§ software

Natural for UNIX

Natural RPC (Remote Procedure Call)

IN— 3844

2017 £ 10 B

ADABAS & NATURAL

T = a7)Vid Natural ’N—2 3 >V 841 BLUZFNLEDTNTOY Y —ATHEHAINET,

TORZ a7 SRR E NS HARBEE NS ARENDH D £9o ZHELEDOY Y —ZA/— b EEH LWV Z 2 7)CRIR E
nxd,

Copyright © 1992-2017 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name Software AG, webMethods and all Software AG product names are either trademarks or registered trademarks of Software AG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Software AG £ & U'Z DFRHEAITH T % BEMHRS X URFFOFMIC DV TI, hitp://documentation.softwareag.com/legal/ Z i
LTSS,

KT b 2T O—ICEY— FS—T A BBEHNEENTOET, ¥— R 3—F ¢ OFEERRB LT T A AHKITDONT
& TLicense Texts, Copyright Notices and Disclaimers of Third-Party Products] ZZHL T 2E W, TORFa A2 MIEG R
FaAV Y bO—ETHD. http://documentation.softwareag.com/legal/ L. £7zld T 1> ABRFHDIV— AV A S —)VT ¢
L7 MIAICHD X9,

AV T b o7 OFIANZ. Software AGD T A & Y ARKNCHI> TITONZ LD E LTS, TAYABKNIE FFa Ay
M. http://documentation.softwareag.com/legal/ I, 72T 1 LY ABFDOIN— A VA +—)IVT 2 L7 PURNIZH D FT,

R 2 X~ b IDId: NATUX-NNATRPC-841-20200614

Table of Contents

PTEfaceeeeiiiiiiie e e vii
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
FEECHTHI s 2
T YT A TEER e 2
T BARFE o 3
2 Introducing Natural RPC ... 5
General INformationccccooiiiiiiiiiiiiii 6
Natural RPC Operation in Non-Conversational Modecccccociiviiiiiiiiiinnnnn. 8
Natural RPC Operation in Conversational Modeccoooiiiiiiiinii 11
Conversational versus Non-Conversational Modecccccooviviiiiiiiiinninn. 12
Database Transactionscccccoviiiiiiiiiiiiiiiiiiii 15
Handling of Limits Set with Profile Parameters LT, MAXCL, MADIO, and MT
OT1 SEIVET ...oviiiiiiiiiiiie ittt ettt e b e s e ae e e e b e e e et e s eaa e e e eate e s aae e saaeeeaaae s 16
Location of CONVErSationsccccevuiiiiiiiiiiiiiiiiiciie i 16
Natural RPC TerminolOgyccccccuiiiiiiiiiiiiiiiiiiiiiiiiiicccccee e 17
3 Prerequisites and Preparatory Information ... 19
Products INVOIVedc.cocuiiiiiiiiiii 20
Natural Statements Involvedccccooiiiiiiiiii 21
Natural Utilities for Use with Natural RPCcccociiiiiiiii 21
Application Programming Interfaces for Use with Natural RPC 22
Software AG IDL to Natural Mappingccccceveeieiiiiiniiiiiiiicceeccccc e 23
4 Restrictions and Limitationscccccooiviiiiiiiiiiiiiii 29
User Context Transfer ... 30
System Variable Transfercccccoooiiiiiiiiiiiiiiiiiiii 30
Application-Independent Variablesc..cccocooiiiiiiiiiiii 30
Parameter Handling in Error Situationsccccoeovevviiiiiiiiiiiiiicnccecceeee, 31
Variable Arrays in SUbDProgramscccccecuviiiiiiiiiiiiiiiii 31
XoATTAYS 1ottt 31
Groups and Interface ODbjJectsccccovviiiiiiiiiiiiiiiiiiii 32
Group Arrays on the RPC Server Side ..o 32
Unsupported Natural Data Formatscccccceiviiiiiiiiiiniiiiiiiiiicececcee 32
EntireX RPC SeIVercccciiiiiiiiiiiiiiiiiii i 33
USING VSAM ..ottt 33
Natural Statement Reactionscccociiviiiiiiiiiiiiiiiiiccccccc 33
Notes on Natural Statements on the Serverccccooiiiii 34
5 Setting Up a Natural RPC Environmentccccccoeiiiiiiiiiniiiiiiiniiiiiiieciccecceee 35
Setting Up a Natural Clientc.cooooiiiiiiiiiie 36
Setting Up a Natural SEIVerccoccoviiiiiiiiiiiiiiiiicccccccee e 38
Setting Up an EntireX Broker ACCessccccoeiiviiiiiiiiiiiiiiiicccccicccccceecn 41
Setting Up an EntireX Broker Environmentcccoccoiiiiiii, 44
6 Starting a Natural RPC Servercccccoociiiiiiiiiiiiiiiiiiiiiciiiccc e 45
Preliminaries before Starting a Natural RPC Servercccccooiiiiiin, 46

Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server in a Mainframe Online Environment (all TP

IMIOIIIEOLS) cevvtetieeeeeiiiiieeeet ettt ettt e e ettt e e e e s ree et e e e e s eannneneees 47
Starting a Natural RPC Server in a Mainframe Online Environment (CICS
ONLY) 1ot 47
Starting a Natural RPC Server in a Mainframe Online Environment (Com-plete
ONLLY) o 49
Starting a Batch Server in a Mainframe Environmentcccccoceiiiiiininnnnn 50
Starting a Natural RPC Server in a Windows Environmentccccoooiiiiinine 52
Starting a Natural RPC Server in a UNIX Environmentcoccooiiiiiiiinnn, 53
Starting a Natural RPC Server in an OpenVMS Environmentcccccoeevnenne 53
Considerations for Mainframe Natural RPC Servers with Replicas 53
Starting a Natural RPC Server Using the RPC Server Front-End (z/OS Batch Mode
ONLLY) o 55
Starting a Natural RPC Server Using the RPC Server Front-End (CICS only) 57
7 Terminating a Natural RPC Serverccccociiiiiiiiiiiiiiiiiiiiiiciccccc 61
UsSIing SYSRPC ..o 62
Using EntireX System Management Hubccccocciiiiiniiii, 62
Using Application Programming Interface USR2073Nc.ocooviiiiniiiiiinnnnn, 62
Using Application Programming Interface USR2075Ncccccceoviiiiiiiiiiiinnnnene. 64
Using Application Programming Interface USR8208Nccccocviviiiiiiiiinninnnn. 65
Using Application Programming Interface USR8220Ncccccooiiiiiiininnncnne. 66
Server Termination When Using an Attach Managercccccccevviiiiiiiiiiiiinnnnnn 66
User Exit NATRPCO9cccooiiiiiiiiiiiiiiiiiicici e 66
8 Operating a Natural RPC Environmentcccccoeviiiiiiiiiiniiiiiiiiiccececceee 69
Specifying RPC Server Addressesccooueviiviiiiiiiiiiiiccicceccee e 70
Interface Objects and Automatic RPC Executioncccceveiiiiiiiiiniiiiiniicnene. 73
Modifying RPC Profile Parameters during a Natural Sessionccccccceeeeininnne. 75
Executing Server Commandsc.occooiiiiiiiiiiiii 75
Logon to a Server Libraryccccociiiiiiiiiiiiiiiiiiiiiiiici 75
Using the Logon Optionc.cccooiiiiiiiiiiiiiccece e 76
Using COMPIESSIONeiiiuiiiiiiiiiiiiiiiiiiie i 78
Using Secure Socket Layerccoiiiiiiiiiiiiiiiiiccecccc e 78
Monitoring the Status of an RPC Sessioncccoccviiiiiiiiiiiiiiiiiiiicicics 80
Retrieving Runtime Settings of a Serverccccocovviiiiiiiiiiiiiiiinii, 87
Setting/Getting Parameters for EntireXc.ccccooiiiiiiiiiiiini 88
Handling EITorscccoooiiiiiiiiiiiiiiiii e 90
User Exits before and after Service Executionccccocoovviiiiiiiiiniiiiiiininn, 91
9 Using a Conversational RPCccooiiiiiiiiiiiiiiicceccee e 93
Opening a CoNVersationcccooivuiiiiiiiiiiiiiiic e 94
Closing @ CoNVersationc.cocuiiuieiiiiiiiieic e 95
Defining a Conversation Contextcccceviiiiiiiiiiiiiiiiiii e, 96
Modifying the System Variable “CONVIDcccccoiiiiiiiii 96
10 Reliable RPCoooiiiiiiiiiiiiiiccc e 97
General Informationccccociiiiiiiiiiiiiii 98
Reliable RPC on the Natural RPC Client Sidecccocovviiiiiiiiiiiiiiiiiiie 99

iv Natural RPC (Remote Procedure Call)

Natural RPC (Remote Procedure Call)

Reliable RPC on the Natural RPC Server Sideccocivviiiiiiiiiniiiiiiiinn, 102
Viewing the Status of Reliable RPC MeSSagesccccocoeiiuiirininiiieiciciccicn, 102
11 Using a Remote Directory Server - RDScccocciiiiiiiiiiiiii, 105
RDS Principles of Operationcccoeieiiiiiiiiiiiicccccc e 106
Using a Remote Directory Serverccocviiviiiiiiiiiiiiiiiciicicecciec e 108
Creating an RDS Interfaceccccooviiiiiiiiiiiii 109
Creating a Remote Directory Service Routinecccccoovviiiiiiiiiii. 110
Remote Directory Service Program RDSSCDIRcccccooviiiiiiiiiiiiiiiiiiiecen, 111
12 USING SECUTILY .voviiiiiiiieiiciccc s 115
Using Natural RPC with Natural Securityccccoociviiiiiiniiiiiiiiiiie, 116
Impersonation (z/OS Batch Mode)cccoeciiiiiiiiiiiiiiiiiiiicie 120
Impersonation (CICS)oociiiiiiiiiiiiiiiiiii 124
Using Natural RPC with EntireX Securitycccocooviiiiiiiiniiics 130
13 EntireX Broker SUPPOTtcccoiiiiiiiiiiiiiiiicc 135
SECUTILY ..viiiiiiiiiiiiiii 136
Logging and ACCOUNtINGc.coiiiiiiiiiiiiiiiiceccc e 136
14 APIs for Providing an RPC Context from the Natural Client Sidecc........ 137
RPC-CINTX o s 138
Table of APIs related to RPC in Library SYSEXTcccccciiiiiiiiiiiiiiiiiiiiccieeen, 140

Natural RPC (Remote Procedure Call) v

vi

Preface

Remote procedure call (RPC) techniques establish a framework for communication between server
and client systems that can be collocated on the same computer or based on a network of identical
or heterogeneous machines and operating systems. Several basically similar methods are known.

This documentation describes the theory of operation and the use of the RPC techniques provided
by Natural to enable the design and to simplify the application of distributed software systems.
For information on other products that may be involved in a Natural RPC-based environment,
see the documentation of EntireX RPC for 3GL, Entire Network, EntireX Broker.

For full details of the functions provided to maintain remote procedure calls, refer to the Natural
SYSRPC Utility documentation.

This documentation is organized under the following headings:

Introducing Natural RPC

Prerequisites and Preparatory
Information

Restrictions and Limitations

Setting up a Natural RPC
Environment

Starting a Natural RPC Server

Terminating a Natural RPC
Server

Operating a Natural RPC

Environment

Using a Conversational RPC

Reliable RPC

Provides basic information, such as Natural RPC operation in
non-conversational and conversational mode; describes the database
transactions on the client and server side and contains a list of important
key terms used in the SYSRPC utility and the Natural RPC
documentation.

Provides an overview of the general prerequisites and, a short description
of the facilities that are available in Natural for implementing a Natural
RPC (Remote Procedure Call) environment, and information on the
specific mapping of Software AG IDL data types, groups, arrays and
structures to the Natural programming language.

Informs you about some restrictions and limitations that you should
observe when using the Natural RPC.

Describes the fundamental steps you must perform for all client and
server Naturals to set up a Natural RPC environment.

How to start a Natural RPC server on the different platforms.

Describes the various methods of terminating a Natural RPC server, for
example by terminating the EntireX Broker service supporting the RPC
connection.

How to operate a Natural RPC environment.

How to use the Natural RPC in conversational mode: opening/closing
a conversation, defining a conversation context, modifying the system
variable *CONVID if multiple conversations are used in parallel.

Describes the Reliable RPC, which is the Natural RPC implementation
of a reliable messaging system.

Using a Remote Directory Server Describes the principle and the usage of an RDS: how to create an RDS

(RDS)

interface, a remote directory service routine; information about the RDS

Vii

Preface

directory service program RDSSCDIR required to read directory
information from a work file.

Using Security How to use the Natural RPC with Natural Security or EntireX Security.
EntireX Broker Support Special considerations concerning EntireX Broker support.

APIs for Providing an RPC A description of the API RPC-CNTX and a list of RPC-related APIs in
Context from the Natural RPC library SYSEXT.

Client Side

| Note: This document applies to all platforms on which Natural can be used. But, depending

on the Natural documentation set you are currently using, the following differences exist:

¥ The examples of using the Natural utility SYSRPC exhibit platform-specific maps (with either
GUI or CUI interface).

¥ Under Natural for Windows, UNIX and OpenVMS, the RPC-specific parameters are available
as profile parameters.

¥ Under Natural for Mainframes the parameters are available as keyword subparameters of profile
parameter RPC or parameter macro NTRPC.

Notation vrs or vr

When used in this documentation, the notation vrs or vr represents the relevant product version
(see also Version in the Glossary).

viii Natural RPC (Remote Procedure Call)

About this Documentation

About this Documentation

FKeCARA

kiU A

K i EDOEFEERL KT,

T/ AR—AT #>|folder.subfolder:service &9 KRz H L T webMethods Integration Server
b LDV —EXDREGFRZLELET,

R F—R—FDOF—2ERKL KT, ARHCHITRENDZF—IE. 7T AT (+) TH

T&iLENEJ,
FHE HE ORI 7S BRI IS D248 E T 2 BN D 222X L X, AL TR

WICHRT I LVWHEERLET,

E/AR=RT AV AN T ERENDZTFANEREI VAT LR RENE Ay =R LET,
~ Program code.

0 RO Y FERUET, CThb IOMRT 08NS D E9, 17w 0Nl
WCHBERDOBZATILET, {}EEFEASTLEE A,

| RS T TR 72 2 D OB Z XY D 976 W NDhOERZ AT LT T,
| RS ATILERA,

[1D DA Ty areRkLET, KAy aDoRMNCHZEHROIZATTLET, []
REFIE AT LEE A

[H] CREOERZEBIRA I TED T L RRLET, BMIZTZATILTLZE W,
EEROT— RIEOIRLES () ZASLEVWTLEE W,

*2 34 VIEH

Software AG ¥ =27)LD Web 1 k

XY= a7 J)Vi&. Software AG ¥ =277)LD Web ¥ 1 b (http://documentation.softwareag.com)
TAFTEET, TOYA FTldEmpower 7 LT 2 ¥)UAWAELTS, Empower 7 LT 23/ ¥
VN WIGEIE. TECHcommunity Web ¥+ b 2T 208 H O X9,

Software AG Empower /DY ;K— ~ Web ¥ 1 bk

& UXCEmpowerD 7 17V M 2 BFFH TRWVWDIIER S, TH 5 \empower@softwareag.com?&
TA=ICT BRTOBHE. 2ttt SHOEBFA—IVT FLAZBHEZO L, 7V
ZER LT TEE W,

Wo e AT D Y M BRBICAENE. Empower https://empower.softwareag.com/ DeService
I a il THR— A VYT U AV TAVTH T ENTEEXT,

R, Software AG Empower 8D H HR— T Web ¥ |k (https://empower.software-
ag.com) TAFTEXT,

2 Natural RPC (Remote Procedure Call)

http://documentation.softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com

About this Documentation

FERETS KX ULIEIEEEICEI S 2) 7 T X P DiE(E, BSOrTHMEICEET 2 EHMOEE, 2D XY
v — RZ25479 51Cid. Products ICBHI L X9,

EIEICBET B a2 S L, RIS, HilmmsC. Knowledge Base DRt HFZ #idsICid, Know-
ledge Center [ICBEIL £97,

L ZHEBMNHNIE. TH S Dhttps://empower.softwareag.com/public_directory.asp 7 21—/
WY R— FERE—E D, HRTCOEOEFEFSZEAT, DIed ULHATHEHE I TEE W0,

Software AG TECHcommunity

X a 7 VB X CZOMOEAMEHIZ. Software AG TECHcommunity Web H"1 | (http:/tech-
community.softwareag.com) CAFTEX T, LLNDOEEZEITTEE T,

¥ TECHcommunity 7 L7 >3 ¥)LZ2Hi> TV A 5EGIE. M~ =2 7)c7 78 ATEET,
TECHcommunity 7 L' 7 2 ¥ ¥)UVEWGEIE, B8 L. BOFOHEKE LT [v =27)]
ZIEET HENH D T,

BElH, O—FKY T, T8, Fa—RNITIICT IR AT S,

W Software AG DEHIFIC K > THERREINI=A VT A Vi 7 A —F L2 LT, El Lk
D, RANT ST 4 A%FELEST2D . MMOBEEED Software AG DT 7 /adxzEDLS
WL TWEhZZEATZD TS EMNAJRETT,

B of— T YRR H— R Web T2/ B VEID S IH Web 1 MU V7 TEET,
T— 2 1RE

Software AGHELIZ, EU—MT — X (RFEMIHI(GDPR) %2 BHE L 7 A7 — X DULHIESRE 2 240t L
X9, &ZAUTHHA. BWULTFIENETNZTNOEH FF 2 AV MGEHKENTVET,

Natural RPC (Remote Procedure Call) 3

https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com
http://techcommunity.softwareag.com

2 Introducing Natural RPC

B GENEral INfOIMALIONeee ettt 6
= Natural RPC Operation in Non-Conversational Modeccooiiiiiiiiiiiiiiiiiiiie e, 8
= Natural RPC Operation in Conversational MOGEcooiiiiiiiiiiiiii e 11
= Conversational versus Non-Conversational MOGEcuuueiiiiiiiiii e 12
B Database TranSACHONScoii ittt e e et e e e e 15
= Handling of Limits Set with Profile Parameters LT, MAXCL, MADIO, and MT on Servercccocccvvveeeeeennnns 16
B L 0CAtON Of CONVEISALIONS ... eeeiiiiiii ettt e et e e et e e e et ee e e e e tnee e e e nnneeees 16
® Natural RPC TEIrMINOIOQYeeeeiiiiii ettt e e e e e s 17

Introducing Natural RPC

General Information

= Purpose

= Advantages of Natural RPC (Remote Procedure) Calls
= Natural RPC Modes of Operation

= Availability on Various Platforms

= Support of Non-Natural Environments (EntireX RPC)

Purpose

The Natural RPC facility enables a client Natural program to issue a CALLNAT statement to invoke
a subprogram in a server Natural. The Natural client and server sessions may run on the same or
on a different computer. For example, a Natural client program on a Windows computer can issue
a CALLNAT statement against a mainframe server in order to retrieve data from a mainframe database.
The same Windows computer can act as a server if a Natural client program running under, for
example, UNIX issues a CALLNAT statement requesting data from this server Natural.

Advantages of Natural RPC (Remote Procedure) Calls

Natural RPC exploits the advantages of client server computing. In a typical scenario, Natural on
a Windows client computer accesses server data (using a middleware layer) from a Natural on a
mainframe computer. The following advantages arise from that:

¥ The end user on the client side can use a Natural application with a graphical user interface.

W A large database can be accessed on a mainframe server.

¥ Network traffic can be minimized when only relevant data are sent from client to server and
back.

Natural RPC Modes of Operation

The Natural RPC (Remote Procedure) Call offers the following modes of operation:

¥ non-conversational mode (in the following texts this mode is meant unless otherwise specified)

B conversational mode

These modes are described in detail in the following sections. For a comparison of the advantages
and disadvantages of these modes, refer to Conversational versus Non-Conversational Mode.

6 Natural RPC (Remote Procedure Call)

Introducing Natural RPC

Availability on Various Platforms
You can use the Natural RPC on various platforms under the following operating systems:

Mainframe Environments

® z/0S
B 7/VSE
H BS2000

Natural RPC on mainframes is supported under the following TP monitors:

¥ Com-plete
" CICS

H IMS ™™
®TSO

H TIAM

¥ openUTM

Also, it is available in batch mode.
Other Environments

B Windows
B UNIX
¥ OpenVMS

On all of these platforms, Natural can act as both client and server.
Support of Non-Natural Environments (EntireX RPC)

Non-Natural environments (3GL and other programming languages) are supported on the client
and the server side. Thus, a non-Natural client can communicate with a Natural RPC server, and
a Natural client can communicate with a non-Natural RPC server. This is enabled by the use of
the EntireX RPC.

Natural RPC (Remote Procedure Call) 7

Introducing Natural RPC

Natural RPC Operation in Non-Conversational Mode

The non-conversational mode should be used only to accomplish a single exchange of data with
a partner. See also Conversational versus Non-Conversational Mode.

The Natural RPC technique uses the Natural statement CALLNAT, so that both local and remote
subprogram calls can be issued in parallel. Remote program calls work synchronously. As a remote
procedure call, a CALLNAT would, simply speaking, take the following route:

CALLMAT CALLMAT

Data Data

The CALLNAT issued from the Natural client is routed via a middleware layer to the Natural server
which passes data back to the client.

Usually, the middleware layer consists of the Software AG product EntireX Broker which uses
the ACI protocol. EntireX Broker uses either Entire Net-Work or TCP/IP as communication layer.

A detailed example of the RPC control flow is described below.
Issuing CALLNATSs in an RPC Environment

CALLNAT control flow details in a remote procedure are illustrated below. For greater clarity, the
return path is not shown, but it is analogous; the numbers refer to the description:

8 Natural RPC (Remote Procedure Call)

Introducing Natural RPC

Matural Client
Program PGM1 Subprogram SUB1 (Client Interface Object)

Service Directory NATCLTGS

.‘ -
i

4
b
vo
Middleware Layer
vb
Natural Server (SRV1)
b
7
b
Subprogram SUBA
Target of Remote CALLMAT)

1. From the Natural client, the program PGM1 issues a CALLNAT to the subprogram SUB1. PGM1 does
not know if its CALLNAT will result in a local or in a remote CALLNAT.

Natural RPC (Remote Procedure Call) 9

Introducing Natural RPC

As the target SUB1 resides on a server, the CALLNAT accesses an interface object SUBI instead.
This client interface object has been created automatically or manually (by using the SYSRPC
utility's interface object generation (IG) function).

The interface object has the same name as the target subprogram and contains parameters
identical with those used in program PGM1 and in the target subprogram SUB1 on the server. It
also contains control information used internally by the RPC.

If the AUTORPC profile parameter is set to ON and Natural cannot find the subprogram in the
local environment, Natural interprets this as a remote procedure call and generates the para-
meter data area (PDA) dynamically during runtime.

Natural also tries to find this subprogram in the service directory NATCLTGS.

For further information on the SYSRPC interface object generation function, see Creating Interface
Objects.

If you want to work without interface objects, see Working with Automatic Natural RPC Exe-
cution.

2. The interface object then sets up a CALLNAT to an RPC client service routine.

3. The client RPC runtime checks in the service directory NATCLTGS on which node and server the
CALLNAT is to be performed and whether a logon is required.
The CALLNAT data including the parameter list and, if required, the logon data are passed to a
middleware layer.

4. In this example, this middleware layer consists of the Software AG product EntireX Broker.
Therefore, the CALLNAT data is first passed to an EntireX Broker stub on the client.

5. From the EntireX Broker stub, the CALLNAT data is passed to the EntireX Broker. The EntireX
Broker is a product that can reside:

¥ on the client computer
¥ on the server computer or
¥ on a third platform.

For the data to be passed on successfully, the server SRV1 must be defined in the EntireX Broker
attribute file and SRV1 must be already up, thus having registered with EntireX Broker.

For information on how to define servers in the EntireX Broker attribute file, see the EntireX
Broker documentation.
6. From the middleware layer, the CALLNAT data is passed on to the EntireX Broker stub on the

Natural Server platform and from there to the RPC server service routine.

The RPC server service routine validates the logon data (if present) and performs a logon (if
requested).

10 Natural RPC (Remote Procedure Call)

Introducing Natural RPC

7. The RPC server service routine invokes the target subprogram SUB1 and passes the data, if re-
quested.

At this point, the target subprogram SUB1 has all the required data to execute just as if it had
been invoked by a local program PGM1.

8. Then, for example, the subprogram SUB1 can issue a FIND statement to the server's Adabas
database. SUB1 does not know whether it has been started by a local or by a remote CALLNAT.

9. Adabas FINDs the data and passes them to SUBI.

Then, SUB1 returns the Adabas data to the calling server service routine. From there, it is passed
it back to PGM1 via the middleware layer. It takes the same route as described in Steps 1 to 8,
but in reverse order.

Natural RPC Operation in Conversational Mode

A conversational RPC is a static connection of limited duration between a client and a server. It
provides a number of services (subprograms) defined by the client, which are all executed within
one server task that is exclusively available to the client for the duration of the conversation. It is
implemented in a program using an OPEN CONVERSATION statement and a CLOSE CONVERSATION
statement.

Multiple connections (conversations) can exist at the same time. They are maintained by the client
by means of conversation IDs, and each of them is performed on a different server. Remote pro-
cedure calls which do not belong to a given conversation are executed on a different server,
within a different server task.

During a conversation, you can define and share a data area called context area between the remote
subprograms on the server side. For further information, see Defining Context Variables for Natural
RPC in the Natural Statements documentation.

A conversation may be local or remote.

Example:

OPEN CONVERSATION USING SUBPROGRAM 'S1''S2'
CALLNAT 'S1" PARMSI1
CALLNAT 'S2' PARMS2

CLOSE CONVERSATION ALL

Both subprograms (S1 and S2) must be accessed at the same location, that is, either locally or re-
motely. It is not admissible to mix up local and remote CALLNATs within a conversation. If the
subprograms are executed remotely, both subprograms will be executed by the same server task.

