
Natural

First Steps

Version 8.2.8

October 2022

This document applies to Natural Version 8.2.8 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1979-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NATMF-NNATFIRSTSTEPS-828-20220220

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 About this Tutorial .. 5
Prerequisites ... 6
About the Sample Application .. 6

3 Getting Started with Natural .. 9
Invoking Natural's Main Menu .. 10
Libraries .. 11
Issuing Commands .. 11
Creating a User Library .. 11
Development Functions Menu ... 12
Programming Modes ... 13

4 Hello World! .. 15
Creating a Program .. 16
Running a Program .. 17
Correcting Program Errors ... 18
Stowing a Program ... 19
Displaying Information about a Program .. 20
Displaying the Content of the Current Library ... 21
Setting the Editor Profile Options .. 22

5 Database Access ... 27
Saving Your Program Under a New Name ... 28
Defining the Required Data Using a View ... 29
Reading Data from a Database ... 31
Reading Selected Data from a Database .. 33

6 User Input .. 35
Allowing for User Input ... 36
Designing a Map for User Input .. 38
Invoking the Map from Your Program .. 52
Ensuring that an Ending Name is Always Used ... 54

7 Loops and Labels ... 57
Allowing Repeated Usage .. 58
Displaying a Message Indicating that Information was not Found 60

8 Inline Subroutines ... 63
Defining the Inline Subroutine ... 64
Performing the Inline Subroutine .. 65

9 Processing Rules and Helproutines .. 67
Defining a Processing Rule .. 68
Defining a Helproutine .. 70

10 Local Data Areas .. 73

iii

Creating a Local Data Area .. 74
Defining Data Fields ... 75
Importing the Required Data Fields from a DDM ... 76
Referencing the Local Data Area from Your Program ... 79

11 Global Data Areas .. 81
Creating a Global Data Area from an Existing Local Data Area 82
Adapting the Local Data Area ... 84
Referencing the Global Data Area from Your Program ... 85

12 External Subroutines ... 89
Creating an External Subroutine .. 90
Referencing the External Subroutine from Your Program 91

13 Subprograms .. 95
Modifying the Local Data Area .. 96
Creating a Parameter Data Area from an Existing Local Data Area 97
Creating Another Local Data Area Containing a Different View 99
Creating a Subprogram .. 101
Referencing the Subprogram from Your Program ... 102

Index ... 107

First Stepsiv

First Steps

Preface

This tutorial provides a very simple and brief introduction to programming with Natural and to
using the Natural editors.

Important: It is important that you read the following topics in the sequence indicated below,
and that you work through all exercises in these topics in the same sequence as they appear
in this tutorial. Problems may occur if you skip an exercise.

Prerequisites and what you will learn in the course of this tutorial.About this Tutorial

How to invoke Natural's main menu. How to create the library that will be
used in this tutorial. Information on Natural's programming modes and the
mode that is required for this tutorial.

Getting StartedwithNatural

How to create, run and stow your first short program. How to display the
content of the current library. Information on some options which control
your editor profile.

Hello World!

How to read specific data from a database and display the output.Database Access

How to prompt the user for information and how to design a map for user
input. How to ensure that a specific value is always used (here: an ending
name), even if it has not been specified by the user.

User Input

How to define a repeat loop and labels for different loops. How to display a
message when specific information (here: the starting name entered by the
user) was not found.

Loops and Labels

How to define and invoke an inline subroutine (that is: a subroutine which
is coded directly in the program).

Inline Subroutines

How to define a processing rule (here: a message that is to appear when the
user does not specify a starting name) and a helproutine (here: a help text for
the field in which the user has to enter a starting name).

Processing Rules and
Helproutines

How to relocate the field definitions from the program to a local data area
outside the program.

Local Data Areas

How to define a global data area which can be shared by multiple programs
or routines.

Global Data Areas

How to define and invoke an external subroutine (that is: a subroutine which
is stored as a separate object outside the program).

External Subroutines

How to define a parameter data area for a subprogram. How to define and
invoke a subprogram.

Subprograms

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

First Steps2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3First Steps

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 About this Tutorial

■ Prerequisites .. 6
■ About the Sample Application .. 6

5

As a first-time user, you are recommended to work through this tutorial to obtain a basic under-
standing of specific features of the Natural programming environment.

The layout of the example screens provided in the tutorial and the behavior of Natural described
here can differ from your results. For example, the command or message line may appear in a
different screen position, or the execution of a Natural command may be protected by security
control. The default settings in your environment depend on the system parameters set by your
Natural administrator.

Prerequisites

To perform all steps of this tutorial, the Adabas demo files EMPLOYEES and VEHICLES must be in-
stalled as well as the Natural example objects. If they are not installed, ask your administrator to
install them.

About the Sample Application

This tutorial illustrates how an application can be structured as a group of modules. It is not inten-
ded to provide an example of how an application should be built.

After you have written your first short Hello World program, you will write a program which
reads employees information from a database and displays the output. The user will be prompted
to enter a starting name and ending name for the output. You will enhance your program step by
step by moving specific parts of your program to external modules. When you have completed
all exercises of this tutorial, your application will be structured as follows:

First Steps6

About this Tutorial

You can now proceed with your first exercise: Getting Started with Natural.

7First Steps

About this Tutorial

8

3 Getting Started with Natural

■ Invoking Natural's Main Menu .. 10
■ Libraries .. 11
■ Issuing Commands .. 11
■ Creating a User Library ... 11
■ Development Functions Menu .. 12
■ Programming Modes .. 13

9

Invoking Natural's Main Menu

The main menu of Natural provides access to Natural development functions, environment settings,
utilities and example libraries.

To invoke Natural's main menu

1 Start Natural according to the procedures at your site.

Depending on the default settings in your environment, either the Natural main menu or the
NEXT or MORE command prompt appears.

2 If one of the above command prompts appears, enter the following:

MAINMENU

The main menu appears.

09:51:48 ***** NATURAL ***** 2012-07-17
User SAG - Main Menu - Library SYSTEM

Function

_ Development Functions
_ Development Environment Settings
_ Maintenance and Transfer Utilities
_ Debugging and Monitoring Utilities
_ Example Libraries
_ Other Products
_ Help
_ Exit Natural Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Canc

First Steps10

Getting Started with Natural

Libraries

All Natural objects required for creating an application are stored in Natural libraries in Natural
system files. There is a system file for system programs (FNAT) and a system file for user-written
programs (FUSER).

Natural thus distinguishes system libraries and user libraries. The system libraries, which start
with the letters "SYS", are reserved for Software AG purposes only. A user library contains all
user-defined objects (for example, programs and maps) which make up an application. The name
of a user library must not start with the letters "SYS".

The field Library in the top right-hand corner of the Natural main menu (and of many other
screens) shows the name of the library where you are currently logged on.

Issuing Commands

The input of a Natural command is not case-sensitive. After you have entered a Natural command,
you choose the ENTER key. ENTER confirms the action and executes the command or invokes an
extra confirmation window where you explicitly acknowledge command execution.

Creating a User Library

You will now create a user library with the name TUTORIAL. This library is to contain all Natural
objects that you will create in the course of this tutorial.

To create a user library

■ In the command line (indicated by Command ===> in the Natural main menu), enter the fol-
lowing:

LOGON TUTORIAL

where "TUTORIAL" is the name of the library that you create.

LOGON is a system command which is used for two purposes:

■ to log on to an existing library, or
■ to create a new library when a library with the specified name does not exist.

Or:

11First Steps

Getting Started with Natural

In the upper right-hand corner of the screen, overwrite the name of the current library with
the name of the library to which you want to log on and press ENTER.

Example:

11:33:26 ***** NATURAL ***** 2012-07-17
User SAG - Main Menu - Library TUTORIAL

Development Functions Menu

The Development Functions menu can be used to create and modify Natural objects.

To invoke the Development Functions menu

■ On the Natural main menu, enter any character in the input field next to Development
Functions and press ENTER.

Or:

Use cursor selection, that is: place the cursor in the input field next toDevelopment Functions
and press ENTER.

The Development Functions menu appears.

First Steps12

Getting Started with Natural

11:56:21 ***** NATURAL ***** 2012-07-17
User SAG - Development Functions - Library TUTORIAL

Mode Structured
Work area empty

Code Function Code Function

C Create Object L List Objects or Single Source
E Edit Object O List Source with Expanded Sources
X Execute Program N List Extended Object Names
R Rename Object I List Directory Information
D Delete Objects U List Used Subroutines, etc.
S Scan Objects ? Help

. Exit

Code .. _ Type .. _ Name .. ________________________________

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit Canc

Programming Modes

The programming mode is indicated in the Mode field at the top right-hand corner of the Devel-
opment Functions menu.

Natural provides two different programming modes:

■ Structured Mode
Structured mode is intended for the implementation of complex applications with a clear and
well-defined program structure. It is recommended to use structured mode exclusively.

■ Reporting Mode
Reporting mode is only useful for the creation of adhoc reports and small programs which do
not involve complex data and/or programming constructs.

Important: This tutorial requires that structured mode is active. If you try to run your program
in reporting mode, END-IF, END-READ and END-REPEAT will cause errors.

If reporting mode is currently active, proceed as described below.

To switch from reporting mode to structured mode

■ Enter the following system command in the command line and press ENTER:

13First Steps

Getting Started with Natural

GLOBALS SM=ON

Or:

In the upper right-hand corner of the Development Functions menu, overwrite the first pos-
ition of the Mode field (which shows "Reporting") with the following letter and press ENTER:

S

Example:

12:17:20 ***** NATURAL ***** 2012-07-17
User SAG - Development Functions - Library TUTORIAL

Mode Seporting
Work area empty

You can now proceed with your first program: Hello World!

First Steps14

Getting Started with Natural

4 Hello World!

■ Creating a Program ... 16
■ Running a Program .. 17
■ Correcting Program Errors .. 18
■ Stowing a Program .. 19
■ Displaying Information about a Program ... 20
■ Displaying the Content of the Current Library .. 21
■ Setting the Editor Profile Options .. 22

15

Creating a Program

You will now write your first short program which displays "Hello World!". It will be stored in
the library you have created previously.

To create a new program

1 Make sure that you have logged on to the library named TUTORIAL.

2 At the bottom of the Development Functions menu, enter the following information and
press ENTER:

Code .. C Type .. P Name .. HELLO___________________________

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit Canc

"C" stands for the functionCreateObject, "P" stands for the object type program, and "HELLO"
is the name of the program to be created.

Tip: When you enter the function code C, you can also enter an asterisk (*) in the Type
field. When you press ENTER, a list of all object types and the letters that correspond to
these object types is shown.

The program editor appears. It is currently empty.

3 Enter the following code in the program editor:

* The "Hello world!" example in Natural.
*
DISPLAY "Hello world!"
END /* End of program

Comment lines start with an asterisk (*) followed by at least one blank or a second asterisk.
When you forget to enter the blank or second asterisk, Natural assumes that you have specified
a system variable; this will result in an error.

