
Natural

Natural Optimizer Compiler

Version 9.1.2

October 2023

This document applies to Natural Version 9.1.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1979-2023 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATMF-NOC-912-20241106

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

I NOC - General Information ... 5
2 NOC - General Information .. 7

Natural Nucleus Optimization .. 8
Natural Optimizer Compiler ... 10

II Using the Optimizer Compiler - Overview .. 11
3 What is Compiled and What is Not .. 13

Statements Compiled by the Natural Optimizer Compiler 14
Statements that are Not Compiled ... 15

4 NOCSTAT Command .. 17
Invoking NOCSTAT ... 18
Generating Reports .. 19
Report Formats ... 22
Batch Execution .. 28

5 Displaying the Size of the Machine Code ... 31
6 Optimizer Usage Examples ... 33

Example 1 - No Improvement .. 34
Example 2 - Considerable Improvement ... 34
Examples 3 and 4 - CPU Usage .. 36

III ... 39
7 Activating the Optimizer Compiler .. 41

Macro NTOPT .. 42
Dynamic Profile Parameter OPT .. 42
System Command NOCOPT ... 43
Natural Statement OPTIONS ... 43

8 Optimizer Options ... 45
List of Options .. 46
ARROPT Option ... 50
PGEN Option ... 50
Influence of other Natural Parameters ... 56

9 Performance Considerations ... 57
Formats ... 58
Arrays ... 58
Alphanumeric Fields .. 59
DECIDE ON ... 59
Numeric Values .. 59
Variable Positioning ... 60
Variable Caching .. 60
NODBG .. 61

iii

10 Listing Zaps ... 63
IV Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates 65

11 Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates 67
Optimizer Options under Natural Optimizer Compiler Version 8.3/8.4 68

Natural Optimizer Compileriv

Natural Optimizer Compiler

Preface

This documentation for Natural Optimizer Compiler describes various aspects which should be
taken into consideration when the Natural Optimizer Compiler is installed at your site.

In the remainder of the Natural Optimizer Compiler documentation the Natural Optimizer
Compiler is also referred to as NOC, which is the product code.

For an explanation of the format abbreviations used in this documents, see the section Possible
Formats in the Natural Statements documentation.

Various aspects of the Natural Optimizer Compiler and how to benefit
most from the Natural Optimizer Compiler.

General Information

Statements and programs used for compilation.

Statistical data on programs suitable for processing by the Natural
Optimizer Compiler: NOCSTAT command.

Using the Optimizer Compiler

Examples of when to use the Optimizer Compiler.

How to switch on the Natural Optimizer Compiler.Activating theOptimizerCompiler

Various options of the Natural Optimizer Compiler.

How to apply PGEN to output generated code and internal Natural
structures for examination.

Optimizer Options

Influence by other Natural parameters.

How to achieve best performance considering data formats, arrays,
alpha fields, DECIDE ON and numeric values.

Performance Considerations

How to receive an overview of the Zaps that have been applied to the
Natural Optimizer Compiler.

Listing Zaps

Documentation updates that only apply toNaturalOptimizer Compiler
Version 8.3 and Version 8.4.

Natural Optimizer Compiler
Version 8.3/8.4 - Documentation
Updates

Related Documentation:

Installing the Natural Optimizer Compiler on z/OS, z/VSE and BS2000 in the Natural Installation
documentation

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Natural Optimizer Compiler2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareGmbHproducts provide functionalitywith respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

3Natural Optimizer Compiler

About this Documentation

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

I NOC - General Information

5

6

2 NOC - General Information

■ Natural Nucleus Optimization .. 8
■ Natural Optimizer Compiler ... 10

7

This section describes various aspects which should be taken into considerationwhen the Natural
Optimizer Compiler is installed at your site. The information provided in this documentation
helps you to make full use of the benefits offered by the Natural Optimizer Compiler.

Natural Nucleus Optimization

The Natural nucleus optimizes simple arithmetic, assignment, and comparison statements by
translating parts of them into machine code. All programs are optimized automatically in this
way.

The following graphic illustrates how the Natural Optimizer Compiler generates machine code
when a Natural object is compiled or executed:

Natural Optimizer Compiler8

NOC - General Information

9Natural Optimizer Compiler

NOC - General Information

Natural Optimizer Compiler

The Natural Optimizer Compiler goes one step further than standard optimization. It compiles
not only simple statements tomachine code, but also complex statements and statement sequences.

The compiled code is further optimized as far as array range operations, field concatenation, and
optimum base register assignment are concerned.

All statements (including arithmetic operations) optimized with the Natural Optimizer Compiler
provide the same results as the same statements generated by standard Natural.

To activate the Natural Optimizer Compiler (see the relevant section), use the macro NTOPT in
the Natural parameter module, the dynamic profile parameter OPT, the system command NOCOPT,
or the OPTIONS statement.

All programs that are cataloged (STOW or CATALOG system command) with the Natural Optimizer
Compiler activated are compiled to machine code. This will also result in the object code size of
the programs being larger than usual, depending on howmuch of the program can be optimized.

A program executed with the RUN system command is compiled to machine code if the Natural
Optimizer Compiler is activatedwith the system command NOCOPT, themacro NTOPT or the OPTIONS
statement for all or part of the program.

To see if a program is suitable for compilation with the Natural Optimizer Compiler, use the
NOCSTAT command as described in the relevant section.

Note: The dynamic recatalog feature (profile parameter RECAT set to ON) cannot be usedwith
programs compiled to machine code.

To execute programs that have been compiled with the Natural Optimizer Compiler, it is not ne-
cessary that the Natural Optimizer Compiler is installed.

Natural Optimizer Compiler10

NOC - General Information

II Using the Optimizer Compiler - Overview

What is Compiled and What is Not

NOCSTAT Command

Displaying the Size of the Machine Code

Optimizer Usage Examples

11

12

3 What is Compiled and What is Not

■ Statements Compiled by the Natural Optimizer Compiler ... 14
■ Statements that are Not Compiled .. 15

13

TheNatural Optimizer Compiler is particularly effective for programs that contain a considerable
amount of data manipulation, such as computation, transfer, and logical condition processing.

This section contains an overview of the statementswhich are compiled tomachine code and those
which are not compiled.

Note: The options the Natural Optimizer Compiler provides cannot be used for specifying
statements to be optimized as described in theOptimizer Options.

Statements Compiled by the Natural Optimizer Compiler

The Natural Optimizer Compiler compiles the following statements to machine code:

■ Statements for Arithmetic and Data Movement Operations:
■ ADD

■ ASSIGN

■ COMPRESS

■ COMPUTE

■ DIVIDE

■ EXAMINE, with the following clauses:
■ DIRECTION (with constant values only; that is FORWARD or BACKWARD),
■ GIVING NUMBER, GIVING POSITION (also concurrently),
■ GIVING LENGTH

Example:

EXAMINE #TEXT FOR #A GIVING NUMBER #NMB1
EXAMINE #TEXT FOR #A GIVING POSITION #POSEX5
EXAMINE #TEXT FOR #A GIVING LENGTH #LGHEX6 ↩

Restrictions:
■ GIVING INDEX is not optimized.
■ operand1 and operand4 can be fix array occurences; that is, no ranges are admissible, for
example:

Natural Optimizer Compiler14

What is Compiled and What is Not

EXAMINE #A(#J) FOR #B(#K)

■ MOVE (ROUNDED, SUBSTRING, BY NAME, LEFT/RIGHT JUSTIFIED,)
■ MOVE ALL

■ MULTIPLY

■ RESET

■ SUBTRACT

■ Statements for Processing of Logical Conditions:
■ IF

■ DECIDE FOR

■ DECIDE ON

■ Statements for Loop Execution:

FOR

■ ESCAPE

■ REPEAT

Statements that are Not Compiled

The Natural Optimizer Compiler does not compile the following statements:

■ I/O statements (DISPLAY, WRITE, READ/WRITE WORK FILE).
■ complex special statements such as SEPARATE.
■ statements that pass control to another object such as FETCH, PERFORM, CALLNAT, CALL.
■ statements that perform database access (READ, FIND, HISTOGRAM, GET, UPDATE, DELETE, END
TRANSACTION, BACKOUT TRANSACTION)

15Natural Optimizer Compiler

What is Compiled and What is Not

16

4 NOCSTAT Command

■ Invoking NOCSTAT .. 18
■ Generating Reports ... 19
■ Report Formats ... 22
■ Batch Execution .. 28

17

For programs optimized with the Natural Optimizer Compiler, certain statements can be directly
converted into machine code when cataloged. As a result, when executing the optimized objects
with Natural at runtime, the performance can be improved considerably.

The NOCSTAT command analyses cataloged objects and provides statistical information to help
decidewhether programstatements benefit fromoptimizationwith theNaturalOptimizerCompiler
and, if so, to what extent they can be optimized.

If a program is cataloged (STOW, CATALL), theNatural compiler generates an internal (pseudo) object
code based on the statements in the source program. In most cases, one source statement is trans-
formed into one pseudo-code instruction. However, for complex statements, such as FOR and
REPEAT, several pseudo-code instructions are generated. The NOCSTAT analyses are based on the
generated pseudo-code instructions. Therefore, the number of statements indicated in the statist-
ical reports may exceed the number of statements in the source program.

Invoking NOCSTAT

To use the Natural NOCSTAT command

■ Enter the direct command NOCSTAT.

