Write-Data-Fields user exits.

Notes:

1. For information about the user exit models, see the following section.

2. For information about these user exits, seeUser Exits for the GenerationModels,Natural Construct
Generation.

3. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

User Exit Models

This section describes the user exit models supplied for usewith theObject-Browse-Dialogmodel.
User exit models generate (and regenerate) textmembermodules that contain field layout specific-
ations for object-browse dialogs. To define user exits for your object-browse dialogs, use the User-
Exit statement model to invoke the text members from the User Exit editor. For more information,
see User-Exit Statement Model.

The user exitmodels support international applications; thesemodels generate text in any language
forwhich translations are availablewithin SYSERR.All SYSERR references are dynamically replaced
by text at runtime. For more information, see Define International Parameters. The user exit
models also support cursor-sensitive translation, which allows users to change or translate panel
headings and prompts while running the generated application. For more information, see Use
SYSERR References for Headings and Prompts.

Note: The user exit models share the same parameter data area. After modifying the spe-
cifications for a user exit model, clear the edit buffer before reading the specifications for
another user exit model.

The following table lists the user exit models and describes when to use each:

Use To:Model Name

Generate the layout of fields and column headers to be exported to an ASCII file on a
PC.

Export-Data-Fields

Generate the input fields and prompts for inputting data.Input-Key

Generate the layout of fields and column headers to be routed to a printer.Report-Data-Fields

Generate the layout of fields and column headers to be displayed on a terminal screen.Write-Data-Fields

This section covers the following topics:

■ Export-Data-Fields Model
■ Input-Key Model
■ Report-Data-Fields Model

Natural Construct Object Models84

Using the Object-Browse Models



■ Write-Data-Fields Model

Export-Data-Fields Model

The following example shows a text member generated using the Export-Data-Fields model:

  Product ; Description ; Unit cost ; Street; City ; Province ; Postal code;
  111111 ; DOG FOOD ; 5000 ; 110 ; 21 JUMP STREET ; VICTORIA ; British Columbia; ↩
X1E1X1 ;
  111116 ; CHEESE DOODLE ; 70 ; 0 ; 2020 UNIVERSITY ; MONTREAL ; Quebec ; H3A2A5 ;
  145688 ; HOT CHOCOLATE ; 300 ; 10 ; 5523 ROGERS ROAD ; TORONTO ; Ontario ; M4U1V1 ; 
  187361 ; CAT NUGGETS ; 70 ; 150 ; 13 SAUTE STREET ; SARNIA ; Ontario ; H1Q1X1 ;

Notes:

1. To view the specifications for this example, refer to the NCPRDEX text member in the Natural
Construct demo system.

2. To view the generated code for this example, refer to NCPRDOBD in the demo system and scan
for "NCPRDEX".

Input-Key Model

The following example shows a text member generated using the Input-Key model:

   NCPRDOBD                    Table Subsystem                               
   Oct 14                        Select Product                        1 of 2
                                                                             
       Product            Description            Reorder point    Unit cost  
      ---------- ------------------------------ ---------------- ------------
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
  Product .... ______                                                        
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF 
        help  retrn quit  trans       exprt bkwrd frwrd reprt left  right ma ↩

Notes:

85Natural Construct Object Models

Using the Object-Browse Models



1. To view the specifications for this example, refer to the NCPRDIN text member in the Natural
Construct demo system.

2. To view the generated code for this example, refer to NCPRDOBD in the demo system and scan
for "NCPRDIN".

Report-Data-Fields Model

The following example shows a text member generated using the Report-Data-Fields model:

  NCPRDOBD                     Table Subsystem                       Page 1
  Oct 14                       Select Product                              
                                                                           
  Product      Unit cost    Reorder point   Description                    
  ------------ ------------ --------------- ------------------------------ 
  111111            110.00         5000     DOG FOOD                       
  111116              0.15           70     CHEESE DOODLE                  
  145688             10.00          300     HOT CHOCOLATE DRINK            
  187361            150.00           70     CAT NUGGETS                    
  199210            100.00           50     COOPER GLOVES                  
  222222             50.00           88     BIRD SEED                      
  256733             20.00           22     OATS AND BARLEY CEREAL         
  324597            100.00          100     COOPER GLOVES                  
  333333             50.00           22     DOG BONES                      
  335977              7.00           40     DOMESTIC KITTY LITTER          
  342723             15.00         4000     ORANGE DRINK CRYSTALS          
  444444              1.22         1000     CORN FLAKES                    ↩

Note: To view the specifications for this example, refer to the NCPRDRP text member in
the Natural Construct demo system.

Write-Data-Fields Model

The following examples show text members generated using the Write-Data-Fields model:

Natural Construct Object Models86

Using the Object-Browse Models



NCPRDOBD Table Subsystem
Oct 14 Select Product 1 of 2

Product Description Reorder point Unit cost
---------- ------------------------------ ---------------- ------------
111111 DOG FOOD 5000 110.00
111116 CHEESE DOODLE 70 0.15
145688 HOT CHOCOLATE DRINK 300 10.00
187361 CAT NUGGETS 70 150.00
199210 COOPER GLOVES 50 100.00
222222 BIRD SEED 88 50.00
256733 OATS AND BARLEY CEREAL 22 20.00
324597 COOPER GLOVES 100 100.00
333333 DOG BONES 22 50.00
335977 DOMESTIC KITTY LITTER 40 7.00
342723 ORANGE DRINK CRYSTALS 4000 15.00
444444 CORN FLAKES 1000 1.22
Product .... ______
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF

help retrn quit trans exprt bkwrd frwrd reprt left right ma

NCPRDOBD Table Subsystem
Oct 14 Select Product 2 of 2

Product Street City Province
---------- -------------------- -------------------- --------------------
111111 21 JUMP STREET VICTORIA British Columbia
111116 2020 UNIVERSITY MONTREAL Quebec
145688 5523 ROGERS ROAD TORONTO Ontario
187361 83 SAUTE STREET SARNIA Ontario
199210 32 HALL ST COOPERS TOWN Ontario
222222 47 FRONTENAC BLVD QUEBEC CITY Quebec
256733 45 CRESENT STREET EDMONTON Alberta
324597 398 DOWNE ST. KAMLOOP Ontario
333333 77 ALBONY CRES REGINA Saskatchewan
335977 85 MAIN ST. STRATFORD Ontario
342723 3476 BRANTFORD ST. POINT PEELEY Ontario
444444 FLAKEYS FLAKE VILLE Ontario
Product .... ______
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF

help retrn quit trans exprt bkwrd frwrd reprt left right ma

Note: To view the specifications for this example, refer to theNCPRDWF1 andNCPRDWF2
text members in the Natural Construct demo system.

87Natural Construct Object Models

Using the Object-Browse Models



User-Exit Statement Model

The User-Exit statement model generates user exits. This model is invoked from the User Exit
editor and uses text members generated by the user exit models. For information about user exit
models, see User Exit Models.

This section covers the following topics:

■ Generate Code into the User Exit Editor
■ User-Exit Statement Window

Generate Code into the User Exit Editor

To generate user exit code using the User-Exit statement model:

1 Invoke the User Exit editor from the Generation main menu.

For information about using the User Exit editor, seeUser Exit Editor,Natural Construct Gener-
ation.

2 Enter the following line command:

.g(User-Exit,user exit model name,text member,text member,...)

where:

■ user exit model name is the name of themodel used to generate the user exit textmembers
■ text member is the name of the user exit text member containing layout specifications
(previously generated by one of the user exit models)

The number of text members you can specify varies depending on the target model. Although the
user exit models were designed for the Object-Browse-Dialog model, you can also use the models
with other compatible models (you may need to override the user exit names).

If you do not specify the name of a text member, the User-Exit Statement window is displayed.
For a description of this window, see the following section.

Natural Construct Object Models88

Using the Object-Browse Models



User-Exit Statement Window

USER-EXIT Statement

User exit name ________________________________

User exit text member
1 ________ * 2 ________ * 3 ________ *
4 ________ * 5 ________ * 6 ________ *
7 ________ * 8 ________ * 9 ________ *
10 ________ * 11 ________ * 12 ________ *
13 ________ * 14 ________ * 15 ________ *
16 ________ * 17 ________ * 18 ________ *
19 ________ * 20 ________ * 21 ________ *
22 ________ * 23 ________ * 24 ________ *
25 ________ * 26 ________ * 27 ________ *
28 ________ * 29 ________ * 30 ________ *

The Natural Construct demo system contains examples of using the User-Exit statement model
and several user exit text members. To view the sample code, refer to the NCPRDOBD module.
The exampleswere generated using theUser-Exit statementmodel and the following textmembers:

■ NCPRDEX (generated using the Export-Data-Fields model)
■ NCPRDIN (generated using the Input-Key model)
■ NCPRDRP (generated using the Report-Data-Fields model)
■ NCPRDWF1 and NCPRDWF2 (generated using the Write-Data-Fields model)

Define International Parameters

You can define international parameters for modules generated using the Object-Browse-Dialog
and user exit models. International parameters indicate the language used to display text on
panels.

To define international parameters:

1 Press the intnl PF-key (PF9) on the Standard Parameters panel for the model.

The International Parameters window is displayed:

89Natural Construct Object Models

Using the Object-Browse Models



CUBDMAA           Natural Construct           CUBDMAA0 
Feb 07         International Parameters         1 of 1 
                                                       
  Message numbers .... _                               
  Construct prompts .. _                               
                                                       
  Generate language .. 1_                              
    Model library .... CSTAPPL                         
    App library ...... CSTAPPL_                        
                                                       
  Cursor translation . _                               
  Translation LDAs ... ________ *                      
                       ________ *                      
                       ________ *                      
                       ________ *                      
                       ________ *                      
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---P
      help  retrn quit                                 ↩

2 Use the following fields to define the international parameters:

DescriptionField

Type ofmessages used.When this field ismarked, the generated codeusesmessage
numbers rather than message text.

Message numbers

Type of prompts used. When this field is marked, the model generates Natural
Construct-style prompts (for example, 1 of 2).

Construct prompts

Code for the language used when generating message text. The default is 1
(English).

Generate language

Name of the SYSERRmessage library used to retrieve commonmessage text. The
default is CSTAPPL.

Model library

Nameof the SYSERR library used to retrievemessage text for user-defined SYSERR
references. This parameter is only applicable to modules generated using the

App library

Object-Browse-Dialog model. If you do not specify an application library, the
Model library value is used.

When this field is selected, the generated code supports cursor-sensitive translation
(users can modify or translate panel text dynamically in translation mode). For
more information, refer to the following section.

Cursor translation

Names of the translation local data areas (LDAs) used bymodules generatedwith
the Object-Browse-Dialog model. You can specify up to five translation LDAs.

Note: Use the Object-LDAmodel to create translation LDAs. For information, see
Object-LDA Model.

Translation LDAs

3 Select Enter.

Natural Construct Object Models90

Using the Object-Browse Models



Cursor-Sensitive Translation

Cursor-sensitive translation allows users to display a specification panel or window in translation
mode, select a prompt or heading with their cursor, select Enter, and be presented with a window
in which they can change the text:

CSUTLATE Natural Construct
Dec 31 Translate Short Message 1 of 1

Language Short Message ( CSTLDA2000 )
-------- ....+....1....+....2....+....3....+....4....+....5....+....6....+

English Module/System/Global data area /+20

Thiswindowdisplays the text defined for SYSERRnumber 2000 in the CSTLDA library for English.
Users can also display this window in another language to define heading and prompt text in that
language.

For performance and space considerations, multiple screen prompts may share the same SYSERR
number and library.When using SYSERR references, each positionwithin the number is identified
by a decimal and number. For example, 2000.1 identifies the text, "Module", 2000.2 identifies the
text, "System", and 2000.3 identifies the text, "Global data area". The "/+20" notation indicates the
maximum number of bytes the corresponding text may occupy on a panel.

Note: For information on using SYSERR, see the following section.

Use SYSERR References for Headings and Prompts

Natural Construct makes it easy to use SYSERR references to define text for some headings and
prompts. In any applicable field, you can press the help PF-key to display the Select SYSERR
Messages window. From this window, you can:

■ Select an existing SYSERR reference to use as a panel heading or field prompt
■ Access the Maintain SYSERR Messages window to:

■ change an existing SYSERR reference
■ create a new SYSERR reference

The following table lists the models, panels, and fields for which you can use SYSERR references:

91Natural Construct Object Models

Using the Object-Browse Models



FieldPanelModel

First heading and Second heading

Prompt

Standard Parameters

Additional Parameters

Object-Browse-Dialog

Field HeadingField Layout ParametersObject-LDA

Field HeadingField Layout ParametersAll user exit models

This section covers the following topics:

■ Select a SYSERR Reference
■ Add or Maintain a SYSERR Reference

Select a SYSERR Reference

To select a SYSERR reference for an applicable field:

1 Press the help PF-key when the cursor is in the field.

The Select SYSERR Messages window is displayed:

 CNHMOBD           Natural Construct                              
 Dec 21          Select SYSERR Messages                    1 of 1 
                                                                  
 Number       Short Message ( English )                           
 ------------ ----------------------------------------------------
 CSTAPPL0002  User:1:does not exist                               
 CSTAPPL0003  No matching conversation found for:1:               
 CSTAPPL0004  API: No function possible after EOC                 
 CSTAPPL0005  Partner finished the conversation                   
 CSTAPPL0006  API: Last message not found                         
 CSTAPPL0007  Service:1:/:2:/:3:not registered                    
 CSTAPPL0008  No related text for error number:1:/:2:             
 CSTAPPL0009  Conversation found for:1:- no message               
 CSTAPPL0013  ATTR: Value for keyword too long                    
 CSTAPPL0015  ATTR: Maximum possible number of clients reached    
 CSTAPPL0016  MQ/OMB entry is already free                        
 CSTAPPL0018  ATTR: Maximum possible number of servers reached    
 Number ..... ___1 Library .... CSTAPPL_ Language ... _1          
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10-
       help  retrn quit  maint       exprt bkwrd frwrd            ↩

You can use PF-keys in this window to perform other functions. For example:

■ Using the maint PF-key, you can modify existing SYSERR references and/or create new
references. For more information, see the following section.

■ Using the exprt PF-key, you can download the SYSERR messages as an ASCII file to your
PC.

Natural Construct Object Models92

Using the Object-Browse Models



2 Move the cursor to the reference you want to use.

If you do not see the reference, use the frwrd or bkwrd PF-keys to scroll to it.

3 Select Enter.

The selected SYSERR number is displayed in the field.

Note: To specify the library fromwhich SYSERRmessages are retrieved, access the Interna-
tional Parameters window. For information, see Define International Parameters.

Add or Maintain a SYSERR Reference

Use theMaintain SYSERRMessages window to add a new SYSERR reference ormaintain existing
references.

To create a new SYSERR reference:

1 Press the maint PF-key in the Select SYSERR Messages window.

The Maintain SYSERR Messages window is displayed:

  CNMMOBD             Natural Construct                                     
  Dec 21           Maintain SYSERR Messages                           1 of 1
           Short Message ( CSTAPPL0001 )                                    
           ....+....1....+....2....+....3....+....4....+....5....+....6....+
  English                                                                   
  English  _________________________________________________________________
  Number ..... ___1 Library .... CSTAPPL_ Language ... _1                   
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF
        help  retrn       cnfrm             bkwrd frwrd                     ↩

2 Type the reference text on the line provided.

3 Press the cnfrm PF-key (PF4) to add the new reference.

To modify an existing SYSERR reference:

1 Move the cursor to the reference youwant tomodify in the Select SYSERRMessages window.

If you do not see the reference, use the frwrd or bkwrd PF-keys to scroll to it.

2 Press the maint PF-key.

The selected reference is displayed in the Maintain SYSERR Messages window.

3 Modify the text as desired.

4 Press the cnfrm PF-key to confirm changes to the text.

93Natural Construct Object Models

Using the Object-Browse Models



Object-Browse-Dialog-Driver Model

Use this model to generate a helproutine or driver program that invokes a specified object-browse
dialog. This functionality allows you to use the same object-browse dialog for both a maintenance
browse function and a field-level help function.

This section covers the following topics:

■ Parameters for the Object-Browse-Dialog-Driver Model
■ User Exits for the Object-Browse-Dialog-Driver Model

Parameters for the Object-Browse-Dialog-Driver Model

The Object-Browse-Dialog-Driver model has one specification panel: Standard Parameters.

Standard Parameters Panel

The following example shows the only specification panel for the Object-Browse-Dialog-Driver
model, the Standard Parameters panel:

   CUODMA                Object-Browse-Dialog-Driver Model                CUODMA0
   Nov 28                       Standard Parameters                        1 of 1
                                                                                 
     Module ............. ________                                               
     Module type ........ _                                                      
     System ............. CST821S_________________________                       
                                                                                 
     Title .............. Object Browse Dialog Driv                              
     Description ........ This Object Browse Dialog Driver is used to invoke ... 
                          ______________________________________________________ 
                          ______________________________________________________ 
                          ______________________________________________________ 
                                                                                 
                                         Source      Object                      
     Object-Browse-Dialog ________ *                                             
     Messaging support .. _                                                      
                                                                                 
                                                                                 
                                                                                 
                                                                                 
   Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
   main  help  retrn quit                                            userX main  ↩

The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel.

Natural Construct Object Models94

Using the Object-Browse Models



Note: The Module type for an object-browse-dialog-driver module can be "P", "H", or "N".
When themodule type is "N" (subprogram), the primary key (#PDA-KEY) can be overridden
(similar to a browse subprogram generated by the Browse-Subp model).

The fields in the lower portion of this panel are:

DescriptionField

Name of the browse dialog invoked by this driver program.Object-Browse-Dialog

Name of the first library in which source code for the browse dialog is found. The
source code may exist in multiple libraries in the Natural steplib chain.

Natural Construct displays the library name after you enter the name of the browse
dialog.

Source

Name of the first library in which object code for the browse dialog is found. The
object code may exist in multiple libraries in the Natural steplib chain.

Natural Construct displays the library name after you enter the name of the browse
dialog.