If you want to insert empty lines in your program, you should define them as comment lines.
This is helpful, if you want to access your program from different platforms (Windows,
mainframe, UNIX or OpenVMS). With the mainframe version of Natural, for example, the
default is that empty lines are automatically deleted when you press ENTER.

First Steps16

Hello World!

You can also insert comments at the end of a statement line. In this case, the comment starts
with a slash followed by an asterisk (/*).

The text that is to be shown in the output is defined with the DISPLAY statement. It is enclosed
in quotation marks.

The END statement is used to mark the physical end of a Natural program. Each program must
end with END.

When you press ENTER, it may happen that all of your lower-case characters are translated to
upper-case characters. This behavior is defined in the editor profile (which is explained later).

Running a Program

The system command RUN automatically invokes the system command CHECK which checks the
program code for errors. If no error is found, the program is compiled on the fly and then executed.

Notes:

1. CHECK is also available as a separate command.

2. Natural also provides the system command EXECUTE which uses the stowed version of your
program (stowing a program is explained later in this tutorial). In contrast to this, the RUN
command always uses your latest modifications to the program.

To run a program

1 In the program editor's command line, enter one of the following:

RUN

R

System commands may be abbreviated. R is the abbreviated form of RUN.

Depending on the definitions in your environment, the command line is located either at the
top or bottom of the screen.

> RUN > + Program HELLO Lib TUTORIAL

When your code is syntactically correct, the output contains the text you have defined.

17First Steps

Hello World!

MORE
Page 1 13-05-16 13:27:42

Hello world!

2 Press ENTER to return to the program editor.

Correcting Program Errors

You will now create an error in your Hello World program and then run the program once more.

To correct an error

1 Delete the second quotation mark in the line containing the DISPLAY statement.

2 Run the program once more as described above.

When the error is found, an error message is displayed.

First Steps18

Hello World!

NAT0305 Text string must begin and end on the same line.
> > + Program HELLO Lib TUTORIAL
All+....1....+....2....+....3....+....4....+....5....+....6....+....7..
0010 * The "Hello world!" example in Natural.
0020 *

E 0030 DISPLAY "HELLO WORLD!
0040 END /* End of program
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200

....+....1....+....2....+....3....+....4....+....5....+... S 4 L 1

The statement line that contains the error is highlighted and marked with an "E".

3 Correct the error, that is: insert the missing quotation mark at the end of the line.

4 Run the program once more to find the next error.

In this case, no more errors are found and the output is shown.

5 Press ENTER to return to the program editor.

Stowing a Program

When you stow a program, it is compiled and both source code and a generated program are
stored in the Natural system file.

Like the RUN command, the system command STOW automatically invokes the CHECK command. A
program is only stowed when it is syntactically correct.

Note: If you want to save the changes to your program, even if the program contains a
syntactical error (for example, if you want to suspend your work until the next day), you
can use the system command SAVE.

19First Steps

Hello World!

To stow a program

■ In the program editor's command line, enter the following:

STOW

Displaying Information about a Program

The LIST command is useful to find out whether only the source code or both source code and a
generated program are available for an object.

To display information about a program

1 In the program editor's command line, enter one of the following:

LIST DIR HELLO

L DIR HELLO

The following screen appears. The information provided with Cataloged on is only available
when the object has been stowed.

13:15:45 ***** NATURAL LIST COMMAND ***** 2012-07-17
User SAG - List Directory - Library TUTORIAL

Directory of Program HELLO Saved on ... 2012-07-17 13:15:36

Library TUTORIAL User-ID SAG Mode Structured
TP-System .. COMPLETE Terminal-ID .. DAEFTCA9
Op-System .. MVS/ESA Transaction .. NATvr
NAT-Ver v.r.s
Source size 100 Bytes

Directory of Program HELLO Cataloged on 2012-07-17 13:15:36

Library TUTORIAL User-ID SAG Mode Structured
TP-System .. COMPLETE Terminal-ID .. DAEFTCA9
Op-System .. MVS/ESA Transaction .. NATvr
NAT-Ver v.r.s
Used GDA ...
Size of global data ... 0 Bytes Size in DATSIZE 560 Bytes
Size in buffer pool ... 2620 Bytes

Size of OPT-Code 0 Bytes
Initial OPT string

ENTER to continue

First Steps20

Hello World!

Note: In the above example, the notations vr and v.r.s stand for the current version
number of Natural. See also the definition of Version in the Glossary.

2 Press ENTER to return to the program editor.

Displaying the Content of the Current Library

The LIST command can also be used to display a list of all Natural objects in the current library.
This is helpful, for example, if you decide at some point during this tutorial that you want to delete
one or more of your Natural objects in order to start again from the very beginning.

To display a list of Natural objects

1 In the program editor's command line, enter one of the following:

LIST *

L *

The following screen appears. It lists the program you have just created.

13:34:27 ***** NATURAL LIST COMMAND ***** 2012-07-17
User SAG - LIST Objects in a Library - Library TUTORIAL

Cmd Name Type S/C SM Version User ID Date Time
--- *________ *__________ *__ * *______ *________ *__________ *________
__ HELLO Program S/C S v.r.s SAG 2012-07-17 13:15:36

1 Objects found
Top of List.
Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Print Exit Sort -- - + ++ > Canc

21First Steps

Hello World!

2 To find out which commands are available, enter a question mark (?) in theCmd column next
to your program.

The following window appears.

+-------- COMMANDS ---------+
! !
! ED Edit !
! LI List !
! LD List Dir !
! PR Print !
! LE List expanded !
! RU Run !
! ST Stow !
! CA Catalog !
! DE Delete !
! RE Rename !
! . End !
! !
! !
! !
! !
! !
! __ HELLO !
+---------------------------+

3 Do not apply any changes right now. Press PF3 to close the window without specifying any
command.

4 Press PF3 once more to return to the program editor.

Setting the Editor Profile Options

When working with the Natural program editor or data area editor, an editor profile can be defined
per user. This tutorial uses the default settings of the editor profile named SYSTEM. Some important
settings are mentioned below.

To check the editor profile options

1 In the program editor's command line, enter the following:

PROFILE

The following screen appears.

First Steps22

Hello World!

13:35:43 ***** NATURAL EDITORS ***** 2012-07-17
- Editor Profile -

Profile Name .. SYSTEM__

PF and PA Keys
PF1 ... HELP___________ PF2 ... _______________ PF3 ... EXIT___________
PF4 ... _______________ PF5 ... _______________ PF6 ... _______________
PF7 ... -______________ PF8 ... +______________ PF9 ... _______________
PF10 .. SC=____________ PF11 .. _______________ PF12 .. CANCEL_________
PF13 .. _______________ PF14 .. _______________ PF15 .. MENU___________
PF16 .. _______________ PF17 .. _______________ PF18 .. _______________
PF19 .. --_____________ PF20 .. ++_____________ PF21 .. _______________
PF22 .. _______________ PF23 .. _______________ PF24 .. _______________
PA1 ... _______________ PA2 ... SCAN___________ PA3 ... _______________

Automatic Functions
Auto Renumber .. Y Auto Save Numbers .. 0__ Source Save into .. EDITWORK

Additional Options .. N

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit AddOp Save Reset Del Canc

When a user-specific editor profile does not exist, the default profile SYSTEM is displayed. This
default profile can be used to create a user-specific profile. When a user-specific profile exists
already, it is displayed instead of the SYSTEM profile.

2 In the Additional Options field, enter "Y" and press ENTER.

Or:

Press PF4.

The following window appears.

+--------------------- Additional Options ----------------------+
! !
! !
! + Editor Defaults N !
! + General Defaults N !
! + Color Definitions N !
! !
! !
! !
! !
! !
+---+

3 Enter "Y" in the fields Editor Defaults and General Defaults, and press ENTER.

23First Steps

Hello World!

The following window appears for the editor defaults.

+----------------------- Editor Defaults -----------------------+
| |
| Escape Character for Line Command .. . |
| Empty Line Suppression Y |
| Empty Line Suppression for Text N |
| Source Size Information N |
| Source Status Message Y |
| Absolute Mode for SCAN/CHANGE N |
| Range Mode for SCAN/CHANGE N |
| Direction Indicator + |
| |
+---+

You can see the escape character that has been defined for line commands. This tutorial assumes
that the default character, which is the a period (.), is used.

This tutorial also assumes that the option Empty Line Suppression is set to "Y". In this case,
all blank lines in the program editor are automatically deleted when you press ENTER. They
are not deleted when this option is set to "N".

4 For this tutorial, you should make sure that all options are set as shown above. Press ENTER

to display the next window.

The following window appears.

+---------------------- General Defaults -----------------------+
! !
! Editing in Lower Case N !
! Dynamic Conversion of Lower Case ... Y !
! Position of Message Line TOP !
! Cursor Position in Command Line N !
! Stay on Current Screen N !
! Prompt Window for Exit Function Y !
! ISPF Editor as Program Editor N !
! Leave Editor with Unlock N !
! !
+---+

When the option Editing in Lower Case is set to "Y" and the option Dynamic Conversion of
Lower Case is set to "N", any source code remains as you enter it. This feature, however, also
depends on system-environment-specific settings which may force an uppercase translation
of all of your input; this cannot be influenced by Natural.

5 If desired, change the above mentioned options for lowercase conversion and press ENTER.
Press ENTER once more to return to the Additional Options window, and then press ENTER

again to close this window.

6 When a user-specific profile has not yet been created, overwrite the profile name SYSTEM with
your user ID and press ENTER.

First Steps24

Hello World!

When a user-specific profile exists already, proceed with the next step.

7 Press PF5 to save your changes in the database and then press PF3 to exit the editor profile.

Note: Instead of pressing a PF key, you can also enter the corresponding command in
the command line. For example, in the above case, you can enter the commands SAVE
and EXIT.

Or:

If you do not want to save your changes to the database but want to use them for the current
session, press PF3 to exit the editor profile.

The exit function displays a window with different options.

+----------- EXIT Function -----------+
! !
! _ Save and Exit !
! _ Exit without Saving !
! _ Resume Function !
! !
! !
+-------------------------------------+

Select the option Exit without Saving to use the changes for the current session only.

Or:

If you want to exit the editor profile without keeping any changes, press PF12.

Your program is shown again. Any new settings will now be used in the program editor (and
also in the data area editor which is explained later).

You can now proceed with the next exercises: Database Access.

25First Steps

Hello World!

26

5 Database Access

■ Saving Your Program Under a New Name .. 28
■ Defining the Required Data Using a View ... 29
■ Reading Data from a Database .. 31
■ Reading Selected Data from a Database .. 33

27

You will now write a short program which reads specific data from a database file and displays
the corresponding output.

