5 software

Natural

Programming Guide

Version 8.2.7

October 2017

ADABAS & NATURAL

This document applies to Natural Version 8.2.7 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1979-2017 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NATMF-NNATPROGRAMMING-827-20180201

Table of Contents

PTOACE .. xiii
I Natural Programming Modesc.ccooiiiiiiiiiiiiiiiicccc 1
1 Natural Programming Modesccccocviiiiiiiiiiiiiiiiiiiiiic e 3
Purpose of Programming Modesc.cccooviiiiiiiiiiiiii, 4
Setting/Changing the Programming Modeccccccooiviiiiiiiiiiniiniiinici, 5
Functional Differencescccociviiiiiiiiiiiiiniiiiiccc 5

IT Objects for Natural Application Managementccccoecueeeuiiriiiiiiiniiiniienieeeeeeeee 11
2 Data AT@AS ...ooviiiiiiiiiiiiei e 13
Local Data Area (LDA)coiiiiiiiiiiieieeeee et 14
Global Data Area (GDA) ..oo.eeiiiiiiiiieeeetee et 15
Parameter Data Area (PDA)coooiiiiiieiee e 24

3 Data Definition Module (DDM)cc.uuiiiiiiiiiiiiiiiieeiiiiee et ieeee e 29
4 Programs and Subordinate ROUtinesc.ccccocviviiiiiiiniiiii 31
Modular Application Structureccccooeiiviiiiiiiiiiii 32
Multiple Levels of Invoked Objectscoceviviiiiiiiiiiiiiiiiiiiiiiicce 32
Processing Flow when Invoking a Subordinate Routineccccccocoeiii. 33
Program ..o 34
SUDIOULINGooviiiiiiiiiiiiii 37
SUDPIOGIAIMN ...t 40
FUNCHON .o 42
Comparison of External Subroutine, Subprogram and Function 44

5 HelPproutinecccoiviiiiiiiiiiiiiiiiii i 47
InvoKing Helpooviiiiiiii 48
Specifying Helproutinescccoocviviiiiiiiiiiiiiiiiiiiiiiiiciccicee e 48
Programming Considerations for Helproutinescccocoviiniiinnn, 49
Passing Parameters to Helproutinesccccoccciiiiiniiiinin, 49
Equal Sigh Optionccccoeviiiiiiiiiiiiiiiiiii i 50
ATTay INICES v 51
Help as @ WINAOWccoooiiiiiiiiiiiiiiiiiicic e 51

6 COPYCOAE ...niiiiiiiciccc s 53
Use Of COPYCOAE ...ooiuiiiiiiiiiiiiiiiii et 54
Processing of COPYCOdecoovviiiiiiiiiiiiiiiciccccecc e 54

7 TOXE o 55
Use of Text ODJECtScovviiiiiiiiiiiiiiiiiiiiccicc e 56
WG TeXt ...oooviiiiii 56

B CIASS vttt 57
O VAP e 59
Benefits of USING MapPsccocuiiiiiiiiiiiiiiiiiiiiciccee e 60
TYPes Of Mapsccccoovuiiiiiiiiiiiiii 60
Creating Mapscooiiiiiiiiic 61
Starting/Stopping Map Processingcccccceeveiviiiiiiiiiiiiniiiiiciicceccee 61

10 AdAPLer .o 63
11 DHALOG e 65

Programming Guide

12 RESOUICE ...t s 67
What are Resources?ccoouiiiiiiiiiiiiiiiiiiiiiccccecccc 68

Use Of RESOUICEScuoivuiiiiiiiiiiiiiiiicciciccic s 68

API for Processing RESOUICEScccevuiiiiiiiiiiiiiciicciccccce e 69

13 RECOTAINE ..t 71
14 Error MESSAZEcovviiiiiiiiieiicetieetce e 73
15 Command Processorcc.cicuiiiiiiiiiiiiiiicciccic e 75
16 Editor Profileoooiiiiiiiiii 77
17 Map Profile and Device Profilecccovviiiiiiiiiiii 79
18 Parameter Profilec.ocoiiiiiiiiiiiiiii 81
19 Debug Environmentc.cocooiiiiiiiiiiiiiccce e 83
HI Function Callcooiiiiiiiiiiiii 85
20 Function Callccooiiiiiiiiiiiiiiii 87
FUNCHON ..o 88
ReSETICHONSoouiiiiiiiiiccicec e 88
Syntax Descriptioncccooviiiiiiiiiiiiiie 89
EXamPle c..oooiiiiiiiiii 93
Function Result ... 96
Parameter and Result Specificationscccccocveviiiiiiniiiiiiniiiiiccieee 97
Evaluation Sequence of Functions in Statementsccccoccoevviiiiiiiniinnn. 100
Using a Function as a Statement ... 101

IV Field Definitionscccooiiiiiiiiiiiiiiiiicicccicc e 103
21 Use and Structure of DEFINE DATA Statementcccocovviiiiiiiiiiiiinnnn. 105
Field Definitions in DEFINE DATA Statementc.cccocooviiiiiiiiiininnnnn. 106
Defining Fields within a DEFINE DATA Statementcccccoccoviiiiiinnn. 106
Defining Fields in a Separate Data Areaccccoceeeieviiiiiiniiiiienicceccee 107
Structuring a DEFINE DATA Statement Using Level Numbers 107
Storage ALIgNMEeNtcooiiiiiiiiiii 109

22 User-Defined Variablesc.cccooiiiiiiiiiiiiiiic 111
Definition of Variablesccccociiiiiiiiiii 112
Referencing of Database Fields Using (r) Notationcccoccoevviiiiiiniinnin. 113
Renumbering of Source-Code Line Number Referencesccccoeeenn. 114
Format and Length of User-Defined Variablesccccccooiniiiiiinnnn. 115
Special FOrmatsccccocuiiiiiiiiiiiiiiiiiiiii 116
Index NOtationccciiiiiiiiiiiiiii 118
Referencing a Database Arrayccccceviiiiiiiiiiiiiiiiiiccicicccce, 121
Referencing the Internal Count for a Database Array (C* Notation) 129
Qualifying Data Structuresccoceeeieiiiiiiiiiiiiieeec e 132
Examples of User-Defined Variablesc.ccccooooiiiiiiiiiiii, 133

23 Introduction to Dynamic Variables and Fieldsc.cccoooiii, 135
Purpose of Dynamic Variablesc.cccccoooiiiiiiiiiiiiiiiiiiiiiiiiiciccice 136
Definition of Dynamic Variablesc.cccocoviiiiiiiiii 136
Value Space Currently Used for a Dynamic Variableccccceceveiiniinnin. 137
Allocating/Freeing Memory Space for a Dynamic Variable 137

24 Using Dynamic and Large Variablesccccccoviiiiiiiiiiiiiniiiiniciceeen 141

iv Programming Guide

Programming Guide

General Remarkscccovoiiiiiiiiiiiiiiiiie e 142
Assignments with Dynamic Variablesc.cccccooiiiii, 143
Initialization of Dynamic Variablesccccoociiiiiiiiiiiiiiiiiiiicin, 145
String Manipulation with Dynamic Alphanumeric Variables 145
Logical Condition Criterion (LCC) with Dynamic Variables 146
AT/IF-BREAK of Dynamic Control Fieldscccccoviiiiiiiiiiiii, 148
Parameter Transfer with Dynamic Variablesccccooviiniiiiiiniiniinnnn, 148
Work File Access with Large and Dynamic Variablesccccceoiiniinin. 151
Performance Aspects with Dynamic Variablesc.ccccocooiiiiiiiiiiiinnn, 151
Outputting Dynamic Variablesccccoooiiiiiiiiiiiiiiiii 153
Dynamic X-ATTAYSc.oooiiiiiiiiiiiiiciie e 153