Object

User Exits for the Object-Browse-Dialog-Driver Model

The following example shows the User Exits panel for the Object-Browse-Dialog-Driver model:

   CSGSAMPL              Object-Browse-Dialog-Driver Model                 CSGSM0
   Jan 29                            User Exits                            1 of 1
                                                                                 
                  User Exits             Exists    Sample   Required Conditional 
       -------------------------------- -------- ---------- -------- ------------
    _  NAT-DOCS                                                           X
    _  CHANGE-HISTORY                            Subprogram                      
    _  BEFORE-CHECK-ERROR                         Example                        
    _  PARAMETER-DATA                                                            
    _  LOCAL-DATA                                                                
    _  START-OF-PROGRAM                                                          
    _  BEFORE-CALLNAT                                                            
    _  AFTER-CALLNAT                                                             
    _  ADDITIONAL-INITIALIZATIONS                                                
    _  END-OF-PROGRAM                                                            
                                                
   Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
         help  retrn quit                    bkwrd frwrd                         ↩

Notes:

1. For information about these user exits, seeUser Exits for the GenerationModels,Natural Construct
Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

95Natural Construct Object Models

Using the Object-Browse Models



Object-LDA Model

Using the Object-LDAmodel, you can generate a local data area (LDA) containing field headings
and prompts. You can then use this data area to default field headings for the Object-Browse-
Dialog model or user exit models.

You can also use theObject-LDAmodel to generate a translation LDA for international applications
— either by specifying SYSERR references or by generating the module using text in a specified
language (which improves performance when you require only one language).

If you specify SYSERR references as your field prompts and headings, instead of hardcoding the
actual text, you reduce maintenance requirements and ensure a consistent interface throughout
your application.

Note: For information, see Use SYSERR References for Headings and Prompts.

Parameters for the Object-LDA Model

The Object-LDA model has two specification panels: Standard Parameters and Field Layout
Parameters. This section describes these panels. The following topics are covered:

■ Standard Parameters Panel
■ Field Layout Parameters Panel

Standard Parameters Panel

The following example shows the first specification panel for theObject-LDAmodel, the Standard
Parameters panel:

Natural Construct Object Models96

Using the Object-Browse Models



  CUOFMA                    Object-LDA Local Data Area                   CUOFMA0
  Jan 29                       Standard Parameters                        1 of 2
                                                                                
            Module ............. ________                                       
            System ............. CST821S_________________________               
                                                                                
            Title .............. Object LDA for ..._______                      
            Description ........ This Object LDA is used for ..._               
                                 ________________________________               
                                 ________________________________               
                                 ________________________________               
                                                                                
            Predict view ....... ________________________________ *             
            Data area .......... ________________________________ *             
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
        help  retrn quit                                intnl left  right main  ↩

The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel.

The fields in the lower portion of this panel are:

DescriptionField

Name of the Predict view from which fields are selected for the screen layout. The specified
view must be defined in Predict; this view will be assigned to label 1 in the Data Parameters
window (see the following section for more information).

Note: The primary file type can be Adabas, DB2, VSAM, or sequential. All type N (Natural
Construct) relationships that specify a cascading delete option and are (directly or indirectly)
related to the specified file are included in the generated module.

Predict view

Field-level help is available to select a Predict view.

Name of the data area from which fields are selected for the screen layout. Field-level help
is available to select a data area.

Data area

Note: When using the field-level help on this panel, a window is displayed to select which
type of help you require: Predict view, parameter data area, or local data area. After selecting
one of these options, the corresponding field-level help window is displayed.

97Natural Construct Object Models

Using the Object-Browse Models



Select Data Parameters

After selecting a Predict view or data area from the field-level help window, the Data Parameters
window is displayed:

 CUOFSEL             ***** Natural Construct *****             CUOFSEL0 
 Mar 20                     Data Parameters                      1 of 1 
                                                                        
   Label  Type       Predict Views or Data Areas          Select All    
   ------ ---------- ------------------------------------ ------ ------ 
     1    View       NCST-CUSTOMER___________________ *     _      _    
     2               ________________________________ *     _      _    
     3               ________________________________ *     _      _    
     4               ________________________________ *     _      _    
     5               ________________________________ *     _      _    
     6               ________________________________ *     _      _    
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11 
       help  retrn                                                      
 Specify a Predict view or data area for field selection                ↩

This window lists the views or data areas you specified on the Standard Parameters panel and
allows you to select all or some of the fields in these files. You can select up to 96 fields from up
to 6 different views, local data areas (LDAs), and/or parameter data areas (PDAs).Natural Construct
appends the selected fields to CUOFPDA; you cannot re-select existing fields in CUOFPDA.

If you are selecting fields from a data area, you cannot select:

■ constants
■ more than one structure

The fields in this window are:

DescriptionField

Number that identifies the Natural label for fields selected for the screen layout. This
number is assigned by the Object-LDA model after you select a view or data area (for

Label

example, if you select a view and then a data area, the view is assigned 1 and the data
area is assigned 2). By using the label number instead of the Natural label (for example,
NCST-CUSTOMER.CUSTOMER-NUMBER),field names are shorter and easier to display
for selection.

Type of corresponding view or data area (displays View or Structure).Type

Names of the Predict views, local data areas (LDAs), and/or parameter data areas (PDAs)
from which fields are selected for the screen layout.

Predict Views or
Data Areas

To display a selection window fromwhich you can select the fields for the screen layout,
mark this field and select Enter.

Select

Natural Construct Object Models98

Using the Object-Browse Models



DescriptionField

To select all fields from the corresponding view or data area, mark this field and select
Enter.

All

■ When selecting from a view, multiple-valued fields (MUs) within a periodic group
(PE) are not included.

■ When selecting from a data area, constants and arrays with a rank greater than 1 are
not included.

Note: If there ismore than one structure in a data area, only the first structure is included
when you mark this field.

Field Layout Parameters Panel

The following example shows the second specification panel for the Object-LDAmodel, the Field
Layout Parameters panel. For this example, NCST-CUSTOMER was selected from the Predict
view field on the Standard Parameters panel:

 CUOFMB                    OBJECT-LDA Local Data Area                   CUOFMB0 
 Mar 20                     Field Layout Parameters                      2 of 2 
                                                                                
 _1   Ord  Lbl  Field name                     Field heading                    
 >>   ---- ---- ------------------------------ ------------------------         
   1  10_   1   CUSTOMER-NUMBER_______________ Customer Number_________ *    +  
   2  20_   1   BUSINESS-NAME_________________ Business Name___________ *    +  
   3  30_   1   PHONE-NUMBER__________________ Phone Number____________ *    +  
   4  40_   1   MAILING-ADDRESS_______________ Mailing Address_________ *    _  
   5  50_   1   SHIPPING-ADDRESS______________ Shipping Address________ *    _  
   6  60_   1   CONTACT_______________________ Contact_________________ *    +  
   7  70_   1   CREDIT-RATING_________________ Credit Rating___________ *    +  
   8  80_   1   CREDIT-LIMIT__________________ Credit Limit____________ *    +  
   9  90_   1   DISCOUNT-PERCENTAGE___________ Discount %______________ *    +  
  10  ___   _   ______________________________ ________________________ *    _  
  11  ___   _   ______________________________ ________________________ *    _  
  12  ___   _   ______________________________ ________________________ *    _  
  13  ___   _   ______________________________ ________________________ *    _  
  14  ___   _   ______________________________ ________________________ *    _  
  15  ___   _   ______________________________ ________________________ *    _  
  16  ___   _   ______________________________ ________________________ *    _  
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit        parms selfd bkwrd frwrd       left        main   ↩

This panel defines the position of fields in the screen layout and the prompt displayed for each
field. The fields on this panel are:

99Natural Construct Object Models

Using the Object-Browse Models



DescriptionField

Number of the field currently at the top of the panel. Up to 16 fields can be displayed on this
panel at one time. To display the specification lines for additional fields, enter the corresponding
line number in this field. By default, 1 is displayed.

Note: You can also display the specification lines for other fields by pressing the frwrd or
bkwrd PF-keys.

_1

Current position of the corresponding field in increments of 10. This numbering convention
allows you to easily add, remove, or reorder fields. For example, to add a field between the
1st and 2nd fields (positions 10 and 20):

Ord

1. Scroll to the first empty line (you may have to press the frwrd PF-key).

2. Press the selfd PF-key and select a new field.

By default, the new field is assigned the next available number.

3. Type 15 over the default number (next to the new field).

4. Press the reord PF-key.

In this example, the fields are reordered so that the new field is now in the second position
(position 20).

Number that identifies the Natural label for fields selected for the screen layout. This number
is assigned by the Object-LDAmodel after you select a view or data area (for example, if you

Lbl

select a view and then a data area, the view is assigned 1 and the data area is assigned 2). By
using the label number instead of the Natural label (for example,
NCST-CUSTOMER.CUSTOMER-NUMBER), field names are shorter and easier to display for
selection.

Name of a field selected for the screen layout (as defined in Natural). The Object-LDAmodel
supplies this name.

Field Name

Field prompts displayed in the screen layout. By default, the Predict heading (for views) or
INIT clause (for data areas) is displayed. (If no default is available, the Object-LDA model

Field
Heading

converts the field name to mixed case and uses it as the prompt.) To enable cursor translation
or internationalization, use SYSERR references as the field prompts.

Field-level help is available to select an existing SYSERR number or create a new SYSERR
entry. For more information, see Use SYSERR References for Headings and Prompts.

To add more key components to a logical key or set additional options for the logical keys,
mark this field and select Enter. A window is displayed in which you can modify the logical
key. A + in this field indicates that parameters have been defined for the corresponding field.

Note: You can also display the window by selecting the parms PF-key on this panel.

+ or -

Natural Construct Object Models100

Using the Object-Browse Models



Object-Browse-Select-Subp Model

The Object-Browse-Select-Subp model generates a subprogram similar in functionality to a sub-
program generated by the Browse-Select-Subp model. Both subprograms allow users to update
multiple rows at one time. The primary difference between the two is that an object-browse-select
subprogram can accommodate a client/server environment and you can use a subprogram proxy
to access the generated code as a business service.

To create the business service, the object-browse-select subprogram accesses an object-browse
subprogram and, optionally, an object-maintenance subprogram (generated by theObject-Browse-
Subp andObject-Maint-Subpmodels). The subprogram proxy automatically copies the generated
methods to the repository, using the domain and business service names indicated on the model
specification panels.

Note: If an object-maintenance subprogram is not specified, the MultiMaint, Update, Store,
and Delete methods are not generated.

The advantages of using an object-browse-select subprogram include:

■ You can update a set of rows at the same time, which reduces the number of calls across the
network. Set processing groups a specified number of rows together for faster, less congested,
transportation across the network.

■ By default, subprograms generated by the Object-Browse-Select model create 20 rows of data,
butwill reduce this number if the rows are extremely large. This functionality helps accommodate
size limitations across the wire.

■ You can create additionalmultiplemethods to take advantage of the singlemethods in the object-
maintenance subprogram. Multiple-method processing provides the flexibility to update a set
of rows and associate a different method with each row (for example, Add one row, Delete an-
other row, Approve another row, etc.).

■ You can add business logic that is not available in the object-browse and/or object-maintenance
subprogram.

■ You can create one method to represent multiple methods, but also restrict a user at the single-
method level. For example, the MultiMaint method can include the Update, Store, and Delete
methods. Although two users may be permitted to access this method, one user may be able to
perform the Delete action while the other user cannot.

■ You can take advantage of the functionality available in an object-browse subprogram. For ex-
ample, you can specify a non-unique key in the subprogram (such as Warehouse ID to browse
the Order file) and use the Object-Browse-Select-Subp model to generate code for a histogram
(count).

If the histogram code has been generated, the object-browse-select subprogram generates a
method called KeyNameCount (for example, WarehouseIDCount). A user can query the Order

101Natural Construct Object Models

Using the Object-Browse Models



file to determine how many orders are stored in each warehouse; after viewing the results of
this query, the user can query a specified warehouse in theWarehouse file to view details about
orders stored in that warehouse. If required, the user can manipulate data based on the results
of this query.

■ During generation, the Object-Browse-Select-Subp model determines all the keys used by an
object-browse subprogramand automatically generates business-friendlymethods (for example,
FindByKeyName). You can remove any methods that are not applicable and/or change the
method names.

Note: For information on using the Adabas ISN as a unique primary key for maintenance,
see Use *ISN as the Unique Primary Key for Maintenance.

This section covers the following topics:

■ Object-Browse Model Differences
■ Methods Generated
■ Generated Code Differences
■ Suffixes Used by Natural Construct Objects
■ Compatibility with a Subprogram Proxy
■ Specify Leading Fixed Components for the Logical Key
■ Parameters for the Object-Browse-Select-Subp Model
■ User Exits for the Object-Browse-Select-Subp Model

Object-Browse Model Differences

The following table lists the advantages and disadvantages of using theObject-Browse andObject-
Browse-Select models:

DisadvantageAdvantageModel

Object-Browse ■ Has only one method
(BROWSE).

■ Speeds up the development process; code
generated by this model may already exist.

■ ■Combines data and business layers. Places lookup and derived data
in a separate level 1 data area;
this data cannot be assigned at
the ROW level.

Object-Browse-Select ■■ Providesmoremethods; themethod names are
more descriptive.

Requires an additional
subprogram layer.

■ Separates data and business access layers.
■ Assigns lookup and derived data at the ROW
level with other data.

■ Allows users to easily create tables for data; the
data is handled like a dataset on the client.

Natural Construct Object Models102

Using the Object-Browse Models



Methods Generated

TheObject-Browse-Select-Subpmodel generates three defaultmethods for use on individual rows:

■ Delete
■ Store
■ Update

This model also generates the MultiMaint method for use on a set of rows. By default, the Multi-
Maint method processes the Update, Store, and Delete methods, but can contain any combination
of methods.

An object-browse-select subprogram must contain at least one method. Additional methods are
based on the key fields and the histogram option specified in the object-browse subprogram. If
you select the histogramoption for a key field, twomethods are created for the field: FindByKeyName
and KeyNameCount. If desired, you can change or delete these names on the specification panels
and the method associated with the histogram will just return the key value and the count.

By default, logic is generated to treat each row as a separate transaction, but this can be overridden
on the specification panels.

Transaction States

Two LDAs in the SYSCST library represent the various transaction states and row actions and re-
sponses. These are:

■ Transaction states are represented in the CDTRACT LDA
■ Row actions and row responses are represented in a state format in the CDSTATE LDA

Generated Code Differences

Code for theObject-Browse-Select-Subpmodel is generated based onwhether the object-mainten-
ance subprogramwas generatedwith the hash-locking orwith the timestamp record locking option.

Note: If the file is not normally maintained through a Natural Construct-generated object-
maintenancemodule, the object-maintenance subprogramshoulduse the hash-locking record
locking option. If the file is only maintained through an object-maintenance module, the
subprogram should use the timestamp record locking option (as it is more efficient).

If the object-maintenance subprogram uses the hash-locking option and the target file is Adabas,
the GET-BY-ISN option is used to retrieve the data in the object-maintenance subprogram.

You can change the record-locking method on the client by specifying a transaction style. The
transaction styles are:

■ Aggressive Row Object

103Natural Construct Object Models

Using the Object-Browse Models



Each row is treated as a transaction, so each row is committed as it is processed. If an error occurs
in a row, it is noted and processing continues to the next row. This transaction style is the default,
unless the default is changed on the server in user exit code.

■ Passive Row Object

An End of Transaction statement is issued when all the rows are processed; if an error occurs
in a row, processing is stopped and everything is backed out.

■ Business Service Object

No End of Transaction statement is issued by the business service; the client is expected to issue
the ET. This allows the client to confirm that the data is committed to another proprietary
solution before the data in the business service is committed.

■ Unique Object

The generated code makes no assumptions; the programmer must manually commit all trans-
actions.

Note: If you do not specify a transaction style, the default is used (Aggressive Row Object).

Suffixes Used by Natural Construct Objects

The following table lists Natural Construct object types and the suffixes assigned to each:

Suffix AssignedNatural Construct Object Type

DBrowse data array

EBrowse extended row PDA

KBrowse key information

PBrowse private information

SBrowse static object row PDA

BBusiness service

MInterface map data PDA (fields to be shown to the user)

XInterface-retained PDAdata (fields thatmaintain State data; they are required over a network
call, but they are not shown to the user)

HObject-maintenance LDA (used with the hash-locking option)

AObject-maintenance PDA

RObject-maintenance restricted PDA

NObject subprogram

YSubprogram proxy

Natural Construct Object Models104

Using the Object-Browse Models



Compatibility with a Subprogram Proxy

A subprogram generated by the Subprogram-Proxy model works with the object-browse-select
subprogram to generate the appropriate methods: the methods specified in the Object-Browse-
Select-Subp specifications and theMultiMaint,Update, Store, andDeletemethods. The Subprogram-
Proxymodel is also used to name the business service and associate it with a domain and version.
Formore information on subprogramproxies, seeNatural Business Services Subprogram-Proxy-Client
Model.

Specify Leading Fixed Components for the Logical Key

You can override the default number of leading fixed key values for the logical key by defining
the LEADING-FIXED-COMPONENTS field in the CDBUPDA2 data area for the object-browse-
select subprogram.

As a generated object-browse-select subprogram uses the CDBUPDA data area by default, you
must activate the CDBUPDA2 subprogram using the CSXDEFLT subprogram.

