
Natural

Unicode and Code Page Support

Version 8.4.1

October 2017

This document applies to Natural Version 8.4.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2017 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NATWIN-NNATUNICODE-841-20210929

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Introduction ... 5
About Code Pages and Unicode .. 6
About Unicode and Code Page Support in Natural .. 7

3 Enabling Unicode and Code Page Support ... 9
ICU Library .. 10

4 Configuration and Administration of the Unicode/Code Page Environment 11
Profile Parameters .. 12
Encoding Information .. 13
Deploying Natural Objects with Encoding Information ... 13

5 Development Environment ... 15
Development Environment .. 16
Customizing Your Environment .. 17
Editors in the SPoD Environment .. 18

6 Unicode and Code Page Support in the Natural Programming Language 21
Natural Data Format U for Unicode-Based Data ... 22
Statements .. 23
Logical Condition Criteria ... 26
System Variables .. 27
Large and Dynamic Variables .. 27
Session Parameters ... 28
Sample Programs ... 30

7 Unicode Input/Output Handling in Natural Applications ... 31
Displaying and Entering Unicode Data ... 32
Natural Web I/O Interface Client ... 33

8 Bidirectional Language Support ... 37
General Information ... 38
Screen Direction ... 38
Field Direction .. 39
Maps and Dialogs ... 41
Print Methods ... 41
Terminal Capabilities ... 42

9 Double-Byte Character Support .. 43
10 Unicode Data Storage .. 45

Unicode Data/Parameter Access .. 46
Database Management System Interfaces .. 46
Work Files and Print Files .. 47

11 Platform Differences .. 51
General Information ... 52

iii

Windows .. 52
UNIX and OpenVMS ... 53

12 Migrating Existing Applications ... 55
Impact of Unicode on Existing Applications ... 56
Migrating Existing Objects ... 56
Adding Unicode Support to Existing Applications ... 57
Migrating Natural Remote Procedure Calls (RPC) .. 58

13 Special Considerations and Limitations .. 59
14 Frequently Asked Questions ... 61

Why do I get the startup error "Invalid code page specified"? 62
What is the "default code page"? .. 62
What default code page is used? .. 62
Should I save all Natural sources in UTF-8 format? .. 62
How can I handle UTF-8 encoding with Natural code? .. 63
Why are some characters not displayed correctly? .. 63
Why do I get an error when I want to edit a Natural source? 63
Why do I get an error when I want to save a Natural source? 63
How can I find out the encoding of a Natural source? .. 64
How can I change the encoding of a Natural source? ... 64
How can I convert an existing Natural source into UTF-8 format? 64
Which substitution character is used if a character cannot be converted? 64
Can I use UTF-8 sources with previous Natural versions? 65
Why do I get a conversion error when cataloging a source which has UTF-8
format? ... 65
Why do I get garbage on UNIX or OpenVMS when displaying U format via a
terminal emulation? ... 65
Can I work with a current SPoD client and an older SPoD server? 65
Can I work with a current SPoD server and an older SPoD client? 66

Unicode and Code Page Supportiv

Unicode and Code Page Support

Preface

This documentation describes howNatural supports Unicode and code pages onWindows, UNIX
and OpenVMS platforms. It also describes how Natural supports bidirectional languages and
double-byte characters.

This documentation is organized under the following headings:

General information on code pages and the Unicode Standard,
and on how Unicode and code pages are supported in Natural.

Introduction

Information on the ICU library.Enabling Unicode and Code Page
Support

Information on profile parameters which provide Unicode and
code page support, and on the encoding of code page data.

Configuration and Administration of
the Unicode/Code Page Environment

How to customize your environment andhowUnicode is handled
by the Natural editors.

Development Environment

Information on theU format and on statements, logical condition
criteria, systemvariables, large anddynamic variables, and session
parameters which provide Unicode and code page support.

Unicode and Code Page Support in the
Natural Programming Language

How to display and enter Unicode data. Information on the
Natural Web I/O Interface client which is used in SPoD and
runtime environments.

Unicode Input/Output Handling in
Natural Applications

How Natural supports bidirectional languages.Bidirectional Language Support

How Natural supports double-byte characters.Double-Byte Character Support

Information on database access, and on the work file types and
print files which provide Unicode and code page support.

Unicode Data Storage

Handling differences on Windows, UNIX and OpenVMS
platforms.

Platform Differences

About the impact of Unicode on existing applications. How to
migrate existing objects, add Unicode support to existing

Migrating Existing Applications

applications, and how tomigrate Natural remote procedure calls
(RPC).

Important information and restrictions.Special Considerations and Limitations

Answers to frequently asked questions.Frequently Asked Questions

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Unicode and Code Page Support2

About this Documentation

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

■ Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Unicode and Code Page Support

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

4

2 Introduction

■ About Code Pages and Unicode .. 6
■ About Unicode and Code Page Support in Natural ... 7

5

About Code Pages and Unicode

A traditional code page is a list of selected character codes, arranged in a certain order, that support
specific languages or groups of languages that share common scripts. A code page can contain a
maximum of 256 character codes. For character sets which contain more than 256 characters (for
example, Chinese or Japanese), double-byte code unit handling (DBCS) is used: DBCS code pages
are actually multi-byte encodings, a mix of 1-byte and 2-byte code points.

Code pages have the inherent disadvantage of not being able to be used to store different languages
in the same data stream. Unicodewas designed to remove this restriction by providing a standard
encoding for all character sets which is independent of the platform, program, or language used
to access the data. With Unicode, a unique number is provided for every character.

A single number is assigned to each code element defined by the Unicode Standard. Each of these
numbers is called a “code point” and, when referred to in text, is listed in hexadecimal form fol-
lowing the prefix "U". For example, the code point "U+0041" is the hexadecimal number "0041"
(equal to the decimal number "65"). It represents the character "A" in the Unicode Standard which
is named “LATIN CAPITAL LETTER A”.

The Unicode Standard defines three encoding forms that allow the same data to be transmitted
in a byte, word or double word oriented format. A “code unit” is the minimal bit combination
that can represent a character in a specific encoding. The Unicode Standard uses 8-bit code units
in the UTF-8 encoding form, 16-bit code units in the UTF-16 encoding form, and 32-bit code units
in theUTF-32 encoding form.All three encoding forms encode the same common character repertoire
and can be efficiently transformed into one another without loss of data.

In the context of Natural, we are concerned with two of these encoding forms: UTF-16 and UTF-
8. Natural uses UTF-16 for the coding of Unicode strings at runtime and UTF-8 for the coding of
Unicode data in files. UTF-16 is an endian-dependant 2-byte encoding; the endian format that will
be used depends on the platform. UTF-8 is a variable-length encoding.

For a complete description of Unicode, see the Unicode consortium web site at http://www.uni-
code.org/.

Note: For obtaining information onUnicode code points, you can use the SYSCP utilitywhich
is available with Natural for Windows.

Unicode and Code Page Support6

Introduction

http://www.unicode.org/
http://www.unicode.org/

About Unicode and Code Page Support in Natural

For Unicode support, the Natural data format U and specific statements, parameters and system
variables are used. For details, see the remainder of this documentation.

Most existing data is available in code page format. When converting this data to Unicode, it is
required that the correct code page is used. Natural provides the possibility to define the correct
code page on several levels:

■ The system code page is used if a default code page is not defined in Natural.

On the platforms supported byNatural for UNIX, checkwhether the detected system code page
meets your expectations. For more information, see the description of the Natural parameter
CP.

■ The default code page is used when the Natural parameter CP is defined; this overwrites the
operating system's code page.

■ The object code page which is defined, for example, for a source overwrites the default code
page for this object.

When using Unicode strings and code page strings in one application, Natural performs implicit
conversionswhere necessary (for example, whenmoving or comparing data). Explicit conversions
can be performed with the statement MOVE ENCODED.

In most cases, existing applications which do not require Unicode support, will run unchanged.
Changes can be necessary if the existing sources are encoded in different code pages. For more
information, seeMigrating Existing Applications later in this documentation.

It is not possible to run an existing application and also support Unicode datawithout any changes
to the application. The Natural data format U has to be introduced in the application and it will
most probably not suffice to simply replace the A format definitions with U format definitions.
All code which assumes a specific memory layout of strings (for example, REDEFINE from alpha-
numeric to numeric format) has to be adapted.

Unicode characters are not permitted within variable names, object names and library names.

Unicode-based data are supported for Adabas.

Natural uses the International Components for Unicode (ICU) library for Unicode collation and
conversion. Formore information, see http://userguide.icu-project.org/. See also ICU Library later
in this documentation.

7Unicode and Code Page Support

Introduction

http://userguide.icu-project.org/

8

3 Enabling Unicode and Code Page Support

■ ICU Library .. 10

9

ICU Library

The ICU libraries are always installed with the full set of ICU conversion and collation data. The
settings in the configuration file NATCONV.INI apply to the A format. For the U format, the cor-
responding checks (for example, when a character is translated to upper case) are done via the
ICU library.

Note: For obtaining information on the ICU version and the supported code pages, you can
use the SYSCP utility which is available with Natural for Windows.

Unicode and Code Page Support10

Enabling Unicode and Code Page Support

4 Configuration andAdministration of the Unicode/CodePage

Environment
■ Profile Parameters ... 12
■ Encoding Information ... 13
■ Deploying Natural Objects with Encoding Information ... 13

11

Notation vr:

When used in this document, the notation vr represents the 2-digit ICU version number.

Profile Parameters

This section lists the profile parameters which are used in conjunction with Unicode and code
page support.