When you have completed the exercises below, your sample application will consist of just one
module (the data fields that are used by the program are defined within the program):

Saving Your Program Under a New Name

You will now create a new program which will be used in the remainder of this tutorial. It will be
created by saving your Hello World program under a new name.

To save the program under a new name

1 In the program editor's command line, enter one of the following:

SAVE PGM01

SA PGM01

The current program is saved with the new name PGM01. The program named HELLO is still
shown in the program editor.

2 Read the newly created program into the program editor by entering the following in the
program editor's command line:

READ PGM01

The program name which is displayed in the program editor changes to PGM01.

3 Delete all code in the program editor. To do so, enter the following line command at the be-
ginning of each line to be deleted and press ENTER:

.D

Example:

First Steps28

Database Access

> > + Program PGM01 Lib TUTORIAL
All+....1....+....2....+....3....+....4....+....5....+....6....+....7..
0010 .DThe "Hello world!" example in Natural.
0020 .D
0030 .DSPLAY "Hello world!"
0040 .DD /* End of program
0050

Or:

Enter the following line command at the beginning of the first line and press ENTER:

.D(4)

where the number in parentheses indicates the number of lines to be deleted.

Defining the Required Data Using a View

The database file and the fields that are to be used by your program have to be specified between
DEFINE DATA and END-DEFINE at the top of the program.

For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definition module (DDM). The DDM contains
information about the individual fields of the file. DDMs are usually defined by the Natural ad-
ministrator.

To be able to use the database fields in a Natural program, you must specify the fields from the
DDM in a view. For this tutorial, we will use the DDM for the EMPLOYEES database file.

To specify the DEFINE DATA block

■ Enter the following code in the program editor:

DEFINE DATA
LOCAL

END-DEFINE
*
END

LOCALmeans that the variables that you will define with the next step are local variables which
apply only to this program.

To display the data fields from the DDM in a split screen

1 In the program editor's command line, enter the following:

29First Steps

Database Access

SPLIT VIEW EMPLOYEES SHORT

SHORT indicates that the data fields are to be listed in short form (that is, only the Adabas short
names and corresponding Natural field names are displayed).

The screen is divided into two sections. The data fields from the DDM displayed in the lower
half of the screen. It is not possible to edit the data in the lower half of the screen.

> > + Program PGM01 Lib TUTORIAL
All+....1....+....2....+....3....+....4....+....5....+....6....+....7..
0010 DEFINE DATA
0020 LOCAL
0040 END-DEFINE
0050 *
0060 END
0070
0080
0090
0100
0110

....+....1....+....2....+....3....+....4....+....5....+... S 5 L 1
Split Top View EMPLOYEES DBID 0 FNR 1 Def seq

1 AA PERSONNEL-ID A 8 D CNNNNNNN
G 1 AB FULL-NAME NAME INFORMATION
2 AC FIRST-NAME A 20 N FIRST/CHRISTIAN NA
2 AD MIDDLE-I A 1 N MIDDLE INITIAL
2 AE NAME A 20 D SURNAME/FAMILY NAM
1 AD MIDDLE-NAME A 20 N SECOND/MIDDLE NAME
1 AF MAR-STAT A 1 F M=MARRIED
1 AG SEX A 1 F
1 AH BIRTH D 6 N D BIRTH-DATE (YYYY-M

2 You can now page through the view to see which data fields are used and how they have
been defined. To do so, use the following commands:

DescriptionCommand

Page forward in the view.SPLIT + or S +

Page backward in the view.SPLIT - or S -

Terminate split-screen mode.SPLIT . or S .

The next step assumes that split-screen mode has been terminated.

3 Place the cursor in the first position of the line containing LOCAL and enter the following:

.I

In full-screen mode, 9 blank lines are inserted. Only 4 blank lines would have been inserted
in split-screen mode.

First Steps30

Database Access

4 Enter the following code below LOCAL:

1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
2 FULL-NAME

3 NAME (A20)
2 DEPT (A6)
2 LEAVE-DATA

3 LEAVE-DUE (N2)

5 Press ENTER.

The remaining blank lines are eliminated.

Note: The remaining blank lines are not eliminated, when the default setting in the
editor profile has been changed, that is: when the option Empty Line Suppression has
been set to "N".

The first line contains the name of your view and the name of the database file from which the
fields have been taken. This is always defined on level 1. The level is indicated at the beginning
of the line. The names of the database fields from the DDM are defined at levels 2 and 3.

Levels are used in conjunction with field grouping. Fields assigned a level number of 2 or greater
are considered to be a part of the immediately preceding group which has been assigned a lower
level number. The definition of a group enables reference to a series of fields (this may also be
only one field) by using the group name. This is a convenient and efficient method of referencing
a series of consecutive fields.

Format and length of each field is indicated in parentheses. "A" stands for alphanumeric, and "N"
stands for numeric.

Reading Data from a Database

Now that you have defined the required data, you will add a READ loop. This reads the data from
the database file using the defined view. With each loop, one employee is read from the database
file. Name, department and remaining days of vacation for this employee are displayed. Data are
read until all employees have been displayed.

Note: It may happen that an error message is displayed indicating that the last transaction
has been backed out of the database. This usually happens when the non-activity time
limit which is determined by Adabas has been exceeded. When such an error occurs, you
should simply repeat your last action (for example, issue the RUN command once more).

31First Steps

Database Access

To read data from a database

1 Insert the following below END-DEFINE (use the .I command as described above to insert
blank lines):

READ EMPLOYEES-VIEW BY NAME
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ

BY NAME indicates that the data which is read from the database is to be sorted alphabetically
by name.

The DISPLAY statement arranges the output in column format. A column is created for each
specified field and a header is placed over the column. 3Xmeans that 3 spaces are to be inserted
between the columns.

2 Run the program.

The following output appears.

MORE
Page 1 09-06-30 16:06:49

NAME DEPARTMENT LEAVE
CODE DUE

-------------------- ---------- -----

ABELLAN PROD04 20
ACHIESON COMP02 25
ADAM VENT59 19
ADKINSON TECH10 38
ADKINSON TECH10 18
ADKINSON TECH05 17
ADKINSON MGMT10 28
ADKINSON TECH10 26
ADKINSON SALE30 36
ADKINSON SALE20 37
ADKINSON SALE20 30
AECKERLE SALE47 31
AFANASSIEV MGMT30 26
AFANASSIEV TECH10 35
AHL MARK09 30
AKROYD COMP03 20
ALEMAN FINA03 20

As a result of the DISPLAY statement, the column headers (which are taken from the DDM)
are underlined and one blank line is inserted between the underlining and the data. Each

First Steps32

Database Access

column has the same width as defined in the DEFINE DATA block (that is: as defined in the
view).

The title at the top of each page, which contains the page number, date and time, is also caused
by the DISPLAY statement.

3 Press ENTER repeatedly to display all pages.

You will return to the program editor when all employees have been displayed.

Tip: If you want to return to the program editor before all employees have been dis-
played, enter EDIT or its abbreviation E at the MORE prompt. It is also possible to enter
the terminal command %., which interrupts the current Natural operation, at the MORE
prompt. By default, each terminal command starts with the control character %. Your
administrator, however, may have defined another control character.

Reading Selected Data from a Database

Since the previous output was very long, you will now restrict it. Only the data for a range of
names is to be displayed, starting with "Adkinson" and ending with "Bennett". These names are
defined in the demo database.

To restrict the output to a range of data

1 Before you can use new variables, you have to define them. Therefore, insert the following
below LOCAL:

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">

These are user-defined variables; they are not defined in demo database. The hash (#) at the
beginning of the name is used to distinguish the user-defined variables from the fields defined
in the demo database; however, it is not a required character.

INIT defines the default value for the field. The default value must be specified in pointed
brackets and quotation marks.

2 Insert the following below the READ statement:

33First Steps

Database Access

STARTING FROM #NAME-START
ENDING AT #NAME-END

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

Your program code now exceeds one screen page. To navigate in the program source, you
can use the following commands or keys:

DescriptionCommand

Go to the end of the program.BOT

Return to the beginning of the program.TOP

DescriptionKey

Scroll down one page in the program.PF8 or ENTER

Scroll up one page in the program.PF7

3 Run the program.

The output is shown. When you press ENTER repeatedly, you will notice that you will return
to the program editor after a couple of pages (that is: when the data for the last employee
named Bennett has been displayed).

4 Stow the program.

You can now proceed with the next exercises: User Input.

First Steps34

Database Access

6 User Input

■ Allowing for User Input ... 36
■ Designing a Map for User Input .. 38
■ Invoking the Map from Your Program ... 52
■ Ensuring that an Ending Name is Always Used ... 54

35

You will now learn how to prompt the user for data, that is: a starting name and an ending name
for the output.

When you have completed the exercises below, your sample application will consist of the following
modules:

Allowing for User Input

You will now modify your program so that input fields for the starting name and ending name
will be shown in the output. This is done using the INPUT statement.

To define input fields

1 Insert the following below END-DEFINE:

INPUT (AD=MT)
"Start:" #NAME-START /
"End: " #NAME-END

The session parameter AD stands for “attribute definition”, its value "M" stands for “modifiable
output field”, and the value "T" stands for “translate lowercase to uppercase”.

The "M" value in AD=MTmeans that the default values defined with INIT (that is: "ADKINSON"
and "BENNETT") will be shown in the input fields. Different values may be entered by the
user. When the "M" value is omitted, the input fields will be empty even though default values
have been defined.

The "T" value in AD=MTmeans that all lowercase input is translated to uppercase before further
processing. This is important since the names in the demo database file have been defined
completely in uppercase letters. When the "T" value is omitted, you have to enter all names
completely in uppercase letters. Otherwise, the specified name will not be found.

"Start:" and "End:" are text fields (labels). They are specified in quotation marks.

First Steps36

User Input

#NAME-START and #NAME-END are data fields (input fields) in which the user can enter the desired
starting name and ending name.

The slash (/) means that the subsequent fields are to be shown in a new line.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
INPUT (AD=MT)

"Start:" #NAME-START /
"End: " #NAME-END

*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

2 Run the program.

The output shows the fields you have just defined.

Start: ADKINSON
End: BENNETT

3 Use the default names and press ENTER.

The list of employees is now shown.

4 Press ENTER repeatedly until you return to the program editor, or enter EDIT at the MOREprompt.

5 Stow the program.

37First Steps

User Input

Designing a Map for User Input

You are now introduced to a different way of prompting the user for input. You will use the map
editor to create a map which contains the same fields that you have previously defined in your
program. A map is a separate object and is used to separate the user interface layout from the
business logic of an application.

The map you will create now will look as follows:

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . T D Blnk T I ?
. . A D _ A I)
. . A N ^ M D &
. . M I : O D +
. . O I (
. .
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXXXX (XXXXXXXX

Start :XXXXXXXXXXXXXXXXXXXX

End :XXXXXXXXXXXXXXXXXXXX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full < > Let

The first line of the map contains system variables for the current date and time. There are two
data fields (input fields) in which the user can specify a starting name and an ending name. The
data fields are preceeded by text fields (labels).