The main NOCSTAT screen is displayed:

Natural Optimizer Compiler18

NOCSTAT Command

16:41:00 ***** NATURAL NOCSTAT COMMAND ***** 2017-11-24

Name ________
Library SAGTEST_

NOCable Objects only .. _

Output Report X Statement Category
_ Statement Type
_ Code Profile

Output Destination X Screen
_ CSV to Work File
_ XML to Work File
with XSL ________________________________

Progress Control X
Download to PC _

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

To obtain field-specific help information, either enter a question mark in the relevant field and
press ENTER, or place the cursor in the field and press PF1. Press PF3 to exit NOCSTAT.

Generating Reports

You can generate statistical reports for a single program or a set of programs. If you analyze more
than one program at a time, the reports are produced in series. When you have finished looking
at one report, press ENTER to view the next report.

The main NOCSTATmenu provides the following options:

ExplanationField

Enter a name or a range of names to specify the program(s) you want to examine:Name

value is any combination of one or more characters.

Single program.value

All programs.*

All programs whose names begin with value.value*

All programs whose names are greater/equal value.value>

19Natural Optimizer Compiler

NOCSTAT Command

ExplanationField

All programs whose names are less/equal value.value<

Enter the name of a library or specify a range; the same applies as described for the Name
field above.

The current library is the default.

Library

Mark this option to exclude programs already compiled with the Natural Optimizer
Compiler.

Otherwise, the NOCSTAT command selects all Natural programs specified in the Name and
Library fields by default, including NOC-compiled programs.

NOCable
Objects
only

Mark any of the options to select statements by category, type or code profile.

See Statement Category, Statement Type and Code Profile below.

Output
Report

Mark any of the following options to determine the output format and destination:Output
Destination Displays the report on the screen or writes the report data

to Print File 7 if Download to PC is selected for processing.
Screen

Generates spreadsheets with comma-separated values.

The report data is written to either of the following files:

CSV to
Work File

1. Work File 7 if running online and Download to PC is
selected.

2. Work File 1 in all other cases.

Use the file extension .csv to write the work file directly to
your PC for further processing.

You can only route reports to a PC if Entire Connection is
installed.

Generates XML documents.

The report data is written to either of the following files:

XML to
Work File

1. Work File 7 if running online and Download to PC is
selected.

2. Work File 1 in all other cases.

Use the file extension .txt to write the work file data
directly to your PC and change the file name afterwards to
the extension .xml for further processing.

You can only route reports to a PC if Entire Connection is
installed.

If a value is entered in the field with XSL, a processing
instruction is added at the top of the XMLoutput document:

Natural Optimizer Compiler20

NOCSTAT Command

ExplanationField

<?xml-stylesheet type="text/xsl" href="
value "?>

The value entered should be the absolute or relative URL
of the style sheet, for example:

nocstat.xsl

or

http://natural.software-ag.de/nocstat.xsl

The processing instruction causes the document to be
transformed according to the given style sheet when it is
viewed by an XSLT-capable browser or transformed by a
batch XSLT run. A typical use of this feature is to convert
the output XML to an HTML page.

There are two XSLT style sheets delivered with Natural as
text objects NOCSTLS1 and NOCSTLS2 in the Natural library
SYSEXUEX in the FNAT system file.

NOCSTLS1 provides formatting instructions for report type
Statement Category, NOCSTLS2 for report type Statement
Type as described below.

Download the style sheets with file extension .xsl to the
same directory in which the XML work files are stored.

Only applies in an online environment and if one of the following options is selected for
processing:

Progress
Control

1. CSV to Work File,

2. XML to Work File,

3. Download to PC.

If one of these options is selected, a brief message appears for each program listed in the
generated report.

Only applies if Entire Connection is installed, and if you run online with Print/Work File 7
defined as the PC file (see the WORK and PRINT profile parameters).

Download report output datawith Entire Connection to a PCbyusing either of the following:

Download to
PC

1. Print File 7 for the Screen destination.

2. Work File 7 for CSV or XML output.

21Natural Optimizer Compiler

NOCSTAT Command

Report Formats

You can choose between three output formats described below to display the statistics NOCSTAT
provides for the statements analyzed. Different report layouts are produced for programs already
optimizedwith theNaturalOptimizerCompiler and for programs to be considered for optimization.
The example reports below show the difference. Press PF3to interrupt report processing and return
to the NOCSTATmenu.

Below is information on:

■ Statement Category
■ Statement Type
■ Code Profile

Statement Category

The statistical report generated with the option Statement Category lists various categories of
statements with the corresponding number of occurrences and the total number of statements
already optimized or suitable for optimization, depending on whether or not the program was
optimized with the Natural Optimizer Compiler.

Example of Program without NOC Optimization:

11:49:46 ***** NATURAL NOCSTAT COMMAND ***** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

No NOC NOCable
-------- --------

Database Loop: 0 0
Database Simple: 0 0
SORT / WORK I/O: 0 0

FOR / REPEAT: 0 1
Screen / Printer: 1 0

String Manipulation: 6 34
Arith / Logical: 0 996
Program Calls: 20 0

Control Transfer: 2 182
Block Start: 1 0

Set Environment: 7 0
System Functions: 2 0

Miscellaneous: 0 1

Total Statements: 1254
NOC optimizable: 1214 (Ratio: 96 %)
Longest NOC Run: 216 Statements

Natural Optimizer Compiler22

NOCSTAT Command

Example of NOC-Optimized Program:

11:51:25 ***** NATURAL NOCSTAT COMMAND ***** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

MCG Options: (ON,OVFLW,INDX,MIX,IO)

Database Loop: 0
Database Simple: 0
SORT / WORK I/O: 0

FOR / REPEAT: 0
Screen / Printer: 1

String Manipulation: 36
Arith / Logical: 0
Program Calls: 20

Control Transfer: 2
Block Start: 1

Set Environment: 7
System Functions: 2

Miscellaneous: 1

Total Statements: 1255
NOC optimized: 1185 (Ratio: 94 %)

Longest NOC Run: 136 Statements

Report Columns and Fields:

ExplanationColumn

Statements not suitable for optimization.No NOC

Statements suitable for optimization.

Note: The number of NOCable statements is only a reasonable assumption but
cannot be considered an absolutely reliable value. This is because the NOCSTAT

NOCable

command cannot perform all analytical queries and, occassionally, very complex
code investigations that definitely decide whether a statement can be optimized
with the Natural Optimizer Compiler.

Field

The number of database statements that generate a processing loop, such as FIND
and READ.

Database Loop

Database statements that do not generate a processing loop, such as STORE,
UPDATE, DELETE and GET.

Database Simple

SORT and work file statements.SORT / WORK I/O

Statements generating loops.FOR / REPEAT

Screen and printer I/O, such as WRITE, DISPLAY and INPUT.Screen / Printer

String statements, such as EXAMINE and COMPRESS.String Manipulation

23Natural Optimizer Compiler

NOCSTAT Command

ExplanationColumn

Arithmetic and logical statements, such as MOVE, COMPUTE and IF.Arith / Logical

Transfer of control to a subroutine or subprogram, such as PERFORM, CALLNAT
and FETCH.

Program Calls

Jumps within the program, such as ESCAPE BOTTOM, FOR and REPEAT loops.Control Transfer

Non-executed statements that demarcate code blocks, such as DEFINE
SUBROUTINE and AT END. These statements are never optimized because they
are never executed.

Block Start

Statements that set the environment, such as SET CONTROL, SET GLOBALS and
SET KEY.

Set Environment

Statements, such as TOTAL, SUM, COUNT, MAX, MIN and *COUNT.System Functions

Pseudo-code statements not relevant for optimization and, therefore, ignored by
the NOC.

Miscellaneous

Totals

The total number of statements found in the program. This number may not
correspond to the actual source statements as described in the introduction to
NOCSTAT command above.

Total Statements

For an optimized program, these are the actual pseudo-code statements (as
described in the introduction to NOCSTAT command above) that have been
NOC-optimized to machine code.

NOC optimized

For non-optimized programs, this is the possible number of statements that could
be optimized. The figure may be slightly higher than the actual number, since

NOC optimizable

certain factors are not considered in the NOCSTAT program. For example, a
SUBSTRING statement that has more than four arrays will be indicated as
“optimizable” though it will not be optimized.

Relation between Total Statements and NOC-optimized statements or Total
Statements and NOC-optimizable statements in percent.

Ratio

NOC-optimized program:

The number of contiguous optimized statements - the fewer fragment sequences,
the better the performance.

Longest NOC Run

Non-optimized program:

The number of contiguous statements to be expected if the program were
optimized.

Natural Optimizer Compiler24

NOCSTAT Command

Statement Type

The statistical report generated with the option Statement Type lists single statements with the
corresponding number of occurrences and the NOC coding generated for optimized objects.

