
Natural

Debugger

Version 8.2.8

November 2024

This document applies to Natural Version 8.2.8 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1979-2024 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: NATMF-DEBUG-828-20241106

Table of Contents

Preface .. vii
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Debugger Tutorial ... 5
Prerequisites ... 6
Fundamentals of Debugging ... 6
Session 1 - Analyzing a Natural Error ... 7
Session 2 - Using a Breakpoint ... 12
Session 3 - Using a Watchpoint .. 18
Session 4 - Tracing the Logical Flow of Programs ... 24
Session 5 - Using Statistics about the Program Execution 28
Additional Hints for Using the Debugger ... 31
Example Sources .. 35

3 Concepts of the Debugger ... 39
Session Control and Control Functions ... 40
Debug Entries/Spies ... 41
Debug Break Window .. 43

4 Start the Debugger ... 45
Debugger under Natural Security ... 46
Operational Requirements ... 46
Invoke the Debugger .. 47
Default Object ... 48

5 Switch Test Mode On and Off ... 51
6 Debug Environment Maintenance .. 53

Set Test Mode ON/OFF .. 54
Load Debug Environment .. 55
Save Debug Environment .. 55
Reset Debug Environment ... 56
Delete Debug Environment .. 56
Maintain Debug Environments in Different Libraries ... 57

7 Spy Maintenance ... 59
Set Test Mode ON/OFF .. 60
Activate Spy ... 60
Deactivate Spy .. 61
Delete Spy ... 61
Display Spy .. 61
Modify Spy ... 62

8 Breakpoint Maintenance ... 63
Conditions of Use ... 64
Set Test Mode ON/OFF .. 65
Activate Breakpoint .. 65

iii

Deactivate Breakpoint .. 66
Delete Breakpoint ... 66
Display Breakpoint ... 66
Modify Breakpoint ... 68
Set Breakpoint .. 69
Fields and Columns on Breakpoint Screens .. 70

9 Watchpoint Maintenance ... 73
Set Test Mode ON/OFF .. 74
Activate Watchpoint ... 75
Deactivate Watchpoint ... 75
Delete Watchpoint .. 75
Display Watchpoint .. 76
Modify Watchpoint .. 78
Set Watchpoint ... 79
Fields and Columns on Watchpoint Screens .. 81

10 Call Statistics Maintenance .. 85
Set Test Mode ON/OFF .. 86
Set Call Statistics On/Off .. 86
Display All Objects ... 87
Display Called Objects ... 87
Display Non-Called Objects ... 88
Print Objects ... 89

11 Statement Execution Statistics Maintenance ... 91
Set Test Mode ON/OFF .. 92
Set Statement Execution Statistics ON/OFF/COUNT .. 92
Delete Statement Execution Statistics .. 94
Display Statement Execution Statistics .. 95
Print Statements ... 98

12 Variable Maintenance .. 101
Display User-Defined, Global and DB-Related System Variables 102
Display System Variables ... 105
Modify Variable .. 106

13 List Object Source .. 107
Maintain Breakpoints ... 109

14 Error Handling ... 111
Errors during Application Execution ... 112
Errors during Debugger Execution .. 112

15 Execution Control Commands .. 115
ESCAPE BOTTOM ... 116
ESCAPE ROUTINE .. 116
EXIT .. 116
GO .. 117
NEXT .. 117
RUN .. 117
STEP .. 117

Debuggeriv

Debugger

STEP SKIPSUBLEVEL .. 117
STEP SKIPSUBLEVEL n ... 118
STOP ... 118

16 Navigation and Information Commands .. 119
BREAK .. 120
FLIP .. 120
LAST ... 120
OBJCHAIN ... 120
ON/OFF .. 121
PROFILE ... 121
SCAN .. 122
SCREEN .. 122
SET OBJECT ... 122
STACK .. 122
SYSVARS .. 123
TEST ON/OFF ... 123

17 Command Summary and Syntax .. 125
All Debug Commands .. 126
Syntax Diagrams .. 131

18 Preparing Natural for Attached Debugging ... 135
Introduction .. 136
Prerequisites for Attached Debugging ... 136
Example for z/OS Batch .. 137
Example for z/VSE Batch .. 137
Example for BS2000 .. 137

vDebugger

Debugger

vi

Preface

The debugger is used to detect, locate and correct program errors, test or optimize program
execution, or analyze a Natural error that interrupts program execution.

First steps with the debugger.Tutorial

Basic concepts of the debugger.Concepts of the Debugger

Operational requirements and instructions for invoking the
debugger.

Start the Debugger

Setting the test mode to activate and deactivate debugging.Switch Test Mode On and Off

Saving and using a predefined debug environment.Debug Environment Maintenance

Setting, modifying, deleting and activating both breakpoints
and watchpoints.

Spy Maintenance

Setting, modifying, deleting and activating breakpoints.
Explanations of breakpoint screen contents.

Breakpoint Maintenance

Setting, modifying, deleting and activating watchpoints.
Explanations of watchpoint screen contents.

Watchpoint Maintenance

Obtaining statistics about invoked objects.Call Statistics Maintenance

Obtaining statistics about executed statement lines.Statement Execution Statistics
Maintenance

Displaying and modifying variables.Variable Maintenance

Displaying an object source.List Object Source

Handling errors that can occur during application or debugger
execution.

Error Handling

Debugger commands for program flow control.Execution Control Commands

Debugger commands for screen navigation, object information
and debugger profile settings.

Navigation and Information Commands

All debugger commands and appropriate command syntax.Command Summary and Syntax

Using a debug attach server running under NaturalONE.PreparingNatural forAttachedDebugging

Notation vrs or vr

When used in this document, the notation vrs or vr represents the relevant product version (see
also Version in the Glossary).

vii

viii

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Debugger2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareGmbHproducts provide functionalitywith respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

3Debugger

About this Documentation

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Debugger Tutorial

■ Prerequisites .. 6
■ Fundamentals of Debugging ... 6
■ Session 1 - Analyzing a Natural Error .. 7
■ Session 2 - Using a Breakpoint .. 12
■ Session 3 - Using a Watchpoint .. 18
■ Session 4 - Tracing the Logical Flow of Programs .. 24
■ Session 5 - Using Statistics about the Program Execution ... 28
■ Additional Hints for Using the Debugger ... 31
■ Example Sources .. 35

5

This tutorial introduces the basic features of the debugger and discusses different debugging
methods. It takes you through a simple scenario that demonstrates how the debugger can be used
to analyze runtime errors and control program execution.

It is important that you work through Sessions 1 to 5 in sequence.

Notes:

1. For ease of use, the tutorial primarily quotes direct commands to demonstrate the debugger
features and not the alternative menu functions.

2. For a full description of all debugger features mentioned in this tutorial, refer to the relevant
sections in the remainder of the Debugger documentation.

Prerequisites

■ You should be familiar with programming in Natural.
■ Before you start with Session 1, you need to create all example programs (DEBUG1P and DE-
BUG2P) and subprograms (DEBUG1N, DEBUG2N, DEBUG3N and DEBUG4N) provided in the section
Example Sources later in this tutorial. Save and catalog these objects with the system command
STOW.

Fundamentals of Debugging

The debugger can be used to interrupt the execution flow of a Natural object at a particular debug
event and obtain information on the current status of the interrupted object such as the next
statement to be executed, the value of a variable and the hierarchy (program levels) of objects
called.

You basically need to take the following twomajor steps to pass control to the debugger for program
interruption:

1. Activate the debugger with the system command TEST ON.

This allows the debugger to receive control for each statement to be executed by the Natural
runtime system.

2. Set one or more debug entries (breakpoints and watchpoints) for the Natural objects to be ex-
ecuted.

This allows the debugger to decide when to take over control from the Natural runtime system
and interrupt the program execution.

Debugger6

Debugger Tutorial

ANatural error always interrupts the program execution. No debug entry is required then, the
debugger steps in automatically.

The following is an overview of all possible program interruptions:

ExplanationProgram Interruption

Causes a program interruption for a statement line in a Natural object.

The debugger interrupts the program executionwhenever the statement line for which
a breakpoint is set is to be executed, that is, before the statement contained in this line
is processed.

Breakpoint

Causes a program interruption for a variable in a Natural object.

The debugger interrupts the program execution whenever the contents of the variable
for which a watchpoint is set have changed, that is, after the statement that references
this variable is processed.

Watchpoint

Steps through the object during the program execution.

Step mode is initiated by a debugger command and requires that the debugger
previously received control because of a breakpoint or a watchpoint. In step mode, the

Step mode

debugger interrupts the program execution before each executable statement contained
in this object is processed.

Causes an automatic program interruption.Natural error

Session 1 - Analyzing a Natural Error

This session describes investigation methods for a Natural error that occurs during program exe-
cution.

To simulate a Natural error

■ From the NEXT prompt, execute DEBUG1P.

The followingNatural errormessage appears: DEBUG1N 0180 NAT0954 Abnormal termination
S0C7 during program execution.

The message points to line 180 in the subprogram DEBUG1N: BONUS := SALARY * PERCENT /
100. This indicates that incorrect values are returned for one ormore of the variables referenced.
However, at this point, this is no clear evidence of what actually causes the problem; and it
could be difficult to determine the cause if the variable values were retrieved from a database
(as is typical for employee records).

7Debugger

Debugger Tutorial

To activate the debugger for further problem investigation

1 At the NEXT prompt, enter the following:

TEST ON

The message Test mode started. indicates that the debugger is activated.

Note: TEST ON remains active for the duration of the current session or until you enter
TEST OFF to deactivate the debugger.

2 Again, execute DEBUG1P from the NEXT prompt.

ADebug Breakwindow similar to the example below appears:

+------------------- Debug Break -------------------+
| Break by ABEND S0C7 at NATARI2+2A4-4 (NAT0954) |
| at line 180 in subprogram DEBUG1N (level 2) |
| in library DEBUG in system file (10,32). |
| |
| G Go |
| L List break |
| M Debug Main Menu |
| N Next break command |
| R Run (set test mode OFF) |
| S Step mode |
| V Variable maintenance |
| |
| Code .. G |
| |
| Abnormal termination S0C7 during program execution|
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |
+---+

Since a Natural error occurs, the debugger steps in automatically and displays the Debug
Breakwindow.

Additional information on where the error occurs is displayed at the top of the window: the
module (NATARI2) in the Natural nucleus (helpful for Software AG technical support), the
type of object (subprogram) the library (DEBUG) and the database ID and file number (10,32)
of the system file.

TheDebug Breakwindow also provides debugger functions that can be used, for example,
to continue the program execution (Go or Run), invoke the debugger maintenance menu
(DebugMainMenu) or activate stepmode. You execute a function by using either the appro-
priate function code or PF key.

Debugger8

Debugger Tutorial

To inspect the erroneous statement line

■ In the Code field, replace the default entry G by L to execute the List break function.

The source of DEBUG1N is displayed:

13:48:54 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG1N

Bottom of data
Co Line Source Message
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) |
__ 0090 2 SALARY (P7.2) |
__ 0100 2 BONUS (P7.2) |
__ 0110 LOCAL |
__ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | last line
__ 0180 BONUS := SALARY * PERCENT / 100 | * NAT0954 *
__ 0190 END-IF |
__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA |
__ 0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

last line indicates that the statement contained in line 170 is the last statement that executed
successfully.

The statement in line 180 which causes the problem is highlighted and annotated with *
NAT0954 *.

This indicates that the error is caused by either the contents of the variable SALARY or PERCENT.
Most likely, this is SALARY since PERCENT is properly initialized.

To check the contents of SALARY

1 In the Command line, enter the following:

DIS VAR SALARY

ADisplay Variable screen similar to the example below appears for the variable SALARY:

9Debugger

Debugger Tutorial

18:59:51 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variable (Alphanumeric) - Object DEBUG1N

Name EMPLOYEE.SALARY
Fmt/Len ... P 7.2
Type parameter
Index
Range

Position ..
Contents ..

Command ===>

Variable contains invalid data.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

The message Variable contains invalid data. indicates that the contents of the variable,
which seems to be blank, does not match the format of the variable. This becomes clear when
you view the hexadecimal representation of the variable contents as described in the next
step.

2 Press PF11 (Hex) to display the hexadecimal contents of the variable.

The screen now looks similar to the example below:

11:13:33 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variable (Hexadecimal) - Object DEBUG1N

Name EMPLOYEE.SALARY
Fmt/Len ... P 7.2
Type parameter
Index
Range

Position ..
Contents .. 4040404040

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

Debugger10

Debugger Tutorial

The hexadecimal value shows that the variable is not in packed numeric format, thus leading
to a calculation error during the program execution. DEBUG1P obviously provides DEBUG1N
with an incorrect value for SALARY.

Tip: You can press PF10 (Alpha) to switch back to the alphanumeric representation.

3 In the Command line, enter the following:

GO

The command GO returns control from the debugger to the Natural runtime system, which
continues the program execution until the end of the program or the next debug event. In this
case, there is no additional debug event and the NEXTprompt appearswith the knownNatural
error message.

To correct SALARY in the object source

1 Open DEBUG1Pwith the program editor and remove the comment sign (*) entered for SALARY
:= 99000.

2 Save and catalog the program with the system command STOW.

3 Execute DEBUG1P.

The debugger does not interrupt the program though TEST ON is still set. The program executes
successfully and outputs a report:

Page 1 07-09-06 15:28:06

EMPLOYEE RECEIVES: 100800.00
PLUS BONUS OF: 3465.00

NEXT LIB=DEBUG

11Debugger

Debugger Tutorial

Session 2 - Using a Breakpoint

You can interrupt the program execution at a specific statement line by setting a breakpoint for
this line.

To set a breakpoint for a statement line in DEBUG1N

1 At the NEXT prompt, enter the following:

TEST SET BP DEBUG1N 170

The message Breakpoint DEBUG1N0170 set at line 170 of object DEBUG1N. confirms
that a breakpoint with the name DEBUG1N0170 is set for statement line 170 in the DEBUG1N
subprogram.

Notes:

1. A breakpoint can only be set for an executable statement. If you try to set a statement for
a non-executable statement, an appropriate error message appears.

2. A breakpoint is usually only valid during the current Natural session. If required, you can
save a breakpoint for future sessions: see Saving Breakpoints andWatchpoints inAdditional
Hints for Using the Debugger.

2 Execute DEBUG1P.

The debugger now interrupts the program execution at the statement line, where the new
breakpoint is set. TheDebug Breakwindow appears:

Debugger12

Debugger Tutorial

+------------------- Debug Break -------------------+
| Break by breakpoint DEBUG1N0170 |
| at line 170 in subprogram DEBUG1N (level 2) |
| in library DEBUG in system file (10,32). |
| |
| G Go |
| L List break |
| M Debug Main Menu |
| N Next break command |
| R Run (set test mode OFF) |
| S Step mode |
| V Variable maintenance |
| |
| Code .. G |
| |
| |
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |
+---+

Thewindow indicates the name of the breakpoint, the corresponding statement line and object
and the library that contains the object. It also indicates the operational level of subprogram
DEBUG1N.

To view the statement indicated in the Debug Break window

■ Execute the List break function.

The source of DEBUG1N is displayed on the List Object Source screen:

13Debugger

Debugger Tutorial

11:36:45 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG1N

Bottom of data
Co Line Source Message
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) |
__ 0090 2 SALARY (P7.2) |
__ 0100 2 BONUS (P7.2) |
__ 0110 LOCAL |
__ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 | last line
__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170
__ 0180 BONUS := SALARY * PERCENT / 100 |
__ 0190 END-IF |
__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA |
__ 0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

Statement line 170 indicated in theDebugBreakwindow is highlighted. TheMessage column
indicates the name of the breakpoint (DEBUG1N0170) set for this statement line and the last
statement line executed (line 160 as indicated by last line).
Remember: A breakpoint interrupts the program execution before the statement for which the
breakpoint is set is processed.

There are several direct commands you can enter on the List Object Source screen to obtain
more information on the current object. As an example, you can view all variables as described
in the following step.

To display a list of variables contained in DEBUG1N

■ In the Command line, enter the following:

DIS VAR

ADisplay Variables screen similar to the example below appears:

Debugger14

Debugger Tutorial

11:06:13 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variables (Alphanumeric) - Object DEBUG1N

All
Co Le Variable Name F Leng Contents Msg.

1 EMPLOYEE
__ 2 NAME A 20 MEIER
__ 2 ENTRYDATE D 1989-01-01
__ 2 SALARY P 7.2 99000.00
__ 2 BONUS P 7.2 *** invalid data ***
__ 1 TARGETDATE D 2009-01-01
__ 1 DIFFERENCE P 3.2 20.00
__ 1 PERCENT P 2.2 3.50

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Zoom Flip - + Li Br Alpha Hex Canc

The screen lists all variables defined in DEBUG1N. You can neglect the remark invalid data
for BONUS. In this case, it is not essential whether BONUS is properly initialized since it is used
as a target operand only.However, to exercise another debugger command, change the contents
of BONUS in the following step.

To check and modify the contents of BONUS

1 In the Co column, next to BONUS, enter the following:

MO

Or:

In the Command line, enter the following:

MOD VAR BONUS

AModify Variable screen similar to the example below appears:

15Debugger

Debugger Tutorial

11:29:50 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Modify Variable (Alphanumeric) - Object DEBUG1N

Name EMPLOYEE.BONUS
Fmt/Len ... P 7.2
Type parameter
Index
Range

Position .. 1
Contents .. ___________

Command ===>

Variable contains invalid data.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Save Flip Li Br Alpha Hex Canc

2 You can use the hexadecimal display to verify that the variable is not in packed numeric
format. Press PF10 (Alpha) to switch back to the alphanumeric representation.

