§ software

Natural

Extending Natural Studio with Plug-ins

Version 9.1.3

October 2021

ADABAS & NATURAL

This document applies to Natural Version 9.1.3 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NATWIN-PLUGIN-913-20211014

Table of Contents

PTOACE ..o s s ix
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
L e e 5
2 What are Natural Studio PIug-ins?cccccooiiviiiiiiiiiiiieeecceeee, 7
B QUICK STATT c.oeeviiiieeee e et e e e e e e et e e e e e e e e ee e e eeeeeeerenaaan 9
PrerequiSites ... 10
Creating a Minimal PIug-incccocciiiiiiiiiiiiiiiiicce 11
Transferring a Plug-in From Natural 6 to Natural 8c.coccoooiiiis 13
Installing and Activating the Minimal Plug-inccoccooviiiiinnn. 15
Exploring the Minimal Plug-inc.coccooviiiiiiiiii 15
Extending the Minimal Plug-inccocciiiiiiiiii, 16
Deactivating and Uninstalling the Minimal Plug-incccccoeciiiiiiniiinnn. 18

4 Plug-in INterfacescccooieiiiiiiiiiic e 21
5 Natural Studio Interfacescccoooviiiiiiiiiiiiii 23
Root Interfaceccccoviiiiiiiiiiiiiiii 24
Interface Structurecccoovviiiiiiiiiiiii 24
Working with Control Barscccoiviiiiiiiiiiiiiiiiiie 25
Working with Node Typesc.cccooiiiiiiiiii 27
Working with Selectionsccccoviiiiiiiiiiiiiiiiiiiii 31
Working with Natural Development Objectsccccoooiiiiniiiiiiii, 32
Working with Generic Text Documentscccccoevvviiiiiiiiiiieniiiciicce 34
Working with Generic Documentsc.coccoooviiiiiiiiiiiii 35
Working with Tree Views and List VIEWSc.ccccciiiiiiiiiiiiiiiiiiiciicc 37
Working with Result VIEWScccoiviiiiiiiiiiiiiiiiiiiiiccc 38
Working with Environmentscccooooiiiiiiii 40
Working with Applicationscccccoeciiiiiiiiiiiiiiiii 41
Working with PIUg-INsc..ccoviiiiiiiii 43
Working with Dialogscccoeouiiiiiiiiiiiiiiiiiiiciic e 45

6 Developing PIUg-iNScccoviiiiiiiiiiiiiiiccc 47
Creating a PIUg-incccccooiiiiiiiiiiiiii 48
Debugging a PIug-incccccociiiiiiiiiiiiiiiiiiiiicc 48
Deploying a PIug-incccooiiiiiiiiii 49
Developing Plug-ins in Other Programming Languagescccccceeeueene. 50

7 Plug-in EXamplecooiiiiiiiiiiiie 53
Activating the Plug-in Examplecccccooiiiiiiiiiiiiiiiiiicccicc 54
Using the Plug-in Examplecccccoiiiiiiiiiiiiiiiiiiicccc 54

IT Interface Referencecccociiiiiiiiiiiiiiiiiiiiiic 57
8 INatAUtOAPPLICAtION ...c.eoiiiiiiiiiiiiiiii 59
PUIPOSE ..o 60
Properties ... 60

Extending Natural Studio with Plug-ins

MELROAS ..o 66
9 INatAUtOAPPLCAtIONS ...cueiviiiiiiic 71
PUIPOSE oo 72
Properties ..ot 72
Methodsocviiiiiiii 73
10 INatAutoCommandcoociiiiiiiiiiiiiiiiice e 77
PUTPOSE oo 78
Propertiesccccoooiiiiiiiiiiiiiic 78
11 INatAutoCommandsccoevuiiiiiiiiiiiiiii 81
PUIPOSE oo 82
Properti€sociioiiiiiiiii 82
Methodsocviiiiiiiii 83
12 INatAutoContextMenU ..o 85
PUIPOSE ..o 86
Properties ..o 86
Methodsooiiiiiiiiiii 87
13 INatAutoContexXtMenUSccceiiiiiiiiiiiiiiiiii e 91
PUIPOSE ..ot 92
Properties ... 92
MethOdsooiiiiiiiiiiiiiii 93
14 INatAutoControlBarsccccueiiiiiiiiiiiiiiii 95
PUIPOSE oo 96
Properties ..o 96
15 INatAUutoDataATeac..ooviiiiiiiiiiiccicc 99
PUTPOSE ..o 100
Properties ... 100
MEethOdsooiiiiiiiiiiiiiiii 101
16 INatAUtODAtaAT@AS ...cvveeiiiiiiiiicciecc 111
PUTPOSE .ot 112
Properti€sooiiiiiiiiii 112
Methodsoooviiiiiiiiii 113
17 INatAUtODIAlOgoovvviiiiiiiiiiiiiiic 117
PUIPOSE ..o 118
Propertiescoooiiiiiiiiiiiiiiic 118
Methodsc..oiiiiiiiiii 119
18 INatAUtODIAlOZS ...c.vviiiiiiiiiiiiiicici 129
PUIPOSE ..o 229
Properties ... 130
MELROAS ..o 131
19 INatAutoENVIroNmMEentccceiiiiiiiiiiiiiicccce 133
PUIPOSE .o 134
Properti€sociiiiiiiiiiii 134
Methodsc..ooviiiiiiii 137
20 INatAUtoOENVIroNmMEentsccceiiiiiiiiiiiiiiciic 139
PUIPOSE oo 140

Extending Natural Studio with Plug-ins

Extending Natural Studio with Plug-ins

Propertiescoouiiiiiiiiiiiiiic 140
Methodsc.oiiiiiiiiii 141
21 INatAutoFrameMenuccccceiviiiiiiiiiiiiiiii 145
PUIPOSE ..o 146
Properties ... 146
Methodsc..oiiiiiiiiiiiiii 147
22 INatAutoFrameMenus ...t 151
PUIPOSE ..ot 152
Propertiesooiiiiiiiiii 152
Methodsoooviiiiiii 153
23 INatAutoGenericDocumentcccoiiiiiiiiiiiiiiii 155
PUIPOSE ..o 156
PrOPerti€sooouiiiiiiiiiiiic e 156
Methodscooiiiiiiiiii 157
INOHFICAtIONSeviiiiiiiiiiiiiiiiii 157
24 INatAutoGenericDocumentsccooviiiiiiiiiiiiii 159
PUIPOSE .o 160
ProOpertiesociiiiiiiiiii 160
Methodsc.oooviiiiiiii 161
25 INatAutoGenericTextcocciiiiiiiiiiiiiiiiii 163
PUIPOSE ..o 164
PIopertiesccoviiiiiiiiiiiiiii 164
Methodsc.ooiiiiiiiii 166
26 INatAutoGenericTexXtsccoviiiiiiiiiiiiiiic 171
PUTPOSE ..o 172
Properties ... 172
Methodsc.ooviiiiii 173
27 INatAUtOIMAZESoouiieiiiiiii 175
PUIPOSE ..o 176
Properti€sooiiiiiiiiiiic 176
Methodsooviiiiiiiii 176
28 INatAutoLinked Applicationsccoieiiiiiiiiiiiiiiiccc 179
PUIPOSE e 180
Propertiescooouiiiiiiiiiiiiiiic 180
Methodsc..oiiiiiiiiii 181
29 INatAutoNatparmcccciiiiiiiiiiiii 183
PUIPOSE ..o 184
Properties ... 184
30 INatAUONALSVAToviiiiiiiiiiiiiiii e 189
PUIPOSE ... 190
PIOpertiescccviiiiiiiiiiiiiiiic 190
31 INatAutoNodeImagescccvevuiiiiiiiiiiic 193
PUIPOSE ..o 194
PrOperti€sooiiiiiiiiiiii 194
Methodscooviiiiiiiiiii 195

Extending Natural Studio with Plug-ins v

Extending Natural Studio with Plug-ins

32 INatAUtONOAETYPE ..ccvviiiiiiiiiiiiiiiiiii i 197
PUIPOSE ..o 198
PIopertiesccouiiiiiiiiiiiiiiii 198

33 INatAUtONOAETYPES ...cuooviiiiiiiiiciecc e 199
PUIPOSE ..ot 200
PrOPertiesociiiiiiiiiiii e 200
Methodsoooviiiiiiiii 200

34 INatAUtOODbJECtLISt ...oovuviiiiiiiiiiiiii 203
PUIPOSE ... 204
Properties ... 204
Methodsc.oiiiiiiiiiii 205
NOtIfiCatioNScoovviiiiiiiiiiic 205

35 INatAutoObJeCtLiStscc.ovviiiiiiiciicicccc 207
PUIPOSE e 208
Propertiescoouiiiiiiiiiiiiii i 208
Methodsc..oiiiiiiiiii 209

36 INatAULOODJECESeiiiiiiiiiiiiiiiiiici e 213
PUIPOSE ..o 214
Properties ... 214
MELROAS ..o 216

37 INatAutoODbJectTIeeooviiiiiiiiic 219
PUIPOSE .o 220
PrOPerti€sooiiiiiiiiiii 220
Methodsc..ooviiiiiiii 221
INOHfICAtIONSvviiiiiiiiiiiiiciic 223

38 INatAutoObjectTreeNOdecceiviiiiiiiiiiiiiec e 225
PUIPOSE ..o 226
PrOperti€sooiiiiiiiiiiiie 226
Methodsoooviiiiiii 227

39 INatAUtoODbJECtTIOeSeovieeiiiieiieiceecc e 231
PUIPOSE ..o 232
PrOPertiesoouiiiuiiiiiiii e 232
Methodscc.ooiiiiiiii 233

40 INatAUtOPIUGINoovviiiiiiiiiiiiici 237
PUIPOSE ..ot 238
Properties ... 238
Methodsc..oiiiiiiiiiii 241

41 INatAUtoPIUGINSooiiiiiiiiiiiii 245
PUIPOSE ..o 246
PrOperti€scoiiiiiiiiiiic 246
Methods ..o 247

42 INatAutoPOPUPMENUooiiiiiiiiiiic 249
PUIPOSE ..o 250
PrOperti€sooiiiiiiiiiiic 250
Methodsc.oooviiiiiiiiiii 251

vi Extending Natural Studio with Plug-ins

Extending Natural Studio with Plug-ins

43 INatAUtOPTOZIAIMN ...oovviiiiiiiiiiii i 255
PUIPOSE ..o 256
PIopertiesccouiiiiiiiiiiiiiiii 256
Methodsc.ooiiiiiiiiii 257

44 INatAUtOPTOZIamSccoiiiiiiiiiiiiiii i 267
PUIPOSE ..o 268
Properties ... 268
Methodscuooiiiiii 269

45 INatAutoProgressIndicatorc.ocooviiiiiiiiiiii 273
PUIPOSE .ot 274
Propertiesociiiiiiiiiiii 274
Methodsc.oooviiiiiiiiii 275

46 INatAutoRefreshObjectccooiiiiiiiiiiii 277
PUIPOSE ..ot 278
Propertiescooouiiiiiiiiiiiiiiic 278

47 INatAUtoResultVIEewWccccooiiiiiiiiiiiiiiiiic 283
PUIPOSE .o 284
ProOpertiesociiiiiiiiiii 284
Methodsc.oooviiiiiiii 285

48 INatAULORESUIEVIEWS ...couviiiiiiiiiiiiiiiiiciiiccc e 289
PUIPOSE ..o 290
PIopertiesccoviiiiiiiiiiiiiii 290
Methodsc.ooiiiiiiiii 291

49 INatAutoSelectedODbJECtccoviviiiiiiiiiiiiiiiiiiii e 293
PUTPOSE ..o 294
Properties ... 294

50 INatAutoSelectedObJectscccoviiiiiiiiiiiiiiiiiiii e, 299
PUIPOSE ..ot 300
PIopertiescoviiiiiiiiiiiiici 300
Methodsc.ooiiiiiiiiiii 302

51 INatAUtOStUAIO ...ooviiiiiiiiiicc 305
PUIPOSE ..ot 306
PrOPertiesc..ooiiiiiiiiiiic 306
Methodsc.oooviiiiiii 307

52 INatAUtOSYSMAINocveiiiiiieiiciieiccce s 311
PUIPOSE .o 312
Properti€sooiiiiiiiiiiii 312
Methodsc.oooviiiiiiiii 316

53 INatAUtOSYSteIMooiiiiiiiiiiiii 323
PUIPOSE ... 324
PIOpertiescccviiiiiiiiiiiiiiiic 324
Methodscoooiiiiiiiii 325

54 INatAUtOTOOIBATc.ooiiiiiiiiiii 327
PUTPOSE ...t 328
PIoperties ... 328

Extending Natural Studio with Plug-ins vii

Extending Natural Studio with Plug-ins

MEethOdsooiiiiiiiiiiiiii 329

55 INatAUtOTOOIBATIScccviiiiiiiiiiiiiiicicc 331
PUIPOSE .ot 332
Properti€scoiiiiiiiiiiic 332
Methodsc.oooviiiiiii 333

56 INatAULtOTYPES ..oooviiiiiiiiii 335
PUIPOSE ..o 336
Propertiescoouiiiiiiiiiiiiiic 336

57 INaturalStudioPlugln ..o 339
PUIPOSE .ot 340
Methodsc.oiiiiiiiiiii 340
NOtIfiCatioNScoovviiiiiiiiiiic 343

58 INaturalStudioPlugInTreeccccooeviiiiiiiiiiii 351
PUIPOSE ..ot 352
Methodsooiiiiiiii 352

III DTS ..ottt 359
59 DTD for INatAutoNatparm - Local Environmentcccccccceviiniinninnnn. 361
60 DTD for INatAutoNatparm - Remote Environmentccccocininiinnnnnn 371
61 DTD for INatAutoNatsvar - Local Environmentcccccooviiviiiiiiiiinnnn. 373

viii Extending Natural Studio with Plug-ins

Preface

This documentation describes how to develop your own plug-ins. It is organized under the

following headings:

What are Natural Studio
Plug-ins?

Quick Start

Plug-in Interfaces
Natural Studio Interfaces
Developing Plug-ins
Plug-in Example

Interface Reference

DTDs

General information on the plug-ins that can be developed in order to extend
Natural Studio functionality.

Prerequisites for developing plug-ins. How to create a minimal plug-in. How
to install and activate the minimal plug-in. How to extend the generated
code of the minimal plug-in with your own code. How to deactivate and
uninstall the minimal plug-in.

How Natural Studio interacts with a plug-in.
How a plug-in interacts with Natural Studio.

How to use remote debugging with a plug-in and how to deploy a plug-in
to another machine. Some hints on how to develop plug-ins in languages
that allow creating ActiveX components.

How to use the plug-in example. Information on the library which contains
the source code of the plug-in example.

Descriptions of all interfaces (plug-in interfaces and Natural Studio interfaces)
in alphabetical order.

Because of their length the DTDs used in several Natural Studio interfaces
are provided separately and are listed in this part.

See also Plug-in Manager in the documentation Using Natural Studio.

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Extending Natural Studio with Plug-ins

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

About this Documentation

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

" Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.
" Access articles, code samples, demos, and tutorials.

= Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

® Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Extending Natural Studio with Plug-ins 3

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

|

= 2 What are Natural Studio PIUG-INS?veeiiiiiie et 7
B3 QUICK SEAM ...ttt e e e e e s 9
B 4 PIUG-IN INTEITACES ... s 21
m 5 Natural StUdIO INEEITACES ... e 23
L R LoV o o T o T (U B PP PP PPPP 47
B 7 PIUG-IN EXAMPIE <. 53

2 What are Natural Studio Plug-ins?

Natural Studio offers a set of functions, tools and utilities. You may need further functions or a
tool that does not yet exist in Natural Studio, or find yourself repeatedly doing the same task.
With Natural Studio plug-ins, you can create your own extensions of Natural Studio functionality.
A variety of Natural Studio components has been developed using this technique, for example
the plug-ins XRef Evaluation and Object Description.

A Natural Studio plug-in is an ActiveX component that provides specific interfaces. Using these
interfaces, Natural Studio interacts with the plug-in. Vice versa, Natural Studio provides specific
interfaces through which a plug-in can interact with Natural Studio. These interfaces are presented
in the form of an object model that allows access to most areas of Natural Studio.

Because Natural Studio plug-ins are ActiveX components, you can develop plug-ins in any language
that allows you to create ActiveX components. If you implement your plug-in in Natural, however,
you can integrate it most closely into Natural Studio. In Natural, you implement a plug-in as a
Natural class.

One type of plug-in is a wizard. A wizard is a step-by-step instructive program that leads users
through a specific procedure. An example of this plug-in type is the Application Wizard. Another
type of plug-in is an editor. An editor allows creating and modifying development objects in an
MDI document window. An example of this plug-in type is Object Description.

3 Quick Start

® Prerequisitescccvvvveeenn.
= Creating a Minimal Plug-in ...

= Transferring a Plug-in From Natural 6 to Natural 8 ...

= |nstalling and Activating the M
= Exploring the Minimal Plug-in
= Extending the Minimal Plug-in
= Deactivating and Uninstalling

INIMALPIUGHIN .

the MInIMal PIUG-IN ...vvvveviieeeeeeee e

Quick Start

In order to understand the structure of a Natural Studio plug-in and its interaction with Natural
Studio, it is instructive to create and explore a minimal, but fully operational plug-in. Later this
plug-in will be extended. Perform the steps described in the topics below.

Prerequisites

In order to develop a plug-in, you need the example library SYSEXPLG as a basis. This library contains
the plug-in example and some central definitions and modules that are common to all plug-ins.

Plug-ins are always executed under the Natural parameter file NATPARM. While developing a plug-
in, you need the same Natural environment during editing, cataloging, debugging and execution
of your plug-in. Especially make sure that Natural Studio runs with the same system file settings
as specified in the Natural parameter file NATPARM.

~ To check the prerequisites

1 Make sure that the library SYSEXPLG is available.

2 Invoke the Configuration Utility and make sure that the libraries SYSEXPLG and SYSEXT are
defined as steplibs in the Natural parameter file NATPARM.

3 This step applies only after a first-time installation of Natural.

In the Configuration Utility open Natural Configuration Files > Global Configuration File
> System Files.

You will see an entry with the alias name "PLUGINS". This system file, which is part of the
plug-in environment must be used as the FUSER of the Natural installation.

. Note: This new "PLUGINS" entry is only available after a first-time installation of

Natural. It is not available with an update installation or when Natural is installed in
parallel to an older version of Natural.

4 This step applies only after an update installation of Natural or when a current version of
Natural is installed in parallel to an older version of Natural.

After an update installation or when a current version of Natural is installed in parallel to an
older version of Natural, the FUSER setting of the plug-in environment has to be added
manually to the global configuration file:

* In the Configuration Utility open Natural Parameter Files > NATPARM > System Files >
User System File.

* In the FUSER tab change the values for DBID and FNR to match those of the FUSER of
your plug-in environment.

10 Extending Natural Studio with Plug-ins

Quick Start

/A Important: Never use the FNAT of the plug-in environment as the FUSER of Natural
since an update installation might delete the FNAT.

Save your configuration and exit the Configuration Utility.

Plug-ins are always executed in the plug-in environment (for example C:\ Program Files
(x86)\ Common Files\ Software AG\ Natural\ V1) under the Natural parameter file NATPARM.

While developing plug-ins, Natural for Windows must be started with the FUSER of the plug-
in environment.

/), Important: Please be aware of the fact that the plug-in environment is independent from

the Natural Studio environment. When a plug-in extends Natural Studio or retrieves
data from Natural Studio, this should always be performed via the exposed interfaces.

Creating a Minimal Plug-in

Plug-ins are created using the Plug-in Manager.

> To create a plug-in

1
2

Make sure that the Prerequisites are met.

Make sure that plug-in activation has been enabled. See Workspace Options in the documentation
Using Natural Studio.

Invoke the Plug-in Manager as described in Invoking the Plug-in Manager in the documentation
Using Natural Studio.

Invoke the context menu and choose New.

The following dialog box appears.

Extending Natural Studio with Plug-ins "

Quick Start

i Create Plug-in [&J

| dentification
Library: FATLRAL

Class module: MSTPLG-K
Clazs namme: CSAGMATUSERMATURALPLUGIN

Dizplay name: Uzer MATURAL Plug-in

Wersion: 3 Single zerver

k.] [Cancel] [Help

i =4

The entries that are proposed in the different text boxes contain your user ID.

5 Specify all the following information:

Library
Enter the Natural library into which the plug-in shall be generated. You should ideally
use a new library for each plug-in project. If the library is not empty, you will receive a
warning. If you generate the plug-in anyway, existing modules will be replaced without
further warnings.

| Note: Do not use a library name starting with SYS since this plug-in library will

then be created into the FNAT of the plug-in environment which is not permitted.

Class module
The plug-in consists basically of a Natural class. Choose an eight character name for the
class module and enter it here.

Class name

This name will be used as class name in the DEFINE CLASS statement. Choose a 32 character
class name and enter it here. This class name combined with the version number will be
used as ProgID in the system registry when the plug-in is installed. Therefore you must

use a name that is unique among all ActiveX components that are installed on the machine.
It is good and common practice to prefix the name with an abbreviation of your company.
For instance the class names of the plug-ins delivered with Natural Studio all start with

"CSAGNAT".

Display name
This name will be used to display the plug-in in the Plug-in Manager.
Version

The version number specified here is combined with the class name specified above to
form the ProglID of the plug-in, for example "CSAGNATUSERNATURALPLUGIN.3".

12 Extending Natural Studio with Plug-ins

Quick Start

Different plug-ins with the same class name and different version numbers can coexist in
one installation.

Single server
If this check box is selected, the new plug-in will run in an own Natural server process,
distinct from all other plug-ins. This is required only if the plug-in uses generic document
windows.

If this check box is not selected, the plug-in will run in the same server process as the Plug-
in Manager. This saves an extra Natural server process during execution of the plug-in.
However, it does not allow the usage of generic document windows.

Choose the OK button to generate the plug-in into the specified library. This is a minimal
plug-in which you can extend with your own code (this is explained later in this section).

If an error occurs during the generation process, check the generation log. A common reason
for errors is that the example library SYSEXPLG is not available, is not set as a steplib or was
manually modified. In such a case, you have to reinstall the example library and check the
steplib assignment.

In order to register and activate the plug-in, proceed as described in Installing and Activating
the Minimal Plug-in below.

Transferring a Plug-in From Natural 6 to Natural 8

This section describes how to transfer a custom plug-in running in a Natural Version 6 environment
to a Natural Version 8 or higher environment.

Note: Following this approach, the custom plug-in will still run in the Natural Version 6

environment.

~ To transfer a plug-in

1

Q. &~ W PN

Start Natural Version 6.x and unload the custom plug-in library to the file system using the
Unload Wizard of the Object Handler.

Stop Natural Version 6.x.

Start the Natural Version 8.x Configuration Ultility.

Adjust the steplibs as described in Prerequisites.

Add the FUSER setting of the plug-in environment manually to the global configuration file:

* In the Configuration Utility open Natural Parameter Files > NATPARM > System Files >
User System File.

Extending Natural Studio with Plug-ins 13

Quick Start

10

11

12

* In the FUSER tab change the values for DBID and FNR to match those of the FUSER of
your plug-in environment.

/A Important: Never use the FNAT of the plug-in environment as the FUSER of Natural
since an update installation might delete the FNAT.

Save your configuration and exit the Configuration Utility.
Start Natural Version 8.x.

Load the custom plug-in library to the file system using the Load Wizard of the Object Handler.

Note: If the custom plug-in ported to Natural Version 8.x is located in an FNAT librar
J plug-mp y
(library name starting with SYS), the library must be renamed to an FUSER library.

Delete incompatible objects:

" Delete the INSTAL-N object of the ported custom plug-in library.
® Delete the Resources folder containing a .reg and a .log file.

Use a new GUID and a new version number:

® Generate a new GUID by creating a temporary plug-in library and copy the GUID into the
clipboard.

Open the INSTALL program located in the custom plug-in library.

Init the #CLSID variable with the newly generated GUID value.
* Increment the #VERSION variable value.

SAVE and STOW the INSTALL program.

Open the custom plug-in class in the custom plug-in library.

® Init the #CLSID variable with the newly generated GUID value.
® Increment the #VERSION variable value.

® SAVE and STOW the custom plug-in class.

In order to register and activate the plug-in, proceed as described in Installing and Activating
the Minimal Plug-in below.

14

Extending Natural Studio with Plug-ins

Quick Start

Installing and Activating the Minimal Plug-in

When the minimal plug-in has been created as described above, it can be installed. When it has
been installed, it can be activated.

The advantage of an activated plug-in is that you can immediately test whether your own code
that you add to the plug-in works as intended.

~ Toinstall a plug-in

1 Execute the program INSTALL that was created in the library specified during the creation of
the plug-in.

2 Restart Natural Studio to make the new plug-in visible in the Plug-in Manager.

| Note: The next time you execute the program INSTALL, the plug-in is uninstalled.

~ To activate a plug-in

1 Invoke the Plug-in Manager.
2 Activate the new plug-in as described in Activating and Deactivating a Plug-in in the document-

ation Using Natural Studio.

| Note: When you define automatic activation mode for this plug-in, the plug-in will be

activated each time you start Natural Studio. See Defining Automatic or Manual Activation
Mode for a Plug-in in the documentation Using Natural Studio.

Exploring the Minimal Plug-in

Log on to the library into which the plug-in was generated and open the generated class in the
Class Builder. You will notice that the plug-in is just a Natural class that implements two specific
interfaces, namely INaturalStudioPlugInand INaturalStudioPlugInTree. These interfaces are
specified in the interface modules (copycodes) NSTPLG-1 and NSTPLT- I, which are contained in
the example library SYSEXPLG and are shared by all plug-ins.

The minimal plug-in leaves most of the methods of these interfaces empty. In fact it really imple-
ments only two methods: OnActivate and OnDeactivate of the interface INaturalStudioPTugIn.
These methods are of specific interest: Natural Studio calls the method OnActivate, when the user
chooses the command Activate in the Plug-in Manager. OnDeactivate is called when the user
chooses the command Deactivate in the Plug-in Manager.

Extending Natural Studio with Plug-ins 15

Quick Start

If you open the method bodies of OnActivate and OnDeactivate in the Class Builder, you will
notice that the minimal plug-in does nothing other than indicating its activation and deactivation
by opening a message box. A real plug-in will of course use these methods to prepare itself for
operation and to initialize and uninitialize its state. In the following section, we will see what this
can mean.

Extending the Minimal Plug-in

The following topics are covered below:

= Adding a Command
= Enabling the Command
= Handling the Command

Adding a Command

In order to interact with the user, the plug-in must define commands and present them to the user
in menus or toolbars. Usually this will be done in the method OnActivate. Natural Studio passes
a handle to the Natural Studio interface INatAutoStudio to the plug-in. The plug-in will store this
handle and use it to access Natural Studio during further method calls.

> To add a command

= Asanexample, add the code which is indicated in bold to the method OnActivate:

define data

parameter using nstact-a

object using nsttmp-o

local

1 ffcontrolbars handle of object

1 ffcommands handle of object

1 f#fcommand handle of object

1 fftoolbars handle of object

1 #toolbar handle of object
end-define

*

* Keep the Natural Studio Automation interface in mind.
#studio := nstact-a.iNatAutoStudio
* Show that we are coming up.

send "MessageBox" to {studio

with "Activating plug-in!" "Natural Studio Plug-in"
*

* Add a command.

ffcontrolbars := #studio.ControlBars
ffcommands := fcontrolbars.Commands
send "Add" to jfcommands

16 Extending Natural Studio with Plug-ins

Quick Start

with 100 "My Command" 1

return Fcommand
*

* Select a toolbar.

fftoolbars := fcontrolbars.Toolbars
send "Item" to #toolbars

with "Tools"

return fftoolbar
*

* Insert the command.
send "InsertCommand" to #toolbar

with ffcommand
*

end

This code sequence creates a command with the internal identifier "100" and inserts it into
the Tools toolbar. Whenever the user chooses the new toolbar button, Natural Studio sends
the command identifier "100" to the method OnCommand of the interface INaturalStudioPlugIn.

Enabling the Command

Initially, Natural Studio shows the new command disabled. In order to make the command
available to the user, the plug-in must implement a command status handler. In the command
status handler, the plug-in can check any condition necessary to enable the command. In particular,
it has access to the interface INatAutoStudio to perform operations in Natural Studio. In the
simplest case, the plug-in enables the command without any condition.

> To enable the command

= Asanexample, add the code which is indicated in bold to the method OnCommandStatus of
your plug-in:

define data
parameter using nstcst-a
object using nsttmp-o
end-define
*
decide on first nstcst-a.Command
value 100
nstcst-a.Enabled := True
none
ignore
end-decide
*

end

Extending Natural Studio with Plug-ins 17

Quick Start

Handling the Command

In order to react to the command, the plug-in must implement a command handler. In the command
handler, the plug-in can do anything necessary to implement the command. In particular, it has
access to the interface INatAutoStudio to perform operations in Natural Studio.

> To handle the command

= Asan example, add the code which is indicated in bold to the method OnCommand of your
plug-in:

define data

parameter using nstcmd-a
object using nsttmp-o

local

1 {#objects handle of object
1 #progs handle of object

end-define
*
decide on first nstcmd-a.Command
value 100
ffobjects := #studio.Objects
#fprogs := ffobjects.Programs
send "Add" to #fprogs with 1009
none
ignore
end-decide
*

end

Now when the user chooses the new toolbar button, the plug-in opens the program editor
with an untitled program.

Deactivating and Uninstalling the Minimal Plug-in

If you do not want to work with your minimal plug-in any longer, you can deactivate it. If you
want to remove your minimal plug-in from the Plug-in Manager, you have to uninstall it.

~ To deactivate a plug-in

1 Invoke the Plug-in Manager.

2 Deactivate your minimal plug-in as described in Activating and Deactivating a Plug-in in the
documentation Using Natural Studio.

18 Extending Natural Studio with Plug-ins

Quick Start

| Note: When automatic activation mode has been defined for this plug-in, the plug-in

will be activated again the next time you start Natural Studio. See Defining Automatic
or Manual Activation Mode for a Plug-in in the documentation Using Natural Studio.

~ To uninstall a plug-in

1 Execute the program INSTALL that was created in the library specified during the creation of
the plug-in.

2 Restart Natural Studio to remove the plug-in from the Plug-in Manager.

| Note: The next time you execute the program INSTALL, the plug-in is installed again.

Extending Natural Studio with Plug-ins 19

20

4 Plug-in Interfaces

Natural Studio accesses its plug-ins through an Automation interface.
The following individual interfaces form this Automation interface:

® TNaturalStudioPlugln
® INaturalStudioPlugInTree
A plug-in does not need to implement any of the methods in this interface. In fact the simplest

working (but of course useless) plug-in just provides the interfaces, but leaves all method imple-
mentations empty.

21

22

5 Natural Studio Interfaces

B ROOE INEEITACE ..ottt e e e e e e e e e e e e 24
B NEEITACE SHTUCIUTE ...t e et e e e e e e e e e e neeee s 24
m Working With CONrOl BAScoi e 25
B WOrKing With NOTE TYPES ...t 27
B WOrKING With SEIECHONSeiii it e e e e a e e e e e 31
= Working with Natural Development ODJECEScoiiiiiiiiii s 32
= Working with Generic TeXt DOCUMENTSooiiuiiiiiii et 34
= Working With GENeriCc DOCUMENLSuuiiiiiiiii et 35
= Working with Tree Views and LISt VIEWScooiiiiiiiiii e 37
B AWOrKING WIth RESUIE VIBWS ...ttt e et en e eeee e 38
m Working With ENVIFONMENTSiiiiiiiiie e 40
m Working With APPIICELIONS ...vvvvieieieis e 41
B AWOTKING WIth PIUG-INS ...ttt 43
B WOrKING WIth DIlOgS ... 45

23

Natural Studio Interfaces

Root Interface

Plug-ins access Natural Studio functionality through an Automation interface. All individual in-
terfaces that form the Natural Studio Automation interface can be reached from the root interface,
INatAutoStudio. A handle to this interface is passed to each plug-in during activation and deac-

tivation.

Interface Structure

The following tree diagram shows the hierarchical structure of the Automation interface:

INatAutoStudio
~-INatAutoObjects
“~INatAutoDataAreas
--INatAutoDataArea
“~INatAutoDialogs
--INatAutoDialog
- INatAutoPrograms
--INatAutoProgram
~-INatAutoGenericDocuments
~-INatAutoGenericDocument
~-INatAutoGenericTexts
~-INatAutoGenericText
~INatAutoObjectLists
“-INatAutoObjectList
‘~INatAutoObjectTrees
~INatAutoObjectTree
~INatAutoObjectTreeNode
~INatAutoSelectedObjects
~INatAutoSelectedObject
~-INatAutoRefreshObject
~-INatAutoControlBars
“~INatAutoImages
~INatAutoCommands
“~INatAutoCommand
~INatAutoToolBars
--INatAutoToolBar
--INatAutoFrameMenus
~-INatAutoFrameMenu
-INatAutoPopupMenu

24

Extending Natural Studio with Plug-ins

Natural Studio Interfaces

~INatAutoContextMenus
“~INatAutoContextMenu
“~INatAutoPopupMenu
- INatAutoTypes
~INatAutoNodeTypes
--INatAutoNodeType
“~INatAutoNodeImages
~-INatAutoPlugIns
~-INatAutoPlugIn
“~INatAutoResultViews
“INatAutoResultView
~INatAutoSystem
“-INatAutoEnvironments
“~INatAutoEnvironment
“-INatAutoNatparm
“~INatAutoNatsvar
“~INatAutoApplications
- INatAutoApplication
~-INatAutoLinkedApplications
~INatAutoEnvironment
“INatAutoSysmain
~INatAutoProgressIndicator

Working with Control Bars

Natural Studio users access plug-in functionality by using commands. A plug-in identifies each
command by a number. The number can be freely chosen, but must of course be unique per plug-
in. A command can have a caption and an image assigned. Caption and image represent the
command in menus and toolbars.

To provide a command to the user, a plug-in first creates an INatAutoCommand interface in the
INatAutoCommands collection:

send "Add" to ffcommands
with 4711 "MyCommand" #fmyImage
return #myCommand

While creating the command, in the above example the plug-in refers to an image #myImage. This
image is used to represent the command visually in menus and toolbars. The plug-in may have
loaded the image before, using the method INatAutoImages::LoadImage:

Extending Natural Studio with Plug-ins 25

Natural Studio Interfaces

send "LoadImage" to fimages
with "e:\images\myimage.bmp"
return #mylImage

This resultsin an IPictureDisp interface that can be passed to the method INatAutoCommands: : Add.
The IPictureDisp interface is a predefined interface in Windows. An IPictureDisp interface can
be created in Natural using the method INatAutoImages::LoadImage.

Alternatively, the plug-in can pass the image file name directly to the method
INatAutoCommands: : Add:

send "Add" to {ffcommands
with 4711 "MyCommand" "e:\images\myimage.bmp"
return ffmyCommand

When the user later chooses the command in a menu or toolbar, the plug-in is notified by using
the method INaturalStudioPTugIn::0OnCommand.

But in order to make the command accessible to users in the first place, the plug-in must insert it
into a menu or toolbar. We show this with a toolbar as example. Here the plug-in first locates the
Tools toolbar. Then it inserts the previously created command into the toolbar.

send "Item" to fftoolbars

with "Tools"

return #toolsToolbar

send "InsertCommand" to #toolsToolbar
with ffmyCommand

The plug-in needs to create the command only once and can then assign it to different toolbars or
menus.

The plug-in might as well create its own toolbar and add the command to this toolbar:

send "Add" to #ftoolbars

with "MyToolbar"

return #myToolbar

send "InsertCommand" to #myToolbar
with ffmyCommand

We saw the plug-in use the interfaces INatAutoCommands, INatAutoImages and other interfaces.
But how does the plug-in get access to these interfaces in the first place? The plug-in accesses them
by querying properties of the root interface, INatAutoStudio. A handle to this interface is passed
to each plug-in during activation and deactivation. From this interface the plug-in can navigate
to any other section of the Natural Studio Automation interface.

To work with control bars, a plug-in uses the interfaces described in the following sections:

INatAutoControlBars
INatAutoImages

26 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

INatAutoCommands
INatAutoCommand
INatAutoToolBars
INatAutoToolBar
INatAutoContextMenus
INatAutoContextMenu
INatAutoFrameMenus
INatAutoFrameMenu
INatAutoPopupMenu

Working with Node Types

Natural Studio frequently uses tree views and list views to display development objects and to
navigate through them. Each node in a tree view or list view is characterized by a node type. The
node type defines how nodes of a given type are represented in the user interface.