Example of Program without NOC Optimization:

12:29:23 ***** NATURAL NOCSTAT COMMAND ***** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

Statement No NOC NOCable
------------------------ -------- --------
MOVE/COMPUTE/ASSIGN 0 615
EXAMINE 6 0
SEPARATE 0 30
COMPRESS 0 4
MOVE TO SYSTEM FUNCTION 2 0
CALLNAT/PERFORM EXTERNAL 17 0
MOVE EDITED 1 0
ELSE/CLOSE LOOP 0 182
ON ERROR 1 0
END 1 0
STOP 1 0
IF 0 51
IF IN REPEAT UNTIL 0 1
REPEAT 0 1
RESET 0 74
IF 0 255
FETCH 3 0
IGNORE 0 1
STACK TOP CMD/DATA 2 0
MCG OPTIONS 1 0
OPTIONS 1 0
SET CONTROL 4 0

25Natural Optimizer Compiler

NOCSTAT Command

Example of NOC-Optimized Program:

12:31:30 ***** NATURAL NOCSTAT COMMAND ***** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

MCG Options: (ON,OVFLW,INDX,MIX,IO)
Statement Number

------------------------ --------
EXAMINE 6
SEPARATE 30
MOVE TO SYSTEM FUNCTION 2
CALLNAT/PERFORM EXTERNAL 17
MOVE EDITED 1
NOC CODE 1183
ON ERROR 1
END 1
STOP 1
FETCH 3
IGNORE 1
STACK TOP CMD/DATA 2
MCG OPTIONS 2
OPTIONS 1
SET CONTROL 4

Code Profile

The statistical report generated with the option Code Profile displays contiguous sequences of
statements grouped by categories in a source program suitable for optimization, or lists the NOC
coding generated for an optimized program. Occurrences are highlighted.

Natural Optimizer Compiler26

NOCSTAT Command

Example of Program without NOC Optimization:

12:38:52 ***** NATURAL NOCSTAT COMMAND ***** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

Line Statement
----- -------------------------
0000 ON ERROR
0000 MCG OPTIONS
0000 OPTIONS
0295 CALLNAT/PERFORM EXTERNAL
0295 MOVE/COMPUTE/ASSIGN <-- NOCable
0295 MOVE/COMPUTE/ASSIGN <-- NOCable
0295 MOVE/COMPUTE/ASSIGN <-- NOCable
0295 MOVE/COMPUTE/ASSIGN <-- NOCable
0740 MOVE/COMPUTE/ASSIGN <-- NOCable
0745 IF <-- NOCable
0750 MOVE/COMPUTE/ASSIGN <-- NOCable
0755 MOVE/COMPUTE/ASSIGN <-- NOCable
0760 CALLNAT/PERFORM EXTERNAL
0765 IF <-- NOCable
0770 MOVE/COMPUTE/ASSIGN <-- NOCable
0775 ELSE <-- NOCable
0780 MOVE/COMPUTE/ASSIGN <-- NOCable
0810 RESET <-- NOCable
MORE

27Natural Optimizer Compiler

NOCSTAT Command

Example of NOC-Optimized Program:

12:39:47 ***** NATURAL NOCSTAT COMMAND ***** 2017-05-29
Library SAGTEST Name NOCTEST1 Type Program

Line Statement
----- -------------------------
0000 MCG OPTIONS
0005 MCG OPTIONS
0000 OPTIONS
0295 CALLNAT/PERFORM EXTERNAL
0295 NOC CODE
0295 NOC CODE
0295 NOC CODE
0295 NOC CODE
0740 NOC CODE
0745 NOC CODE
0750 NOC CODE
0755 NOC CODE
0760 CALLNAT/PERFORM EXTERNAL
0765 NOC CODE
0770 NOC CODE
0775 NOC CODE
0780 NOC CODE
0810 NOC CODE
MORE

Batch Execution

Below are job examples for processing NOCSTAT reports in batch mode to create a CSV work file.
After job execution, the work files generated can be transferred from host to PC for further pro-
cessing with standard transfer tools.

Example Job z/OS:

//NOCBATCH JOB (NOC,,,30),CLASS=K,MSGCLASS=X 00000100
//NATEX EXEC PGM=NATvrsBA,REGION=6200K,PARM=('IM=D') 00000200
//STEPLIB DD DISP=SHR,DSN=TESTNAT.LOAD 00000300
//CMPRINT DD SYSOUT=X 00000400
//CMWKF01 DD DSN='NOC.NOCSTAT.OUT',DISP=(NEW,CATLG), 00000500

SPACE=(CYL,(1,1)),UNIT=SYSDA,VOL=SER=SAG001 00000600
//SYSOUT DD SYSOUT=X 00000700
//CMSYNIN DD * 00000800
NOCSTAT 00000900
*,library,,X,,,,X 00001000
. 00001100

Natural Optimizer Compiler28

NOCSTAT Command

FIN 00001200
/* 00001300

Example Job z/VSE:

* $$ JOB JNM=NOCTST,CLASS=5,DISP=D
* $$ LST CLASS=Q,DISP=D
// JOB NOCTST
// ASSGN SYS001,DISK,VOL=xxxxxx,SHR
// DLBL CMWKF01,'NOCSTAT.FILE.ONE',0
// EXTENT SYS001,xxxxxx,1,0,1,150
// EXEC NATvrsBA,SIZE=NATvrsBA,PARM='SYSRDR'
IM=D,OBJIN=R
/*
ADARUN DBID=185
/*
NOCSTAT
*,library,,X,,,,X
.
FIN
/*
/&

Example Job BS2000:

/.BAT234 LOGON NAT,1
/ SYSFILE SYSOUT=NATvrs.OUT
/ SYSFILE SYSLST=NATvrs.LST
/SKIP .NOP000
==

NAME : E.NATvrs S T A R T B A T C H N A T U R A L
==
/.NOP000 REMARK
/ OPTION DUMP=YES,MSG=FL
/ FILE NOCSTAT.OUT,LINK=W01
/ FILE ADAUSER ,LINK=DDCARD
/ FILE $SAG.ADAvrs.MOD ,LINK=BLSLIB00
/ SYSFILE TASKLIB=MODvrs
/ SYSFILE SYSDTA=(SYSCMD)
/ FILE NATvrs.CMPRMIN,LINK=CMPRMIN
/ DCLJV NATJV1,LINK=*NATB2JV
/ FILE $NAT.ADALNK.PARMS,LINK=DDLNKPAR
/ REMARK %%%%%%%%%% BATCH-PHASE %%%%%%%%%%%%%%
/ EXEC NATvrs
NOCSTAT
*,library,,X,,,,X
.
FIN

29Natural Optimizer Compiler

NOCSTAT Command

30

5 Displaying the Size of the Machine Code

With the Natural system command LIST DIRECTORY, you can see whether a program has been
compiled to machine code and also the size of the machine code.

To list compiled programs

■ Enter the Natural system command

LIST DIR object-name

The directory information for the specified object will be displayed, showing at the bottom of the
screen the size of the machine code, the OPT parameters used for the compilation and the Natural
Optimizer Compiler version under which the program was cataloged.

Further details of the LIST command are provided in the System Commands documentation.

31

32

6 Optimizer Usage Examples

■ Example 1 - No Improvement .. 34
■ Example 2 - Considerable Improvement ... 34
■ Examples 3 and 4 - CPU Usage ... 36

33

The examples below illustrate when to use the Natural Optimizer Compiler to the best advantage
and to give an indication of its power:

Example 1 - No Improvement

Nothing would be gained by using the Natural Optimizer Compiler for the following program,
since it contains a statement that performs database access and an I/O statement (see Statements
that are Not Compiled):

DEFINE DATA LOCAL
1 EMPLOYEES VIEW OF EMPLOYEES

2 JOB-TITLE
2 BIRTH
2 NAME

END-DEFINE
FIND EMPLOYEES WITH JOB-TITLE = 'PROGRAMMER' OR = 'ANALYST'

OR = 'PROGRAMMER/ANALYST'
OR = 'SYSTEM ANALYST'

DISPLAY JOB-TITLE BIRTH NAME
END-FIND
END

Example 2 - Considerable Improvement

If the following program is compiledwith theNatural Optimizer Compiler, youwill see a perform-
ance improvement of approximately 30 % (that is a 30 % reduction in CPU load). The program
performs a statistical analysis of the age of IT-employees. Optimized statements are indicated in
boldface.

In this example, the Natural Optimizer Compiler increases the object size by 20.5 %, due to 952
bytes of additional machine code:

Size of Machine Code Generated by NOCSize in Buffer PoolProfile Parameter Setting

9525768OPT=NODBG

04784OPT=OFF

Natural Optimizer Compiler34

Optimizer Usage Examples

DEFINE DATA
LOCAL
1 EMPLOY VIEW OF EMPLOYEES

2 JOB-TITLE (A25)
2 BIRTH (D)

1 I (I1) INIT <1>
1 CDATE (D)
1 NUMB (N4)
1 SUMM (P7.2)
1 SQUARE (F8)
1 DEVI (F8)
1 DEVIATION (N3.4)
1 MEAN (P2.3)
1 AGEDIS (F8/1:70)
1 AGEMAX (F8)
1 AGEH (P3)
1 AGE (P3)
1 AGEDAYS (P15)
1 LINE (A71/1:20)
1 REDEFINE LINE

2 POINTS (A1/1:20,0:70)
END-DEFINE
*
MOVE *DATX TO CDATE
*
FIND EMPLOY WITH JOB-TITLE = 'PROGRAMMER' OR = 'ANALYST'

OR = 'PROGRAMMER/ANALYST' OR = 'SYSTEM ANALYST'
AGEDAYS:= CDATE - BIRTH

AGE:=AGEDAYS / 365
ADD 1 TO AGEDIS(AGE) /* DISTRIBUTION
ADD 1 TO NUMB
ADD AGE TO SUMM
COMPUTE SQUARE = SQUARE + AGE * AGE

