

Natural

Installation for BS2000

Version 9.1.2

April 2023

ADABAS & NATURAL

Dieses Dokument gilt für Natural ab Version 9.1.2.

Hierin enthaltene Beschreibungen unterliegen Änderungen und Ergänzungen, die in nachfolgenden Release Notes oder Neuausgaben bekanntgegeben werden.

Copyright © 1979-2023 Software AG, Darmstadt, Deutschland und/oder Software AG USA, Inc., Reston, VA, USA, und/oder ihre Tochtergesellschaften und/oder ihre Lizenzgeber.

Der Name Software AG und die Namen der Software AG Produkte sind Marken der Software AG und/oder Software AG USA Inc., einer ihrer Tochtergesellschaften oder ihrer Lizenzgeber. Namen anderer Gesellschaften oder Produkte können Marken ihrer jeweiligen Schutzrechtsinhaber sein.

Nähere Informationen zu den Patenten und Marken der Software AG und ihrer Tochtergesellschaften befinden sich unter http://documentation.softwareag.com/legal/.

Diese Software kann Teile von Software-Produkten Dritter enthalten. Urheberrechtshinweise, Lizenzbestimmungen sowie zusätzliche Rechte und Einschränkungen dieser Drittprodukte können dem Abschnitt "License Texts, Copyright Notices and Disclaimers of Third Party Products" entnommen werden. Diese Dokumente enthalten den von den betreffenden Lizenzgebern oder den Lizenzen wörtlich vorgegebenen Wortlaut und werden daher in der jeweiligen Ursprungsprache wiedergegeben. Für einzelne, spezifische Lizenzbeschränkungen von Drittprodukten siehe PART E der Legal Notices, abrufbar unter dem Abschnitt "License Terms and Conditions for Use of Software AG Products / Copyrights and Trademark Notices of Software AG Products". Diese Dokumente sind Teil der Produktdokumentation, die unter http://softwareag.com/licenses oder im Verzeichnis der lizenzierten Produkte zu finden ist.

Die Nutzung dieser Software unterliegt den Lizenzbedingungen der Software AG. Diese Bedingungen sind Bestandteil der Produktdokumentation und befinden sich unter http://softwareag.com/licenses und/oder im Wurzelverzeichnis des lizenzierten Produkts.

Dokument-ID: NATMF-INSTALL-BS2-912-20230424

Table of Contents

Preface	v
1 About this Documentation	1
Dokumentationskonventionen	2
Online-Informationen und Support	2
Datenschutz	3
2 Installation Process and Major Natural Features on BS2000	5
General Prerequisites and System Support	6
Installation Medium	7
Installation Method	8
System Maintenance Aid (SMA)	8
Sample Installation Jobs	9
Installation Job Identification	9
Overall Installation Procedure	9
Naming Conventions for Installation Procedures	10
Installation Verification	10
INPL Utility	11
Natural Nucleus Components	11
Natural System Files	17
3 Installing Natural on BS2000	19
Prerequisites	20
Installation Medium	20
Installation Procedure	23
Installation Verification	31
4 Installing International Components for Unicode for Software AG on BS2000	33
Prerequisites	34
Installation Medium	34
Installation Procedure	34
Installation Verification	36
5 Installation for REQUEST DOCUMENT and PARSE XML Statements on BS2000	39
Prerequisites	40
Installation Procedure	41
Installation Verification	42
6 Installing Natural Net Data Interface on BS2000	43
Prerequisites	44
Device Configuration in NATCONFG	44
7 Installing Entire System Server Interface on BS2000	47
Prerequisites	48
Default or Customized Installation	48
Assemble the Parameter Module for the Entire System Server Interface	
Component	51
Link the Entire System Server Interface to the Nucleus	52
Install the Entire System Server in Single-User Mode	52
8 Installing Software AG Editor on BS2000	55

Prerequisites	56
Installation Procedure 5	56
Installation Verification5	;9
9 Installing Natural TIAM Interface on BS2000 6	51
Prerequisites	52
Installation Medium 6	52
Installation Procedure 6	53
Installation Verification 6	55
10 Installing Natural openUTM Interface on BS2000 6	57
Prerequisites	58
Installation Medium 6	58
Installation Procedure 6	59
Installation Verification7	'1
11 Installing Natural Security on BS20007	'3
Prerequisites	′4
Installation Medium7	'4
Installation Procedure7	'5
Installation Verification7	7
12 Installing Natural Advanced Facilities on BS2000	'9
Prerequisites	30
Installation Medium	30
Installation Procedure	31
Installation Verification	37
13 Installing Natural Optimizer Compiler on BS2000 8	39
Prerequisites)0
Installation Medium)0
Installation Procedure)0
Installation Verification	1
14 Installing Natural Connection on BS2000)3
Prerequisites	94
Installation Medium)4
Installation Procedure	95
Installation Verification)6

Preface

This documentation describes the installation of base Natural and Natural add-on products on BS2000.

Basic Information:		
Installation Process and Major Natural Features		
Base Natural:		
Installing Natural		
Base Natural - Optional Components:		
Installing International Components for Unicode for Software AG		
Installation for REQUEST DOCUMENT and PARSE XML Statements		
Installing Natural Net Data Interface		
Installing Entire System Server Interface		
Installing Software AG Editor		
TP Monitor Interfaces:		
Installing Natural TIAM Interface		
Installing Natural openUTM Interface		
Other Natural Add-On Products:		
Installing Natural Security		
Installing Natural Advanced Facilities		
Installing Natural Optimizer Compiler		
Installing Natural Connection		

About this Documentation

Dokumentationskonventionen	. 2
Online-Informationen und Support	. 2
Datenschutz	. 3

Dokumentationskonventionen

Konvention	Beschreibung
Fettschrift	>Kennzeichnet Elemente auf einem Bildschirm.
Nichtproportionale Schrift	Kennzeichnet Namen und Orte von Diensten im Format Ordner.Unterordner.Dienst, Programmierschnittstellen (APIs), Namen von Klassen, Methoden und Properties in Java.
Kursivschrift	Kennzeichnet:
	Variablen, für die Sie situations- oder umgebungsspezifische Werte angeben müssen. Neue Begriffe, wenn sie erstmals im Text auftreten.
	Verweise auf andere Dokumentationsquellen.
Nichtproportionale Schrift	Kennzeichnet: Text, den Sie eingeben müssen. Meldungen, die vom System angezeigt werden. Programmcode.
{}	Zeigt eine Reihe von Auswahlmöglichkeiten an, von denen Sie eine auswählen müssen. Geben Sie nur die innerhalb der geschweiften Klammern vorhandenen Informationen ein. Geben Sie nicht die Klammersymbole { } ein.
	Trennt zwei sich gegenseitig ausschließende Auswahlmöglichkeiten in einer Syntaxzeile voneinander ab. Geben Sie eine der Auswahlmöglichkeiten ein. Geben Sie nicht das Symbol ein.
[]	Zeigt eine oder mehrere Optionen an. Geben Sie nur die innerhalb der eckigen Klammern vorhandenen Informationen ein. Geben Sie nicht die Klammersymbole [] ein.
	Zeigt an, dass Sie mehrere Auswahlmöglichkeiten desselben Typs eingeben können. Geben Sie nur die Informationen ein. Geben Sie nicht die drei Auslassungspunkte () ein.

Online-Informationen und Support

Produktdokumentation

Sie finden die Produktdokumentation auf unserer Dokumentationswebsite unter https://document-ation.softwareag.com.

Zusätzlich können Sie auch über https://www.softwareag.cloud auf die Dokumentation für die Cloud-Produkte zugreifen. Navigieren Sie zum gewünschten Produkt und gehen Sie dann, je nach Produkt, zu "Developer Center", "User Center" oder "Documentation".

Produktschulungen

Sie finden hilfreiches Produktschulungsmaterial auf unserem Lernportal unter https://know-ledge.softwareag.com.

Tech Community

Auf der Website unserer Tech Community unter https://techcommunity.softwareag.com können Sie mit Experten der Software AG zusammenarbeiten. Von hier aus können Sie zum Beispiel:

- Unsere umfangreiche Wissensdatenbank durchsuchen.
- In unseren Diskussionsforen Fragen stellen und Antworten finden.
- Die neuesten Nachrichten und Ankündigungen der Software AG lesen.
- Unsere Communities erkunden.
- Unsere öffentlichen Repositories auf GitHub and Docker unter https://github.com/softwareag und https://hub.docker.com/publishers/softwareag> besuchen und weitere Ressourcen der Software AG entdecken.

Produktsupport

Support für die Produkte der Software AG steht lizenzierten Kunden über unser Empower-Portal unter https://empower.softwareag.com> zur Verfügung. Für viele Dienstleistungen auf diesem Portal benötigen Sie ein Konto. Wenn Sie noch keines haben, dann können Sie es unter https://em-power.softwareag.com/register> beantragen. Sobald Sie ein Konto haben, können Sie zum Beispiel:

- Produkte, Aktualisierungen und Programmkorrekturen herunterladen.
- Das Knowledge Center nach technischen Informationen und Tipps durchsuchen.
- Frühwarnungen und kritische Alarme abonnieren.
- Supportfälle öffnen und aktualisieren.
- Anfragen für neue Produktmerkmale einreichen.

Datenschutz

Die Produkte der Software AG stellen Funktionen zur Verarbeitung von personenbezogenen Daten gemäß der Datenschutz-Grundverordnung (DSGVO) der Europäischen Union zur Verfügung. Gegebenenfalls sind in der betreffenden Systemverwaltungsdokumentation entsprechende Schritte dokumentiert.

Installation Process and Major Natural Features on BS2000

General Prerequisites and System Support	6
 Installation Medium 	
Installation Method	
System Maintenance Aid (SMA)	
Sample Installation Jobs	
 Installation Job Identification 	
Overall Installation Procedure	
Naming Conventions for Installation Procedures	10
 Installation Verification 	10
INPL Utility	11
 Natural Nucleus Components	11
 Natural System Files 	17

This document provides general information on the prerequisites and processes required to install base Natural and Natural add-on products. In addition, it describes installation tools and major Natural components required for installation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

General Prerequisites and System Support

Before beginning the installation process, consider the following:

- Be sure to read the current Natural *Release Notes* for Mainframes for information on software and hardware requirements, known issues and changes to the documentation. These *Release Notes* apply to base Natural and Natural add-on products.
- A supported version of the operating system on which Natural is to run must be installed. For the supported operating systems and versions, refer the **Product Version Availability** section of Software AG's Empower web site at *https://empower.softwareag.com/*.
- A supported version of the TP monitor/online interface used with Natural must be installed. For the supported versions, refer to TP Monitors/Online Interfaces in the current Natural Release Notes for Mainframes.
- A supported version of Adabas must be installed to store the Natural system files. See also *Natural System Files*.

For the supported versions, refer to *Database Management Systems* in the current Natural *Release Notes* for Mainframes.

A supported version of each database management system used to store the user data processed with Natural must be installed.

For the supported versions, refer to *Database Management Systems* in the current Natural *Release Notes* for Mainframes.

Installation Medium

The installation medium (for example, tape or CD-ROM) distributed for Software AG mainframe products contains all files required to install base Natural and the Natural add-on products.

The software required for the optional Natural components are contained in the files supplied for base Natural. The software required for the Natural add-on products are contained in separate product files which are listed in the product-specific sections of the *Installation for BS2000* documentation. In addition to the product files, the installation medium can contain the latest fix updates for the supplied products.

The names of the product files begin with a product code that identifies each product, as in the following table:

Product Code	Product Name
NAF	Natural Advanced Facilities
NAT	Natural
NOC	Natural Optimizer Compiler
NRT	Natural TIAM Interface
NSC	Natural Security
NTC	Natural Connection
NUT	Natural openUTM Interface

Software AG Product Delivery Report

Each installation medium is delivered with a Software AG Product Delivery Report providing the following information:

- A list of all files contained on the medium.
- The sequence in which the files are located on the medium.
- Attribute descriptions of each file.

Installation Method

The installation of Software AG products on BS2000 is performed by installation jobs that contain the JCL required to identify the job to the operating system and run the job.

There are two methods for creating and running the installation jobs:

- using the jobs generated by System Maintenance Aid (SMA), or
- using the jobs created from the sample installation jobs provided.

The *Installation for BS2000* documentation solely describes the installation procedure for the jobs generated by SMA. If you do not use SMA for installation, refer to the example installation jobs supplied on the installation medium.

SMA is supplied with base Natural.

System Maintenance Aid (SMA)

For each step of the installation procedure, System Maintenance Aid (SMA) generates an installation job according to your specifications in SMA. You then submit and run the generated job.

Before you can start generating the jobs, you have to load the SMT111.TABS file from the installation medium into the SMA system file. SMT111.TABS contains the tables SMA requires to build the jobs.

SMA is supplied with base Natural. For instructions on loading the file and using SMA, refer to the *System Maintenance Aid* documentation.