Each node type is identified by an integer number. A development object belonging to a given
node type is identified by the number of that node type and by an alphanumeric key. The format
of the key varies from node type to node type.

Plug-ins that wish to create their own tree views and list views in Natural Studio can refer to the
predefined node types. In addition, plug-ins can define their own node types and can then refer
to these user-defined node types.

The following topics are covered below:

= Predefined Node Types
= User-defined Node Types

Predefined Node Types

The built-in Natural Studio development objects such as program, dialog, class, library or applic-
ation have a predefined node type and key format. Many interfaces and methods in the Natural

Studio Automation interface refer to the predefined node types. The full list of available predefined
node types and the format of their keys is defined in the following tables.

Extending Natural Studio with Plug-ins 27

Natural Studio Interfaces

Predefined Node Types

Node Type Number [Node Type Name Key Format
1001 Parameter data area NATID
1002 Copycode NATID
1003 DDM NATID
1004 Global data area NATID
1005 Helproutine NATID
1006 Local data area NATID
1007 Map NATID
1008 Subprogram NATID
1009 Program NATID
1010 Subroutine NATID
1011 Text NATID
1012 View NATID
1013 Dialog NATID
1014 Class NATID
1015 Command processor NATID
1017 Mainframe DDM DDMID
1018 Function NATID
1019 Shared resource RESID
1020 Error message file NATID
1021 Adapter NATID
1051 Parameter data area (in application) |NATID
1052 Copycode (in application) NATID
1053 DDM (in application) NATID
1054 Global data area (in application) NATID
1055 Helproutine (in application) NATID
1056 Local data area (in application) NATID
1057 Map (in application) NATID
1058 Subprogram (in application) NATID
1059 Program (in application) NATID
1060 Subroutine (in application) NATID
1061 Text (in application) NATID
1062 View (in application) NATID
1063 Dialog (in application) NATID
1064 Class (in application) NATID
28 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

Node Type Number |Node Type Name Key Format
1065 Command processor (in application) | NATID
1067 Mainframe DDM (in application) DDMID
1068 Function (in application) NATID
1069 Shared resource (in application) RESID
1070 Error message file (in application) |NATID
1071 Adapter (in application) NATID
1101 System file FILEID
1102 Natural system file FILEID
1103 User system file FILEID
1104 DDM system file FILEID
1111 Library LIBID
1112 Library (in application) LIBID
1121 Environment BSTR
1131 Base application BSTR
1132 Compound application BSTR
1141 Application server BSTR
Format NATID

Syntax Description

name library fnr dbnr

Identifies the Natural development object with the given name in the given
library in the given system file. The individual parts of the identifier are
separated by spaces.

name library

Identifies the Natural object with the given name in the given library. The system
file is then determined from the library according to the usual Natural logic,
depending on the library name. The individual parts of the identifier are
separated by spaces.

name Identifies the Natural object with the given name in the current logon library.
Format RESID
Syntax Description

name/ 1ibrary/ fnr/dbnr|ldentifies the shared resource with the given name in the given library in the

given system file. The individual parts of the identifier are separated by slashes.

name/ library

Identifies the shared resource with the given name in the given library. The
system file is then determined from the library according to the usual Natural
logic, depending on the library name. The individual parts of the identifier are
separated by slashes.

name

Identifies the shared resource with the given name in the current logon library.

Extending Natural Studio with

Plug-ins 29

Natural Studio Interfaces

Format DDMID

Syntax Description

name fnr dbnr|ldentifies the mainframe DDM with the given name in the given FDIC system file. The
individual parts of the identifier are separated by spaces.

name Identifies the mainframe DDM with the given name in the current FDIC system file.
Format LIBID
Syntax Description

name fnr dbnr|ldentifies the Natural library with the given name in the given system file. The individual
parts of the identifier are separated by spaces.

name Identifies the Natural library with the given name. The system file is then determined
from the library according to the usual Natural logic, depending on the library name.

Format FILEID

Syntax Description

fnr dbnr|ldentifies the Natural system file with the given numbers. The individual parts of the identifier
are separated by spaces.

Example

Assume that in a certain development environment, we have a system file with the database
number "101" and the file number "99", containing a library MY LIB with a program MY PROG.

In the given environment

® the program is identified by the node type 1009 and the key "MYPROG MYLIB 99 101",
* the library is identified by the node type 1111 and the key "MYLIB 99 101",
" the system file is identified by the node type 1103 and the key "99 101".

User-defined Node Types

Plug-ins can define their own node types. This is useful if a plug-in wants to display tree views
or list views of development objects not belonging to the predefined set of Natural Studio objects.
An example is the Object Description plug-in. It is also useful for plug-ins that want to display
certain aspects of Natural Studio objects not covered by built-in Natural Studio functionality. An
example is the XRef Evaluation plug-in.

When defining its own node type, a plug-in is free to choose an arbitrary positive integer value
starting with "20000". Values below "20000" are reserved for predefined node types. It does not
matter if different plug-ins chose the same integer value for a node type. Internally, Natural Studio
distinguishes the node types by their numbers and by the plug-in that defined the node type.

30 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

The plug-in is free to define the key format for each user-defined node type. Natural Studio does
not interpret the keys of user-defined node types, but treats them as opaque strings.

To define new node types and their visual representations, a plug-in uses the interfaces described
in the following sections:

INatAutoTypes
INatAutoNodeImages
INatAutoNodeTypes
INatAutoNodeType

Working with Selections

Through the interfaces described in this section, plug-ins can access the set of objects the user has
currently selected in Natural Studio. A plug-in might need this information to decide if a specific
menu or toolbar command is applicable to the current selection and must hence be enabled in the
user interface. If the user then executes the command, the plug-in again needs to know the set of
selected objects in order to apply the command to each of them. A plug-in has access to the current
selection through the interfaces described in this section.

In order to work with the current selection, a plug-in starts with the root interface INatAutoStudio,
retrieves the INatAutoObjects interface and then the INatAutoSelectedObjects interface. We
assume here that the plug-in has kept a handle to the interface INatAutoStudio in a variable named
fistudio. This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::0nActivate.

ffobjs := ffstudio.Objects
ffselobjs := ffobjs.SelectedObjects

The returned INatAutoSelectedObjects interface gives access to the set of objects the user has
currently selected. Using this interface, the plug-in can, for instance, iterate across the selected
objects and inspect them. The method Item returns an INatAutoSelectedObject interface to a
specific selected object.

#iCount := ffselobjs.Count
for #i := 1 to {#iCount
send "Item" to #selobjs
with #i return #selobj
#iType := ffselobj.Type
ffaKey := ffselobj.Key
end-for

The property FocusObject returns the index of the specific selected object that currently has the
focus. This index can be used to retrieve the INatAutoSelectedObject interface of the focus object.

Extending Natural Studio with Plug-ins 31

Natural Studio Interfaces

JH Focus := {fselobjs.FocusObject
send "Item" to #selobjs
with #fiFocus return #focus

The method ContainsObjectType can be used for a quick check if the current selected set contains
objects of a specific type. This might be sometimes sufficient to decide if a specific command shall
be enabled or not.

send "ContainsObjectType" to {ffselobjs
with 1009 return #bContainsPrograms

For specific checks the plug-in can also retrieve and process the current selection as an XML doc-
ument.

f#faSelectedObjectsXML := #selobjs.SelectedObjects
To work with selections, a plug-in uses the interfaces described in the following sections:

INatAutoObjects
INatAutoSelectedObjects
INatAutoSelectedObject

Working with Natural Development Objects

Through the interfaces described in this section, plug-ins can create and edit Natural development
objects. Being able to create new development objects, load existing objects into an editor, manip-
ulate their contents and to save and stow them, enables plug-ins to provide generation functions
and thus to help automating the development process. An example is the Program Generation
plug-in.

To open a program in the program editor, for instance, a plug-in starts with the root interface
INatAutoStudio, retrieves the INatAutoObjects interface and then the INatAutoPrograms interface.
Now it uses the method INatAutoPrograms::0pen to load the program into the editor.

We assume here that the plug-in has kept a handle to the interface INatAutoStudio in a variable
named #studio. This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::0OnActivate.

32 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

ffobjects := #studio.Objects

f#fprograms := ffobjects.Programs

send "Open" to {fprograms

with 1009 "MYPGM" "MYLIB" return ffprogram

The resulting INatAutoPrograminterface can now be used to operate on the program, for instance,
to stow it and then to close the editor.

send "Stow" to f#program
send "Close" to ffprogram

A new program source is created by using the method Add.

send "Add" to {#fprograms
with 1009 return ffprogram

Source code is added to the program either as a whole by using the property Source:

ffprogram.Source := "WRITE ""HELLO, WORLD!"" END

Or incrementally by using the method InsertLines.

send "InsertlLines" to #program

with "WRITE ""HELLO, WORLD!" #return fnext
send "InsertLines" to #program

with "END" {fnext return fnext

The interface INatAutoProgram provides also search and replace methods and other methods to
modify the source code.

send "Search" to #program

with "HELLO" return #found

send "Replacelines" to #program
with "WRITE ""Good morning" #found

Dialogs and data areas are accessed in a similar way by using the interfaces INatAutoDialog and
INatAutoDataArea. But there is one particularity with these objects: Even though there is a
graphical or structured editor in the user interface for these objects, they are edited textually
through the Automation interface. Applied to data areas this means: If a plug-in wants to generate
a data area, it actually has to generate a DEFINE DATA statement.

Extending Natural Studio with Plug-ins 33

Natural Studio Interfaces

ffobjects := #studio.Objects
jfdataareas := ffobjects.DataAreas
send "Add" to {ffdataareas

with 1006 return #1da

*

send "StartEdit" to #1da

send "InsertLines" to #1da

with "DEFINE DATA LOCAL" return #next
send "InsertlLines" to #1da

with "1 MYSTRING(A10)" #next return ffnext
send "InsertlLines" to #1da

with "1 MYNUMBER(I4)" #next return #next
send "InsertlLines" to #1da

with "END-DEFINE" #fnext return next

send "EndEdit" to {1da

*

send "Stow" to #1da
send "Close" to #1da

The calls to the methods INatAutoDataArea::StartEdit and INatAutoDataArea::EndEdit are
used to mark the beginning and end of a series of editing operations.

To work with Natural development objects, a plug-in uses the interfaces described in the following
sections:

INatAutoObjects
INatAutoPrograms
INatAutoProgram
INatAutoDialogs
INatAutoDialog
INatAutoDataAreas
INatAutoDataArea

Working with Generic Text Documents

Through the interfaces described in this section, plug-ins can use the Natural Studio program ed-
itor as editor for arbitrary text objects. A plug-in can open a program editor session, pass a buffer
with text data to it, let the user edit the data and then retrieve the modified data back. The plug-
in itself is responsible for providing and storing the data to be edited. The program editor provides
the usual editing functions, as far as they are appropriate for generic text objects.

To let the user edit a given text in the program editor, a plug-in starts with the root interface
INatAutoStudio, retrieves the INatAutoObjects interface and then the INatAutoGenericTexts
interface. Now it uses the method INatAutoGenericTexts: :0pen to load the text buffer into the
editor.

34 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

We assume here that the plug-in has kept a handle to the interface INatAutoStudio in a variable
named #studio. This handle was passed to the plug-in during activation, in the method
INaturalStudioPTugIn::0OnActivate. Also we assume that the text to be edited is contained in
the alphanumeric variable #buffer.

ffobjects := {fstudio.Objects

fftexts := {ffobjects.GenericTexts

send "Open" to fftexts

with "Curriculum Vitae" "Dana Scully" #buffer
return #text

The editor is then opened and the user can edit the text interactively.

The plug-in can use the resulting INatAutoGenericText interface to operate on the text, for instance,
to insert lines:

send "InsertlLines" to ftext
with "Taught for two years at Quantico Medical School"

If the user chooses the Save button in the editor, the plug-in receives the notification
PLUGIN-NOTIFY-SAVE. In response to this notification, it will usually retrieve the edited text from
the editor and save it.

ffouffer := fftext.Source
* Now save the text in a plug-in specific way.

To work with generic text documents, a plug-in uses the interfaces described in the following
sections:

INatAutoGenericTexts
INatAutoGenericText
INatAutoObjects

Working with Generic Documents

A plug-in that maintains own development objects might want to provide its own editors for each
of its development object types. Editors in Natural Studio typically maintain development objects
in MDI (Multiple Document Interface) windows. In the following, we call them document windows.
Natural Studio has a number of built-in editors, for instance, the program editor and the dialog
editor. A plug-in can implement its own editor with a so-called generic document window.

Implementing such an editor as a generic document window makes the editor behave like the
built-in editors in Natural Studio. Essentially this means: Several editor windows on different
objects can be opened in parallel and the user can switch between them.

Extending Natural Studio with Plug-ins 35

Natural Studio Interfaces

In order to implement a generic document window, you first create a Natural dialog of type “Plug-
in MDI window”. In your plug-in code, you can then open this dialog with the 0PEN DIALOG
statement and let Natural Studio display the dialog as a document window. Normally you will
do this in the command handler of your plug-in, that is in the method
INaturalStudioPTugIn::0nCommand:

open dialog "mydlg" null-handle giving #dialogid
ffobjects := {#studio.Objects

ffgenericdocs := ffobjects.GenericDocuments

send "Add" to #fgenericdocs with #dialogid return ffdoc

The resulting INatAutoGenericDocument interface can now be used to operate on the document
window.

The plug-in has several other means to communicate with the Natural dialog contained in the
generic document window:

® The plug-in can send events to the dialog with the SEND EVENT statement and using the dialog
ID.

® The dialog can send method calls to the plug-in. To achieve this, the plug-in should pass its own
*THIS-0BJECT handle to the dialog in the OPEN DIALOG statement.

® The dialog can call the Natural Studio Automation interface. To achieve this, the plug-in should
pass the INatAutoStudio interface pointer to the dialog in the OPEN DIALOG statement.

Whenever the user activates a document window, Natural Studio automatically switches the frame
menu to a menu that contains the commands applicable to the active document. In the case of
built-in document windows, these frame menus are predefined. In the case of a generic document
window, the plug-in itself can provide an appropriate frame menu.

The plug-in can create a frame menu of its own by cloning an existing frame menu using the
method INatAutoFrameMenus::Clone and adding new commands to the clone as necessary using
the method INatAutoFrameMenu::InsertCommand.

Afterwards it passes the resulting INatAutoFrameMenu interface to Natural Studio when calling
the method INatAutoGenericDocuments: :Add.

To work with generic documents, a plug-in uses the interfaces described in the following sections:

INatAutoGenericDocuments
INatAutoGenericDocument
INatAutoObjects

36 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

Working with Tree Views and List Views

Through the interfaces described in this section, a plug-in can display its own tree views and list
views in Natural Studio. Tree views and list views are frequently used in Natural Studio to display
development objects and to navigate through them.

In order to display objects in tree views and list views, the plug-in must first register the types of
the tree or list view nodes that it is going to display. This procedure is described in Working with
Node Types.

A plug-in that displays objects in tree views and list views must also implement the methods of
the interface INaturalStudioPlugInTree appropriately. Natural Studio calls the methods of this
interface when expanding or refreshing the tree.

In order to open a tree view, the plug-in starts with the root interface INatAutoStudio, retrieves
the INatAutoObjects interface and then the INatAutoObjectTrees interface. We assume here that
the plug-in has kept a handle to the interface INatAutoStudio in a variable named #studio. This
handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::0nActivate.

ffobjs := {ftstudio.Objects
fttrees := ffobjs.ObjectTrees

The resulting INatAutoObjectTrees interface gives access to the currently open tree view document
windows. Through this interface the plug-in can open a new tree view with a given root object.

send "Open" to #trees
with ftype ffkey ffcaption
return ftree

The node type specified in the method 0Open must have been registered before, as described in
Working with Node Types. The INatAutoObjectTree interface returned from the method Open
gives access to the tree view document window just opened. Through this interface the plug-in
can, for instance, later close the document window.

send "Close" to fftree

When opening a tree view, the plug-in specifies at least the type and key of the root object and a
caption to be displayed on the tree view document window. Natural Studio will retrieve additional
information needed to expand the tree view by using the interface INaturalStudioPlugInTree
that must be implemented by the plug-in.

The nodes of a tree view can be accessed through the interface INatAutoObjectTreeNode. The root
node of a tree view is retrieved with the method INatAutoObjectTree: :GetRootNode, which returns
an interface INatAutoObjectTreeNode. This interface can then be used, for instance, to expand the

Extending Natural Studio with Plug-ins 37

Natural Studio Interfaces

node and to access the child nodes. In the same way, the currently selected node of a tree view
can be retrieved.

send "GetRootNode" to #tree
return frootnode

send "Expand" to #rootnode

send "GetChild" to ffrootnode
return #firstchildnode

send "GetNext" to #firstchildnode
return #nextchildnode

send "Expand" to #nextchildnode
send "GetSelectedNode" to #tree
return ffselectednode

send "Expand" to #selectednode

The interface INatAutoObjectTreeNode controls only the visual appearance of an individual tree
view, not the underlying object structure, which is possibly represented differently in several
views at a time. The object structure itself is under the control of the plug-in that defines and
provides it through its INaturalStudioPTugInTree interface.

List view document windows are created in a similar way as tree view document windows, except
that the interface INatAutoObjectLists is used instead of INatAutoObjectTrees.

To work with tree views and list views, a plug-in uses the interfaces described in the following
sections:

INatAutoObjects
INatAutoObjectTrees
INatAutoObjectTree
INatAutoObjectTreeNode
INatAutoObjectLists
INatAutoObjectList
INatAutoRefreshObject

Working with Result Views

Through the interfaces described in this section, a plug-in can display the results of its work in
the Natural Studio result view. Objects displayed in a result view can be target of commands and
can be used as starting point for navigation. Examples of built-in functions that use result views
are the Cat All command and the Find command.

In order to display objects in result views, the plug-in must first register the types of nodes that it
is going to display. This procedure is described in the section Working with Node Types.

In order to work with result views, the plug-in starts with the root interface INatAutoStudio and
retrieves the INatAutoResultViews interface. We assume here that the plug-in has kept a handle

38 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

to the interface INatAutoStudio in a variable named #studio. This handle was passed to the plug-
in during activation, in the method INaturalStudioPlugIn::0OnActivate

f#fresultviews := #fstudio.ResultViews

The resulting INatAutoResultViews interface gives access to the result view control bar and the
currently open result views. The plug-in can use this interface, for instance, to show or hide the
result view control bar.

send "Show" to fresultviews

Through the interface INatAutoResultViews the plug-in can open a new result view.

send "Open" to #resultviews
with ffcaption #image #headers
return #resultview

When opening a result view, the plug-in specifies a caption and an image to be displayed on the
result view tab and (if needed) column headers for the result view.

The INatAutoResultView interface returned from the method Open gives access to the result view
just opened. Through this interface the plug-in can activate the result view, insert rows into it and
update the display. The method SetVisible scrolls a specific row into view.

ffresultview.Active := true

send "InsertRows" to ffresultview
with frows return #last

send "Update" to #resultview
send "SetVisible" to ffresultview
with fflast

Finally the plug-in can close its result view.

send "Close" to #resultview
To work with result views, a plug-in uses the interfaces described in the following sections:

INatAutoResultViews
INatAutoResultView

Extending Natural Studio with Plug-ins 39

Natural Studio Interfaces

Working with Environments

Through the interfaces described in this section, plug-ins can inspect the available local and remote
development environments, map environments, connect to and disconnect from a remote envir-
onment and activate an environment.

In order to work with environments, a plug-in starts with the root interface INatAutoStudio, re-
trieves the INatAutoSystem interface and then the INatAutoEnvironments interface. We assume
here that the plug-in has kept a handle to the interface INatAutoStudio in a variable named
f#studio. This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::0nActivate.

ffsystem := fstudio.System
ffenvs := {fsystem.Environments

The returned INatAutoEnvironments interface gives access to the local environment and all remote
environments that have once been connected during the current Natural Studio session.

Through this interface the plug-in can, for instance, map a new remote environment, specifying
host name, port number, user ID, password and other arguments.

send "Add" to ftenvs
with "IBM2" "4712" "SCULLY" "secret" "STACK=(LOGON XFILES)"
return fenv

The returned interface INatAutoEnvironment gives access to attributes of the environment.

#bIsActive := ffenv.Active
#fbIsConnected := ffenv.Connected

The property Parameters gives access to the interface INatAutoNatparm. This interface contains
properties that represent the Natural parameters under which the environment is running. Only
a subset of the Natural parameters is available through this interface.

f#inatparm := ffenv.Parameters
##fuserDBnr := #natparm.FuserDBnr
f#fuserfFnr := ffnatparm.Fuserfnr

The property SystemVariables gives access to the interface INatAutoNatsvar. This interface contains
properties that represent the system variables currently set in the environment. Only a subset of
the system variables is available through this interface.

40 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

f#fnatsvar := ffenv.SystemVariables
f#language := ffnatsvar.lLanguage

The plug-in uses the method Disconnect to disconnect from the remote environment.

send "Disconnect” to ffenv
To work with environments, a plug-in uses the interfaces described in the following sections:

INatAutoEnvironments
INatAutoEnvironment
INatAutoSystem
INatAutoNatparm
INatAutoNatsvar

Working with Applications

Through the interfaces described in this section, plug-ins can inspect the applications available on
the application server, map applications into the Natural Studio session, connect to and disconnect
from an application, activate an application and create and modify applications. An example of a
plug-in that uses this section of the interface is the Application Wizard.

In order to work with applications, the plug-in starts with the root interface INatAutoStudio, re-
trieves the INatAutoSystem interface and then the INatAutoApplications interface. We assume
here that the plug-in has kept a handle to the interface INatAutoStudio in a variable named
f#studio. This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::0nActivate.

fsystem := {fstudio.System
ffapps := ffsystem.Applications

The resulting INatAutoApplications interface gives access to the currently active application
server and the applications it contains. Through this interface the plug-in can, for instance, ask for
the currently active application.

ffapp := ffapps.ActiveApplication

The plug-in can also create a new application and map it into the Natural Studio session.

Extending Natural Studio with Plug-ins 41

Natural Studio Interfaces

send "Add" to {#apps
with "MYAPPLICATION" return ffapp

The resulting INatAutoApplication interface gives access to attributes of the application.

fibIsActive := ffapp.Active
#ibIsConnected := ffapp.Connected

For a compound application, the property LinkedApplications returns the interface
INatAutoLinkedApplications. Thisinterface allows accessing the base applications that are linked
to the compound application.

#linkedapps:= #app.LinkedApplications
#iCount := #linkedapps.Count

For a base application, the property LinkedObjects returns an XML document containing the list
of objects linked to the application.

ffaObjects:= #fapp.LinkedObjects

The plug-in can also link and unlink objects to and from the application.

send "UnlinkObject" to #app
with 1009 "OLDPROG" "MYLIB"
send "LinkObject" to #app

with 1009 "NEWPROG" "MYLIB"

Finally the plug-in can disconnect and unmap the application.

send "Disconnect" to #app
send "Unmap" to #app

To work with applications, a plug-in uses the interfaces described in the following sections:

INatAutoApplications
INatAutoApplication
INatAutoLinkedApplications

42 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

Working with Plug-ins

Through the interfaces described in this section, a plug-in can inspect the currently installed plug-
ins, read their properties and activate or deactivate a plug-in. This includes the possibility that a
plug-in deactivates itself. An example for a plug-in that uses this section of the interface is the
Plug-in Manager.

In order to work with plug-ins, the plug-in starts with the root interface INatAutoStudio and re-
trieves the interface INatAutoPTugIns. We assume here that the plug-in has kept a handle to the
interface INatAutoStudio in a variable named #studio. This handle was passed to the plug-in
during activation, in the method INaturalStudioPTugIn::0OnActivate.

#fplugins := #studio.Pluglns

The resulting INatAutoPlugIns interface gives access to the currently installed plug-ins. Using
this interface, the plug-in can, for instance, iterate across the installed plug-ins and inspect their
attributes. The method Item returns an INatAutoPTlugIn interface to a specific plug-in.

#iCount := #plugins.Count
for #i := 1 to {#iCount
send "Item" to #plugins
with #i return #plugin
ffaName := #plugin.Name
##aProgID := #plugin.ProglD
#bIsActive := #plugin.Active
end-for

Through the interface INatAutoPTugIn the plug-in can also activate or deactivate a specific plug-
in by modifying the property Active. The following sample toggles the activation state of a plug-
in.

#fbIsActive := #plugin.Active
if {fbIsActive
#fplugin.Active := false
else
#fplugin.Active :
end-if

true

The interface INatAutoPTugIn canbe used to send a command to the plug-in. The following sample
checks whether the plug-in command with the ID "200" is currently enabled and if so, lets the
plug-in execute the command. Of course this requires that we know that the plug-in implements
a command with the ID "200" and what this command does.

Extending Natural Studio with Plug-ins 43

Natural Studio Interfaces

#fibEnabled = false
#fbChecked := false
send "OnCommandStatus" to #plugin
with 200 #bEnabled #bChecked
if #bEnabled
send "OnCommand" to #plugin with 200
end-if

Through the interface INatAutoPTugIn, the plug-in can get access to arbitrary services that another
plug-in provides with a so-called custom interface. The following sample retrieves the custom
interface of a plug-in and calls one of its services. Of course this requires that the plug-in has
documented the services it provides with its custom interface.

ficustom := null-handle
send "GetCustomInterface"
to #fplugin return #icustom
if fficustom ne null-handle
#fresult := 0
send "GetMaritalStatus" to #ficustom
with "Anderson, Gillian" return #result
end-if

In order to provide a custom interface, a plug-in must implement an additional interface beside
the two predefined interfaces INaturalStudioPlugInand INaturalStudioPTugInTree and make
this interface the default dispatch interface. For a plug-in implemented in Natural this means
placing this interface at the first position in the DEFINE CLASS statement.

define class
object using ...
id "..."
interface icustom
id "..."
method GetMaritalStatus id 1 is gstat-n
parameter using gstat-a
end-method
end-interface
interface using nstplg-i
interface using nstplt-i
end-class
end

To work with plug-ins, a plug-in uses the interfaces described in the following sections:

INatAutoPluglIns
INatAutoPlugln

44 Extending Natural Studio with Plug-ins

Natural Studio Interfaces

Working with Dialogs

If a plug-in wants to open dialog boxes in Natural Studio, some special considerations have to be
taken. The support of dialog boxes in plug-ins depends mainly on the condition if the plug-in is
running in as an in-process ActiveX component or if it is running in a separate process.

The following topics are covered below:

= Plug-ins Running in a Separate Process
= Plug-ins Running In-process

Plug-ins Running in a Separate Process

In general, an ActiveX component running in a separate process cannot open a dialog box in the
client process. This restriction of the Windows system itself is overcome in the special case that a
plug-in is written in Natural.

If a plug-in is written in Natural, it can open modal dialog boxes in Natural Studio. Precisely this
means: Natural dialogs that are defined in the dialog editor with the Type attribute set to "Standard
window" and the Style attribute set to "Dialog box". Other styles of the dialog type "Standard
window" cannot be used in plug-ins.

To open a dialog box, a plug-in uses the usual 0PEN DIALOG statement.
Plug-ins Running In-process

If a plug-in is implemented as an in-process ActiveX component (this means: as a DLL), it can
open modal and non-modal dialogs in Natural Studio. To open a dialog, the plug-in uses the
statements usual in the programming language it is written in. Plug-ins written in Natural always
run in a separate process, so this applies only to plug-ins written in programming languages that
support implementing in-process ActiveX components.

For details on how to implement plug-ins in programming languages other than Natural, see De-
veloping Plug-ins in Other Programming Languages.

Extending Natural Studio with Plug-ins 45

46

6 Developing Plug-ins

B Creating @ PIUG-IN .o
B DEDUGGING 8 PIUGIN .ot e e
B DEPlOYING @ PIUG-IN ..
= Developing Plug-ins in Other Programming LaNQUAGESceuiiiriiiiiiiiiiei e

47

Developing Plug-ins

Creating a Plug-in

To create a new plug-in, proceed as described in the section Quick Start.

Debugging a Plug-in

Plug-ins written in Natural are running in server processes distinct from the process that runs
Natural Studio. Therefore, in order to debug a plug-in, remote debugging must be used. See the
Debugger documentation for information on how to set up and use remote debugging in general.

The following topics describe the specific activities required to debug a plug-in using the remote
debugger.

= Single Server
= Shared Server

Single Server

| Note: Remote debugging is no longer supported. Instead, you will have to use the debugger
of NaturalONE. Using the NaturalONE debugger, it is possible, for example, to debug
Natural RPC applications or to debug workplace applications which have been created
with Natural for Ajax.

A plug-in that was created with the option Single server runs in its own Natural server process,
distinct from all other plug-ins. This Natural server process is started when the plug-in is activated
in the Plug-in Manager. In order to debug such a plug-in, this server process must be configured
to run under the remote debugger.

Plug-ins are running under the Natural parameter file NATPARM. Therefore, the following configur-
ation must be applied to the Natural parameter file NATPARM before activating the plug-in in the
Plug-in Manager:

" RDACTIVE must be set to "ON" to enable remote debugging.

" RDNODE must be set to the name of the machine where the Natural Remote Debugging Service
is running. Normally this is the machine you are working on.

® RDPORT must be set to "2600" (default) or another port number, depending on which port you
have installed the Natural Remote Debugging Service.

| Note: Remote debugging is no longer supported. Instead, you will have to use the debugger
of NaturalONE. Using the Natural ONE debugger, it is possible, for example, to debug

48 Extending Natural Studio with Plug-ins

Developing Plug-ins

Natural RPC applications or to debug workplace applications which have been created
with Natural for Ajax.

Now, when you activate the plug-in in the Plug-in Manager, the Natural debugger is started and
stops on the first statement in the plug-in's method OnActivate. At this point, you can set break-
points as necessary.

Shared Server

| Note: Remote debugging is no longer supported. Instead, you will have to use the debugger
of NaturalONE. Using the Natural ONE debugger, it is possible, for example, to debug
Natural RPC applications or to debug workplace applications which have been created
with Natural for Ajax.

A plug-in that was created without the option Single server runs in the same Natural server process
as the Plug-in Manager. This Natural server process is started when the Plug-in Manager is activ-
ated. This happens during the start of the Natural Studio session. We call this mode “shared
server”. In order to debug such a plug-in, this common server process must be configured to run
under the remote debugger.

Plug-ins are running under the Natural parameter file NATPARM. Therefore, the following configur-
ation must be applied to the Natural parameter file NATPARM before starting Natural Studio:
" RDACTIVE must be set to "ON" to enable remote debugging.

" RDNODE must be set to the name of the machine where the Natural Remote Debugging Service
is running. Normally this is the machine you are working on.

" RDPORT must be set to "2600" (default) or another port number, depending on which port you
have installed the Natural Remote Debugging Service.

Now, when you start Natural Studio, the Natural debugger is started and stops on the first statement
in the Plug-in Manager's method OnActivate. At this point, you can load the source code of your
own plug-in's method OnActivate and set breakpoints as necessary.

Deploying a Plug-in

To deploy a plug-in written in Natural to other machines, the Object Handler is used. Start the
Object Handler, select all modules that belong to your plug-in and unload them into a sequential
file. Do not forget to unload the modules INSTALL and INSTAL - N along that were generated during
the creation of the plug-in. These modules are required to install the plug-in in the target envir-
onment.

Extending Natural Studio with Plug-ins 49

Developing Plug-ins

In the target environment, load the sequential file again using the Object Handler. Execute the
program INSTALL in the plug-in library and restart Natural to make the new plug-in visible in the
Plug-in Manager.

Plug-ins written for a specific version of Natural Studio should only be installed under this version.

Developing Plug-ins in Other Programming Languages

Because Natural Studio plug-ins are ActiveX components, you can develop plug-ins in any language
that allows creating ActiveX components. This section contain some hints on how to proceed.
Please refer to the documentation of the respective development environment for details.

~ To develop a plug-in using Microsoft Visual Basic

1
2

Create a new project of type "ActiveX DLL".

Add references to the type libraries NATURALSTUDIOPLUGIN.TLB and NATURALSTUDIOAUTO.TLB.
These type libraries describe the Plug-in Interface and the Natural Studio Interface respect-
ively.

Add the following code to the class that implements your plug-in:

Implements INaturalStudioPlugln

Implements INaturalStudioPlugInTree

Implement the interface methods. The method bodies may initially be left empty.
Build the project and register the resulting DLL using regsvr32.

In order to make the ActiveX component visible in the Natural Studio Plug-in Manager, add
an additional registry entry as shown in the example below.

[HKEY_LOCAL_MACHINE\SOFTWARE\Software AG\Natural\/./M\Plug-ins\{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}]

@="Visual Basic Minimal Plug-in"
"CLSID"="{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}"
"ProgID"="MinimalPlugIn.PlugInClass"

n.nin the first line of the above example stands for the current version number of Natural.

® Replace both occurrences of the CLSID in the example by the CLSID of your ActiveX com-
ponent.

® Replace the ProgID in the example by the ProgID of your ActiveX component.

The name in the line starting with @= will be displayed in the Plug-in Manager.

50

Extending Natural Studio with Plug-ins

Developing Plug-ins

~ To develop a plug-in using Microsoft Visual C++ and the ATL

1
2
3
4

@ 3 O O

Create an ATL project using the ATL COM Wizard.
Create an ATL object in the ATL project.
Choose Implement Interface....

Select the type library NATURALSTUDIOPLUGIN. TLB. This type library describes the Plug-in In-
terface.

Select the interfaces INaturalStudioPlugIn and INaturalStudioPlugInTree.
Implement the interface methods. The method bodies may initially just return "S_OK".
Build the project and register the resulting DLL using regsvr32.

In order to make the ActiveX component visible in the Natural Studio Plug-in Manager, add
an additional registry entry as shown in the example below.

[HKEY_LOCAL_MACHINE\SOFTWARE\Software AG\Natural\/./n\Plug-ins\{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}]
@="C++ ATL Minimal Plug-in"

"CLSID"="{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}"

"ProgID"="MinimalPlugIn.PlugInClass"

n.nin the first line of the above example stands for the current version number of Natural.

* Replace both occurrences of the CLSID in the example by the CLSID of your ATL component.
® Replace the ProgID in the example by the ProgID of your ATL component.

The name in the line starting with @= will be displayed in the Plug-in Manager.

Extending Natural Studio with Plug-ins 51

52

7 Plug-in Example

= Activating the Plug-in Example

= Using the Plug-in Example

53

Plug-in Example

The Natural Studio plug-in example demonstrates how the Natural Studio metastructure can be
extended with plug-ins that define your own object types, assign commands to them and display
objects as nodes in tree views and list views.

The plug-in example shows information about the Natural application programming interfaces
contained in the library SYSEXT. It allows users to list their documentation and to execute a test
program for each of the application programming interfaces.

The source code of the plug-in example is delivered in the library SYSEXPLG. It is intended to give
an impression of how plug-ins can be implemented with Natural Studio.

Activating the Plug-in Example

The plug-in example is installed automatically during Natural Studio installation. Initially, the
activation of plug-ins is disabled. Therefore, in order to use the plug-in example, you must first
enable plug-in activation and then activate the plug-in example.

~ To activate the plug-in example

1 Make sure that plug-in activation has been enabled. See Workspace Options in the documentation
Using Natural Studio.

2 Invoke the Plug-in Manager as described in Invoking the Plug-in Manager in the documentation
Using Natural Studio.

3 In the Plug-in Manager window, select Plug-in Example.

4 Activate the plug-in example as described in Activating and Deactivating a Plug-in in the docu-
mentation Using Natural Studio.

Using the Plug-in Example

When the plug-in example has been activated in the Plug-in Manager, the following additional
elements are available in the Natural Studio window.

54 Extending Natural Studio with Plug-ins

Plug-in Example

Menu Commands

The Tools menu provides the cascading menu Plug-in Example with the following commands:

Command Description

Open Tree View |If an application programming interface (subprogram USRnnnnN), its description (text
member USRnnnnT) or its test program (program USRnnnnP)is selected in library SYSEXT,
this command displays information about this application programming interface in a
tree view window. If none of the above is selected, this command displays information
about all application programming interfaces in a tree view window.