The length of a field is indicated by a number of "X" characters. Delimiters are used to distinguish
the different types of fields. In our sample map, the following default delimiters are used:

First Steps38

User Input

Type of fieldDelimiter

System variable.(

Data field.:

The following steps are required for the above map:

■ Creating a Map
■ Defining Text Fields
■ Defining Data Fields
■ Specifying Names for Data Fields
■ Adding System Variables
■ Repositioning Fields
■ Testing a Map
■ Stowing a Map

Creating a Map

You will now invoke the map editor in which you will design your map. The map editor can be
accessed using the Edit Map menu.

To access the Edit Map menu

1 Enter a dot (.) in the command line of the program editor to return to the Development
Functions menu.

2 At the bottom of the Development Functions menu, enter the following information and
press ENTER:

Code .. E Type .. M Name .. ________________________________

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit Canc

"E" stands for the function Edit Object, and "M" stands for the object type map.

Note: It would also have been possible to enter the code "C" for Create Object. But in
this case, you would have been prompted to enter an object name.

The Edit Map menu appears.

39First Steps

User Input

16:43:41 ***** NATURAL MAP EDITOR ***** 2012-07-17
User SAG - Edit Map - Library TUTORIAL

Code Function
---- ---------------------------------

D Field and Variable Definitions
E Edit Map
I Initialize new Map
H Initialize a new Help Map
M Maintenance of Profiles & Devices
S Save Map
T Test Map
W Stow Map
? Help
. Exit

Code .. I Name .. ________ Profile .. SYSPROF_

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Test Edit

To initialize a new map

1 At the bottom of the Edit Map menu, enter the following information and press ENTER:

Code .. I Name .. MAP01___ Profile .. SYSPROF_

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Test Edit

The Define Map Settings screen appears.

First Steps40

User Input

16:43:42 Define Map Settings for MAP 2012-07-17

Delimiters Format Context
----------------- --------------------------- --------------------------
Cls Att CD Del Page Size 23 Device Check ________
T D BLANK Line Size 79 WRITE Statement _
T I ? Column Shift ... 0 (0/1) INPUT Statement X
A D _ Layout ________ Help ____________________
A I) dynamic N (Y/N) as field default N (Y/N)
A N ^ Zero Print N (Y/N)
M D & Case Default ... UC (UC/LC)
M I : Manual Skip N (Y/N) Automatic Rule Rank 1
O D + Decimal Char Profile Name SYSPROF
O I (Standard Keys .. N (Y/N)

Justification .. L (L/R) Filler Characters
Print Mode __ ------------------------

Optional, Partial
Control Var ________ Required, Partial

Optional, Complete ...
Required, Complete ...

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Let

In this screen, you define the default settings for a map (for example, the size of the map). It
is possible to change the delimiter characters in this screen. However, for this tutorial, you
will use the default delimiter characters. You will only define the filler characters (see the next
step).

The delimiter character indicates the combination of class and attribute assigned to a field.
The delimiters indicated in bold are used in this tutorial:

Delimiters

Cls Att CD Del
T D BLANK
T I ?
A D _
A I)
A N ^
M D &
M I :
O D +
O I (

■ The colon identifies a field as a modifiable input and output field ("M" in the Cls column)
and intensified ("I" in the Att column).

■ The opening parenthesis identifies the field as output only ("O" in the Cls column) and in-
tensified ("I" in the Att column).

41First Steps

User Input

■ When you do not use a delimiter character (indicated with "BLANK" in the screen), the
field is identified as a text constant ("T" in the Cls column) with default attibutes ("D" in
the Att column).

2 Enter an underscore (_) for each of the filler character options as shown below:

Filler Characters

Optional, Partial _
Required, Partial _
Optional, Complete ... _
Required, Complete ... _

A filler character is used to fill any empty positions in input fields in the map, allowing the
user to see the exact position and length of a field when entering input.

3 Press ENTER to save the changes.

4 Press ENTER once more to invoke the map editing area.

The map editing area is shown in split-screen mode.

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . T D Blnk T I ?
. . A D _ A I)
. . A N ^ M D &
. . M I : O D +
. . O I (
. .
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full < > Let

Note: The Define Map Settings screen only appears when you initialize a new map.
When you edit a map, theDefineMapSettings screen is invoked if you press PF2 (Mset)
in the map editing area (see the above screen).

First Steps42

User Input

In split-screen mode, the upper half of the screen shows the valid delimiter characters. The
lower half of the screen is the editing area in which you will create the map.

Unlike the program editor and the data area editor (described later in this tutorial), the map
editor does not have a command line or command prompt where you can enter Natural system
commands. Many functions in the map editor are performed by using line or field commands
(see below) or by using PF keys.

You can press PF9 to toggle between split-screen mode and full-screen mode, which displays
the editing area in full size.

Defining Text Fields

You will now add two text fields (also called constants or labels) to the map.

To define the text fields

1 In the map editing area, move the cursor to the first position of the fourth line and type in the
following:

Start

2 Move the cursor to the first position of the next line and type in the following:

End

Your map should now look as follows:

43First Steps

User Input

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . T D Blnk T I ?
. . A D _ A I)
. . A N ^ M D &
. . M I : O D +
. . O I (
. .
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

Start
End

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full < > Let

Note: If you want to cancel your last changes, press PF12 before you press ENTER.

Defining Data Fields

You will now add two data fields to the map. These are the input fields in which the user can
specify the starting name and ending name.

You can define the data fields in two different ways: in the classic way where it is your responsib-
ility to define the correct length of the data field, or in a more user-friendly way where you simply
select the data field from a list and where the correct length is automatically used. These two ways
are described below.

To define a data field where you have to specify the length

1 Type in the following behind the Start text field (leave a blank space between text field and
data field):

First Steps44

User Input

:X(20)

The colon (:) is the delimiter character which indicates that the data field is modifiable and
intensified. The data field is defined with a length of 20 characters. The length of the field is
indicated by "X" characters.

2 Press ENTER.

Your map should now look as follows:

Ob _ Ob D CLS ATT DEL CLS ATT DEL
. . T D Blnk T I ?
. . A D _ A I)
. . A N ^ M D &
. . M I : O D +
. . O I (
. .
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

Start :XXXXXXXXXXXXXXXXXXXX
End

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full < > Let

To select a data field from a list

1 In the Ob field, which is located at the top left of the screen, enter the following and press
ENTER:

P PGM01

The data fields that are currently used by the program PGM01 are now shown in the screen.
The fields that can be used in the map are preceded by a number.

45First Steps

User Input

Ob P PGM01 Ob D CLS ATT DEL CLS ATT DEL
1 #NAME-START A20 . T D Blnk T I ?
2 #NAME-END A20 . A D _ A I)
. EMPLOYEES-VIEW *V1 . A N ^ M D &
. FULL-NAME *2 . M I : O D +
3 NAME A20 . O I (
4 DEPT A6 .
001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

Start :XXXXXXXXXXXXXXXXXXXX
End

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test Edit -- - + Full < > Let

Not all data fields defined in PGM01 are shown in the screen. To page through the list of data
fields, enter one of the following positioning commands in the Ob field (that is: in the field
which currently contains the letter "P"):

DescriptionCommand

Page forward in the list.+

Page backward in the list.-

Go to the bottom of the list.++

Go to the top of the list.--

2 Type in the following behind the End text field (leave a blank space between text field and
data field) and press ENTER:

:2

The colon (:) is the delimiter character which indicates that the data field is modifiable and
intensified. 2 is the number assigned to #NAME-END.

The data field is automatically defined with the correct length (20 characters in this case). The
length of the field is indicated by "X" characters.

First Steps46

User Input

Specifying Names for Data Fields

The following applies only for the data field for the starting name which you have defined
manually. It does not apply to the data field for the ending name which you have selected from
a list: When you create a new data field for a user-defined variable, Natural assigns a field name
to it. This field name contains a number. You have to adjust the names of the newly created fields
to the variable names defined in your program.

You will now make sure that the same names are used as in your program: #NAME-START and
#NAME-END. The output of these fields (that is: the user input) will be passed to the corresponding
user-defined variables in your program.

To define names for the data fields

1 Starting in the first position of the data field for the starting name, enter the following and
press ENTER:

.E

Or:

Position the cursor anywhere in the data field and press PF5.

The extended field editing section is displayed for the specified field.

Fld #001 Fmt A20

AD= MIT'_'____ ZP= SG= HE= _____________________ Rls 0
AL= _____ CD= __ CV= ________________________________ Mod Undef
PM= __ DF= DY= ______________________________
EM= __________________________ SB= ________________________________

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----

Start .EXXXXXXXXXXXXXXXXXXX
End :XXXXXXXXXXXXXXXXXXXX

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
HELP Mset Exit <--- ---> -- - + < > Let

47First Steps

User Input

The Fldfield in the upper left corner of the screen shows the field name that has been assigned
by Natural: "#001".

2 In the Fld field, enter "#NAME-START".

3 Press PF3 to leave the extended field editing section.

Since the data field for the end value has been selected from a list in the previous exercise, it
is not required to repeat the above steps for the ending name. #NAME-END is already defined
in this case. If you want, you can check this with the line command .E as described above.

Note: For #NAME-END, the session parameter AD has the additional value "L" which has
not been defined for #NAME-START. "L" means that the value of the field is displayed
left-justified. Since this is the default value for alphanumeric fields, it is not necessary
to define this for #NAME-START.

Adding System Variables

Natural system variables contain information about the current Natural session, such as the current
library, user, or date and time. They may be referenced at any point within a Natural program.
All system variables begin with an asterisk (*).

You will now add system variables for the date and time to the map. When the program is run,
the current date and time will be displayed in the map.

To add system variables

1 Move the cursor to the first position of the first line and type in the following:

(*DAT4I

The opening parenthesis is the delimiter character which identifies the system variable as
output only and intensified.

2 Move the cursor to the first position of the second line and type in the following:

(*TIMX

Your map should now look as follows:

First Steps48

User Input

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(*DAT4I
(*TIMX

Start :XXXXXXXXXXXXXXXXXXXX
End :XXXXXXXXXXXXXXXXXXXX

3 Press ENTER.

"X" characters are now shown instead of the system variable names.

Repositioning Fields

You will now use line commands and field commands to reposition the fields you have added.

To move one field

1 Starting in the first position of the system variable in the second line, enter the following field
command:

.M

Example:

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXXXX
.MXXXXXXX

Start :XXXXXXXXXXXXXXXXXXXX
End :XXXXXXXXXXXXXXXXXXXX

A field command is entered at the beginning of a field. It applies only to the field in which
you enter it.

2 Move the cursor to the position to which you want to move the system variable (column 70
of the first line).

3 Press ENTER.

The system variable is moved to the cursor position.