Readme File

For installation guidance and information on new or changed SMA parameters and Natural features, you can view the product-specific Readme files by using the appropriate SMA function.

> To view a product-specific Readme

■ From the product list on an SMA **Maintenance** screen, execute the RM (**Show Readme File**) command for the required product(s).

Sample Installation Jobs

The sample installation jobs that can be used as an alternative to SMA are provided in an LMS library contained on the file *product-code-vrs*.JOBS (for example, NAT911.JOBS) shipped on the installation medium. All sample installation jobs provided are listed and described in the README document that accompanies the shipment.

You need to adapt the sample installation jobs to your requirements.

Installation Job Identification

Each installation job indicates the **product code** and version (for example, NAT911) of the corresponding product (for example, Natural).

Each step of the installation procedure is identified by a job name (for example, 1050) and one or more steps (for example, Steps 0100 and 0101 for Job 1050) that indicate the tasks performed by the job. The job name can have a prefix such as a **product code** (for example, NATI050).

A sample installation job from the LMS library can also have a suffix letter which indicates a variant of the job. For example: Job 1060L is a variant of Job 1060 and used if support of the IBM Language Environment (LE) is required. In SMA, the same variant is executed with Job 1060 and the appropriate SMA parameter setting.

Overall Installation Procedure

The installation process comprises the following:

- 1. Creating the Natural system files.
- 2. Creating the Natural parameter module.
- 3. Creating the Natural nucleus.
- 4. Loading the Natural objects.
- 5. Installing the optional Natural components.
- 6. Installing the Natural add-on products.

Naming Conventions for Installation Procedures

This section describes the naming conventions that apply to the installation procedures of the *Installation for BS2000* documentation:

- job-library
- Elements in job-library

job-library

job-library denotes one of the following:

- the sample job library (product-code-vrs.JOBS, for example, NAT911.JOBS) if you are not using System Maintenance Aid (SMA) or
- the SMA job library if you are using SMA. See the SMA parameter JOBLIB in the SMA Parameter Group BASIC.

Elements in job-library

The following naming conventions are used for the source elements contained in the *job-library* library:

Aproduct-codefunction

for assembler sources and

Lproduct-codefunction

for instructions for BINDER.

Examples:

ANATFRNT, ANATRENT, ANATSTUB and LNATFRNT

Installation Verification

Verify the successful completion of the installation by starting Natural and testing the system functions as described in the relevant sections of the *Installation for BS2000* documentation.

Note: If Natural Security is installed, certain Natural functions and libraries can be restricted to specific users.

INPL Utility

The installation instructions frequently refer to the Natural INPL utility which is used to load the files (for example, NATVrs.INPL) contained on the Natural installation medium into the Natural system files. The INPL utility is invoked with the Natural system command INPL. For detailed information on the INPL utility, refer to the *Utilities* documentation.

Natural Nucleus Components

The Natural nucleus consists of two functional parts: the environment-independent nucleus and the environment-dependent nucleus.

Note: If you maintain different versions of Natural, you must use distinctive names for the nuclei to identify each version.

This section covers the following topics:

- Environment-Independent Nucleus
- Environment-Dependent Nucleus
- Modules for Static Linking
- Modules for Dynamic Loading
- Modules Called Dynamically

Environment-Independent Nucleus

The environment-independent nucleus contains components that are independent of the operating system or TP system (online interface) being used. The same instance of the environment-independent nucleus can be used in different online and batch environments in different tasks. The environment-independent nucleus is reentrant.

The environment-independent nucleus can reside in a common memory pool (CMP) or in Class 4 Memory where it can be shared between different tasks.

A module (such as the environment-independent nucleus) loaded into a CMP or Class 4 Memory is protected against modification. Therefore, tests for modifications of the environment-independent nucleus should be performed in a separate environment.

If the environment-independent nucleus resides in the CMP or Class 4 Memory, multiple batch jobs or TP tasks (for example, TIAM) share the same instance of the environment-independent nucleus. This results in a significant reduction of paging activities and virtual storage consumption.

Modules for Linking

The following modules must be linked to the environment-independent nucleus:

- Modules for base Natural
- Environment-independent modules of Natural add-on products
- Environment-independent user-supplied modules

When using System Maintenance Aid (SMA), the required modules are linked to the environment-independent nucleus during the appropriate installation job/step. Modules that can optionally be linked are mentioned in the *Installation Procedure*.

The installation of the environment-independent nucleus is described in *Link the Nucleus* in the *Installation Procedure*.

Specifying the Nucleus Name

The name of the environment-independent nucleus to be used is specified with the Natural profile parameter NUCNAME in the Natural parameter module during the installation of the environment-dependent nucleus. You can specify NUCNAME as a dynamic parameter in the primary parameter input, but you cannot specify NUCNAME in the input strings of the Natural profile parameter PROFILE or SYS.

The Natural parameter module is described in *Building a Natural Parameter Module* in the *Operations* documentation. NUCNAME, PROFILE and SYS are described in the *Parameter Reference* documentation.

If you maintain different versions of Natural, we recommend that you use distinctive names for the nucleus to clearly identify each version and environment, for example: NAT911 for the environment-independent nucleus, NAT911C for the environment-dependent nucleus for a CICS interface, and NAT911B for the batch environment.

Rules for Using an Environment-Independent Nucleus

The rules that apply when using the environment-independent nucleus are described in the following section.

Concerning *open*UTM, see also *Several Applications with one Common Natural* in the *TP Monitor Interfaces* documentation.

1. The environment-independent nucleus is linked *without* the corresponding reentrant parts of the batch, TIAM and *open*UTM drivers (these modules must be linked to the **environment-dependent nucleus**).

Example: The name of the environment-independent nucleus is NATSHARE.

```
/START-PROGRAM $BINDER
START-LLM-CREATION INTERNAL-NAME=NATSHARE,
SLCE-DEFINITION=*BY-ATTRIBUTES(RESIDENCY-MODE=*YES)
INCLUDE-MODULES NATINV,LIB=(NATvrs.MOD)
.
.
INCLUDE-MODULES NATURAL,LIB=(NATvrs.MOD)
MODIFY-SYMBOL-ATTRIBUTES ADD-MODE=*31,RES-MODE=*ANY,READ-ONLY=*NO
MODIFY-SYMBOL-VISIBILITY
SYMBOL-NAME = *ALL,
SYMBOL-NAME = *ALL,
SYMBOL-TYPE = *DEFINITIONS,
VISIBLE = *NO(KEEP-RESOLUTION=*YES)
SAVE-LLM LIB=NATURAL.USER.MOD
END
```

where *vrs* is the current product version of Natural.

2. Batch, TIAM and *open*UTM application-specific Natural parameter modules are also linked to the environment-dependent nucleus. In addition, the environment-independent nucleus can contain a common Natural parameter module, for example, for CSTATIC entries. The name chosen for the linked environment-independent nucleus is also identical with the name of the global common memory pool into which Natural is loaded. This name is to be used as operand for the following keyword parameters:

Name	Used in
NUCNAME	the macros NAMBS2, NAMTIAM and NATUTM
NAME	CMPSTART and ADDON (BS2STUB) described in the Operations documentation

Example:

```
NRTSTART NAMTIAM CODE=FRONT,
NUCNAME=NATSHARE
PARMODE=(31,ABOVE),
.
.
NUTFRONT NATUTM APPLNAM=NATUTM,
.
.
NUCNAME=NATSHARE
PARMODE=(31,ABOVE)
```

3. The environment-independent nucleus is started by the program CMPSTART.

Example:

/EXEC (CMPSTART,NATURAL.MOD) NAME=NATSHARE,SIZE=2MB,POSI=ABOVE,ADDR=250,SCOP=GLOBAL PFIX=YES,LIBR=NATURAL.USER.MOD

4. The link to the environment-independent nucleus is created in the batch, TIAM or *open*UTM applications through the generation of the macro BS2STUB; refer to *CMPSTART Program* described in the *Operations* documentation.

Example:

```
NRTSTUB BS2STUB PARMOD=31,PROGMOD=ANY
ADDON NAME=NATSHARE,
STAT=GLOBAL
NUTSTUB BS2STUB PARMOD=31,PROGMOD=ANY
ADDON NAME=NATSHARE,
STAT=GLOBAL
```

5. The environment-dependent nucleus must contain the reentrant part of the corresponding driver (NAMBS2 CODE=RENT, NAMTIAM CODE=RENT or NURENT).

Example for TIAM:

```
/START-PROGRAM $BINDER

START-LLM-CREATION INTERNAL-NAME=NRTFRONT,

SLICE-DEFINITION=*BY-ATTRIBUTES(RESIDENCY-MODE=*YES)

INCLUDE-MODULES NRTFRNT,LIB=(user-lib) /* Non-reentrant part of NAMTIAM

INCLUDE-MODULES NRTRENT,LIB=(user-lib) /* Reentrant part of NAMTIAM

INCLUDE-MODULES NRTSTUB,LIB=(user-lib) /* BS2STUB

INCLUDE-MODULES nat-parm-module,LIB=(user-lib) /*

...

END
```

Example for openUTM:

```
/START-PROGRAM $BINDER
START-LLM-CREATION INTERNAL-NAME=NUTvrs,
SLICE-DEFINITION=*BY-ATTRIBUTES(RESIDENCY-MODE=*YES)
INCLUDE-MODULES KDCNUT,LIB=(user-1ib) /* openUTM KDCROOT
INCLUDE-MODULES NUSTART,LIB=(user-1ib) /* NATUTM
INCLUDE-MODULES NUTRENT,LIB=(user-1ib) /* NURENT
INCLUDE-MODULES NUTSTUB,LIB=(user-1ib) /* BS2STUB
INCLUDE-MODULES nat-parm-module,LIB=(user-1ib)
INCLUDE-MODULES SWPPARM,LIB=(user-1ib) /* Swap pool parameter module
...
FND
```

where:

vrs is the current product version and

user-lib is the name of the user library,
nat-parm-module is the Natural parameter module.

Environment-Dependent Nucleus

The environment-dependent nucleus contains components that depend on the operating or TP system being used.

In addition to the environment-independent nucleus, every single task in which Natural runs requires an environment-dependent nucleus containing modules that perform actions specific to the operating or TP system. The environment-dependent nucleus assumes control from the operating or TP system at the start of a Natural session, loads the environment-independent nucleus and passes control to it.

Modules for Linking

The following modules must be linked to the environment-dependent nucleus:

- Environment-specific Natural interface modules
- Environment-specific work file and print file modules
- Environment-specific Natural parameter module (see also *Building a Natural Parameter Module* in the *Operations* documentation)
- Environment-dependent modules of Natural add-on products
- Adabas link routine (ADALNK or ADAUSER)
- Environment-dependent user-supplied modules defined as CSTATIC in the Natural parameter module. The Natural profile parameter CSTATIC is described in the *Parameter Reference* documentation.

When using System Maintenance Aid (SMA), the required modules are linked to the environmentdependent nucleus during the appropriate installation job/step. Modules that can optionally be linked are mentioned in the *Installation Procedure*.

The installation of the environment-dependent nucleus is described in *Link the Nucleus* in the *In-stallation Procedure*.

Modules for Static Linking

Both the Natural configuration module NATCONFG (described in the *Operations* documentation) and the Natural parameter module contain the Natural-supplied list of additional modules to be statically linked to the nucleus.

The Natural parameter module also contains the user-supplied list of additional modules to be statically linked to the nucleus as specified with the Natural profile parameter CSTATIC.

Each entry of these lists consists of a program name and a V-type address constant which must be resolved by linking the corresponding module to the Natural parameter module.

The Natural-supplied list provided with NATCONFG is used if the Natural parameter module is not linked to the environment-independent nucleus. If modules are statically linked to the environment-independent nucleus, a Natural parameter module that defines all these modules must also be linked to the environment-independent nucleus.

Optionally, you can specify an alternative Natural parameter module by using the Natural profile parameter PARM (described in the *Parameter Reference* documentation). An alternative parameter module takes precedence over a parameter module that is linked to either the environment-independent or the environment-dependent nucleus.

Merging Module Lists

During initialization of a Natural session, up to three lists of statically-linked modules (specified with the Natural profile parameter CSTATIC) are merged:

- Base list for the merge is the list of the Natural parameter module specified with the Natural profile parameter PARM;
- V-type address constants not resolved in this list are resolved using the Natural parameter module linked to the environment-dependent nucleus;
- V-type address constants not yet resolved are resolved using the Natural parameter module linked to the environment-independent nucleus.

If a user-supplied module is to be statically linked to the environment-independent nucleus, it must be specified in the Natural parameter module linked to the environment-independent nucleus as well as in the Natural parameter module specified with the Natural profile parameter PARM.

Modules for Dynamic Loading

When initializing a Natural session, you can also dynamically load the modules (supplied by Software AG or user-defined) that have been defined for static linking. For information on whether the module of a Natural add-on product is suitable for dynamic loading, read the documentation for your specific Natural add-on product.

