
Natural

Operations

Version 9.1.3

October 2021

This document applies to Natural Version 9.1.3 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NATWIN-NNATOPERATIONS-913-20211014

Table of Contents

Preface .. vii
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

I .. 5
2 Using the Windows Firewall with Natural ... 7
3 Profile Parameter Usage .. 9

Parameter Hierarchy .. 10
Static Assignment of Parameter Values ... 11
Dynamic Assignment of Parameter Values ... 11
Runtime Assignment of Parameter Values .. 12

4 System Files ... 15
System File Structure .. 16
System Files FNAT and FUSER .. 17
System File FDDM ... 19
Important Information and Warnings ... 22
The File FILEDIR.SAG ... 22
Portable Natural System Files .. 23
Using NFS to Store Natural Libraries .. 24

5 Work Files .. 25
Defining Work Files .. 26
Work File Formats .. 29
Special Considerations for Work Files with the Extension NCD 32

6 Natural Buffer Pool .. 35
General Information ... 36
Setting up a Buffer Pool .. 46
Using the Natural Buffer Pool Service ... 46
Using the Utility NATBPSRV for Creating the Buffer Pool 49
Monitoring the Buffer Pool .. 49
Trouble Shooting .. 50

7 Using the GUI Version of the Buffer Pool Monitor ... 53
Starting and Terminating the Buffer Pool Monitor .. 54
Elements of the Natural Buffer Pool Monitor Window 55
Disconnecting and Connecting a Buffer Pool .. 58
Shutting Down a Buffer Pool Server .. 59
Starting a Buffer Pool Server .. 59
Changing the Properties of the Buffer Pool Monitor 60
Global Information ... 61
Buffer Pool Content .. 63
Graphic Analyzer ... 66
Reports ... 71

iii

8 Using the Command Line Version of the Buffer Pool Monitor
(NATBPMON) .. 77

Invoking the NATBPMON Utility ... 78
NATBPMON Commands ... 78
Displaying the Objects in the Buffer Pool .. 80
Specifying a Pattern .. 81
Displaying the Buffer Pool Settings ... 82
Statistical Information About the Buffer Pool .. 82

9 Natural in Batch Mode .. 87
What is Batch Mode? .. 88
Starting a Natural Session in Batch Mode .. 88
Terminating a Natural Session in Batch Mode .. 89
Using Natural in Batch Mode .. 89
Sample Session for Batch Mode ... 91
Batch Mode Detection .. 94
Batch Mode Restrictions ... 94
Hints for Using Natural Maps and Dialogs in Batch Mode 95

10 Output Window ... 97
About the Output Window .. 98
Working in the Output Window .. 98
Changing the Output Window Profile ... 99
Using Your Own Icon for the Output Window .. 100

11 Natural Runtime .. 103
What is not Supported by Natural Runtime? .. 104
Porting Procedure Overview .. 105
Step 1: Packaging the Application on the Development Workstation 105
Step 2: Installing Natural Runtime ... 109
Step 3: Installing the Application on the Runtime Workstation 110
Step 4: Starting the Application on the Runtime Workstation 112
Using the Natural Runtime Startup Service ... 113

12 Support of Different Character Sets with NATCONV.INI 117
Why is the Support of Different Character Sets Important? 118
How to Use Different Character Sets ... 118

13 Natural Exit Codes ... 121
Natural Startup Errors .. 122

14 Setting Up the Entire System Server Interface ... 125
Prerequisites ... 126
Activation ... 126
Changing the Database ID for the Entire System Server DDMs 127

II Administrating NaturalX Applications .. 129
15 NaturalX Servers .. 131

COM Classes and Servers .. 132
NaturalX Classes and Servers .. 132
NaturalX Servers and Natural Sessions under Windows 132
The Role of the Server ID ... 133

Operationsiv

Operations

Organizing Server IDs .. 134
16 Activation Policies .. 135

Activation Policies on Windows Platforms .. 136
Setting Activation Policies .. 136
When to Use Which Activation Policy ... 137

17 Registration .. 141
Registration with Natural ... 142
Automatic Registration .. 142
Manual Registration ... 143
Registration Files and Type Library ... 145
Client Registration .. 146
Registration Hints ... 147

18 Type Information ... 149
Overview .. 150
NaturalX and Type Information ... 150
Using Type Information ... 150

19 Configuration Overview .. 155
Server Configuration - General Settings .. 156
Server Configuration - Application-Specific Settings 157
Client Configuration - General Settings ... 157
Client Configuration - Application-Specific Settings 158

20 Security with NaturalX .. 159
Overview .. 160
Activation Security ... 160
Call Security ... 161

21 DCOM Configuration on Windows .. 163
Configuring NaturalX Servers ... 164
Configuring NaturalX Clients .. 174

22 NaturalX System Registry Entries ... 179
Registry Entries for Servers .. 180
Registry Entries for Clients .. 181

23 Using Statements and Commands in a NaturalX Server Environment 183
Natural Statements ... 184
Natural System Commands ... 185

vOperations

Operations

vi

Preface

This documentation contains information for operating Natural in a Windows environment. It is
organized under the following headings:

How to run Natural in an environment protected by the Windows
firewall.

Using the Windows Firewall with
Natural

Information on the parameter hierarchy. How to assign profile
parameter values statically, dynamically and at runtime.

Profile Parameter Usage

How system files and Natural objects are stored in the file system.
Information on the system files FNAT, FUSER and FDDM.

System Files

How to define work files. Information on the different work file
formats.

Work Files

How the buffer pool is used by Natural and how it is started.Natural Buffer Pool

How to connect and disconnect to a buffer pool, and how to shut
down and start a buffer pool server. A description of the information
that can be displayed using the Buffer Pool Monitor.

Using the GUI Version of the Buffer
Pool Monitor

How to invoke the NATBPMON utility. Information on the commands
that are available with this utility.

Using the Command Line Version of
the Buffer Pool Monitor (NATBPMON)

How to run Natural in batch mode. Information on the required
input and output channels.

Natural in Batch Mode

How to use the output window, change the output window profile
and use your own icon for the output window.

Output Window

How to port an application from a development workstation to a
runtime workstation. How to use a service for starting Natural
Runtime processes.

Natural Runtime

How to define different character sets in the file NATCONV.INI.Support of Different Character Sets
with NATCONV.INI

Information on the Natural exit codes, including startup errors.Natural Exit Codes

How to activate the Entire System Server Interface for the product
Entire System Server.

Setting Up the Entire System Server
Interface

How to distribute applications consisting ofNaturalX classes across
several processes and machines using DCOM.

Administrating NaturalX
Applications

TheNatural utilitieswhich can be used to execute numerous administrative functions are described
separately; see the Tools and Utilities documentation for detailed information.

Security is also described separately; see theNatural Securitydocumentation for detailed information.

vii

When installing Natural fixes with the Software AG Update Manager, certain restrictions and
requirements apply. Please refer to Special Considerations When Installing Fixes with the Update
Manager for further details.

Note: We would like to remind our customers who have purchased the Natural Runtime
version that theNatural development tools are not included in theNatural Runtime version.
In addition, not all Natural system commands are supported in theNatural Runtime version.

Operationsviii

Preface

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Operations2

About this Documentation

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

■ Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Operations

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

4

I
■ 2 Using the Windows Firewall with Natural ... 7
■ 3 Profile Parameter Usage .. 9
■ 4 System Files .. 15
■ 5 Work Files ... 25
■ 6 Natural Buffer Pool .. 35
■ 7 Using the GUI Version of the Buffer Pool Monitor .. 53
■ 8 Using the Command Line Version of the Buffer Pool Monitor (NATBPMON) .. 77
■ 9 Natural in Batch Mode ... 87
■ 10 Output Window ... 97
■ 11 Natural Runtime .. 103
■ 12 Support of Different Character Sets with NATCONV.INI ... 117
■ 13 Natural Exit Codes ... 121
■ 14 Setting Up the Entire System Server Interface ... 125

5

6

2 Using the Windows Firewall with Natural

In Windows, the firewall is switched on by default. To work with Natural, you have to allow
Natural to communicate through the firewall. If you do not allow this, it is not possible to start
Natural.

You can easily allow the communication through the firewall when you start aNatural component
for the first time. In this case, a firewall warning will occur. You just have to accept this warning
in order to allow this Natural component.

For detailed information on configuring the Windows firewall, see the Microsoft documentation.

Caution: Software AG does not recommend to turn off the firewall.

7

8

3 Profile Parameter Usage

■ Parameter Hierarchy .. 10
■ Static Assignment of Parameter Values .. 11
■ Dynamic Assignment of Parameter Values ... 11
■ Runtime Assignment of Parameter Values .. 12

9

Natural profile parameters affect the appearance and the response of your working environment.

The parameters are described in detail in the Parameter Reference.

Parameter Hierarchy

The values for the Natural parameters are taken from different sources. The priority of the para-
meters is as follows:

1. Static Assignments
Lowest priority. Static assignments are made by parameters specified in the Natural parameter
file NATPARM.

2. Dynamic Assignments
Dynamic assignments are made by specifying an alternative parameter file and/or individual
parameters when starting Natural.

3. Runtime Assignments
Highest priority. Runtime assignments are made during the session by specifying session
parameters.

See the remainder of this section for further information on the different types of assignments.

Note: When Natural Security is active, the use of specific parameters may be restricted.

The following graphic illustrates the parameter hierarchy:

Operations10

Profile Parameter Usage

Static Assignment of Parameter Values

By default, the parameter specifications in the parameter file NATPARM are used to determine the
characteristics of yourNatural environment. Initially, this file contains the default values as supplied
by Software AG. It can be changed using the Configuration Utility.

Tip: It is recommended that you do not modify the default parameter file NATPARM. If you
want to use Natural with parameter values other than the default values, create your own
parameter file (see also the following section).

Dynamic Assignment of Parameter Values

Using the dynamic parameters, you can set up your own environment when starting Natural.
When the session is started, the operating system passes the values for the dynamic parameters
to Natural.

The dynamic parameters are valid for the current Natural session. They override the static assign-
ments specified in the default parameter file NATPARM.

11Operations

Profile Parameter Usage

Using the Configuration Utility can also create your own parameter files. To use one of your own
parameter files, you have to specify its name when starting Natural.

To start Natural with dynamic parameter values

■ Add the dynamic parameters and their values to the command that is used to start Natural.

Example: The profile parameter PARM is used to invokeNaturalwith the alternative parameter
file MYPARM. The values for the profile parameters SM and DTFORM are to be used instead of
those defined in MYPARM:

natural PARM=MYPARM SM=ON DTFORM=I

Or:

When you start Natural using a shortcut, specify the dynamic parameters as shown in the
example below:

"C:\SoftwareAG\Natural\Bin\natural.exe" PARM=MYPARM SM=ON DTFORM=I

where n.n is the current version number.

Special Characters

Special characters like brackets and asterisks are interpreted by the operating system. Therefore,
it is necessary to put the parameters which use these special characters in double quotationmarks.
Example:

natural "FNAT=(99,30) FUSER=(99,32)"

As an exception to this rule, the parameters FNAT, FDIC, FSEC, FDDM and FUSER can also be specified
without brackets to avoid using quotation marks. Example:

natural FNAT=99,30 FUSER=99,32

For each opening bracket that you specify, you also have to specify the corresponding closing
bracket. Escape sequences are not supported with dynamic parameters.

Runtime Assignment of Parameter Values

The runtime assignments are made during the session by setting session parameters. The values
of the session parameters override static and dynamic assignments.

When using Natural Studio, you can set the session parameters in a window (this corresponds to
issuing the system command GLOBALSwithout parameters). See Using Session Parameters in the
documentation Using Natural Studio.

Operations12

Profile Parameter Usage

Session parameters can also be set with the system command GLOBALS. Example:

GLOBALS SA=ON,IM=D

Session parameters can also be set with the SET GLOBALS statement in a program. Example:

SET GLOBALS SA=ON IM=D

Note: In addition to setting the session parameters at session level (as described above), you
can also set themat program, statement or field level. For further information, see Introduction
to Session Parameters in the Parameter Reference.

13Operations

Profile Parameter Usage

14

4 System Files

■ System File Structure ... 16
■ System Files FNAT and FUSER ... 17
■ System File FDDM .. 19
■ Important Information and Warnings .. 22
■ The File FILEDIR.SAG ... 22
■ Portable Natural System Files .. 23
■ Using NFS to Store Natural Libraries ... 24

15

Natural for Windows stores objects in files accessible by operating system functions. Unlike Nat-
ural for Mainframes where the objects are stored in Adabas system files, Natural for Windows
stores the objects in specific directories on the disk. Thus, a database such as Adabas is not required
to run Natural for Windows.

System File Structure

By default, the Natural libraries are created as subdirectories below the Natural root directory of
a specific Natural version. The subdirectories have the same names as the libraries.

The Natural objects are stored as files in the subdirectories. The file name for a Natural object has
the following form:

file-name.NKT

This the name of the object. See also Object Naming Conventions in Using Natural Studio.file-name

The first character of the extension is always "N". It stands for “Natural”.N

K The second character of the extension can be one of the following:

for source filesS

for generated programsG

for resourcesR

The third character of the extension stands of the type of the object. For valid values, see the
list below.

T

For example, the source program TESTPROG is stored as file TESTPROG.NSP, while the generated
code for the map TESTMAP is stored as file TESTMAP.NGM.

Note: The file name is not always identical to the object name. Both the current object name
and the corresponding internal object name are documented in the file FILEDIR.SAG.

The following object types and the respective letters and numbers are used for the extensions
available:

Object TypeLetter or Number

Parameter data area (PDA)A

CopycodeC

DDMD

Global data area (GDA)G

HelproutineH

Local data area (LDA)L

Operations16

System Files

Object TypeLetter or Number

MapM

SubprogramN

ProgramP

SubroutineS

TextT

Dialog3

Class4

Command processor5

Function7

Adapter8

System Files FNAT and FUSER

The Natural system files FNAT (for system programs) and FUSER (for user-written programs) are
located in different subdirectories.

FNAT assumes the following directory structure:

FNAT

LIBDIR.SAG

SYSTEM

FILEDIR.SAG

SRC

GP

ERR

RES

SYS*

FILEDIR.SAG

SRC

GP

ERR

RES

The file LIBDIR.SAG, which is only available for FNAT, contains information on all further installed
Software AG products using Natural. This information can be displayed by using the system
command SYSPROD.

FUSER assumes the following directory structure:

17Operations

System Files

FUSER

SYSTEM

FILEDIR.SAG

SRC

GP

ERR

RES

user-library1

FILEDIR.SAG

SRC

GP

ERR

RES

The name of a user library must not start with "SYS".

The directory structure is generated during the installation ofNatural. The directories representing
the system and user libraries contain the following:

■ FILEDIR.SAG
This file contains internal library information used by Natural. For further information, see The
File FILEDIR.SAG below.

■ SRC
This subdirectory contains the Natural source objects stored in the library.

■ GP
This subdirectory contains the generated Natural programs stored in the library.

■ ERR
This subdirectory contains the error messages stored in the library.

■ RES
This subdirectory contains the private and shared resources stored in the library.

DDMs can be stored in local libraries. If DDMs are used by a program, Natural first searches the
current library, then the steplibs, and then the library SYSTEM. If the DDMs are not found, the
program does not compile and displays an error message. However, if FDDMmode has been
activated, Natural searches for the DDMs only in the system file FDDM.

The paths to the system files FNAT, FUSER and FDDM are defined in the ConfigurationUtility. System
files are version-dependent. Therefore, Natural can only access system files of the current Natural
version. It is recommended that you only have one FNAT system file. It is possible, however, to
define several FUSER system files (for example, when you have different development areas for
different purposes).

Operations18

System Files

System File FDDM

The system file FDDM is a container in which all DDMs can be stored.

FDDM assumes the following directory structure:

FDDM

SYSTEM

FILEDIR.SAG

SRC

GP

By default, the system file FDDM is not active. If you want to use it, you have to activate FDDM
mode as described below.

■ Activating FDDM Mode
■ Migrating DDMs to the System File FDDM
■ Checking whether the System File FDDM is Used

Activating FDDM Mode

If FDDMmode is activated (both database ID and file number do not equal 0 in the global config-
uration file), all DDMs are stored and read in the system file FDDM. DDMs stored in libraries will
no longer be accessible fromNatural. This is similar to the mainframe, where all DDMs are stored
in the system file FDIC.

If the FDDM system file is undefined in the global configuration file, the DDMs are stored in the
Natural libraries FUSER and FNAT, and the FDDM systemfile is displayed as an inactive environment.

To activate FDDM mode

1 Create an empty directory in which the DDMs are to be stored in FDDMmode. The directory
can have any name which corresponds to the Natural naming conventions.

2 Invoke the Configuration Utility.

3 In the global configuration file (category System Files), assign a database ID and file number
for the system file FDDM and define the path to the directory that you have created in the first
step.

4 Select the required parameter file.

5 Locate the parameter FDDM.

Tip: Locate this parameter by searching for "FDDM". See Finding a Parameter in the
Configuration Utility documentation for further information.

19Operations

System Files

6 Select the required path for the parameter FDDM from the drop-down list box.

7 Save your changes.

8 Migrate all required DDMs to the system file FDDM as described below.

Migrating DDMs to the System File FDDM

All DDMs that are to be available in FDDMmodemust be contained in the system file FDDM. Espe-
cially the example DDMs delivered with Natural in library SYSEXDDMmust be available in the
system file FDDM.

For migration of DDMs to the FDDM system file, you can choose between different alternatives:

■ You can use the Object Handler which supports the FDDM system file and offers the possibility
to migrate the DDMs into the FDDM system file. The DDMs can be unloaded from the Natural
libraries and can be stored into the FDDM system file in the active Natural session.

Important: To migrate a complete development environment, it is recommended to use
the Object Handler.

■ It is also possible to migrate the DDMs with the copy or move function of the SYSMAIN utility,
or to copy and move (or drag-and-drop) the DDMs with Natural Studio as described below. In
this case, it is required that the FDDM parameter is first deactivated so that your old environment
is used again.

These alternatives are described below in detail.

Note: The INPL utility loads DDMs either to Natural libraries if FDDMmode is not active
or to the system file FDDM if FDDMmode is active. This may have some impact if the loaded
INPL files are intended to work in both modes. It may be necessary that the DDMs are
available in the Natural libraries as well as in the FDDM system file.

To migrate DDMs to the system file FDDM using the Object Handler

1 Activate FDDMmode as described above.

2 Start Natural Studio using the modified parameter file (that is, the parameter file in which
path for the parameter FDDM has been defined).

3 From the Toolsmenu, chooseDevelopment Tools > Object Handler to start the Object
Handler.

4 From theOptionsmenu of the Object Handler, choose Settings.

5 In the resulting dialog box, select the option button Additional Options and choose the Set
button.

6 In the resulting dialog box, select the Special page.

Operations20

System Files

7 Deactivate the check box Use FDDM file for DDMs.

This activates your old environment (which contains the DDM to migrated). If you do not
deactivate this check box, you cannot access the DDMs that are to be migrated.

8 Unload the DDMs stored in Natural libraries (either with the wizard or in advanced-user
mode).

9 Activate the check box Use FDDM file for DDMs (see the above steps).

This activates your new environment containing the FDDM system file.

Note: In different libraries, DDMs can existwith identical names. To prevent overwriting
DDMs in the FDDM system file and to detect DDMs with identical names, it is recom-
mended to load the DDMs with the Do not replace option. This option is located on
the same page as the check box Use FDDM file for DDMs.

10 Load the DDMs into the FDDM system file (either with the wizard or in advanced-user mode).

To migrate DDMs to the system file FDDM using the copy or move function of Natural Studio

1 Start Natural with the dynamic parameter FDDM=0,0 as shown below:

natural FDDM=0,0

This activates your old environment containing the DDM to migrated. If you do not override
the new FDDM specification in your modified parameter file, you cannot access these DDMs.

2 Copy or move all required DDMs from the Natural libraries into the library SYSTEM in your
designated FDDM file. This file is displayed in the inactive environment of Natural Studio.

3 Terminate Natural.

The next time you start Natural without the above-mentioned dynamic parameter, the FDDM
system file will be used.

Checking whether the System File FDDM is Used

When you have migrated all DDMs to the system file FDDM, you can check whether FDDM is used.

To check whether FDDM is used

1 Start Natural.

2 From the Toolsmenu, choose System Information > System Files. See also System Files in
the documentation Using Natural Studio.

The SYSPROF dialog box appears.

21Operations

System Files

3 If the FDDM file is displayed, Natural will access only DDMs stored in this system file.

If the FDDM file is not displayed or if the expected files are not displayed, revise the parameter
file used for your session.

Important Information and Warnings

A Natural developer must have read, write and delete rights for all objects.

An end-user must only have read rights for the generated programs (and in some special cases
also read rights for the sources).

Do not accessNatural fileswith operating systemutilities. These utilitiesmightmodify and destroy
the Natural directory information.

Do not store private data files in the directories FNAT, FUSER and FDDM, since Natural may delete
or modify them in an unexpected way.

Do not use one of the directories FNAT, FUSER and FDDM as working directories for your Windows
applications, since this can cause problems when issuing Natural system commands.

The file name (i.e path including file name in 8.3 format) of any object accessed by Natural must
not exceed 255 bytes.

The File FILEDIR.SAG

The file FILEDIR.SAG supports up to 60000 objects. It contains internal library information used
by Natural including the programmingmode of an object (structured or reporting) and internally
converted object names. These internal object names are automatically created when storing Nat-
ural objects to disk with:

■ names longer than 8 characters (which can be the case with DDMs);
■ names containing any special character supported by Natural but not by the operating system.

Internal object names are unique and consist of an abbreviation of the current object name and an
arbitrary number. Both the current object name and the corresponding internal object name are
documented in FILEDIR.SAG.

Even if an object is located in the correct directory, it can only be used by Natural after this library
information is included in FILEDIR.SAG. For objects createdwithinNatural, the library information
is included automatically. Information on how to import other objects can be found in the section
Importing Objects in the documentation Using Natural Studio.

Operations22

System Files

The utility FTOUCH can be used to update FILEDIR.SAGwithout entering Natural.

Portable Natural System Files

The directory file FILEDIR.SAG in a Natural library as well as the Natural error message files are
created in a portable platform-independent format. This offers, for example, the possibility of ex-
changing FUSER libraries between different Windows, UNIX and OpenVMS platforms simply by
copying the libraries via operating system commands.

The FNAT system file belongs to a Natural installation and is both version-specific and platform-
specific. Therefore, it is not recommended to share FNAT system files among different platforms.
Especially the FNAT system file on a Windows platform contains a completely different set of util-
ities as the FNAT system file on some UNIX or OpenVMS platforms.

Although it is nowpossible to share an FUSER systemfile among different platforms, this possibility
should by handled with care because Natural's locking mechanism does not cross machine
boundaries and hence it would be possible for two Natural sessions on different platforms to
modify the same object at the same time with unpredictable results.

The following topics are covered below:

■ Language-dependent Objects
■ Migrating Non-Portable Message Files to 64-Bit Platforms

Language-dependent Objects

When the application to be ported uses the system variable *LANGUAGE, you have to take notice of
the following information.

Almost all Natural objects are stored in the system file with a name which contains only upper-
case characters. An exception are the language-dependent objects (that is: the objects which have
been created for a specific language). Language-dependent objects may contain lower-case char-
acters in their names. Since Windows is a case-preserving operating system (whereas UNIX is a
case-sensitive operating system), it may happen that names which have been created under UNIX
cause a conflict in Windows, or that an application which has been developed under UNIX yields
unexpected results in Windows.

Note: OpenVMS behaves similar to Windows. It does not distinguish between upper-case
and lower-case characters. However, file names are always createdwith upper-case charac-
ters.

Example

The command SAVE PGM& creates an object where the object name contains the language identifier.
The resulting object name depends on the setting of *LANGUAGE:

23Operations

System Files

An object with the following name is createdSetting of *LANGUAGE

PGMX (with an upper-case X)33

PGMx (with a lower-case x)59

The separate objects which have been created under UNIX (PGMX.NGP and PGMx.NGP) get
entries in the file FILEDIR.SAGwith the names PGMX and PGMx. These two objects will be treated
differently, depending on the environment in which Natural is being executed:

■ When you execute PGMXwith Natural for UNIX, the file PGMX.NGP is loaded into the buffer
pool and executed.