Notes:

1. For more information on LEADING-FIXED-COMPONENTS, see CDBRPDA.

2. For information on CSXDEFLT, see Use CSXDEFLT Overrides.

Parameters for the Object-Browse-Select-Subp Model

The Object-Browse-Select-Subp model has two specification panels: Standard Parameters and
Additional Parameters. This section describes these panels. The following topics are covered:

■ Standard Parameters Panel
■ Additional Parameters Panel
■ Parameters Passed to the Object-Browse-Select Subprogram

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

105Natural Construct Object Models

Using the Object-Browse Models



 CUBUMA              Object-Browse-Select-Subp Multi-Module             CUBUMA1 
 Nov 16                       Standard Parameters                        1 of 2 
                                                                                
  Module ............. BCUSTN__                                                 
  System ............. S51PTYPE________________________                         
                                                                                
  Title .............. Object Browse Select ....                                
  Description ........ This subprogram is used to encapsulate data access_____  
                       for ...________________________________________________  
                       _______________________________________________________  
                       _______________________________________________________  
                                                                                
                                            Primary File ............           
  Object browse subp ...... ________ *      ________________________________    
  Object maint subprogram . ________ *      ________________________________    
  Time .................... _                                                   
                                 PDA        Generate    Source      Object      
  Static occurrences ...... 20_  BCUSTS20 *     _                               
                                                                                
  Message numbers .... _                                                        
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help  retrn quit                                            right main   ↩

The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel.

The fields in the lower portion of this panel are:

DescriptionField

Name of the subprogram used to browse the object.Object browse
subp

Name of the subprogramused tomaintain the object (optional). The object-maintenance
subprogram cannot process intra-object relationships. This allows the data presented
to the client to be manageable and all data to be modifiable.

Note: If you use an object-maintenance subprogram and object-browse subprogram,
both subprograms must use the same primary file.

Object maint
subprogram

When this field is selected, code is generated to time how long a business service takes
to execute. The result is returned in the business service message. The utility used to

Time

time the response is available from the Natural Construct Administration main menu
as follows:

Drivers > Additional Drivers > General Utilities > Calculate Seconds

Note: This field is only available for mainframe platforms.

Number of rows processed and sent across the network at one time (by default, 20,
unless the rows are extremely large). The PDA (parameter data area) associated with

Static occurrences

Natural Construct Object Models106

Using the Object-Browse Models



DescriptionField

the static occurrences hardcodes this value (which is used to identify the V value in the
object-browse subprogram) in the object-browse-select subprogram.

To identify the number of occurrences in this PDA, the default PDA name contains the
first five characters of the module name and the number of static occurrences
("BCUSTS20" in the example).

Note: If you change the number of static occurrences on this panel, you should also
change this number in the default PDA name.

When this field is selected,message numbers are used andmessages are retrieved from
SYSERR at runtime.

Note: If the object-browse and/or object-maintenance subprograms specified on this
panel usemessage numbers, the object-browse-select subprogramwill also usemessage
numbers.

Message numbers

Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

 CUBUMB              Object-Browse-Select-Subp Multi-Module             CUBUMB1 
 Nov 16                      Additional Parameters                       2 of 2 
                                                                                
                                                                                
     Method Name                      Count    Browse Key Name                  
     -------------------------------- -----    -------------------------------- 
 01  FindByCustomerNumber____________   _      CUSTOMER-NUMBER                  
 02  FindByBusinessName______________   _      BUSINESS-NAME                    
 03  FindByCustomerWarehouseId_______   _      CUSTOMER-WAREHOUSE-ID            
 04  FindByBusinessWarehouse_________   _      BUSINESS-WAREHOUSE               
 05  CustomerWarehouseIdCount________   X      CUSTOMER-WAREHOUSE-ID            
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit        deflt                         left  userX main   ↩

This panel shows the default methods for the business service, which were generated based on
the keys specified for the object-browse subprogram.Notice that there are twomethods associated
with CUSTOMER-WAREHOUSE-ID. This indicates that the histogramoption in the object-browse

107Natural Construct Object Models

Using the Object-Browse Models



subprogram has been marked for this key. If the CustomerWarehouseIdCount method is used,
only the unique key values and the count will be returned.

You can override or delete methods listed on this panel. If you delete a method, it will not be
available to the business service.

Note: To restore the default values based on the current object-browse subprogram, press
PF5 (deflt).

Parameters Passed to the Object-Browse-Select Subprogram

Generated object-browse-select subprograms accept parameters from the same parameter data
areas (PDAs) as generated object-browse subprograms. For information, see Parameters Passed
to the Object-Browse Subprogram.

In addition, the generated subprograms accept the following parameters:

03 EXTRA-ROW-DATA                                              
  04 ROW-STATE(A2)                                             
  04 ROW-ID (N5) /* for internal use; do not change            
  04 ROW-ERROR-DATA                                            
    05 ##ERROR-FIELD (A32)                                     
    05 ##MSG-NR (N4)                                           
    05 ##MSG (A79)                                             
PARAMETER USING CDBUPDA        /* Business service status data  
PARAMETER USING CDBUINFO       /* Business service message data ↩

These parameters are:

DescriptionParameter

Similar to the row PDA for object-browse subprograms, except it is internal to the
object-browse-select subprogram and contains extra data. For example:

Row PDA

■ ROW-STATE

Contains maintenance instructions or maintenance message codes.
■ ROW-ID

Used internally on the client (do not change).
■ ROW-ERROR-DATA

Contains message information returned by the object-maintenance subprogram for the
affected row (i.e., transaction states).

Subset of the CDBRPDA PDA for object-browse subprograms. CDBUPDA contains all the
parameters in CDBRPDA except the following:

CDBUPDA

■ METHOD

Natural Construct Object Models108

Using the Object-Browse Models



DescriptionParameter

Not required.
■ SORT-KEY

The object-browse-select subprogram sets this value for CDBRPDA based on the FindBy*
methods.

■ HISTOGRAM

The object-browse-select subprogram sets this value for CDBRPDA based on the Count*
methods).

■ ROWS-REQUESTED

Not required.
■ LEADING-FIXED-COMPONENTS

Set in the CDBUPDA2 parameter data area (for information, see Specify Leading Fixed
Components for the Logical Key).

■ USE-UNIQUE-ID

The object-browse-select subprogram sets this value.

Similar to the CDPDA-M parameter data area for object-browse subprograms; this PDA
contains messages and transaction information for all rows. For example:

1 CDBUINFO                                                             ↩
   

CDBUINFO

 2 ##TRANSACTION-STYLE              A          1 /*See CDTRACT for valid ↩
va
 2 #BACKOUT-ISSUED                  L                                  ↩
    
 1 BUSINESS-INFO                                                       ↩
    
 2 ##MSG                            A         79                       ↩
    
 2 ##MSG-NR                         N          4                       ↩
    
 2 ##RETURN-CODE                    A          1 ↩

109Natural Construct Object Models

Using the Object-Browse Models



User Exits for the Object-Browse-Select-Subp Model

 CSGSAMPL            Object-Browse-Select-Subp Multi-Module              CSGSM0 
 Nov 16                            User Exits                            1 of 1 
                                                                                
                User Exits             Exists    Sample   Required Conditional  
      -------------------------------- -------- ---------- -------- ------------ 
   _  NAT-DOCS                                                           X
   _  CHANGE-HISTORY                            Subprogram                       
   _  PARAMETER-ROW                                                              
   _  PARAMETER-DATA                             Example                         
   _  LOCAL-DATA                                                                 
   _  START-OF-PROGRAM                                                           
   _  USER-DEFINED-METHODS                                                       
   _  USER-DEFINED-SUCCESSFUL-STATE                                      X       
   _  USER-DEFINED-PENDING-STATE                                         X       
   _  BEFORE-BROWSE-OBJECT                                                       
   _  AFTER-BROWSE-OBJECT                                                        
   _  BEFORE-CHECK-BUSINESS-ERROR                                                
   _  BEFORE-CHECK-ERROR                                                         
   _  BEFORE-BT-PROCESSING                                               X       
   _  AFTER-BT-PROCESSING                            X                           
   _  BEFORE-ET-PROCESSING                                               X       
   _  AFTER-ET-PROCESSING                            X                           
   _  END-BUSINESS-SERVICE                                                       
   _  ADDITIONAL-INITIALIZATIONS                                                 
   _  START-ROW-PROCESSING                                               X       
   _  BEFORE-CALL-TO-MAINT-OBJECT                                        X       
   _  AFTER-CALL-TO-MAINT-OBJECT                                         X       
   _  STATE-FOR-ABORTED-TRANSACTIONS                                     X       
   _  ROW-STATE-INPUT-CONVERSION                                         X       
   _  DEFAULT-TRANSACTION-STYLE                                          X       
   _  UNIQUE-TRANSACTION-STYLE                                           X       
   _  MISCELLANEOUS-SUBROUTINES
   _  END-OF-PROGRAM    
                                              
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit                    bkwrd frwrd                            ↩
                                                     ↩

Notes:

1. Conditional user exits are based on whether an object-maintenance subprogramwas specified.

2. For information about these user exits, seeUser Exits for the GenerationModels,Natural Construct
Generation.

3. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Object Models110

Using the Object-Browse Models



3 Using the Object-Generic-Subp Model

■ Introduction .................................................................................................................................. 112
■ Parameters for the Object-Generic-Subp Model ................................................................................... 112
■ User Exits for the Object-Generic-Subp Model ..................................................................................... 115

111



This section describes the Object-Generic-Subp model, which generates a business service (a
wrapper subprogram) associatedwith up to 10 subprograms and 20methods. The following topics
are covered:

Note: For information about object-oriented development, seeOverview ofObject-Oriented
Development.

Introduction

The Object-Generic-Subp model:

■ Creates a subroutine for each subprogramused by the business service (maximumof 10 subpro-
grams)

Note: You can create additional subroutines within user exits to perform specialized
functions.

■ Creates methods to call the subroutines and user exits (maximum of 20 methods).

Parameters for the Object-Generic-Subp Model

TheObject-Generic-Subpmodel has two specification panels: Standard Parameters andAdditional
Parameters. This section describes these panels. The following topics are covered:

■ Standard Parameters Panel
■ Additional Parameters Panel

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

Natural Construct Object Models112

Using the Object-Generic-Subp Model



 CUOGMA                  OBJECT-GENERIC-SUBP Subprogram                 CUOGMA0 
 Aug 20                       Standard Parameters                        1 of 2 
                                                                                
  Module ............. NEW_____                                                 
  System ............. BIZDEMO_________________________                         
                                                                                
  Title .............. Generic Business Service_                                
  Description ........ This subprogram is used to maintain the generic________  
                       business service ........______________________________  
                       _______________________________________________________  
                       _______________________________________________________  
                                                                                
  Message numbers .... _  Categorize parameters _                               
                                                                                
  Subprograms                                                                   
  ________ *     ________ *     ________ *     ________ *     ________ *        
  ________ *     ________ *     ________ *     ________ *     ________ *        
                                                                                
                                                                                
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help  retrn quit                                            right main   ↩

The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel.

Note: If you select the Categorize Parameters option, the PARAMETER-DATA user exit is
required. For information on this exit, see PARAMETER-DATA User Exit. For information
on categorizing parameters, see Categorize Parameters.

The subprograms listed in Subprograms in the lower portion of this panel:

■ Should have no screen I/O or navigation functionality (i.e., they cannot contain INPUT,WRITE,
PRINT, DISPLAY, REINPUT statements or manage PF key functions)

■ Must have at least one parameter

You can specify the names of up to 10 subprograms; you must specify at least one subprogram
name.

113Natural Construct Object Models

Using the Object-Generic-Subp Model



Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

 CUOGMB                  OBJECT-GENERIC-SUBP Subprogram                 CUOGMB0 
 Aug 20                      Additional Parameters                       2 of 2 
                                                                                
   Method ... 1  ________________________________ of 20                         
                                                                                
    Before                                            After                     
    Code    Order   Subroutine                        Code                      
      _        __   CALLNAT-ACUSTN__________________   _                        
      _        __   CALLNAT-BCUSTN__________________   _                        
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit                    bkwrd frwrd       left  userX main   ↩

Use this panel to name themethods used by your business service and to indicate the functionality
of eachmethod (i.e., which subprogram to execute and the order of execution for the subprograms
specified on the Standard Parameters panel and wrapped in the subroutines listed). In addition:

■ You must define at least one method
■ A subprogram is part of a method if an order number is assigned to it
■ Each order (sequence) number must be unique; you cannot use the same number more than
once

■ You cannot mark the Before Code or After Code fields unless an order (sequence) number is
specified

■ If a level 1 parameter grouping is in more than one subprogram, the first one encountered is
the one that is used

Natural Construct Object Models114

Using the Object-Generic-Subp Model



User Exits for the Object-Generic-Subp Model

The following example shows the User Exits panel for the Object-Generic-Subp model:

 CSGSAMPL                OBJECT-GENERIC-SUBP Subprogram                  CSGSM0 
 Aug 19                            User Exits                            1 of 1 
                                                                                
                User Exits             Exists    Sample   Required Conditional  
     -------------------------------- -------- ---------- -------- ------------ 
  _  NAT-DOCS                                                           X
  _  CHANGE-HISTORY                            Subprogram                       
  _  PARAMETER-DATA                            Subprogram    X          X       
  _  PARAMETER-DATA-UNCATEGORIZED                                       X       
  _  LOCAL-DATA                                                                 
  _  MOVE-TO                                                                    
  _  MOVE-TO-UNCATEGORIZED                                              X       
  _  UNDEFINED-METHOD                                                           
  _  BEFORE-CODE                               Subprogram               X       
  _  AFTER-CODE                                Subprogram               X       
  _  MATERIALIZE-XARRAY-PDA-TO-LDA                                      X       
  _  MATERIALIZE-XARRAY-LDA-TO-PDA                                      X       
  _  RESET-TEMP-MATERIALIZED                                            X       
  _  MOVE-BACK                                                                  
  _  MOVE-BACK-UNCATEGORIZED                                            X       
  _  MISC-SUBROUTINES                                                           
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit                    bkwrd frwrd                          ↩

Notes:

1. For information about the standard user exits, see User Exits for the Generation Models, Natural
Construct Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

The following user exits are either required by or specific to the Object-Generic-Subp model:

■ AFTER-CODE User Exit
■ BEFORE-CODE User Exit
■ MATERIALIZE-XARRAY-LDA-TO-PDA User Exit
■ MATERIALIZE-XARRAY-PDA-TO-LDA User Exit
■ MOVE-BACK User Exit
■ MOVE-BACK-UNCATEGORIZED User Exit
■ MOVE-TO User Exit
■ MOVE-TO-UNCATEGORIZED User Exit
■ PARAMETER-DATA User Exit

115Natural Construct Object Models

Using the Object-Generic-Subp Model



■ PARAMETER-DATA-UNCATEGORIZED User Exit
■ RESET-TEMP-MATERIALIZED User Exit
■ UNDEFINED-METHOD User Exit

AFTER-CODE User Exit

The code in this exit is executed after all subprograms that had the After Code option selected on
the Additional Parameters panel have been executed. If method-specific code is required, you can
add it based on the value of +METHOD (indicates which business service method is executed).

To only execute the portion of the code associated with a specific subprogram, ensure that the
appropriate code is specified in VALUE in the DECIDE clause associated with the corresponding
subroutine (i.e., only the code in the VALUE "CALLNAT-GCDN" clause will be executed when
the CALLNAT-GCDN subroutine invokes it). For example, the CALLNAT-GCDN subroutine
contains a CALLNAT to the GCDN subprogram and this code is executed after that CALLNAT.

The following example shows code in the AFTER-CODE user exit for the BNUM subprogram in
the SYSCSTDE library:

DEFINE EXIT AFTER-CODE
** Note +METHOD can also be used to
** determine lines of execution
** e.g. IF +METHOD = ... THEN

DECIDE ON FIRST VALUE OF #SUBROUTINE-NAME
VALUE "CALLNAT-GCDN"
IF +METHOD = 'SolutionWithLowerNumbers'

/* Lower the first number by the GCD
#FUNCTION := 'Divide'
INPUT-DATA.#SECOND-NUM := GCD-DATA.#RESULT
PERFORM CALLNAT-CALC

/* Instead of using temporary variables; temporarily used
/* exposed field variables

#BIZ-INPUT-OUTPUTS.#FIRST-NUM := OUTPUT-DATA.#RESULT
/* Lower the second number by the GCD

INPUT-DATA.#FIRST-NUM :=
#BIZ-INPUT-OUTPUTS.#SECOND-NUM

INPUT-DATA.#SECOND-NUM := GCD-DATA.#RESULT
PERFORM CALLNAT-CALC
#BIZ-INPUT-OUTPUTS.#SECOND-NUM := OUTPUT-DATA.#RESULT

/* Move results to Calc input again to do actual division
/* of reduced numbers

MOVE BY NAME #BIZ-INPUT-OUTPUTS TO INPUT-DATA
END-IF
IF +METHOD = 'GreatestCommonDenominator'

IF GCD-DATA.#RESULT > 1 THEN
OUTPUT-DATA.#SUCCESS := TRUE

ELSE
OUTPUT-DATA.#SUCCESS := FALSE

END-IF
END-IF

Natural Construct Object Models116

Using the Object-Generic-Subp Model



NONE
IGNORE

END-DECIDE
END-EXIT

BEFORE-CODE User Exit

The code in this exit is similar to the code in theAFTER-CODEuser exit except it is executed before
the corresponding subroutine is executed. If method-specific code is required, you can add it based
on the value of +METHOD (indicates which business service method is executed).

The following example shows code in the BEFORE-CODEuser exit for the BSTRINGNsubprogram
in the SYSCSTDE library:

DEFINE EXIT BEFORE-CODE
** Note +METHOD can also be used to
** determine lines of execution
** e.g. IF +METHOD = ... THEN

DECIDE ON FIRST VALUE OF #SUBROUTINE-NAME
VALUE "CALLNAT-CSUCASE" /* U=Upper, L=Lower, M=Mixed Case
DECIDE ON FIRST VALUE OF +METHOD

VALUE 'ConvertToUpperCase'
CSACASE.#FUNCTION := 'U'

VALUE 'ConvertToLowerCase'
CSACASE.#FUNCTION := 'L'

VALUE 'ConvertToMixedCase'
CSACASE.#FUNCTION := 'M'

ANY
EXAMINE FULL #BIZ-INPUT-OUTPUTS.#STRING FOR ' '
GIVING LENGTH IN #BIZ-INPUT-OUTPUTS.STRING-LENGTH

NONE
IGNORE

END-DECIDE
IGNORE

NONE
IGNORE

END-DECIDE
END-EXIT

117Natural Construct Object Models

Using the Object-Generic-Subp Model



MATERIALIZE-XARRAY-LDA-TO-PDA User Exit

This exit is used when you add X-array fields to the object generic PDA. It is used in conjunction
with theMATERIALIZE-XARRAY-PDA-TO-LDAandRESET-TEMP-MATERIALIZEDuser exits.
The code in this exit prepares for a MOVE BY NAME from a local data area (LDA) containing X-
arrays to a parameter data area (PDA) containing similar X-arrays. This code temporarily resizes
X-arrays before performing the MOVE BY NAME to the PDA.