For information on defining external names for static non-Natural programs and dynamic linking and controlling these programs, see the Natural profile parameters RCA and RCALIAS described in the *Parameter Reference* documentation.

Modules Called Dynamically

If a module is not defined for static linking, Natural attempts to load and execute the module using environment-dependent functions when the corresponding Natural CALL statement is executed.

Natural System Files

The Natural system files are stored in an Adabas database.

The table below lists and describes the Natural system files that are usually available in a Natural environment. The availability of the system files and the data contained in the files depends on the Software AG products installed in addition to base Natural.

The settings for the system files are defined with Natural profile parameters of the same names (exception: scratch-pad file). You can follow the hyperlinks in the table below to read details about these parameters in the *Parameter Reference* documentation.

System File	Supplied with	File Contents
FNAT	Base Natural	All objects required for Natural system applications.
FUSER	Base Natural	User-specific objects required for user-defined applications.
FPROF	Base Natural	Parameter profiles specified by the profile parameter PROFILE, provided no database information is supplied as subparameter of PROFILE.
Scratch-pad file	Base Natural	Data that is not stored explicitly as a Natural object in another system file. See also <i>Natural Scratch-Pad File</i> in the <i>Operations</i> documentation.
FDIC	Base Natural	Natural Data Definition Modules (DDMs). If Predict is installed, FDIC also contains data for the Predict dictionary system. If the Natural Development Server is installed, FDIC also contains application data and holds object locking information

System File	Supplied with	File Contents
FREG	Base Natural	Registry data that is not stored explicitly in another system file.
FSEC	Natural Security	Control information required for security definitions.
FSPOOL	Natural Advanced Facilities	Control and spooling information required to output a report on a screen or printer and obtain print statistics.

Defining a Scratch-Pad File

Like all other system files of Software AG products, the scratch-pad file is a logical file. The logical file number of the scratch-pad file is 212.

Since there is no mnemonic for the scratch-pad file such as FNAT and FUSER or FDIC, it has to be defined:

either statically by using the macro NTLFILE in the Natural parameter module or

dynamically by using the Natural profile parameter LFILE.

Examples of NTLFILE and LFILE Definitions:

LFILE Parameter:

```
LFILE=(212,physical-dbid,physical-fnr,password,cipher-key)
```

NTLFILE Macro:

NTLFILE 212, physical-dbid, physical-fnr, password, cipher-key

Installing Natural on BS2000

Prereguisites	20
Installation Medium	20
Installation Procedure	23
Installation Verification	31

This document describes the steps for installing Natural (product code NAT) on BS2000.

Related Topic:

For information on how to run Natural in a BS2000 environment, see the relevant section in the *Operations* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See General Prerequisites and System Support.

Installation Medium

The **installation medium** contains the following files required for product installation:

File Name	Contents
ICS <i>vrs</i> .MOD	Load modules and object modules for International Components for Unicode for Software AG (ICS)
MLC <i>vrs</i> .JOBS	Sample installation jobs for Software AG's mainframe license check software
	vrs in the library name represents the version of the license check software, which is not necessarily the same as the version of Natural.
	For detailed information on the license check software, see <i>Software AG Mainframe Product Licensing</i> .
MLC <i>vrs</i> .MOD	Load modules and object modules for Software AG's mainframe license check software including the LICUTIL license utility
	<i>vrs</i> in the library name represents the version of the license check software, which is not necessarily the same as the version of Natural.
	For detailed information on the license check software and the LICUTIL utility, see <i>Software AG Mainframe Product Licensing</i> .
NAT <i>vrs</i> .LICS	Product license file
	For information on the license file and product licensing, see <i>Software AG Mainframe Product Licensing</i> .
NAT <i>vrs</i> .SRC	Source modules

File Name	Contents
NAT <i>vrs</i> .SYSF	Natural system file definitions
NAT <i>vrs</i> .MOD	Load modules and object modules
NAT <i>vrs</i> .MAC	Macros
NAT <i>vrs</i> .JOBS	Sample installation jobs
NAT <i>vrs</i> .INPL	Natural objects
NAT <i>vrs</i> .EXPL	Natural example objects

Note: The file NAT*vrs*.JOBS will be converted automatically into an LMS library when it is copied from the installation medium to disk.

Copying Files to a BS2000 Disk

Copy the files (data sets) from the supplied installation medium to your disk before you perform the individual installation procedure for each component to be installed.

The way you copy the files depends on the installation method and the medium used:

- If you use System Maintenance Aid (SMA), refer to the copy job instructions provided in the System Maintenance Aid documentation.
- If you are not using SMA and want to copy the files from CD-ROM, refer to the README.TXT file on the CD-ROM.
- If you are not using SMA and want to copy the files from tape, follow the instructions in this section.

This section explains how to copy all files from tape to disk.

- Step 1: Copy Library SRVvrs.LIB from Tape to Disk
- Step 2: Copy the Procedure COPY.PROC from Tape to Disk
- Step 3: Copy all Product Files from Tape to Disk

Step 1: Copy Library SRVvrs.LIB from Tape to Disk

This step is not necessary if you have already copied the library SRV*vrs*.LIB from another Software AG installation tape. For further information, refer to the element #READ-ME in this library. The library SRV*vrs*.LIB is stored on the tape as a sequential file named SRV*vrs*.LIBS containing LMS commands. The current version *vrs* can be obtained from the *Software AG Product Delivery Report*.

Execute the following commands to convert SRV*vrs*.LIBS into an LMS library:

```
/IMPORT-FILE SUPPORT=*TAPE(FILE-NAME=SRV vrs.LIBS,-
   VOLUME=volser, DEV-TYPE=tape-device)
/ADD-FILE-LINK LINK-NAME=EDTSAM, FILE-NAME=SRVvrs.LIBS,-
   SUPPORT=*TAPE(FILE-SEQ=3), ACC-METH=*BY-CAT,-
   BUF-LEN=*BY-CAT, REC-FORM=*BY-CAT, REC-SIZE=*BY-CAT
/START-EDT
@READ '/'
@SYSTEM 'REMOVE-FILE-LINK EDTSAM'
@SYSTEM 'EXPORT-FILE FILE-NAME=SRVvrs.LIBS'
@WRITE
       'SRVvrs.LIBS'
@HALT
/ASS-SYSDTA SRVvrs.LIBS
/MOD-JOB-SW ON=1
/START-PROG $LMS
/MOD-JOB-SW OFF=1
/ASS-SYSDTA *PRIMARY
```

where:

tape-device is the device type of the tape, for example, TAPE-C4, and *volser* is the VOLSER of the tape (see the *Software AG Product Delivery Report*).

Step 2: Copy the Procedure COPY.PROC from Tape to Disk

Call the procedure P.COPYTAPE in the library SRVvrs.LIB to copy the procedure COPY.PROC to disk:

```
/CALL-PROCEDURE (SRVvrs.LIB,P.COPYTAPE), -
/ (VSNT=volser, DEVT=tape-device)
```

If you use a TAPE-C4 device, you can omit the parameter DEVT.

Step 3: Copy all Product Files from Tape to Disk

• Enter the procedure COPY.PROC to copy all product files to disk:

/ENTER-PROCEDURE COPY.PROC, DEVT=tape-device

If you use a TAPE-C4 device, you can omit the parameter DEVT.

The result of this procedure is written to the file L.REPORT.SRV.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* and *Naming Conventions for Installation Procedures* before you start the installation procedure.

- Step 1: Prepare, Convert, Assemble and Link the License File
- Step 2: Load the FNAT System File Definition
- Step 3: Load the FUSER System File Definition
- Step 4: Load the Scratch-Pad File Definition
- Step 5: Load the FREG System File Definition
- Step 6: Load the FDIC System File Definition
- Step 7: Load the FSEC System File Definition
- Step 8: Assemble the Natural BS2000 Stub Module and Batch Driver
- Step 9: Build the Natural Parameter Module
- Step 10: Link and Start the Optimize Monitor Buffer Pool
- Step 11: Link the Nucleus
- Step 12: Start All Pools
- Step 13: Load New Natural Objects and Natural Error Messages
- Step 14: Load the Natural Example Objects
- Step 15: Allocate and Format the Editor Work File
- Step 16: Refresh the FDIC System File for Predict

Step 1: Prepare, Convert, Assemble and Link the License File

(Job I010, Steps 0110, 0111, 0112)

You must install a valid Natural license file.

For detailed information on the license file and product licensing, see *Software AG Mainframe Product Licensing*.

- 1. Copy the license file from the supplied installation medium to disk or transfer it from the PC as described in *Transferring a License File from PC to a BS2000 Host Using FTP* in *Software AG Mainframe Product Licensing*.
- 2. Check, convert, assemble and link the license file:

Step 0110	Check license file NAT vrs . LICS. This job runs the CHECK function of the LICUTIL license utility (see below).
Step 0111	Convert license file into an assembler source. This job runs the MAKE function of the LICUTIL license utility (see below).
Step 0112	Assemble and link the assembler source to generate load module ANATLIC. This module is then linked to the nucleus in Job 1060 .

The functions and option settings provided by LICUTIL are described in *Using the License Utility: LICUTIL* in *Software AG Mainframe Product Licensing*.

Step 2: Load the FNAT System File Definition

(Job I050, Step 0100)

Skip this step if you want to use an existing Natural FNAT system file.

Load the new Natural FNAT system file definition:

1. Specify the database ID and file number of the Adabas file where to load the new FNAT system file definition by using the Adabas ADALOD utility.

In addition, you must specify this database ID and file number in the Natural parameter module as described in *Step 9: Build the Natural Parameter Module*.

2. Load the FNAT system file definition contained in the NAT*vrs*.SYSF file by using the Adabas ADALOD utility.

The following ADALOD utility parameter must *not* be changed:

ISNREUSE=YES

The following ADALOD utility parameter setting is recommended:

USERISN=YES

If you reorganize an FNAT file or if you unload from or load data to the FNAT file (for example, by using ADAULD/ADALOD), you must specify the parameter USERISN=YES for the ADALOD utility to avoid Natural errors NAT7397 and NAT9988 which require that you re-INPL the Natural FNAT system file.

If you specify the parameter USERISN=YES when you load a new FNAT system file, and you unload data from this FNAT file, the ADALOD utility assumes USERISN=YES as a default setting when reloading the data into the FNAT file.

Step 3: Load the FUSER System File Definition

(Job I050, Step 0101)

Skip this step if you want to use an existing Natural FUSER system file.

Load the new Natural FUSER system file definition:

1. Specify the database ID and file number of the Adabas file where to load the new FUSER system file definition by using the Adabas ADALOD utility.

In addition, you must specify this database ID and file number in the Natural parameter module as described in *Step 9: Build the Natural Parameter Module*.

2. Load the FUSER system file definition contained in the NAT*vrs*.SYSF file by using the Adabas ADALOD utility.

The following ADALOD utility parameter must *not* be changed:

ISNREUSE=YES

- 3. If you want to use existing Natural applications, copy all user-written objects to the empty FUSER.
- 4. If you want to use Natural Application Programming Interfaces (APIs), see *Using a Natural API* in the *SYSEXT Utility* documentation for further guidance.

Step 4: Load the Scratch-Pad File Definition

This step is only required if you want to use read-only system files. See also *Natural Scratch-Pad File* in the *Operations* documentation.

You can skip this step if you want to use an existing Natural scratch-pad file.

This step is not supported by System Maintenance Aid (SMA).

Load the new Natural scratch-pad system file definition:

1. Specify the database ID and file number of the Adabas file where to load the scratch-pad file by using the Adabas ADALOD utility.

In addition, you must specify this database ID and file number in the Natural parameter module as described in *Step 9: Build the Natural Parameter Module*.

2. Load the scratch-pad system file definition contained in the NAT*vrs*.SYSF file by using the Adabas ADALOD utility.

The following ADALOD utility parameter must *not* be changed:

ISNREUSE=YES

Step 5: Load the FREG System File Definition

(Job I050, Step 0104)

This step is only required if registry information must be available to control concurrent user sessions limited with the Natural profile parameter UCONMAX (see the *Parameter Reference* documentation).

You can skip this step if you want to use an existing Natural FREG system file.

This step is not supported by System Maintenance Aid (SMA).

Load the new Natural FREG system file definition:

1. Specify the database ID and file number of the Adabas file where to load the FREG system file by using the Adabas ADALOD utility.

In addition, you must specify this database ID and file number in the Natural parameter module as described in *Step 9: Build the Natural Parameter Module*.

2. Load the FREG system file definition contained in the NAT*vrs*.SYSF file by using the Adabas ADALOD utility.

The following ADALOD utility parameter must *not* be changed:

ISNREUSE=YES

Step 6: Load the FDIC System File Definition

(Job I050, Step 0103)

Skip this step:

- if you want to install Predict. In this case, use the corresponding installation step described in the Predict *Installation* documentation.
- if you want to use an existing Natural FDIC system file.