25 User-Defined Constantscccooiiiuiiiiiiiiiiiiiiiicccccc e 155
Numeric CONStantscocviiiiiiiiiiiiii 156
Alphanumeric COnstantscccoccuiiiiiiiiiiiiii 157
Unicode Constantscccooiiiiiiiiiiiiiiiicicccccc 158
Date and Time Constantsccccooviiiiiiiiiiiiii e 161
Hexadecimal Constantsc.cccovuiiiiiiiiiiiiiiiicccccccc 162
Logical ConStantscoeiiiiiiiiiiiiiieccec 164
Floating Point CONStantscccceeviiiiiiiiiiiiiiiicccecceeee e 164
Attribute CONStANTSoovcviiiiiiiiiiiiiiicece e 165
Handle Constantscccooiiiiiiiiiiiiiii 166
Defining Named Constantscccccovviiiiiiiiiiiiiiiiiiiiiicicecce 166

26 Initial Values (and the RESET Statement)cccovvvieeiiniiiiiinniiieciniieeeeeeee. 169
Default Initial Value of a User-Defined Variable/Arrayccccccceevviiniinnnin. 170
Assigning an Initial Value to a User-Defined Variable/Arrayc......... 170
Resetting a User-Defined Variable to its Initial Valueccccoceeeiiniiniins 172

27 Redefining Fieldsccccoiviiiiiiiiiiiiiiiiiiiiic 175
Using the REDEFINE Option of DEFINE DATAcccociiiiiiiiiiiiiins 176
Example Program Illustrating the Use of a Redefinitioncccccccceeniene 177

28 ATTAYS ..viiiiiiiiitie s 179
Defining ATTAYS ...coooviiiiiiiiiiii it 180
Initial Values for ATTaysccccooieiiiiiiiiiiiiicccceccc e 181
Assigning Initial Values to One-Dimensional Arraysccccccoviiiiiiniinnn. 181
Assigning Initial Values to Two-Dimensional Arraysc.ccccoeevviivinnnnn. 182

A Three-Dimensional ATTayccccocoieiiiiiiiiiiiiiiccccc 186
Arrays as Part of a Larger Data Structureccccoeoeiiiiiiiiiiiininiinnnn, 188
Database AITaysccccociiiiiiiiiiiiiciccecc e 188
Using Arithmetic Expressions in Index Notationccccccoeiiiiniiinnnnn. 189
Arithmetic Support for Arraysccccocviviiiiiiiiiiiiiiii 189

29 X-ATTAYS vttt s 191
Definitionccoiviiiiiiiiiiiic 192
Storage Management of X-ATITaysccccoeoeeviiiiiiiiiiiiiieiccceee e 193
Storage Management of X-Group AITayscccccceeviiriiiiniiiiiiniieiiieiieineens 193
Referencing an X-ATTaYcccccceeiiiiiiiiiiiiiieiccicce e 195
Parameter Transfer with X-Arraysccccccociiiiiiiiiiiiiniiiiiicciccccee e 196
Programming Guide v

Programming Guide

Parameter Transfer with X-Group Arraysccccceeviiiiiiiiiiiiiiiiniiciiecnn 197
X-Array of Dynamic Variablescccocoviiiiiiiiiii 198
Lower and Upper Bound of an Arraycccccvvviiiiiiiiiiniiiniiiiciicin, 199

V Database ACCESSccuoiiuiiiiiiiiiiiiiii s 201
30 Natural and Database ACCESScccevuiiiiiiiiiiiiiiiiiccc 203
Database Management Systems Supported by Naturalcccoceeinin 204
Profile Parameters Influencing Database Accessccccevvuieviiiiiinicnneene. 205
Access through Data Definition Modulescccoccovviiiiiiiiiiiniiiin, 205
Natural's Data Manipulation Languagecccoccooiiiiiini 206
Natural's Special SQL Statementsccccevviiiiiiiiiniiiiiiiiiie 207

31 Accessing Data in an Adabas Databasec..cccccoviiiiiiiiin 209
Data Definition Modules - DDMScccccoouiiiiiiiiiiiiiiiiiiiccccic 210
Database AITaYsccccovuiiiiiiiiiiiiiciiccccc e 211
Defining a Database VIeWccccioiiiiiiiiiiiiiiiiiiccecccccececeee 217
Statements for Database ACCeSSccceevuiiiiiiiiiiiiiiii 220
MULTI-FETCH ClaUSeccccoiuiiiiiiiiiiiiiiiciiciceciccc e 231
Database Processing LOOPSccccceiiiiiiiiiiiiiiiiiiiiiiiicciceccecce 235
Database Update - Transaction Processingcccoceeviiiiiiiiiiiiciicinnnns 240
Selecting Records Using ACCEPT/REJECTcccccooiiiiiiiiiiiiiiiiiiiiice 247

AT START/END OF DATA Statementsccccecueeiiiiiiiiniiniiiiiiieiecieneene 251
Unicode Datacccooiiiiiiiiiiiii 253

32 Accessing Data in an SQL Databasecccccccoviiiiiiiiiiiiiiiiiiiiiei, 255
33 Accessing Data in a VSAM Databaseccccccoooviiiiiiiiiiiiiiic, 257
34 Accessing Data in a DL/I Databasec.ccccoocuiiiiiiiiiiiiiiiiiiiiiciccccee, 259
VI Report Format and Controlc.cocoviiiiiiiiiiic 261
35 Report Specification - (rep) Notationcccccecueeviiiiiiiiiiiiiiniicicccecceeen 263
Use of Report Specificationscccocviiiiiiiiiiiiiiiiiiiiiiiiccce 264
Statements Concernedcocoiiiiiiiiiiiiii 264
Examples of Report Specificationccoceeviiiiiiiiiiiiiiiiiiiii 264

36 Layout of an Output Pageccoocoeviiiiiiiiii 265
Statements Influencing a Report Layoutccccccoeviiiiiiiiiiiiiniiniiiii, 266
General Layout Exampleccooiiiiiiiiiic 266

37 Statements DISPLAY and WRITEcccoccoiiiiiiiiii, 269
DISPLAY Statementccooiiiiiiiiiiiiiiiiicic e 270
WRITE Statementcccooouiiiiiiiiiiiiiiiicc 271
Example of DISPLAY Statementccccccoviiiiiiiiiiiiniiiiiiiiccicnicciee 272
Example of WRITE Statementcccooviiiiiiiiiiiiic, 272
Column Spacing - SF Parameter and nX Notationcc.cccecceevviiiienninnnens 273

Tab Setting - N'T NOtationccccociiiiiiiiiiiiiiii e 274
Line Advance - Slash Notationccccociiiiiiiiiiiii, 275
Further Examples of DISPLAY and WRITE Statementsc..ccccocoevennnin. 278

38 Index Notation for Multiple-Value Fields and Periodic Groups 279
Use of Index Notationcccovviiiiiiiiiiiiiiiic 280
Example of Index Notation in DISPLAY Statementccccovviiiiiiiiiiinnnns 280
Example of Index Notation in WRITE Statementc.cccoeceevvviiniiniiinnene 281

vi

Programming Guide

Programming Guide

39 Page Titles, Page Breaks, Blank Linesc.ccccoooiiiiiiiiiiiiiiiiinec 283
Default Page Titlecccccoviiiiiiiiiiiiiiiiiii 284
Suppress Page Title - NOTITLE Optionccccceeviiiiiiiiiiiiiiiiiiciiiciiceen, 284
Define Your Own Page Title - WRITE TITLE Statementc..cccccoeiennn. 285
Logical Page and Physical Pageccccccovviiiiiiiiiiiiiniiiiiicciiciccce 288
Page Size - PS Parameter ... 290
Page AdVancCecoceooiiiiiiiiiiiieeeee e 290
New Page with Titleccccoooiiiiiiiiiiiii 293
Page Trailer - WRITE TRAILER Statementc..cccooooviiiiiiiniiiiiice, 294
Generating Blank Lines - SKIP Statementcccccoceiviiiiiiiniiniiiiiinnen. 296
AT TOP OF PAGE Statementccccccciiiiiiiiiiiiiiiiiiiiiiiciccicccccie 297
AT END OF PAGE Statementc.coccovviiiiiiiiiiiiicce 298
Further Example ..o 300