END-FIND
*

* COMPUTE ESTIMATES

*
COMPUTE DEVI = NUMB * SQUARE / (SUMM * SUMM) - 1
COMPUTE DEVIATION = SQRT(DEVI)
COMPUTE MEAN = SUMM / NUMB
*

* GRAPHIC DISPLAY

*
FOR I 1 70

IF AGEDIS(I) > AGEMAX MOVE AGEDIS(I) TO AGEMAX
END-IF

END-FOR

35Natural Optimizer Compiler

Optimizer Usage Examples

FOR I 1 70
COMPUTE AGEDIS(I) = AGEDIS(I) * 20 / AGEMAX

END-FOR
FOR I 1 70

COMPUTE AGEH = 21 - AGEDIS(I)
IF AGEH < 21 MOVE '*' TO POINTS(AGEH:20,I)
END-IF

END-FOR
*

* COMPLETE GRAPHIC DISPLAY

*
MOVE '!' TO POINTS(*,0)
WRITE TITLE LEFT
AGEMAX(EM=999) 20X 'DISTRIBUTION OF IT-EMPLOYEES BY AGE'
WRITE NOTITLE NOHDR
LINE(*) /
'0--------10--------20--------30--------40--------50--------60--------'
/ 'MEAN='

Examples 3 and 4 - CPU Usage

The following program illustrates the difference in CPUusage, depending on the options you select
when compiling the program. The table below lists the CPU usage in seconds and percent. The
figures provided in the table were determined during a test run in an IBM z/OS environment.
They can only serve as general orientation, since absolute values vary depending on the hardware
applied.

DEFINE DATA LOCAL
1 #I1 (I4) INIT <1>
1 #I2 (I4) INIT <2>
1 #J1 (I4) INIT <3>
1 #J2 (I4) INIT <4>
1 #F (I4)
1 #ARR1 (N7/10,5)
1 #ARR2 (N5/10,5)
END-DEFINE
*
FOR #F = 1 TO 1000000

MOVE #ARR1(#I1,#I2) TO #ARR2(#J1,#J2)
END-FOR
*
END

Natural Optimizer Compiler36

Optimizer Usage Examples

CPU percentageCPU secondsOption

1008.78OFF

7.180.63ON

9.680.85INDX

19.481.71OVFLW

22.782.00INDX,OVFLW

18.341.61INDX,OVFLW,NODBG

18.341.61INDX,OVFLW,NODBG,NOSGNTR

5.010.44NODBG

7.180.63NOSGNTR

5.010.44NODBG,NOSGNTR

DEFINE DATA LOCAL
1 #I1 (P7) INIT <1>
1 #I2 (P7) INIT <2>
1 #J1 (N7) INIT <3>
1 #J2 (N7) INIT <4>
1 #K1 (I4) INIT <5>
1 #K2 (I4) INIT <6>
1 #F (I4)
1 #FIELD1 (P5)
1 #FIELD2 (N5)
1 #FIELD3 (I2)
END-DEFINE
*
FOR #F = 1 TO 500000
*

#FIELD1:= #I1 - #I2 + (13 * 10 / 5)
#FIELD2:= #J1 - #J2 + (13 * 10 / 5)
#FIELD3:= #K1 - #K2 + (13 * 10 / 5)

*
END-FOR
*
END

CPU percentageCPU secondsOption

100.0018.61OFF

26.604.95ON

26.604.95INDX

28.915.38OVFLW

28.915.38INDX,OVFLW

28.265.26INDX,OVFLW,NODBG

27.355.09INDX,OVFLW,NODBG,NOSGNTR

37Natural Optimizer Compiler

Optimizer Usage Examples

CPU percentageCPU secondsOption

25.744.79NODBG

25.854.81NOSGNTR

24.884.63NODBG,NOSGNTR

24.234.51NODBG,NOSGNTR,ZD=OFF

23.704.41NODBG,NOSGNTR,ZD=OFF,SIGNCHCK=OFF

Natural Optimizer Compiler38

Optimizer Usage Examples

III
■ 7 Activating the Optimizer Compiler .. 41
■ 8 Optimizer Options ... 45
■ 9 Performance Considerations ... 57
■ 10 Listing Zaps ... 63

39

40

7 Activating the Optimizer Compiler

■ Macro NTOPT .. 42
■ Dynamic Profile Parameter OPT ... 42
■ System Command NOCOPT ... 43
■ Natural Statement OPTIONS ... 43

41

To activate the Natural Optimizer Compiler, use one of the methods described in the following
sections, where the first alternative is themost static one and the last alternative themost dynamic
one.

All alternatives use the Optimizer options as described in the sectionOptimizer Options. Using
these options you can control how and whenmachine code is generated, what tracing options are
to be used and what the target architecture will be. The Optimizer options are the only control
mechanism for the Natural Optimizer Compiler.

Macro NTOPT

With the macro NTOPT in the Natural parameter module, you can activate the Natural Optimizer
Compiler statically for a linked Natural nucleus. Every time this Natural nucleus is started, the
same Optimizer options are used again.

Example 1:

NTOPT 'INDX,OVFLW,ZD=OFF'

Example 2:

NTOPT 'INDX,OVFLW,ZD=OFF,TRGPT', *
'TRSTMT,OPTLEV03'

Note the continuation character “*” in column 72.

See the sectionOptimizer Options for an explanation of the options setting used.

Dynamic Profile Parameter OPT

When starting aNatural session, you candynamically activate theOptimizerCompiler by specifying
the Natural profile parameter OPT. As a synonym for OPT, you can use MCG. The specification of
the parameter module is overwritten. The options are only valid for the current session.

Natural Optimizer Compiler42

Activating the Optimizer Compiler

Example:

OPT=(INDX,OVFLW,ZD=OFF)

or

MCG=(INDX,OVFLW,ZD=OFF)

See the sectionOptimizer Options for an explanation of the option setting used.

System Command NOCOPT

When you have started a Natural session, you can invoke the Optimizer command screen with
the Natural system command NOCOPT. The screen monitors the current setting of the Natural Op-
timizer Compiler options as they were specified during Natural startup. You can nowmodify the
setting online.

The updated parameter setting is only valid for the current session.

Natural Statement OPTIONS

The MCG parameter of the Natural compiler statement OPTIONS provides the most flexible and
powerful control over machine code generation, since different options can be set for individual
statements in a program. So, within one Natural program, the Natural Optimizer Compiler can
be activated and deactivated several times to enclose ranges of statements with different options
settings.

Example

OPTIONS MCG=(OVFLW,INDX,ZD=OFF)

or

43Natural Optimizer Compiler

Activating the Optimizer Compiler

OPTIONS MCG=OVFLW,INDX,ZD=OFF

The options string of the MCG parameter may start with a plus (+) or minus (-) sign, indicating that
the values of options not mentioned should be left unaltered, and only the options present should
be set (+) or reset (-), for example:

Example:

OPTIONS MCG=+PGEN /* turns tracing on

(statements to be traced)

OPTIONS MCG=-PGEN /* turns tracing off

If the string starts with anything other than “+” or “-”, all options are reset before the string is
parsed.

Note: TheNatural statement OPTIONS also provides otherNatural compiler parameters than
MCG.

See the sectionOptimizer Options for an explanation of the options setting used.

Natural Optimizer Compiler44

Activating the Optimizer Compiler

8 Optimizer Options

■ List of Options .. 46
■ ARROPT Option ... 50
■ PGEN Option ... 50
■ Influence of other Natural Parameters ... 56

45

When the Natural Optimizer has been activated, you can specify checks by setting the options
explained in this section.

The options cannot be used for specifying statements to be optimized.

List of Options

The following table lists and describes the Natural Optimizer Compiler options. Default values
are underlined (this is the value that will be assumed if the option is not present).

ANaturalOptimizerCompiler option consists of a string surroundedby brackets or single quotation
marks (except in theNatural OPTIONS statement), with options separated by commas. Some options
have values, while the very existence of some options in the option string is sufficient to modify
the environment.

The following rules apply:

■ Optional clauses are surrounded by square brackets [].
■ Choices are surrounded by curly braces { }.
■ Each choice is separated by vertical lines “|”.
■ Only one of these choices can be specified;

ON is equivalent to Y (Yes),

OFF to N (No).
■ Options specifiedwithout the optional clause ON or OFF (if applicable), or their equivalent values,
are interpreted as set to ON. For example, OVFLW is identical to OVFLW=ON.

■ Except for the option OFF, any specified option switches on optimizing (as if ONwas specified)
and the default values apply. For example, INDEX is identical to ON,INDEX.

ExplanationOption

Forces the Natural Optimizer Compiler to generate code which causes Natural
to be abnormally terminated immediatelywhen the ABEND option is encountered

ABEND

by theNatural Optimizer Compiler during compilation. The optionmust appear
by itself or it will be ignored. Other parameters are not changed or reset by this
option. This option can be useful for debugging purposes.

Specifies the architecture level to be used for code generation: seeARCHOption
in the following section.

ARCH

Specifies the generation to be used for array assignments of the type
A(*):=scalar. See ARROPT Option in the following section.

ARROPT

Switches variable caching on or off. See also Variable Caching in the section
Performance Considerations.