Load the new Natural FDIC system file definition:

1. Specify the database ID and file number of the Adabas file where to load the new FDIC system file definition by using the Adabas ADALOD utility.

In addition, you must specify this database ID and file number in the Natural parameter module as described in *Step 9: Build the Natural Parameter Module*.

2. Load the FDIC system file definition contained in the NAT*vrs*.SYSF file by using the Adabas ADALOD utility.

The following ADALOD utility parameter must *not* be changed:

ISNREUSE=YES

Note: If you also install Predict, you must refresh the FDIC system file before you initialize Predict. See *Step 16: Refresh the FDIC System File for Predict*.

Step 7: Load the FSEC System File Definition

(Job I050, Step 9900)

Skip this step, if you do not use Natural Security.

If you use Natural Security, refer to *Installing Natural Security*.

Step 8: Assemble the Natural BS2000 Stub Module and Batch Driver

(Job I055, Steps 0216 - 0218)

Assemble the following source modules:

ANATSTUB	Natural BS2000 stub module
ANATFRNT	Natural BS2000 non-reentrant part of the Natural batch interface
ANATRENT	Natural BS2000 reentrant part of the Natural batch interface

These source modules are contained in the library *job-library*.

Step 9: Build the Natural Parameter Module

(Job I060, Step 0010)

Build the Natural parameter module for batch mode.

- 1. Modify the settings of the Natural profile parameters supplied with this job, if required. The parameters and corresponding macros (if applicable) are described in the *Parameter Reference* documentation. The most important parameter/macro settings are described below.
 - Adapt the following parameters:

```
FNAT=(database-id,file-number)
FUSER=(database-id,file-number)
FDIC=(database-id,file-number)
```

where *database-id* and *file-number* are either the database ID and file number you specified when loading the new FNAT, FUSER and FSEC system files (see *Step 2, Step 3* and *Step 6*, respectively), or the database ID and file number of your existing Natural system files.

These parameters are supplied with the NTPRM macro described in the *Operations* documentation.

If you want to to limit the number of concurrent users with the Natural profile parameter UCONMAX, proceed as follows:

Supply the following parameter with the NTPRM macro:

FREG=(database-id,file-number)

where *database-id* and *file-number* are either the database ID and file number you specified when loading the new Natural FREG system file (see *Step 5*), or the database ID and file number of your existing Natural FREG system file.

If you want to use read-only system files, proceed as follows:

Supply the following parameter with the NTPRM macro:

ROSY=ON

Specify the NTLFILE macro (see the parameter LFILE):

NTLFILE 212, database-id, file-number

where *database-id* and *file-number* are the database ID and file number you specified when loading the new Natural scratch-pad file (see *Step 4*), or the database ID and file number of your existing Natural scratch-pad file.

2. Assemble the Natural parameter module.

Step 10: Link and Start the Optimize Monitor Buffer Pool

(Job I060, Step 1230)

This step is only required if you want to use the Optimize Monitor Buffer Pool described in *Optimize Monitor Buffer Pool* in the *Operations* documentation.

- 1. Link the NAT04182 program for the Optimize Monitor Buffer Pool.
- 2. Create and start the job E.START.04IBP (supplied with Step 1230) before using Natural. See *Starting the Optimize Monitor Buffer Pool* in the *Operations* documentation.

Step 11: Link the Nucleus

(Job I060, Steps 3801, 3802)

1. Link the environment-dependent nucleus LNATFRNT (Step 3801) for batch Natural.

The list of modules to be linked for the environment-dependent nucleus is supplied with Step 3801.

Note:

If the parameter ILCS=CRTE is specified for the assembly of the reentrant part of the BS2000 batch driver, the BINDER statements for the masking of symbols have to be specified as follows:

```
INCLUDE-MODULES ELEMENT=(ITOSL#),LIB=$TSOS.SYSLNK.CRTE

RESOLVE-BY-AUTOLINK LIB=($TSOS.SYSLNK.CRTE)

MODIFY-SYMBOL-VISIBILITY -

SYMBOL-NAME = *ALL, -

SYMBOL-TYPE = *DEFINITIONS, -

VISIBLE = *YES

MODIFY-SYMBOL-VISIBILITY -

SYMBOL-NAME = CMPRMTB, -

SYMBOL-TYPE = *DEFINITIONS, -

VISIBLE = *NO(KEEP-RES=*YES)
```

VISIBLE = *YES: Necessary to prevent duplicate loading of the CRTE routines.

VISIBLE = *NO(KEEP-RES=*YES): The entry CMPRMTB in the Natural parameter module has to be masked if the Natural parameter module is bound to the environment-dependent nucleus.

2. Link the environment-independent nucleus LNATSHAR (Step 3802).

The list of modules to be linked for the environment-independent nucleus is supplied with Step 3802.

Ensure that the Natural profile parameter NUCNAME (see the *Parameter Reference* documentation) specified in the Natural parameter module contains the name of the module resulting from this link step.

Using a Sort Program

If you want to use a sort program (either Natural's internal one or an external one), include the module NAT2SORT.

It is also possible to place NAT2SORT in a load library from where it can be loaded dynamically at runtime; this requires that NAT2SORT is specified with the Natural profile parameter RCA (described in the *Parameter Reference* documentation).

Step 12: Start All Pools

(Job I061, Step 0001)

Start the job E.START.ALL which is contained in the library *job-library*.

To end all pools, start the job E.END.ALL which is contained in the library *job-library*.

Step 13: Load New Natural Objects and Natural Error Messages

(Job I061, Step 0100)

Load the Natural objects and Natural error messages from the NAT vrs. INPL file into the Natural system files by using the Natural INPL utility.

The Natural error messages comprise short and long message texts and the German (ULANG=2) short message texts. You can use the ERRUPPER program of the Natural SYSERR utility to convert the message texts to upper case.

For details on the ULANG profile parameter and ERRUPPER, see the *Parameter Reference* and the *Utilities* documentation, respectively.

Step 14: Load the Natural Example Objects

(Job I061, Step 0103)

Load the Natural example objects from the NAT vrs. EXPL file into the Natural system file by using the Natural INPL utility.

Step 15: Allocate and Format the Editor Work File

(Job I081, Step 1900)

1. Allocate the editor work file (see also *Editor Work File* in the *Operations* documentation) by issuing the command:

/FILE file-name,LINK=CMEDIT,SPACE=...

2. Execute the formatting program (NATEDFM2, NAT*vrs*.MOD) by entering FORMAT to format and load the control record in the editor work file.
Step 16: Refresh the FDIC System File for Predict

(Job I200, Step 0500)

This step is only required if you install Predict on a new FDIC dictionary system file.

Refresh the FDIC system file to allow Predict access.

Installation Verification

This section provides instructions for verifying the successful installation of Natural.

- Test Batch Natural
- Start Natural
- Test Online Natural

Test Batch Natural

You can use the following procedure to invoke Natural in batch mode and check whether the Natural system files are available:

```
SET-PROCEDURE-OPTIONS
/
                                  DATA-ESCAPE-CHAR = *STD
/
         ADD-FILE-LINK DDLIB,
                                  ADALNK.LIB
         ADD-FILE-LINK DDLNKPAR, ADALNK.PARMS
         ADD-FILE-LINK CMEDIT,
                                  EDTWORK
/
    START-PROGRAM NATBATCH
EDIT
WRITE 'TESTBAT'
END
.END
SAVE TESTBAT
RUN
FIN
/
    EXIT-PROCEDURE
```

This procedure starts Natural (using the Adabas link routine ADALNK), creates the example program TESTBAT, and executes the program with the system command RUN.

Start Natural

Start a Natural session according to the procedure that applies to your TP monitor interface; see also *Installation Verification* described for the **Natural TIAM Interface** and the **Natural openUTM Interface**.

Test Online Natural

You can use the following verification procedure to test Natural system functions in online mode and check whether the Natural system files are available.

1. Enter the following Natural system command to check the Natural system files:

SYSPROF

2. Enter the following Natural system command:

SYSDDM

3. In the SYSDDM utility menu, enter the following:

R in the **Code** field and EMPLOYEES in the **DDM Name** field.

4. After pressing ENTER, enter the following:

C in the **Code** field, the appropriate Natural system file number in the **FNR** field, the appropriate database ID in the **DBID** field, and Y in the **Replace** field.

The specified DDM has been adapted to your environment.

- 5. Repeat Steps 9 and 10 for the VEHICLES DDM.
- 6. Check whether the EMPLOYEES and VEHICLES DDMs are now available in your environment:
 - Enter the following Natural system command to logon to the Natural library SYSEXSYN:

LOGON SYSEXSYN

Execute an example program that uses EMPLOYEES and VEHICLES, for example, IFEXIS, by entering the following Natural system command:

RUN IFEX1S

4 Installing International Components for Unicode for Software

AG on BS2000

Prerequisites	34
Installation Medium	34
Installation Procedure	34
Installation Verification	36

This document describes the steps for installing International Components for Unicode for Software AG (ICS) on BS2000 which allows Natural to convert code pages and support Unicode.

International Components for Unicode for Software AG (ICS) requires the use of an ICS module and an ICU data library. In addition, you can use ICU data items to load ICU components that are not contained in the ICU data library. The ICS module does not have to be linked to the Natural nucleus if neither code page conversion nor Unicode support are required.

The use of ICU functionality increases the required Natural thread size.

Note: For increased flexibility, it is also possible to load the ICS module during initialization of the Natural session. A dynamically loaded ICS module overrides the statically linked ICS module. You can also load an ICU data library during initialization of the Natural session. A dynamically loaded ICU data library overrides any statically linked ICU data library.

The ICS module, the ICU data libraries and the ICU data items are explained in *Enabling Unicode and Code Page Support* in the *Unicode and Code Page Support* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See General Prerequisites and System Support in the section Overview of the Installation Process.

Installation Medium

The ICS module, the ICU data libraries and the ICU data items are contained on the ICSvrs.MOD file supplied on the installation medium for base Natural.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* before you start the installation procedure.

- Step 1: Link the ICS Module
- Step 2: Link an ICU Data Library
- Step 3: Load the ICS Module at Session Start
- Step 4: Load an ICU Data Library at Session Start

Step 5: Load ICU Data Items on Request in a Session

Step 1: Link the ICS Module

1. Add the following INCLUDE statement to the link instructions for the **environment-independent nucleus**:

INCLUDE-MODULES LIB=ICSvrs.MOD,ELEMENT=(SAGICU),TYPE=(R,L)

- **Note:** The ICU data library ICSDT60J is contained in the ICS module SAGICU and loaded by default.
- 2. Link the ICS module to the environment-independent nucleus as described in *Link the Nucleus* in *Installing Natural*.

Step 2: Link an ICU Data Library

This step is only required if you want to use another data library in addition to ICSDT58J.

1. Add one of the following INCLUDE statements to the BINDER instructions for the environmentindependent nucleus depending on the ICU data library to be used:

INCLUDE-MODULES LIB=ICSvrs.MOD, ELEMENT=(ICSDT60E), TYPE=(R,L)

- 2. Link the ICU data library to the **environment-independent nucleus** as described in *Link the Nucleus* in *Installing Natural*.
 - **Note:** Since the size of the resulting module will exceed 16 MB, the environment-independent nucleus has to be linked with the linkage editor BINDER if ICU data libraries are to be included.

Step 3: Load the ICS Module at Session Start

- 1. Make sure that the ICS load library from the ICSvrs.MOD file is available to the execution JCL of your Natural or TP monitor interface. Depending on your environment, perform one of the following options:
 - Add ICSvrs.MOD with the link name BLSLIBnn as an alternative user library to your execution JCL.
- 2. At the start of a Natural session, set the Natural profile parameter RCA as follows:

RCA=SAGICU

RCA is described in the Parameter Reference documentation.

The ICS module SAGICU is described in the Unicode and Code Page Support documentation.

Step 4: Load an ICU Data Library at Session Start

- 1. Make sure that the ICS load library from the ICS*vrs*.MOD file is available to the execution JCL of your Natural or TP monitor interface. Depending on your environment, perform one of the following options:
 - Add ICSvrs.MOD with the link name BLSLIBnn as an alternative user library to your execution JCL.
- 2. At the start of a Natural session, set the Natural profile parameters RCA and CFICU for the ICU data library to be used:

RCA=ICSDT60E CFICU=(DATFILE=ICSDT60E)

RCA and CFICU are described in the Parameter Reference documentation.

Step 5: Load ICU Data Items on Request in a Session

This step is optional and only required if you want to dynamically load an ICU data item on request during a Natural session instead of an entire ICU data library. For more information, see the *Unicode and Code Page Support* documentation.

- Make sure that the ICS load library from the ICS vrs.MOD file is available to the execution JCL of your Natural or TP monitor interface. Depending on your environment, perform one of the following options:
 - Add ICS*vrs*.MOD with the link name BLSLIB*nn* as an alternative user library to your execution JCL.