40 Column Headerscccoouiiiiiiiiiiiiiii 301
Default Column Headersc.cccooviiiiiiiiiiiiiiic 302
Suppress Default Column Headers - NOHDR Optionccccccoeviiiininnn. 303
Define Your Own Column Headersccccociiiiiiiiiiiiiiiiiiics 303
Combining NOTITLE and NOHDRccccciiiiiiiiiiiiiiiiiiicicccics 304
Centering of Column Headers - HC Parameterccccccevviiiiiiniiniinnnnnns 304
Width of Column Headers - HW Parameterccccoccvviiiiiiiiiiiininn. 304
Filler Characters for Headers - Parameters FC and GCcccccceiiiiins 305
Underlining Character for Titles and Headers - UC Parameter 306
Suppressing Column Headers - Slash Notationcccoccoeiiiiiinn, 307
Further Examples of Column Headersc.ccccoeeiiiiiiiiiiniiiiiiniiiicne 308

41 Parameters to Influence the Output of Fieldscccccooiiiiiin 309
Overview of Field-Output-Relevant Parametersc.cccocoevviininiinnne. 310
Leading Characters - LC Parameterccccoceiviiiiiiiiiiiiiiiiiiiiicie 310
Unicode Leading Characters - LCU Parameterccccooiiiiiinnn, 311
Insertion Characters - IC Parametercccoocevviiiiiiiiiiiiniiiccccs 311
Unicode Insertion Characters - ICU Parameterccccooviiiiiiiiiiiinnnn, 312
Trailing Characters - TC Parameterccccceeeviiiiiiiiiiiiiiiiiciicceecceee, 312
Unicode Trailing Characters - TCU Parameterccccoovvvviiiiiiiiinnennns 312
Output Length - AL and NL Parametersccccccevviiiiiiiiniiiiniicininnnnen. 313
Display Length for Output - DL Parametercccceceiviiiiiiiiiniiininnnn. 313
Sign Position - SG Parameterc.ocooviiiiiiiiiiiiiicc 315
Identical Suppress - IS Parameterccccociiviiiiiiiiiiiiiiniiiiiiiccccecen 317
Zero Printing - ZP Parameterccocooiiiiiiiiiii 319
Empty Line Suppression - ES Parameterc.cccoccoviviiiiiiiiiiiniiinn, 319
Further Examples of Field-Output-Relevant Parametersccccoceene. 321

42 Code Page Edit Masks - EM Parameterccoccooiiiiiiiiiniic, 323
Use of EM Parametercccociiiiiiiiiiiiiiiiiiciicccccceccec e 324
Edit Masks for Numeric Fieldscccocoviiiiiii 324
Edit Masks for Alphanumeric Fieldscccccooiiiiiiiinniiiii 325
Length of Fieldsccooiiiiiiiiiiic 325
Edit Masks for Date and Time Fieldsccccccociiiiiiiniiiiiiiiin 326

Programming Guide vii

Programming Guide

Customizing Separator Character Displaysccccooceeviiiiiiiiiiiiiiiiic, 326
Examples of Edit Maskscccccoviiiiiiiiiiii 328
Further Examples of Edit Maskscccccooeiiviiiiiiiiiiiiiiiiiiie 330
43 Unicode Edit Masks - EMU Parametercccccoooivviiiiiiiiininiiii 331
44 Vertical DIiSPlaysccccccuiiiiiiiiiiiiiiiiiiieic e 333
Creating Vertical Displayscccocoviiiiiiiiiiiiiccc 334
Combining DISPLAY and WRITEccccooiiiiiiiiiiiiicccecccece 334
Tab Notation - T*fieldcccooiiiiiiiiii 335
Positioning NOtation X/c.cccevviiiiiiiiiiiiicccce 336
DISPLAY VERT Statementcccoooiiiiiiiiiiiiiiccc 337
Further Example of DISPLAY VERT with WRITE Statement 343
VII Further Programming ASPECEScocuiiruiiiiiiiiiiiiiiiie et 345
45 Text NOtationc..coiiiiiiiiiiiiiiic 347
Defining a Text to Be Used with a Statement - the 'text' Notation 348
Defining a Character to Be Displayed n Times before a Field Value - the
'C'(1) NOTATION ..ot 349
46 User COMMENLESccooiiiiiiiiiiiiiiiccii e 351
Using an Entire Source Code Line for Commentsccoocoeviiiininncnnnn, 352
Using the Latter Part of a Source Code Line for Commentsccccoeenee. 353
47 Data Computationccccoooiiiiiiiiiiiiii 355
COMPUTE Statementcccoeviiiiiiiiiiiiiiiiiiiciecce e 356
Statements MOVE and COMPUTEcccocoiiiiiiiiiiiiiiiccicc 357
Statements ADD, SUBTRACT, MULTIPLY and DIVIDEccccccooieinnins 358
Example of MOVE, SUBTRACT and COMPUTE Statements 358
COMPRESS Statementcccoeiiiiiiiiiiiiiiiiiiicicicccc e 359
Example of COMPRESS and MOVE Statementscccceevieiiiniiiiiiennenne 360
Example of COMPRESS Statementccccoocviiiiiiiiiiiiiiiiiiiiicccc 361
Mathematical FUNCHONScccoooiiiiiiiiii 362
Further Examples of COMPUTE, MOVE and COMPRESS Statements 363
48 Rules for Arithmetic Assignment ..o, 365
Field Initializationcccccooiiiiiiiiiiii, 366
Data Transfercccooiiiiiiiiiic e 366
Field Truncation and Field Roundingccccooiiiiiiiiiin 369
Result Format and Length in Arithmetic Operationsccccccooeviiiiinnnnn. 369
Arithmetic Operations with Floating-Point Numbers 370
Arithmetic Operations with Date and Timecccccoociiiiiiiiiiiiiiiiniin, 372
Performance Considerations for Mixed Format Expressions 376
Precision of Results of Arithmetic Operationsc.ccccccevciiiiiiniiiincnnienn. 376
Error Conditions in Arithmetic Operationsccccocueiviiiiiiiiiiiiiiiiininnne 378
Processing of AITAYSccveieieiiiiiiiiiiiiiieicceeee s 378
49 Conditional Processing - IF Statementcccccceeviiiiiiiiiiiiiiiiiii, 387
Structure of IF Statementcccociiiiiiiiiiiiiii 388
Nested IF Statementscccocoiiiiiiiiiiiiiiiiicc 390
50 Logical Condition Criteriac.coceevuiiiiiiiiiiiiiiieccceccc 393
INtroductionccoiiiiiiiiiiiii 394

viii Programming Guide

Programming Guide

Relational EXPressionccccciiiiiiiiiiiiiiiiiiiiiiiiccccccec 395
Extended Relational EXPressioncccccceviiiiiiiiiiiiciiiiciccc 399
Evaluation of a Logical Variablecccccocciviiiiiiiiiiiiiiiis 400
Fields Used within Logical Condition Criteriacccccovveviiviiniiiiiicnnnn, 401
Logical Operators in Complex Logical EXpressionscccccccevvvveiiiiiincnne 403
BREAK Option - Compare Current Value with Value of Previous Loop
PaSS oo 404
IS Option - Check whether Content of Alphanumeric or Unicode Field can
be Converted ... 406
MASK Option - Check Selected Positions of a Field for Specific Content 408
MASK Option Compared with IS Optioncccccoeiiiiiiiiiiii 415
MODIFIED Option - Check whether Field Content has been Modified 417
SCAN Option - Scan for a Value within a Fieldc.ccccoocoiinii, 418
SPECIFIED Option - Check whether a Value is Passed for an Optional
Parametercoooiiiiiiii 420
51 LOOP PrOCESSINGoovviiiiiiiiiiiiii e 423
Use of Processing LOOPSccceiiiiiiiiiiiiiiiiiiiiicicccciccccc e 424
Limiting Database LOOPSc..cccceiiiiiiiiiiiiciccccccc 424
Limiting Non-Database Loops - REPEAT Statementcccccceceeeeieninnnen. 426
Example of REPEAT Statementcccovviiiiiiiiiiiiiiiiiiiiccce 427
Terminating a Processing Loop - ESCAPE Statementc...ccocoen. 4238
Loops Within LOOPScooviiiiiiiiiiiiiiiiiiiiiiciicicc s 428
Example of Nested FIND Statementsc.cccooiiiiiiiiiiiii, 428
Referencing Statements within a Programcccccocoiiviiiiinniiiinnnnn. 429
Example of Referencing with Line Numbersccccccooii, 431
Example with Statement Reference Labelsccccooiiiiiiiiiiiiniininnnn 432
52 Control Breaksccooiiiiiiiiiiiiiciii 435
Use of Control Breaksccociiiiiiiiiiiiiiiiiiiiiicicc 436
AT BREAK Statementcccooiiiiiiiiiiiiiicc 436
Automatic Break Processingccccoovoviiiiiiiiiiiiiccc 441
Example of System Functions with AT BREAK Statementc.ccccc... 442
Further Example of AT BREAK Statementccccoocviiiiiiiiiiiiniiiininn, 444
BEFORE BREAK PROCESSING Statementccccooeiiiiiiiiiiiiiiiicee, 444
Example of BEFORE BREAK PROCESSING Statementccccccoevviiiennns 444
User-Initiated Break Processing - PERFORM BREAK PROCESSING
Statement ... 445
Example of PERFORM BREAK PROCESSING Statementccccccoveuee. 446
53 Stack Processingcccociiiiiiiiiiiiiiiiiiiiiiiiicii 449
Use of Natural Stackccccoooiiiiiiiiiiiiiiiii, 450
Processing Order for Stacked Commands/Datacccccooieiiiiiiiiiiinnnnns 450
Placing Data on the Stackccccocciiiiiiiiiiiiiiiiii, 451
Deleting the First Entry from the Stack ..o 452
Clearing the Stackccociiiiiiiiiiiiiii 452
54 System Variables and System Functionscccccoooiviiiiiiiiiiniii 453
System Variablesccccoooiiiiiiiiiiiiii e 454