3 In the Contents field, enter a value in packed numeric format, for example, 12345.00 and
press PF5 (Save).

The screen now looks similar to the example below:

Debugger16

Debugger Tutorial

11:50:00 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Variable (Alphanumeric) - Object DEBUG1N

Name EMPLOYEE.BONUS
Fmt/Len ... P 7.2
Type parameter
Index
Range

Position ..
Contents .. 12345.00

Command ===>

Variable BONUS modified.

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Mod Flip Li Br Alpha Hex Canc

A message confirms the modification of Contents.

4 Press PF9 (Li Br) or PF3 (Exit).

The List Object Source screen appears.

5 In the Command line, enter the following:

GO

The debugger returns control to the Natural runtime system, which finishes executing DE-
BUG1P since no further debug event occurs. The report produced by the program is output:

Page 1 07-09-06 10:02:51

EMPLOYEE RECEIVES: 100800.00
PLUS BONUS OF: 3465.00

NEXT LIB=DEBUG

6 Before you continue with the next session, delete all current breakpoints by entering the fol-
lowing at the NEXT prompt:

TEST DEL BP * *

17Debugger

Debugger Tutorial

A message appears confirming that all breakpoint (in this case, only one breakpoint) are de-
leted.

Session 3 - Using a Watchpoint

DEBUG1P and DEBUG1N perform a calculation for a single employee's bonus and salary payment. If
multiple employee records were processed, you would probably test whether the variable BONUS
is nowupdated correctly. This is done by setting awatchpoint for this variable. Awatchpoint allows
the debugger to interrupt the program execution when the contents of the specified variable
change.

To set a watchpoint for the variable BONUS

1 At the NEXT prompt, enter the following:

TEST SET WP DEBUG1N BONUS

The message Watchpoint BONUS set for variable EMPLOYEE.BONUS. confirms that a
watchpoint is set for the variable BONUS in the DEBUG1N example subprogram.

Notes:

1. If you enter a debugger direct command in the Command line of a debugger screen, you
must omit the keyword TEST. For example, instead of TEST SET WP DEBUG1N BONUS, you
would then enter SET WP DEBUG1N BONUS only.

2. Awatchpoint is usually only valid during the current Natural session. If required, you can
save a watchpoint for future sessions: see Saving Breakpoints and Watchpoints in Addi-
tional Hints for Using the Debugger.

2 Execute DEBUG1P from the NEXT prompt.

The debugger interrupts the program execution at the newwatchpoint and invokes theDebug
Breakwindow:

Debugger18

Debugger Tutorial

+------------------- Debug Break -------------------+
| Break by watchpoint BONUS |
| at line 180 in subprogram DEBUG1N (level 2) |
| in library DEBUG in system file (10,32). |
| |
| G Go |
| L List break |
| M Debug Main Menu |
| N Next break command |
| R Run (set test mode OFF) |
| S Step mode |
| V Variable maintenance |
| |
| Code .. G |
| |
| |
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |
+---+

The window indicates that a watchpoint was detected in line 180. This line contains the
statement that processes the variable BONUS.

The debugger interrupted the program execution after the statement for BONUSwas processed.
Only then could the debugger recognize that the contents of the variable had changed.

3 Execute the List break function.

The List Object Source now looks similar to the example below:

19Debugger

Debugger Tutorial

16:24:46 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG1N

Bottom of data
Co Line Source Message
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) |
__ 0090 2 SALARY (P7.2) |
__ 0100 2 BONUS (P7.2) |
__ 0110 LOCAL |
__ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170
__ 0180 BONUS := SALARY * PERCENT / 100 | BONUS
__ 0190 END-IF |
__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA |
__ 0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

The statement which references the variable BONUS is highlighted and theMessage column
indicates the name of the watchpoint set for the variable.

To check for changes in BONUS

1 In the Command line, enter the following:

DIS VAR BONUS

TheDisplay Variable screen appears and displays a value of 3465.00 in the Contents field.
This shows that the contents of the variable BONUS have changed.

2 Press PF3 (Exit) to return to the List Object Source screen.

To check for changes in SALARY

1 To test the contents of the variable SALARY in a later step, set a breakpoint for SALARY by entering
the following in the Co column of line 200:

SE

From the List Object Source screen, a line command such as SE is a convenient alternative to
using the SET BP direct command.

Debugger20

Debugger Tutorial

TheMessage column indicates that a breakpoint (BP) is set for line 200:

17:55:58 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG1N

Bottom of data
Co Line Source Message
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) |
__ 0090 2 SALARY (P7.2) |
__ 0100 2 BONUS (P7.2) |
__ 0110 LOCAL |
__ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170
__ 0180 BONUS := SALARY * PERCENT / 100 | BONUS
__ 0190 END-IF |
__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA | BP set
__ 0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

2 In the Command line, enter the following:

GO

TheDebug Breakwindow appears:

21Debugger

Debugger Tutorial

+------------------- Debug Break -------------------+
| Break by breakpoint DEBUG1N0200 |
| at line 200 in subprogram DEBUG1N (level 2) |
| in library DEBUG in system file (10,32). |
| |
| G Go |
| L List break |
| M Debug Main Menu |
| N Next break command |
| R Run (set test mode OFF) |
| S Step mode |
| V Variable maintenance |
| |
| Code .. G |
| |
| |
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |
+---+

3 Execute the List break function.

The List Object Source screen now looks similar to the example below:

10:49:31 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG1N

Bottom of data
Co Line Source Message
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) |
__ 0090 2 SALARY (P7.2) |
__ 0100 2 BONUS (P7.2) |
__ 0110 LOCAL |
__ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170
__ 0180 BONUS := SALARY * PERCENT / 100 | last line
__ 0190 END-IF |
__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA | DEBUG1N0200
__ 0210 END |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

Since this is a breakpoint, the statement that references (and updates) SALARY has not yet been
executed. As a result, the contents of the variable have not changed.

Debugger22

Debugger Tutorial

4 In the Command line, enter DIS VAR SALARY to verify that the contents of SALARY are un-
changed.

The variable screen proves that SALARY still contains 99000, the initial value assigned in
DEBUG1P.

5 To view the update of the variable contents, step to the next statement by choosing either of
the following methods:

In the Command line, enter the following:

STEP

Or:

Press PF2 (Step).

The screen now looks similar to the example below:

13:38:24 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG1N

Bottom of data
Co Line Source Message
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) |
__ 0090 2 SALARY (P7.2) |
__ 0100 2 BONUS (P7.2) |
__ 0110 LOCAL |
__ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365 |
__ 0170 IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170
__ 0180 BONUS := SALARY * PERCENT / 100 |
__ 0190 END-IF |
__ 0200 SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREA | last line
__ 0210 END | step mode

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

You skipped one line and processed the next executable statement in line 200, which updates
SALARY. TheMessage column indicates that step mode is set. In step mode, the debugger
continues the program execution at the next executable statement.

6 In the Command line, enter DIS VAR SALARY to check the variable contents.

23Debugger

Debugger Tutorial

TheDisplayVariable screen appears and displays a value of 100800.00 in theContents field.
This proves that the contents of the variable SALARY have changed.

7 In the Command line, enter the following:

GO

The debugger returns control to theNatural runtime system,which finishes executing DEBUG1P
since no further debug event occurs. The report produced by the program is output.

Session 4 - Tracing the Logical Flow of Programs

This session describes debuggingmethods you can use to better understand, overview and control
a complex Natural application with numerous objects.

The session starts out with instructions for analyzing the logical flow of an application on the
statement level. It then demonstrates how breakpoints can be used to find out the sequence in
which programs are executed.

The instructions in this session are based on a simple (but sufficient for demonstration) example
application that consists of one program (DEBUG2P) and three subprograms (DEBUG2N, DEBUG3N and
DEBUG4N).

To set a breakpoint at program begin or end

1 Set a breakpoint for DEBUG2P by entering the following at the NEXT prompt:

TEST SET BP DEBUG2P BEG

The message Breakpoint DEBUG2P-BEG set at line BEG of object DEBUG2P. confirms
that a breakpoint is set in DEBUG2N.

Using the keyword BEG instead of a specific line number has the effect that the breakpoint is
set at the beginning of the program, that is, for the first statement to be executed. This can
even be the DEFINE DATA statement, for example, if an INIT clause is used, which generates
an executable statement when the program is cataloged.

Tip:

You can also specify the keyword END to set a breakpoint for the last statement to be executed.
This can be the END statement but also the FETCH or CALLNAT statement.

2 Execute DEBUG2P.

TheDebug Breakwindow appears:

Debugger24

Debugger Tutorial

+------------------- Debug Break -------------------+
| Break by breakpoint DEBUG2P-BEG |
| at line 130 in program DEBUG2P (level 1) |
| in library DEBUG in system file (10,32). |
| |
| G Go |
| L List break |
| M Debug Main Menu |
| N Next break command |
| R Run (set test mode OFF) |
| S Step mode |
| V Variable maintenance |
| |
| Code .. G |
| |
| |
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS |
+---+

The debugger now steps in at the first breakpoint set for the program.

3 Execute the List break function to check the source and see that the debugger now steps in
at the first executable statement NAME := 'MEIER'.

To step through an application

1 On the List Object Source screen, set stepmode by either pressing PF2 (Step) or entering STEP
in the Command line.

The last statement executed is annotated with last line. The next statement to be executed
is highlighted and annotated with step mode.

Tip:

If you do not want the debugger to pause at every single statement but step through an ap-
plication more quickly, in the STEP command, specify the number of statements you want to
skip, for example: STEP 2 or STEP 10.

2 Press PF2 (Step) repeatedly until the CALLNAT statement is annotated with step mode.

3 Continue with PF2 (Step) and execute the CALLNAT.

The invoked subprogram DEBUG2N is displayed, where the next statement to be executed is
highlighted:

25Debugger

Debugger Tutorial

11:59:19 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Object Source - Object DEBUG2N

Top of data
Co Line Source Message
__ 0010 ** SUBPROGRAM DEBUG2N: CALLS 'DEBUG3N' AND 'DEBUG4N'FOR |
__ 0020 *** |
__ 0030 DEFINE DATA | step mode
__ 0040 PARAMETER |
__ 0050 1 EMPLOYEE |
__ 0060 2 NAME (A20) |
__ 0070 2 NUMCHILD (N2) |
__ 0080 2 ENTRYDATE (D) |
__ 0090 2 SALARY (P7.2) |
__ 0100 2 BONUS (P7.2) |
__ 0110 LOCAL |
__ 0120 1 TARGETDATE (D) INIT <D'2009-01-01'> |
__ 0130 1 DIFFERENCE (P3.2) |
__ 0140 1 PERCENT (P2.2) INIT <3.5> |
__ 0150 END-DEFINE |

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Step Exit Last Scan Flip - + Li Br < > Canc

As an alternative, you could skip the CALLNAT by entering STEP SKIP in the Command line.

You would then only step through the statements in the invoking program DEBUG2 but not
through the statements within an invoked subprogram.

To view the levels at which the objects are executed

1 In the List Object Source screen of DEBUG2N, enter the following in the Command line:

OBJCHAIN

A Break Information screen similar to the example below appears:

13:45:34 ***** NATURAL TEST UTILITIES ***** 2007-09-06
- Break Information -

No GDA active for the current program.

Break by step mode
at line 30 in subprogram DEBUG2N (level 2)
in library DEBUG in system file (10,32).

In addition to the object information already known, this screen indicateswhether the program
references a GDA (global data area).

Debugger26

Debugger Tutorial

2 Press ENTER to scroll down one page.

The screen now looks similar to the example below:

13:46:34 ***** NATURAL TEST UTILITIES ***** 2007-09-06
- Current Object Chain -

Level Name Type Line Library DBID FNR
2 DEBUG2N Subprogram 0 DEBUG 10 32
1 DEBUG2P Program 170 DEBUG 10 32

This screen indicates the operational levels at which the objects are executed: subprogram
DEBUG2N is executed at level 2 and program DEBUG2P (which invokes the subprogram) is ex-
ecuted at the superior level 1.

3 Press ENTER.

The List Object Source screen appears.

4 In the Command line, enter the following:

GO

The debugger returns control to theNatural runtime system,which finishes executing DEBUG2P
since no further debug event occurs. The report produced by the program is output:

Page 1 07-09-06 10:04:21

EMPLOYEE RECEIVES: 99300.00
PLUS BONUS OF: 3565.00

NEXT LIB=DEBUG

5 Delete all breakpoints currently set by entering the following at the NEXT prompt:

TEST DEL BP * *

A message appears confirming that all breakpoints are deleted.

To set breakpoints to follow the program execution

1 At the NEXT prompt, enter the following:

TEST SET BP ALL BEG

The message Breakpoint ALL-BEG set at line BEG of object ALL. appears.

27Debugger

Debugger Tutorial

This indicates that you have set a breakpoint for the first executable statement of each object
to be executed.

2 Execute DEBUG2P.

ADebug Breakwindow appears for DEBUG2P.

3 Execute theGo function repeatedly.

Each time you executeGo, the next object invoked is indicated in theDebug Breakwindow
(DEBUG2N first and then DEBUG3N and DEBUG4N). Thus, you can easily determine which objects
are invoked at what point during the program execution. Additionally, for each object, you
can apply the menu functions of the Debug Breakwindow.

4 When the NEXT prompt appears, delete all breakpoints currently set by entering the following:

TEST DEL BP * *

A message appears confirming that all breakpoints are deleted.

Session 5 - Using Statistics about the Program Execution

You can use the debugger to view statistical information onwhich objects are called and howoften
they are called. Additionally, you can find out which statements are executed, and how often.

To check what objects are called during program execution

1 At the NEXT prompt, enter the following:

TEST SET CALL ON

The message Call statistics started. confirms that the statistics function is activated.

2 Execute DEBUG2P.

The debugger logs all object calls executed, and the report produced by the program is output.

3 At the NEXT prompt, enter the following:

TEST DIS CALL

ADisplay Called Objects screen similar to the example below appears:

Debugger28

Debugger Tutorial

10:43:47 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Called Objects - Object

All
Object Library Type DBID FNR S/C Ver Cat Date Time Calls
*_______ DEBUG___
DEBUG2P DEBUG Program 10 32 S/C 4.2 2007-08-30 13:48 1
DEBUG2N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48 1
DEBUG3N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48 1
DEBUG4N DEBUG Subprogram 10 32 S/C 4.2 2007-08-30 13:48 1

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Flip + Canc

The screen lists all objects executed: the invoking program (DEBUG2P) and all other objects in-
voked (DEBUG2N, DEBUG3N and DEBUG4N). It also indicates how frequently each object is invoked
(CALLS), the type of object called, where the object is stored and under which Natural version,
whether source and cataloged objects exist, and when the object was cataloged.

4 Press PF3 (Exit) or PF12 (Canc) until the NEXT prompt appears.

To check which statements are executed during program execution

1 At the NEXT prompt, enter the following:

TEST SET XSTAT COUNT

Themessage Statement execution counting started for library/object */*. confirms
that the statistics function is activated for all objects contained in the current library and all
steplibs concatenated with this library.

2 Execute DEBUG2P.

The debugger logs all statements processed by the program before the report produced by
the program is output.

3 At the NEXT prompt, enter the following:

TEST DIS XSTAT

A List Statement Execution Statistics screen similar to the example below appears:

29Debugger

Debugger Tutorial

11:39:10 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - List Statement Execution Statistics - Object

All
Co Object Library Type DBID FNR Obj.Called Exec Exec % Total No.

*_______ *_______ n Times able uted Executions
__ DEBUG2P DEBUG Program 10 32 1 8 8 100 8
__ DEBUG2N DEBUG Subprogram 10 32 1 8 8 100 8
__ DEBUG3N DEBUG Subprogram 10 32 1 2 2 100 2
__ DEBUG4N DEBUG Subprogram 10 32 1 10 7 70 7

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Flip - + Canc

The screen lists the number of calls (Obj. Called n Times), the number of executable state-
ments (Exec able), the number of executed statements (Executed), the percentage of executed
statements as related to the total number of executable statements (%), and the total number
of executed statements (Total No. Executions).

4 In the Co column, next to DEBUG4N, enter the following:

DS

A statistics screen similar to the example below appears:

Debugger30

Debugger Tutorial

12:11:19 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Display Statement Lines - Object DEBUG4N

Line Source Count
0010 ** SUBPROGRAM 'DEBUG4N': CALCULATES SPECIAL SALARY INCREASE
0020 **
0030 DEFINE DATA
0040 PARAMETER
0050 1 SALARY (P7.2)
0060 END-DEFINE
0070 DECIDE FOR FIRST CONDITION 1
0080 WHEN SALARY < 50000 1
0090 SALARY := SALARY + 1800 not executed
0100 WHEN SALARY < 70000 1
0110 SALARY := SALARY + 1200 not executed
0120 WHEN SALARY < 90000 1
0130 SALARY := SALARY + 600 not executed
0140 WHEN NONE 1
0150 SALARY := SALARY + 300 1

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Flip + Canc

The screen indicates how often a statement was executed and the executable statements that
were not processed.

Additional Hints for Using the Debugger

This section provides additional hints for using the debugger.

■ Time Stamps of Objects
■ Saving Breakpoints and Watchpoints
■ Debug Main Menu for Maintenance Functions
■ Help for Commands on Maintenance Screens
■ Major Functions Available during Program Interruption
■ Next Option for Additional Commands During Program Interruption
■ Displaying Large Variables and Arrays
■ Printing Debugger Statistics

31Debugger

Debugger Tutorial

■ Using the Debugger in Batch Mode

Time Stamps of Objects

Acataloged object that does not exactly correspond to the source object can cause debugging errors.
If you want to guarantee that source and cataloged object correspond to each other, save and
catalog them with the system command STOW.