Natural RPC (Remote Procedure Call) "

Introducing Natural RPC

Analogously to non-conversational RPC CALLNATs, conversations may first be written and tested
locally and can then be transferred to the servers.

General Rules for Local/Remote Subprogram Execution

Local Subprogram Execution

If you execute subprograms locally, the following rule applies:
¥ A subprogram may not call another subprogram which is a member of the conversation.

Other subprograms not listed in the OPEN CONVERSATION statement may be called. They are however
executed in non-conversational mode.

Remote Subprogram Execution

If you execute subprograms remotely, the following rule applies:
¥ A subprogram S1 may call another subprogram S2 which is a member of the conversation.

This CALLNAT will be executed in non-conversational mode because it was invoked indirectly.
Thus, the subprogram S2 does not have access to the context area.

Conversational versus Non-Conversational Mode

In a client-server environment where several clients access several servers in non-conversational
mode, there may be the problem that identical CALLNAT requests from different clients are executed
on the same server.

This means, for example, that a CALLNAT 'S1' from Client 1 executes Subprogram S1 on Server 1
(S1 is writing a record to the database). The transaction for Client 1 is not yet complete (no END
TRANSACTION) when Client 2 also sends a CALLNAT 'S1' to Server 1, thus overwriting the data from
Client 1. If Client 1 then sends a CALLNAT 'S2' (meaning END TRANSACTION), Client 1 supposes its
data have been saved correctly, although in fact the data from Client 2's identical CALLNAT were
saved.

The diagram below illustrates this with two clients and two servers. In such a scenario, you cannot
control whether two identical CALLNATs from two different clients access the same subprogram on
the same server:

12 Natural RPC (Remote Procedure Call)

Introducing Natural RPC

Non-conversational Mode

Server 1

> S
52

Server 2

51
52

In the above example, CALLNAT 'S2"' from Client 1 can access subprogram S2 on Server 1 and on
Server 2. CALLNAT 'S2" from Client 2 has the same choice.

Similarly, CALLNAT 'S1' from Client 1 could access Subprogram S1 on Server 1 and on Server 2,
while CALLNAT 'S1' from Client 2 has the same choice.

It is obvious that interference can be a problem here if the subprograms are designed to be executed
within one server task context.

You can avoid the potential problems of a non-conversational RPC by defining a more complex
RPC transaction in conversational mode:

Natural RPC (Remote Procedure Call) 13

Introducing Natural RPC

Conversational Mode

Server 1

Server 2

* DEFIME DATA CONTEXT

You do this by opening a conversation. This involves the use of the OPEN CONVERSATION statement
on the client side, referring to CALLNAT 'S1' and CALLNAT 'S2'. Opening such a conversation re-
serves one entire server task (for example, Server 1) and no other remote CALLNATs may interrupt
this conversation on this server before this conversation has been closed. In addition, you can
define a common context area for the two subprograms on the server side by using the DEFINE
DATA CONTEXT statement.

14 Natural RPC (Remote Procedure Call)

Introducing Natural RPC

General Rules for Use of Conversational/Non-Conversational RPC

As a general rule, the following applies:

W Use the conversational RPC to ensure that a defined list of subprograms is executed exclusively
within one context.

¥ Use the non-conversational RPC if each of your subprograms can be used within a different
server task or if the transaction does not extend over more than one server call. The advantage
of this is that no server blocks over a significant amount of time and you only need a relatively
small number of server tasks.

Possible Disadvantage of Using Conversational RPC
A possible disadvantage of conversational RPCs is that you reserve an entire server task, thus

blocking all other subprograms on this server. As a consequence, other CALLNATs might have to
wait or more server tasks must be started.

Database Transactions

The database transactions on the client and server sides run independent of each other. That is,
an END TRANSACTION or BACKOUT TRANSACTION executed on the server side does not influence the
database transaction on the client side and vice-versa.

At the end of each non-conversational CALLNAT and at the end of each conversation, an implicit
BACKOUT TRANSACTION is executed on the server side. To commit the changes made by the remote
CALLNAT(s), you have the following options:

Non-conversational CALLNAT

1. Execute an explicit END TRANSACTION before leaving the CALLNAT.

2. Set the Natural profile parameter ETEOP to ON. This results in an implicit END TRANSACTION at
the end of each non-conversational CALLNAT.

Depending on the setting of the parameter SRVCMIT, the END TRANSACTION is executed either
before the reply is sent to the client (SRVCMIT=B) or after the reply has been successfully sent to
the client (SRVCMIT=A). SRVCMIT=B is the default and is compatible with earlier versions of the
RPC.

Conversational CALLNAT

1. Execute an explicit END TRANSACTION on the server before the conversation is terminated by the
client

2. Set the Natural profile parameter ETEOP to ON. This results in an implicit END TRANSACTION at
the end of each conversation.

Natural RPC (Remote Procedure Call) 15

Introducing Natural RPC

Depending on the setting of the parameter SRVCMIT, the END TRANSACTION is executed either
before the reply is sent to the client (SRVCMIT=B) or after the reply has been successfully sent to
the client (SRVCMIT=A). SRVCMIT=B is the default and is compatible with earlier versions of the
RPC.

3. Before executing the CLOSE CONVERSATION statement, call the application programming interface
USR2032N on the client side. This will cause an implicit END TRANSACTION at the end of the indi-
vidual conversation.

Handling of Limits Set with Profile Parameters LT, MAXCL, MADIO, and MT
on Server

The following Natural limits apply to each individual remote CALLNAT execution on the Natural
RPC server:

Natural Profile Parameter | Type of Limit

LT Limit for Processing Loops

MADIO Maximum DBMS Calls between Screen I/O Operations
MAXCL Maximum Number of Program Calls

These limits are reset after each remote CALLNAT execution, and you can enforce certain limits on
each remote CALLNAT execution.

This measure helps to avoid unpredictable error situations when the execution of a client request
reaches one of the limits due to the processing of a previous client request.

Location of Conversations

Both subprograms S1 and S2 (shown in the figure above) must be accessed at the same location,
i.e. either locally or remotely. You may not mix up local and remote CALLNATs within a conversation.
If the subprograms are executed remotely, both subprograms will be executed by the same server
task.

16 Natural RPC (Remote Procedure Call)

Introducing Natural RPC

Natural RPC Terminology

The following table provides an overview of important key terms used in the SYSRPC Utility and
the Natural RPC documentation:

Term Explanation

Client Stub Obsolete term, see Client Interface Object below.

EntireX Broker Stub |Interface between the Natural RPC runtime and the EntireX Broker transport layer
which exchanges marshalled data between client and server.

Impersonation Impersonation assumes that access to the operating system on which a Natural RPC

server is running is controlled by an SAF-compliant external security system. User
authentication is performed by this external security system. Impersonation means
that after the authentication has been successful and the user's identity is established,
any subsequent authorization checks will be performed based on this identity. This
includes authorization checks for access to external resources (for example, databases
or work files). After successful authentication the user cannot “change his/her identity”,
that is, he/she cannot use a different user ID. See Impersonation in Using Security.

Interface Object

In earlier versions of EntireX, the term “stub” was also used to refer to
application-dependent, Workbench-generated pieces of code for issuing and receiving
remote procedure calls. These objects are now referred to as interface objects.

Client Interface
Object

Accepts the CALLNAT requests on the client side, marshalls the parameters passed,
transmits the data through the Natural RPC runtime and the transport layer to the
remote server, unmarshalls the result and returns it to the caller.

The interface object stub is the local subprogram via which the server subprogram is
called. The client interface object has the same name and contains the same parameters
as the corresponding server subprogram.

NATCLTGS The name of the Natural subprogram generated with the SYSRPC utility to implement
the service directory (see below).
Node Name The name of the node to which the remote CALLNAT is sent.

In case of communication via the EntireX Broker, the node name is the name of the
EntireX Broker for example, as defined in the EntireX Broker attribute file, in the field
BROKER-1ID.

RPC Parameters

All parameters available to control a Natural RPC are described in detail in the Natural
Parameter Reference documentation. See the section Profile Parameters.

RPC Server

An RPC server is either a Natural or an EntireX RPC server.

Service Directory

The service directory contains information on the services (subprograms) that a server
provides. It can be locally available on each client node, or it can be located on a
remote directory server, which is referenced on Windows, UNIX, OpenVMS by profile
parameter RDS, and on Mainframes by the corresponding keyword subparameter
RDS of profile parameter RPC or parameter macro NTRPC.

Server Name

The name of the server on which the CALLNAT is to be executed.

Natural RPC (Remote Procedure Call) 17

Introducing Natural RPC

In case of communication via EntireX Broker, the server name is the name as defined
in the EntireX Broker attribute file in the field SERVER.

Server Task A Natural task which offers services (subprograms). This is typically a batch task or
asynchronous task. It is identified by a server name.

18 Natural RPC (Remote Procedure Call)

3 Prerequisites and Preparatory Information

B ProductS INVOIVEd ...,
m Natural Statements Involvedcooovviiviii
= Natural Utilities for Use with Natural RPCcccooevviiin,

= Application Programming Interfaces for Use with Natural RPC

m Software AG IDL to Natural Mappingccccceevvvvvieennnnnn

19

Prerequisites and Preparatory Information

This document provides an overview of the general prerequisites and and a short description of
the facilities that are available in Natural for implementing a Natural RPC (Remote Procedure
Call) environment.

Products Involved

If the RPC environment is to be implemented on different plattforms, the corresponding current
versions of Natural for Mainframes, Windows, UNIX or OpenVMS will be required. In addition,
the following required or optional products, subproducts and facilities are available for use in a
Natural RPC environment:

Product Purpose

EntireX Communicator |The EntireX Broker of the Software AG product EntireX Communicator usually

(EntireX Broker) establishes the middleware layer between the Natural client and a Natural
server. It uses the ACI protocol and comprises the appropriate client/server
stubs.

Entire Net-Work This Software AG product is required if the transport method used by EntireX
Broker is Entire Net-work. This is the preferred transport method.

TCP/IP Required if the transport method used by EntireX Broker is TCP/IP.

See also Using TCP/IP as a Transport Method in Setting Up a Natural RPC
Environment.

EntireX Developer's Kit |Included in the EntireX Communicator product, this kit is required for
non-Natural programming language support.

Directory Services A remote directory server (RDS) enables you to define directory definitions in
one place so that its services can be used by all clients in an RPC environment.

Natural Security Optional.

This Software AG add-on product is required on the server side to protect
Natural RPC servers and services when security is active on the client and vice
versa.

EntireX RPC Optional.

Natural RPC fully supports EntireX RPC for 3GL. EntireX RPC is included in
the EntireX Communicator product.

EntireX Security Optional.

Natural RPC fully supports EntireX Security on the client and on the server
side. EntireX Security is included in the EntireX Broker product.

For the supported Software AG product versions, refer to Software AG Product Versions Required
with Natural in the current Natural Release Notes for Mainframes.

20 Natural RPC (Remote Procedure Call)

Prerequisites and Preparatory Information

For information on other products that may be involved in a Natural RPC-based environment,
see the corresponding product documentation.

Natural Statements Involved

The following Natural statements are used in the creation of a Natural RPC environment:

W CALLNAT

M DEFINE DATA PARAMETER

B DEFINE DATA CONTEXT

M OPEN CONVERSATION

W CLOSE CONVERSATION

In the section Restrictions and Limitations, the paragraphs Natural Statement Reactions and

Notes on Natural Statements on the Server provide information on what you should know about
any deviating behavior of these statements when they are used in a Natural RPC environment.

Natural Utilities for Use with Natural RPC

The following Natural utilities are used in the creation and maintenance of a Natural RPC envir-
onment:

W SYSRPC
This utility is used to maintain remote procedure call environments.

W SYSEXT
This utility is used to locate and test Natural Application Programming Interfaces (APIs, see
below) contained in the current system library SYSEXT.

W SYSPARM
On mainframes, this utility is used for creating and maintaining a set of Natural profile paramet-
ers that is stored under a profile name.

¥ Configuration Utility

Under Windows, UNIX and OpenVMS, this utility is used to modify global and local configur-
ation files and to create or modify parameter files.

Natural RPC (Remote Procedure Call) 21

Prerequisites and Preparatory Information

Application Programming Interfaces for Use with Natural RPC

The purpose of Natural Application Programming Interfaces (API) is to retrieve or modify inform-
ation or use services that are not accessible by Natural statements.

The following Application Programming Interfaces available in the Natural library SYSEXT are
intended for being used with the Natural RPC:

API Purpose
USR1071N|Set user ID, password and ticket criteria for Natural RPC.
See Using Security.
USR2007N|Specify a default server address that is to be used each time a remote program cannot be
addressed via the service directory.
See Specifying a Default Server Address within a Natural Session in Operating a Natural RPC
Environment.
USR2032N|Support the commit fora CLOSE CONVERSATION statement on the client side. When called, this
API will cause an implicit END TRANSACTION at the end of the individual conversation.
See Database Transactions in Introducing Natural RPC, section Conversational CALLNAT.
USR2035N|Set the required SSL parameter string if the Secure Socket Layer (SSL) for the TCP/IP
communication to the EntireX Broker is used.
See Using Secure Socket Layer in Operating a Natural RPC Environment.
USR2071N|Has to be called in case of non-Natural Security clients for specifying logon data which are then
passed to the server.
See Using Natural RPC with Natural Security in Using Security.
USR2072N|Specify a password which is used for the LOGON in conjunction with profile parameter SRVUSER
See Server Side in Using Security, section Using Natural RPC with EntireX Security.
USR2073N|Ping or terminate an RPC server from within your application.
See Using Application Programming Interface USR2073N in Terminating a Natural RPC Server.
USR2074N|Change the Natural Security password on the RPC server via a Natural RPC service request.
See Change Password in Using Security.
USR2075N|Terminate an EntireX Broker Service from within your application.
See Using Application Programming Interface USR2075N in Terminating a Natural RPC Server.
USR4008N|On the client side, specifiy an alternate name of a library to which the server will logon.
See Using the Logon Option in Operating a Natural RPC Environment.
22 Natural RPC (Remote Procedure Call)

Prerequisites and Preparatory Information

API Purpose

USR4009N |Set or get parameters for EntireX in a Natural RPC client or server environment.

See Setting/Getting Parameters for EntireX in Operating a Natural RPC Environment.

USR4010N|On the client side, retrieve the runtime settings of a server.

See Retrieving the Runtime Settings of a Server in Operating a Natural RPC Environment.

USR4371N|On the client side, set the user ID and ETID for Natural RPC servers which were configured
with Impersonation = A (automatic logon).

USR6304N |Set or get the reliable state for the reliable Natural RPC.

See Reliable RPC on the Natural RPC Client Side in Reliable RPC.

USR6305N |Commit or rollback reliable RPC message(s). This API is required if the reliable RPC state has
been set to “client commit”

See Reliable RPC on the Natural RPC Client Side in Reliable RPC.

USR6306N |Retrieve the status of all reliable RPC messages of the user who is currently logged on to the
EntireX Broker.

See Reliable RPC on the Natural RPC Server Side in Reliable RPC.
USR8208N |An enhanced version of API USR2075N.

See Using Application Programming Interface USR8208N in Terminating a Natural RPC Server.

USR8220N |Trigger termination of current RPC server.

See Using Application Programming Interface USR8220N in Terminating a Natural RPC Server.

Note that the RPC-specific APIs accept all values also in mixed mode. An uppercase translation
will take place only if the example program USRnnnnP (source object) is used to invoke the corres-
ponding subprogram USRnnnnN. Exception: All USRnnnnP programs that deal with passwords
provide an option to enter the passwords in mixed case mode.

For an explanation of the Natural object types that are typically provided for each API, see the
Natural utility SYSEXT.

Software AG IDL to Natural Mapping

This section describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the Natural programming language. Please note also the remarks and hints on the
IDL data types valid for all language bindings found in the Software AG IDL File (in the EntireX
documentation).

= Mapping Software AG IDL Data Types to Natural Data Formats
= Mapping Library Name and Alias
= Mapping Program Name and Alias

Natural RPC (Remote Procedure Call) 23

Prerequisites and Preparatory Information

= Mapping Parameter Names

= Mapping Fixed and Unbounded Arrays

= Mapping Groups and Periodic Groups

= Mapping Structures

= Mapping the Direction Attributes IN, OUT, INOUT
= Mapping the ALIGNED Attribute

= Calling Servers as Procedures or Functions

Mapping Software AG IDL Data Types to Natural Data Formats

In the table below, the following metasymbols and informal terms are used for the IDL.

¥ The metasymbols [and | surround optional lexical entities.

¥ The informal term number (or in some cases number. number) is a sequence of numeric characters,

for example 123.

Software AG IDL Description Natural Data Format |Note
Anumber Alphanumeric Anumber

AV Alphanumeric variable length A DYNAMIC
AVnumber Alphanumeric variable length with maximum length |A DYNAMIC
Bnumber Binary Bnumber

BV Binary variable length B DYNAMIC
BVnumber Binary variable length with maximum length B DYNAMIC

D Date D 3,5
F4 Floating point (small) F4

F8 Floating point (large) F8 2
I1 Integer (small) In

12 Integer (medium) 12

14 Integer (large) 14

Knumber Kanji Anumber 1
KV Kanji variable length A DYNAMIC 1
KVnumber Kanji variable length with maximum length A DYNAMIC 1

L Logical L

Nnumber[.number] |Unpacked decimal Nnumber[.number]
NUnumber[.number] |Unpacked decimal unsigned Nnumber[.number]
Pnumber[.number] |Packed decimal Pnumber[.number]
PUnumber[.number] |Packed decimal unsigned Pnumber[.number]

T Time T 3,4
Unumber Unicode Unumber

uv Unicode variable length U DYNAMIC

24 Natural RPC (Remote Procedure Call)

Prerequisites and Preparatory Information

Software AG IDL

Description Natural Data Format |Note

UVnumber

Unicode variable length with maximum length U DYNAMIC

See also the hints and restrictions on the Software AG IDL Data Types (in the EntireX documenta-
tion) valid for all language bindings.

Notes:

1. Data type K is an RPC-specific data format that is not part of the Natural language.

2. When floating-point data types are used, errors due to rounding can occur, so that the values
of senders and receivers might differ slightly. This is especially true if client and server use
different representations for floating point data (IEEE, HEP).

3. Count of days AD (anno domini, after the birth of Christ). The valid range is from 1.1.0001 up
t0 28.11.2737. Mapping of the number to the date in the complete range from 1.1.0001 on, follows
the Julian and Gregorian calendar, taking into consideration the following rules:

a. Years that are evenly divisible by 4 are leap years.

b. Years that are evenly divisible by 100 are not leap years unless rule 3, below, is true.

c. Years that are evenly divisible by 400 are leap years.

d. Before the year 1582 AD, rule 1 from the Julian calendar is used. After the year 1582 AD,
rules 1, 2 and 3 of the Gregorian calendar are used.

See the following table for the relation of the packed number to a real date:

Date / Range of Dates Value / Range of Values

1.1.0000
undefined dates
1.1.0001
1.1.1970
28.11.2737

0 (special value - no date)

1 - 364 (do not use)

365

719527 (start of C-time functions)
999999 (maximum date)

4. Count of tenth of seconds AD (anno domini, after the birth of Christ). The valid range is from
1.1.0001 00:00:00.0 up to 16.11.3168 9:46:39 plus 0.9 seconds. See the following table for the relation
of the packed number to a real time:

Time / Range of Times Value / Range of Values

1.1.0000 00:00:00.0
undefined times

1.1.0001 00:00:00.0
1.1.1970 00:00:00.0

0 (special value - no date)

1 - 315359999

315360000

621671328000 (start of C-time functions)

Natural RPC (Remote Procedure Call) 25

Prerequisites and Preparatory Information

5. The relation between the packed number of a Date and Time data type is as follows:

tenths of a second per day = 24*60*60*10 = 864000

number of time = number of date * 864000

315360000 =365 * 864000 1.1.0001 00:00:00.0
621671328000 = 719527 * 864000 1.1.1970 00:00:00.0
number of date = number of time / 864000

365 = 315360000 / 864000 1.1.0001

719527 =621671328000 /864000 1.1.1970

Mapping Library Name and Alias

The library name as specified in the IDL file is not supported by Natural. By default, a Natural
client sends the library name SYSTEM to the server. To send a library name other than SYSTEM from
a client to a server, the following steps are required for the client:

> To send a library name other than SYSTEM from a client to a server

1 On the client, turn on the logon option.

2 Callapplication programming interface USR4008N to specify the name of the library, otherwise
the name of the current library is sent

The length of the library name is limited to 8 characters.
Mapping Program Name and Alias

The program name is sent from a client to the server. Special characters are not replaced. The
program alias is not sent to the server.

The generated Natural interface object has the same name.
In the RPC server, the IDL program name sent is used to locate the Natural subprogram.

The length of the program name is limited to 8 characters.

26 Natural RPC (Remote Procedure Call)

Prerequisites and Preparatory Information

Mapping Parameter Names

The parameter names as given in the parameter-data-definition of the IDL file are replaced by ar-
tificial names in the generated Natural interface object.

See parameter-data-definition in the section Software AG IDL Grammar in the EntireX documentation.
Mapping Fixed and Unbounded Arrays

¥ Fixed arrays within the IDL file are mapped to fixed Natural arrays. The lower bound is set to
1 and the upper bound is set to the upper bound given in the IDL file.

See the array-definition (in the section Software AG IDL Grammar in the EntireX documentation)
for the syntax on how to describe fixed arrays within the IDL file and refer to fixed-bound-array-
index.

¥ Unbounded arrays within the IDL file are mapped to Natural X-arrays. The lower bound is always
fixed and set to 1.

See the array-definition (in the section Software AG IDL Grammar in the EntireX documentation)
for the syntax of unbounded arrays within the IDL file and refer to unbounded-array-index.

Note: Natural variable arrays (Natural notation (../1:V)) can be used on the Natural RPC

server side instead of Natural fixed arrays or X-arrays. An RPC client can pass either an
IDL fixed array or IDL unbounded array to a Natural RPC server with such a Natural
variable array. In the RPC server, the variable array cannot be resized; this means the
number of array occurrences cannot be changed, and the Natural RPC server will always
pass back the same number of occurrences.

Mapping Groups and Periodic Groups

Groups within the IDL file are mapped to Natural groups. See group-parameter-definition (in the
section Software AG IDL Grammar in the EntireX documentation) for the syntax on how to describe
groups within the IDL file.

Mapping Structures
Structures within the IDL file are mapped to Natural groups. See structure-definition (in the section

Software AG IDL Grammar in the EntireX documentation) for the syntax on how to describe structures
within the IDL file.

Natural RPC (Remote Procedure Call) 27

Prerequisites and Preparatory Information

Mapping the Direction Attributes IN, OUT, INOUT

The IDL syntax allows you to define parameters as IN parameters, OUT parameters, or INOUT
parameters (which is the default if nothing is specified). This direction specification is reflected
by Natural as follows:

B Parameters with the 0UT attribute are sent from the RPC client to the RPC server. They are always
provided with the call by reference method.

W Parameters with the IN attribute are sent from the RPC server to the RPC client. They are always
provided with the call by reference method.

B Parameters with the INOUT attribute are sent from the RPC client to the RPC server and then
back to the RPC client.

¥ Only the direction information of the top-level fields (level 1) is relevant. Group fields always
inherit the specification from their parent. A different specification is ignored.

See attribute-list (in the section Software AG IDL Grammar in the EntireX documentation) for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

| Note: If you define an interface object layout in the Natural application SYSRPC, the meaning
of the direction attributes IN and OUT are reversed compared to the IDL:

B N in SYSTRPC is OUT in IDL
B 0UT in SYSTRPC is IN in IDL

Mapping the ALIGNED Attribute

The ALIGNED attribute is not relevant for the programming language Natural. However, a Natural
client can send the ALIGNED attribute to an RPC server where it might be needed. To do this you
need a Natural interface object that has been generated from an IDL file.

See attribute-list (in the section Software AG IDL Grammar in the EntireX documentation) for the
syntax of attributes in the IDL file and refer to the aligned-attribute.

Calling Servers as Procedures or Functions

The IDL syntax allows definitions of procedures only. It does not have the concept of a function.
A function is a procedure which, in addition to the parameters, returns a value. Procedures and

functions are transparent between clients and server. This means a client using a function can call
a server implemented as a procedure, and vice versa.

Client and Server Side

The Natural RPC does not support functions.

28 Natural RPC (Remote Procedure Call)

4 Restrictions an

d Limitations

= User Context Transfer
= System Variable Transfer
= Application-Independent Variables
= Parameter Handling in Error Situations
= Variable Arrays in Subprograms
B OX-AITAYS o
= Groups and Interface Objects
= Group Arrays on the RPC Server Side
= Unsupported Natural Data Formats ...
EntireX RPC Serverccccooveeenn
Using VSAMoovviiiiiiiiiic
Natural Statement Reactions

Notes on Natural Statements 0N the SEIVET i

29

Restrictions and Limitations

This document informs you about some restrictions and limitations that you should observe when
you are using the Natural RPC (Remote Procedure Call) facility.

When executing a subprogram via the RPC, certain differences to local execution apply. These are
described in the following section.

User Context Transfer

Excepting the user identification, no user context is transferred to the server session, for example:

¥ all client session parameters remain unchanged and do not affect the execution on the server
side;

¥ open transactions on the client side cannot be closed by the server and vice versa;

¥ client report handling and work file processing cannot be continued on the server side and vice
versa;

¥ the handling of the Natural stack cannot be continued either.

System Variable Transfer

No system variables except *USER can be transferred from the client to the server side.

Application-Independent Variables

In an RPC server, application-independent variables (AIVs) are not deallocated implicitly, but
stay active across RPC requests, because different clients may have access to the same variables
on the RPC server. This means they must be deallocated explicitly using the RELEASE VARIABLES
statement.

If you want to release AIVs at the end of an RPC request, you may use the Natural RPC user exit
NATRPCO3 for this purpose.

30 Natural RPC (Remote Procedure Call)

Restrictions and Limitations

Parameter Handling in Error Situations

Parameter handling in error situations is different:

¥ If an error occurs during local execution, all parameter modifications performed so far are in
effect, because parameters are passed via “call by reference”.