CACHE[={ON| OFF
|Y|N}]

Natural Optimizer Compiler46

Optimizer Options

ExplanationOption

Specifies the target architecture.CPU= /370

Specifies whether the digits of packed and unpacked numeric fields (formats P
andN) are to be checkedwhenmoving to another variable of the same type and

DIGTCHCK[={ON| OFF
|Y|N}]

precision. For example, if DIGTCHCK is ON and an unpacked numeric variable
(formatN) contains an invalid digit, such as X'FA', moving to another unpacked
numeric variable with the same precision will generate a S0C7 (or NAT0954)
error. If DIGTCHCK is OFF, no error is generated but the generated code is much
faster.

Specifies whether NOC should abend if an error condition is detected during
the compile phase. This is useful for debugging theNatural Optimizer Compiler
itself.

ERRDUMP[={ON| OFF
|Y|N}]

Specifies whether array indexes will be checked for out-of-bound values in the
optimized code.

See also the following Note.

INDEX[={ON| OFF
|Y|N}]

Specifies whether array indexes will be checked for out-of-bound values in the
optimized code.

Additionally, RANGEwill be set on. Therefore, this option is equivalent to
INDEX=ON,RANGE=ON.

INDX[={ON| OFF
|Y|N}]

See also the following Note.

Provided for compatibility reasons only. No effect.IO[={ON| OFF|Y|N}]

Provided for compatibility reasons only. No effect.LOOPS[={ON| OFF
|Y|N}]

Provided for compatibility reasons only. No effect.MIX[={ON| OFF |Y|N}]

If NODBG=OFF/N (default), theNatural Debugger can be used to debug optimized
code (then, additional code is generated to check whether TESTmode has been
set on).

If NODBG=ON/Y, less code will be generated, the program will run faster and
consume less CPU time. On the other hand, the functionality of the Natural

NODBG[={ON|
OFF|Y|N}]

Debugger will be limited, because the Natural Debugger might not receive
control for optimized statements.

See also NODBG in the section Performance Considerations.

Applies to packed numbers only.

If NOSGNTR=OFF (default), signs of positive packed numberswhich are the result
of an arithmetic operation or the target of an assignment are set according to

NOSGNTR[={ON| OFF
|Y|N}]

the COMPOPT parameter PSIGNF. If NOSGNTR=ON, the signs resulting from
execution of the generated machine instruction are left unchanged. See also the
section Influence of other Natural Parameters.

Switches on optimizing. If no additional option is specified, the default value
defined for each option is in effect. As indicated in the followingNote, this may

ON

47Natural Optimizer Compiler

Optimizer Options

ExplanationOption

cause unintended results, in particular regarding the options INDEX, INDX,
OVFLW, and RANGE.

Switches off optimizing.OFF

Specifies optimization level - roughly equivalent to the number of passes through
the program.

OPTLEV=3 is useful when PGEN is specified, since some branch targets cannot
be determined during the first pass and PGEN output is made during the last
pass. Thus, some values may be shown improperly.

OPTLEV={ 2|3}

Specifies whether checks for overflow in arithmetic operations or assignments
will be included in the optimized code.

See also the following Note.

OVFLW[={ON| OFF
|Y|N}]

Specifies whether a disassembly of the optimized code should be output. This
option also enables all other tracing options: see PGENOption in the following
section.

PGEN[={ON| OFF
|Y|N}]

Specifies whether range checks will be performed in operations with arrays.
This ensures that array ranges will have an equal number of elements in
corresponding dimensions of all operands.

See also the following Note.

RANGE[={ON| OFF
|Y|N}]

Specifies whether the result of a multiplication with a packed or unpacked
numeric multiplier should be checked for a negative zero. If zero is multiplied

SIGNCHCK[={
ON|OFF|Y|N}]

by a negative number, the MP machine instruction generates a negative zero
result. If SIGNCHCK is on, this negative zero is converted to a positive zero. The
check for a negative zero is done for every multiplication with a packed or
unpacked numeric multiplier.

For internal use by SoftwareAGonly. Do not change the setting of this parameter.TRENTRY

Specifies whether optimized code is generated for IF and DECIDE statements
with Unicode operands: see UNICC Option in the following section.

UNICC

Specifieswhether divisors should be checked for zero. If this option is specified,
then code is inserted, so that the program behaves according to the ZD profile

ZD[={ ON|OFF|Y|N}]

parameter of Natural, that is, Natural error NAT1302 is issued or the result is
zero. If this option is not specified, Natural error NAT0954 occurs if the divisor
is zero.

See also ZD - Zero-Division Check in the Natural Parameter Reference
documentation.

Note for INDEX, INDX, OVFLW and RANGE:

If the option INDEX, INDX, OVFLW or RANGE is set, extra instructions are added to the generated code
to detect data overflow and index-out-of-range situations should they occur during program exe-
cution. Although the use of these options slightly increases the generated code, we recommend

Natural Optimizer Compiler48

Optimizer Options

to use them to guarantee that erroneous programs are detected and cannot lead to unpredictable
results, storage corruptions or abnormal program terminations.

■ Example of INDEX and OVFLW
■ Optimum Code Generation

Example of INDEX and OVFLW

DEFINE DATA LOCAL
...
1 P1 (P1/9)
...
1 P3 (P3/9)
...
1 I (I4)
1 J (I4)
1 K (I4)
1 L (I4)
END-DEFINE
...
P1(I:J) := P3(K:L)
...
END

Explanation of Example

With INDX=ON or INDEX=ON set, code is generated to verify that I, J, K and L are within the ranges
defined for P1 and P3 respectively.

With INDX=ON or RANGE=ON set, code is generated to verify that I:J and K:L denote ranges of the
same length.

With OVFLW=ON set, code is generated to verify that the value of P3 fits into the corresponding P1
variable.

For example: Value 100would cause an overflow here.

Example Error Situation:

If one of the occurrences of P3 contains the value 100, with OVFLW=OFF set, the value assigned to
the corresponding P1 occurrence will be zero. If the index variable I is zero or greater than 9, with
INDX=OFF set, storage areas that do not belong toArray P1will be corrupted. If these options (OVFLW
and INDX) are set to ON, a Natural error occurs like it does in standard Natural runtime.

For the NOC option specified above, additional code is generated. However, this is well com-
pensated for by the advantage of a check that, for example, protects against hard-to-debug errors.
Undetected errors can, of course, lead to unpredictable results.

49Natural Optimizer Compiler

Optimizer Options

Optimum Code Generation

To assure that the least amount of code is generated and thus achieve optimum performance, use:

OPT='NODBG,NOSGNTR,SIGNCHCK=OFF,ZD=OFF'

However, only apply this setting to objects that have been thoroughly debugged; see also Note
for INDEX, INDX, OVFLW and RANGE.

ARROPT Option

The ARROPT option determines the generation algorithm to be used for array assignments of the
type A(*):=scalar.

Valid values for ARROPT are:

ExplanationValue

Recommended setting for arrays with a minimum of 50 occurrences.

ON is the default setting.

ON

Recommended setting for arrays with less than 50 occurrences.OFF

PGEN Option

The PGEN option causes theNatural Optimizer Compiler to output the generated code and internal
Natural structures. Thus, code and structures can be examined, for example, for bug fixing, per-
formance review and support issues.

An understanding of IBM's /370 assembler is required to interpret the results produced by the
PGEN option.

We recommend that you use this option with the assistance of your local Software AG represent-
ative.

■ Setting PGEN
■ Sub-Options of the PGEN Option
■ Output of the PGEN Option

Natural Optimizer Compiler50

Optimizer Options

■ Working with the PGEN Output

Setting PGEN

To use the PGEN facility, set the PGEN option when activating on the Optimizer Compiler.

Since the buffer is kept in memory, it is possible that the user thread will not be big enough to
hold the trace information. In this case, try setting PGEN on only for the portion of the program
which is to be traced, for example:

Turns tracing on, including tracing of the GPT entriesOPTIONS MCG=(PGEN=ON,TRGPT=ON)
or
OPTIONS MCG=+PGEN,TRGPT

Turns tracing offOPTIONS MCG=(PGEN=OFF)
or
OPTIONS MCG=-PGEN

Various options affect the content of the output. The basic PGEN option causes a formatted listing
of Natural source lines and a disassembly of the corresponding code to be generated and kept in
memory for extraction by the NOCSHOW utility as described below, underOutput of the PGEN
Option.

The TRSTMT, TRGPT, TRMPT and TRVDT options cause hex dumps of internal data structures associated
with each line to be output.

The TRBASES and TRCACHE options cause information on base registers and cache variables to be
printed out.

Sub-Options of the PGEN Option

The following table describes the options when PGEN=ON. For an explanation of the syntax used
see the introduction to List of Options above.

ExplanationOption

Lines-per-page for the trace output, only used when TREXT=ON.LPP={5|..| 55 |..|255}

If NOsrcE=OFF, the Natural source statement is included in the output.NOsrcE[={ON| OFF |Y|N}]

Specifies the trace level. Each bit in this one byte value specifies a buffer
type to trace; these bits can be set on by using the TRxxx options as well.

TRACELEV={ 0 |..|255}

Specifies whether base register allocations are traced.TRBASES[={ON| OFF |Y|N}]

Specifies whether CACHE entries are traced.TRCACHE[={ON| OFF|Y|N}]

If TREXT=ON, trace is directed to the user exit NOCPRINT as described below.TREXT[={ON| OFF |Y|N}]

Specifies whether GPT entries are traced.TRGPT[={ON| OFF |Y|N}]

Specifies whether MPT entries are traced.TRMPT[=ON| OFF |Y|N}]

51Natural Optimizer Compiler

Optimizer Options

ExplanationOption

Specifies whether STMT entries are traced.TRSTMT[={ON| OFF |Y|N}]

Specifies whether VDT entries are traced.TRVDT[={ON| OFF |Y|N}]

See also the examples below.