For details, see the sectionOperational Requirements.

Saving Breakpoints and Watchpoints

You can save the breakpoints and watchpoints set in the current session as a debug environment
and load this environment for use in a future session. This is helpful if you want to repeatedly test
an application with the same debug entries.

For details, see the section Debug Environment Maintenance.

Debug Main Menu for Maintenance Functions

All debugger maintenance functions, such as setting a breakpoint or creating statistics, can be ex-
ecuted by using either a direct command or the maintenance functions provided in the Debug
Main Menu. You open this menu by entering one of the following:

■ TEST
at a command prompt.

■ MENU
at the Command line of a debugger screen.

■ M
in the Code field of the Debug Breakwindow.

Help for Commands on Maintenance Screens

For a list of direct commands available on a debugger maintenance screen, press PF1 (Help) or
enter a question mark (?) in the Command line.

A debugger maintenance screen that contains list items usually also provides line commands that
can be used to further process an item. You enter a line command in the Co column, next to the
required item. For a list of valid line commands, enter a question mark (?) in this column.

Debugger32

Debugger Tutorial

Major Functions Available during Program Interruption

The major functions available during the program interruption are listed in the following section.
They can be executed from either theDebug Breakwindow or the Command line of a debugger
maintenance screen.

FunctionAlternative Direct
Command

Code in Debug
Window

Continues the programexecution until the next debug event occurs.GOG

Lists the object source at the statement line where the debug event
occurs.

LIST BREAKL

Executes the next break command if specified for a breakpoint or
watchpoint. See alsoNextOption forAdditionalCommandsDuring
Program Interruption.

NEXTN

Switches test mode off and continues the program execution.RUNR

Processes the executable statements line by line.STEPS

Displays a list of variables defined for the interrupted object.DIS VARV

Next Option for Additional Commands During Program Interruption

When displaying or modifying a breakpoint or watchpoint, you will notice that the debugger
command BREAK is attached to each of them. This command invokes the Debug Breakwindow
andmust not be removed.However, you can specify additional debugger commands to be executed
during the program interruption after the BREAK command. An additional command is executed
when you enter either the command NEXT in the Command line or the function code N in theDebug
Breakwindow.

You enter the debugger commands in the Commands field of the appropriate breakpoint or
watchpoint maintenance screen as shown in the following example:

33Debugger

Debugger Tutorial

11:38:55 ***** NATURAL TEST UTILITIES ***** 2007-09-06
Test Mode ON - Modify Breakpoint - Object

Spy number 1
Initial state A (A = Active, I = Inactive)
Breakpoint name DEBUG1P0170_ DBID/FNR 10/32
Object name DEBUG1P_ Library DEBUG
Line number 0170
Label ________________________________
Skips before execution .. ____0
Max number executions ... ____0

Commands ... BREAK___
STACK___
DIS VAR BONUS___
__
__
__

Command ===>

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Last Save Flip Canc

In the example above, the command STACK instructs the debugger to view the Natural stack. The
command DIS VAR BONUS instructs the debugger to display the specified variable. This is helpful,
for example, if you set a breakpoint in a loop and always want to view the value of one particular
variable only. You then do not have to enter the DIS VAR command repeatedly.

For details, see the description of the field Commands in the sections Fields and Columns on
Breakpoint Screens and Fields and Columns on Watchpoint Screens.

Displaying Large Variables and Arrays

TheDisplay Variable screen shows all definitions of a variable and displays its contents in alpha-
numeric or hexadecimal format. For the display features available for large variables,whose contents
extend beyond the current screen or variables with array definitions, see the section Display
Variable - Individual.

Debugger34

Debugger Tutorial

Printing Debugger Statistics

You can print the statistical reports produced by the debugger or download them to a PC.

For details, see Print Objects in the section Call Statistics Maintenance and Print Statements in the
section Statement Execution Statistics Maintenance.

Using the Debugger in Batch Mode

The debugger is mainly designed for interactive operations in online mode. Although you can, in
principle, execute all debugger features in batch mode, processing online operations in batch (for
example, the use of PF keys) can require complex batch programming. However, there are also
debugger features forwhich batch processing is a convenient alternative. One example is collecting
and printing statistical data about an application as described in Example of Generating and
Printing Statistics in Batch in the section Batch Processing.

Example Sources

This section contains the source code of the example programs and subprograms required in Ses-
sions 1 to 5.

Program DEBUG1P

** PROGRAM 'DEBUG1P: CALLS 'DEBUG1N' FOR SALARY AND BONUS CALCULATION
**
DEFINE DATA
LOCAL
1 EMPLOYEE (A42)
1 REDEFINE EMPLOYEE

2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2 BONUS (P7.2)

END-DEFINE
NAME := 'MEIER'
NUMCHILD := 2
ENTRYDATE := D'1989-01-01'
* SALARY := 99000
CALLNAT 'DEBUG1N' NAME NUMCHILD ENTRYDATE SALARY BONUS
WRITE 'EMPLOYEE RECEIVES:' SALARY
WRITE ' PLUS BONUS OF:' BONUS
END

35Debugger

Debugger Tutorial

Subprogram DEBUG1N

** SUBPROGRAM 'DEBUG1N': CALCULATES BONUS AND SALARY INCREASE
**
DEFINE DATA
PARAMETER
1 EMPLOYEE

2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2 BONUS (P7.2)

LOCAL
1 TARGETDATE (D) INIT <D'2009-01-01'>
1 DIFFERENCE (P3.2)
1 PERCENT (P2.2) INIT <3.5>
END-DEFINE
DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365
IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPANY

BONUS := SALARY * PERCENT / 100
END-IF
SALARY := SALARY + 1800 /* SALARY PLUS ANNUAL INCREASE
END

Program DEBUG2P

** PROGRAM 'DEBUG2P': CALLS 'DEBUG2N'FOR SALARY AND BONUS CALCULATION
**
DEFINE DATA
LOCAL
1 EMPLOYEE (A42)
1 REDEFINE EMPLOYEE

2 NAME (A20)
2 NUMCHILD (N2)
2 ENTRYDATE (D)
2 SALARY (P7.2)
2 BONUS (P7.2)

END-DEFINE
NAME := 'MEIER'
NUMCHILD := 2
ENTRYDATE := D'1989-01-01'
SALARY := 99000
CALLNAT 'DEBUG2N' NAME NUMCHILD ENTRYDATE SALARY BONUS
WRITE 'EMPLOYEE RECEIVES:' SALARY
WRITE ' PLUS BONUS OF:' BONUS
END

Debugger36

Debugger Tutorial

Subprogram DEBUG2N

** SUBPROGRAM DEBUG2N: CALLS 'DEBUG3N' AND 'DEBUG4N'FOR SPECIAL RATES
**
DEFINE DATA
PARAMETER
1 EMPLOYEE
 2 NAME (A20)
 2 NUMCHILD (N2)
 2 ENTRYDATE (D)
 2 SALARY (P7.2)
 2 BONUS (P7.2)
LOCAL
1 TARGETDATE (D) INIT <D'2009-01-01'>
1 DIFFERENCE (P3.2)
1 PERCENT (P2.2) INIT <3.5>
END-DEFINE
DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365
IF DIFFERENCE GE 10 /* BONUS FOR YEARS IN COMPANY
 BONUS := SALARY * PERCENT / 100
END-IF
IF NUMCHILD > 0
 CALLNAT 'DEBUG3N' NUMCHILD BONUS /* SPECIAL BONUS
END-IF
CALLNAT 'DEBUG4N' SALARY /* SPECIAL SALARY INCREASE
END ↩

Subprogram DEBUG3N

** SUBPROGRAM 'DEBUG3N': CALCULATES SPECIAL BONUS
**
DEFINE DATA
PARAMETER
1 NUMCHILD (N2)
1 BONUS (P7.2)
END-DEFINE
BONUS := BONUS + NUMCHILD * 50
END

Subprogram DEBUG4N

** SUBPROGRAM 'DEBUG4N': CALCULATES SPECIAL SALARY INCREASE
**
DEFINE DATA
PARAMETER
1 SALARY (P7.2)
END-DEFINE
DECIDE FOR FIRST CONDITION

WHEN SALARY < 50000
SALARY := SALARY + 1800

WHEN SALARY < 70000

37Debugger

Debugger Tutorial

SALARY := SALARY + 1200
WHEN SALARY < 90000

SALARY := SALARY + 600
WHEN NONE

SALARY := SALARY + 300
END-DECIDE
END

Debugger38

Debugger Tutorial

3 Concepts of the Debugger

■ Session Control and Control Functions .. 40
■ Debug Entries/Spies .. 41
■ Debug Break Window ... 43

39

The debugger takes over control of a Natural session for debugging purposes while a Natural
object is executing. This allows you to follow the process flow of a program and perform various
program investigations.

You can specify the places in a program where you want the debugger to pause by setting debug
entries (breakpoints or watchpoints) for that program.

When program execution pauses, you can review the contents of the variables or parameters used
in the program to analyze the program logic, or you can determine the reason for a Natural error.

This section provides general information on the functionality of the debugger.

Session Control and Control Functions

The debugger obtains control over a Natural session when test mode is set to ON (see Switch Test
Mode On and Off). If the profile parameter DBGERR is set to ON (see the Parameter Reference docu-
mentation) the debugger is invokedwhen aNatural error occurs, irrespective of any debug entries
and the test mode setting (ON or OFF).

When the debugger controls a session, the debugger performs one or more of the following func-
tions:

■ Checks debug entries.
■ Interrupts a Natural object at a statement line for which a breakpoint was set.
■ Interrupts a Natural object when the value of a variable for which a watchpoint was set has
changed.

■ Displays information on the debug entries (watchpoint and/or breakpoint) found.
■ Provides statistics on the Natural objects called.
■ Provides statistics on the statements executed in a Natural object.
■ Interrupts a Natural object when a Natural error occurs. See also the section Error Handling.

The following graphic illustrates an example of the process flowwhen aNatural object is executed
with the debugger:

Debugger40

Concepts of the Debugger

Debug Entries/Spies

Debug entries are also referred to as spies in the debugger environment. Two types of debug
entries (spies) are available: breakpoints and watchpoints.

The following topics are covered below:

■ Maintenance and Validation
■ Names of Debug Entries
■ Initial or Current State
■ Counter for Debug Events

41Debugger

Concepts of the Debugger

■ Commands for Debug Entries

Maintenance and Validation

Debug entries for the current debug session can be set, modified, listed, displayed, activated, de-
activated and deleted by using the appropriate debugger maintenance functions described in the
relevant sections of the debugger documentation. Debug entries can also be saved for future use
as described in Debug Environment Maintenance.

The validity check of debug entries is either performed immediately when a breakpoint or
watchpoint is defined on the appropriate maintenance screen or during program execution.

If a validity check fails during program execution, the note Check for invalid spy definition
appears in theDebugBreakwindow (seeDebugBreakWindow). In addition, the invalid breakpoint
or watchpoint is marked on the relevant breakpoint or watchpoint maintenance screens.

When a debug entry is set or modified, Natural internally stores the library, database ID and file
number where the object is located. The object may be located in the current library or in one of
its steplibs. If an object of the same name is later executed from another library, the corresponding
debug entry is not executed.

Names of Debug Entries

The debugger assigns a name and a unique number (spy number) to each debug entry. The name
assigned to a debug entry (also referred to as spy name) can be either a name specified by the user
or a default name created by the debugger. A debug entry can be selected by its number with the
corresponding debugger commands. If more than one debug entry has to be executed at a specific
statement line, they are executed in ascending order of their numbers.

Initial or Current State

Each debug entry has an initial state and a current state. Possible values are A (active) and I (inact-
ive). The initial value is specified when setting or modifying the breakpoint or watchpoint and
determines the state of the debug entry at environment start or after reset. During the debug session,
the state can be changedwith the debug commands ACTIVATE and DEACTIVATE (see also the syntax
diagrams in Command Summary and Syntax).

Debugger42

Concepts of the Debugger

Counter for Debug Events

Each debug entry has an event count, which is increased every time the debug entry is executed.
A debug entry is not executed if the current state is inactive. The event count of the breakpoint or
watchpoint is not increased either.

The number of executions of a debug entry can be restricted in two ways:

■ A number of skips can be specified before the debug entry is executed. The debug entry is then
ignored until the event count is higher than the number of skips specified.

■ Amaximum number of executions can be specified, so that the debug entry is ignored, as soon
as the event count exceeds the specified number of executions.

Commands for Debug Entries

For each debug entry (breakpoint or watchpoint), up to six debug commands can be specified.
These commands are executed at execution time of the breakpoint or watchpoint. You can use all
debugger commands that can be applied during a debug interrupt. The default command is the
BREAK command, which displays the Debug Breakwindow as shown in the following section.

Caution: If you delete the BREAK commandwhen setting a debug entry and you do not enter
any command that issues a dialog, there is noway to assume control during program inter-
ruption.

Debug Break Window

When the debugger obtains control of the session, aDebug Breakwindow similar to the example
below appears:

43Debugger

Concepts of the Debugger

+------------------- Debug Break -------------------+
! Break by breakpoint DEBPGM-ALL !
! at line 180 in program DEBPGM (level 1) !
! in library SAG in system file (10,32). !
! !
! G Go !
! L List break !
! M Debug Main Menu !
! N Next break command !
! R Run (set test mode OFF) !
! S Step mode !
! V Variable maintenance !
! !
! Code .. G !
! Note: Check for invalid spy definition. !
! !
! PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS !
+---+

TheDebug Breakwindow shows the type and name of the debug entry that has caused the break
(that is, the name of the corresponding breakpoint or watchpoint), its source-code line number,
and the name of the interrupted Natural object.

In addition, at the bottom of theDebug Breakwindow, messages may appear that either indicate
a Natural error (see also Errors during Application Execution in Error Message Handling) and/or
the possibility of an invalid debug entry.

The functions provided in the Debug Breakwindow are described in the following table. For
further details, see Execution Control Commands.

DescriptionCodeFunction

Continues the execution of the Natural object up to the next debug entry
specified.

GGo

Lists the code of the Natural object currently active. The last statement
executed is highlighted.

LList break

Invokes the Debug Main Menuwhich provides all functions needed to
maintain debug entries at which control is to be assumed.

MDebug Main Menu

Executes the next command specified for the current breakpoint or
watchpoint.

NNext break command

Continues the execution of the Natural object with test mode set off.RRun (set test mode OFF)

Continues the execution of the Natural object in step mode.SStep mode

Displays the variables in the Natural object currently active and modifies
the contents of these variables.

VVariable maintenance

Debugger44

Concepts of the Debugger

4 Start the Debugger

■ Debugger under Natural Security .. 46
■ Operational Requirements .. 46
■ Invoke the Debugger .. 47
■ Default Object ... 48

45

This section describes basic operational requirements and provides a rough guideline on how to
proceed when planning to apply the debugger.

Debugger under Natural Security

The use of the debugger can be controlled by Natural Security:

■ You canprotect the debugger against unauthorizeduse bydisallowing the TEST systemcommand,
which invokes the debugger; see Command Restrictions in the section Library Maintenance in the
Natural Security documentation.

■ You can disallowor restrict the use of the debugger as described inComponents of an Environment
Profile in the Natural Security documentation.

Operational Requirements

The debugger is only invoked when you execute a cataloged object stored in the current library
in the current Natural system file. The debugger is not invoked when you execute source code
contained in the work area by using the RUN command.

Efficient and correct debugging requires that the source code in the source object corresponds to
the compiled source code in the cataloged objectwhich can be guaranteedwith the system command
STOW. If you change a source object after you cataloged it, it is possible that a debug entry (breakpoint
orwatchpoint) does not function properly because the referenced statement or variable has changed
or no longer exists. When the debugger detects that a source object has an earlier time stamp than
the corresponding cataloged object, the following warning appears Time stamps of source and
cataloged object do not match.

The debugger investigates all Natural objects contained in the current library or in one of its
steplibs. The debugger does not investigate Natural objects stored in the Natural system library
SYSLIB or SYSLIBS.

The following restriction applies to the use of the debugger:

■ The debugger can only be applied to objects ofNatural Version 2.3 and above, but not toNatural
objects cataloged with any previous version. The debugger supports only debug environments
which were created with Natural Version 2.3 and above; debug environments created with any
previous version will be ignored. For detailed information on debug environments, see Debug
Environment Maintenance.

Debugger46

Start the Debugger

Batch Processing

Although the debugger is mainly designed for interactive usage in online mode, the debugger
commands can also be used for batch execution such as for setting breakpoints or watchpoints.

Note: There are restrictions for batch processing which can cause a debugger command to
be rejected. For example, the debugger does not support the commands ++ and +4.

Example of Generating and Printing Statistics in Batch

The following is an example of using debugger direct commands in batch mode to generate and
print a report about call statistics:

//NATBATCH EXEC PGM=NATBAT42,
// PARM=('INTENS=1,IM=D,CF=$,PRINT=((1-2),AM=STD)')
//STEPLIB DD DISP=SHR,DSN=NATURAL.V2.TEST.NUCLEUS
//CMPRINT DD SYSOUT=X
//SYSOUT DD SYSOUT=X
//CMPRT01 DD SYSOUT=X
//CMSYNIN DD *
LOGON DEBUGLIB
TEST PROFILE
,,,,CMPRT01
,,,,,,$K3
,,$K3
TEST ON
TEST SET XSTAT COUNT
DEBUG2P
TEST PRINT XSTAT
FIN
/*

Invoke the Debugger

To invoke the debugger

1 Establish a debug environment for a Natural object or application:

■ Invoke the Debug Main Menu by entering the Natural system command TEST.

Or:
From within a running application, enter the terminal command %<TEST.