These exits are only required when an X-array parameter is added to the object generic PDA (in
one of the PARAMETER-DATA exits) and has not been included in the supplied subprograms.
This code eliminates runtime errorswhen X-arrays have not been sized before aMOVEBYNAME
is performed.

Tip: To use these exits, refer to the code preceding the exits that was generated for known
X-arrays.

MATERIALIZE-XARRAY-PDA-TO-LDA User Exit

This exit is used when you add X-array fields to the object generic PDA. It is used in conjunction
with theMATERIALIZE-XARRAY-LDA-TO-PDAandRESET-TEMP-MATERIALIZEDuser exits.
The code in this exit prepares for aMOVEBYNAME fromaparameter data area (PDA) containing
X-arrays to a local data area (LDA) containing similar X-arrays.

For more information, seeMATERIALIZE-XARRAY-LDA-TO-PDA User Exit.

MOVE-BACK User Exit

This exit is used in conjunction with the MOVE-TO user exit and the PARAMETER-DATA user
exit, which contains the data that is exposed to the client from the object generic subprogram.
After the internal subprograms have been invoked, the data must be exposed via the parameter
data area (PDA). The local variables are moved to the parameter variables in the MOVE-BACK
user exit.

For more information, see PARAMETER-DATA User Exit.

MOVE-BACK-UNCATEGORIZED User Exit

This exit is used in conjunction with the MOVE-TO-UNCATEGORIZED user exit and the PARA-
METER-DATA-UNCATEGORIZED user exit, which contains the data that is exposed to the client
from the object generic subprogram. After the internal subprograms have been invoked, the data
must be exposed via the parameter data area (PDA). The local variables aremoved to the parameter
variables in the MOVE-BACK-UNCATEGORIZED user exit.

For more information, see PARAMETER-DATA-UNCATEGORIZED User Exit.

Natural Construct Object Models118

Using the Object-Generic-Subp Model



MOVE-TO User Exit

This exit is used in conjunction with the MOVE-BACK user exit and the PARAMETER-DATA
user exit, which contains the data that is exposed to the client from the object generic subprogram.
To pass this data to subprograms, the data must be moved to local data areas in the MOVE-TO
user exit.

For more information, see PARAMETER-DATA User Exit.

MOVE-TO-UNCATEGORIZED User Exit

This exit is used in conjunction with the MOVE-BACK-UNCATEGORIZED user exit and the
PARAMETER-DATA-UNCATEGORIZED user exit, which contains the data that is exposed to
the client from the object generic subprogram. To pass this data to subprograms, the data must
be moved to local data areas in the MOVE-TO-UNCATEGORIZED user exit.

For more information, see PARAMETER-DATA-UNCATEGORIZED User Exit.

PARAMETER-DATA User Exit

The PARAMETER-DATA user exit is required if you specified the Categorize Parameters option
on the Standard Parameters panel. This exit is used in conjunction with two other exits: MOVE-
TOandMOVE-BACK. (Formore information on categorizingparameters, seeCategorize Parameters.)

The object generic subprogramwraps up to 10 subprograms into one subprogram. The PARAMET-
ER-DATA user exit contains the data that is exposed to the client from the object generic subpro-
gram. To pass this data to the subprograms, it must be moved to local data areas in the MOVE-
TOuser exit. Similarly, after the internal subprograms have been invoked, the datamust be exposed
via the parameter data area (PDA). The local variables are moved to the parameter variables in
the MOVE-BACK user exit.

The PARAMETER-DATA user exit allows the user to choose which level 1 parameter groupings
will be input, input-output, state, and output. The same parameter name cannot be listed under
the same input, input-output, state, or output groupings. If this occurs, youmust revise the gener-
ated code.

To help select the level 1 parameter groupings, the following panel is displayed when you select
Enter on the User Exits panel for the Object-Generic-Subp model:

119Natural Construct Object Models

Using the Object-Generic-Subp Model



 CUOGMC                      Natural Construct                          CUOGMC0 
 Nov 16         Object-Generic-Subp Subprogram Build Report              1 of 1 
                                                        
  1__            Level Ones             Input  Input-Output  State  Output     
     ---------------------------------  -----  ------------  -----  ------      
  1   ACUSTNK                             _          _         _      _     
  2   ACUSTND                             _          _         _      _       
  3   ACUSTNP                             _          _         _      _     
  4   CDBRPDA                             _          _         _      _     
  5   MSG-INFO                            _          _         _      _     
  6   BCUSTE1                             _          _         _      _     
  7   CDBUPDA                             _          _         _      _     
  8   CDBUINFO                            _          _         _      _     
  9   BUSINESS-INFO                       _          _         _      _     
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn             gen         bkwrd frwrd                          ↩

Based on the grouping, data is moved from the exposed PDAs to the internal LDAs used for the
subprograms. You can define up to 100 level 1 parameter groupings. Up to four unique PDAs can
be duplicated across the subprograms.

Note: While using theNCSTBGENcommand to regeneratemultiplemodules in batchmode,
object generic subprograms may not be regenerated. For example, if the parameters have
been categorized (i.e., defined within user exits), you must regenerate the PARAMETER-
DATA user exit from the client.

Structure of the Generated Code

The following example shows the skeleton view of code generated by the PARAMETER-DATA
user exit:

DEFINE DATA
PARAMETER
1 #INPUT
…
1 #INPUT-OUTPUT
…
1 #STATE
…
1 #OUTPUT
LDAs
END-DEFINE

Natural Construct Object Models120

Using the Object-Generic-Subp Model



MOVE BY NAME Pdas to Ldas
** SAG EXIT POINT AFTER-PDA-TO-LDA-MOVE
DECIDE ON FIRST VALUE OF +METHOD
VALUE 'ABC'

EXECUTE-BEFORE := TRUE (optional)
EXECUTE-AFTER := TRUE (optional)
PERFORM nnnn2-CALLNAT
EXECUTE-AFTER := TRUE (optional)
PERFORM nnnn1-CALLNAT

VALUE 'DEF'
EXECUTE-BEFORE := TRUE (optional)
EXECUTE-AFTER := TRUE (optional)
PERFORM nnnn3-CALLNAT
EXECUTE-AFTER := TRUE (optional)
PERFORM nnnn1-CALLNAT

END-DECIDE
MOVE BY NAME LDAS to PDAs
** SAG EXIT POINT AFTER-LDA-TO-PDA-MOVE
*
DEFINE SUBROUTINE nnnn1-CALLNAT

SUBROUTINE-NAME := 'nnnn1-CALLNAT'
IF EXECUTE-BEFORE THEN

PERFORM BEFORE
END-IF
CALLNAT 'nnnn1' ….
IF EXECUTE-AFTER THEN

PERFORM AFTER
END-IF
RESET EXECUTE-BEFORE EXECUTE-AFTER

END-SUBROUTINE
*
DEFINE SUBROUTINE nnnn2-CALLNAT

SUBROUTINE-NAME := 'nnnn1-CALLNAT'
IF EXECUTE-BEFORE THEN

PERFORM BEFORE
END-IF
CALLNAT 'nnnn1' ….
IF EXECUTE-AFTER THEN

PERFORM AFTER
END-IF
RESET EXECUTE-BEFORE EXECUTE-AFTER

END-SUBROUTINE
*
DEFINE SUBROUTINE nnnn3-CALLNAT

SUBROUTINE-NAME := 'nnnn1-CALLNAT'
IF EXECUTE-BEFORE THEN

PERFORM BEFORE
END-IF
CALLNAT 'nnnn1' ….
IF EXECUTE-AFTER THEN

PERFORM AFTER
END-IF

121Natural Construct Object Models

Using the Object-Generic-Subp Model



RESET EXECUTE-BEFORE EXECUTE-AFTER
END-SUBROUTINE
*
DEFINE SUBROUTINE BEFORE

EXECUTE-BEFORE := FALSE
** User Exit BEFORE Code
* Note that +METHOD can also be used in this logic

DECIDE ON FIRST VALUE OF SUBROUTINE-NAME
VALUE 'nnnn1-CALLNAT'

IGNORE
VALUE 'nnnn2-CALLNAT'

IGNORE
NONE

IGNORE
END-DECIDE

** User Exit End code
ESCAPE ROUTINE

END-SUBROUTINE
*
DEFINE SUBROUTINE AFTER

EXECUTE-AFTER := FALSE
** User Exit AFTER Begin Code
* Note that +METHOD can also be used in this logic

DECIDE ON FIRST VALUE OF SUBROUTINE-NAME
VALUE 'nnnn1-CALLNAT'

IGNORE
VALUE 'nnnn2-CALLNAT'

IGNORE
NONE

IGNORE
END-DECIDE

** User Exit End code
ESCAPE ROUTINE

END-SUBROUTINE

PARAMETER-DATA-UNCATEGORIZED User Exit

Use this exit if you want to expose more parameters to the client than are found in the specified
subprograms and youdid not specify theCategorize Parameters option on the Standard Parameters
panel (for example, you can use this exit to expose a message field if the specified subprograms
do not have one). This exit is optional and is used in conjunction with the MOVE-TO-UNCAT-
EGORIZEDandMOVE-BACK-UNCATEGORIZEDuser exits. TheMOVE-TO-UNCATEGORIZED
andMOVE-FROM-UNCATEGORIZEDuser exits are similar to theMOVE-TO andMOVE-FROM
exits for the PARAMETER-DATA user exit except they are used when the Categorize Parameters
option is not selected.

If you decide not to categorize parameters, every PDA from the specified subprograms will be
exposed to the client. The subprogram created by the object generic subprogram will have two
types of variables: parameters that will become the parameters of the business service and local
data that will become the parameters to the supplied subprograms.

Natural Construct Object Models122

Using the Object-Generic-Subp Model



Initially, code is automatically generated into the MOVE-TO and MOVE-FROM exits when the
Categorize Parameters option is specified. This does not happen when the option is not selected,
as more code can be generated outside of user exits.

RESET-TEMP-MATERIALIZED User Exit

The code in this exit temporarily resizes X-arrays before performing the MOVE BY NAME to the
LDA or PDA. Use this exit when you add X-array fields to the object generic PDA.

This exit is used in conjunction with the MATERIALIZE-XARRAY-LDA-TO-PDA and MATERI-
ALIZE-XARRAY-PDA-TO-LDA user exits. For more information, seeMATERIALIZE-XARRAY-
LDA-TO-PDA User Exit.

UNDEFINED-METHOD User Exit

The code in this exit determines what happens when an undefined method is added to the object
generic subprogram and has not been included in the specifications.

Note: In general, the repository should access the same methods as the object generic code.
If not, use this exit to define the new methods.

123Natural Construct Object Models

Using the Object-Generic-Subp Model



124



4 Using the Object-Maint Models

■ Introduction .................................................................................................................................. 126
■ Object-Maint-Subp and Object-Maint-Enhanced-Subp Models ................................................................ 128
■ Object-Maint-Dialog Model .............................................................................................................. 152
■ Object-Maint-Dialog-Subp Model ...................................................................................................... 167

125



This sectiondescribes how touse theObject-Maint series ofmodels to generate themodules required
for an object-maintenance process. The following topics are covered:

Note: For more information on object-oriented development, seeOverview of Object-Ori-
ented Development.

Introduction

The following diagram shows the components of an object-maintenance process:

Within this hierarchy, the object-maintenance dialog program is not concerned with the internal
structure of the files (which is hidden by the PDA), nor the implementation of the data actions
(which is hidden by the object subprogram).

The following table lists the modules required to maintain a maintenance object and the models
used to generate each module:

Natural Construct Object Models126

Using the Object-Maint Models



Model used to GenerateModule

Object-Maint-Subp or Object-Maint-Enhanced-Subp model

Note: The Object-Maint-Enhanced-Subp model is similar to the
Object-Maint-Subp model, except it supports the generation of
fields in the object PDA as dynamic fields.

Object-maintenance subprogram

Object-Maint-Dialog modelObject-maintenance dialog program

Object-Maint-Dialog-Subp modelObject-maintenance dialog subprogram

Tomaintain an object, such as add a new record or modify an existing one, an object-maintenance
dialog invokes an object-maintenance subprogram.

To implement an object-maintenance process using the Object-Maint models:

1 Define the files and relationships in the Predict data dictionary.

Identify the object, the integrity between objects, and the automatic rules that apply to each
object. For more information, see Define Natural Construct Objects.

2 Create the subprogram using the Object-Maint-Subp model.

This subprogramupdates all entitieswithin the object. Subprograms generated by theObject-
Maint-Subp model contain the full range of integrity checks (as defined by the Predict rela-
tionships) and object semantics, whether they are in the form of Predict automatic rules or
object manipulation within user exits.

The Object-Maint-Subp model also creates the parameter data areas (PDAs) for the object:
the object PDA and the restricted PDA. The object PDA contains fields to store all occurrences
of attributes defined in the object. This PDA is the only part of the object that is exposed to
the rest of the application (for update purposes only). The restricted PDA stores information
that is used internally by the subprogram. The values in this PDA must only be altered by
the subprogram.

3 Create maps to input values for the object (if a dialog program invokes the object).

Use the Map model or Natural Map editor to create the maps, which extract fields from the
object PDA.

4 Create the object-maintenance dialog program or subprogramusing theObject-Maint-Dialog
or Object-Maint-Dialog-Subp model.

This module provides the user interface to the object.

The following sections describe the Object-Maint models in the order they are implemented.

127Natural Construct Object Models

Using the Object-Maint Models



Object-Maint-Subp and Object-Maint-Enhanced-Subp Models

This section describes the Object-Maint-Subp and Object-Maint-Enhanced-Subp models, which
generate object-maintenance subprograms and correspondingPDAs. The generated subprograms
update all entities within an object and contain a full range of integrity checks (as defined by
Predict relationships) and object semantics (in the form of Predict automatic rules or objectmanip-
ulation within user exits). The main difference between these models is that the Object-Maint-
Enhanced-Subp model can generate large fields in the object PDA as dynamic fields. This allows
long fields to occupy only the space required to pass the data to the database view. For example,
one customer may require 1000 characters for delivery instructions and another customer only
requires 50 characters. In the first case, 1000 characters will be placed in the parameter data area
(PDA) and in the second case only 50 characters will be placed in the PDA.

TheObject-Maint-Enhanced-Subpmodel allows you to take advantage of larger field sizes available
in Natural and in the databases. In the past, an alphanumeric field in Natural was restricted to a
length of 253 characters. To accommodate larger fields, you had to create an array of strings with
a length of less than 254 characters each. This meant that words in a note, for example, may have
been split across strings. Using this model, you can specify larger string sizes in the files and in
Natural to allow the entire note to fit in one string. The model can also generate code to truncate
trailing blanks, which can needlessly increase the amount of data going into the PDA, and generate
an errormessagewhen a user enters data into a field that is longer thanwhat the database expects.

This section covers the following topics:

■ Object Instance Hierarchy Tree
■ CDAOBJ2 Data Area
■ Generated Data Areas
■ Data Access Subroutines
■ Store "Before" Images
■ Editing and Processing of Entities
■ Additional Checks within User Exits
■ Parameters for the Object-Maint-Subp Model
■ User Exits for the Object-Maint-Subp Model
■ Parameters for the Object-Maint-Enhanced-Subp Model

Natural Construct Object Models128

Using the Object-Maint Models



■ User Exits for the Object-Maint-Enhanced-Subp Model

Object Instance Hierarchy Tree

An object is built from a primary entity and its child entities (sub-entities), which are defined in
Predict with entity relationships. An instance (object value) of the object consists of occurrences
(records) of the constituent entities. Depending on the update constraint type specified, the following
interpretations of null occurrence are adopted:

■ For update constraint type C (Cascade), an entity record is set to null if its key suffix value is
set to null. An exception to this occurs when the length of the key for the child entity is equal
to the length of the key for its parent entity (there is no suffix, for example). In this case, a record
is set to null if all non-key attributes are null.

■ For update constraint type L (suffix is a line number) and type N (renumbered suffix), an entity
record is set to null if all the non-key attributes are set to null.

Each instance of the object can be represented by an object instance hierarchy tree, where the oc-
currence of the primary entity forms the node at the root of the tree and each occurrence of its
child entities forms a node at a lower level. A null occurrence of an entity within the object does
not correspond to any node of the hierarchy tree.With this representation, the following properties
can be observed:

■ Each non-null occurrence of an entity must correspond to a non-null occurrence of its parent
entity; if an entity occurrence is set to null, so are all the occurrences of its child entities. This
property of existence can be seen as a downward propagation from parent to child. If a record
is set to null during an update, that record and all its child records are deleted.

■ The attributes (field values) of an entity occurrence can propagate downward to those of its
child entities. This type of propagation can be seen while traversing a pre-order tree. When a
node is encountered for the first time, it can take on the attributes of its parent node. (To imple-
ment this propagation, refer to the V0-entity-name and V1-entity-name subroutines in the
UPDATE-EDITS user exit.)

■ The attributes of an entity occurrence can propagate upward to those of its parent entity. This
type of propagation can be seen while traversing a post-order tree. When a node is encountered
for the last time, the entity occurrence can contribute to the attributes of its parent since all of
its attributes (and its child attributes) are already processed. (To implement this propagation,
refer to the V2-entity-name subroutine in the UPDATE-EDITS user exit.)

Tip: An instance of an object can be referred to as an instance of a class.

