

Natural

Natural for zIIP

Version 9.1.2

October 2023

This document applies to Natural Version 9.1.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1979-2023 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software GmbH.

Document ID: NATMF-ZIIP-912-20241106

Table of Contents

Preface	v
1 About this Documentation	1
Document Conventions	2
Online Information and Support	2
Data Protection	
2 Prerequisites	5
Prerequisites for Installation and License File Requirements	6
Requirements and Restrictions for Com-plete and CICS	6
3 General Information on zIIP Processing	7
4 Natural zIIP Processing: TCBs, SRBs and Enclaves	9
TCB/SRB Switches	10
Restrictions and Limitations in SRB Mode	10
5 Monitoring zIIP Usage	11
zIIP Processing Reports Available	12
Determining the Number of zIIPs Available	12
Using SDSF ENC to Watch zIIP Usage	13
Evaluating the z/OS SMF Type 30 Records	13
6 Tuning zIIP Usage	15
CPU Time Limit - FETCH Operations	
3GL Program Calls	16
Natural Multi-Fetch Record Retrieval	16
Sort Processing - SORT Parameter	17
Print and Work File Caching	
Thread Size Specification - THSIZE Parameter	20

Preface

Natural for zIIP provides support for IBM System z Integrated Information Processors (zIIPs) available in a Natural z/OS batch, batch server, TSO, CICS, Com-plete or IMS TM environment.

Prerequisites	Requirements for zIIP support by Natural.	
General Information on zIIP Processing	Brief description of zIIP processing.	
Natural zIIP Processing: TCBs, SRBs and Enclaves	Explanations of the TCB and SRB processes and the WLM enclaves Natural requires for zIIP processing.	
Monitoring zIIP Usage	System information, reports and statistics available for controlling and evaluating zIIP-enabled Natural sessions.	
Tuning zIIP Usage	Natural parameters, statements and operating system calls that can affect zIIP usage.	

Related Topics:

- Natural Profile Parameter ZIIP
- Natural System Command ZIIP
- Support for zIIP under CICS
- Support for Natural for zIIP under Com-plete
- Installing Natural for zIIP on z/OS

1 About this Documentation

Document Conventions	. 2
Online Information and Support	
Data Protection	

Document Conventions

Convention	Description	
Bold	Identifies elements on a screen.	
Monospace font	Identifies service names and locations in the format folder.subfolder.service, APIs, Java classes, methods, properties.	
Italic	Identifies: Variables for which you must supply values specific to your own situation or	
	environment.	
	New terms the first time they occur in the text.	
	References to other documentation sources.	
Monospace font	Identifies:	
Text you must type in.		
	Messages displayed by the system.	
	Program code.	
{}	Indicates a set of choices from which you must choose one. Type only the information inside the curly braces. Do not type the { } symbols.	
1	Separates two mutually exclusive choices in a syntax line. Type one of these choices. Do not type the symbol.	
[]	Indicates one or more options. Type only the information inside the square brackets. Do not type the [] symbols.	
	Indicates that you can type multiple options of the same type. Type only the information. Do not type the ellipsis ().	

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documentation.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-community.softwareag.com. From here you can, for example:

- Browse through our vast knowledge base.
- Ask questions and find answers in our discussion forums.
- Get the latest Software GmbH news and announcements.
- Explore our communities.
- Go to our public GitHub and Docker repositories at https://github.com/softwareag and https://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal at https://empower.softwareag.com. Many services on this portal require that you have an account. If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once you have an account, you can, for example:

- Download products, updates and fixes.
- Search the Knowledge Center for technical information and tips.
- Subscribe to early warnings and critical alerts.
- Open and update support incidents.
- Add product feature requests.

Data Protection

Software GmbH products provide functionality with respect to processing of personal data according to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are documented in the respective administration documentation.