■ Use the functions of the Debug Main Menu to specify debug entries for a Natural object
or application:

Debug environment maintenance

47Debugger

Start the Debugger

Spy maintenance
Breakpoint maintenance
Watchpoint maintenance
Call statistics maintenance
Statement execution statistics maintenance
Variable maintenance
List object source

2 Activate the debugger:

■ At a command prompt, enter the command TEST ON.

Or:
In the Debug Main Menu, enter function code T.

3 Execute the Natural object or application.

The debugger pauses program execution at the specified debug entries and invokes theDebug
Breakwindow.

To invoke the debugger for error handling

■ At session start, set the profile parameter DBGERR to ON.

See also DBGERR - Automatic Start of Debugger at Runtime Error in the Parameter Reference
documentation.

Or:

During the session, enter the command TEST ON at a command prompt or enter function code
T in a main debug maintenance menu.

The debugger invokes the Debug Breakwindow when a Natural error occurs.

See also the section Error Handling.

Default Object

The maintenance functions of the debugger as described in the relevant sections refer to objects
you specify either in the corresponding name fields of menus or with direct commands. If you do
not specify an object name, by default, the debugger assumes the name of the current object as it
is displayed in theObject field, in the upper right corner of theDebugMainMenu. With a default
object specified, no object name is required in direct commands andmenu options used to specify

Debugger48

Start the Debugger

breakpoints or watchpoints. To change the default object, see the syntax of the command SET in
the section Command Summary and Syntax.

49Debugger

Start the Debugger

50

5 Switch Test Mode On and Off

To activate a previously established debug environment, test mode must be set to ON.

To set test mode on or off

■ In a main debug maintenance menu, enter function code T to switch test mode on or off.

Or:

Enter one of the following direct commands:

TEST ON

or

TEST OFF

When executing a Natural object with test mode set to ON, the debugger continuously checks all
debug entries for any required action.

When executing a Natural object with test mode set to OFF, all debug entries are ignored.

The command TEST, and with it the whole application, can be protected by Natural Security as
described in Command Restrictions in the section Library Maintenance in the Natural Security docu-
mentation.

51

52

6 Debug Environment Maintenance

■ Set Test Mode ON/OFF .. 54
■ Load Debug Environment ... 55
■ Save Debug Environment ... 55
■ Reset Debug Environment .. 56
■ Delete Debug Environment ... 56
■ Maintain Debug Environments in Different Libraries .. 57

53

Since a debug environmentmainly consists of debug entries, it is established by setting breakpoints
and watchpoints as described in the relevant maintenance sections.

Once established, a debug environment can be stored for subsequent usage. The file where debug
environments are stored can be specified with the debugger command PROFILE (see Navigation
and Information Commands). You can also delete a debug environment or reset its counters to their
initial values.

Note: See also the usage restrictions described in Operational Requirements.

The following items are also part of a debug environment and are therefore saved or loaded every
time you save or load a debug environment:

■ the test mode setting (ON or OFF);
■ all options that can be set with the debugger command PROFILE (except the file for loading or
saving debug environments);

■ the settings of the Statement execution statistics maintenance function (ON, OFF or COUNT).

To invoke the debug environment maintenance function

■ In the Debug Main Menu, enter function code E.

Or:

Enter the following direct command:

EM

TheDebug Environment Maintenancemenu appears.

This section describes the functions provided in theDebug EnvironmentMaintenancemenu and
provides instructions for performing maintenance functions in different libraries.

With each function selected, youmust enter the name of the debug environment to bemaintained.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Debugger54

Debug Environment Maintenance

Load Debug Environment

To load a debug environment from your user system file (FUSER)

■ In the Debug Environment Maintenancemenu, enter function code L and the name of an
environment.

Or:

Enter the following direct command:

LOAD ENVIRONMENT name

The specified debug environment is loaded.

If you do not specify a name, the default environment with the name Noname is loaded.

Enter an asterisk (*) to obtain a list all available debug environments. On the list, you can mark
the desired environment with the line command LO to load it into the debug buffer, or with the
line command DE to delete it.

Save Debug Environment

To save a debug environment

■ In the Debug Environment Maintenancemenu, enter function code S and the name of an
environment.

Or:

Enter the following direct command:

SAVE ENVIRONMENT name

The specified environment is reset (see below) and saved to the file location specified with
the debugger command PROFILE (see the section Navigation and Information Commands).

If you do not specify a name, the environment is saved with the name Noname.

If a debug environmentwith the specified name already exists, you are prompted for confirmation
to overwrite the old environment.

55Debugger

Debug Environment Maintenance

Reset Debug Environment

The debug environment should be reset before each test run. Resetting the environment leads to
the following results:

■ The current states of all debug entries are set to their initial states;
■ All event counts are set to zero;
■ The call statistics in the debug buffer are cleared as described in the section Call Statistics
Maintenance.

To reset a debug environment

■ In the Debug Environment Maintenancemenu, enter function code R and the name of an
environment.

Or:

Enter the following direct command:

RESET ENVIRONMENT name

The specified debug environment is reset.

If you do not specify an environment name, the current debug environment is reset.

Delete Debug Environment

To delete a debug environment

1 In the Debug Environment Maintenancemenu, enter function code D and the name of the
environment.

Or:

Enter the following direct command:

DELETE ENVIRONMENT name

The confirmation window appears.

2 In the confirmation window, enter Y (Yes) to confirm the deletion.

The debug specified environment is deleted.

Debugger56

Debug Environment Maintenance

If you do not specify an environment name, the current debug environment is deleted.

Maintain Debug Environments in Different Libraries

The SYSMAIN utility provides the functions to copy ormove debug environments between different
libraries and/or system files and to delete, list or rename a debug environment.

When a debug environment has beenmoved or copied fromone library to another, the breakpoints
and watchpoints still refer to the old (source) library. You adapt the debug environment to the
new (target) library by modifying the corresponding breakpoints (see alsoModify Breakpoint in
Breakpoint Maintenance) or watchpoints (see alsoModify Watchpoint inWatchpoint Maintenance).
When you perform themodify function, you do not have to change any of the existing definitions;
upon executing the save command (PF5), the library reference automatically changes to the new
library as can be seen in the Library field entry on theModify Breakpoint orModifyWatchpoint
screen.

Related Topic:

■ Processing Debug Environments - SYSMAIN Utility, Utilities documentation

57Debugger

Debug Environment Maintenance

58

7 Spy Maintenance

■ Set Test Mode ON/OFF .. 60
■ Activate Spy ... 60
■ Deactivate Spy ... 61
■ Delete Spy ... 61
■ Display Spy .. 61
■ Modify Spy ... 62

59

This function is used to activate, deactivate, list or delete all debug entries (spies) that is, breakpoints
andwatchpoints. Besides, Spy maintenance is an alternative method of accessing the breakpoint
or watchpoint maintenance screens. These screens are explained in the sections Breakpoint Main-
tenance andWatchpoint Maintenance.

To invoke the spy maintenance function

■ In the Debug Main Menu, enter function code S.

Or:

Enter the following direct command:

SM

The Spy Maintenancemenu appears.

The functions provided in the Spy Maintenancemenu are described in the following section.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Activate Spy

To set the current state of specified spies to active

■ In the Spy Maintenancemenu, enter function code A and a spy number or a spy name.

Or:

Use the direct command ACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are ac-
tivated.

Debugger60

Spy Maintenance

Deactivate Spy

To set the current state of specified spies to inactive

■ In the Spy Maintenancemenu, enter function code B and a spy number or a spy name.

Or:

Use the direct command DEACTIVATE, the syntax ofwhich is described in the sectionCommand
Summary and Syntax.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
deactivated.

Delete Spy

To delete specified spies

■ In the Spy Maintenancemenu, enter function code C and a spy number or a spy name.

Or:

Use the direct command DELETE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
deleted.

Display Spy

To display specified spies

■ In the Spy Maintenancemenu, enter function code D and a spy number or a spy name.

Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

61Debugger

Spy Maintenance

If the specified spy is unique, theDisplay Breakpoint orDisplayWatchpoint screen appears
respectively and all specifications of this breakpoint or watchpoint are displayed.

If the specified spy is not unique, a list of the spies concerned is displayed. On the list, you
can activate, deactivate, display, modify or delete a spy by marking it with the line command
AC, DA, DI, MO or DE respectively.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
displayed.

Modify Spy

To modify specified spies

■ In the Spy Maintenancemenu, enter function code M and a spy number or a spy name.

Or:

Use the direct command MODIFY, the syntax of which is described in the section Command
Summary and Syntax.

If the specified spy is unique, theModify Breakpoint orModify Watchpoint screen appears
respectively and the breakpoint or watchpoint specifications can be modified.

If the specified spy is not unique, a list of the spies concerned is displayed. On the list, you
can activate, deactivate, display, modify or delete a spy by marking it with the line command
AC, DA, DI, MO or DE respectively.

If you do not specify a spy number or a spy name, all spies (breakpoints and watchpoints) are
displayed for selection and modification.

Debugger62

Spy Maintenance

8 Breakpoint Maintenance

■ Conditions of Use .. 64
■ Set Test Mode ON/OFF .. 65
■ Activate Breakpoint .. 65
■ Deactivate Breakpoint .. 66
■ Delete Breakpoint .. 66
■ Display Breakpoint ... 66
■ Modify Breakpoint .. 68
■ Set Breakpoint .. 69
■ Fields and Columns on Breakpoint Screens .. 70

63

Abreakpoint causes the execution of a Natural object to be interrupted at a specific statement line.
This section describes how and when to set breakpoints. Note that the maintenance functions de-
scribed here may also be invoked from an object source by using the List object source function.

To invoke Breakpoint Maintenance

■ In the Debug Main Menu, enter function code B.

Or:

Enter the following direct command:

BM

The Breakpoint Maintenancemenu appears.

This section describes conditions for using breakpoint maintenance, the functions provided in the
Breakpoint Maintenancemenu and the fields and columns contained in a breakpoint screen.

Conditions of Use

A breakpoint is set by specifying the name of the Natural object to be processed and the line
number in the object's source code where the breakpoint is to be executed.

Once a breakpoint has been specified, it remains set for the entireNatural session, unless you delete
it.

A breakpoint refers to a specific line number in source code. A subsequent change of the source
code itself may therefore lead to the breakpoint no longer applying to the desired statement, and
thus the Natural object not being interrupted at the desired position. To circumvent this problem
with program loops, labels can be setwithin these loops. Breakpoints set for these labels are adjusted
to the correct line number if statement lines are inserted or deleted.

The unique identifier for a breakpoint is the spy number as assigned by the debugger.

Breakpoints cannot be set on comment lines, on any statement line other than the first one (if a
single statement occupiesmore than one program line), and on lines that contain one of the follow-
ing statements only:

■ AT BREAK OF

■ AT END OF DATA

■ AT END OF PAGE

■ AT START OF DATA

■ AT TOP OF PAGE

Debugger64

Breakpoint Maintenance

■ BEFORE BREAK

■ DECIDE
See also the usage restrictions described in Operational Requirements.

■ DEFINE SUBROUTINE

■ DEFINE WINDOW

■ FORMAT

■ IF NO RECORDS FOUND

■ ON ERROR

■ OPTIONS

Whether it is possible or not to set breakpoints for lines compiled with the Natural Optimizer
Compiler depends on the NODBG option of the OPTIONS statement described in Switching on the
Optimizer Compiler in the Natural Optimizer Compiler documentation.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Activate Breakpoint

To set the current state of specified breakpoints to active

■ In the Breakpoint Maintenancemenu, enter function code A, an object name and/or a line
number.

Or:

Use the direct command ACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a line number, all breakpoints are activated.

65Debugger

Breakpoint Maintenance

Deactivate Breakpoint

To set the current state of specified breakpoints to inactive

■ In the Breakpoint Maintenancemenu, enter function code B, an object name and/or a line
number.

Or:

Use the direct command DEACTIVATE, the syntax ofwhich is described in the sectionCommand
Summary and Syntax.

If you do not specify an object name or a line number, all breakpoints are deactivated.

Delete Breakpoint

To delete specified breakpoints

■ In the Breakpoint Maintenancemenu, enter function code C, an object name and/or a line
number.

Or:

Use the direct command DELETE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a line number, all breakpoints are deleted.

Display Breakpoint

To display a breakpoint

■ In the Breakpoint Maintenancemenu, enter function code D, an object name and a line
number.

If you do not enter an object name, the default object (if specified) is used.

Or:

Debugger66

Breakpoint Maintenance

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

If a breakpoint has been set for the specified object and line number, a Display Breakpoint
screen with all breakpoint definitions appears similar to the example below:

11:16:12 ***** NATURAL TEST UTILITIES ***** 2006-02-07
Test Mode ON - Display Breakpoint - Object

Spy number 1
Initial state active Current state .. active
Breakpoint name BRK0130 DBID/FNR 10/32
Object name DEBPGM1 Library SAG
Line number 0130
Label
Skips before execution .. 0
Max number executions ... 0
Number of activations ... 0
Error in definition - none -

Commands ... BREAK

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Last Mod Flip Canc

If no unique breakpoint is found, the List Breakpoints screen described below appears.

The fields on theDisplayBreakpoint screen are described in Fields andColumns onBreakpoint
Screens.

To list breakpoints

■ In theBreakpointMaintenancemenu, enter function code D, an object name or a line number.
You can use asterisk (*) notation to specify a range of object names, for example, ABC*. If you
enter an asterisk (*) only, all object names are selected. If you do not enter an object name, the
default object (if specified) is used.

Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

67Debugger

Breakpoint Maintenance

A List Breakpoints screen similar to the example below appears which lists all breakpoints
set for the specified object(s) or line number:

11:41:56 ***** NATURAL TEST UTILITIES ***** 2006-01-30
Test Mode ON - List Breakpoints - Object

All
Co No. BP Name Library Object Line DBID FNR Stat Skips Execs Count E

*___________ *_______ *_______ 0000 I C
__ 1 BRK0130 SAG DEBPGM1 0130 10 32 A A 0 0 0
__ 2 BRKPGM3-END SAG DEBPGM3 END 10 32 A A 0 0 0
__ 3 BRKPGM3-300 SAG DEBPGM3 0300 10 32 A A 0 0 0
__ 4 BRKPGM2-400 SAG DEBPGM2 0400 10 32 A A 0 0 0
__ 5 BRKPGM2-430 SAG DEBPGM2 0430 10 32 A A 0 0 0
__ 6 BRKPGM1-END SAG DEBPGM1 END 10 32 A A 0 0 0
__ 7 BRKPGM1-ALL SAG DEBPGM1 ALL 10 32 A A 0 0 0

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Last Flip - + Canc

The list is sorted in ascending order by the spy numbers contained in theNo. column.

For details on the columns contained in the List Breakpoints screen and the line commands
that can be executed on any list item, refer to Fields and Columns on Breakpoint Screens.

Modify Breakpoint

To modify a breakpoint

1 In the Breakpoint Maintenancemenu, enter function code M, an object name and a line
number. If you do not enter an object name, the default object (if specified) is used.

Or:

Use the direct command MODIFY, the syntax of which is described in the section Command
Summary and Syntax.

Debugger68

Breakpoint Maintenance

If a unique breakpoint has been specified, theModify Breakpoint screen appears where you
can change the field entries. The fields on theModify Breakpoint screen are described in
Fields and Columns on Breakpoint Screens.

If no unique breakpoint is found, the List Breakpoints screen (seeDisplay Breakpoint) appears.

2 When you have finished editing the breakpoint definitions, choose PF3 (Exit) or PF5 (Save) to
save any modification. See alsoMaintenance and Validation for information on validity
checks of debug entries. If you choose PF12 (Canc), the breakpoint remains unchanged.

Set Breakpoint

To add a breakpoint for a session

■ In the Breakpoint Maintenancemenu, enter function code S, an object name and/or a line
number.

Or:

Use the direct command SET, the syntax ofwhich is described in the sectionCommand Summary
and Syntax.

If you specify not an object name but a valid line number, the name of the default object (see
the section Start the Debugger) is assumed. If no default object is specified, a selection window
appears that displays all objects available in the current library.

If object name and line number are specified correctly, the breakpoint is usually set and con-
firmed immediately.

However, a breakpoint set for copycode can only be validated when a program that contains
the copycode is executed. See alsoMaintenance and Validation for information on validity
checks of debug entries.

The breakpoint receives the default command (BREAK), its initial and current states are set to
active and no execution restrictions are specified. Note that if you delete the command BREAK
when setting a breakpoint and you do not enter any command that issues a dialog, there is
no way for the debugger to receive control during program interruption.

69Debugger

Breakpoint Maintenance

Fields and Columns on Breakpoint Screens

The fields contained in aDisplay Breakpoint or aModify Breakpoint screen and the columns of
a List Breakpoints screen are described in the following table:

ExplanationColumnField

Indicates whether test mode is set to ON or OFF.Test Mode

Displays the name of the default object (see Start the Debugger) if specified.Object

Input field for any of the following line commands:Co

Activate breakpointAC

Deactivate breakpointDA

Display breakpointDI

Modify breakpointMO

Delete breakpointDE

List valid line commands?

Exit breakpoint screen.

A unique number assigned by the debugger when setting the breakpoint.No.Spy number

Specifies the initial state and the current state of the breakpoint: active (A)
or inactive (I).

Stat IInitial state

Stat CCurrent state

The name of the breakpoint.

Valid values: 1 to 12 characters.

BP NameBreakpoint name

The default name for a breakpoint consists of the object name and the line
number.

The database ID (DBID) and file number (FNR) of the system file where
the Natural object is stored.

DBIDDBID/FNR

FNR

The name of the library that contains the object.LibraryLibrary

The name of the object available in the current library or one of its steplibs.ObjectObject name

The line number of a statement in the object source code. See also
Conditions of Use above.