Programming Guide iX

Programming Guide

System FUNCHioNS ... 455
Example of System Variables and System Functionscccccocoeinininn. 456
Further Examples of System Variablesccccoeciiiiiiiiiiiinniiiiiiii, 457
Further Examples of System Functionscccocoeiiiiiii 458
55 Processing of Date Informationccccoeviiiiiiiiiniiiiiiniiice, 459
Edit Masks for Date Fields and Date System Variablesc..ccccceeienin. 460
Default Edit Mask for Date - DTFORM Parametercccccoeeiiiiiiiinnnnnn. 460
Date Format for Alphanumeric Representation - DF Parameter 461
Date Format for Output - DFOUT Parameterccccoceeiiiiiiniiiiininennn, 463
Date Format for Stack - DESTACK Parametercccccoeiiiiiiiiiiiniennns 464
Year Sliding Window - YSLW Parameterccccccooveviiiiiiiiiiiinciicecn, 466
Combinations of DFSTACK and YSLWccccciiiiiiiiiiiiiiiiic 468
Year Fixed WINAOWccccoiiiiiiiiiiiiiiiii 470
Date Format for Default Page Title - DFTITLE Parametercccccceuenen. 470
56 End of Statement, Program or Applicationccccceevviiiiiiiiiiiiiniiiiiininnn. 473
End of Statementcccoooiiiiiiiiii 474
End of Programc.ccociiiiiiiiiiiiiiiiii 474
End of Applicationcocieiiiiiiiiiiiiii 474
57 Processing of Application EIrorsccccoeciiiiiiiiiiiiiiiiiiiiicicciccecceeeee, 475
Natural's Default Error Processingccccoveeviiiviiiiiiiniicniiciccceccen, 476
Application Specific Error Processingccccceeviiiiiiieiniiicicicicens 476
Using an ON ERROR Statement Blockcccccoooiiiiiiiiiiiiiiiiiiiii, 477
Using an Error Transaction Program ..., 478
Error Processing Related Featuresccccccoiiiiiiiiiiiiiiiniiiiiiniiiec 481
58 Compilation ASPECtSc.coveiiiiiiiiiiiiiicccce 485
Compiler Options and Parametersccceeveiiiiiniiiiiieniiiiicieeceecee e 486
Other Parameters Influencing the Compilerccccociiviiiiiiiiniininn, 487
VIII Statements for Internet and XIML ACCESScccevuiiiiiiiiiiiiiiiiiiiicecc e 489
59 Statements for Internet and XML ACCESSccccceevviiiiiiiiiiiiiiicicicc, 491
Statements Availableccoccoiiiiiiiiiii 492
General Prerequisitesc.ccooiiviiiiiiiiiiiiiiiiicic e 498
HTTPS Support for the REQUEST DOCUMENT Statement under z/OS 501
Restriction Concerning IMS TMccccoooiiiiiiiiiiiiii, 504
Preconditions for the Support of XML-Related Statements under
OPeNUTM ..o 504
Sample Programcccccooiiiiiiiiiiiiiiiiiii e 505
Frequently Asked QUeSHONSccoviiiiiiiiiiiiic 508
Further Referencesccccooiiiiiiiiiiiiiiiiii 514
IX Application User Interfacescccccceeviiiiiiiiiiiiiiiiiiiiiiiiiccecee e, 517
60 SCreen DSIZINcvviiiiiiiiicici e 519
Control of Function-Key Lines - Terminal Command %Ycccccoeeenn 520
Control of the Message Line - Terminal Command %Mc..ccccceien. 524
Assigning Colors to Fields - Terminal Command %=c.cccccceviniiinnnns 527
Outlining - Terminal Command %D=Bc.ccccccoiiniiii 528
Statistics Line/Infoline - Terminal Command %Xcccocoviiiiiiiiiinnnns 528

X Programming Guide

Programming Guide

WINAOWS <o 530
Standard and Dynamic Map Layoutscccccooeiiiiiiiiiiii 539
Multilingual User Interfacescccoceiviiiiiiiiiiiiiiniiiiiiiiiicicciccn 539
Skill-Sensitive User Interfacesccccoccooviiiiiiiiiiiiiiiiiiiiiis 544

61 Dialog DeSIZNcocuiiiiiiiiiiiiiiiiiie s 547
Field-Sensitive Processingccccevueeiiiiiiiiiiiiiiiiiiiccccceceeeec e 548
Simplifying Programmingc.ccceceeiiiiiiiiiiniiiiiieiccieec e 550
Line-Sensitive Processingcccccvviiiiiiiiiiiiiiiiiiciiicciecccieciecciec 551
Column-Sensitive Processingcccoceeviiiiiiiiiiiiiiiiiccece 552
Processing Based on Function Keyscccccocoiiiiiiiiiiiniiiiiie, 552
Processing Based on Function-Key Namescccocooiiiiiiiiiii, 553
Processing Data Outside an Active Windowccccoeoiiiiiiiiiiiniincnnn. 554
Copying Data from a SCreencccoceeiiiiiiiiiiiiicicccececee 557
Statements REINPUT/REINPUT FULLcccccoviiiiiiiiiiiiiiccice 560
Object-Oriented Processing - The Natural Command Processor 562
XINAtUTALX oo 563
62 Introduction to NaturalXcccccoviiiiiiiiiiii 565
Why NaturalX? ..o 566

63 Developing NaturalX Applicationsccceeeiiiiiiiiiniiiiiiiiiiiccceccece 567
Development ENvironmentscccocviviiiiiiiiiiiiiniiiiicec 568
Defining Classesccccveieiiiiiiiiiiiiiice e 568
Using Classes and ObjJectsccoeiiiiiiiiiiiiiiiiiiiiiiiiciiec e, 572

XL e 577
64 Natural Reserved Keywordscccoociiiiiiiiiiiiiniiiiiiiiciciccccccc 579
Alphabetical List of Natural Reserved Keywordsc.ccccooiiiniiininn, 580
Performing a Check for Natural Reserved Keywordscccccocuvveiiniincens 595

65 Referenced Example Programsccccccuvvviiiiiiiiiiiiiiiiiiiiiicicceee, 597
READ Statementcccoiiiiiiiiiiiiiiiiiciccccc 598
FIND Statementccccoooiiiiiiiiiiiicc e 599
Nested READ and FIND Statementsccccoviiiiiiiiiiiiiiiniiiie 603
ACCEPT and REJECT Statementscccoeeeeeeeeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 605

AT START OF DATA and AT END OF DATA Statementsccccccecuenee 608
DISPLAY and WRITE Statementsc.ccccooviiiiiiiiiiiiiiiiiciieccs 610
DISPLAY Statementccoooiiiiiiiiiiiiiiiiic e 614
Column Headersccoooiiiiiiiiiiiiiiic 615
Field-Output-Relevant Parameterscccccociiiiiiiiiiiiiiiiniiiiiine 617
Edit Masksc.oooiiiiiiiiiiiiiiiic 623
DISPLAY VERT with WRITE Statementccccociiiiiiiiiiiiiiiiicies 626

AT BREAK Statementccccccuiiiiiiiiiiiiiiiiiiiiiiccinecc 627
COMPUTE, MOVE and COMPRESS Statementsc.cooevvvvieeeeeeeeneeennnnnn. 628
System Variablesccccooiiiiiiiiiiiiiiiii 631
System FUNCHONScooooiiiiiii 634
INAEX i 637

Programming Guide Xi

Xii

Preface

This document is complementary to the Natural documentation listed in the Language section
(main documentation overview) and provides basic information essential for writing applications
in Natural.