2 Prerequisites

Prerequisites for Installation and License File Requirements	6
Requirements and Restrictions for Com-plete and CICS	6

Prerequisites for Installation and License File Requirements

zIIP support by Natural requires that Natural Batch for zIIP, Natural for CICS for zIIP, Natural for Com-plete for zIIP and/or Natural for IMS for zIIP is installed at your site including an extra product license for each environment in which your Natural session runs.

You can use the LIC option of the ZIIP system command (see the *System Commands* documentation) to display and check the Natural for zIIP license file installed at your site. As an alternative, you can use the **Natural License Information** function of the SYSTP utility (see the *Utilities* documentation).

All prerequisites for installation are described in *Installing Natural for zIIP* in the *Installation for z/OS* documentation.

Requirements and Restrictions for Com-plete and CICS

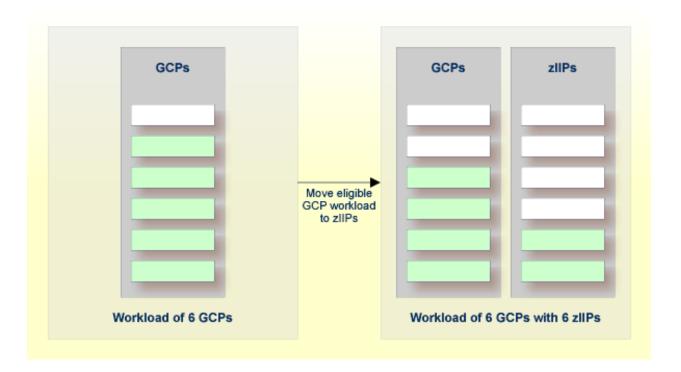
The Natural Com-plete/SMARTS Interface or Natural CICS Interface version installed at your site must support Natural for zIIP and the prerequisites for installation mentioned earlier must be fulfilled.

The requirements and restrictions described in this section depend on the version of the Natural Com-plete/SMARTS Interface or Natural CICS Interface installed.

The requirements and restrictions that apply when using Natural for zIIP under Com-plete help optimize runtime performance and reduce the number of SRB/TCB switches to a minimum:

- The Natural startup application must be cataloged with the Com-plete ULIB attribute PV (privileged) specified. For more information, see the appropriate *Com-plete* documentation.
- If the Natural profile parameter RELO is set to ON, the number of Com-plete threads should match the number of zIIP users to minimize the number of theads rolled in and out during a session. For more information, see the description of the Com-plete startup parameter THREAD-GROUPS in the *Com-plete* documentation.

3


General Information on zIIP Processing

The IBM System z Integrated Information Processor (zIIP) is a specialty engine designed to offload eligible database workload from a GCP (general central processor) to a zIIP.

Offloading workload to a zIIP helps optimize resource capacities and expand the use of a GCP for new workloads, while lowering the mainframe TCO (total cost of ownership). In contrast to the expensive GCP which may even run throttled, the zIIP is inexpensive and always runs at full speed.

For detailed information on the zIIP, refer to the appropriate IBM literature.

The simple graphic below illustrates the purpose of the zIIP:

Natural zIIP Processing: TCBs, SRBs and Enclaves

TCB/SRB Switches	10
Restrictions and Limitations in SRB Mode	10

This chapter provides information on how Natural enables zIIP support.

In general, all z/OS applications (including Natural applications) run as a TCB (task control block) process (TCB mode). However, running applications on a zIIP requires an SRB (service request block) process which must be assigned to an IBM WLM (z/OS Workload Manager) enclave. This enclave is a special WLM transaction unit that organizes several TCB and/or SRB processes which run in the same or in different regions. The WLM enclave created and used by Natural for zIIP processing is bound to a region, this means, the WLM enclave terminates when the corresponding job step terminates.