DescriptionParameter

Defines the default code page forNatural. This code page is used for the runtime anddevelopment
environment if not superposed with a code page defined for a single object (for example, for a
Natural source).

CP

Only platform-suitable code pages can be used. This means, for example, that no EBCDIC code
page can be defined for a Windows, UNIX or OpenVMS platform.

Specifies whether a conversion error that occurs when converting from Unicode to code page or
from code page to Unicode or from one code page to another code page results in a Natural error
or not.

CPCVERR

This parameter is not regarded for the conversion of Natural sources when loading them into
the source area or when cataloging them.

Specifies the code page in which the batch input file for data is encoded. This file is defined with
the Natural profile parameter CMOBJIN.

CPOBJIN

Specifies the code page in which the batch output file shall be encoded. This file is defined with
the Natural profile parameter CMPRINT.

CPPRINT

Specifies the code page inwhich the batch input file for commands is encoded. This file is defined
with the Natural profile parameter CMSYNIN (Windows, UNIX and OpenVMS).

CPSYNIN

Specifies that all existing sources have to be saved in their original encoding format. See also
Customizing Your Environment.

SRETAIN

Specifies the default format to be used when Natural sources are saved.

Note: On UNIX and OpenVMS, this parameter can only be used in a SPoD environment.

SUTF8

Specifies the substitution character for the conversion from Unicode to the default code page. If
SUBCHAR is OFF, the default substitution character defined by ICU will be used.

Note: SUBCHAR does not influence conversions from code page to Unicode or from Unicode to
code pages which differ from the default code page.

SUBCHAR

Specifies whether the Natural Web I/O Interface client (which supports Unicode) or the terminal
emulation window (which is not Unicode-enabled) is used for input and output.

In a local Windows environment, the output window (which is Unicode-enabled) is used.

WEBIO

Unicode and Code Page Support12

Configuration and Administration of the Unicode/Code Page Environment

DescriptionParameter

In a remoteWindows environment, theNaturalWeb I/O Interface client is always used, regardless
of the setting of this parameter.

See also:

■ Code Pages for the Input and Output Files in the section Natural in Batch Mode of the Operations
documentation

■ For valid code pages, see http://www.iana.org/assignments/character-sets.

Encoding Information

The encoding of code page data can be specified on different levels.

Level 1 - Default Code Page

The default code page can be defined with the CP parameter. It overwrites the system code page
and is valid for all code page data.

Level 2 - Code Page for a Single Object

A code page can be defined for Natural sources, batch input (CPOBJIN, CPSYNIN) and output files
(CPPRINT).

In addition, a code page can be defined forwork files of typeASCII, ASCII compressed, Unformat-
ted and CSV; seeWork File Assignments in the Configuration Utility documentation.

If a code page is defined at object level, this overwrites the default code page.

Important: It is important that the correct code page is defined for every object. For more
information, seeMigrating Existing Applications.

Deploying Natural Objects with Encoding Information

If you want to deploy Natural objects for which encoding information has already been defined,
you have to keep in mind that the encoding information is stored in the file FILEDIR.SAG and
that it is lost if you deploy only the object file from outside of Natural.

When deploying Natural objects, you have the following possibilities for keeping the encoding
information:

13Unicode and Code Page Support

Configuration and Administration of the Unicode/Code Page Environment

http://www.iana.org/assignments/character-sets

■ You can copy the entire library. The copy of the library can then be distributed to all Windows,
UNIX and OpenVMS platforms. In this case, the original code page is kept. If a library is copied
fromWindows to UNIX or OpenVMS, you have to keep in mind that it may be possible that
the objects cannot be opened with a native Natural for UNIX or Natural for OpenVMS editor
because these editors can only open objects with the default code page.

■ You can use the Object Handler which keeps the encoding information. In this case, the original
code page is kept. If a Windows library is unloaded on UNIX or OpenVMS, you have to keep
inmind that it may be possible that the objects cannot be openedwith a nativeNatural for UNIX
or Natural for OpenVMS editor because these editors can only open objects with the default
code page.

■ You can copy and paste objects with Natural Studio. In a SPoD environment, if the target envir-
onment is located on a platform different from the source environment, Natural tries to save
the object with the default code page of the target environment. If this is not possible, the object
is stored in UTF-8 format. For UNIX and OpenVMS targets, this assures that the object can be
opened with the native Natural for UNIX or Natural for OpenVMS editors, if all characters of
the source are available in the default code page of the UNIX or OpenVMS server.

Unicode and Code Page Support14

Configuration and Administration of the Unicode/Code Page Environment

5 Development Environment

■ Development Environment .. 16
■ Customizing Your Environment .. 17
■ Editors in the SPoD Environment .. 18

15

Development Environment

The development environment for Unicode applications is Natural Single Point of Development
(SPoD).

In a SPoD environment, the Natural objects of a Unicode application which are located on a Nat-
ural Development Server (NDV) can bemodified usingNatural Studio. If supported by the server,
the sources are exchanged between client and server in UTF-8 format.

On NDV servers for UNIX and OpenVMS, the setting of the profile parameter SUTF8 determines
the format that is used when storing the Natural object on the server. This is handled just like the
local Windows case.

OnNDV servers for mainframes, the objects are storedwith the default or their original encoding,
depending on the setting of the profile parameter SRETAIN.

Unicode and Code Page Support16

Development Environment

Customizing Your Environment

It is important that you define the correct default code page for your environment before changing
any Natural code. For more information, seeMigrating Existing Applications.

If you want to store characters from different languages in your sources, you have to save the
sources in UTF-8 format, or you have to use hexadecimal UH constants in the sources. With the
profile parameters SUTF8 and SRETAIN you can control in which format sources are saved. The
following table lists some situations and the recommended settings.

Note: OnUNIXandOpenVMS, the parameter SUTF8 can only be used in a SPoDenvironment.

EffectSettingsSituation

All sources are saved in UTF-8 format when saving them
with Natural 6.2 or above. New sources are created in
UTF-8 format. All characters can be stored in a source.

Sources are located onWindows;
U constants are needed.

SUTF8=ON,
SRETAIN=OFF

All sources are saved in UTF-8 format when a conversion
to the original code page is no longer possible; if it is
possible, the code page of a source will not be changed.
New sources are created in UTF-8 format. All characters
can be stored in a source. A source with UTF-8 format can

Sources are located onWindows,
UNIX and/or OpenVMS; U
constants are needed and SPoD
is used for development.

only be changed with SPoD; it can no longer be handled
with the Natural for UNIX or Natural for OpenVMS
editors.

SUTF8=ON,
SRETAIN=ON

All sources are saved with the original code page. New
sources are saved with the default code page (of server).

Sources are located onWindows,
UNIX and/or OpenVMS; no U
constants are needed. Only characters from the source code page can be stored

in a source. The sources can further be handled with the
Natural for UNIX or Natural for OpenVMS editors.

SUTF8=OFF,
SRETAIN=ON

All sources are saved with the original code page. New
sources are saved with the default code page (of the
server). Only characters from the source code page can be

Sources are located onWindows,
UNIX, OpenVMS and/or
mainframe; U constants are
needed and SPoD is used for
development.

stored in a source. The sources can further be handledwith
the Natural for UNIX, Natural for OpenVMS andNatural
for Mainframes editors. All Unicode constants have to be
defined as hexadecimal constants (UH).

SUTF8=OFF,
SRETAIN=ON

If the parameter SUTF8 is set to OFF and you stow a sourcewhich contains characters fromdifferent
character sets, but which was not yet saved in UTF-8 format, it is possible that the generated pro-
gram is created, but that the source cannot be saved and thus remains unchanged. This happens
if characters fromdifferent character sets are used in a comment or in aU constant. For this reason,
it is recommended that you set the parameter SUTF8 to ON if you want to create sources with
characters from different character sets and if your sources do not need to be distributed to
mainframe platforms.

17Unicode and Code Page Support

Development Environment

If the parameter SRETAIN is set to OFF, all sources are saved with the default code page. You have
to be careful with this setting because it may lead to improper code page information if you have
sources whichwere createdwith an earlier Natural version. In this case, the encoding information
of the source is unassigned and the source is always opened with the default code page (value of
the systemvariable *CODEPAGE). Thiswill oftenwork even if the default code page is not the correct
encoding of the source. Some language-specific characters will be displayed incorrectly in this
case. If such a source is opened with the wrong code page and is saved with SRETAIN being set to
ON, no encoding will be stored for the source; the source can later be opened correctly if Natural
is started with the correct default code page. However, once you have saved the source with
SRETAIN being set to OFF, the default code page will be saved as the encoding of the source; from
this time on, the source will only be opened with this code page. For this reason, you should use
this setting only if you are certain that all of your Natural sources are encoded in the default code
page.

See also: Regional Settings in the Configuration Utility documentation.

Editors in the SPoD Environment

The Natural for Windows editors are fully Unicode-enabled. Via SPoD they can also be used for
mainframe, UNIX and OpenVMS sources. The editors provided with Natural for Mainframes,
Natural for UNIX and Natural for OpenVMS are not Unicode-enabled.

When a source is opened with an editor in Natural Studio (Natural for Windows), the content of
the source will be converted from the corresponding code page to Unicode before it is loaded into
the editor. This will guarantee that all characters can be displayed correctly even if the source
contains characters which are not included in the system code page. If the conversion from the
source's code page to Unicode fails, an error will be displayed and the editor is not opened. In this
case, the user has to define the correct encoding of the source. The source encoding can be changed
in the Properties dialog box (see Properties for the Nodes in theUsingNatural Studio documentation).