Installation Verification

After the last step of the installation procedure has been completed, proceed as follows:

1. Configure and activate your Unicode and code page environment by following the instructions in *Configuration and Administration of the Unicode/Code Page Environment* and *Profile Parameters and Macros* in the *Unicode and Code Page Support* documentation.

For information on the code pages and ICU data files available in your current Natural environment, you can use the SYSCP utility (described in the *Utilities* documentation). 2. After successful activation, you can execute the example programs described in the *Unicode and Code Page Support* documentation.

5 Installation for REQUEST DOCUMENT and PARSE XML

Statements on BS2000

Prerequisites	40
Installation Procedure	41
Installation Verification	42

This document describes the installation steps for enabling the use of the Natural statements REQUEST DOCUMENT and PARSE XML on BS2000.

Related Topics:

For information on the functions provided by REQUEST DOCUMENT and PARSE XML, see the following documents:

- Statements for Internet and XML Access in the Programming Guide
- REQUEST DOCUMENT in the Statements documentation
- PARSE XML in the Statements documentation

Prerequisites

The following requirements must be met to execute the REQUEST DOCUMENT and PARSE XML statements:

- The ICU library must be installed to convert data from one encoding to another (at least internally). For details, see the relevant section in the Unicode and Code Page Support documentation.
- A TCP/IP stack must be available and enabled for the execution environment.
- A DNS (Domain Name System) server or DNS services must be available in the execution environment to resolve internet addresses (gethostbyname function).

For Internet Protocol Version 6 (IPv6) support, the following additional prerequisites apply:

- An activated IPv6 stack must be available on the local host.
- The local network must support IPv6.
- An accessible and IPv6-capable DNS server must be available.
- For IPv6 internet communication, an IPv6 connection from the service provider must be available.
- If both IPv4 and IPv6 are used, a dual stack must be supported.
- IPv6 support must be configured with the appropriate keyword subparameters of the Natural profile parameter XML described in the *Parameter Reference* documentation.

See also General Prerequisites and System Support in the section Overview of the Installation Process.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* before you start the installation procedure.

The installation procedure comprises the following:

- Step 1: Link the Module NATXML to the Nucleus
- Step 2: Enable the Environment-Dependent Nucleus for CRTE Execution
- Step 3: Link the Required Modules to the Nucleus

Step 1: Link the Module NATXML to the Nucleus

The module NATXML is required to execute the statements REQUEST DOCUMENT and PARSE XML.

1. The NATXML module is then linked to the environment-independent nucleus by using the following INCLUDE statement:

INCLUDE NATLIB(NATXML)

Step 2: Enable the Environment-Dependent Nucleus for CRTE Execution

The REQUEST DOCUMENT and PARSE XML statements require CRTE (Common Run-Time Environment) functions for execution.

- 1. Set the parameter ILCS=CRTE for the environment-dependent nucleus.
- 2. For the assembly step of the reentrant part of the **environment-dependent nucleus**, set the parameter ILCS=CRTE in the following macros:

NAMBS2 for batch Natural, NAMTIAM for TIAM and NURENT for *open*UTM.

This applies to all batch and TP monitor system environments.

Step 3: Link the Required Modules to the Nucleus

Link the modules indicated in this section to the nucleus.

Batch, TIAM and openUTM

- 1. Add the statement RESOLVE-BY-AUTOLINK LIB=(\$TSOS.SYSLNK.CRTE) to the link step for the environment-dependent nucleus.
- 2. Link the following modules to the environment-dependent nucleus by using the appropriate INCLUDE statements:

INCLUDE	NAT2LE	CRTE access module
INCLUDE	NAT2TCP	TCP/IP access module
		Since NAT2TCP is delivered in LLM format, the front-end has to be linked with the linkage editor BINDER.
INCLUDE	ITOSL#	CRTE initialization module

Natural Development Server/Natural Web I/O Interface

Copy the LLM and the NCFIP4vr to the load libraries of the Natural Development Server and the Natural Web I/O Interface.

Installation Verification

After the last step of the installation procedure has been completed, proceed as follows:

1. Activate the statements in the runtime environment; see *Activation/Deactivation* in the section *Statements for Internet and XML Access* in the *Programming Guide*.

For information on the profile settings that enable the support of the REQUEST DOCUMENT and/or PARSE XML statement, see the following documents:

- Profile Settings in the section Statements for Internet and XML Access in the Programming Guide
- Profile parameter XML in the Parameter Reference documentation
- 2. Try the example programs contained in the Natural system library SYSEXV.

Installing Natural Net Data Interface on BS2000

Prerequisites	. 44
Device Configuration in NATCONFG	. 44

This document describes the steps for installing the Natural Net Data Interface NATNETTO on BS2000.

Related Topic:

For operational information, see *Natural Net Data Interface NATNETTO* in the *Operations* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See General Prerequisites and System Support in the section Overview of the Installation Process.

Device Configuration in NATCONFG

Logical net data devices are configured with the IONET flag byte, all other flag and value settings must be made as in the sample definition given below. The module entry is VCNETTO, additional device entries must be specified with WXTRN=OFF. The settings of FLAG1, FLAG2 and RTAL must be according to the example below.

If the data delimited option (NEDLM) is set, the delimiter character which separates the fields in the value buffer can be set by using the BEL keyword subparameter of the NTDVCE macro.

IONET Settings

IONET	DS	XL1		NETDATA CONTROL FLAG
NECUFNR	EQU	X'01'	 1	CURSOR POSITION = FIELDNR
NEMSG	EQU	X'02'	 1.	SEND MESSAGE LINE
				(if not set, message line will be skipped)
NEABO	EQU	X'04'	 .1	ATTRIBUTE BUFFER OPTION

NEFBO	EQU	X'08'		1	FORMAT BUFFER OPTION
NEFLG	EQU	X'10'	1	• • • •	FIELD LENGIH OPIION
NEDLM	EQU	X'20'	1.	• • • •	DATA DELIMITED OPTION
NEFIX	EQU	X'40'	.1		FIXED FORMAT OPTION
NEFBOPTE	EQU	X'80'	1		EXTENDED FORMAT BUFF. OPT.

NATCONFG already has a device entry for NATNETTO.

The TTYPE is NETF. The protocol options are set as follows:

- The value buffer structure is fixed (without delimitation between the fields).
- Format buffer, extended format buffer and attribute buffer options are set.
- The cursor position is in the field number notation.

Message line and PF-key line are suppressed.

Example:

NTDVCE	TYP=NETF,NAME=NETTF,ENTRY=VCNETTO,MSG=BOT,	HS06-
	FLAG1=CMNIXD,FLAG2=CMTNOPT,RTAL=255,	HS07-
	<pre>FLAGS=(IONET, -, CO, IONET, +, NEFIX+NEFBO+NEABO+NECUFNR-</pre>	+NEFB-
	OPTE,WINDTITI,+,PFKNDISP)	HS06

Installing Entire System Server Interface on BS2000

Prerequisites	
 Default or Customized Installation 	
Assemble the Parameter Module for the Entire System Server Interface Component	
Link the Entire System Server Interface to the Nucleus	
Install the Entire System Server in Single-User Mode	

The Entire System Server Interface is required if the Entire System Server is to be used.

This document describes the steps for installing the Entire System Server Interface on BS2000. You can choose between default installation (recommended) and customized installation.

Related Topic:

For information on installing and using the Entire System Server, refer to the relevant product documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

Before you can use the Entire System Server Interface, you must install a supported version of Entire System Server specified under *Software AG Product Versions Supported by Natural* in the current Natural *Release Notes* for Mainframes.

See also General Prerequisites and System Support in the section Overview of the Installation Process.

Default or Customized Installation

If you want to use the default value settings in the modules ESYNODTB and NATPNIP (used by the Entire System Server and Natural ISPF), proceed with *Link the Entire System Server Interface to the Nucleus*.

If you do *not* want to use the default value settings, edit the modules NATPNIP and ESYNODTB described in this section.

NATPNIP

ESYNODTB

NATPNIP

The NATPNIP module contains the following parameters and default values:

NAMVIEWP BUFLEN=12288, NUMREQ=5, MAXCBL=3000, MAXEDL=6000, EXTUSER=INIT-USER

The parameters are explained below:

BUFLEN	Length of all Adabas buffers in bytes
NUMREQ	Number of possible nested FIND loops in Natural calling the Entire System Server
MAXCBL	Complex FIND buffer length
MAXEDL	Editor session buffer length
	MAXEDL is used by the NSPF editor and incore database.
	The default value is 6000, which should be sufficient for an NSPF editor session and typical incore database applications. However, for large layouts within an incore database file that value might not be large enough and the following message is issued: NAT3077: Not enough space for extent. DB/FNR/Subcode :1:/:2:/:3:. (see the <i>Messages and Codes</i> documentation).
	In this case, the value of MAXEDL has to be increased.
EXTUSER	External user ID passed to the Entire System Server for security checks
	See also EXTUSER in the following section.

EXTUSER

The parameter EXTUSER describes how to inherit security definitions from an external security system such as RACF, ACF2 and TOP-SECRET.

The appropriate parameter setting depends on whether a multi-user address space or a singleuser address space is used in your environment:

- A multi-user address space provides the option to maintain different user security definitions, for example, one for a CICS and one for a Com-plete user).
- A single-user address space supports a subsystem, for example, a Natural subtask for Entire Output Management or Entire Operations Management, or a Natural RPC, Natural Web/IO Interface or batch server.

Recommended values for EXTUSER are:

EXTUSER=INIT-USER	Recommended for a multi-user address space.
	The contents of the Natural system variable *INIT-USER must be identical to the user definition in the external security system (for example, RACF).
	The Entire System Server transfers the value of *INIT-USER to the external security system, and all calls to security restricted resources are handled under this user ID.
	In this case, the security definition from a CICS or Com-plete user (for example) is inherited by Entire System Server, and a new logon is not required. If the value of *INIT-USER is not found in RACF (for example), an error occurs indicating that a logon is required.
	(*INIT-USER is described in the <i>System Variables</i> documentation.)
EXTUSER=USER	Recommended for <i>open</i> UTM. Recommended for a multi-user address space in a Natural Security environment.
	Processing is similar to EXTUSER=INIT-USER except that the Natural system variable *USER (described in the <i>System Variables</i> documentation) is used.
	(*USER is described in the <i>System Variables</i> documentation.)
EXTUSER=ADDRESS-SPACE	Recommended for a TIAM, batch or server environment.
	The security description of this address space is inherited for security evaluation.

ESYNODTB

The ESYNODTB module contains the following parameters and default values:

```
NAMXNOD ID=148,NAME=PRODUCTION-1
NAMXNOD ID=149,NAME=PRODUCTION-2
NAMXNOD ID=1490,NAME=DBID-ABOVE-255,LAST=Y
END
```

The parameters and default values are explained below:

ΙD	Entire System Server node number (also known as DBID)
NAME	Entire System Server node name
LAST	Indicator for last entry in table

Optional Node Name for Entire System Server Calls

Calls to the Entire System Server from Natural are usually handled with the NODE parameter which specifies the node number to be used for the call, for example:

FIND ACTIVE-JOBS WITH JOB-NAME = 'ADA*' AND NODE = 148

If the node number is defined in the ESYNODTB module, alternatively, you can specify the logical name of the required Entire System Server with the NODE-NAME parameter, for example:

FIND ACTIVE-JOBS WITH JOB-NAME = 'ADA*' AND NODE-NAME = 'PRODUCTION-2'

Assemble the Parameter Module for the Entire System Server Interface Component

Natural ISPF

If Natural ISPF is used as the INCORE database:

(Job I055, Steps 1106, 1108)

Link the parameter module NATPNIU (Step 1106 for *openUTM*) or NATPNIT (Step 1108 for TIAM and batch mode). In this case, the module ESYNODTB is not required.

Entire System Server

If the Entire System Server is used:

openUTM Environments:

(Job I055, Step 1108)

Assemble and link the module ANATPNIU.

ANATPNIU must be assembled with NAMVIEWP EXTUSER=USER in order to use the Natural Security user ID as user ID for Entire System Server calls (if no NATPROC-LOGON is issued).

TIAM and Batch Environments:

(Job I055, Step 1106)

Assemble and link the module ANATPNIT.

NATPNIT must be assembled with NAMVIEWP EXTUSER=ADDRESS-SPACE. The LOGON user ID will be used as Entire System Server user ID if no NATPROC-LOGON has been issued.

Link the Entire System Server Interface to the Nucleus

(Job I060, Step 3720)

Link the following Entire System Server Interface modules to the environment-dependent nucleus by using the corresponding INCLUDE statements:

INCLUDE NATPNIP, NATvrs.MOD	Entire System Server Interface parameters
INCLUDE ESXNUC, NATvrs.MOD	Entire System Server Interface module
INCLUDE NATPRBSU, NATvrs.MOD	BS2000 service module
INCLUDE ESYNODTB, NATvrs.MOD	Optional, node table

Install the Entire System Server in Single-User Mode

(Optional installation for batch mode or TIAM only)

This section describes the advantages of Entire System Server in single-user mode and the steps required for installation.