Output of the PGEN Option

There are two places to where the Natural Optimizer Compiler can direct the output of PGEN:

■ Internal Buffer
■ User Exit NOCPRINT

Internal Buffer

The contents of this buffer is overwritten each time a CHECK, CAT, STOW or RUN command is executed.
A system utility NOCSHOW is provided whereby the contents of this buffer can be viewed, searched
or printed.

To invoke the NOCSHOW utility

■ Enter the direct command NOCSHOW after a CHECK, STOW, CAT or RUNwhere theNatural Optimizer
Compiler has been active.

The following PF keys are available on the screen:

FunctionPF Key

Position to top of outputPF2

Position one line backwardPF4

Position one line forwardPF5

Print to report (1)PF6

Position one page backwardPF7

Position one page forwardPF8

Print via Entire Connection to report (7)PF9

Scan for text stringPF10

Repeat scanPF11

Natural Optimizer Compiler52

Optimizer Options

User Exit NOCPRINT

If TREXT=ON is specified, the Natural Optimizer Compiler passes every output line to the user exit
NOCPRINT instead of adding it to the trace buffer.

NOCPRINT is invoked following normal OS register conventions. Register 1 points to a full word
containing the address of the 81 byte print line with ANSI carriage control characters in position
1. Register 13 points to an area of 18*4 bytes whichmay be used as a save area. Register 14 contains
the return address and Register 15 contains the entry address of NOCPRINT.

The user exit NOCPRINT can be written in any language which supports the register conventions
described above. It must be linked to the Natural nucleus together with the Natural Optimizer
Compiler nucleus.

Working with the PGEN Output

This section provides hints and explanations on how to interpret the output created with the PGEN
option.

■ At the top of the PGEN output are some disassembled lines which do not appear to belong to any
source line. These are the instructions which make up the prologue, which is executed
whenever control passes from non-optimized to optimized code. Permanent base registers are
loaded and control is passed to the correct point in the prologue. See Example Section A below.

■ Sometimes a lot of source lines are printed without any code. This indicates that there was no
code required or that these statements are excluded from the NOC optimization. See Example
Section B below.

Moreover, when the code generated for a Natural statement consists only of:

BAS R14,RETH
DC X'....'

this indicates a return back to the standard runtime, as this statement could not beNOCoptimized
(see line 0170).

■ If the NODBG=OFF (default) has been specified, a sequence of instructions is generated at the start
of each Natural statement:

BALR R9,R11
DC X'....'

This sequence sets the line number (in case of error) and checks whether the TESTmode is
switched ON. Without this sequence, debugging of NOC-compiled statements by the Natural
Debugger is not possible. See Example Section C below.

53Natural Optimizer Compiler

Optimizer Options

■ Sometimes there is a line break between disassembled lines. This break indicates an internal
statement separation. It happens because often a singleNatural statementwill generatemultiple
internal (pseudo-code) statements.

■ The Natural variables operated are inserted in the Assembler code.
■ The items on the right side (e.g. “START 8FEC”) are of internal nature. They document the path
how the code was generated by the NOC modules.

■ All kind of addresses inside the code are resolved and provided in the form “=(00044)”. It
documents the offset in the code to which the branch is executed.

■ The first and the last code instruction contains the NOC version used to compile this program.
The meaning of “4700 8410” is NOC V841.

Example Section A:

000000 4700 8410 NOP 1040(,R8) START 8FEC
000004 5880 D354 L R8,CONST D9DC
000008 5870 D370 L R7,LOCAL D9DC
00000C 4810 6006 LH R1,6(,R6) 90A0
000010 1F60 SLR R6,R0 90BA
000012 47F1 A000 B 0(R1,R10) 90C0

000016 4DE0 B040 BAS R14,RETH RETN F0AA
00001A 0034 DC X'0034' F0C0

Example Section B:

0010 0010 OPTIONS MCG=(PGEN,OVFLW,INDX)
0020 DEFINE DATA LOCAL
0030 1 I(I4)
0040 1 P(P7.2)
0050 1 T(P7.2)
0060 END-DEFINE
0070 *
0080 SETTIME
0090 *

Example Section C:

0100 FOR I=1 TO 100000 ↩

 00001C 0D9B BASR R9,R11 MOVE 1724A
 00001E 004A DC X'004A' 17278
 000020 D203 7000 8148 MVC I(4),#KST0148 97D2

 000026 47F0 A044 B 68(,R10) =(00044) GOTO EF44

 00002A 0D9B BASR R9,R11 ADD 1724A

Natural Optimizer Compiler54

Optimizer Options

 00002C 006A DC X'006A' 17278
 00002E BF0F 7000 ICM R0,B'1111',I BB20
 000032 5A00 8148 A R0,#KST0148 1E4E
 000036 0D90 BASR R9,0 F12A
 000038 4710 B15C BO NAT1301 1E9E
 00003C BE0F 7000 STCM R0,B'1111',I A9CC

 000040 0D9B BASR R9,R11 IF 1724A
 000042 007C DC X'007C' 17278
 000044 BF0F 7000 ICM R0,B'1111',I BB20
 000048 5900 819B C R0,#KST019B 3FDA
 00004C 47D0 A054 BNH 84(,R10) =(00054) EF44

 000050 47F0 A078 B 120(,R10) =(00078) GOTO EF44 ↩

 0110 ADD 1.00 TO P

000054 0D9B BASR R9,R11 ADD 1724A
000056 0092 DC X'0092' 17278
000058 FA41 7004 819F AP P(5),#KST019F(2) 20A0
00005E 0D90 BASR R9,0 F12A
000060 4710 B15C BO NAT1301 1071C
000064 910D 7008 TM P+4,X'0D' 120B0
000068 4710 A070 BO 112(,R10) =(00070) 120F6
00006C 960F 7008 OI P+4,X'0F' 1210ª

0120 END-FOR
0130 *

 000070 0D9B BASR R9,R11 GOTO 1724A
 000072 00A4 DC X'00A4' 17278
 000074 47F0 A02A B 42(,R10) =(0002A) EF44 ↩

 0140 T:=*TIMD(0080)

 000078 0D9B BASR R9,R11 SYFU 1724A
 00007A 00AE DC X'00AE' 17278
 00007C 4DE0 B0D8 BAS R14,SYSFUNC 5F1A
 000080 0190 B881 DC X'0190B881' 5F28

 000084 F246 7009 8190 PACK T(5),#KST0190(7) MOVE AD18
 00008A 910F 700D TM T+4,X'0F' 12130
 00008E 4710 A0A0 BO 160(,R10) =(000A0) 12176
 000092 17EE XR R14,R14 1218E
 000094 43E0 700D IC R14,T+4 12194
 000098 43EE B488 IC R14,PSGNTR(R14) 121AA
 00009C 42E0 700D STC R14,T+4 121B2
 0000A0 F040 7009 0002 SRP T(5),2,0 ACA2
 0000A6 17EE XR R14,R14 1218E
 0000A8 43E0 700D IC R14,T+4 12194

55Natural Optimizer Compiler

Optimizer Options

 0000AC 43EE B488 IC R14,PSGNTR(R14) 121AA
 0000B0 42E0 700D STC R14,T+4 121B2 ↩

 0150 T:=T / 10
0160 *

 0000B4 0D9B BASR R9,R11 DIV 1724A
 0000B6 00C0 DC X'00C0' 17278
 0000B8 F864 D100 7009 ZAP OP1(7),T(5) AC60
 0000BE FD61 D100 81A1 DP OP1(7),#KST01A1(2) 327A
 0000C4 F844 7009 D100 ZAP T(5),OP1(5) AC60
 0000CA 910D 700D TM T+4,X'0D' 120B0
 0000CE 4710 A0D6 BO 214(,R10) =(000D6) 120F6
 0000D2 960F 700D OI T+4,X'0F' 1210A ↩

 0170 DISPLAY 'ELAPSED TIME (S)' T

0000D6 4DE0 B040 BAS R14,RETH RETN F0AA
0000DA 00D2 DC X'00D2' F0C0

0180 END

0000DC 40D6 D7E3 F844 2000 DC X'40D6D7E3F8442000' =' OPT8à..' END 927E
0000E4 0000 0000 DC X'00000000' nf
0000E8 40D5 D6C3 F8F4 F140 DC X'40D5D6C3F8F4F140' =' NOC841 ' 92E4

Influence of other Natural Parameters

The global parameter ZD influences the behavior of the NOC compiler. See the description of the
ZD option as described under List of Options above.

The COMPOPT parameter PSIGNF (see also the system command COMPOPT in the Natural System
Commands documentation) influences the behavior by forcing the signs of positive packed
decimal numbers to F if ON, and to C if OFF. The parameter is applied if NOSGNTR=OFF is specified.

See the chart below for packed data (Format P) “:”

All signs are normalized to F (default).PSIGNF=ONandNOSGNTR=OFF

All signs are normalized to C.PSIGNF=OFFandNOSGNTR=OFF

All signs are left as they were generated by the last operation.NOSGNTR=ON

For numeric data (Format N) the signs are always normalized to F, regardless of the settings of
NOSGNTR and PSIGNF.