■ When you execute PGMXwith Natural for Windows, either the file PGMX.NGP or PGMx.NGP
is loaded into the buffer pool and executed. This is because Windows does not distinguish
between these two objects and treats them as one and the same object. Thus it may be possible
that applicationswhich share an FUSER, or a copy of such an FUSER, behave in a differentmanner.

Migrating Non-Portable Message Files to 64-Bit Platforms

Message files in the old, non-portable format which have not been created on a 64-bit platform
are not readable.

If youwant to migrate your applications from a 32-bit platform to a 64-bit platform, youmust first
convert your old message files to the portable format. You do this by using the export and import
functions of the SYSERR utility. First, you export the message file to a text file, and then you gen-
erate a new message file by importing the text file into Natural. This creates a portable message
file which is readable on Windows, UNIX and OpenVMS. For detailed information on the export
and import functions, seeGeneratingMessage and Text Files in the Tools and Utilities documentation.

Using NFS to Store Natural Libraries

When you use NFS (Network File System) to store Natural libraries, you can run into problems
when the directories in which the Natural libraries are stored are mounted via NFS from a file
server in your network.

The reason for this is the need to lock the FILEDIR.SAG file stored in each library during update
operations of Natural objects.

If your NFS locking is incompatible or not properly set up between the involved platforms, Nat-
ural can hang in an uninterruptible state while waiting for NFS locking requests to be processed.
These requests are generally logged on the consoles of the involved systems or in some other
system-dependent log file.

The work-around to solve this problem is to store Natural libraries only on local disks if problems
with a hanging and uninterruptible nucleus occur.

Operations24

System Files

5 Work Files

■ Defining Work Files .. 26
■ Work File Formats ... 29
■ Special Considerations for Work Files with the Extension NCD ... 32

25

Work files are files to which data can be written and from which data can be read by Natural
programs. They are used for intermediate storage of data and for data exchange between programs.
Data can be transferred from or to a work file by using the Natural statements READ WORK FILE
and WRITE WORK FILE.

Defining Work Files

Using the ConfigurationUtility or the DEFINE WORK FILE statement, you can assign names (includ-
ing the path) for up to 32 work files.

The maximum number of work files that can be used depends on the setting of the parameter
WORK.

If you run a program which uses a work file for which a name and path has not been assigned,
Natural automatically creates the file name and writes the work file into the temporary directory
specified in the local configuration file. The name of such a file consists of the specified work file
number and an arbitrary number assigned by the operating system. The generation of the work
file name is based on an algorithm which tries to generate a unique name. Depending on the
Natural parameter TMPSORTUNIQ, the naming conventionmay vary. Ifwork file names are referenced
from outside Natural, it is recommended that you specify the names explicitly to avoid problems
identifying the files.

The following topics are covered below:

■ Defining Work File Names with the Configuration Utility
■ Defining Work File Names with Environment Variables
■ Defining Work File Names with an Application Programming Interface

Defining Work File Names with the Configuration Utility

In the Configuration Utility, the work file names are assigned in the categoryWork Files of a
parameter file. The above mentioned parameters WORK and TMPSORTUNIQ can also be found in this
category. SeeWork File Assignments in the Configuration Utility documentation for further inform-
ation.

Tip: Locate the work file assignments by searching for "Work Files". See Finding a Parameter
in the Configuration Utility documentation for further information.

Operations26

Work Files

Defining Work File Names with Environment Variables

The following topics are covered below:

■ General Information
■ Delimiters of Environment Variables
■ Dollar Sign ($) in the File Name

General Information

Work files can also be defined by using Windows environment variables. Once you have defined
the work file names in the parameter file, the work file names can be set without further change
to the parameter file. For example, when you specify the following name for a work file in the
parameter file (or in a DEFINE WORK FILE statement):

%Natural%\%myfile%

and assume the following settings in your operating system:

set Natural=D:\natural
set myfile=sub\test

this will expand into the following file name:

D:\natural\sub\test

Delimiters of Environment Variables

Names of environment variables are delimited by special characters. A left-hand delimiter is to
the left of a variable, a right-hand delimiter is to the right.

For example, the string %TEMP% identifies an environment variable named TEMP; % is used as both
the left-hand and right-hand delimiter.

Valid delimiters are:

Valid DelimitersType of Delimiter

Left-hand delimiter %
$

Right-hand delimiter %
/
.
\

Note: The end-of-string mark is by default a right-hand delimiter, i.e. %TEMP is recognized
as an environment variable named TEMP.

27Operations

Work Files

Although "%" is the only valid left-hand delimiter for environment variables inWindows, Natural
forWindows allows "%" and "$" as left-hand delimiters in order to preserve upward compatibility
with previous versions. This setting allows UNIX-like work file name assignments in a Windows
session. $TEMP is recognized in Natural for UNIX as well as in Natural for Windows as the envir-
onment variable TEMP.

Example:

The following lines of Natural code are interpreted as being the same:

DEFINE WORK FILE 1 '$TEMP\myfile.dat'

and

DEFINE WORK FILE 1 '%TEMP%\myfile.dat'

TEMP is recognized as an environment variable. The string $TEMP (or %TEMP%) is replaced at runtime
by the contents of the environment variable TEMP.

Dollar Sign ($) in the File Name

A dollar sign ($) in a file name has two meanings:

■ If the dollar sign appears on the left or in the middle of a string embedded in delimiters, it will
be interpreted as the left-hand delimiter of the environment variable being used. All characters
following the left-hand delimiter up to the right-hand delimiter or EOS are considered to be the
name of an environment variable.

■ If the dollar sign is the last character of a string, it is not considered to be a delimiter character.
It is a part of the string scanned.

Example:

The following line of Natural code does not result in an error:

DEFINE WORK FILE 1 '\\MYPC\C$\myfile.dat'

\\MYPC\C$ is considered to be a default share. C$ is a valid directory.

However, the following line of Natural code may result in an error, depending on whether A has
been defined or not:

Operations28

Work Files

DEFINE WORK FILE 1 '\\MYPC\C$A\myfile.dat'

A is interpreted as an environment variable since it is preceded by a dollar sign. If A has not been
defined, an error will occur. If A has been defined, an error does not occur.

Defining Work File Names with an Application Programming Interface

You can also define work files with the application programming interface USR1050N in library
SYSEXT.

Work File Formats

The format of a work file depends on the work file type that has been defined. Different work file
formats are available. Natural recognizes the format by checking the file name and its extension:

file-name.extension

where file-name can have a maximum of 8 characters and extension can have a maximum of 3
characters.

The work file formats are:

■ Binary Format
■ ASCII Format
■ Entire Connection Format
■ Portable Format
■ Unformatted Format
■ CSV Format

See alsoWork Files and Print Files in the Unicode and Code Page Support documentation.

Binary Format

Possible type: SAG.

This format, which is specific to Software AG, is the preferred format since it can be used with all
data types. However, it is not portable across platforms with different endian modes.

Each record that is written is preceded by two bytes which contain the length of the record. The
length itself is written in a platform-specific form.

To define binary format for a work file, use a file name with a period and the extension SAG (for
example, <file-name>.SAG).

29Operations

Work Files

ASCII Format

Possible types: ASCII and ASCII compressed.

Since eachwritten record is terminatedwith a carriage return and line feed (CR/LF), ASCII format
is only recommended for alphanumeric data.

To define ASCII format for a work file, enter either a file name with a period and any extension
except SAG andNCD (for example, <file-name>.<ext>), or a file namewith a period andwithout
an extension (for example, <file-name>).

Entire Connection Format

Possible type: Entire Connection.

The product Entire Connection uses two files: a data file which contains the actual data and a
format file which contains formatting information about the data in the data file.

Natural automatically generates the corresponding format file for the type Entire Connection. The
format file has the same name as the data file, however the extension isNCF. For detailed inform-
ation on the content of a format file with the extensionNCF, see the Entire Connection document-
ation.

To define Entire Connection format for awork file, enter a file namewith a period and the extension
NCD (for example, <file-name>.NCD).

You can read/write work files in Entire Connection format directly from/to your local disk.

See also Special Considerations for Work Files with Extension NCD.

Notes:

1. The RECORD option of the READ WORK FILE statement is not available for reading work files of
format Entire Connection.

2. The operand format U (Unicode) is not supported for the work file types Entire Connection. If
U is used with these work file types, a runtime error message is displayed.

Operations30

Work Files

Portable Format

Possible type: Portable.

The type Portable performs an automatic endian conversion of a work file when the work file is
transferred to a different machine. For example, a work file written on a PC (little endian) can be
read correctly on an RS6000 or HP machine (big endian). The endian conversion applies only to
field formats I2, I4, F4, F8 and U. The floating point format is assumed to be IEEE. There are,
however, slight differences in IEEE floating point representation by different hardware systems.
As a rule, these differences apply only to infinity and NaN representations, which are normally
not written into work files. Check the hardware descriptions if you are uncertain.

The files are alwayswritten in themachine-specific representation, so that a conversion is performed
only if the file is read by a machine with different representation. This keeps performance as fast
as possible.

There are no other conversions for this format apart from the conversions mentioned above.

When a READ WORK FILE statement is used for a dynamic variable, the variable is resized to the
length of the current record.

Unformatted Format

Possible type: Unformatted.

The type Unformatted reads or writes a complete file with just one dynamic variable and just one
record (for example, to store a video which was read from a database). No formatting information
is inserted; everything is written and read just as it is.

CSV Format

Possible type: CSV (comma-separated values).

Note: If you want to use the work file type CSV, you have to recatalog your sources using
the CATALOG or STOW command. It is not possible to use thework file typeCSVwith generated
programs of Natural Version 4.

The Natural fields are stored in a CSV work file as described below.

1. In the first step, the internal field data is converted into a readable format:
■ The field data of the internal Natural data formats B (binary), O (object handle), G (GUI
handle) and C (attribute control) is copied to the record without field conversion. The data
is taken as it is.

■ The field data of the internal Natural data format A (alphanumeric) is converted into the
specified work file code page (seeWork Files in the Configuration Utility documentation). If

31Operations

Work Files

no work file code page is specified in the Configuration Utility, the default code page which
is defined with the parameter CP is used and no conversion is done.

The field data of the internal Natural data format U (Unicode), is converted into the specified
work file code page (seeWork Files in the Configuration Utility documentation) or, if no work
file code page is specified, into the default code page which is defined with the parameter
CP.

■ The values of the internal Natural formats D (date) and T (time) are converted into an alpha-
numeric output format. The DTFORM parameter is evaluated so that the user-specified date
and time format is used.

■ The internal field values of the numeric types are converted into an alphanumeric output
format.

2. In the second step, the field data in readable format is copied to the CSV work file record. The
fields in the work file are separated by the specified separator character. If a field contains
special characters, the field is delimited by double quotes. Each written record is terminated
with a carriage return and line feed (CR/LF).

If you have defined that a header with the Natural field names is to be written to the work file
(seeWork File Assignments in the Configuration Utility documentation), the following applies:

■ With the WRITE WORK FILE statement, a header line containing the field names of the first written
record is stored in the first line of the work file. If subsequent CSV records contain a different
number of fields, it may be possible that the header line does not correspond to these subsequent
CSV records.

■ With the READ WORK FILE statement, it is assumed that the first line of the CSV work file is the
header line. Therefore, the first line is skipped (that is: the record data in the first line is not re-
turned).

Special Considerations for Work Files with the Extension NCD

If files with the extension NCD are created by Entire Connection and are then read into Natural
via the READ WORK FILE statement, it is required that the Entire Connection option Keep trailing
blanks is activated in the session properties. See your Entire Connection documentation for further
information.

Note: When you create an NCD file using Entire Connection and load this file using the
ObjectHandler, youmay receive an error indicating that the source control record ismissing.
To avoid this, make sure that the optionKeep trailing blanks is active when you create the
NCD file.

The following considerations apply for work files in Entire Connection format:

Operations32

Work Files

■ If an NCD file is read with a READ WORK FILE statement and the corresponding NCF format file
is not available or contains invalid information, the NCD file is assumed to be an ASCII work
file.

■ When the APPEND attribute is used to append data to an NCD file, the record layouts (that is:
the field format and length information which is written to the NCF format file) of the old and
new data must match. If the record layouts are different, an error occurs during runtime.

■ The maximum work-file record size for WRITE WORK FILE VARIABLE that can be handled by
Entire Connection is 32767 bytes.

■ If you have “old” work files with the extension NCD, the extensions must be changed.
■ Each of the following profile parameters must be set to the same value for both read and write
operations:

DC (decimal character)
IA (input assign character)
ID (input delimiter character)

■ Remember that the range of possible values for floating point variables on amainframe computer
is different from that on other platforms. The possible value range for F4 and F8 variables on a
mainframe is:

±5.4 * 10-79 to ±7.2 * 1075

The possible value range on most other platforms for F4 variables is:

±1.17 * 10-38 to ±3.40 * 1038

The possible value range on most other platforms for F8 variables is:

±2.22 * 10-308 to ±1.79 * 10308

33Operations

Work Files

34

6 Natural Buffer Pool

■ General Information ... 36
■ Setting up a Buffer Pool .. 46
■ Using the Natural Buffer Pool Service .. 46
■ Using the Utility NATBPSRV for Creating the Buffer Pool ... 49
■ Monitoring the Buffer Pool ... 49
■ Trouble Shooting ... 50

35

General Information

The Natural buffer pool is used to share Natural objects between several Natural processes that
access objects on the same computer. It is a storage area into which compiled Natural programs
are placed in preparation for their execution. Programs are moved into and out of the buffer pool
as Natural users request Natural objects.

Since Natural generates reentrant Natural object code, it is possible that a single copy of a Natural
program can be executed by more than one user at the same time. For this purpose, each object is
loaded only once from the system file into the Natural buffer pool, instead of being loaded by
every caller of the object.

The following topics are covered below:

■ Objects in the Buffer Pool
■ Resource Handling
■ Multiple Buffer Pools
■ Storing Objects in the Buffer Pool
■ Fast Locate
■ Read-Only Buffer Pool
■ Restrictions

Objects in the Buffer Pool

Objects in the buffer pool can be any executable objects such as programs anddialogs. The following
executable objects are only placed in the buffer pool for compilation purposes: local data areas,
parameter data areas and copycodes.

When a Natural object is loaded into the buffer pool, a control block called a directory entry is al-
located for that object. This control block contains information such as the name of the object, to
which library or application the object belongs, from which database ID and Natural system file
number the object was retrieved, and certain statistical information (for example, the number of
users who are concurrently executing a program).

Resource Handling

Resources are loaded into the buffer pool if they reside in a library of a Natural system file (for
example, FUSER) and if their names do not exceed 32 characters (including the file extension).

Each resource that resides in the directorywhich is assigned to the environment variable NATGUI_BMP
or whose name is longer than 32 characters, is loaded directly into the Natural process every time
it is accessed (that is: the resource is not loaded into the buffer pool).

Operations36

Natural Buffer Pool

Multiple Buffer Pools

Depending on the individual requirements, it is possible to run different buffer pools of the same
Natural version simultaneously on the same computer.

For each buffer pool, synchronization can be enabled in the Configuration Utility (see also Setting
up a Buffer Pool below). All buffer pools which contain objects from the same system file and for
which synchronization has been enabled are then synchronized automatically.

Important: If the system file resides on a shared drive, synchronization only works if the file
system on the server is NTFS.

The following applies when synchronization has been enabled: If an object that is loaded to more
than one buffer pool is modified by one Natural process, it is first marked as invalid. When the
object is no longer used by any process, it is deleted from the buffer pool. The next time this object
is requested by a process, it will be loaded into the buffer pool again.

Storing Objects in the Buffer Pool

When a user executes a program, a call is made to the buffer pool manager. The directory entries
are searched to determine whether the program has already been loaded into the buffer pool. If
it does not yet exist in the buffer pool, a copy is retrieved from the appropriate library and loaded
into the buffer pool.

When a Natural object is being loaded into the buffer pool, a new directory entry is defined to
identify this program, and one ormore otherNatural objectswhich are currently not being executed
may be deleted from the buffer pool to make room for the newly loaded object.

For this purpose, the buffer pool maintains a record of which user is currently using which object,
and it detects situations inwhich a user exitsNaturalwithout releasing all its objects. It dynamically
deletes unused or out-of-date objects to accommodate new objects belonging to other applications.

Fast Locate

When a Natural object is executed, the Natural runtime system remembers the object name, the
library (name, database ID and file number) and the address of the corresponding buffer pool
directory entry. This data is referred to as “fast locate information”.

When aNatural object is executed again, theNatural runtime systempasses the fast locate inform-
ation to the buffer pool manager and performs a time-saving fast locate call. A fast locate call by-
passes the normal locate procedure including the steplib search and the search in the buffer pool.
It is therefore themost efficient way to locate an object. It provides significantly better performance
of subsequent program loads especially when steplib libraries are involved inmulti-user environ-
ments.

37Operations

Natural Buffer Pool

The address of an object saved as fast locate information is no longer valid once the object is re-
moved from the buffer pool, overwritten by another object or reloaded to another buffer pool
location. If the fast locate call does not find the object at the given address, the object is searched
in the buffer pool. If not found in the buffer pool, the object is reloaded from the system file.

This section covers the following topics:

■ Fast Locate at Object Resume
■ Fast Locate Table
■ Fast Locate Table with BPSFI=ON
■ Performance with BPSFI=ON
■ Fast Locate Table with BPSFI=OFF
■ Performance with BPSFI=OFF
■ Performance in a Multi-User Environment
■ Maintaining the Fast Locate Table

Fast Locate at Object Resume

Fast locate calls are issued when an object is accessed or resumed. An object resume operation is
performed, for example, when an object continues to execute after a CALLNAT statement. For object
resume operations, the Natural runtime system keeps fast locate information of the calling object
for each program level on the internal stack.

Fast Locate Table

TheNatural runtime systemkeeps fast locate information about each accessed object in the internal
fast locate table. The fast locate table also contains information about all libraries inwhich an object
was searched. For a subsequent call, a fast locate is issued if the current library and associated
steplibs are still the same.

The fast locate table is a hash table. The entries can be directly accessed without searching for an
object name. The hash value is calculated from the object name. It determines the slot index
number for the object. If another object has the same hash value (hash collision), a normal locate
call is performed and the entry in the fast locate table is overwritten.

If an object for the library given in the fast locate table is neither found in the buffer pool nor in
the systemfile (whichmeans that the object has been deleted ormoved to another library), a normal
locate call with the full steplib search is scheduled automatically.

The Locate Statistics of the buffer pool monitor shows howmany locate attempts were made and
how many of these attempts were fast locate calls (see Statistical Information About the Buffer
Pool). These values can be used to review the efficiency of the fast locate table. If the fast locate
table is activated for an application that calls the same objects many times, and if these objects are
contained in a steplib library, the following applies:

Operations38

Natural Buffer Pool

■ The number of locate attempts should decrease significantly (compared with a deactivated fast
locate table).

■ The number of fast locate attempts should be close to the number of locate attempts.

Fast Locate Table with BPSFI=ON

If the BPSFI (Object Search First in Buffer Pool) profile parameter is set to ON, the fast locate table
is activated by default. It is initialized at the start of the Natural session and it is not cleared impli-
citly during the running session. It can be deactivated or clearedwith the application programming
interface USR3004N as described in the sectionMaintaining the Fast Locate Table.

Performance with BPSFI=ON

In the following example, a subprogram is called 3,000,000 times. In the first test, the subprogram
is found in the current library, then in Steplib 1, Steplib 2, and so on. The red line shows the elapsed
time needed for the program loadwith a deactivated fast locate table, the green line with an activ-
ated fast locate table.

The diagram above shows that there is no performance improvement if the object is found in the
current library. The more steplibs there are involved in object search operations, the higher is the
performance improvement. For five steplibs, the program loads require less than half the time.

39Operations

Natural Buffer Pool

Fast Locate Table with BPSFI=OFF

If the BPSFI profile parameter is set to OFF, the fast locate table is deactivated by default. It can be
activated or cleared with the application programming interface USR3004N as described in the
sectionMaintaining the Fast Locate Table. It is initialized at the start of the Natural session and
it is implicitly cleared when the application is back on Program Level 0 (NEXT prompt).

Activation of the fast locate table for BPSFI=OFF can lead to unexpected results in the following
scenario:

■ The list of steplibs contains the libraries S1 and S2 whereby S1 is searched before S2.
■ An object from S2 is accessed during the current Natural session.
■ Another Natural session copies a new version of this object into S1.

If the application is still running (not back on ProgramLevel 0 in between) and the object is accessed
again, the new version of the object will not be used.

If you want to activate the fast locate table when BPSFI=OFF is set, make sure that the scenario
described above cannot occur.

If BPSFI=ON is set, object names should always be unique across all libraries involved in object
search operations. This also guarantees that such scenarios do not occur.

Performance with BPSFI=OFF

In the following example, a subprogram is called 3,000,000 times. In the first test, the subprogram
is found in the current library, then in Steplib 1, Steplib 2, and so on. The red line shows the elapsed
time needed for the program loadwith a deactivated fast locate table, the green line with an activ-
ated fast locate table.

Operations40

Natural Buffer Pool

The diagram above shows that there is no performance improvement if the object is found in the
current library. The more steplibs there are involved in object search operations, the higher is the
performance improvement. Since the search operation on the system file is considerably slower
than the search in the buffer pool, the improvement is much higher than the corresponding im-
provement when BPSFI=ON set. For five steplibs, the program load is about 20 times faster. If the
fast locate table is activated, in general, the time needed for subsequent program loads for BPSFI=OFF
is about the same as for BPSFI=ON, and it is always about the time needed to search for an object
in the current library only.

Performance in a Multi-User Environment

If an object is searched in a (read/write) buffer pool or on the systemfile, lock operations are issued
to ensure that no other session performs changes concurrently. The lock operations serialize the
access to the buffer pool, one session is processed after the other.

The fast locate table reduces the number of locate calls if steplibs are involved. Therefore, less lock
operations are required, and overall performance of the buffer pool is improved.

In the following example, a subprogram is called 3,000,000 times, and the subprogram is always
found in Steplib 5. In the first test, only one session is active. In the second test, two sessions execute
the same application simultaneously, then three sessions, and so on. The red line shows the elapsed
time needed for the program loadwith a deactivated fast locate table, the green line with an activ-
ated fast locate table.

As indicated inPerformancewith BPSFI=ON, the program loadwith a single session ismore than
2 times faster if the object is found in Steplib 5 with BPSFI=ON set. If multiple sessions access the
buffer pool simultaneously, the tests show that the performance can be 3 to 5 times faster.

41Operations

Natural Buffer Pool

Maintaining the Fast Locate Table

Usage of the fast locate table can be activated and deactivated by calling the application program-
ming interface (API) USR3004N. The API can also be used to get the current state of the fast locate
table, to clear the fast locate table and to receive statistical data. TheAPI is delivered in the SYSEXT
library. For more information on using APIs, see the section SYSEXT Utility - Natural Application
Programming Interfaces in the Utilities documentation.

To use API USR3004N

■ Copy the USR3004N subprogram to the SYSTEM library, to the appropriate steplib library,
or to the required library.

The function to be performed by USR3004N requires that the respective parameter value (ON,
OFF, STATE, CLEAR or COUNT) is specified first in the CALLNAT statement. The parameter values
can be specified in uppercase or lowercase. On return, P-RETURN contains the return code,
whereby Return Code 0 indicates that the function performed successfully. All parameters
are optional for compatibility with previous versions of the API on the mainframe.

To activate the fast locate table

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'ON' P-STATE 2X P-RETURN-CODE

To deactivate the fast locate table

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'OFF' P-STATE 2X P-RETURN-CODE

To retrieve the current state of fast locate table usage

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'STATE' P-STATE 2X P-RETURN-CODE

If the P-STATE state field is TRUE, the fast locate table is used. The state field is returned for
each API function.

To clear the fast locate table

■ Call USR3004N with the following CALLNAT statement:

Operations42

Natural Buffer Pool

CALLNAT 'USR3004N' 'CLEAR' P-STATE 2X P-RETURN-CODE

As described in Fast Locate Table with BPSFI=OFF, unexpected results can be encountered
if the fast locate table is used with BPSFI=OFF. For BPSFI=OFF, the fast locate table is cleared
when the application is back on Program Level 0 (NEXT prompt). A restart of the application
therefore ensures that the latest version of the object is found.