TCB/SRB Switches

The prerequisites for zIIP enablement (described in *Installing Natural for zIIP*) are checked during the initialization of a Natural session. If successful, an SRB process is started for the Natural session in parallel to the current TCB process which is placed into a wait state while the SRB continues processing the Natural session. The TCB wait state is revoked when a service call - supervisor call (SVC) or program call (PC) - is to be issued, because these calls cannot be processed in SRB mode. The TCB then continues processing while the SRB is placed into a wait state. In the Natural documentation, this procedure is called "SRB/TCB switch". When the service call has finished, the wait state of the SRB is revoked and, again, the TCB is placed into a wait state, and so on. Consequently, this is called "TCB/SRB switch". The zIIP processing reports produced by the Natural system command ZIIP (see *zIIP Processing Reports Available*) only provides information on the TCB/SRB switches. This is because the number of SRB/TCB switches is usually exactly the same as the number of TCB/SRB switches. Exception: If an abnormal termination occurs in SRB mode, z/OS automatically terminates the SRB and the TCB wait state is revoked to handle the abnormal termination. When the session continues, Natural starts a new SRB process upon the next TCB/SRB switch.

Restrictions and Limitations in SRB Mode

There are a number of restrictions and limitations for SRB processing; for example, the SRB cannot execute normal system service calls such as SVCs or PCs. These calls can only be used in TCB mode. Moreover, in SRB mode, the TCB address cannot be loaded from low core storage (in the field PSATOLD) as some applications attempt in order to access the TCB storage and other important control blocks. In SRB mode, such load techniques most likely result in an S0C4 protection exceptions because PSATOLD is zero.

Monitoring zIIP Usage

zIIP Processing Reports Available	12
Determining the Number of zIIPs Available	
Using SDSF ENC to Watch zIIP Usage	
Evaluating the z/OS SMF Type 30 Records	

This chapter provides information on how to view and control data on zIIP processing.

See also *Monitoring the Cache Usage* in the section *Print and Work File Caching*.

zIIP Processing Reports Available

You can use the Natural system command ZIIP to determine whether the current Natural session is running on a zIIP and analyze your CPU time savings by zIIP enablement.

The ZIIP command displays the number of GCPs and zIIPs available in your z/OS environment, the CPU time consumed and, optionally, a list of components that caused SRB/TCB switches: see the example reports and explanations in zIIP Processing Information and zIIP Component Switch Statistics in the System Commands documentation.

For batch processing, you can also set the keyword subparameter PRINT of the profile parameter ZIIP to print zIIP processing information automatically at the end of the session.

A report with general zIIP information and component switch statistics is also printed when your CICS or Com-plete environment is shut down, depending on the version of the Natural CICS Interface or Natural Com-plete/SMARTS Interface, respectively, installed at your site. This report is similar to the report produced by the PRINT option of the ZIIP system command. For a CICS environment, the required program definitions are described in the section *Natural zIIP Shutdown Statistics* in *Installing Natural CICS Interface* in the *Installation for z/OS* documentation.

Determining the Number of zIIPs Available

If you do not know how many zIIPs are available in your z/OS LPARs (logical partitions), you can check this with the following operator command:

```
D M=CPU
```

The following example result of this command shows that four GCPs (00 to 03) and one zIIP (+I) is running in the current LPAR, and that one additional GCP (05) and one additional zIIP (-I) are defined as spare processors.

```
D M=CPU
IEE174I 12.39.09 DISPLAY M 781
PROCESSOR STATUS
ID CPU SERIAL
00 + 0FA10E2098
01 + 0FA10E2098
02 + 0FA10E2098
03 + 0FA10E2098
04 +I 0FA10E2098
```

05 -06 - I

Using SDSF ENC to Watch zIIP Usage

If you have the z/OS SDSF (System Display and Search Facility) installed under TSO, you can use the command ENC to obtain information about all WLM enclaves currently active in your z/OS environment and their zIIP usage.

For detailed information, see the IBM literature SDSF Operation and Customization.

Calculating the CPU Time

Be aware that in the SDSF "D A" display the CPU time does not show the real values if running in a WLM enclave. You need to use the value of "ECPU Time" to evaluate the right CPU usage of your zIIP-enabled Natural session. The following definitions are quoted from the IBM z/OS SDSF documentation:

- "CPU Time" is the CPU time (TCB + SRB) for the address space, *excluding* any NP-SRB/enclave time.
- "ECPU Time" is the CPU time (TCB+SRB) for the address space, *plus* any NP-SRB/enclave time; that is, CPU used on behalf of this address space the SDSF definition of "CPU Time".