¥ If an error occurs during remote execution, however, all parameters remain unchanged.

Variable Arrays in Subprograms

If the parameter data area of the subprogram contains a variable number of occurrences (1:V
notation), you should not use an interface object to call this subprogram. As an interface object
only supports array definitions with a fixed number of occurrences, you cannot vary the number
of occurrences from call to call.

If you have to use an interface object, for example, because you want to call an EntireX RPC
server with the same program, you should use an X-array on the Natural client side. With X-arrays,
itis possible to vary the number of occurrences from call to call even when using an interface object.
In this case, the X-array on the client side is passed to the (fixed) variable array on the server side.
The variable array is fixed because the server program may receive a varying number of occurrences
from call to call but cannot change the number of occurrences.

X-Arrays

X-arrays are supported in the parameter list of a remote CALLNAT statement execution. The server
may increase or decrease the number of occurrences.

Restrictions

¥ In case of a multidimensional array, all dimensions of the array must be extensible.
¥ The lower bound must not be extensible, that is, only extensible upper bounds are allowed.

¥ If you want to use an X-group array that contains an array with constant bounds or a group
array that contains an X-array, you must use an interface object. When generating the interface
object, you must define the group structure in the Interface Object Generation screen.

Examples:

Natural RPC (Remote Procedure Call) 31

Restrictions and Limitations

01 X-Group-Array (/1:*)
02 Array (A10/1:10)

*

01 Group-Array (/1:10)
02 X-Array (A10/1:%)

Groups and Interface Objects

If group arrays or X-group arrays are present in the parameter list of a remote CALLNAT statement
execution and an interface object is used, the following restrictions exist.

Restrictions

¥ You must not use the AD=0 or AD=A session parameter settings (attribute definition) in the CALLNAT
statement.

¥ Group arrays and X-group arrays passed from a client Natural object to an interface object must
be contiguous. We therefore strongly recommend that you always pass a complete array to the
interface object by using asterisk (*) notation for all dimensions. We also strongly recommend
that you use identical data definitions in the client Natural program, in the interface object, and
in the server program.

Group Arrays on the RPC Server Side

The storage layout of group arrays in the DEFINE DATA PARAMETER area of subprograms on the
RPC server side is not necessarily identical with respect to the syntax. Do not redefine fields
within a group array or pass the group array to a 3GL program. If you need to do so, copy the
group array to a group array with the same layout in the DEFINE DATA LOCAL area and use this
local group array in the call to the 3GL program.

Unsupported Natural Data Formats

The Natural data formats C (attribute control) and Handle are not allowed in the parameter list
of a remote CALLNAT statement execution.

32 Natural RPC (Remote Procedure Call)

Restrictions and Limitations

EntireX RPC Server

If you want to call an EntireX RPC server with a remote CALLNAT statement execution, it is strongly
recommended to use an interface object. There are two ways to generate such an interface object:

¥ Generate the interface object from the EntireX IDL (Interface Definition Language) file. This is
only supported with Natural Studio (Windows only) or the EntireX Workbench (Linux and
Windows only).

¥ Define the parameters of the IDL definition of the subprogram you want to call on an EntireX
RPC server manually using the Interface Object Generation screen of the SYSRPC utility. If the
IDL (Interface Definition Language) contains a group structure, you have to define the same
group structure on the Interface Object Generation screen.

Using VSAM

If you access a VSAM dataset in a subtasking environment or if you share a VSAM dataset across
regions, you must consider the required share options. For example, you may have to set cross-
region SHAREOPTIONS 4 instead of SHAREOPTIONS 2 to enforce buffer invalidation if records are
inserted in a VSAM dataset in one address space and the same VSAM dataset is read in another
address space. Otherwise, records recently inserted may not be found.

You should also consider to use record level sharing (RLS).

For furthur information, refer to the relevant VSAM documentation of IBM.

Natural Statement Reactions

Several Natural statements may react in a different way when used in a Natural RPC context, for
example:

Statement Description

OPEN CONVERSATION |If executed on a server, these statements do not affect the client session. When the
CLOSE CONVERSATION |server itself acts as a client for another server (as agent), these statements only
affect the conversations on the second server.

PASSW The password setting remains active on the server side only, also for subsequent
executions by other users.

SET CONTROL No settings are returned to the caller.

SET GLOBALS

SET KEY

Natural RPC (Remote Procedure Call) 33

Restrictions and Limitations

Statement Description

SET TIME

SET WINDOW

STACK All stack data are released after execution.

STOP These statements do not stop the client session.

TERMINATE
For information on how to terminate a Natural RPC server, see Terminating a
Natural RPC Server.

Notes on Natural Statements on the Server

The use of the following statements on an Natural RPC is theoretically possible, but not recom-
mended, as it causes undesired effects:

Statement Description

TERMINATE | Using this statement causes the server to be terminated, regardless of conversations that may
still be open.

FETCH Using these statements causes the CALLNAT context to be lost.

RUN

STOP Upon a FETCH, RUN or STOP statement, the server detects that it has lost its CALLNAT context
and returns a corresponding Natural error message to the client; at that time, however, the
statement has already been executed by the server.
Exception: This does not apply to FETCH RETURN.

INPUT Input values are unpredictable when the input data are read from a file (and not from the
stack).

34

Natural RPC (Remote Procedure Call)

5 Setting Up a Natural RPC Environment

B Setting Up @ Natural CIENToviiiiiie e e e e e e e e
B Setting Up @ NALUFAl SEIVET ..ot e s
B Setting Up an ENtireX BroKEr ACCESScviviiiii ettt e e e e
= Setting Up an EntireX Broker EnVIFONMENTooiiiiii e

35

Setting Up a Natural RPC Environment

To set up a Natural RPC environment, you must perform the steps described below for all client
Naturals and server Naturals and read the platform-specific notes and considerations.

Setting Up a Natural Client

Unless otherwise noted, this instruction applies to all environments.
To set up a Natural client, perform the following steps:

® Define the Server Name
B Generate an Interface Object

B Set the RPC Client-Specific Natural Parameters
Define the Server Name

Use the Service Directory Maintenance function of the SYSRPC utility to define the name of the server
to be used for each CALLNAT statement to be executed remotely.

For details and example screens, refer to Invoking Service Directory Maintenance (in the SYSRPC
utility documentation).

The generated directory subprogram NATCLTGS must be made available to the Natural client ap-
plication. If you have not generated NATCLTGS in your client library, move NATCLTGS to this library
or to one of the steplibs.

Optionally, you can use one of the following server selection techniques:
¥ Address a default server

See Specifying a Default Server Address within a Natural Session, or profile parameter DFS.

W Use a remote directory server

See Using a Remote Directory Server, or profile parameter RDS.
Note for Windows, UNIX and OpenVMS Environments:
Predict servers are not maintained in the SYSRPC utility.

For information on how to connect to a Predict server, see the profile parameter USEDIC or the
Dictionary Server Assignments function in the Global Configuration File.

36 Natural RPC (Remote Procedure Call)

Setting Up a Natural RPC Environment

Generate a Client Interface Object

This step applies only if you do not want to or cannot work with automatic Natural RPC execution
(see Operating a Natural RPC Environment, Working with Automatic Natural RPC Execution).

For each CALLNAT statement to be executed remotely, use the Interface Object Generation function
of the SYSRPC utility; see Creating Interface Objects.

Note that the generated interface object must be made available to the Natural client environment.
If you did not generate the interface object in your client library, move the interface object to this
library or to one of the steplibs.

Set the RPC Client-Specific Natural Parameters

Set the Natural profile parameters which are relevant to the client-specific handling of remote
procedure calls.

Mandatory Parameters:

Parameter |Function

MAXBUFF |Maximum buffer size (for automatic RPC execution only)

RPCSIZE|Size of buffer used by Natural RPC (for mainframe clients only)

Optional Parameters:

Parameter |Function

ACIVERS |Define API version for use with EntireX Broker ACI
AUTORPC | Automatic Natural RPC execution
COMPR |Set RPC buffer compression

See also Operating a Natural RPC Environment, Using Compression.

CPRPC |Define code page name

DFS Specify RPC client's default server address

RDS Define remote directory server

RPCSDIR |Specify name of Natural library in which the Service Directory is located (for mainframe, UNIX
and OpenVMS servers only)

TIMEOUT |Wait time for RPC server response

TRYALT |Try alternative server address

The following notes apply to the use of the EntireX Broker.

] Notes:

Natural RPC (Remote Procedure Call) 37

Setting Up a Natural RPC Environment

1. The names specified with the DFS parameter must identify an active EntireX Broker and must
match a server definition in the EntireX Broker Attribute File, see Setting Up an EntireX Broker
Environment.

2. The wait time specified with TIMEOUT is used to set the WAIT field of the EntireX Broker ACI. If
TIMEOUT is set to zero, WAIT=YES is set and the client will wait for the CLIENT-NONACT time. If the
wait time has elapsed, the remote procedure call is terminated with a corresponding error
message. The use of TIMEOUT enables you to take advantage of the transport timeout mechanism
provided by the EntireX Broker stubs.

Setting Up a Natural Server

A Natural server is a Natural task (server task) that can execute Natural subprograms (services).
This Natural task is typically an asynchronous or background task (detached process). The EntireX
Broker and the client identify it by using a nodename and a servername.

To set up a Natural server perform the steps described below:

= Set the RPC Server-Specific Natural Parameters
= Ensure Command Mode Usage in Server Session
= Ensure Unique Adabas ETID Usage

= Start a Natural Server

Set the RPC Server-Specific Natural Parameters

Set the platform-dependent Natural parameters which are relevant to the general and server-
specific handling of remote procedure calls for the server Natural.

For Mainframe Servers:

1. Create an RPC-specific Natural parameter module.

2. Set the keyword subparameters of profile parameter RPC or parameter macro NTRPC (see table
below) as desired.

For Windows, UNIX or OpenVMS Servers:

1. Create an RPC-specific Natural parameter file.

2. Set the Natural profile parameters (see table below) as desired.

38 Natural RPC (Remote Procedure Call)

Setting Up a Natural RPC Environment

Mandatory Parameters:

Parameter |Function

MAXBUFF |[Maximum buffer size

RPCSIZE |Size of buffer used by Natural RPC (for mainframe servers only)

SERVER |Start Natural session as an RPC server session
SRVNAME [Name of RPC server; see Note for EntireX Broker below.
SRVNODE [Name of node; see Note for EntireX Broker below.

Optional Parameters:

Parameter |Function

ACIVERS |Define API version for use with EntireX Broker ACI

CPRPC |Define code page name

LOGONRQ|Logon for RPC server request required

NTASKS |Minimum and maximum of the number or server replicas (for mainframe servers only)

SRVCMIT|Time at which a Natural RPC server automatically commits an RPC conversation or a
non-conversational RPC request

SRVRTRY |[Number of attempts for an RPC server to connect/reconnect (REGISTER) to an EntireX Broker
that is not active, and the wait time between two successive attempts.

SRVTERM |Server termination event

SRVUSER|User ID for RPC server registry

SRVYWAIT |Wait time of RPC server for client request

TRACE |Define trace level for Natural RPC servers

TRANSP |Server transport protocol (no longer required)

The following notes apply to the use of the EntireX Broker.

] Notes:

1. The name specified with SRVYNODE must identify an active EntireX Broker and the name specified
with SRVNAME must match a server definition in the EntireX Broker Attribute File, see Setting
Up an EntireX Broker Environment.

. The wait time specified with the SRVWAIT parameter is used to set the WAIT field of the EntireX
Broker ACI. If SRVWAIT is not specified or set to zero, WAIT=YES is set, and the server will wait
for the SERVER-NONACT time. If the wait time has elapsed, a corresponding message is written
to the RPC server trace file, and the RPC server continues to wait for the next client request.
The use of the SRVWAIT parameter enables you to take advantage of the transport timeout
mechanism provided by the EntireX Broker stubs.

. If you have set the number of attempts for an RPC server to connect or reconnect to an EntireX
Broker to a value greater than zero, the RPC server will no longer terminate immediately if the

Natural RPC (Remote Procedure Call) 39

Setting Up a Natural RPC Environment

EntireX Broker is shut down (for example, for an IPL or a prolonged maintenance period). In
this case, you must explicitly terminate the RPC server before you shut down the EntireX Broker
using one of the following ways: Use the Terminate Service (TS) command of the Server
Command Execution function of the SYSRPC utility, or use the application programming interface
USR2075N or USR8208N, or use the the System Management Hub for EntireX.

Ensure Command Mode Usage in Server Session

~ To ensure that your Natural server session will enter command mode

B disable Natural menu mode by setting the Natural profile parameter MENU=0FF (applies to
mainframe servers only).

E Do not:

M put a program onto the Natural stack which never terminates.
W use a STARTUP program which never terminates.

M disallow NEXT mode in Natural Security for your server library.

Ensure Unique Adabas ETID Usage

Ensure that the Adabas ET1D used by the Natural server session is unique within a certain Adabas
nucleus.

Start a Natural Server

To start a Natural server, proceed as described in the section Starting a Natural RPC Server.
This server then waits for remote CALLNAT requests from a client.
Note for Natural in Batch Mode on z/OS or on z/VSE:

For information about servers using the keyword subparameter NTASKS of profile parameter RPC
or parameter macro NTRPC, refer to Considerations for Mainframe Natural RPC Servers with
Replicas.

40 Natural RPC (Remote Procedure Call)

Setting Up a Natural RPC Environment

Setting Up an EntireX Broker Access

To set up an EntireX Broker interface, perform the steps described below:

= Provide Access to the EntireX Broker Stub
= Set the API Version
= Using TCP/IP as Transport Method

Provide Access to the EntireX Broker Stub

Make the EntireX Broker stub accessible to your Natural environment. This step depends on the
platform used.

= Providing Access to the EntireX Broker Stub on Mainframes
= Providing Access to the EntireX Broker Stub on UNIX and OpenVMS
= Providing Access to the EntireX Broker Stub on Windows

Providing Access to the EntireX Broker Stub on Mainframes

Link the EntireX Broker stub NATETB23 to your Natural or specify the profile parameter RCA=BROKER
to load NATETB23 dynamically at run-time.

In the following cases NATETB23 cannot be used and you have to use a different EntireX Broker
stub:

® On z/VSE, you have to use BKIMB or BKIMC instead.
¥ If you want to use the TCP/IP protocol under BS2000, you have to use BKIMBTIA instead.
¥ If you want to use impersonation in z/OS batch mode, you have to use BROKER instead.

¥ If you want to use impersonation under CICS, you have to use CICSETB instead.

To load BKIMBTIA, BROKER or CICSETB dynamically at run-time, specify RCA=BROKER
RCALTAS=(BROKER, stubname).

Refer to the EntireX Communicator documentation for further details.

| Note: Please check the prerequisites for the use of CICSETB regarding the required PPT
entries and the Adabas link routine.

Natural RPC (Remote Procedure Call) 41

Setting Up a Natural RPC Environment

Providing Access to the EntireX Broker Stub on UNIX and OpenVMS
The EntireX Broker stub is made available automatically in the course of the EntireX installation.
Providing Access to the EntireX Broker Stub on Windows

The EntireX Broker stub is made available automatically in the course of the EntireX installation.
Set the API Version

Set the profile parameter ACIVERS according to your requirements.

| Note: The ACIVERS value set in the Natural parameter module (mainframe) or parameter

file (Windows, UNIX or OpenVMS) can only work if also the EntireX Broker and the EntireX
Broker stub support this version.

The table below contains only those ACIVERS values which are associated with a feature that is
relevant for the Natural RPC.

Setting Function

ACIVERS=2|(Default) Support of the EntireX Broker functions LOGON and LOGOFF.

The server performs a LOGON to the EntireX Broker before executing the REGISTER, and a
LOGOFF after the DEREGISTER.

This does not imply any security checks, butitis a pure EntireX Broker management function,
see EntireX Broker function LOGON in the EntireX Broker documentation.

ACIVERS=3|Support of EntireX Broker non-numeric conversation IDs and data volume > 30 KB.

When ACIVERS is set to 3 or higher, the EntireX Broker will also assign non-numeric
conversation IDs.

If a Natural client issues an OPEN CONVERSATION statement and the client's ACIVERS is 3 or

higher, the EntireX Broker will be able to automatically assign non-numeric conversation IDs.
It will not check whether the associated server does accept non-numeric conversation IDs, but
only the ACIVERS of the requestor (a Natural client in this case) will be decisive.

Therefore, make sure that both the Natural client and the server support the corresponding
API version.

In addition, with EntireX Broker API Version 3 or higher, the data volume which can be
exchanged between client and server in a single request may exceed 30 KB if transport method
TCP/IP is used.

Note:

1. With EntireX Broker API Version 1 or 2, the data volume is limited to 30 KB.

42 Natural RPC (Remote Procedure Call)

Setting Up a Natural RPC Environment

Setting

Function

2. With transport method NET, the EntireX Broker attribute EXTENDED-ACB-SUPPORT must
be set to YES in order to support more than 30 KB.

ACIVERS=4

Support of code pages and (for servers only) Natural Security.

With EntireX Broker API Version 4 or higher, the Natural RPC supports code pages. For this,
the name of the code page can be specified in the profile parameter CPRPC for clients and
servers.

The evaluation of the code page is done by the EntireX Broker. The EntireX Broker translates
the RPC data sent according to the code page of client and server to the corresponding target
code page.

The profile parameter CPRPC can be set on the client side and/or on the server side. It applies
to the current process. This means that the client code page does not need to be identical with
the server code page.

The server is enabled to logon to the EntireX Broker using a qualified user ID.

If the profile parameter SRVUSER is set to *NSC and the server is running under Natural Security,
the Natural RPC will automatically pass the current Natural user ID (as contained in system
variable *USER) and the password defined in Natural Security to the EntireX Broker, where
they are checked for conformity with the EntireX Broker security data.

ACIVERS=7

Support of EntireX compression (COMPRESSLEVEL).

With EntireX Broker API Version 7 or higher, the application programming interface USR4009N
may be used to set the ACI field COMPRESSLEVEL.

ACIVERS=8

Support of EntireX Security without stub exits (mainframe only).

With EntireX Broker API Version 8 or higher, the Natural RPC server issues a KERNELVERS
call to get the correct value for the ACI field KERNELSECURITY. In this case it is no longer
required to link the EntireX Security exits to the EntireX Broker stubs.

ACIVERS=9

Support of EntireX application identification of the client and server environment.

With EntireX Broker API Version 9 or higher, the EntireX Broker stubs send environmental
information about client and server (for example, job name) to the EntireX Broker.

For details, refer to the current EntireX documentation.

Natural RPC (Remote Procedure Call) 43

Setting Up a Natural RPC Environment

Using TCP/IP as Transport Method

If TCP/IP is used as transport method and you use a host name to address the server node, you
have the following alternatives:

¥ Define the server node in the Hosts and Services Directory of your TCP/IP installation.

¥ Use a Domain Name System (DNS) for domain name resolution.

Setting Up an EntireX Broker Environment

In the EntireX Broker Attribute File, add the following:
1. For each Natural RPC server, a service definition must be specified as follows:

CLASS=RPC, SERVICE=CALLNAT, SERVER=servername.

2. If you want to use the conversion services, set CONVERSION=userexit. In this case, you must set
the profile parameter CPRPC accordingly.

If you want to use the reliable RPC, additional settings are required for each Natural RPC server
that should support reliable RPC:

¥ The EntireX Broker attribute MAX -UOWS must be set to value greater zero.

¥ The EntireX Broker attribute DEFERRED must be set to YES if the client should be able to send re-
liable RPC messages to an RPC server that is known to the EntireX Broker but has not yet been
started.

¥ The EntireX Broker attribute STORE must be set to BROKER if recovery of reliable RPC messages
after a system failure should be possible. In addition, the EntireX Broker persistent store must
be enabled.

¥ The lifetime of the reliable RPC message itself (EntireX Broker attribute UWTIME) and the lifetime
of its status (EntireX Broker attribute UWSTAT-LIFETIME) must be adapted to your needs.

| Note: If AUTOLOGON=NO or SECURITY=YES is set in the EntireX Attribute File, you must set
ACIVERS=2 or higher.

44 Natural RPC (Remote Procedure Call)

6 Starting a Natural RPC Server

= Preliminaries before Starting a Natural RPC Server

= Starting a Natural RPC Server in a Mainframe Online Environment (all TP Monitors)ccoeveeiiiineeennnen.
= Starting a Natural RPC Server in a Mainframe Online Environment (CICS only)ccooviviiiiieiiiii.
= Starting a Natural RPC Server in a Mainframe Online Environment (Com-plete only)cccccvviiiiiinninnn.

= Starting a Batch Server in a Mainframe Environment
= Starting a Natural RPC Server in a Windows Environment ...
= Starting a Natural RPC Server in a UNIX Environment

= Starting a Natural RPC Server in an OpenVMS Environment

= Considerations for Mainframe Natural RPC Servers with Replicasccccoooviiiiiiiiiiieiiece e
= Starting a Natural RPC Server Using the RPC Server Front-End (z/OS Batch Mode only)cccovvveeeeinnn,
= Starting a Natural RPC Server Using the RPC Server Front-End (CICS only)ccoooiiiiiiiii

45

Starting a Natural RPC Server

This section describes how to start a Natural RPC server on the different platforms.

Preliminaries before Starting a Natural RPC Server

Any kind of Natural session can be used as a Natural RPC server, but typically a Natural server
is a Natural session which is started as an asynchronous task or as a background task.

On Mainframes:
For the purpose of starting a server, you have the following options:
¥ Create an RPC server-specific Natural parameter module.

For alist of the relevant parameters, refer to the section Setting Up a Natural RPC Environment,
Set the RPC Server-Specific Natural Parameters.

This parameter module is linked to your Natural.

W Alternatively, you can also specify the RPC server-specific Natural profile parameters dynam-
ically.

The RPC server-specific Natural profile parameters may also be specified in a Natural profile
created with the SYSPARM utility. Natural would then be started with

PROFILE=serverprofile

where serverprofile is the name of the Natural profile.
On Windows, UNIX or OpenVMS:
For the purpose of starting a server, you have the following options:
W Create an RPC server-specific Natural parameter file.

For alist of the relevant parameters, refer to the section Setting Up a Natural RPC Environment,
Set the RPC Server-Specific Natural Parameters. As it is strongly recommended to start a Nat-
ural RPC server with the Natural profile parameter BATCHMODE, you should additionally specify
the Natural profile parameters CMSYNIN, CMOBJIN and CMPRINT.

Natural will then be started with
PARM=serverparm

where serverparmis the name of the parameter file.

¥ Alternatively, you can specify the RPC server-specific Natural profile parameters dynamically.

46 Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server

How a Natural server is started depends on the environment and is described in the corresponding
paragraphs below. For the sake of simplicity, only the mandatory RPC server-specific profile
parameters are shown. The optional RPC server-specfic profile parameters may be specified ana-
logously.

Starting a Natural RPC Server in a Mainframe Online Environment (all TP
Monitors)

> To start a Natural server in a mainframe online environment

B In your TP monitor environment, enter the following command:

<natural> PROFILE=serverprofile

Or:

<natural> RPC=(SERVER=0N, SRVNAME=servername,SRVNODE=nodename,RPCSIZE=n,MAXBUFF=n)

Where <natural>is the name with which you start your Natural (transaction code, transaction
ID, environment-dependent nucleus name) and serverprofilieis the name of the Natural profile.

Starting a Natural RPC Server in a Mainframe Online Environment (CICS only)

In a CICS environment, you will typically start a Natural RPC server in asynchronous mode. In
addition to the options described above for all TP monitors, you have the following options for
this purpose:

¥ You can use the Natural program STARTSRV in library SYSRPC to start a Natural server in asyn-
chronous mode (see below).
™ You can start a Natural RPC server in asynchronous mode during startup of CICS (see below).

When starting the asynchronous Natural RPC server, it is recommended to specify the Natural
profile parameters TTYPE, INTENS, SENDER in addition, using the following settings:

Natural RPC (Remote Procedure Call) 47

Starting a Natural RPC Server

TTYPE=ASYL,INTENS=1,SENDER=CSSL

This will cause each output to the primary output destination to be written in line mode rather
than in 3270 mode. Instead of CSSL, you may specify any other CICS output destination.

Starting a Natural RPC Server in Asynchronous Mode with STARTSRV
STARTSRYV is a sample front-end for RPCSSRV that starts the asynchronous Natural session.

By default, the asynchronous Natural is started with the same transaction ID in the same library
as the current session.

If Natural Security Security (NSC) is used, the user ID of the current Natural session is propagated,
too. You may adapt the input to your requirements.

Note that some Natural profile parameters are implicitly added by RPCSSRV. This applies especially
to the keyword subparameter RPCSIZE of profile parameter RPC. RPCSIZE defaults to MAXBUFF+4,
where MAXBUFF is the value entered in the map field Receiving buffer. You may overwrite the
default value for RPCSIZE by entering RPC=(RPCSIZE=n) in the map field Session parameter.

If you want to execute a Natural program during startup of the Natural session, you may use the
map field User Stack. The content of User Stack is put on the Natural STACK and executed before
the Natural server is activated.

To show the Natural profile parameters involved, enter *SHOW* in the Transaction ID field. STARTSRV
will show you all dynamic profile parameters that will be used by RPCSSRYV to start the asynchronous
Natural session.

Starting a Natural RPC Server Session in Asynchronous Mode during Startup of CICS

To start a Natural RPC server session in asynchronous mode during startup of CICS, proceed as
follows:

Use the PLTPI to start a program that uses EXEC CICS START to start a Natural session with all re-
quired RPC specific Natural profile parameters. You may adapt the sample PLTPI program XNCIFRNP
that is provided in the Natural CICS source library.

Please note that the Natural session is started under the CICS default user ID, which, by default,
is CICSUSER. This user ID is assigned to the Natural system variables *INIT-USER and *USER. If
your Natural session is running under Natural Security, you may therefore have to put a Natural
LOGON command on the Natural STACK.