- Advantages of Single-User Mode
- Installation for Batch Mode and TIAM

Advantages of Single-User Mode

Running the Entire System Server in single-user mode is advantageous, for example, in the following cases:

- Executing long running batch jobs comprising a large number of calls to the Entire System Server.
- Performing test scenarios using a Natural session under TIAM performing many calls to the Entire System Server, without disturbing the production environment.
- Exploring new Entire System Server functionality or versions.

From a Natural point of view, the Entire System Server single-user mode is accessible as Entire System Server node 148, irrespective of whether such a node does already exist on your machine or network.

The following is an example of a Natural program that is running in a single-user environment:

FIND ACTIVE-JOBS WITH NODE = 148 AND JOB-NAME = 'XCOM*'

This statement calls a single-user Entire System Server that runs within the same address-space. Calling a different Entire System Server node that runs elsewhere in the network is possible by using a different node number, as shown in the following example:

FIND ACTIVE-JOBS WITH NODE = 53 AND JOB-NAME = 'NUC*'

This statement calls a multi-user Entire System Server with node number 53 out of the same Natural program which called the single-user Entire System Server session.

Installation for Batch Mode and TIAM

1. Link the optional NATPSNGL module to the environment-dependent nucleus:

INCLUDE NATPSNGL, NATvrs.MOD

This module enables use of single-user mode.

2. Add the mandatory DDLIB2 card to assign the Entire System Server load library and the optional PARMS card to set the parameters for the Entire System Server:

/ ADD-FILE-LINK LINK-NAME=DDLIB2,FILE-NAME=\$SAG.NPRvrs.MOD / ADD-FILE-LINK LINK-NAME=PARMS,FILE-NAME=parameter-file

where *parameter-file* is the name of the Entire System Server parameter file.

The Entire System Server parameter file is read during the execution of the first Entire System Server user request. You do not have to issue a LOGON or LOGOFF to the Entire System Server in single-user mode.

3. Modify your Entire System Server parameter file as required. The NODE parameter is ignored since all calls to the Natural node number 148 are routed through the Entire System Server node used for single-user mode.

Installing Software AG Editor on BS2000

Prerequisites	56
Installation Procedure	56
Installation Verification	59

The Software AG Editor is an optional Natural component that is required by several Natural utilities (for example, SYSRPC and SYSBPM), Natural add-on products (for example, Natural ISPF) and other Software AG products (for example, Predict).

When using SMA, the Software AG editor is automatically installed when installing Natural. If you are not using SMA, install the Software AG editor according to the procedure described in this document.

This document describes the steps for installing the Software AG Editor on BS2000.

Related Topics:

- For operational information, see *Operating the Software AG Editor* in the *Operations* documentation.
- For information on the features and functions of the *Software AG Editor*, see the relevant section in the *Editors* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See General Prerequisites and System Support in the section Overview of the Installation Process.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* before you start the installation procedure.

- Step 1: Adapt the Natural Parameter Macro NTEDBP
- Step 2: Build the Natural Parameter Module
- Step 3: Allocate and Format the Editor Work File E.FRM.EDITWORK
- Step 4: Modify the Startup Procedures for the Nucleus
- Step 5: Start the Global Editor Buffer Pool

Step 6: Link the Software AG Editor to the Nucleus

Step 1: Adapt the Natural Parameter Macro NTEDBP

The editor buffer pool parameters contained in Natural parameter module are stored in the editor buffer pool work-file control record during formatting (see *Step 3: Allocate and Format the Editor Work File E.FRM.EDITWORK*). The Natural parameter module can be linked to the Software AG Editor work file formatting utility (described in *Editor Work File* in the *Operations* documentation).

- **Caution:** Before adapting the editor parameter macro, first read the documentation of the editor buffer pool parameter EDBP and its corresponding macro NTEDBP in the *Parameter Reference* documentation.
- Assemble and link the Natural parameter module.

For the Initial Installation:

You can leave the defaults. In this case, it is not necessary to assemble and link the Natural parameter module.

Step 2: Build the Natural Parameter Module

(Jobs 1060, 1080)

1. Add the following parameter to your Natural parameter module to specify the size of the editor area:

SSIZE=nn

where *nn* must be set to at least 54.

2. Add the following macro to your Natural parameter module to specify the size of the editor buffer pool:

NTBPI TYPE=EDIT

The region size must be defined large enough to be able to allocate the buffer pool. For a detailed description of the NTBPI macro, refer to *Building a Natural Parameter Module* in the *Operations* documentation.

3. Assemble and link the Natural parameter module.

Step 3: Allocate and Format the Editor Work File E.FRM.EDITWORK

(Job I081, Step 1900)

1. Allocate the editor work file (see also *Editor Work File* in the *Operations* documentation) by issuing the command:

/FILE file-name,LINK=CMEDIT,SPACE=...

2. Execute the Software AG editor work file formatting utility (NATEDFM2, NAT*vrs*.MOD) by entering FORMAT to format and load the control record in the editor work file.

Step 4: Modify the Startup Procedures for the Nucleus

For TIAM and *open*UTM:

Add a FILE command for the editor work file:

/FILE file-name,LINK=CMEDIT

Step 5: Start the Global Editor Buffer Pool

(Job I061, Step 0001)

Once defined, a global editor buffer pool must be started.

To start the global editor buffer pool, execute the module CMPSTART.

Step 6: Link the Software AG Editor to the Nucleus

(Job I080)

Link the following Software AG Editor modules to either the environment-independent or the environment-dependent nucleus by using the corresponding INCLUDE statements:

INCLUDE NA	TLIB(NATEDT)	Software AG Editor module
INCLUDE NA	TLIB(NATEDWA2)	Software AG Editor work file access module

Installation Verification

You can verify the successful installation of the Software AG Editor by performing the following:

Invoke Natural and enter the following system command:

SYSEDT

The SYSEDT Utility Main Menu appears which can be used to display all buffer pool parameters and usage statistics; see *SYSEDT Utility - Editor Buffer Pool Administration* in the *Utilities* documentation.

You can only test the full operation of the Software AG Editor if another Software AG product (for example, Natural ISPF or Predict) that uses Software AG Editor functionality is installed.

Installing Natural TIAM Interface on BS2000

Prerequisites	62
Installation Medium	. 62
Installation Procedure	63
Installation Verification	65

This document describes the steps for installing the Natural TIAM Interface (product code NRT) on BS2000.

Related Topics:

For information on the following topics, see *Natural under TIAM* in the *TP Monitor Interfaces* documentation:

- Structure of the Natural TIAM Interface
- Parameters in Macro NAMTIAM
- Common Memory Pools under TIAM

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See *General Prerequisites and System Support* in the section Overview of the Installation Process.

Installation Medium

The **installation medium** contains the following files required for product installation:

File Name	Contents
NRT <i>vrs</i> .MAC	Driver assembly macros
NRT <i>vrs</i> .JOBS	Sample installation jobs

Copy the files into your environment as described in *Copying Files to a BS2000 Disk* in the section *Installing Natural*.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* and *Naming Conventions for Installation Procedures* before you start the installation procedure.

- Step 1: Build the Natural TIAM Interface Non-Reentrant Part
- Step 2: Build the Natural TIAM Interface Reentrant Part
- Step 3: Build the Natural Parameter Module
- Step 4: Link the Environment-Dependent Nucleus

Step 1: Build the Natural TIAM Interface Non-Reentrant Part

(Job I070, Step 0102)

Build the non-reentrant part of the Natural TIAM Interface.

1. Modify the parameters settings in the macro NAMTIAM if required. You can generally use the default values of the parameters. Modify only the values that do not suit your requirements.

For descriptions of the individual parameters, see *Parameters in Macro NAMTIAM* in the Natural *TP Monitor Interfaces* documentation.

2. Assemble the source module ANRTFRNT in the library *job-library* to generate the macro NAMTIAM for the non-reentrant part.

Step 2: Build the Natural TIAM Interface Reentrant Part

(Job I070, Step 0103)

Build the reentrant part for the Natural TIAM Interface.

1. Modify the parameter settings in the macro NAMTIAM if required. You can generally use the default values of the parameters. Modify only the values that do not suit your requirements.

For descriptions of the individual parameters, see *Parameters in Macro NAMTIAM* in the Natural *TP Monitor Interfaces* documentation.

2. Assemble the source module ANRTRENT in the library *job-library* to generate the macro NAMTIAM.

Step 3: Build the Natural Parameter Module

(Job I080, Step 0109)

Build the Natural parameter module for the Natural TIAM Interface.

1. Set the FNAT and FUSER profile parameters (see the *Parameter Reference* documentation) in the source module ANRTPARM of the Natural parameter module:

```
FNAT=(database-id,file-number)
FUSER=(database-id,file-number)
```

where *database-id* and *file-number* are the values you specified when loading the system files during the *Installation Procedure* for base Natural.

2. Assemble the source module ANRTPARM in the library *job-library*.

Step 4: Link the Environment-Dependent Nucleus

(Job I080, Step 0110)

Use the INCLUDE statements for BINDER contained in LNRTFRNT in the library *job-library*.

Notes:

- 1. The source module ANATSTUB has been assembled during the installation of base Natural.
- 2. If the parameter ILCS=CRTE is specified for the assembly of the reentrant part of the TIAM driver, the BINDER statements for the masking of symbols have to be specified as follows:

```
INCLUDE-MODULES ELEMENT=(ITOSL#),LIB=$TSOS.SYSLNK.CRTE

RESOLVE-BY-AUTOLINK LIB=($TSOS.SYSLNK.CRTE)

MODIFY-SYMBOL-VISIBILITY

SYMBOL-NAME = *ALL,

SYMBOL-TYPE = *DEFINITIONS,

VISIBLE = *YES

MODIFY-SYMBOL-VISIBILITY

SYMBOL-NAME = CMPRMTB,

SYMBOL-NAME = *DEFINITIONS,

VISIBLE = *NO(KEEP-RES=*YES)
```

VISIBLE = *YES: Necessary to prevent duplicate loading of the CRTE routines.

VISIBLE = *NO(KEEP-RES=*YES): The entry CMPRMTB in the Natural parameter module has to be masked if the Natural parameter module is bound to the environment-dependent nucleus.

Installation Verification

You can verify the successful installation of the Natural TIAM Interface by performing the following steps:

- 1. Call the procedure P.START.NRT in the library *job-library* to start Natural under TIAM.
- 2. Proceed with the steps described in the section *Test Online Natural*.
10 Installing Natural openUTM Interface on BS2000

Prerequisites	68
Installation Medium	68
Installation Procedure	69
Installation Verification	71

This document describes the steps for installing the Natural *open*UTM Interface (product code NUT) on BS2000.

Related Topic:

For information on how to operate the Natural *open*UTM Interface, see *Natural under openUTM* in the *TP Monitor Interfaces* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

A supported version of the following product must be installed before you can install the Natural *open*UTM Interface:

Adabas UTM Interface (product code AUT)

See also General Prerequisites and System Support in the section Overview of the Installation Process.

Installation Medium

The **installation medium** contains the following files required for product installation:

File Name	Contents
NUT <i>vrs</i> .SRC	Source modules
NUT <i>vrs</i> .MAC	Macros
NUT <i>vrs</i> .JOBS	Sample installation job

Copy the files into your environment as described in *Copying Files to a BS2000 Disk* in the section *Installing Natural*.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* and *Naming Conventions for Installation Procedures* before you start the installation procedure.

- Step 1: Generate the KDCROOT Source
- Step 2: Assemble the BS2STUB Module for the Natural openUTM Interface
- Step 3: Assemble the Non-Reentrant Part for the Natural openUTM Interface
- Step 4: Assemble the Reentrant Part for the Natural openUTM Interface
- Step 5: Generate the Swap Pool Parameter Module NTSWPRM
- Step 6: Assemble KDCROOT
- Step 7: Generate KDCFILE
- Step 8: Build the Natural Parameter Module
- Step 9: Link the Environment-Dependent Nucleus

Step 1: Generate the KDCROOT Source

(Job I070, Step 0110)

Prepare the sample KDCDEF instruction source NUT.KDCDEF (LMS element type = D) in the library *job-library* so that it suits your environment.

Therefore, refer to *Defining the openUTM Resources* (*KDCDEF*) in the *TP Monitor Interfaces* documentation.

Step 2: Assemble the BS2STUB Module for the Natural openUTM Interface

(Job I070, Step 0111)

Assemble the source module ANUTSTUB in the library *job-library*.

See also Local Common Memory Pools in the Operations documentation.

Step 3: Assemble the Non-Reentrant Part for the Natural openUTM Interface

(Job I070, Step 0112)

Assemble the source module ANUTFRNT in the library *job-library*.

See also Keyword Parameters of Macro NATUTM in the TP Monitor Interfaces documentation.

Step 4: Assemble the Reentrant Part for the Natural openUTM Interface

(Job I070, Step 0113)

Assemble the source module ANUTRENT in the library *job-library*.