Since a server in a client/server environment never reaches Program Level 0, you can clear
the fast locate table by using the CLEAR function of USR3004N to ensure that the latest version
of the object is found.

To receive slot counts of the fast locate table

■ Call USR3004N with the following CALLNAT statement:

CALLNAT 'USR3004N' 'COUNT' P-STATE P-SLOTS-USED P-SLOTS-TOTAL
P-RETURN-CODE

The counters indicate how well the hash function operates. The hash function is used to cal-
culate the slot index number in the fast locate table.

DescriptionField

Shows the number of slots in the fast locate table that are currently occupied.

The hash function operates well if this number increases with the number of objects
accessed until close to the total number of slots.

P-SLOTS-USED

Shows the total number of slots available in the fast locate table.

The used hash function requires that the total number is a prime number. There are
593 slots available in the fast locate table.

P-SLOTS-TOTAL

Read-Only Buffer Pool

A read-only buffer pool is a special buffer pool that only allows read access. If an object is not
found in the read-only buffer pool, Natural issues error 82 (object not found). As no attempt is
made to retrieve the missing object in the system files, all lock operations on the system file as
well as on the buffer pool are skipped. Account data are gathered.

A read-only buffer pool is defined in the Configuration Utility (see also Setting up a Buffer Pool
below).

The utility NATBPSRV expects a preload list in a file named <bufferpool-name>.PRL at the location of
theNatural parameter files,which is defined in the local configurationfile (installation assignments).
For example, if the name of the read-only buffer pool is "ROBP", the file namemust be ROBP.PRL.

43Operations

Natural Buffer Pool

A preload list can be generated using the Natural utility CRTPRL. This utility extracts the contents
of a buffer pool and merges it with the existing preload data of a buffer pool.

The preload list in the PRL file contains recordswith comma-separated data in the following form:

database-ID,file-number,library,object-name,kind,type

The keywords in the file have the same meaning as the keywords shown by the DIR command of
the NATBPMON utility.

With the exception of directory-describing records (the kind of object is D, which means the object
is part of FILEDIR.SAG), a value must be assigned to all keywords. Examples:

NATBPSRV loads the following into the buffer poolKeywords

Object code of program PGM1 from library MY_LIBwhich is located on
database 222 and file number 111.

222,111,MY_LIB,PGM1,G,P

LIBDIR.SAGwhich is located on FNAT=222,113.222,113,*,*,D

FILEDIR.SAG from library MY_LIBwhich is located on FUSER=222,111 .222,111,MY_LIB,*,D

Using a read-only buffer pool has the disadvantage that the application must be known in detail
(as missing objects cannot be loaded). This means that all objects needed by an application must
be specified in the preload list. In seldom cases, the complete set of objects needed by an application
can be determined in advance.

Secondary Read/Write Buffer Pool

Natural can run with a read-only buffer pool as the primary buffer pool. Such a buffer pool is not
modifiable. Objectsmissing in the read-only buffer pool cannot be loaded. If an object is not found
in the read-only buffer pool, Natural issues error 82 (object not found). To avoid this, Natural can
attach during execution to a secondary standard buffer pool (which allows read/write access) and
activate the missing objects there. If a call to locate an object in the primary buffer pool fails, the
secondary buffer pool operates as a backup buffer pool. The dynamic parameter BPID2 identifies
the secondary buffer pool.

Other than for the read-only buffer pool, object locking through semaphores takes place each time
the secondary buffer pool is accessed.

The preload list of the read-only buffer pool can be updated/enhanced by merging the contents
of the secondary read/write buffer pool with the preload list of a read-only buffer pool using the
utility CRTPRL.

Operations44

Natural Buffer Pool

Alternate Read-Only Buffer Pool

For a read-only buffer pool, it is possible to define the name of an alternate buffer pool in the
Configuration Utility (see also Setting up a Buffer Pool below).

Using the SWAP command of the NATBPMON utility, which is only available for a read-only buffer
pool, you can tag a read-only buffer pool as “obsolete”. All Natural sessions attached to an obsolete
buffer pool will detach from this buffer pool and will attach to the alternate buffer pool - but only
if the alternate buffer pool is also a read-only buffer pool. The swap from one buffer pool to the
other occurs eitherwhenNatural tries to load a new object (for example, when executing a CALLNAT
or RETURN statement) or when Natural tries to interpret a command which has been put on the
stack. The IPC resources (that is, the shared memory segment) of a buffer pool tagged as obsolete
can be removed after issuing the SWAP command of the NATBPMON utility. This feature allows ex-
changing a buffer and its contents by another read-only buffer poolwith updated contentswithout
stopping Natural sessions.

Creating a Preload List Using the CRTPRL Utility

The Natural utility CRTPRL, which is located in the library SYSBPM, is used to create a preload list
for a read-only buffer pool.

The utility uses the content of a source buffer pool as the basis for the preload list and checks
whether the preload list already exists for a read-only (target) buffer pool:

■ If the preload list exists, the existing data in the preload list is merged with the data from the
source buffer pool, and the preload list is saved with the new content.

■ If the preload list does not yet exist, it is created using the content from the source buffer pool.

The content of the resulting preload list determines the content of the read-only buffer pool. The
preload list is read by the utility NATBPSRVwhich loads the corresponding objects into the read-
only buffer pool.

Restrictions

When using the Natural buffer pool, only minimum restrictions must be considered:

■ When a Natural session hangs up, do not terminate it by using the Windows Task Manager.

If this session is currently performing changes to the buffer pool internal data structures, an
interruption may occur at a stage where the update is not fully completed. If the buffer pool
internal data structures are inconsistent, this could have negative effects.

Note: This can only happen when the Natural nucleus is executing buffer pool routines.

45Operations

Natural Buffer Pool

Setting up a Buffer Pool

The buffer pool assignments are stored in the local configuration file. To set up a buffer pool, you
have to specify specific values in the local configuration file using the Configuration Utility. For
a list of these values, see Buffer Pool Assignments in the Configuration Utility documentation.

Using the Natural Buffer Pool Service

Natural uses a Windows service, the Software AG Natural n.n Buffer Pool Service, to start the
Buffer Pool Server when the PC is booted.

Natural is installed with the default buffer pool NATBP. NATBP is also used as the default buffer
pool name at Natural startup (a different buffer pool can be defined using the profile parameter
BPID).

You can modify the service configuration to meet your requirements. This is explained in the fol-
lowing topics:

■ Buffer Pool Service Commands
■ Example: Starting Natural with Your Own Buffer Pool

Buffer Pool Service Commands

The file natbpsvc.exe, which is stored in the Natural bin directory, is used to execute the service
commands.

The following service commands can be specified in theCommand Promptwindow ofWindows:

DescriptionCommand

NATBPSVC INSTALL mode Installs the buffer pool service. mode can be one of the following:

Default. The service is installed and must be
started manually (either with the START

manual

command or by starting the Software AG
Natural n.n Buffer Pool Service in Windows).

The service is installed and is automatically
started when the PC is booted.

automatic

Creates a new buffer pool to be started by the service. The service
checks whether the buffer pool with the specified name is defined in
the Natural parameter file.

NATBPSVC CREATE
buffer-pool-name

Operations46

Natural Buffer Pool

DescriptionCommand

Starts the service (if not yet active) and all created buffer pools (see the
CREATE command) forwhich the start parameter has been set to "yes"
(see the SET command).

NATBPSVC START

Starts the specified buffer pool. If the service has not been started (either
automatically at boot time or manually by the user) an error message
appears.

NATBPSVC START
buffer-pool-name

NATBPSVC SET
buffer-pool-name start=mode

Defines whether the specified buffer pool is to be started when the
service is started. mode can be one of the following:

The buffer pool is started.yes

Default. The buffer pool is not started.no

Stops the service and all previously started buffer pools.NATBPSVC STOP

Stops the specified buffer pool.NATBPSVC STOP
buffer-pool-name

Displays the configuration parameters for all buffer pools that are
defined for the service, that is: whether these buffer pools are to be
started when the service is started.

NATBPSVC SHOW

Displays the configuration parameters for the specified buffer pool,
that is: whether this buffer pool is to be started when the service is
started.

NATBPSVC SHOW
buffer-pool-name

Displays the status of all buffer pools that are defined for the service,
that is: whether these buffer pools are active or not active.

NATBPSVC STATUS

Displays the status of the specified buffer pool, that is: whether this
buffer pool is active or not active.

NATBPSVC STATUS
buffer-pool-name

Deletes the specified buffer pool from the service.

Caution: Do not delete the default buffer pool NATBP, as it is possible
that Natural may not function properly anymore.

NATBPSVC DELETE
buffer-pool-name

Removes the service from the system.NATBPSVC REMOVE

Example: Starting Natural with Your Own Buffer Pool

This example explains how to create a new buffer pool with the name MYBP and how to start Nat-
ural with your new buffer pool.

To start Natural with your own buffer pool

1 Use the Configuration Utility to define an additional buffer pool with the name MYBP in the
local configuration file. See Buffer Pool Assignments in theConfigurationUtility documentation.

Note: For this example, you can use the same values as defined for the default buffer
pool NATBP.

47Operations

Natural Buffer Pool

2 Invoke the Command Promptwindow of Windows.

3 Go to the Natural bin directory which contains the file natbpsvc.exe.

4 Enter the following command to create a buffer pool with the name MYBP:

NATBPSVC CREATE MYBP

The following information is shown:

%NATBPSVC-I: Natural n.n Buffer Pool Service
%NATBPSVC-I: New buffer pool 'MYBP' created
%NATBPSVC-I: Natural n.n Buffer Pool Service

Important: When the buffer pool with the specified name has not yet been defined in
the local configuration file, a corresponding message is shown instead. Make sure to
define the buffer pool in the local configuration file before you proceed with the steps
below.

5 Enter the following command to define that your buffer pool is to be started when the service
is started:

NATBPSVC SET MYBP start=yes

The following information is shown:

%NATBPSVC-I: Natural n.n Buffer Pool Service
%NATBPSVC-I: Configuration successfully set
%NATBPSVC-I: Natural n.n Buffer Pool Service

6 Enter the following command to start your buffer pool now (without having to restart the
service):

NATBPSVC START MYBP

The following information is shown:

%NATBPSVC-I: Natural n.n Buffer Pool Service
%NATBPSVC-I: Send request to Natural n.n Buffer Pool Service
%NATBPSVC-I: Buffer pool 'MYBP' started
%NATBPSVC-I: Natural n.n Buffer Pool Service

7 Enter the following command to display the status of all buffer pools that are currently defined
for the service:

NATBPSVC STATUS

The following information is shown:

Operations48

Natural Buffer Pool

%NATBPSVC-I: Natural n.n Buffer Pool Service
%NATBPSVC-I: Send request to Natural n.n Buffer Pool Service
%NATBPSVC-I: MYBP is active

NATBP is active
%NATBPSVC-I: Natural n.n Buffer Pool Service

8 Start Natural with the dynamic parameter BPID as shown below:

natural BPID=MYBP

Using the Utility NATBPSRV for Creating the Buffer Pool

The buffer pool is created using the utility NATBPSRV.

The buffer pool server is automatically started by theNatural Buffer Pool Service.

Note: The utility NATBPSRV should not be accessible to all Natural users, because it can cause
damage to the work of other buffer pool users.

NATBPSRV allocates the resources required by the buffer pool and creates the permanent commu-
nication facilities (that is, sharedmemory and semaphores) used for the buffer pool. The necessary
specifications for the resources and facilities are made with the Configuration Utility (see Setting
up a Buffer Pool).

By default, the buffer pool NATBP is started. If another buffer pool is to be started, you specify its
name with the following NATBPSRV command line option:

NATBPSRV BP = buffer-pool-name

Monitoring the Buffer Pool

The Buffer Pool Monitor is used to oversee the buffer pool's activity during its operation. The
Buffer Pool Monitor can also be used to shut down the buffer pool whenNatural must be stopped
on a computer.

The Buffer Pool Monitor collects information on the current state of your Natural buffer pool.

If multiple buffer pools are active on the same computer and an object that is loaded to more than
one buffer pool is modified by a Natural process, the object will only be removed from the buffer
pool to which the modifying Natural process is attached. To ensure that modified objects are also
removed from other buffer pools on the same computer to which the object is currently loaded,
you can enable the buffer pool synchronization in the Configuration Utility.

49Operations

Natural Buffer Pool

Natural provides two versions of the Buffer Pool Monitor: a graphical user interface and the
NATBPMON utility which is a command line version.

For detailed information for how to use the different versions of the Buffer PoolMonitor, seeUsing
the GUI Version of the Buffer Pool Monitor and Using the Command Line Version of the Buffer
Pool Monitor (NATBPMON).

Trouble Shooting

This section describes problems that may occur when using the Natural buffer pool and how to
solve them.

The following are typical command output examples, with an explanation of what went wrong
during execution.

Problem 1

Either Natural or the Natural Buffer Pool Monitor cannot be started.

Example 1

The following examples describe the most typical problems you are likely to encounter as a Nat-
ural administrator or user. These problems occur when you start Natural or the NATBPMON utility,
and the buffer pool is not active.

■ You try to start Natural and the following message appears:

Natural Startup Error 16: Unable to open buffer pool.
Buffer pool error: "unexpected system call error occurred" (20)
Buffer pool could not attach to the global shared memory.

■ You try to start the Natural Buffer Pool Monitor and the following message appears:

Cannot get shared memory
Buffer pool error: "unexpected system call error occurred" (20)
Buffer pool could not attach to the global shared memory.

Solution

Start the buffer pool service as described in Using the Natural Buffer Pool Service.

Operations50

Natural Buffer Pool

Example 2

The following examples describe the most typical problems you are likely to encounter as a Nat-
ural administrator or user. These problems occur when you start Natural or the NATBPMON utility,
and the buffer pool has been started with a different internal version.

■ You try to start Natural and the following message appears:

Natural Startup Error 16: Unable to open buffer pool.
Buffer pool error: "Buffer pool does not correspond with your version of ↩
Natural"(25).
Internal version of buffer pool is 0 but requested internal version is 1. ↩

■ You try to start the Natural Buffer Pool Monitor and the following message appears:

Buffer pool error: Buffer pool does not correspond with your version of Natural ↩
(25).
Internal version of buffer pool is 0 but requested internal version is 1.

Solution

Verify that your Natural version corresponds to your buffer pool version number and that the
internal buffer pool version (BP version) is also correct. Restart the buffer pool with the same
version as Natural but make sure that no other users are active.

Important: The internal buffer pool versionnumber (BP version) can vary in between service
pack releases (third digit of the product version number). For example, a buffer pool that
has been initiated using Natural Version vrs cannot be used with Natural Version vr(s+1)
and vice versa.

51Operations

Natural Buffer Pool

52

7 Using the GUI Version of the Buffer Pool Monitor

■ Starting and Terminating the Buffer Pool Monitor ... 54
■ Elements of the Natural Buffer Pool Monitor Window .. 55
■ Disconnecting and Connecting a Buffer Pool ... 58
■ Shutting Down a Buffer Pool Server .. 59
■ Starting a Buffer Pool Server ... 59
■ Changing the Properties of the Buffer Pool Monitor .. 60
■ Global Information ... 61
■ Buffer Pool Content ... 63
■ Graphic Analyzer ... 66
■ Reports ... 71

53

See alsoNatural Buffer Poolwhich provides general information on the buffer pool and explains
how to start the buffer pool.

Caution: This utility should not be generally accessible to all users of Natural, because its
use can cause damage to the work of other users of the buffer pool.

Starting and Terminating the Buffer Pool Monitor

ANatural folder automatically appears in theAll Programs folder of the Startmenu after Natural
has been installed. It contains the shortcuts for Natural, including the Buffer Pool Monitor.

To start the Buffer Pool Monitor

■ From the Windows Startmenu choose All Programs > Software AG > Administration >
Natural Buffer Pool Monitor n.n.

Note: The Startmenu group name (by default, this is "Software AG") can be changed
during the installation.

TheNatural Buffer Pool Monitorwindow appears.

Note: The buffer pool can also be started using the executable file natbpmong.exewhich
is stored in the Natural Bin directory.

To terminate the Buffer Pool Monitor

■ From theMonitormenu, choose Exit.

Or:

Press ALT+F4.

Or:

From the Control menu, choose Close.

Or:

Choose the corresponding standard button at the right of the title bar.

Operations54

Using the GUI Version of the Buffer Pool Monitor

Elements of the Natural Buffer Pool Monitor Window

When you start the Buffer PoolMonitor, it automatically tries to connect toNatural's default buffer
pool NATBP. The name of the buffer pool which is currently used is shown in the title bar. It is also
selected in the tree.

The following topics are covered below:

■ Menu Bar
■ Toolbar
■ Tree
■ Status Bar

Menu Bar

The following menus are available:

55Operations

Using the GUI Version of the Buffer Pool Monitor

Using the commands in this menu, you can ...Menu

Change the properties or exit the Buffer Pool Monitor.Monitor

Disconnect and connect a buffer pool. Shut down and start the buffer pool server.Bufferpool

Show or hide the various elements of theNatural Buffer Pool Monitorwindow.View

Invoke the online documentation and display information about the Buffer Pool Monitor.Help

Toolbar

You can execute the most important functions using a toolbar button. When you move the mouse
pointer over a toolbar, a brief description for the button is shown in the status bar.

The following toolbar buttons are available:

Change properties

Connect to another buffer pool

Disconnect current buffer pool

Shutdown buffer pool server

Start buffer pool server

Display information about the Buffer Pool Monitor

Display online help

To switch the toolbar display on and off

■ From the Viewmenu, choose Toolbar.

When the toolbar is displayed in theNatural Buffer Pool Monitorwindow, a check mark is
shown next to this menu command.

Tree

The tree on the left side of theNatural Buffer PoolMonitorwindowshows all buffer pools currently
assigned in the local configuration file. See Buffer Pool Assignments in the Configuration Utility
documentation.

Only one buffer pool can be monitored at a time. If you want to connect to a different buffer pool,
see Connecting and Disconnecting a Buffer Pool.

When all nodes for the buffer pool which is currently used (NATBP in the example below) are
expanded, the tree looks as follows.

Operations56

Using the GUI Version of the Buffer Pool Monitor

When you select a node in the tree, the corresponding page is shown on the right side of the win-
dow. See the following sections for a detailed description of each page:

■ Global Information
■ Buffer Pool Content
■ Graphic Analyzer
■ Reports

Status Bar

The status bar is the horizontal information line at the bottom of theNatural Buffer PoolMonitor
window. It shows short help texts for the commands in the menu bar and toolbar.

To switch the status bar display on and off

■ From the Viewmenu, choose Status Bar.

When the status bar is displayed in theNatural Buffer Pool Monitorwindow, a check mark
is shown next to this menu command.

57Operations

Using the GUI Version of the Buffer Pool Monitor

Disconnecting and Connecting a Buffer Pool

Only one buffer pool can be connected at a time. To switch to another buffer pool in the environ-
ment, you disconnect the currently used buffer pool and then connect to the new buffer pool.

Note: When you connect to another buffer pool, the previously connected buffer pool is
automatically disconnected. Thus, it is not necessary to use theDisconnect command first.

The icon next to a buffer pool name indicates one of the following states:

The Buffer Pool Monitor is connected to the buffer pool (green icon).

The Buffer Pool Monitor is not connected to the buffer pool (gray icon).

To disconnect the currently used buffer pool

1 Select the name of the currently connected buffer pool in the tree.

2 From theMonitormenu, chooseDisconnect.

Or:

Invoke the context menu and chooseDisconnect.

Or:

Choose the following toolbar button:

The tree for this buffer pool is no longer shown.

To connect a buffer pool

1 Select the name of a buffer pool in the tree.

2 From theMonitormenu, choose Connect.

Or:

Invoke the context menu and choose Connect.

Or:

Choose the following toolbar button:

Operations58

Using the GUI Version of the Buffer Pool Monitor

The tree for this buffer pool is shown.

Shutting Down a Buffer Pool Server

When you are connected to a buffer pool, you can shut it down. For example, if you want to ini-
tialize the buffer pool, you shut it down and then restart it.

The buffer pool server will not shut down as long as any Natural process is still connected. It will
only shut down after the last process has disconnected from the buffer pool. As long as processes
are connected, the buffer pool status is “shutdown pending”; this is indicated in the tree, next to
the buffer pool name.

To shut down the buffer pool server

1 Select the name of the currently connected buffer pool in the tree.

2 From theMonitormenu, choose Shutdown Server.

Or:

Invoke the context menu and choose Shutdown Server.

Or:

Choose the following toolbar button:

The tree for this buffer pool is no longer shown.

Starting a Buffer Pool Server

A buffer pool server can only be started via the Buffer Pool Monitor if a buffer pool server has not
yet been started.

To start a buffer pool server

1 Select the name of a buffer pool in the tree.

2 From theMonitormenu, choose Start Server.

59Operations

Using the GUI Version of the Buffer Pool Monitor

Or:

Invoke the context menu and choose Start Server.

Or:

Choose the following toolbar button:

The buffer pool server is started.

This does not automatically connect the buffer pool. You have to connect it manually as de-
scribed in Disconnecting and Connecting a Buffer Pool.

Changing the Properties of the Buffer Pool Monitor

You can define the files that are to be provided as the defaults on several pages of the Buffer Pool
Monitor. You can also define the default text editor that is to be used.

To change the properties

1 From theMonitormenu, choose Properties.

The following dialog box appears. By default, a temporary directory is defined for the current
user. Example:

Operations60

Using the GUI Version of the Buffer Pool Monitor

You can change the following information:

■ The default text editor to be used for opening the text files on the pages listed below.
■ The report file to be used on the Simple Report page.
■ The log file to be used on the Logging page.
■ The analysis file to be used on the Advanced Analysis page.
■ The dump file to be used on the Advanced Analysis page.
■ The directory entry file to be used on the Directory Entries page.

2 If you want to change an entry, specify the path and file name in the corresponding text box.

Or:

Choose the corresponding Browse button to select the file from a dialog box.

3 Choose theOK button.

Global Information

When you expand theGlobal Information node in the tree, you can display statistical data of the
buffer pool and its parameters.

The following pages are available:

■ Statistics
■ Parameters

Statistics

The following page appears when you select Statistics in the tree.

61Operations

Using the GUI Version of the Buffer Pool Monitor

This page shows general information about the buffer pool anddetailed information aboutmemory,
users and objects. It shows the same information as the STATUS command of the NATBPMON utility;
see Statistical Information About the Buffer Pool for further information.

When the Automatic refresh check box is selected, the page is automatically refreshed every
second. When this check box is not selected, you have to refresh the values manually by choosing
the Refresh button.

When you choose the Clear counters button, the internal statistics of the buffer pool are reset to
zero.

Operations62

Using the GUI Version of the Buffer Pool Monitor

Parameters

The following page appears when you select Parameters in the tree.

This page shows the same information as the PARAM commandof the NATBPMONutility; seeDisplaying
the Buffer Pool Settings.

Buffer Pool Content

When you expand the Buffer Pool Content node in the tree, you can display details about the
Natural objectswhich have been loaded into the buffer pool, aswell as the userswho are accessing
them.

The following pages are available:

■ Directory Entries
■ Corpses
■ Users

Directory Entries

The following page appears when you expand theObjects node in the tree and selectDirectory
Entries.

63Operations

Using the GUI Version of the Buffer Pool Monitor

This page provides a table containing information on all currently loaded directory entries. It
shows the same information as the DIR command of the NATBPMON utility; see also Displaying the
Objects in the Buffer Pool.

The following command buttons are provided:

DescriptionCommand Button

Updates the table.Refresh directory entries

Deletes all Natural objects which are currently loaded in the buffer pool.Delete all directory entries

When the mouse is positioned over the table, you can invoke a context menu containing the fol-
lowing commands:

DescriptionCommand in Context Menu

Selects all entries in the table.Select all

Deletes the selected entries in the table.Delete

Filter options

Using a filter, you can reduce the number of directory entries that are shown in the table.

To define a filter

1 Activate the Use filter check box.

2 Specify the filter criteria in the text boxesDBID, FNR, Library, Name, Kind and/or Type.

For example, to display all programs in the libraries starting with "MY", specify "MY*" in the
Library text box, and "P" in the Type text box.