Open List View |Displays the same information as above in a list view window.

Context Menus

The cascading menu Plug-in Example with the above commands is available in the context menus
of the Natural object types program, subprogram and text.

Toolbar

An additional toolbar is shown. The toolbar buttons represent the following menu commands:

4 Open Tree View

By Open List View

Extending Natural Studio with Plug-ins 95

56

I I Interface Reference

This part provides descriptions of all interfaces (plug-in interfaces and Natural Studio interfaces)
in alphabetical order. The following interfaces are available:

INatAutoApplication
INatAutoApplications
INatAutoCommand
INatAutoCommands
INatAutoContextMenu
INatAutoContextMenus
INatAutoControlBars
INatAutoDataArea
INatAutoDataAreas
INatAutoDialog
INatAutoDialogs
INatAutoEnvironment
INatAutoEnvironments
INatAutoFrameMenu
INatAutoFrameMenus
INatAutoGenericDocument
INatAutoGenericDocuments
INatAutoGenericText
INatAutoGenericTexts
INatAutoIlmages
INatAutoLinkedApplications
INatAutoNatparm
INatAutoNatsvar
INatAutoNodelmages

57

Interface Reference

INatAutoNodeType
INatAutoNodeTypes
INatAutoObjectList
INatAutoObjectLists
INatAutoObjects
INatAutoObjectTree
INatAutoObjectTreeNode
INatAutoObjectTrees
INatAutoPlugln
INatAutoPluglns
INatAutoPopupMenu
INatAutoProgram
INatAutoPrograms
INatAutoProgressIndicator
INatAutoRefreshObject
INatAutoResultView
INatAutoResultViews
INatAutoSelectedObject
INatAutoSelectedObjects
INatAutoStudio
INatAutoSysmain
INatAutoSystem
INatAutoToolBar
INatAutoToolBars
INatAutoTypes
INaturalStudioPlugln
INaturalStudioPlugInTree

58

Extending Natural Studio with Plug-ins

8

INatAutoApplication

= Purpose

L o (0] 1= PSSP PPPTSPPPPPP

= Methods

59

INatAutoApplication

Purpose

An application available on the current application server. Applications and the application
server are only available with Natural Single Point of Development. See also Remote Development
Using SPoD.

Properties

The following properties are available:

= Parent

= Studio

= BaseApplication
= MainframeApplication
= Mapped

= Connected

= Active

= Name

= Description

= Host

= Port

= Profile

= ProfileDBnr

= ProfileFnr

= Userld

= MainLibrary

= HasLinkedObjects
= |inkedObjects

= | inkedEntries

= Environment

60 Extending Natural Studio with Plug-ins

INatAutoApplication

= |inkedApplications

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoApplications) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoStudio)

Get only

BaseApplication

TRUE if this is a base application.

Natural Data Format

Variant Type

Remark

L

VT_BOOL

Get only

MainframeApplication

TRUE if this is a base application on a mainframe platform. FALSE if this is a base application on
an Open Systems platform or a compound application.

Natural Data Format |Variant Type |Remark
L VT_BOOL |Get only
Mapped

TRUE if this application is mapped into the application workspace.

Natural Data Format

Variant Type

Remark

L

VT_BOOL

Get only

Extending Natural Studio with Plug-ins

61

INatAutoApplication

Connected

TRUE if

* this is a base application, and
" the application is mapped into the application workspace, and

= there is a connection to a server session.

Natural Data Format |Variant Type |Remark

L VT_BOOL |Get only

Active

TRUE if

* this is a base application, and

the application is mapped into the application workspace, and

= there is a connection to a server session, and

the application is the active one.

Natural Data Format | Variant Type |Remark

L VT_BOOL |Get only

Name

Name of the application.

Natural Data Format |Variant Type |Remark

A VT_BSTR

Description

The description of the application.

Natural Data Format | Variant Type |Remark

A VT_BSTR

62

Extending Natural Studio with Plug-ins

INatAutoApplication

Host

The host name of the development server. Returns an empty string for a compound application.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Port

The port number of the development server. Returns 0 for compound applications.

Natural Data Format |Variant Type |Remark

14 VT_I4 Get only

Profile

The profile (mainframe) or NATPARM parameter file (Open Systems) under which the development
server is running. Returns an empty string for compound applications.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

ProfileDBnr

The profile database number of the development server. Returns 0 for compound applications
and for base applications running on Open Systems platforms.

Natural Data Format |Variant Type |Remark

14 VT_l4 Get only

ProfileFnr

The profile file number of the development server. Returns 0 for compound applications and for
base applications running on Open Systems platforms.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

Extending Natural Studio with Plug-ins 63

INatAutoApplication

Userld

The user ID under which a base applicaton is mapped. Returns an empty string for compound
applications.

Natural Data Format |Variant Type |Remark

A

VT_BSTR |Get only

MainLibrary

The main library of the application. Returns an empty string for compound applications and for

base applications for which no main library has been defined.

Natural Data Format | Variant Type |Remark

A

VT_BSTR

HasLinkedObjects

TRUE if a base application has linked objects. Always FALSE for compound applications.

Natural Data Format |Variant Type |Remark

A

VT_BSTR |Get only

LinkedObjects

Returns the list of objects linked to a base application, formatted as an XML document according
to the DTD shown below. Returns an empty document for compound applications.

Natural Data Format|Variant Type |Remark

A

VT_BSTR |Get only

Document Type Description

<?xml version="1.0"7>

<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT

aobjects (ccount, aobject*)>
ccount (#PCDATA)>

aobject (atype, akey)>

atype (#PCDATA)>

akey (#fPCDATA)>

64

Extending Natural Studio with Plug-ins

INatAutoApplication

Element|Meaning

ccount | The number of objects in the list.

atype |The type of the object. This must be one of the predefined development object types that is allowed
to be used as entry object of an application.

akey |The key that identifies the object within its type.

LinkedEntries

Returns the list of entry objects linked to a base application, formatted as an XML document ac-
cording to the DTD shown below. Returns an empty document for compound applications.

Natural Data Format |Variant Type |Remark

A

VT_BSTR |Get only

Document Type Description

<?xml version="1.0"7>

<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT

aobjects (ccount, aobject*)>
ccount (#PCDATA)>

aobject (atype, akey)>

atype (#PCDATA)>

akey (#fPCDATA)>

Element|Meaning

ccount | The number of objects in the list.

atype |The type of the object. This must be one of the predefined development object types that is allowed
to be used as entry object of an application.

akey |The key that identifies the object within its type.

Environment

Returns the Natural environment of a base application. Returns NULL-HANDLE for compound
applications.

Natural Data Format |Variant Type |Remark

A

VT_BSTR |Get only

Extending Natural Studio with Plug-ins

65

INatAutoApplication

LinkedApplications

Returns the collection of applications linked to a compound application. Returns NULL-HANDLE
for base applications.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Methods

The following methods are available:

= Map

= Unmap

= Connect

= Disconnect
= Activate

= Remove

= | inkObject
= UnlinkObject
= |inkEntry

= UnlinkEntry

Map

Maps an application into the application workspace.

Parameters:

Name Natural Data Format | Variant Type [Remark
UserID A VT_BSTR |Optional
Password A VT_BSTR |Optional
ProfilePassword | A VT_BSTR |Optional
Quiet L VT_BOOL |Optional
IgnoreWarnings |L VT_BOOL |Optional
UserID

The user ID under which the application will be mapped.This parameter is ignored for com-
pound applications

66 Extending Natural Studio with Plug-ins

INatAutoApplication

Password
The password of the user ID under which the application will be mapped. This parameter is
ignored for compound applications.

ProfilePassword
The password for the profile which has been defined for the application. This parameter is
ignored for compound applications.

Quiet
If set to FALSE or not specified, the Map Application dialog is shown if the session cannot be
started with the given parameters.The dialog is then preset with the given parameters.

If set to TRUE, the Map Application dialog is not shown.

IgnoreWarnings
If set to FALSE or not specified, warnings that occur during mapping are treated like errors.

If set to TRUE, warnings are ignored.
Unmap

Unmaps the application.

If this application was the active one, the previously active application gets activated.
Connect

Connects an application to a development server session.

This method is not applicable to compound applications or base applications that are already

connected.

Parameters

Name Natural Data Format | Variant Type |Remark
UserID A VT_BSTR |Optional
Password A VT_BSTR |Optional
ProfilePassword | A VT_BSTR |Optional
Quiet L VT_BOOL [Optional
IgnoreWarnings |L VT_BOOL [Optional
UserID

The user ID under which the application will be connected.

Password
The password of the user ID under which the application will be connected.

Extending Natural Studio with Plug-ins 67

INatAutoApplication

ProfilePassword
The password of the profile which is defined for the application.

Quiet
If set to FALSE or not specified, the Map Application dialog is shown if the session cannot be
started with the given parameters. The dialog is then preset with the given parameters.

If set to TRUE, the Map Application dialog is not shown.

IgnoreWarnings
If set to FALSE or not specified, warnings that occur during connecting are treated like errors.

If set to TRUE, warnings are ignored.
Disconnect

Disconnects the application (closes the development server session).
If this application was the active one, the previously active application gets activated.

This method is not applicable to compound applications or base application that are already dis-
connected.

Activate

Makes this application the active one.

An application cannot explicitly be deactivated. An application is implicitly deactivated when
another application is activated.

This method is not applicable to compound applications or base application that are disconnected
or not mapped.

Remove

Removes the application from the collection (effectively deletes it from the application server).

If this application was the active one, the previously active application gets activated.

68 Extending Natural Studio with Plug-ins

INatAutoApplication

LinkObject

Links the specified development object to the application. Applicable only to base applications.

Parameters

Name |Natural Data Format|Variant Type |Remark
Type |14 VT_l4

Object A VT_BSTR

Library A VT_BSTR |Optional
Type

The type numbers used here correspond to the type numbers described in the section Predefined
Node Types.

Object
The name of the object.

Library
The library containing the object. This parameter is not applicable to DDMs.

UnlinkObject

Unlinks the specified object from the application. Applicable only to base applications.

Parameters

Name |Natural Data Format|Variant Type |[Remark
Type |14 VT 14

Object A VT _BSTR

Library |A VT_BSTR |Optional
Type

The type numbers used here correspond to the type numbers described in the section Predefined
Node Types.

Object
The name of the object.

Library
The library containing the object. This parameter is not applicable to DDMs.

Extending Natural Studio with Plug-ins 69

INatAutoApplication

LinkEntry

Links the specified entry point to the application. Applicable only to base applications.

Parameters

Name |Natural Data Format|Variant Type |Remark
Type |14 VT_l4

Object |A VT_BSTR

Library |A VT_BSTR

Type

The type numbers used here correspond to the type numbers described in the section Predefined
Node Types.

Object
The name of the entry point object.

Library
The library containing the entry point object.

UnlinkEntry

Unlinks the specified entry point object from the application. Applicable only to base applications.

Parameters

Name |Natural Data Format|Variant Type |[Remark
Type |14 VT_l4

Object A VT_BSTR

Library |A VT_BSTR

Type

The type numbers used here correspond to the type numbers described in the section Predefined
Node Types.

Object
The name of the entry point object.

Library
The library containing the entry point object.

70 Extending Natural Studio with Plug-ins

9

INatAutoApplications

= Purpose

L o (0] 1= PSSP PPPTSPPPPPP

= Methods

7"

INatAutoApplications

Purpose

Collection of applications available on the current application server. Applications and the applic-
ation server are only available with Natural Single Point of Development. See also Remote Develop-
ment Using SPoD.

Properties

The following properties are available:

= Parent

= Studio

= Count

= ActiveApplication

= AppServerEnvironment

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoSystem) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of applications in the collection.

72 Extending Natural Studio with Plug-ins

INatAutoApplications

Natural Data Format |Variant Type |Remark

14 VT_I4 Get only

ActiveApplication

Returns the currently active application. Returns NULL-HANDLE if no application is active.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication) |Get only

AppServerEnvironment

Returns the application server environment.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

Methods

The following methods are available:

= |tem
= Add

ltem
Returns a specific application from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication)

Index 14 VT 14
A VT_BSTR

Return value
The application identified by the value specified in Index.

Index
Identifies a specific application in the collection. This can be either the index of the application
in the collection (a value between 1 and Count) or the name of the application.

Extending Natural Studio with Plug-ins 73

INatAutoApplications

Add

Creates a new application, adds it to the collection, maps it, connects it and activates it. Returns
the application.

Parameters

Name Natural Data Format Variant Type Remark
Return value HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication) |Optional
Name A VT_BSTR

BaseApplication L VT_BOOL Optional
Host A VT_BSTR Optional
Port 14 VT_I4 Optional
MainframeApplication |L VT_BOOL Optional
Profile A VT_BSTR Optional
ProfileDBnr 14 VT_14 Optional
ProfileFnr 14 VT_I4 Optional
ProfilePassword A VT_BSTR Optional
Quiet L VT_BOOL Optional
IgnoreWarnings L VT_BOOL Optional

Return value
The newly added application.

Name
The name of the application.

BaseApplication
If set to TRUE, a base application is created. Otherwise a compound application is created.
Creating a base application requires at least the specification of Host and Port.

Host
The host name of the development server. Must be specified for base applications.

Port
The port number of the development server. Must be specified for base applications.

MainframeApplication
If set to TRUE, a mainframe application is created.

Profile
The profile under which the development server is running.

ProfileDBnr
The profile database number of the development server.

74 Extending Natural Studio with Plug-ins

INatAutoApplications

ProfileFnr
The profile file number of the development server.

ProfilePassword
The profile password of the development server.

Quiet
If set to FALSE or not specified, the Map Application dialog is shown and is preset with the
given parameters.
If set to TRUE, the Map Application dialog is not shown.

IgnoreWarnings

If set to FALSE or not specified, warnings that occur during mapping are treated like errors.

If set to TRUE, warnings are ignored.

Extending Natural Studio with Plug-ins 75

76

10

INatAutoCommand

= Purpose ..

= Properties

77

INatAutoCommand

Purpose

A command defined by a plug-in.

Properties

The following properties are available:

= Parent

= Studio

= Caption

= |magelD

= CommandID
= Enabled

= Checked

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoCommands) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

Get only

Caption

A string used to identify the command in menus and toolbars.

78

Extending Natural Studio with Plug-ins

INatAutoCommand

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

ImagelD

Index of the image that represents the command visually. This index can be used in the method
INatAutoCommands: :Add to specify an image for a new command.

Natural Data Format | Variant Type |Remark

14 VT_14 Get only

CommandID

Numeric ID of the command. When the user later selects the command in the user interface, this
ID is passed to the plug-in in the method INaturalStudioPTugIn::0nCommand.

Natural Data Format | Variant Type |Remark

14 VT_l4 Get only

Enabled

Indicates if the command shall be enabled or disabled, or if Natural Studio shall ask the plug-in
for the status of the command on a regular basis through the method OnCommandStatus.

Natural Data Format |Variant Type |Remark

12 VT_I2

Values

0 |Natural Studio asks the plug-in for the enabled status of the command through the method
OnCommandStatus. This is the default.

-1 |The command is disabled.

1 |The command is enabled.

Extending Natural Studio with Plug-ins 79

INatAutoCommand

Checked

Indicates if the command shall have a check mark or not, or if Natural Studio shall ask the plug-
in for the checked status of the command on a regular basis through the method OnCommandStatus.

Natural Data Format |Variant Type |Remark

12 VT_I2

Values

0 |Natural Studio asks the plug-in for the checked status of the command through the method
OnCommandStatus. This is the default.

-1 |The command has no check mark.

1 |The command has a check mark.

80 Extending Natural Studio with Plug-ins

11

INatAutoCommands

= Purpose

L o (0] 1= PSSP PPPTSPPPPPP

= Methods

81

INatAutoCommands

Purpose

The collection of commands defined by plug-ins.

Properties

The following properties are available:

= Parent
= Studio
= System

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoControlBars)

Get only

Studio

Used to navigate

to the root interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoStudio) |Get only

System

The number of commands that were registered by plug-ins.

Natural Data Format

Variant Type

Remark

14

VT_DISPATCH (INatAutoSystem)

Get only

82

Extending Natural Studio with Plug-ins

INatAutoCommands

Methods

The following methods are available:

Add

= Add
= |tem

Creates a new command and adds it to the collection.

Parameters

Name

Natural Data Format Variant Type Remark

Return value |[HANDLE OF OBJECT|VT_DISPATCH (INatAutoCommand)

CommandID |14 VT_I4
Caption A VT_BSTR
Image A VT_BSTR Optional

HANDLE OF OBJECT |VT_DISPATCH (IPictureDisp)
14 VT_I4

Return value
The newly added command.

CommandID
Numeric ID of the new command. The plug-in can choose any positive integer value. When
the user later selects the command in the user interface, this ID is passed to the plug-in in the
method INaturalStudioPlugIn::0nCommand.

Caption
A string used to identify the command in menus and toolbars.

Image
An image used to represent the command visually. The image must be a 16 color, 16x16 bitmap,
using RGB(192,192,192) as the background color.

The image can be specified in three ways:

As an absolute path name of a .bmp file.

As an IPictureDisp interface. An IPictureDisp interface can be created in Natural using
the method INatAutoImages::LoadImage. An IPictureDisp interface cannot be passed
across process boundaries. This is due to a Microsoft restriction (MSDN Q150034). Therefore
this alternative can only be used with plug-ins running as in-process servers. Natural written
plug-ins always run as local servers and can therefore not use this alternative.

Extending Natural Studio with Plug-ins 83

INatAutoCommands

" Asanindex into a table of user images pre-defined in Natural Studio. These are the images
that can be assigned to user commands in the Customize dialog.

Item

Returns a specific command from the collection. Used to iterate through the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoCommand)
Index 14 VT_l4

Return value
The command identified by the value specified in Index.
Index
The index of the command in the collection (a value between 1 and Count).

84 Extending Natural Studio with Plug-ins

12

INatAutoContextMenu

= Purpose

L o (0] 1= PSSP PPPTSPPPPPP

= Methods

85

INatAutoContextMenu

Purpose

Gives access to a specific context menu.

Properties

The following properties are available:

= Parent
= Studio
= Count
= Caption

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format

Variant Type Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoContextMenus) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format

Variant Type Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of items (commands, separators and pop-up menus) in the menu.

Natural Data Format |Variant Type |Remark

14 VT_l4 Get only

86

Extending Natural Studio with Plug-ins

INatAutoContextMenu

Caption

A string used to identify the menu, as defined when the menu was created.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Methods

The following methods are available:

= tem

= SubMenu

= |nsertCommand
= |nsertSeparator
= |nsertPopupMenu
= UpdateMenu

Iltem

Returns a specific item contained in the menu, based on an index.

Parameters
Name Natural Data Format|Variant Type |Remark
Return value [A VT_BSTR
Index 14 VT_ 14
A VT_BSTR

Return value
The caption of the menu item (command or pop-up menu) identified by the value specified
in Index. If the index identifies a separator, an empty string is returned.

Index
The index of the item in the menu (a value between 1 and Count).

Extending Natural Studio with Plug-ins 87

INatAutoContextMenu

SubMenu

Returns a specific pop-up menu contained in the menu, based on an index.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoPopupMenu)

Index 14 VT_l4
A VT_BSTR

Return value
The pop-up menu identified by the value specified in Index. If the specified index does not
identify a pop-up menu, but a command or a separator, a null interface pointer (NULL-
HANDLE) is returned.

Index
As index either a number between 1 and Count or the caption of a pop-up menu can be spe-
cified.

InsertCommand

Inserts a command into the menu.

Parameters

Name Natural Data Format Variant Type Remark

Command |HANDLE OF OBJECT |VT_DISPATCH (INatAutoCommand)
Index 14 VT_14 Optional

Command
A command to be added to the menu. The command must have been defined before using the
method INatAutoCommands: :Add.

Index
The position in the menu where the command shall be inserted. If Index is omitted, the com-
mand is inserted at the last position.

88 Extending Natural Studio with Plug-ins

INatAutoContextMenu

InsertSeparator
Inserts a separator into the menu.

Parameters

Name |Natural Data Format|Variant Type |Remark

Index |14 VT_ 14 Optional

Index
The position in the menu where the separator shall be inserted. If Index is omitted, the separ-
ator is inserted at the last position.

InsertPopupMenu

Creates a new pop-up menu and inserts it into the menu.

Parameters

Name Natural Data Format Variant Type Remark

Return value HANDLE OF OBJECT |VT_DISPATCH (INatAutoPopupMenu)
Caption A VT_BSTR
Index 14 VT_14 Optional

Return value

The newly created pop-up menu.
Caption

A string used to identify the pop-up menu.
Index

The position in the menu where the pop-up menu shall be inserted. If Index is omitted, the
pop-up menu is inserted at the last position.

UpdateMenu

Changes in a menu are not made visible immediately, in order to avoid flickering. After having
finished modifying a menu, make the recent changes visible by calling this method.

Extending Natural Studio with Plug-ins 89

90

13

INatAutoContextMenus

= Purpose

L o (0] 1= PSSP PPPTSPPPPPP

= Methods

91

INatAutoContextMenus

Purpose

Collection of the available context menus.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoControlBars)

Get only

Studio

Used to navigate to the root interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoStudio)

Get only

Count

The number of available context menus.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

92

Extending Natural Studio with Plug-ins

INatAutoContextMenus

Methods

The following methods are available:

= Add
= |tem

Add

Creates a new context menu and adds it to the collection. Dynamically created context menus are
not persistently customizable in the Customize dialog.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoContextMenu)
Caption A VT_BSTR

Return value
The newly added context menu.

Caption
A string used to identify the context menu.

ltem
Returns a specific context menu from the collection. Used to iterate through the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoContextMenu)

Index 14 VT_l4
A VT_BSTR

Return value
The context menu identified by the value specified in Index.

Index
Identifies a specific context menu in the collection. This can be either the index of the context
menu in the collection (a value between 1 and Count) or the caption of the context menu (as
indicated in the Customize dialog).

Extending Natural Studio with Plug-ins 93

94

14 INatAutoControlBars

B P UIDOSE ittt ettt e e ettt ettt e e e e e e ettt et e e e e e a et e e e e e e e ettt e e e ee e e e
L o (0] 1= PSSP PPPTSPPPPPP

95

INatAutoControlBars

Purpose

Contains collections used to access the Natural Studio toolbars, frame menus and context menus
and to define new commands.

Properties

The following properties are available:

= Parent

= Studio

= |mages

= Commands

= ToolBars

= FrameMenus
= ContextMenus

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

96

Extending Natural Studio with Plug-ins

INatAutoControlBars

Images

Used to navigate to the INatAutoImages interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutolmages) |Get only
Commands

Used to navigate to the INatAutoCommands interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoCommands) |Get only

ToolBars

Used to navigate to the INatAutoToolBars interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoToolBars

) |Get only

FrameMenus

Used to navigate to the INatAutoFrameMenus interface

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT|VT_DISPATCH (INatAutoFrameM

enus) |Get only

ContextMenus

Used to navigate to the INatAutoContextMenus interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoContextMenus) |Get only

Extending Natural Studio with Plug-ins

97

98

15

INatAutoDataArea

= Purpose

B PIOPEITIES oo

= ethods

99

INatAutoDataArea

Purpose

A data area open in a data area editor window. This comprises the following development object
types: local data area, global data area and parameter data area.

Properties

The following properties are available:

= Parent

= Studio

= Source

= Visible

= Type

= LineCount

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoDataAreas) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Source

The source code of the data area in the syntax of the DEFINE DATA statement.

100 Extending Natural Studio with Plug-ins

INatAutoDataArea

Natural Data Format |Variant Type |Remark
A VT_BSTR
Visible

Shows or hides the editor window.

Natural Data Format |Variant Type |Remark
L VT_BOOL
Type

The development object type. The type is identified by a numeric ID. The IDs of predefined types

are described in the section Predefined Node Types.

Natural Data Format | Variant Type |Remark
14 VT_I4
LineCount

The number of lines in the source code.

Natural Data Format |Variant Type |Remark
14 VT_14 Get only
Methods

The following methods are available:

= StartEdit
= EndEdit
= Catalog
= Check
m Clear

= Close

= Search
= Replace
= Save

= Stow

= Title

= Getlnfo

Extending Natural Studio with Plug-ins

101

INatAutoDataArea

= DeleteLines

= GetLines

= |nsertLines

= ReplaceLines
StartEdit

This method should be called before calling a series of editing methods in order to increase editing
performance. It converts (internally) the data area into source code according to the syntax of the
DEFINE DATA statement.

EndEdit

This method should be called after having called StartEdit and a series of editing methods. It
converts (internally) the source code back into the data area editor.

Catalog
Catalogs the data area.

Parameters

Name |Natural Data Format|Variant Type [Remark

Quiet (L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Check
Checks the data area.

Parameters

Name |Natural Data Format|Variant Type [Remark

Quiet (L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

102 Extending Natural Studio with Plug-ins

INatAutoDataArea

Clear

Clears the data area.

Parameters

Name |Natural Data Format

Variant Type |Remark

Quiet|L

VT_BOOL

Optional

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Close

Closes the editor and removes the data area from the collection.

Parameters

Name |Natural Data Format

Variant Type |Remark

Quiet|L

VT_BOOL

Optional

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Search

Searches for the first occurrence of a given string in the source code (in the syntax of the DEFINE
DATA statement).

Parameters
Name Natural Data Format |Variant Type |Remark
Return value [BOOL VT_BOOL
SearchString |A VT_BSTR
Line 14 VT_14 By reference
Column 14 VT_14 By reference
CaseSensitive |L VT_BOOL |Optional
WholeWords |L VT_BOOL |Optional
Up L VT_BOOL |Optional
Return value

TRUE if a match was found.

Extending Natural Studio with Plug-ins

103

INatAutoDataArea

SearchString

The string to search for.

Line

Contains the start line for the search on input. Contains the line of the first match on return.

Column

Contains the start column for the search on input. Contains the column of the first match on

return.

CaseSensitive

Searches case sensitively. The default is FALSE.

WholeWords

Searches only for whole words that match the search string. The default is FALSE.

Up

Searches in upward direction. The default is FALSE.

Replace

Replaces the first occurrence of a given string in the source code (in the syntax of the DEFINE DATA

statement) with another one.

Parameters
Name Natural Data Format | Variant Type |Remark
Return value |BOOL VT_BOOL
SearchString |A VT_BSTR
ReplaceString | A VT_BSTR
Line 14 VT_I4 By reference
Column 14 VT_l4 By reference
CaseSensitive |L VT_BOOL |Optional
WholeWords |L VT_BOOL |Optional
Up L VT_BOOL |Optional
Return value

TRUE if a match was found.

SearchString

The string to search for.

ReplaceString

The string which replaces the search string.

Line

Contains the start line for the search on input. Contains the line of the first match on return.

104

Extending Natural Studio with Plug-ins

INatAutoDataArea

Column
Contains the start column for the search on input. Contains the column of the first match on
return.

CaseSensitive
Searches case sensitively. The default is FALSE.

WholeWords
Searches only for whole words that match the search string. The default is FALSE.

Up
Searches in upward direction.

Save

Saves the data area.

Parameters

Name |Natural Data Format|Variant Type |[Remark
Name |A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Type |14 VT_14 Optional
Quiet |L VT_BOOL |Optional
Name

Saves the object under the given name.

Library
Saves the object in the given library.

Type
Saves the object under the given type.

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Stow

Stows the data area.

Extending Natural Studio with Plug-ins 105

INatAutoDataArea

Parameters

Name |Natural Data Format|Variant Type |Remark
Name A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Type |14 VT_I4 Optional
Quiet |L VT_BOOL |Optional
Name

Stows the object under the given name.

Library

Stows the object in the given library.

Type

Stows the object under the given type.

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Title

Titles an untitled data area.

Parameters

Name |Natural Data Format|Variant Type |Remark
Name A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Name

Assigns a name to the data area.

Library

Assigns a library to the data area.

106

Extending Natural Studio with Plug-ins

INatAutoDataArea

Getinfo

Returns information about an open object.

Parameters
Name |Natural Data Format | Variant Type |Remark
Type |14 VT_l4 By reference
Name A VT_BSTR By reference
Library A VT_BSTR By reference
Fnr 14 VT_14 By reference
DBnr |14 VT_14 By reference
Type

The type of the object.
Name

The name of the object.

Library
The library of the object.

Fnr
The system file file number of the object.

DBnr
The system file database number of the object.

DeleteLines

Deletes a block of lines from the source code (in the syntax of the DEFINE DATA statement).

Parameters

Name Natural Data Format |Variant Type | Remark
StartLine |14 VT_I4

LineCount |14 VT_14 Optional
StartLine

The start line of the block to delete.

LineCount
The number of lines to delete. The defaultis 1.

Extending Natural Studio with Plug-ins 107

INatAutoDataArea

GetLines

Retrieves a block of lines from the source code (in the syntax of the DEFINE DATA statement).

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |A VT_BSTR

StartLine 14 VT_I4

LineCount |I4 VT_14 Optional

Return value
A block of source code lines. The lines are separated by carriage return / line feed characters.

StartLine
The start line of the block to return.

LineCount
The number of lines to return. The default is 1.

InsertLines

Inserts a block of lines from the source code (in the syntax of the DEFINE DATA statement).

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |14 VT_I4

Code A VT_BSTR
InsertAfterLine|14 VT_14 Optional

Return value
The line number passed in InsertAfterLine increased by the number of inserted lines.

Code
A block of source code lines to insert. The lines must be separated by carriage return / line feed
characters.

InsertAfterLine
Line after which the code shall be inserted. The default is 0.

108 Extending Natural Studio with Plug-ins

INatAutoDataArea

ReplaceLines

Replaces a block of lines from the source code (in the syntax of the DEFINE DATA statement).

Parameters

Name Natural Data Format|Variant Type [Remark
Return value |14 VT_I4

Code A VT_BSTR
ReplaceLine |I4 VT_I4 Optional
LineCount |14 VT_14 Optional

Return value
The line number passed in ReplaceLine increased by the number of inserted lines.

Code
A block of source code lines to replace the block that is defined by ReplaceLine and LineCount.
The lines must be separated by carriage return / line feed characters.

ReplaceLine
The start line of the block to be replaced. The default is 1.

LineCount
The number of lines to be replaced by the given block. The default is 1.

Extending Natural Studio with Plug-ins 109

110

16

INatAutoDataAreas

= Purpose

B PIOPEITIES oo

= ethods

M

INatAutoDataAreas

Purpose

Collection of the development objects currently open in a data area editor window. This collection
comprises the following development object types: local data area, parameter data area and
global data area. The types are identified by a numeric ID. The IDs of predefined types are described
in the section Predefined Node Types.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of development objects currently open in a data area editor window.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

12 Extending Natural Studio with Plug-ins

INatAutoDataAreas

Methods

The following methods are available:

= [tem
= Add

= QOpen

Item

Returns a specific development object from the collection.

Parameters
Name Natural Data Format Variant Type Remark
Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoDataArea)
Index 14 VT_14

A VT_BSTR
Type 14 VT_l4 Optional
Library A VT_BSTR Optional

Return value
The development object identified by the value specified in Index.

Index

Identifies a specific development object in the collection. This can be either the index of the
development object in the collection (a value between 1 and Count) or the name of the object.

Type

Used to identify a specific object by name (specified in Index) and type (specified in Type).

Library

Used to identify a specific object by name (specified in Index), type (specified in Type) and
library (specified in Library).

Extending Natural Studio with Plug-ins

13

INatAutoDataAreas

Add

Creates a new (untitled) development object and opens it in a data area editor window.

Parameters

Name Natural Data Format Variant Type Remark
Return value [HANDLE OF OBJECT|VT_DISPATCH (INatAutoDataArea)

Type 14 VT 14

Visible L VT_BOOL Optional

Return value
The newly created development object.

Type

The type of the object to create.

Visible

Decides if the editor is opened visible or not. By default, the editor is opened visible.

Open

Opens an existing development object in a data area editor window.

Parameters

Name Natural Data Format Variant Type Remark
Return value [HANDLE OF OBJECT|VT_DISPATCH (INatAutoDataArea)

Type 14 VT_I4

Name A VT_BSTR

Library A VT_BSTR Optional
Visible L VT_BOOL Optional

Return value
The newly opened development object.

Type

The type of the object to open.

Name

The name of the object to open.

Library

The library of the object to open.

14

Extending Natural Studio with Plug-ins

INatAutoDataAreas

Visible
Decides if the editor is opened visible or not. By default, the editor is opened visible.

Extending Natural Studio with Plug-ins 115

116

17 INatAutoDialog

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 118
B PIOPEITIES oo 118
B MEINOUS ..o 119

"7

INatAutoDialog

Purpose

A dialog currently open in a dialog editor window.

Properties

The following properties are available:

= Parent
= Studio
= Source
= Visible

= [ineCount

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoDialogs) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Source

The source code of the dialog.

Natural Data Format

Variant Type

Remark

A

VT_BSTR

118

Extending Natural Studio with Plug-ins

INatAutoDialog

Visible

Shows or hides the editor window.

Natural Data Format |Variant Type |Remark

L VT_BOOL

LineCount

The number of lines in the source code.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

Methods

The following methods are available:

= StartEdit

= EndEdit

= Catalog

= Check

= Clear

= Close

= Execute

= Search

= Replace

= Run

= Save

= Stow

= Title

= Getlnfo

= DeleteLines
= GetLines
= |nsertlLines

Extending Natural Studio with Plug-ins 19

INatAutoDialog

= ReplaceLines
StartEdit

This method should be called before calling a series of editing methods in order to increase editing
performance. It converts (internally) the dialog specification into source code.

EndEdit

This method should be called after having called StartEdit and a series of editing methods. It
converts (internally) the source code back into a dialog specification.

Catalog
Catalogs the dialog.

Parameters

Name |Natural Data Format|Variant Type |Remark

Quiet|L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Check
Checks the dialog.

Parameters

Name |Natural Data Format|Variant Type |Remark

Quiet|L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

120 Extending Natural Studio with Plug-ins

INatAutoDialog

Clear

Clears the editor contents.

Parameters

Name |Natural Data Format

Variant Type |Remark

Quiet|L

VT_BOOL

Optional

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Close

Closes the editor and removes the dialog from the collection.

Parameters

Name |Natural Data Format

Variant Type |Remark

Quiet|L

VT_BOOL

Optional

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Execute

Executes the dialog.

Search

Searches for the first occurrence of a given string.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value |BOOL VT_BOOL

SearchString |A VT_BSTR

Line 14 VT_I4 By reference
Column 14 VT_14 By reference
CaseSensitive | L VT_BOOL |Optional
WholeWords |L VT_BOOL [Optional
Up L VT_BOOL |Optional

Extending Natural Studio with Plug-ins

121

INatAutoDialog

Return value

TRUE if a match was found.

SearchString

The string to search for.

Line

Contains the start line for the search on input. Contains the line of the first match on return.

Column

Contains the start column for the search on input. Contains the column of the first match on

return.

CaseSensitive
Searches case sensitively. The default is FALSE.

WholeWords

Searches only for whole words that match the search string. The default is FALSE.

Up

Searches in upward direction. The default is FALSE.

Replace

Replaces the first occurrence of a given string with another one.

Parameters
Name Natural Data Format |Variant Type | Remark
Return value |BOOL VT_BOOL
SearchString |A VT_BSTR
ReplaceString | A VT_BSTR
Line 14 VT_14 By reference
Column 14 VT_I14 By reference
CaseSensitive |L VT_BOOL |Optional
WholeWords |L VT_BOOL |Optional
Up L VT_BOOL |Optional
Return value

TRUE if a match was found.

SearchString

The string to search for.

ReplaceString
The string which replaces the search string.

122

Extending Natural Studio with Plug-ins

INatAutoDialog

Line
Contains the start line for the search on input. Contains the line of the first match on return.

Column
Contains the start column for the search on input. Contains the column of the first match on
return.

CaseSensitive
Searches case sensitively. The default is FALSE.

WholeWords
Searches only for whole words that match the search string. The default is FALSE.

Up
Searches in upward direction.

Run
Runs the dialog.

Parameters

Name |Natural Data Format|Variant Type |Remark

Quiet|L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Save

Saves the dialog.

Parameters

Name |Natural Data Format|Variant Type |Remark
Name A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Quiet |L VT_BOOL |Optional
Name

Saves the dialog under the given name.
Library
Saves the dialog in the given library.
Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Extending Natural Studio with Plug-ins 123

INatAutoDialog

Stow

Stows the dialog.