48 Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server

Starting a Natural RPC Server in a Mainframe Online Environment (Com-plete
only)

In a Com-plete environment, you will typically start a Natural RPC server in asynchronous mode.
In addition to the options described above for all TP monitors, you have the following options for
this purpose:

¥ You can use the Natural program STARTSRV in library SYSRPC to start a Natural server in asyn-
chronous mode (see below).

¥ You can start a Natural RPC server in asynchronous mode during startup of Com-plete (see
below).

Starting a Natural RPC Server in Asynchronous Mode with STARTSRV
STARTSRYV is a sample front-end for RPCSSRV that starts the asynchronous Natural session.

By default, the asynchronous Natural is started with the same Natural name in the same library
as the current session.

If Natural Security Security (NSC) is used, the user ID of the current Natural session is propagated,
too. You may adapt the input to your requirements.

Note that some Natural profile parameters are implicitly added by RPCSSRV. This applies especially
to the keyword subparameter RPCSIZE of profile parameter RPC. RPCSIZE defaults to MAXBUFF+4,
where MAXBUFF is the value entered in the map field Receiving buffer. You may overwrite the
default value for RPCSIZE by entering RPC=(RPCSIZE=n) in the map field Session parameter.

If you want to execute a Natural program during startup of the Natural session, you may use the
map field User Stack. The content of User Stack is put on the Natural STACK and executed before
the Natural server is activated.

To show the Natural profile parameters involved, enter *SHOW* in the Transaction ID field. STARTSRV
will show you all dynamic profile parameters that will be used by RPCSSRYV to start the asynchronous
Natural session.

Starting a Natural RPC Server Session in Asynchronous Mode during Start-up of Com-plete

To start a Natural RPC server session in asynchronous mode during startup of Com-plete, proceed
as follows:

Use the startup option (sysparms) STARTUPPGM to start a Natural session with all required RPC-
specific Natural profile parameters. You may either specify the required RPC-specific parameters
individually or use a Natural profile to specify them as follows:

Natural RPC (Remote Procedure Call) 49

Starting a Natural RPC Server

STARTUPPGM="<natural> PROFILE=<serverprofile>'

Please note that the Natural session is started under the user ID under which Com-plete is started.
This user ID is assigned to the Natural system variables *INIT-USER and *USER. If your Natural
session is running under Natural Security, you may therefore have to put a Natural LOGON command
on the Natural STACK.

Starting a Batch Server in a Mainframe Environment

A batch server is a standard Natural batch session that is started with the RPC parameters described
in the section Setting Up a Natural RPC Environment, Set the RPC Server-Specific Natural
Parameters.

The following topics are covered below:

= Starting a Batch Server under z/OS
= Starting a Batch Server under z/VSE
= Starting a Batch Server under BS2000

| Note: For a sample JCL using the trace facility, refer to Operating a Natural RPC Environ-
ment, Using the Server Trace Facility.

Starting a Batch Server under z/OS
Sample JCL for z/OS

//NATRPC ~ JOB CLASS=K,MSGCLASS=X

// EXEC PGM=NATOS,REGION=8M

//STEPLIB DD DISP=SHR,DSN=SAG.NAT.LOAD

// DD DISP=SHR,DSN=SAG.EXX.LOAD

// DD DISP=SHR,DSN=SAG.ADA.LOAD == Note 1
// DD DISP=SHR,DSN=DB2_Toad_Tibrary == Note 2
//CMPRMIN DD *
IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=",",INTENS=1,

RPC=(SERVER=0ON, SRVYNAME=servername, SRYNODE=nodename)
RPC=(RPCSIZE=m,MAXBUFF=n),

STACK=(LOGON serverlibrary,userlID,password)

/-k

//CEEOPTS DD * {== Note 3
POSIX(ON)

/*

//SYSUDUMP DD SYSOUT=X

//CMPRINT DD SYSOUT=X

/*

] Notes:

50 Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server

1. Applies only if the Adabas link routine ADAUSER or the Natural profile parameter ADANAME is
used.

2. Applies to DB2 users only.
3. Applies only if SSL is used.

Sample JCL for a Started Task

A sample JCL for a started task is provided in the Natural for mainframes installation document-
ation; see Installing Natural on z/OS.

Running a Batch Server with Replicas

You can also run a batch server with replicas by setting the keyword subparameter NTASKS of
profile parameter RPC or parameter macro NTRPC to a value greater than 1.

Replicas are attached to a Natural main task as additional server tasks. They enable you to start
several identical servers in the same region.

Starting a Batch Server under z/VSE
Sample JCL for z/VSE

// LIBDEF PHASE,SEARCH=(SAGLIB.NATvrs,SAGLIB.EXXvrs,SAGLIB.ADAvrs), TEMP
// ASSGN SYS000,READER

// ASSGN SYSLST,FEE

// EXEC NATVSE,SIZE=AUTO,PARM='SYSRDR'
IM=D,MADI0=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=","',INTENS=1,
RPC=(SERVER=0ON, SRVNAME=servername, SRYNODE=nodename)
RPC=(RPCSIZE=m,MAXBUFF=n),

STACK=(LOGON serverlibrary,userlID,password)

/*

where vrs represents the relevant product version.
Running a Batch Server with Replicas

You can also run a batch server with replicas by setting the keyword subparameter NTASKS of
profile parameter RPC or parameter macro NTRPC to a value greater than 1.

Replicas are attached to a Natural main task as additional server tasks. They enable you to start
several identical servers in the same region.

Natural RPC (Remote Procedure Call) 51

Starting a Natural RPC Server

Starting a Batch Server under BS2000

Sample JCL for BS2000

/ .NATRPC LOGON

/ SYSFILE SYSOUT=output-file

/ SYSFILE SYSDTA=(SYSCMD)

/ SYSFILE SYSIPT=(SYSCMD)

/ STEP

/ SETSW ON=2

/ EXEC NATBS?
IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=",",INTENS=1,

RPC=(SERVER=0ON, SRVNAME=servername, SRYNODE=nodename)
RPC=(RPCSIZE=m,MAXBUFF=n),

STACK=(LOGON serverlibrary,userlID,password)

/ EOF

Starting a Natural RPC Server in a Windows Environment

> To start a Natural RPC server under Windows

1 Create a shortcut for Natural.
2 Enter the shortcut properties.
3 Inthe Target text box, edit the Natural path and append:

"<Path>\natural.exe" batchmode parm=serverparm

where serverparmis the name of the parameter file,

Or:

"<Path>\natural.exe" batchmode
server=on <
srvname=servername srvnode=nodename maxbuff=n cmsynin=cmsynin cmobjin=cmobjin cmprint=cmprint

52 Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server

Starting a Natural RPC Server in a UNIX Environment

~ To start a Natural RPC server under UNIX

B Enter the following command:

natural batchmode parm=serverparm &
where serverparmis the name of the parameter file.

Or:

natural batchmode

server=on <

srvname=servername srvnode=nodename maxbuff=n cmsynin=cmsynin cmobjin=cmobjin cmprint=cmprint
&

Starting a Natural RPC Server in an OpenVMS Environment

~ To start a Natural RPC server under OpenVMS

1 Inthe DCL command procedure myserver.com, enter the following commands:

$ DEFINE NATOUTPUT NLAO:
$ NAT batchmode parm=serverparm

2 Then submit myserver.com to a batch queue:

$ SUBMIT myserver.com

Considerations for Mainframe Natural RPC Servers with Replicas

This section applies to mainframe Natural servers under z/OS and z/VSE.

B Natural RPC Batch Server with NTASKS >1

® Running a Batch Server with Replicas

Natural RPC (Remote Procedure Call) 53

Starting a Natural RPC Server

Natural RPC Batch Server with NTASKS >1

The main task and all replicas run in the same z/OS region or z/VSE partition.

1.

Use the reentrant batch link routine ADALNKR instead of ADALNK.

If you want to use ADAUSER, you must not link ADAUSER with your front-end, because ADAUSER
is non-reentrant (see Item 5). Instead, use the Natural profile parameter ADANAME and set
ADANAME=ADAUSER. This will cause Natural to load ADAUSER dynamically at runtime.

Note for z/VSE: If you use ADAUSER, you must rename ADALNKR to ADALNK.

In the Natural parameter module:

W Set the keyword subparameter NTASKS=n of profile parameter RPC or parameter macro NTRPC,
where n is the number of parallel servers (< 100) to be started, including the main task.
Note for z/VSE: The number of subtasks is restricted by the operating system. Ask your
system administrator.

W Use the Natural profile parameter ETID to specify the Adabas user identification as a blank
character. This is necessary to prevent a NAT3048 error (ETID not unique in Adabas nucleus)
when the subtask is started.

When using dynamic Natural profile parameters:

Use the dynamic parameter dataset CMPRMIN to pass the dynamic Natural profile parameters
to Natural. Do not use the PARM card or the primary command input dataset CMSYNIN.

When using a local buffer pool (z/OS only):

Each subtask allocates its own local buffer pool unless you specify a shared local buffer pool.
See subparameter LBPNAME of profile parameter 0SP or parameter macro NTOSP (in the Parameter
Reference documentation).

In the Natural front-end link job (z/OS only):
Link the front-end reentrant by using the RENT option of the linkage editor.

If the front-end were not linked with the RENT option, only the main task would start the com-
munication with the EntireX Broker. All subtasks would be set to a WAIT status by z/OS, until
the main task would have been terminated. If you would terminate the RPC server lateron, the
address space would hang and would have to be cancelled.

Make sure that any other modules that are additionally linked to the Natural nucleus are
reentrant. Any dynamically loaded programs must also be reentrant.

Note for z/OS: If you cannot make a module reentrant, link the module as non-reusable; this
means, you should not specify the link option RENT or REUS. This is to ensure that each subtask
will get its own copy.

54

Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server

Running a Batch Server with Replicas

For a sample JCL, see Using the Server Trace Facility.

Starting a Natural RPC Server Using the RPC Server Front-End (z/OS Batch
Mode only)

In z/OS batch mode, a Natural RPC server may alternatively be started using the RPC server front-
end. This approach is required with impersonation and is optional in other cases.

If you use the RPC server front-end without impersonation, you are recommended to set the
keyword subparameter NTASKS of profile parameter RPC or parameter macro NTRPC to a value
greater than 1. Otherwise, there will be no benefit. The Considerations for Mainframe Natural
RPC Servers with Replicas apply also when you are using the RPC server front-end.

The RPC server front-end uses the Natural Server functionality; see Natural as a Server under z/OS
(in the Natural Operations documentation). It is characterized by the following features:

¥ The Natural RPC server front-end starts a number of Natural RPC server sessions as specified
by the keyword subparameter NTASKS of profile parameter RPC or parameter macro NTRPC.

B All Natural RPC server sessions run with the same Natural profile parameter settings.

The Natural profile parameter settings are taken from the Natural parameter module and may
be overwritten by dynamically specified profile parameters that are passed with the transaction
ID. The dynamically specified profile parameters must follow the startup parameter.

W If all Natural RPC server sessions are currently in use by clients (executing a client request or
waiting for the next request within a conversation) and if the keyword subparameter NTASKS of
profile parameter RPC or parameter macro NTRPC is set to a value greater than one, auxiliary
Natural RPC server sessions are started. These Natural RPC server sessions are automatically
terminated on the first EntireX Broker timeout, provided that there is at least one other Natural
RPC server session not in use by a client. If all other Natural RPC server sessions are being used
by clients, the auxiliary RPC server session will stay up until the next EntireX Broker timeout.
This makes sure that there is always a Natural RPC server available to process a new client re-
quest.

B The Natural RPC server sessions are executed in a thread environment that is similar to Natural
sessions executing in a TP monitor system.

¥ With impersonation:
At the end of a non-conversational CALLNAT and at the end of a conversation, all database sessions
and all work files are closed. This ensures that the next client request will open the database
and the work files with its own user ID.

¥ Without impersonation:

Natural RPC (Remote Procedure Call) 95

Starting a Natural RPC Server

After the first EntireX Broker timeout, all database sessions and all work files are closed. This
ensures that no resources are blocked during wait times.

Startup Parameters:

The required startup parameters are passed in the PARM= parameter of the EXEC statement in the
JCL. These parameters are:

B The name of the Natural z/OS batch nucleus;
¥ The size of a storage thread;

¥ The optional keyword UCTRAN.
UCTRAN indicates that all messages of the RPC Server front-end are converted into upper case.

These parameters must be separated by commas and must be entered without leading or trailing
blanks:

‘PARM='Natura 1-z/0S-batch-nucleus,size-of-thread[, UCTRAN]

| Note: For compatibility reasons UCTRAN must be preceded by two consecutive commas.

See also the Sample JCL below.
Execution Notes:
¥ The Natural z/OS batch nucleus is dynamically loaded.

The load library containing the z/OS batch nucleus must be available in the steplib concatenation.

B The EntireX Broker stub NATETB23 must not be used.

The EntireX Broker is accessed outside the Natural context. Therefore, you must use the EntireX
Broker stub BROKER, see Providing Access to the EntireX Broker Stub on Mainframe.

With impersonation only:

When the impersonation feature is used, the RPC server front end must be executed from an
Authorized Program Facility (APF) library. You are recommended to execute the RPC server front-
end from an APF-authorized LINKLIST library. This eliminates the need of providing the whole
steplib concatenation APF authorized.

With Natural Security only:

If the Natural RPC server front-end is started with profile parameter AUT0=0FF, you must provide
a Natural LOGON command with library ID, user ID and password on the Natural stack:
STACK=(LOGON Tibrary-id;user-id;password).

56 Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server

Sample JCL:

//NATRPC JOB CLASS=K,MSGCLASS=X

// EXEC PGM=RPC-FRONT,REGION=8M

// PARM="Natural-z/0S-interface-module,1000'
//STEPLIB DD DISP=SHR,DSN=SAG.NAT.LOAD

// DD DISP=SHR,DSN=SAG.EXX.LOAD

// DD DISP=SHR,DSN=SAG.ADA.LOAD {== Note 1
// DD DISP=SHR,DSN=DB2_load_library {== Note 2
//CMPRMIN DD 2
IM=D,MADIO0=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=",",INTENS=1,

PRINT=((10),AM=STD)

RPC=(SERVER=0ON, SRVYNAME=servername, SRYNODE=nodename, NTASKS=3)
RPC=(RPCSIZE=m,MAXBUFF=n,TRACE=2),
RCA=BROKER,RCALIAS=(BROKER,BROKER)

STACK=(LOGON serverlibrary,userID,password)

/*

//CEEQOPTS DD * {== Note 3
POSIX(ON)

*

//SYSUDUMP DD SYSOUT=X

//CMPRT10 DD SYSOUT=X

//CMPRT101 DD SYSOUT=X

//CMPRT102 DD SYSOUT=X

//CMPRT199 DD SYSOUT=X

//CMPRINT DD SYSOUT=X

//CMPRINT1 DD SYSOUT=X

//CMPRINT2 DD SYSOUT=X

//CMPRIN99 DD SYSOUT=X

/*

Notes:

1. Applies only if the Adabas link routine ADAUSER or the Natural profile parameter ADANAME is
used.

2. Applies to DB2 users only.
3. Applies only if SSL is used.

Starting a Natural RPC Server Using the RPC Server Front-End (CICS only)

In CICS, a Natural RPC server may alternatively be started using the RPC server front-end. This
approach is required when impersonation is used and is optional in other cases.

If you use the RPC server front-end without impersonation, you are recommended to set the
keyword subparameter NTASKS of profile parameter RPC or parameter macro NTRPC to a value
greater than 1. Otherwise, there will be no benefit.

Natural RPC (Remote Procedure Call) 57

Starting a Natural RPC Server

The RPC server front-end uses the Natural Server functionality. It is characterized by the following
features:

B The Natural RPC server front-end is started via the transaction ID defined in the Customize CICS
step for the Natural RPC server front-end;

see Installing the Natural CICS Interface on z/OS.

The transaction ID may either be entered at a terminal or you may use the Natural program
STARTSFE in library SYSRPC to start the Natural RPC server front-end in asynchronous mode.

The Natural RPC server front-end requires the name of the Natural CICS interface nucleus as
startup parameter. This startup parameter is passed with the transaction ID.

¥ The Natural RPC server front-end starts a number of Natural RPC server sessions as specified
by the keyword subparameter NTASKS of profile parameter RPC or parameter macro NTRPC.

¥ All Natural RPC server sessions run with the same Natural profile parameter settings.

The Natural profile parameter settings are taken from the Natural parameter module and may
be overwritten by dynamically specified profile parameters that are passed with the transaction
ID. The dynamically specified profile parameters must follow the startup parameter.

W If all Natural RPC server sessions are currently in use by clients (executing a client request or
waiting for the next request within a conversation) and if the keyword subparameter NTASKS of
profile parameter RPC or parameter macro NTRPC is set to a value greater than one, auxiliary
Natural RPC server sessions are started. These Natural RPC server sessions are automatically
terminated on the first EntireX Broker timeout, provided that there is at least one other Natural
RPC server session not in use by a client. If all other Natural RPC server sessions are being used
by clients, the auxiliary RPC server session will stay up until the next EntireX Broker timeout.
This will ensure that there is always a Natural RPC server available to process a new client re-
quest.

B The Natural RPC server sessions are executed in a thread environment that is similar to Natural
sessions executing in a TP monitor system.

¥ All inactive Natural RPC server sessions (sessions that wait for a client request) are rolled out
using the Natural Roll Facilities under CICS which are defined for the Natural CICS interface
nucleus in use.

¥ With impersonation:

At the start of a non-conversational CALLNAT and at the start of a conversation, a new CICS
worker task is started under the user ID of the client by using the USERID() option of the EXEC
CICS START TRANSID() command. The client request is executed by Natural in this worker task.

While the client request is executed, the Natural RPC server session waits for the worker task
to finish.

At the end of a non-conversational CALLNAT and at the end of a conversation, the worker task
is terminated and all databases are closed and all CICS resources are freed. This ensures that

58 Natural RPC (Remote Procedure Call)

Starting a Natural RPC Server

the next client request will open the database and access the CICS resources with its own user
ID.

¥ Without impersonation:
The client request is executed by the Natural RPC server session itself.

After the first EntireX Broker timeout, all databases are closed and all CICS resources are freed.
This will ensure that no resources are blocked during wait times.

Startup Parameters:
The required startup parameters are passed with the transaction ID. These parameters are:

B The name of the Natural CICS interface nucleus <ncistart>.

¥ The optional keyword UCTRAN.

UCTRAN indicates that all messages of the RPC Server front-end are converted into upper case.

¥ An optional Natural profile parameter string.

Sample Start at a Terminal:

<natural> <ncistart>[,UCTRAN]
RPC=(SERVER=0ON, SRUNAME=servername, SRUNODE=nodename,RPCSIZE=n, MAXBUFF=n)
RCA=BROKER,RCALIAS=(BROKER,CICSETB)

Where <natural> is the transaction ID with which you start your Natural RPC server front-end
and <ncistart>isthe name of your Natural CICS interface nucleus.

Execution Notes:

¥ If the Natural Roll Server is required (NCMDIR parameter ROLLSRV is set to YES), you must start
a Natural Roll Server for the used subsystem-id (as defined by Natural profile parameter SUBSID)
before the Natural RPC server front-end is started.

¥ The transaction ID of the RPC server front-end is used to identify the RPC server environment.

Do not to start more than one Natural RPC server front-end with the same transaction ID.

¥ The executable NCI module is dynamically loaded.

The load library containing the executable NCI module must be available in the DFHRPL concat-
enation.

B The EntireX Broker stub NATETB23 must not be used.

The EntireX Broker is accessed outside the Natural context. Therefore, you must use the EntireX
Broker stub CICSETB, see Providing Access to the EntireX Broker Stub on Mainframe.

With impersonation only:

Natural RPC (Remote Procedure Call) 59

Starting a Natural RPC Server

When the impersonation feature is used, the RPC server front-end starts worker tasks. Ensure that
the setting of the CICS system initialization parameter MXT of your CICS installation is high enough.

With Natural Security only:

If the Natural RPC server front-end is started with profile parameter AUTO=0FF, you must provide
a Natural LOGON command with library ID, user ID and password on the Natural stack:
STACK=(LOGON Tibrary-id;user-id;password).

60 Natural RPC (Remote Procedure Call)

7 Terminating a Natural RPC Server

® USiNg SYSRPC ..o
= Using EntireX System Management Hub

= Using Application Programming Interface USR2073Novviiiiiiiiiiiiii e
= Using Application Programming Interface USR2075Nouiiiiiiiiiiii e
= Using Application Programming Interface USR8208Noooiiiiiiiiiiiiiiiiice e
= Using Application Programming Interface USR8220Nooiiiiiiiiiiiii e

= Server Termination When Using an Attach Manager

= User Exit NATRPCO9 ..o,

61

Terminating a Natural RPC Server

This section describes how to terminate a Natural RPC server. This can be done either by termin-
ating a single RPC server replica or the EntireX Broker service supporting the RPC connection.
Several methods exist.

Using SYSRPC

This method can either be applied to a single RPC server replica or the EntireX Broker service:

= Using SYSRPC to Terminate a Single RPC Server Replica
= Using SYSRPC to Terminate an EntireX Broker Service

Using SYSRPC to Terminate a Single RPC Server Replica

Use the TE (Terminate Server) command of the SYSRPC utility as described in Terminating an RPC
Server in the SYSRPC Utility documentation.

| Note: A Natural RPC server can only be terminated if the server is currently neither executing

a remote CALLNAT nor waiting for the next CALLNAT request in a conversation.
Using SYSRPC to Terminate an EntireX Broker Service

Use the TS (Terminate EntireX Broker Service) command of the SYSRPC utility as described in Ter-
minating an RPC Server in the SYSRPC Ultility documentation.

Using EntireX System Management Hub

Use the Deregister button in the Server subtree of the EntireX System Management Hub. You can
also use the Deregister button in the Service subtree of the EntireX System Management Hub.

Using Application Programming Interface USR2073N

The Application Programming Interface (API) USR207 3N enables you to ping or terminate a Natural
RPC server.

The interface sends a ping or terminate command to an RPC server specified by node name and
server name. The returned message contains the following information:

¥ the version of the running server (PING) or

¥ the acknowledgment of termination (TERMINATE) or

62 Natural RPC (Remote Procedure Call)

Terminating a Natural RPC Server

¥ an error message.

> To make use of USR2073N

1 Copy the subprogram USR2073N from library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the server environment.

2 Using a DEFINE DATA statement in structured mode or a RESET statement in reporting mode,
specify the following parameters:

Parameter |Format|1/O|Description
FUNCTION|A10 |I |PING Asks the RPC server for its version.
TERMINATE Initiates the finishing of the Natural RPC server
task.
SRVNODE |A192 |I |Node name.
See the profile parameter SRVYNODE
SRVNAME |A32 |I |Server name.
See the profile parameter SRVNAME
LOGON Al I |Thelogon flag Y (yes) indicates that logon data must be transmitted to the
Natural RPC server.
USER-ID |A8 |I |If LOGON=Y, then user ID and password are the logon data for Natural Security.
PASSWORD If the client does not run under Natural Security (NSC) and the logon flag is
set, the user ID and password have to be specified unless the data have been
entered via Application Programming Interface USR1071N. See Using Security,
Using Natural RPC with Natural Security.
MSG A79 |O |Message returned.
RC 12 O |Response code; possible values are:
0 MSG contains a normal message from RPC
server or EntireX Broker.
1 MSG contains an error message from RPC server
or EntireX Broker.
2 MSG contains an error message from the
interface.
3 Natural Security error.

3 Before invoking the AP], fill the input variables listed above.

Natural RPC (Remote Procedure Call) 63

Terminating a Natural RPC Server

Using Application Programming Interface USR2075N

The Application Programming Interface (API) USR2075N enables you to terminate an EntireX
Broker Service from within your application.

With the command TERMINATE - SERVICE the interface uses the command and information service
of EntireX to fulfill the task. First of all, it sends a logon request to the EntireX Broker. Then it gets
a list of all servers specified by server class, server name, and service type. Finally, it sends a
shutdown request to each server. A message indicates how many servers were terminated.

With the command PING the identification string of a server is returned.

~ To make use of USR2075N

1 Copy the subprogram USR2075N from library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the server environment.

2 Using a DEFINE DATA statement in structured mode or a RESET statement in reporting mode,
specify the following parameters:
Parameter |Format 1/0 | Description
FUNCTION |A17 I |Specify TERMINATE-SERVICE.

This sends a shutdown request to each server specified with the parameters

SRVCLASS, SRVNAME, and SERVICE (service type), see below.

or:

Specify PING

This returns the identification string of a server.

SRVNODE |A192 I |Specify the node name.
See the profile parameter SRVNODE.
SRVCLASS |A32 I |Specify the server class. For Natural RPC servers, this is RPC.
SRVNAME |A32 I |Server name.
See the profile parameter SRVNAME
SERVICE |A32 I |Specify the type of service. For Natural RPC servers, this is CALLNAT.
IMMEDIATE|L TRUE Immediately terminate all conversations
for the specified server.

FALSE Existing conversations are allowed to end
normally; no new conversations are
accepted.

USER-ID |A32 I |Specify the user ID to logon to the EntireX Broker.
64 Natural RPC (Remote Procedure Call)

Terminating a Natural RPC Server

Parameter |Format 1/0 | Description
PASSWORD |A32 I |Specify the password to the EntireX Broker if EntireX Broker security is
active.

If EntireX Broker security is active, you must specify a password. If EntireX
Broker security uses the trusted user ID mechanism (on mainframes only),
you can use the reserved password *TRUSTED instead of a user password.

MSG A O |Message returned.
(dynamic)
RC 12 O |Response code; possible values:
0 MSG contains a normal message from the
EntireX Broker.
1 MSG contains an error message from the
EntireX Broker.
3 MSG contains an error message from
Natural Security on the client side.

3 Before invoking the AP, fill the input variables listed above.

Using Application Programming Interface USR8208N

The Application Programming Interface (API) USR8208N is an enhanced version of API USR2075N
with the following new features:

B With the command TERMINATE - SERVICE the interface uses the Command and Information Service
of EntireX to fulfill the task. The SHUTDOWN-SERVICE command is sent to the EntireX Broker if
its version is 5 or above. It returns version information on the EntireX Broker and the Command
and Information Service itself. Otherwise, the same method is used as in USR2075N.