Other Related Documentation:
® First Steps - Tutorial with a series of sessions which introduce you to some of the basics of Natural
programming.

® Using Natural - Tools, commands and customization options for managing Natural objects and
applications.

® For information on Natural application programming interfaces (APIs), see: SYSEXT - Natural
Application Programming Interfaces and SYSAPI - APIs of Natural Add-On Products in the Utilities
documentation.

Natural Programming Modes Reporting mode and structured mode

Obijects for Natural Application Objects (for example, programs and data areas) used for Natural
Management application management

Function Call Definition of function calls

Field Definitions Variable, constant and array definitions

Database Access Natural access in an Adabas or non-Adabas database

Report Format and Control Format and control of output report data

Further Programming Aspects Other programming aspects:

Text notation

User comments

Data computation

Rules for arithmetic assignment
Conditional processing - IF statement
Logical condition criteria

Loop processing

Control breaks

Stack processing

System variables and system functions
Processing of date information

End of statement, program or application
Processing of application errors
Compilation aspects

Statements for Internet and XML Natural statements for internet and XML access
Access
Application User Interfaces Natural application user interfaces for dialog and screen design

xiii

Preface

NaturalX Object-based programming with NaturalX components and
dedicated Natural statements

Natural Reserved Keywords List of all keywords reserved for the Natural language

Referenced Example Programs Natural program examples referenced in the Programming Guide

Notation vrs or vr

When used in this documentation, the notation vrs or vr represents the relevant product version
(see also Version in the Glossary).

Xiv Programming Guide

I Natural Programming Modes

1 Natural Programming Modes

= Purpose of Programming MOGEScoouiiiiiiiiiii e
= Setting/Changing the Programming MOGEoviiiiiiiiiiiie e
B FUNCHONAI DIffErENCESttt e et e e

Natural Programming Modes

This chapter describes the two programming modes offered by Natural.

| Note: Generally, it is recommended to use structured mode exclusively, because it provides

for more clearly structured applications. Therefore, the explanations and examples in the
Programming Guide usually refer to structured mode only.

Purpose of Programming Modes

Natural offers two ways of programming:

= Reporting Mode
= Structured Mode

Reporting Mode

Reporting mode is only useful for the creation of adhoc reports and small programs which do not
involve complex data and/or programming constructs. (If you decide to write a program in reporting
mode, be aware that small programs may easily become larger and more complex.)

Please note that certain Natural statements are available only in reporting mode, whereas others
have a specific structure when used in reporting mode. For an overview of the statements that
can be used in reporting mode, see Reporting Mode Statements in the Statements documentation.

Structured Mode

Structured mode is intended for the implementation of complex applications with a clear and
well-defined program structure. The major benefits of structured mode are:

® The programs have to be written in a more structured way and are therefore easier to read and
consequently easier to maintain.

" As all fields to be used in a program have to be defined in one central location (instead of being
scattered all over the program, as is possible in reporting mode), overall control of the data used
is much easier.

With structured mode, you also have to make more detail planning before the actual programs
can be coded, thereby avoiding many programming errors and inefficiencies.

For an overview of the statements that can be used in structured mode, see Statements Grouped by
Function in the Statements documentation.

4 Programming Guide

Natural Programming Modes

Setting/Changing the Programming Mode

The default programming mode is set by the Natural administrator with the profile parameter SM.

You can change the mode by using the Natural system command GLOBALS and the session para-

meter SM:

Mode System Command

Structured |GLOBALS SM=0ON
Reporting |GLOBALS SM=0FF

For further information on the Natural profile and session parameter SM, see SM - Programming in
Structured Mode in the Parameter Reference.

For information on how to change the programming mode, see Programming Modes in Using Nat-
ural and SM - Programming in Structured Mode in the Parameter Reference.

Functional Differences

The following major functional differences exist between reporting mode and structured mode:

= Syntax Related to Closing Loops and Functional Blocks
= Closing a Processing Loop in Reporting Mode

= Closing a Processing Loop in Structured Mode

= | ocation of Data Elements in a Program

= Database Reference

| Note: For detailed information on functional differences that exist between the two modes,
see the Statements documentation. It provides separate syntax diagrams and syntax element
descriptions for each mode-sensitive statement. For a functional overview of the statements
that can be used in reporting mode, see Reporting Mode Statements in the Statements docu-
mentation.

Programming Guide 5

Natural Programming Modes

Syntax Related to Closing Loops and Functional Blocks

Reporting Mode: | (C(0SE) LOOPand DO ... DOEND statements are used for this purpose.

END-. .. statements (except END-DEFINE, END-DECIDE and END-SUBROUTINE) cannot be
used.

Structured Mode:| Every loop or logical construct must be explicitly closed with a corresponding END- . . .
statement. Thus, it becomes immediately clear, which loop/logical constructs ends where.

LOOP and DO/DOEND statements cannot be used.

The two examples below illustrate the differences between the two modes in constructing processing
loops and logical conditions.

Reporting Mode Example:

The reporting mode example uses the statements D0 and DOEND to mark the beginning and end of
the statement block that is based on the AT END OF DATA condition. The END statement closes all
active processing loops.

READ EMPLOYEES BY PERSONNEL-ID
DISPLAY NAME BIRTH
AT END OF DATA
DO
SKIP 2
WRITE / '"LAST SELECTED:' OLD(NAME)
DOEND
END

Structured Mode Example:

The structured mode example uses an END- ENDDATA statement to close the AT END OF DATA condi-
tion, and an END-READ statement to close the READ loop. The result is a more clearly structured
program in which you can see immediately where each construct begins and ends:

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH

END-DEFINE
READ MYVIEW BY PERSONNEL-ID
DISPLAY NAME BIRTH
AT END OF DATA
SKIP 2
WRITE / 'LAST SELECTED:' OLD(NAME)
END-ENDDATA

6 Programming Guide

Natural Programming Modes

END-READ
END

Closing a Processing Loop in Reporting Mode

The statements END, LOOP (or CLOSE LOOP) or SORT may be used to close a processing loop.

The LOOP statement can be used to close more than one loop, and the END statement can be used
to close all active loops. These possibilities of closing several loops with a single statement constitute
a basic difference to structured mode.

A SORT statement closes all processing loops and initiates another processing loop.

Example 1 - LOOP:

FIND ...

FIND ...

LOOP /* closes inner FIND loop
LOOP /* closes outer FIND loop

Example 2 - END:

FIND ...
FIND ...

END /* closes all loops and ends processing

Example 3 - SORT:

FIND ...

FIND ...
SORT ... /* closes all loops, initiates loop
END /* closes SORT loop and ends processing

Programming Guide 7

Natural Programming Modes

Closing a Processing Loop in Structured Mode

Structured mode uses a specific loop-closing statement for each processing loop. Also, the END
statement does not close any processing loop. The SORT statement must be preceded by an END-ALL
statement, and the SORT loop must be closed with an END-SORT statement.

Example 1 - FIND:

FIND ...

FIND ...

END-FIND /* closes inner FIND loop
END-FIND /* closes outer FIND Toop

Example 2 - READ:

READ ...
AT END OF DATA

END-ENDDATA
END-READ /* closes READ Toop
END

Example 3 - SORT:

READ ...