Consider an insurance policy object defined with the following entity relationships:

129Natural Construct Object Models

Using the Object-Maint Models



An object instance consisting of a policywith two inquiries and two vehicles, where the first vehicle
has two coverages and the second has three, can be represented by the following object hierarchy
tree:

This object hierarchy tree can be equally represented by the following diagram, which illustrates
the pre-order and post-order traversing of a tree:

Natural Construct Object Models130

Using the Object-Maint Models



In this diagram, the V0 and V1 on the left side or bottom of each node represent the V0-entity-
name and V1-entity-name subroutines; the V2 on the right side of the node represents the V2-en-
tity-name subroutine for the corresponding entity. In this example, the following subroutines are
involved:

V0-INS-POLICY and V1-INS-POLICY
V2-INS-POLICY
V0-INS-VEHICLE and V1-INS-VEHICLE
V2-INS-VEHICLE
V0-INS-COVERAGE and V1-INS-COVERAGE
V0-INS-INQUIRY and V1-INS-INQUIRY

Each node corresponding to an occurrence of the INS-COVERAGE and INS-INQUIRY entities
does not have any child nodes and is called a leaf (of the tree). While traversing the object instance
hierarchy tree, the first time a leaf is encountered is also the last time. Therefore, a leaf does not
have a V2-entity-name subroutine.

The Object-Maint-Subp model generates PERFORM-subroutine statements that allow attributes
to propagate with the V0-, V1-, or V2-entity-name subroutines.

Example of PERFORM Statements

The following example shows PERFORM statements generated by the Object-Maint-Subpmodel:

*PROCESS INS-POLICY
*FOR EACH POLICY:
PERFORM V0-INS-POLICY
PERFORM INS-POLICY-PREDICT-VERIFICATIONS
(Check Predict automatic rules for INS-POLICY)
PERFORM V1-INS-POLICY
*PROCESS INS-VEHICLE
*PROCESS INS-INQUIRY
PERFORM V2-INS-POLICY
*PROCESSING FOR THE INS-POLICY

*PROCESS INS-VEHICLE
*FOR EACH VEHICLE:
PERFORM V0-INS-VEHICLE
PERFORM INS-VEHICLE-PREDICT-VERIFICATIONS
(Check Predict automatic rules for INS-VEHICLE)
PERFORM V1-INS-VEHICLE
*PROCESS INS-COVERAGE
PERFORM V2-INS-VEHICLE
*PROCESSING FOR THE INS-VEHICLE

*PROCESS INS-COVERAGE
*FOR EACH COVERAGE:
PERFORM V0-INS-COVERAGE
PERFORM INS-COVERAGE-PREDICT-VERIFICATIONS
(Check Predict automatic rules for INS-COVERAGE)
PERFORM V1-INS-COVERAGE

131Natural Construct Object Models

Using the Object-Maint Models



*PROCESSING FOR THE INS-COVERAGE

*PROCESS INS-INQUIRY
*FOR EACH INQUIRY:
PERFORM V0-INS-INQUIRY
PERFORM INS-INQUIRY-PREDICT-VERIFICATIONS
(Check Predict automatic rules for INS-INQUIRY)
PERFORM V1-INS-INQUIRY
*PROCESSING FOR THE INS-INQUIRY

CDAOBJ2 Data Area

The Object-Maint-Subp model uses the CDAOBJ2 data area, which contains parameters that are
common to all object-maintenance subprograms. For example:

1 CDAOBJ2
*
* This data area contains all
* parameters that are common to
* OBJECT-MAINT-SUBPrograms.
*
2 INPUTS
3 #FUNCTION (A15) /* GET, NEXT, UPDATE, DELETE,

* /* STORE, EXISTS, INITIALIZE
* /* Other User Defined Functions.
4 #CLEAR-AFTER-UPDATE (L) /* Initialize object variables

* /* after a successful UPDATE,
* /* DELETE or STORE.
4 #RETURN-OBJECT (L)
4 #ET-IF-SUCCESSFUL (L) /* Commit the record updates

4 #USE-ISN (L)
/* If the OBJECT was

/* generated with the
/* condition code
/* GET-BY-ISN and
/* this flag is true the
/* GET-OBJECT and
/* HOLD-OBJECT subroutines
/* will retrieve the
/* record by ISN

4 #IGNORE-HELD-ID-CHECK (L) /* Can be used to ignore
* /* the HELD-ID check;
* /* This check can be
* /* ignored if hash locking
* /* is used
4 #BACKOUT-ISSUED (L) /*when true the Object Maint issued a backout transaction
2 OUTPUTS
4 #OBJECT-CONTAINS-DERIVED-DATA (L)
4 #EXISTS (L) /* Requested object exists.

Natural Construct Object Models132

Using the Object-Maint Models



Conditional END OF TRANSACTION (ET) Statement
TheObject-Maint-Subpmodel supports a conditional ENDOFTRANSACTION (ET) statement.
When client and server components are on different platforms, the ET logic is not easily
transmitted across the network. Tomake this process simpler andmore automated, theObject-
Maint-Subp model generates a conditional ET statement that is controlled by two logical
variables: #UPDATE-PERFORMED and #ET-IF-SUCCESSFUL.

Both variables must be set to True before an ET is performed. The #UPDATE-PERFORMED
variable is internally set in the object-maintenance subprogram (depending on the method
that was requested). The #ET-IF-SUCCESSFUL variable is set by the callers of the subprogram
and passed across different platforms via the CDAOBJ2 data area.

If both components reside on the same platform:
■ The object-maintenance dialog modules can continue to issue the ET as before (by default,
the dialog module issues the ET)

or
■ The object-maintenance subprogram can perform the ET

The following conditional statement is generated:

IF #UPDATE-PERFORMED AND CDAOBJ2.#ET-IF-SUCCESSFUL THEN
END OF TRANSACTION

END-IF

Note: If upgrading a generated object-maintenance subprogram fromNatural Construct
V3 to version 4 or higher, you must also regenerate the calling dialogs. The order of
generation is important; first regenerate the object-maintenance subprograms and then
regenerate the dialog modules.

GET-BY-ISN Option
TheNatural Construct administrator can set up theObject-Maint-Subpmodel to generate code
that retrieves data by ISN for Adabas files. This functionality allows a GET BY ISN statement
to be converted into a CALLNAT to the object-maintenance subprogram. The GET BY ISN
code is only executed if:
■ CDAOBJ2.#USE-ISN is set to True
■ ObjectName.OBJECT-ISN has a value
■ the NEXT or FORMER actions are not being used

If an object is generated with the GET-BY-ISN condition code and the #USE-ISN field set to
True, the GET-OBJECT and HOLD-OBJECT subroutines retrieve the record by ISN.

Notes:

133Natural Construct Object Models

Using the Object-Maint Models



1. To determine whether the GET-BY-ISN condition code is set, seeDetermine Which Condition
Codes are Set.

2. For information on using the Adabas ISN as a unique primary key for maintenance, seeUse
*ISN as the Unique Primary Key for Maintenance.

Generated Data Areas

The Object-Maint-Subp model generates the object and restricted PDAs:

Object PDA

This PDA allows data to be transferred between an object-maintenance subprogram and the object-
maintenance dialog program or subprogram, and/or any other programs that invoke the object-
maintenance subprogram.

The following example shows a PDA generated by the Object-Maint-Subp model:

Natural Construct Object Models134

Using the Object-Maint Models



15:06:58 ***** E D I T DATA ***** 13-10-16
Library: SYSCSTDE Name: ORDERPDA PARAMETER DBID: 18 FNR: 4
Command: > +
I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- -------------------------------

1 ORDER /* Object Name
2 ORDER-NUMBER N 6 /*
2 ORDER-AMOUNT P 13.2 /*
2 ORDER-DATE N 8 /*
2 ORDER-CUSTOMER-NUMBER N 5 /*
2 ORDER-WAREHOUSE-ID A 3 /*
2 INVOICE-NUMBER N 6 /*
2 ORDER-TIMESTAMP T /*
2 C#DELIVERY-INSTRUCTIONS N 3 /* Counter Field
2 DELIVERY-INSTRUCTIONS A 60 (1:20)

*
2 C#NCST-ORDER-HAS-LINES N 3 /* Counter field
2 NCST-ORDER-HAS-LINES (1:30) /* NCST-ORDER-LINES
3 LINE-NUMBER N 2 /*
3 ORDER-PRODUCT-ID A 6 /*
3 LINE-DESCRIPTION A 40 /*
3 QUANTITY P 9 /*
3 UNIT-COST P 7.2 /*
3 TOTAL-COST P 9.2 /*

*
3 C#NCST-LINE-HAS-DISTRIBUTION N 3 /* Counter field
3 NCST-LINE-HAS-DISTRIBUTION (1:10) /* NCST-ORDER-DISTRIBUTION
4 DIST-LINE-NUMBER N 2 /*
4 DIST-NUMBER N 2 /*
4 ACCOUNT A 9 /*

R 4 ACCOUNT /* REDEF. BEGIN : ACCOUNT
5 COST-CENTER A 2 /*
5 ACCT A 4 /*
5 PROJECT A 3 /*
4 DIST-AMOUNT P 9.2 /*

*
1 ORDERPDA-ID N 6 /* Object identifier

R 1 ORDERPDA-ID /* REDEF. BEGIN : ORDERPDA-ID
2 STRUCTURE /* To allow MOVE BY NAME
3 ORDER-NUMBER N 6 /*

135Natural Construct Object Models

Using the Object-Maint Models



Restricted PDA

The Object-Maint-Subp model also generates the restricted object PDA. The generated object-
maintenance subprogram uses the restricted object PDA to store information that is used across
multiple applications. An example of such information is the Adabas ISNs (Internal Sequence
Numbers) of all entities within an object when the object is read. In this way, the entities can be
easily retrieved for an Update action. The actual contents of the restricted PDA are only used in-
ternally by the generated object-maintenance subprograms.

For more information, see Define Object Relationships in Predict and Support for Predict Auto-
matic Rules.

Note: An object-maintenance subprogram has no user-interface component. For more in-
formation, seeParameters for the Object-Maint-SubpModel. To see a sample subprogram,
refer to ORDERN in the Natural Construct demo system.

Data Access Subroutines

If a Natural object contains a FIND statement that must be converted to an object-maintenance
subprogram, you can create a new data access function and code the FIND statement in user exits.
To accommodate this functionality, and the GET BY ISN data access statement, certain code has
been placed in subroutines. This allows the same code to be executed — regardless of the access
method. These subroutines are:

■ HOLD-PRIMARY-RECORDS-FOUND (when the data is accessed with a hold)
■ GET-PRIMARY-RECORDS-FOUND (when the data is accessed without a hold)
■ NO-PRIMARY-RECORDS-FOUND

For examples of these subroutines, refer to the GET-OBJECT and HOLD-OBJECT routines.

Store "Before" Images

An object-maintenance subprogram generated by the Object-Maint-Subp model stores a "before"
image of data (for example, what an order looked like before a user made changes). The before
image is kept on the database and is re-requested before an update is performed.

To do this, the code must be generated with the hash-locking feature. Logical variables are then
stored as Alpha format in the local data area to process the hashed values. All data has to hash to
the same value as when the data was requested. If it does, then the data has not changed.

Note: For information about hash locking, see Hash-Locking Option.

Tip: As the local data area is populated with the original data, you can use this data in your
own logic.

Natural Construct Object Models136

Using the Object-Maint Models



Editing and Processing of Entities

An object consists of a primary entity and all its child entities (sub-entities). Each entity is processed
in the following order:

1. Pre-editing checks, which consist of all the edit checks done before the child or children of the
current entity are processed.

2. Processing, during which the current entity is updated, added, or deleted.

3. Post-editing checks, which consist of all the edit checks done after the child or children of the
current entity are processed.

This section covers the following topics:

■ Automatic Validation
■ Processing Order in Adabas Files
■ Processing Order in Non-Adabas Files
■ Pre-editing Checks
■ Post-editing Checks

Automatic Validation

The generated subprogram performs automatic validation using information stored in Predict. It
checks for:

■ The uniqueness of a key, if required
■ Foreign referential constraints (inter-object relationships)
■ Predict automatic rules
■ Cardinality constraints for Predict relationships

Processing Order in Adabas Files

In Adabas files, Natural Construct processes each entity in the following order:

1. Performs pre-edit checks.

2. Processes all children.

3. Performs post-editing checks.

4. Adds, updates, or deletes the entity.

137Natural Construct Object Models

Using the Object-Maint Models



Processing Order in Non-Adabas Files

In non-Adabas files (VSAM,DB2, DL1/IMS), Natural Construct processes each entity in the follow-
ing order:

Add or Update Action

1. Performs pre-edit checks on the current entity.

2. Adds or updates the entity.

3. Processes all children of the entity.

4. Performs post-edit checks.

Note: For VSAM,DB2, orDL1/IMSfileswith a primary key, if the key for an entity is updated
to a new value, the record with the new key value is added before the child records are
processed and the record with the old key value is deleted after the child records are pro-
cessed. Otherwise, the key is updated as usual.

Delete Action

1. Performs pre-edit checks on the current entity.

2. Processes all children of the entity.

3. Deletes the entity.

Note: For relational database andDL1/IMSfileswith referential integrity rules (Predict type
R relationships) defined for intra-object relationshipswith type C (Cascade) constraint type,
the DELETE statement is generated only at the primary level. The DBMS handles the cas-
cading delete through all child records.

Pre-editing Checks

This editing is performed before the children of the current entity are processed. Natural Construct
creates pre-editing subroutines (called EDIT-OBJECT for the primary entity and E-entity-name
for sub-entities) and executes them in the following order:

Natural Construct Object Models138

Using the Object-Maint Models



Add or Update Action

1. Builds the key for the current entity.

2. Ensures the uniqueness of the key (if required).

3. Executes the V0-entity-name subroutine within the UPDATE-EDITS user exit.

4. Enforces the Predict automatic rules.

5. Executes the V1-entity-name subroutine within the UPDATE-EDITS user exit.

6. Enforces the Restricted Update for Insertion (RUI) rules.

7. Enforces the Restricted Update (RU) rules (if the entity is greater than level 1).

Delete Action

1. Executes the D-entity-name subroutine within the DELETE-EDITS user exit.

2. Enforces the Restricted Delete (RD) rules.

Post-editing Checks

This editing is performed by the V2-entity-name subroutine after the children of the current entity
are processed. Natural Construct generates the PERFORM V2-entity-name statement in the fol-
lowing subroutines:

■ CHECK-AND-UPDATE-OBJECT (for the primary entity)
■ C-entity-name (for the sub-entity)

Post-editing allows the upper level tomaintain somedesired redundancy. For example, an insurance
policy requires a premium for each vehicle insured under the policy. For performance reasons,
the policy has a redundant field called POLICY-TOTAL-PREMIUM. You can determine the total
premium by looking at the primary entity for the object; you do not have to go through all the
vehicle entities.

Additional Checks within User Exits

This section describes different uses for user exits supplied for the Object-Maint-Subpmodel. The
following topics are covered:

■ Provide Conditional ET Statements within User Exits

139Natural Construct Object Models

Using the Object-Maint Models



■ Specify Validation Subroutines

Provide Conditional ET Statements within User Exits

In addition to a conditional END OF TRANSACTION (ET) statement, the Object-Maint-Subp
model offers user exits called BEFORE-ET, BEFORE-ET-PROCESSING and AFTER-ET-PRO-
CESSING. These exits provide the same capabilities for the ET statement in the object-maintenance
subprogram as are available in dialog modules. The following conditional statement and user
exits (if requested) are generated:

**SAG DEFINE EXIT BEFORE-ET
* Any special processing before an ET, where this code will be executed
* whether an ET is issued or not.
**SAG END-EXIT

IF #UPDATE-PERFORMED AND CDAOBJ2.#ET-IF-SUCCESSFUL THEN

IF #UPDATE-PERFORMED AND CDAOBJ2.#ET-IF-SUCCESSFUL THEN
**SAG DEFINE EXIT BEFORE-ET-PROCESSING

/* Any special processing before an ET.
**SAG END-EXIT

END OF TRANSACTION

**SAG DEFINE EXIT AFTER-ET-PROCESSING
/* Any special processing after an ET.

**SAG END-EXIT
END-IF

For information about these user exits, see BEFORE-ET, BEFORE-ET-PROCESSING and AFTER-
ET-PROCESSING, Natural Construct Generation.

Specify Validation Subroutines

You can specify additional edit checks within the UPDATE-EDITS user exit and additional refer-
ential integrity checks within the EXTENDED-RI-CHECKS user exit. The UPDATE-EDITS user
exit contains validation subroutines that execute edit checks at different points during the processing
of an entity. You can create subroutines for each entity within an object.

The UPDATE-EDITS user exit contains the following validation subroutines:

DescriptionSubroutine

Executed during the pre-editing phase, before the Predict automatic rules are checked
and the children of the current entity are processed.

V0-entity-name

Executed during the pre-editing phase, after the Predict automatic rules are checked
and before the children of the current entity are processed.

V1-entity-name

Executed during the post-editing phase, after the Predict automatic rules are checked
and all children of the current entity are processed.

V2-entity-name

Natural Construct Object Models140

Using the Object-Maint Models



The EXTENDED-RI-CHECKS user exit contains the following validation routine:

DescriptionSubroutine

Executed during the pre-editing phase, after the Predict automatic rules are
checked and after the V1-entity-name subroutine for the current entity is
executed.

V-relationship-name

For more information about these validation subroutines and user exits, seeObject Instance
Hierarchy Tree and UPDATE-EDITS and EXTENDED-RI-VIEWS, Natural Construct Generation.

Parameters for the Object-Maint-Subp Model

The Object-Maint-Subp model has two specification panels: Standard Parameters and Additional
Parameters. This section describes these panels. The following topics are covered:

■ Standard Parameters Panel
■ Additional Parameters Panel

Note: For information about creating an object-maintenance process, seeDesignMethodology,
Natural Construct Generation.