ForWindows,UNIX andOpenVMS sources, theNatural forWindows editors allow saving sources
which contain characters from different languages in UTF-8 format. Onmainframes, it will not be
possible to save UTF-8 sources.

Note: If you save a UNIX or OpenVMS source in UTF-8 format or with a code page which
differs from the default code page, the source can no longer be opened with the native
Natural for UNIX or Natural for OpenVMS editor. Mainframe sources can be saved with
a different code page and can be edited with the native Natural for Mainframes editors.

Even if you do notwant to useUnicode strings in your programs and sources, theUnicode-enabled
editors have the advantage that you can write sources in all code pages, no matter which system
code page is installed. For example, if you have installed the "windows-1252" (Latin 1) code page,
you canwrite a program containing Cyrillic characters and save this programwith the "windows-

Unicode and Code Page Support18

Development Environment

1251" (Cyrillic) code page. You only have to select code page "windows-1251" in the SaveAs dialog
box (see Saving an Object with a New Name in the Using Natural Studio documentation).

Using the Natural for Windows program editor, you can convert text constants into their hexa-
decimal Unicode representations (seeConverting to Hexadecimal Format in the ProgramEditor section
of the Natural for Windows Editors documentation). If you are developing for a platform where
UTF-8 sources are not preferred, you can thus enter all characters for a Unicode constant, select
all the characters of the constant, convert them to their hexadecimal representation and then add
the "UH" prefix for Unicode hexadecimal constants. Furthermore, when you hover the mouse
pointer over a character or a selected character range of a text constant, a tool tip shows the corres-
ponding hexadecimal Unicode representation.

A byte ordermark (BOM) consists of the character code "U+FEFF" at the beginning of a data stream
where it can be used as a signature defining the byte order and encoding form, primarily of un-
marked plain-text files. On Windows, a byte order mark is used by some editors (for example,
Notepad) tomarkUTF-8 files. TheNatural forWindows editorswill recognize anUTF-8 byte order
markwhen reading an object. If the object has no other encoding defined so far, Natural will inter-
pret it as UTF-8 and when the object is saved, UTF-8 will be stored as the encoding for the object.
The byte order mark is removed in this case.

19Unicode and Code Page Support

Development Environment

20

6 Unicode andCodePageSupport in theNatural Programming

Language
■ Natural Data Format U for Unicode-Based Data .. 22
■ Statements .. 23
■ Logical Condition Criteria .. 26
■ System Variables .. 27
■ Large and Dynamic Variables .. 27
■ Session Parameters ... 28
■ Sample Programs .. 30

21

Natural Data Format U for Unicode-Based Data

In Natural, you can specify Unicode strings with the format U and U constants.

■ Format U
With format U, you can define data which holds Unicode strings. The Natural data format U is
internally UTF-16.

See also Format and Length of User-Defined Variables in the Programming Guide.
■ U Constants
You can define Unicode constants with the prefix "U". For example:

U'Äpfel'

The prefix "UH" can be used for defining Unicode constants in hexadecimal format. Four hexa-
decimal digits represent one UTF-16 code unit as defined by the Unicode Standard. So the
overall length must be a multiple of four. For example, if you need the hexadecimal form of

U'Äpfel'

you need the UTF-16 code units for "Ä", "p", "f", "e" and "l" (which are "U+00C4", "U+0070",
"U+0066", "U+0065" and "U+006C") and you have to combine them to the following hexadecimal
string:

UH'00C4007000660065006C'

See also Unicode Constants in the Programming Guide.

The data format U is endian-dependant. This has to be considered when moving between the
formats B and U.

U versus A

The advantage of theU format (as comparedwith theA format) is, that it can hold any combinations
of characters from different languages and that it does not depend on the default code page (value
of the system variable *CODEPAGE). Moreover, the U format makes it easier to share data between
different platforms; no more conversions (for example, from EBCDIC to ASCII) are necessary.

On the other hand, U format data often consumesmorememory thanA format data. For languages
in which most strings can be represented by single-byte encoding, U format will result in strings
occupying twice the space that was previously required. However, for East Asian languages, the
memory consumption will often not be higher.

Unicode and Code Page Support22

Unicode and Code Page Support in the Natural Programming Language

Statements

Basically, U format can be used in most statements which allow A format. However, if a Natural
object name is given as an operand of a statement (for example, in the CALLNAT statement), U
cannot be used becauseNatural object names haveA format. For information on a specific statement,
see the Statements documentation.

Basically, A and U format can be used together in one statement, however, it is recommended that
you use only one format within one statement, either A or U. If both formats are used together,
all variables have to be converted to a uniform format; this may lead to conversion errors.

The following statements are particularly affected when using Unicode:

■ MOVE NORMALIZED
■ MOVE ENCODED
■ EXAMINE
■ PARSE XML
■ REQUEST DOCUMENT
■ CALLNAT (RPC)

MOVE NORMALIZED

Normalization inUnicode:Aprocess of removing alternate representations of equivalent sequences
from textual data in order to convert the data into a form that can be binary-compared for equival-
ence. The Unicode Standard defines different normalization forms. The normalization form that
results from the canonical decomposition of a Unicode string, followed by the replacement of all
decomposed sequences by primary composites where possible, is called “Normalization Form
Composed” (NFC).

Natural assumes that all Unicode data is in NFC format to assure that string operations can be
performedwithout partial truncation of aUnicode character. Natural conversion operations assure
that the resulting Unicode string is in NFC. If Unicode data is received from outside of Natural
and it is not guaranteed that the data has NFC format, the MOVE NORMALIZED statement can be ap-
plied.

Example:

NFCCharacter Sequence

ê (U+00EA)ê (U+00EA)

ê (U+00EA)e (U+0065) + ^ (U+0302)

Note: Concatenating two or more strings in NFC format can result in not-NFC format.

23Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

MOVE ENCODED

An implicit conversion between Unicode and the default code page (value of the system variable
*CODEPAGE) is performed when moving strings fromU to A or vice versa with the MOVE statement.

Furthermore, the MOVE ENCODED statement can be used for conversion between different code pages
or from any available code page to Unicode and vice versa. This can be helpful if data is coming
from outside of Natural and this data is coded in a code page which differs from the default code
page. But even for conversions between the default code page and Unicode, this statement can be
used if you want to obtain a potential conversion error with the GIVING clause; if CPCVERR is set to
ON, the MOVE statement will stop with a runtime error in this case.

If a character cannot be converted, it depends on the setting of the CPCVERR parameter whether a
substitution character is used for this character or whether the conversion fails. The default substi-
tution character (defined by ICU) for the conversion from Unicode to the default code page (CP)
can be changed with the profile parameter SUBCHAR.

This statement can also be used for conversion from U data into UTF-8 format.

Note: If you convert data to a code page which differs from the default code page, it is re-
commended not to use this data in I/O. I/O is only meaningful with the default code page.

EXAMINE

A “grapheme” is what a user normally thinks of as a character. In most cases, a Unicode code
point is a grapheme, however, a grapheme can also consist of several Unicode code points. For
example, a sequence of one base character and one or more combining characters is a grapheme.

Example: "a" (U+0061) + "." (U+0323) + "^" (U+0302) defines one grapheme which is displayed as
follows:

Note: If a base/combining character sequence is normalized, this does not mean that the
sequence is always replaced by a pre-composed character, because not all characters are
available in a pre-composed format.

A “supplementary code point” is a Unicode code point between "U+10000" and "U+10FFFF". A
supplementary code point is in UTF-16, represented by a surrogate pair which consists of two
code units where the first value of the pair is a “high-surrogate code unit”, and the second is a
“low-surrogate code unit”. Such characters are generally rare, but some are used, for example, as
part of Chinese and Japanese personal names, and therefore support for these characters is com-
monly required for government applications in East Asian countries.

The string handling statements such as EXAMINE and its SUBSTRING option work on UTF-16 code
units. It is the user's responsibility that the code does not separate graphemes or surrogate pairs.

Unicode and Code Page Support24

Unicode and Code Page Support in the Natural Programming Language

However, the clauses CHARPOSITION and CHARLENGTH of the EXAMINE statement (see Syntax 3 - EX-
AMINE for Unicode Graphemes) can be used to ask for the start and length (in UTF-16 code units)
of graphemes. The result values can be used for SUBSTRING calls. With these clauses, it is possible
to scan a string grapheme by grapheme.

Example:

DEFINE DATA LOCAL
1 #UNICODE-STRING (U15)
1 #CODE-UNIT-INDEX (N4)
1 #CODE-UNIT-LEN (N4)
1 #GRAPHEME-NUMBER (N4)
END-DEFINE

MOVE U' ' TO #UNICODE-STRING

#GRAPHEME-NUMBER := 1

REPEAT
EXAMINE

FULL VALUE OF #UNICODE-STRING
FOR CHARPOSITION #GRAPHEME-NUMBER
GIVING POSITION IN #CODE-UNIT-INDEX
GIVING LENGTH IN #CODE-UNIT-LEN

DISPLAY #UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN

#GRAPHEME-NUMBER := #GRAPHEME-NUMBER + 1
WHILE #CODE-UNIT-INDEX NE 0
END-REPEAT

END

The above example program provides the following output:

Page 1 05-12-15 09:33:49

#UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN
--------------- ---------------- ---------------- --------------

1 1 1
2 2 2
3 4 1
4 5 3
5 8 1
6 9 3
7 12 1
8 13 3
9 0 0

25Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

PARSE XML

XML documents can contain information within the XML document header about the encoding
of the document (for example, <?xml version="1.0" encoding="UTF-8" ?>). If an XMLdocument
contains this information, the parsing of the XML document on Windows, UNIX and OpenVMS
platforms always includes a conversion of the code page given within the XML document header
to the default code page of Natural (value of the system variable *CODEPAGE), if the receiving field
is not of format U.