Parameters

Name |Natural Data Format|Variant Type |Remark
Name A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Quiet |L VT_BOOL |Optional
Name

Stows the dialog under the given name.

Library

Stows the dialog in the given library.

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Title
Titles an untitled dialog.

Parameters

Name |Natural Data Format|Variant Type |Remark
Name |A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Name

Assigns a name to the dialog.

Library

Assigns a library to the dialog.

124

Extending Natural Studio with Plug-ins

INatAutoDialog

Getinfo

Returns information about an open dialog.

Parameters

Name |Natural Data Format|Variant Type |[Remark

Type |14 VT_l4 By reference
Name A VT_BSTR By reference
Library A VT_BSTR By reference
Fnr 14 VT_14 By reference
DBnr |14 VT_14 By reference
Type

The type of the object. Always a dialog.

Name
The name of the dialog.

Library
The library of the dialog.

Fnr
The system file file number of the object.

DBnr

The system file database number of the object.

DeleteLines

Deletes a block of lines from the source code.

Parameters

Name Natural Data Format |Variant Type | Remark
StartLine |14 VT_I4

LineCount |14 VT_14 Optional
StartLine

The start line of the block to delete.

LineCount

The number of lines to delete. The defaultis 1.

Extending Natural Studio with Plug-ins

125

INatAutoDialog

GetLines

Retrieves a block of lines from the source code.

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |A VT_BSTR

StartLine 14 VT_I4

LineCount |I4 VT_14 Optional

Return value
A block of source code lines. The lines are separated by carriage return / line feed characters.

StartLine

The start line of the block to return.

LineCount

The number of lines to return. The default is 1.

InsertLines

Inserts a block of lines from the source code.

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |14 VT_I4

Code A VT_BSTR
InsertAfterLine|14 VT_14 Optional

Return value
The line number passed in InsertAfterLine increased by the number of inserted lines.

Code

A block of source code lines to insert. The lines must be separated by carriage return / line feed
characters.

InsertAfterLine

Line after which the code shall be inserted. The default is 0.

126

Extending Natural Studio with Plug-ins

INatAutoDialog

ReplaceLines

Replaces a block of lines from the source code.

Parameters

Name Natural Data Format|Variant Type [Remark
Return value |14 VT_I4

Code A VT_BSTR
ReplaceLine |I4 VT_I4 Optional
LineCount |14 VT_14 Optional

Return value
The line number passed in ReplaceLine increased by the number of inserted lines.

Code
A block of source code lines to replace the block that is defined by ReplaceLine and LineCount.
The lines must be separated by carriage return / line feed characters.

ReplaceLine
The start line of the block to be replaced. The default is 1.

LineCount
The number of lines to be replaced by the given block. The default is 1.

Extending Natural Studio with Plug-ins 127

128

18 INatAutoDialogs

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 229
B PIOPEITIES oo 130
B MEINOUS ..o 131

129

INatAutoDialogs

Purpose

Collection of the dialogs currently open in a dialog editor window.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of dialogs currently open in a data area editor window.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

130

Extending Natural Studio with Plug-ins

INatAutoDialogs

Methods

The following methods are available:

= [tem

= Add

= QOpen
Item

Returns a specific dialog from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoDialog)

Index 14 VT 14
A VT_BSTR
Library A VT_BSTR Optional

Return value
The dialog identified by the value specified in Index.

Index
Identifies a specific dialog in the collection. This can be either the index of the dialog in the
collection (a value between 1 and Count) or the name of the dialog.

Library
Used to identify a specific dialog by name (specified in Index) and library (specified in Library).

Add

Creates a new (untitled) dialog and opens it in a dialog editor window.

Extending Natural Studio with Plug-ins 131

INatAutoDialogs

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT|VT_DISPATCH (INatAutoDialog)
Visible L VT_BOOL Optional

Return value
The newly created dialog.

Visible
Decides if the editor is opened visibly or not. By default, the editor is opened visibly.

Open
Opens an existing dialog in a dialog editor window.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoDialog)

Name A VT_BSTR
Library A VT_BSTR Optional
Visible L VT_BOOL Optional

Return value
The newly opened dialog.

Name
The name of the dialog to open.

Library
The library of the dialog to open.
Visible
Decides if the editor is opened visibly or not. By default, the editor is opened visibly.

132 Extending Natural Studio with Plug-ins

19 INatAutoEnvironment

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 134
B PIOPEITIES oo 134
B MEINOUS ..o 137

133

INatAutoEnvironment

Purpose

An environment that has once been connected during the current Natural Studio session. This
includes the local environment also. Remote environments are only available with Natural Single
Point of Development. See also Remote Development Using SPoD.

Properties

The following properties are available:

= Parent

= Studio

= |ocal

= Active

= Connected

= Name

= Host

= Port

= Alias

= CommandLine
= UserlD

= Parameters

= SystemVariables

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironments) |Get only

Studio

Used to navigate to the root interface.

134 Extending Natural Studio with Plug-ins

INatAutoEnvironment

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT|VT_DISPATCH (INatAutoStudio)

Get only

Lo

cal

TRUE if this is the local environment.

Natural Data Format |Variant Type |Remark

L

VT_BOOL |Get only

Active

TRUE if this is the active environment.

Natural Data Format | Variant Type |Remark
L VT_BOOL |Get only
Connected

TRUE if this environment is currently connected.

Natural Data Format | Variant Type |Remark

L VT_BOOL |Get only

Name

The name of the environment. This name can be used in the method INatAutoEnvironments::Item

t

o identify a specific environment uniquely.

Natural Data Format | Variant Type |Remark

A VT_BSTR

Host

The host name of the development server.

Extending Natural Studio with Plug-ins

135

INatAutoEnvironment

Natural Data Format |Variant Type |Remark
A VT_BSTR |Get only
Port

The port number of the development server.

Natural Data Format |Variant Type |Remark
14 VT_14 Get only
Alias

The alias name of the environment as displayed in the library workspace.

Natural Data Format

Variant Type

Remark

A

VT_BSTR

Get only

CommandLine

A command line containing additional dynamic parameters under which the environment is

running.
Natural Data Format |Variant Type |Remark
A VT_BSTR |Get only

UserlD

The user ID under which the environment is mapped.

Natural Data Format | Variant Type |Remark
A VT_BSTR |Get only
Parameters

Returns an interface to the NATPARM parameters of this environment.

136

Extending Natural Studio with Plug-ins

INatAutoEnvironment

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoNatParm) |Get only

SystemVariables

Returns an interface to the system variables of the environment.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoNatsvar) |Get only

Methods

The following methods are available:

= Activate
= Disconnect
= Connect
= Unmap

Activate

Makes this environment the active one. An environment cannot explicitly be deactivated. An en-
vironment is implicitly deactivated when another one is activated.

This method is not applicable to environments that are disconnected.

Parameters

Name (Natural Data Format|Variant Type |Remark

Visible|L VT_BOOL |Optional

Visible
This parameter can be used to temporarily activate a different environment and then reactivate
the previous environment, without affecting the user interface.

If set to TRUE or not specified, the newly activated environment is selected in the library
workspace.

If set to FALSE, the previously active environment stays selected.

Extending Natural Studio with Plug-ins 137

INatAutoEnvironment

Disconnect

Disconnects the environment and closes the development server session. If this environment was
the active one, the previously active environment gets activated.

This method is not applicable to the local environment.
Connect

Reestablishes the connection to a previously disconnected environment. Activates the connected
environment.

Parameters
Name Natural Data Format |Variant Type | Remark
Password A VT_BSTR |Optional
Quiet L VT_BOOL |Optional
IgnoreWarnings |L VT_BOOL |Optional
Password
The password of the user ID under which the environment was previously connected.
Quiet

If set to FALSE or not specified, the Map Environment dialog is shown and is preset with the
given parameters.

If set to TRUE, the Map Environment dialog is not shown.

IgnoreWarnings
If set to FALSE or not specified, warnings that occur during connecting are treated like errors.

If set to TRUE, warnings are ignored.
Unmap

Unmaps the environment, disconnects it and closes the development server session. If this envir-
onment was the active one, the previously active environment gets activated.

This method is not applicable to the local environment.

138 Extending Natural Studio with Plug-ins

20 INatAutoEnvironments

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 140
B PIOPEITIES oo 140
B MEINOUS ..o 141

139

INatAutoEnvironments

Purpose

Collection of the development environments that have once been connected during the current
Natural Studio session. This includes the local environment. Remote environments are only
available with Natural Single Point of Development. See also Remote Development Using SPoD.

Properties

The following properties are available:

= Parent

= Studio

= Count

= | ocalEnvironment

= RemoteEnvironment
= ActiveEnvironment

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoSystem) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

140 Extending Natural Studio with Plug-ins

INatAutoEnvironments

Count

The number of environments in the collection.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

LocalEnvironment

Returns the local environment.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

RemoteEnvironment

This property is useful only for Natural system commands and utilities. If a Natural system com-
mand or utility is executed in the local environment, but is supposed to operate on a certain remote
environment, this propery returns that remote environment. Otherwise it returns NULL-HANDLE.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

ActiveEnvironment

Returns the currently active environment. Returns NULL-HANDLE if no environment is active.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

Methods

The following methods are available:

= |tem

Extending Natural Studio with Plug-ins 141

INatAutoEnvironments

= Add

Iltem

Retrieves a specific environment from the collection.

Parameters
Name Natural Data Format Variant Type Remark
Return value|HANDLE OF OBJECT|VT_DISPATCH (INatAutoEnvironment)
Index 14 VT 14
A VT_BSTR

Return value

The environment identified by the value specified in Index.

Index

Identifies a specific environment in the collection. This can be either the index of the environ-
ment in the collection (a value between 1 and Count) or the name of the environment. The
name of the environment is the value of the property INatAutoEnvironment: :Name.

Add

Maps a remote environment, adds it to the collection and activates it. Returns the environment.

Parameters

Name Natural Data Format Variant Type Remark
Return value HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment)

Host A VT_BSTR Optional
Port 14 VT_I4 Optional
Alias A VT_BSTR Optional
CommandLine [A VT_BSTR Optional
UserID A VT_BSTR Optional
Password A VT_BSTR Optional
Quiet L VT_BOOL Optional
IgnoreWarnings |L VT_BOOL Optional
Visible L VT_BOOL Optional

Return value

The newly mapped environment.

142

Extending Natural Studio with Plug-ins

INatAutoEnvironments

Host
The host name of the development server.

Port
The port number of the development server.

Alias
An alias name for the environment that is displayed in the library workspace. If no alias name
is specified, a unique name will be generated.

CommandLine
A command line containing additional dynamic parameters under which the environment
will be running.

UserID
The user ID under which the environment will be mapped.

Password
The password of the user ID under which the environment will be mapped.

Quiet
If set to FALSE or not specified, the Map Environment dialog is shown and is preset with the
given parameters.
If set to TRUE, the Map Environment dialog is not shown.

IgnoreWarnings
If set to FALSE or not specified, warnings that occur during mapping are treated like errors.
If set to TRUE, warnings are ignored.

Visible

If set to TRUE or not specified, the environment is displayed in the library workspace.

If set to FALSE, the environment is not displayed.

Extending Natural Studio with Plug-ins 143

144

21 INatAutoFrameMenu

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 146
B PIOPEITIES oo 146
B MEINOUS ..o 147

145

INatAutoFrameMenu

Purpose

Gives access to a specific frame menu.

Properties

The following properties are available:

= Parent
= Studio
= Count
= Caption

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoFrameMenus) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

Get only

Count

The number of items (commands, separators and pop-up menus) in the menu.

Natural Data Format |Variant Type |Remark

14 VT_l4 Get only

146

Extending Natural Studio with Plug-ins

INatAutoFrameMenu

Caption

A string used to identify the menu, as defined when the menu was created.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Methods

The following methods are available:

= tem

= SubMenu

= |nsertCommand
= |nsertSeparator
= |nsertPopupMenu
= UpdateMenu

Item
Returns a specific item contained in the menu, based on an index.

Parameters

Name Natural Data Format Variant Type |Remark

Return value [HANDLE OF OBJECT|VT_BSTR

Index 14 VT _ 14
A VT _BSTR

Return value
The caption of the menu item (command or pop-up menu) identified by the value specified
in Index. If the index identifies a separator, an empty string is returned.

Index
The index of the item in the menu (a value between 1 and Count).

Extending Natural Studio with Plug-ins 147

INatAutoFrameMenu

SubMenu

Returns a specific pop-up menu contained in the menu, based on an index.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoPopupMenu)

Index 14 VT_l4
A VT_BSTR

Return value
The pop-up menu identified by the value specified in Index. If the specified index does not
identify a pop-up menu, but a command or a separator, a null interface pointer (NULL-
HANDLE) is returned.

Index
As index either a number between 1 and Count or the caption of a pop-up menu can be spe-
cified.

InsertCommand

Inserts a command into the menu.

Parameters

Name Natural Data Format Variant Type Remark
Return value None
Command |HANDLE OF OBJECT|VT_DISPATCH (INatAutoCommand)

Index 14 VT_14 Optional
Command

A command to be added to the menu. The command must have been defined before using the
method INatAutoCommands: :Add.

Index
The position in the menu where the command shall be inserted. If Index is omitted, the com-
mand is inserted at the last position.

148 Extending Natural Studio with Plug-ins

INatAutoFrameMenu

InsertSeparator

Inserts a separator into the menu.

Parameters

Name

Natural Data Format

Variant Type |Remark

Return value

None

Index

14

VT_14 Optional

Index

The position in the menu where the separator shall be inserted. If Index is omitted, the separ-
ator is inserted at the last position.

InsertPopupMenu

Creates a new pop-up menu and inserts it into the menu.

Parameters

Name

Natural Data Format

Variant Type

Remark

Return value

HANDLE OF OBJECT |VT_DISPATCH (INatAutoPopupMenu)

Caption

A

VT_BSTR

Index

14

VT_14

Optional

Return value
The newly created pop-up menu.

Caption

A string used to identify the pop-up menu.

Index

The position in the menu where the pop-up menu shall be inserted. If Index is omitted, the
pop-up menu is inserted at the last position.

Extending Natural Studio with Plug-ins

149

INatAutoFrameMenu

UpdateMenu

Changes in a menu are not made visible immediately, in order to avoid flickering. After having
finished modifying a menu, make the recent changes visible by calling this method.

150 Extending Natural Studio with Plug-ins

22 INatAutoFrameMenus

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 152
B PIOPEITIES oo 152
B MEINOUS ..o 153

151

INatAutoFrameMenus

Purpose

Collection of the available frame menus.

Frame menus must have a consistent layout throughout an application. It is therefore not useful
for a Natural Studio plug-in to create arbitrary frame menus at will. The best approach for a plug-

in is

* thinking about the document types it is going to represent in document windows;

" specifying a frame menu for each of these types;

creating these frame menus as clones of the default frame menu for plug-ins;

* extending them in order to cover the needs of the document type, in a manner consistent with

the document-specific frame menus in Natural Studio.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoControlBars)

Get only

Studio

Used to navigate to the root interface.

152

Extending Natural Studio with Plug-ins

INatAutoFrameMenus

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoStudio)

Get only

Count

The number available frame menus.

Natural Data Format |Variant Type |Remark

14

VT_14 Get only

Methods

The following methods are available:

= Add

= Clone

= [tem

Add

Creates a new frame menu and adds it to the collection. Dynamically created frame menus are
not persistently customizable in the Customize dialog.

Parameters
Name Natural Data Format Variant Type Remark
Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoFrameMenu)

Caption

A

VT_BSTR

Return value
The newly added frame menu.

Caption

A string used to identify the frame menu.

Extending Natural Studio with Plug-ins

153

INatAutoFrameMenus

Clone

Creates a new frame menu as a copy of an existing frame menu and adds it to the collection. Dy-
namically created frame menus are not persistently customizable in the Customize dialog.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT|VT_DISPATCH (INatAutoFrameMenu)

Caption A VT_BSTR
Index 14 VT_14 Optional
A VT_BSTR

Return value
The newly added frame menu.
Caption
A string used to identify the frame menu.
Index
Identifies the frame menu to be cloned. This can be either the index of the frame menu in the
collection (a value between 1 and Count) or the caption of the frame menu (as indicated in the

Customize dialog). If this parameter is omitted, the built-in frame menu Plug-in MDI View is
cloned.

ltem
Returns a specific frame menu from the collection. Used to iterate through the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT|VT_DISPATCH (INatAutoFrameMenu)

Index 14 VT 14
A VT _BSTR

Return value
The frame menu identified by the value specified in Index.

Index
Identifies a specific frame menu in the collection. This can be either the index of the frame
menu in the collection (a value between 1 and Count) or the caption of the frame menu (as
indicated in the Customize dialog).

154 Extending Natural Studio with Plug-ins

23 INatAutoGenericDocument

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 156
B PIOPEITIES oo 156
B MNOAS .ot 157
B NOHAICALONS .. 157

155

INatAutoGenericDocument

Purpose

A currently open generic document window.

Properties

The following properties are available:

= Parent
= Studio
= DialoglD
= PluginiD
= Caption

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoGenericDocuments) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

DialogID

The dialog ID of the Natural dialog that implements the window. This is the dialog ID that was
passed to the Add method during creation of the generic document window.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

156 Extending Natural Studio with Plug-ins

INatAutoGenericDocument

PluginiD

The ID of the plug-in that created the document window. A plug-in can use this property to iterate
only across its own document windows.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Caption

The caption of the document window.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

Methods

The following method is available:

= Close
Close
Closes the generic document window. This method is executed asynchronously. In particular, this

means that if it is called from within the method OnCommand of a plug-in, the window will only
really be closed after the method OnCommand has terminated.

Notifications

A plug-in that has created a generic document window can expect to receive the following notific-
ations through the method OnNotify:

® PLUGIN-NOTIFY-ACTIVATE
® PLUGIN-NOTIFY-QUERYCLOSE

PLUGIN-NOTIFY-CLOSE
® PLUGIN-NOTIFY-SELECTEDOBJECTS

PLUGIN-NOTIFY-FOCUSOBJECT
® PLUGIN-NOTIFY-CONTEXTMENU

Extending Natural Studio with Plug-ins 157

INatAutoGenericDocument

® PLUGIN-NOTIFY-REFRESH

158 Extending Natural Studio with Plug-ins

24 INatAutoGenericDocuments

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 160
B PIOPEITIES oo 160
B MEINOUS ..o 161

159

INatAutoGenericDocuments

Purpose

Collection of the currently open generic document windows.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of currently open generic document windows.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

160

Extending Natural Studio with Plug-ins

INatAutoGenericDocuments

Methods

The following methods are available:

= [tem
= Add

ltem
Returns a specific generic document window from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT|VT_DISPATCH (INatAutoGenericDocument)
Index 14 VT 14

Return value
The generic document window identified by the value specified in Index.

Index
Identifies a specific generic text object in the collection by its index in the collection (a value
between 1 and Count).

Add

Creates a new generic document window from a Natural dialog instance. Before creating a generic
document window, the plug-in opens a Natural dialog of type “MDI plug-in window” with the
OPEN DIALOG statement. In order to make the dialog appear in Natural Studio as a document
window, the plug-in passes the dialog ID returned from the OPEN DIALOG statement to the method
Add in the parameter DialogID.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT|VT_DISPATCH (INatAutoGenericDocument)

DialogID 14 VT_I4

Caption A VT_BSTR Optional
IconFile A VT_BSTR Optional
FrameMenu |A VT_DISPATCH (INatAutoFrameMenu) Optional

Extending Natural Studio with Plug-ins 161

INatAutoGenericDocuments

Return value
An interface to the newly created generic document window.

DialogID
A dialog ID that was returned from a previous 0PEN DIALOG statement with a Natural dialog
of type “MDI plug-in window”.

Caption
The caption to be displayed in the generic document window. If Caption is omitted, the caption
defined in the corresponding Natural dialog will be displayed.

IconFile
The file and path name of the .ico file that contains the icon to be displayed in the generic
document window. If IconFile is omitted, the icon defined in the corresponding Natural dialog
will be displayed.

FrameMenu
The frame menu to be displayed with the generic document window. If FrameMenu is omitted,
the default frame menu for plug-in document windows will be used. But usually the plug-in
will create its own frame menu by cloning (see INatAutoFrameMenus: : CTone) this default menu
and extending the clone according to its requirements.

162 Extending Natural Studio with Plug-ins

25 INatAutoGenericText

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 164
B PIOPEITIES oo 164
B MEINOUS ..o 166

163

INatAutoGenericText

Purpose

A generic (non-Natural) text object currently open in a program editor window.

Properties

The following properties are available:

= Parent

= Studio

= Source

= Visible

= Type

= Name

= LineCount

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoGenericTexts) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Source

The text contained in the text object.

164 Extending Natural Studio with Plug-ins

INatAutoGenericText

Natural Data Format |Variant Type |Remark
A VT_BSTR
Visible

Shows or hides the editor window.

The type of the text object. The type is defined as a text string by the plug-in during the method

Natural Data Format |Variant Type |Remark
L VT_BOOL

Type

Open.

Natural Data Format | Variant Type |Remark
A VT_BSTR |Get only
Name

The name of the text object. The name is defined as a text string by the plug-in during the method

Open.

Natural Data Format |Variant Type |Remark
A VT_BSTR |Get only
LineCount

The number of lines in the text object.

Natural Data Format

Variant Type

Remark

14

VT_14

Get only

Extending Natural Studio with Plug-ins

165

INatAutoGenericText

Methods

The following methods are available:

Clear

= Clear

= Close

= Renumber

= Search

= Replace

= DeletelLines
= GetLines

= |nsertLines

= ReplacelLines

Clears the editor contents.

Parameters
Name |Natural Data Format|Variant Type |Remark
Quiet|L VT_BOOL |Optional

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Close

Closes the editor and removes the object from the collection.

Parameters
Name |Natural Data Format|Variant Type |Remark
Quiet|L VT_BOOL |Optional

Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

166

Extending Natural Studio with Plug-ins

INatAutoGenericText

Renumber
Renumbers the text object.
Search

Searches for the first occurrence of a given string.

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |BOOL VT_BOOL

SearchString |A VT_BSTR

Line 14 VT_I4 By reference
Column 14 VT_14 By reference
CaseSensitive |L VT_BOOL [Optional
WholeWords |L VT_BOOL [Optional
Up L VT_BOOL |Optional

Return value
TRUE if a match was found.

SearchString
The string to search for.

Line
Contains the start line for the search on input. Contains the line of the first match on return.
Column

Contains the start column for the search on input. Contains the column of the first match on
return.

CaseSensitive
Searches case sensitively. The default is FALSE.

WholeWords

Searches only for whole words that match the search string. The default is FALSE.
Up

Searches in upward direction. The default is FALSE.

Extending Natural Studio with Plug-ins 167

INatAutoGenericText

Replace

Replaces the first occurrence of a given string with another one.

Parameters
Name Natural Data Format |Variant Type | Remark
Return value |BOOL VT_BOOL
SearchString |A VT_BSTR
ReplaceString | A VT_BSTR
Line 14 VT_14 By reference
Column 14 VT_14 By reference
CaseSensitive |L VT_BOOL |Optional
WholeWords |L VT_BOOL |Optional
Up L VT_BOOL |Optional
Return value

TRUE if a match was found.

SearchString

The string to search for.

ReplaceString

The string which replaces the search string.

Line

Contains the start line for the search on input. Contains the line of the first match on return.

Column

Contains the start column for the search on input. Contains the column of the first match on

return.

CaseSensitive

Searches case sensitively. The default is FALSE.

WholeWords

Searches only for whole words that match the search string. The default is FALSE.

Up

Searches in upward direction.

168

Extending Natural Studio with Plug-ins

INatAutoGenericText

DeleteLines

Deletes a block of lines from the text object.

Parameters

Name Natural Data Format

Variant Type |Remark

StartLine |14

VT_l14

LineCount|I4

VT_l14 Optional

StartLine

The start line of the block to delete.

LineCount

The number of lines to delete. The defaultis 1.

GetLines

Retrieves a block of lines from the text object.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value |A VT_BSTR

StartLine 14 VT_ 14

LineCount |I4 VT_l4 Optional

Return value
A block of text lines. The lines are separated by carriage return / line feed characters.

StartLine

The start line of the block to return.

LineCount

The number of lines to return. The default is 1.

Extending Natural Studio with Plug-ins

169

INatAutoGenericText

InsertLines

Inserts a block of lines into the text object.

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |14 VT_I4

Code A VT_BSTR
InsertAfterLine |14 VT_l4 Optional

Return value
The line number passed in InsertAfterLine increased by the number of inserted lines.

Code
A block of text lines to insert. The lines must be separated by carriage return / line feed charac-
ters.

InsertAfterLine
Line after which the lines shall be inserted. The default is 0.

ReplaceLines

Replaces a block of lines from the text object.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value |14 VT 14

Code A VT _BSTR
ReplaceLine |14 VT_14 Optional
LineCount |14 VT_ 14 Optional

Return value
The line number passed in ReplaceLine increased by the number of inserted lines.

Code
A block of source code lines to replace the block that is defined by ReplaceLine and LineCount.
The lines must be separated by carriage return / line feed characters.

ReplaceLine
The start line of the block to be replaced. The default is 1.

LineCount
The number of lines to be replaced by the given block. The default is 1.

170 Extending Natural Studio with Plug-ins

26 INatAutoGenericTexts

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 172
B PIOPEITIES oo 172
B MEINOUS ..o 173

171

INatAutoGenericTexts

Purpose

Collection of the generic (non-Natural) text objects currently open in a program editor window.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of generic text objects currently open in a program editor window.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

172

Extending Natural Studio with Plug-ins

INatAutoGenericTexts

Methods

The following methods are available:

= |tem
= QOpen

ltem
Returns a specific generic text object from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT|VT_DISPATCH (INatAutoGenericText)

Index 14 VT 14
A VT_BSTR
Type A VT_BSTR Optional

Return value
The generic text object identified by the value specified in Index.

Index
Identifies a specific generic text object in the collection. This can be either the index of the text
object in the collection (a value between 1 and Count) or the name of the object.

Type
Used to identify a specific object by name (specified in Index) and type (specified in Type).
The type is a string freely defined by the plug-in when the text object was opened in the editor.
Open

Opens a generic text object in a program editor window.

Extending Natural Studio with Plug-ins 173

INatAutoGenericTexts

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoGenericText)

Type A VT_BSTR
Name A VT_BSTR
Buffer A VT_BSTR
Visible L VT_BOOL Optional

Return value
The newly opened generic text object.

Type, Name
Type and Name are freely defined by the calling plug-in to identify a generic text object to the
user. Natural Studio takes these values to create a window caption for the editor window
("name - type") and to prompt users if they attempt to close an unsaved editing session ("Apply
changes to type name?").

Note that the name space of type is shared between all callers of the interface. There are no
means taken to inhibit different plug-ins from using the same type identifiers. In order to avoid
confusing users, plug-ins should not choose their type identifiers too generic. Good example
for a type identifier: "Package Description". Bad example: "Description".

Buffer
Contains the data that is passed to the editor initially. Line breaks in the text must be denoted
with carriage return and line feed characters.

Visible
Decides if the editor is opened visibly or not. By default, the editor is opened visibly.

174 Extending Natural Studio with Plug-ins

27 INatAutolmages

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 176
B PIOPEITIES oo 176
B MEINOUS ..o 176

175

INatAutolmages

Purpose

Used to define images that represent commands in menus and toolbars.

Properties

The following properties are available:

= Parent
= Studio

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoControlBars) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Methods

The following method is available:

176 Extending Natural Studio with Plug-ins

INatAutoImages

= | oadlmage
Loadimage

Loads an image from a file. The resulting IPictureDisp interface can, for example, be used to assign
the image to a command when adding a command to the INatAutoCommands collection.
IPictureDisp is an Automation interface predefined in Windows.

Parameters

Name Natural Data Format Variant Type Remark

Return value |HANDLE OF OBJECT|VT_DISPATCH (IPictureDisp)
ImageFileName |A VT_BSTR

Return value
The loaded image.

ImageFileName
Name of a bitmap file (.bmp) with full path name that contains the image to be loaded.

Extending Natural Studio with Plug-ins 177

178

28 INatAutoLinkedApplications

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 180
B PIOPEITIES oo 180
B MEINOUS ..o 181

179

INatAutoLinkedApplications

Purpose

Collection of applications that are linked to a compound application.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of applications in the collection.

Natural Data Format|Variant Type |Remark

14 VT_14 Get only

180 Extending Natural Studio with Plug-ins

INatAutoLinkedApplications

Methods

The following methods are available:

= [tem

= Add

= Remove
Item

Returns a specific application from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication)

Index 14 VT_l4
A VT_BSTR

Return value
The application identified by the value specified in Index.

Index
Identifies a specific application in the collection. This can be either the index of the application
in the collection (a value between 1 and Count) or the name of the application.

Add

Adds the given application to the collection (effectively links it to the parent application).

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication)
Application |A VT_BSTR

Return value
The newly linked application.

Application
Name of the application to be linked.

Extending Natural Studio with Plug-ins 181

INatAutoLinkedApplications

Remove

Removes the application from the collection (effectively unlinks it from the parent application).

Parameters

Name |Natural Data Format|Variant Type |Remark
Index |14 VT_l4

A VT_BSTR
Index

Identifies a specific application in the collection. This can be either the index of the application
in the collection (a value between 1 and Count) or the name of the application.

182 Extending Natural Studio with Plug-ins

29 INatAutoNatparm

L V1Y Lot RRRPRPRRRPN 184
B PIOPEITIES oo 184

183

INatAutoNatparm

Purpose

Gives access to certain parameters of a specific Natural development environment.

Properties

The following properties are available:

= Parent

= Studio

= CurrentLibrary
= CurrentDBnr
= CurrentFnr
FnatDBnr
FnatFnr
FuserDBnr

= FuserFnr
FdicDBnr
FdicFnr

= FddmDBnr

= FddmFnr

= ProfileParameters

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

Studio

Used to navigate to the root interface.

184 Extending Natural Studio with Plug-ins

INatAutoNatparm

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT|VT_DISPATCH (INatAutoStudio)

Get only

CurrentLibrary

The name of the current logon library.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

CurrentDBnr

The database number of the system file where the current logon library is located.

Natural Data Format | Variant Type |Remark

14 VT_l4 Get only

CurrentFnr

The file number of the system file where the current logon library is located.

Natural Data Format | Variant Type |Remark

14 VT_I4 Get only

FnatDBnr

The database number of the Natural system file.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

FnatFnr

The file number of the Natural system file.

185

Extending Natural Studio with Plug-ins

INatAutoNatparm

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

FuserDBnr

The database number of the user system file.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

FuserFnr

The file number of the user system file.

Natural Data Format | Variant Type |Remark

14 VT_l4 Get only

FdicDBnr

The database number of the development server file.

Natural Data Format | Variant Type |Remark

14 VT_I4 Get only

FdicFnr

The file number of the development server file.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

FddmDBnr

The database number of the system file for DDMs.

186 Extending Natural Studio with Plug-ins

INatAutoNatparm

Natural Data Format |Variant Type |Remark

14 VT_I4 Get only

FddmFnr

The file number of the system file for DDMs.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

ProfileParameters

A string containing an XML document that contains the current values of a defined subset of the
Natural profile parameters. For the meaning of the individual parameters, refer to the Parameter
Reference. In the case of a remote environment, the document contains only a defined subset of the

profile parameters.

For the local environment, the XML document is structured according to the DTD provided in the
section DTD for INatAutoNatparm - Local Environment.

For a remote environment, the XML document is structured according to the DTD provided in
the section DTD for INatAutoNatparm - Remote Environment.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

Extending Natural Studio with Plug-ins 187

188

30 INatAutoNatsvar

L V1Y Lot RRRPRPRRRPN 190
B PIOPEITIES oo 190

189

INatAutoNatsvar

Purpose

Gives access to some of the system variables of a Natural development environment.

Properties

The following properties are available:

= Parent

= Studio

= | anguage

= SystemVariables

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Language

The system variable * LANGUAGE.

Natural Data Format |Variant Type |Remark

2 VT_I2 Get only

190 Extending Natural Studio with Plug-ins

INatAutoNatsvar

SystemVariables

A string containing an XML document that contains the current values of a defined subset of the
Natural system variables. For the meaning of the individual system variables, refer to the System
Variables documentation. In the case of a remote environment, the system variables cannot be de-
livered and the property contains an empty string.

For the local environment, the XML document is structured according to the DTD provided in the
section DTD for INatAutoNatsvar - Local Environment.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Extending Natural Studio with Plug-ins 191

192

31 INatAutoNodelmages

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 194
B PIOPEITIES oo 194
B MEINOUS ..o 195

193

INatAutoNodelmages

Purpose

A collection of images that shall be used to represent a user defined node type in tree views or list

views. Each image is identified by an integer value.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoTypes) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of available node images.

Natural Data Format

Variant Type

Remark

14

VT_14

Get only

194

Extending Natural Studio with Plug-ins

INatAutoNodelmages

Methods

The following method is available:

= Addlmage
Addimage

Adds a new image to the collection.

A list view node requires a 16x16 bitmap to represent the node in the “Small icons” view and a
32x32 bitmap for the “Large icons” view. A tree view node requires two 16x16 bitmaps, one rep-
resenting the closed state and one representing the open state.

In order to register a 16x16 bitmap, the plug-in passes the bitmap in the parameter ImageSmall.
In order to register additionally a corresponding 32x32 bitmap, the plug-in passes the bitmap in
the parameter Imagelarge.

In order to register images for a node that shall be represented both in list views and in tree views,
the plug-in calls AddImage once with the 16x16 bitmap representing the closed state and the cor-
responding 32x32 bitmap. Then it calls AddImage a second time passing the 16x16 bitmap repres-
enting the open state and omitting the second parameter.

Parameters
Name Natural Data Format Variant Type Remark
Return value |14 VT _I4
ImageSmall |A VT_BSTR
HANDLE OF OBJECT |VT_DISPATCH (IPictureDisp)
ImageLarge |A VT_BSTR Optional
HANDLE OF OBJECT |VT_DISPATCH (IPictureDisp)

Return value
An integer value that can later be used to refer to the image in the method
INatAutoNodeTypes: :Add.

ImageSmall
A 16x16 bitmap. Areas in the bitmap that contain the color RGB(0,128,128) will be displayed
transparent.

The bitmap can be specified in two ways:

® As an absolute path name of a .bmp file.

Extending Natural Studio with Plug-ins 195

INatAutoNodelmages

" Asan IPictureDisp interface. An IPictureDisp interface can be created in Natural using
the method INatAutoImages::LoadImage. Note that an IPictureDisp interface cannot be
passed across process boundaries. This is due to a Microsoft restriction (MSDN Q150034).
Therefore this alternative can only be used with plug-ins running as in-process servers.
Natural written plug-ins always run as local servers and can therefore not use this alternative.

ImageLarge
A 32x32 bitmap. Areas in the bitmap that contain the color RGB(0,128,128) will be displayed
transparent.

The bitmap can be specified in two ways:
" As an absolute path name of a .bmp file.

" Asan IPictureDisp interface. An IPictureDisp interface can be created in Natural using
the method INatAutoImages::LoadImage. Note that an IPictureDisp interface cannot be
passed across process boundaries. This is due to a Microsoft restriction (MSDN Q150034).
Therefore this alternative can only be used with plug-ins running as in-process servers.
Natural written plug-ins always run as local servers and can therefore not use this alternative.

196 Extending Natural Studio with Plug-ins

32 INatAutoNodeType

L V1Y Lot RRRPRPRRRPN 198
B PIOPEITIES oo 198

197

INatAutoNodeType

Purpose

A node type used in tree views and list views.

Properties

The following properties are available:

= Parent
= Studio

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoNodeTypes) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

Get only

198

Extending Natural Studio with Plug-ins

33 INatAutoNodeTypes

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 200
B PIOPEITIES oo 200
B MEINOUS ..o 200

199

INatAutoNodeTypes

Purpose

Collection of all node types used in tree views and list

Properties

views.

The following properties are available:

= Parent
= Studio

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoTypes)

Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

Get only

Methods

The following method is available:

200

Extending Natural Studio with Plug-ins

INatAutoNodeTypes

= Add

Add

Creates a new node type and adds it to the collection.