To insert a blank line

1 Starting in the first position of the fourth line (starting name), enter the following line com-
mand:

..I(1)

Example:

49First Steps

User Input

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXXXX (XXXXXXXX

..I(1):XXXXXXXXXXXXXXXXXXXX
End :XXXXXXXXXXXXXXXXXXXX

A line command is entered at the beginning of a line. It applies to the whole line in which
you enter it.

2 Press ENTER.

A blank line is inserted below the line in which you have entered the line command.

To center a line

1 Starting in the first position of the fourth line (starting name), enter the following line com-
mand:

..C

Example:

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXXXX (XXXXXXXX

..Crt :XXXXXXXXXXXXXXXXXXXX

End :XXXXXXXXXXXXXXXXXXXX

2 Press ENTER.

The line is centered.

To move more than one field

1 Enter the following field command starting in the first position of the text field in the sixth
line (End) and in the first position of the data field in this line:

.M

Example:

First Steps50

User Input

001 --010---+----+----+---030---+----+----+---050---+----+----+---070---+----
(XXXXXXXXXX (XXXXXXXX

Start :XXXXXXXXXXXXXXXXXXXX

.Md .MXXXXXXXXXXXXXXXXXXX

2 Move the cursor to the position to which the text field is to start (column 30 of the sixth line).

3 Press ENTER.

Both fields are moved.

The map should now look as shown at the beginning of this section.

Testing a Map

You will now test your map to check whether it works as intended.

To test the map

1 Press PF4.

The following output is shown.

2009-06-30 13:39:55

Start ____________________

End ____________________

51First Steps

User Input

The input field for the starting name is automatically selected since it is the first input field
in the map. Both input fields contain the filler character.

Note: When working in insert mode, the user has to delete the filler characters before
it is possible to enter text. This is not necessary in overwrite mode which is the default.

2 Press ENTER to return to the map editor.

Stowing a Map

When the map has successfully been tested, you have to stow it so that it can be found by your
program.

To stow the map

1 Press PF3 to return to the Edit Map menu.

2 Enter the following in the Code field and press ENTER:

W

Invoking the Map from Your Program

Once a map has been stowed, it can be invoked by a Natural program using a WRITE or INPUT
statement.

To invoke the map from your program

1 Return to the program editor by entering one of the following in the command line of the
Edit Map menu.

EDIT PGM01

E PGM01

2 Replace the previously defined INPUT lines with the following line:

First Steps52

User Input

INPUT USING MAP 'MAP01'

This will invoke the map you have just designed.

The map name must be enclosed in single quotation marks to distinguish the map from a
user-defined variable.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
INPUT USING MAP 'MAP01'
*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

3 Run the program.

Your map is now shown.

4 Press ENTER repeatedly until you return to the program editor, or enter EDIT at the MOREprompt.

5 Stow the program.

53First Steps

User Input

Ensuring that an Ending Name is Always Used

As your program is coded now, no data will not be found if an ending name is not specified.

You will now remove the initial values for the starting name and ending name; then the user always
has to specify these names. To ensure that an ending name is always used, even if it has not been
specified by the user, you will add a corresponding statement.

To use the ending name

1 In the DEFINE DATA block, remove the default values (INIT) for the fields #NAME-START and
#NAME-END so that the corresponding lines look as follows:

1 #NAME-START (A20)
1 #NAME-END (A20)

2 Insert the following below INPUT USING MAP 'MAP01':

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF

When the #NAME-END field is blank (that is: when an ending name has not been entered by the
user), the starting name is automatically used as the ending name.

Note: Instead of using the statement MOVE #NAME-START TO #NAME-END it is also possible
to use the following variant of the ASSIGN or COMPUTE statement: #NAME-END :=
#NAME-START.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
INPUT USING MAP 'MAP01'
*
IF #NAME-END = ' ' THEN

First Steps54

User Input

MOVE #NAME-START TO #NAME-END
END-IF
*
READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ
*
END

3 Run the program.

4 In the resulting map, enter "JONES" in the field which prompts for a starting name and press
ENTER.

In the resulting list, only the employees with the name "Jones" are now shown.

5 Press ENTER to return to the program editor.

6 Stow the program.

You can now proceed with the next exercises: Loops and Labels.

55First Steps

User Input

56

7 Loops and Labels

■ Allowing Repeated Usage ... 58
■ Displaying a Message Indicating that Information was not Found .. 60

57

You will now enhance your program by adding loops and labels.

When you have completed the exercises below, your sample application will still consist of the
same modules as in the previous chapter:

Allowing Repeated Usage

As it is now, the program terminates after it has displayed the map and has shown the list. So that
the user can display a new employees list immediately, without restarting the program, you will
now put the corresponding program code into a REPEAT loop.

To define a repeat loop

1 Insert the following below END-DEFINE:

RP1. REPEAT

REPEATdefines the start of the repeat loop. RP1. is a label which is used when leaving the repeat
loop (this is defined below).

2 Define the end of the repeat loop by inserting the following before the END statement:

END-REPEAT

3 Insert the following below INPUT USING MAP 'MAP01':

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF

The IF statement, which must be ended with END-IF, checks the content of the #NAME-START
field. When a dot (.) is entered in this field, the ESCAPE BOTTOM statement is used to leave the
loop. Processing will continue with the first statement following the loop (which is END in this
case).

First Steps58

Loops and Labels

By assigning a label to the loop (here RP1.), you can refer to this specific loop in the ESCAPE
BOTTOM statement. Since loops may be nested, you should specify which loop you want to
leave. Otherwise, the program will only leave the innermost active loop.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ

*
END-REPEAT
*
END

Note: For better readability, the content of the REPEAT loop has been indented.

4 Run the program.

5 In the resulting map, enter "JONES" in the field which prompts for a starting name and press
ENTER.

59First Steps

Loops and Labels

In the resulting list, the employees with the name "Jones" are shown. Press ENTER. Due to the
REPEAT loop, the map is shown again. Now you can also see that "JONES" has been entered
as the ending name.

6 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER. Do not forget to delete the remaining characters of the name which is still shown in
this field.

7 Stow the program.

Displaying a Message Indicating that Information was not Found

You will now define the message that is to be displayed when the user enters a starting name
which cannot be found in the database.

To define the message that is to be displayed when the specified employee cannot be found

1 Add the label RD1. to the line containing the READ statement so that it looks as follows:

RD1. READ EMPLOYEES-VIEW BY NAME

2 Insert the following below END-READ:

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF

To check the number of records found in the READ loop, the system variable *COUNTER is used.
If its contents equals 0 (that is: an employee with the specified name has not been found), the
message defined with the REINPUT statement is displayed at the bottom of your map.

To identify the READ loop, you assign a label to it (here RD1.). Since a complex database access
program can contain many loops, you have to specify the loop to which you refer.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

First Steps60

Loops and Labels

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE

*
END-READ

*
IF *COUNTER (RD1.) = 0 THEN

REINPUT 'No employees meet your criteria.'
END-IF

*
END-REPEAT
*
END

3 Run the program.

4 In the resulting map, enter a starting name which is not defined in the demo database (for
example, "XYZ") and press ENTER.

Your message should now appear in the map.

5 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER. Do not forget to delete the remaining characters of the name which is still shown in
this field.

6 Stow the program.

You can now proceed with the next exercises: Inline Subroutines.

61First Steps

Loops and Labels

62

8 Inline Subroutines

■ Defining the Inline Subroutine .. 64
■ Performing the Inline Subroutine .. 65

63

Natural distinguishes two types of subroutines: inline subroutines which are defined directly in
the program and external subroutines which are stored as separate objects outside the program
(this is explained later in this tutorial).

You will now add an inline subroutine to your program which moves an asterisk (*) to the new
user-defined variable named #MARK. This subroutine will be invoked when an employee has 20
days of leave or more.

When you have completed the exercises below, your sample application will be structured as
follows:

Defining the Inline Subroutine

You will now add the subroutine to your program.

To define the subroutine

1 Insert the following below the user-defined variable #NAME-END:

1 #MARK (A1)

This variable will be used by the subroutine. Therefore, it has to be defined first.

2 To define the subroutine, insert the following before the END statement:

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE '*' TO #MARK

END-SUBROUTINE

When performed, this subroutine moves an asterisk (*) to #MARK.

Note: Instead of using the statement MOVE '*' TO #MARK it is also possible to use the
following variant of the ASSIGN or COMPUTE statement: #MARK := '*'.

First Steps64

Inline Subroutines

3 Modify the DISPLAY statement as follows:

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK

This displays a new column in your output. Its heading is ">=20". The column will contain an
asterisk (*) if the corresponding employee has 20 days of leave or more.

Performing the Inline Subroutine

Now that you have defined the inline subroutine, you can specify the corresponding code for
performing it.

To perform the inline subroutine

1 Insert the following before the DISPLAY statement:

IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF

When an employee is found who has 20 days of leave or more, the new subroutine named
MARK-SPECIAL-EMPLOYEES is performed. When an employee has less than 20 days of leave,
the content of #MARK is reset to blank.

Your program should now look as follows:

DEFINE DATA
LOCAL

1 #NAME-START (A20)
1 #NAME-END (A20)
1 #MARK (A1)
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 FULL-NAME
3 NAME (A20)

2 DEPT (A6)
2 LEAVE-DATA
3 LEAVE-DUE (N2)

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN

65First Steps

Inline Subroutines

ESCAPE BOTTOM (RP1.)
END-IF

*
IF #NAME-END = ' ' THEN

MOVE #NAME-START TO #NAME-END
END-IF

*
RD1. READ EMPLOYEES-VIEW BY NAME

STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*

END-READ
*

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

2 Run the program.

3 In the resulting map, enter "JONES" and press ENTER.

The list of employees should now contain the additional column.

4 To return to the program editor, enter EDIT at the MORE prompt.

5 Stow the program.

6 Enter a dot (.) in the command line to return to the Development Functions menu.

You can now proceed with the next exercises: Processing Rules and Helproutines.

First Steps66

Inline Subroutines

9 Processing Rules and Helproutines

■ Defining a Processing Rule ... 68
■ Defining a Helproutine .. 70

67

Processing rules and helproutines are defined for fields in a map.

When you have completed the exercises below, your sample application will consist of the following
modules (a processing rule cannot be defined as a separate module; it is always part of a map):

Defining a Processing Rule

You will now define the message that is to be displayed when the user presses ENTER without
specifying a starting name.