¥ With the command INFO-SERVICE additional information on the specified service(s) is returned
from the EntireX Broker such as SERVER-CLASS, SERVER-NAME, SERVICE, TRANS, CONV-NONACT etc.
For a detailed description, see webMethods EntireX V9.0.1 documentation > Components and Features
of EntireX > ACI Programming > Broker CIS Data Structures > Information Reply Structures > SERVICE-
OBJECT (Struct INFO_SV).

- To make use of USR8208N

B See the similar instruction To make use of USR2075N.

Natural RPC (Remote Procedure Call) 65

Terminating a Natural RPC Server

Using Application Programming Interface USR8220N

The Application Programming Interface (API) USR8220N triggers the termination of the Natural
RPC server. After calling USR8220N, you can send a confirmation message to the RPC client. This
APl is useful to explicitly terminate the Natural RPC server when severe errors occur.

> To make use of USR8220N

1 Copy the subprogram USR8220N from the library SYSEXT to the library SYSTEM or to the
steplib library, or to any application in the Natural RPC server environment.

2 Create a Natural RPC server subprogram that calls USR8220N and that sends an optional
confirmation message to the RPC client program.

Server Termination When Using an Attach Manager

The profile parameter SRVTERM influences the termination behavior of a Natural RPC server. By
default, a server is never terminated (SRVTERM=NEVER) unless one of the termination methods de-
scribed before is applied.

If you use an Attach Manager to dynamically start Natural RPC servers on request, you should
set SRVTERM to TIMEQUT. With this parameter setting, a Natural RPC server is automatically termin-
ated if the wait time for the next client request outside of an RPC conversation is exceeded.

User Exit NATRPC99

This exit is called after the Natural RPC server has deregistered and logged off from the server
node.

¥ If no NATRPC99 program is found, the server terminates immediately as usual.

W If the program NATRPC99 is found, the server continues to run as a normal Natural session.

NATRPC99 is called with a FETCH statement without any parameters, that is, no data is put on the
Natural stack before NATRPC99 has been called.

You may add any coding to NATRPC99, including transfer control statements (FETCH, CALLNAT,
PERFORM) and statements that terminate the program (STOP, ESCAPE, TERMINATE).

If NATRPC99 is terminated with a RETURN or STOP statement, Natural returns to the NEXT prompt. If
the NEXT prompt is not supported in the environment used (profile parameter CM=0FF, asynchronous

66 Natural RPC (Remote Procedure Call)

Terminating a Natural RPC Server

Natural session, etc.) the session terminates. Otherwise, the session tries to read the next command
from the primary input file/dataset for Natural commands and INPUT data.

Important Notes:

1. NATRPC99 must be a Natural program.

2. NATRPC99 must be located in the library SYSTEM on system file FUSER. The steplib concatenation
of the library to which the server currently is logged on is not evaluated to find NATRPC99.

3. Natural objects that are called by NATRPC99 (FETCH, CALLNAT, PERFORM) must be located either
in the library to which the server is logged on or in one of its steplibs (including SYSTEM on
system file FUSER).

4. NATRPC99 is called for all kinds of normal Natural RPC server terminations. It is not called in
case of abends.

Natural RPC (Remote Procedure Call) 67

68

8 Operating a Natural RPC Environment

= Specifying RPC Server Addresses

= |nterface Objects and Automatic RPC EXECULIONvvviiiiiiiiieeiiiie e
= Modifying RPC Profile Parameters during @ Natural SESSIONooviiiiiiiiiiiiiieiiiiceeee e
m Executing Server COMMENGScoouiiiiiiiiiii et

= | ogon to a Server Library
= Using the Logon Option

B USING COMPIESSION ..iiieiiiiiiitite et e et e ettt e e e e e e e ettt e e e e e e e e et e e e e e e e e s e b b b raaeeeeaeeeeaaees

= Using Secure Socket Layer

= Monitoring the Status of an RPC SESSIONcoiuiiiiiiiiiii e

= Retrieving Runtime Settings of a Server
= Setting/Getting Parameters for EntireX
= Handling Errorsccooeeviiiiiiiiiiinnnns
= User Exits before and after Service Exe

CULION et et

69

Operating a Natural RPC Environment

This section mainly describes the tasks required to operate a Natural RPC environment.

Some of these tasks are performed with the SYSRPC utility. For information about the functions
the SYSRPC utility provides, refer to the Natural SYSRPC Utility documentation.

Specifying RPC Server Addresses

To each remote CALLNAT request, a server must be assigned (identified by servername and nodename)

on which the CALLNAT is to be executed. Therefore, all subprograms to be accessed remotely must
be defined

¥ in a local service directory on the client side,
¥ or in a remote directory accessed via a remote directory server,

¥ or by way of default server addressing with the profile parameter DFS,

¥ or within the client application itself by way of default server addressing.
In addition to the methods mentioned above, you can specify alternative servers.
Below is information on:

= Using Local Directory Entries

= Using Remote Directory Entries

= Specifying a Default Server Address at Natural Startup

= Specifying a Default Server Address within a Natural Session
= Using an Alternative Server

Using Local Directory Entries

All data of a client's local service directory is stored in the subprogram NATCLTGS. At execution
time, this subprogram is used to retrieve the target server. As a consequence, NATCLTGS must be
available in the client application or in one of the Natural steplibs defined for the application.

If NATCLTGS has not been generated into a steplib or resides on another machine, use the appropriate
Natural utility (SYSMAIN or the Natural Object Handler) to move NATCLTGS into one of the steplibs
defined for the application.

If you are using a NATCLTGS for joint usage, you must make it available to all client environments,
for example by copying it to the library SYSTEM, or, if an individual copy is used for a client, it
must be maintained for this client using the Service Directory Maintenance function of the SYSRPC
utility.

To define and edit RPC service entries, see the section Service Directory Maintenance in the SYSRPC
Utility documentation.

70 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Using Remote Directory Entries

A remote directory contains service entries that can be made available to several Natural clients.
The Natural clients can retrieve these service entries from remote directory servers. For information
on the purpose and on the installation of remote directory servers; see Lsing a Remote Directory
Server.

Specifying a Default Server Address at Natural Startup

Instead of addressing a server by using a local or remote service directory, you can preset a default
server with the profile parameter DFS, as described in your Natural Operations documentation.
This server address is used if the subprogram can be found in neither the local nor the remote
service directory.

The DFS setting determines the default server for the whole session or until it is overwritten dy-
namically.

If no DFS setting exists and the server address of a given remote procedure call could not be found
in the service directory, a Natural error message is returned.

A default server address defined within a client application remains active even if you log on to
another library or if a Natural error occurs.

Specifying a Default Server Address within a Natural Session

The client application itself may dynamically specify a default server address at runtime. For this
purpose, Natural provides the application programming interface USR2007N. This interface enables
you to determine a default server address that is to be used each time a remote program cannot
be addressed via the service directory:.

> To make use of USR2007N

1 Copy the subprogram USR2007N from the library SYSEXT to the library SYSTEM or to the steplib
library, or to any application in the server environment.

2 Using the DEFINE DATA statement in structured mode or the RESET statement in reporting
mode, specify the following parameters:

Parameter Format|Description

function |Al Function; possible values are:

Natural RPC (Remote Procedure Call) 71

Operating a Natural RPC Environment

Parameter Format | Description

P (Put) Determines that the server address (composed
of the parameters nodename and servernanme,
see below) is the default address for all
subsequent remote procedure calls not defined
in the service directory.

To remove a default server address, specify a
blank for nodename and servername.

G (Get) Retrieves the current default server address
as set by the function P.

nodename |A192 |Specifies/returns the name of the server node to be addressed.

Note: For compatibility reasons, nodename is defined with the option BY VALUE

orBY VALUE RESULT (see the section parameter-data-definition in the description
of the DEFINE DATA statement) to support existing callers which pass an A8 or
A32 field for nodename. The sample USR2007P provided in the library SYSEXT
supports up to 32 characters.

servername|A32 |Specifies/returns the server name to be addressed.

Note: For compatibility reasons, servername is defined with the option BY

VALUE or BY VALUE RESULT (see the section parameter-data-definition in the
description of the DEFINE DATA statement) to support existing callers which
pass an A8 field for servername.

Togon Al Specifies/returns the Logon option, see Using the Logon Option.

protocol |Al Specifies/returns the transport protocol.

Valid value: B (=EntireX Broker).

noservdir |Al Specifies/returns the service directory option, see profile parameter DFS.
Y Service directory must not be present
N Service directory must be present

3 Inthe calling program on the client side, specify the following statement:

CALLNAT '"USR2007N" function nodename servername logon protocol [noservdir]

| Note: The Natural subprogram NATCLTPS in the library SYSRPC is only maintained for

compatibility reasons.

72 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Using an Alternative Server

To avoid connection failures, you may want to define several alternative servers for a remote
CALLNAT. If you specify such alternative servers, Natural proceeds as follows:
¥ The client makes a first attempt to establish the connection.

W If this attempt fails, instead of providing an error message, a second attempt is made, however,
this time not on the same server. Instead, the service directory is searched again starting at the
current entry to find out whether or not another server is available which offers the desired
service.

M If a second entry is found, Natural tries to establish the connection to this server. If the remote
procedure call is performed successfully, the client application keeps on running. The user does
not notice whether the connection to the first server or to the alternative server produced the
result.

M If no further entry is found or if the connection to alternative servers fail, Natural issues a cor-
responding error message.

> To enable the use of an alternative server

1 Define more than one server in the service directory for the same service.

2 Set the profile parameter TRYALT to ON to give permission to use an alternative server.

This parameter can also be set dynamically for the current session with the Parameter Maintenance
function (described in the SYSRPC Utility documentation).

Interface Objects and Automatic RPC Execution

Interface objects are no longer required if automatic Natural RPC execution is used, as described
in Working with Automatic Natural RPC Execution below.

However, generating interface objects provides the advantage of controlling the CALLNAT(s) executed
remotely and facilitates error diagnoses. Should a remote call fail due to an incorrect CALLNAT
name, the Natural error message issued then helps to immediately identify the problem cause.
Without an interface object, for an incorrect CALLNAT you may receive follow-up errors returned
from the transport layer or the Natural server.

If you want to use a remote CALLNAT statement to execute a subprogram on an EntireX RPC server,
we strongly recommend that you set AUTORPC=0FF and use an interface object. If the IDL (Interface
Definition Language) of the subprogram you want to call on an EntireX RPC server contains a
group structure, you must define the same group structure during the interface object generation
on the Interface Object Generation screen or generate the interface object from the EntireX IDL file
(Windows only) or use the EntireX Workbench (Linux and Windows only).

Natural RPC (Remote Procedure Call) 73

Operating a Natural RPC Environment

Below is information on:

= Creating Interface Objects
= Working with Automatic Natural RPC Execution

Creating Interface Objects

With the Interface Object Generation function of the SYSRPC utility, you can generate the Natural
interface objects used to connect the client's calling program to a subprogram on a server. The in-
terface object consists of a parameter data area (PDA) and of the server call logic; see Interface Object
Generation - General Considerations in the SYSRPC Utility documentation.

The PDA contains the same parameters as used in the CALLNAT statement of the calling program
and must be defined on the Interface Object Generation screen of the Interface Object Generation
function. If a compiled Natural subprogram with the same name already exists, the PDA used by
this subprogram is used to preset the screen. The server call logic is generated automatically by
the Interface Object Generation function after the PDA has been defined.

At execution time, the Natural application program containing the CALLNAT statement and the in-
terface object must exist on the client side. The Natural application subprogram must exist on the
server side. Both the interface object subprogram and the server subprogram must have the same
name.

Working with Automatic Natural RPC Execution

This section applies only if you do not want to call an EntireX RPC server.

You are not required to generate Natural RPC interface objects, but you can work with automatic
Natural RPC execution (that is, without using Natural interface objects). To work with automatic
Natural RPC execution, set the profile parameter AUTORPC as follows:

AUTORPC=0N

In that case, you can omit the generation of the client interface object during your preparations
for RPC usage. When the automatic Natural RPC execution is enabled (AUTORPC=0N), Natural be-
haves as follows:

W if a subprogram cannot be found locally, Natural tries to execute it remotely (an interface object
is not needed),

¥ the parameter data area will then be generated dynamically during runtime.

As interface objects only exist for client programs, this feature has no effect on the CALLNAT program
on the server.

If profile parameter AUTORPC is set to ON, and a Natural interface object exists, it will still be used.

74 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Modifying RPC Profile Parameters during a Natural Session

With the Parameter Maintenance function, you can dynamically modify some of the RPC profile
parameters set in the Natural profile parameter module for the current session.

o

Caution: These modifications are retained as long as the user session is active; they are lost

when the session is terminated. Static settings are only made using Natural profile paramet-
ers.

Executing Server Commands

Active servers that have been defined in the service directory (see Specifying RPC Server Addresses)
can be controlled with the SYSRPC server command execution function as described in the relevant
section in the SYSRPC Utility documentation.

Logon to a Server Library

The server library on which the CALLNAT is executed depends on the RPC Logon Option on the
client side and a couple of parameters on the server side.

The following table shows which the relevant parameters are and how they influence the library
setting:

Client Server
1 2 3 4 5 6 7
*library-id |RPC LOGONRQ Server NSC NSC: Server
LOGON set? started with |or RPC Logon |*library-id
flag for STACK= native option in
server entry Natural? library
set? profile
1|Lib1 no no logonlibl |Noinfluence [N/-- Lib1
2|Lib1 no no logonlib2 |No influence [N/-- Lib2
3|Libl no yes (Client LOGON flag = NO) and (LOGONRQ=YES)
is not possible.
4|Lib1 yes No influence |No influence [INSC AUTO Libl
5|Lib1 yes No influence |No influence |[NSC N Lib1
6|Lib1 yes No influence [No influence | Native Natural |-- Lib1

Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Explanation of the table columns:

1. The library ID of the client application where the CALLNAT is initiated.
2. The value of the RPC LOGON flag. Can be set for a whole node or a server.

The flag can be set by using
the Service Directory Maintenance function of the SYSRPC utility,
or the profile parameter DFS,

or the application programming interface USR2007N.
3. The profile parameter LOGONRQ can be set at server startup.
4. The library ID to which the server is positioned at its startup.

5. Does the server run under Natural Security (NSC) (see Using Natural RPC with Natural Secur-
ity) or not?

6. The setting of the Logon option in the NSC Library Profile Items (Session options > Natural RPC
Restrictions) of the NSC server application. If the NSC Logon Option is set to A (AUT0), only library
and user ID are taken. If set to N (default), the library, user ID and password parameters are
evaluated.

7. The library on the server where the CALLNAT program is finally executed.

Using the Logon Option

The Logon option defines on which library the remote subprogram is to be executed. See also
Logon to a Server Library.

| Note: When you do not use the Logon option, the CALLNAT is executed on the library to

which the server is currently logged on. This server logon is defined with the Natural profile
parameter STACK=(LOGON 7ibrary). The server will search for the CALLNATs to be executed
in 77brary (and all associated steplibs defined for 7ibrary).

A client application can be enabled to execute a subprogram on a different library by setting the
Logon option for this subprogram. This causes the client to pass the name of its current library to
the server, together with this Logon option. The server will then logon to this library, searching
it for the desired subprogram and, if the latter is found, it will execute it. After that, it will logoff
from the previous library.

76 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Logging on to a Different Library

If the server should logon to a library other than the client's current library, the client has to call
the application programming interface USR4008N before the remote CALLNAT is executed. With
USR4008N the client specifies an alternate name of a library to which the server will logon. The
name of this library will be used for all subsequent calls to remote subprograms for which the
Logon option applies. If blank is specified for the library name, the name of the current client library
will be used again.

~ To make use of USR4008N

1 Copy the subprogram USR4008N from the library SYSEXT to the library SYSTEM or to the steplib
library, or to any application in the server environment.

2 Using the DEFINE DATA statement, specify the following parameters:

Parameter |1/0 | Format|Description

P-FUNC |I |AO1 |Function code; possible values are:

P (Put) Specify a new library for remote CALLNAT execution.
G (Get) Retrieve previously specified library for remote CALLNAT
execution.

P-LIB

L

A8 Library on server for remote CALLNAT execution.

3 In the calling program on the client side, specify the following statement:

CALLNAT 'USR4008N" P-FUNC P-LIB

Note: The calling program must be executed before the Natural RPC client invokes a
remote CALLNAT.

Settings Required on the Client Side
To set the Logon option, you can use either the SYSRPC Service Directory maintenance function

(see the relevant section in the SYSRPC Utility documentation) or - when using a default server -
the profile parameter DFS or the application programming interface USR2007N.

Natural RPC (Remote Procedure Call) 77

Operating a Natural RPC Environment

Settings Required on the Server Side

No setting is required on the server side.

Using Compression

Compression types may be: 0, 1 or 2. Interface objects generated with COMPR=1 or 2 can help reduce
the data transfer rate.

Compression Type

Description

COMPR=0

All CALLNAT parameter values are sent to and returned from the server, i.e. no compression
is performed.

COMPR=1

M-type parameters are sent to and returned from the server, whereas O-type parameters
are only transferred in the send buffer. A-type parameters are only included in the reply
buffer. The reply buffer does not contain the Format description.

This is the default setting.

COMPR=2

Same as for COMP=1, except that the server reply message still contains the format
description of the CALLNAT parameters. This might be useful if you want to use certain
options for data conversion by EntireX Broker (for more information, see the description
of Translation Services in the EntireX Broker documentation).

Using Secure Socket Layer

The Natural RPC supports Secure Socket Layer (SSL) for the TCP/IP communication to the EntireX

Broker.

To enable the EntireX Broker to recognize that the TCP/IP communication should use SSL, you
must use one of the following methods:

¥ Append the string : SSL to the node name. If the node name has already been postfixed by the
string : TCP, : TCP must be replaced by :SSL.

¥ Prefix the node name with the string //SSL:

Example:

SRVNODE="157.189.160.95:1971:SSL"

Before you access an EntireX Broker using SSL, you must first invoke the application programming
interface USR2035N to set the required SSL parameter string.

78

Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

> To make use of USR2035N

1 Copy the subprogram USR2035N from the library SYSEXT to the library SYSTEM or to the steplib
library, or to any application in the server environment.

2 Using the DEFINE DATA statement, specify the following parameters:

Parameter

IIo

Format

Description

FUNCTION

I

A01

Function code; possible values are:

P (Put)

Specify a new SSL parameter string.

The SSL parameter string is internally saved and passed to
EntireX each time an EntireX Broker using SSL communication
is referenced the first time. You may use different SSL parameter
strings for several EntireX Broker connections by calling
application programming interface USR2035N each time before
you access the EntireX Broker the first time.

Example:

FUNCTION
SSLPARMS :
"TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=N"
CALLNAT "USR2035N' USING FUNCTION SSLPARMS <

IPI

PR}

To set SSL parameters in case of a Natural RPC server, put the
name of the calling program onto the Natural stack when starting
the server.

Example:

STACK=(LOGON server-library;set-SSL-parms)

Where set-SSL-parms is a Natural program that invokes the
application programming interface USR2035N to set the SSL
parameter string.

G (Get)

Retrieve previously specified SSL parameter string.
The previously put SSL parameter string is returned to the caller.

For more information about the SSL parameter string, refer to
the EntireX documentation.

SSLPARMS

—

A128

SSL parameter string as required by the EntireX Broker

3 Inthe calling program on the client side, specify the following statement:

Natural RPC (Remote Procedure Call)

79

Operating a Natural RPC Environment

CALLNAT "USR2035N" FUNCTION SSLPARMS

Monitoring the Status of an RPC Session

This part is organized in the following sections:

= Using the RPCERR Program

= Using the RPCINFO Subprogram
= Using the Server Trace Facility

= Defining the Trace File

Using the RPCERR Program

You can run the RPCERR program from the Command line or invoke it by using a FETCH statement

from within a Natural program. RPCERR displays the following information:

¥ The last Natural error number and message if it was RPC related.

¥ The last EntireX Broker message associated with this error.

¥ The last EntireX RPC server error message if the Natural error error number is related to the
EntireX RPC server error.

In addition, the node and server name from the last EntireX Broker call can be retrieved.

Example of an RPC Error Display: RPCERROR

Natural error number: NAT6972
Natural error text
Directory error on Client, reason 3.

RPC error information:
No additional information available.

Server Node: Library: SYSTEM
Server Name: Program: NATCLT3
Line No: 1010 ©

80 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Using the RPCINFO Subprogram

You can use the subprogram RPCINFO in your application program to retrieve information on the
state of the current RPC session. This also enables you to handle errors more appropriately by re-
acting to a specific error class.

The subprogram RPCINFO0 is included in the library SYSTEM and can be called by any user application.

A sample program TESTINFO is included in the library SYSRPC together with the parameter data
area RPCINFOL for calling RPCINFO.

Example:

DEFINE DATA LOCAL USING RPCINFOL
LOCAL
1 PARM (A1)
1 TEXT (A80)
1 REDEFINE TEXT
2 CLASS (A4)
2 REASON (A4)
END-DEFINE

OPEN CONVERSATION USING SUBPROGRAM '"APPLSUBI'
CALLNAT "APPLSUB1' PARM
CLOSE CONVERSATION *CONVID

ON ERROR
CALLNAT 'RPCINFO' SERVER-PARMS CLIENT-PARMS
ASSIGN TEXT=C-ERROR-TEXT
DISPLAY CLASS REASON

END-ERROR

END

Parameters of RPC Info

RPCINFO has the following parameters which are provided in the parameter data area RPCINFOL:

Parameter Format | Description
SERVER-PARMS Contains information about the Natural session when acting
as a server.

The SERVER-PARMS only apply if you execute RPCINFO remotely
on an RPC server.

S-BIKE Al Transport protocol used; possible value:

B EntireX Broker
S-NODE A32 |The node name of the server.
S-NAME A32 |The name of the server.

Natural RPC (Remote Procedure Call) 81

Operating a Natural RPC Environment

Parameter

Format

Description

S-ERROR-TEXT

A80

Contains the message text returned from the transport layer.

S-CON-1ID

14

Current conversation ID. Note that this is the physical ID from
EntireX Broker, not the logical Natural ID.

This parameter always contains a value as EntireX Broker
generates IDs for both conversational and non-conversational
calls.

If the physical conversation ID is either non-numeric or greater
than I4, a -1 is returned.

S-CON-OPEN

Indicates whether there is an open conversation.

This parameter contains the value TRUE if a conversation is
open, otherwise it contains FALSE.

CLIENT-PARMS

Contain information about the Natural session when acting as
a client.

C-BIKE

Al

Transport protocol used; possible value:

B EntireX Broker

C-NODE

A32

The node name of the previously addressed server.

C-NAME

A32

The name of the previously addressed server.

C-ERROR-TEXT

A80

Contains the message text returned from the transport layer.

C-CON-1ID

14

Conversation ID of the last server call. Note that this is the
physical ID from EntireX Broker, not the logical Natural ID.

If no conversation is open, the value of this parameter is less
than or equal to 0. If the physical conversation ID is either
non-numeric or greater than I4, a -1 is returned.

C-CON-OPEN

Indicates whether there is an open conversation.

This parameter contains the value TRUE if a conversation is
open, otherwise it contains FALSE.

C-ENTIREX-RPC-ERROR-MESSAGE

A

Contains the message text returned from an EntireX RPC server.

Using the Server Trace Facility

Natural RPC includes a trace facility that enables you to monitor server activities and trace possible

error situations.

82

Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Activating/Deactivating the Server Trace Facility

To activate/deactivate the server trace facility, start the server with the option

TRACE=n

The integer value n represents the desired trace level; that is, the level of detail in which you want
your server to be traced. The following values are possible:

Value | Trace Level

0 |No trace is performed (default).

1 |All client requests and corresponding server responses are traced and documented.

2 | All client requests and corresponding server responses are traced and documented; in addition, all
RPC data are written to the trace file.

The RPC trace facility writes the trace data to the Natural Report Number 10.

In case of a conversion error which is reported with Natural error number NAT6974 and reason
codes 2 and 3, the position of the erroneous data in the buffer is indicated.

Support of TS=ON for RPC Server Trace
The following information applies to Mainframe environments only:

All messages in the Natural RPC server trace are converted into upper case if TS=0N is specified
in the Natural RPC server session. The trace of the data from/to the client is not affected by TS=0N
and remains unchanged.

Defining the Trace File

The trace file definition depends on the environment:

= Trace File Handling for Mainframe Environments - General Information
= Trace File Handling in z/OS Batch Mode

= Trace File Handling under CICS

= Trace File Handling in z/VSE Batch Mode

= Trace File Handling in BS2000 Batch Mode

= Trace File Handling for UNIX and OpenVMS Environments

Natural RPC (Remote Procedure Call) 83

Operating a Natural RPC Environment

= Trace File Handling for Windows

Trace File Handling for Mainframe Environments - General Information

On the mainframe, define the trace file appropriate to your environment, see also the NTPRINT

macro (in the Parameter Reference documentation).
Trace File Handling in z/OS Batch Mode

a) Running A Server As Single Task

In the server start job, assign a z/OS dataset to the Natural additional Report CMPRT10.

Example:

//NATRPC ~ JOB CLASS=K,MSGCLASS=X
//NATSTEP EXEC PGM=NATOS

//STEPLIB DD DISP=SHR,DSN=SAG.NAT.LOAD
// DD DISP=SHR,DSN=SAG.EXX.LOAD
//CMPRMIN DD *

IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF ,MAXCL=0,ID=",",INTENS=1,

PRINT=((10),AM=STD)

/*

//SYSUDUMP DD SYSOUT=X
//CMPRT10 DD SYSOUT=X
//CMPRINT DD SYSOUT=X
/%

b) Running a Server With Replicas

1. Set the RPC parameter NTASKS to a value greater than 1.

2. Assign CMPRMIN to a dataset with DISP=SHR or to *.

3. As each task writes on a separate CMPRINT dataset, define the following DD card names:

CMPRINT for the main task;

CMPRINTI to CMPRINTY for the first nine subtasks;

CMPRIN1O to CMPRINnn for the next two-digit numbers of subtask, nn=NTASKS-1.