Natural Optimizer Compiler56

Optimizer Options

9 Performance Considerations

■ Formats ... 58
■ Arrays ... 58
■ Alphanumeric Fields .. 59
■ DECIDE ON ... 59
■ Numeric Values ... 59
■ Variable Positioning ... 60
■ Variable Caching ... 60
■ NODBG ... 61

57

Formats

Best performance is achieved when you use the data formats packed numeric (P) and integer (I4)
in arithmetic operations.

Avoid converting data between the formats packed numeric (P), unpacked numeric (N), integer
(I), and floating point (F), as this causes processing overhead even with optimized code.

As there is no interpretation overhead with optimized code, the differences between the various
data formats becomemuch more prominent: with optimized code the performance improvement
gained by using format P instead of N, for example, is even higher than with normal code.

Example:

A = A + 1

In the above numeric calculation

■ with non-optimized code, format P executes approximately 13 % faster than format N.
■ with optimized code, however, format P executes approximately 56 % faster than format N.

The performance gain which would be achieved by applying the Natural Optimizer Compiler to
this simple statement is

■ with unpacked operands (N): 8 times faster
■ with packed operands (P): 15 times faster

Arrays

Array range operations, such as

MOVE A(*) TO B(*)

are executed more efficiently than if the same function were programmed using a FOR statement
processing loop. This is also true for optimized code.

When indexes are used, integer format I4 should be used to achieve optimum performance.

Natural Optimizer Compiler58

Performance Considerations

Alphanumeric Fields

We recommend that you adjust the length of the alphanumeric constant to the length of the variable,
whenmoving an alphanumeric constant to an alphanumeric variable (formatA), orwhen comparing
an alphanumeric variablewith an alphanumeric constant. Thiswill significantly speedup operation,
for example:

A(A5):='XYZAB'

...
IF A = 'ABC ' THEN ...

is faster than

IF A = 'ABC' THEN ...

DECIDE ON

When using the DECIDE ON statement with a system variable, array or parameter operand1, it is
more efficient to move the value to a scalar variable of the same type and length defined in the
LOCAL storage section.

Numeric Values

When using numeric constants in assignments or arithmetic operations, try to force the constants
to have the same type as the operation.

Rules of Thumb

■ Any numeric constant with or without a decimal but without an exponent is compiled to a
packed number having the minimum length and precision to represent the value, unless the
constant is an array index or substring starting position or length, in which case it becomes a
four-byte integer (I4). This rule applies irrespective of the variable types participating in the
operation.

■ Operations containing floating point will be executed in floating point. Add E00 to numeric
values to force them to be floating point, for example:

59Natural Optimizer Compiler

Performance Considerations

ADD 1E00 to F(F8)

■ Operations not containing floating point, but containing packed numeric, unpacked numeric,
date or time variables will be executed in packed decimal. For ADD, SUBTRACT and IF, force nu-
meric constants to have the same number of decimal places as the variable with the highest
precision by adding a decimal place and trailing zeros, for example:

ADD 1.00 TO P(P7.2)

This technique is unnecessary for MULTIPLY and DIVIDE.

Variable Positioning

To ease the optimization process, try to keep all scalar references at the front of the data section
and all array references at the end of the data section.

Variable Caching

The Natural Optimizer Compiler contains an algorithm to enhance the performance even further.
In terms of performance, a statementwill differ depending on the types of operands. The statement
will execute more slowly if one or more of the operands is a parameter, array or scalar field of
Type N (numeric) or combinations of these operands. The NOC analyzes the program flow and
determines which variables with one or more of these characteristics are read two or more times
without beingwritten to. It thenmoves the value of each variable to a temporary cache areawhere
it can be accessed quickly under the following conditions:

■ The variable is accessed often but seldom modified and
■ The variable is an array of any type or a scalar field of Type N (numeric).

Most suitable for variable caching are programs with long sequences that repeatedly access the
same variable, in particular if the variable is an array. Variable caching then avoids complex and
recurring address computation.

Natural Optimizer Compiler60

Performance Considerations

Example of Variable Caching

The example programdisplayed belowdemonstrates the advantage of variable caching. Cataloged
with NODBG (see below) and CACHE=ON, executing this program in a test environment took 47 % of
the time required to execute the programwith NODBG and CACHE=OFF. Cataloging the programwith
CACHE=ON, reduces the code generated by the NOC from 856 bytes to 376 bytes.

DEFINE DATA LOCAL
1 ARR(N2/10,10,10)
1 I(I4) INIT <5>
1 J(I4) INIT <6>
1 K(I4) INIT <7>
END-DEFINE
DECIDE ON EVERY ARR(I,J,K)
VALUE 10 IGNORE
VALUE 20 IGNORE
VALUE 30 IGNORE
VALUE 40 IGNORE
VALUE 50 IGNORE
VALUE 60 IGNORE
VALUE 70 IGNORE
VALUE 80 IGNORE
VALUE 90 IGNORE
NONE IGNORE
END-DECIDE

Caution: If the content of a cached variable ismodifiedwith the command MODIFY VARIABLE

of the Natural Debugger, only the content of the original variable is modified. The cached
value (which may still be used in subsequent statements) remains unchanged. Therefore,
variable caching should be used with great care if the Natural Debugger is used. See also
the Natural Debugger documentation.

NODBG

Once a program has been thoroughly tested and put into production, you should catalog the
program with the NODBG option as described in the sectionOptimizer Options. Without debug
code, the optimized statements will execute from 10% to 30% faster.

The code to facilitate debugging is removedwhen this option is specified, evenwith INDX or OVFLW
options turned on.

61Natural Optimizer Compiler

Performance Considerations

62

10 Listing Zaps

If you want to have an overview of the Zaps that have been applied to the Natural Optimizer
Compiler at your site, use the DUMP system command.

To obtain a Zap overview

■ Enter the Natural system command

DUMP ZAPS NOC

A list of the Zaps that have been applied is displayed.

If no Zaps have been applied to the Natural Optimizer Compiler, you will receive the appropriate
message.

63

64

IV Natural Optimizer Compiler Version 8.3/8.4 -

Documentation Updates

65

66

11 NaturalOptimizerCompiler Version 8.3/8.4 - Documentation

Updates
■ Optimizer Options under Natural Optimizer Compiler Version 8.3/8.4 ... 68

67

Note: The documentation updates provided here only cover the changes introduced in
Natural Optimizer Compiler Version 8.3 and Version 8.4.

For the changes in installation, see Installing the Natural Optimizer Compiler on z/OS, z/VSE and
BS2000 in the Natural Installation documentation.

Optimizer Options under Natural Optimizer Compiler Version 8.3/8.4

Note: This is an extract of the chapterOptimizer Options and only describes the changes
specific to the Natural Optimizer Compiler Version 8.3 and Version 8.4.

■ ARCH Option
■ Prerequisites for Code Generation with Unicode Operands
■ UNICC Option

ARCH Option

The ARCH option specifies the hardware architecture level to be used for generating code for execut-
able Natural objects.

When you specify an ARCH value, the Natural Optimizer Compiler generates newer and faster
machine instructions that can improve the performance of the generated code. You cannot specify
a value that is higher than the architecture level of your current machine. An executable Natural
object catalogedwith an ARCH level can only run on amachinewith the same or a higher architecture
level. Therefore, we recommend not to use the ARCH option if the cataloged objects are intended
to execute on any machine, especially on a machine with a lower architecture level (for example,
BS2000).

For detailed information on architecture levels, see the related literature from IBM (z/Architecture,
Principles of Operation).

The following architecture levels are supported by the ARCH option of the Natural Optimizer
Compiler:

IBM Hardware Facility RequiredArchitecture Level

Specifies that no architecture level is used. This is the default setting for compatibility
with all mainframe platforms supported by Natural.

0

These values are not evaluated and treated as ARCH=0.1 to 4

5 to 6 ■ z800 or z900
Extended-Translation Facility 2

■ z890 or z990
HFP Multiply-and-Add/Subtract Facility

Natural Optimizer Compiler68

Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates

IBM Hardware Facility RequiredArchitecture Level

7 ■ z9 to z109
Extended-Immediate Facility

8 ■ z10
General-Instructions-Extension Facility
Execute-Extensions Facility

9 ■ zEnterprise 196
Load/Store-on Condition Facility
Floating-Point-Extension-Facility
Distinct-Operands Facility
High-Word-Facility

10 ■ zEnterprise EC12 (zEC12)
Decimal Floating-Point Facility
Decimal Floating-Point Zoned-Conversion Facility

11 ■ zEnterprise z13
Decimal Floating-Point Packed-Conversion Facility

(Applies to Natural Optimizer Compiler Version 8.4 and above only.)12

■ zEnterprise z14
Vector Packed-Decimal Facility

Note: With an ARCH value greater zero, theNaturalOptimizerCompiler generates instructions
up to the facility level described in the table above. An ARCH value higher than the architecture
level of the underlying machine is rejected at compile time. The attempt to start a program
compiledwith an ARCH level on amachinewith a lower architecture level, causes aNAT1394
runtime error. You can display information on the currentmachine by using the TECH system
command.

This section covers the following topics:

■ Support for Architecture Level 10
■ Support for Architecture Level 11
■ Support for Architecture Level 12
■ Compatibility for Architecture Level 10 and 11

69Natural Optimizer Compiler

Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates

■ Compatibility for Architecture Level 12

Support for Architecture Level 10

When ARCH=10 is set, the Natural Optimizer Compiler generates instructions provided by the
Decimal-Floating-Point (DFP) Zoned-Conversion Facility for the numeric operations described in
the following section. This can significantly improve the execution speed for statements that use
these operations.