To define a processing rule

1 Return to the map editor by entering the following in the Development Functions menu.

Code .. E Type .. _ Name .. MAP01___________________________

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit Canc

2 Starting in the first position of the input field for the starting name, enter the following:

.P

Example:

First Steps68

Processing Rules and Helproutines

Start .PXXXXXXXXXXXXXXXXXXX

End :XXXXXXXXXXXXXXXXXXXX

3 Press ENTER

The following screen is displayed for the selected field:

Variables used in current map Mod
#NAME-START(A20) U
#NAME-END(A20) U

Rule ________________________________ Field #NAME-START
> > + Rank 0 S L 1 Struct Mode
ALL+....10...+....+....+....30...+....+....+....50...+....+....+....70.
0010
0020
0030
0040
0050
0060
0070
0080
0090
0100

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Mset Exit Test -- - + Full Sc= Let

4 Enter the following processing rule:

IF & = ' ' THEN
REINPUT 'Please enter a starting name.'
MARK *&

END-IF

The ampersand (&) in the processing rule will dynamically be replaced with the name of the
field. In this case, it will be replaced with #NAME-START. If #NAME-START is blank, the message
defined with the REINPUT statement is displayed.

MARK is an option of the REINPUT statement. Its syntax is MARK *fieldname. MARK specifies the
field in which the cursor is to be placed when the REINPUT statement is executed. In this case,
the cursor will be placed in the #NAME-START field.

69First Steps

Processing Rules and Helproutines

5 In the Rank field, enter "1".

Rule ________________________________ Field #NAME-START
> > + Rank 1 S 2 L 1 Struct Mode
ALL+....10...+....+....+....30...+....+....+....50...+....+....+....70.
0010 IF & = ' ' THEN
0020 REINPUT 'Please enter a starting name.'
0030 MARK *&
0040 END-IF
0050

The rank defines the sequence in which the rules for the different fields are to be processed.
All rules with rank 1 are processed first, followed by those with rank 2, etc.

6 Press ENTER to save your input. Then press PF3 to return to the map.

Note: If you want to redisplay your processing rule, you have to use the command .P1

(to display the rule with the rank 1) or .P* (to display a list of all rules defined for this
field).

7 Test the map.

8 In the resulting output, enter any starting name and press ENTER.

The output screen is closed.

9 Test the map once more. Do not enter a name and press ENTER.

The message defined with the processing rule should now appear in the map.

10 To leave the output screen, enter a dot (.) in the field which prompts for a starting name and
press ENTER.

11 Stow the map (press PF3 to return to the Edit Map menu and enter "W" in the Code field).

Defining a Helproutine

A helproutine is displayed when the user presses the help key when the cursor is on the input
field for the starting name.

You will first define the helproutine and then associate it with a specific field.

To create a helproutine

1 Return to the Development Functions menu by pressing PF3 in the Edit Map menu.

2 At the bottom of the Development Functions menu, enter the following information and
press ENTER:

First Steps70

Processing Rules and Helproutines

Code .. C Type .. H Name .. HLP01___________________________

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit Canc

"C" stands for the function Create Object, "H" stands for the object type helproutine, and
"HLP01" is the name of your new helproutine.

An empty editor appears.

3 Enter the following:

WRITE 'Type the name of an employee'
END

4 Stow the helproutine.

To associate the helproutine with a field on the map

1 Return to the map editor by entering the following in the command line of the screen in which
you have just entered the helproutine.

E MAP01

2 Starting in the first position of the data field for the starting name, enter the following and
press ENTER:

.E

Or:

Position the cursor anywhere in the data field and press PF5.

The extended field editing section is displayed for the field.

3 In the HE field enter "'HLP01'" (including the single quotation marks).

This is the name under which you have saved your helproutine.

71First Steps

Processing Rules and Helproutines

Fld #NAME-START Fmt A20

AD= MIT'_'____ ZP= SG= HE= 'HLP01'______________ Rls 2
AL= _____ CD= __ CV= ________________________________ Mod User
PM= __ DF= DY= ______________________________
EM= __________________________ SB= ________________________________

4 Press PF3 to leave the extended field editing section.

5 Test the map.

6 In the resulting output, enter a question mark (?) in the input field for the starting name and
press ENTER.

The help text you have defined is shown.

7 Press ENTER to return to the map.

8 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER.

9 Stow the map (press PF3 to return to the Edit Map menu and enter "W" in the Code field).

10 Press PF3 to return to the Development Functions menu.

You can now proceed with the next exercises: Local Data Areas.

First Steps72

Processing Rules and Helproutines

10 Local Data Areas

■ Creating a Local Data Area ... 74
■ Defining Data Fields ... 75
■ Importing the Required Data Fields from a DDM .. 76
■ Referencing the Local Data Area from Your Program .. 79

73

Currently, the fields used by your program are defined within the DEFINE DATA statement in the
program itself. It is also possible, however, to place the field definitions in a local data area (LDA)
outside the program, with the program's DEFINE DATA statement referencing this local data area
by name. For reusability and for a clear application structure, it is usually better to define fields
in data areas outside the programs.

You will now relocate the information from the DEFINE DATA statement to a local data area. When
you have completed the exercises below, your sample application will consist of the following
modules:

Creating a Local Data Area

You will now invoke the data area editor in which you will specify the required fields.

To invoke the data area editor

■ At the bottom of the Development Functions menu, enter the following information and
press ENTER:

Code .. C Type .. L Name .. LDA01___________________________

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Menu Exit Canc

"C" stands for the function Create Object, "L" stands for the object type local data area, and
"LDA01" is the name of your new local data area.

First Steps74

Local Data Areas

The data area editor appears. The object type has been set to "Local". This is indicated at the
top left of the screen.

Local LDA01 Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

--- S 0 L 1

Defining Data Fields

You will now define the following fields:

LengthFormat (F column)NameLevel (L column)

20A#NAME-START1

20A#NAME-END1

1A#MARK1

These are the user-defined variables which you have previously defined in the DEFINE DATA
statement.

To define the data fields

1 To display your program and the data area editor on the same screen, enter the following to
invoke split-screen mode.

SPLIT P PGM01

75First Steps

Local Data Areas

The screen is divided into two sections. Your program is shown in the lower half of the screen.
It cannot be modified in this mode. You can use the program as a reference to insert the
definitions of the user-defined variables in the data area editor. To page forward and backward
in the program, use the commands SPLIT + and SPLIT -.

2 Specify all required information as listed in the above table.

The local data area should now look as follows:

Local LDA01 Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 #NAME-START A 20
1 #NAME-END A 20
1 #MARK A 1

--- S 0 L 1
Program PGM01 Library TUTORIAL
0010 DEFINE DATA
0020 LOCAL
0030 1 #NAME-START (A20)
0040 1 #NAME-END (A20)
0050 1 #MARK (A1)
0060 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

3 Enter the following command to terminate split-screen mode:

SPLIT .

Importing the Required Data Fields from a DDM

You will now import the same data fields which you have previously defined in the program's
DEFINE DATA statement. The fields are read directly from a Natural data view into the data area
editor. A data view references database fields defined in a data definition module (DDM).

To import data fields from a DDM

1 In the line below the variables you have already defined, enter the following, starting in the
T column:

First Steps76

Local Data Areas

.V(EMPLOYEES)

Example:

Local LDA01 Library TUTORIAL DBID 11177 FNR ↩
 8
 Command > +
 I T L Name F Length Miscellaneous ↩

 All -- -------------------------------- - ---------- ------------------------->
 1 #NAME-START A 20 ↩

 1 #NAME-END A 20 ↩

 1 #MARK A 1 ↩

 . V(EMPLOYEES)

2 Press ENTER.

The EMPLOYEES view appears.

SYSGDA 4461: Mark fields to incorporate into data area.
Local LDA01 Library TUTORIAL DBID 11177 FNR 8
View EMPLOYEES
I T L Name F Length Miscellaneous
- - -- -------------------------------- - ---------- -------------------------

2 PERSONNEL-ID A 8 /* CNNNNNNN
G 2 FULL-NAME /* NAME INFORMATION

3 FIRST-NAME A 20 /* FIRST/CHRISTIAN NAME
3 MIDDLE-I A 1 /* MIDDLE INITIAL
3 NAME A 20 /* SURNAME/FAMILY NAME
2 MIDDLE-NAME A 20 /* SECOND/MIDDLE NAME
2 MAR-STAT A 1 /* M=MARRIED
2 SEX A 1
2 BIRTH D /* BIRTH-DATE (YYYY-MM-
2 N§BIRTH I 2 /* INDICATOR OF BIRTH

G 2 FULL-ADDRESS
M 3 ADDRESS-LINE A 20 (1:8)/* ALL ADDRESS LINES

3 CITY A 20 /* MAIN CITY/TOWN
3 ZIP A 10 /* POSTAL ADDRESS CODE
3 POST-CODE A 10 /* POSTAL ADDRESS CODE
3 COUNTRY A 3 /* COUNTRY CODE

G 2 TELEPHONE
- - -- -------------------------------- - ---------- -------------------------

3 Mark the following fields by entering any character in the I column :

PERSONNEL-ID
FULL-NAME

77First Steps

Local Data Areas

NAME
DEPT
LEAVE-DATA
LEAVE-DUE

Not all of these fields are shown on the first page of the view. To scroll forward in the view,
press ENTER

Note: The field PERSONNEL-ID will be used later when you create the subprogram.

4 After you have marked all required fields, continue to press ENTER until the data area editor
is shown again.

The local data area should now look as follows:

SYSGDA 4462: 6 field(s) of view EMPLOYEES included.
Local LDA01 Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 #NAME-START A 20
1 #NAME-END A 20
1 #MARK A 1

V 1 EMPLOYEES-VIEW EMPLOYEES
2 PERSONNEL-ID A 8 /* CNNNNNNN

G 2 FULL-NAME /* NAME INFORMATION
3 NAME A 20 /* SURNAME/FAMILY NAME
2 DEPT A 6 /* DDDDSS

G 2 LEAVE-DATA /* LEAVE/VACATION INFO
3 LEAVE-DUE N 2.0 /* VACATION DAYS/YEAR

--- S 10 L 1

"-VIEW" has automatically been added to the name of the view. This is the same name that
you have already used in your program.

TheT column indicates the type of the variable. The view is indicated by a "V" and each group
is indicated by a "G".

5 Stow the local data area.

First Steps78

Local Data Areas

Referencing the Local Data Area from Your Program

Once a local data area has been stowed, it can be referenced by a Natural program.

You will now change the DEFINE DATA statement your program so that it uses the local data area
that you have just defined.

To use the local data area in your program

1 Return to the program editor by entering the following in the command line of the data area
editor.

E PGM01

2 In the DEFINE DATA statement, delete all variables between LOCAL and END-DEFINE (use the
line command .D).

3 Add a reference to your local data area by modifying the LOCAL line as follows:

LOCAL USING LDA01

Your program should now look as follows:

DEFINE DATA
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF

79First Steps

Local Data Areas

*
DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK

*
END-READ

*
IF *COUNTER (RD1.) = 0 THEN

REINPUT 'No employees meet your criteria.'
END-IF

*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

4 Run the program.

5 To confirm that the results are the same as before (when the DEFINE DATA statement did not
reference a local data area), enter "JONES" as the starting name and press ENTER.