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

CUOBMA Object-Maint-Subp Subprogram CUOBMA0
Jan 25 Standard Parameters 1 of 2

Module ............. MCUST2N_
System ............. DEMO____________________________

Title .............. Object Title_____________
Description ........ Object description_____________________________________

for..._________________________________________________
_______________________________________________________
_______________________________________________________

Message numbers .... X
Hash locking ....... _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
right help retrn quit right main

141Natural Construct Object Models

Using the Object-Maint Models



The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel. For information on the hash-locking
option, see Hash-Locking Option.

Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

CUOBMB                   Object-Maint-Subp Subprogram                  CUOBMB0
Aug 11                      Additional Parameters                       2 of 2
   Predict view ............. ________________________________ *      
   Primary key .............. ________________________________ *      
   Hold field ............... ________________________________ *      
                                                                       
   Object description ....... ____________________                    
                                                                       
                                           Generate   Source     Object
   Object PDA ............... ________ *       _      C421       C421 
   Restricted PDA ........... ________ *       _      C421       C421 
   Object name .............. ________________________________        
                                                                       
   Next action prefix ....... _                                       
   Log file suffix .......... ________                                
   Trace relationships ...... _                                       
                                                                       
                                                                       
                                                                       
                                                                       
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--- 
main  help  retrn quit                               left  userX main  ↩

Tip: If the Predict view is blank and there is a value in Object PDA, you can enter the name
of another PDA (whichmust be generated byNatural Construct and available in the current
library) in Object PDA to populate the Predict view, Primary key and Object name fields
with the values from this PDA.

The fields on this panel are:

DescriptionField

Name of the Predict view. A file definition for this viewmust exist in Predict. Predict type
N (Natural Construct) relationships relating to the primary file are processed by the

Predict view

generated object-maintenance subprogram. Relationships definedwith a cascading delete
constraint aremaintained as part of the object; relationships definedwith a restricted delete
constraint are used by the object-maintenance subprogram to implement referential
constraints.

Name of the key in Predict for the primary file. This key becomes the primary key to access
the view for maintenance. The key can be a descriptor, superdescriptor, or subdescriptor.
If the key does not exist in the specified Predict file, an error message is displayed.

Primary key

Natural Construct Object Models142

Using the Object-Maint Models



DescriptionField

Name of the field used to logically protect the record against intervening update or delete
actions. Because an object-maintenance subprogram does not use the record-holding

Hold field

facilities of the DBMS to lock records during a GET operation, a hold field must exist in
the primary file for the object. Valid data types are:

■ T *TIMX
■ A10 *TIME
■ B8 *TIMESTMP
■ N7 *TIMN
■ A26 *TIMX (DB2 time stamp format)
■ If the format is none of the above, it must be numeric.

Note: If the hash-lockingmethod is used, this field is not displayed. Formore information,
see Hash-Locking Option.

Object description used in messages. If you specify "Person", for example, messages are
displayed as "Person not found" and "Person displayed".

Object
description

Name of the parameter data area (PDA) used in conjunction with the object-maintenance
subprogram. For more information, seeObject PDA.

Object PDA

Name of the restricted PDAused in conjunctionwith the object-maintenance subprogram.
For more information, see Restricted PDA.

Restricted PDA

If a generated PDA is not found in the steplib chain, this field is marked and protected.
Natural Construct will generate the PDA.

Generate

Name of the first library in which the source code for the module is found. The source
code for the module may exist in multiple libraries in the Natural steplib chain.

If the source code resides in the current library, regenerating it will execute a STOW
command and overwrite the previous version.

Source

Name of the first library in which the object code for the module is found. The object code
for the module may exist in multiple libraries in the Natural steplib chain.

If the object code resides in the current library, regenerating it will execute a STOW
command and overwrite the previous version.

Object

Note: If the Generate field is marked, the PDAs specified on this panel are generated and
stowed when the object-maintenance subprogram is generated — regardless of whether
the subprogram is stowed.

Name of the level 1 structure used to qualify the fields in the object PDA. (It is easier to
identify the source of these attributes if the PDA name is used for this purpose.) The object
name should be kept to a reasonable length.

Note: The object name cannotmatch the name of a file included in the object, nor any field
in the object.

Object name

143Natural Construct Object Models

Using the Object-Maint Models



DescriptionField

If the primary key is compound or redefined into various components, supply a value to
limit the number of prefixed components confined on the Next action. This allows the
subprogram to maintain objects with a common prefix value.

For example, if the primary key is made up of Company + Account + Division and you do
not want the Next action to span the Division values, specify "2". Specify "1" if the Next
action is to be limited to the current Company value.

Next action
prefix

If you want to log objects, you have to create a log file corresponding to each entity within
the object. The name of the log file is the name of the object file concatenated with the

Log file suffix

suffix specified here. For example, if the object consists of the NCST-ORDER-HEADER
and NCST-ORDER-LINES entities and you specify "-LOG", the log file names are
NCST-ORDER-HEADER-LOG and NCST-ORDER-LINES-LOG.

The following fields are required in the log file that corresponds to the header entity in
the object:

■ LOG-TIME

Assigned with *TIMX for T format or *TIMN for N7 format.
■ LOG-DATE

Assigned with *DATX for D format or *DATN for N8 format. (If LOG-TIME has an
embedded date, such as *TIMX, this field is not required.)

■ LOG-TID

Assigned with *INIT-ID.
■ LOG-USER

Assigned with *INIT-USER.
■ LOG-ACTION

Assigned with the #ADD, #MODIFY, or #PURGE log action codes, which are defined
in the CDACTLOG local data area. You can initialize the values for these log action
codes within CDACTLOG to suit your environment.

In the log files corresponding to the sub-entities in the object, only the LOG-ACTIONfield
is required.

Note: For relational databases, use the underscore (_) character instead of the dash (-) for
the log field names (LOG_TIME, LOG_DATE, LOG_TID, LOG_USER, LOG_ACTION).

When this field is selected, Natural Construct displays the relationships it has accepted or
rejected.During the generation process, all accepted and rejected relationships are displayed
with a message indicating the type of relationship.

Trace
relationships

Natural Construct Object Models144

Using the Object-Maint Models



Hash-Locking Option

The Natural Construct administrator can change optimistic record locking from the default
timestampmethod to the hash-locking method. When the hash-locking method of record locking
is specified, the Hold field is not available on the Additional Parameters panel. Instead, an Object
LDA field is displayed, showing the name of the object local data area generated for the object-
maintenance subprogram. For example:

CUOBMB                   Object-Maint-Subp Subprogram                  CUOBMB0 
Jan 13                      Additional Parameters                       2 of 2 
                                                                               
   Predict view ............. NCST-ORDER-HEADER_______________ *               
   Primary key .............. ORDER-NUMBER____________________ *               
                                                                               
                                                                               
   Object description ....... ORDER_______________                             
                                                                               
                                           Generate   Source     Object        
   Object PDA ............... ORDERPDA *       X      SHDEMO     SHDEMO        
   Restricted PDA ........... ORDERPDR *       X      SHDEMO     SHDEMO        
   Object name .............. ORDER___________________________                 
   ** Object LDA is generated when Object PDA is generated                     
   Object LDA ............... ORDERNH_ *              SHDEMO     SHDEMO        
   Next action prefix ....... _                                                
   Log file suffix .......... ________                                         
   Trace relationships ...... _                                                ↩

The hash-locking method retains the functionality of the object-maintenance subprogram. The
only difference is that it checks all the object data, not just the timestamp, to ensure there have
been no intervening modifications.

If the hash-locking method was specified:

■ An object LDA is generated
■ The generated code contains the #HASH-RETRIEVE and #HASH-DATABASE fields in the re-
stricted PDA and will reference a Natural user exit called USR4011N

User Exits for the Object-Maint-Subp Model

The following example shows the User Exits panel for the Object-Maint-Subp model:

145Natural Construct Object Models

Using the Object-Maint Models



 CSGSAMPL                 OBJECT-MAINT-SUBP Subprogram                   CSGSM0 
 Aug 27                            User Exits                            1 of 1 
                                                                                
                User Exits             Exists    Sample   Required Conditional  
     -------------------------------- -------- ---------- -------- ------------ 
  _  NAT-DOCS                                                           X
  _  CHANGE-HISTORY                            Subprogram                       
  _  PARAMETER-DATA                             Example                         
  _  EXTENDED-RI-VIEWS                                                          
  _  LOCAL-DATA                                 Example                         
  _  START-OF-PROGRAM                           Example                         
  _  SELECT-STATEMENT                          Subprogram               X       
  _  USER-DEFINED-FUNCTIONS                     Example                         
  _  BEFORE-ET                                  Example                 X       
  _  BEFORE-ET-PROCESSING                       Example                         
  _  AFTER-ET-PROCESSING                        Example                         
  _  PROCESS-ERROR-MESSAGE                                                      
  _  ERROR-MESSAGE-PDAS                                                         
  _  END-OF-PROGRAM                             Example                         
  _  BEFORE-STORE                               Example                         
  _  AFTER-STORE                                                                
  _  AFTER-GET                                  Example 
  _  BEFORE-DELETE                                                      X       
  _  AFTER-INIT                                 Example                         
  _  UPDATE-EDITS                              Subprogram                       
  _  DELETE-EDITS                              Subprogram                       
  _  AFTER-GET-EDITS                           Subprogram                       
  _  EXTENDED-RI-CHECKS                        Subprogram                       
  _  ADJUST-OBJECT-ID-IN-MSG                    Example                         
  _  AFTER-UPDATE                                                               
  _  OVERRIDE-MINIMUM                           Example                         
  _  OVERRIDE-MAXIMUM                           Example                         
  _  MISCELLANEOUS-SUBROUTINES                  Example                         
                                                                                  ↩
                                                                                  ↩
          
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 frwrd help  retrn quit                    bkwrd frwrd                          ↩

Notes:

1. For information about the standard user exits, see User Exits for the Generation Models, Natural
Construct Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

The following user exits are specific to the Object-Maint-Subp model:

■ AFTER-STORE User Exit
■ AFTER-UPDATE User Exit
■ BEFORE-DELETE User Exit

Natural Construct Object Models146

Using the Object-Maint Models



■ BEFORE-STORE User Exit

AFTER-STORE User Exit

The code in this exit is executed after the data is stored, but before the END TRANSACTION is
issued. For example, it can be used in conjunction with Adabas TRS (Text Retrieval System). As
TRS cannot invert a document index unless the document record exists, the code in this exit calls
TRS to invert the document. In thatway, the transaction can be backed out if there are any problems
with TRS.

AFTER-UPDATE User Exit

The code in this exit is executed after the data is updated, but before the END TRANSACTION is
issued. For example, it can be used in conjunction with Adabas TRS (Text Retrieval System). As
TRS does not have an update document index function, the code in this exit calls TRS to delete
the document index and then calls TRS again to invert the document.

BEFORE-DELETE User Exit

The code in this exit is executed before the data is deleted. For example, it can be used in conjunction
with Adabas TRS (Text Retrieval System). TRS requires the document index to be deleted before
the document record is deleted. The code in this exit can call TRS to delete the document index so
the document record can be deleted.

BEFORE-STORE User Exit

The code in this exit is executed before the STORE command is issued. Use this exit when you
want to change the primary key for an object (for example, when you want to generate a unique
primary key number).

Parameters for the Object-Maint-Enhanced-Subp Model

The Object-Maint-Enhanced-Subp model is similar to the Object-Maint-Subp model, except it
supports the generation of large fields into the object PDA as dynamic fields. As with the Object-
Maint-Subp model, this model has two specification panels: Standard Parameters and Additional
Parameters. The majority of the fields on these panels are the same. This section describes the
fields that are specific to theObject-Maint-Enhanced Subpmodel. The following topics are covered:

■ Standard Parameters Panel
■ Additional Parameters Panel

Notes:

1. For information about the parameters for the Object-Maint-Subpmodel, seeParameters for the
Object-Maint-Subp Model.

147Natural Construct Object Models

Using the Object-Maint Models



2. For information about creating an object-maintenance process, seeDesign Methodology,Natural
Construct Generation.

3. For information about the standard user exits, refer to User Exits for the Generation Models, Nat-
ural Construct Generation.

4. For information about theUser Exit editor, refer toUser Exit Editor,Natural Construct Generation.

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

CUDYMA OBJECT-MAINT-ENHANCED-SUBP Subprogram CUDYMA0
Feb 05 Standard Parameters 1 of 2

Module ............. SS______
System ............. CNDPRO__________________________

Title .............. Object ....______________
Description ........ This subprogram is used to perform object maintenance__

for..._________________________________________________
_______________________________________________________
_______________________________________________________

Message numbers .... _
Hash locking ....... _

Generate dynamic fields when length is greater than .... 25_
Return errors when data is truncated ................... X
Generate with large object (LO) fields ................. _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
right help retrn quit right main

The fields in the upper portion of this panel are similar for all models. For a description of these
fields, see Common Fields on the Standard Parameters Panel. For information on the hash-locking
option, see Hash-Locking Option.

The following fields are specific to the Object-Maint-Enhanced-Subp model:

DescriptionField

Generates dynamic fields into the object PDAwhen the size of the source field
is larger than the number of characters specified in this field. For example, if

Generate dynamic fields
when length is greater than

the specified cutoff length is 50 and a field is defined in the DDM asnnn (where nnn is a
alphanumeric 100, an (A) DYNAMIC field will be generated into the object
PDA instead of an (A100).

Note:

number less than 1000 and
0 indicates the data PDA
contains the same lengths
as the DDM)

Natural Construct Object Models148

Using the Object-Maint Models



DescriptionField

1. If the cutoff length is "0", the field sizes in the PDAwill be the same as those
in the DDM.

2. If a field is affected by the cutoff length, it may not be part of a redefined
field.

3. If the cutoff length is a negative number, the length is converted to a positive
value (for example, "-10" is converted to "10").

Indicates whether the generated subprogram returns an error message when
an alpha dynamic field is larger than its source database field and data in the
field will be truncated.

For example, you may have a text field with a variable length for descriptive
information that you want to set to 1000 characters. Since an alpha dynamic

Return errors when data is
truncated

field can handle more than 1000 characters, you must decide what happens if
the user enters more. One option is to let the user enter whatever they want
and the subprogram will truncate any data over the limit when it stores it in
the database. Another option is to generate error messages when the user
exceeds the limit and/or to stop the processing.

When the subprogram is generated with the truncation option, Construct will
provide errormessages and a user exit to define how to handle the error.Within
this user exit, Construct generates a list of all affected fields (i.e., are alpha
dynamic fields in the PDA but not in the file view) and allows you to change
the value for ##RETURN-CODEor add an ESCAPEROUTINE to continuewith
processing when an error occurs.

Note: Truncation errors and messages are processed in the
PROCESS-TRUNCATION-ROUTINE user exit. For information, see
PROCESS-TRUNCATION-ROUTINE User Exit.

Indicates whether large object (LO) fields are maintained by the generated
subprogram.

Generate with large object
(LO) fields

Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

149Natural Construct Object Models

Using the Object-Maint Models



 CUDYMB              OBJECT-MAINT-ENHANCED-SUBP Subprogram              CUDYMB0 
 Sep 07                      Additional Parameters                       2 of 2 
                                                                                
    Predict view ............. ________________________________ *               
    Primary key .............. ________________________________ *               
    Hold field ............... ________________________________ *               
                                                                                
    Object description ....... ____________________                             
                                                                                
                                            Generate   Source     Object        
    Object PDA ............... NEWOMSA_ *       X                               
    Restricted PDA ........... NEWOMSR_ *       X                               
    Object name .............. ________________________________                 
                                                                                
                                                                                
    Next action prefix ....... _                                                
    Log file suffix .......... ________                                         
    Trace relationships ...... _                                                
                                                                                
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main  help  retrn quit                                      left  userX main   ↩

The fields on this panel are identical to the fields on theAdditional Parameters panel for theObject-
Maint-Subpmodel. The only difference is that the Generate field is always marked for the Object
PDA and Restricted PDAfields. These parameter data areaswill always be generated or regenerated
with theObject-Maint-Enhanced-Subpmodel, since the field definitionsmay changewhendynamic
fields are processed.

After generating the subprogram, you can edit generated source code that is not within user exits.
For information about the protected lines in the generated source code, seeUsing the Source Editor
in Using NaturalONE.

User Exits for the Object-Maint-Enhanced-Subp Model

The following example shows the User Exits panel for the Object-Maint-Enhanced-Subp model:

Natural Construct Object Models150

Using the Object-Maint Models



 CSGSAMPL             OBJECT-MAINT-ENHANCED-SUBP Subprogram              CSGSM0 
 Aug 27                            User Exits                            1 of 1 
                                                                                
                User Exits             Exists    Sample   Required Conditional  
     -------------------------------- -------- ---------- -------- ------------ 
  _  NAT-DOCS                                                           X
  _  CHANGE-HISTORY                            Subprogram                       
  _  PARAMETER-DATA                             Example                         
  _  EXTENDED-RI-VIEWS                                                          
  _  LOCAL-DATA                                 Example                         
  _  START-OF-PROGRAM                           Example                         
  _  SELECT-STATEMENT                          Subprogram               X       
  _  USER-DEFINED-FUNCTIONS                     Example                         
  _  BEFORE-ET                                  Example                 X       
  _  BEFORE-ET-PROCESSING                       Example                         
  _  AFTER-ET-PROCESSING                        Example                         
  _  PROCESS-ERROR-MESSAGE                                                      
  _  ERROR-MESSAGE-PDAS                                                         
  _  END-OF-PROGRAM                             Example                         
  _  BEFORE-STORE                               Example                         
  _  AFTER-STORE                                                                
  _  AFTER-GET                                  Example 
  _  BEFORE-DELETE                                                      X       
  _  AFTER-INIT                                 Example                         
  _  UPDATE-EDITS                              Subprogram                       
  _  DELETE-EDITS                              Subprogram                       
  _  AFTER-GET-EDITS                           Subprogram                       
  _  EXTENDED-RI-CHECKS                        Subprogram                       
  _  ADJUST-OBJECT-ID-IN-MSG                    Example                         
  _  AFTER-UPDATE                                                               
  _  OVERRIDE-MINIMUM                           Example                         
  _  OVERRIDE-MAXIMUM                           Example                 
  _  PROCESS-TRUNCATION-ROUTINE                 Example                 X      
  _  MISCELLANEOUS-SUBROUTINES                  Example                         
                                                                                  ↩
                                                                                  ↩
          
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 frwrd help  retrn quit                    bkwrd frwrd                          ↩

Most of the user exits for this model are identical to those for the Object-Maint-Subp model.