See also Keyword Parameters of Macro NURENT in the TP Monitor Interfaces documentation.

Step 5: Generate the Swap Pool Parameter Module NTSWPRM

(Job I070, Step 0114)

• Assemble and link the module ANUTSWP in the library *job-library*.

See also *Keyword Parameters of Macro NTSWPRM* in the section *Defining the Swap Pool* in the *Operations* documentation.

Step 6: Assemble KDCROOT

(Job I070, Step 0120)

Assemble the sample source ANUTKDCR (generated in Step 1) in the library *job-library* for the KDCROOT module.

See also *Generating KDCROOT* in the *TP Monitor Interfaces* documentation.

Step 7: Generate KDCFILE

(Job I075, Step 0100)

Use the sample KDCDEF instruction source NUT.KDCDEF prepared in Step 1.

Step 8: Build the Natural Parameter Module

(Job I080, Step 0200)

Build the Natural parameter module for the Natural openUTM Interface.

1. Set the FNAT and FUSER profile parameters (see the *Parameter Reference* documentation) in the source module ANUTPARM of the Natural parameter module:

```
FNAT=(database-id,file-number)
FUSER=(database-id,file-number)
```

where *database-id* and *file-number* are the values you specified when loading the system files during the *Installation Procedure* for base Natural.

2. Assemble the source module ANUTPARM in the library *job-library*.

Step 9: Link the Environment-Dependent Nucleus

(Job I080, Step 0210)

Use the INCLUDE statements for BINDER contained in LNUTFRNT in the library *job-library*.

If the parameter ILCS=CRTE is specified for the assembly of NURENT, the BINDER statements for the masking of symbols have to be specified as follows:

```
INCLUDE-MODULES ELEMENT=(ITOSL#),LIB=$TSOS.SYSLNK.CRTE
RESOLVE-BY-AUTOLINK LIB=($TSOS.SYSLNK.CRTE)
MODIFY-SYMBOL-VISIBILITY
SYMBOL-NAME = *ALL,
SYMBOL-TYPE = *DEFINITIONS,
VISIBLE = *YES
MODIFY-SYMBOL-VISIBILITY
SYMBOL-NAME = (CMPRMTB,NU8*),
SYMBOL-TYPE = *DEFINITIONS,
VISIBLE = *NO(KEEP-RES=*YES)
```

VISIBLE = *YES: Necessary to prevent duplicate loading of the CRTE routines.

VISIBLE = *NO(KEEP-RES=*YES): The entry CMPRMTB in the Natural parameter module has to be masked if the Natural parameter module is bound to the environment-dependent nucleus.

Installation Verification

You can verify the successful installation of the Natural *open*UTM Interface by performing the following steps:

- 1. Submit the job E.START.SWP in the library *job-library* to start the Natural swap pool.
- 2. Submit the job E.START.NUT in the library *job-library*, which is a sample job for starting Natural under *open*UTM.
- 3. Enter the Natural transaction code.
- 4. Proceed with the steps described in the section *Test Online Natural*.

11 Installing Natural Security on BS2000

Prerequisites	74
Installation Medium	74
Installation Procedure	75
Installation Verification	77

This document describes the steps for installing Natural Security (product code NSC) on BS2000.

Related Topic:

For information on the features and functions provided by Natural Security, see the *Natural Security* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See General Prerequisites and System Support in the section Overview of the Installation Process.

Additional Prerequisites for Natural Security in a Heterogeneous Environment

In addition to the prerequisites referred to above, the following software must be installed to use Natural Security in a heterogeneous environment:

- Entire Net-Work
- Natural Security for Mainframes

The following software must be installed as required:

- Natural Security for UNIX
- Natural Security for Windows
- Natural Security for OpenVMS

For further information, see *Using Natural Security on Multiple Platforms* in the *Natural Security* documentation.

Installation Medium

The **installation medium** contains the following files required for product installation:

File Name	Contents
NSC <i>vrs</i> .SYSL	Natural Security log file
NSC <i>vrs</i> .INPL	Natural objects

Copy the files into your environment as described in *Copying Files to a BS2000 Disk* in the section *Installing Natural*.

Sample Jobs

Sample installation jobs are contained in the NAT*vrs*.JOBS file and are prefixed with the product code. The file is provided on the installation medium supplied for base Natural.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* before you start the installation procedure.

Note for the Reinstallation:

When you repeat a Natural Security installation, only the Natural objects are replaced; the Natural Security data defined for SYSSEC and DBA is *not* reset to the values defined after the initial installation. You can use the Natural Security Recover function of the Natural INPL utility to reset the data.

This section describes the actual installation steps:

- Step 1: Load the FSEC System File Definition
- Step 2: Load the Log File
- Step 3: Load the Logon and Error Log File
- Step 4: Build the Natural Parameter Module
- Step 5: Load New Natural Objects

Step 1: Load the FSEC System File Definition

(Job I050, Step 9900)

Skip this step if you want to use an existing Natural FSEC system file.

- Load the new Natural FSEC system file definition:
 - 1. Set the System Maintenance Aid (SMA) parameter NSC-FIRST-INSTALL to Y (Yes). This is the default setting.
 - 2. Specify the database ID and file number of the Adabas file where to load the FSEC system file by using the Adabas ADALOD utility.

In addition, you must specify this database ID and file number in the Natural parameter module as described in *Step 4: Build the Natural Parameter Module*.

3. Load the FSEC system file definition contained in the NAT*vrs*.SYSF file by using the Adabas ADALOD utility.

The following ADALOD utility parameter must *not* be changed:

ISNREUSE=YES

Step 2: Load the Log File

(Job I050, Step 9901)

This step only applies if Adabas is installed and if the Natural Security function **Logging of maintenance functions** (see the *Natural Security* documentation) is to be used. It creates the log file to be used by the function.

Load the log file by using the Adabas ADALOD utility. Input for ADALOD is the NSC vrs.SYSL file.

Step 3: Load the Logon and Error Log File

(Job I050, Step 9902)

This step only applies if Adabas is installed and if the Natural Security function **Store Logon and Error Data on Separate System Files** (see the *Natural Security* documentation) is to be used. It creates the logon and error log file to be used by the function.

Load the logon and error log file by using the Adabas ADALOD utility. Input for ADALOD is the NATurs.SYSF file.

Step 4: Build the Natural Parameter Module

(Jobs 1060, 1080)

1. Specify the following profile parameter in your Natural parameter module:

FSEC=(database-id,file-number)

where *database-id* and *file-number* are the database ID and file number of either the new FSEC system file loaded in Step 1 or your existing FSEC system file.

The FSEC profile parameter is described in the *Parameter Reference* documentation.

Repeat Job I080 for all your TP monitors.

2. Assemble and link your Natural parameter module.

Step 5: Load New Natural Objects

(Job I061, Step 0102 or Step 9900)

For the migration installation (Step 0102):

- 1. Set the System Maintenance Aid (SMA) parameter NSC-FIRST-INSTALL to N (No). The default setting is Y (Yes).
- 2. Load the Natural objects specific to Natural Security from the NSC*vrs*.INPL file into the appropriate Natural libraries in your FNAT system file by using the Natural INPL utility.

Once this step has been performed, it is not possible to remove Natural Security from the Natural system file; to remove Natural Security from the system file, you would have to delete the entire contents of the system file and reinstall all Natural components again.

For the initial installation (Step 9900):

- 1. Set the System Maintenance Aid (SMA) parameter NSC-FIRST-INSTALL to Y (Yes).
- 2. Load the Natural objects specific to Natural Security from the NSC*vrs*.INPL file into the appropriate Natural libraries in your FNAT system file by using the Natural INPL utility.

When you load the contents of the NSC*vrs*.INPL file for the first time, this step creates the following security profiles and relationships:

- A library security profile with the library ID SYSSEC. The library is people-protected (People-protected set to Y and Terminal-protected set to N).
- A user security profile with the user ID DBA, the user type Administrator, and the password set to DBA.

The user DBA is linked to the library SYSSEC (ordinary link, no special link).

Installation Verification

Natural Security is operational after *Step 5: Load New Natural Objects* of the *Installation Procedure* has been completed successfully.

For the initial installation, proceed as described in the section *First Steps After the Installation* in the *Natural Security* documentation. If you upgrade from a previous Natural Security version, you can skip the steps described in this section.

Installing Natural Advanced Facilities on BS2000

Prerequisites	80
Installation Medium	80
Installation Procedure	81
Installation Verification	. 87

This document describes the steps for installing Natural Advanced Facilities (product code NAF) on BS2000.

Related Topic:

For information on the features and functions provided by Natural Advanced Facilities, see the *Natural Advanced Facilities* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See *General Prerequisites and System Support* in the section Overview of the Installation Process.

Installation Medium

The **installation medium** contains the following files required for product installation:

File Name	Contents
NAF <i>vrs</i> .SYSF	Natural FSPOOL system file definition
NAF <i>vrs</i> .MOD	Load modules and object modules
NAF <i>vrs</i> .MAC	Macros
NAF <i>vrs</i> .JOBS	Sample installation jobs
NAF <i>vrs</i> .INPL	Natural objects
NAF <i>vrs</i> .ERRN	Natural error messages

Copy the files into your environment as described in *Copying Files to a BS2000 Disk* in the section *Installing Natural*.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* and *Naming Conventions for Installation Procedures* before you start the installation procedure.

- Step 1: Load the FSPOOL System File Definition
- Step 2: Build the NAFB2P Parameter Module
- Step 3: Assemble the Environment-Dependent Nucleus and the Natural Parameter Module
- Step 4: Build the Natural Parameter Module
- Step 5: Link the Environment-Independent Nucleus
- Step 6: Load the Natural Objects
- Step 7: Load the Natural Error Messages
- Step 8: Link the Spool Server
- Step 9: Link the Environment-Dependent Nucleus
- Step 10: Define Natural Advanced Facilities for Natural Security
- Step 11: Start Natural

Step 1: Load the FSPOOL System File Definition

(Job I050, Step 0300)

Skip this step if you want to use an existing spool file of Natural Advanced Facilities.

Load the new Natural FSPOOL system file definition contained in the NAF*vrs*.SYSF file by using the Adabas ADALOD utility.

Step 2: Build the NAFB2P Parameter Module

(Job I055, Step 0300)

1. If required, modify the settings of the parameters in the source module ANAFB2P, which is contained in the file NAF*vrs*.JOBS.

The following examples illustrate how the parameters can be set:

Example 1 - Installation with Natural Security and Two Spool Servers:

DC01 = NAFDCAM1 DC02 = NAFDCAM2 DC03 = N0 . . . DC30 = N0

```
NAFERK1 = NAFP1
NAFERK2 = NAFP2
PA01 = 'STACK=(LOGON SYSPRINT, userid1, password; SVPBS201)'
PA02 = 'STACK=(LOGON SYSPRINT, userid2, password; SVPBS201)'
PA03 = 'NO'
.
.
.
PA30 = 'NO'
```

Example 2 - Installation without Natural Security and One Spool Server:

```
DC01 = NAFDCAM1
DC02 = NO
.
.
.
.
DC30 = NO
NAFERK1 = NAFP1
NAFERK2 = NAFP2
PA01 = 'STACK=(LOGON SYSPRINT;SVPBS201)'
PA02 = 'NO'
.
.
.
.
.
.
```

Note: If Natural Security is installed, link the library SYSPRINT to a user which is normally not active in the Natural Security environment. Moreover, link SYSPRINT to as many users as there are spool servers (1-9).

The parameters for DCAM connection (DC01 - D30) and for P1-EVENTING (NAFERK1, NAFERK2) must be different from those used for the same function in any other application for the same CPU.

Described below are the parameters that can be specified in the macro NAFB2P:

Parameter	Explanation	
DC01 - DC30	7 bytes indicating the name of the corresponding DCAM application	
	Unused entries should be set to NO.	
NAFERK1	8 bytes indicating the event ID for the communication between the online Natural an the spool server(s) and defining the name of the used common memory pool	
NAFERK2	8 bytes indicating the event ID for the automatic startup for spool server(s) using an <i>open</i> UTM TP monitor and the corresponding parameter SPOOL=(<i>name</i> , <i>number</i>)	
PA01 - PA30	Stack data for the initialization of Natural by specifying the following:	
	<pre>STACK=(LOGON library,userid; program-name)</pre>	
	If Natural Security is installed, specify the following:	
	<pre>STACK=(LOGON library,userid,password; program-name)</pre>	
	Unused parameters must be set to NO.	
MONEVT	Name of the event ID for the BS2000 monitor task (8 bytes maximum)	
PAMO	LOGON command for the monitor task.	
	The start program must always be set to SVPMON01.	
	If Natural Security is installed, specify the following:	
	<pre>STACK=(LOGON library,userid,password; program-name)</pre>	
CMPSIZE	Size of the Natural Advanced Facilities common memory pool (in units of 1 KB)	
	The value is rounded up to the next higher multiple of 64 KB (64 KB = segment size = allocation unit for the common memory pools).	
RSOFORM	Name of a form to be used by the spool server when output is sent to an RSO printer	
	The information in the report is ignored. If value ' ' is used, the information from the report is used.	
BS2FORM	Name of a form to be used by the spool server when output is sent to a system printer	
	The information in the report is ignored. If value ' ' is used, the information from the report is used.	
PASEC	Determines whether at logon the spool server uses the FSEC value applicable to the invoking online application (YES/NO).	
PANAT	Determines whether at logon the spool server uses the FNAT value applicable to the invoking online application (YES/N0).	
ISO	Determines whether the spool server(s) use a DCAM ISO application in addition to the DCAM NEA application (YES/NO).	