You can also specify BEG, END or ALL as line numbers:

LineLine number

Specifies the breakpoint that is to interrupt program execution at the
first statement executed in an object.

BEG

BEG breakpoints cannot be specified for copycode.

Specifies the breakpoint that is to interrupt program execution at the
last statement executed in an object, for example, an END or a FETCH
statement.

END

Debugger70

Breakpoint Maintenance

ExplanationColumnField

END breakpoints cannot be specified for copycode.

Specifies that a breakpoint is to interrupt program execution at each
program line that contains an executable statement.

ALL

Refers to a label set earlier in the source code of an object for statements
that define processing loops: see also Conditions of Use above.

Valid values: 1 to 32 characters.

Label

Determines that the breakpoint is not to be executeduntil the corresponding
statement line has been executed a certain number of times.

Valid values: 0 (default) to 32767.

SkipsSkips before
execution

Any value greater than zero (0) determines the maximum number of
breakpoint executions.

Valid values: 0 (default) to 32767.

ExecsMax number
executions

Indicates how many times a breakpoint was activated for the relevant
statement line.

The counter is reset when a program is started at Level 1.

CountNumber of
activations

Indicates that the statement line in the breakpoint definition cannot be
found in the cataloged object during program execution.

This error can be caused if the source of an object is changed and
recataloged during debugging.

EError in definition

Up to six debug commands. Enter one command per line. For a summary
of all available commands, see Command Summary and Syntax.

Caution: If you delete the command BREAKwhenmodifying a breakpoint
and you do not enter any command that issues a dialog, there is no way
for the debugger to receive control during program interruption.

Commands

71Debugger

Breakpoint Maintenance

72

9 Watchpoint Maintenance

■ Set Test Mode ON/OFF .. 74
■ Activate Watchpoint ... 75
■ Deactivate Watchpoint .. 75
■ Delete Watchpoint ... 75
■ Display Watchpoint .. 76
■ Modify Watchpoint ... 78
■ Set Watchpoint ... 79
■ Fields and Columns on Watchpoint Screens ... 81

73

A watchpoint causes the execution of a Natural object to be interrupted whenever the value of a
variable changes. In addition, you can make the interruption dependent on a condition related to
a specific variable value as described underWatchpointOperators (see also SetWatchpoint) below.

The use of watchpoints allows you to detect unintended alterations of variables caused by objects
that contain errors.

A variable is considered to have changed either when its current value differs from the value re-
corded when the watchpoint was last triggered or when it differs from the initial value. Compar-
ative validation of watchpoint values is restricted to a field length of 253 bytes. For large variables
that exceed the maximum length, only the first 253 bytes are used in the comparison.

A watchpoint is defined by specifying the name of the Natural object and the name of the appro-
priate variable.

The unique identifier for a watchpoint is the spy number assigned by the debugger.

Once a watchpoint has been specified, it remains set for the entire Natural session, unless you
delete it.

To invoke the watchpoint maintenance function

■ In the Debug Main Menu, enter function code W.

Or:

Enter the following direct command:

WM

TheWatchpoint Maintenancemenu appears.

This section describes the functions provided in theWatchpointMaintenancemenu and the fields
and columns contained in a watchpoint screen.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Debugger74

Watchpoint Maintenance

Activate Watchpoint

To set the current state of specified watchpoints to active

■ In theWatchpointMaintenancemenu, enter function code A, an object name and/or a variable
name.

Or:

Use the direct command ACTIVATE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object or a variable (or leave the default asterisk in the Variable field), all
watchpoints are activated.

Deactivate Watchpoint

To set the current state of specified watchpoints to inactive

■ In theWatchpointMaintenancemenu, enter function code B, an object name and/or a variable
name.

Or:

Use the direct command DEACTIVATE, the syntax ofwhich is described in the sectionCommand
Summary and Syntax.

If you do not specify an object name or a variable (or leave the default asterisk in the Variable
field), allwatchpoints are deactivated.

Delete Watchpoint

To delete specified watchpoints

■ In theWatchpointMaintenancemenu, enter function code C, an object name and/or a variable
name.

Or:

75Debugger

Watchpoint Maintenance

Use the direct command DELETE, the syntax of which is described in the section Command
Summary and Syntax.

If you do not specify an object name or a variable (or leave the default asterisk in the Variable
field), allwatchpoints are deleted.

Display Watchpoint

To display a watchpoint

1 In theWatchpointMaintenancemenu, enter function code D, an object name and/or a variable
name. If you do not enter an object name, the default object (if specified) is used.

Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

If a watchpoint has been set for the specified object and variable name, aDisplayWatchpoint
screen with all watchpoint definitions appears similar to the example below:

10:25:32 ***** NATURAL TEST UTILITIES ***** 2006-02-14
Test Mode ON - Display Watchpoint - Object

Spy number 12
Initial state active Current state .. active
Watchpoint name WATCHTEST1 DBID/FNR 10/32
Object name WATCHPGM Library SAG
Variable name WATCHVARIABLE
Skips before execution .. 0 Format/length .. A 10
Max number executions ... 0 Persistent N Act.level ... 0
Number of activations ... 0
Error in definition - none -

Commands ... BREAK

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Last Mod Flip Alpha Hex Canc

Debugger76

Watchpoint Maintenance

The fields on the Display Watchpoint screen are described in Fields and Columns on
Watchpoint Screens.

If no unique watchpoint is found, the List Watchpoints screen (see below) appears.

2 On the Display Watchpoint screen, you can view the condition for watchpoint activation as
specified with the watchpoint operator (see alsoWatchpoint Operators):

Choose PF10 (Alpha) to display the operator and/or operand value in alphanumeric format. .

Or:

Choose PF11 (Hex) to display the operator and/or operand value in hexadecimal format.

Choose PF22 (Cmds) to switch back to the default view of the Display Watchpoint screen,
which contains the Commands field.

To list watchpoints

■ In theWatchpoint Maintenancemenu, enter function code D, an object name or a variable
name. You can use asterisk (*) notation to specify a range of object names and/or variable
names, for example, ABC*. If you enter an asterisk (*) only, all names are selected. If you do
not enter an object name, the default object (if specified) is used.

Or:

Use the direct command DISPLAY, the syntax of which is described in the section Command
Summary and Syntax.

A List Watchpoints screen similar to the example below appears which lists all watchpoints
set for the specified object(s) or variable name:

77Debugger

Watchpoint Maintenance

10:14:05 ***** NATURAL TEST UTILITIES ***** 2006-02-14
Test Mode ON - List Watchpoints - Object

Top of data
Co No. WP Name Library Object DBID FNR Stat Skips Execs Count P E

*___________ *_______ *_______ I C
*___

__ 1 NAME SAG DEBPGM 10 32 A A 0 0 0 N
EMPLOYEES-VIEW.NAME

__ 5 #MAKE SAG DEBPGM 10 32 A A 0 0 0 N
#MAKE

__ 10 LEAVE-DUE SAG DEBPGM 10 32 A A 0 0 0 N
EMPLOYEES-VIEW.LEAVE-DUE

__ 11 WATCHTEST2 SAG DEBPGM 10 32 A A 0 0 0 N
TESTWP

__ 12 WATCHTEST1 SAG WATCHPGM 10 32 A A 0 0 0 N
WATCHVARIABLE

__ 13 WATCHTEST3 SAG DEBPGM 10 32 A A 0 0 0 N
WPTEST

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Last Flip - + Canc

The list is sorted in ascending order by the spy numbers contained in theNo. column.

For details on the columns contained in the List Watchpoints screen and the line commands
that can be executed on any list item, refer to Fields and Columns on Watchpoints Screens.

Modify Watchpoint

To modify a watchpoint

1 In theWatchpoint Maintenancemenu, enter function code M, an object name and a variable
name. If you do not enter an object name, the default object (if specified) is used.

Or:

Use the direct command MODIFY, the syntax of which is described in the section Command
Summary and Syntax.

If a uniquewatchpoint has been specified, theModifyWatchpoint screen appears where you
can change field entries. The fields on theModify Watchpoint screen are described in Fields
and Columns on Watchpoint Screens.

If no uniquewatchpoint is found, theListWatchpoints screen (seeDisplayWatchpoint) appears.

Debugger78

Watchpoint Maintenance

2 On theModify Watchpoint screen, you can change the condition for watchpoint activation
as specified with the watchpoint operator (see alsoWatchpoint Operators):

Choose PF10 (Alpha) to modify the operator and/or operand value in alphanumeric format. .

Or:

Choose PF11 (Hex) to modify the operator and/or operand value in hexadecimal format.

Choose PF22 (Cmds) to switch back to the default view of theModify Watchpoint screen,
which contains the Commands field.

3 When you have finished editing the watchpoint definitions, choose PF3 (Exit) or PF5 (Save) to
save any modification. If you choose PF12 (Canc), the watchpoint remains unchanged.

Set Watchpoint

To add a watchpoint for a session

■ In theWatchpoint Maintenancemenu, enter function code S, an object name and a variable
name.

Or:

Use the direct command SET, the syntax ofwhich is described in the sectionCommand Summary
and Syntax.

Or:

Before executing a Natural object:

■ Invoke the List Object Source screen (see List Object Source).
■ In the Source column, position the cursor at a variable name and choose PF18 (Se Wp).

If you specify not an object name but a valid variable name, the name of the default object
(see the section Start the Debugger) is assumed. If no default object is specified, a selection
window appears that displays all objects available in the current library. If no default object
is specified, a selectionwindowappears that displays all objects available in the current library.

If object name and variable names are specified correctly, the watchpoint is set immediately
and a corresponding confirmation message is displayed on the screen. A watchpoint set for
a dynamic variable or an X-array is only validated during program execution. See also
Maintenance and Validation for information on validity checks of debug entries.

The watchpoint receives the default command (BREAK), its initial and current state are set to
active and no execution restrictions are specified.Note that if you delete the default command

79Debugger

Watchpoint Maintenance

BREAKwhen setting a watchpoint and you do not enter any command that issues a dialog,
there is no way for the debugger to receive control during program interruption.

This section covers the following topics:

■ Watchpoint Operators

Watchpoint Operators

You can specify a condition for watchpoint activation by entering an operator and an appropriate
operand (if relevant) on a watchpoint maintenance screen.

To specify watchpoint operators

1 On the Set Watchpoint orModify Watchpoint screen of the selected watchpoint, choose PF10

(Alpha) if you want to specify an operator operand in alphanumeric format.

Or:

On the Set Watchpoint orModify Watchpoint screen of the selected watchpoint, choose PF11

(Hex) if you want to specify an operator operand in hexadecimal format.

Two input fields appear in the lower half of the screen.

2 In the left input field, enter one of the watchpoint operators listed in the following table.

In the right input field, if relevant, enter the operand value to be compared with the variable.
For watchpoints with operators specified for dynamic variables (alphanumeric or binary),
the operand values will be compared from left to right. Since the field length of a dynamic
variable varies, up to 253 bytes can be entered as comparative value. If the current length of
the dynamic variable is shorter than the maximum comparative length of 253 bytes, the
comparison is made only in the current length of the dynamic variable.

ExplanationOperator

MOD Modification.
Activates the watchpoint each time a modification of the variable occurs.

This is the default setting.

EQ Equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is equal to the specified operand value.

NE Not equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is not equal to the specified operand value.

GT Greater than.

Debugger80

Watchpoint Maintenance

ExplanationOperator

Activates the watchpoint when the variable has been modified and when the current value
of the variable is greater than the specified operand value.

GE Greater than or equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is greater than or equal to the specified operand value.

LT Less than.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is less than the specified operand value.

LE Less than or equal to.
Activates the watchpoint when the variable has been modified and when the current value
of the variable is less than or equal to the specified operand value.

INV Invalid contents.
Activates the watchpoint each time the value assigned to a variable of the Type N, P, D or T
does not comply with the following conditions:

Numeric unpacked.N

Packed numeric.P

Date range from 1582-01-01 to 2700-12-31.D

Time range from 1582-01-01 00:00:00.0 to 2700-12-31 23:59:59.9.T

You can choose PF22 (Cmds) to switch back to the default view of the Set Watchpoint or
Modify Watchpoint screen, which contains the Commands input field.

3 Choose PF5 (Save) to save the operator definitions.

Or:

Choose PF12 (Canc), to leave the operator definitions unchanged and exit theModify Watch-
point screen.

Fields and Columns on Watchpoint Screens

The fields contained in a Display Watchpoint or aModify Watchpoint screen and the columns
of a List Watchpoints screen are described in the following table:

81Debugger

Watchpoint Maintenance

ExplanationColumnField

Indicates whether test mode is set to ON or OFF.Test Mode

Displays the name of the default object (see Start the Debugger) if specified.Object

Input field for any of the following line commands:Co

Activate watchpointAC

Deactivate watchpointDA

Display watchpointDI

Modify watchpointMO

Delete watchpointDE

List valid line commands?

Exit watchpoint screen.

A unique number assigned by the debugger when setting the watchpoint.No.Spy number

Specifies the initial state and the current state of the watchpoint: active (A)
or inactive (I).

Stat IInitial state

Stat CCurrent state

The name of the watchpoint.

The default name for a watchpoint is the name of the variable concerned.

WP NameWatchpoint name

Valid values: 1 to 12 characters. Names that exceed the field size will be
truncated after 12 characters.

On the List Watchpoints screen, the watchpoint name is listed in the first
line, above the variable name.

The database ID (DBID) and file number (FNR) of the system file where
the Natural object is stored.

DBIDDBID/FNR

FNR

The name of the library that contains the object.LibraryLibrary

The name of the object available in the current library or one of its steplibs.

If you want to specify a system variable as a watchpoint, enter an asterisk
(*) in theObject name field.

ObjectObject name

The name of a user-defined, global or system variable.

If the variable is part of a group, it may be prefixed by the group name.

Variable name

If you want to specify a system variable, enter an asterisk (*) in theObject
name field.

For an array, an index description has to be specified (watchpoints can be
defined for single elements only).

On the List Watchpoints screen, the variable name is listed in the second
line, below the watchpoint name.

See also Variable Maintenance for further details.

Debugger82

Watchpoint Maintenance

ExplanationColumnField

Determines that the watchpoint is not to be executed until the condition
set for the watchpoint has been fulfilled (see alsoWatchpoint Operators).

Valid values: 0 (default) to 32767.

SkipsSkips before
execution

Any value greater than zero (0) determines the maximum number of
watchpoint executions.

Valid values: 0 (default) to 32767.

ExecsMax number
executions

Indicates how many times the watchpoint condition for the variable was
met as specified with thewatchpoint operator.

The counter is reset when a program is started at Level 1.

CountNumber of
activations

The Natural data format and length of the variable, for example, A10.Format/length

Marks a watchpoint as persistent. Persistent watchpoints are not restricted
to the Natural object for which they are defined, but apply additionally to
all subordinate program levels.

Persistent watchpoints only make sense for variables that are passed to a
subprogram by reference and not BY VALUE RESULT: see the relevant

PPersistent

parameter description of the CALLNAT statement in Parameters - operand2,
in the Statements documentation.

Restriction:
Persistentwatchpoints are not allowed for variables defined in a parameter
or context clause.

Valid value: Y (Yes) or N (No). N is the default.

Refers to Persistent.

Indicates the program level at which a persistent watchpoint was activated
automatically.

Act. level

Indicates an invalid watchpoint definition. This error may occur if the
executing program is recataloged during debugging after the respective
variable definition was modified.

A watchpoint set for a dynamic variable or an X-array (eXtensible array)
is only validated during program execution.

EError in definition

Up to six debug commands. Enter one command per line. For a summary
of all available commands, see Command Summary and Syntax.

Caution: If you delete the command BREAK and you do not enter any
command that issues a dialog, there is no way for the debugger to receive
control during program interruption.

Commands

83Debugger

Watchpoint Maintenance

84

10 Call Statistics Maintenance

■ Set Test Mode ON/OFF .. 86
■ Set Call Statistics On/Off ... 86
■ Display All Objects ... 87
■ Display Called Objects ... 87
■ Display Non-Called Objects ... 88
■ Print Objects .. 89

85

This function is used to obtain statistical information on which Natural objects were invoked
during the execution of an application, and information on how often an object was invoked. Call
statistics are deleted after resetting the debug environment.

To invoke the call statistics maintenance function

■ In the Debug Main Menu enter function code C.

Or:

Enter the following direct command:

CS

The Call Statistics Maintenancemenu is displayed.

The functions provided in the Call Statistics Maintenancemenu are explained in the following
section whereas all print functions are described in Print Objects.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Set Call Statistics On/Off

When executing a Natural object with call statistics set to ON, all calls made to a specific object are
counted and the resulting statistics can afterwards be displayed or printed.

To set call statistics to ON or OFF

■ In the Call Statistics Maintenancemenu, enter function code C to activate or deactivate call
statistics.

Or:

Enter one of the following direct commands:

SET CALL ON

or

SET CALL OFF

Debugger86

Call Statistics Maintenance

Note: If the call statistics function is switched off and no call statistics have been created or
call statistics have been deleted by resetting the debug environment, the information stored
for statement execution statistics (see Statement Execution Statistics Maintenance) is used for
display. This allows you to detect the non-invoked Natural objects during the execution of
an application.

Display All Objects

This function provides an overview of the call frequency of all objects contained in a library.

To display the call frequency of all objects in a library

■ In the Call Statistics Maintenancemenu, enter function code 1 and a library name.

Or:

Enter the following direct command:

DISPLAY OBJECT library

See also the syntax of DISPLAY in Command Summary and Syntax.

If you do not specify a library name, the librarywhere you are currently logged on is assumed
by default.

ADisplay Call Statistics screen similar to the example screen shown in Display Called
Objects appears.