See the description of the PARSE XML statement for further information.

See also Statements for Internet and XML Access in the Programming Guide.

REQUEST DOCUMENT

Data transfer with the REQUEST DOCUMENT statement normally does not involve any code page
conversion. If you want to have the outgoing and/or incoming data encoded in a specific code
page, you can use the DATA ALL clause and/or the RETURN PAGE clause of the REQUEST DOCUMENT
statement to specify this.

See the description of the REQUEST DOCUMENT statement for further information.

See also Statements for Internet and XML Access in the Programming Guide.

CALLNAT (RPC)

Data exchange in Unicode format via RPC is supported. See the description of the CALLNAT state-
ment.

If U data is sent from a platformwith big endian encoding to a platformwith little endian encoding
or vice versa, the encoding is adapted so that it conforms with the encoding on the receiving
platform. For example, when U data in little endian encoding arrives on a big endian platform,
this data is converted to big endian encoding before it is handed over to the program. When this
data is sent back, it is converted back to little endian encoding.

Logical Condition Criteria

In a logical condition criterion, Unicode operands can be used together with alphanumeric and
binary operands. If not all operands are Unicode operands (format U), the second and all following
operands are converted to the format of the first operand. If a binary operand (format B) is specified
as the second or a following operand, the length of the binary operand must be even; the binary
operand is assumed to contain Unicode code points.

Unicode and Code Page Support26

Unicode and Code Page Support in the Natural Programming Language

If the first operand is a Unicode operand (format U) and the comparison is therefore performed
as aUnicode comparison, the ICU collation algorithm is used. The ICU algorithmdoes not perform
a plain binary comparison. For example,

■ some code points such as "U+0000" are ignored during the comparison process,
■ combined characters are considered as being equal to the equivalent single code point (for ex-
ample, the German character "ä" represented by "U+00E4" and the combination of the code
points "U+0061" and "U+0308" are considered as being equal by ICU).

Note: Comparing an alphanumeric and a Unicode operand can deliver different results,
depending on the sequence of the fields.

See also Logical Condition Criteria in the Programming Guide.

System Variables

*CODEPAGE

The system variable *CODEPAGE is used to return the IANA name of the default code page, that is,
the code page used for conversions between Unicode and code page format.

*LOCALE

The system variable *LOCALE contains the language and country of the current locale.

Large and Dynamic Variables

U format can be used for large and dynamic variables. For dynamic U variables, *LENGTH returns
the number of UTF-16 code units.

See also Introduction to Dynamic Variables and Fields in the Programming Guide.

27Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

Session Parameters

The following session parameters are available:

DescriptionParameter

Specifies the display length for a field of format A or U. See also Display Length for Output - DL
Parameter in the Programming Guide.

DL

Edit mask in Unicode.EMU

Insertion character in Unicode.ICU

Leading characters in Unicode.LCU

Trailing characters in Unicode.TCU

DL versus AL

As long as Natural was not Unicode-enabled, the length of an alphanumeric field was always
identical to the number of columns needed for displaying the field (called number of display
columns). This was even true for the East Asian languages which use DBCS code pages: an A
format field can hold only half the characters (for example, A10 results in A5).

Example:

DEFINE DATA LOCAL
1 #A8 (A8)
END-DEFINE
#A8 := 'computer'
WRITE #A8
#A8 := ' '
WRITE #A8
END

The above code results in the following output:

Page 1 ...

computer

With U format fields, the length of a field and the number of display columns is no longer
identical. U characters can have narrow width (for example, Latin characters), wide width (for
example, Chinese characters) or no width (for example, combining characters). Therefore, it is
totally unknown how many display columns a U field needs; this depends on the contents of the
field. Natural cannot automatically decide how many columns are to be reserved on the screen:
if the maximum size is assumed, Latin output will have large gaps, and if the minimum size is
assumed, Chinese output cannot be displayed totally. Therefore, the Natural programmer has to

Unicode and Code Page Support28

Unicode and Code Page Support in the Natural Programming Language

define the display width of a field; this is done with the DL parameter. The AL parameter cannot
be used for this purpose, because it cuts away the part of the field which exceeds the defined
length. But we do not want to cut any characters from the U field; we only want to define the start
position of the following field.

Example:

DEFINE DATA LOCAL
1 #U8 (U8)
1 #U4 (U4)
END-DEFINE
#U8 := 'computer'
WRITE #U8
#U4 := U' '
WRITE #U4 (DL=8)
END

The above code results in the same output as above:

Page 1 ...

computer

OnWindows, either locally with the output window or in a remote development environment
with the Natural Web I/O Interface client, it is possible to scroll in a field where the defined value
for the DL parameter is smaller than the real display width of the field.

EMU, ICU, LCU, TCU versus EM, IC, LC, TC

The parameters EMU, ICU, LCU and TCU allow using characters which are not included in the default
code page. They are stored in Unicode format in the generated program. These parameters can
be used with all field formats.

The parameters EM, IC, LC and TC can also be used with U format fields. These parameters may
also be useful if characters which are contained in the default code page have different encodings
in other code pages. For example, the Euro sign (€) has the code point "0x80" in the "windows-
1252" (Latin 1) code page, but the code point "0x88" in the "windows-1251" (Cyrillic) code page.
Thus, using a Unicode parameter (EMU, ICU, LCU or TCU) will assure that the Euro sign is always
displayed correctly, no matter what code page is installed on the PC.

Example for EMU:

29Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

DEFINE DATA
LOCAL
01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
02 FIRST-NAME
02 NAME
02 SALARY (1)

END-DEFINE
*

READ (6) EMPLOYEES-VIEW
DISPLAY NAME FIRST-NAME SALARY(1) (EMU=999,999)

END-READ
*
END

The above code results in the following output:

Page 1 05-12-15 11:45:36

NAME FIRST-NAME ANNUAL
SALARY

-------------------- -------------------- --------

ADAM SIMONE 159,980
MORENO HUMBERTO 165,810
BLOND ALEXANDRE 172,000
MAIZIERE ELISABETH 166,900
CAOUDAL ALBERT 167,350
VERDIE BERNARD 170,100

Sample Programs

The library SYSEXPG contains sample programs for Unicode and code page support in Natural:

■ UNICOX01 lists all Unicode characters.
■ UNICOX02 converts Unicode characters to code points and vice versa.
■ CODEPX01 lists all code pages, whether the code page is supported inNatural andwhich encoding
it uses. For all supported code pages, it offers services to list the characters of the code page and
to convert a string from the code page into its hexadecimal representation and vice versa.

■ CODEPXL1 lists all characters of any 1-byte code page.
■ CODEPXL2 lists all characters of any 2-byte code page.
■ CODEPXC1 converts a string from any code page into its hexadecimal representation and vice
versa.

Unicode and Code Page Support30

Unicode and Code Page Support in the Natural Programming Language

7 Unicode Input/Output Handling in Natural Applications

■ Displaying and Entering Unicode Data ... 32
■ Natural Web I/O Interface Client ... 33

31

Displaying and Entering Unicode Data

If you want to display or enter Unicode data, the following possibilities exist:

■ When working in the local development environment with Natural for Windows, all Unicode
characters can be displayed and entered in the Natural output window.

■ When working in a remote development environment with Natural for Windows (SPoD), the
NaturalWeb I/O Interface client (see below) is necessary for displaying and entering all Unicode
characters.

■ When running applications with Natural for UNIX, Natural for OpenVMS, Natural for Main-
frames or Natural for Windows, see Natural Web I/O Interface Client below.

Notes:

1. Even if you are working with a Unicode-enabled output interface on Windows, you will see
only the Unicode characters which are supported by the currently selected font.

2. If you are working with the Unicode-enabled output window on Windows, characters which
are not contained in the current code pagewill be ignoredwhen entering data inA format fields
if the parameter CPCVERR is ON.

3. Unicode data cannot be displayed on 3270 terminals.

If you run Natural via a terminal emulation or a mainframe terminal such as IBM 3270/3279, the
page will be converted to the default code page (value of the system variable *CODEPAGE) before
displaying it, so that all characters which are not contained in the default code page are replaced
with the substitution character. Equally, input is only possible in code page format and will be
converted to Unicode format before assigning it to a U format field. You have to regard that the
substitution character is defined by the ICU conversion tables. Depending on this character, it is
possible that garbage is displayed with a terminal emulation. On UNIX and OpenVMS platforms,
you can change this substitution character by setting the profile parameter SUBCHAR. However, it
is strongly recommended that you use the Natural Web I/O Interface when displaying characters
not contained in the default code page. When running a remote Windows session, the Natural
Web I/O Interface will be used in any case.

On code page oriented mainframe terminals, it is important to select the suitable code page. The
default code page of Natural, the code page of the terminal and even the font used by the terminal
determine the capability of displaying certain characters correctly.

Unicode and Code Page Support32

Unicode Input/Output Handling in Natural Applications

Natural Web I/O Interface Client

The Natural Web I/O Interface client is used to display non-GUI information which contains
Unicode characters. It can be used in the following environments:

■ SPoD Environment
■ Runtime Environment

SPoD Environment

The Natural Web I/O Interface client can be invoked when you use Natural for Windows and you
are working with Natural Studio in a remote development environment (SPoD); see Natural Web
I/O Interface Client in Remote Development Using SPoDwhich is part of the Natural for Windows
documentation.