6 To return to the program editor, enter EDIT at the MORE prompt.

7 Stow the program.

You can now proceed with the next exercises: Global Data Areas.

First Steps80

Local Data Areas

11 Global Data Areas

■ Creating a Global Data Area from an Existing Local Data Area ... 82
■ Adapting the Local Data Area .. 84
■ Referencing the Global Data Area from Your Program .. 85

81

Data defined in a global data area (GDA) can be shared by multiple programs, external subroutines
and helproutines.

Any modification of a data element value in a global data area affects all Natural objects that ref-
erence this global data area. Therefore, if you change the source of a global data area, you have to
stow all previously created Natural objects that reference this global data area once more. The se-
quence in which objects are stowed is important. You must first stow the global data area and
then the program. If you stow the program first and then the global data area, the program cannot
be stowed because new elements in the global data area cannot be found.

You will now create a global data area which will be shared by your program and an external
subroutine that you will create later. As the basis for your global data area, you will use some of
the information from the local data area you have just created.

When you have completed the exercises below, your sample application will consist of the following
modules:

Creating a Global Data Area from an Existing Local Data Area

You can create a new data area from an existing data area by editing it and saving it under a dif-
ferent name and with a different type. The original data area remains unchanged, and the new
data area can be edited. Since the fields #NAME-START and #NAME-END are not required in the global
data area, you will remove them.

To create the global data area

1 Return to your local data area by entering the following in the command line of the program
editor.

E LDA01

First Steps82

Global Data Areas

2 To save the data area under a new name, enter the following in the command line of the data
area editor.

SA GDA01

The current data area is saved with the new name GDA01. The local data area named LDA01 is
still shown in the data area editor.

3 Load GDA01 into the data area editor by entering the following command:

E GDA01

4 To change the local data area into a global data area, enter the following command:

SET TYPE G

where "G" denotes global data area.

The object type changes to "Global". This is indicated at the top left of the screen.

5 Use the line command .D to delete the following fields:

#NAME-START
#NAME-END

The line command is entered starting in the T column of the line containing the field to be
deleted. Since the above fields are defined in two successive lines, you can use the line com-
mand .D(2) to delete them at the same time.

6 Press ENTER.

The global data area should now look as follows:

83First Steps

Global Data Areas

Global GDA01 Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 #MARK A 1
V 1 EMPLOYEES-VIEW EMPLOYEES

2 PERSONNEL-ID A 8 /* CNNNNNNN
G 2 FULL-NAME /* NAME INFORMATION

3 NAME A 20 /* SURNAME/FAMILY NAME
2 DEPT A 6 /* DDDDSS

G 2 LEAVE-DATA /* LEAVE/VACATION INFO
3 LEAVE-DUE N 2.0 /* VACATION DAYS/YEAR

--- S 8 L 1

7 Stow the global data area.

Adapting the Local Data Area

The fields contained in the global data area are no longer required in the local data area. Therefore,
you will now remove all fields except #NAME-START and #NAME-END from the local data area.

To remove the fields

1 Return to your local data area by entering the following in the command line of the data area
editor:

E LDA01

2 Use the line command .D to delete all fields except #NAME-START and #NAME-END.

When you delete the top-level entry for the view (indicated by a "V" in front of the view name),
all fields belonging to this view are automatically deleted.

3 Stow the modified local data area.

The local data area should now look as follows:

First Steps84

Global Data Areas

SYSGDA 4454: Data area stowed successfully.
Local LDA01 Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 #NAME-START A 20
1 #NAME-END A 20

--- S 2 L 1

Referencing the Global Data Area from Your Program

Once a global data area has been stowed, it can be referenced by a Natural program.

You will now change the DEFINE DATA statement in your program so that it also uses the global
data area that you have just defined.

To use the global data area in your program

1 Return to the program editor by entering the following in the command line of the data area
editor.

E PGM01

2 Insert the following in the line above LOCAL USING LDA01:

85First Steps

Global Data Areas

GLOBAL USING GDA01

A global data area must always be defined before a local data area. Otherwise, an error occurs.

Your program should now look as follows:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*

END-READ
*

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

3 Run the program.

First Steps86

Global Data Areas

4 To confirm that the results are the same as before (when the DEFINE DATA statement did not
reference a global data area), enter "JONES" as the starting name and press ENTER.

5 To return to the program editor, enter EDIT at the MORE prompt.

6 Stow the program.

You can now proceed with the next exercises: External Subroutines.

87First Steps

Global Data Areas

88

12 External Subroutines

■ Creating an External Subroutine ... 90
■ Referencing the External Subroutine from Your Program ... 91

89

Until now, the subroutine MARK-SPECIAL-EMPLOYEES has been defined within the program using
a DEFINE SUBROUTINE statement. You will now define the subroutine as a separate object external
to the program.

When you have completed the exercises below, your sample application will consist of the following
modules:

Creating an External Subroutine

Since the existing code from the program will be reused in the external subroutine, you will now
save the program under a new name, change its type to subroutine and delete all lines that are
not required.

The DEFINE SUBROUTINE statement of the external subroutine is coded in the same way as the inline
subroutine in the program.

To create an external subroutine

1 Enter the following in the command line of the program editor.

SA SUBR01

The current program is saved with the new name SUBR01. The program is still shown in the
editor.

2 Load the newly created object into the editor by entering the following command:

E SUBR01

The object type is still program.

First Steps90

External Subroutines

3 To change the program into an external subroutine, enter the following command:

SET TYPE S

where "S" denotes subroutine.

The object type which is shown in the screen changes to "Subroutine".

4 Use the line command .D to delete all lines except the following:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES

MOVE '*' TO #MARK
END-SUBROUTINE
*
END

It is also possible to delete a block of text. To do so, you have to proceed as follows:

1. At the beginning of the first line of the block, enter the line command .X.

2. At the beginning of the last line of the block, enter the line command .Y.

3. Press ENTER.

The block of lines to be deleted is now marked with "X" and "Y". (If you want to remove
the marks, you can enter RESET in the command line.)

4. To delete the marked block, enter DX-Y in the command line.

5 Stow the subroutine.

Referencing the External Subroutine from Your Program

The PERFORM statement invokes both internal and external subroutines. When an internal subroutine
is not found in the program, Natural automatically tries to perform an external subroutine with
the same name. Note that Natural looks for the name that has been defined in the subroutine code
(that is: the subroutine name), not for the name that you have specified when saving the subroutine
(that is: the Natural object name).

Now that you have defined an external subroutine, you have to remove the inline subroutine
(which has the same name as the external subroutine) from your program.

91First Steps

External Subroutines

To use the external subroutine in your program

1 Return to the program editor by entering the following in the command line of the editor in
which the subroutine is currently shown.

E PGM01

2 Remove the following lines:

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
MOVE '*' TO #MARK

END-SUBROUTINE

Your program should now look as follows:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK

END-READ
*

IF *COUNTER (RD1.) = 0 THEN
REINPUT 'No employees meet your criteria.'

END-IF
*

First Steps92

External Subroutines

END-REPEAT
*
END

3 Run the program.

4 Enter "JONES" as the starting name and press ENTER.

The resulting list should still show an asterisk for each employee who has 20 days of leave
and more.

5 To return to the program editor, enter EDIT at the MORE prompt.

6 Stow the program.

To list equivalent subroutine names

1 Enter one of the following commands in the command line of the program editor:

LIST EXTENDED SUBROUTINE *

L EXT S *

The following screen appears. It lists all external subroutine objects (members) and their
equivalent long names available in the current Natural library and system file.

12:21:09 ***** NATURAL LIST COMMAND ***** 2012-07-17
User SAG - LIST Objects in a Library - Library TUTORIAL

Cmd Subroutine/Class Name Type S/C Member Cat Date Cat Time
--- *_______________________________ S____ --- *________ *__________ *________
__ MARK-SPECIAL-EMPLOYEES Subro S/C SUBR01 2009-06-30 12:11:56

1 Objects found
Top of List.
Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Print Exit Sort -- - + ++ > Canc

93First Steps

External Subroutines

If you want to display a certain range of subroutine names, you can enter a search value fol-
lowed by an asterisk (*) in the field below the header Subroutine/Class Name or below the
header Member. Example:

Cmd Subroutine/Class Name Type S/C Member Cat Date Cat Time
--- MARK*___________________________ S____ --- *________ *__________ *________
__ MARK-SPECIAL-EMPLOYEES Subro S/C SUBR01 2009-06-30 12:11:56

2 Press PF3 to return to the program editor.

You can now proceed with the next exercises: Subprograms.

First Steps94

External Subroutines

13 Subprograms

■ Modifying the Local Data Area ... 96
■ Creating a Parameter Data Area from an Existing Local Data Area .. 97
■ Creating Another Local Data Area Containing a Different View ... 99
■ Creating a Subprogram ... 101
■ Referencing the Subprogram from Your Program ... 102

95

You will now expand your program to include a CALLNAT statement that invokes a subprogram.
In the subprogram, the employees identified from the main program will be the basis of a FIND
request to the VEHICLES file which is also part of the demo database. As a result, your output will
contain vehicles information from the subprogram as well as employees information from the
main program.

The new subprogram requires the creation of an additional local data area and a parameter data
area.

When you have completed the exercises below, your sample application will consist of the following
modules:

Modifying the Local Data Area

You will now add more fields to the local data area that you have previously created. These fields
will be used by the subprogram that you will create later.

To add more fields to the local data area

1 Return to your local data area.

E LDA01

First Steps96

Subprograms

2 Define the following fields below #NAME-END:

LengthFormat (F column)NameLevel (L column)

8A#PERS-ID1

20A#MAKE1

20A#MODEL1

The local data area should now look as follows:

Local LDA01 Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 #NAME-START A 20
1 #NAME-END A 20
1 #PERS-ID A 8
1 #MAKE A 20
1 #MODEL A 20

--- S 5 L 1

3 Stow the local data area.

Creating a Parameter Data Area from an Existing Local Data Area

A parameter data area (PDA) is used to specify the data parameters to be passed between your
Natural program and the subprogram that you will create later. The parameter data area will be
referenced in the subprogram.

With minor modifications, your local data area can be used to create the parameter data area: you
will delete two of the data fields in in the local data area and then save the revised data area as a
parameter data area. The original local data area remains intact.

97First Steps

Subprograms

To create the parameter data area

1 In the local data area, delete the fields #NAME-START and #NAME-END.

2 Enter the following in the command line of the data area editor.

SA PDA01

The current data area is saved with the new name PDA01. The existing local data area is still
shown in the editor.

3 Load the newly created data area into the editor by entering the following command:

E PDA01

4 To change the local data area into a parameter data area, enter the following command:

SET TYPE A

where "A" denotes parameter data area.