Notes:

1. For information about the standard user exits, see User Exits for the Generation Models, Natural
Construct Generation.

2. For information about user exits that are specific to the Object-Maint-Subp model, see User
Exits for the Object-Maint-Subp Model.

3. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

151Natural Construct Object Models

Using the Object-Maint Models



The following user exit is specific to the Object-Maint-Enhanced-Subp model:

■ PROCESS-TRUNCATION-ROUTINE User Exit

PROCESS-TRUNCATION-ROUTINE User Exit

This user exit can be used in the generated subprogram to define truncation routines and error
messages for alpha dynamic fields. It is a Conditional exit and available when the PDA for the
subprogram contains alpha dynamic fields in the object PDA that represent fixed-length fields in
the database.

When you select the PROCESS-TRUNCATION-ROUTINEuser exit, the following code is generated
into the exit:

 Module ............. ModName                                                     ↩
   
 Title .............. Object ....                                               
 >                                              > + ABS: X X-Y: _ S    5 L    1 
   All  ....+....1....+....2....+....3....+....4....+....5....+....6....+....7..
   0010 DEFINE EXIT PROCESS-TRUNCATION-ROUTINE                                  
   0020 /* Start of PROCESS-TRUNCATION-ROUTINE user exit                        
   0030 /* note that the ##RETURN-CODE can be changed or                        
   0040 /* ESCAPE ROUTINE can be added so that one doesn't stop the program.    
   0050 END-EXIT                                                                  ↩
     

To allow processing to continue when a truncation error occurs, you can change the value for
##RETURN-CODE or add an ESCAPE ROUTINE.

Object-Maint-Dialog Model

The Object-Maint-Dialog model generates the dialog component (Natural program) of an object-
maintenance process. The dialog component communicates with the user and invokes methods
(data actions) implemented by the object-maintenance subprogram. To generate a complete
maintenance process usingNatural Construct’s object-oriented approach, theObject-Maint-Dialog
model must be used in conjunction with the Object-Maint-Subp model (which also generates the
object PDA and restricted PDA). The dialog program performs the following functions:

■ Executes all INPUT/OUTPUT functions:
■ input object data and actions executed on the object
■ mark fields in error and display error messages

■ Invokes the object-maintenance subprogram and passes it the object and action to be executed.
■ Supports left/right scrolling for multiple panels.

Natural Construct Object Models152

Using the Object-Maint Models



■ Controls up to four scroll regions on each panel. A region can also be scrolled simultaneously
on two panels.

■ Displays information for related entities outside the object (sub-entities).

The following example shows a generated object-maintenance dialog (only the first panel is dis-
played):

  Add        Browse     Clear      Display    Modify     Next       Purge       
                                                                       
 NCOMENT                  ***** ORDER SUBSYSTEM *****              NCOMEM11     
 Oct 28                    - MAINTAIN ORDER ENTRIES -              1 more >     
  Action...........: __                                                         
  Order Number.....: 111111   Invoice Number.....: 111111                       
 *Customer Number..: 11111    QUAKER OATS                                       
 *Warehouse ID.....: 113      SOUTHERN DISTRIBUTORS LIMITED                     
  Order Date.......:          Order Amount: 1500.00                             
  1_ ----- Product Information ------        1_ Distribution Information        
   1 *Product....: 187361             /\          Account     Amount            
      Quantity...: 10_______                  1  _________ ____________ /\      
      Cost/Unit..:     150.00                 2  _________ ____________         
      Total......:      1500.00               3  _________ ____________         
      Description: CAT NUGGETS        \/      4  _________ ____________ \/      
  1_ Delivery Instructions (Scroll right for full screen)                       
   1                                                              /\            
   2                                                              \/            
  Direct Command: _________________________________________________________     
                                                                                
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 confm help  retrn quit        flip  pref  bkwrd frwrd       left  right main   
 Related information displayed.                                                 ↩

Notes:

1. PF5 (flip) and PF6 (pref) are available on the panel. For a description of these PF-keys, see De-
fining PF-Keys for Generated Applications, Natural Construct Generation.

2. By default, this program prompts users to select Enter to confirm a Purge action. If you choose
a confirmation key other than Enter, users must confirm Add, Modify, and Purge actions. For
a description of how to change the confirmation key, seeConfirmation Key Setup,Natural Construct
Generation.

3. To see the specifications for this example, refer to the NCOMENT program in the Natural
Construct demo system.

This section covers the following topics:

■ Multiple Scroll Regions
■ Parameters for the Object-Maint-Dialog Model

153Natural Construct Object Models

Using the Object-Maint Models



■ User Exits for the Object-Maint-Dialog Model

Multiple Scroll Regions

In the Object-Maint-Dialog model example, there are three scroll regions:

■ Product Information (order lines entity).
■ Distribution Information (distribution entity).
■ Delivery Instructions (array within the primary entity).

Depending onwhere the user places the cursor, pressing PF7 (bkwrd) or PF8 (frwrd) scrolls through
the data in each of the regions.

Parameters for the Object-Maint-Dialog Model

The Object-Maint-Dialog model has four specification panels: Standard Parameters, Additional
Parameters, Scroll Region Parameters, and Related File Parameters. This section describes these
panels. The following topics are covered:

■ Standard Parameters Panel
■ Additional Parameters Panel
■ Scroll Region Parameters Panel
■ Related File Parameters Panel
■ Variables You Can Use with Object-Maint-Dialog Model Maps

Note: For information about creating an object-maintenance process, seeDesignMethodology,
Natural Construct Generation.

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

Natural Construct Object Models154

Using the Object-Maint Models



 CUOMMA                   Object-Maint-Dialog Program                   CU--MA0 
 Sep 16                       Standard Parameters                        1 of 4 
                                                                                
  Module ............. ________                                                 
  System ............. CST821S_________________________                         
  Global data area ... CDGDA___ *                                               
  With block ......... ________________________________                         
                                                                                
  Title .............. Object Dialog..._________                                
  Description ........ This program is used to maintain the...________________  
                       _______________________________________________________  
                       _______________________________________________________  
                       _______________________________________________________  
                                                                                
  First header ....... ________________________________________________         
  Second header ...... ______________________________________________________   
                                                                                
  Command ............ _                                                        
  Message numbers .... _                                                        
  Password ........... _                                                        
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help  retrn quit                                            right main   ↩

The fields on this panel are similar for all models. For a description of these fields, see Common
Fields on the Standard Parameters Panel.

Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

155Natural Construct Object Models

Using the Object-Maint Models



CUOMMB                   Object-Maint-Dialog Program                   CUOMMB0 
Nov 19                      Additional Parameters                       2 of 4 
                                                                               
                                                                               
   Object maint subprogram .. ________ *                                       
                                                                               
   #ACTION field length ..... 1  Add ...... X  Browse ... ________ *           
                                 Clear .... X  Display .. X                    
                                 Modify ... X  Next ..... X                    
                                 Purge .... X  Former ... _                    
                                                                               
   Window support ........... _                                                
   Push-button support ...... _                                                
   Mark cursor field ........ ________________________________________________ 
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      help  retrn quit        windw                         left  right main   ↩

The fields on this panel are:

DescriptionField

Name of the subprogram invoked by the generated module. (Use the
Object-Maint-Subp model to generate the subprogram.) The specified subprogram
must exist in the current library.

Object maint
subprogram

Length of the action field. By default, the length is "1" and all action fields except
Former are marked. If you do not want the generated dialog to perform a particular
action, deselect the corresponding action field. At least one action must be selected.

The available actions are:

#ACTION field
length

■ Add (adds the specified object)
■ Browse (name of the generated subprogram that supports the Browse action)
■ Clear (clears the specified field values from the panel)
■ Display (displays the specified object)
■ Modify (modifies the specified object)
■ Next (displays the contents of the record having the next higher primary key value
from the current key value)

■ Purge (removes the specified object)
■ Former (displays the contents of the record having the next lower primary key
value from the current key value)

Natural Construct Object Models156

Using the Object-Maint Models



DescriptionField

Note:

1. To add user-defined actions, see Add an Action, Natural Construct Generation.

2. When generating an object-maintenance dialog, this feature works together with
two user exits. For information about these exits, see
SELECT-ADDITIONAL-ACTIONS and ADD-ACTION-PROCESSING, Natural
Construct Generation.

Indicates whether the output from the generated object-maintenance dialog is
displayed in a window or on a panel (the default).

Window support

Indicates whether actions on the generated dialog can be selected by cursor.Push button support

Name of the field on the map where the cursor is automatically placed by the
generated dialog program.

Mark cursor field

Change the Default Window Settings

To change the default window settings for your object-maintenance dialog:

■ Press PF5 (windw) on the Additional Parameters panel.

The Window Parameters window is displayed. For a description of this window, see Change
the Default Window Settings.

Scroll Region Parameters Panel

The following example shows the third specification panel, the Scroll Region Parameters panel:

157Natural Construct Object Models

Using the Object-Maint Models



 CUOMMC                   Object-Maint-Dialog Program                   CUOMMC0 
 Sep 16                     Scroll Region Parameters                     3 of 4 
                                                                                
                                                                                
    Horizontal panels ................. 1                                       
                                                                                
    >> 1 Input using map .............. CDLAY___ *                              
                                                                                
         Scrollable Regions              1        2        3        4           
         Total occurrences ............  ___      ___      ___      ___         
         Screen occurrences ...........  ___      ___      ___      ___         
         Starting from ................ #ARRAY1  #ARRAY2  #ARRAY3  #ARRAY4      
         Scroll with panel ............   _        _        _        _          
                                                                                
         Top left ...... Line .........  ___      ___      ___      ___         
                         Column .......  ___      ___      ___      ___         
         Bottom right .. Line .........  ___      ___      ___      ___         
                         Column .......  ___      ___      ___      ___         
                                                                                
         Depth occurrences ............ ___                                     
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit        deflt       bkwrd frwrd       left  right main   ↩

The fields on this panel are:

DescriptionField

Number of horizontal panels. If the generated program requires more than one input
panel to accept all values that are beingmaintained, specify the total number of panels

Horizontal panels

in this field. By default, "1" is displayed. If you specify more than one panel, Natural
Construct activates the left and right PF-keys in the generated program to allow left
and right scrolling between panels.

If you specify more than one panel, you can display the map specification fields for
another panel by entering that panel number in this field. By default, "1" is displayed.

>> 1

The number specified in this field cannot exceed the number specified in theHorizontal
panels field.

Note: You can also scroll to another panel by pressing the frwrd or bkwrd PF-keys.
The number of the current panel is automatically displayed in this field.

Name of the map for the current panel. If you enter scroll region information, the
specified map should contain array fields that match the specified values.

You can create themaps using theMapmodel or theNaturalMap editor. If you require
scrolling regions, you can use the CDLAYMP1 layout map with the Map model. The

Input using map

Map model generates all of the required indexes to control scrolling. If you create the
map in the Map editor, use the CDLAYOM1 layout map.

Note: For a description of the variables you can use on maps, see Variables You Can
Use with Object-Maint-Dialog Model Maps.

Natural Construct Object Models158

Using the Object-Maint Models



DescriptionField

Number of the scroll region for the corresponding scroll specifications. You can define
the specifications for up to four vertical scroll regions (consisting of vertical arrays)
for each panel.

Scrollable Regions

Total number of scrollable lines required for the scroll region. The total occurrences
value applieswhen the generated program includes a line scroll feature to scroll records

Total occurrences

in a secondary or tertiary file, or multiple-valued fields (MUs), or periodic groups
(PEs). The program ensures that the values assigned to the array index values
(#ARRAY1 through #ARRAY4) do not exceed the total occurrences value for each
array.

If you specify a total occurrences value, specify the total number of lines displayed on
the panel at one time.

Screen occurrences

Starting index for each scroll region. Repeating fields in a scroll regionmust be indexed
by #ARRAYn for scroll region n (where n = 1, 2, 3, or 4).

Starting from

If youwant to force a particular starting from value for a panel (so it has the same value
as another panel), specify the panel number in this field. Each panel maintains its own
current values for the Starting from field (#ARRAYnwhere n = 1, 2, 3, or 4).

Scroll with panel

Location of the corresponding scroll region. A scroll region is always rectangular and
is defined by specifying the panel coordinates of the top left and bottom right corners.

Scroll region
location

In the generated dialog, pressing the bkwrd and frwrd PF-keys positions the scroll
regions backward and forward.

When you specify the location of each scroll region, you make the generated program
sensitive to the position of the cursor in an active scroll region. If the cursor is inside
a defined region, pressing these keys moves the cursor to the base of the active scroll
region and only that region is scrolled. If the cursor is not inside a defined region,
pressing these keys scrolls all regions.

Note: Press the deflt PF-key to compute these coordinates by examining the map’s
source.

Starting line number (vertical axis) for the scroll region.Top left Line

Starting column number (horizontal axis) for the scroll region.Top left Column

Ending line number (vertical axis) for the scroll region.Bottom right Line

Ending column number (horizontal axis) for the scroll region.Bottom right
Column

To create scroll regionwith a third dimension, specify themaximumdepth occurrences
value. For a calendar with the months and days forming the first two dimensions

Depth occurrences

(horizontal and vertical) and the year forming the third dimension (depth), for example,
you can specify "3" to scroll up to three yearly tables of calendar months and days,
and within each yearly table, scroll vertically through the days.

To allow the value of the #DEPTH variable to be changed, you can either place the
#NEXT-DEPTH (P3) variable on the specified map or use PF-keys that you process in
the AFTER-INPUT user exit.

159Natural Construct Object Models

Using the Object-Maint Models



Tip: You can think of a two-dimensional (2D) array as a collection ofmany one-dimensional
(1D) arrays. And you can think of a fixed instance of a third dimension of a three-dimen-
sional (3D) array as a 2D array. Therefore, a vertical scroll region on the generated dialog
can consist of 1D, 2D, or 3D arrays.

This section covers the following topics:

■ Retrieve Default Values for Scroll Region Parameters
■ Display Specifications for Previous Panel
■ Display Specifications for Next Panel

Retrieve Default Values for Scroll Region Parameters

If the object-maintenance map contains scrolling regions with one-dimensional arrays, you can
retrieve the default values for the scroll region parameters by pressing PF5 (deflt). The values for
the scroll region parameters are read from the specified map. The scroll regions must be indexed
by #ARRAY1 through #ARRAY4.

Display Specifications for Previous Panel

Press PF7 (bkwrd) to display the scroll region specifications (Map name, Scroll region, etc.) for the
previously-defined panel.

Display Specifications for Next Panel

Press PF8 (frwrd) to display the scroll region specifications (Map name, Scroll region, etc.) for the
next panel.

Related File Parameters Panel

The following example shows the fourth specification panel, the Related File Parameters panel:

Natural Construct Object Models160

Using the Object-Maint Models



 CUOMMD                   Object-Maint-Dialog Program                   CUOMMD0 
 Jun 21                     Related File Parameters                      4 of 4 
                                                                                
   >> _1 Predict Relationships ........ ________________________________ *      
                                                                                
         View Generation Options                                                
         User generated ........... _   Use relationship name ....  _           
         Predict generated ........ _                                           
         Generate from map on panel _                                           
                                                                                
         Relationship Processing                                                
         New object displayed ..... _                                           
         Control variable modified  ___________________________________         
                                                                                
         Related File Processing                                                
         MOVE BY NAME to .......... ________________________________________    
         PERFORM subroutine ....... ________________________________            
                       IF found ... _                                           
                       IF not found _                                           
                       IF null .... _                                           
                                                                                
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
       help  retrn quit                    bkwrd frwrd       left  userX main   ↩

Use this panel to retrieve additional panel information. Specify the Predict relationships that relate
foreign keys within the object to other tables and then define how you want Natural Construct to
process the specified relationship.

The fields on this panel are:

DescriptionField

Name of the first relationship. You can define up to 10 relationships. After defining the
first, press PF8 (frwrd) to display the specification fields for the next relationship; press

Predict
Relationships

PF7 (bkwrd) to return to the previous relationship. If you specify a relationship, the program
performs file lookups (joins) on the file related to the object file in Predict.

In each relationship, the cardinality of the object filemust beN or CN,while the cardinality
of the related file must be 1 or C. The update constraint type must be R (restricted update)
and the delete constraint type can be blank or R. Only type N (Natural Construct)
relationships are processed.

Note: For relational databases, type R (referential constraint) relationships are also
processed.

If you specify a relationship in the Predict relationships field, indicate which fields in the
related file are placed in the local view used to retrieve foreign file information. Indicate
one of the following view creation options:

View
Generation
Options

■ User generated

161Natural Construct Object Models

Using the Object-Maint Models



DescriptionField

To define your own view of the related file in the LOCAL-DATA user exit, mark this
field.

■ Use relationship name

To use the relationship name as the user view name for the related file, mark this field.
To avoid generating multiple views with the same name, you should specify this option
when the related file can be involved in multiple lookup relationships. If you are using
a map and/or defining the related file view in the LOCAL-DATA user exit, you must
also use the relationship name as the related file view.

■ Predict generated

To have Natural Construct generate a view for you, based on the specified relationship,
mark this field. (All fields in the related file are generated into the view.)

■ Generate from map on panel

To use the fields in a view used on another panel, specify the panel number. Natural
Construct generates a view with those fields prefixed by the name of the related file on
the map used for the specified panel. (The file is determined through the specified
relationship name.)

To specify when relationship processing is performed by the generated program, indicate
one or both of the following processing options:

Relationship
Processing

■ New object displayed

To perform a file lookup on the related file each time a new object is displayed, mark
this field.

■ Control variable modified

To perform a file lookupwhenever a field associatedwith a control variable is modified,
specify the name of the control variable. If the field associated with the control variable
is an array, the control variable must be defined with an asterisk (*) on the map.