Parameters

Name Natural Data Format Variant Type Remark
Return value HANDLE OF OBJECT [VT_DISPATCH (INatAutoNodeType)

Type 14 VT_I4

Caption A VT_BSTR Optional
ContextMenu |HANDLE OF OBJECT |VT_DISPATCH (INatAutoContextMenu) |Optional
ImagelDDefault |14 VT_I4 Optional
ImagelDOpen |14 VT_I4 Optional

Return value
The newly created node type.

Type
An integer number that identifies the new node type. An arbitrary positive integer value
starting with 20000 can be chosen. Values below 20000 are reserved for predefined node types.

Caption
A name for the node type for the use in tree view and list view captions.

ContextMenu
A context menu that shall be displayed when the right mouse button is pressed on a node of
this type.

ImageIDDefault
An index to the small (16x16) and large (32x32) version of the default bitmap representation
of nodes of this type. If the plug-in has registered node bitmaps with the method
INatAutoNodeImages: :AddImage, it has received an index that can be used here. If the para-
meter is not specified, the nodes of this type are represented as closed folders.

ImageIDOpen
An index to the bitmap that represents an expanded node of this type in a tree view. If the
plug-in has registered node bitmaps with the method INatAutoNodeImages::AddImage, it has
received an index that can be used here. If the parameter is not specified, expanded nodes of
this type are represented as open folders.

Extending Natural Studio with Plug-ins 201

202

34 INatAutoObjectList

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 204
B PIOPEITIES oo 204
B MEINOUS ..o 205
B NOHAICALONS .. 205

203

INatAutoObjectList

Purpose

An open list view document window.

Properties

The following properties are available:

= Parent
= Studio
= PluginiD

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectLists) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

PluginiD

The ID of the plug-in that created the list view document window. A plug-in can use this property
to iterate only across its own document windows.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

204 Extending Natural Studio with Plug-ins

INatAutoObjectList

Methods

The following method is available:

= Close
Close
Closes the list view document window. This method is executed asynchronously. In particular,

this means that if it is called from within the method OnCommand of a plug-in, the window will only
really be closed after the method OnCommand has terminated.

Notifications

A plug-in that has created a list view document window can expect to receive the following noti-
fications through its method OnNotify.

® PLUGIN-NOTIFY-ACTIVATE

® PLUGIN-NOTIFY-CLOSE

® PLUGIN-NOTIFY-REFRESH

® PLUGIN-NOTIFY-HELP

Extending Natural Studio with Plug-ins 205

206

35 INatAutoObjectLists

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 208
B PIOPEITIES oo 208
B MEINOUS ..o 209

207

INatAutoObjectLists

Purpose

Collection of the currently open list view document windows.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |DISPATCH (INatAutoObjects) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of currently open list view document windows.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

208

Extending Natural Studio with Plug-ins

INatAutoObjectLists

Methods

The following methods are available:

= |tem
= QOpen

ltem
Returns a specific list view document window from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectList)
Index 14 VT 14

Return value
The list view document window identified by the value specified in Index.

Index
Identifies a specific list view document window in the collection. This is a value between 1
and Count.

Open

Opens a new list view document window.

Parameters

Name Natural Data Format Variant Type Remark
Return value |HANDLE OF OBJECT|VT_DISPATCH (INatAutoObjectList)

Type 14 VT_14

Key A VT_BSTR

Caption A VT_BSTR

Template 14 VT_14 Optional
PlugInID A VT_BSTR Optional
Info A VT_BSTR Optional
DisplayName|A VT_BSTR Optional
Children A VT_BSTR Optional
NaturalType (14 VT_I4 Optional

Extending Natural Studio with Plug-ins 209

INatAutoObjectLists

Name Natural Data Format Variant Type Remark

NaturalKey |A VT_BSTR Optional

Return value
The newly opened list view document.

Type
The node type of the root object. This must be a plug-in defined type that may correspond to
a predefined Natural Studio type.

Key
The key that identifies the object within its type.

Caption
Determines the caption of the document window.

In order to generate a caption that matches the caption format used in Natural Studio document
windows, the string passed in this parameter may contain the format specifier %std. This
format specifier will be dynamically replaced by an identifier of the root object in the following
way: If the root node corresponds to a predefined Natural Studio object, the format specifier
%stdisreplaced by "name[1ibrary]-". Otherwise the identifier is built in the form "node - type -
captiondisplay-name-", where node-type-captionis the caption that was passed when the
node type was created and dispiay-name is the string passed in DisplayName.

Template
The value specified here is passed back to the plug-in when Natural Studio later calls the plug-
in through the interface INaturalStudioPTugInTree in order to retrieve data to fill the view.
This enables the plug-in to deliver different data for the same root object.

PlugInID
The ID of the plug-in that defined the type.

Info
Additional information that a plug-in may want to assign to the root object. Natural Studio
does not interpret this information. It just passes it back to the plug-in when it later calls the
plug-in through the interface INaturalStudioPTugInTree in order to retrieve data to fill the
view.

DisplayName
The text to be displayed at the root node.

Children
If the plug-in already knows the child nodes of the root node, it can pass them in this parameter.
The parameter must then contain an XML document describing the child nodes. The XML
document is structured according to the DTD defined in
INaturalStudioPlugInTree::GetChildren. If this parameter is specified, Natural Studio im-
plicitly assumes that the root node has child nodes and performs no call through the interface
INaturalStudioPTugInTree to determine if the root node has child nodes.

210 Extending Natural Studio with Plug-ins

INatAutoObjectLists

NaturalType
If the root node corresponds to a predefined Natural Studio object, this property contains the
type of the corresponding predefined object.

NaturalKey
If the root node corresponds to a predefined Natural Studio object, this property contains the
key of the corresponding predefined object.

Extending Natural Studio with Plug-ins 211

212

36 INatAutoObjects

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 214
B PIOPEITIES oo 214
B MEINOUS ..o 216

213

INatAutoObjects

Purpose

Used to navigate to the collections of development objects and other related collections.

Properties

The following properties are available:

= Parent

= Studio

= Programs

= Dialogs

= DataAreas

= ObjectTrees

= QObjectLists

= GenericTexts

= GenericDocuments
= SelectedObjects
= RefreshObject

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

214 Extending Natural Studio with Plug-ins

INatAutoObjects

Programs

Used to navigate to the INatAutoPrograms interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoPrograms) |Get only
Dialogs
Used to navigate to the INatAutoDialogs interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoDialogs) |Get only
DataAreas

Used to navigate to the INatAutoDataAreas interface.

Remark

Natural Data Format Variant Type

HANDLE OF OBJECT |VT_DISPATCH (INatAutoDataAreas) |Get only

ObjectTrees

Used to navigate to the INatAutoObjectTrees interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTrees) |Get only

ObjectLists

Used to navigate to the INatAutoObjectlists interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectLists) |Get only

215

Extending Natural Studio with Plug-ins

INatAutoObjects

GenericTexts

Used to navigate to the INatAutoGenericTexts interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoGenericTexts) |Get only

GenericDocuments

Used to navigate to the INatAutoGenericDocuments interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoGenericDocuments) |Get only

SelectedObjects

Used to navigate to the INatAutoSelectedObjects interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoSelectedObjects) |Get only

RefreshObject
Used to navigate to the INatAutoRefreshObject interface.

Remark

Natural Data Format Variant Type
HANDLE OF OBJECT |VT_DISPATCH (INatAutoRefreshObject) |Get only

Methods

The following method is available:

216 Extending Natural Studio with Plug-ins

INatAutoObjects

= ActiveObject

ActiveObject

Returns the currently active document window.

Parameters

Name Natural Data Format Variant Type Remark
Return value [HANDLE OF OBJECT |VT_DISPATCH

Class A VT_BSTR By reference

Return value
A handle to the currently active document window. This can be a handle to one of the following:

® TNatAutoProgram

® INatAutoDialog

® INatAutoDataArea

® INatAutoGenericText

® INatAutoGenericDocument
® INatAutoObjectTree

® INatAutoObjectList

Class
A string that identifies the class of the document window. The string contains one of the fol-
lowing:

® TNatAutoProgram

® INatAutoDialog

® INatAutoDataArea

® INatAutoGenericText

® INatAutoGenericDocument
® INatAutoObjectTree

® INatAutoObjectList

Extending Natural Studio with Plug-ins 217

218

37 INatAutoObjectTree

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 220
B PIOPEITIES oo 220
B MNOAS .ot 221
B NOHAICALONS .. 223

219

INatAutoObjectTree

Purpose

An open tree view document window.

Properties

The following properties are available:

= Parent
= Studio
= Profile
= PluginiD

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTrees) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

Get only

Profile

A string containing an XML document that describes the behavior of this tree view document
window. If the profile of a tree view is modified, the new settings apply from that time on. The
already visible part of the tree is not redrawn according to the new profile settings. The XML
document is structured according to the following DTD:

220

Extending Natural Studio with Plug-ins

INatAutoObjectTree

<IELEMENT TreeViewProfile (Recursion?)>
<IELEMENT Recursion (Detect?, Mark?, Expand?)>
<IELEMENT Detect (#PCDATA)>

<TELEMENT Mark (#PCDATA)>

<VELEMENT Expand (#fPCDATA)>

Element |Meaning

Detect | Not specified or 0|Recursion is detected by comparing type and key of two nodes.

1 Recursion is detected by comparing only the key of two nodes.

2 Recursion is detected by comparing type, key and info of two nodes.

Mark | Not specified ‘Recursive nodes are not marked.

Specified ‘Recursive nodes are marked with the specified string.

Expand | Not specified or 0 |Recursive nodes cannot be further expanded.

1 Recursive nodes can be further expanded only manually. They stay unexpanded
during Expand All
2 Recursive nodes are further expanded even during Expand All. In this case

the expansion can only be stopped with the ESC key.

PluginiD

The ID of the plug-in that created the tree view document window. A plug-in can use this property
to iterate only across its own document windows.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Methods

The following methods are available:

= Close
= Cancel
= GetRootNode

Extending Natural Studio with Plug-ins 221

INatAutoObjectTree

= GetSelectedNode
Close
Closes the tree view document window. This method is executed asynchronously. In particular,
this means that if it is called from within the method OnCommand of a plug-in, the window will only
really be closed after the method OnCommand has terminated.
Cancel
Cancels an Expand All operation. This method has the same effect as pressing the Esc key.
GetRootNode

Returns the root node of this MDI tree view.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTreeNode)

Return value
The root node of this MDI tree view.

GetSelectedNode
Returns the node currently selected in this MDI tree view.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTreeNode)

Return value
The node currently selected in this MDI tree view.

222 Extending Natural Studio with Plug-ins

INatAutoObjectTree

Notifications

A plug-in that has created a list view document window can expect to receive the following noti-
fications through its method OnNotify:

® PLUGIN-NOTIFY-ACTIVATE

® PLUGIN-NOTIFY-CLOSE

® PLUGIN-NOTIFY-EXPANDALL

® PLUGIN-NOTIFY-REFRESH

® PLUGIN-NOTIFY-HELP

Extending Natural Studio with Plug-ins 223

224

3 8 INatAutoObjectTreeNode

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 226
B PIOPEITIES oo 226
B MEINOUS ..o 227

225

INatAutoObjectTreeNode

Purpose

This interface represents a node in an MDI tree view. It contains methods to navigate through the
nodes of a view, expand and collapse nodes and to access the development objects represented
by the nodes.

Properties

The following properties are available:

= Parent

= Studio

= |sExpanded
= |sSelected
= HasChildren

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |DISPATCH (INatAutoObjectTree) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

IsExpanded

Indicates whether the node is expanded.

226 Extending Natural Studio with Plug-ins

INatAutoObjectTreeNode

Natural Data Format |Variant Type |Remark

L VT_BOOL |Get only

IsSelected

Indicates whether the node is selected.

Natural Data Format |Variant Type |Remark

L VT_BOOL |Get only

HasChildren

Indicates whether the node has child nodes.

Natural Data Format | Variant Type |Remark

L VT_BOOL |Get only

Methods

The following methods are available:

= GetRoot

= GetParent
= GetChild

= GetNext

= GetPrevious
= GetObject
= Expand

= Collapse

= MakeVisible

Extending Natural Studio with Plug-ins 227

INatAutoObjectTreeNode

= Select
GetRoot
Returns the root node of the MDI tree view to which this node belongs.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTreeNode)

Return value
The root node of the MDI tree view or list view to which this node belongs.

GetParent
Returns the parent node of this node.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTreeNode)

Return value
The parent node of this node.

GetChild
Returns the first child node of this node.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTreeNode)

Return value
The first child node of this node. If the node does not have children, NULL-HANDLE is re-
turned.

228 Extending Natural Studio with Plug-ins

INatAutoObjectTreeNode

GetNext

Returns the next sibling node of this node.

Parameters

Name

Natural Data Format

Variant Type

Remark

Return value

HANDLE OF OBJECT

VT_DISPATCH (INatAutoObjectTreeNode)

Return value
The next sibling node of this node. If the node does not have a next sibling, NULL-HANDLE
is returned.

GetPrevious

Returns the previous sibling node of this node.

Parameters

Name

Natural Data Format

Variant Type

Remark

Return value

HANDLE OF OBJECT

VT_DISPATCH (INatAutoObjectTreeNode)

Return value
The previous sibling node of this node. If the node does not have a previous sibling, NULL-
HANDLE is returned.

GetObject

Returns the development object that this node represents.

Parameters

Name

Natural Data Format

Variant Type

Remark

Return value

HANDLE OF OBJECT

VT_DISPATCH (INatAutoSelectedObject)

Return value
The development object that this node represents.

Extending Natural Studio with Plug-ins

229

INatAutoObjectTreeNode

Expand

Expands the node.
Collapse

Collapses the node.

MakeVisible

Ensures that this node is in the visible part of the view. Scrolls the view as necessary.

Select

Selects this node.

230

Extending Natural Studio with Plug-ins

39 INatAutoObjectTrees

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 232
B PIOPEITIES oo 232
B MEINOUS ..o 233

231

INatAutoObjectTrees

Purpose

Collection of the currently open tree view document windows.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |DISPATCH (INatAutoObjects) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of currently open tree view document windows.

Natural Data Format|Variant Type |Remark

14 VT_14 Get only

232

Extending Natural Studio with Plug-ins

INatAutoObjectTrees

Methods

The following methods are available:

= |tem
= QOpen

ltem
Returns a specific tree view document window from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTree)
Index 14 VT 14

Return value
The tree view document window identified by the value specified in Index.

Index
Identifies a specific tree view document window in the collection. This is a value between 1
and Count.

Open

Opens a new tree view document window.

Parameters

Name Natural Data Format Variant Type Remark
Return value |HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjectTree)

Type 14 VT_I4

Key A VT_BSTR

Caption A VT_BSTR

Template 14 VT_14 Optional
PlugInID A VT_BSTR Optional
Info A VT_BSTR Optional
DisplayName|A VT_BSTR Optional
HasChildren |14 VT_I4 Optional
Children A VT_BSTR Optional

Extending Natural Studio with Plug-ins 233

INatAutoObjectTrees

Name Natural Data Format Variant Type Remark
NaturalType |14 VT_14 Optional
NaturalKey |A VT_BSTR Optional

Return value
The newly opened tree view document.

Type
The node type of the root object. This must be a plug-in defined type that may correspond to
a predefined Natural Studio type.

Key
The key that identifies the object within its type.

Caption
Determines the caption of the document window.

In order to generate a caption that matches the caption format used in Natural Studio document
windows, the string passed in this parameter may contain the format specifier %std. This
format specifier will be dynamically replaced by an identifier of the root object in the following
way: If the root node corresponds to a predefined Natural Studio object, the format specifier
%stdisreplaced by "name[1ibrary]-". Otherwise the identifier is built in the form "node - type -
captiondisplay-name-", where node-type-captionis the caption that was passed when the
node type was created and display-name is the string passed in DisplayName.

Template
The value specified here is passed back to the plug-in when Natural Studio later calls the plug-
in through the interface INaturalStudioPTugInTree in order to retrieve data to fill the view.
This enables the plug-in to deliver different data for the same root object.

PlugInID
The ID of the plug-in that defined the type.

Info
Additional information that a plug-in may want to assign to the root object. Natural Studio
does not interpret this information. It just passes it back to the plug-in when it later calls the
plug-in through the interface INaturalStudioPTugInTree in order to retrieve data to fill the
view.

DisplayName
The text to be displayed at the root node.

HasChildren
Indicates if the root node has child nodes and shall hence be displayed with a plus-sign as
expandable. A value of 1 means that the root node has children, -1 that the root node has no
children, 0 or not specified means that the plug-in does not know yet. Natural Studio will then
retrieve this information from the plug-in in a later call through the interface
INaturalStudioPlugInTree.

234 Extending Natural Studio with Plug-ins

INatAutoObjectTrees

Children
If the plug-in already knows not only that the root node has child nodes, but also already
knows the child nodes themselves, it can pass them in this parameter as a subtree of arbitrary
depth. The parameter must then contain an XML document describing the child nodes. The
XML document is structured according to the DTD defined in
INaturalStudioPlugInTree::GetChildren. If this parameter is specified, Natural Studio im-
plicitly assumes that the root node has child nodes, ignores what is specified in HasChildren
and performs no call through the interface INaturalStudioPlugInTree to determine if the
root node has child nodes.

NaturalType
If the root node corresponds to a predefined Natural Studio object, this property contains the
type of the corresponding predefined object.

NaturalKey
If the root node corresponds to a predefined Natural Studio object, this property contains the
key of the corresponding predefined object.

Extending Natural Studio with Plug-ins 235

236

40 INatAutoPlugin

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 238
B PIOPEITIES oo 238
B MEINOUS ..o 241

237

INatAutoPlugin

Purpose

An installed plug-in.

Properties

The following properties are available:

= Parent

= Studio

=D

= Type

= Name

= CLSID

= ProgID

= Active

= Automatic

= QptionValues

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoPluglns)

Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

Get only

238

Extending Natural Studio with Plug-ins

INatAutoPlugin

ID

The global unique ID by which the plug-in is identified in Natural Studio. It is equal to the ID of
the ActiveX component implementing the plug-in.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Type

The type of the plug-in.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

The possible values are:

Value Meaning

Single server |The plug-in runs in its own Natural server process, distinct from all other Natural-written
plug-ins.

Shared server | The plug-in runs in the same Natural server process as the Plug-in Manager.

Name

The descriptive name of the plug-in that is displayed in the Plug-in Manager.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

CLSID

The CLSID of the ActiveX component implementing the plug-in. For a Natural-written plug-in
this is the ID defined in the DEFINE CLASS statement.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

Extending Natural Studio with Plug-ins 239

INatAutoPlugin

ProgID

The ProglD of the ActiveX component implementing the plug-in. For a Natural-written plug-in
this is the class name defined in the DEFINE CLASS statement.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Active

Indicates if the plug-in is currently active. Modifying this property activates and deactivates the
plug-in respectively.

Natural Data Format | Variant Type |Remark

L VT_BOOL

Automatic

Indicates if the plug-in is automatically activated when Natural Studio is started, or if it must be
manually activated with the Plug-in Manager. Modifying this property changes the activation
mode accordingly.

Natural Data Format | Variant Type |Remark

L VT_BOOL

OptionValues

A string containing an XML document that describes the current option value setting for this plug-
in.

Natural Data Format |Variant Type |Remark

A VT_BSTR

The XML document is formatted according to the following DTD.

<?xml version="1.0" encoding="UTF-8"7>
<!ELEMENT optvals (optval*)>
<IELEMENT optval (name, value)>
<VELEMENT name (#PCDATA)>

<IELEMENT value (#PCDATA)>

240 Extending Natural Studio with Plug-ins

INatAutoPlugin

Element|Meaning

name |Thename of the option. If thisname does not correspond to a name defined in the DefineOptions
method, this is a hidden option. This means that the user cannot see and modify the option value
in the Options dialog. Otherwise the option is represented in a property page in the Options dialog
as specified in the method DefineOptions.

value |The option value.

Methods

The following methods are available:

= DefineOptions
= GetCustominterface
= OnCommand
= OnCommandStatus

DefineOptions

Defines the options for this plug-in and their layout in a property page in the Options dialog.

Parameters

Name Natural Data Format |Variant Type |Remark
OptionDefinition |A VT_BSTR
OptionDefinition

A string containing an XML document that describes the options of the plug-in and their layout
in a property page in the Options dialog. The XML document is formatted according to the
following DTD.

<?xml version="1.0" encoding="UTF-8"7>

<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
CTELEMENT
<TELEMENT
CTELEMENT

optdef (caption, helpfile?, helptopic?, option*, groupbox*, statictext*)>
option (name, (checkbox | edittext | radiobuttons | spinbutton))>
checkbox (left, top, title, default)>

edittext (left, top, width, height, default)>

radiobuttons (radiobutton+, default)>

radiobutton (left, top, title, value)>

spinbutton (Teft, top, width, height, min, max, default)>
groupbox (title, left, top, width, height)>

statictext (title, left, top, width, height)>

caption (#PCDATA)>

helpfile (#PCDATA)>

helptopic (#PCDATA)>

name (#fPCDATA)>

title (#PCDATA)>

value (#PCDATA)>

Extending Natural Studio with Plug-ins 241

INatAutoPlugin

<IELEMENT default (#PCDATA)>
<IELEMENT Teft (#PCDATA)>
<IELEMENT top (#PCDATA)>
<IELEMENT width (#fPCDATA)>
{IELEMENT height (#fPCDATA)>
<TELEMENT min (#PCDATA)>
<IELEMENT max (#fPCDATA)>

Element Meaning

caption The caption displayed on the property page.

helpfile The full path name to a help file containing help information about the options.

helptopic A help topic to be displayed when the user chooses the Help button on the
property page.

name The name of the option. This name is used only internally to refer to the option
in the OptionValues DTD.

value The value assigned to a radio button.

default The default value of the option.

term The term displayed with a dialog control.

left, top, width, height|The position and size of a dialog control.

min, max The minimum and maximum value displayed in a spinbutton control.

GetCustominterface

Returns the custom interface of this plug-in, or NULL-HANDLE, if the plug-in does not provide
a custom interface.

Plug-ins can provide a custom interface in order to provide services to clients other than Natural
Studio itself. These clients can be, for instance, other plug-ins or programs running inside or outside
Natural Studio. In order to provide a custom interface, a plug-in must implement an additional
interface beside the two predefined interfaces INaturalStudioPTugIn and
INaturalStudioPTugInTree and make this interface the default dispatch interface. For a plug-in
implemented in Natural this means placing this interface at the first position in the DEFINE CLASS
statement.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH

Return value
The custom interface of this plug-in.

242 Extending Natural Studio with Plug-ins

INatAutoPlugin

OnCommand

Sends a specific command to the plug-in.

Parameters

Name Natural Data Format |Variant Type |Remark
CommandID (14 VT_lI4
CommandID

Contains the command ID the plug-in has chosen when it defined the command with the
method Add of the interface INatAutoCommands.

OnCommandStatus

Checks whether a specific command of the plug-in is currently enabled or checked.

Parameters

Name Natural Data Format |Variant Type |Remark
CommandID |14 VT 14

Enabled L VT_BOOL |By reference
Checked L VT_BOOL |By reference
CommandID

Contains the command ID the plug-in has chosen when it defined the command with the
method Add of the interface INatAutoCommands.

Enabled
If the command is currently enabled, the method returns TRUE in this parameter.

Checked
If the command currently has a check mark, the method returns TRUE in this parameter.

Extending Natural Studio with Plug-ins 243

244

41 INatAutoPlugins

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 246
B PIOPEITIES oo 246
B MEINOUS ..o 247

245

INatAutoPlugins

Purpose

Collection of the currently installed plug-ins.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of installed plug-ins.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

246

Extending Natural Studio with Plug-ins

INatAutoPlugins

Methods

The following method is available:

= [tem
Item

Returns a specific plug-in from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoPlugln)

Index 14 VT_ 14
A VT_BSTR

Return value
The plug-in identified by the value specified in Index.

Index

Identifies a specific plug-in in the collection. This can be either the index of the plug-in in the
collection (a value between 1 and Count) or the Plug-in ID (the value of the ID property of the
corresponding INatAutoPTlugIn object).

Extending Natural Studio with Plug-ins 247

248

42 INatAutoPopupMenu

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 250
B PIOPEITIES oo 250
B MEINOUS ..o 251

249

INatAutoPopupMenu

Purpose

Gives access to a specific pop-up menu within a context menu, frame menu or pop-up menu.

Changes in a menu are not made visible immediately, in order to avoid flickering. After having
finished modifying a menu, make the recent changes visible by calling the method UpdateMenu of
the context menu or frame menu that contains this pop-up menu.

Properties

The following properties are available:

= Studio

= Count

= Caption
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of items (commands, separators and pop-up menus) in the menu.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

Caption

A string used to identify the menu, as defined when the menu was created.

250 Extending Natural Studio with Plug-ins

INatAutoPopupMenu

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Methods

The following methods are available:

= |tem

= SubMenu

= |nsertCommand
= |nsertSeparator
= |nsertPopupMenu

Item

Returns a specific item contained in the menu, based on an index.

Parameters
Name Natural Data Format | Variant Type |Remark
Return value |A VT_BSTR
Index 14 VT 14
A VT _BSTR

Return value
The caption of the menu item (command or pop-up menu) identified by the value specified
in Index. If the index identifies a separator, an empty string is returned.

Index
The index of the item in the menu (a value between 1 and Count).

SubMenu

Returns a specific pop-up menu contained in the menu, based on an index.

Extending Natural Studio with Plug-ins 251

INatAutoPopupMenu

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoPopupMenu)

Index 14 VT_ 14
A VT_BSTR

Return value
The pop-up menu identified by the value specified in Index. If the specified index does not
identify a pop-up menu, but a command or a separator, a null interface pointer (NULL-
HANDLE) is returned.

Index
As index either a number between 1 and Count or the caption of a pop-up menu can be spe-
cified.

InsertCommand

Inserts a command into the menu.

Parameters

Name Natural Data Format Variant Type Remark
Command |HANDLE OF OBJECT|VT_DISPATCH (INatAutoCommand)

Index 14 VT_I4 Optional
Command

A command to be added to the menu. The command must have been defined before using the
method INatAutoCommands: :Add.

Index
The position in the menu where the command shall be inserted. If Index is omitted, the com-
mand is inserted at the last position.

InsertSeparator

Inserts a separator into the menu.

252 Extending Natural Studio with Plug-ins

INatAutoPopupMenu

Parameters

Name |Natural Data Format |Variant Type |Remark
Index |14 VT_I4 Optional
Index

The position in the menu where the separator shall be inserted. If Index is omitted, the separ-
ator is inserted at the last position.

InsertPopupMenu

Creates a new pop-up menu and inserts it into the menu.

Parameters

Name Natural Data Format

Variant Type

Remark

Return value|HANDLE OF OBJECT

VT_DISPATCH (INatAutoPopupMenu)

Caption A

VT_BSTR

Index 14

VT_14

Optional

Return value

The newly created pop-up menu.

Caption

A string used to identify the pop-up menu.

Index

The position in the menu where the pop-up menu shall be inserted. If Index is omitted, the
pop-up menu is inserted at the last position.

Extending Natural Studio with Plug-ins

253

254

43 INatAutoProgram

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 256
B PIOPEITIES oo 256
B MEINOUS ..o 257

255

INatAutoProgram

Purpose

A development object currently open in a program editor window. This comprises the following
development object types: program, subprogram, subroutine, function, helproutine, copycode,
text and class. The types are identified by a numeric ID. The IDs of predefined types are described

in the section Predefined Node Types.

Properties

The following properties are available:

= Parent

= Studio

= Source

= Visible

= Type

= LineCount

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoPrograms) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

256 Extending Natural Studio with Plug-ins

INatAutoProgram

Source

The source code of the development object.

Natural Data Format |Variant Type |Remark

A VT_BSTR

Visible

Shows or hides the editor window.

Natural Data Format |Variant Type |Remark

L VT_BOOL

Type

The development object type. The type is identified by a numeric ID. The IDs of predefined types
are described in the section Predefined Node Types.

Natural Data Format | Variant Type |Remark

14 VT _I4

LineCount

The number of lines in the source code.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

Methods

The following methods are available:

= Catalog

= Check

= Clear

= Close

= Execute

= Format

= Mode

= Renumber

Extending Natural Studio with Plug-ins 257

INatAutoProgram

= Search

= Replace

= Run

= Save

= Stow

= Title

= Getlnfo

= DeletelLines
= GetLines

= |nsertlLines
= ReplacelLines

Catalog

Catalogs the object. Applicable to program, subprogram, subroutine, function, helproutine and
class.

Parameters

Name |Natural Data Format|Variant Type |Remark

Quiet|L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Check

Checks the object. Applicable to program, subprogram, subroutine, function, helproutine and
class.

Parameters

Name |Natural Data Format|Variant Type [Remark

Quiet|L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

258 Extending Natural Studio with Plug-ins

INatAutoProgram

Clear

Clears the editor contents.

Parameters

Name |Natural Data Format|Variant Type [Remark
Quiet|L VT_BOOL |Optional
Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Close

Closes the editor and removes the object from the collection.

Parameters

Name |Natural Data Format|Variant Type [Remark
Quiet |L VT_BOOL |Optional
Quiet

If set to TRUE, the method is performed without user interaction. The default is FALSE.

Execute

Executes the object. Applicable to program.

Format

Formats the source code.

Mode

Sets several modes of the object.

Extending Natural Studio with Plug-ins

259

INatAutoProgram

Parameters

Name Natural Data Format |Variant Type | Remark
Structured L VT_BOOL |Optional
Uppercase L VT_BOOL [Optional
IgnoreTextConstants |L VT_BOOL |Optional

Structured
Sets structured mode. The default is determined by the Natural parameter settings.

Uppercase
Sets uppercase mode. The source code will then be converted to upper case during Save. The
default is FALSE.

IgnoreTextConstants
Makes sure that text constants are left untouched during upper case conversion. The default
is FALSE.

Renumber

Renumbers the source code.

Search

Searches for the first occurrence of a given string.

Parameters
Name Natural Data Format |Variant Type | Remark
Return value [BOOL VT_BOOL
SearchString |A VT_BSTR
Line 14 VT_I4 By reference
Column 14 VT_I4 By reference
CaseSensitive |L VT_BOOL [Optional
WholeWords |L VT_BOOL |Optional
Up L VT_BOOL |Optional
Return value

TRUE if a match was found.

SearchString
The string to search for.
Line
Contains the start line for the search on input. Contains the line of the first match on return.

260 Extending Natural Studio with Plug-ins

INatAutoProgram

Column
Contains the start column for the search on input. Contains the column of the first match on
return.

CaseSensitive
Searches case sensitively. The default is FALSE.

WholeWords
Searches only for whole words that match the search string. The default is FALSE.

Up
Searches in upward direction. The default is FALSE.

Replace

Replaces the first occurrence of a given string with another one.

Parameters

Name Natural Data Format |Variant Type | Remark
SearchString |A VT_BSTR

Line 14 VT_14 By reference
Column 14 VT_I14 By reference
ReplaceString | A VT_BSTR

CaseSensitive |L VT_BOOL |Optional
WholeWords |L VT_BOOL |Optional
Up L VT_BOOL |Optional
Return value |BOOL VT_BOOL

| Note: Specify the parameters in the sequence as listed in the table.

SearchString

The string to search for.
Line

Contains the start line for the search on input. Contains the line of the first match on return.
Column

Contains the start column for the search on input. Contains the column of the first match on
return.

ReplaceString
The string which replaces the search string.

CaseSensitive
Searches case sensitively. The default is FALSE.

Extending Natural Studio with Plug-ins 261

INatAutoProgram

WholeWords
Searches only for whole words that match the search string. The default is FALSE.

Up
Searches in upward direction. The default is FALSE.

Return value
TRUE if a match was found.

Run
Runs the object. Applicable to program.

Parameters

Name |Natural Data Format|Variant Type [Remark

Quiet (L VT_BOOL |Optional

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Save

Saves the object.

Parameters

Name |Natural Data Format|Variant Type |Remark
Name [A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Type |14 VT_l4 Optional
Quiet |L VT_BOOL |Optional
Name

Saves the object under the given name.
Library

Saves the object in the given library.
Type

Saves the object under the given type.

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

262 Extending Natural Studio with Plug-ins

INatAutoProgram

Stow

Stows the object. Applicable to program, subprogram, subroutine, function, helproutine and class.

Parameters

Name |Natural Data Format|Variant Type |Remark
Name A VT_BSTR |Optional
Library |A VT_BSTR |Optional
Type |14 VT_14 Optional
Quiet |L VT_BOOL |Optional
Name

Stows the object under the given name.

Library
Stows the object in the given library.

Type
Stows the object under the given type.

Quiet
If set to TRUE, the method is performed without user interaction. The default is FALSE.

Title
Titles an untitled object.

Parameters

Name |Natural Data Format|Variant Type |Remark

Name A VT_BSTR |Optional
Library A VT_BSTR |Optional
Name

Assigns a name to the object.

Library
Assigns a library to the object.

Extending Natural Studio with Plug-ins 263

INatAutoProgram

Getinfo

Returns information about an open object.

Parameters
Name |Natural Data Format | Variant Type |Remark
Type |14 VT_l4 By reference
Name A VT_BSTR By reference
Library A VT_BSTR By reference
Fnr 14 VT_14 By reference
DBnr |14 VT_14 By reference
Type

The type of the object.
Name

The name of the object.

Library
The library of the object.

Fnr
The system file file number of the object.

DBnr

The system file database number of the object.

DeleteLines

Deletes a block of lines from the source code.

Parameters

Name Natural Data Format |Variant Type | Remark
StartLine |14 VT_I4

LineCount |14 VT_14 Optional
StartLine

The start line of the block to delete.

LineCount

The number of lines to delete. The defaultis 1.

264

Extending Natural Studio with Plug-ins

INatAutoProgram

GetLines

Retrieves a block of lines from the source code.

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |A VT_BSTR

StartLine 14 VT_I4

LineCount |14 VT_l4 Optional

Return value
A block of source code lines. The lines are separated by carriage return / line feed characters.

StartLine
The start line of the block to return.

LineCount
The number of lines to return. The default is 1.

InsertLines

Inserts a block of lines from the source code.

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |14 VT_I4

Code A VT_BSTR
InsertAfterLine|14 VT_14 Optional

Return value
The line number passed in InsertAfterLine increased by the number of inserted lines.

Code
A block of source code lines to insert. The lines must be separated by carriage return / line feed
characters.

InsertAfterLine
Line after which the code shall be inserted. The default is 0.

Extending Natural Studio with Plug-ins 265

INatAutoProgram

ReplaceLines

Replaces a block of lines from the source code.

Parameters

Name Natural Data Format|Variant Type [Remark
Return value |14 VT_I4

Code A VT_BSTR
ReplaceLine |14 VT_I4 Optional
LineCount |14 VT_14 Optional

Return value
The line number passed in ReplaceLine increased by the number of inserted lines.

Code
A block of source code lines to replace the block that is defined by ReplaceLine and LineCount.
The lines must be separated by carriage return / line feed characters.

ReplaceLine
The start line of the block to be replaced. The default is 1.

LineCount
The number of lines to be replaced by the given block. The default is 1.

266 Extending Natural Studio with Plug-ins

44 INatAutoPrograms

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 268
B PIOPEITIES oo 268
B MEINOUS ..o 269

267

INatAutoPrograms

Purpose

Collection of the development objects currently open in a program editor window. This collection
comprises the following development object types: program, subprogram, subroutine, function,
helproutine, copycode, text and class. The types are identified by a numeric ID. The IDs of pre-
defined types are defined in the section Predefined Node Types.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of development objects currently open in a program editor window.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

268 Extending Natural Studio with Plug-ins

INatAutoPrograms

Methods

The following methods are available:

= [tem

= Add

= QOpen
Item

Returns a specific development object from the collection.

Parameters
Name Natural Data Format Variant Type Remark
Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoProgram)
Index 14 VT_l4

A VT_BSTR
Type 14 VT_l4 Optional
Library A VT_BSTR Optional
Fnr 14 VT_14 Optional
DBnr 14 VT_I4 Optional

Return value
The development object identified by the value specified in Index.

Index
Identifies a specific development object in the collection. This can be either the index of the
development object in the collection (a value between 1 and Count) or the name of the object.

Type
Used to identify a specific object by name (specified in Index) and type (specified in Type).
Library
Used to identify a specific object by name (specified in Index), type (specified in Type) and
library (specified in Library).
Fnr, DBnr
Used to identify a specific object by name (specified in Index), type (specified in Type), library
(specified in Library) and system file (specified in Fnr and DBnr).