Note: Com-plete UQ A and Natural ISPF only document the "CPU Time", there is no "ECPU Time" value available.

Evaluating the z/OS SMF Type 30 Records

You can evaluate the SMF type 30 records to obtain statistics about zIIP processing per address space. These records contain several fields with various job step CPU time values such as TCB, SRB, WLM enclave and zIIP times.

For detailed information, see the IBM literature *z/OS MVS System Management Facilities (SMF)*.

6 Tuning zIIP Usage

CPU Time Limit - FETCH Operations	
3GL Program Calls	
Natural Multi-Fetch Record Retrieval	
Sort Processing - SORT Parameter	
Print and Work File Caching	
Thread Size Specification - THSIZE Parameter	

This chapter contains suggestions to avoid unnecessary SRB/TCB switches and reduce CPU overhead for zIIP support and to improve the offload to the ZIIP.

Note: You can use the **Component Switch Statistics** (see the Natural system command ZIIP) to view the list of components that cause TCB switches.

CPU Time Limit - FETCH Operations

The Natural profile/session parameter MT (maximum CPU time) has the effect that each time Natural starts a program at Level 1, a z/OS timer service request must be executed. This forces Natural to switch off from the zIIP. The default setting is MT=60 to prevent endless loops in Natural applications. Consequently, each time Natural falls back to a program level of 0, the timer is restarted. This also happens with the FETCH statement: each time a program is fetched, the timer must be reset.

The default setting is MT=60 to prevent endless loops in Natural applications. Software AG recommends to set MT=0 when running a session that executes many FETCH statements. This will prevent Natural from using timer macros and avoids unnecessary SRB/TCB switches.

3GL Program Calls

Natural needs to switch off zIIP usage each time a 3GL program is executed, because Natural does not know whether any z/OS service calls are issued in the external subprogram(s).

In addition, Natural is only allowed to offload Natural-written code to a zIIP. User-defined code written in any other language must not be offloaded.

Calling 3GL programs within a Natural loop, forces many SRB/TCB switches, and therefore much CPU overhead. A high share of 3GL code will reduce the offload capabilities of Natural sessions. Such sessions are not suitable for running zIIP-enabled.

Natural Multi-Fetch Record Retrieval

Executing an Adabas access statement in Natural, causes at least one WAIT SVC call and forces Natural to switch off from the zIIP. You can reduce the number of switches by exploiting the multifetch capabilities of Natural:

	Without Multi-Fetch	With Multi-Fetch
Records read	100,000	100,000
Number of switches into SRB mode	100,000	12,500
Total enclave CPU time	5,389 ms	958 ms

For further information on the multi-fetch feature, see *Multi-Fetch Clause*, in *Accessing Data in an Adabas Database* in the *Programming Guide*.

Sort Processing - SORT Parameter

External sorts cannot run on the zIIP which forces Natural to switch off from the zIIP when a record is passed to or returned from the external sort.

You can avoid unnecessary switches by defining a sort work buffer as cache buffer using the WRKSIZE keyword subparameter of the Natural SORT profile parameter. Natural collects all records in the work buffer and passes them with a single SRB/TCB switch to the external sort during the input phase of the external sort. Natural retrieves the records from the external sort into the work buffer with a single SRB/TCB switch and passes them, record by record, to the Natural application during the output phase of the external sort.

Using the Natural SORT parameter reduces the number of SRB/TCB switches to zero.

In the example below, the size of the sort work buffer has been defined with 1000.