FIND ...
END-ALL /* closes all Toops
SORT /* opens Toop
END-SORT /* closes SORT Tloop
END

8 Programming Guide

Natural Programming Modes

Location of Data Elements in a Program

In reporting mode, you can use database fields without having to define them in a DEFINE DATA
statement; also, you can define user-defined variables anywhere in a program, which means that
they can be scattered all over the program.

In structured mode, all data elements to be used have to be defined in one central location (either
in the DEFINE DATA statement at the beginning of the program, or in a data area outside the pro-
gram).

Database Reference

Reporting Mode:

In reporting mode, database fields and data definition modules (DDMs) may be referenced without
having been defined in a data area.

DDm Frogram
DDOM “STAFF" FIND STAFF WITH NAME = ..
] DISPLAY 1D NAME CITY STREET
MAME
AGE
STREET
CITY =
END
Structured Mode:

In structured mode, each database field to be used must be specified in a DEFINE DATA statement
as described in Field Definitions and Database Access.

Programming Guide 9

Natural Programming Modes

DO

DEM "STAFF"
o
NAME
AGE
STREET
CITY

Pragram

DEFIMNE DATA LOCAL
1 VIEWXYZ VIEW OF STAFF
21D
2 NAME
2 AGE
2 STREET
2CITY
END-DEFINE

FIND VIEWXYZ WITH NAME = .
DISPLAY ID NAME CITY STREET
END-FIND

END

10

Programming Guide

I1

Objects for Natural Application Management

This document describes the objects available to build, maintain and control applications with

Natural.

The following table is an overview of Natural and non-Natural objects, their use, and the Natural
editors or utilities provided to create and maintain them.

Object Type

Data Areas:

Local Data Area
Global Data Area
Parameter Data Area

Data Definition Module

Programs and Subordinate
Routines:

Program
Subroutine
Subprogram
Function

Helproutine

Copycode

Text

Class

Map

Adapter and GUI Layout

Dialog

Use Editor or Utility

Variable and parameter definitions for other Data Area Editor
Natural objects

Natural data definitions for database file =~ SYSDDM Utility
access
Main programs, invoked routines and Program Editor

functions

Help requests for applications

Source code for repeated use in other Natural
objects

Documentation for Natural objects
Component-based applications Program Editor
Map Editor

Complex graphical user interfaces and rich Natural for Ajax Developer
GUI pages generated from external page (see the Natural for Ajax
layout documentation)

Character-based screen layouts

Event-driven applications n/a

11

Objects for Natural Application Management

Object Type Use Editor or Utility
(storage and display only)
Resource Non-Natural objects such as HTML files or n/a
bitmaps
(storage and display only)
Recording Recorded sessions for testing and controlling Recording Utility
Error Message Natural system and user-defined messages SYSERR Utility
Command Processor Command-driven navigation SYSNCP Utility
Editor Profile Default settings for the program or data area Program Editor or Data Area
editor Editor
Map Profile and Device Profile Default settings for the map editor Map Editor
Parameter Profile Default parameters settings for session start SYSPARM Utility
Debug Environment Control of program execution Debugger
Related Topics:

For detailed information on using Natural objects, see maintaining and executing Natural objects
and object naming conventions in the Using Natural documentation.

12 Programming Guide

2 Data Areas

= | ocal Data Area (LDA)
= Clobal Data Area (GDA)

= Parameter Data Area (PDA)

13

Data Areas

As explained in Defining Fields, all fields that are to be used in a program have to be defined in
a DEFINE DATA statement.

The fields can be defined within the DEFINE DATA statement itself; or they can be defined outside
the program in a separate data area, with the DEFINE DATA statement referencing that data area.

A separate data area is a Natural object that can be used by multiple Natural programs, subpro-
grams, subroutines, helproutines or classes. A data area contains data element definitions, such
as user-defined variables, constants and database fields from a data definition module (DDM).

All data areas are created and edited with the data area editor.
Natural supports three types of data area:

® Tocal Data Area
= Global Data Area

® Parameter Data Area

Local Data Area (LDA)

Variables defined as local are used only within a single Natural object. There are two options for
defining local data:

® Define local data within a program.

® Define local data outside a program in a separate Natural object, a local data area (LDA).

Such a local data area is initialized when a program, subprogram or external subroutine that
uses this local data area starts to execute.

For a clear application structure and for easier maintainability, it is usually better to define fields
in data areas outside the programs.

Example 1 - Fields Defined Directly within a DEFINE DATA Statement:

In the following example, the fields are defined directly within the DEFINE DATA statement of the
program.

14 Programming Guide

Data Areas

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)

1 ff'VARI-B (N3.2)

1 JVARI-C (I4)

END-DEFINE

Example 2 - Fields Defined in a Separate Data Area:

In the following example, the same fields are not defined in the DEFINE DATA statement of the
program, but in an LDA, named LDA39, and the DEFINE DATA statement in the program contains
only a reference to that data area.

Program:

DEFINE DATA LOCAL
USING LDA39
END-DEFINE

Local Data Area LDA39:

I T L Name F Length Miscellaneous
AT == ========cc======222222sscc===2== = =5=s=cc=== S=s5ssscssccSSoSoSsssosssoss >
V' 1 VIEWEMP EMPLOYEES

2 PERSONNEL-ID A 8

2 FIRST-NAME A 20

2 NAME A 20

1 fFVARI-A A 20

1 f#VARI-B N 3.2

1 #fVARI-C I 4 o
Global Data Area (GDA)

The following topics are covered below:

= Creating and Referencing a Global Data Area
= Creating and Deleting GDA Instances

Programming Guide 15

Data Areas

= Data Blocks
Creating and Referencing a Global Data Area

A global data area (GDA) is created and modified with the data area editor. For further information,
refer to Data Area Editor in the Editors documentation.

A GDA that is referenced by a Natural object must be stored in the same Natural library (or a
steplib defined for this library) where the object that references this GDA is stored.

Note: Using a GDA named COMMON for startup:

If a GDA named COMMON exists in a library, the program named ACOMMON is invoked automat-
ically when you LOGON to that library.

A\ Important: When you build an application where multiple Natural objects reference a GDA,

remember that modifications to the data element definitions in the GDA affect all Natural
objects that reference that data area. Therefore these objects must be recompiled by using
the CATALOG or STOW command after the GDA has been modified.

To use a GDA, a Natural object must reference it with the GLOBAL clause of the DEFINE DATA
statement. Each Natural object can reference only one GDA; thatis, a DEFINE DATA statement must
not contain more than one GLOBAL clause.

Creating and Deleting GDA Instances

The first instance of a GDA is created and initialized at runtime when the first Natural object that
references it starts to execute.

Once a GDA instance has been created, the data values it contains can be shared by all Natural
objects that reference this GDA (DEFINE DATA GLOBAL statement) and that are invoked by a PERFORM,
INPUT or FETCH statement. All objects that share a GDA instance are operating on the same data
elements.

A new GDA instance is created if the following applies:

" A subprogram that references a GDA (any GDA) is invoked with a CALLNAT statement.

" A subprogram that does not reference a GDA invokes an object that references a GDA (any
GDA).

If a new instance of a GDA is created, the current GDA instance is suspended and the data values
it contains are stacked. The subprogram then references the data values in the newly created GDA
instance. The data values in the suspended GDA instance or instances is inaccessible. An object
only refers to one GDA instance and cannot access any previous GDA instances. A GDA data
element can only be passed to a subprogram by defining the element as a parameter in the CALLNAT
statement.

16 Programming Guide

Data Areas

When the subprogram returns to the invoking object, the GDA instance it references is deleted
and the GDA instance suspended previously is resumed with its data values.

A GDA instance and its contents is deleted if any of the following applies:

® The next LOGON is performed.
" Another GDA is referenced on the same level (levels are described later in this section).

= A RELEASE VARIABLES statement is executed. In this case, the data values in a GDA instance are
reset either when a program at the level 1 finishes executing, or if the program invokes another
program via a FETCH or RUN statement.

The following graphics illustrate how objects reference GDAs and share data elements in GDA
instances.

Sharing GDA Instances

The graphic below illustrates that a subprogram referencing a GDA cannot share the data values
in a GDA instance referenced by the invoking program. A subprogram that references the same

GDA as the invoking program creates a new instance of this GDA. The data elements defined in
a GDA that is referenced by a subprogram can, however, be shared by a subroutine or a helproutine
invoked by the subprogram.