When the Natural Web I/O Interface client is used, the Web I/O window appears instead of the
terminal emulationwindowwhich is notUnicode-enabled in remoteUNIX,OpenVMSormainframe
environments, or instead of the output window in remote Windows environments.

The following graphic shows the SPoD environment forUnicode applicationswithNatural Devel-
opment Servers (NDV) on UNIX, OpenVMS and mainframes:

33Unicode and Code Page Support

Unicode Input/Output Handling in Natural Applications

So that the Natural Web I/O Interface client can be invoked, the Natural Development Server has
to be configured as follows:

■ UNIX and OpenVMS
If you want to use the Natural Web I/O Interface client in a remote UNIX or OpenVMS environ-
ment, the profile parameter WEBIOmust be set to ON on the NDV server. See Configuration Utility
in the Natural for UNIX or Natural for OpenVMS documentation.

■ Mainframe
If you want to use the Natural Web I/O Interface client in a remote mainframe environment,
theNDVconfiguration parameter TERMINAL_EMULATIONmust be set to WEBIO on theNDV server.
SeeNDV Configuration Parameters in the Natural Development Server documentation. The Nat-
ural profile parameter TMODEL can be used to determine the user screen size.

Unicode and Code Page Support34

Unicode Input/Output Handling in Natural Applications

■ Windows
In a remoteWindows environment, theNaturalWeb I/O Interface client is always used, regardless
of the setting of the profile parameter WEBIO.

Runtime Environment

The Natural Web I/O Interface client appears when running applications with Natural. It runs in
a web/application server.

The following graphic shows the runtime environment for Unicode applications:

Natural recognizes automatically whether the session has been started from the Natural Web I/O
Interface client or from the terminal emulation.

Prerequisites for using the Natural Web I/O Interface client:

■ Natural for UNIX and Natural for OpenVMS
It is required that the Natural Web I/O Interface server (which is implemented as a daemon)
has been installed and activated. See Natural Web I/O Interface in the Natural for UNIX and in
the Natural for OpenVMS documentation.

35Unicode and Code Page Support

Unicode Input/Output Handling in Natural Applications

■ Natural for Windows
It is required that the Natural Web I/O Interface server (which is implemented as a service) has
been installed and activated. SeeNaturalWeb I/O Interface in theNatural forWindows document-
ation.

Unicode and Code Page Support36

Unicode Input/Output Handling in Natural Applications

8 Bidirectional Language Support

■ General Information ... 38
■ Screen Direction ... 38
■ Field Direction .. 39
■ Maps and Dialogs .. 41
■ Print Methods ... 41
■ Terminal Capabilities .. 42

37

General Information

Some languages, for example Arabic and Hebrew, are written from right-to-left (RTL), whereas
the majority of the languages, for example English and German, are written from left-to-right
(LTR). Text which contains both left-to-right and right-to-left characters is called bidirectional text.

Natural provides a basic support for bidirectional languages. OnWindows, this support is activated
when both the Natural default code page and the Windows system code page are defined as bid-
irectional code pages. If Natural does not define a specific code page, it is sufficient when a bid-
irectionalWindows system code page has been defined. On UNIX andOpenVMS, the support for
bidirectional languages is activated when the Natural default code page is a bidirectional code
page.

The output of Natural programs can be controlled using the profile parameter PM, the terminal
command %V, and the session parameter PM.

OnUNIX andOpenVMS, the profile parameter DO (DisplayOrder) is additionally used to support
applications that have been originally written for terminals which support inverse (right-to-left)
print mode, but no bidirectional data. These applications create the display order of bidirectional
data in the application code.With the parameter DO, these applications are enabled to run compatibly
also with I/O devices that support bidirectional data. This is for instance the case if an application
runs in a browser with the Natural Web I/O Interface.

Screen Direction

The profile parameter PMdefines the default screen direction.When PM is set to R (reset), the default
screen direction is left-to-right. When PM is set to I (inverse), the default screen direction is right-
to-left. All non-alphanumeric fields and system variables are automatically inverted by Natural
so that they are displayed correctly from right-to-left if the screen direction is right-to-left. PF key
lines (UNIX and OpenVMS) are not inverted; they are always shown from left-to-right.

The terminal command %V can be used to change the screen direction. If the screen direction is
right-to-left, the layout of the current window is mirrored, which means that the origin of all
window components or fields is the upper right corner. The screen direction is changed to right-
to-left using %VON and is reverted to left-to-right using %VOFF.

Unicode and Code Page Support38

Bidirectional Language Support

Field Direction

The session parameter PM reverses the direction of a field. The effect of “reversing the direction of
a field” depends on the statement in which the PM parameter is used and the platform. If the PM
parameter is used in a MOVE statement, the content of the field is simply reversed (that is, the first
character will become the last character, and so on); the result does not depend on the characters
of the field. Trailing blanks are removed before the field is reversed.

For example, the following program

DEFINE DATA LOCAL
1 TEST1 (A10)
1 TEST2 (A10)
END-DEFINE
TEST1 := 'program'

MOVE TEST1 (PM=I) TO TEST2
INPUT TEST1 (AD=O) TEST2 (AD=O)

END

produces the following output:

TEST1 program TEST2 margorp

where "margorp" is the reversed version of "program".

When the PM parameter is used for IO statements such as INPUT or DISPLAY, its effect is even more
complex. In this case, the field direction is based on the screen direction:

■ If the screen direction is left-to-right and PM=I is applied to a field, the field direction changes
to right-to-left.

■ If the screen direction is right-to-left and PM=I is applied to a field, the field direction changes
to left-to-right.

On Windows and browser terminals (Natural Web I/O Interface), “reversing the field direction”
does not mean that the characters of the field are simply reversed. Instead, the complex bidirec-
tional algorithm is applied (for more information, see the Microsoft Windows documentation).
On character-oriented terminals, however, the characters of a field are not resorted; they are simply
reversed.

In the following example, the characters assigned to the variable TEST have been entered in the
following sequence:

39Unicode and Code Page Support

Bidirectional Language Support

The following is an example program for Windows. The characters of the constant are already
resorted when entering them in the program editor.

DEFINE DATA LOCAL
1 TEST (A20)
END-DEFINE
TEST := 'abc 123 '

SET CONTROL 'voff'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

SET CONTROL 'von'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

END

This program produces the following two screens on Windows:

TEST abc 123
TEST 123 abc

and

123 abc TEST
abc 123 TEST

The following is an example program for UNIX and OpenVMS. If the characters are entered in
the sequence as described above, the program is displayed in the following way, because the
characters are simply displayed in the keying sequence.

DEFINE DATA LOCAL
1 TEST (A20)
END-DEFINE
TEST := 'abc 123'

SET CONTROL 'voff'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

SET CONTROL 'von'

INPUT TEST (AD=O) /
TEST (AD=O PM=I)

END

Unicode and Code Page Support40

Bidirectional Language Support

On UNIX and OpenVMS, this program produces the following two screens:

TEST abc 123
TEST 321 cba

and

321 cba TSET
abc 123 TSET

Maps and Dialogs

OnWindows, UNIX and OpenVMS, the map editor simplifies the handling of maps with bidirec-
tional fields by offering theReverseMap command. This command changes the display direction
of the currentmap. The position of the fields is not changed; only the view is changed.OnWindows,
this command applies only to the current map. On UNIX and OpenVMS, a flag is set so that all
following maps are displayed reversed; a following Reverse Map command will restore the ori-
ginal situation.

On Windows, the output of dialogs can be controlled in a similar way: both the dialog itself and
most of the dialog controls offer an RTL attribute. If the RTL attribute of the dialog is checked, the
screen direction of the dialog is right-to-left. If the RTL attribute of other controls is checked, the
direction of these controls is right-to-left.

The profile parameter PM defines the default setting of the RTL attribute for new dialogs. When PM
is set to R (reset), the RTL attribute is unchecked by default. When PM is set to I (inverse), the RTL
attribute is checked by default. The default setting of the RTL attribute for newly created controls
of a dialog is derived from the RTL attribute setting of the dialog.

If the RTL attribute of a dialog is changedwhen the dialog already contains controls, a dialog appears
asking whether the RTL attributes of the controls should also be changed.

Print Methods

When working with bidirectional languages on Windows, "GUI" is the preferred print method.
With the printmethod "GUI", the printed pagewill show the same layout as thewindowdisplayed
on the screen. The sorting of the field characters is identical.

If the print method "TTY" is used, the printed layout will most probably differ from the layout of
the screen window because the field characters are printed in logical sequence. For fields with
right-to-left direction, all characters are simply reversed (that is, the first character will become
the last character, and so on).

41Unicode and Code Page Support

Bidirectional Language Support

Terminal Capabilities

OnUNIX andOpenVMS, some special terminal capabilities for bidirectional support can be defined
with the Natural Termcap utility.

The key which is defined by the RTLF capability can be used to toggle the input direction of a
field at runtime.

With the RTLM and LTRM capabilities, it is possible to switch automatically between right-to-left
and left-to-right input mode - provided that the terminal emulation supports this functionality.
The RTLM escape sequence will be inserted in front of right-to-left fields, and the LTRM escape
sequence will be inserted in front of left-to-right fields.

Unicode and Code Page Support42

Bidirectional Language Support

9 Double-Byte Character Support

In most East Asian languages, language-specific characters in code page strings (that is, Natural
format A) are represented by 2 bytes (the so-called double-byte characters) and ASCII characters
are represented by 1 byte. Thus, a code pages string consists of characters with different lengths:
some have 1 byte and others have 2 bytes.