Operations64

Using the GUI Version of the Buffer Pool Monitor

3 Choose the Refresh directory entries button to update the table.

Write file

You can write all directory entries which are currently shown in the table to a file. If required, the
memory of the directory entries can also be written to this file.

To write the directory entries to a file

1 Optional. In the File name text box, specify the path to the file to which the directory entries
are to be written.

Or:

Use the button to the right of this text box to select the file from a dialog box.

Note: By default, the File name text box contains the path to the file which has been
defined in the properties.

2 Optional. If the memory of the directory entries is to be written to this file, activate theWrite
directory entry memory check box.

3 Choose theWrite file button.

The information is written to the specified file. The content of this file is automatically shown
in the text editor which has been defined in the properties.

Corpses

The following page appears when you expand theObjects node in the tree and select Corpses.

A corpse is an object which is to be deleted from the buffer pool, but is still in use. When corpses
are available, they are shown in the table.

You can use the Refresh corpses button to update the table.

65Operations

Using the GUI Version of the Buffer Pool Monitor

Users

The following page appears when you select Users in the tree.

This page shows a table containing information on the users who are currently using the buffer
pool.

You can use the Refresh users button to update the table.

Graphic Analyzer

Whenyou expand theGraphicAnalyzernode in the tree, you can display graphical representations
of the statistical numbers and a direct view onwhat is taking place inside the buffer pool memory.

The following pages are available:

■ Line Graph
■ Bar Chart
■ Memory Usage

Line Graph

The following page appears when you expand the Statistics Charts node in the tree and select
Line Graph. When you have added data sources and have started the analyzer, this page may
look as follows:

Operations66

Using the GUI Version of the Buffer Pool Monitor

The line graph and the bar chart are both working with the same statistical data sources. When
you apply one of the following actions to the line graph, this action is also applied to the bar chart,
and vice versa:

■ add, modify or delete a data source,
■ start, pause or reset the analyzer,
■ adjust the update interval.

Note: The analyzer is also used on theMemory Usage page.

To add data sources

1 Choose the Add data source button.

TheData Source dialog box appears.

67Operations

Using the GUI Version of the Buffer Pool Monitor

2 From the Data source drop-down list box, select the data source that is to be shown in the
chart.

A description is shown for the selected data source.

3 Optional. From theGrowth factordrop-down list box, select the required value for the selected
data source.

This adjusts the range on the y-axis. The current value of the data source is multiplied by that
factor to accomplish an appropriate representation on the chart.

4 Optional. If youwant to define a different color for the selected data source, choose theChoose
color button.

The standard Windows Color dialog box appears in which you can select or define another
color to be used for the data source.

5 Choose theOK button to add the data source to the table which is shown at the bottom of the
page. The data source is then available for both the line graph and the bar chart.

The table shows the color, name, description and growth factor of each data source that you
have added. It also shows the minimum, maximum and current values of the data source.

6 Optional. Repeat the above steps, if you want to add further data sources to the table.

Managing the defined data sources

1 Select a data source in the table and invoke the context menu.

The context menu contains the following commands:

Operations68

Using the GUI Version of the Buffer Pool Monitor

DescriptionCommand in Context Menu

Invokes theData Source dialog box for the selected data source. In this case,
the dialog box can only be used to define another color.

Properties

Selects all data sources in the table.Select all

Deletes the selected data source(s) in the table.Delete

2 Choose one of the above commands.

To adjust the update interval

■ From the Interval drop-down list box, select the update time (different values are provided
for updating in milliseconds, seconds or minutes).

The update interval is adjusted for the charts.

Note: The Interval drop-down list box is only available when the analyzer is inactive.

To start the analyzer

■ When all required data sources have been added to the table, choose the Start analyzer button.

This starts the analyzer in all charts. The graphical representation of the selected data sources
is painted in the line graph and in the bar chart.

To pause the analyzer

■ Choose the Pause analyzer button.

This freezes the current state of the graphical representation in all charts.

To reset the analyzer

■ Choose the Reset analyzer button.

This resets the graphical representation in all charts. For the line graph and bar chart, the
minimum, maximum and current values are reset in the table. The time base which is shown
in the line graph is also reset.

69Operations

Using the GUI Version of the Buffer Pool Monitor

Bar Chart

The following page appears when you expand the Statistics Charts node in the tree and select
Bar Chart. When you have added data sources and have started the analyzer, this page may look
as follows:

When you apply an action to the line graph, this action is also applied to the bar chart, and vice
versa. See Line Graph for detailed information on how to add, modify and delete data sources,
how to start, pause and reset the analyzer, and how to adjust the update interval.

Operations70

Using the GUI Version of the Buffer Pool Monitor

Memory Usage

The following page appears when you selectMemory Usage in the tree.

This chart simply shows the structure of the buffer pool memory. It shows allocated and free
memory.

When the analyzer is active for a line graph or bar chart, it is also active on this page, and vice
versa. See Line Graph for detailed information on how to start, pause and reset the analyzer, and
how to adjust the update interval.

Reports

When you expand the Reports node in the tree, several pages are available. They can be used to
write certain types of information about the buffer pool into a file.

The following pages are available:

■ Simple Report
■ Logging

71Operations

Using the GUI Version of the Buffer Pool Monitor

■ Advanced Analysis

Simple Report

The following page appears when you select Simple Report in the tree.

You canwrite a report which contains information on the data sources that you select on this page.

To select the data sources and write the report

1 Select one or more data sources in the Available data sources list box.

2 Choose the >> button.

The selected data sources are moved to the Selected data sources list box.

Note: If you have accidentallymoved thewrong data source to theSelected data sources
list box, you can move it back to the Available data sources list box by choosing the
<< button.

3 Optional. In the Report file text box, specify the path to the file to which the report is to be
written.

Operations72

Using the GUI Version of the Buffer Pool Monitor

Or:

Choose the Browse button to select the file from a dialog box.

Note: By default, the Report file text box contains the path to the file which has been
defined in the properties.

4 Choose theWrite report button.

The report is written to the specified file. The content of this file is automatically shown in
the text editor which has been defined in the properties.

Logging

The following page appears when you select Logging in the tree.

73Operations

Using the GUI Version of the Buffer Pool Monitor

The upper part of this page contains the same information as the Simple Report page. The only
difference is that a different log file is used by default.

In addition to selecting the data sources in upper part of this page, you can decide whether the
log file is to be written immediately (manually) or whether it is to be scheduled for a specific time
range.

To start the logging process manually

1 Select all data sources and (optionally) the log file as described for the Simple Report page.

2 From the Interval drop-down list box, select the interval which determines how often the log
information is to be written to the file.

3 Choose the Start now button to start writing information to the log file.

A status message indicating the number of done circles and the elasped time is shown at the
bottom of the Log control group box.

4 Choose the Stop button to stop writing information to the log file.

When the logging process has been stopped, the content of the log file is automatically shown
in the text editor which has been defined in the properties.

To schedule the log process for a specific time range

1 Select all data sources and (optionally) the log file as described for the Simple Report page.

2 From the Interval drop-down list box, select the interval which determines how often the log
information is to be written to the file.

3 Specify a start date and time.

4 Specify a stop date and time.

5 Choose the Start schedule button.

A status message is shown at the bottom of the Log control group box. It indicates the time
that is to elapse until the log process is started. When the start time is reached, a different
status message is shown which indicates the number of done circles and the elasped time.

Note: You can choose the Stop button to cancel the schedule before the specified start
time.

When the stop time is reached (or when you choose the Stop button after the start time has
been reached), the content of the log file is automatically shown in the text editor which has
been defined in the properties.

Operations74

Using the GUI Version of the Buffer Pool Monitor

Advanced Analysis

The followingpage appearswhen you selectAdvancedAnalysis in the tree. It provides information
for the Software AG support team.

Important: Do not use this page unless you are requested to do so by Software AG Support.

75Operations

Using the GUI Version of the Buffer Pool Monitor

76

8 Using theCommandLine Version of theBuffer PoolMonitor

(NATBPMON)
■ Invoking the NATBPMON Utility .. 78
■ NATBPMON Commands ... 78
■ Displaying the Objects in the Buffer Pool .. 80
■ Specifying a Pattern ... 81
■ Displaying the Buffer Pool Settings ... 82
■ Statistical Information About the Buffer Pool ... 82

77

See alsoNatural Buffer Poolwhich provides general information on the buffer pool and explains
how to start the buffer pool.

Caution: This utility should not be generally accessible to all users of Natural, because its
use can cause damage to the work of other users of the buffer pool.

Invoking the NATBPMON Utility

You can invoke the NATBPMON utility either for the default buffer pool NATBP or for another existing
buffer pool.

To invoke the NATBPMON utility

1 Invoke the Command Promptwindow of Windows.

2 Go to the Natural bin directory which contains the file natbpmon.exe.

3 If the default buffer pool NATBP is to be used, enter the following command in the Command
Prompt window:

NATBPMON

Or:

If another buffer pool is to be used, enter the following command in the Command Prompt
window:

NATBPMON BP=buffer-pool-name

The following prompt appears:

NATBPMON>

NATBPMON Commands

The following commands can be entered at the NATBPMON prompt:

Operations78

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

DescriptionCommand

This is the same as the ZERO command.CLEAR

Displays the list of corpses. A corpse is an object that has been deleted, but was still
being used in the buffer pool when its deletion took place. Once this object is no
longer used, it will automatically disappear from the list of corpses.

Note: The column cusrwhich is shownwith the DIR command indicates if an object
is being used.

CORPSES

Deletes an object from the buffer pool. All objects can be deleted from the buffer pool
by using an asterisk (*). A pattern is used to specify a collection of objects, similar to

DELETE
{pattern|[*]}

current operating systems which allow the specification of a class of files with
wildcards. For further information, see Specifying a Pattern.

Displays a directory containing all objects in the buffer pool. For further information,
see the sections Specifying a Pattern and Displaying the Objects in the Buffer Pool.

DIR
{pattern|[*]}

Used for error analysis.

Important: Do not use this command unless you are requested to do so by Software
AG Support.

DUMP

Exits the NATBPMON utility.EXIT

Exits the NATBPMON utility. This is the same as the EXIT command.FIN

Displays a list of all available commands of the NATBPMON utility.HELP

Displays the buffer pool settings. For further information, see Displaying the Buffer
Pool Settings.

PARAM

Exits the NATBPMON utility. This is the same as the EXIT command.QUIT

Shuts down the buffer pool. No newprocesseswill be able to use the buffer pool once
this command has been issued. The NATBPMON utility is able to runwith a buffer pool

SHUTDOWN

which has the shutdown status “pending”; all commands of the NATBPMON utility are
available in this case.

Note: To start the buffer pool after shutdown, you can use the utility NATBPSRV.

Displays statistical information about the buffer pool. For further information, see
Statistical Information About the Buffer Pool.

STATUS

Only available for a read-only buffer pool. Tags a read-only buffer pool as “obsolete”.
All Natural sessions attached to such a buffer pool will detach from that buffer pool
and attach to the alternate buffer pool.

SWAP

Displays a list of all users who are using the buffer pool. The following statistics are
displayed: a number that the NATBPMON utility automatically assigns to each buffer

WHO

pool user (index) and the user ID, terminal ID and process ID of the process using
the buffer pool (tid).

Writes a buffer pool object onto the disk. You are prompted to specify an index and
a file name.

Note: The column “indx” which is shown with the DIR command shows the index
numbers.

WRITE

79Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

DescriptionCommand

Resets to 0 all counters that are displayed by the STATUS command.ZERO

Displaying the Objects in the Buffer Pool

The DIR command displays a list of objects. This list contains the following information:

ExplanationColumn

A number that the NATBPMON utility automatically assigns to an object when it is loaded into the
buffer pool.

indx

The current number of users that are using an object in the buffer pool.cusr

The peak number of concurrent activations of an object in the buffer pool.pusr

The number of times an object has been activated in the buffer pool.nusg

g Specifies whether an object is being loaded into the buffer pool from the system file. Has one of
the following values:

The object is not being loaded.0

The object is being loaded.1

Specifies the size (in bytes) of an object in the buffer pool.size

The version number of the generated program.gpv

key Specifies the following information about an object:

Database ID.D

File number.F

The library in which the object is located.L

The name of the object. Numbers and the at sign (@) indicate chunks of
FILEDIR.SAG for the currently loaded library.

N

The kind of object (G=generated object module; S=source; D=part of
FILEDIR.SAG; R=resource).

K

The object type (which is blank when D is shown in the K field).T

When the DIR command is issued, all objects in the pool will be displayed in a notation similar to
the following:

Operations80

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

indx: index of the element
cusr: current number of concurrent users
pusr: peak number of concurrent users
nusg: number of usages
g : set if object is generating
gpv : version of generated program

indx | cusr | pusr | nusg | g | size | gpv | key
-----+------+------+--------+-----+--------+-------+---
1 | 0 | 1 | 4 | 0 | 920 | | (D=99 F=101 L="DEMO" N="SEL-MAP" K='G' T='M')
2 | 1 | 7 | 2 | 0 | 3096 | | (D=99 F=101 L="DEMO" N="EMWND" K='G' T='P')
3 | 4 | 9 | 4 | 0 | 604 | | (D=99 F=101 L="DEMO" N="HDR" K='G' T='P')
4 | 2 | 3 | 7 | 0 | 412 | | (D=99 F=101 L="RPA" N="MMUPROG1" K='G' T='P')
5 | 0 | 1 | 5 | 0 | 372 | | (D=99 F=101 L="RPA" N="MMUPROG2" K='G' T='P')
6 | 0 | 5 | 4 | 0 | 372 | | (D=99 F=101 L="RPA" N="MMUPROG3" K='G' T='P')

Specifying a Pattern

Apattern can be specifiedwith the commands DIR and DELETE. The examples in this section apply
to the DIR command.

To select some objects, it is possible to restrict the values of certain key fields by specifying a
matching pattern expression.

To restrict the allowed field values of a given field, the following pattern notation must be used:

name=expression

You can specify multiple patterns by separating them with a comma.

The specified patterns must all match their corresponding fields in order to accept the entire key.

The expression accepts the specification of the wildcard characters "*" and "?".

The character "*" matches any or no occurrences of a sequence of characters, and the wildcard
character "?" matches exactly one specific character.

Examples

To select all objects of type P in the sample above, the following command would be used:

DIR T=P

To select all programs in the demo library, the following command would be used:

DIR T=P, L=DEMO

To select all objects containing an M in their name, the following command would be used:

DIR N=*M*

81Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Displaying the Buffer Pool Settings

The following settings are displayed with the PARAM command:

Active since: 27-JAN-2016 2:54:12, Version 8.3(837) BP version 1
Last time cleared: 27-JAN-2016 2:54:12

Bpid: NATBP
Readonly: no
Shmkey: Global\NAT83BPMEM_0x18371111008
Semkey: Global\NAT83BPMEM_0x18371111008
Memsize: 104857600
Maxusers: 20

Buffer pool ID.Bpid

Indicates whether this is a special buffer pool which only allows read access.Readonly

Unique name used to create a buffer pool or to connect to a buffer pool.Shmkey

Unique name used to synchronize accesses to the buffer pool memory.Semkey

Size of the available shared memory.Memsize

Maximum number of users that can have simultaneous access to the buffer pool.Maxusers

See Buffer Pool Assignments in the Configuration Utility documentation.

Statistical Information About the Buffer Pool

The following statistics are displayed with the STATUS command:

Operations82

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Bufferpool version 9.1(911HF01) of 07/30/2018
Active since: 8-AUG-2018 8:47:01, Version 9.1(911) BP version 1
Last time cleared: 8-AUG-2018 8:47:01
Bpid: NATROBP (RO/SW)
Allocated memory (b) ...: 414340 Max users: 20
Smallest allocation: 20 Current users: 1
Largest allocation: 141660 Peak users: 1
Free memory (b): 634248 Dead users purged: 0
Smallest free: 634248
Largest free: 634248

Dormant objects: 23 Smallest object (b) ..: 108
Active objects: 0 Largest object (b) ...: 31228
Generating objects: 0 Total object sizes ...: 270132
Obsolete objects: 0

Attempted locates: 76 Stored objects: 0
Attempted fast locates .: 25 Loaded objects: 37
Successful fast locates.: 17 Activated objects: 57
Percent: 68,00 Aborted loads: 14

Dormant objects purged .: 0 Peak parallel activations: 1
Object reusage factor ..: 1,54

General Information

Version of the buffer pool including its hot fix level (enclosed in brackets as
vrsHFnn, where vrs is the buffer pool version and nn is its hot fix level).

Bufferpool version

Date and time when the buffer pool was started, the version number and the
internal version (BP version) of the buffer pool.

Active since

Date and time when the buffer pool was most recently cleared.Last time cleared

Buffer pool ID. If applicable, the read-only and swap status is shown enclosed
in brackets.

Bpid

Memory Allocation

Total of all allocated memory.Allocated memory (bytes)

Smallest amount of allocated memory.Smallest allocation

Largest amount of allocated memory.Largest allocation

Total of all free memory.Free memory (bytes)

Smallest amount of contiguous free memory.Smallest free

Largest amount of contiguous free memory.Largest free
User Statistics

Maximum number of users that can have simultaneous access to the buffer
pool. See Buffer Pool Assignments in the Configuration Utility documentation.

Max users

Number of users currently using the buffer pool.Current users

Peak number of users that have been using the buffer pool.Peak users

83Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Number of inactive users that have been deleted from the buffer pool. This
number should be close to 0 (zero). An increment of this number indicates that

Dead users purged

entries for buffer pool users (i.e. Natural sessions) were canceled or killed
unconditionally. Each time an entry for such a user is identified by the buffer
poolmanager, this number is incremented and cleanup is performed to remove
residuals which have been left in the buffer pool by a canceled session.

Object Use Statistics

Number of available, but inactive objects. These objects are in the buffer pool,
but are not being used. They are available for later use and will become active
objects as soon as a buffer pool user requests their availability.

Dormant objects

Number of active objects. These objects are currently in use by one or more
buffer pool users.

Active objects

Number of objects that are currently being loaded into the buffer pool. These
objects will become available as soon as the load operation completes.

Generating objects

Number of objects that are to be deleted from the buffer pool, but are still being
used. These objects can be displayed by using the CORPSES command. An

Obsolete objects

obsolete object is removed from the buffer pool as soon as all users who
activated this object have released this object. In a production environment,
this number should be 0 (zero). A value other than zero indicates that objects
were deleted either using the DELETE command of NATBPMON or became
obsolete because new objects were created (for example, due to a CATALOG
command).

Object Size Statistics

Size of smallest object in the buffer pool.Smallest object (bytes)

Size of largest object in the buffer pool.Largest object (bytes)

Total size of all objects in the buffer pool.Total object sizes
Locate Statistics

Number of successful and failed object locates. This number tells you how
many times the buffer poolmanagerwas asked to locate an object in the buffer
pool.

Attempted locates

Number of attempted activationswith known slot. This is the number of object
activations when the former location of an object was known. It is highly

Attempted fast locates

probable that an object can be found in the same place in the buffer pool when
it is reactivated.

Number of successful fast locates.Successful fast locates

Percentage of successful fast locates.Percent
Object Loading Statistics

The number of objects stored in the buffer pool. This is the number of objects
that were stored into the buffer pool and which were not loaded from the
system file.

Stored objects

The number of objects loaded from the system file. Each time an object is not
found in the buffer pool, it is loaded from the system file. This number is
increased each time an object is successfully loaded into the buffer pool.

Loaded objects

Operations84

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

The number of activated objects. Activation is the process ofmarking an object
which is found in the buffer pool as “in use” by a buffer pool user.

Activated objects

The number of load operations that were aborted due to memory shortages
within the buffer pool, or due to an errorwhen loading an object into the buffer
pool. This number should not vary in a noticeable way.

Aborted loads

General Loading Statistics

The number of unused objects deleted from the buffer pool to make room for
newly loaded ones.

Dormant objects purged

Themaximumnumber of parallel activations of one of the objects in the buffer
pool.

Peak parallel activations

Average number of times an object was reactivated. This number is the ratio
of the number of object activations to the number of objects loaded into the
buffer pool.

Object reusage factor

85Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

86

9 Natural in Batch Mode

■ What is Batch Mode? ... 88
■ Starting a Natural Session in Batch Mode ... 88
■ Terminating a Natural Session in Batch Mode ... 89
■ Using Natural in Batch Mode ... 89
■ Sample Session for Batch Mode ... 91
■ Batch Mode Detection .. 94
■ Batch Mode Restrictions ... 94
■ Hints for Using Natural Maps and Dialogs in Batch Mode .. 95

87

This chapter contains special considerations that apply when running Natural in batch mode.

What is Batch Mode?

Natural distinguishes between two processing modes:

■ interactive mode (with Natural Studio)
■ batch mode

Themain difference between these twomodes is that in interactivemode, the commands and data
are input by the user by means of the keyboard and the output is displayed on a screen. In batch
mode, input is read from a file and output is written to a file - without user interaction.

WhenNatural is run as a batch job, no interaction betweenNatural and the personwho submitted
the batch job is necessary. The batch job consists of programs that are executed sequentially and
that receive sequential input data.

Batch mode is useful for mass data processing on a regular basis.

Starting a Natural Session in Batch Mode

Batch mode is activated with the parameter BATCHMODE.

To start a Natural session in batch mode

1 Start Natural with the dynamic parameter BATCHMODE as shown below:

nderun BATCHMODE

or

natural BATCHMODE

nderun.exe starts the runtime version of Natural. natural.exe starts the development version of
Natural. Other than natural.exe, nderun.exe does not start plug-ins. Plug-ins are not needed
when running Natural in batch mode. It is therefore recommended to use nderun.exe since
this prevents errors due to plug-in activation failures.

The above call (where only the BATCHMODE parameter is specified) assumes that the required
input and output channels have already been defined in theConfigurationUtility. For inform-
ation on the input and output channels, seeUsingNatural in BatchMode later in this section).
For information on the batch-mode-relevant profile parameters in the parameter file, see Batch
Mode in the Configuration Utility documentation.

Operations88

Natural in Batch Mode

It is also possible to add the required input and output channels as dynamic parameters to
the above call. This is illustrated in Sample Session for Batch Mode later in this section. Any
input and output channels that are specified as dynamic parameters with the above call
override the channel definitions in the parameter file.

2 Check the filewhich has been defined as the output channel. At its end, this file should contain
the message that your session has terminated normally.

Terminating a Natural Session in Batch Mode

A Natural session in batch mode is terminated when one of the following is encountered during
the session:

■ the system command FIN in the batch input file, or
■ a TERMINATE statement in a Natural program which is being executed.

Note: When an end-of-input condition occurs in the batch input file, the batch session is
also terminated. In this case, the file which has been defined as the output channel contains
a message which indicates an unexpected end.

Using Natural in Batch Mode

To start a Natural session in batch mode you have to specify the dynamic parameter BATCHMODE.
In addition, input and output channels have to be defined as described below.

Important: The input channels CMSYNIN and/or CMOBJIN and the output channel CMPRINT are
always required for batch mode.

The following topics are covered below:

■ Input and Output Channels

89Operations

Natural in Batch Mode

■ Code Pages for the Input and Output Files

Input and Output Channels

The following parameters are available for batch mode:

DescriptionParameter

Defines the batch input file which contains the Natural commands and (optionally) data to be
read by INPUT statements during execution of Natural programs.

CMSYNIN

Defines the batch input file which contains the data to be read by INPUT statements. This data
can alternatively be placed in the file definedwith the parameter CMSYNIN, immediately following
the relevant RUN or EXECUTE command.

CMOBJIN

Defines the batch output file for the output resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

CMPRINT

Defines an output file for additional reports referenced by anyNatural program executed during
the session. nn is a two-digit decimal number in the range from 01 to 31 which corresponds to
the report number used in a DISPLAY, PRINT or WRITE statement.

CMPRTnn

Defines a work file referenced by any Natural program executed during the session. nn is a
two-digit decimal number in the range from 01 to 32 which corresponds to the number used in
a READ WORK FILE or WRITE WORK FILE statement.

CMWRKnn

Used to logmessages that could not bewritten to the batch output file definedwith the parameter
CMPRINT. It is recommended to enable NATLOG in batch mode.