4. If the keyword subparameter TRACE of profile parameter RPC or parameter macro NTRPC is set,

the trace facility writes to Printer 10.
You must define the following DD card names:
CMPRT10 for the main task;

CMPRT101 to CMPRT1nn for all subtasks, nn=NTASKS-1;

84

Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Example:

//NATRPC ~ JOB CLASS=K,MSGCLASS=X
//NATSTEP EXEC PGM=NATOS,REGION=8M
//steplib DD DISP=SHR,DSN=SAG.NAT.LOAD

// DD DISP=SHR,DSN=SAG.EXX.LOAD

//CMPRMIN DD *
IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=",",INTENS=1,
PRINT=((10),AM=STD)

/*

//SYSUDUMP DD SYSOUT=X
//CMPRT10 DD SYSOUT=X
//CMPRT101 DD SYSOUT=X
//CMPRT102 DD SYSOUT=X
//CMPRT103 DD SYSOUT=X
//CMPRINT DD SYSOUT=X
//CMPRINT1 DD SYSQUT=X
//CMPRINT2 DD SYSOUT=X
//CMPRINT3 DD SYSQUT=X
/%

Trace File Handling under CICS

Under CICS, assign Print File 10 to a CICS extra-partitioned transient data queue.
Examples:

Natural dynamic profile definition:

PRINT=((10),AM=CICS,DEST=RPCT, TYPE=TD)

CICS definition:

RPCTRAC DFHDCT TYPE=SDSCI,
BLKSIZE=136,
BUFNO=1,
DSCNAME=RPCTRACE,
RECFORM=VARUNB,
RECSIZE=132,
TYPEFLE=OUTPUT

> X X X X X

SPACE
RPCT DFHDCT TYPE=EXTRA, X
DSCNAME=RPCTRACE,
DESTID=RPCT, X
OPEN=INITIAL

>

CICS Startup JCL:

Natural RPC (Remote Procedure Call) 85

Operating a Natural RPC Environment

RPCTRACE DD SYSOUT=*
Trace File Handling in z/VSE Batch Mode

In z/VSE batch mode, assign a trace file to the Printer Number 10.

Example:

// LIBDEF PHASE,SEARCH=(SAGLIB.NATvrs,SAGLIB.ETBvrs), TEMP
// ASSGN SYSO000,READER

// ASSGN SYSLST,FEE

// ASSGN SYS050, FEF

// EXEC NATVSE,SIZE=AUTO,PARM='SYSRDR'

IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=",",INTENS=1,
PRINT=((10),AM=STD,SYSNR=50)
/*

where vrs represents the relevant product version.
Trace File Handling in BS2000 Batch Mode

In BS2000 batch mode, assign a trace file to Printer Number 10.

Example:

/ .NATRPC LOGON

/ SYSFILE SYSOUT=output-file

/ SYSFILE SYSDTA=(SYSCMD)

/ SYSFILE SYSIPT=(SYSCMD)

/ FILE trace-file, LINK=P10,0PEN=EXTEND */server trace file
/ STEP

/ SETSW ON=2

/ EXEC NATBS?

MADIO=0, IM=D,ID=","',PRINT=((10),AM=STD)

Trace File Handling for UNIX and OpenVMS Environments

It is recommended that you use a different file name (that is, a different NATPARM parameter file)
for each server so that you can trace them individually. The trace file is defined in the NATPARM
parameter file of the Natural server:

1. Report Assignments
Assign the logical device LPT10 to your Report Number 10.

2. Device Parameter Assignments
Instead of selecting a physical printer specification for LPT10, specify a file name that represents
the name of your trace file.

86 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Example for UNIX:

/bin/sh -c cat>>/filename
where f7]ename represents the name of the trace file.

Example for OpenVMS:

nattmp: filename

where fi]ename represents the name of the trace file.
Trace File Handling for Windows

It is recommended that you use a different file name (that is, a different NATPARM parameter file)
for each server so that you can trace them individually. The trace file is defined in the NATPARM
parameter file of the Natural server (see Device/Report Assignments in the Configuration Utility):

1. Reports

Assign the logical device LPT10 to your Report Number 10.

2. Devices

Instead of selecting a physical printer specification for LPT10, specify a file name that represents
the name of your trace file. As default, old trace files are deleted when a new file with the same
name is created.

If you wish to append the new log to the existing one, specify:

>>f7ilename

Retrieving Runtime Settings of a Server

The Natural application programming interface (API) USR4010N enables you to retrieve the runtime
settings of a server:

¥ the system file assignments for FUSER, FNAT, and FSEC,
¥ the steplib chain.

> To make use of USR4010N

1 Copy the subprogram USR4010N from library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the server environment.

2 Using a DEFINE DATA statement, specify the following parameters:

Natural RPC (Remote Procedure Call) 87

Operating a Natural RPC Environment

Parameter Format | Description

FUSER-DBID|N5 |Database ID of system file FUSER.
FUSER-FNR |N5 |File number of system file FUSER.
FNAT-DBID |N5 |Database ID of system file FNAT.
FNAT-FNR |N5 |File number of system file FNAT.
FSEC-DBID |N5 |Database ID of system file FSEC.
FSEC-FNR |N5 |File number of system file FSEC.
STEP-NAME |A8/15 |[Name of steplib.

STEP-DBID |N5/15 |Database ID of steplib.

STEP-FNR [N5/15 |File number of steplib.

3 In the calling program on the client side, specify the following statement:

CALLNAT '"USR4010' USR4010-PARM

See also the Syntax Description of the CALLNAT statement.
4 If RPC parameter AUTORPC=0FF, copy the interface object USR4010X to the client environment.

If RPC parameter AUTORPC=0N, the API must not be available to the client environment, other-
wise the API would be called locally.

When USR4010N is called, the values of the parameter specified above are output in the group of
fields USR4010-PARM.

Setting/Getting Parameters for EntireX

The Application Programming Interface (API) USR4009N enables you to set or to get the EntireX
parameters that are currently supported by the Natural RPC. These are:

¥ Compression level
~ To make use of USR4009N

1 Copy the subprogram USR4009N from library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the server environment.

2 Using a DEFINE DATA statement, specify the following parameters:

88 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

Parameter Format (l/O |Description
FUNCTION A01 |I |Function; possible values are:

G (Get) The values already set for the EntireX
parameters are returned.

If no PUT has been called before in the Natural
session, all values are zero or blank.

P (Put) The values specified for the EntireX
parameters are saved and used in all
subsequent calls to EntireX.

ENVIRONMENT |AO1 |I |Environment; possible values are:

S Server

C Client

B Both

COMPRESSLEVEL|AO1 |I/O|Compression level.

RESERVED 101 |I/O|Reserved for future use.

ACIVERS B02 |O |API version used.

RC B01 |O |Return code, unless equal to zero. Contains the API version required to
set the requested parameter:

0 Function successful.

7 Compression level requires API version 7.

3 The interface can be called in two ways:

1. From within a program:

CALLNAT "USR4009N" FUNCTION ENVIRONMENT

COMPRESSLEVEL
RESERVED
ACIVERS RC

2. From the command prompt or by using the statement STACK with values for the above

parameters.

Examples:

USR4009P P,C,COMPRESSLEVEL=6
USR4009P P,C,6

In command mode, you may use the keyword=value notation to set only a subset of the EntireX
parameters. The values for parameters that are not referenced remain unchanged.

Natural RPC (Remote Procedure Call) 89

Operating a Natural RPC Environment

Notes:

¥ The request is rejected and no values are saved if the API version used by the current Natural
session is not high enough to support the requested EntireX parameter. In this case the RC
contains the required API version.

¥ The EntireX parameters are only honored by the Natural RPC.

Handling Errors

= Remote Error Handling
= Avoiding Error Message NAT3009 from Server Program
= User Exit NATRPCO1

Remote Error Handling

Any Natural error on the server side is returned to the client as follows:

¥ Natural RPC moves the appropriate error number to the *ERROR-NR system variable.

¥ Natural reacts as if the error had occurred locally.

| Note: If profile parameter AUTORPC is set to ON and a subprogram cannot be found in the

local environment, Natural will interpret this as a remote procedure call. It will then try to
find this subprogram in the service directory. If it is not found there, a NAT6972 error will
be issued. As a consequence, no NAT0082 error will be issued if a subprogram cannot be
found.

See also Using the RPCERR Program.
Avoiding Error Message NAT3009 from Server Program

If a server application program does not issue a database call during a longer period of time, the
next database call might return a NAT3009 error message.

To avoid this problem, the optional user exit NATRPC39 is provided. This exit is called in the follow-
ing cases:

1. After a Ping command;

2. In case of communication via the EntireX Broker: each time the SERVER-NONACT time is exceeded.

~ To activate the user exit NATRPC39

1 Copy the sample exit NATRPC39 from library SYSRPC to library SYSTEM on system file FUSER.

90 Natural RPC (Remote Procedure Call)

Operating a Natural RPC Environment

The steplib concatenation of the library to which the server currently is logged on is not
evaluated.

2 Adapt the database ID which is assigned to field ACB-RSP to your needs.

3 Add additional CALL 'CMADA' statements, which reference additional database IDs to your
NATRPC39 if more than one Adabas database is involved.

User Exit NATRPC01

The user exit NATRPCO1 is called when a Natural error has occurred, actually after the error has
been handled by the Natural RPC runtime and immediately before the response is sent back to
the client. This means, the exit is called at the same logical point as an error transaction, that is, at
the end of the Natural error handling, after all ON ERROR statement blocks have been processed.

In contrast to an error transaction, this exit is called with a CALLNAT statement and must therefore
be a subprogram which must return to its caller.

The interface to this exit is similar to the interface of an error transaction. In addition, the exit can
pass back up to 10 lines of information which will be traced by the Natural RPC runtime. Only
lines which begin with a non-blank character will be traced.

A sample user exit NATRPC01 can be found in the library SYSRPC.
Important Notes:

1. NATRPCO1 must be located in library SYSTEM on FUSER. The steplib concatenation of the library
to which the server currently is logged on is not evaluated.

2. The DEFINE DATA PARAMETER statement block must not be changed.

User Exits before and after Service Execution

To give administrators more control over the execution of services (remote CALLNATSs), two op-
tional user exits are called on the Natural RPC server side.

User Exit |[Purpose

NATRPCOZ|The optional before-service-execution exit NATRPC02 is called immediately before the service
is executed. At this point in time, the request has already passed all security checks and the
data is unmarshalled.

NATRPC03|The optional after-service-execution exit NATRPCO3 is called immediately after successful return
from the service. At this point in time, the data is not yet marshalled. The exit is not called if an
unhandled error has occurred.

These exits are independent of each other and can be used separately.

Natural RPC (Remote Procedure Call) 91

Operating a Natural RPC Environment

For both exits, the following rules apply:
¥ The exit must be located in library SYSTEM on the FUSER system file.

If the exit is found during startup of the Natural RPC server, a message is written to the Natural
RPC server trace to indicate the activation of the exit. The exit is afterwards called unconditionally.
If the exit is removed during the lifetime of the server session, a permanent NAT0082 error will
occur.

If the exit is not found during startup of the Natural RPC server, the exit is never called during
the lifetime of the server session. The exit cannot be enabled dynamically.

¥ The exit must be implemented by the user as a subprogram. The exit is called with a single dy-
namic variable as parameter. The content of the dynamic variable is the eight character long
name of the remote subprogram.

The use of the dynamic variable allows us to implement future extensions of the passed inform-
ation without causing problems with existing user written exits.

B The exit is also called inside a conversation.

¥ The Natural RPC server does not intercept unhandled errors in the exit. If an unhandled error
occurs in the exit, the error is propagated to the client.

The exits may be used for auditing or tracing purposes. NATRPC02 may also be used for addional
security checks.

Example for NATRPCO2:

DEFINE DATA PARAMETER

1 SUBPROGRAM (A8) BY VALUE

END-DEFINE

IF *USER <> 'DBA' AND SUBPROGRAM = 'PRIVATE'
*ERROR-NR := 999

END-IF

END

92 Natural RPC (Remote Procedure Call)

9 Using a Conversational RPC

B OPENiNG @ CONVEISAONeieiiiiiie ettt et e et e s
B ClOSING @ CONVEISALIONeieeiiiiie e ettt et e et e e et e e e ettt e e e et e e e e st e e e e e bt e e e e e nreeeeeas
= Defining @ Conversation CONLEXEuuriiiiiiiii et
= Modifying the System Variable "CONVID ..ot

93

Using a Conversational RPC

Opening a Conversation

~ To open a conversation

1 Specify an OPEN CONVERSATION statement on the client side.

2 Inthe OPEN CONVERSATION statement, specify a list of services (subprograms) as members of
this conversation.

The OPEN CONVERSATION statement assigns a unique conversation identifier to the system variable
*CONVID.

More than one conversation may be open in parallel. If subprograms interfere with each other,
the application programs are responsible to manage the various conversations by setting the ap-
propriate *CONVID, which is evaluated by the CALLNAT instruction.

¥ If the subprogram is a member of the current conversation (referred to by *CONVID), it will be
executed at the server task which is exclusively reserved for this conversation.

M If it is not member of the current conversation, it will be executed in a different server task. This
also applies to different conversations.

A conversation can be opened on any program level and CALLNATs within this conversation can
be executed on any other program level below or above.

It is possible to open a client conversation within a remote CALLNAT executed on a server so the
server acts as an agent. As the client only controls its own conversations, and not the server's, it
is the application programmer's responsibility to ensure that the conversation on the server is
closed properly before the main client is closed.

Additional Restrictions

The conversational RPC can still be tested locally. To keep the behavior identical if you execute a
conversational CALLNAT remotely or locally, the following additional restrictions apply:

B A CLOSE CONVERSATION is not possible within an object which is currently running as a member
of this conversation. This corresponds to the restriction that it is not possible to close a conver-
sation from within a remotely running program.

¥ It is not possible to execute a conversational CALLNAT which is member of the conversation from
within another (or the same) member of this conversation. This corresponds to the restriction
that it is not possible to execute a conversational CALLNAT which is member of the client's con-
versation from a server subprogram.

¥ It is not recommended to open a conversation from within another conversation's subprogram.

94 Natural RPC (Remote Procedure Call)

Using a Conversational RPC

Closing a Conversation

> To close a conversation

B Specify a CLOSE CONVERSATION statement on the client side.

This enables the client to close a specific conversation or all conversations. All context variables
of the closed conversation are then released and the server task will be available again for another
client.

If you terminate Natural, you implicitly close all conversations.

When a server receives a CLOSE CONVERSATION request, it issues a CLOSE CONVERSATION ALL
statement so that all conversations the server might have opened (as agent) are also closed.

Close a conversation with implicit BACKOUT TRANSACTION (Rollback)

By default, when a CLOSE CONVERSATION statement is executed, the Rollback option will be sent
to the server together with the CLOSE CONVERSATION statement. This will cause an implicit BACKOUT
TRANSACTION on the server side at the end of the conversation processing.

Close a conversation with implicit END TRANSACTION (Commit)

You can use the application programming interface USR2032N available in library SYSEXT to cause
an implicit END TRANSACTION on the server side.

The application programming interface has to be called before the next CLOSE CONVERSATION
statement is executed. The result is that the commit option is sent to the server together with the
CLOSE CONVERSATION statement and that the server executes an END TRANSACTION statement at the
end of the conversation processing.

The commit option applies to the next CLOSE CONVERSATION statement executed by the client ap-
plication. After the conversation(s) has (have) been closed, the default option is used again. This
means, that the following CLOSE CONVERSATION statements will result again in a BACKOUT
TRANSACTION statement.

Natural RPC (Remote Procedure Call) 95

Using a Conversational RPC

Defining a Conversation Context

During a conversation the subprograms that are members of this conversation may share a context
area on this server.

To do so, declare a data area with the DEFINE DATA CONTEXT statement in each of the concerned
subprograms.

The subprograms, using a context area, behave in the same way if the conversation were local or
remote. The DEFINE DATA CONTEXT statement closely corresponds to the DEFINE DATA INDEPENDENT
statement. All rules which apply to the definition of AIV variables also apply to context variables,
with the exception that a context variable does not need to be prefixed by a plus sign (+).

The compiler does not check format/length definition because this requires that the variables be
created by running a program which includes all definitions for this application (as usual with
AlVs). This makes no sense for context variables, because a library containing RPC service routines
is usually not application-dependent.

In contrast to AIVs, the caller's context variables are not passed across CALLNAT boundaries. Context
variables are referenced by their name and the context ID they apply to. A context variable is
shared by all service routines referring to the same variable name within one conversation.
Therefore each conversation has its own set of context variables. Context variables cannot be shared
between different conversations even if they have the same variable name.

The context area will be reset to initial values when an OPEN CONVERSATION statement or a non-
conversational CALLNAT statement is performed.

Modifying the System Variable *CONVID

The system variable *CONVID (format I4) is set by the OPEN CONVERSATION statement and may be
modified by the application program.

Modifying *CONVID is only necessary if you are using multiple conversations in parallel.

96 Natural RPC (Remote Procedure Call)

10 Reliable RPC

B General INFOrMAtioNccoiiiiii e e e 98
= Reliable RPC on the Natural RPC ClIeNt SIdEvuverieiriiiiiiiiiiiiiiieiiieivieivisieeeieeaevaeeeeeeavseeeveaeeeeeseeenennes 99
= Reliable RPC on the Natural RPC SEIVEr SIdecoovviiiiiiiee e 102
= Viewing the Status of Reliable RPC MESSAGESuvviiiiiiiiiiiiiiii e 102

97

Reliable RPC

General Information

In the architecture of modern e-business applications (SOA), loosely coupled systems are becoming
more and more important. Reliable messaging is one important technology for this type of system.

Reliable RPC is the Natural RPC implementation of a reliable messaging system. It combines the
Natural RPC technology and persistence, which is implemented by means of units of work (UOWs)
that are offered by the EntireX Broker. Reliable RPC is characterized by following features:

¥ The Natural RPC client executes a CALLNAT statement without waiting for a reply from the
server (the RPC message is sent in asynchronous mode).
® An RPC server needs not be active at the time the CALLNAT is executed.

¥ The reliable RPC message is stored in the EntireX Broker's persistent store until an RPC server
is available.

¥ The Natural RPC server executes the reliable RPC by calling the requested subprogram but does
not send a reply to the RPC client.

¥ A Natural RPC client may ask the status of the sent reliable RPC messages.
¥ A Natural RPC client may send a reliable RPC message to an EntireX RPC server.

¥ A Natural RPC server may receive a reliable RPC message from an EntireX RPC client.

98 Natural RPC (Remote Procedure Call)

Reliable RPC

Persistent
Store

1 1
RPC
with UOW v

RPC EntireX
Client < Broker

Error Status
RPC
with UOW

RPC
Server

Reliable RPC on the Natural RPC Client Side

The Natural RPC client for a reliable RPC is configured in the same way as for a normal Natural
RPC. The same Natural RPC client session can send standard RPC requests and reliable RPC
messages.

To enable a Natural RPC client to use reliable RPC, the Natural RPC client must use application
programming interface USR207 1N for an explicit EntireX Broker logon. This implies that the profile
parameter ACIVERS must be set to 2 or higher.

Reliable RPC is used to send messages to a persistent EntireX Broker service. The messages are
described by the PDA of the caller and may only contain output parameters. A parameter is defined
as “output” in one of the following ways:

W If a Natural interface object is used:

In the Attr field on the Interface Object Generation screen of the SYSRPC utility, set the attribute
of the parameter to 0 (output).

Natural RPC (Remote Procedure Call) 99

Reliable RPC

| Note: If your parameter definitions do not contain group structures, you must set the at-

tribute COMPAT to 1DL before generating the interface object; see Generating Interface Objects
- General Considerations in the SYSRPC Utility documentation.

¥ If no Natural interface object is used:
Use the AD=0 session parameter in the CALLNAT statement.

| Note: If you want to call an EntireX RPC server and if the corresponding IDL file contains

group structures, then you must use a Natural interface object, and the parameter defin-
ition for the Natural interface object must correspond to the group structure of the IDL

file.

¥ If you generate a Natural interface object from an IDL file, the attribute of the parameter is taken
from the IDL file. In this case, the IDL file must only contain inbound (from the server's point
of view) parameters.

Reliable RPC is enabled at runtime. The client has to set the one of two different modes before is-
suing a reliable RPC request:

B AUTO_COMMIT

B CLIENT_COMMIT

While AUTO_COMMIT commits each message implicitly after sending it, a series of RPC messages

sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

For this purpose, Natural provides the two application programming interfaces USR6304N and
USR6305N. With interface USR6304N, the mode for reliable RPC is set. With interface USR6305N, a
unit of work that has been created with CLIENT_COMMIT can be committed or rolled back.

> To make use of USR6304N

1 Copy the subprogram USR6304N from the library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the client environment.

2 Using the DEFINE DATA statement, specify the following parameters:

Parameter (l/O |Format|Description

P-FUNC I |AO1 |Function code; possible values are:

P (Put) Set the mode for reliable RPC. The mode applies to all
subsequent calls.

G (Get) Get the previously specified mode.
P-MODE I/O|NO1 |Mode for reliable RPC:

100 Natural RPC (Remote Procedure Call)

Reliable RPC

Parameter |I/0 [Format|Description

0 No reliable RPC (standard RPC execution)
1 Reliable RPC AUTO_COMMIT
2 Reliable RPC CLTENT_COMMIT

P-RC O [NO04 |Return code

P-MESSAGE|O |A80 |Message text

3 Inthe calling program on the client side, specify the following statement:

CALLNAT '"USR6304N" P-FUNC P-MODE P-RC P-MESSAGE

| Note: Themode CLIENT_COMMIT cannot be changed if reliable RPC messages have been sent

but not yet committed or rolled back.

> To make use of USR6305N

1 Copy the subprogram USR6305N from the library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the client environment.

2 Using the DEFINE DATA statement, specify the following parameters:

Parameter (/O |Format |Description

P-FUNC I |A08 |Function code; possible values are:

COMMIT Commit the sent reliable RPC messages. The messages are
now available for an RPC server.
ROLLBACK Discard the already sent reliable RPC messages.
P-RC O |N04 |Return code

P-MESSAGE|O |A80 |Message text

3 Inthe calling program on the client side, specify the following statement:

CALLNAT '"USR6305N" P-FUNC P-MODE P-RC P-MESSAGE

Natural RPC (Remote Procedure Call) 101

Reliable RPC

Reliable RPC on the Natural RPC Server Side

The Natural RPC server for reliable RPC is configured in the same way as for normal Natural
RPC. The same Natural RPC server session can process standard RPC requests and reliable RPC
messages.

To enable the processing of reliable RPC messages, the profile parameter ACIVERS must be set to
2 or higher.

Viewing the Status of Reliable RPC Messages

To view the status of sent reliable RPC messages, Natural provides the application programming
interface USR6306N. With USR6306N you can get the status of all reliable RPC messages that you
have previously sent under your user ID. USR6306N must not necessarily be called within the
Natural session in which the reliable RPC messages have been sent. If USR6306N is used in a different
Natural session, the application programming interface USR207 1N must first be used to log on to
the EntireX Broker with the same user ID that has been used to send the reliable RPC messages.

The reliable RPC messages are implemented by EntireX Broker unit of works (UOWs). The inform-
ation about reliable RPC messages is therefore information about UOWs.

> To make use of USR6306N

1 Copy the subprogram USR6306N from the library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the client environment.

2 Using the DEFINE DATA statement, specify the following parameters:

Parameter I/O |Format | Description
P-UOW-ID-IN I |Al6 |ID for the UOW to be retrieved. Possible values are:
UOWID of a UOW

LAST: the UOW for the last reliable RPC message in the current
Natural session

ALL or blank: all UOWs for the logged on EntireX Broker user

P-USER-ID O |A32 |User ID of the user who has created the UOWs.
P-BROKER-ID O |A32 |Broker ID of the EntireX Broker that hosts the UOWs.
P-UOW-COUNT O |14 Number of UOWs in the P-UOW- INFO array.
P-UOW-INFO (/1:%) X-array with information about each UOW
P-UOW-ID O |A32 |ID of the UOW

102 Natural RPC (Remote Procedure Call)

Reliable RPC

Parameter I/0 |Format | Description

P-UOW-STATUS O |A10 |Status of the UOW according to EntireX Broker
The status depends on the processing state and is assigned by the
EntireX Broker.

P-USERR-STATUS O [A32 |User information about the UOW.
This is typically error information that has been set by the RPC
server.

P-CREATE-TIME O |A32 |Creation time of the UOW according to EntireX Broker.

P-RC O [N04 |Return code

P-MESSAGE O [A80 |Message text

3 Inthe calling program on the client side, specify the following statement:

CALLNAT "USR6306N" P-UOW-ID-IN P-USER-ID P-BROKER-ID P-UOW-COUNT P-OUW-INFO(*) <

P-RC P-MESSAGE

Natural RPC (Remote Procedure Call)

103

104

11 Using a Remote Directory Server - RDS

m RDS PrinCiples Of OPErationviiiiiiiiiiii et 106
m Using @ REMOLE DIrECIONY SEIVEToiii it 108
m Creating an RDS INEEITACEoiiiiiiie e 109
= Creating a Remote Directory Service ROUIINEcoiiiiiiiiiiii 110
= Remote Directory Service Program RDSSCDIRcccoiiiiiiiiiiii e 11

105

Using a Remote Directory Server - RDS

RDS Principles of Operation

You have two options to use a service directory:
1. Using a service directory in a Natural subprogram.

Normally, to locate a service, the Natural RPC uses a service directory in a Natural subprogram.
This directory is an initialized LDA data structure in program NATCLTGS generated by the SYSRPC
Service Directory Maintenance function and has to be available to every RPC client application.

2. Using a remote directory.

You can use a remote directory to locate a service. A remote directory server (RDS) enables you
to define directory definitions in one place so that the RDS's services can be used by all clients
in your environment.

This section describes how to use a remote directory server to locate a service.

106 Natural RPC (Remote Procedure Call)

Using a Remote Directory Server - RDS

Service Directory CLIENT
SESSION
<
SERVER
SESSION
M RDS
Remote Directory Server Subprogram RDSSCDIR SESSION

imple*
as

aciess5es

The remote directory server is implemented as a Natural subprogram.