TheDisplay Call Statistics screen lists all objects in the specified library and indicates their
call frequency in the Calls column on the right-hand side. For each call statement, such as
FETCH or CALLNAT, an entry with the name of the object and a counter variable is written into
the debug buffer. The counter is then increased for each call of the corresponding object.

Display Called Objects

The screen invoked by this function corresponds to the Display Call Statistics screen, but only
the objects that have been invoked are displayed.

To display called objects of a library

■ In the Call Statistics Maintenancemenu, enter function code 2 and a library name.

Or:

87Debugger

Call Statistics Maintenance

Enter the following direct command:

DISPLAY CALL library

See also the syntax of DISPLAY in Command Summary and Syntax.

TheDisplay Called Objects screen appears:

16:06:53 ***** NATURAL TEST UTILITIES ***** 2002-02-15
Test mode ON - Display Called Objects - Object

All
Object Library Type DBID FNR S/C Ver Cat Date Time Calls
*_______ SAG_____
MAINPGM SAG Program 10 32 S/C 3.1 2002-02-15 11:51 1
SUBPGM SAG Subprogram 10 32 S/C 3.1 2002-02-15 11:50 3
EMP-PGM SAG Program 10 32 S/C 3.1 2002-01-22 11:49 2
EMPLIND SAG Program 10 32 S/C 3.1 2001-08-13 11:18 1

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

Display Non-Called Objects

The screen invoked by this function corresponds to the Display Call Statistics screen, but only
the objects that have not been invoked are displayed.

To display non-called objects

■ In the Call Statistics Maintenancemenu, enter function code 3 and a library name.

Or:

Enter the following direct command:

DISPLAY NOCALL library

See also the syntax of DISPLAY in Command Summary and Syntax.

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

For an example screen, see Display Called Objects above.

Debugger88

Call Statistics Maintenance

Print Objects

With the print functions, you can directly route a generated list of call statistics to a printer or
download the list to a PC. You specify a printer as the output device on the User Profile screen
of the debugger. Use the debugger command PROFILE (see the section Navigation and Information
Commands) to invoke this screen.

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

As indicated under Print Options below, to invoke one of the print functions, you can enter either
a function code in the Statement Execution StatisticsMaintenancemenu, a line command on the
Display Statement Lines screen, or a direct command at the command prompt.

Print Options

Direct CommandFunction CodePrint Function

PRINT OBJECT library4All Objects

PRINT CALL library5Called Objects

PRINT NOCALL library6Non-Called Objects

See also the syntax of PRINT in Command Summary and Syntax.

Related Topic:

■ Example of Generating and Printing Statistics in Batch in the section Batch Processing

Example of a PC Download

If Entire Connection and Natural Connection are installed at your site, you can download a stat-
istics list to a PC as described in the following instructions.

To download a list to a PC

1 At session start, specify the profile parameter PRINT as follows:

PRINT=((1),AM=PC)

2 After session start, activate the PC connection using the following terminal command:

%+

3 Invoke and activate the debugger.

89Debugger

Call Statistics Maintenance

4 Invoke the User Profile screen by entering the debugger command PROFILE (see Navigation
and Information Commands).

5 On theUser Profile screen, in theOutput device field, replace the current entry by PCPRNT01
and choose PF3 (Exit) to save the settings.

6 Activate the call statistics function and execute the application forwhich youwant the debug-
ger to collect statistics data.

7 From the statistics screen, choose a print function.

In the Entire Connection window that appears, you can specify the output file and the PC
directory.

Debugger90

Call Statistics Maintenance

11 Statement Execution Statistics Maintenance

■ Set Test Mode ON/OFF .. 92
■ Set Statement Execution Statistics ON/OFF/COUNT .. 92
■ Delete Statement Execution Statistics ... 94
■ Display Statement Execution Statistics .. 95
■ Print Statements ... 98

91

This function is used to obtain statistical information onwhich statement lines of invokedNatural
objectswere executed. The function also provides information on howoften an objectwas invoked
and how often a statement line was executed.

Statement execution statistics can be used for the following purposes:

■ To detect dead (never gets executed) programming code in an application;
■ To estimate the coverage of an application test (howmany statement lines have not been executed
at least once for testing);

■ To locate frequently executed code segments that could have an impact on the application's
performance.

To invoke the statement execution statistics maintenance function

■ In the Debug Main Menu, enter function code X.

Or:

Enter the following direct command:

XS

The Statement Execution Statistics Maintenancemenu is displayed.

The functions provided in the Statement Execution Statistics Maintenancemenu are explained
in the following section whereas all print functions are described in Print Statements.

Set Test Mode ON/OFF

See the section Switch Test Mode On and Off.

Set Statement Execution Statistics ON/OFF/COUNT

This function is used to activate statistics about executed statement lines of Natural objects.

This section covers the following topics:

■ Setup Options

Debugger92

Statement Execution Statistics Maintenance

■ Activate and Deactivate Statistics

Setup Options

When executing aNatural objectwith statement execution statistics set to ON or COUNT, all statement
lines executed within a specific object are listed in a statistical report.

With the option ON, the debugger only retains whether a specific statement line was executed or
not; with the option COUNT, it counts how often a statement line was executed. You can specify a
library and an object name to restrict statement execution statistics to the desired Natural objects.
The default is to collect statistics for all objects of the current library. Asterisk (*) notation is possible.

If you switch statement execution statistics from ON to COUNT or vice versa, existing statistics are
not affected, that is, their status of ON or COUNT remains.

The statistical data collected is stored in the debug buffer. The amount of storage that is required
to store statistical information for a Natural object is approximately

(number of source lines) / 8 + 100 bytes with statement execution statistics set to ON and
(number of source lines) * 4 + 100 bytes with statement execution statistics set to COUNT.

If you modify a Natural object by inserting or deleting lines and you do not renumber the object
lines before you STOW it, the amount of storage required for the object's statistics may increase. To
avoid this, set Auto Renumber to Y (Yes) in your editor profile (see Editor Profile in the Editors
documentation), or use the system command CATALL (see the System Commands documentation)
with the Renumber source-codes lines option enabled (this is the default).

You can use the debugger command PROFILE (see Navigation and Information Commands) to limit
the size of the debug buffer.With statement execution statistics set to COUNT, no statement execution
statistics are collected for objects with more than 8000 statement lines.

Statement execution statistics are part of the debug environment; therefore, they are affected by
the direct commands SAVE ENVIRONMENT and LOAD ENVIRONMENT (see also the sectionDebug Envir-
onment Maintenance).

Activate and Deactivate Statistics

This section provides instructions for activating or deactivating statement execution statistics.

You can specify a library and/or an object name to restrict statement execution statistics to the
desired Natural objects. The default is to collect statistics for all objects of the current library. As-
terisk (*) notation is possible.

To activate statement execution statistics

■ In the Statement Execution Statistics Maintenancemenu, enter function code S, the name
of a library and/or the name of an object. In the State field, change the value to ON.

93Debugger

Statement Execution Statistics Maintenance

Or:

Enter one of the following direct commands:

SET XSTATISTICS ON library (object)

or

SET XSTATISTICS COUNT library (object)

See also the syntax of SET in Command Summary and Syntax.

If you do not specify a library and/or an object, the statistics data about all objects in your current
library are activated.

To deactivate statement execution statistics

■ In the Statement Execution Statistics Maintenancemenu, enter function code S, the name
of a library and/or the name of an object. In the State field, change the value to OFF.

Or:

Enter the following direct command:

SET XSTATISTICS OFF library (object)

See also the syntax of SET in Command Summary and Syntax.

If you do not specify a library and/or an object, the statistics data about all objects in your current
library are deactivated.

Delete Statement Execution Statistics

To delete statement execution statistics

■ In the Statement Execution StatisticsMaintenancemenu, enter function code C and the name
of a library and/or the name of an object.

Or:

Enter the following direct command:

DELETE XSTATISTICS library (object)

See also the syntax of DELETE in Command Summary and Syntax.

Debugger94

Statement Execution Statistics Maintenance

If you do not specify a library and/or an object, the statistics data about all objects in your current
library are deleted.

Display Statement Execution Statistics

This function invokes a screen with a list of the specified statement execution statistics.

To invoke the List Statement Execution Statistics screen

1 In the Statement Execution Statistics Maintenancemenu, enter function code D.

Or:

Enter the following direct command:

DISPLAY XSTATISTICS

The List Statement Execution Statistics screen is displayed:

16:02:01 ***** NATURAL TEST UTILITIES ***** 2002-02-15
Test Mode ON - List Statement Execution Statistics - Object

All
Co Object Library Type DBID FNR Obj.Called Exec Exec % Total No.

*_______ *_______ n Times able uted Executions
__ TEST SAG Program 10 32 4 20 17 85 95
__ MAP01 SAG Map 10 32 6 2 2 100 12
__ SPGM02 SAG Subprogram 10 32 2 6 2 33 4
__ SAGTEST1 SAG Program 10 32 2 20 10 50 17
__ DEBPGM SAG Program 10 32 1 6 6 100 34

For each object, the following information is displayed:

■ the call frequency;
■ the number of executable statements;
■ the number of executed statements;
■ the percentage of executed statements as related to the total number of executable statements;
■ the total number of executed statements.

A list entry is highlighted if data is missing or possibly inconsistent.

2 On the statistics list, you can mark an item with a line command for further processing:

95Debugger

Statement Execution Statistics Maintenance

ExplanationLine Command

Deletes statement execution statistics as described above.DE

Displays all statement lines.DS

Displays executed statement lines only.DX

Displays non-executed statement lines only.DN

Displays information on the cataloged object and errors.I

Prints all statement lines.PS

Prints executed statement lines only.PX

Prints non-executed statement lines only.PN

For further information on print functions, see Print Statements.

The following section describes the screens, which can be invoked with the display commands:

■ Display All Statement Lines
■ Display Executed Statement Lines
■ Display Non-Executed Statement Lines

Display All Statement Lines

TheDisplay Statement Lines screen shows the object source and indicates whether or not a
statement line has been executed.

To invoke the Display Statement Lines screen

■ On the List Statement Execution Statistics screen, mark an entry with the line command DS.

Or:

Enter the following direct command:

DISPLAY STATEMENT library (object)

See also the syntax of DISPLAY in Command Summary and Syntax.

TheDisplay Statement Lines screen appears. If statement execution statistics has been set
to COUNT, the execution frequency of the statement line is displayed as shown in the example
screen below:

Debugger96

Statement Execution Statistics Maintenance

16:04:01 ***** NATURAL TEST UTILITIES ***** 2002-02-15
Test Mode ON - Display Statement Lines - Object SAGTEST

Line Source Count
0200 RD1. READ EMPLOYEES-VIEW BY NAME 2
0210 STARTING FROM #NAME-START THRU #NAME-END
0220 *
0230 IF LEAVE-DUE >= 20 1
0240 PERFORM MARK-SPECIAL-EMPLOYEES not executed
0250 ELSE not executed
0260 RESET #MARK 1
0270 END-IF
0280 *
0290 RESET #MAKE #MODEL 1
0300 CALLNAT 'SPGM02' PERSONNEL-ID #MAKE #MODEL 1
0310 *
0320 WRITE TITLE / '*** PERSONS WITH 20 OR MORE DAYS LEAVE DU 1
0330 / '*** ARE MARKED WITH AN ASTERISK ***' //
0340 DISPLAY '//N A M E' NAME 2

If no unique object has been specified, the List Statement Execution Statistics screen is displayed.

Display Executed Statement Lines

TheDisplay Executed Statement Lines screen corresponds to theDisplay Statement Lines screen,
but only the statement lines that have been executed are displayed.

To invoke the Display Executed Statement Lines screen

■ On the List Statement Execution Statistics screen, mark an entry with the line command DX.

Or:

Enter the following direct command:

DISPLAY EXEC library (object)

See also the syntax of DISPLAY in Command Summary and Syntax.

If no unique object has been specified, the List Statement Execution Statistics screen is dis-
played.

97Debugger

Statement Execution Statistics Maintenance

Display Non-Executed Statement Lines

TheNon-Executed Statement Lines screen corresponds to the Display Statement Lines screen,
but only the statement lines that have not been executed are displayed.

To invoke the Display Non-Executed Statement Lines screen

■ On the List Statement Execution Statistics screen, mark an entry with the line command DN.

Or:

Enter the following direct command:

DISPLAY NOEXEC library (object)

See also the syntax of DISPLAY in Command Summary and Syntax.

If no unique object has been specified, the List Statement Execution Statistics screen is dis-
played.

Print Statements

With the print functions, you can directly route a generated list of statement execution statistics
to a printer or download the list to a PC. You define a printer as the output device on the User
Profile screen of the debugger. Use the debugger command PROFILE (see the section Navigation
and Information Commands) to invoke this screen.

If you do not specify a library name, the library where you are currently logged on is assumed by
default.

As indicated under Print Options below, to invoke one of the print functions, you can either enter
a function code in the Statement Execution Statistics Maintenancemenu, enter a line command
on the Display Statement Lines screen or enter a direct command.

Print Options

Direct CommandLineCommandFunction
Code

Print Function

PRINT XSTATISTICS library (object)1Print statement execution statistics

PRINT STATEMENT library (object)PS2Print all statements

PRINT EXEC library (object)PX3Print executed statements

PRINT NOEXEC library (object)PN4Print non-executed statements

See also the syntax of PRINT in the section Command Summary and Syntax.

Debugger98

Statement Execution Statistics Maintenance

Related Topics:

■ Example of a PC Download in Print Objects in the section Call Statistics Maintenance
■ Example of Generating and Printing Statistics in Batch in the section Batch Processing

99Debugger

Statement Execution Statistics Maintenance

100

12 Variable Maintenance

■ Display User-Defined, Global and DB-Related System Variables ... 102
■ Display System Variables .. 105
■ Modify Variable ... 106

101

This function is used to display and modify variables within the debugger when a Natural object
has been interrupted.

For the interrupted Natural object, the Variable maintenance function displays user-defined
variables, global variables and the database-related system variables *COUNTER, *ISN and *NUMBER
together with Natural data formats, lengths and contents.

Display User-Defined, Global and DB-Related System Variables

This section provides instructions for invoking either the Display Variables (summary) screen
with a list of all variables, or theDisplay Variable (individual) screen with all details on a partic-
ular variable.

■ Display Variables - Summary
■ Display Variable - Individual

Display Variables - Summary

To display a summary of user-defined, global and database-related system variables

■ In the Debug Main Menu or in the Debug Breakwindow, enter function code V.

Or:

Enter the following direct command:

DISPLAY VARIABLE variable,variable,...

TheDisplayVariables (summary) screen provides a list of the variables specified for the interrupted
Natural object. Long valuesmay be displayed truncated on the screen. For arrays, only the contents
of the first occurrence are displayed.

To switch between alphanumeric and hexadecimal representation of the variable contents, choose
PF10 (Alpha) and PF11 (Hex).

To toggle between the truncated display of a variable and the full name display with the group
name, variable name and indices (if relevant), choose PF5 (Zoom).

For variable, a system variable can also be specified. See Display System Variables for more in-
formation.

Debugger102

Variable Maintenance

Display Variable - Individual

To display an individual variable in its entirety

■ From the Display Variables (summary) screen, select a variable by marking it with the line
command DI.

Or:

Enter the following direct command:

DISPLAY VARIABLE variable

Or:

On the List Object Source screen, in the Source column, position the cursor at a variable
name and choose PF18 (Di Va).

■ The following restrictions apply when using PF18 (Di Va):

If a variable name (including the occurrences of an array) spans more than one line, only
the contents of the first line are evaluated.
If an array name is not followed by an index, the entire array is displayed.
If the index of an array is constant, for example, array (3,2,6), only this occurrence is dis-
played.
If the index of an array is variable, for example, array (i,j) or array (3:i), the variables are
evaluated before the respective occurrences of the array are displayed.

Or:

On the List Object Source screen, in the Source column, position the cursor at a variable
name and choose ENTER.

■ When using ENTER, the same restrictions apply as for PF18, see above. However, the variable
or array occurrence is displayed in a window instead of using the Display Variable (indi-
vidual) screen, if the index for an array does not denote more than one occurrence. If the
index for an array denotes more than one occurrence, data is displayed using the Display
Variable (individual) screen.

Or:

Instead of positioning the cursor manually and choosing ENTER you can also use Entire
Connection for ease of use. Here, a double click with the left mouse button positions the
cursor and simulates the ENTER key.

TheDisplay Variable (individual) screen, or a window appears with all relevant specifications
for the particular variable.

103Debugger

Variable Maintenance

If data is displayed using a window and the length of the contents of the variable exceeds 256
bytes, only the first 256 bytes are displayed. For theDisplay Variable (individual) screen there is
no such limit and you can navigate through the entire contents of the variable as described in the
instructions below.

To display the entire contents of the variable or navigate within the contents

■ Choose PF22 to page backward or PF23 to page forward.

Or:

In the Position field, enter a numeric value to start the display at a particular position.

You can choose PF10 (Alpha) and PF11 (Hex) to switch between alphanumeric and hexadecimal
representation of the variable contents.

To display all occurrences of an array using screen functions

■ From the Display Variables screen, select a variable by marking it with the line command
DI.

Or:

Choose PF7 (-) and PF8 (+) to page between the individual occurrences.

To display one or more occurrences of an array using direct commands

■ Use the following direct command:

DISPLAY VARIABLE variable-name(index-specification)

where variable-name denotes the name of the variable, and index-specification denotes
any of the following: an index notation, an index range, or asterisk (*) for all occurrences of
a dimension. Variables that are part of the index-specification are evaluated before the
respective occurrences are displayed.

Examples:

One-dimensional array:

Displays all occurrences of the one-dimensional array ARRAY1.