NATLOG

Code Pages for the Input and Output Files

The following parameters are used to specify the code pages in which the input files are encoded
and in which the output file shall be encoded.

DescriptionParameter

Specifies the code page inwhich the batch input file for commands is encoded. This file is defined
with the parameter CMSYNIN.

CPSYNIN

Specifies the code page in which the batch input file for data is encoded. This file is definedwith
the parameter CMOBJIN.

CPOBJIN

Specifies the code page in which the batch output file shall be encoded. This file is defined with
the parameter CMPRINT.

CPPRINT

Encoding for CMSYNIN and CMOBJIN:

■ If a code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using this code page.

■ If no code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using the default code page specified in the Natural parameter
CP.

Operations90

Natural in Batch Mode

■ If no code page is specified in the Natural parameter CP, it is assumed that the data in the input
file is encoded using the current system code page.

Encoding for CMPRINT:

■ If a code page is specified for the output file CMPRINT, the output data will be encoded using
this code page.

■ If no code page is specified for the output file CMPRINT, the output data will be encoded using
the default code page specified in the Natural parameter CP.

■ If no code page is specified in the Natural parameter CP, the output data will be encoded using
the current system code page.

If the encoding/decoding fails (for instance if a character is written to CMPRINT that is not contained
in the code page used to encode the file), the batch job terminates with a startup error 42 (batch
mode driver error) that specifies the file on which the encoding/decoding error occurred.

Note that it is possible in particular to specify UTF-8 as code page in each of these parameters.
This allows for reading and writing Unicode data encoded in UTF-8.

Sample Session for Batch Mode

This example demonstrates how to start Natural in batch mode. A simple Natural program is ex-
ecuted and data items are taken from the batch input file. After the items are processed with the
INPUT statement, a DISPLAY statement follows,whichwrites the data to the batch output file. Then,
Natural terminates.

This example uses the program RECCONTwhich is stored in the library SYSEXBAT.

Note: See the text A-README in the library SYSEXBAT for information on the objects that are
stored in this library.

The sample session is invoked with the following call:

natural BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt NATLOG=ALL

Note: This call assumes that all files can be found in the current directory and that the output
is written to this directory. If the files are located in different directories or if the output is
to be written to a different directory, you have to specify the path.

The parameters in the above call are described below:

BATCHMODE
The parameter BATCHMODE enables batchmode and sets the value of the systemvariable *DEVICE
to BATCH.

91Operations

Natural in Batch Mode

CMSYNIN=cmd.txt
The batch input file cmd.txt is a text file which is stored in your file system. The content of this
file is shownbelow. It containsNatural system commands for logging on to the library SYSEXBAT,
executing the Natural program RECCONT, and terminating the Natural session.

LOGON SYSEXBAT
EXECUTE RECCONT
FIN

The Natural program RECCONT has the following content:

DEFINE DATA
LOCAL

1 #firstname (A10)
1 #lastname (A10)

END-DEFINE
INPUT (IP=OFF AD=M) #firstname #lastname
DISPLAY #firstname #lastname
END

CMOBJIN=data.txt
The INPUT statement in the program RECCONT uses the data which is defined in the batch input
file data.txt. This is a text file which is stored in your file system. The content of this file is
shown below.

Ben %
Smith

Note: The percent character (%) indicates that the information continues in the next line.

CMPRINT=out.txt
The DISPLAY statement in the program RECCONTwrites the data to the batch output file out.txt
which is created in your file system. The content of this file is shown below:

NEXT LOGON SYSEXBAT
Logon accepted to library SYSEXBAT.
NEXT EXECUTE RECCONT

DATA Ben %
DATA Smith
Page 1 25.04.05 13:39:09

#FIRSTNAME #LASTNAME
---------- ----------

Ben Smith
NEXT FIN
NAT9995 Natural session terminated normally.

Operations92

Natural in Batch Mode

NATLOG=ALL
When you invoke the sample session with the above call, a log file is created with contains all
types of messages (which also includes the names of the batch input and outfile files). The log
file is normally created in Natural's temporary directory which is defined in the local config-
uration file. See also the description of the NATLOG parameter.

The image below illustrates the different ways in which Natural reads input and writes output in
batch mode.

As shown in the above graphic, you can proceed in one of the following ways:

■ CMOBJIN andCMSYNIN
Different files are used for batch input. One file contains the Natural commands and the other
file contains the data:

natural BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt

93Operations

Natural in Batch Mode

■ CMSYNIN
One file is used for batch input. It contains both the Natural commands and data:

natural BATCHMODE CMSYNIN=data.txt CMOBJIN=data.txt CMPRINT=out.txt

Note: Even though only one batch input file is used, both parameters CMSYNIN and CMOBJIN

have to be specified. Both parameters must refer to the same file.

■ CMOBJIN andSTACK
One file is used for batch input. It contains the data. The Natural commands are specified with
the profile parameter STACK:

natural BATCHMODE CMOBJIN=data.txt STACK="(LOGON SYSEXBAT; RECCONT;FIN)"

Batch Mode Detection

The system variable *DEVICE indicates whether Natural is running in batch mode or interactive
mode.

DescriptionMode

*DEVICE contains the value BATCH. This value is set by the parameter BATCHMODE.Batch mode

*DEVICE contains a value other than BATCH. In most cases, it contains the value VIDEO.Interactive mode

Example:

IF *DEVICE = "BATCH" THEN
WRITE 'This is the background task'

ELSE
WRITE 'This is the interactive session'

END-IF

Batch Mode Restrictions

When Natural is running in batch mode, some features are not available or are disabled:

■ Interactive input or output is not possible.
■ There is no mouse support.
■ No different character fonts are available.
■ Only data for an INPUT statement can be processed. Dialog input is only conditionally supported
(see Hints for Using Natural Maps and Dialogs in Batch Mode).

Operations94

Natural in Batch Mode

■ The output appearance is not GUI-like (it is character-oriented output).
■ No colors and video attributes are written to the batch output file defined by CMPRINT.
■ Filler characters are not displayed within an INPUT statement.
■ Certain Natural system commands are not executable in batch mode, and are ignored. In the
System Commands documentation, a corresponding note is provided for each system command
to which this restriction applies.

Hints for Using Natural Maps and Dialogs in Batch Mode

If an application is designed to run in batch mode as well as in interactive mode, the following
considerations should be taken into account.

Within Natural, there are two ways to read input data:

■ using a map (by using an INPUT statement or the Natural object Map),
■ using a dialog (by using the Natural object Dialog).

In batchmode, data have to be processed using an INPUT statement, because a dialog does not allow
data processing in batch mode. Terminal commands for navigating and controlling data are also
not supported by a dialog. Nevertheless, a dialog may be executed in batch mode. In this case,
however, the dialog must be altered in the following way:

■ The dialog attribute VISIBLEmust be set to FALSE.
■ Within the event AFTER-OPEN, code should be inserted to read data during batchmodeprocessing.
If Natural runs in batch mode, an INPUT statement should be coded to get the input data. For
interactive mode, the dialog attribute VISIBLE has to be set to TRUE to make the dialog visible.

Example for the AFTER-OPEN event:

IF *DEVICE EQ "BATCH" THEN
/* Batch mode processing: call a map */

INPUT USING MAP "BATCHINP" #p1 #p2 #p3

/* ... further data processing ... */

/* Close dialog immediately */
CLOSE DIALOG *DIALOG-ID
ELSE

/* Interactive mode processing: make dialog visible */
#DLG$WINDOW.VISIBLE = TRUE

END-IF

■ If there is a CLOSE event, ensure that the appropriate code does not contain any GUI actions in
batch mode.

95Operations

Natural in Batch Mode

Example for the CLOSE event:

IF *DEVICE NE "BATCH" THEN
/* ... GUI actions ... */
END-IF

Operations96

Natural in Batch Mode

10 Output Window

■ About the Output Window ... 98
■ Working in the Output Window ... 98
■ Changing the Output Window Profile ... 99
■ Using Your Own Icon for the Output Window ... 100

97

About the Output Window

In the local environment, an output window appears when a Natural program writes output to
the screen. Example:

Note: In a remote development environment, a terminal emulation window or a Natural
Web I/O Interface client appears instead of an output window. See Terminal Emulation and
Natural Web I/O Interface Client in the Remote Development Using SPoD documentation.

Working in the Output Window

A button for the output window is shown in the Windows taskbar; keep this in mind when you
minimize the output window.

The output window can be resized and moved. If the output window is smaller than the Natural
output page, scroll bars appear.

PF keys defined in aNatural program are converted to command buttons. You can either use these
command buttons or the PF keys on your keyboard.

Operations98

Output Window

Information from an input field in the Natural output can be cut or copied to the Windows clip-
board, and information from theWindows clipboard can be pasted into an input field of the output
window.

The cursor can be positioned using the mouse. Double-clicking the left mouse button simulates
the ENTER key. The system variables *CURSOR, *CURS-COL and *CURS-LINE are always set to the
current mouse position.

Windows created using the statement DEFINE WINDOW or the terminal command %W are placed into
the output window. They are moveable, sizeable, and scrollable child windows of the output
window.

The output window is automatically closed when the program terminates. It cannot be closed
manually using the standardWindows close button. If youwant to close the outputwindowbefore
the regular termination of the program, you can press ESC (provided that this feature has not been
disabled; see below).

Changing the Output Window Profile

Several options can be set for the output window. These options can either be set directly in the
output window (as described below) or inNatural Studio (see Setting the Options in the document-
ation Using Natural Studio).

To change the output window profile

1 From the control menu of the output window, choose Profile.

Note: This command is not available when the display of the profile dialog has been
disabled. In this case, the output window options can only be set in Natural Studio.

The following dialog box appears.

99Operations

Output Window

This dialog box contains the same options as theOptions dialog box of Natural Studio. There
is one exception: the following command is only available in the above dialog box since it can
only be specified for a running application:

Save current size and position
When this check box is selected, the current size and position of the output window is
saved.

2 Set all required options. For a detailed description of each option, seeOutput Window Options
in the documentation Using Natural Studio.

3 Choose the Save button to save your changes permanently.

Or:

Choose theOK button to save your changes for the current session only.

Using Your Own Icon for the Output Window

Instead of using the Natural icon for the output window, you can use your icon. This icon will be
shown in the control menu of the output window and in the Windows taskbar.

To use your own icon

1 Create an icon file (*.ico).

2 Store your icon file in a directory where it can be found by Natural.

Operations100

Output Window

Natural tries to find the icon file first in the RES subdirectory of the logon library, then in the
RES subdirectory of each steplib and then in the directory assigned to the Windows environ-
ment variable NATGUI_BMP.

3 To use your own icon file, use the following statement in your program:

SET CONTROL 'I=icon-file-name.ICO'

See also the description of the terminal command %I.

101Operations

Output Window

102

11 Natural Runtime

■ What is not Supported by Natural Runtime? .. 104
■ Porting Procedure Overview .. 105
■ Step 1: Packaging the Application on the Development Workstation ... 105
■ Step 2: Installing Natural Runtime ... 109
■ Step 3: Installing the Application on the Runtime Workstation ... 110
■ Step 4: Starting the Application on the Runtime Workstation ... 112
■ Using the Natural Runtime Startup Service ... 113

103

Natural Runtime is used to execute applications that have been written using the development
version of Natural for Windows.

This chapter tells you how to port an application from a Natural development workstation to a
Natural Runtime workstation. This porting process can be used for a first-time installation of
Natural Runtime and for Natural Runtime workstation updates.

You will also learn how to use a service for starting Natural Runtime processes.

Important: Before porting an application to a Natural Runtime workstation, ensure that all
objects have been compiled using identical Natural and Natural Runtime versions.

What is not Supported by Natural Runtime?

System Commands

The following Natural system commands are not supported by Natural Runtime:

CATALL
CATALOG
CHECK
CLEAR
COMPOPT
DEBUG
DELETE
EDIT
GLOBALS
PURGE
READ
RENUMBER
RUN
SAVE
SCAN
SCRATCH
STOW
STRUCT
SYSDDM
SYSMAIN
UNCATALOG
UNLOCK

Operations104

Natural Runtime

Editors

Natural editors are not supported by Natural Runtime.

Utilities

Natural utilities providing developer functionality are not supported by Natural Runtime.

Porting Procedure Overview

To port an application to a runtimeworkstation, the following steps (which are described in detail
later in this section) are required:

1. Package the application on the development workstation:

a. Create a collecting directory in your file system.

b. Customize the global configuration file and copy it to the collecting directory.

c. Customize the Natural parameter file and copy it to the collecting directory.

d. Copy or unload all required objects to the collecting directory.

e. Copy the contents of the collecting directory to a transfer medium (for example, to a CD).

2. Install Natural Runtime on the runtime workstation.

3. Install the application on the runtime workstation:

a. Copy the global configuration file from the transfer medium to the runtime workstation.

b. Copy the Natural parameter file from the transfer medium to the runtime workstation.

c. Copy or load the Natural objects from the transfer medium to the runtime workstation.

4. Start the application on the runtime workstation.

See also Transferring Natural Generated Programs in the Programming Guide.

Step 1: Packaging the Application on the Development Workstation

The following topics are covered below:

■ Creating a Collecting Directory
■ Customizing and Copying the Global Configuration File
■ Customizing and Copying the Natural Parameter File
■ Copying or Unloading the Objects

105Operations

Natural Runtime

■ Copying the Collecting Directory to a Transfer Medium

Creating a Collecting Directory

Use the Windows Explorer to create a new directory in the file system of the development work-
station. Use this temporary directory to collect all files which belong to the application.

Customizing and Copying the Global Configuration File

You have to create a global configuration file which contains all settings required to run your ap-
plication on the runtime workstation. To do so, you create a backup version of your current global
configuration file, make all required changes for the runtime version, copy the customized global
configuration file to the collecting directory and then restore your old global configuration file.
This is described in detail below.

To customize and copy the global configuration file

1 Use the Windows Explorer to back up the existing global configuration file.

Note: If you do not knowwhere to find the global configuration file, invoke the Config-
uration Utility, expand the Local Configuration File node and select the Installation
Assignments node. The full path and name of the global configuration file is then
shown.

2 Invoke the Configuration Utility and expand theGlobal Configuration File node.

3 Adjust the settings of the global configuration file as required for your application and save
your changes. See also the notes below.

Important: As long as the global configuration file with the settings for the runtime en-
vironment is active, you cannot work with the development version of Natural.

4 Use the Windows Explorer to copy the customized global configuration file to the collecting
directory.

5 Use the Windows Explorer to restore the backup version of the global configuration file.

Note:

■ Make sure that with every new application you are porting, the new settings are compatible
with the old settings.

Example: Your first application accesses an SQL database and the DBID entry applies to this
SQLdatabase. Your second application, which you are porting at a later date, accesses anAdabas
C database. In this case, you must add a second DBID entry for Adabas C. If you do not add a

Operations106

Natural Runtime

second entry, the new global configuration file will overwrite the SQL database's DBID and
your first application will no longer be able to access its database.

Customizing and Copying the Natural Parameter File

You have to create aNatural parameter filewhich contains all settings required to run your applic-
ation on the runtime workstation.

To customize the Natural parameter file

1 Invoke the Configuration Utility and expand the node for the required parameter file.

2 Adjust the settings of the parameter file as required for your application to run in the runtime
environment.

Ensure that the parameter file contains the name of the program to be started. The examples
below show different possibilities for this purpose.

Example 1:

Required SettingParameter

Must be set to ON so that an automatic logon is executed at the start of the Natural session.AUTO

The name of the library into which the application is to be moved.INIT-LIB

The name of the program that is to be started.STARTUP

The default user ID that is to be set when Natural is started.USER

Example 2:

Required SettingParameter

Must contain the library and the program to be started. For example:

LOGON MYLIB;EXECUTE MYAPP

STACK

3 Save the modified parameter file with the name that you want to use in the runtime environ-
ment (for example, with the name RUNPARM).

4 Use the Windows Explorer to copy the customized parameter file (which has the extension
SAG) to the collecting directory.

Note: If you do not knowwhere to find the parameter file, expand the Local Configur-
ation File node of the Configuration Utility and select the Installation Assignments
node. The location of the Natural parameter files is then listed as Path to parameter.

107Operations

Natural Runtime

Copying or Unloading the Objects

To make compiled code available with Natural Runtime, you have to copy the cataloged objects
from the Natural development environment to the runtime environment.

If the Natural application consists of complete Natural libraries, you can copy the libraries with
the copy-and-paste functionality of the Windows Explorer.

Another way for porting the objects is use the Object Handler for unloading the objects in the
Natural development environment and for loading them in the runtime environment.

To copy the objects

1 UseNatural Studio to create a new librarywhich is to contain all objects for the runtime version.

Important: If the application consists of more than one library, create a new library for
each library that is used by the application and proceed as described below.

2 Use Natural Studio to copy all cataloged objects, resources and error messages from the de-
velopment library to the new library. Do not copy the sources.

3 Use theWindows Explorer to copy the entire directory which corresponds to the new library
(including the file FILEDIR.SAG and the subdirectories GP, RES and ERR) to the collecting
directory.

Notes:

1. If you do not know where to find this directory, execute the system command SYSPROF in
Natural Studio. The Files in File System tab of the resulting dialog box shows the path to
the directory that has been created for the system file FUSER. Your new library is a subdir-
ectory of the FUSER directory; it has the same name as defined in Natural Studio.

2. You can also find out the path to the FUSER directory by using the Configuration Utility:
select the parameter file that you have created in a previous step (that is: the parameter
file that will be used to start the application in the runtime environment), expand the
Natural Execution Configuration node and select the System Files node. The path to the
FUSER directory is shown on the FUSER tab.

4 If required, rename the copied directory in in the collecting directory: enter the name of the
library that is to be used in the runtime environment.

To unload the objects

1 From the Toolsmenu, chooseDevelopment Tools > Object Handler to start the Object
Handler.

2 Start the Unload Wizard.

Operations108

Natural Runtime

3 In the first dialog of the unload wizard, select the option buttonUnload objects into Natural
work file(s).

4 In the next dialog in which you have to specify the options settings, define a Natural work
file in theUnload file text box. Thiswork filemust be located in the collecting directorywhich
you have created previously.

5 If the application uses the same library names in both environments, do not specify any in-
formation in the next dialog (which can be used to specify parameters).

However, if the application uses library names in the runtime environmentwhich are different
from those used in the development environment, select the option button Use global para-
meters, choose the Set button and set the name in the resulting dialog box.

6 In the next dialog in which you have to specify the object type, select the option buttonNat-
ural library objects.

7 In the next dialog in which you have to select the Natural library objects to unload, choose
the Details button.

8 In the resulting dialog box, specify all cataloged objects, resources and errormessages contained
in the application. Do not unload the sources: from the S/C-Kind drop-down list box, choose
Gp.

9 Proceed to the next dialog and unload the objects.

10 After a successful unload, check the work file that has been created in the collecting directory.
Use the Load Wizard to scan the work file for all objects.

Copying the Collecting Directory to a Transfer Medium

When all files in the collecting directory are ready for porting, use the Windows Explorer to copy
the contents of the collecting directory (including all subdirectories) to the transfer medium (for
example, to a CD).

Step 2: Installing Natural Runtime

Install Natural Runtime on the runtimeworkstation. See the Installationdocumentation for further
information.

Note: This step is not required when updating applications on the Natural Runtime work-
station.

109Operations

Natural Runtime

Step 3: Installing the Application on the Runtime Workstation

The following topics are covered below:

■ Copying the Global Configuration File
■ Copying the Natural Parameter File
■ Copying or Loading the Objects

Copying the Global Configuration File

Use the Windows Explorer to copy the global configuration file (in which the required DBID has
been defined) from the transfermedium to the directory on the runtimeworkstationwhich contains
the global configuration file.

Caution: An existing global configuration file will be overwritten.

Note: If youdo not knowwhere to find the global configuration file, invoke theConfiguration
Utility on the runtime workstation, expand the Local Configuration File node and select
the Installation Assignments node. The full path and name of the global configuration file
is then shown.

Copying the Natural Parameter File

Use the Windows Explorer to copy the Natural parameter file from the transfer medium to the
directory on the runtime workstation which contains the Natural parameter files.

Caution: An existing parameter file will be overwritten.

Note: If you do not know where to find the parameter files, select the Installation Assign-
ments node of the Configuration Utility as described above. The location of the Natural
parameter files is then listed as Path to parameter.

Copying or Loading the Objects

Depending on how the objects have been packaged (see Copying or Unloading the Objects), the
transfer medium contains either complete libraries or a Natural work file.

If complete libraries have been copied using theWindows Explorer, the transfer medium contains
directories with Natural library names. Each directory reflects the Natural library structure: it
contains the file FILEDIR.SAG and the subdirectories GP, RES and ERR. In this case, you have to
copy the libraries as described below.

Operations110

Natural Runtime

If the objects have been unloaded into a Natural work file using the Object Handler, the transfer
medium contains this work file. In this case, you have to load the objects using the Object Handler
as described below.

To copy the libraries

■ Use theWindows Explorer to copy the libraries (including all subdirectories) to the directory
for the FUSER system file.

Note: If you do not knowwhere to find this directory, invoke the Configuration Utility,
select the parameter file that you have copied in a previous step, expand theNatural
ExecutionConfiguration node and select the SystemFiles node. The path to the FUSER
directory is shown on the FUSER tab.

To load the objects

1 Invoke the Configuration Utility and make sure that the FUSER settings of the parameter file
NATPARM have the sameDBID and FNR as the parameter file that you have copied in a previous
step.

Note: The DBID and FNR of the FUSER are shown on the FUSER tab which is invoked
as described above.

2 From the Windows Startmenu, choose All Programs > Software AG > Tools > Natural
Runtime n.n.

Note: The Startmenu group name (by default, this is "Software AG") can be changed
during the installation.

This invokes Natural Runtime with the standard parameter file NATPARM.

3 Logon to the library SYSOBJH.

4 Execute the program MENU in the library SYSOBJH.

The Object Handler window appears.

5 In the first dialog of the loadwizard, select the option button Load objects fromNatural work
file(s).

6 In the next dialog inwhich you have to specify the options settings, define your Natural work
file in the Load file text box. This must be the work file which is located on the transfer medi-
um.

Note: If DBID and FNR of the new parameter file differ from the standard NATPARM

settings, enter the values used by the new parameter file in the next dialog (which can
be used to specify parameters): Select the option button Use global parameters and

111Operations

Natural Runtime

choose the Set button. In the resulting dialog box, select the Load Target tab and enter
the corresponding values for DBID and FNR in theLoad FUSER group box.

7 In the next dialog in which you have to specify the object type, select the option button Load
all objects from work file.

8 Proceed to the next dialog and load the objects.

9 Exit the Object Handler and then exit Natural Runtime.

Step 4: Starting the Application on the Runtime Workstation

When all required files have been copied to the runtimeworkstation, you can start your application.
It is recommended that you create a shortcut for each application. You can then define the name
of the parameter file which is required to run the application in the shortcut.

On the runtime workstation, you can start the application in different ways:

■ With naturalr.exe
The user interface, which appears when you do not specify the name of a parameter file with
the naturalr.exe command, runs invisibly in the background. For example:

"C:\SoftwareAG\Natural\Bin\naturalr.exe" PARM=file-name

where file-name is the name you have assigned to your customized Natural parameter file
(without any file extension).

The user interface becomes visible only if the application for which it was started does not ter-
minate this runtime process properly (for example, if the application does not issue a TERMINATE
statement). This user interface increases the consumption of system resources, even if it does
not appear.

■ With natrt.exe
This so-called “mini runtime” does not have a user interface that would allow the user to select
an application for execution. It requires that the name of the program that is to be started is
defined in the parameter file. For example:

"C:\SoftwareAG\Natural\Bin\natrt.exe" PARM=file-name

where file-name is the name you have assigned to your customized Natural parameter file
(without any file extension).

Themini runtime terminates as soon as all commands in the parameter file have been processed.

If a programname is not specified in the parameter file, themini runtime terminates immediately.

Operations112

Natural Runtime

When you use the mini runtime, the consumption of system resources is decreased and it is
ensured that the runtime process terminates at the end of the application processing.

Using the Natural Runtime Startup Service

When the Natural Runtime startup service has been installed and is active, it is possible to start
one or more Natural Runtime processes automatically when the PC is booted.