The object type changes to "Parameter". This is indicated at the top left of the screen. The
parameter data area should now look as follows:

Parameter PDA01 Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->

1 #PERS-ID A 8
1 #MAKE A 20
1 #MODEL A 20

--- S 3 L 1

5 Stow the parameter data area.

First Steps98

Subprograms

Creating Another Local Data Area Containing a Different View

You will now create a second local data area and import fields from the DDM for the VEHICLES
database file.

This local data area will be referenced in the subprogram.

To create the local data area

1 Enter the following command in the command line of the data area editor.

CLEAR

The data area editor is now empty.

2 To change the type of the data area, enter the following in the command line:

SET TYPE L

where "L" denotes local data area.

3 In the first line of the editing area, enter the following starting in the T column:

.V(VEHICLES)

4 Press ENTER.

The VEHICLES view appears.

99First Steps

Subprograms

SYSGDA 4461: Mark fields to incorporate into data area.
Local Library TUTORIAL DBID 11177 FNR 8
View VEHICLES
I T L Name F Length Miscellaneous
- - -- -------------------------------- - ---------- -------------------------

2 REG-NUM A 15 /* CAR'S REGISTR. NUMBE
2 CHASSIS-NUM I 4 /* MANUFACTURER NUMBER
2 PERSONNEL-ID A 8 /* IDENT. OF CAR USER

G 2 CAR-DETAILS /* DESCRIPTION OF THE C
3 MAKE A 20
3 MODEL A 20
3 COLOR A 10
3 COLOUR A 10
2 YEAR N 4.0 /* MANUFACTURING YEAR
2 CLASS A 1 /* P=PRIVAT
2 LEASE-PUR A 1 /* L=LEASED
2 DATE-ACQ N 8.0 /* DATE THE CAR WAS ACQ
2 CURR-CODE A 3 /* CURRENCY OF CAR COST

M 2 MAINT-COST P 7.0 (1:60)/* MAINTENANCE COST
2 MODEL-YEAR-MAKE A 24 /* YEAR + CAR MAKE /* SP

- - -- -------------------------------- - ---------- -------------------------

5 Mark the following fields by entering any character in the I column :

PERSONNEL-ID
CAR-DETAILS
MAKE
MODEL

6 After you have marked all required fields, press ENTER to return to the data area editor.

The local data area should now look as follows:

First Steps100

Subprograms

Local Library TUTORIAL DBID 11177 FNR 8
Command > +
I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->
V 1 VEHICLES-VIEW VEHICLES

2 PERSONNEL-ID A 8 /* IDENT. OF CAR USER
G 2 CAR-DETAILS /* DESCRIPTION OF THE CAR

3 MAKE A 20
3 MODEL A 20

--- S 5 L 1

7 Save the new local data area by entering the following in the command line:

SA LDA02

8 Stow the new local data area.

Creating a Subprogram

You will now create a subprogram that uses a parameter data area and a local data area to retrieve
information from the VEHICLES file. The subprogram receives the personnel ID passed by the
program PGM01 and uses this ID as the basis for a search of the VEHICLES file.

To create the subprogram

1 In the command line of the data area editor, enter the following command:

E N

where "N" denotes subprogram.

An empty program editor is invoked. The object type has been set to subprogram.

2 Enter the following:

101First Steps

Subprograms

DEFINE DATA
PARAMETER USING PDA01
LOCAL USING LDA02

END-DEFINE
*
FD1. FIND (1) VEHICLES-VIEW

WITH PERSONNEL-ID = #PERS-ID
MOVE MAKE (FD1.) TO #MAKE
MOVE MODEL (FD1.) TO #MODEL
ESCAPE BOTTOM

END-FIND
*
END

This subprogram returns to a given personnel ID the make and model of the employee's
company car.

The FIND statement selects a set of records (here: one record) from the database based on the
search criterion #PERS-ID.

In the field #PERS-ID, the subprogram receives the value of PERSONNEL-ID that has been passed
by the program PGM01. The subprogram uses this value as the basis for a search of the VEHICLES
file.

3 Stow the subprogram.

STOW SPGM01

Referencing the Subprogram from Your Program

A subprogram is invoked from the main program using a CALLNAT statement. A subprogram can
only be invoked via a CALLNAT statement; it cannot be executed by itself. A subprogram has no
access to the global data area used by the invoking object.

Data is passed from the main program to the specified subprogram through a set of parameters
that are referenced in the DEFINE DATA PARAMETER statement of the subprogram.

The variables defined in the parameter data area of the subprogram do not have to have the same
names as the variables in the CALLNAT statement. Since the parameters are passed by address, it is
only necessary that they match in sequence, format, and length.

You will now modify your main program so that it can use the subprogram you have just defined.

To use the subprogram in your main program

1 Return to the program editor by entering the following in the command line.

First Steps102

Subprograms

E PGM01

2 Insert the following directly above the DISPLAY statement:

RESET #MAKE #MODEL
CALLNAT 'SPGM01' PERSONNEL-ID #MAKE #MODEL

The RESET statement sets the values of #MAKE and #MODEL to null values.

3 Delete the line containing the DISPLAY statement and replace it with the following:

WRITE TITLE
/ '*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***'
/ '*** ARE MARKED WITH AN ASTERISK ***'//

*
DISPLAY 1X '//N A M E' NAME

1X '//DEPT' DEPT
1X '/LV/DUE' LEAVE-DUE

' ' #MARK
1X '//MAKE' #MAKE
1X '//MODEL' #MODEL

The text defined with the WRITE TITLE statement will appear at the top of each page in the
output. The WRITE TITLE statement overrides the default page title: the information which
was previously displayed at the top of each page (page number, date and time) is no longer
shown. Each slash (/) causes the subsequent information to be shown in a new line.

Since the subprogram is now returning additional vehicles information, the columns in the
output need to be resized. They receive shorter headers. The column in which the asterisk is
to be shown (#MARK), does not receive a header at all. One space will be inserted between the
columns (1X). Each slash in the header causes the subsequent information to be shown in a
new line of the same column.

Your program should now look as follows:

DEFINE DATA
GLOBAL USING GDA01
LOCAL USING LDA01

END-DEFINE
*
RP1. REPEAT
*

INPUT USING MAP 'MAP01'
*

IF #NAME-START = '.' THEN
ESCAPE BOTTOM (RP1.)

END-IF
*

IF #NAME-END = ' ' THEN
MOVE #NAME-START TO #NAME-END

103First Steps

Subprograms

END-IF
*

RD1. READ EMPLOYEES-VIEW BY NAME
STARTING FROM #NAME-START
ENDING AT #NAME-END

*
IF LEAVE-DUE >= 20 THEN
PERFORM MARK-SPECIAL-EMPLOYEES

ELSE
RESET #MARK

END-IF
*

RESET #MAKE #MODEL
CALLNAT 'SPGM01' PERSONNEL-ID #MAKE #MODEL

*
WRITE TITLE
/ '*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***'
/ '*** ARE MARKED WITH AN ASTERISK ***'//

*
DISPLAY 1X '//N A M E' NAME

1X '//DEPT' DEPT
1X '/LV/DUE' LEAVE-DUE

' ' #MARK
1X '//MAKE' #MAKE
1X '//MODEL' #MODEL

*
END-READ

*
IF *COUNTER (RD1.) = 0 THEN

REINPUT 'No employees meet your criteria.'
END-IF

*
END-REPEAT
*
END

4 Run the program.

5 Enter "JONES" as the starting name and press ENTER.

The resulting list should look similar to the following:

MORE

*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***
*** ARE MARKED WITH AN ASTERISK ***

LV
N A M E DEPT DUE MAKE MODEL

-------------------- ------ --- - -------------------- --------------------

First Steps104

Subprograms

JONES SALE30 25 * CHRYSLER IMPERIAL
JONES MGMT10 34 * CHRYSLER PLYMOUTH
JONES TECH10 11 GENERAL MOTORS CHEVROLET
JONES MGMT10 18 FORD ESCORT
JONES TECH10 21 * GENERAL MOTORS BUICK
JONES SALE00 30 * GENERAL MOTORS PONTIAC
JONES SALE20 14 GENERAL MOTORS OLDSMOBILE
JONES COMP12 26 * DATSUN SUNNY
JONES TECH02 25 * FORD ESCORT 1.3

6 To return to the program editor, enter EDIT at the MORE prompt.

7 Stow the program.

You have successfully completed this tutorial.

105First Steps

Subprograms

106

Index

C
command

issue, 11

E
editor

invoke, 16
external subroutine

use with program, 89

G
global data area

use with program, 81

H
hello world, 15
helproutine

use in map, 67

I
inline subroutine

use in program, 63

L
label

use in program, 57
library

create, 11
local data area

use with program, 73
loop

use in program, 57

M
main menu

invoke, 10
map

create, 38
invoke from program, 52

N
Natural

invoke main menu, 10
tutorial, v

P
processing rule

use in map, 67
program

correct error, 18
create, 16
run, 17
save, 28
stow, 19

programming mode, 13

R
reporting mode, 13

S
structured mode, 13
subprogram

invoke from program, 95
subroutine

use with program, 63, 89

T
tutorial

Natural, v

107

108

	First Steps
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 About this Tutorial
	Prerequisites
	About the Sample Application

	3 Getting Started with Natural
	Invoking Natural's Main Menu
	Libraries
	Issuing Commands
	Creating a User Library
	Development Functions Menu
	Programming Modes

	4 Hello World!
	Creating a Program
	Running a Program
	Correcting Program Errors
	Stowing a Program
	Displaying Information about a Program
	Displaying the Content of the Current Library
	Setting the Editor Profile Options

	5 Database Access
	Saving Your Program Under a New Name
	Defining the Required Data Using a View
	Reading Data from a Database
	Reading Selected Data from a Database

	6 User Input
	Allowing for User Input
	Designing a Map for User Input
	Creating a Map
	Defining Text Fields
	Defining Data Fields
	Specifying Names for Data Fields
	Adding System Variables
	Repositioning Fields
	Testing a Map
	Stowing a Map

	Invoking the Map from Your Program
	Ensuring that an Ending Name is Always Used

	7 Loops and Labels
	Allowing Repeated Usage
	Displaying a Message Indicating that Information was not Found

	8 Inline Subroutines
	Defining the Inline Subroutine
	Performing the Inline Subroutine

	9 Processing Rules and Helproutines
	Defining a Processing Rule
	Defining a Helproutine

	10 Local Data Areas
	Creating a Local Data Area
	Defining Data Fields
	Importing the Required Data Fields from a DDM
	Referencing the Local Data Area from Your Program

	11 Global Data Areas
	Creating a Global Data Area from an Existing Local Data Area
	Adapting the Local Data Area
	Referencing the Global Data Area from Your Program

	12 External Subroutines
	Creating an External Subroutine
	Referencing the External Subroutine from Your Program

	13 Subprograms
	Modifying the Local Data Area
	Creating a Parameter Data Area from an Existing Local Data Area
	Creating Another Local Data Area Containing a Different View
	Creating a Subprogram
	Referencing the Subprogram from Your Program

	Index