The graphic below shows three GDA instances of GDA1 and the final values each GDA instance is

1

assigned by the data element #GL0B1. The numbers -~ to " indicate the hierarchical levels of

the objects.

Programming Guide 17

Data Areas

Program PROG1

DEFINE DATA ... GLOBAL USING GDMI .

#GLOB1 =11
PERFORM SUEBR1 ...

- END-DEFIME

v

Subroutine SUBR1

DEFINE DATA. ... GLOBAL USING GDAT ...

#GL0B1 =12
PERFORM SUERZ ...

EMD-DEFINE

v

Subroutine SUBR2

DEFINE DATA ... GLOBAL USING GDW1 ...

#5L081 =13
CALLNAT 'SUBP2' ...

END-DEFIME

Y
Subprogram SUBP2

DEFINE DATA ... GLOBAL USING GDMI .

#GL0BT =21
PERFORM SLIERI ..

- END-DEFIME

v

Subroutine SUBR3

DEFINE DATA. ... GLOBAL USING GDAT ...

#GL0BY =22
CALLMAT 'SLBPI' ..

EMD-DEFINE

A J
Subprogram SUBP3

DEFINE DATA ... END-DEFINE

M Mo GDA s used

PERFORM SUBR4 ...
Subroutine SUBR4

DEFINE DATA .. GLOBAL USING G
#GL0BT =31

... END-DEFIME

Using FETCH or FETCH RETURN

Global Data Area GDA1

P 1 #GLOBT M5

Instance 1 of GDA1
Contents of #GLOB1: 13

Global Data Area GDA1

P 1 #GLOBT M5

Instance 2 of GDA1
Contents of #GLOB1: 22

Global Data Area GDA1

P 1 #GLOB1 M5

Instance 3 of GDA1
Contents of #GLOB1: 31

The graphic below illustrates that programs referencing the same GDA and invoking one another
with the FETCH or FETCH RETURN statement share the data elements defined in this GDA. If any of
these programs does not reference a GDA, the instance of the GDA referenced previously remains

active and the values of the data elements are retained.

The numbers

1

and ¢ indicate the hierarchical levels of the objects.

18

Programming Guide

Data Areas

1 Program PROG1
DEFIME DATA ... GLOBAL USING GDA1 ... END-DEFINE =l sl s e el
#GELOB1 =11 m T = 1 #GLOBE1 M5
FETCH PROGZ
|
¥
q Program PROG2
DCEFINE DATA ... GLOBAL USING GDAI ... EMD-DEFIME
#GELOET =12 - -
FETCH RETURM 'PROGY
|
¥
> Frogram PROG3
DEFINE DATA ... END-DEFIME
M Mo GDA used
FETCH PROG4"
|
A J
1 Program PROG4

DEFINE DATA ... GLOBAL USING GD41 ... EMD-DEFIME
#GL0BT =12 :

Using FETCH with different GDAs

The graphic below illustrates that if a program uses the FETCH statement to invoke another program
that references a different GDA, the current instance of the GDA (here: GDA1) referenced by the
invoking program is deleted. If this GDA is then referenced again by another program, a new in-
stance of this GDA is created where all data elements have their initial values.

You cannot use the FETCH RETURN statement to invoke another program that references a different
GDA.

1

The number * indicates the hierarchical level of the objects.

The invoking programs PR0OG3 and PROG4 affect the GDA instances as follows:

® The statement GLOBAL USING GDA? in PROG3 creates an instance of GDA? and deletes the current
instance of GDAL.

® The statement GLOBAL USING GDAl in PROG4 deletes the current instance of GDA2 and creates a
new instance of GDAL. As a result, the WRITE statement displays the value zero (0).

Programming Guide 19

Data Areas

1 Program PROG1

DEFINE DATA ... GLOBAL USING GD41 ... EMD-DEFINE
#GL0BT =11 :

FETCH PROGZ
q Program PROG2

CEFIME DATA ... GLOBAL USING GDAT ... END-DEFINE
#GL0B1 =12 ——
FETCH PROGY

Global Data Area GDA1
—_ - P 1 #GLOBT M5

v
1 Frogram PROG3

CEFIME DATA ... GLOBAL USING GDA2 ... END-DEFINE
#GL0B2 =13 1 W 1 #GLOB2
FETCH 'PROGY’

|

Y
1 Program PROG4
Global Data Area GDA1
DEFIMNE DATA ... GLOBAL USING GDAI1 ... EMD-DEFINE
WRITE #GLOE1 W P 1 2GLOBI M5

Data Blocks

To save data storage space, you can create a GDA with data blocks.
The following topics are covered below:

= Example of Data Block Usage
= Defining Data Blocks
= Block Hierarchies

Example of Data Block Usage

Data blocks can overlay each other during program execution, thereby saving storage space.

For example, given the following hierarchy, Blocks B and C would be assigned the same storage
area. Thus it would not be possible for Blocks B and C to be in use at the same time. Modifying
Block B would result in destroying the contents of Block C.

20 Programming Guide

Data Areas

Sub-Block B

Sub-Block D

Defining Data Blocks

Sub-Block C

You define data blocks in the data area editor. You establish the block hierarchy by specifying
which block is subordinate to which: you do this by entering the name of the “parent” block in

the comment field of the block definition.

In the following example, SUB-BLOCKB and SUB-BLOCKC are subordinate to MASTER-BLOCKA;

SUB-BLOCKD is subordinate to SUB-BLOCKB.

The maximum number of block levels is 8 (including the master block).

Example:

Global Data Area G-BLOCK:

[
Do -
—
=
QD
3
@D

MASTER-BLOCKA
1 MB-DATAO1
B SUB-BLOCKB
1 SBB-DATAO1
B SUB-BLOCKC
1 SBC-DATAO1
B SUB-BLOCKD
1 SBD-DATAOQ1

F Leng
A 10
A 20
A 40
A 40

Index/Init/EM/Name/Comment

MASTER-BLOCKA

MASTER-BLOCKA

SUB-BLOCKB

Programming Guide

21

Data Areas

To make the specific blocks available to a program, you use the following syntax in the DEFINE

DATA statement:

Program 1:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA
END-DEFINE

Program 2:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

Program 3:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKC
END-DEFINE

Program 4:

DEFINE DATA GLOBAL
USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD

END-DEFINE

With this structure, Program 1 can share the data in MASTER-BLOCKA with Program 2, Program 3
or Program 4. However, Programs 2 and 3 cannot share the data areas of SUB-BLOCKB and
SUB-BLOCKC because these data blocks are defined at the same level of the structure and thus occupy

the same storage area.

Block Hierarchies

Care needs to be taken when using data block hierarchies. Let us assume the following scenario

with three programs using a data block hierarchy:

Program 1:

22

Programming Guide

Data Areas

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB

END-DEFINE

*

MOVE 1234 TO SBB-DATAO1

FETCH 'PROGRAM?'

END

Program 2:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA
END-DEFINE

*

FETCH 'PROGRAM3'
END

Program 3:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

*

WRITE SBB-DATAOQ1
END

Explanation:

" Program 1 uses the global data area G-BLOCK with MASTER-BLOCKA and SUB-BLOCKB. The program
modifies a field in SUB-BLOCKB and fetches Program 2 which specifies only MASTER-BLOCKA in
its data definition.

" Program 2 resets (deletes the contents of) SUB-BLOCKB. The reason is that a program on Level 1
(for example, a program called with a FETCH statement) resets any data blocks that are subordinate
to the blocks it defines in its own data definition.

® Program 2 now fetches Program 3 which is to display the field modified in Program 1, but it
returns an empty screen.

For details on program levels, see Multiple Levels of Invoked Objects.

Programming Guide 23

Data Areas

Parameter Data Area (PDA)

A subprogram is invoked with a CALLNAT statement. With the CALLNAT statement, parameters can
be passed from the invoking object to the subprogram.

These parameters must be defined with a DEFINE DATA PARAMETER statement in the subprogram:

* they can be defined in the PARAMETER clause of the DEFINE DATA statement itself; or

" they can be defined in a separate parameter data area (PDA), with the DEFINE DATA PARAMETER
statement referencing that PDA.