You can define parameter templates which are used to holdNatural parameters. It is thus possible
to start a Natural Runtime process with all parameters that are defined in the template.

A Natural Runtime process is normally used to run a Natural application. For this purpose, the
Natural Runtime process has to be started with a template in which the STACK parameter has been
defined as follows:

STACK=(LOGON library-name; program-name)

When the STACKparameter has not beendefined,Natural is startedwithout running any application.

By default, the Natural Runtime startup service is not installed. You have to install it as described
below.

The following topics are covered below:

■ Natural Runtime Startup Service Commands
■ Example: Starting a Natural Process Automatically

Natural Runtime Startup Service Commands

The file natrtsvc.exe, which is stored in the bin directory of Natural Runtime, is used to execute the
service commands.

The following service commands can be specified in theCommand Promptwindow ofWindows:

DescriptionCommand

NATRTSVC INSTALL mode Installs the Natural Runtime startup service. mode can be one of the
following:

Default. The service is installed and must be
startedmanually (eitherwith theSTART command

manual

or by starting the Software AGNatural Runtime
n.n Startup Service in Windows).

The service is installed and is automatically started
when the PC is booted.

automatic

113Operations

Natural Runtime

DescriptionCommand

Removes the Natural Runtime startup service from the system.NATRTSVC REMOVE

Starts the Natural Runtime startup service if it had not been started yet.
The service searches for previously created parameter templates forwhich

NATRTSVC START

the start parameter has been set to "yes". In addition, it starts a Natural
Runtime process with the Natural parameters which are also stored in
the template.

Starts a Natural Runtime process with the Natural parameters stored in
the specified template. If the Natural Runtime startup service has not

NATRTSVC START
template-name

been started (automatically at boot time ormanually by the user) an error
message is displayed.

Stops the Natural Runtime startup service and all Natural Runtime
processes that have been started by the Natural Runtime startup service.

NATRTSVC STOP

Stops theNatural Runtimeprocesses that have been started by theNatural
Runtime startup service with the Natural parameters stored in the
specified template.

NATRTSVC STOP
template-name

Creates a new parameter template to be started by the Natural Runtime
startup service.

NATRTSVC CREATE
template-name

Deletes the specified template from theNatural Runtime startup service.NATRTSVC DELETE
template-name

NATRTSVC SET template-name
start=mode

Defineswhether aNatural Runtimeprocesswith theNatural parameters
stored in the specified template is to be started when the Natural
Runtime startup service is started. mode can be one of the following:

A Natural Runtime process is started.yes

Default. A Natural Runtime process is
not started.

no

Stores theNatural parameters in the specified template. For validNatural
parameters, refer to the Parameter Reference. When you specifymore than

NATRTSVC SET template-name
Natural-parameters

one parameter, you have to separate the parameters with blanks. Instead
of parameters, it is also possible to specify the name of a Natural
parameter file.

Displays the startup settings and the stored Natural parameters for all
templates.

NATRTSVC SHOW

Displays the startup settings and the stored Natural parameters for the
specified template.

NATRTSVC SHOW
template-name

Displays the status of all templates, that is: whether these templates are
active or not active.

NATRTSVC STATUS

Displays the status of the specified template, that is: whether this template
is active or not active.

NATRTSVC STATUS
template-name

Operations114

Natural Runtime

Example: Starting a Natural Process Automatically

This example explains how to install the Natural Runtime startup service, create a new template
and start the corresponding Natural process each time the PC is booted.

To start a Natural process when the PC is booted

1 Invoke the Command Promptwindow of Windows.

2 Go to the Natural bin directory which contains the file natrtsvc.exe.

3 Enter the following command to install the Natural Runtime startup service:

NATRTSVC INSTALL automatic

The following information is shown:

%NATRTSVC-I: Natural n.n Startup Service (1)
%NATRTSVC-I: Natural n.n Startup Service (1) successfully installed
%NATRTSVC-I: Path of binary is C:\SOFTWAREAG\NATURAL\BIN\NATRTSVC.EXE
%NATRTSVC-I: Startup mode of Natural n.n Startup Service (1) is 'Automatic'
%NATRTSVC-I: Natural n.n Startup Service (1)

From now on, the Natural Runtime startup service will be started automatically each time
the PC is booted.

4 Enter the following command to create an empty parameter template with the name
"exa_temp":

NATRTSVC CREATE exa_temp

The following information is shown:

%NATRTSVC-I: Natural n.n Startup Service (1)
%NATRTSVC-I: New Natural instance 'exa_temp' created
%NATRTSVC-I: Natural n.n Startup Service (1)

5 Enter the following command to define that a Natural Runtime process with the Natural
parameters stored in the parameter template "exa_temp" is to be started when the Natural
Runtime startup service is started:

NATRTSVC SET exa_temp start=yes

The following information is shown:

115Operations

Natural Runtime

%NATRTSVC-I: Natural n.n Startup Service (1)
%NATRTSVC-I: Configuration successfully set
%NATRTSVC-I: Natural n.n Startup Service (1)

6 Enter the following command to store the contents of the Natural parameter file "myparm"
in the parameter template "exa_temp":

NATRTSVC SET exa_temp parm=myparm

The following information is shown:

%NATRTSVC-I: Natural n.n Startup Service (1)
%NATRTSVC-I: Configuration successfully set
%NATRTSVC-I: Natural n.n Startup Service (1)

7 Reboot your PC.

Since you have defined the automatic startup mode for the Natural Runtime startup service,
the defined Natural Runtime processes are started automatically after Windows has been
started.

8 Enter the following command to display the status of all parameter templates that are currently
defined:

NATRTSVC STATUS

The following information is shown:

%NATRTSVC-I: Natural n.n Startup Service (1)
%NATRTSVC-I: Send request to Natural n.n Startup Service (1)
%NATRTSVC-I: exa_temp is active
%NATRTSVC-I: Natural n.n Startup Service (1)

Operations116

Natural Runtime

12 Support of Different Character Sets with NATCONV.INI

■ Why is the Support of Different Character Sets Important? ... 118
■ How to Use Different Character Sets ... 118

117

The settings in the configuration file NATCONV.INI apply to the A format. For the U format, the
ICU library is used.

This chapter describes how Natural supports different character sets.

Why is the Support of Different Character Sets Important?

The support of multiple languages with different character sets represents Natural's approach
towards internationalization. It can help you when using:

■ upper-/lower-case translation of language-specific characters;
■ language-specific characters in Natural identifiers, object names and library names;
■ language-specific characters in an operand comparedwith a mask definition (seeMASKOption
in the Programming Guide).

How to Use Different Character Sets

All check, translation and classification tables used by Natural to support language-specific char-
acters reside in the configuration file NATCONV.INI. By default, this file is located in Natural's
etc directory.

You can modify NATCONV.INI to support local or application-specific character sets.

In a standard application,NATCONV.INI need not and should not bemodified, because this could
lead to serious inconsistencies, in particular if Natural objects and database data are already present.

Anymodifications ofNATCONV.INI should bewell considered and carefully performed, otherwise
problems might occur that are difficult to locate.

NATCONV.INI is subdivided in sections and subsections. The following sections are defined:

DescriptionSection

This section defines the name of the internal character set. The default is
ISO8859_1.

If you choose a different character set, subsections for this character set
must be contained in the sections described below.

CHARACTERSET-DEFINITION

This section contains the tables required for the conversion fromupper-case
to lower-case which is performed when one of the following is specified:

CASE-TRANSLATION

■ the terminal command %U,
■ the field attribute AD=T,

Operations118

Support of Different Character Sets with NATCONV.INI

DescriptionSection

■ the statement EXAMINE TRANSLATE.

This conversion is done within the internal character set. If the internal
character set is, for example, ISO8859_5, the following two subsections
must be contained in this section:

■ [ISO8859_5->UPPER]

■ [ISO8859_5->LOWER]

This section contains the tables required for the validation of identifiers
(that is, user-defined variables in source programs), object names and

IDENTIFIER-VALIDATION

library names. It contains a subsection for each defined internal character
set.

The special characters "#" (for non-database variables), "+" (for
application-independent variables), "@" (for SQL andAdabas null or length
indicators) and "&" (for dynamic source generation) can be redefined in
this section. In addition, the set of valid first and subsequent characters for
identifiers, object names and library names can be modified.

Note: When extending the set of valid characters for object names with
values greater than x7f (decimal 127), the sorting sequence of the objects
(for example, during a LIST * command) may not be in the numerical
order.

This section contains the tables required for the classification of characters,
which, for example, are usedwhen evaluating the MASK option. It contains
a subsection for each defined internal character set.

CHARACTER-CLASSIFICATION

The section CHARACTERSET-DEFINITION and each subsection contain lines which describe how
characters are to be converted and which characters are related with which attributes. These lines
are represented as follows:

line ::= key = value
key ::= name_key | range_key
name_key ::= keyword{ CHARS }
keyword ::= INTERNAL-CHARACTERSET | NON-DB-VARI | DYNAMIC-SOURCE |

GLOBAL-VARI | FIRST-CHAR | SUBSEQUENT-CHAR |
LIB-FIRST-CHAR | LIB-SUBSEQUENT-CHAR | ALTERNATE-CARET
ISASCII | ISALPHA | ISALNUM | ISDIGIT | ISXDIGIT |
ISLOWER | ISUPPER | ISCNTRL | ISPRINT | ISPUNCT |
ISGRAPH | ISSPACE

range_key ::= hexnum | hexnum-hexnum
value ::= val {, val }
val ::= hexnum | hexnum-hexnum
hexnum ::= xhexdigithexdigit | xhexdigithexdigit

Notes:

119Operations

Support of Different Character Sets with NATCONV.INI

1. If the range_key variable is specified on the left-hand side, the number of values specified on
the right-hand side must correspond to the number of values specified in the key range, unless
only one value is specified on the right-hand side, which is then assigned to each element of
the key range.

2. When the name_key variable is specified on the left-hand side and the corresponding list of
character codes does not fit in one line, it can be continued on the next line by specifying name_key
= again. You must not start the lines with leading blanks or tabulators.

Examples of Valid Lines

All characters between x00 and x1f are converted to x00.x00-x1f = x00

All characters between x00 and x7f are not converted.x00-x7f = x00-x7f

The characters x00 and x08 are converted to x00 and characters
between x01 and x07 are not converted.

x00-x08 = x00,x01-x07,x00

The attribute ISALPHA is assigned to all characters specified in
these two lines.

ISALPHA= x41-x5a,x61-x7a,xc0-xd6,xd8
ISALPHA = xd9-xf6,xf8-xff

Examples of Invalid Lines

All characters must be specified in hexadecimal format.x41 = 'A'

Hexadecimal values have to be specified in either of the following ways:0x00-0x1f = 0x00

xdigitdigit
Xdigitdigit

The number of specified values does not correspond to the number of elements in the
key range.

x00-x0f = x00,x01

Operations120

Support of Different Character Sets with NATCONV.INI

13 Natural Exit Codes

■ Natural Startup Errors ... 122

121

There are two types of Natural exit codes:

■ Startup errors, where exit codes 0 and 1 indicate success and all other exit codes indicate errors.
■ Errors generated by the TERMINATE statement, where exit codes 0 to 255 are possible.

Natural Startup Errors

The following exit codes may occur when starting Natural Studio.

Terminal Control String (TCS) capability specified in SAGtermcap or Environment Variable
NATTCHARSET.

2

Failed to initialize character conversion table.3

Error in character conversion file NATCONV.INI.4

Unable to read database assignments from global configuration file NATCONF.CFG.5

Unable to find FNAT(dbid,fnr) or FUSER(dbid,fnr). Check your configuration files.6

Cannot initialize LFILE table.7

Obsolete.10

Obsolete.11

Unable to read specified parameter file. Please verify the parameter file.12

Unable to read parameter file NATPARM.13

Storage manager initialization failed.14

End of input file (EOF) encountered while reading from STDIN.15

Unable to open buffer pool; contact the Natural system administrator.16

Unable to read buffer pool assignments from NATURAL.INI file.17

Invalid FDIC assignment.18

Invalid FNAT assignment.19

Invalid FSEC assignment.20

Invalid FUSER assignment.21

Unable to load Natural login module.22

Unable to allocate memory for local data. Reduce USIZE and/or SSIZE parameter.23

Unable to load Natural display module.24

Error loading shareable image or DLL.25,26

Security violation during start of Natural. Natural terminates.28

NAT0866 Your Natural nucleus is not a Natural Security nucleus.31

Lock manager cannot create/initialize semaphores.33

No library is accessible or present in specified FNAT/FUSER. Check system file assignments and file
attributes of FNAT and FUSER (directories and files).

34

Operations122

Natural Exit Codes

Internal wfc i/o terminal driver error.35

Internal XVT error.36

DCOM Startup error.37

Creation of runtime context failed.38

Unable to find NATDIR and/or NATVERS environment variable. If you have set the NATDIR environment
variable, please check that it does not contain invalid or whitespace characters! NATVERS should only
contain the Natural version. The path must contain a valid drive ID.

39

Natural zmodem error.40

Creation of TF table failed because there are entrieswith different database types fromolder parameter
module. Check parameter module with Natural Configuration Utility.

41

Batch mode driver error.42

Screen window size is too small.43

Exit from SQL signal handler.44

Unable to access FNAT library SYSLIB. Insufficient privilege or file protection violation.46

Unable to read PARM_PATH entry from NATURAL.INI file or directory is not accessible.47

Unable to read CONFIG_NAME entry from NATURAL.INI file or file is not accessible.48

Unable to read NATCONV entry from NATURAL.INI file or file is not accessible.50

Unable to process TMP_PATH entry from NATURAL.INI file. Path 'path' not accessible.51

Unable to read PROFILE_PATH entry from NATURAL.INI file or directory is not accessible.52

Unable to open local configuration file NATURAL.INI.53

Unrecognized option 'option' specified.59

Not enough memory to initalize internal tables.60

Execution or compilation error occured.61

Natural session with active repository already running.63

Failed to open FNAT's LIBDIR.SAG. Check presence and access protection.64

The FNAT assigned to this Natural session is out of date.65

The specified port number is already in use.67

Invalid syntax ... encountered.68

Listen on specified port failed.71

This is an evaluation copy of Natural ... It is valid until...72

The test period of this evaluation copy of Natural ... has expired. It was valid until...73

...Natural error message 'nnnn' received during startup...74

The port number is not specified.75

Wrong RPC version.76

Invalid FDDM assignment.77

The specified server session ... is not accessible.78

The port number ... exceeds upper limit (99999).79

Invalid combination of options encountered.80

123Operations

Natural Exit Codes

NDV server could not be terminated. Reason:81

Error accessing file 'NDVSERVER.PRU'.82

Error accessing file 'NDVSERVER.PRU'.83

Natural runtime startup error during context initialization.85

Invalid code page [...] specified.86

Conflicting buffer pool usage.88

Invalid Client type [...] encountered. Please use ONE, NAT or ANY.90

No connection to Natural Web I/O Interface.91

SSL/TLS could not be activated. Reason:93

Pre-loading of OpenSSL libraries failed.94

RDC environment not found.95

Failed to create RDC trace buffer.96

Invalid RDC trace buffer length.97

Failed to create RDC resource file.98

Failure on writing RDC resource file.99

Generic RDC error.100

Failed to create RDC consolidation buffer.101

Invalid RDC consolidation buffer length.102

Cannot create RES subdirectory for storage of RDC data.103

RDC resource full name (including path) too long.104

Value of dynamic parameter ITERMmust be ON or OFF.105

Terminate on error during initialization.106

Profiling with sampling not allowed if code coverage also active.107

Profiling with event trace not allowed if code coverage also active.108

Invalid ICU version (custom BS2000 code page support missing).110

Failed to attach to RDC trace buffer.120

Failed to write to RDC trace buffer.121

License check failed.122

WEBIO=ON is allowed for server sessions only.123

Note: In order to receive the return code, youmust run nderun.exe (as opposed to naturalr.exe).

Operations124

Natural Exit Codes

14 Setting Up the Entire System Server Interface

■ Prerequisites .. 126
■ Activation ... 126
■ Changing the Database ID for the Entire System Server DDMs ... 127

125

The Entire System Server Interface is required if the product Entire System Server is to be used.
The Entire System Server Interface is part of Natural and no extra installation is needed.

Additionally, Natural provides the libraries SYSNPE and SYSNPR.

SYSNPE is the Entire System Server online tutorial which is provided as a starting help for Entire
System Server users. For more information about Entire System Server, see the Entire System
Server documentation.

The library SYSNPR contains the program CHANGEDBwhich is used to change the database ID of the
Entire System Server DDMs.

Prerequisites

The Entire System Server Interface provides access to Entire System Server on z/OS, z/VSE and
BS2000 via Entire Net-Work. For full support of the Entire System Server Interface, Entire Net-
Work Version 5.8.1 or above is required on the mainframe platforms.

Activation

The Entire System Server Interface is not active if you use the standard Natural configuration
settings. The value of the Entire System Server Interface database (Natural profile parameter ESXDB)
is set to 0 by default. To use the Entire System Server Interface you have to set the value of the
parameter ESXDB to 148 using the Configuration Utility.

In the Configuration Utility, the parameter ESXDB is assigned in the parameter group Product
Configuration of a parameter file.

Tip: Locate this parameter by searching for "ESXDB". See Finding a Parameter in the Config-
uration Utility documentation for further information.

ESXDB specifies the database ID used for the DDMs of Entire System Server. This DBID does not
specify the target DBID of Entire System Server requests but tells Natural which DBID is used for
the cataloged Entire System Server DDMs. The effective Entire System Server target DBID will be
specified with the NODE field which is part of all Entire System Server DDMs.

Important: Change the value of ESXDB to 148 to run Natural with Entire System Server Inter-
face support. All Entire System Server DDMs are cataloged with DBID 148.

After startingNatural again, youmay access Entire SystemServer nodes running on themainframes
via Entire Net-Work.

Operations126

Setting Up the Entire System Server Interface

The customization of Entire System Server Interface supports themodification of the Entire System
Server DDMs only.

Changing the Database ID for the Entire System Server DDMs

The library SYSNPR contains the program CHANGEDBwhich is used to modify the database ID of all
Entire System Server DDMs. You will find all Entire System Server DDMs in the library SYSNPE.
The database ID entered as a new DBID value in the program CHANGEDBmust also be specified as
the value of the Entire System Server Interface database parameter (ESXDB) in the Configuration
Utility.

127Operations

Setting Up the Entire System Server Interface

128

II Administrating NaturalX Applications

OnWindows platforms, an application consisting of NaturalX classes can be distributed across
several processes and machines using DCOM.

This part covers the following topics:

NaturalX Servers

Activation Policies

Registration

Type Information

Configuration Overview

Security with NaturalX

DCOM Configuration on Windows

NaturalX System Registry Entries

Using Statements and Commands in a NaturalX Server Environment

OnWindows platforms, a sample application is provided in the library SYSEXNXX. For information
on how to run this application, see the text A-README in the library SYSEXNXX.

See also NaturalX in the Programming Guide.

129

130

15 NaturalX Servers

■ COM Classes and Servers .. 132
■ NaturalX Classes and Servers .. 132
■ NaturalX Servers and Natural Sessions under Windows .. 132
■ The Role of the Server ID .. 133
■ Organizing Server IDs .. 134

131

COM Classes and Servers

Each COM class must be hosted by a server process. The server process has a number of adminis-
trative and technical responsibilities, such asmaking the class and its interfaces available to DCOM
and maintaining the memory occupied by the objects created. Whenever a client requests a new
object of a certain class, DCOMcheckswhether the corresponding server process is already running.
If this is not the case, DCOM launches it and passes the request to the server. When the server
starts up, it makes its classes available to DCOM. While the server is running, it executes client
requests for creation and deletion of objects and execution of methods. When the last object
maintained by a server is deleted, the server shuts down automatically. For more detailed inform-
ation about DCOM classes and servers, please refer to the Microsoft DCOM specification.

NaturalX Classes and Servers

Classes implemented with Natural can be made accessible as DCOM classes. But with Natural, it
is not necessary to implement DCOM servers to host the classes. Instead, NaturalX itself performs
the tasks of a DCOM server. NaturalX acts as a generic DCOM server for all classes written in
Natural. The task that remains for a Natural class developer is just to implement the classes and
to assign them to a NaturalX server.

NaturalX Servers and Natural Sessions under Windows

Under Windows, each Natural session runs in its own exclusive NaturalX server process.

Operations132

NaturalX Servers

The Role of the Server ID

One of the tasks of a DCOM server is to make its classes available to DCOM during startup. But
since NaturalX acts as a generic DCOM server, it has no built-in knowledge about the classes it
shall provide. Instead, it finds the list of these classes in the system registry under the key of its
server ID. The server ID is a Natural-owned key in the system registry, keeping together all classes
that belong to a givenNaturalX server. It is an arbitrary alphanumeric string of 32 characterswhich
does not contain blanks and which is not case sensitive.

How does a NaturalX server know under which server ID it is running? The server ID is defined
with the Natural parameter COMSERVERID. This parameter is either passed to a NaturalX server as
a dynamic parameter, or it is defined in the Natural parameter file.

How are classes assigned to server IDs? Assume Natural has been started with a certain server
ID. Then every class that a user registers during this Natural session is entered into the system
registry under the current server ID.

Server IDs provide ameans of grouping classes created inNatural and assigning them to different
NaturalX server processes. The use of server IDs is, however, not compulsory: if Natural is started
without a server ID, all Natural classes are registered under the predefined server ID "Default".

133Operations

NaturalX Servers

Example

Consider the example Employees application consisting of the classes DepartmentList,
EmployeesList and Employee (this application is contained in the example library SYSEXCOM).
These three classes are to be hosted by a NaturalX server called Employees.

1. Start Natural with the desired server ID.

2. Logon to the library SYSEXCOM.

LOGON SYSEXCOM

3. Register the classes with the REGISTER command on the Natural command line.

REGISTER *

The three classes are now registered under the server ID "Employees".

Whenever an object of one of these classes is requested, DCOMwill start aNaturalX server process
with the server ID "Employees", which will then provide the classes.

Organizing Server IDs

The server ID represents the set of all classes that are made available to DCOMwhen the corres-
ponding NaturalX server is started. It is recommended that you group under one server ID those
classes that form an application from the business point of view, or that otherwise belong together
logically. Similarly, classes that are never used in the same context should be registered under
different server IDs. Another criterion for the assignment of classes to server IDs is security (see
the section Security with NaturalX). From this aspect, it makes sense to group under the same
server ID those classes for which common authorizations will be defined.

Operations134

NaturalX Servers

16 Activation Policies

■ Activation Policies on Windows Platforms ... 136
■ Setting Activation Policies ... 136
■ When to Use Which Activation Policy ... 137

135

Activation Policies on Windows Platforms

If a client makes a request to create an object of a certain class, it is DCOM's task to start a server
process that provides the class and to direct the request to this process. For Natural classes, the
responsible server process is a NaturalX server. DCOM recognizes different options that control
when a new server process is started orwhen an object is created in a server process that is already
running. For further information, see the section Registration. While registering a Natural class
with the REGISTER command, you can control which activation options DCOM shall use for this
class. NaturalX combines the different options supported by DCOM in the form of the following
three activation policies:

■ ExternalMultiple
If a Natural class is registeredwith the activation policy "ExternalMultiple", and a client requests
an object of that class, DCOM tries first to create the requested object in the current process.
Remember that the client itself might at the same time be a NaturalX server and might provide
the class itself. If the current process is not a server for the class, DCOM starts a new NaturalX
server process and creates the object in that process. If a second object of the same class is created
later, this object is also created in that server process. This means that the same server process
can contain several objects of the class.

■ ExternalSingle
If a Natural class is registered with the activation policy "ExternalSingle", DCOM starts a new
NaturalX server process each time an object of this class is created. One server process can
contain only one object of the class.

■ InternalMultiple
If aNatural class is registeredwith the activation policy "InternalMultiple", DCOMalways creates
objects of this class in the current process. The same server process can contain several objects
of the class.

The default activation policy is "ExternalMultiple". This default is defined with the Natural para-
meter ACTPOLICY and can be changed with the Configuration Utility.

Setting Activation Policies

The activation policy of a class can be set in three different ways, in the following order of preced-
ence:

■ Explicity as part of the REGISTER command.
■ In the DEFINE CLASS statement.
■ With the profile parameter ACTPOLICY.