Extending Natural Studio with Plug-ins 269

INatAutoPrograms

Add

Creates a new (untitled) development object and opens it in a program editor window.

Parameters

Name Natural Data Format Variant Type Remark
Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoProgram)

Type 14 VT_14

Visible L VT_BOOL Optional

Return value
The newly created development object.

Type

The type of object to create.

Visible

Decides if the editor is opened visible or not. By default, the editor is opened visible.

Open

Opens an existing development object in a program editor window.

Parameters

Name Natural Data Format Variant Type Remark
Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoProgram)

Type 14 VT_l4

Name A VT_BSTR

Library A VT_BSTR Optional
Visible L VT_BOOL Optional
ReadOnly |L VT_BOOL Optional

Return value
The newly opened development object.

Type

The type of object to open.

Name

The name of object to open.

Library

The library of object to open.

270

Extending Natural Studio with Plug-ins

INatAutoPrograms

Visible
Decides whether the editor is opened visible or not. By default, the editor is opened visible.

ReadOnly
Decides whether the object is listed only instead of opened. In this case, the object is not locked
and cannot be modified. If the option ReadOnly is specified, also the types dialog, local data
area, parameter data area and global data area can be specified in the parameter Type. This is
the case because Natural Studio lists also these object types in the program editor.

Extending Natural Studio with Plug-ins 271

272

45 INatAutoProgressindicator

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 274
B PIOPEITIES oo 274
B MEINOUS ..o 275

273

INatAutoProgressindicator

Purpose

A progress indicator is used to inform the user about the progress of a time consuming operation.
A plug-in can create a progress indicator with the method INatAutoStudio::ProgressIndicator.

Properties

The following properties are available:

= Parent

= Studio

= StatusBarText
= GradientBarText
= DialogText

= Canceled

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

StatusBarText

The text to be displayed in the status bar. This property is used with progress indicators of style

status bar and gradient bar.

274

Extending Natural Studio with Plug-ins

INatAutoProgressindicator

The text to be displayed in the gradient bar. This property is used with progress indicators of style

The text to be displayed in the animated dialog. This property is used with progress indicators of

Natural Data Format |Variant Type |Remark
A VT_BSTR |Putonly
GradientBarText

gradient bar.

Natural Data Format | Variant Type |Remark
A VT_BSTR |Put only
DialogText

style Dialog.

Natural Data Format | Variant Type |Remark
A VT_BSTR |Put only
Canceled

Indicates if the user has pressed the ESC key or (in case of a progress indicator of style Dialog) the

Cancel button, in order to abort the operation.

Natural Data Format |Variant Type |Remark
L VT_BOOL |Get only
Methods

The following methods are available:

= Start
= Step

= Terminate
= StopAnimation

Extending Natural Studio with Plug-ins

275

INatAutoProgressindicator

Start

= PlayAnimation

Starts the progress indicator.

Step

Advances the progress indicator.

Parameters

Name |Natural Data Format | Variant Type [Remark
Steps|14 VT_I4

Steps

The number of steps to advance.

Terminate

Terminates the progress indicator.

StopAnimation

Stops running the animation that was assigned to the progress indicator when it was created. The

animation can be resumed again by calling Play Animation.

PlayAnimation

Continues running the animation that was assigned to the progress indicator when it was created.

The animation can be stopped by calling StopAnimation.

276

Extending Natural Studio with Plug-ins

46 INatAutoRefreshObject

L V1Y Lot RRRPRPRRRPN 278
B PIOPEITIES oo 278

277

INatAutoRefreshObject

Purpose

The object currently being refreshed. This interface is available during a Refresh operation. While
handling the notification PLUGIN-NOTIFY-REFRESH, a plug-in can use this interface to retrieve the
details about the object currently being refreshed.

Properties

The following properties are available:

= Parent

= Studio

= PluginiD

= Type

= Key

= |nfo

= NaturalType
= NaturalKey
= NaturalName
= Environment
= Application
= Current

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only

Studio

Used to navigate to the root interface.

278 Extending Natural Studio with Plug-ins

INatAutoRefreshObject

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

PluginiD

The ID of the plug-in that defined the type. Not filled for objects of predefined types.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Type
The node type of the object. This can either be a predefined type or a user defined type.

Natural Data Format | Variant Type |Remark

14 VT_l4 Get only

Key

The key that identifies the object within its type.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

Info

Additional information that a plug-in may have assigned to the object. Not filled for objects of
predefined types.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

NaturalType

If the object has been defined by a plug-in, but corresponds to an object of a predefined Natural
Studio node type, this property contains the type of the corresponding predefined object.

Extending Natural Studio with Plug-ins 279

INatAutoRefreshObject

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

NaturalKey

If the object has been defined by a plug-in, but corresponds to an object of a predefined Natural
Studio node type, this property contains the key of the corresponding predefined object.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

NaturalName

If the object has been defined by a plug-in, but corresponds to an object of the predefined Natural
Studio node type subroutine, function or class, this property contains the function name or class
nameof the corresponding predefined object.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

Environment

The environment the object belongs to. If the object belongs to the currently active environment
or to an application, the value is NULL-HANDLE.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

Application

The application the object belongs to. If the object belongs to the currently active application or to
no application at all, the value is NULL-HANDLE.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication) |Get only

280 Extending Natural Studio with Plug-ins

INatAutoRefreshObject

Current

True, if the object belongs to the current environment or application.

Natural Data Format

Variant Type

Remark

L

VT_BOOL

Get only

Extending Natural Studio with Plug-ins

281

282

47 INatAutoResultView

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 284
B PIOPEITIES oo 284
B MEINOUS ..o 285

283

INatAutoResultView

Purpose

An open result view.

Properties

The following properties are available:

= Parent
= Studio
= Active

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoResultViews) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Active

Indicates if this result view is currently the active one or not. Setting Active to TRUE makes the
result view the active one. Setting Active to FALSE has no effect.

Natural Data Format |Variant Type |Remark

L VT_BOOL

284 Extending Natural Studio with Plug-ins

INatAutoResultView

Methods

The following methods are available:

= [nsertRows
= Update

= SetVisible
= Clear

= Close

InsertRows

Inserts a number of rows at the end of the result view. Each row is displayed in the result view as
a node with attributes. Before referring to a node type in this method, the plug-in must have re-
gistered the node type through the interface INatAutoNodeTypes.

To avoid flickering, the result view is not redrawn after each call to InsertRows. After a series of
calls to InsertRows the method Update should be called to redraw the result view.

Parameters

Name Natural Data Format|Variant Type |Remark
Return value |14 VT_I4)

Rows A VT_BSTR

Return value
The number of rows contained in the result view after the insertion.

Rows
Contains an XML document that describes the rows to be inserted. The XML document is
structured according to the following DTD.

<IELEMENT rows (row*)>

CIELEMENT row (pitem, attributevalues?)>
<IELEMENT pitem (pguid?, ptype, pkey, pinfo?, pname?, (ntype, nkey)?)>
<IELEMENT pguid (#fPCDATA)>

<IELEMENT ptype (#PCDATA)>

{IELEMENT pkey (##PCDATA)>

CIELEMENT pinfo (#PCDATA)>

<IELEMENT pname (#PCDATA)>

{VELEMENT ntype (#fPCDATA)>

CIELEMENT nkey (4fPCDATA)>

<IELEMENT attributevalues (attval*)>
<IELEMENT attval (akey, avalue)>

Extending Natural Studio with Plug-ins 285

INatAutoResultView

<IELEMENT akey (#PCDATA)>

<TELEMENT avalue ({fPCDATA)>

Element Meaning

pctype The type of the node to be inserted.

pkey The key that identifies the node within its type.

pguid Needs not to be filled if the node type has been defined by the plug-in itself. It is used
to refer to node types of other plug-ins, if these are known.

pinfo Additional information about the node that the plug-in wants to receive back whenever
Natural Studio later refers to the node. Natural Studio never considers the content of
this element, put just passes it back and forth.

pname The text to be displayed with the node.

ntype If the node has been defined by a plug-in, but corresponds to a node of a predefined
Natural Studio type, this element contains the type of the corresponding predefined
node.

nkey If the node has been defined by a plug-in, but corresponds to a node of a predefined
Natural node type, this element contains the key of the corresponding predefined node.

attributevalues | The attribute values to be displayed with the node. These are specified as an XML
document according to the DTD used with the method
INaturalStudioPlugInTree::GetAttributeValues.

Update

To avoid flickering, the result view is not redrawn after each call to InsertRows. After a series of
calls to InsertRows the method Update should be called to redraw the result view.

SetVisible

Makes the specified row visible and scrolls the result view if necessary.

Parameters

Name |Natural Data Format|Variant Type |Remark

Row (14

VT_14

Row

Contains the number of the row to be scrolled into view. To position to the last inserted row,
use the row number that was returned from the method InsertRows.

286

Extending Natural Studio with Plug-ins

INatAutoResultView

Clear

Removes all rows from the result view.

Close

Closes the result view.

Extending Natural Studio with Plug-ins 287

288

48 INatAutoResultViews

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 290
B PIOPEITIES oo 290
B MEINOUS ..o 291

289

INatAutoResultViews

Purpose

Collection of the currently open result views.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Count

The number of currently open result views.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

290

Extending Natural Studio with Plug-ins

INatAutoResultViews

Methods

The following methods are available:

= [tem

= Show

= QOpen
Item

Returns a specific plug-in defined result view from the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoResultView)
Index 14 VT_l4

Return value
The result view identified by the value specified in Index. If the result view was not defined
by a plug-in, the method returns NULL-HANDLE.

Index
The index of the result view in the collection (a value between 1 and Count).

Show

Shows or hides the entire result view control bar. This corresponds to checking or unchecking the
View/Results command in the Natural Studio menu.

Parameters

Name |Natural Data Format|Variant Type [Remark

Show (L VT_BOOL |Optional

Show
Decides if the result view control bar is shown or not. The default is TRUE.

Extending Natural Studio with Plug-ins 291

INatAutoResultViews

Open
Opens a new result view.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoResultView)

Caption A VT_BSTR

Image A VT_BSTR Optional
HANDLE OF OBJECT |VT_DISPATCH

Headers A VT_BSTR Optional

Return value
The newly opened result view.

Caption
The caption to be displayed on the result view tab.

Image
An image to be displayed on the result view tab. The image must be a 16 color, 16x16 bitmap,
using RGB(192,192,192) as the background color.

The image can be specified in two ways:
" As an absolute path name of a .bmp file.

" Asan IPictureDisp interface. An IPictureDisp interface can be created in Natural using
the method INatAutoImages::LoadImage. An IPictureDisp interface cannot be passed
across process boundaries. This is due to a Microsoft restriction (MSDN Q150034). Therefore
this alternative can only be used with plug-ins running as in-process servers. Natural written
plug-ins always run as local servers and can therefore not use this alternative.

Headers
Defines the attributes of the nodes to be displayed in the result view and their respective cap-
tions. It contains the attribute definitions as an XML document according to the DTD used
with the method INaturalStudioPlugInTree::GetAttributes.

292 Extending Natural Studio with Plug-ins

49 INatAutoSelectedObject

L V1Y Lot RRRPRPRRRPN 294
B PIOPEITIES oo 294

293

INatAutoSelectedObject

Purpose

A currently selected object.

Properties

The following properties are available:

= Parent

= Studio

= PluginiD

= Type

= Key

= |nfo

= NaturalType
= NaturalKey
= NaturalName
= Environment
= Application
= Current

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoSelectedObjects) |Get only
Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

294

Extending Natural Studio with Plug-ins

INatAutoSelectedObject

PluginiD

The ID of the plug-in that defined the type. Not filled for objects of predefined types.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

Type
The node type of the object. This can either be a predefined type or a user-defined type.

Natural Data Format |Variant Type |Remark

14 VT_I4 Get only

Key

The key that identifies the object within its type.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

Info

Additional information that a plug-in may have assigned to the object. Not filled for objects of
predefined types.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

NaturalType

If the object has been defined by a plug-in, but corresponds to an object of a predefined Natural
Studio node type, this property contains the type of the corresponding predefined object.

Natural Data Format |Variant Type |Remark

14 VT_I4 Get only

Extending Natural Studio with Plug-ins 295

INatAutoSelectedObject

NaturalKey

If the object has been defined by a plug-in, but corresponds to an object of a predefined Natural
Studio node type, this property contains the key of the corresponding predefined object.

Natural Data Format |Variant Type |Remark

A VT_BSTR |Get only

NaturalName

If the object has been defined by a plug-in, but corresponds to an object of the predefined Natural
Studio node type subroutine, function or class, this property contains the function name or class
name of the corresponding predefined object.

Natural Data Format | Variant Type |Remark

A VT_BSTR |Get only

Environment

The environment the object belongs to. If the object belongs to the currently active environment
or to an application, the value is NULL-HANDLE.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Get only

Application

The application the object belongs to. If the object belongs to the currently active application or to
no application at all, the value is NULL-HANDLE.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplication) |Get only

296 Extending Natural Studio with Plug-ins

INatAutoSelectedObject

Current

True, if the object belongs to the current environment or application.

Natural Data Format

Variant Type

Remark

L

VT_BOOL

Get only

Extending Natural Studio with Plug-ins

297

298

5 O INatAutoSelectedObjects

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 300
B PIOPEITIES oo 300
B MEINOUS ..o 302

299

INatAutoSelectedObjects

Purpose

Collection of the Natural Studio objects that the user has currently selected. Each object is contained
only once in the collection, even if the user has selected several visualizations of the same object.

The collection of selected objects can be processed in either of two ways:

® Through the property SelectedObjects the selected objects can be retrieved as an XML docu-
ment. This document can then be processed with XML processing functions and statements.

® The Item method can be used to iterate across the collection in the usual way.

Properties

The following properties are available:

= Parent

= Studio

= Count

= SelectedObjects
= FocusObject

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

300 Extending Natural Studio with Plug-ins

INatAutoSelectedObjects

Count

The number of selected objects.

Natural Data Format |Variant Type |Remark

14 VT_14 Get only

SelectedObjects

A string containing an XML document that describes the selected objects. The XML document is
structured according to the following DTD:

<?xml version="1.0"7>

<IELEMENT itemset (sitem*)>

<IELEMENT sitem(sguid?, stype, skey, sinfo?,
(ntype, nkey, nname?, (nenv | napp)?)?)>
<IELEMENT squid (§fPCDATA)>

{IELEMENT stype (#fPCDATA)>

CIELEMENT skey (#PCDATA)>

<!ELEMENT sinfo (§fPCDATA)>

<IELEMENT ntype (#fPCDATA)>

IELEMENT nkey (4fPCDATA)>

<!ELEMENT nname (§PCDATA)>

<!ELEMENT nenv (§fPCDATA)>

<IELEMENT napp (#PCDATA)>

Element|Meaning

sguid |The ID of the plug-in that defined the type. Not filled for objects of predefined types.

stype |The node type of the object. This can either be a predefined type or a user defined type.

skey |The key that identifies the node within its type.

sinfo |Additional information that a plug-in may have assigned to the object. Not filled for objects of
predefined types.

ntype |If the object has been defined by a plug-in, but corresponds to an object of a predefined Natural
Studio node type, this property contains the type of the corresponding predefined object.

nkey |If the node has been defined by a plug-in, but corresponds to a node of a predefined Natural node
type, this element contains the key of the corresponding predefined node.

nname |If the object has been defined by a plug-in, but corresponds to an object of the predefined Natural
Studio node type subroutine, function or class, this property contains the function name or class
name of the corresponding predefined object.

nenv |Key of the environment the object belongs to. The key can be used to access the corresponding
environment using the method INatAutoEnvironments: : Item. If the object belongs to the
currently active environment or to an application, the element is empty.

napp |Key of the application the object belongs to. The key can be used to access the corresponding
application using the method INatAutoApplications: : Item.If the object belongs to the currently
active application or to no application at all, the element is empty.

Extending Natural Studio with Plug-ins 301

INatAutoSelectedObjects

Parameters

Natural Data Format |Variant Type |Remark
A VT_BSTR |Get only
FocusObject

The index of the object that currently has the focus.

Natural Data Format |Variant Type |Remark
14 VT_I4 Get only
Methods

The following methods are available:

= |tem

= ContainsObjectType

Iltem

Returns a specific selected object from the collection.

Parameters

Name Natural Data Format Variant Type

Remark

Return value [HANDLE OF OBJECT

VT_DISPATCH (INatAutoSelectedObject)

Index 14

VT_I4

Return value

The selected object identified by the value specified in Index.

Index

The index of the selected object in the collection (a value between 1 and Count).

302

Extending Natural Studio with Plug-ins

INatAutoSelectedObjects

ContainsObjectType

Checks if the current selection contains at least one object of a given type. This quick check is often
sufficient to decide if a specific command is applicable to the current selection, without iterating
explicitly across the selected objects.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value | BOOL VT_BOOL

Type 14 VT_l4

PlugInID A VT_BSTR |Optional

Return value
TRUE, if the current selection contains at least one object of the given type.

Type
A predefined or user defined node type.

PlugInID
The global unique ID of the plug-in that defined the type. This is the value of the plug-in's ID
property.

Extending Natural Studio with Plug-ins 303

304

51 INatAutoStudio

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 306
B PIOPEITIES oo 306
B MEINOUS ..o 307

305

INatAutoStudio

Purpose

The root interface of the Natural Studio Automation interface. A handle to this interface is passed
to each plug-in during activation (INaturalStudioPlugIn::0nActivate) and deactivation
(INaturalStudioPlugIn::0OnDeactivate).

Properties

The following properties are available:

= Objects

= ControlBars
= Types

= Pluglns

= ResultViews
= System

Objects

Used to navigate to the INatAutoObjects interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoObjects) |Get only

ControlBars

Used to navigate to the INatAutoControlBars interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoControlBars) |Get only

306 Extending Natural Studio with Plug-ins

INatAutoStudio

Types

Used to navigate to the INatAutoTypes interface.

Natural Data Format Variant Type Remark
HANDLE OF OBJECT |VT_DISPATCH (INatAutoTypes) |Get only
Plugins

Used to navigate to the INatAutoPlugIns interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoPluglns) |Get only

ResultViews

Used to navigate to the INatAutoResultViews interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoResultViews) |Get only

System

Used to navigate to the INatAutoSystem interface.

Natural Data Format Variant Type

Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoSystem) |Get only

Methods

The following methods are available:

= Refresh
= MessageBox
= ShowHelp

Extending Natural Studio with Plug-ins

307

INatAutoStudio

= Progressindicator

Refresh

Initiates an automatic refresh in Natural Studio.

Parameters

Name Natural Data Format |Variant Type |Remark
RefreshObject| A VT_BSTR |Optional
RefreshObject

This parameter is either not specified (unspecific refresh) or contains the refresh object
formatted as an XML document (specific refresh). The object is formatted according to the
following DTD. The meaning of the individual elements is analog to the DTD describing

INatAutoSelectedObjects::SelectedObjects.

<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
<TELEMENT

MessageBox

ritem
rquid
rtype
rkey

rinfo
ntype
nkey

nname

(rquid?,
(#fPCDATA)>
(FPCDATA)>
({fPCDATA)>
(#fPCDATA)>
({fPCDATA)>
(#fPCDATA)>
({#fPCDATA)>

rtype,

rkey,

rinfo?,

Displays a standard message box in Natural Studio.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value |14 VT 14

Text A VT_BSTR

Caption A VT_BSTR |Optional
Style 14 VT_l4 Optional

Return value
Indicates the button that the user pressed in response to the message box.

1: OK
2: CANCEL
3: ABORT

(ntype, nkey, nname?)?)>

308

Extending Natural Studio with Plug-ins

INatAutoStudio

4: RETRY
5: IGNORE
6: YES

7: NO

Text

The text to be displayed in the message box.

Caption
The caption of the message box.

Style

The message box style is specified by adding one of the following styles

0: OK

1: OKCANCEL

2: ABORTRETRYIGNORE
3: YESNOCANCEL

4: YESNO

5: RETRYCANCEL

to one of the following styles:

16: MB_ICONHAND

32: MB_ICONQUESTION

48: MB_ICONEXCLAMATION
64: MB_ICONASTERISK

The default is 0.

ShowHelp

Displays a specific help topic in a specific help file.

Parameters

Name Natural Data Format|Variant Type |Remark
Return value |L VT_BOOL
HelpTopic |14 VT_14 Optional
HelpFile A VT_BSTR |Optional

Return value

If the specified help file or topic is not found, FALSE is returned, otherwise TRUE.

HelpTopic

A topic in the specified help file. If HelpTopic is omitted, the contents page of the help file is

displayed.

Extending Natural Studio with Plug-ins

309

INatAutoStudio

HelpFile
A help file specified with full path name. If HelpFile is omitted, the specified topic in the
Natural Studio help file is displayed. If both HelpTopic and HelpFile are omitted, the contents
page of the Natural Studio help file is displayed.

Progressindicator

Creates and returns a new progress indicator.

Parameters

Name Natural Data Format Variant Type Remark
Return value [HANDLE OF OBJECT |VT_DISPATCH (INatAutoProgressIndicator)

Steps 14 VT_I4

Style 14 VT_14 Optional
Frequency |I4 VT_14 Optional
Caption A VT _BSTR Optional
Animation |A VT_BSTR Optional

Return value
The newly created progress indicator.

Steps
The number of steps this by which the progress indicator can be advanced.

Style
The style of the progress indicator. Possible values are:

o]

Status bar. The progress of the operation is displayed as a text in the status bar.

[

Gradjient bar. The progress of the operation is displayed as a percentually growing gradient bar.
Optionally an additional text can be displayed in the status bar.

N

Dialog. The progress of the operation is displayed as a dialog box containing an animation.

Frequency
By default, the progress indicator is redrawn after each step. If Frequency is specified, it is re-
drawn only each Steps/Frequency steps. This can be used to avoid flickering.

Caption
Applicable with progress indicators of style Dialog. The caption to display in the dialog.
Animation

Applicable with progress indicators of style Dialog. Path and file name of an animation file
(.avi) to display in the dialog.

310 Extending Natural Studio with Plug-ins

52 INatAutoSysmain

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 312
B PIOPEITIES oo 312
B MEINOUS ..o 316

3N

INatAutoSysmain

Purpose

This interface contains methods related to the utility SYSMAIN. These methods include copying
and moving Natural development objects between system files and environments, importing files
as Natural development objects into a Natural system file and deleting and renaming Natural
development objects.

Using properties, each instance of this interface can be configured independently of other instances.
The properties define on which environments and system files the subsequently called methods

will work. The properties control also certain options that influence the behavior of the subsequently
called methods.

Properties

The following properties are available:

= Parent

= Studio

= SourceEnvironment
= SourceDBnr

= SourceFnr

= TargetEnvironment
= TargetDBnr

= TargetFnr

= OptionType

= OptionTimestamp
= QptionUser

= QptionimportSM

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoSystem) |Get only

312 Extending Natural Studio with Plug-ins

INatAutoSysmain

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

SourceEnvironment

Specifies the source environment for the subsequent operations. Default is the local environment.
If the property is changed to a different environment, the properties SourceDBnr and Sourcefnr
are automatically changed to the database number and file number of the user system file of that
environment.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Put only

SourceDBnr

Specifies the database number of the source system file for the subsequent operations. Default is
the database number of the user system file of the local environment.

Natural Data Format |Variant Type |Remark

14 VT_14

SourceFnr

Specifies the file number of the source system file for the subsequent operations. Default is the file
number of the user system file of the local environment.

Natural Data Format | Variant Type |Remark

14 VT _I4

Extending Natural Studio with Plug-ins 313

INatAutoSysmain

TargetEnvironment

Specifies the target environment of the subsequent operations. Default is the local environment.

If the property is changed to a different environment, the properties TargetDBnr and TargetFnr

are automatically changed to the database number and file number of the user system file of that
environment.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironment) |Put only

TargetDBnr

Specifies the database number of the target system file for the subsequent operations. Default is
the database number of the user system file of the local environment.

Natural Data Format |Variant Type |Remark

14 VT _I4

TargetFnr

Specifies the file number of the target system file for the subsequent operations. Default is the file
number of the user system file of the local environment.

Natural Data Format | Variant Type |Remark

4 VT _I4

OptionType

Specifies the Natural development object type on which the subsequent operation applies.

Natural Data Format |Variant Type |Remark

14 VT _I4

The supported types are listed below. The default is 0.

Type Number | Type Name

0000 All types

1001 Parameter data area
1002 Copycode

1003 DDM

1004 Global data area

314 Extending Natural Studio with Plug-ins

INatAutoSysmain

Type Number | Type Name

1005 Helproutine

1006 Local data area
1007 Map

1008 Subprogram

1009 Program

1010 Subroutine

1011 Text

1012 View

1013 Dialog

1014 Class

1015 Command processor
1017 Mainframe DDM
1018 Function

1019 Shared resource
1020 Error message file
1021 Adapter

OptionTimestamp

The subsequent operations apply to Natural development objects that have been saved or cataloged
after the point in time specified in this option. The default is the lowest possible value of a Natural
variable of format T.

Natural Data Format | Variant Type |Remark
T VT_DATE |Put only
OptionUser

The subsequent operations apply to Natural development objects that have been saved or cataloged

by the specified user. The default is an empty string.

Natural Data Format

Variant Type

Remark

A

VT_BSTR

Put only

Extending Natural Studio with Plug-ins

315

INatAutoSysmain

OptionimportSM

If this option is set to TRUE, files to be imported as Natural development objects with the method
Import are assumed to be in structured mode. If this turns out to be not the case, the import will

fail with an error.

If this option is set to FALSE, files to be imported as Natural development objects with the method
Import are assumed to be in report mode. If this turns out to be not the case, the import will fail

with an error.

The default is the value that is specified for the Natural parameter SM.

Natural Data Format |Variant Type |Remark

L VT_BOOL |Put only

Methods

The following methods are available:

= Reset

= FindLibraries
= Find

= Copy

= Move

= Delete

= Rename

= |mport

Reset

Resets all properties of this interface instance to their default values.

FindLibraries

Returns a string containing an XML document that describes the Natural libraries contained in
the Natural system file specified by the properties SourceEnvironment, SourceDBnr and Sourcefnr.
The XML document is structured according to the following DTD:

316

Extending Natural Studio with Plug-ins

INatAutoSysmain

<?xml version="1.0"7>
CIELEMENT flibs (flib+)>
CVELEMENT f1ib (§fPCDATA)>

Element|Meaning

flib The library name.

Find

Returns a string containing an XML document that describes the Natural development objects
contained in the Natural library specified in the parameter Library and by the properties
SourceEnvironment, SourceDBnr and SourceFnr. The XML document is structured according to
the following DTD:

<?xml version="1.0"7?>

<IELEMENT fitems (fitem+)>

<IELEMENT fitem (ftype, fkey, fname, fcat, fuid)>
{IELEMENT ftype (#PCDATA)>

CIELEMENT fkey (#fPCDATA)>

CIELEMENT fname (4fPCDATA)>

CIELEMENT fcat (#PCDATA)>

<VELEMENT fuid (#PCDATA)>

Element|Meaning

ftype |The object type. See the list of types that is available for the property OptionType.

fkey |The object name.

fname |For Natural classes: the class name. For Natural subroutines: the subroutine name. For Natural
functions: the function name.

fcat Indicates if a source, a generated program or both exists for the object. See the values defined for
the parameter Category.

fuid |The user ID of the user who saved or cataloged the object.

Parameters

Name Natural Data Format|Variant Type [Remark
Return value [A VT_BSTR

Name A VT_BSTR |By value
Library A VT_BSTR |By value
Category 12 VT_I2 By value

Return value
A null BSTR (in Natural an empty string). Reserved for future use.

Extending Natural Studio with Plug-ins 317

INatAutoSysmain

Name
A pattern that qualifies the names of the Natural development objects to be retrieved. The
pattern may contain the wildcard characters "?" and "*", where "?" stands for one character and
"*"" for several characters.

Library
The name of the Natural library from which Natural development objects shall be retrieved.

Category
Specifies whether sources or generated programs shall be retrieved.

Value | Meaning

0 Natural objects where either a source or a generated program exists are retrieved.

1 Only Natural objects where a source exists are retrieved.

2 Only Natural objects where a generated program exists are retrieved.

3 Only Natural objects where both a source and a generated program exist are retrieved.

Copy

Copies Natural development objects from the library specified by the properties SourceEnvironment,
SourceDBnr and Sourcefnr and the parameter SourcelLibrary to the library specified by the
properties TargetEnvironment, TargetDBnr and TargetFnr and the parameter TargetLibrary.

Parameters

Name Natural Data Format |Variant Type |Remark
Return value |A VT _BSTR

Name A VT_BSTR |By value
SourceLibrary|A VT_BSTR |By value
TargetLibrary |A VT_BSTR |By value
Category 12 VT_I2 By value

Return value
A null BSTR (in Natural an empty string). Reserved for future use.

Name
A pattern that qualifies the names of the Natural development objects to be copied. The pattern
may contain the wildcard characters "?" and "*", where "?" stands for one character and "*" for
several characters.

SourceLibrary
The name of the Natural library from which Natural development objects shall be copied.

TargetLibrary
The name of the Natural library to which Natural development objects shall be copied.

318 Extending Natural Studio with Plug-ins

INatAutoSysmain

Category
Specifies whether sources, generated programs or both shall be copied. For possible values,
see the Find method.

Move
Moves Natural development objects from the library specified by the properties SourceEnvironment,

SourceDBnr and Sourcefnr and the parameter SourcelLibrary to the library specified by the
properties TargetEnvironment, TargetDBnr and TargetFnr and the parameter TargetLibrary.

Parameters

Name Natural Data Format | Variant Type | Remark
Return value |A VT_BSTR

Name A VT_BSTR |By value
SourceLibrary|A VT_BSTR |By value
TargetLibrary |A VT_BSTR |By value
Category 12 VT_I2 By value

Return value
A null BSTR (in Natural an empty string). Reserved for future use.

Name
A pattern that qualifies the names of the Natural development objects to be moved. The pattern
may contain the wildcard characters "?" and "*", where "?" stands for one character and "*" for
several characters.

SourceLibrary
The name of the Natural library from which Natural development objects shall be moved.

TargetLibrary
The name of the Natural library to which Natural development objects shall be moved.

Category
Specifies whether sources, generated programs or both shall be moved. For possible values,
see the Find method.

Extending Natural Studio with Plug-ins 319

INatAutoSysmain

Delete

Deletes Natural development objects from the library specified by the properties
SourceEnvironment, SourceDBnr and SourceFnr and the parameter Library.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value [A VT_BSTR

Name A VT_BSTR |By value
Library A VT_BSTR |By value
Category 12 VT_I2 By value

Return value
A null BSTR (in Natural an empty string). Reserved for future use.

Name
A pattern that qualifies the names of the Natural development objects to be deleted. The pattern
may contain the wildcard characters "?" and "*", where "?" stands for one character and "*" for
several characters.

Library
The name of the Natural library from which Natural development objects shall be deleted.

Category
Specifies whether sources, generated programs or both shall be deleted. For possible values,
see the Find method.

Rename
Renames the Natural development object specified by the properties SourceEnvironment,

SourceDBnr and SourceFnr and the parameters Name and Library to the name specified by the
parameter NewName.

Parameters

Name Natural Data Format|Variant Type [Remark
Return value A VT_BSTR

Name A VT_BSTR |By value
NewName [A VT_BSTR |By value
Library A VT_BSTR |By value
Category 12 VT_12 By value

320 Extending Natural Studio with Plug-ins

INatAutoSysmain

Return value
A null BSTR (in Natural an empty string). Reserved for future use.

Name
The name of the Natural development object to be renamed.

NewName
The new name for the Natural development object.

Library
The name of the Natural library that contains the Natural development object to be renamed.

Category
Specifies whether the source, the generated program or both shall be renamed. For possible
values, see the Find method.

Import
Imports the files specified by the parameters File and Path as Natural development objects into

the library specified by the properties TargetEnvironment, TargetDBnr and TargetFnr and the
parameter Library.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value |A VT_BSTR

File A VT_BSTR |By value
Path A VT_BSTR By value
Library A VT_BSTR By value

Return value
A null BSTR (in Natural an empty string). Reserved for future use.

File
A pattern that qualifies the names of the files to be imported. The pattern may contain the
wildcard characters "?" and "*", where "?" stands for one character and "*" for several characters.

Path
The path that contains the files to be imported.

Library
The name of the Natural library into which the files shall be imported.

Extending Natural Studio with Plug-ins 321

322

53 INatAutoSystem

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 324
B PIOPEITIES oo 324
B MEINOUS ..o 325

323

INatAutoSystem

Purpose

Gives access to certain system functions and to the available development environments and ap-
plications.

Properties

The following properties are available:

= Parent

= Studio

= Environments
= Applications
= Sysmain

Parent

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Environments

Used to navigate to the INatAutoEnvironments interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoEnvironments) |Get only

324 Extending Natural Studio with Plug-ins

INatAutoSystem

Applications

Used to navigate to the INatAutoApplications interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoApplications) |Get only

Sysmain

Used to create a new instance of the INatAutoSysmain interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoSysmain) |Get only

Methods

The following methods are available:

= Quit
= SysCreateGuid
= CMPALUTL
= [ogon
Quit
Terminates Natural Studio.

SysCreateGuid

Creates a global unique ID (GUID). A plug-in might need this method when generating a class.

Parameters
Name Natural Data Format | Variant Type |Remark
Return value |A VT_BSTR

Return value
A fresh global unique ID (GUID) in registry format (that is: enclosed in curly braces). Returns
an empty string, if the creation failed.

Extending Natural Studio with Plug-ins 325

INatAutoSystem

CMPALUTL

Used to call the development server through the utility protocol. Currently the utility protocol is
only used internally by Software AG products.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value |14 VT 14

UtilityID 12 VT_I2 By value
BufferLength |14 VT_14 By value
Buffer A VT_BSTR |By reference

Return value

Depends on the specific utility being called.
UtilityID

The utility being called.

BufferLength
The length of the data buffer passed in Buffer.

Buffer
The data buffer passed to and returned from the utility. The contents of the buffer on input
and output depend on the utility being called. The utility protocol requires that the buffer be
large enough to hold the maximum expected result of the utility request. This size depends
on the utility being called.

Logon

Used to perform a logon to a specific library in the active environment.

Parameters
Name |Natural Data Format|Variant Type |[Remark
Library |A VT_BSTR By value
Fnr 14 VT_l14 Optional
DBnr |I4 VT_I4 Optional
Library

The library to logon to.
Fnr, DBnr

The file number and database number of the system file the library belongs to. Usually these
parameters need not be specified, because the system file is determined by the library name.

326 Extending Natural Studio with Plug-ins

54 INatAutoToolBar

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 328
B PIOPEITIES oo 328
B MEINOUS ..o 329

327

INatAutoToolBar

Purpose

Gives access to a specific toolbar.

Properties

The following properties are available:

= Parent
= Studio
= Caption
= Visible

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoToolBars) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoStudio)

Get only

Caption

A string used to identify the toolbar, as defined when the toolbar was created.

Natural Data Format

Variant Type

Remark

A

VT_BSTR

Get only

328

Extending Natural Studio with Plug-ins

INatAutoToolBar

Visible

Indicates if the toolbar is currently visible or not. Modifying this property hides or shows the
toolbar.

Natural Data Format |Variant Type |Remark

L VT_BOOL

Methods

The following methods are available:

= [nsertCommand

= |nsertSeparator

= Dock
InsertCommand

Inserts a command into the toolbar.

Parameters

Name Natural Data Format Variant Type Remark

Command |HANDLE OF OBJECT|VT_DISPATCH (INatAutoCommand)
Index 14 VT_l4 Optional

Command
A command to be added to the toolbar. The command must have been defined before using
the method INatAutoCommands: :Add.

Index
The position in the toolbar where the command shall be inserted. If Index is omitted, the
command is inserted at the last position.

Extending Natural Studio with Plug-ins 329

INatAutoToolBar

InsertSeparator

Inserts a separator into the toolbar.

Parameters

Name Natural Data Format | Variant Type |Remark
Return value None
Index 14 VT_I4 Optional
Index

The position in the toolbar where the separator shall be inserted. If Index is omitted, the sep-
arator is inserted at the last position.

Dock

Docks the toolbar to another toolbar or to the Natural Studio frame window. The docking position
of dynamically created toolbars is not retained persistently between Natural Studio sessions.