Parameter	Explanation
RSOPROT	Determines whether the RSO messages resulting from the PRINT invocation are to be written to a log if logical printers with RSO support are used.
	ON: log is written to SYSLST02.
	OFF: no log is written to SYSLST02.
MAXERR	Maximum number of acceptable Natural spool server abends (abnormal termination of Natural).
	0: no limit.
	1-255: limit.
	If the specified limit is exceeded, the spool server terminates itself.

2. Assemble the source module ANAFB2P to create the parameter module NAFB2P. If Natural Security is installed, check the LOGON command to application SYSPRINT.

Step 3: Assemble the Environment-Dependent Nucleus and the Natural Parameter Module

(Job I055, Steps 0301, 0302, 0303)

Assemble the environment-dependent nucleus for batch mode and the Natural parameter module for the Natural Advanced Facilities server task and the Natural monitor task.

Assemble the following source modules:

ANAFFRNT	Natural BS2000 front-end for environment-dependent nucleus for batch
ANAFRENT	Natural BS2000 reentrant, environment-dependent nucleus for batch
ANAFPARM	Natural BS2000 parameter module for batch

Step 4: Build the Natural Parameter Module

(Job I060, Step 0010, and Job I080, Step 0109)

- 1. Modify the parameters FSPOOL, NTPRINT, NAFUPF and NAFSIZE in the Natural parameter module according to your site requirements. For more information on these parameters, see *Natural Profile Parameters for NATSPOOL* in the *Natural Advanced Facilities* documentation.
- 2. Assemble and link the Natural parameter module.

Step 5: Link the Environment-Independent Nucleus

(Job I060, Step 3802)

Add the following INCLUDE statements to the sources LNATSHAR in the library NAF vrs. JOBS:

INCLUDE NAFNUC ,NAF*vrs*.MOD INCLUDE NAFREENT ,NAF*vrs*.MOD INCLUDE NAFB2RSO ,NAF*vrs*.MOD INCLUDE NAFSERVR ,NAF*vrs*.MOD

Step 6: Load the Natural Objects

(Job I061, Step 0300)

Load the Natural objects specific to Natural Advanced Facilities from the NAFvrs.INPL file into the Natural system files SYSPOOL and SYSPRINT by using the Natural INPL utility.

Ensure that the INPL load function finishes with the message:

Natural Advanced Facilities initialized by INPL

If this initialization fails, various problems will be encountered at execution time.

The maps contained on the data set are provided in source form so that you can modify them according to your requirements (for example, translate the maps from English into another language). If you modify these maps, ensure that all fields have the same format/length/relative position in the map. Failure to abide by this restriction will result in an invalid system.

Step 7: Load the Natural Error Messages

(Job I061, Step 0304)

Load the Natural error messages specific to Natural Advanced Facilities from the NAF vrs.ERRN file into the Natural FDIC system file by using the ERRLODUS program of the Natural SYSERR utility (described in the Utilities documentation).

Step 8: Link the Spool Server

(Job I065, Steps 0300, 0301, 0302, 0303)

Link the source members LNAFSERV, LNAFSEND, LNAFMON and LNAFMEND in the library NAFvrs. JOBS.

Source	Function
LNAFSERV	Links the program that starts the Natural Advanced Facilities server task
LNAFSEND	Links the program that terminates the Natural Advanced Facilities server task
LNAFMON Links the program that starts the Natural Advanced Facilities monitor tas	
	See also BS2000 Monitor in the Natural Advanced Facilities documentation.
LNAFMEND	Links the program that terminates the Natural Advanced Facilities monitor task

Step 9: Link the Environment-Dependent Nucleus

(Job I080, Steps 0110, 0200)

Add the following INCLUDE statements to the sources LNUTFRNT, LNRTFRNT and/or LNATFRNT (Job I060, Step 3801) in the library *job-library*:

INCLUDE NAFB2P ,*job-library* INCLUDE NAFFRONT ,NAF*vrs*.MOD

Step 10: Define Natural Advanced Facilities for Natural Security

This step must be performed only if Natural Advanced Facilities is being installed in a Natural Security environment.

Define SYSPOOL to Natural Security with the startup program MENU.

Step 11: Start Natural

1. Start Natural and add the user profile, as defined in the NAFUPF parameter (see the *Parameter Reference* documentation) of the Natural parameter module, to the SYSPOOL file by using Function 31.1 (see the *Natural Advanced Facilities* documentation).

Note: A NAT7201 message is issued at the start of the session indicating that the profile has not yet been added to the SYSPOOL file.

2. Configure the spool file by following the instructions in *NATSPOOL Initialization* in the *Natural Advanced Facilities* documentation.

Installation Verification

You can verify the successful installation of Natural Advanced Facilities by following the instructions provided in this section.

- System Testing
- NATSPOOL System Errors

System Testing

You can perform the following steps to determine whether Natural Advanced Facilities functions correctly.

> To print a test report

- 1 In the appropriate logical printer, set the Disposition to K for testing.
- 2 Log on to the Natural system library SYSPOOL and execute the programs NTEST and SPPTEST. These programs contain WRITE (1) statements.

You can also create test reports with Function 42 (described in the *Natural Advanced Facilities* documentation).

> To proceed if a test report cannot be printed

1 Check whether the report is contained in the spool file. If the report is not in the spool file, it is possible that a FILE command for a print file has been active and that the report has been written to the print file and not to the spool file. This would occur because the FILE command has a higher priority.

If the report is in the spool file but still is not printed, take the following steps.

- 2 Check whether the printer is in FREE status. If the printer is in status BUSY, INOP, DEAC or HUNG, reset it to FREE.
- 3 Check whether there is an error message on the console beginning with Natural Advanced Facilities. Normally, an error message will be sent to the console whenever a report is not printed. This allows the console operator to perform a more detailed analysis of the cause of the error.
- 4 Check whether the information in the printer definition (see Function 31.4 in the *Natural Advanced Facilities* documentation) and PDN are consistent with one another.

In addition, verify that the correct physical printer name and processor name have been specified.

- 5 Check whether the printer is reserved by another spool system and, although it is not currently in use, has been deactivated by the other spool system. In this case, it is best if the printer is reset via a direct operator command.
- 6 Check whether the printer is defined in an *open*UTM application (KDCDEF) and activated from that application. Deactivate the printer via an *open*UTM administration command.

If the printer prints only 80 characters per line and 24 lines per page, take the following step.

7 Check the PDN for the printer to see that the appropriate LINELEN and MAXLINE parameters have been included in the XOPCH macro.

For example, to cause the printer to print 132 characters per line and 80 lines per page, provide the following parameter values:

```
XOPCH LINELEN=132
MAXLINE=80
```

8 If a WRITE (*rep*) statement with attribute definition AD=I (intensified display) is used, the Natural profile parameter INTENS (see the *Parameter Reference* documentation) must be specified to enable intensified display.

The following must be true:

LS * INTENS \leq printer buffer size

where LS is the line size as defined in the FORMAT (*rep*) statement, and the printer buffer size as specified in the printer definition (see Function 31.4 in the *Natural Advanced Facilities* documentation).

NATSPOOL System Errors

A system error may be issued upon initialization of *open*UTM if the SPOOL parameter has been included in the NATUTM macro and the spool server cannot be started during initialization.

Possible causes of this error are:

- The batch limit has been exceeded, and the spool server cannot be started.
- The entry job name specified in the SPOOL parameter either does not exist, or the entry job exists under a different name than the one specified in the SPOOL parameter.

Installing Natural Optimizer Compiler on BS2000

Prerequisites	90
Installation Medium	. 90
Installation Procedure	90
Installation Verification	. 91

This document describes the steps for installing the Natural Optimizer Compiler (product code NOC) on BS2000.

Related Topic:

For information on the features and functions provided by the Natural Optimizer Compiler, see the *Natural Optimizer Compiler* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

See General Prerequisites and System Support in the section Overview of the Installation Process.

Installation Medium

The **installation medium** contains the following file required for product installation:

File Name	Contents
NOC <i>vrs</i> .MOD	Load modules and object modules

Copy the file into your environment as described in *Copying Files to a BS2000 Disk* in the section *Installing Natural*.

Sample Jobs

Sample installation jobs are contained in the NAT*vrs*.JOBS file and are prefixed with the product code. The file is provided on the installation medium supplied for base Natural.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* before you start the installation procedure.

Step 1: Build the Natural Parameter Module

Step 2: Relink the Nucleus or Load Modules Dynamically

Step 1: Build the Natural Parameter Module

(Jobs I060 and I080)

1. Activate the Natural Optimizer Compiler by adding the following macro to your Natural parameter module:

NTOPT 'INDX,OVFLW,ZD=OFF'

See also Macro NTOPT in the Natural Optimizer Compiler documentation.

2. Assemble and link the Natural parameter module.

Step 2: Relink the Nucleus or Load Modules Dynamically

You can either statically link the Natural Optimizer Compiler modules to the nucleus or dynamically load them when initializing a Natural session.

Relink the Nucleus:

(Job I060)

Adapt the link steps for Natural:

1. Add the following INCLUDE statement to the link of the environment-independent nucleus to include the Natural Optimizer Compiler modules:

INCLUDE NOCNUC, NOCvrs.MOD

2. Relink your nucleus as described in *Link the Nucleus* in *Installing Natural*.

Installation Verification

You can verify the successful installation of the Natural Optimizer Compiler by performing the following steps:

- 1. Recatalog an existing program or write a new program and then catalog it.
- 2. Check the directory information for the program you have just cataloged, by using the following LIST system command:

LIST DIR object-name

The directory information for the specified object will be displayed, showing the size of the machine code at the bottom of the screen.

14 Installing Natural Connection on BS2000

Prerequisites	94
Installation Medium	94
Installation Procedure	95
Installation Verification	96

This document describes the steps for installing Natural Connection (product code NTC) on BS2000.

Related Topic:

For information on the features and functions provided by Natural Connection, see the *Natural Connection* documentation.

Notation vrs or vr:

When used in this document, the notation *vrs* or *vr* represents the relevant product version (see also Version in the *Glossary*).

Prerequisites

A supported version of the following product must be installed before you can install Natural Connection:

Entire Connection

See the Installation section in the Entire Connection documentation.

See also General Prerequisites and System Support in the section Overview of the Installation Process.

Installation Medium

The **installation medium** contains the following file required for product installation:

	File Name	Contents
	NTC <i>vrs</i> .MOD	Load modules and object modules

Copy the file into your environment as described in *Copying Files to a BS2000 Disk* in the section *Installing Natural*.

Sample Jobs

Sample installation jobs are contained in the NAT*vrs*.JOBS file and are prefixed with the product code. The file is provided on the installation medium supplied for base Natural.

Installation Procedure

Be sure to read *Installation Process and Major Natural Features* before you start the installation procedure.

- Step 1: Build the Natural Parameter Module
- Step 2: Adapt the Link Steps

Step 1: Build the Natural Parameter Module

(Jobs I060, I080)

- 1. Adapt the Natural parameter module:
 - Specify the keyword subparameter AM=PC in the NTPRINT macro for all printer files and work files to be used for data transfer between the host and the PC. For example:

NTPRINT (7),AM=PC NTWORK (7),AM=PC

Specify the profile parameter PC=ON.

The parameters and the macro are described in the *Parameter Reference* documentation.

2. Assemble and link the Natural parameter module.

Step 2: Adapt the Link Steps

(Job I080)

Adapt the link steps for online Natural:

1. Add the following INCLUDE statement to the element LNATSHAR in the library *job-library*:

INCLUDE NTCPCAM3,NTCvrs.MOD

2. Relink your Natural shared nucleus as described in *Link the Nucleus* in *Installing Natural*.

Installation Verification

You can verify the successful installation of Natural Connection by following the instructions below:

- 1. Invoke Entire Connection on the PC and start the terminal emulation.
- 2. Use the terminal emulation to invoke Natural on the mainframe.
- 3. Enter the terminal command %+ to activate the PC connection.
- 4. Use the Natural Object Handler (described in the *Utilities* documentation) to download Natural objects to the PC. For information on transferring Natural objects, see also *Data Transfer* in the section *Terminal Emulation* in the *Entire Connection* documentation.
- 5. Verify that the downloaded objects are now on your PC.