Operations136

Activation Policies

When to Use Which Activation Policy

Non-trivial DCOM applications will mostly deal with “persistent” objects, i.e. objects stored in
databases. For such applications, some considerations concerning database access, transaction
handling and user isolation must be made. Consider the following scenario: clients A and B both
create an object of a class that is provided by a certain NaturalX server process. Assume that the
NaturalX server uses a database to load and store its objects. If both clients were served by the
same server process, they would appear to the database as one single user. This would have the
consequence that a transaction started by amethod call fromClient A can be committed or backed
out by a method call from Client B. Such interferences are obviously to be avoided.

There are two approaches to avoid this interference: either the clients do not use persistent objects,
or each of them is served by its ownNaturalX server process. Both approaches have their advantages
in different situations; for a class or application that does not access databases or other shared re-
sources, it is useful to serve several clients with a single server process. For classes that access
databases or other shared resources, it is necessary to isolate different clients in different server
processes. Hence both approaches should be possible. Activation policies give an administrator
the means to control the activation behavior for each class at registration time.

Example

This example illustrates how the various activation policies can be used. Let us consider parts of
an imaginary travel agency application. The application contains the business classes Trip, Skipper
and RoutePlanner. The Trip class represents a sailing trip to be planned; the Skipper class repres-
ents the skippers available to lead the trips. RoutePlanner is a class that determines an optimal
route for a trip. Assume that the Trip and Skipper classes use a database to read and store their
objects. The RoutePlanner class just performs some calculations on a given Trip object and does
not use a database.

Since some of the business classes use transactional access to a database, and a transaction might
span several method calls, each active client needs to be served with its own NaturalX server
process. This can be done by defining an additional class SagTours, which represents an application
session. This class can be used, for example, to keep general information about the session status,
but the main task will be to create business objects on behalf of a client.

137Operations

Activation Policies

Class SagTours

* Represents a SagTours application session.
*
define class SagTours

local using tour-ids
id clsid-sagtours

*
interface Create /* Used to create application objects. */
id iid-sagtours-create

*
method newTrip /* Creates a new Trip object. */

is trip-n
parameter
1 trip handle of object by value result

end-method

method newSkipper /* Creates a new Skipper object. */
is skip-n
parameter
1 skipper handle of object by value result

end-method
*
end-interface
*
end-class
end

This class will be registered as "ExternalSingle". Thismeans that each creation of a SagTours object
starts a NaturalX server process for the client that requested the object. A client will create a
SagTours object only once and will use its methods later to create the business objects it needs. In
order to create a Trip object, the client will call the method newTrip, which is implemented as
follows.

Method newTrip

* This method creates a new Trip object.
*
define data parameter
1 trip handle of object by value result
end-define
*
create object trip of class "Trip"
*
end

The Trip class itself will be registered as "InternalMultiple". This ensures that the Trip objects
created by themethod newTrip are created in theNaturalX server process just started for this client.

Operations138

Activation Policies

Now let us look at the class RoutePlanner.

Class RoutePlanner

* Plans optimal routes for sailing trips.
*
define class RoutePlanner

local using tour-ids
id clsid-planner

*
interface routing
id iid-planner-routing

*
method plan /* Plans a sailing trip. */

is plan-n
parameter
1 trip handle of object by value

end-method
*

end-interface
*
end-class
end

Method plan

* This method plans a sailing trip.
*
define data parameter
1 trip handle of object by value
end-define
*
* Perform some operations on the given Trip object.
*
end

This class can be registered as "ExternalMultiple". In this case, all RoutePlanner objects created
by different clients would be created in the same NaturalX server process. This does not do any
harm if the methods of this class do not access databases, or if each database transaction is fully
contained in a method (i.e. if each method subprogram ends with either a BACKOUT TRANSACTION
statement or an END TRANSACTION statement).

Now let us look at a sample client program.

139Operations

Activation Policies

Sample Client Program

define data local
sagTours handle of object
trip handle of object
planner handle of object

end-define
*
* Start the application session.
create object sagTours of "SagTours"
*
* Create a Trip object.
send "newTrip" to sagTours return trip
* Create a RoutePlanner object.
create object planner of "RoutePlanner"
* Plan the trip.
send "plan" to planner with trip
*
end

The client first creates a SagTours object. This starts a new NaturalX server process exclusively
for this client. The client then uses the SagTours object to create a Trip object in the context of this
application session. Note that the client creates the RoutePlanner object directly. This is possible
because the class is registered as "ExternalMultiple", but it is not necessary: the SagTours class
could also provide amethod for the creation of RoutePlanner objects. Afterwards it lets the business
objects do their jobs. The objects are automatically released at program end. The deletion of the
SagTours object causes the NaturalX server to shut down.

Note: This example shows only the NaturalX techniques needed to illustrate the usage of
activation policies. A real-world application would require a lot more. The classes would
use object data areas and they would surely have globally unique IDs assigned. Also para-
meter data areas would be used instead of inline parameter declarations.

Operations140

Activation Policies

17 Registration

■ Registration with Natural ... 142
■ Automatic Registration .. 142
■ Manual Registration ... 143
■ Registration Files and Type Library ... 145
■ Client Registration ... 146
■ Registration Hints .. 147

141

If a class is to be made accessible to DCOM clients, it is necessary to add some information about
the class to the system registry. DCOMclients will mostly address a classwith ameaningful name,
the so-called programmatic identifier (ProgID) as in the following example:

CREATE OBJECT #O1 OF CLASS "Employee"

For aNatural class, the class namedefined in the DEFINE CLASS statement iswritten into the registry
as a ProgID.

System registry entries map this ProgID to the globally unique ID (GUID) of the class, allowing
DCOM to uniquely locate all information about the class. Further information that is stored in the
registry includes the path and name of the responsible DCOM server, the path and name of the
type library, and interface information.

Registration with Natural

Natural classes can be registered (or unregistered) manually with the system command REGISTER
(or UNREGISTER), automatically after the class is stowed (or deleted), or by running the .reg files,
which are generated every time a class is registered.

In order to register classes, youmust have the rights tomodify the system registry and your system
environment must be able to use COM.

It is usually not advisable to change theNatural entries in the system registry directly in the registry
editor because this can lead to inconsistent registry entries.

A class is always registered for the server ID under which Natural was started.

Automatic Registration

If the profile parameter AUTOREGISTER is set to ON, a Natural class is automatically registeredwhen
it is stowed (cataloged), and unregistered automatically when it is deleted. This means that the
user can test the class directly after stowing it.

Automatic registration uses the activation policy setting defined in the WITH ACTIVATION POLICY
clause of the DEFINE CLASS statement of the class. If this clause is not specified, the setting from
the profile parameter ACTPOLICY is used.

If automatic registration is set and a class is stowed (cataloged), the class is unregistered before it
is stowed and registered after the stow has finished so that all old registry entries are removed.

Operations142

Registration

Manual Registration

The following topics are covered below:

■ The REGISTER Command
■ The UNREGISTER Command

The REGISTER Command

The system command REGISTER is used to register Natural classes. They are registered for the
server ID under which Natural was started.

ES
library-nameclass-module-name

REGISTER IM

EM**

class-module-name

This defineswhich class or classes are to be registered by specifying the appropriateNatural object
module name.

library-name

This defines which library or libraries are to be searched for the class or classes.

ES, IM or EM

This defines the activation policy, which is registered for the class or classes.

You can set one of the following parameters:

DescriptionParameter

Sets activation policy "ExternalSingle".ES

Sets activation policy "InternalMultiple".IM

Sets activation policy "ExternalMultiple".EM

The following table showswhich classeswill be registered for all possible class/library combinations:

143Operations

Registration

Library Name SpecificationClass Module Name
Specification

-*library-name

class with classmodule
name
class-module-name

all classes with the class
module name
class-module-namewhich

class with class module
name class-module-name
of library library-name

class-module-name

are found in the current step
libraries

all classes of the current
logon library are
registered

all classes which are found in
the current step libraries are
registered

all classes which are found
in the librarylibrary-name
are registered

*

If this parameter is not specified in the REGISTER command or the DEFINE CLASS statement, the
default activation policy defined in the parameter file is used.

The UNREGISTER Command

The system command UNREGISTER is used to unregister Natural classes.

[server-id]
library-nameclass-module-name

UNREGISTER
**

class-module-name

This defines which class or classes are to be unregistered by specifying the appropriate Natural
object module name.

library-name

This defines the library or libraries which are to be searched for the class or classes.

server-ID

This defines the server ID of the class or classes.

The following table shows which classes will be unregistered for all possible class/library/server
ID combinations:

Operations144

Registration

Library Name /Server ID CombinationClass NameSpecification

server-ID -
library-name

server-ID

library-name ---

all classes with the
name

all classes with
class-module-name

class with
class-module-name

class with
class-module-name

class with
class-module-name

class-module-name

class-module-namefound in the currentof libraryof libraryin the current logon
found in the currentstep libraries if theylibrary-name if it islibrary-name if it islibrary if it is
step libraries whichare registered for the

current server ID
registered for the
server server-ID

registered for the
current server ID

registered for the
current server ID are registered for the

server server-ID

all classes found in the
current step libraries

all classes found in the
current step libraries

all classes found in the
librarylibrary-name

all classes found in the
librarylibrary-name

all classes of the
current logon library

*

which are registeredwhich are registeredwhich are registeredwhich are registeredwhich are registered
for the server
server-ID

for the current server
ID

for the server
server-ID

for the current server
ID

for the current server
ID

A REGISTER or UNREGISTER system command will return an error message if class-module-name
or class-module-name and library-name are specified but either the class or library is not found.
If only an asterisk (*) is given in the REGISTER or UNREGISTER system command, no error message
is returned if no class has been registered or unregistered.

If a class without class GUIDs or interface GUIDs is specified in the REGISTER system command,
an error message will be returned. Such a class can only be used in the local Natural session.

Note: Under Natural Security, this command can only be called for a single library. This
means the library name has either to be omitted or a specific library has to be used. It is not
possible to use an asterisk (*).

Registration Files and Type Library

Registration files (.reg files) enter information in the system registry when they are executed.

Natural will automatically create registration files for the server and the client side when a class
is registered.

The server .reg file contains the same information that was entered in the system registry and the
client .reg file contains all information, which is generated for the client side. When a class is unre-
gistered, the .reg files will be deleted. If a .reg file is not to be deleted with the unregistration, the
file has to be renamed before unregistering the class because Natural deletes only files with the
default .reg file names.

The .reg files will be named classmodule_name_S.reg (for the server) and classmodule_name_C.reg
(for the client) and, to activate a different version, classmodule_name_V.reg.

145Operations

Registration

A type library is created automatically when a class is registered, and it is deleted when a class is
unregistered. A reference to the type library is also entered in the registry.

The default type library name is classmodule_name.tlb. A new name will be generated if a type
library with this name exists already.

The registration files and the type library are stored in the Natural etc directory as follows:

<install-dir>/etc/serverid/classname/v<version-number>

Example

The files for version one of a class MY.TEST.CLASS registered for the server ID SERVER01 are located
as follows:

<install-dir>/etc/SERVER01/MY.TEST.CLASS/v1

Client Registration

Natural does not enter the registration information for the clients automatically in the system re-
gistry, but creates a registration file for the client. The client registration file contains an entry
(RemoteServerName) that tells DCOM on which machine the DCOM server class can be found.
This entry is not filled from Natural. It can be entered in either of two ways:

1. The RemoteServerName can be entered in the registration files. In this case the line

"RemoteServerName"=

has to be changed to

"RemoteServerName"="server_machine_name"

After this, the registration file has to be executed on the client machine.

2. The registration file is executed first, and then the RemoteServerName is changed using the
DCOMCNFG tool or the Registry Editor (see the section DCOM Configuration on Windows).

Operations146

Registration

Registration Hints

The following points should be taken into account when registering and unregistering classes:

■ The class GUID should never be changed for an existing class: Natural displays an errormessage
if a class that is already found in the registry is registered again with another GUID. The old
class must first be unregistered in this case.

■ The same class should never be registered for more than one server ID: there is a one-to-one
relationship between the server ID and the AppID, and a class has only one AppID defined,
which means that a registration for a second server ID overwrites the AppID. Furthermore, if
the class is unregistered for one server ID, all entries of the class are removed without checking
whether it is registered for a second server.

■ Except for client registration, you should always use the Natural system commands REGISTER
and UNREGISTER to change registry entries for a class because they remove redundant registry
entries.

For example, if a client class has been registered for "server1" and a server registration file with
a registration of the same class for "server2" is run, the AppID key of the class is changed and
all references to the old AppID key are lost. So this old AppID key can never be deleted. When
a class is registered with the system command REGISTER, a check is made to see whether the
AppID has been changed, and the old AppID is removed if no other class needs it.

■ If Natural is not available on the client machine and registry entries for a Natural class are to
be removed from the system registry, you should do this with the registry editor. If Natural is
available on the client machine, it is easier to register the class first with the Natural system
command REGISTER and unregister it afterwards with the system command UNREGISTER.

■ The registration information for a class is taken from the catalogued class object, so that it is not
possible to register or unregister a class that is only available in source format.

■ If you want to register classes during a Natural session, the session must be started with the
parameters PARM and COMSERVERID only as shown below. This is because only these two para-
meters are stored in the registry key "LocalServer32". If a class is tested with other parameter
settings, there is no guarantee that it will run later when it is started from a DCOM client.

NATURAL.EXE PARM=COMPARM COMSERVERID=SERVER1

■ Usually only users with administrator rights can change the system registry. So if you receive
an error when trying to register a class, check to see whether you have the rights required to
change the registry.

■ When a Natural class is registered, some additional information is entered in the registry that
is only needed by Natural (not by DCOM). The information which is stored in the additional
registry keys is the server ID (see section NaturalX Servers), the activation policy (see section
Activation Policies) and the location (Natural class module name and library of class) of the

147Operations

Registration

class. This information is necessary, for example, if all classes of a specified server ID are to be
unregistered or to make the served classes available when Natural is started.

■ There is a one-to-one relationship between the server ID and the AppID (under
HKEY_CLASSES_ROOT/AppID) of a class. When a class is registered for a new server ID, a new
GUID - the AppID, is generated and assigned to this server ID. The AppID is used by DCOM
to group the DCOM classes. Security settings and (for client registrations) the remote machine
name are defined for an AppID, i.e. all classes, which belong to one AppID, have the same se-
curity settings (see the sections Configuration Overview and Security with NaturalX).

Operations148

Registration

18 Type Information

■ Overview ... 150
■ NaturalX and Type Information ... 150
■ Using Type Information ... 150

149

Overview

Type information is a means to completely describe a class along with all of its interfaces, down
to the names and types of the methods. It contains the necessary information about classes and
their interfaces, for example, which interfaces exist on which classes, which member functions
exist in those interfaces, and which argument those functions require.

This information is used by clients to find out details about a class and its methods, for example,
by type-information browsers to present available objects, interfaces, methods and properties to
an end user.

Another important area for using type information is the widely-used OLE automation technique
which is also used by NaturalX.

There are severalways to store type information. A commonway is generating the type information
in type library (.TLB) files.

NaturalX and Type Information

Creating Type Information

For each Natural class, a type library file is created when the class is registered.

The type library is generated in the <install-dir>/etc/<serverid>/<classname>/<version>directory
and connected to the class via an entry in the registry.

The name of the class module is used, and the .tlb extension is appended unless the type library
file name conflicts with an existing name. Then a number is attached to the class module name.

Using Type Information

Each interface defined in a Natural class is seen by clients as a dynamic interface (also called a
“dispatch interface”). Each method of an interface is seen by clients under the name defined in
the METHOD statement.

The first interface in a Natural class is marked as the default dispatch interface.

The support of type information also makes it possible to definemultiple interfaces with identical
method/property names. TheNatural client simply addresses the correspondingmethod by using
the interface name (as defined in the Natural class) as the prefix of the method name, as shown
in the following example:

Operations150

Type Information

CREATE OBJECT #O3 OF CLASS "DepartmentList"
SEND "Iterate.PositionTo" TO #O3 WITH "C" RETURN #DEPT

Natural clients use type information to find out to which interface a method or property belongs.

Note: Natural clients do not use type information at catalog time to perform syntax checks.

Data Type Conversions

The following topics are covered below:

■ Natural Data Formats to OLE Types
■ OLE Types to Natural Data Formats

Natural Data Formats to OLE Types

In order to receive data from clients or to pass data to classes written in different programming
languages, theNatural data formats are converted to so-calledOLEAutomation-compatible types.
This table shows how COM clients see the method parameters or properties of a Natural class.
For example, if a Natural class has a method parameter or a property with the format A, this is
seen by a COM client as VT_BSTR.

Automation-Compatible TypeNatural Data Format

VT_BSTRA

VT_UI1B1

VT_UI2B2

VT_UI4B4

SAFEARRAY of VT_UI1Bn (n != 1, 2, 4)

not supportedC

VT_DATED

VT_R4F4

VT_R8F8

VT_I2I1

VT_I2I2

VT_I4I4

not supportedHANDLE OF GUI

VT_DISPATCHHANDLE OF OBJECT

VT_BOOLL

VT_CYN15.4

VT_R8Nn.m (n.m != 15.4)

VT_CYP15.4

151Operations

Type Information

Automation-Compatible TypeNatural Data Format

VT_R8Pn.m (n.m != 15.4)

VT_DATET

VT_BSTRU

An array of a given Natural data format is mapped to a SAFEARRAY of the corresponding VT type.

There are, however, some special cases:

■ A variable of format Bnwith fixed length, where n is not 1, 2 or 4, or an array of such a variable,
is mapped to a one-dimensional SAFEARRAY of VT_UI1. This is for compatibility with previous
versions of Natural, where large and dynamic variables were not yet supported. Therefore,
large binary variables had to be simulated by arrays of variables of type B with fixed length.

■ A dynamic variable of format B is mapped to a one-dimensional SAFEARRAY of VT_UI1.
■ An array of dynamic variables of format B ismapped to a SAFEARRAY of variants, each containing
a one-dimensional SAFEARRAY of VT_UI1.

■ Attribute control variables are notmapped. They have nomeaning outside ofNatural. Variables
of format HANDLE OF GUI are also notmapped. There is no correspondingAutomation-compatible
type. Therefore properties of the formats Attribute control variable or HANDLE OF GUI cannot
be accessed by clients through COM/DCOM. Method parameters of these types should be
marked as optional in the parameter data area, so that clients can omit the parameters when
calling the method through COM/DCOM.

OLE Types to Natural Data Formats

This table shows how parameters or properties of an external class can be addressed by Natural.
For example, if an external class has a method parameter or property with type VT_R4, this para-
meter or property can be addressed in Natural as F4 or with a format that is MOVE-compatible to
F4.

Natural Data FormatAutomation -Compatible Type

LVT_BOOL

A or UVT_BSTR

P15.4VT_CY

TVT_DATE

HANDLE OF OBJECTVT_DISPATCH

HANDLE OF OBJECTVT_UNKNOWN

I1VT_I1

I2VT_I2

I4VT_I4

I4VT_INT

Operations152

Type Information

Natural Data FormatAutomation -Compatible Type

F4VT_R4

F8VT_R8

B1VT_U1

B2VT_U2

B4VT_U4

B4VT_UINT

A SAFEARRAY of up to three dimensions is converted into a Natural array with the same dimension
count and the corresponding format. SAFEARRAYswithmore than three dimensions cannot be used
from within Natural.

There are, however, some special cases:

■ A VT_BSTRmaps either to a Natural variable of format A or to a one-dimensional array of Nat-
ural variables of format A with fixed length. The additional dimension is then used to store
strings longer than 253 characters. This is for compatibility with previous versions of Natural,
where large and dynamic variables were not yet supported. This mapping should no longer be
used. Instead, a dynamic variable of format A should be used.

■ A SAFEARRAY of VT_BSTRsmaps either to an array of Natural variables of format Awith the same
dimension count, or to an array of Natural variables of format A with fixed length with one
more dimension. The additional dimension is then used to store strings longer than 253 characters.
This is for compatibility with previous versions of Natural, where large and dynamic variables
were not yet supported. This mapping should no longer be used. Instead an array of dynamic
variables of format A should be used.

■ A SAFEARRAY of VT_UI1 can be mapped to an array of Natural variables of format B with fixed
length that has amatching total size. This is for compatibility with previous versions of Natural,
where large and dynamic variables were not yet supported. This mapping should no longer be
used. Instead a dynamic variable of format B should be used.

153Operations

Type Information

154

19 Configuration Overview

■ Server Configuration - General Settings ... 156
■ Server Configuration - Application-Specific Settings .. 157
■ Client Configuration - General Settings .. 157
■ Client Configuration - Application-Specific Settings ... 158

155

Once all classes of an application have been registered on the client and server machines, certain
aspects of the application's behavior can be controlled and configuredwith system registry settings.
This section summarizes the relevant registry entries and theirmeaning forNaturalX applications.
For detailed background information about the registry keys and their administration, please refer
to the specific DCOM registry documentation of the appropriate platform.

The registry keys relevant in this context are maintainedwith commonly-used tools like DCOMCNFG
or the Registry Editor (REGEDIT). These tools present the registry keys in a different way. Therefore
only the names of the registry keys are mentioned here. The section DCOM Configuration on
Windows describes how to set registry keys.

Note: "HKLM" is the common short form of the registry key HKEY_LOCAL_MACHINE,
where "HKCR" stands for HKEY_CLASSES_ROOT.

Server Configuration - General Settings

This section discusses general server configuration settings.

■ The registry entry HKLM\Software\Microsoft\OLE\EnableDCOMmust be set to "Y" to enable
access to the server machine via DCOM.

■ If guests (userswho do not have their own account on the servermachine) are to be able to access
applications on the server machine, the predefined account "Guest" must be enabled in the User
Manager (Windows 2000 only).

■ The registry entries HKLM\Software\Microsoft\OLE\DefaultLaunchPermissions and
HKLM\Software\Microsoft\OLE\DefaultAccessPermissions define which users or groups are al-
lowed or not allowed to launchDCOMapplications and to access their classes. The authorizations
defined here apply for all applications for which no application-specific settings are defined.

■ The registry entryHKLM\Software\Microsoft\OLE\LegacyAuthenticationLevel controls the level
of authentication that is performed for clients that access DCOM applications on this machine.
If a NaturalX server is to be able to pass the client's user ID toNatural Security, the setting should
be at least "Connect". Choose "None" if no authentication is to take place. In this case, the Nat-
uralX server does not retrieve the client's user ID. Instead it performs each request under the
user ID under which it was launched. If this entry is defined differently on the client side and
on the server side, the stricter setting applies.

■ The registry entryHKLM\Software\Microsoft\OLE\LegacyImpersonationLevel controls howmuch
information a server may retrieve about the client, or if it may even use this information to act
in the role of the client against other servers. If a NaturalX server is to be able to pass the client's
user ID to Natural Security, the setting should be at least "Identify". The settings "Impersonate"
or "Delegate" have the same effect for a NaturalX server. Choose "Anonymous", if the server is
not to be able to retrieve the client's user ID. In this case, the server performs each request under
the user ID under which it was launched. If this entry is defined differently on the client side
and on the server side, the stricter setting applies.

Operations156

Configuration Overview

Server Configuration - Application-Specific Settings

The application-specific settings can be set up differently for each NaturalX application. But the
question is where to apply these settings. It is important to remember that all classes registered
under one NaturalX server ID form one application in the DCOM sense, and are thus assigned to
one AppID key in the registry. This is why the application-specific settings are applied under the
AppID key.

■ The registry entriesHKCR\AppID\<APPID>\LaunchPermission andHKCR\AppID\<APPID>\Ac-
cessPermission define which users or groups are allowed or not allowed to launch the DCOM
application with the specified AppID and to access its classes.

■ The registry entryHKCR\AppID\<APPID>\RunAsdefines the user account thisNaturalX server
will run when it is launched by DCOM. There are three options:
■ Interactive user:
The NaturalX server is started under the account of the user that is interactively logged in on
the server machine. This is usually not desirable but can be useful for test reasons.

■ Launching user:
The NaturalX server is started under the account of the client that creates the first object on
this server (remember that the first request for an object forces DCOM to launch the server).
This setting should be used if each client is to be served by its own server process. Obviously,
the client must have permission to launch the server.