Parameters

Name Natural Data Format |Variant Type |Remark
AtToolbar |A VT_BSTR |Optional
AtToolbar

If the toolbar specified in AtToolBar is docked horizontally on the top or bottom of the frame
window, the current toolbar is docked on the right of this toolbar.

If the toolbar specified in AtToolBar is docked vertically on the left or right hand side of the
frame window, the current toolbar is docked below this toolbar.

If AtToolBar is not specified or the specified toolbar does not exist or is not visible or is not
docked, the current toolbar is docked at the top of the frame window.

330 Extending Natural Studio with Plug-ins

5 5 INatAutoToolBars

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 332
B PIOPEITIES oo 332
B MEINOUS ..o 333

331

INatAutoToolBars

Purpose

Collection of the available toolbars.

Properties

The following properties are available:

= Parent
= Studio
= Count

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoControlBars)

Get only

Studio

Used to navigate to the root interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoStudio)

Get only

Count

The number of available toolbars.

Natural Data Format

Variant Type

Remark

14

VT_l4

Get only

332

Extending Natural Studio with Plug-ins

INatAutoToolBars

Methods

The following methods are available:

= Add
= |tem

Add

Creates a new toolbar and adds it to the collection. Dynamically created toolbars are not persistently
customizable in the Customize dialog.

Parameters

Name Natural Data Format Variant Type Remark

Return value [HANDLE OF OBJECT|VT_DISPATCH (INatAutoToolBar)
Caption A VT_BSTR
Visible L VT_BOOL Optional

Return value
The newly added toolbar.

Caption
A string used to identify the toolbar.

Visible
Decides if the toolbar is created visibel or not. By default, the toolbar is created visible.

Item
Returns a specific toolbar from the collection. Used to iterate through the collection.

Parameters

Name Natural Data Format Variant Type Remark

Return value|HANDLE OF OBJECT |VT_DISPATCH (INatAutoToolBar)

Index 14 VT_I4 VT_BSTR
A

Return value
The toolbar identified by the value specified in Index.

Extending Natural Studio with Plug-ins 333

INatAutoToolBars

Index
Identifies a specific toolbar in the collection. This can be either the index of the toolbar in the
collection (a value between 1 and Count) or the caption of the toolbar.

334 Extending Natural Studio with Plug-ins

56 INatAutoTypes

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 336
B PIOPEITIES oo 336

335

INatAutoTypes

Purpose

Contains collections that are used to define new tree view and list view node types.

Properties

The following properties are available:

= Parent

= Studio

= Nodelmages
= NodeTypes

Parent

Used to navigate to the parent interface of this interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Studio

Used to navigate to the root interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio) |Get only

Nodelmages

Used to navigate to the INatAutoNodeImages interface.

Natural Data Format Variant Type Remark

HANDLE OF OBJECT |VT_DISPATCH (INatAutoNodelmages) |Get only

336 Extending Natural Studio with Plug-ins

INatAutoTypes

NodeTypes

Used to navigate to the INatAutoNodeTypes interface.

Natural Data Format

Variant Type

Remark

HANDLE OF OBJECT

VT_DISPATCH (INatAutoNodeTypes)

Get only

Extending Natural Studio with Plug-ins

337

338

57 INaturalStudioPlugin

B PUMDOSE .ttt ettt e e ettt e e ettt e e oo ettt e e oottt e e e e e e oottt e e e e e e e e n et ta e e e e e e ettt e e aeaaaa s 340
L1 1= g oo [T TR 340
BN O ICAHIONS .. e e 343

339

INaturalStudioPlugln

Purpose

This is the primary interface a plug-in must provide. Natural Studio uses this interface to activate
and deactivate the plug-in and to send commands and notifications to it.

In order to provide the interface, plug-ins written in Natural include the interface module (copy-
code) NSTPLG-I from the example library SYSEXPLG in their class definition. Plug-ins written in
other languages use the type library naturalstudioplugin.t1b. This type library is also contained
in the example library SYSEXPLG.

Methods

The following methods are available:

= OnActivate

= OnDeactivate

= OnCommand

= OnCommandStatus
= OnNotify

OnActivate

Natural Studio calls this method when it activates the plug-in. The plug-in should use this oppor-
tunity to define its commands and to make them visible in the Natural Studio user interface. Also
it might store a handle to the Natural Studio Automation root interface (INatAutoStudio) for
further use.

If a plug-in determines that it cannot activate because certain resources or prerequisites are missing,
it should set *ERROR-NR to 9002 on return. This causes the plug-in framework to call the method
OnDeactivate for the necessary cleanup and to leave the plug-in in inactive status. The plug-in
itself is responsible to alert the user in an appropriate way.

Parameters

Name Natural Data Format Variant Type Remark

NaturalStudio|HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

NaturalStudio
Contains a handle to the Natural Studio Automation root interface.

340 Extending Natural Studio with Plug-ins

INaturalStudioPlugin

OnDeactivate

Natural Studio calls this method when it deactivates the plug-in. The plug-in should use this op-
portunity to close windows, files and network connections etc. and to clean up other used resources.
It does not need to remove the commands, menu items and toolbar items that is might have created
in the method OnActivate. This is done by Natural Studio automatically.

Parameters

Name Natural Data Format Variant Type Remark

NaturalStudio|HANDLE OF OBJECT |VT_DISPATCH (INatAutoStudio)

NaturalStudio
Contains a handle to the Natural Studio Automation root interface.

OnCommand
Natural Studio calls this method when the user selects one of the commands the plug-in has

defined. Usually the plug-in will then apply the command to the set of objects that are currently
selected. It retrieves this set through the interface INatAutoSelectedObjects.

Parameters

Name Natural Data Format |Variant Type |Remark
CommandID (14 VT_l4
CommandID

Contains the command ID the plug-in has chosen when it defined the command with the
method Add of the interface INatAutoCommands.

OnCommandStatus

Natural Studio calls this method when one of the commands the plug-in has defined becomes
visible in the user interface, for instance, when the user opens a pop-up menu that contains one
of these commands. The plug-in decides if the command is to be enabled or not and if it is to have
a check mark or not. By default, all plug-in defined commands are disabled and unchecked. Usually
the plug-in will decide about the command status based on the set of objects that are currently
selected. It retrieves this set through the interface INatAutoSelectedObjects.

Extending Natural Studio with Plug-ins 341

INaturalStudioPlugln

Parameters

Name Natural Data Format |Variant Type |Remark
CommandID (14 VT 14

Enabled L VT_BOOL |By reference
Checked L VT_BOOL |By reference
CommandID

Contains the command ID the plug-in has chosen when it defined the command with the
method Add of the interface INatAutoCommands.

Enabled
If the command is to be enabled, the plug-in returns TRUE in this parameter.

Checked
If the command is to have a check mark, the plug-in returns TRUE in this parameter.

OnNotify

Natural Studio calls this method to notify the plug-in about certain events in Natural Studio that
might be of interest for the plug-in. However, the plug-in does not have to use any of these noti-
fications.

Parameters

Name Natural Data Format Variant Type Remark
Return value |14 VT 14

Notification |14 VT 14

LongParam |14 VT_I14 By reference
ObjectParam |HANDLE OF OBJECT |VT_DISPATCH |By reference
StringParam |A VT_BSTR By reference

Return value, LongParam, ObjectParam, StringParam
The usage and meaning of these parameters depends on the specific notification. Please refer
to the specification of the individual notifications in the following.

Notification

A number that identifies the notification. The individual notifications are specified in the fol-
lowing. There are constant definitions available for the notification numbers in the local data
area NSTPLG-L in the example library SYSEXPLG.

342

Extending Natural Studio with Plug-ins

INaturalStudioPlugin

Notifications

The following notifications are available:

= PLUGIN-NOTIFY-ACTIVATE

= PLUGIN-NOTIFY-QUERYCLOSE

= PLUGIN-NOTIFY-CLOSE

= PLUGIN-NOTIFY-SAVE

= PLUGIN-NOTIFY-EXPANDALL

= PLUGIN-NOTIFY-SELECTEDOBJECTS
= PLUGIN-NOTIFY-FOCUSOBJECT

= PLUGIN-NOTIFY-CONTEXTMENU

= PLUGIN-NOTIFY-REFRESH

= PLUGIN-NOTIFY-HELP

= PLUGIN-NOTIFY-OPTIONSVALIDATE
= PLUGIN-NOTIFY-OPTIONSMODIFIED

PLUGIN-NOTIFY-ACTIVATE

Natural Studio sends this notification to plug-ins that have created tree view document windows,
list view document windows or generic document windows. It sends it to inform the plug-in about

the activation status of one of these windows.

Return value
Not used.

LongParam

[e]

if the window is being deactivated.

—_

if the window is being activated.

2 |if the window is already active and the user clicks a mouse button inside the window.

ObjectParam
A handle to the document window.

StringParam
A string that identifies the type of document window: INatAutoObjectTree,
INatAutoObjectList or INatAutoGenericDocument.

Extending Natural Studio with Plug-ins

343

INaturalStudioPlugln

PLUGIN-NOTIFY-QUERYCLOSE

Natural Studio sends this notification to plug-ins that created generic document windows. It sends
it to inform the plug-in that the Natural Studio user is attempting to close one of these windows,
or that the C1ose method has been called. The plug-in might use this notification to check if there
are uncommitted changes in the document and to take appropriate actions if this is the case.

Return value
The plug-in returns:

[e)

if it accepts that the window is closed.

—_

to prevent closing the window.

LongParam
Not used.

ObjectParam
A handle to the document window.

StringParam
A string that identifies the type of document window: INatAutoGenericDocument.

PLUGIN-NOTIFY-CLOSE

Natural Studio sends this notification to plug-ins that created tree view document windows, list
view document windows or generic document windows. It sends it to inform the plug-in that the
Natural Studio user is attempting to close one of these windows, or that the C10se method has
been called.

Return value
Not used.

LongParam
Not used.

ObjectParam
A handle to the document window.

StringParam
A string that identifies the type of document window: INatAutoObjectTree,
INatAutoObjectList or INatAutoGenericDocument.

344 Extending Natural Studio with Plug-ins

INaturalStudioPlugin

PLUGIN-NOTIFY-SAVE

Natural Studio sends this notification to plug-ins that have opened generic text objects in the
program editor. It sends it to inform the plug-in that the user has triggered the Save command.
This enables the plug-in to retrieve the edited text and to save it.

Return value
The plug-in returns:

—_

to indicate that it has successfully saved the text.

0|otherwise.

LongParam
Not used.

ObjectParam
A handle to the document window.

StringParam
A string that identifies the type of document window: INatAutoGenericText.

PLUGIN-NOTIFY-EXPANDALL

Natural Studio sends this notification to plug-ins that have created tree view document windows.
It sends it to inform the plug-in that an Expand All has been started or has finished on one of these
windows. This enables the plug-in to apply possible optimizations when Natural Studio later calls
it repetitively while performing the Expand All

| Note: The user issues an Expand All by pressing the Multiply key on the numeric keypad
while a tree view node is selected. This causes the tree view node to be expanded recursively.

Return value
Not used.

LongParam

—_

if Expand All has started.
0|if Expand All has finished.

ObjectParam
A handle to the document window.

StringParam
A string that identifies the type of document window: INatAutoObjectTree.

Extending Natural Studio with Plug-ins 345

INaturalStudioPlugln

PLUGIN-NOTIFY-SELECTEDOBJECTS

Natural Studio sends this notification to plug-ins that have created generic document windows.
It sends it to retrieve the currently selected objects in the currently active generic document window.

Return value
Not used.

LongParam
Not used.

ObjectParam
Not used.

StringParam
The plug-in returns the set of selected objects formatted as an XML document. The document
must comply to the DTD specified for the property SelectedObjects of the interface
INatAutoSelectedObjects.

PLUGIN-NOTIFY-FOCUSOBJECT

Natural Studio sends this notification to plug-ins that have created a generic document window.
It sends it to retrieve the object that currently has the focus in the currently active generic document
window.

Return value

Not used.

LongParam

Not used.

ObjectParam

Not used.

StringParam

The plug-in returns the focus object formatted as an XML document. The document must comply

with the DTD specified for the property SelectedObjects of the interface
INatAutoSelectedObjects.

346 Extending Natural Studio with Plug-ins

INaturalStudioPlugin

PLUGIN-NOTIFY-CONTEXTMENU

Natural Studio sends this notification to plug-ins that have created generic document windows.

It sends it to inform the plug-in that the user tries to open a context menu on one of these windows
by clicking the right mouse button or pressing the context menu key. This enables the plug-in to

have different context menus displayed depending on the mouse position or to display a default
context menu for the window as a whole.

Return value
The plug-in returns:

[

if a context menu is to be displayed.

(@]

otherwise.

LongParam
The current mouse position in the form x * (2*¥16) +y.

This means: If the mouse position is for instance, (50,100), the value in LongParam will be 50
(2%16) + 100 = 3276900. A value of -1 indicates that the default (position independent) context
menu was requested.

ObjectParam
The plug-in returns a INatAutoContextMenu interface to a context menu it has created or re-
trieved before.

StringParam
Not used.

PLUGIN-NOTIFY-REFRESH

Natural Studio sends this notification to plug-ins that have created tree view document windows,
list view document windows or generic document windows. It sends it to inform the plug-in that
one of these windows possibly needs to be refreshed. While handling this notification, the plug-

in has access to the interface INatAutoRefreshObject. This interface and its properties allow re-

trieving the details about the object currently being refreshed.

Return value
The plug-in returns:

if the window is to be refreshed.

—_

0|if it is not to be refreshed.

Extending Natural Studio with Plug-ins 347

INaturalStudioPlugln

LongParam

On Input |The value 0 indicates that Natural Studio just queries whether a refresh is to be performed.
Natural Studio passes this value if the notification is sent with respect to a tree view
document window or list view document window. In these cases Natural Studio can perform
the refresh itself. The plug-in has just to decide whether it wants the view to be refreshed
or not.

The value 1 indicates that Natural Studio advises the plug-in to refresh the window. Natural
Studio passes this value if the notification is sent with respect to a generic document window.
In this case, the plug-in is in charge of performing the refresh.

On Return|The value 0 indicates that the plug-in wants to have this refresh executed as a specific
refresh. This means: only the visualizations of the current refresh object
(INatAutoRefreshObject) is to be refreshed.

The value 1 indicates that the plug-in wants to have this refresh executed as an unspecific
refresh. This means: the whole window is to be refreshed.

Note: For list view document windows Natural Studio currently makes no difference

between a specific and an unspecific refresh. In both cases the whole window will be
refreshed.

ObjectParam
A handle to the document window.

StringParam
A string that identifies the type of document window: INatAutoObjectTree,
INatAutoObjectList or INatAutoGenericDocument.

PLUGIN-NOTIFY-HELP

Natural Studio sends this notification to plug-ins that have created tree view document windows
or list view document windows. It sends it to inform the plug-in that the user has pressed the F1
key (and thus requested help), while one of these windows was active. While handling this noti-
fication, the plug-in has access to the interface INatAutoSelectedObjects. This interface and its
properties allow retrieving details about the objects currently being selected and about the focus
object, in order to display context-specific help. In order to display a specific help topic, the plug-
in uses the method INatAutoStudio: :ShowHelp.

Return value
The plug-in returns:

348 Extending Natural Studio with Plug-ins

INaturalStudioPlugin

—_

if it has handled the help request by displaying a help topic.

if not.

(@)

LongParam
Not used.

ObjectParam
A handle to the document window.

StringParam
A string that identifies the type of document window: INatAutoObjectTree or

INatAutoObjectList.
PLUGIN-NOTIFY-OPTIONSVALIDATE

Natural Studio sends this notification to plug-ins that have specified options. It sends it to inform
the plug-in that the user is attempting to modify the option values and allows the plug-in to val-
idate the new values. The notification is sent when the user has pressed OK or Apply in the Options
dialog or if the user switches to a different property page after having modified the plug-in options.

| Note: A plug-in can specify options by using the method INatAutoPTugIn::DefineOptions.

It can retrieve and set the option values by using the property
INatAutoPTugIn::0ptionValues. The user can modify the option values interactively in

the Natural Studio Options dialog.

Return value
The plug-in returns:

—_

if the modified option values are valid.

@]

if they are invalid.

Additionally it might do whatever necessary to alert the user, for instance, display a message
box.

LongParam
Not used.

ObjectParam
Not used.

StringParam
Contains the modified option setting as an XML document according to the Option values

DTD. This DTD is defined in INatAutoPlugIn::OptionValues.

Extending Natural Studio with Plug-ins 349

INaturalStudioPlugln

PLUGIN-NOTIFY-OPTIONSMODIFIED

Natural Studio sends this notification to plug-ins that have specified options. It sends it to inform
the plug-in that the user has successfully modified the option values and allows the plug-in to
react to the change appropriately.

| Note: A plug-in can specify options through the method INatAutoPTugIn::DefineOptions.
It can retrieve and set the option values through the property
INatAutoPTugIn::0ptionValues. The user can modify the option values interactively in
the Natural Studio Options dialog.

Return value
Not used.

LongParam
Not used.

ObjectParam
Not used.

StringParam
Contains the modified option setting as an XML document according to the Option values
DTD. This DTD is defined in INatAutoPlugIn::OptionValues.

350 Extending Natural Studio with Plug-ins

58

INaturalStudioPluginTree

= Purpose
= Methods

351

INaturalStudioPluginTree

Purpose

A plug-in provides this interface in order to provide information about tree view and list view
nodes to Natural Studio. Natural Studio calls the methods of this interface if the plug-in has defined
its own node types and has opened a tree view or list view document window with a node of one
of these types as root node. Natural Studio calls the methods to gather information about these
nodes whenever this is required to expand or refresh a tree view or list view.

| Note: A plug-in defines its own node types by using the interface INatAutoNodeTypes.

In order to provide the interface, plug-ins written in Natural include the interface module (copy-
code) NSTPLG-T from the example library SYSEXPLG in their class definition. Plug-ins written in
other languages use the type library naturalstudioplugin.t1b. This type library is also contained
in the example library SYSEXPLG.

Methods

The following methods are available:

= GetData

= GetChildren

= HasChildren

= GetAttributes

= GetAttributeValues

GetData

Natural Studio calls this method to retrieve additional information about a plug-in defined node
identified by type and key.

Parameters

Name Natural Data Format |Variant Type |Remark
ReturnValue |L VT_BOOL

Type 14 VT_lI4

Key A VT_BSTR

Info A VT_BSTR

Template 14 VT_l4

Data A VT_BSTR By reference

352 Extending Natural Studio with Plug-ins

INaturalStudioPlugInTree

ReturnValue
The plug-in returns TRUE if it knows the node, FALSE otherwise.

Type
The type of the node.
Key
The key that identifies the node within its type.

Info
An additional information string that the plug-in has previously assigned to the node.

Template
The TemplatelD that the plug-in has passed to the method INatAutoObjectTrees: :0pen or
INatAutoObjectLists::0pen when opening the tree view or list view document window.

Data
The plug-in returns a string containing an XML document that describes the node. The XML
document is structured according to the following DTD.

<?xml version="1.0"7>

<IELEMENT data (pinfo?, pname?, (ntype, nkey)?)>
<VELEMENT pinfo (#PCDATA)>

<IELEMENT pname (#PCDATA)>

<IELEMENT ntype (#PCDATA)>

<IELEMENT nkey (#fPCDATA)>

Element|Meaning

pinfo |Additional information about the node that the plug-in wants to receive back whenever Natural
Studio later refers to the node. Natural Studio never considers the content of this element, but
just passes it back and forth.

pname |The text to be displayed with the node in a tree view or list view.

ntype |If the node has been defined by a plug-in, but corresponds to an node of a predefined Natural
Studio type, this element contains the type of the corresponding predefined node.

nkey |If the node has been defined by a plug-in, but corresponds to an node of a predefined Natural
node type, this element contains the key of the corresponding predefined node.

GetChildren

Natural Studio calls this method to retrieve the child nodes of a node defined by a plug-in. This
node is identified by type and key.

Extending Natural Studio with Plug-ins 353

INaturalStudioPluginTree

Parameters

Name Natural Data Format |Variant Type |Remark
ReturnValue |14 VT_ 14

Type 14 VT 14

Key A VT _BSTR

Info A VT _BSTR

Template 14 VT_I4

Children A VT_BSTR |By reference
ReturnValue

Indicates the number of child nodes.

Type
The type of the node.
Key
The key that identifies the node within its type.

Info
An additional information string that the plug-in has previously assigned to the node.

Template
The TemplateID that the plug-in has passed to the method INatAutoObjectTrees::0pen or
INatAutoObjectLists::0pen when opening the tree view or list view document window. The
plug-in can interpret the parameter Template to return different tree structures for different
values of Template.

Children
The plug-in returns a string containing an XML document that describes the child nodes. The
XML document is structured according to the following DTD.

<?xml version="1.0"7>

<IELEMENT children (child*)>
CVELEMENT child (ptype, pkey, pinfo?, pname?,
phch?, children?, (ntype, nkey)?)>
<IELEMENT ptype (#PCDATA)>
<IELEMENT pkey (#PCDATA)>
<IELEMENT pinfo (#fPCDATA)>
CIELEMENT pname (#PCDATA)>
CVELEMENT phch (#fPCDATA)>
<IELEMENT ntype (#PCDATA)>
<IELEMENT nkey (#fPCDATA)>

354 Extending Natural Studio with Plug-ins

INaturalStudioPlugInTree

Element |Meaning

ptype |The type of the child node.

pkey |The key that identifies the child node within its type.

pinfo |Additional information about the child node that the plug-in wants to receive back whenever
Natural Studio later refers to the node. Natural Studio never considers the content of this
element, but just passes it back and forth.

pname |The text to be displayed with the child node in a tree view or list view.

children|Allows specifying a subtree of child nodes in arbitrary depth. If this element is specified, it
is implicitly assumed that the child node itself has children and the method HasChildrenis
not called for this child node.

phch |Allows specifying in advance if the given child node itself has child nodes.
® A value of 1 means that the child node itself has child nodes.
® A value of -1 means that the child node itself has no child nodes.

= A value of 0 (default) means that the plug-in cannot determine now if the child node itself
has child nodes and wants to be asked in a subsequent call to the method HasChildren.

ntype |If the node has been defined by a plug-in, but corresponds to a node of a predefined Natural
Studio type, this element contains the type of the corresponding predefined node.

nkey |If the node has been defined by a plug-in, but corresponds to a node of a predefined Natural
node type, this element contains the key of the corresponding predefined node.

HasChildren

Natural Studio calls this method to check if the plug-in defined node identified by type and key
has child nodes of any type. This is used to decide if the node will be shown as expandable in a
tree view document window.

Parameters

Name Natural Data Format |Variant Type |Remark
ReturnValue |L VT_BOOL

Type 14 VT_I4

Key A VT_BSTR

Info A VT_BSTR

Template 14 VT_I4

Children A VT_BSTR |By reference
ReturnValue

The plug-in returns TRUE if the node has child nodes, FALSE otherwise.

Type
The type of the node.

Extending Natural Studio with Plug-ins 355

INaturalStudioPluginTree

Key
The key that identifies the node within its type.

Info
An additional information string that the plug-in has previously assigned to the node.

Template
The TemplatelD that the plug-in has passed to the method INatAutoObjectTrees::0pen or
INatAutoObjectLists::0pen when opening the tree view or list view document window. The
plug-in can interpret the parameter Template to return different tree structures for different
values of Template.

Children
If the plug-in not only knows that the given node has child nodes, but knows also the child
nodes themselves, it can return them in this parameter. The plug-in then returns a string con-
taining an XML document that describes the child nodes. The XML document is structured
according to the DTD defined with the method GetChildren.

GetAttributes
Natural Studio calls this method to retrieve meta information about the attributes of the given

node type. This method is called when the attributes of the node are to be displayed in a list view
document window.

Parameters

Name Natural Data Format |Variant Type |Remark
ReturnValue (14 VT_14

Type 14 VT _ 14

Template 14 VT_14

Attributes |A VT_BSTR |By reference
ReturnValue

The number of defined attributes.

Type
The type of the node.

Template
The TemplateID that the plug-in has passed to the method INatAutoObjectTrees::0pen or
INatAutoObjectLists::0pen when opening the tree view or list view document window. The
plug-in can interpret the parameter Template to return different attribute sets for different
values of Template.

Attributes
The plug-in returns a string containing an XML document that describes the attributes. The
XML document is structured according to the following DTD.

356 Extending Natural Studio with Plug-ins

INaturalStudioPlugInTree

<?xml version="1.0"7>

<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT

attributes (attdef*)>

attdef (akey, acaption?)>

akey (#/PCDATA)>
acaption (#PCDATA)>

Element |Meaning

akey A key that identifies the attribute internally. This key is freely defined by the plug-in.

acaption|A caption that is used to display the attribute externally, for instance, in list view column
headers.

For nodes that correspond to predefined Natural Studio node types the attributes of the cor-
responding Natural node type can also be specified. In order to refer to these attributes, the
following predefined attribute keys are used. If one of these attribute keys is used, no attribute

caption needs to be specified, because the captions are predefined by Natural Studio.

Key

Caption

NOLibrary

Library name

NOFnr

File number

NODBID

Database number

NOType

Natural object type

NOMode

Mode (Structured/Report)

NOUserID

User ID

NOSrcDate

Date of last save

NOSrcSize

Source size

NOCatDate

Date of last catalog

NOCatSize

GP size

GetAttributeValues

Natural Studio calls this method to retrieve the attribute values of the node defined by a plug-in.
This node is identified by type and key.

Extending Natural Studio with Plug-ins 357

INaturalStudioPluginTree

Parameters

Name Natural Data Format | Variant Type |Remark
ReturnValue 14 VT 14

Type 14 VT 14

Key A VT _BSTR

Info A VT _BSTR

Template 14 VT_14

AttributeValues |A VT_BSTR |By reference
ReturnValue

The number of attribute values.

Type

The type of the node.

Key

The key that identifies the node within its type.

Info

An additional information string that the plug-in has previously assigned to the node.

Template

The TemplateID that the plug-in has passed to the method INatAutoObjectTrees::0pen or
INatAutoObjectLists::0pen when opening the tree view or list view document window. The
plug-in can interpret the parameter Template to return different attribute sets for different
values of Template.

AttributeValues
The plug-in returns a string containing an XML document that describes the attribute values.
The XML document is structured according to the following DTD.

<?xml

version="1.0"7>

<ITELEMENT attributevalues (attval*)>
<ITELEMENT attval (akey, avalue)>
<IELEMENT akey (fPCDATA)>

CIELEMENT avalue (4PCDATA)>

Element

Meaning

akey

A key that identifies the attribute internally. The key must match one of the keys previously
returned in a call to GetAttributes, otherwise the element is ignored.

avalue

The attribute value.

358

Extending Natural Studio with Plug-ins

III oms

Because of their length the DTDs listed below are provided separately in this part. All other DTDs

which are used by the Natural Studio interfaces are documented together with the corresponding
interface.

DTD for INatAutoNatparm - Local Environment
DTD for INatAutoNatparm - Remote Environment
DTD for INatAutoNatsvar - Local Environment

359

360

59 DTD for INatAutoNatparm - Local Environment

Applies to INatAutoNatparm: :ProfileParameters.

For the local environment, the XML document is structured according to the following DTD:

<?xml version="1.0" encoding="UTF-8"7>

<ITELEMENT ACIPATT ({fPCDATA)>

<IVELEMENT ACIVERS ({fPCDATA)>

<VELEMENT ACTIVATED (FfPCDATA)>

<ITELEMENT ACTPOLICY (FfPCDATA)>

<IELEMENT ADA (ET, ETID, MFSET, RCFIND, RCGET, OPRB, WH)>
<VELEMENT ADM_LFL_COUNT ({fPCDATA)>

<IELEMENT AUTO (#fPCDATA)>

CIELEMENT AUTOREGISTER (§fPCDATA)>

<VELEMENT AUTORPC ({fPCDATA)>

<IELEMENT BATCH (BMCONTROL, BMBLANK, NATLOG, BMSIM, BMTIME, BMVERSION, BMTITLE, CC,
CMOBJIN, CMPRINT, CMSYNIN, ECHO, ENDMSG, FRAME)>
<VELEMENT BMBLANK (fPCDATA)>

<ITELEMENT BMCONTROL ({fPCDATA)>

<ITELEMENT BMSIM (#PCDATA)>

<VELEMENT BMTIME (#PCDATA)>

<VELEMENT BMTITLE ({fPCDATA)>

<IELEMENT BMVERSION ({fPCDATA)>

<VELEMENT BPSFI (#PCDATA)>

<IELEMENT BUFSIZES (SSIZE, USIZE, DSLM, SORTSZE)>
<ITELEMENT CALLNAT ({fPCDATA)>

{IELEMENT CC (#fPCDATA)>

<VELEMENT CDYNAM (#PCDATA)>

{IELEMENT CF (#PCDATA)>

<IELEMENT CHARS (CF, CLEAR, DC, FC, HI, IA, ID, TDS, THSEPCH)>
<VELEMENT CIPHER (#PCDATA)>

CIELEMENT CLEAR (§fPCDATA)>

<IELEMENT CLOSEMODE (FfPCDATA)>

{IELEMENT CLR ({PCDATA)>

<IELEMENT CM (#PCDATA)>

<ITELEMENT CMOBJIN ({fPCDATA)>

<VELEMENT CMPRINT ({fPCDATA)>

<VELEMENT CMSYNIN (#PCDATA)>

<IELEMENT CO (#PCDATA)>

361

DTD for INatAutoNatparm - Local Environment

<VELEMENT COMPOPT (DBSHORT, ENDIAN, GFID, THSEP, MASKCME, PCHECK)>

<IELEMENT COMPR (#PCDATA)>

<IELEMENT COMSERVER (#PCDATA)>

<IELEMENT CP (#PCDATA)>

{IELEMENT CSCPATT (#PCDATA)>

<TELEMENT CVMIN (#PCDATA)>

<IELEMENT DATE (#fPCDATA)>

<IELEMENT DBID (4fPCDATA)>

<!ELEMENT DBMS (UDB, ADM_LFL_COUNT, ETDB, ETEOP, TF_CNT, LFILMAX, LFL-ADMI149, LFL-ADMI50,
LFL-ADM151, LFL-ADM190)>

<IELEMENT DBSHORT (#PCDATA)>

<IELEMENT DBUPD (#PCDATA)>

<IELEMENT DC (#PCDATA)>

<IELEMENT DCOM (AUTOREGISTER, COMSERVER, ACTPOLICY)>

<IELEMENT DD (#fPCDATA)>

<!ELEMENT DEVOO (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEVOl (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEVOZ (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QOUTPUT, METHOD)>
<VELEMENT DEVO3 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<!ELEMENT DEVO4 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEVO5 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<ELEMENT DEVO6 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEVO7 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<!ELEMENT DEVO8 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEVO9 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<!ELEMENT DEV1O (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEV11 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEV1Z (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QOUTPUT, METHOD)>
<VELEMENT DEVI3 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEV14 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEV15 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QOUTPUT, METHOD)>
<VELEMENT DEV16 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEV17 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEV18 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEV19 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEVZ20 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
CVELEMENT DEVZ21 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEVZ22 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEVZ23 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEV24 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEVZ25 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEVZ26 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEV27 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<ELEMENT DEVZ28 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEVZ29 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEV30 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEV31 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_OUTPUT, METHOD)>
<VELEMENT DEV32 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<VELEMENT DEV33 (LINESIZE, PAGESIZE, MAXPAGE, LOG_NAME, NAME, STATUS, PRT_QUTPUT, METHOD)>
<!ELEMENT DEVICES (DEVOO, DEVOl, DEVOZ2, DEVO3, DEVO4, DEVO5, DEVO6, DEVO7, DEVOS8,

DEVO9, DEV1O, DEV11l, DEV1Z2, DEVI3, DEV14, DEV15, DEV16, DEV1/, DEVI8, DEV1OQ,

DEV20, DEV21, DEV22, DEV23, DEVZ24, DEVZ25, DEV26, DEV2/, DEV28, DEVZ29, DEV30,

DEV31, DEV32, DEV33, REP)>

<IELEMENT DFOUT (#PCDATA)>

<IELEMENT DFSTACK (#PCDATA)>

<IELEMENT DFTITLE (#PCDATA)>

<IELEMENT DISPDBG (#PCDATA)>

<TELEMENT DSLM (#PCDATA)>

362 Extending Natural Studio with Plug-ins

DTD for INatAutoNatparm - Local Environment

<IELEMENT DTFORM ({fPCDATA)>

<IELEMENT DU (#fPCDATA)>

<IELEMENT DYNPARM (#PCDATA)>

<IELEMENT ECHO ({fPCDATA)>

<IELEMENT ECPMOD ({fPCDATA)>

<IELEMENT EDITOR (#PCDATA | EDTBPSIZE | EDTLFILES | EDTRB)*>
<IELEMENT EDTBPSIZE (#PCDATA)>

<IELEMENT EDTLFILES (4fPCDATA)>

{IELEMENT EDTRB (#PCDATA)>

<TELEMENT EJ (#PCDATA)>

<IELEMENT EMFM (#fPCDATA)>

<IELEMENT ENDIAN (#PCDATA)>

<IELEMENT ENDMSG ({fPCDATA)>

<IELEMENT ERROR (IKEY, MSGSF, SA, SNAT)>

<IELEMENT ESCAPE (#PCDATA)>

<VELEMENT ESX (ESXDB)>

<IELEMENT ESXDB (#PCDATA)>

CIELEMENT ET (#PCDATA)>

<IELEMENT ETA (#PCDATA)>

<IELEMENT ETDB (#fPCDATA)>

<IELEMENT ETEOP (#PCDATA)>

CIELEMENT ETID (fPCDATA)>

CIELEMENT ETP (ETPSIZE, ETP_DB)>

<IELEMENT ETPSIZE (#PCDATA)>

<IELEMENT ETP_DB (#PCDATA)>

<IELEMENT FC (#PCDATA)>

<IELEMENT FCDP (#fPCDATA)>

<VELEMENT FDDM (DBID, FNR, PASSWD, CIPHER, ROSY)>
<VELEMENT FDIC (DBID, FNR, PASSWD, CIPHER, ROSY)>
CVELEMENT FNAT (DBID, FNR, PASSWD, CIPHER, ROSY)>
<IELEMENT FNR (#PCDATA)>

<!ELEMENT FRAME (HB, LLC, LRC, ULC, URC, VB)>

<IELEMENT FREEGDA (#PCDATA)>

<IELEMENT FS (#PCDATA)>

<VELEMENT FSEC (DBID, FNR, PASSWD, CIPHER, ROSY)>
<VELEMENT FUSER (DBID, FNR, PASSWD, CIPHER, ROSY)>
<IELEMENT GFID (#fPCDATA)>

{IELEMENT GRAPHIC (#PCDATA)>

<TELEMENT HB (#PCDATA)>

<TELEMENT HI (#PCDATA)>

CIELEMENT TA (#PCDATA)>

<IELEMENT ID (#fPCDATA)>

<IELEMENT IKEY (#fPCDATA)>

CTELEMENT IM (#PCDATA)>

CIELEMENT INITLIB (#PCDATA)>

<TELEMENT KC (#PCDATA)>

CTELEMENT KEYS (ACTIVATED, CLR, PAl, PA2, PA3, PFl, PF2, PF3, PF4, PF5, PF6, PF7,
PF8, PF9, PF10, PFI11, PF12, PF13, PF14, PF15, PFl6, PF17, PF18, PF19, PF20, PF21,
PF22, PF23, PF24)>

<IELEMENT LC (#fPCDATA)>

<IELEMENT LDB (#PCDATA)>

<TELEMENT LE (#PCDATA)>

<IELEMENT LFILMAX (#PCDATA)>

<VELEMENT LFL-ADM149 (DBID, FNR, PASSWD, CIPHER, ROSY)>
<ELEMENT LFL-ADM150 (DBID, FNR, PASSWD, CIPHER, ROSY)>
<IELEMENT LFL-ADM151 (DBID, FNR, PASSWD, CIPHER, ROSY)>
<ELEMENT LFL-ADM190 (DBID, FNR, PASSWD, CIPHER, ROSY)>
CIELEMENT LIMITS (LDB, LE, LT, MADIO, MAXCL, SD)>