Natural provides a basic support for double-byte characters. OnWindows, this support is activated
when both the Natural default code page and the Windows system code page are defined as
double-byte code pages. If Natural does not define a specific code page, it is sufficient when a
double-byte Windows system code page has been defined. On UNIX and OpenVMS, the support
for double-byte characters is activated when the Natural default code page is a double-byte code
page.

When double-byte character support is enabled, Natural assures for all string manipulations that
a double-byte character is treated as a unit. This is essential for keeping the meaning of a string.

If a single leading or trailing byte of a double-byte character is left over after the manipulation of
a variable of format A (for example, after extracting a substring with the SUBSTRING option), this
byte is replaced with a blank character.

For the example below, the code page Shift_JIS is selected. Variable #A contains a string which
consists of four characters. The first and last character is the double-byte character "FULLWIDTH
LATIN SMALL LETTER B" which is represented in code page Shift_JIS by the byte sequence
H'8282'. The second and third character is the single byte character "LATIN SMALL LETTER A"
which is represented by one byte H'61'. Thus, the hexadecimal representation of the full string is
H'828261618282'.

43

DEFINE DATA LOCAL
1 #A (A10)

END-DEFINE

#A := ' aa '

WRITE #A #A (EM=H(6))
EXAMINE #A FOR PATTERN ' ' REPLACE 'a'
WRITE #A #A (EM=H(6))

END

Without double-byte character support the output of the above program is as follows:

Page 1 07-02-07 17:22:09

aa 828261618282
a 826161828220

This is the result of not having treated the character " " (H'8282' in code page Shift_JIS) as one
unit. The trailing byte of this character and the following character "a" (H'61') are falsely interpreted
as the double-byte character " " (H'8261' in code page Shift_JIS).

With double-byte character support, the output of the program is as expected:

Page 1 07-02-07 17:22:09

aa 828261618282
aa 828261618282

Note: OnWindows, the Natural output window has been Unicode-enabled which means
that all fields have Unicode format now. In case of A format fields containing double-byte
characters, the behavior of the Natural output window has changed slightly. For A format
input fields it is nowpossible to enter “Unicode-string-length” characters in the field.When
leaving the field and the default code page is a double-byte code page, all characters which
do not fit into the target A format field are removed. For example, an A10 field can hold 5
double-byte characters. In the output window, this field is represented by a Unicode field
of length 10 with display length 5. So the user can enter 10 double-byte characters in the
input field. When the user moves the cursor to another field on the page or leaves the page
by pressing ENTER, the content of the field is converted to code page format so that only the
first 5 double-byte characters remain.

Unicode and Code Page Support44

Double-Byte Character Support

10 Unicode Data Storage

■ Unicode Data/Parameter Access .. 46
■ Database Management System Interfaces ... 46
■ Work Files and Print Files ... 47

45

Unicode Data/Parameter Access

The following graphic shows how Unicode data and parameters are accessed.

Database Management System Interfaces

Accessing Unicode Data in an Adabas Database

Natural enables users to access wide-character fields (format W) in an Adabas database.

Data Definition Module
Adabas wide-character fields (W) are mapped to the Natural data format U (Unicode).

Access Configuration
Natural receives data fromAdabas and sends data toAdabas usingUTF-16 as common encod-
ing.

This encoding is specifiedwith the OPRB parameter and is sent toAdabaswith the open request.
It is used for wide-character fields and applies to the entire Adabas user session.

Unicode and Code Page Support46

Unicode Data Storage

For detailed information, see Unicode Data in the Accessing Data in an Adabas Database part of the
Programming Guide.

Work Files and Print Files

The following topics are covered below:

■ WRITE WORK FILE
■ READ WORK FILE
■ Special Considerations for Work File Type Transfer
■ Print Files

WRITE WORK FILE

The information below applies for the statement WRITE WORK FILE. See the Statements document-
ation for detailed information on this statement.

Code Page Data

The following work file types write code page data:

■ ASCII and ASCII compressed
■ Unformatted
■ CSV
■ Entire Connection

The work file type and the code page must be defined in the Configuration Utility. For further
information, seeWork Files in the Configuration Utility documentation.

All Natural data defined with the operands A (alphanumeric) and U (Unicode) are converted to
the specified code page. If a code page has not been specified, all data are converted to the default
code page which is defined with the CP parameter.

Note: In the work file, all written A and U operand data are in code page format.

If U operand data are to be written into these work files and afterwards read from these work files
without loss of data, you have to define UTF-8 as the code page (in the Configuration Utility). In
this case, all A and U operand data are written in UTF-8 format. A subsequent READ WORK FILE
statement where the work file is also configured using code page UTF-8 reads the operand U data
without loss of data.

Notes:

47Unicode and Code Page Support

Unicode Data Storage

1. Work file data which have been written in UTF-8 format can be read by text editors which
support UTF-8 (for example, Notepad on the Windows platform).

2. Natural data definedwith the operand B (binary) are not converted to the code page which has
been specified in the Configuration Utility. These data are written as they are stored in Natural,
without any code page conversion.

If one of the above-mentioned work file types is specified and the code page UTF-8 is defined for
the work file, the work file attributes BOM (write byte order mark) and NOBOM (do not write byte
order mark) take effect. These attributes can be specified in theWork Files category of the Config-
uration Utility and with the DEFINE WORK FILE statement. If the code page UTF-8 is defined for
the work file and the work file attribute BOM is specified, the UTF-8 byte order mark (hexadecimal
representation: H'EFBBBF') is written at the beginning of the work file, in front of the work file
data.

If a work file type other than the above-mentioned work file types is used for writing the work
file, or if a code page other than UTF-8 is defined for the work file, the specification of the attribute
BOM is ignored during runtime. The following table shows the runtime behavior during the pro-
cessing of the statements WRITE WORK FILE and READ WORK FILE:

READ WORK FILEWRITE WORK FILE
Code Page and Attribute Setting

No check for UTF-8 byte order mark.No UTF-8 byte order mark
is written.

The code page UTF-8 is not
specified for the work file
(default). No conversion from UTF-8.

No conversion to UTF-8.
The work file attributes BOM and
NOBOM have no effect.

Check for UTF-8 byte order mark.UTF-8 byte order mark is
written.

The code pageUTF-8 is specified
for the work file.

If an UTF-8 byte order mark is found, it is
removed from thework file data. A fields areA and U fields are

converted to UTF-8.
The work file attribute BOM is
specified. converted from UTF-8 to the default code

page. U fields are converted from UTF-8 to
the Natural internal runtime representation
UTF-16.

Check for UTF-8 byte order mark.No UTF-8 byte order mark
is written.

The code pageUTF-8 is specified
for the work file.

If an UTF-8 byte order mark is found, it is
removed from thework file data. A fields areA and U fields are

converted to UTF-8.
The work file attribute NOBOM
(default) is specified. converted from UTF-8 to the default code

page. U fields are converted from UTF-8 to
the Natural internal runtime representation
UTF-16.

Binary Data

The following work file types write binary data (for example, UTF-16 for operand format U):

Unicode and Code Page Support48

Unicode Data Storage

■ SAG
■ Portable

Natural data defined with the operands A and U are not converted to code page. These data are
written to the work file in binary format. For U operand data, this is done in UTF-16.

READ WORK FILE

The information below applies for the statement READ WORK FILE. See the Statementsdocumentation
for detailed information on this statement. Take note of the restrictions that are listed for the RECORD
option.

Code Page Data

When the following work file types are used, the work file data that are read into Natural U
(Unicode) operands are converted from the specified code page to UTF-16.

■ ASCII and ASCII compressed
■ Unformatted
■ CSV
■ Entire Connection

Data that are read into A (alphanumeric) operands are converted, if required, from the specified
code page to the default code page which has been defined with the parameter CP.

If one of the above-mentioned work file types is specified and the code page UTF-8 is defined for
the work file, the READ WORK FILE statement automatically checks the work file for an UTF-8 byte
order mark. If an UTF-8 byte order mark is found at the beginning of the work file, it is removed.
The data that are read from the work file are converted from UTF-8 to the default code page.

If data are read from another work file type, the check for a byte order mark is not performed and
a byte order mark is therefore not removed.

For information on the runtime behavior during the processing of the statements WRITE WORK
FILE and READ WORK FILE, see the table in the previous section.

Binary Data

When the followingwork file types are used, thework file data are read into theNatural operands
A and U without conversion (that is: they are read in binary format):

■ SAG
■ Portable

The work file type Portable supports endian conversion for data of operand format U.

49Unicode and Code Page Support

Unicode Data Storage

Special Considerations for Work File Type Transfer

Operand format U is generally supported for the work file type Transfer. If Entire Connection is
not able to read or write Unicode for the selected file type, a runtime error message is displayed.

Print Files

The handling for Unicode data in print files depends on the selected logical device’s (LPT1 to
LPT31) print method, currently either GUI (Windows only) or TTY.

Regardless of the print method, data are passed to the Natural printing services in UTF-16 format.
That is, any format A field data will already have been converted to Unicode.

GUI Print Method

With this Windows-only print method, the data are passed to the Windows printer driver in
Unicode (UTF-16) format. Because this is the standard method for printing data in Windows, the
driver invariably handles this data appropriately. This is therefore the recommended printmethod
under Windows if any characters that are not within the system code page are being used.