Operations Optimized by ARCH=10
The following arithmetic operations on variables of the Natural data formats I (integer), N
(numeric unpacked) and P (packed numeric) benefit from ARCH=10:
■ Value assignments:

P:=I

P:=N

N:=I

N:=N

N:=P only if the number of packed digits is less than or equal to 15.

I:=N

■ Arithmetic operations, such as ADD, SUBTRACT, DIVIDE and MULTIPLY statements, but only if
both of the following conditions apply:

At least one of the operands used is in the format N or I.
The operation result does not exceed 34 (integer + precision) digits.

■ Comparisons, such as IF and DECIDE statements, but only if both of the following conditions
apply:

At least one of the operands used is in the format N.
Both operands are in different formats.

Support for Architecture Level 11

When ARCH=11 is set, the Natural Optimizer Compiler uses machine instructions introduced with
theDFPPacked-Conversion Facility. In addition to the numeric operations optimizedwith ARCH=10,
ARCH=11 also optimizes operations that use packed variables only.

Natural Optimizer Compiler70

Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates

Support for Architecture Level 12

Applies to Natural Optimizer Compiler Version 8.4 and above only.

When ARCH=12 is set, the Natural Optimizer Compiler generates machine instructions introduced
with the Vector Packed-Decimal Facility (VPD) in the z14 hardware class. This can improve the
execution speed for assignments, comparisons, and calculations if at least one packed operand is
used.

VPDmachine instructions are generated for the sameNatural operations described forArchitecture
Level 11, except they are applied only to arithmetic operations whose results do not exceed 31
(integer + precision) digits.

Compatibility for Architecture Level 10 and 11

When ARCH=10 is used, theNatural Optimizer Compiler generatesmachine instructions introduced
with the Decimal-Floating-Point (DFP) Zoned-Conversion Facility or the DFP Packed-Conversion
Facility. These instructions execute faster than the standard machine code instructions for arith-
metic operations, but they do not accept data which is improper in terms of the zoned numeric
data type (N).

This may cause runtime errors, when an N-field is defined within a REDEFINE section of an alpha
or binary variable and theN-field is not properly initialized before used in an arithmetic operation.

A numeric zoned field carries one digit in one byte. Usually, each byte contains x’F’ in the left
halfbyte (Zone bits) and the digit value (0-9) in the right halfbyte (Numeric bits). This applies for
all bytes, except for the last one, which contains (A-F) in the left halfbyte (Sign bits).

A sign halfbyte (C,A,F,E) represents a positive value, whereas (B,D) stands for a negative value.
A value other than (0-9) inside the numeric halfbytes (N) and a value other than (A-F) inside the
sign halfbyte (S) is considered invalid. The data inside the zone halfbytes (Z) is not regarded by
arithmetic conversion instructions and can have any value (0-F).

Example for a variable defined as (N6):

Works with ARCH>=10Works with ARCH<=9Value isSign isSNZNZNZNZNZN

yesyes123456, okF=positiveF6F5F4F3F2F1

yesyes323662, okD=negativeD2F3F3F6F2F3

NAT7024yes000000, ok4=invalid404040404040

NAT7024yes000000, ok0=invalid000000000000

NAT7024yes234567, ok1=invalid171615141312

NAT7024NAT09541B2A21, invalidF=positiveF1127A726B51

71Natural Optimizer Compiler

Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates

When ARCH=9 (or lower) is used, invalid sign halfbytes (0-9) are automatically corrected by the
generated code to a positive sign (F). This turns N-fields with a blank contents into valid data with
value zero. The same applies for Hexa zero data.

When ARCH=10 (or 11) is used, invalid sign halfbytes (0-9) remain unchanged and lead to a program
check (Data exception)when accessed by aDFP instruction. If such an abend occurs, Natural issues
a NAT7024 error instead of a NAT0954 to clearly indicate that the error is caused by an N-variable
that does not contain valid numeric data.

If a numeric halfbyte (N) contains a value other than (0-9), a program check (Data exception)
happens regardless of the ARCH level used.

Conclusion:

Do not use ARCH=10 (or 11) to catalog a programwhich operates unclean numeric data, with a sign
value other than (A-F).

For example:

OPTIONS MCG=(PGEN,ARCH=9)
DEFINE DATA LOCAL
1 #A (A6)
1 REDEFINE #A

2 #N (N6)
END-DEFINE /* ARCH=9 ARCH=10
#A := H'F1F2F3F4F5F6' ADD 1 TO #N WRITE #N /* ok ok
#A := H'F3F2F6F3F3D2' ADD 1 TO #N WRITE #N /* ok ok
#A := H'404040404040' ADD 1 TO #N WRITE #N /* ok NAT7024
#A := H'000000000000' ADD 1 TO #N WRITE #N /* ok NAT7024
#A := H'121314151617' ADD 1 TO #N WRITE #N /* ok NAT7024
#A := H'516B727A12F1' ADD 1 TO #N WRITE #N /* NAT0954 NAT7024
END

Moreover, when ARCH=10 (or 11) is used, Natural can issue a NAT1305 (truncated numeric value)
instead of a NAT1301 error (intermediate result too large) for the following reason: The DFP nu-
meric format is used for calculating intermediate results and an overflow is only detected at the
end of the arithmetic operation when the DFP is converted into the format of the result.

Compatibility for Architecture Level 12

When ARCH=12 is used, theNatural Optimizer Compiler generatesmachine instructions introduced
with the Vector Packed-Decimal Facility (VPD)which are compatible in terms of data incorrectness
with the code generated with ARCH=9 or below.

Numeric data fields (N) with incorrect sign representations (0-9) are converted into the positive
sign value (F). This accepts numeric fields with a blank or hex00 content and treats them as value
zero. A data exception (abend) does not occur in these cases.

Natural Optimizer Compiler72

Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates

Prerequisites for Code Generation with Unicode Operands

The Natural Optimizer Compiler generates optimized code for Natural statements with Unicode
strings if the following requirements are met:

RequirementStatement

All operands used in the statement must be of the type Unicode.All statements

The ARCH option must be set to a value greater than or equal to 6.EXAMINE

IF

DECIDE FOR

■ All Unicode character strings must be normalized.
■ The ARCH option must be set to a value greater than or equal to 5.

DECIDE ON
■ The UNICC optionmust be set to ON or FORCE.
■ The COLLATE option of the CFICU profile parameter must be set to OFF (see the
Parameter Reference documentation).

The ARCH option must be set to a value greater than or equal to 5.MOVE

MOVE SUBSTRING

RESET

UNICC Option

The UNICC option controls the generation of optimized code for IF, DECIDE FOR and DECIDE ON
statements that contain Unicode operands.

Valid values for UNICC are:

ExplanationValue

Generates optimized code and checkswhether COLLATE=OFF is set (see the CFICU profile parameter
in the Parameter Reference documentation).

If COLLATE=ON is set, execution of the optimized code will fail with a NAT7023 Natural system
error.

ON

Generates optimized code analogous to ON but without COLLATE=OFF check.

The code optimized with FORCE performs better than the code optimized with ON but can cause
wrong results if COLLATE=ON is set.

FORCE

Optimized code is not generated.

OFF is the default setting.

OFF

73Natural Optimizer Compiler

Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates

74

	Natural Optimizer Compiler
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I NOC - General Information
	2 NOC - General Information
	Natural Nucleus Optimization
	Natural Optimizer Compiler

	II Using the Optimizer Compiler - Overview
	3 What is Compiled and What is Not
	Statements Compiled by the Natural Optimizer Compiler
	Statements that are Not Compiled

	4 NOCSTAT Command
	Invoking NOCSTAT
	Generating Reports
	Report Formats
	Statement Category
	Statement Type
	Code Profile

	Batch Execution

	5 Displaying the Size of the Machine Code
	6 Optimizer Usage Examples
	Example 1 - No Improvement
	Example 2 - Considerable Improvement
	Examples 3 and 4 - CPU Usage

	III
	7 Activating the Optimizer Compiler
	Macro NTOPT
	Dynamic Profile Parameter OPT
	System Command NOCOPT
	Natural Statement OPTIONS

	8 Optimizer Options
	List of Options
	Example of INDEX and OVFLW
	Optimum Code Generation

	ARROPT Option
	PGEN Option
	Setting PGEN
	Sub-Options of the PGEN Option
	Output of the PGEN Option
	Internal Buffer
	User Exit NOCPRINT

	Working with the PGEN Output

	Influence of other Natural Parameters

	9 Performance Considerations
	Formats
	Arrays
	Alphanumeric Fields
	DECIDE ON
	Numeric Values
	Rules of Thumb

	Variable Positioning
	Variable Caching
	Example of Variable Caching

	NODBG

	10 Listing Zaps

	IV Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates
	11 Natural Optimizer Compiler Version 8.3/8.4 - Documentation Updates
	Optimizer Options under Natural Optimizer Compiler Version 8.3/8.4
	ARCH Option
	Support for Architecture Level 10
	Support for Architecture Level 11
	Support for Architecture Level 12
	Compatibility for Architecture Level 10 and 11
	Compatibility for Architecture Level 12

	Prerequisites for Code Generation with Unicode Operands
	UNICC Option