Extending Natural Studio with Plug-ins 363

DTD for INatAutoNatparm - Local Environment

<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT

LINESIZE (#fPCDATA)>
LLC (#fPCDATA)>

LOGN (#PCDATA)>
LOGONRQ (#PCDATA)>
LOG_NAME (#PCDATA)>
LRC (4#PCDATA)>

LS (#PCDATA)>

LT (#PCDATA)>
MADIO (#PCDATA)>
MAINPR (#PCDATA)>
MASKCME (#PCDATA)>
MAXBUFF (#PCDATA)>
MAXCL (#PCDATA)>
MAXPAGE (#PCDATA)>
METHOD (#PCDATA)>
<TELEMENT MFSET (#PCDATA)>
<IELEMENT MISC (AUTO, BPSFI,
FS, GRAPHIC, IM, KC, ML, NC,
SYMGEN, SYNERR, TD, TQ, TS,
<TELEMENT ML (#PCDATA)>
<IELEMENT MSGSF (#PCDATA)>
CIELEMENT NAME (#fPCDATA)>
<VELEMENT NATENV (STEP_CNT,
<IELEMENT NATLOG ({fPCDATA)>
<VELEMENT NATRPC (ACIPATT, AUTORPC,
NO_OF_RDS, SERVER, RPCSIZE, SRVNAME,
TRYALT, ACIVERS, CP,
<VELEMENT NATSVAR (INITLIB,
<TELEMENT NC (#PCDATA)>
<IELEMENT NCFVERS (#PCDATA)>
CIELEMENT NENTRY (#PCDATA)>
CIELEMENT NOAPPLERR (#fPCDATA)>
<IELEMENT NODE (#fPCDATA)>

<IELEMENT NO_OF_RDS (#fPCDATA)>
<IELEMENT OPF (#PCDATA)>

<IELEMENT OPRB (#fPCDATA)>

<IELEMENT PAL1 (#PCDATA)>

<IELEMENT PA2 (#PCDATA)>

<IELEMENT PA3 (#PCDATA)>

<IELEMENT PAGESIZE ({fPCDATA)>
<TELEMENT PARAMETER-FILE-HEADER (NAME,
<IELEMENT PASSWD (#PCDATA)>

<IELEMENT PC (#PCDATA)>

<IELEMENT PCHECK ({fPCDATA)>

<IELEMENT PD (#PCDATA)>

<IELEMENT PERSIST (#PCDATA)>

<IELEMENT PF1 (#PCDATA)>

CIELEMENT PF10 (#fPCDATA)>

<IELEMENT PF11 (#fPCDATA)>

<IELEMENT PF12 (#fPCDATA)>

<IELEMENT PF13 (#fPCDATA)>

<IELEMENT PF14 (#PCDATA)>

<IELEMENT PF15 (#fPCDATA)>

<IELEMENT PF16 (#PCDATA)>

<TELEMENT PF17 (#fPCDATA)>

<IELEMENT PF18 (#fPCDATA)>

<IELEMENT PF19 (fPCDATA)>

<IELEMENT PF2 (#PCDATA)>

cc, CM, CO,
NENTRY, OPF,
ULANG, XREF,

PC,
D,

USER, EDITOR,

SRVNODE,

STARTUP) >

DBUPD,
PD,
CVMIN,

SHELL,
COMPR, CSCPATT,

SRVUSER, TIMEOUT, TRACE,
SERVDIR, TRACEONERROR, RPC-DFS)>

VERSION,

DD, DU, DYNPARM,
RECAT, REINP,
TMPSORTUNIQ,

ESCAPE, FCDP,
SM, STACK,
NOAPPLERR)>

STEPLIBS)>

DISPDBG, LOGONRQ, MAXBUFF,

TRANSP,

DATE)>

364

Extending Natural Studio with Plug-ins

DTD for INatAutoNatparm - Local Environment

<TELEMENT
CTELEMENT
STELEMENT
<TELEMENT
<TELEMENT
STELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
STELEMENT
PROFILEG,
PROFILEI3
PROFILEZ20

s

PROFILEZ27,

<TELEMENT
STELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
STELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
STELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
STELEMENT
<TELEMENT
<TELEMENT
STELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
CTELEMENT
<TELEMENT
<TELEMENT

PF20 (f#fPCDATA)>

PF21 (#PCDATA)>

PF22 (#PCDATA)>

PF23 (f#fPCDATA)>

PF24 (#PCDATA)>

PF3 (#fPCDATA)>

PF4 (#fPCDATA)>

PF5 (#fPCDATA)>

PF6 (#fPCDATA)>

PF7 (f#fPCDATA)>

PF8 (#fPCDATA)>

PF9 (#fPCDATA)>

PLOAD (CDYNAM, ETA, FREEGDA, PROGRAM, PRGPAR, ROSY, PERSIST)>
PM (#PCDATA)>

PRGPAR (#fPCDATA)>

PROFILE (PROFILEO, PROFILE1, PROFILEZ2, PROFILE3, PROFILE4, PROFILES,
PROFILE7, PROFILE8, PROFILE9, PROFILE1O0, PROFILEI1, PROFILEIZ,
PROFILEI4, PROFILE1S5, PROFILEl6, PROFILEI7, PROFILE18, PROFILEILO,
PROFILEZ21, PROFILE22, PROFILE23, PROFILE24, PROFILE25, PROFILEZ26,
PROFILEZ28, PROFILE29, PROFILE30, PROFILE31)>

PROFILEO (#PCDATA)>

PROFILEL (#PCDATA)>

PROFILELO (#PCDATA)>

PROFILELL (#fPCDATA)>

PROFILEL2 (#PCDATA)>

PROFILEL3 (#PCDATA)>

PROFILEL4 (#fPCDATA)>

PROFILELS (#PCDATA)>

PROFILEL6 (#PCDATA)>

PROFILEL7 (#fPCDATA)>

PROFILEL8 (#PCDATA)>

PROFILEL9 (#PCDATA)>

PROFILE2 (4#PCDATA)>

PROFILE20 (#fPCDATA)>

PROFILE21 (#fPCDATA)>

PROFILE22 (#PCDATA)>

PROFILE23 (#fPCDATA)>

PROFILE24 (#PCDATA)>

PROFILE25 (#PCDATA)>

PROFILE26 (#fPCDATA)>

PROFILE27 (#PCDATA)>

PROFILE28 (#PCDATA)>

PROFILE29 ({#fPCDATA)>

PROFILE3 (4#PCDATA)>

PROFILE30 (#PCDATA)>

PROFILE31 (#PCDATA)>

PROFILE4 (#PCDATA)>

PROFILES (#PCDATA)>

PROFILEG (4#PCDATA)>

PROFILE7 (#PCDATA)>

PROFILE8 (4#PCDATA)>

PROFILE9 (4#PCDATA)>

PROGRAM (#PCDATA)>

PROT (#PCDATA)>

PRT_OUTPUT (#PCDATA)>

PS (#PCDATA)>

ProfileParameters (PARAMETER-FILE-HEADER, ADA, BATCH, BUFSIZES,

CHARS, COMPOPT, DBMS, EDITOR, DCOM, DEVICES, PROFILE, ERROR, ESX, ETP,

Extending Natural Studio with Plug-ins 365

DTD for INatAutoNatparm - Local Environment

KEYS,
NATRPC,
CTELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
REP10,
REP21,

LIMITS,
SYSTEM-FILES,

REP11,
REP22,

MISC, NATENV,
WORKF,
RCFIND (ffPCDATA)>
RCGET (#PCDATA)>
RDACTIVE (#PCDATA)>
RDEBUG (RDACTIVE, RDNODE,
RDNODE (ffPCDATA)>

RDPORT (#fPCDATA)>

RECAT (#fPCDATA)>
REINP (#PCDATA)>
REMOTE (USEDIC,
REP (REPO, REPI,
REP12, REP13,
REP23, REP24,

NATSVAR, PLOAD,
YEAR2000)>

RDEBUG, SPOD,

RDPORT)>

USEREP)>

REPZ2, REP3, REP4, REP5, REP6,
REP14, REP15, REP16, REP17,
REP25, REP26, REP27, REP28,

CLOSEMODE)>

<TELEMENT
<TELEMENT
CTELEMENT
<ITELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<IVELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<IVELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
CTELEMENT

REPO (#PCDATA)>
REP1 (#PCDATA)>
REP10 (4fPCDATA)>
REP11 (#PCDATA)>
REP12 (#PCDATA)>
REP13 (4fPCDATA)>
REP14 (#PCDATA)>
REP15 (#fPCDATA)>
REP16 (#fPCDATA)>
REP17 (#PCDATA)>
REP18 (#PCDATA)>
REP19 (#fPCDATA)>
REP2 (#fPCDATA)>
REP20 (#fPCDATA)>
REP21 (#fPCDATA)>
REP22 (#fPCDATA)>
REP23 (#fPCDATA)>
REP24 (#fPCDATA)>
REP25 (4fPCDATA)>
REP26 (#PCDATA)>
REP27 (#fPCDATA)>
REP28 (#fPCDATA)>
REP29 (#PCDATA)>
REP3 (#PCDATA)>
REP30 (#fPCDATA)>
REP31 (#PCDATA)>
REP4 (#PCDATA)>
REP5 (#PCDATA)>
REP6 (#fPCDATA)>
REP7 (#PCDATA)>
REP8 (#PCDATA)>
REP9 (#PCDATA)>
REPO (DTFORM, EJ,
ROSY (#PCDATA)>
RPC-DFS (NAME, NODE,
RPCSIZE (#fPCDATA)>
SA (#PCDATA)>

SD (#PCDATA)>
SERVDIR (#PCDATA)>
SERVER (##PCDATA)>
SF (#PCDATA)>

SHELL (#fPCDATA)>

SM (#fPCDATA)>

EMFM, LC, LS, MAINPR, PM, PS,

CALLNAT, LOGN, PROT)>

REMOTE,

REP7,
REP18,
REP29,

SF,

REPO,

REPS,
REP19,
REP30,

REPY,
REP20,
REP31,

LP)>

366

Extending Natural Studio with Plug-ins

DTD for INatAutoNatparm - Local Environment

<IELEMENT SNAT (#fPCDATA)>
CIELEMENT SORTSZE (#PCDATA)>
CIELEMENT SPOD (SPODDEBUGPORT)>
<IELEMENT SPODDEBUGPORT (#PCDATA)>
<IELEMENT SRVNAME (#PCDATA)>
<IELEMENT SRVNODE ({#PCDATA)>
<IELEMENT SRVUSER (#PCDATA)>
<IELEMENT SSIZE (#PCDATA)>
CIELEMENT STACK (#PCDATA)>
<IELEMENT STARTUP (#PCDATA)>
<IELEMENT STATUS ({fPCDATA)>
{IELEMENT STEPLIB (#PCDATA)>
<VELEMENT STEPLIBS (STEPLIB, STEPLIB_1, STEPLIB_2, STEPLIB_3, STEPLIB_4,
STEPLIB_5, STEPLIB_6, STEPLIB_7, STEPLIB_8)>
<IELEMENT STEPLIB_1 (#PCDATA)>
<IELEMENT STEPLIB_2 (#PCDATA)>
<IELEMENT STEPLIB_3 (4#PCDATA)>
<IELEMENT STEPLIB_4 (#PCDATA)>
CIELEMENT STEPLIB_5 (#fPCDATA)>
<IELEMENT STEPLIB_6 (#PCDATA)>
<IELEMENT STEPLIB_7 (4fPCDATA)>
<IELEMENT STEPLIB_8 (#PCDATA)>
<IELEMENT STEP_CNT ({#fPCDATA)>
<IELEMENT SYMGEN (#PCDATA)>
CIELEMENT SYNERR (#PCDATA)>
CIELEMENT SYSTEM-FILES (FDDM, FDIC, FNAT, FSEC, FUSER)>
<IELEMENT TD (4fPCDATA)>
<IELEMENT TDS (#PCDATA)>
<IELEMENT TF_CNT (#PCDATA)>
<IELEMENT THSEP (#PCDATA)>
CIELEMENT THSEPCH (#PCDATA)>
<IELEMENT TIMEOUT (#PCDATA)>
<IELEMENT TMPSORTUNIQ (#PCDATA)>
<TELEMENT TQ (#PCDATA)>
CIELEMENT TRACE (#PCDATA)>
<IELEMENT TRACEONERROR (#PCDATA)>
<IELEMENT TRANSP ({fPCDATA)>
CIELEMENT TRYALT (#PCDATA)>
CTELEMENT TS (#PCDATA)>
<IELEMENT UDB (#PCDATA)>
<IELEMENT ULANG (#PCDATA)>
<IELEMENT ULC (#PCDATA)>
<IELEMENT URC (#PCDATA)>
<IELEMENT USEDIC ({fPCDATA)>
<TELEMENT USER (#PCDATA)>
<IELEMENT USEREP ({fPCDATA)>
<IELEMENT USIZE (#PCDATA)>
CIELEMENT VB (#fPCDATA)>
<IELEMENT VERSION (#PCDATA)>
<IELEMENT WFOPFA (#PCDATA)>
CIELEMENT WH (#PCDATA)>
<TELEMENT WORK (#PCDATA)>
<IELEMENT WORKATTRL (4fPCDATA)>
<IELEMENT WORKATTR10 (#PCDATA)>
<IELEMENT WORKATTR11 (#PCDATA)>
<IELEMENT WORKATTR12 (#PCDATA)>
<IELEMENT WORKATTR13 (#PCDATA)>
CIELEMENT WORKATTR14 (#PCDATA)>

Extending Natural Studio with Plug-ins 367

DTD for INatAutoNatparm - Local Environment

<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<ITELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<IVELEMENT
<TELEMENT
<TELEMENT
<VELEMENT

WORKFILES,
WORKFILEY,
WORKFILELS,
WORKFILEZ21,
WORKFILE27,
WORKCLOSEMODE,

WORKTYPE,

WORKATTRS,

WORKATTRI1I,
WORKATTR17,
WORKATTR23,
WORKATTR29,

<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
CTELEMENT

WORKATTR15
WORKATTR16
WORKATTR17
WORKATTR18
WORKATTR19
WORKATTR2
WORKATTR20
WORKATTR21
WORKATTR22
WORKATTR23
WORKATTR24
WORKATTR25
WORKATTR26
WORKATTR27
WORKATTR28
WORKATTR29
WORKATTR3
WORKATTR30
WORKATTR31
WORKATTR32
WORKATTR4
WORKATTRS
WORKATTRG
WORKATTR7
WORKATTR8
WORKATTRY

(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
({fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(ffPCDATA)>
(#fPCDATA) >
(#fPCDATA)>
(ffPCDATA)>
(fPCDATA)>

WORKCLOSEMODE (#PCDATA)>

WORKF (ECPMOD,

WORKFILE4

WORKFILELO,
WORKFILE16, WORKFILEL7,
WORKFILE22,
WORKFILE28, WORKFILEZ29,

WORKATTRG

WORKFILEL

WORKFILELO
WORKFILEL1
WORKFILE12
WORKFILEL3
WORKFILEL4
WORKFILELS
WORKFILELG
WORKFILELY
WORKFILELS8
WORKFILEL9
WORKFILE2

WORKFILE20
WORKFILE21
WORKFILE22
WORKFILE23
WORKFILE24
WORKFILE25
WORKFILE26

WORKATTR12,
WORKATTR18, WORKATTR19,
WORKATTR24, WORKATTR25,
WORKATTR30, WORKATTR31,

NCFVERS, WFOPFA, WORK, WORKFILEI, WORKFILEZ,

, WORKFILES5, WORKFILE6, WORKFILE7, WORKFILES,
WORKFILE11l, WORKFILE12, WORKFILE13, WORKFILE14,
WORKFILE18, WORKFILE19, WORKFILEZ20,
WORKFILE24, WORKFILE25, WORKFILEZ26,
WORKFILE30, WORKFILE31, WORKFILE3Z,
WORKATTR1, WORKATTR2, WORKATTR3, WORKATTR4,

, WORKATTR7, WORKATTR8, WORKATTR9, WORKATTRIO,
WORKATTR13, WORKATTR14, WORKATTR15, WORKATTRI1G6,
WORKATTR20, WORKATTR21, WORKATTR2Z2,
WORKATTR26, WORKATTR27, WORKATTRZ28,
WORKATTR32)>

WORKFILEZ3,

(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>

(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(#fPCDATA)>
(4fPCDATA)>

368

Extending Natural Studio with Plug-ins

DTD for INatAutoNatparm - Local Environment

<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<ITELEMENT

WORKFILE27 (#PCDATA)>
WORKFILE28 (#PCDATA)>
WORKFILE29 (#PCDATA)>
WORKFILE3 (#PCDATA)>
WORKFILE30 (#PCDATA)>
WORKFILE31 (#PCDATA)>
WORKFILE32 (#PCDATA)>
WORKFILE4 (#PCDATA)>
WORKFILES (#PCDATA)>
WORKFILEG (#PCDATA)>
WORKFILE7 (#PCDATA)>
WORKFILE8 (#PCDATA)>
WORKFILE9 (#PCDATA)>
WORKTYPE (#PCDATA)>
XREF (#fPCDATA)>

YEAR2000 (YSLW, DFOUT,

YSLW (#PCDATA)>
ZD (4#fPCDATA)>
ZP (#PCDATA)>

DFSTACK,

DFTITLE)>

Extending Natural Studio with Plug-ins

369

370

60 DTD for INatAutoNatparm - Remote Environment

Applies to INatAutoNatparm: :ProfileParameters.

For a remote environment, the XML document is structured according to the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<VELEMENT ADA (WH)>

CIELEMENT CC (#PCDATA)>

<VELEMENT CF (ffPCDATA)>

CIELEMENT CHARS (CF, DC, IA, ID)>
<IELEMENT COMPOPT (DBSHORT, ENDIAN, GFID)>
<CIELEMENT COMPR (#PCDATA)>

<VELEMENT DBSHORT (#fPCDATA)>

<'ELEMENT DC (ffPCDATA)>

<VELEMENT DFOUT (#PCDATA)>

<VELEMENT DFSTACK (ffPCDATA)>

<VELEMENT DFTITLE (ffPCDATA)>

<VELEMENT DTFORM (#PCDATA)>

<VELEMENT DU (ffPCDATA)>

<IELEMENT EDITOR (EDTBPSIZE)>

<IELEMENT EDTBPSIZE (4#PCDATA)>

CVELEMENT EJ (ffPCDATA)>

<IELEMENT ENDIAN (fPCDATA)>

<CVELEMENT ERROR (SA)>

<VELEMENT FCDP (#PCDATA)>

<VELEMENT FS (#fPCDATA)>

<'ELEMENT GFID (4#PCDATA)>

CVELEMENT IA (fPCDATA)>

CIELEMENT ID (ffPCDATA)>

CVELEMENT IM (fPCDATA)>

<VELEMENT LE (fPCDATA)>

CIELEMENT LIMITS (LE, LT)>

<VELEMENT LS (#fPCDATA)>

CVELEMENT LT (fPCDATA)>

<IELEMENT MISC (CC, DU, FCDP, FS, IM, ML, NC, OPF, PD, REINP, SM, SYMGEN, TS, XREF, ZD)>
<VELEMENT ML (ffPCDATA)>

<CIELEMENT NATRPC (COMPR, TIMEOUT, TRYALT, RPC-DFS)>
CIELEMENT NC (#PCDATA)>

<'ELEMENT OPF (#PCDATA)>

CVELEMENT PD (ffPCDATA)>

CIELEMENT PM (ffPCDATA)>

CVELEMENT PS (ffPCDATA)>

<IELEMENT ProfileParameters (ADA, CHARS, COMPOPT, EDITOR, ERROR, LIMITS, MISC, REPO, NATRPC, YEAR2000)>
CIELEMENT REINP (#PCDATA)>

371

DTD for INatAutoNatparm - Remote Environment

<VELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<VELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<VELEMENT
<VELEMENT

REPO (DTFORM, EJ, LS, PM, PS, SF, ZP)>
RPC-DFS ({fPCDATA)>

SA (#fPCDATA)>

SF (#fPCDATA)>

SM (#PCDATA)>

SYMGEN ({fPCDATA)>

TIMEOUT (#PCDATA)>

TRYALT (#PCDATA)>

TS ({fPCDATA)>

WH (fFPCDATA)>

XREF (#fPCDATA)>

YEAR2000 (DFOUT, DFSTACK, DFTITLE)>
7D (ffPCDATA)>

ZP (#fPCDATA)>

372

Extending Natural Studio with Plug-ins

61

DTD for INatAutoNatsvar - Local Environment

Applies to INatAutoNatsvar::SystemVariables.

For the local environment, the XML document is structured according to the following DTD:

<?xml version="1.0" encoding="UTF-8"7>

CTELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
CTELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
<TELEMENT
CTELEMENT
<TELEMENT

APPLIC-ID (#fPCDATA)>
APPLIC-NAME (#fPCDATA)>
DEVICE (#fPCDATA)>
ERROR-TA (#PCDATA)>
ETID (#PCDATA)>

GROUP (#PCDATA)>
HARDCOPY ({fPCDATA)>
HARDWARE ({fPCDATA)>
HOSTNAME ({fPCDATA)>
INIT-ID (#fPCDATA)>
INIT-PROGRAM (#PCDATA)>
INIT-USER (ffPCDATA)>
LANGUAGE (#fPCDATA)>
LIBRARY-ID (#PCDATA)>
MACHINE-CLASS (#PCDATA)>
NATVERS (#PCDATA)>
NET-USER (#PCDATA)>
OPSYS (#fPCDATA)>

0S (ffPCDATA)>

OSVERS (#PCDATA)>
PARM-USER (#fPCDATA)>
PATCH-LEVEL (#PCDATA)>
PID (#PCDATA)>
SERVER-TYPE (#PCDATA)>
STARTUP (#PCDATA)>
STEPLIB (#PCDATA)>

CTELEMENT SystemVariables (APPLIC-ID, APPLIC-NAME,
GROUP, HARDCOPY, HARDWARE, HOSTNAME, INIT-ID,
LANGUAGE, LIBRARY-ID, MACHINE-CLASS, NATVERS,
PARM-USER, PATCH-LEVEL, PID, SERVER-TYPE,

DEVICE,
INIT-PROGRAM,
NET-USER, OPSYS,
STARTUP, STEPLIB, TP,

ERROR-TA, ETID,
INIT-USER,

0S, OSVERS,
TPSYS,

373

DTD for INatAutoNatsvar - Local Environment

TPVERS, WINMGR, UI, USER, USER-NAME, WINMGRVERS)>
<IELEMENT TP (#PCDATA)>

<IELEMENT TPSYS (#PCDATA)>

<IELEMENT TPVERS (#PCDATA)>

<TELEMENT UI (#fPCDATA)>

<TELEMENT USER ({#fPCDATA)>

<IELEMENT USER-NAME (#PCDATA)>

{IELEMENT WINMGR ({fPCDATA)>

<IELEMENT WINMGRVERS (#fPCDATA)>

374 Extending Natural Studio with Plug-ins

	Extending Natural Studio with Plug-ins
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I
	2 What are Natural Studio Plug-ins?
	3 Quick Start
	Prerequisites
	Creating a Minimal Plug-in
	Transferring a Plug-in From Natural 6 to Natural 8
	Installing and Activating the Minimal Plug-in
	Exploring the Minimal Plug-in
	Extending the Minimal Plug-in
	Adding a Command
	Enabling the Command
	Handling the Command

	Deactivating and Uninstalling the Minimal Plug-in

	4 Plug-in Interfaces
	5 Natural Studio Interfaces
	Root Interface
	Interface Structure
	Working with Control Bars
	Working with Node Types
	Predefined Node Types
	User-defined Node Types

	Working with Selections
	Working with Natural Development Objects
	Working with Generic Text Documents
	Working with Generic Documents
	Working with Tree Views and List Views
	Working with Result Views
	Working with Environments
	Working with Applications
	Working with Plug-ins
	Working with Dialogs
	Plug-ins Running in a Separate Process
	Plug-ins Running In-process

	6 Developing Plug-ins
	Creating a Plug-in
	Debugging a Plug-in
	Single Server
	Shared Server

	Deploying a Plug-in
	Developing Plug-ins in Other Programming Languages

	7 Plug-in Example
	Activating the Plug-in Example
	Using the Plug-in Example
	Menu Commands
	Context Menus
	Toolbar

	II Interface Reference
	8 INatAutoApplication
	Purpose
	Properties
	Parent
	Studio
	BaseApplication
	MainframeApplication
	Mapped
	Connected
	Active
	Name
	Description
	Host
	Port
	Profile
	ProfileDBnr
	ProfileFnr
	UserId
	MainLibrary
	HasLinkedObjects
	LinkedObjects
	Document Type Description

	LinkedEntries
	Document Type Description

	Environment
	LinkedApplications

	Methods
	Map
	Parameters:

	Unmap
	Connect
	Parameters

	Disconnect
	Activate
	Remove
	LinkObject
	Parameters

	UnlinkObject
	Parameters

	LinkEntry
	Parameters

	UnlinkEntry
	Parameters

	9 INatAutoApplications
	Purpose
	Properties
	Parent
	Studio
	Count
	ActiveApplication
	AppServerEnvironment

	Methods
	Item
	Parameters

	Add
	Parameters

	10 INatAutoCommand
	Purpose
	Properties
	Parent
	Studio
	Caption
	ImageID
	CommandID
	Enabled
	Values

	Checked
	Values

	11 INatAutoCommands
	Purpose
	Properties
	Parent
	Studio
	System

	Methods
	Add
	Parameters

	Item
	Parameters

	12 INatAutoContextMenu
	Purpose
	Properties
	Parent
	Studio
	Count
	Caption

	Methods
	Item
	Parameters

	SubMenu
	Parameters

	InsertCommand
	Parameters

	InsertSeparator
	Parameters

	InsertPopupMenu
	Parameters

	UpdateMenu

	13 INatAutoContextMenus
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Add
	Parameters

	Item
	Parameters

	14 INatAutoControlBars
	Purpose
	Properties
	Parent
	Studio
	Images
	Commands
	ToolBars
	FrameMenus
	ContextMenus

	15 INatAutoDataArea
	Purpose
	Properties
	Parent
	Studio
	Source
	Visible
	Type
	LineCount

	Methods
	StartEdit
	EndEdit
	Catalog
	Parameters

	Check
	Parameters

	Clear
	Parameters

	Close
	Parameters

	Search
	Parameters

	Replace
	Parameters

	Save
	Parameters

	Stow
	Parameters

	Title
	Parameters

	GetInfo
	Parameters

	DeleteLines
	Parameters

	GetLines
	Parameters

	InsertLines
	Parameters

	ReplaceLines
	Parameters

	16 INatAutoDataAreas
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Add
	Parameters

	Open
	Parameters

	17 INatAutoDialog
	Purpose
	Properties
	Parent
	Studio
	Source
	Visible
	LineCount

	Methods
	StartEdit
	EndEdit
	Catalog
	Parameters

	Check
	Parameters

	Clear
	Parameters

	Close
	Parameters

	Execute
	Search
	Parameters

	Replace
	Parameters

	Run
	Parameters

	Save
	Parameters

	Stow
	Parameters

	Title
	Parameters

	GetInfo
	Parameters

	DeleteLines
	Parameters

	GetLines
	Parameters

	InsertLines
	Parameters

	ReplaceLines
	Parameters

	18 INatAutoDialogs
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Add
	Parameters

	Open
	Parameters

	19 INatAutoEnvironment
	Purpose
	Properties
	Parent
	Studio
	Local
	Active
	Connected
	Name
	Host
	Port
	Alias
	CommandLine
	UserID
	Parameters
	SystemVariables

	Methods
	Activate
	Parameters

	Disconnect
	Connect
	Parameters

	Unmap

	20 INatAutoEnvironments
	Purpose
	Properties
	Parent
	Studio
	Count
	LocalEnvironment
	RemoteEnvironment
	ActiveEnvironment

	Methods
	Item
	Parameters

	Add
	Parameters

	21 INatAutoFrameMenu
	Purpose
	Properties
	Parent
	Studio
	Count
	Caption

	Methods
	Item
	Parameters

	SubMenu
	Parameters

	InsertCommand
	Parameters

	InsertSeparator
	Parameters

	InsertPopupMenu
	Parameters

	UpdateMenu

	22 INatAutoFrameMenus
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Add
	Parameters

	Clone
	Parameters

	Item
	Parameters

	23 INatAutoGenericDocument
	Purpose
	Properties
	Parent
	Studio
	DialogID
	PlugInID
	Caption

	Methods
	Close

	Notifications

	24 INatAutoGenericDocuments
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Add
	Parameters

	25 INatAutoGenericText
	Purpose
	Properties
	Parent
	Studio
	Source
	Visible
	Type
	Name
	LineCount

	Methods
	Clear
	Parameters

	Close
	Parameters

	Renumber
	Search
	Parameters

	Replace
	Parameters

	DeleteLines
	Parameters

	GetLines
	Parameters

	InsertLines
	Parameters

	ReplaceLines
	Parameters

	26 INatAutoGenericTexts
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Open
	Parameters

	27 INatAutoImages
	Purpose
	Properties
	Parent
	Studio

	Methods
	LoadImage
	Parameters

	28 INatAutoLinkedApplications
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Add
	Parameters

	Remove
	Parameters

	29 INatAutoNatparm
	Purpose
	Properties
	Parent
	Studio
	CurrentLibrary
	CurrentDBnr
	CurrentFnr
	FnatDBnr
	FnatFnr
	FuserDBnr
	FuserFnr
	FdicDBnr
	FdicFnr
	FddmDBnr
	FddmFnr
	ProfileParameters

	30 INatAutoNatsvar
	Purpose
	Properties
	Parent
	Studio
	Language
	SystemVariables

	31 INatAutoNodeImages
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	AddImage
	Parameters

	32 INatAutoNodeType
	Purpose
	Properties
	Parent
	Studio

	33 INatAutoNodeTypes
	Purpose
	Properties
	Parent
	Studio

	Methods
	Add
	Parameters

	34 INatAutoObjectList
	Purpose
	Properties
	Parent
	Studio
	PlugInID

	Methods
	Close

	Notifications

	35 INatAutoObjectLists
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Open
	Parameters

	36 INatAutoObjects
	Purpose
	Properties
	Parent
	Studio
	Programs
	Dialogs
	DataAreas
	ObjectTrees
	ObjectLists
	GenericTexts
	GenericDocuments
	SelectedObjects
	RefreshObject

	Methods
	ActiveObject
	Parameters

	37 INatAutoObjectTree
	Purpose
	Properties
	Parent
	Studio
	Profile
	PlugInID

	Methods
	Close
	Cancel
	GetRootNode
	Parameters

	GetSelectedNode
	Parameters

	Notifications

	38 INatAutoObjectTreeNode
	Purpose
	Properties
	Parent
	Studio
	IsExpanded
	IsSelected
	HasChildren

	Methods
	GetRoot
	Parameters

	GetParent
	Parameters

	GetChild
	Parameters

	GetNext
	Parameters

	GetPrevious
	Parameters

	GetObject
	Parameters

	Expand
	Collapse
	MakeVisible
	Select

	39 INatAutoObjectTrees
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Open
	Parameters

	40 INatAutoPlugIn
	Purpose
	Properties
	Parent
	Studio
	ID
	Type
	Name
	CLSID
	ProgID
	Active
	Automatic
	OptionValues

	Methods
	DefineOptions
	Parameters

	GetCustomInterface
	Parameters

	OnCommand
	Parameters

	OnCommandStatus
	Parameters

	41 INatAutoPlugIns
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	42 INatAutoPopupMenu
	Purpose
	Properties
	Studio
	Count
	Caption

	Methods
	Item
	Parameters

	SubMenu
	Parameters

	InsertCommand
	Parameters

	InsertSeparator
	Parameters

	InsertPopupMenu
	Parameters

	43 INatAutoProgram
	Purpose
	Properties
	Parent
	Studio
	Source
	Visible
	Type
	LineCount

	Methods
	Catalog
	Parameters

	Check
	Parameters

	Clear
	Parameters

	Close
	Parameters

	Execute
	Format
	Mode
	Parameters

	Renumber
	Search
	Parameters

	Replace
	Parameters

	Run
	Parameters

	Save
	Parameters

	Stow
	Parameters

	Title
	Parameters

	GetInfo
	Parameters

	DeleteLines
	Parameters

	GetLines
	Parameters

	InsertLines
	Parameters

	ReplaceLines
	Parameters

	44 INatAutoPrograms
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Add
	Parameters

	Open
	Parameters

	45 INatAutoProgressIndicator
	Purpose
	Properties
	Parent
	Studio
	StatusBarText
	GradientBarText
	DialogText
	Canceled

	Methods
	Start
	Step
	Parameters

	Terminate
	StopAnimation
	PlayAnimation

	46 INatAutoRefreshObject
	Purpose
	Properties
	Parent
	Studio
	PlugInID
	Type
	Key
	Info
	NaturalType
	NaturalKey
	NaturalName
	Environment
	Application
	Current

	47 INatAutoResultView
	Purpose
	Properties
	Parent
	Studio
	Active

	Methods
	InsertRows
	Parameters

	Update
	SetVisible
	Parameters

	Clear
	Close

	48 INatAutoResultViews
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Item
	Parameters

	Show
	Parameters

	Open
	Parameters

	49 INatAutoSelectedObject
	Purpose
	Properties
	Parent
	Studio
	PlugInID
	Type
	Key
	Info
	NaturalType
	NaturalKey
	NaturalName
	Environment
	Application
	Current

	50 INatAutoSelectedObjects
	Purpose
	Properties
	Parent
	Studio
	Count
	SelectedObjects
	Parameters

	FocusObject

	Methods
	Item
	Parameters

	ContainsObjectType
	Parameters

	51 INatAutoStudio
	Purpose
	Properties
	Objects
	ControlBars
	Types
	PlugIns
	ResultViews
	System

	Methods
	Refresh
	Parameters

	MessageBox
	Parameters

	ShowHelp
	Parameters

	ProgressIndicator
	Parameters

	52 INatAutoSysmain
	Purpose
	Properties
	Parent
	Studio
	SourceEnvironment
	SourceDBnr
	SourceFnr
	TargetEnvironment
	TargetDBnr
	TargetFnr
	OptionType
	OptionTimestamp
	OptionUser
	OptionImportSM

	Methods
	Reset
	FindLibraries
	Find
	Parameters

	Copy
	Parameters

	Move
	Parameters

	Delete
	Parameters

	Rename
	Parameters

	Import
	Parameters

	53 INatAutoSystem
	Purpose
	Properties
	Parent
	Studio
	Environments
	Applications
	Sysmain

	Methods
	Quit
	SysCreateGuid
	Parameters

	CMPALUTL
	Parameters

	Logon
	Parameters

	54 INatAutoToolBar
	Purpose
	Properties
	Parent
	Studio
	Caption
	Visible

	Methods
	InsertCommand
	Parameters

	InsertSeparator
	Parameters

	Dock
	Parameters

	55 INatAutoToolBars
	Purpose
	Properties
	Parent
	Studio
	Count

	Methods
	Add
	Parameters

	Item
	Parameters

	56 INatAutoTypes
	Purpose
	Properties
	Parent
	Studio
	NodeImages
	NodeTypes

	57 INaturalStudioPlugIn
	Purpose
	Methods
	OnActivate
	Parameters

	OnDeactivate
	Parameters

	OnCommand
	Parameters

	OnCommandStatus
	Parameters

	OnNotify
	Parameters

	Notifications
	PLUGIN-NOTIFY-ACTIVATE
	PLUGIN-NOTIFY-QUERYCLOSE
	PLUGIN-NOTIFY-CLOSE
	PLUGIN-NOTIFY-SAVE
	PLUGIN-NOTIFY-EXPANDALL
	PLUGIN-NOTIFY-SELECTEDOBJECTS
	PLUGIN-NOTIFY-FOCUSOBJECT
	Return value
	LongParam
	ObjectParam
	StringParam

	PLUGIN-NOTIFY-CONTEXTMENU
	PLUGIN-NOTIFY-REFRESH
	PLUGIN-NOTIFY-HELP
	PLUGIN-NOTIFY-OPTIONSVALIDATE
	PLUGIN-NOTIFY-OPTIONSMODIFIED

	58 INaturalStudioPlugInTree
	Purpose
	Methods
	GetData
	Parameters

	GetChildren
	Parameters

	HasChildren
	Parameters

	GetAttributes
	Parameters

	GetAttributeValues
	Parameters

	III DTDs
	59 DTD for INatAutoNatparm - Local Environment
	60 DTD for INatAutoNatparm - Remote Environment
	61 DTD for INatAutoNatsvar - Local Environment