DISPLAY VARIABLE ARRAY1(*)

One-dimensional array:

Displays the first occurrence of the one-dimensional array
ARRAY1.

DISPLAY VARIABLE ARRAY1(1)

or

DISPLAY VARIABLE ARRAY1

Debugger104

Variable Maintenance

Two-dimensional array:

Displays the second occurrence of the first dimension and the
index notation of the second dimension of the two-dimensional
array ARRAY2.

DISPLAY VARIABLE
ARRAY2(2,3:4)

Three-dimensional array:

Displays the first occurrence of the first dimension, the index
notation of the second dimension, and all occurrences of the
third dimension of the three-dimensional array ARRAY3.

DISPLAY VARIABLE
ARRAY3(1,3:4,*)

Two-dimensional array:

Displays the occurrence of the two-dimensional array ARRAY4
specified by the value of variable I and the value of the
expression J + 1.

DISPLAY VARIABLE ARRAY4(I,J
+ 1)

Display System Variables

To display system variables (except database-related system variables)

■ Enter the following direct command:

SYSVARS

The System Variables screen appears with a limited set of system variables.

To display a single system variable

■ Use the following direct command:

DISPLAY VARIABLE system-variable-name

where system-variable-name is the name of the system variable which can also be displayed
using the SYSVARS direct command.

For variables of the type Handle, the name of the class of the instance that the Handle refers to is
displayed in alphanumeric representation. If the class name is not available, the Globally Unique
Identifier (GUID) is displayed instead. If the class was defined within Natural, the class name or
GUID is suffixed with (NAT).

The contents of properties of an instance of a class cannot be displayed within the debugger.

105Debugger

Variable Maintenance

Modify Variable

This function does not apply to system variables.

This function is used to change the value of user-defined and global variables and the database-
related system variables.

To modify the contents of a variable from the Modify Variable screen

1 Invoke theModify Variable screen by marking the variable with the line command MO.

Or:

On the Display Variable screen, choose PF5 (Mod).

2 On theModify Variable screen, in the Contents field, change the value of the variable.

The new contents must be valid for the Natural data format of the modified variable since
the format of a variable cannot be modified within the debugger.

On theModify Variable screen, you can toggle between alphanumeric and hexadecimal
representation of the variable value using PF10 (Alpha) and PF11 (Hex).

To modify the contents of a variable via direct command

■ Enter the following direct command:

MODIFY VARIABLE variable = new value

A message appears that confirms modification of the variable value.

Note: TheModify Variables function or the MODIFY VARIABLE command can be disallowed
by Natural Security as described in Components of an Environment Profile in the Natural Se-
curity documentation.

Debugger106

Variable Maintenance

13 List Object Source

■ Maintain Breakpoints .. 109

107

This function is used to display the source code of an object and maintain breakpoints. For you to
be able to use List object source, the corresponding source must be in your current library or in
one of its steplibs.

To list the source code of an object

■ In the Debug Main Menu, enter function code L and an object name.

Or:

Enter the following direct command:

LIST object

See also the syntax of LIST in Command Summary and Syntax.

The List Object Source screen appears and the object source is displayed with all current
breakpoints listed in theMessage column on the right-hand side of the screen.

Choose PF7 (-) or PF8 (+) to scroll up or down one page.

If you execute aNatural object, the debugger interrupts execution at each breakpoint orwatchpoint
you have set and the Debug Breakwindow appears (see Debug Break Window in Concepts of the
Debugger).

To list the source code of an interrupted Natural object

■ From the Debug Breakwindow, choose function code L for List break.

Or:

If relevant, on a debugger screen, choose PF9 (Li Br) or enter the following direct command:

LIST BREAK

The List Object Source screen appears with the source code of the object displayed at the
position where a break (breakpoint or watchpoint) occurred. The name of the breakpoint or
watchpoint is displayed in theMessage column on the right-hand side of the screen. The
corresponding source code line is highlighted.

Debugger108

List Object Source

Maintain Breakpoints

The List object source functionmay be used to invoke or directly execute breakpointmaintenance
functions from within an object source. For instructions on how to set breakpoints and general
information on breakpoints, see Conditions of Use in Breakpoint Maintenance.

To invoke a breakpoint maintenance function from an object source

1 In the Debug Main Menu, enter function code L and an object name.

Or:

Enter the following direct command:

LIST object

See also the syntax of LIST in Command Summary and Syntax.

The source code of the specified object is displayed.

The names of breakpoints already set are displayed in theMessage column on the right-hand
side of the screen.

■ To navigate in the source list, enter one of the following commands in the command line:

+ (plus sign) or - (minus sign) to scroll down or up one page,

TOP to scroll to the beginning,

BOTTOM to scroll to the end,

LEFT to scroll to the left,

RIGHT to scroll to the right.

2 In the object source, mark the line(s) desired with any of the commands listed below:

ExplanationLine Command

Activates breakpoints.AC

Deactivates breakpoints.DA

Deletes breakpoints.DE

Displays breakpoints.DI

Goes to theModify Breakpointmaintenance screen.MO

Sets breakpoints.SE

109Debugger

List Object Source

ExplanationLine Command

Goes to the Set Breakpointmaintenance screen.SM

Upon successful command execution, a corresponding message is displayed in theMessage
column on the right-hand side of the screen.

Debugger110

List Object Source

14 Error Handling

■ Errors during Application Execution ... 112
■ Errors during Debugger Execution .. 112

111

This section provides information on handling errors when using the debugger.

Errors during Application Execution

You can use the debugger to analyze any Natural system error that interrupts program execution.
With test mode set to ON (see Switch Test Mode On and Off) or DBGERR set to ON (see the Parameter
Reference documentation), the debugger takes control if an error occurs. In this case, aDebugBreak
window similar to the example below appears:

+------------------- Debug Break -------------------+
! Break by NATURAL error 1316 !
! at line 60 in program SAGTEST (level 1) !
! !
! G Go !
! L List break !
! M Debug Main Menu !
! N Next break command !
! R Run (set test mode OFF) !
! S Step mode !
! V Variable maintenance !
! !
! Code .. G !
! !
! Index not within array structure. !
! PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS !
+---+

Using the List break function, you can display the source code of the program at the position
where the last statement was executed. The Natural error number is displayed in theMessage
column on the right-hand side of the screen and the corresponding source code line is highlighted.

You can then, for example, review the contents of the variables in the program to determine the
reason for the error.

Errors during Debugger Execution

If an error is detected while debugging an application, the debugger will terminate and invoke a
window with an error message similar to the example shown below:

Debugger112

Error Handling

+------------------ NATURAL Debug Error ---------------------------+
! NATURAL error 3009 has occurred in the NATURAL Debugger. !
! Last transaction backed out of database 10. Subcode 3 !
! !
! Error occurred on level 5 in line 4150 in !
! subprogram DBGTEST in library TEST. !
! DBGTEST has been loaded from FNAT=(10,932). !
! DBGTEST has been cataloged on 2005-04-12 14:43:07. !
! !
! Debugging terminates. !
! Pass this error to application for error processing ? (Y/N): N !
+--+

If you confirm this errormessagewith an N (No - this is the default setting), the following happens:

■ The debugger stops debugging and sets the test mode to OFF.
■ The Natural runtime system ignores the error and continues executing the application.

If you confirm this message with a Y (Yes), the following happens:

■ The debugger stops debugging and sets the test mode to OFF.
■ The Natural runtime system reacts to the error and passes it to the application:

If an ON ERROR statement (see the Statements documentation) is used, the application determines
how to proceed after an execution time error occurs. For example, in the case of a NAT3009
where a transaction is backed out of a database, the application can take appropriate action.

If no ON ERROR statement is used, the Natural runtime system terminates application execution
and returns to a Natural command prompt.

113Debugger

Error Handling

114

15 Execution Control Commands

■ ESCAPE BOTTOM .. 116
■ ESCAPE ROUTINE ... 116
■ EXIT ... 116
■ GO ... 117
■ NEXT .. 117
■ RUN ... 117
■ STEP .. 117
■ STEP SKIPSUBLEVEL ... 117
■ STEP SKIPSUBLEVEL n .. 118
■ STOP .. 118

115

This section describes the direct commands the debugger provides for controlling the program
flow during a debugging session. For a summary of all commands available with the debugger,
refer to Command Summary and Syntax.

The commands listed below only apply when the debugger interrupts program execution.

ESCAPE BOTTOM

This command can only be used when a Natural object has been interrupted within a processing
loop.

When you enter this command, the interrupted Natural object will be continued with the first
statement following the processing loop.

Note: This command can be disallowed by Natural Security as described in Components of
an Environment Profile in the Natural Security documentation.

ESCAPE ROUTINE

When you enter this command, processing of the interrupted Natural object will be stopped and
processing will continue with the object from which the interrupted Natural object was invoked;
it will continuewith the statement following the corresponding CALLNAT, PERFORM or FETCH RETURN
statement.

If you apply the command ESCAPE ROUTINE to a main program, Natural ends the program and
returns to the command mode.

Note: This command can be disallowed by Natural Security as described in Components of
an Environment Profile in the Natural Security documentation.

EXIT

If you are displaying the Debug Main Menu and want to invoke the exit function, choose PF3

(Exit) or enter the execution control command EXIT, the debugger returns either to the calling
program (that is, to the interrupted Natural object which is then continued) or to a command
prompt, if the debugger has been invokedwith the direct command TEST, or to the corresponding
input field if it has been invoked by the terminal command %<TEST. However, if a breakpoint or
watchpoint is currently active, the next command of this breakpoint or watchpoint is executed.

Debugger116

Execution Control Commands

If you are not in the Debug Main Menu and enter the direct command EXIT or choose PF3 (Exit),
you leave the current function and return to the previous step of your debugging session.

GO

When you enter the direct command GO (or choose PF14), the debugger returns control to the exe-
cution of the interrupted Natural object. If a breakpoint or watchpoint was active at the time the
Natural object was interrupted, the remaining commands of this break or watchpoint are not ex-
ecuted.

NEXT

When you enter the direct command NEXT (or choose PF13), the next command specified for a
breakpoint orwatchpoint is executed. If no further commandhas been specified, programexecution
continues.

RUN

When you enter the direct command RUN, test mode is switched off and program execution contin-
ues, without investigating any further breakpoints and watchpoints.

STEP

When you enter the direct command STEP, an interruptedNatural object is continued for n execut-
able statement. The default value for n is 1.

STEP SKIPSUBLEVEL

When you enter the direct command STEP SKIPSUBLEVELupon a statementwhich invokes another
object (for example, CALLNAT), processing is continued with the next executable statement in the
current object instead of the first executed statement in the invoked object).

If this command is applied to a statement that does not invoke another object, the debugger reacts
as if the command STEP had been entered.

117Debugger

Execution Control Commands

STEP SKIPSUBLEVEL n

With the command STEP SKIPSUBLEVEL, you can specify a superior level number n. Step mode
then continues within the next object at the specified level. For example: If you enter STEP
SKIPSUBLEVEL 2 in an object at level 4, you continue step mode in the object at level 2.

Object level information can be obtained with the command OBJCHAIN as described in the section
Navigation and Information Commands.

STOP

When you enter the direct command STOP, both the debugger and any interrupted Natural object
are terminated.

Note: This command can be disallowed by Natural Security as described in Components of
an Environment Profile in the Natural Security documentation.

Debugger118

Execution Control Commands

16 Navigation and Information Commands

■ BREAK .. 120
■ FLIP .. 120
■ LAST .. 120
■ OBJCHAIN ... 120
■ ON/OFF ... 121
■ PROFILE ... 121
■ SCAN .. 122
■ SCREEN ... 122
■ SET OBJECT ... 122
■ STACK .. 122
■ SYSVARS .. 123
■ TEST ON/OFF .. 123

119

This section describes the direct commands the debugger provides for navigating through the
debugging areas, scrolling screen displays, obtaining various information on objects and variables,
and specifying profiles. For a summary of all commands available with the debugger, refer to
Command Summary and Syntax.

BREAK

The command BREAK is the default commandwhich is automatically setwhen creating a newdebug
entry. It displays the Debug Breakwindow described in Debug Break Window in the section
Concepts of the Debugger.

When the command BREAK is deleted upon modification of the corresponding debug entry, no
Debug Breakwindow appears. However, other specified commands are executed and the event
count is increased.

FLIP

The command FLIP switches between the display of the two PF-key lines (PF1 to PF12 and PF13 to
PF24).

LAST

The command LAST displays the command last entered. The last three commands are stored and
can be recalled.

OBJCHAIN

The command OBJCHAIN can only be used when a Natural object has been interrupted.

This commanddisplays the objects on the current level and all superior levels, aswell as the current
GDA (global data area), if applicable, and provides information on the interruption.

Debugger120

Navigation and Information Commands

ON/OFF

When you enter the command ON or OFF in the debugger, test mode is switched on or off respect-
ively. See also TEST ON/OFF.

PROFILE

The command PROFILE displays the User Profile screen where you can modify the profile of the
debugger.

User Profile Screen

The User Profile screen provides the following options:

ExplanationOption

Specifies an automatic reset of your current debug environment once you
exit the debugger. The default is N (No).

Reset debug environment
automatically on exit

Specifies to/from which system file debug environments are to be
saved/loaded: FUSER (default), FNAT or SPAD (scratch-pad file).

File for loading/saving
debug environments

Specifies a confirmation of an EXIT or CANCEL command before execution.
The default is N (No).

Confirm EXIT/CANCEL
before execution

Specifies that any unknown debug commandwhich is entered (for example,
the name of a called program) is to be stacked. If so, once you enter an

Stack unknown commands

unknown debug command, you immediately exit the debugger and the
command is executed. If this option has not been specified, an unknown
debug command leads to a corresponding error message. The default is Y
(Yes).

Specifies a printer for the functions Call statistics maintenance (see Print
Objects) and Statement execution statistics maintenance (see Print
Statements).

The default value is HARDCOPY. If you want to route the output to another
printer, replace HARDCOPY by a valid printer name provided by yourNatural
system administrator.

Output device

Specifies the maximum size (in kilobytes) of the debug buffer. The debug
buffer is automatically enlarged as required, but only up to the specified

Maximumdebugbuffer size
in KB

maximum. Enter 0 to indicate no limit or enter a value from 4 - 16384 (must
be a multiple of 4). If the limit would be exceeded, no further debug entries
can be defined and no additional call or statement execution statistics entries
are generated.

121Debugger

Navigation and Information Commands

SCAN

Only applies to the List object source function (see List Object Source).

This command searches for a string of characters within an object source:

■ SCAN searches for the value specified which may be delimited by blanks or any characters that
are neither letters nor numeric characters.

■ SCAN ABS results in an absolute scan of the source code for the specified value regardless ofwhat
other characters may surround the value.

See also the syntax diagrams in Command Summary and Syntax.

SCREEN

When you enter the command SCREEN upon interruption of a Natural object, the current screen
output of the interrupted Natural object is displayed. ENTER takes you back to debug mode.

SET OBJECT

The command SET OBJECT changes the name of the default object as described in the relevant
section in Start the Debugger. See also the syntax of SET in the sectionCommand Summary and Syntax.

STACK

When you enter the command STACK, the contents of the entry at the top of the Natural stack is
displayed. Up to 15 individual top entry elements can be displayed. Elements longer than 55
characters are truncated and marked with an asterisk (*).

Note: An error message is displayed if any single element is longer than 249 characters.

Debugger122

Navigation and Information Commands

SYSVARS

When you enter this command, the current values of a limited set of systemvariables are displayed.

TEST ON/OFF

The command TEST ON or TEST OFF switches test mode on or off respectively. In the debugger,
you only need to enter ON or OFF as described above.

Note: The TEST command can be disallowed by Natural Security as described in Command
Restrictions in the section Library Maintenance in the Natural Security documentation.

123Debugger

Navigation and Information Commands

124

17 Command Summary and Syntax

■ All Debug Commands ... 126
■ Syntax Diagrams ... 131

125

This section describes all debugger commands that directly execute debug functions or navigate
in debugger screens.

For an explanation of more complex command structures with user-defined operands, see Syntax
Diagrams below.

All Debug Commands

The debug commands listed in the table below can be entered in the command line of any debugger
screen. An underlined portion of a debug command or subcommand represents its minimum ab-
breviation.

ExplanationSubcommand(s)Command

Scrolls one page up in a list.-

Scrolls to the beginning of a list.--

TOP

Scrolls one page down in a list.+

Scrolls to the end of a list.++

BOTTOM

Activates breakpoints as described in Breakpoint Maintenance.BREAKPOINT

or

ACTIVATE

(syntax
below)

BP

Activates breakpoints andwatchpoints: see also Activate Spy in Spy
Maintenance.

SPY

Activates watchpoints as described inWatchpoint Maintenance.WATCHPOINT

or

WP

Invokes the Breakpoint Maintenancemenu described in Breakpoint
Maintenance.

BM

Displays theDebug Breakwindow: see also BREAK inNavigation and
Information Commands.

BREAK

Cancels the current operation and/or exits screens without saving
modifications.

CANCEL

Invokes the DBLOG utility (see the Utilities documentation) from
within the debugger.

To specify a database environment, use one of the subcommands:

A

or

Q

DBLOG

Debugger126

Command Summary and Syntax

ExplanationSubcommand(s)Command

or ■ A = Adabas (this is the default)

D
■ Q = SQL
■ D = DL/I

Note: During a debug interrupt, you can only specify one of the
subcommands listed above.