TTY Print Method

With this print method, the data are, by default, converted from the internal (UTF-16) format into
the system code page. However, by using a printer profile, it is possible to specify that the data
should instead either be converted into UTF-8 format, or be subjected to an additional conversion
to an arbitrary external code page. For more information on these alternatives, see Printer Profiles
in the Configuration Utility documentation.

The rationale behind the default behavior of converting the data into the system code page is based
on the current lack of printers capable of directly accepting raw text files in UTF-8 format.

Unicode and Code Page Support50

Unicode Data Storage

11 Platform Differences

■ General Information ... 52
■ Windows ... 52
■ UNIX and OpenVMS .. 53

51

General Information

OnWindows, UNIX andOpenVMS platforms, Natural has internally beenUnicode-enabled. This
means that many structures containing strings have Unicode format now. For example, the Nat-
ural source area has nowUnicode format. For this reason, Unicode data can be handled at runtime
in theNatural I/O aswell as in theNatural development environmentwhenwriting and cataloging
Natural code.

Even if Natural is Unicode-enabled internally, all existing data currently has code page format.
As a consequence, all this data is converted from code page format to Unicode format when used
in Natural Version 6.2 or above. For example, if a source is opened with the program editor, a
conversion from the code page file format to the Unicode source area format is performed. Even
if you do not use theU format, this is of advantage: you can now see all language-specific characters,
no matter which system code page is installed. However, the user is responsible for defining the
correct code page information. SeeMigrating Existing Applications for more details.

When catalogingNatural objects, all constantswhich are not definedwith theUprefix are converted
to the code page of the corresponding source. If the source has UTF-8 format, these constants are
converted to the default code page.

Notes:

1. In most cases, Unicode data requires more memory space than code page data. Therefore, the
Natural parameter USIZEmay need to be increased with Natural Version 6.2 or above.

2. Natural dialogs (editor and runtime) are Unicode-enabled as of Natural Version 6.3.

Windows

Unicode is fully supported in the local Natural for Windows environment.

The editors are Unicode-enabled and it is possible to enter all possible characters. When saving
the source, Natural first tries to convert the source to the original code page. If this fails because
the source contains characters which are not found in this code page, further processing depends
on the setting of the parameter SUTF8. If SUTF8 is ON, the source will be saved in UTF-8 format. If
SUTF8 is OFF, the user will be asked whether to save the source in the original code page or to
cancel the current save. If the user decides to save the source in the original code page, the characters
which are not foundwill be replacedwith substitution characters. In addition, it is possible to select
a code page explicitly in the Save As dialog box.

The program editor has been enhanced in order to support the Unicode bidirectional algorithm.

Unicode and Code Page Support52

Platform Differences

The output window is also Unicode-enabled. When characters are entered via the keyboard, A
format fields accept only the characters which are available in the default code page.

UNIX and OpenVMS

Full Unicode support is only available with SPoD and the Natural Web I/O Interface. SPoD is ne-
cessary for entering Unicode input in Natural sources; the same applies as described above for
the localNatural forWindows environment. TheNaturalWeb I/O Interface is necessary forUnicode
I/O from Natural applications.

If Natural is used via a terminal emulation, all outputwill be converted fromUnicode to the default
code page before displaying it. Characters which are not available in the default code page will
be replaced with the substitution character of the default code page. Similar input is only possible
on base of the default code page.

Note: Natural sources which have UTF-8 format can no longer be opened with the native
Natural for UNIX or Natural for OpenVMS editors.

53Unicode and Code Page Support

Platform Differences

54

12 Migrating Existing Applications

■ Impact of Unicode on Existing Applications ... 56
■ Migrating Existing Objects ... 56
■ Adding Unicode Support to Existing Applications ... 57
■ Migrating Natural Remote Procedure Calls (RPC) .. 58

55

Impact of Unicode on Existing Applications

OnWindows,UNIX andOpenVMSplatforms,Natural has internally beenUnicode-enabledwhich
means that many structures containing strings have Unicode format now. For example, the Nat-
ural source area has now Unicode format. For this reason, data which is only available in code
page format is internally converted to Unicode format. This applies, for example, to the Natural
sources and to the Natural library names and object names. However, a conversion from code
page to Unicode and vice versa can only be performed successfully if the correct code page is used
for conversion. Even if an application is not changed but only re-cataloged, the code page inform-
ation is important because for cataloging an object is loaded into the Natural source area. If all
objects are coded in the system code page, no changes are necessary. If the objects are not coded
in the system code page, seeMigrating Existing Objects on Windows, UNIX and OpenVMS
Platforms for further information.

On Windows, the Natural output window has been Unicode-enabled which means that all fields
have Unicode format now. In case of A format fields where the code page string length differs
from the Unicode string length, the behavior of the Natural output window has changed slightly.
This is especially relevant for double-byte code pageswhere the code page string length is normally
twice as long as the Unicode string length. For A format input fields, it is now possible to enter
“Unicode-string-length” characters in the field. When leaving the field and the default code page
is a double-byte code page, all characterswhich do not fit into the target A format field are removed.

The internal Unicode structure will most probably need more memory. If you have defined a low
value for the profile parameter USIZE, it may be necessary to increase this value.

Migrating Existing Objects

Natural has been extended so that the code page information can be defined on several levels:

■ The Natural profile parameter CP defines the default Natural code page.
■ For several objects (Natural sources, Natural batch input/output files, work files of type ASCII,
ASCII compressed, Unformatted and CSV) an object-specific code page can be defined.

If neither an object-specific code page nor a default code page is defined, Natural will use the op-
erating system's code page.

Since it is not possible to identify the correct code page automatically, it is important that you
define the required code page information yourself. The following scenarios are possible:

Unicode and Code Page Support56

Migrating Existing Applications

ActionEffortStatus

No action.No effortAll data is available in the operating
system's code page.

TheNatural profile parameter CP has to be set to the
correct code page.

EasyAll data is stored with one code
page, but this code page differs
from the operating system's code
page.

The correct code page has to be defined for every
Natural object:

Depends on the
number of
sources and code
pages

The data is available in different
code pages.

■ Sources
If only few objects are affected, change the code
page via the Properties dialog box. If several
objects (for example, an entire library) are affected,
use the FTOUCH utility for changing the code page.

■ Batch Files
Set the Natural profile parameters CPOBJIN,
CPSYNIN and CPPRINT to the correct code page.

■ Work Files
Set correct code page for the work files in the
Configuration Utility.

The object has to be rewritten in UTF-8 format.HighDifferent code pages are mixed in
one object (for example, in a source)

Adding Unicode Support to Existing Applications

It is easy to extend existing applicationswith new source code based on theU format. The following
rules have to be regarded for the U format (as compared with the A format):

■ A REDEFINE of U to a format other than U should be avoided because this may result in split
characters.

■ U format is endian-dependant. This has to be considered when moving between the formats B
and U.

■ AlignU in DEFINE DATA for performance reasons (better performance onUNIX andOpenVMS).
■ Keep in mind that characters may be lost when moving U to A.

If you want to change existing fields from A format to U format, the following rules have to be
regarded:

■ Code which assumes a specific encoding of strings has to be changed (for example, comparison
with a B field).

57Unicode and Code Page Support

Migrating Existing Applications

■ All REDEFINE statements of the field have to be checked for their validity.
■ A REDEFINE to N is not possible (that is: you will not get the expected result).
■ The database field has to be migrated to Unicode (provided that this is supported by your
database).

■ You may have to change the length of the field: if the A field contains DBCS characters, half the
length is required for the U field.

Migrating Natural Remote Procedure Calls (RPC)

The profile parameter CP has been renamed to CPRPC. In earlier Natural versions, CPwas used to
specify the name of the code page used by the Entire Conversion Service (ECS) and applied only
to the Natural RPC (Remote Procedure Call) when the transport protocol ACI (that is, EntireX
Broker) was used.

A new CP parameter is available which defines the default code page for Natural data. When you
are working with Natural RPC and have previously used the CP parameter dynamically, you have
to change this parameter to CPRPC.

When you use parameter files from a previous version, you need not change anything; the Con-
figuration Utility automatically migrates CP to CPRPC.

Unicode and Code Page Support58

Migrating Existing Applications

13 Special Considerations and Limitations

■ The dialog editor, which is provided with Natural for Windows, and dialog-based runtime is
not Unicode-enabled.

■ The editors providedwithNatural forUNIX andNatural forOpenVMSare notUnicode-enabled.
■ If the DL parameter is specified for a field which is longer than 250 characters, a maximum of
250 characters will be displayed in the field.

■ A Natural source line may not be longer than 250 bytes. The program editor, which works on
Unicode format, checks only that the number of UTF-16 code units is not greater than 250.
However, depending on the encoding of the source, the line lengthmay increasewhen converting
the encoding from UTF-16 to the source encoding. For example, the UTF-8 encoding requires
up to 4 bytes for a Chinese character; an error will be displayed in this case and the changes will
not be saved.

■ For UNIX and OpenVMS, Unicode is only supported at runtime with the Natural Web I/O In-
terface. If an application is run in the terminal emulation or xterm and Unicode strings are dis-
played, strange effects may occur.

■ Comparedwith previousNatural versions, the performance is degraded since several conversions
between code page and Unicode have to be performed.