To copy the lookup data to another structure, specify the name of the structure.MOVE BY
NAME to

To perform other processing for each file lookup, specify the name of the subroutine in
this field (the subroutine is defined in the AFTER-LOOKUP-SUBROUTINE user exit) and
mark one of the following options:

PERFORM
subroutine

■ IF found

If youwant the subroutine performedwhenever the object’s foreign key is updatedwith
a value that exists in the related foreign table, mark this field. Before the subroutine is
performed, the #LOOKUP-STATUS variable is assigned the value "FOUND".

■ IF not found

Natural Construct Object Models162

Using the Object-Maint Models



DescriptionField

If youwant the subroutine performedwhenever the object’s foreign key is updatedwith
a value that does not exist in the related foreign table, mark this field. Before the
subroutine is performed, the #LOOKUP-STATUS variable is assigned the value "NOT
FOUND".

■ IF null

If you want the subroutine performed whenever the object’s foreign key is updated to
a null value (blank for alphanumeric and 0 for numeric), mark this field. Before the
subroutine is performed, the #LOOKUP-STATUS variable is assigned the value "NULL".

Note: If the object field defined by the relationship is within an array, the control variable
must be defined with an asterisk (*) notation on the map; the occurrence that triggered the
subroutine is given in the #I1 variable.

Variables You Can Use with Object-Maint-Dialog Model Maps

You can use the following variables with maps for object-maintenance programs or subprograms:

DescriptionDefinitionFormatVariable

Name of the program that invoked the map.OutputA8#PROGRAM

First heading for the program.OutputA60#HEADER1

Second heading for the program.OutputA58#HEADER2

For programs with more than one panel, this variable
indicates the number of panels to the left of the current

OutputA9#LEFT- PROMPT

panel. If the current panel is the leftmost panel, this
variable contains the current date.

For programs with more than one panel, this variable
indicates the number of panels to the right of the current

OutputA9#RIGHT- PROMPT

panel. If the current panel is the rightmost panel, this
variable contains the current time.

Action applied to the current object occurrence.ModifiableA1#ACTION

List of available actions.OutputA18#VAL-ACT

Indicates support for direct command processing.ModifiableA60#DIRECT-
COMMAND

Key to Natural Construct’s passive help file for the
current program (system name concatenated with

Output/NondisplayA65#HPARM

program name). Place this variable on themap and pass
it to the CD-HELPR helproutine.

Current panel number. Users can change the value in
this field to reposition to the specified panel. This field
is used for programs with more than one panel.

ModifiableP5#NEXT-ARRAY

163Natural Construct Object Models

Using the Object-Maint Models



DescriptionDefinitionFormatVariable

Index for fields in scroll region 1 that are scrolled by
pressing PF7 (subtract lines-per-panel from #ARRAY1)

Array IndexN7#ARRAY1

or PF8 (add lines-per-panel to #ARRAY1). Also see
#NEXT-ARRAY1.

Index of the first displayed occurrence of the fields in
scroll region 1. Users can change the value in this field

ModifiableP5#NEXT- ARRAY1

to reposition scroll region 1 to the specified panel
number. This field is used for panels that support scroll
region 1.

Similar to #ARRAY1, except it indexes the fields in scroll
region 2.

Array IndexN7#ARRAY2

Similar to #NEXT-ARRAY1, except it indexes scroll
region 2.

ModifiableP5#NEXT- ARRAY2

Similar to #ARRAY1, except it indexes the fields in scroll
region 3.

Array IndexN7#ARRAY3

Similar to #NEXT-ARRAY1, except it indexes scroll
region 3.

ModifiableP5#NEXT- ARRAY3

Similar to #ARRAY1, except it indexes the fields in scroll
region 4.

Array IndexN7#ARRAY4

Similar to #NEXT-ARRAY1, except it indexes scroll
region 4.

ModifiableP5#NEXT- ARRAY4

Index for fields that are scrolled whenever the
#NEXT-DEPTH value changes. By default, no PF-key is

Array IndexN7#DEPTH

assigned to alter the value of #DEPTH. However, this
can be achieved through user exit processing.

Indicates support for third-dimension scrolling. By
default, this field indicates the current depth level. Users

ModifiableP3#NEXT- DEPTH

can change this value to reposition to a different depth
level.

Single-dimension array containing sequential numbers
(starting from 1). The occurrences of this array match

OutputP3#LIN

the value of the highest upper bounds specified for any
scroll region. This array can be placed on the panel
whenever you want to show the current scroll index
value beside a scroll region.

Names of the available actions or alternate PF-key
display formats (supplied in CDDIALDA). Place them

OutputA79#KD-LINE1/

#KD-LINE2/ either at the top of themap or at the bottom immediately
above the standard PF-key lines.

To use the Push Button feature, include the
#KD-LINES-CV control variable and the '00V(NP'02

#KD-LINES(*)

dynamic attribute. To display the push buttons in red,
use '00VRE(NP'02.

Natural Construct Object Models164

Using the Object-Maint Models



DescriptionDefinitionFormatVariable

The CDLAYOM2 layout map provides push button
support.

Enable backward/forward scrolling push buttons
(supplied in CDKEYLDA). Place them on the map(s)

OutputA2#BKWRD-LAB1

#BKWRD-LAB2 next to the fields where you want to enable
backward/forward scrolling.

Include reverse video display among the push button
attributes.

#BKWRD-LAB3

#BKWRD-LAB4

#FRWRD-LAB1

#FRWRD-LAB2

#FRWRD-LAB3

#FRWRD-LAB4

User Exits for the Object-Maint-Dialog Model

The following examples show the User Exits panel for the Object-Maint-Dialog model:

165Natural Construct Object Models

Using the Object-Maint Models



CSGSAMPL                      Natural Construct                         CSGSM0 
Dec 19                            User Exits                            1 of 1 
                                                                               
               User Exit              Exists    Sample   Required Conditional  
    -------------------------------- -------- ---------- -------- ------------ 
 _  NAT-DOCS                                                           X
 _  CHANGE-HISTORY                            Subprogram                       
 _  PARAMETER-DATA                             Example                 X       
 _  LOCAL-DATA                                                                 
 _  START-OF-PROGRAM                                                           
 _  BEFORE-INPUT                                                               
 _  BEFORE-STANDARD-KEY-CHECK                  Example                         
 _  AFTER-INPUT                                                                
 _  AFTER-OBJECT-CALL                          Example                        
 _  AFTER-GET                                  Example                       
 _  AFTER-SCREEN-CLEAR                         Example                        
 _  END-OF-PROGRAM                             Example                       
 _  SELECT-ADDITIONAL-ACTIONS                  Example                         
 _  SET-PF-KEYS                                Example                       
 _  ADD-ACTION-PROCESSING                                              X       
 _  BROWSE-ACTION-PROCESSING                                           X       
 _  BEFORE-BROWSE-CALLNAT                                              X 
 _  AFTER-BROWSE-CALLNAT                                               X       
 _  CLEAR-ACTION-PROCESSING                                            X       
 _  DISPLAY-ACTION-PROCESSING                                          X       
 _  MODIFY-ACTION-PROCESSING                                           X       
 _  NEXT-ACTION-PROCESSING                                             X       
 _  FORMER-ACTION-PROCESSING                                           X       
 _  PURGE-ACTION-PROCESSING                                            X       
 _  COPY-ACTION-PROCESSING                                             X       
 _  ADDITIONAL-ACTIONS-PROCESSING                                              
 _  BEFORE-ET-PROCESSING                       Example                         
 _  AFTER-ET-PROCESSING                        Example                         
 _  REINPUT-SCREEN                                                             
 _  AFTER-LOOKUP-SUBROUTINES                  Subprogram                       
 _  MISCELLANEOUS-SUBROUTINES                  Example                         
                                                                                  ↩
   
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
frwrd help  retrn quit                    bkwrd frwrd                          ↩

Notes:

1. For information about these user exits, seeUser Exits for the GenerationModels,Natural Construct
Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Object Models166

Using the Object-Maint Models



Object-Maint-Dialog-Subp Model

The Object-Maint-Dialog-Subp model generates a dialog component (Natural subprogram) of a
maintenance process, similar to the object-maintenance dialog programdescribed in the preceding
section. The only difference between the two is that the action in the object-maintenance dialog
subprogram is controlled by the calling program.

A browse-select program, for example, can call an object-maintenance dialog subprogram and
pass it the #ACTIONparameter (specifying the action to be performed).When this happens, certain
attributes on the map used by the object-maintenance dialog subprogram are modified by two
control variables the model generates. These variables define the display attributes of the map,
according to the #ACTION parameter:

AttributeControl Variable#ACTION Parameter

Locked

Locked

#KEY-CV

#SCR-CV

Display, Purge

Locked

Open

#KEY-CV

#SCR-CV

Modify

Open

Open

#KEY-CV

#SCR-CV

Add, Copy

The control variables generated by the Object-Maint-Dialog-Subp model are:

Associated WithVariable

Key fields for the object data used on maps.#KEY-CV

All other fields for the object data used on maps.#SCR-CV

Action field. Since programs generated with the Object-Maint-Dialog and
Object-Maint-Dialog-Subpmodels generally use the samemap, this control variable protects
the Action field for the subprogram.

#PROTECT-CV

The following example shows a generated object-maintenance dialog subprogram:

167Natural Construct Object Models

Using the Object-Maint Models



  NCOSELN                ***** ORDER SUBSYSTEM *****                NCOSEM11  
  May 30                  - MAINTAIN ORDER ENTRIES -                1 more >  
                                                                              
  *Action (A,D,M,P,C): D  Order Number: 90008_                                
  *Customer Number....: 22222  KENT VETERINARY CLINIC                         
  *Warehouse ID.......: 638    WATERLOO WAREHOUSING LTD.                      
   Invoice Number.....: 333331                                                
   Order Date.........: 13/10/21 Order Amount: 229898.50                      
                                                                              
   1_ ----- Product Information ------   1_  -- Distribution Information --   
    1 *Product....: 333333                      Account        Amount         
       Quantity...: 500______             1    676767676    3233.00_____      
       Cost/Unit..:      50.00            2    676767678    90.00_______      
       Total......:     25000.00          3    989898989    80.00_______      
       Description: OATS AND BARLEY CE    4    789078900    89.00_______      
   1_ Delivery Instructions (Scroll right for full screen)                    
    1 TO BE DELIVERED TO SHIPPING/RECEIVING IF BEFORE 5:00 PM,                
    2 ELSE TO NIGHT DROP-OFF.SSS                                              
   Direct Command: _________________________________________________________  
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF  
        help  retrn quit        flip        bkwrd frwrd       left  right ma  
   Order 90008 displayed successfully.                                        ↩

This section covers the following topics:

■ Parameters for the Object-Maint-Dialog-Subp Model
■ User Exits for the Object-Maint-Dialog-Subp Model

Note: To see the specifications for this example, refer to the NCOSELN subprogram in the
Natural Construct demo system.

Parameters for the Object-Maint-Dialog-Subp Model

The specification panels for the Object-Maint-Dialog-Subp model are similar to the panels for the
Object-Maint-Dialog model, with one exception. The Additional Parameters panel for the Object-
Maint-Dialog-Subp model contains the Multiple action support field. If this field is specified, the
generated subprogram allows users to perform multiple actions in succession.

Note: For information about the parameters on these panels, seeParameters for the Object-
Maint-Dialog Model.

Natural Construct Object Models168

Using the Object-Maint Models



User Exits for the Object-Maint-Dialog-Subp Model

The User Exits panels for the Object-Maint-Dialog-Subp model are identical to the User Exits
panels for the Object-Maint-Dialog model. For information about these panels, see User Exits for
the Object-Maint-Dialog Model.

169Natural Construct Object Models

Using the Object-Maint Models



170


	Natural Construct Object Models
	Table of Contents
	Preface
	1 Overview of Object-Oriented Development
	Define Natural Construct Objects
	Level 1 (Primary) File Rules
	Level 2 (Secondary) File Rules
	Level 3 (Tertiary) File Rules
	Level 4 (Quaternary) File Rules
	Primary Key Relationships

	Define Object Relationships in Predict
	Intra-Object Relationships
	Inter-Object Relationships
	Support for Foreign Referential Constraints
	Support for Predict Automatic Rules
	Conventions for Automatic Rules
	Features of Automatic Rules




	2 Using the Object-Browse Models
	Introduction
	Object-Browse-Subp Model
	Use Multiple Browse Keys
	Use Compound Browse Keys with Multiple Components
	Specify Minimum and Maximum Key Values
	Allow Lower Case Input Values
	Use Wildcard Characters
	Read Consecutive Sets of Records
	Position to a Specific Record
	Example of Using an Object-Browse Subprogram
	Parameters for the Object-Browse-Subp Model
	Standard Parameters Panel
	Additional Parameters Panel
	Define Optional Parameters

	Parameters Passed to the Object-Browse Subprogram
	Key PDA (Search Key)
	Object PDA
	Restricted PDA
	CDBRPDA
	CDPDA-M


	User Exits for the Object-Browse-Subp Model

	Object-Browse-Static Model
	Parameters for the Object-Browse-Static Model
	Standard Parameters Panel

	User Exits for the Object-Browse-Static Model

	Object-Browse-Dialog Model
	Uses for Object-Browse Dialogs
	Export and Report Options

	Change the Default PF-key Style
	Example of a Generated Object-Browse Dialog
	Parameters for the Object-Browse-Dialog Model
	Standard Parameters Panel
	Define or Customize PF-Keys

	Additional Parameters Panel
	Change the Default Window Settings
	Define or Customize Standard Actions
	Define or Customize Browse-Select Actions
	Define Screen Layout Parameters

	Define PF-Keys
	Define Single PF-Keys
	Define Key Templates
	Select PF-Keys and Key Templates

	Define Actions
	Define Single Actions
	Define Action Templates
	Select Actions and Action Templates
	Access Actions and Methods


	User Exits for the Object-Browse-Dialog Model
	User Exit Models
	Export-Data-Fields Model
	Input-Key Model
	Report-Data-Fields Model
	Write-Data-Fields Model

	User-Exit Statement Model
	Generate Code into the User Exit Editor
	User-Exit Statement Window

	Define International Parameters
	Cursor-Sensitive Translation

	Use SYSERR References for Headings and Prompts
	Select a SYSERR Reference
	Add or Maintain a SYSERR Reference



	Object-Browse-Dialog-Driver Model
	Parameters for the Object-Browse-Dialog-Driver Model
	Standard Parameters Panel

	User Exits for the Object-Browse-Dialog-Driver Model

	Object-LDA Model
	Parameters for the Object-LDA Model
	Standard Parameters Panel
	Select Data Parameters

	Field Layout Parameters Panel


	Object-Browse-Select-Subp Model
	Object-Browse Model Differences
	Methods Generated
	Transaction States

	Generated Code Differences
	Suffixes Used by Natural Construct Objects
	Compatibility with a Subprogram Proxy
	Specify Leading Fixed Components for the Logical Key
	Parameters for the Object-Browse-Select-Subp Model
	Standard Parameters Panel
	Additional Parameters Panel
	Parameters Passed to the Object-Browse-Select Subprogram

	User Exits for the Object-Browse-Select-Subp Model


	3 Using the Object-Generic-Subp Model
	Introduction
	Parameters for the Object-Generic-Subp Model
	Standard Parameters Panel
	Additional Parameters Panel

	User Exits for the Object-Generic-Subp Model
	AFTER-CODE User Exit
	BEFORE-CODE User Exit
	MATERIALIZE-XARRAY-LDA-TO-PDA User Exit
	MATERIALIZE-XARRAY-PDA-TO-LDA User Exit
	MOVE-BACK User Exit
	MOVE-BACK-UNCATEGORIZED User Exit
	MOVE-TO User Exit
	MOVE-TO-UNCATEGORIZED User Exit
	PARAMETER-DATA User Exit
	Structure of the Generated Code

	PARAMETER-DATA-UNCATEGORIZED User Exit
	RESET-TEMP-MATERIALIZED User Exit
	UNDEFINED-METHOD User Exit


	4 Using the Object-Maint Models
	Introduction
	Object-Maint-Subp and Object-Maint-Enhanced-Subp Models
	Object Instance Hierarchy Tree
	Example of PERFORM Statements

	CDAOBJ2 Data Area
	Generated Data Areas
	Object PDA
	Restricted PDA

	Data Access Subroutines
	Store "Before" Images
	Editing and Processing of Entities
	Automatic Validation
	Processing Order in Adabas Files
	Processing Order in Non-Adabas Files
	Add or Update Action
	Delete Action

	Pre-editing Checks
	Add or Update Action
	Delete Action

	Post-editing Checks

	Additional Checks within User Exits
	Provide Conditional ET Statements within User Exits
	Specify Validation Subroutines

	Parameters for the Object-Maint-Subp Model
	Standard Parameters Panel
	Additional Parameters Panel
	Hash-Locking Option


	User Exits for the Object-Maint-Subp Model
	AFTER-STORE User Exit
	AFTER-UPDATE User Exit
	BEFORE-DELETE User Exit
	BEFORE-STORE User Exit

	Parameters for the Object-Maint-Enhanced-Subp Model
	Standard Parameters Panel
	Additional Parameters Panel

	User Exits for the Object-Maint-Enhanced-Subp Model
	PROCESS-TRUNCATION-ROUTINE User Exit


	Object-Maint-Dialog Model
	Multiple Scroll Regions
	Parameters for the Object-Maint-Dialog Model
	Standard Parameters Panel
	Additional Parameters Panel
	Change the Default Window Settings

	Scroll Region Parameters Panel
	Retrieve Default Values for Scroll Region Parameters
	Display Specifications for Previous Panel
	Display Specifications for Next Panel

	Related File Parameters Panel
	Variables You Can Use with Object-Maint-Dialog Model Maps

	User Exits for the Object-Maint-Dialog Model

	Object-Maint-Dialog-Subp Model
	Parameters for the Object-Maint-Dialog-Subp Model
	User Exits for the Object-Maint-Dialog-Subp Model