Deactivates breakpoints as described in Breakpoint Maintenance.BREAKPOINT

or

DEACTIVATE

or

BPDA

(syntax
below)

Deactivates breakpoints andwatchpoints: see also Deactivate Spy.SPY

Deactivates watchpoints as described inWatchpoint Maintenance.WATCHPOINT

or

WP

Deletes breakpoints as described in Breakpoint Maintenance.BREAKPOINT

or

DELETE

(syntax
below)

BP

Deletes breakpoints andwatchpoints: see also Delete Spy.SPY

Deletes watchpoints as described inWatchpoint Maintenance.WATCHPOINT

or

WP

Deletes the specified debug environment: see also Delete Debug
Environment.

ENVIRONMENT

Displays breakpoints as described in Breakpoint Maintenance.BREAKPOINT

or

DISPLAY

(syntax
below)

BP

Displays breakpoints andwatchpoints: see also Display Spy.SPY

Displays watchpoints as described inWatchpoint Maintenance.WATCHPOINT

or

WP

Displays statistics on Natural objects invoked during the execution
of an application: see also Display Called Objects.

CALL

Displays statistics on executed statement lines of invoked Natural
objects: see also Display Executed Statement Lines.

EXEC

127Debugger

Command Summary and Syntax

ExplanationSubcommand(s)Command

Displays the contents of variables in hexadecimal format.HEXADECIMAL

Displays statistics on Natural objects that have not been invoked
during the execution of an application: see alsoDisplay Non-Called
Objects.

NOCALL

Displays statistics on non-executed statement lines of invokedNatural
objects: see also Display Non-Executed Statement Lines.

NOEXEC

Displays statistics on the call frequency of objects: see also Display
All Objects.

OBJECT

Display statistics on executed and non-executed statement lines of
invoked Natural objects: see Display All Statement Lines .

STATEMENT

Displays variables for interrupted Natural objects as described in
Variable Maintenance.

VARIABLE

Displays a statistical summary of execution statistics: see alsoDisplay
Statement Execution Statistics.

XSTATISTICS

Invokes the Debug Environment Maintenancemenu described in
Debug Environment Maintenance.

EM

Stops processing a loop and escapes to the first statement after the
loop: see ESCAPE BOTTOM in Execution Control Commands.

BOTTOMESCAPE

Stops processing an interrupted Natural object and continues with
another object, if available: see ESCAPE ROUTINE in Execution Control
Commands.

ROUTINE

Leaves the current screen: see EXIT in Execution Control Commands.EXIT

Switches between the display of the two PF-key lines (PF1 to PF12 and
PF13 to PF24).

FLIP

Returns control to the execution of the interrupted Natural object:
see GO in Execution Control Commands.

GO

Displays the command entered last. The last three commands are
stored and can be recalled.

LAST

Shifts to the left side of a source code listing.LEFT

Displays the source code of an object.LIST

(syntax
below)

Shows the object sourcewith the current break. The relevant statement
line is highlighted.

BREAK

Shows the object sourcewith the last line executed before the current
break.

LASTLINE

Loads the debug environment specified: see Load Debug
Environment.

ENVIRONMENTLOAD

(syntax
below)

Invokes the Debug Main Menu.MENU

Modifies breakpoints as described in Breakpoint Maintenance.BREAKPOINT

or

MODIFY

Debugger128

Command Summary and Syntax

ExplanationSubcommand(s)Command

(syntax
below)

BP

Invokes theModify Breakpoint orModify Watchpoint screen: see
alsoModify Spy in Spy Maintenance.

SPY

Modifies watchpoints as described inWatchpoint Maintenance.WATCHPOINT

or

WP

Modifies the contents of variables in hexadecimal format.HEXADECIMAL

Invokes the Display Variable screen for modification as described
inModify Variable (using PF5).

VARIABLE

Executes the next command specified for a breakpoint orwatchpoint.NEXT

Displays executed objects at various program levels: see OBJCHAIN
in Navigation and Information Commands.

OBJCHAIN

Switches test mode on or off. See also Switch Test Mode On and Off.ON

or

OFF

Prints statistics on Natural objects invoked during the execution of
an application: see also Display Called Objects.

CALLPRINT

(syntax
below) Prints statistics on executed statement lines of invoked Natural

objects: see also Display Executed Statement Lines.
EXEC

Prints statistics onNatural objects that have not been invoked during
the execution of an application: see alsoDisplayNon-CalledObjects.

NOCALL

Prints statistics on non-executed statement lines of invoked Natural
objects: see also Display Non-Executed Statement Lines.

NOEXEC

Prints statistics on the call frequency of objects: see also Display All
Objects.

OBJECT

Prints statistics on executed and non-executed statement lines of
invoked Natural objects: see also Display All Statement Lines.

STATEMENT

Prints statistics on executed statement lines: see also Display
Statement Execution Statistics.

XSTATISTICS

Displays the User Profile screen where you can modify the profile
of the debugger as described in Navigation and Information
Commands.

PROFILE

Resets the current debug environment: seeResetDebug Environment.ENVIRONMENTRESET

(syntax
below)

Shifts to the right side of a source code listing.RIGHT

Switches off test mode and continues program execution.RUN

129Debugger

Command Summary and Syntax

ExplanationSubcommand(s)Command

Resets the current environment and saves the debug specifications.
See also Save Debug Environment.

ENVIRONMENTSAVE

(syntax
below)

Only applies when using the function List object source (see List
Object Source).

Searches for a value in the source code of an object: see SCAN in
Navigation and Information Commands and Syntax Diagrams below.

ABSSCAN

When entered upon interruption of an object, displays the current
screen output of the interruptedNatural object. ENTER takes you back
to debug mode.

SCREEN

Invokes the Set Breakpoint screen described in Breakpoint
Maintenance.

BREAKPOINT

or

SET

(syntax
below)

BP

Activates or deactivates call statistics as described in Call Statistics
Maintenance.

CALL ON

or

CALL OFF

Changes the default object specified for the debugger. See also SET
OBJECT in Navigation and Information Commands.

OBJECT

Invokes the Set Watchpoint screen described inWatchpoint
Maintenance.

WATCHPOINT

or

WP

Activates (ON or COUNT) deactivates (OFF) the statement execution
statistics as described in Set Statement Execution Statistics.

XSTATISTICS ON

or

XSTATISTICS COUNT

or

XSTATISTICS OFF

Invokes the Spy Maintenancemenu described in Spy Maintenance.SM

Displays the contents of the entry at the top of the Natural stack: see
STACK in Navigation and Information Commands.

STACK

Continues an interrupted Natural object for the number (n) of
executable statements specified with the command. If you do not

[n]STEP

specify n, one executable statement is skipped by default. See also
STEP in Execution Control Commands.

Debugger130

Command Summary and Syntax

ExplanationSubcommand(s)Command

Continues step-mode processing ofNatural objectswithout entering
programs at sub-levels. You can specify a level number (n). See also
STEP SKIPSUBLEVEL in Execution Control Commands.

SKIPSUBLEVEL [n]

Terminates both the debugger and any interrupted Natural object;
the NEXT prompt appears.

STOP

Displays the current values of a limited set of systemvariables (except
the database-related system variables). See also Display System
Variables.

SYSVARS

Switches test mode on or off. See also Switch Test Mode On and Off.TEST ON

or

TEST OFF

Invokes theWatchpointMaintenancemenu described inWatchpoint
Maintenance.

WM

Syntax Diagrams

The syntax diagrams listed below refer to more complex command sequences.

For detailed explanations of the symbols usedwithin the syntax descriptions, see the section System
Command Syntax in the System Commands documentation.

For better readability, synonymous keywords are omitted from the syntax diagrams below. An
underlined portion of a keyword represents an acceptable abbreviation.

Valid synonyms are:

SynonymKeyword

BPBREAKPOINT

DADEACTIVATE

WPWATCHPOINT

■ ACTIVATE
■ DEACTIVATE
■ DELETE
■ DISPLAY
■ LIST
■ LOAD
■ MODIFY
■ PRINT
■ RESET

131Debugger

Command Summary and Syntax

■ SAVE
■ SET

ACTIVATE

name
SPY

ACTIVATE

number

[object] [line]BREAKPOINT

[object]variableWATCHPOINT

DEACTIVATE

name
SPY

DEACTIVATE

number

[object] [line]BREAKPOINT

[object]variableWATCHPOINT

DELETE

name
SPY

DELETE

number

[object] [line]BREAKPOINT

[object] variableWATCHPOINT

[library] objectXSTATISTICS

[name]ENVIRONMENT

DISPLAY

Debugger132

Command Summary and Syntax

name
SPY

DISPLAY

number

[object] [line]BREAKPOINT

[object] variableWATCHPOINT

library [object]

CALL

OBJECT

NOCALL

XSTATISTICS

STATEMENT

EXEC

NOEXEC

variable-name
[index-specification],...

VARIABLE

HEXADECIMAL

LIST

LASTLINE

LIST BREAK

object [line]

LOAD

LOAD ENVIRONMENT [name]

MODIFY

name
SPY

MODIFY

number

[object] [line]BREAKPOINT

[object] variableWATCHPOINT

variable [= new value]
VARIABLE

HEXADECIMAL

133Debugger

Command Summary and Syntax

PRINT

library [object]

CALL

PRINT

OBJECT

NOCALL

XSTATISTICS

STATEMENT

EXEC

NOEXEC

RESET

RESET ENVIRONMENT [name]

SAVE

SAVE ENVIRONMENT [name]

SET

objectOBJECT

SET

line
objectBREAKPOINT

label

[object] variableWATCHPOINT

OFF
CALL

ON

library [object]

OFF

XSTATISTICS ON

COUNT

Debugger134

Command Summary and Syntax

18 Preparing Natural for Attached Debugging

■ Introduction .. 136
■ Prerequisites for Attached Debugging .. 136
■ Example for z/OS Batch .. 137
■ Example for z/VSE Batch .. 137
■ Example for BS2000 .. 137

135

Introduction

This document provides information on activating the debug attach server (DAS) to debug an
external Natural application with NaturalONE.

An external application runs in a Natural environment but stores its sources in a NaturalONE
project. The DAS is used to access a NaturalONE project.

For more information on using the DAS, refer to the NaturalONE documentation.

Prerequisites for Attached Debugging

The following prerequisites must be met to access the NaturalONE debugger from a mainframe
Natural session:

■ The Natural session runs in a z/OS, z/VSE or BS2000 environment.
■ NaturalONE is installed.
■ Natural Development Server is installed and the version installedmust support attached debug-
ging.

■ Module NATADvrs (or NCIADvrs for a CICS session on z/OS) is generated from the Natural De-
velopment Server library and can be accessed for the Natural session.

■ The profile parameter DBGAT is specified, see DBGAT.
■ The profile parameter RCA is set to NATATDBG.
■ The profile parameter RCALIAS is set to (NATATDBG,NATADvrs), for CICS on z/OS to
(NATATDBG,NCIADvrs).

■ TheDAS is running and can be addressed throughTCP/IP. TheDAS is shippedwithNaturalONE
as NATDAS.EXE file.

For detailed information on the profile parametersmentioned above, refer to theParameter Reference
documentation.

Debugger136

Preparing Natural for Attached Debugging

Example for z/OS Batch

A Natural batch application is to be debugged with NaturalONE. The DAS server is available
under the TCP/IP name DASSERV and listens to port 50882. TheNaturalONEdebugger has identified
itself to the DAS with client ID FRED. The attached debug interface resides in DSN NDVvrs.LOAD:

//NATBAT EXEC PGM=NATBATvr
//STEPLIB DD DISP=SHR,DSN=NATvrs.LOAD
// DD DISP=SHR,DSN=NDVvrs.LOAD
//CMPRMIN DD *
RCA=NATATDBG,RCALIAS=(NATATDBG,NATADvrs)
DBGAT=(ACTIVE=ON,HOST=DASSERV,PORT=50882,CLID=FRED)
/*

Example for z/VSE Batch

A Natural batch application is to be debugged with NaturalONE. The DAS server is available
under the TCP/IP name DASSERV and listens to port 50882. TheNaturalONEdebugger has identified
itself to the DAS with client ID FRED. The attached debug interface resides in the library
PRD.NATvrs.LIBRARY:

// DLBL NATvrs,'PRD.NATvrs.LIBRARY'
// LIBDEF PHASE,SEARCH=(NATvrs.NATvrs,NATvrs.NDVvrs,...)
// EXEC NATBATvr,SIZE=(NATBATvr,120K),PARM='SYSRDR'
RCA=NATATDBG,RCALIAS=(NATATDBG,NATADvrs)
DBGAT=(ACTIVE=ON,HOST=DASSERV,PORT=50882,CLID=FRED)
/*

Example for BS2000

A Natural batch application is to be debugged with NaturalONE. The DAS server is available
under the TCP/IP name DASSERV and listens to port 50882. TheNaturalONEdebugger has identified
itself to theDASwith client ID FRED. The attached debug interface resides in the library NDVvrs.MOD.

137Debugger

Preparing Natural for Attached Debugging

/LOGON
/SYSFILE SYSOUT=ATDEBUG.OUT
/SYSFILE SYSLST=ATDEBUG.LST
/FILE ADAPARM,DDLNKPAR
/FILE NATvrs.MOD,LINK=BLSLIB01
/FILE NDVvrs.MOD,LINK=BLSLIB02
/FILE CMPRMIN.RMDBG,LINK=CMPRMIN
/FILE DBGTRACE.NATBATCH,LINK=DBGTRACE
/START-EXE-PROG F-F=*LI-E(L=NATvrs.MOD,EL=NATBATvr,TYPE=L)
...

The CMPRMIN.RMDBG dynamic parameter file contains the following Natural parameter settings:

RCA=NATATDBG,RCALIAS=(NATATDBG,NATADvrs),
DBGAT=(ACTIVE=ON,CLID=FRED,HOST=DASSERV,PORT=50882)

Debugger138

Preparing Natural for Attached Debugging

	Debugger
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Debugger Tutorial
	Prerequisites
	Fundamentals of Debugging
	Session 1 - Analyzing a Natural Error
	Session 2 - Using a Breakpoint
	Session 3 - Using a Watchpoint
	Session 4 - Tracing the Logical Flow of Programs
	Session 5 - Using Statistics about the Program Execution
	Additional Hints for Using the Debugger
	Time Stamps of Objects
	Saving Breakpoints and Watchpoints
	Debug Main Menu for Maintenance Functions
	Help for Commands on Maintenance Screens
	Major Functions Available during Program Interruption
	Next Option for Additional Commands During Program Interruption
	Displaying Large Variables and Arrays
	Printing Debugger Statistics
	Using the Debugger in Batch Mode

	Example Sources

	3 Concepts of the Debugger
	Session Control and Control Functions
	Debug Entries/Spies
	Maintenance and Validation
	Names of Debug Entries
	Initial or Current State
	Counter for Debug Events
	Commands for Debug Entries

	Debug Break Window

	4 Start the Debugger
	Debugger under Natural Security
	Operational Requirements
	Batch Processing

	Invoke the Debugger
	Default Object

	5 Switch Test Mode On and Off
	6 Debug Environment Maintenance
	Set Test Mode ON/OFF
	Load Debug Environment
	Save Debug Environment
	Reset Debug Environment
	Delete Debug Environment
	Maintain Debug Environments in Different Libraries

	7 Spy Maintenance
	Set Test Mode ON/OFF
	Activate Spy
	Deactivate Spy
	Delete Spy
	Display Spy
	Modify Spy

	8 Breakpoint Maintenance
	Conditions of Use
	Set Test Mode ON/OFF
	Activate Breakpoint
	Deactivate Breakpoint
	Delete Breakpoint
	Display Breakpoint
	Modify Breakpoint
	Set Breakpoint
	Fields and Columns on Breakpoint Screens

	9 Watchpoint Maintenance
	Set Test Mode ON/OFF
	Activate Watchpoint
	Deactivate Watchpoint
	Delete Watchpoint
	Display Watchpoint
	Modify Watchpoint
	Set Watchpoint
	Watchpoint Operators

	Fields and Columns on Watchpoint Screens

	10 Call Statistics Maintenance
	Set Test Mode ON/OFF
	Set Call Statistics On/Off
	Display All Objects
	Display Called Objects
	Display Non-Called Objects
	Print Objects
	Print Options
	Example of a PC Download

	11 Statement Execution Statistics Maintenance
	Set Test Mode ON/OFF
	Set Statement Execution Statistics ON/OFF/COUNT
	Setup Options
	Activate and Deactivate Statistics

	Delete Statement Execution Statistics
	Display Statement Execution Statistics
	Display All Statement Lines
	Display Executed Statement Lines
	Display Non-Executed Statement Lines

	Print Statements
	Print Options

	12 Variable Maintenance
	Display User-Defined, Global and DB-Related System Variables
	Display Variables - Summary
	Display Variable - Individual

	Display System Variables
	Modify Variable

	13 List Object Source
	Maintain Breakpoints

	14 Error Handling
	Errors during Application Execution
	Errors during Debugger Execution

	15 Execution Control Commands
	ESCAPE BOTTOM
	ESCAPE ROUTINE
	EXIT
	GO
	NEXT
	RUN
	STEP
	STEP SKIPSUBLEVEL
	STEP SKIPSUBLEVEL n
	STOP

	16 Navigation and Information Commands
	BREAK
	FLIP
	LAST
	OBJCHAIN
	ON/OFF
	PROFILE
	User Profile Screen

	SCAN
	SCREEN
	SET OBJECT
	STACK
	SYSVARS
	TEST ON/OFF

	17 Command Summary and Syntax
	All Debug Commands
	Syntax Diagrams
	ACTIVATE
	DEACTIVATE
	DELETE
	DISPLAY
	LIST
	LOAD
	MODIFY
	PRINT
	RESET
	SAVE
	SET

	18 Preparing Natural for Attached Debugging
	Introduction
	Prerequisites for Attached Debugging
	Example for z/OS Batch
	Example for z/VSE Batch
	Example for BS2000