■ This user:
The server is started under the account of a given user. This setting should be used if all clients
are to be served by the same server process. The user entered here must have permission to
launch the server.

Client Configuration - General Settings

This section discusses general client configuration settings.

■ The registry keyHKLM\Software\Microsoft\OLE\LegacyAuthenticationLevel controls the degree
of authentication that is performed for clients running on thismachinewhen they accessDCOM
applications. For a client that accesses a NaturalX server, a similar consideration to that in the
section Server Configuration - General Settings applies: only if it specifies at least "Connect",
will theNaturalX server be able to use its user ID against Natural Security. If this entry is defined
differently on the client side and on the server side, the stricter setting applies.

■ The registry keyHKLM\Software\Microsoft\OLE\LegacyImpersonationLevel controls howmuch
information a server may retrieve about the client, or if it may even use this information to act
in the role of the client against other servers. For a client that accesses a NaturalX server, a sim-
ilar consideration to that in the section Server Configuration - General Settings applies: only if

157Operations

Configuration Overview

it specifies at least "Identify", will the NaturalX server be able to retrieve its user ID and use it
against Natural Security. If this entry is defined differently on the client side and on the server
side, the stricter setting applies.

Client Configuration - Application-Specific Settings

The application-specific settings can be set up differently for each NaturalX application. But the
question is where to apply these settings. Remember that all classes registered under oneNaturalX
server ID form one application in the DCOM sense, and are thus assigned to one AppID key in
the registry. This is why the application-specific settings are applied under the AppID key.

■ The registry key HKCR\AppID\<APPID>\RemoteServerName defines on which remote machine
DCOM should start the server when a class hosted by this server is requested. If the server is
to be started locally, "Run on this computer" and no RemoteServerName must be specified.

Operations158

Configuration Overview

20 Security with NaturalX

■ Overview ... 160
■ Activation Security ... 160
■ Call Security ... 161

159

Information on how to configure NaturalX is given in the section DCOM Configuration on Win-
dows.

Overview

In a distributed environment, security is an especially important topic. A server must be sure that
no unauthorized clients use the services it provides. A client must be sure that it is connected to
the server it expects, and that the server does not misuse its (the client's) authorizations.

In the context of DCOM, two levels of security can be distinguished:

■ Activation security controlswho is allowed to launch and access the server process that provides
the class.

■ Call security controls who is allowed to use the individual methods a class provides.

In many cases, activation security may be sufficient to define authorizations. This security level
is supported by DCOM itself on the basis of Windows Security. The necessary authorizations are
maintained in the system registry. This is described in the section Activation Security.

In other cases it may be necessary to control authorizations inmore detail at the level of individual
methods. This security level cannot bemaintainedwith registry definitions. It is, therefore, provided
by NaturalX with the help of Natural Security. This is described in the section Call Security.

Activation Security

This section covers the following topics:

■ Applications
■ Authorizations using the Registry

Applications

Activation security controls who is allowed to launch and access a server process. In principle,
this could be done by defining authorizations for each individual class. For practical reasons,
however, and to reduce administration efforts, authorizations are normally maintained at the ap-
plication level. In the system registry, each application is defined by an AppID. The AppID is the
key under which the authorizations for an application are maintained. To maintain these author-
izations, each DCOM enabled platform provides the tool DCOMCNFG. This tool can be used for
NaturalX applications as well as for other DCOM applications.

In order to understand the meaning of AppIDs in NaturalX, recall for a moment how NaturalX
organizes classes to applications (see the sectionOrganizing Server IDs). With the Natural para-

Operations160

Security with NaturalX

meter COMSERVERID, a name can be given to a certain NaturalX server. When Natural is started
with a given value of COMSERVERID, all Natural classes that are registered during thisNatural session
are registered under this server ID. At the same time, they are all registered under the sameAppID
key in the system registry. This means that each different value of server-ID corresponds to a
different AppID key in the system registry.

As an example, assume Natural is running with the server ID "Employees". All classes registered
during this Natural session will then form the "Employees" application. The REGISTER command
registers them all under oneAppID key - the one that corresponds to the "Employees" application.

Authorizations using the Registry

When configuringActivation Security, the following registry keys are of interest: LaunchPermissions,
AccessPermissions,DefaultLaunchPermissions andDefaultAccessPermissions. The keysDefaultLaunch-
Permissions and DefaultAccessPermissions exist only once in the registry and define authorizations
for all applications forwhich no individual authorizations have been defined. The keys LaunchPer-
missions and AccessPermissions exist for each application (i.e. for each AppID) and define the au-
thorizations for an individual application.

Call Security

This section covers the following topics:

■ Authorizations using Natural Security
■ Security Hints and Suggestions

Authorizations using Natural Security

Call security is used to control who is allowed to use the individual methods that a class provides.
Authorizations on this level cannot bemaintained by registry definitions. Call security is therefore
provided by NaturalX with the help of Natural Security.

In order to understand how call security is achieved with Natural Security, consider how a class
inNaturalX is implemented: each class is a Natural module of type class, eachmethod is aNatural
module of type subprogram. For all Natural modules, the execution can be controlled by author-
izations defined in Natural Security. Please refer to theNatural Security documentation for further
information about how to do this.

The authorizations defined for class modules and method subprograms are evaluated whenever
a classmodule is used to create objects andwhenever amethod subprogram is executed in response
to a method call. The following rule applies: a user who is allowed to execute the class module is
allowed to create objects of that class, and a user who is allowed to execute a method subprogram
is allowed to use the corresponding method.

161Operations

Security with NaturalX

In order to perform the necessary authorization checks, a NaturalX server must know the client's
user ID. It must also be sure that the user ID is authentic. Therefore the following requirements
must be met to use call security:

■ The client must have identified itself with a logon on its local machine or on aWindows domain
server.

■ Authentication levelmust be set to at least "Connect" (either on the client or on the servermachine).
■ Impersonation levelmust be set to at least "Identify" (either on the client or on the servermachine).

If the above requirements are met, a NaturalX server that is going to process a request takes the
client's user ID and places it into theNatural system variable *USER. The request is then performed
under this user ID, including all necessary Natural Security authorization checks. After having
processed the request, the Natural system variable *USER reverts to the value that it had at the
startup of the NaturalX server.

If one of the requirements is not met, *USER remains unchanged during execution of the request.
The request is then executed under the user ID under which the NaturalX server was started.

In addition to *USER, also the system variable *NET-USER is filled during execution of a request. It
contains the user ID qualified with the domain name for clients belonging to a Windows domain
and can be used for additional application-specific security checks.

Security Hints and Suggestions

The followingpoints should be taken into considerationwhenusingNaturalXwithNatural Security:

■ In aNatural Security environment, aNaturalX servermust be startedwith theNatural parameter
AUTO=ON. This is because the authentication already takes place on the client side. The setting
should be entered in the Natural parameter file.

■ In a Natural Security environment, it is a good idea to let a NaturalX server always start under
a specific user ID. This user ID is then automatically used for all requests of unauthenticated
users, and it is up to the Natural Security administrator to define minimal authorizations for
this user ID.

■ Remember that Natural and Natural Security cannot handle user IDs which are longer than 8
characters or which contain blanks.

Operations162

Security with NaturalX

21 DCOM Configuration on Windows

■ Configuring NaturalX Servers ... 164
■ Configuring NaturalX Clients .. 174

163

This chapter describes how to configureNaturalX applications onWindows.All settings are applied
with the toolDCOMCNFG.EXEorComponent Services. Thedialog examples shown in the following
sections appear as with Component Services under Windows XP.

Configuring NaturalX Servers

To configure NaturalX servers

1 Invoke Component Services.

2 In the Properties dialog ofMy Computer, select the Default Properties tab and activate the
check box Enable Distributed COM on this computer.

3 SetDefault Authentication Level toDefault andDefault Impersonation Level to Identify.

Operations164

DCOM Configuration on Windows

This allows NaturalX servers to retrieve the client's user ID. Before executing a request, the
server will then move the client's user ID into the Natural system variable *USER in order to
let Natural Security checks run against this user ID.

4 Now set up the default security configuration.

165Operations

DCOM Configuration on Windows

In theDefault COMSecurity tab, choose Edit Default in theAccess Permissions group box.

The Access Permission dialog box appears.

5 Use the Add button to define which users and groups may access NaturalX servers.

Note: You must allow access at least to the account "SYSTEM".

In most cases youwill define a group of all users to whom youwant to allow access and enter
this group here. In the example, the built-in group "Everyone" is entered. This allows access
to every user that is defined on the server machine. If the built-in account "Guest" is enabled
in the User Manager, this setting allows access to users not defined on the server machine
(guests) as well.

Operations166

DCOM Configuration on Windows

6 In theDefault COM Security tab, choose Edit Default in the Launch Permission group box.

The Launch Permissions dialog box appears.

167Operations

DCOM Configuration on Windows

Note: You must allow launch at least to the accounts "SYSTEM" and "INTERACTIVE"
and the group "Administrators".

7 Now set up the configuration for a specific NaturalX server. Select the nodeDCOM Config
and locate yourNaturalX server in theDCOMConfig list box (in the example "Natural classes
for Employees server").

8 Select your server and choose Properties.

Operations168

DCOM Configuration on Windows

9 In the Location tab, activate the check box Run application on this computer.

169Operations

DCOM Configuration on Windows

10 In the Security tab, make sure that Access Permissions is set to Use Default and Launch
Permissions is set to Customize.

11 Choose Edit in the Launch Permissions group box to modify the application-specific launch
permissions.

Operations170

DCOM Configuration on Windows

The list LaunchPermissionwill contain at least the accounts "SYSTEM" and "INTERACTIVE"
and the group "Administrators".

12 Add the users and groups to be allowed to launch your NaturalX server. In most cases, you
will define a group of all users to whom you want to allow launch and enter this group here.
In the example, the built-in group "Everyone" is entered. This allows launch to every user
that is defined on the server machine. If the built-in account "Guest" is enabled in the User
Manager, this setting allows launch to users not defined on the server machine (guests) as
well.

171Operations

DCOM Configuration on Windows

13 In the Identity tab, define the account under which the NaturalX server will be launched.

■ If you select The launching user, a server process will be launched for each client. The
server process will be launched under the account of the client user.

■ If you select The interactive user, only one server process will be launched for all clients.

Note: This is true only for classes that have been registered in Natural as "Extern-
alMultiple". If a class is registered as "ExternalSingle", a server process is created for
each object of this class that is created.

The server processwill be launched under the account of the user that is interactively logged
in on the servermachine. If no user is currently logged in on the servermachine, this setting
behaves like The launching user.

Operations172

DCOM Configuration on Windows

■ If you select This user and select a specific user account, only one server process will be
launched for all clients.

Note: This is true only for classes that have been registered in Natural as "Extern-
alMultiple". If a class is registered as "ExternalSingle", a server process is created for
each object of this class that is created.

The server process will be launched under the specified user account.

173Operations

DCOM Configuration on Windows

Configuring NaturalX Clients

To configure NaturalX clients

1 Invoke Component Services.

2 In the Properties dialog ofMy Computer, select the Default Properties tab and activate the
check box Enable Distributed COM on this computer.

SetDefault Authentication Level toDefault andDefault Impersonation Level to Identify.

Operations174

DCOM Configuration on Windows

This allows NaturalX servers to retrieve the client's user ID. Before executing a request, the
server will then move the client's user ID into the Natural system variable *USER in order to
let Natural Security checks run against this user ID.

3 Now set up the configuration to access a specific NaturalX server.

Select the nodeDCOM Config and locate your NaturalX server in the DCOM Config list
box (in the exampleNatural classes for Employees server).

Select your server and choose Properties.

175Operations

DCOM Configuration on Windows

4 In the Location tab, activate the check boxRun application on the following computer. Enter
the name of the remote machine on which the NaturalX server is installed.

Operations176

DCOM Configuration on Windows

177Operations

DCOM Configuration on Windows

178

22 NaturalX System Registry Entries

■ Registry Entries for Servers ... 180
■ Registry Entries for Clients .. 181

179

Registry Entries for Servers

The following tables show a summary of the keys and values that are added in the system registry
of the server when a new class is registered.

The column “parent key” shows under which key the new key is created. The key which is added
is listed in the column “subkey”, and the columns “value name” and “value” show the value of
the new entry.

Note: <class_name> and <class_ID> are the name and the class GUID of the class respect-
ively. They are defined in the DEFINE CLASS statement of the class module.

The following topics are covered below:

■ Keys Needed by DCOM
■ Keys Needed by Natural

Keys Needed by DCOM

valuevalue
name

subkey
parent key (HKEY_CLASSES_ROOT...)

<class_name> "1.0"-<ProgID>
(<class_name>.1)

...

<class_GUID>-CLSID... \<ProgID>

<class name> "1.0"-<VersIdProgID>
(<class_name>)

...

<class GUID>-CLSID... \<VersIdProgID>

"Natural classes for"
<server_ID> "server"

-<APPID>... \AppId

<class_name> "1.0"-<CLSID>... \CLSID

<GUID for server>AppId<CLSID>... \CLSID

<Natural path>-LocalServer32... \CLSID \<CLSID>

<ProgID>-ProgID... \CLSID \<CLSID>

<GUID for type library>-TypeLib... \CLSID \<CLSID>

"1.0"-Version... \CLSID \<CLSID>

<VersIDProgID>-VersionIndependentProgID... \CLSID \<CLSID>

--Programmable... \CLSID \<CLSID> (applies for
Version 4.1.2 and all subsequent
releases)

--<TLID>... \TypeLib

"Natural" <class_name> "class"-1.0 <version>... \TypeLib\<TLID>

Operations180

NaturalX System Registry Entries

valuevalue
name

subkey
parent key (HKEY_CLASSES_ROOT...)

--0 (langcode)... \TypeLib\<TLID>\1.0

<type library path>win32 (platform)... \TypeLib\<TLID>\1.0\0
For every interface:

<interface name>-<IID>... \Interface

<GUID of proxy dll for
IDispatch>

-ProxyStubClsid32... \Interface\<IID>

<GUID of IDispatch>-BaseInterface... \Interface\<IID>

Keys Needed by Natural

valuevalue namesubkey
parent key (HKEY_LOCAL_MACHINE\

SOFTWARE\SoftwareAG\ Natural\Servers...)

<GUID for server>AppId<server_ID>...

--CLSID... \<server_ID>\

<Natural class module name>NatMember<CLSID>
(<class_ID>)

... \<server_ID>\CLSID

<Natural library of class module>NatLibrary<CLSID>... \<server_ID>\CLSID

"ExternalSingle" or "InternalMultiple" or
"ExternalMultiple" (see Activation
Policies)

NatContext<CLSID>... \<server_ID>\CLSID

Registry Entries for Clients

The following table shows the keys which are added in the client system registry when the client
registration file is executed:

valuevalue namesubkeyparent key

(HKEY_CLASSES_ROOT...)

<class_name> "1.0"-<ProgID>
(<class_name>.1)

...

<class GUID>-CLSID... \<ProgID>

<class_name> "1.0"-<VersIdProgID>
(<class_name>)

...

<class GUID>-CLSID... \<VersIdProgID>

<ProgID>-CurVer... \<VersIdProgID>

181Operations

NaturalX System Registry Entries

valuevalue namesubkeyparent key

(HKEY_CLASSES_ROOT...)

"Natural classes for server"
<server_ ID> "server"

-<APPID>... \AppId

has to be entered by userRemoteServerName<APPID>... \AppId

<class_name> "1.0"-<CLSID>... \CLSID

<GUID for server>AppId<CLSID>... \CLSID

<ProgID>-ProgID... \CLSID \<CLSID>

"1.0"-Version... \CLSID \<CLSID>

<VersProgID>-VersionIndependent
ProgID

... \CLSID \<CLSID>

--Programmable... \CLSID \<CLSID> (applies
for Version 4.1.2 and all
subsequent releases)
For every interface:

<interface name>-<IID>... \Interface

<GUID of proxy dll for
IDispatch>

-ProxyStubClsid32... \Interface\<IID>

<GUID of IDispatch>-BaseInterface... \Interface\<IID>

Operations182

NaturalX System Registry Entries

23 Using Statements and Commands in a NaturalX Server

Environment
■ Natural Statements .. 184
■ Natural System Commands ... 185

183

The behavior of some Natural statements and Natural system commands changes in a server en-
vironment.

Natural Statements

This section covers the following statements:

■ DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements
■ WRITE WORK FILE and READ WORK FILE Statements
■ STOP and TERMINATE Statements

DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements

■ Output to a screen (output to Report 0) is not appropriate in a server environment, and in some
cases is not possible. Therefore, in the case of an interactive I/O in the server environment, the
error NAT0723 is returned to the client. Redirecting the I/O by using the MAINPR parameter is,
of course, possible and is fully supported.

■ When output is written to a report by a method, the report is opened at the start of the method
and closed at the end. The report is not kept open between method calls to avoid interference
between clients.

WRITE WORK FILE and READ WORK FILE Statements

When you access a work file in a method, the file is opened at the start of the method and closed
at the end. The file is not kept open between method calls to avoid interference between clients.

STOP and TERMINATE Statements

■ The behavior of the TERMINATE statementmatches that of the STOP statement. Processing of return
values is not supported.

■ The STOP and TERMINATE statements behave in the same way as the ESCAPE ROUTINE statement
duringmethod execution.Method execution is terminated immediatelywithout producing any
return value.

Operations184

Using Statements and Commands in a NaturalX Server Environment

Natural System Commands

Only the following Natural commands are allowed in the server environment:

■ CATALOG

■ CLEAR

■ EXECUTE

■ LOGOFF

■ LOGON

■ READ

■ RETURN

■ RUN

■ SAVE

■ SETUP

■ STOW

From this list, the commands CATALOG, CLEAR, READ, RUN, SAVE and STOW are only allowed if the
server is running under a development Natural (natural.exe).

All commands that are not allowed will be rejected with the error NAT0082.

185Operations

Using Statements and Commands in a NaturalX Server Environment

186

	Operations
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I
	2 Using the Windows Firewall with Natural
	3 Profile Parameter Usage
	Parameter Hierarchy
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Runtime Assignment of Parameter Values

	4 System Files
	System File Structure
	System Files FNAT and FUSER
	System File FDDM
	Activating FDDM Mode
	Migrating DDMs to the System File FDDM
	Checking whether the System File FDDM is Used

	Important Information and Warnings
	The File FILEDIR.SAG
	Portable Natural System Files
	Language-dependent Objects
	Migrating Non-Portable Message Files to 64-Bit Platforms

	Using NFS to Store Natural Libraries

	5 Work Files
	Defining Work Files
	Defining Work File Names with the Configuration Utility
	Defining Work File Names with Environment Variables
	General Information
	Delimiters of Environment Variables
	Dollar Sign ($) in the File Name

	Defining Work File Names with an Application Programming Interface

	Work File Formats
	Binary Format
	ASCII Format
	Entire Connection Format
	Portable Format
	Unformatted Format
	CSV Format

	Special Considerations for Work Files with the Extension NCD

	6 Natural Buffer Pool
	General Information
	Objects in the Buffer Pool
	Resource Handling
	Multiple Buffer Pools
	Storing Objects in the Buffer Pool
	Fast Locate
	Fast Locate at Object Resume
	Fast Locate Table
	Fast Locate Table with BPSFI=ON
	Performance with BPSFI=ON
	Fast Locate Table with BPSFI=OFF
	Performance with BPSFI=OFF
	Performance in a Multi-User Environment
	Maintaining the Fast Locate Table

	Read-Only Buffer Pool
	Secondary Read/Write Buffer Pool
	Alternate Read-Only Buffer Pool
	Creating a Preload List Using the CRTPRL Utility

	Restrictions

	Setting up a Buffer Pool
	Using the Natural Buffer Pool Service
	Buffer Pool Service Commands
	Example: Starting Natural with Your Own Buffer Pool

	Using the Utility NATBPSRV for Creating the Buffer Pool
	Monitoring the Buffer Pool
	Trouble Shooting
	Problem 1

	7 Using the GUI Version of the Buffer Pool Monitor
	Starting and Terminating the Buffer Pool Monitor
	Elements of the Natural Buffer Pool Monitor Window
	Menu Bar
	Toolbar
	Tree
	Status Bar

	Disconnecting and Connecting a Buffer Pool
	Shutting Down a Buffer Pool Server
	Starting a Buffer Pool Server
	Changing the Properties of the Buffer Pool Monitor
	Global Information
	Statistics
	Parameters

	Buffer Pool Content
	Directory Entries
	Corpses
	Users

	Graphic Analyzer
	Line Graph
	Bar Chart
	Memory Usage

	Reports
	Simple Report
	Logging
	Advanced Analysis

	8 Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)
	Invoking the NATBPMON Utility
	NATBPMON Commands
	Displaying the Objects in the Buffer Pool
	Specifying a Pattern
	Displaying the Buffer Pool Settings
	Statistical Information About the Buffer Pool

	9 Natural in Batch Mode
	What is Batch Mode?
	Starting a Natural Session in Batch Mode
	Terminating a Natural Session in Batch Mode
	Using Natural in Batch Mode
	Input and Output Channels
	Code Pages for the Input and Output Files

	Sample Session for Batch Mode
	Batch Mode Detection
	Batch Mode Restrictions
	Hints for Using Natural Maps and Dialogs in Batch Mode

	10 Output Window
	About the Output Window
	Working in the Output Window
	Changing the Output Window Profile
	Using Your Own Icon for the Output Window

	11 Natural Runtime
	What is not Supported by Natural Runtime?
	System Commands
	Editors
	Utilities

	Porting Procedure Overview
	Step 1: Packaging the Application on the Development Workstation
	Creating a Collecting Directory
	Customizing and Copying the Global Configuration File
	Customizing and Copying the Natural Parameter File
	Copying or Unloading the Objects
	Copying the Collecting Directory to a Transfer Medium

	Step 2: Installing Natural Runtime
	Step 3: Installing the Application on the Runtime Workstation
	Copying the Global Configuration File
	Copying the Natural Parameter File
	Copying or Loading the Objects

	Step 4: Starting the Application on the Runtime Workstation
	Using the Natural Runtime Startup Service
	Natural Runtime Startup Service Commands
	Example: Starting a Natural Process Automatically

	12 Support of Different Character Sets with NATCONV.INI
	Why is the Support of Different Character Sets Important?
	How to Use Different Character Sets

	13 Natural Exit Codes
	Natural Startup Errors

	14 Setting Up the Entire System Server Interface
	Prerequisites
	Activation
	Changing the Database ID for the Entire System Server DDMs

	II Administrating NaturalX Applications
	15 NaturalX Servers
	COM Classes and Servers
	NaturalX Classes and Servers
	NaturalX Servers and Natural Sessions under Windows
	The Role of the Server ID
	Organizing Server IDs

	16 Activation Policies
	Activation Policies on Windows Platforms
	Setting Activation Policies
	When to Use Which Activation Policy
	Example
	Class SagTours
	Method newTrip
	Class RoutePlanner
	Method plan
	Sample Client Program

	17 Registration
	Registration with Natural
	Automatic Registration
	Manual Registration
	The REGISTER Command
	class-module-name
	library-name
	ES, IM or EM

	The UNREGISTER Command
	class-module-name
	library-name
	server-ID

	Registration Files and Type Library
	Client Registration
	Registration Hints

	18 Type Information
	Overview
	NaturalX and Type Information
	Creating Type Information

	Using Type Information
	Data Type Conversions
	Natural Data Formats to OLE Types
	OLE Types to Natural Data Formats

	19 Configuration Overview
	Server Configuration - General Settings
	Server Configuration - Application-Specific Settings
	Client Configuration - General Settings
	Client Configuration - Application-Specific Settings

	20 Security with NaturalX
	Overview
	Activation Security
	Applications
	Authorizations using the Registry

	Call Security
	Authorizations using Natural Security
	Security Hints and Suggestions

	21 DCOM Configuration on Windows
	Configuring NaturalX Servers
	Configuring NaturalX Clients

	22 NaturalX System Registry Entries
	Registry Entries for Servers
	Keys Needed by DCOM
	Keys Needed by Natural

	Registry Entries for Clients

	23 Using Statements and Commands in a NaturalX Server Environment
	Natural Statements
	DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements
	WRITE WORK FILE and READ WORK FILE Statements
	STOP and TERMINATE Statements

	Natural System Commands