	Using External Sort	Using Natural SORT
Records read	1,145	1,145
Number of switches into SRB mode	3	0
Total enclave CPU time	128 ms	51 ms

SORT Parameter

You can specify the Natural profile parameter SORT to bypass the external sort and use the internal Natural SORT, for example:

SORT=(WRKSIZE=1000,EXT=0FF)

Print and Work File Caching

Any work file or printer usage causes I/O interrupts which force Natural to switch off from the zIIP. You can avoid unnecessary switches by defining cache buffers to be used for print and work file I/O processing. These cache buffers are used to keep the data in core as long as possible and read or write data in larger chunks.

The cache buffers are defined with the keyword subparameter PWCSIZE of the profile parameter ZIIP, for example:

ZIIP=(PWCSIZE=(300,200,300))

The buffer sizes are interpreted in KB. They specify the print buffer, read buffer and write buffer. Buffer sizes of several 100 KB are sufficient.

- Rerouting Primary I/O to a Cache Buffer
- Example of Cache Buffer Usage
- Monitoring the Cache Usage

Rerouting Primary I/O to a Cache Buffer

Primary I/O operations are not subject to caching. Instead, the size of the terminal I/O buffer is relevant. This buffer is flushed either when it is full or when an I/O is triggered by an INPUT statement.

You can use the Natural profile parameter MAINPR to separate program output from Natural system output and reroute primary output for CMPRINT to an additional printer that is processed with a cache buffer.

Example of Cache Buffer Usage

When your application creates a printout with a line size of 132 characters, a print cache of 132 KB will reduce the SRB/TCB switches for printing by a factor of 1000. This means, Natural will not switch for every line, but only once per 1000 lines or 20 pages.

	WRITE (1) Without Cache	WRITE (1) With Cache
Lines written	10,000	10,000
Number of switches into SRB mode	10,003	10
Total WLM enclave CPU time	386 ms	68 ms

For the work file handling, you will get a similar result:

	READ WORK FILE (1) Without Cache	READ WORK FILE (1) With Cache
Records read	10,000	10,000
Number of switches into SRB mode	10,478	5
Total WLM enclave CPU time	641 ms	305 ms

Monitoring the Cache Usage

You can monitor the usage of the cache buffers by using the Natural system command BUS.

> To monitor buffer cache usage

■ Issue the following system command:

BUS

A Buffer Usage Statistics report then outputs the sizes used by the cache buffers:

12:50:28	**	**** NATURAL BUS UTILITY ****					2012-04-03	
User SAG		Buffer Usage Statistics -				OpSYS z/OS		
No. Name T	ype Size	Used	Perc.	MaxUsed	Perc.	MaxSize	Perc.	
18 PCACHE 21 WCACHEO 26 WCACHEO1	V 512000 V 307200 V 512000	32	0.0	511958 306947 511992	99.9			
ThrdSize Tot 2000K (in K		163K	12.0	742K	54.9	33480 33K	1.6	

- PCACHE is the cache for all print output.
- WCACHEO is the cache for the WRITE WORK FILE statement.
- WCACHE*nn* is the cache for the READ WORK FILE statements.

For statements generating output (such as WRITE or WRITE WORK FILE), only one cache buffer is allocated, also for multiple files. For the READ WORK FILE statement, there is one buffer allocated per work file. The buffers are allocated only when used.

For detailed information on the **Buffer Usage Statistics**, refer to the relevant section in *SYSTP Utility* in the *Utilities* documentation.

Thread Size Specification - THSIZE Parameter

In batch mode and under TSO, Natural usually allocates an internal buffer with a GETMAIN or FREEMAIN requests to the operating system. Any storage request includes an SVC (supervisor call) and requires a switch back to TCB processing mode.

You can reduce the number of <code>GETMAIN</code> or <code>FREEMAIN</code> requests by specifying a thread size with the Natural profile parameter <code>THSIZE</code>. Natural will then allocate the specified amount of space with one <code>GETMAIN</code> and then serve all buffer requests from the allocated thread storage without calling the operating system again.

At the end of a Natural session, you can use the **Buffer Usage Statistics** report (see the **example screen**) to check the buffer and thread usage and determine whether the defined thread size (MaxUsed) is sufficient to allocate all buffers used by the session.