A sample of such a subprogram is provided in library SYSRPC. It is named RDSSCDIR and reads the
required directory information from a work file. The interface of this subprogram is documented,
which enables you to develop your own remote directory service. For more information, see the

section Creating an RDS Interface.

The RDS interface is the Natural parameter data area of the Natural subprogram and the directory
service routine is the code section of the Natural subprogram. If a remote CALLNAT is not found
within the client's local service directory, the RPC runtime contacts the remote directory server
by executing an internal remote CALLNAT.

An internal directory cache minimizes the access to the remote directory. The cache information
is controlled by an expiration time which is defined by the remote directory server.

Natural RPC (Remote Procedure Call) 107

Using a Remote Directory Server - RDS

Using a Remote Directory Server

~ To use a remote directory server

1

Create a Directory File

Create a directory file for the remote directory service using the Service Directory Maintenance
function of the SYSRPC utility. The subprogram RDSSCDIR is provided in the library SYSRPC
and reads the directory information from a Natural work file (fixed-block, record length 80
bytes). This is a file on <install-dir>/etc named servername.DIR where servername is the
name of the directory server.

Start the Remote Directory Server

Start the remote directory server and proceed with the following steps.

Define RDS
You have two options:

¥ Specify the RDS in the profile parameter RDS.

¥ Or use the maintenance function of the SYSRPC utility to define remote directory servers
(refer to Service Directory Maintenance in the SYSRPC Utility documentation). The definition
of remote directory servers is still supported for reasons of compatibility. You should,
however, define your RDS in the profile parameter RDS. For this purpose, entries are provided
that allow to define the location of the directory server. This enables you to expand existing
local directory information by one or more remote directory server definitions.

Below is an example of how to define a remote directory server in the service directory NATCLTGS.

Service Directory

NODE SERVER |LIBRARY |PROGRAM [LOGON

NODE1

SERVERIL

SYSTEM

TESTSI1

TESTS?

RDSNODE

DIRSRV1

#ACT

O | O [N G| | Q| N| P~

RDSSCDIR

108

Natural RPC (Remote Procedure Call)

Using a Remote Directory Server - RDS

This example locally defines a server named SERVER1L. This server may execute the services TESTS1
and TESTS2.

Additionally, there are definitions for the remote directory server DIRSRV1. A remote directory
server is identified by a preceding hash (#) sign for the library definition.

The definitions of NODE and SERVER are used as usual in Natural RPC. The library definition defines
the transport protocol (ACI) which has to be used to connect the RDS.

Finally, the PROGRAM entry contains the name of the remote subprogram which represents the remote
directory service (in this case, it refers to the sample subprogram RDSSCDIR).

Creating an RDS Interface

The RDS interface is the parameter data area (PDA) of a Natural subprogram.

To create your own RDS interface you can use the parameter data area shown below.

DEFINE DATA PARAMETER

1 P_UDID(B8) /* QUT

1 P_UDID_EXPIRATIONC(CI4) /* QUT

1 P_CURSOR(I4) /* INOUT
1 P_ENTRIES(I4) /* IN

1 P_REQUEST(Al6/1:250) /* IN

1 P_EXTENT (Al6/1:250) /* QUT

1 P_RESULT(A32) /* OUT

1 REDEFINE P_RESULT

2 SRV_NODE(A8)

2 SRV_NODE_EXT(A8)

2 SRV_NAME(A8)

2 SRV_NAME_EXT(A8)
END-DEFINE

For an explanation of the parameters, refer to the table below.

Parameter Format/Length | Explanation

P_UDID B8 Unique directory identifier, should be increased after changing the
directory information. The client saves this identifier in its cache. If
the binary number increases from one client request to the next, it
causes the client to delete its local cache information, because it no
longer corresponds to the remote directory information.

P_UDID_EXPIRATION|I4 This defines the expiration time in seconds, that is, the number of
seconds during which the client can use its local cache information
without connecting the RDS to validate the UDID setting. It allows
you to define a time limit after which you can be sure that your
directory modifications are active for all clients. If you set this time

Natural RPC (Remote Procedure Call) 109

Using a Remote Directory Server - RDS

Parameter Format/Length |Explanation

to an unnecessarily low value, you may cause a lot of network traffic
to the RDS.

P_CURSOR 14 The remote procedure call has the option to scan for an alternative
server if a connection to the previous one cannot be established; see
profile parameter TRYALT.

This parameter contains zero for a scan from the top and may be
modified by the RDS to remember the record location to continue the
scan. The value will not be evaluated by the client, it will only be
inserted from the cache to continue scanning.

P_ENTRIES 14 This parameter contains the number of service definitions in
P_REQUEST.
P_REQUEST A16/1:250 | Alist of services for which a server address can be scanned. An entry

is structured as:

program name (AS)
library name (A8)

P_EXTENT A16/1:250 |Reserved for future use.

SRV_NODE A8 Contains the server node.
SRV_NODE_EXT A8 Contains the server node extension.
SRV_NAME A8 Contains the server name.
SRV_NAME_EXT A8 Contains the server name extension.

Creating a Remote Directory Service Routine

The Remote Directory Service Routine is the code area of a Natural subprogram (the default version
of this code area is subprogram RDSSCDIR in library SYSRPC).

~ To create your own RDS routine

B Modify the pseudo-code documented below.

Set UDID and UDID_EXPIRATION values

IF P_ENTRIES = 0
ESCAPE ROUTINE

IF P_CURSOR != 0
position to next server entry after P_CURSOR
Scan for server which may execute P_REQUEST(*)

IF found
SRV_NODE = found node name
SRV_NODE_EXT = node extension
SRV_NAME = found server name
SRV_NAME_EXT = server extension

110 Natural RPC (Remote Procedure Call)

Using a Remote Directory Server - RDS

P_CURSOR = position of found server
ELSE
P_CURSOR = 0

Remote Directory Service Program RDSSCDIR

This program is to be found in library SYSRPC. It reads the directory information from a work file
(fixed-block, record length 80 byte).

Your program could also read the directory information from elsewhere (from a database, for ex-
ample). Thisisafilein <install-dir>/etcnamed servername.DIR, where servername is the name
of the directory server.

Structure of the Directory Work File

* comment

UDID definition
UDID_EXPIRATION definition
node definition

node definition

UDID Definition

(UDID)
binary number ©

UDID_EXPIRATION Definition

(UDID_EXPIRATION)

number of seconds ©
Node Definition
(NODE)

namevalue (Togon-option)

server definition

server definition

Natural RPC (Remote Procedure Call) 11

Using a Remote Directory Server - RDS

Server Definition

(SERVER)
namevalue (Togon-option)
library definition
library definition

Library Definition

(LIBRARY)
namevalue
program definition
program definition

Program Definition

(PROGRAM)
namevalue

namevalue
Namevalue

Max. 8 characters in uppercase

The Togon-option after namevaliue as well as the following definition lines are optional. For the
possible values of 7ogon-option, refer to Service Directory Maintenance in the SYSRPC utility docu-
mentation.

Example Directory Read from the Work File:

(UDID)
ACBBAAB4777CA000
(UDID_EXPIRATION)
3600
* this is a comment
(NODE)
NODE1
(SERVER)
SERVER1
(LIBRARY)
SYSTEM
(PROGRAM)
TESTS1
TESTS?
TESTS3
(SERVER)

SERVER?Z (Togon-option)

112 Natural RPC (Remote Procedure Call)

Using a Remote Directory Server - RDS

(LIBRARY)
SYSTEM
(PROGRAM)
TESTS4
(NODE)
NODE?2 (Togon-option)
(SERVER)
SERVER1
(LIBRARY)
SYSTEM
(PROGRAM)
TESTS1
TESTS2
TESTS3
TESTS4 ©

In the above example, the directory contains:
® Two servers SERVER] and SERVER2 running on node NODEL.
The server SERVER] may execute the programs TESTS1, TESTS2 and TESTS3 in library SYSTEM.

The server SERVER2 may execute the program TESTS4 on library SYSTEM.

¥ One server SERVER1 on node NODE2 which may execute the programs TESTS1 - TESTS4 in library
SYSTEM.

The indentation of the lines in the example above is not required. All lines may start at any position
(one). You can modify this file manually or generate it using the SYSRPC Service Directory Maintenance
function.

Natural RPC (Remote Procedure Call) 13

14

12 Using Security

= Using Natural RPC with Natural SECUILYoviiiiiiiiiiii e 116
= |mpersonation (Z/OS Batth MOGE)vvviieiiiiie et 120
B MPErsONAtiON (CICS) ..o et 124
= Using Natural RPC with ENtiIreX SECUMIEYcouuviiiiiiiiii e 130

15

Using Security

Using Natural RPC with Natural Security

Natural RPC also supports Natural Security in client/server environments, where security may
be active on either (or both) sides.

For general information, refer to the Natural Security documentation.

For information on how to control the use of Natural RPC (Remote Procedure) calls in a client/server
environment, see Protecting Natural RPC Servers and Services in the Natural Security documentation.

Client Side

The client must send logon data together with the RPC request. The logon data consist of user ID,
password and library.

W User ID and password are used to perform the authentication of the client on the Natural RPC
server side.

¥ The library is used to perform a Natural Security protected logon to the requested library.

The following applies to Natural RPC clients only. For EntireX RPC clients that access a Natural
Security protected Natural RPC server, refer to the EntireX Developer’s Kit documentation.

To send logon data to the Natural RPC server, the Logon option must be used. See Operating a
Natural RPC Environment, Using the Logon Option. The logon data parts are established as follows:

1. The user ID and password:
If the client runs under Natural Security

The user ID and password from the Natural Security logon on the client are used and passed
to the Natural RPC server.

If you want to use a different user ID and/or password for the Natural Security logon on the
server side, you may use the application programming interface USR1071N (see below).

| Note: You may disallow the use of USR1071N in the Natural RPC restrictions part of the

Session Parameters restrictions of the Natural Security library profile.
If the client does not run under Natural Security

To specify the user ID and password that are passed to the Natural RPC server, the client must
call application programming interface USR1071N (see below) before the first RPC request is
sent.

2. The library:

116 Natural RPC (Remote Procedure Call)

Using Security

By default, the name of the library to which the client is currently logged on is used. If you want
to pass another library name to the Natural RPC server, you may use the application program-
ming interface USR4008N.

If impersonation without password check is active for the Natural RPC server (field Impersonation
described in the section Components of an RPC Server Profile in the Natural Security documentation
is set to A), the client may optionally pass an ETID to the Natural RPC server. This ETID will be
used by the Natural RPC server to access Adabase on behalf of the client. To specify an ETID on
the Natural RPC client side, you may use the application programming interface USR4371N.

USR1071N

The application programming interface USR1071N is provided in the library SYSEXT. It is used to
specify the user ID and password that are passed to the Natural RPC server.

> To make use of USR1071N

1 Copy the subprogram USR1071N and the program USR1071P from library SYSEXT to the library
SYSTEMin the system file FNAT in the server environment; see Using a Natural APl in the SYSEXT
Utility documentation.

2 Using a DEFINE DATA statement, specify the following parameters:

Parameter |1/O|Format|Description

USERID I |A08 |User ID to be used.

PASSWORD |I |AO8 |Password to validate the user ID. This password is not validated on the client
side.

MIXEDCASE|I |AO1 |Mixed case option for password (optional).
Y Allow mixed case password.
N Convert passwords to upper case.

3 In the calling program on the client side, specify the following statement:
FETCH RETURN "USR1Q71P' USERID PASSWORD [MIXEDCASE]

You may alternatively invoke USR1071P from the command line and enter user ID and password
in the displayed window.

For a more detailed description, see the USR1071T text object in the system library SYSEXT.

| Note: Two samples are provided to call USR1071N: USR1071P, which is passing just user ID

and password, and USR1071X (extended version), which in addition enables the user to
set/retrieve various data.

Natural RPC (Remote Procedure Call) 17

Using Security

USR4371N

The application programming interface USR4371N is provided in the library SYSEXT. It is used to
specify the user ID and the ETID that are passed to the Natural RPC server.

> To make use of USR4371N

1 1. Copy the subprogram USR4371N and the program USR4371P from library SYSEXT to the library
SYSTEM in the system file FNAT in the client environment; see Using a Natural API

2 Using a DEFINE DATA statement, specify the following parameters:

Parameter |1/O |Format|Description

USERID
ETID

—

A08 |User ID to be used.
A08 |ETID to be used.

—

3 In the calling program on the client side, specify the following statement:

FETCH RETURN "USR4371P' USERID ETID

Alternatively, you may invoke USR4371P from the command line, and enter user ID and ETID in
the displayed window.

For a more detailed description, see the text object USR4371T in the system library SYSEXT.
Server Side

If Natural Security is installed on the server side and AUT0=0N is not specified, a Natural logon
with user ID and password is required. It is recommended to use the Natural profile parameter
STACK to pass the Natural system command LOGON. If AUTO=0N is specified the contents of *INIT-USER
is used for an internal logon as usual.

To enforce the Logon option - that is, if you want a server to accept only requests from clients
where the Logon option is set - set the profile parameter LOGONRQ to ON for the server. If the Logon
option is not enforced, client request without logon data are accepted and executed in the server
library or one of its steplibs. This allows you to provide public as well as secured services.

If the client passes logon data, the user ID and password from the client are verified against the
corresponding user security profile on the server, and the logon to the requested library and the
execution of the subprogram are performed according to the corresponding Natural Security library
and user profile definitions on the server.

After the execution of the subprogram, the library used before the CALLNAT request is updated
again on the server. In the case of a conversational RPC, the first CALLNAT request within the con-

118 Natural RPC (Remote Procedure Call)

Using Security

versation sets the library ID on the server, and the CLOSE CONVERSATION statement resets the library
ID on the server to the one used before the conversation was opened.

As part of the Natural RPC Restrictions in the library profiles of Natural Security, a server session
optionClose all databases isprovided. It causes all databases which have been opened by remote
subprograms contained in the library to be closed when a Natural logon/logoff to/from the libraries
is performed. This means that each client uses its own database session.

If the Close all databases option is set, it is also possible to use a client specific ETID for all
Adabas accesses which are executed by the server for this client. In this case, you should start the
Natural RPC server with ETID=0FF and define an appropriate ETID in the user profile for each
client that needs an ETID, forexample, by specifying the ETID *USER. Please note that in this case
two clients with the same name cannot issue two concurrent requests with Adabas calls.

Changing Password

It is possible to change the Natural Security password on the Natural RPC server via a Natural
RPC service request. For this purpose, the application programming interface USR2074N is provided
in the library SYSEXT.

> To make use of USR2074N

1 Copy the subprogram USR2074N, and optionally program USR2074P, from library SYSEXT to
the library SYSTEM or to the steplib library or to any application in the server environment.

2 Using a DEFINE DATA statement, specify the following parameters:

Parameter 1/0 | Format | Description
USERID I |AO08 |User ID to be used.
PASSWORD I |A08 |Password to validate the user ID. This password is not validated on the
client side.
NEWPASSWORD|I |A08 |New password for the user ID. This password is not validated on the client
side.
NODE-NAME |I |A192 |Name of the server node to be addressed.
SERVER-NAME|I |A32 |Name of the server to be addressed.
PROTOCOL I |Al |The transport protocol to address the server node. Valid value:
B EntireX Broker
RC O |I2 Return value:
0 OK, MESSAGE contains a confirmation message.
1 Error from RPC or server node, MESSAGE
contains the error message.
2 Error from the interface, MESSAGE contains the
error message.

Natural RPC (Remote Procedure Call) 119

Using Security

Parameter I/0 | Format | Description

3 Natural Security error, MESSAGE# contains the
Natural error number and MESSAGE contains
the corresponding message text.

MESSAGE# O |[N4 |Message number returned.
MESSAGE O |A80 |Message text returned.

3 In the calling program on the client side, specify the following statement:

CALLNAT 'USR2074N" user-id password newpassword node-name server-name protocol
rc messageff message

You may alternatively use program USR2074P from library SYSEXT. Invoke USR2074P from the
command line and enter the required data in the displayed window. In this case, all input except
for the passwords are converted into upper case. For the passwords, you have the option to enter
them in mixed case or not.

Impersonation (z/OS Batch Mode)

= Purpose of Impersonation

= Steps to Activate Impersonation (Server Side)
= Steps to Use Impersonation (Client Side)

= Rules for Impersonation

Purpose of Impersonation

Impersonation is an optional feature on the Natural RPC server side and is only available if the

Natural RPC server runs under Natural Security. The impersonation feature is controlled by the

Security Profiles for Natural RPC Servers. See the field Impersonation described under the heading
Components of an RPC Server Profile in the section Protecting Natural RPC Servers and Services in the
Natural Security documentation.

Impersonation in z/OS batch mode requires the use of the Natural RPC server front-end under
z/OS and uses the SAF interface provided by z/OS.

If impersonation is active for the Natural RPC server, a client request that uses the Logon option
is from the perspective of the operating system executed under the user ID that the client passes
in the LOGON data (called Natural RPC user ID). Impersonation assumes that access to the operating
system on which a Natural RPC server is running is controlled by an SAF-compliant external se-
curity system. User authentication (verification of the Natural RPC user ID and password) is per-
formed by this external security system. After successful authentication, the user's identity is es-
tablished for the operating system (that is, an ACEE is created and linked to the TCB under which
the current client request is executed). Any subsequent authorization checks will be performed

120 Natural RPC (Remote Procedure Call)

Using Security

based on this identity. This means that all accesses to resources that are controlled by the SAF
compliant external security system are authorized for this identity. This applies especially to accesses
to work files and to databases.

Impersonation does not turn off Natural Security. After successful authentication of the user's
identity by the external security system, a Natural Security logon takes place using the same LOGON
data but without password verification.

To start a Natural RPC server using impersonation, see Starting a Natural Server Using the RPC
Server Front-End in Starting a Natural RPC Server.

| Note: Without impersonation, a client request that uses the Logon option is from the per-

spective of the operating system executed with the user ID under which the Natural RPC
server has been started.

Steps to Activate Impersonation (Server Side)

1. Install RPC server front-end

Proceed as described in the corresponding steps of the Natural for Mainframes installation
documentation; see Installing Natural on z/OS.

If you choose to use the recommended APF-authorized LINKLIST library, you must ensure that
the resulting load module does not exist in the STEPLIB or JOBLIB concatenation.

2. Link Natural z/OS batch nucleus with DB2 interface DSNRLI

This step applies to Natural for DB2 users only.

3. Use reentrant Adabas batch link routine ADALNKR instead of ADALNK
Refer to Considerations for Mainframe Natural RPC Servers with Replicas in Starting a Nat-
ural RPC Server.

4. Use EntireX Broker Stub BROKER instead of NATETB23
See Provide Access to the EntireX Broker Stub on Mainframe in Setting Up a Natural RPC
Environment.

5. Define all required RPC server-specific Natural profile parameters
Refer to Set the RPC Server-Specific Natural Parameters in Setting Up a Natural RPC Envir-
onment. The parameters are either defined in the Natural parameter module or in the CMPRMIN

dataset. The parameter PARM= of the JCL EXEC statement is not used to provide Natural profile
parameters.

6. Define an RPC server profile in Natural Security

Define an RPC server profile in Natural Security (NSC) for the server name that is used by the
RPC server (SRVNAME) and activate the impersonation.

Natural RPC (Remote Procedure Call) 121

Using Security

Refer to Security Profiles for Natural RPC Servers in Protecting Natural RPC Servers and Services of
the Natural Security documentation.

7. Check SAF definitions
(This step applies to Natural for DB2 users only.)

If the SAF resource class DSNR is active, you must check whether you need the following SAF
definitions:

RDEFINE DSNR (subsys.RRSAF) OWNER(DBZowner)

PERMIT subsys.RRSAF CLASS(DSNR) ID(DBZgroup) ACCESS(READ)

where subsys is your DB2 subsystem ID.

Each user who wants to access DB2 must be a member of group DB2group.

For further information, refer to the relevant DB2 documentation of IBM.

8. Create user exit NATRPC02
(This step applies to Natural for DB2 users only.)
Create the Natural RPC user exit NATRPCO2 with a call to NATPLAN to set the required DB2 plan.
Make sure that you use a NATPLAN of your current Natural for DB2 version.

Sample NATRPCO2:

DEFINE DATA PARAMETER
1 SUBPROGRAM (A8) BY VALUE END-DEFINE
FETCH RETURN "NATPLAN' 'planname'

9. Start Natural RPC server front-end
Start the Natural RPC server front-end.

Refer to Starting a Natural RPC Server Using the RPC Server Front-End in Starting a Natural
RPC Server.

Make sure you have added all required load libaries to your STEPLIB concatenation. You will
especially need the following:

¥ Natural load library

¥ EntireX load library

¥ Adabas load library (if you use the Adabas link routine ADAUSER)

¥ DB2 load library (if you want to access DB2)

122 Natural RPC (Remote Procedure Call)

Using Security

The impersonation is successfully activated if you see the following messages:

¥ In the job log:

RPCO010 Authorized environment for impersonation established

B In the RPC trace file:

M *** Server is running under NSC with impersonation
Steps to Use Impersonation (Client Side)

The client must send logon data together with the RPC request as it is already done for a standard
Natural Security (NSC) protected Natural RPC server. In contrast to a standard Natural RPC
server, the user ID must also be a valid SAF user ID and the password must be the corresponding
SAF password. User ID and password are validated by the Natural RPC server against the external
security system on the z/OS system under which the server is executing. After successful authen-
tication of the client’s identity by the external security system, the user ID is validated by NSC
according to the defined rules. The password is ignored. Therefore, it is not required to set the
NSC password to your SAF password.

When the field Impersonation described in the section Components of an RPC Server Profile in the
Natural Security documentation is set to A, no password is used to authenticate the client against
the external security system. This setting may be appropriate if the client has already been authen-
ticated by the EntireX Broker.

Depending on the kind of client, the logon data are set differently:
Natural Clients

1. Turn on the logon option in the Service Directory Maintenance function or in the profile parameter
DFS.

Alternatively, you can use the USR2007N to turn it on.

Refer to Using the Logon Option in Operating a Natural RPC Environment.
2. Set the SAF user ID and the SAF password, using application programming interface USR1071P.

If your client runs under Natural Security (NSC) and the user ID and password of NSC are
identical to the SAF user ID and the SAF password, then USR1071P is not required.

Natural RPC (Remote Procedure Call) 123

Using Security

EntireX RPC Clients

1. Turn on the Natural logon option according to your application environment.

2. Set the RPC user ID and the RPC password to the SAF user ID and SAF password according
to your application environment.

Rules for Impersonation

¥ Impersonation takes place at the start of each non-conversational CALLNAT and at the start of
each conversation.

¥ The authentication of the Natural RPC user ID and password is performed by the external se-
curity system. The password on the FSEC system file is not used.

W After successful authentication, the Natural RPC user ID is established for the operating system
(user is impersonated).

W After successful impersonation:
1. A Natural security logon is performed for the Natural RPC user ID without password check.

2. All work files with a DDNAME that does not start with CM are opened with the Natural RPC
user ID.

3. All Adabas databases are opened with the Natural RPC user ID (applies to Adabas external
security only).

4. If an ETID is specified in the NSC user profile, this ETID is used in the Adabas open request.

5. The DB2 connection is opened with the Natural RPC user ID (applies to Natural for DB2
users only).

B At the end of each non-conversational CALLNAT and at the end of each conversation, the Natural
RPC user ID is logged off from the operating system.

W After log off:
1. All work files with a DDNAME that does not start with CM are closed.
2. All Adabas databases are closed.

Impersonation (CICS)

The following topics are covered below:

= Purpose of Impersonation

= Steps to Activate Impersonation (Server Side)
= Steps to Use Impersonation (Client Side)

= Rules for Impersonation

124 Natural RPC (Remote Procedure Call)

Using Security

= RPCSFEX1 - User Exit for Impersonation under CICS
Purpose of Impersonation

Impersonation is an optional feature on the Natural RPC server side and is only available if the

Natural RPC server runs under Natural Security. The impersonation feature is controlled by the

Security Profiles for Natural RPC Servers. See the field Impersonation described under the heading
Components of an RPC Server Profile in the section Protecting Natural RPC Servers and Services in the
Natural Security documentation.

Impersonation under CICS requires the use of the Natural RPC server front-end under CICS and
uses the interface provided by CICS.

If impersonation is active for the Natural RPC server, a client request that uses the Logon Option
is from the perspective of CICS executed under the user ID that the client passes in the LOGON data
(called Natural RPC user ID). Impersonation under CICS uses the CICS option to start a CICS task
under a given user ID. After a client request has arrived the Natural RPC server front-end starts
anew CICS task using the USERID() option of the EXEC CICS START TRANSID() command, where
USERID is the Natural RPC user ID. The User authentication (verification of the Natural RPC user
ID and password) is performed by CICS, typically by using the underlying external security system.
After successful authentication, the user's identity is established for the CICS task. Any subsequent
authorization checks will be performed based on this identity. This means that all accesses to re-
sources that are controlled by CICS are authorized for this identity. This applies especially to ac-
cesses to CICS resources and to databases. By default, the newly established CICS task runs with
the same CICS transaction ID with which you started the RPC server front-end. You can use the
RPCSFEXI user exit to set a request-specific transaction ID.

Impersonation does not turn off Natural Security. After successful authentication of the user's
identity by CICS, a Natural Security logon takes place using the same LOGON data without password
verification.

To start a Natural RPC server using impersonation, see Starting a Natural Server Using the RPC
Server Front-End (CICS only) in Starting a Natural RPC Server.

| Note: Without impersonation, a client request that uses the Logon option is from the per-

spective of the operating system executed with the user ID with which the Natural RPC
server has been started.

Natural RPC (Remote Procedure Call) 125

Using Security

Steps to Activate Impersonation (Server Side)

1.

Install the RPC server front-end under CICS

Proceed as described in the corresponding steps of the Natural for Mainframes installation
documentation; see Installing the Natural CICS Interface on z/OS.

Install the Adabas link routine for Adabas external security

For further information, refer to the relevant Adabas documentation (applies to Adabas external
security users only).