59

60

14 Frequently Asked Questions

■ Why do I get the startup error "Invalid code page specified"? .. 62
■ What is the "default code page"? .. 62
■ What default code page is used? .. 62
■ Should I save all Natural sources in UTF-8 format? .. 62
■ How can I handle UTF-8 encoding with Natural code? .. 63
■ Why are some characters not displayed correctly? ... 63
■ Why do I get an error when I want to edit a Natural source? ... 63
■ Why do I get an error when I want to save a Natural source? ... 63
■ How can I find out the encoding of a Natural source? .. 64
■ How can I change the encoding of a Natural source? .. 64
■ How can I convert an existing Natural source into UTF-8 format? .. 64
■ Which substitution character is used if a character cannot be converted? ... 64
■ Can I use UTF-8 sources with previous Natural versions? ... 65
■ Why do I get a conversion error when cataloging a source which has UTF-8 format? 65
■ Why do I get garbage on UNIX or OpenVMS when displaying U format via a terminal emulation? 65
■ Can I work with a current SPoD client and an older SPoD server? ... 65
■ Can I work with a current SPoD server and an older SPoD client? ... 66

61

Why do I get the startup error "Invalid code page specified"?

The code page you have defined with the profile parameter CP does either not exist (see ht-
tp://demo.icu-project.org/icu-bin/convexp for valid ICU code pages and http://www.iana.org/as-
signments/character-sets for the appropriate IANA names) or is an invalid default code page for
the platform (for example, an EBCDIC code page cannot be used on aWindows,UNIXorOpenVMS
platform).

What is the "default code page"?

The default code page is the code pagewhich is the result of the evaluation of the profile parameter
CP. If CP is not filled, it is the current operating system code page.

On the platforms supported by Natural for UNIX, you should always define the CP parameter,
because the ICU default could be defined differently for different UNIX platforms and this defin-
ition can as well change for a specific platform with newer ICU versions.

What default code page is used?

The default code page which is used by Natural for conversions between code page and Unicode
and vice versa can be detected by displaying the content of the system variable *CODEPAGE.

Should I save all Natural sources in UTF-8 format?

It depends on the characters you want to use and on the platforms on which your sources are
located. If youwant to useUnicode constants, UTF-8 is the only possibility to store all combinations
of characters. However, you can define hexadecimal UH constants which can also be stored in
code page sources. The disadvantage of hexadecimal constants is that you have to know the UTF-
16 encoding for every character of the constant. On mainframes, UTF-8 format for sources is not
possible at all. OnUNIX andOpenVMS, UTF-8 sources can only be handled via SPoD; they cannot
be handled locally on UNIX or OpenVMS.

Unicode and Code Page Support62

Frequently Asked Questions

http://demo.icu-project.org/icu-bin/convexp
http://demo.icu-project.org/icu-bin/convexp
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

How can I handle UTF-8 encoding with Natural code?

Use the MOVE ENCODED statement for conversion fromUTF-8 to UTF-16: the code page "UTF-8" has
to be used for the A format variable.

Why are some characters not displayed correctly?

Check if you are using the correct code page. If the code page is correct, check if the selected font
supports the characters you want to display.

Why do I get an error when I want to edit a Natural source?

The code page which is defined for the source is not correct. When converting the contents of the
source to Unicode, a conversion error occurs. Change the encoding of the source so that the con-
version to Unicode is successful.

Why do I get an error when I want to save a Natural source?

You have entered characters in the source which cannot be converted to the code page which was
used to read the source. Check if you have entered these characters by mistake or if you really
want to save the characters in the source. In the first case, remove the faulty characters and save
the source. In the second case, save the source in UTF-8 format or, if the characters are contained
in U constants, use UH constants instead.

If you have not entered any characters which are not contained in the code page of the source,
check whether the profile parameter SRETAIN has been set to OFF. In this case, the source will be
saved with the default code page. If the concerned source was previously saved with a different
code page, a conversion error may occur.

63Unicode and Code Page Support

Frequently Asked Questions

How can I find out the encoding of a Natural source?

In Natural Studio, invoke the Properties dialog box for the source node. TheGeneral page shows
the encoding of the source. If the Encoding text box is empty, no specific encoding is stored for
the source. This means that the default encoding is used when reading the source.

The list view windows of Natural Studio also show the encodings of all listed objects.

How can I change the encoding of a Natural source?

In Natural Studio, invoke the Properties dialog box for the source node. TheGeneral page shows
the encoding of the source. If this is not the correct encoding, you can change it by choosing the
Change button: a list of available code pages is shown and you can select the correct encoding for
the source.

How can I convert an existing Natural source into UTF-8 format?

Open the source in the Natural editor with the correct code page. Save the source with Save As
and in the Save As dialog box, select UTF-8 as the encoding.

Which substitution character is used if a character cannot be converted?

This depends on the direction of the conversion: if a code page character cannot be converted to
Unicode, the Unicode substitution character "U+FFFD" is used. If a Unicode character cannot be
converted to a code page, the substitution character which is defined by ICU for this code page is
used.

For the conversion fromUnicode to the default code page, the substitution character can be changed
by setting the profile parameter SUBCHAR.

Unicode and Code Page Support64

Frequently Asked Questions

Can I use UTF-8 sources with previous Natural versions?

No. Previous Natural versions do not know any code page information; a UTF-8 source will be
interpreted as the current system code page.

Why do I get a conversion error when cataloging a source which has UTF-8
format?

ANatural sourcewithUTF-8 format cannot be cataloged because a code point cannot be converted.

All A constants in a sourcewithUTF-8 format are converted to the default code pagewhen storing
them in the generated program. Either remove the characterswhich are not contained in the default
code page from the A constants or use U constants instead of A constants.

Why do I get garbage on UNIX or OpenVMS when displaying U format via a
terminal emulation?

All characterswhich are not contained in the default code pagewill be replacedwith the substitution
character of the code page before displaying the output on a terminal emulation. For an ASCII
code page, the substitution character defined by the ICU conversion table is often "0x1A", which
could be a control character on UNIX or OpenVMS terminals. It is strongly recommended to use
theNaturalWeb I/O Interfacewhen usingU format in I/O statements. If using a terminal emulation
is essential, the substitution character (SUBCHAR) can be changed to a printable character (for example,
"?").

Can I work with a current SPoD client and an older SPoD server?

Yes, but you should set the code page of the SPoD client to the code page of the server sources.

See also Prerequisites for Natural Single Point of Development at http://documentation.software-
ag.com/natural/spod_prereq/prereq.htm (Empower login required).

65Unicode and Code Page Support

Frequently Asked Questions

http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm

Can I work with a current SPoD server and an older SPoD client?

Yes, but this is not recommended if you have defined encodings for sources.

See also Prerequisites for Natural Single Point of Development at http://documentation.software-
ag.com/natural/spod_prereq/prereq.htm (Empower login required).

Unicode and Code Page Support66

Frequently Asked Questions

http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm

	Unicode and Code Page Support
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction
	About Code Pages and Unicode
	About Unicode and Code Page Support in Natural

	3 Enabling Unicode and Code Page Support
	ICU Library

	4 Configuration and Administration of the Unicode/Code Page Environment
	Profile Parameters
	Encoding Information
	Level 1 - Default Code Page
	Level 2 - Code Page for a Single Object

	Deploying Natural Objects with Encoding Information

	5 Development Environment
	Development Environment
	Customizing Your Environment
	Editors in the SPoD Environment

	6 Unicode and Code Page Support in the Natural Programming Language
	Natural Data Format U for Unicode-Based Data
	U versus A

	Statements
	MOVE NORMALIZED
	MOVE ENCODED
	EXAMINE
	PARSE XML
	REQUEST DOCUMENT
	CALLNAT (RPC)

	Logical Condition Criteria
	System Variables
	*CODEPAGE
	*LOCALE

	Large and Dynamic Variables
	Session Parameters
	DL versus AL
	EMU, ICU, LCU, TCU versus EM, IC, LC, TC

	Sample Programs

	7 Unicode Input/Output Handling in Natural Applications
	Displaying and Entering Unicode Data
	Natural Web I/O Interface Client
	SPoD Environment
	Runtime Environment

	8 Bidirectional Language Support
	General Information
	Screen Direction
	Field Direction
	Maps and Dialogs
	Print Methods
	Terminal Capabilities

	9 Double-Byte Character Support
	10 Unicode Data Storage
	Unicode Data/Parameter Access
	Database Management System Interfaces
	Accessing Unicode Data in an Adabas Database

	Work Files and Print Files
	WRITE WORK FILE
	READ WORK FILE
	Special Considerations for Work File Type Transfer
	Print Files

	11 Platform Differences
	General Information
	Windows
	UNIX and OpenVMS

	12 Migrating Existing Applications
	Impact of Unicode on Existing Applications
	Migrating Existing Objects
	Adding Unicode Support to Existing Applications
	Migrating Natural Remote Procedure Calls (RPC)

	13 Special Considerations and Limitations
	14 Frequently Asked Questions
	Why do I get the startup error "Invalid code page specified"?
	What is the "default code page"?
	What default code page is used?
	Should I save all Natural sources in UTF-8 format?
	How can I handle UTF-8 encoding with Natural code?
	Why are some characters not displayed correctly?
	Why do I get an error when I want to edit a Natural source?
	Why do I get an error when I want to save a Natural source?
	How can I find out the encoding of a Natural source?
	How can I change the encoding of a Natural source?
	How can I convert an existing Natural source into UTF-8 format?
	Which substitution character is used if a character cannot be converted?
	Can I use UTF-8 sources with previous Natural versions?
	Why do I get a conversion error when cataloging a source which has UTF-8 format?
	Why do I get garbage on UNIX or OpenVMS when displaying U format via a terminal emulation?
	Can I work with a current SPoD client and an older SPoD server?
	Can I work with a current SPoD server and an older SPoD client?