Use EntireX Broker Stub CICSETB instead of NATETB23

See Providing Access to the EntireX Broker Stub on Mainframe in Setting Up a Natural RPC
Environment.

Define all required RPC server-specific Natural profile parameters

Refer to Set the RPC Server-Specific Natural Parameters in Setting Up a Natural RPC Envir-
onment.

The parameters are either defined in the Natural parameter module or together with the
transaction ID.

Define an RPC Server Profile in Natural Security

Define an RPC Server Profile in Natural Security (NSC) for the server name that is used by the
RPC server (SRVNAME) and activate the impersonation.

Refer toSecurity Profiles for Natural RPC Servers in Protecting Natural RPC Servers and Services of
the Natural Security documentation.

If CICS startup parameter XUSER=YES

If the CICS startup parameter XUSER=YES is specified you must define surrogate users for each
client user:

RDEFINE SURROGATE wuseridl.DFHSTART UACC(NONE) OWNER(Cuseridl) PERMIT
useridl .DFHSTART CLASS(SURROGATE) ID(userid?2) ACCESS(READ)

where
useridl is the user ID of the client,
userid?is the user ID under which the Natural RPC server front-end is started.

For further information, refer to the relevant CICS documentation of IBM.

Define a CICS PROGRAM entry for the RPC server front-end

Refer to the corresponding step in Installing the Natural CICS Interface on z/OS.

126 Natural RPC (Remote Procedure Call)

Using Security

8. Define a CICS TRANSACTION entry for the transaction ID that invokes the RPC server front-end.

Refer to the corresponding step in Installing the Natural CICS Interface on z/OS.
9. Define a DB2TRAN and DB2ENTRY entry

(This step applies to Natural for DB2 users only.)

Define a DB2TRAN and DB2ENTRY entry for the transaction ID that invokes the RPC server front-
end.

10. Start the Roll Server
Start the Roll Server for the subsystem used by the Natural RPC server.

(This step applies only if the NCMDIR macro parameter ROLLSRV is set to YES.)
11. Start the Natural RPC server front-end under CICS

Refer to Starting a Natural RPC Server Using the RPC Server Front-End (CICS only) in Starting
a Natural RPC Server.

The impersonation is successfully activated if you see the following message in the RPC trace
file:

M *** Server is running under NSC with impersonation
Steps to Use Impersonation (Client Side)

The client must send logon data together with the RPC request as it is already done for a standard
Natural Security (NSC) protected Natural RPC server. In contrast to a standard Natural RPC
server, the user ID must also be a valid CICS user ID and the password must be the corresponding
password of the external security system. User ID and password are validated by CICS against
the external security system on the z/OS system under which CICS is executing. After successful
authentication of the client’s identity by the external security system, the user ID is validated by
Natural Security according to the defined rules. The password is ignored. Therefore, it is not re-
quired to set the NSC password to your SAF password.

When the field Impersonation described in the section Components of an RPC Server Profile in the
Natural Security documentation is set to A, no password is used to validate the client against the
external security system. This setting may be appropriate if the client has already been authenticated
by the EntireX Broker.

Depending on the kind of client, the logon data are set differently:

Natural RPC (Remote Procedure Call) 127

Using Security

Natural Clients
1. Turn on the logon option

Turn on the logon option in the Service Directory Maintenance function or in the profile parameter
DFS.

Alternatively, you can use the application programming interface USR2007N to turn it on.

Refer to Using the Logon Option in Operating a Natural RPC Environment.

2. Set user ID and password
Set the user ID and the password, using application programming interface USR1071P.

If your client runs under Natural Security (NSC) and the user ID and password of NSC are
identical to the user ID and password on the server side, then USR1071P is not required.

EntireX RPC Clients
1. Turn on the Natural logon option

Turn on the Natural logon option according to your application environment.

2. Set RPC user ID and password

Set the RPC user ID and the RPC password according to your application environment.
Rules for Impersonation

¥ Impersonation takes place at the start of each non-conversational CALLNAT and at the start of
each conversation.

¥ The optional RPCSFEX1 user exit is called to set a request-specific CICS transaction ID.

¥ The authentication of the Natural RPC user ID and password are performed by CICS. The
password on the FSEC system file is not used.

W After successful authentication, the Natural RPC user ID is established for CICS (user is imper-
sonated).

W After successful impersonation:
1. A Natural security logon is performed for the Natural RPC user ID without password check.
2. All CICS resources are accessed with the Natural RPC user ID.

3. All Adabas databases are opened with the Natural RPC user ID (applies to Adabas external
security only).

4. If an ETID is specified in the NSC user profile, this ETID is used in the Adabas open request.

5. The DB2 connection is opened with the Natural RPC user ID (applies to Natural for DB2
users only).

128 Natural RPC (Remote Procedure Call)

Using Security

B At the end of each non-conversational CALLNAT and at the end of each conversation, the Natural
RPC user ID is logged off from CICS.

W After log off:
1. All CICS resources are closed.
2. All Adabas databases are closed.
3. The connection to DB2 is closed (applies to Natural for DB2 users only).

RPCSFEX1 - User Exit for Impersonation under CICS

By default, the CICS transaction ID with which the impersonated RPC request is executed is the
same as the CICS transaction ID used to start the RPC server front-end. You can set a request-
specific transaction ID with the RPCSFEX1 user exit.

The RPCSFEX1 user exit is called when the logon data of a client is evaluated after an RPC request
has been received. The logon data is then used to set the CICS transaction ID under which the
impersonated RPC request executes.

You must link RPCSFEX1 to the RPC server front-end for CICS and call the user exit by using the
following standard conventions:

RPCSFEX1 is called using standard conventions:

Register |Contents

15 Entry address of NATSFEX1

14 Return address of Natural RPC server front-end
13 Address of a save area of 18 words

1 Address of a parameter list

The parameter list contains the following addresses:

Address |Parameter /O |Natural Data Format/Length
1 CICS transaction ID I/O|A04

2 EntireX user ID of client I |A32

3 RPC user ID of client I |AS8

4 RPC password of client I |A8

5 Name of the Natural library where to execute the RPC requeston |I A8

the Natural RPC server
6 Name of the subprogram to be executed on the Natural RPC server|I |A8

You can only modify the CICS transaction ID with the user exit.

Natural RPC (Remote Procedure Call) 129

Using Security

Using Natural RPC with EntireX Security

Natural RPC fully supports EntireX Security on the client side and on the server side.

= EntireX Security on the Client Side
= EntireX Security on the Server Side

EntireX Security on the Client Side

To logon to and logoff from the EntireX Broker, the Natural Application Programming Interface
USR2071N is provided. To logon to EntireX Broker, you use the logon function of USR207 1N and
pass your user ID and password to the selected EntireX Broker. After a successful logon, the security
token returned is saved by Natural and passed to the EntireX Broker on each subsequent call. The
Logon option is fully transparent to the Natural application.

If EntireX Security is installed or if AUTOLOGON=NO is specified in the EntireX Broker attribute file,
you must invoke USR207 1N with the logon function before the very first remote CALLNAT execution.

You are recommended to invoke USR207 1N with the logoff function as soon as you no longer intend
to use a remote CALLNAT.

> To make use of USR2071N

1 Copy the subprogram USR2071N from library SYSEXT to the library SYSTEM or to the steplib
library or to any application in the server environment.

2 Using a DEFINE DATA statement, specify the following parameters:

Parameter |1/0O|Format|Description

function |I |A08 |Function code; possible values are:
LOGON Logon to EntireX Broker
LOGOFF Logoff from EntireX Broker

broker-id|l |A192 |Broker ID.
Note: For compatibility reasons broker -1idis defined with BY VALUE RESULT
to support existing callers which pass an A8 or A32 field for the broker-id.
The sample USR2071P provided in the library SYSEXT supports up to 32
characters.

user-id |I |A32 |UserID.

password |I |A32 |User ID's password.

newpassw (I |A32 |User ID's new password.

rc O |N04 |Return value:

130

Natural RPC (Remote Procedure Call)

Using Security

Parameter |1/0|Format|Description

0 OK
1 invalid function code
9999 EntireX Broker error (see message)

message |O |A80 |Message text returned by EntireX Broker.

3 Inthe calling program on the client side, specify the following statement:

CALLNAT '"USR2071IN' function broker-id user-id password newpassword rc message

See also the Syntax Description of the CALLNAT statement.

You may alternatively invoke USR2071P from the command line and enter user ID and password
in the displayed window. In this case, all input except for the passwords is converted into upper
case. For the passwords, you have the option to enter them in mixed case or not.

Functionality:

LOGON

An EntireX Broker LOGON function is executed to the named broker-idwith the user-7dand
the password passed. After a successful LOGON call, the client can communicate with the EntireX
Broker broker-1id as usual.

With newpassw the client user can change her/his password via the EntireX Security features.
Notes:

B If a successful logon has been performed, the user ID used in this LOGON will be passed to the
named EntireX Broker on all subsequent remote procedure CALLNATs which are routed via this
EntireX Broker.

Without an explicit LOGON, the current contents of system variable *USER is used. The same
applies if you have issued a LOGON to EntireX Broker 1, but your remote procedure CALLNAT is
routed via EntireX Broker 2.

B It is possible to concurrently log on to multiple EntireX Brokers. For each LOGON, a different user
ID may be used.

B The user ID used for the LOGON to the EntireX Broker may be different from the Natural user
ID under which the client application runs.

B An internal re-logon is done after an EntireX Broker timeout has occurred, if the original LOGON
was done without a password (the password used in the LOGON is not saved). If no internal
re-logon is possible after a timeout has occurred, the client has to explicitly reissue the LOGON.

B At the end of the Natural session, an implicit LOGOFF is executed to all EntireX Brokers to which
a logon has been performed.

LOGOFF

An EntireX Broker LOGOFF function is executed to the broker-idnamed.

Natural RPC (Remote Procedure Call) 131

Using Security

Special Considerations when the Client Request is Executed on the Server Side:

If an RPC client request is executed on the Natural RPC server side, a logon to the EntireX Broker,
using the Application Programming Interface USR207 1N, must also be performed before executing
the RPC client request. The logon data of the Natural RPC server itself are not used for RPC client
requests.

If the RPC client request is sent to the same EntireX Broker where the Natural RPC server is re-
gistered, the user ID must be different from the value of the Natural profile parameter SRVUSER.

EntireX Security on the Server Side

If the value of profile parameter ACIVERS is 2 or higher, the server will log on to the EntireX Broker
at the session start using the LOGON function. The user ID is the same as the user ID defined by
SRVUSER.

If EntireX Security has been installed and if the EntireX trusted user ID feature is not available,
there are two alternative ways to specify the required password:

W Setting SRVUSER=*NSC

¥ Using application programming interface USR2072N

These alternatives are described below.
Setting SRVUSER=*NSC

If Natural Security is installed on the server, you can set profile parameter SRVUSER to *NSC to
specify that the current Natural Security user ID which was used when the server was started is
used for the LOGON in conjunction with the accompanying Natural Security password. In this case,
the value set for ACIVERS must be at least 4.

Using Application Programming Interface USR2072N to Specify a Password

The Application Programming Interface USR2072N enables you to specify a password which is
used for the LOGON in conjunction with profile parameter SRVUSER.

> To make use of USR2072N

1 Copy the subprogram USR2072N and optionally program USR2072P from library SYSEXT to the
library SYSTEM or to the steplib library or to any application in the server environment.

2 Using a DEFINE DATA statement, specify the following parameter:

132 Natural RPC (Remote Procedure Call)

Using Security

Parameter |1/O|Format|Description

L

password|l |A32 |User ID's password.

3 In the calling program on the client side, specify the following statement:

CALLNAT '"USR2072"' password

See also the Syntax Description of the CALLNAT statement.

4 The calling program must be executed before the Natural RPC server has started its initializ-
ation. To accomplish this, put the name of the calling program on the Natural stack when
starting the server. For this purpose, you may also use the program USR2072P from library
SYSEXT. In this case, the password is converted into upper case by default. You have the option
to enter the password in mixed case by passing the mixed case option Y as second parameter.

STACK=(LOGON server-Ilibrary;USR2072P password [Y])

Natural RPC (Remote Procedure Call) 133

134

13 EntireX Broker Support

B S BOUITEY vttt ettt 136
B [0gQING ANA ACCOUNTING .. .etteeeee ittt ettt e e e ettt e e e e e ettt e e e e e e e e et eaeeeeaeas 136

135

EntireX Broker Support

Security

Natural RPC client and Natural RPC server support EntireX Security.

If a Natural RPC client or a Natural RPC server is started with ACIVERS=8, EntireX Security without
stub exits (mainframe only) and without SECUEXIT (all platforms) are supported. In this case,
Natural issues a KERNELVERS call before any other broker call to get the current setting of the ACI
field KERNELSECURITY. This KERNELSECURITY setting is passed with all subsequent broker calls.
This feature also allows a Natural RPC client to access a secured and non-secured EntireX Broker
within the same Natural session.

Logging and Accounting

Natural RPC client and Natural RPC server support logging and accounting of the RPC program
and the RPC library within the EntireX Broker.

The Natural RPC client provides the name of the subprogram that is to be executed and the name
of the library from which the subprogram is to be executed to the EntireX Broker.

The Natural RPC server returns the name of the subprogram that has been executed and the name
of the library from which the subprogram has actually been executed.

136 Natural RPC (Remote Procedure Call)

14 APIs for Providing an RPC Context from the Natural Client

Side
B R P - CN T X ottt ettt e et e ettt e e 138
= Table of APIs related t0 RPC in Library SYSEXToviiiiiiiiiiiiii e 140

137

APIs for Providing an RPC Context from the Natural Client Side

This chapter gives an overview on application programming interfaces (APIs) to provide the
context for an RPC call, for example passwords or a default server. The following topics are covered:

RPC-CNTX

The APIRPC-CNTX can be used for providing a context for RPC calls as it is done in test programs
generated by the webMethods EntireX Natural Wrapper.

RPC-CNTX combines the functionality of several APIs and is available in library SYSTEM. There is
no need for extra preparations such as setting a STEPLIB or to copy APIs from SYSEXT to user
libraries.

> To make use of RPC-CNTX

1 Specify a DEFINE DATA statement

wherelevel 01 is defined by 01 RPC-CNTX-AREA, and specify the following parameters on level

02:

Parameter Format 1/0 |Description

FUNCTION A02 I

'SL" Set the RPC context depending on the parameters
given and log on to EntireX Broker.

'SC" Set the RPC context depending on the parameters
given.

'GC' Get RPC context. By default, the required information
relates to the default server.

"LO" Log on to EntireX Broker

"LF" Log off from EntireX Broker

BROKERID A dynamic|I/O|Specify the broker name.
See the profile parameter SRVNODE.

CLASS A32 I |Specify the server class. For Natural RPC servers, this is RPC.
See the keyword subparameter SRVNAME of the RPC profile
parameter.

SERVER A32 I/O|Specify the server name. See the profile parameter SRVNAME

SERVICE A32 I |Specify the type of RPC. For Natural RPC servers, this is
CALLNAT.

COMPRESSLEVEL A01 I/O|Compression level requires API version 7.

RESERVED 101 I/O|Reserved for future use.

RPC-LIBRARY A08 I

138 Natural RPC (Remote Procedure Call)

APIs for Providing an RPC Context from the Natural Client Side

Parameter Format 1/0 |Description

RPC-RELIABLE-STATE |NO1 I/0

0 No reliable RPC (standard RPC execution)
1 Reliable RPC (AUTO_COMMIT)
2 Reliable RPC (C1ient_COMMIT)

NAT-LOGON A011 I/0

EXX-USERID A32 I

EXX-PASSWORD A32 I

RPC-USERID A32 I

RPC-PASSWORD A32 I

ERR-CODE 104 O |The origin of some error code can be detected by the

following identifiers:

USR1071N,(USR4371N) Innnn

USR6304N 2nnnn
USR2007N 3nnnn
USR4008N 5nnnn
USR4009N 8nnnn
USR2071N 9nnnn

ERR-TEXT A dynamic|O

| Note: The most important function codes are 'SL" and 'LF'. Function code 'SL" isa

combination of setting the RPC context (' SC') and a logon to EntireX Broker ('L0").
2 Inthe calling program on the client side, specify the following statement:

CALLNAT '"RPC-CNTX" RPC-CNTX-AREA

For further information refer to Syntax Description in CALLNAT in the Statements documenta-
tion.

The setting of the RPC context is processed as follows:

1. Set the credentials for RPC server by specifying RPC-USERID and RPC-PASSWORD (APIUSR1071N).
2. Set the mode for reliable RPC by specifying RPC-RELIABLE-STATE (API USR6304N).

3. Set the data for the RPC default server including the logon option with a specification for
BROKERID, SERVER and NAT-LOGON (API USR2007N).

4. Change the library name on the RPC server for the logon by specifying RPC- LIBRARY (API
USR4008N). If the name is left blank, the API is not called.

Natural RPC (Remote Procedure Call) 139

APIs for Providing an RPC Context from the Natural Client Side

Set parameters for EntireX COMPRESSLEVEL by using API USR4009N. If no values are specified,

the API is not called.

For logging on to the EntireX Broker, specify BROKERID, EXX-USERID, and EXX-PASSWORD, which

are then passed to USR2071N.

After you have finished your work with the RPC connection, you need to log off from the EntireX
Broker using RPC-CNTX with function code 'LF".

Table of APIs related to RPC in Library SYSEXT

Entries with a hyperlink correspond to APIs that are documented in the Natural documentation.
You can also find a description of an APl in library SYSEXT under the name USRnnnnT. The raw
content of the table was generated by running SYSEXT with keyword RPC:

APl name |Description

USR1071N |Set credentials for RPC server. Send logon data to the Natural RPC server if the client has no
NSC, or if the client has NSC: for using a different user ID and password on server side.

USR2007N |Get or set data for RPC default server, including the logon option.

USR2032N |Support commit for CLOSE CONVERSATION.

USR2035N |Get or set parameters for SSL support.

USR2071N |Support EntireX Security on client side. Logon to EntireX Broker.

USR2072N |Support EntireX Security on server side. Specify a password which is used for the LOGON in
conjunction with profile parameter SRVUSER.

USR2073N |Ping or terminate a Natural RPC server.

USR2074N |Change the Natural Security password on the Natural RPC server.

USR2075N | Terminate an EntireX Broker Service.

USR2076N |Get or set RPC TIMEOUT value.

USR4008N |Pass another library name to the Natural RPC server to log on to.

USR4009N |Set parameters for EntireX.

USR4010N |Get runtime settings of RPC server.

USR4012N |Set application error on RPC server.

USR6304N |Set/Get the mode for reliable RPC.

USR6305N |Commit or roll back a unit of work that has been created with CLIENT_COMMIT.

USR6306N |Get the status of all reliable RPC messages that you have previously sent under your user ID.

USR8208N |Terminate EntireX Broker service. Pings or terminates an RPC server or terminates an EntireX
Broker service. Displays the EntireX Broker version and other information from the EntireX
Broker Command and Information Service (CIS).

140 Natural RPC (Remote Procedure Call)

	Natural RPC (Remote Procedure Call)
	Table of Contents
	Preface
	1 About this Documentation
	表記規則
	オンライン情報
	データ保護

	2 Introducing Natural RPC
	General Information
	Purpose
	Advantages of Natural RPC (Remote Procedure) Calls
	Natural RPC Modes of Operation
	Availability on Various Platforms
	Mainframe Environments
	Other Environments

	Support of Non-Natural Environments (EntireX RPC)

	Natural RPC Operation in Non-Conversational Mode
	Issuing CALLNATs in an RPC Environment

	Natural RPC Operation in Conversational Mode
	General Rules for Local/Remote Subprogram Execution
	Local Subprogram Execution
	Remote Subprogram Execution

	Conversational versus Non-Conversational Mode
	General Rules for Use of Conversational/Non-Conversational RPC
	Possible Disadvantage of Using Conversational RPC

	Database Transactions
	Handling of Limits Set with Profile Parameters LT, MAXCL, MADIO, and MT on Server
	Location of Conversations
	Natural RPC Terminology

	3 Prerequisites and Preparatory Information
	Products Involved
	Natural Statements Involved
	Natural Utilities for Use with Natural RPC
	Application Programming Interfaces for Use with Natural RPC
	Software AG IDL to Natural Mapping
	Mapping Software AG IDL Data Types to Natural Data Formats
	Mapping Library Name and Alias
	Mapping Program Name and Alias
	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes IN, OUT, INOUT
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	4 Restrictions and Limitations
	User Context Transfer
	System Variable Transfer
	Application-Independent Variables
	Parameter Handling in Error Situations
	Variable Arrays in Subprograms
	X-Arrays
	Groups and Interface Objects
	Group Arrays on the RPC Server Side
	Unsupported Natural Data Formats
	EntireX RPC Server
	Using VSAM
	Natural Statement Reactions
	Notes on Natural Statements on the Server

	5 Setting Up a Natural RPC Environment
	Setting Up a Natural Client
	Define the Server Name
	Generate a Client Interface Object
	Set the RPC Client-Specific Natural Parameters

	Setting Up a Natural Server
	Set the RPC Server-Specific Natural Parameters
	Ensure Command Mode Usage in Server Session
	Ensure Unique Adabas ETID Usage
	Start a Natural Server

	Setting Up an EntireX Broker Access
	Provide Access to the EntireX Broker Stub
	Providing Access to the EntireX Broker Stub on Mainframes
	Providing Access to the EntireX Broker Stub on UNIX and OpenVMS
	Providing Access to the EntireX Broker Stub on Windows

	Set the API Version
	Using TCP/IP as Transport Method

	Setting Up an EntireX Broker Environment

	6 Starting a Natural RPC Server
	Preliminaries before Starting a Natural RPC Server
	Starting a Natural RPC Server in a Mainframe Online Environment (all TP Monitors)
	Starting a Natural RPC Server in a Mainframe Online Environment (CICS only)
	Starting a Natural RPC Server in a Mainframe Online Environment (Com-plete only)
	Starting a Batch Server in a Mainframe Environment
	Starting a Batch Server under z/OS
	Starting a Batch Server under z/VSE
	Starting a Batch Server under BS2000

	Starting a Natural RPC Server in a Windows Environment
	Starting a Natural RPC Server in a UNIX Environment
	Starting a Natural RPC Server in an OpenVMS Environment
	Considerations for Mainframe Natural RPC Servers with Replicas
	Natural RPC Batch Server with NTASKS >1
	Running a Batch Server with Replicas

	Starting a Natural RPC Server Using the RPC Server Front-End (z/OS Batch Mode only)
	Starting a Natural RPC Server Using the RPC Server Front-End (CICS only)

	7 Terminating a Natural RPC Server
	Using SYSRPC
	Using SYSRPC to Terminate a Single RPC Server Replica
	Using SYSRPC to Terminate an EntireX Broker Service

	Using EntireX System Management Hub
	Using Application Programming Interface USR2073N
	Using Application Programming Interface USR2075N
	Using Application Programming Interface USR8208N
	Using Application Programming Interface USR8220N
	Server Termination When Using an Attach Manager
	User Exit NATRPC99

	8 Operating a Natural RPC Environment
	Specifying RPC Server Addresses
	Using Local Directory Entries
	Using Remote Directory Entries
	Specifying a Default Server Address at Natural Startup
	Specifying a Default Server Address within a Natural Session
	Using an Alternative Server

	Interface Objects and Automatic RPC Execution
	Creating Interface Objects
	Working with Automatic Natural RPC Execution

	Modifying RPC Profile Parameters during a Natural Session
	Executing Server Commands
	Logon to a Server Library
	Using the Logon Option
	Logging on to a Different Library
	Settings Required on the Client Side
	Settings Required on the Server Side

	Using Compression
	Using Secure Socket Layer
	Monitoring the Status of an RPC Session
	Using the RPCERR Program
	Using the RPCINFO Subprogram
	Using the Server Trace Facility
	Activating/Deactivating the Server Trace Facility

	Defining the Trace File
	Trace File Handling for Mainframe Environments - General Information
	Trace File Handling in z/OS Batch Mode
	Trace File Handling under CICS
	Trace File Handling in z/VSE Batch Mode
	Trace File Handling in BS2000 Batch Mode
	Trace File Handling for UNIX and OpenVMS Environments
	Trace File Handling for Windows

	Retrieving Runtime Settings of a Server
	Setting/Getting Parameters for EntireX
	Handling Errors
	Remote Error Handling
	Avoiding Error Message NAT3009 from Server Program
	User Exit NATRPC01

	User Exits before and after Service Execution

	9 Using a Conversational RPC
	Opening a Conversation
	Additional Restrictions

	Closing a Conversation
	Defining a Conversation Context
	Modifying the System Variable *CONVID

	10 Reliable RPC
	General Information
	Reliable RPC on the Natural RPC Client Side
	Reliable RPC on the Natural RPC Server Side
	Viewing the Status of Reliable RPC Messages

	11 Using a Remote Directory Server - RDS
	RDS Principles of Operation
	Using a Remote Directory Server
	Creating an RDS Interface
	Creating a Remote Directory Service Routine
	Remote Directory Service Program RDSSCDIR

	12 Using Security
	Using Natural RPC with Natural Security
	Client Side
	Server Side

	Impersonation (z/OS Batch Mode)
	Purpose of Impersonation
	Steps to Activate Impersonation (Server Side)
	Steps to Use Impersonation (Client Side)
	Natural Clients
	EntireX RPC Clients

	Rules for Impersonation

	Impersonation (CICS)
	Purpose of Impersonation
	Steps to Activate Impersonation (Server Side)
	Steps to Use Impersonation (Client Side)
	Rules for Impersonation
	RPCSFEX1 - User Exit for Impersonation under CICS

	Using Natural RPC with EntireX Security
	EntireX Security on the Client Side
	EntireX Security on the Server Side
	Setting SRVUSER=*NSC
	Using Application Programming Interface USR2072N to Specify a Password

	13 EntireX Broker Support
	Security
	Logging and Accounting

	14 APIs for Providing an RPC Context from the Natural Client Side
	RPC-CNTX
	Table of APIs related to RPC in Library SYSEXT