The following topics are covered below:

= Parameters Defined within DEFINE DATA PARAMETER Statement
m Parameters Defined in Parameter Data Area

24 Programming Guide

Data Areas

= Matching Format Specification of Array Dimensions

Parameters Defined within DEFINE DATA PARAMETER Statement

Local Data Area LDA1

1 #PARMA A20
1 #PARM2 M2

Invaking Object W Subprogram SUBP1

DEFINE DATA
LOCAL USING LDA1
EMND-DEFINE

CALLNAT 'SUBP1" #PARM1 #PARM2

END

Programming Guide 25

Data Areas

Parameters Defined in Parameter Data Area

Local Data Area LOAY Farameter Data Area FDA1

1 #FPARM1 A 20
1 #FARM2 M2

Invoking Object P Subprogram SLIBPA

DEFINE DATA
LOCAL USING LDA1
END-DEFINE

CALLNAT ‘'SUBP1' #PARM1 #PARM2

END

In the same way, parameters that are passed to an external subroutine via a PERFORM statement
must be defined with a DEFINE DATA PARAMETER statement in the external subroutine.

In the invoking object, the parameter variables passed to the subprogram/subroutine need not be
defined in a PDA; in the illustrations above, they are defined in the LDA used by the invoking
object (but they could also be defined in a GDA).

The sequence, format and length of the parameters specified with the CALLNAT/PERFORM statement
in the invoking object must exactly match the sequence, format and length of the fields specified
in the DEFINE DATA PARAMETER statement of the invoked subprogram/subroutine. However, the
names of the variables in the invoking object and the invoked subprogram/subroutine need not
be the same (as the parameter data are transferred by address, not by name).

To guarantee that the data element definitions used in the invoking program are identical to the
data element definitions used in the subprogram or external subroutine, you can specify a PDA
inaDEFINE DATA LOCAL USING statement. By using a PDA as an LDA you can avoid the extra effort
of creating an LDA that has the same structure as the PDA.

26 Programming Guide

Data Areas

Matching Format Specification of Array Dimensions

When you pass an array as a parameter, its dimension must match the dimension of the array
specified in the DEFINE DATA PARAMETER statement of the invoked subprogram or subroutine. A
dimension mismatch generates an error even if the number of occurrences matches.

Example:

Called subprogram SUB:

DEFINE DATA PARAMETER
1 B (A5/1:5)
END-DEFINE

Calling program with NAT0937 compiler error:

DEFINE DATA LOCAL

1 A (A5/1:1,1:5)
END-DEFINE

CALLNAT "SUB' A(1,*)

Calling program without compiler error:

DEFINE DATA LOCAL
1 A (A5/1:5)
END-DEFINE

CALLNAT "SUB" A(*)

Programming Guide 27

28

3 Data Definition Module (DDM)

A data definition module (DDM) contains the description of a database file and the fields therein.
Natural requires this description to access the data stored in the file from a Natural program.

For further information, see Data Definition Modules - DDMs and Natural and Database Access.
Related Topics:

® Accessing Data in an Adabas Database
" Accessing a DB2 Table in the Database Management System Interfaces documentation
" Accessing an SQL/DS Table

® Generating Natural Data Definition Modules (DDMs) - SQL Services - in the Database Management
System Interfaces documentation

= Accessing DL/I Data and Generation of DDMs from DL/I Segment Types in the Database Management
System Interfaces documentation

® Protecting DDMs On Mainframes in the Natural Security documentation

29

30

4

Programs and Subordinate Routines

Modular Application Structurecccccccvviiiinnl.
Multiple Levels of Invoked Objectscccvvveennne.

Processing Flow when Invoking a Subordinate Routine

Programcoovevieiiiiiicee e
SUDBFOULING ...
SUDPIOGrAM ..o
FUNCHION ..o

= Comparison of External Subroutine, Subprogram and FUNCHONcooiviiiiiiiiieiiiee e

31

Programs and Subordinate Routines

This document discusses those object types which can be invoked as routines; that is, as subordinate
programs.

Helproutines and maps, although they are also invoked from other objects, are strictly speaking
not routines as such, and are therefore discussed in separate documents; see Helproutine and Map.

Basically, programs, subprograms and subroutines differ from one another in the way data can
be passed between them and in their possibilities of sharing each other's data areas. Therefore,
the decision which object type to use for which purpose depends very much on the data structure
of your application.

Modular Application Structure

Typically, a Natural application does not consist of a single huge program, but is split into several
object modules. Each of these objects is a functional unit of manageable size, and each object is
connected to the other objects of the application in a clearly defined way. This provides for a well-
structured application, which makes its development and subsequent maintenance a lot easier
and faster.

During the execution of a main program, other programs, subprograms, subroutines, helproutines
and maps can be invoked. These objects can in turn invoke other objects (for example, a subroutine
can itself invoke another subroutine). Thus, the object-oriented structure of an application can
become quite complex and extend over several levels.

Multiple Levels of Invoked Objects

Each invoked object is one level below the level of the object from which it was invoked; that is,
each time a subordinate object is invoked, the level number is incremented by 1.

Any program that is directly executed is at Level 1; any subprogram, subroutine, map or helproutine
directly invoked by the main program is at Level 2; when such a subroutine in turn invokes another
subroutine, the latter is at Level 3.

A program invoked with a FETCH statement from within another object is classified as a main
program, operating from Level 1. A program that is invoked with FETCH RETURN, however, is
classified as a subordinate program and is assigned a level one below that of the invoking object.

The following illustration is an example of multiple levels of invoked objects and also shows how
these levels are counted:

32 Programming Guide

Programs and Subordinate Routines

Level 1
Level 2
Level 3 . .
Subprogram ‘ Subroutine ‘ Helproutine ‘
Level 4

If you wish to ascertain the level number of the object that is currently being executed, you can
use the system variable *LEVEL (which is described in the System Variables documentation).

Processing Flow when Invoking a Subordinate Routine

When the CALLNAT, PERFORM or FETCH RETURN statement or the function call that invokes a subor-
dinate routine - a subprogram, an external subroutine, a program or a function respectively - is
executed, the execution of the invoking object is suspended and the execution of the subordinate
routine begins.

The execution of the subordinate routine continues until either its END statement is reached or
processing of the subordinate routine is stopped by an ESCAPE ROUTINE or ESCAPE MODULE statement
being executed.

In either case, processing of the invoking object will then continue with the statement following
the CALLNAT, PERFORM or FETCH RETURN statement used to invoke the subordinate routine.

In the case of a function call, processing of the invoking object will then continue with the statement
that contains the function call.

Programming Guide 33

Programs and Subordinate Routines

Example:

Invaoking Object Invoked Cbject

DEFINE DATA >
GLOBAL USING ...
LOCAL USING LDA1

EMND-DEFINE

PERFORM SUBR1 L
.‘ i

- B

END

Program

A program can be executed - and thus tested - by itself.

® To catalog (compile) and execute a source program, you use the system command RUN.

® To execute a program that already exists as a cataloged object, you use the system command
EXECUTE.

A program can also be invoked from another object with a FETCH or FETCH RETURN statement. The
invoking object can be another program, a subroutine, subprogram, function, a helproutine or
a processing rule in a map.

® When a program is invoked with FETCH RETURN, the execution of the invoking object will be
suspended - not terminated - and the fetched program will be activated as a subordinate program.
When the execution of the FETCHed program is terminated, the invoking object will be re-activated
and its execution continued with the statement following the FETCH RETURN statement.

® When a program is invoked with FETCH, the execution of the invoking object will be terminated
and the FETCHed program will be activated as a main program. The invoking object will not be
re-activated upon termination of the fetched program.

The following topics are covered below:

= Program Invoked with FETCH RETURN

34 Programming Guide

Programs and Subordinate Routines

= Program Invoked with FETCH

Program Invoked with FETCH RETURN

Local Data Area LDA1

Global Data Area GDA1

Invoking Ohbject M Program PROG2
DEFINE DATA
GLOBAL USING GDA1

LOCAL USING LDA1
END-DEFINE

FETCH RETURN 'PROGZ

END

A program invoked with FETCH RETURN can access the global data area (GDA) used by the invoking
object.

In addition, every program can have its own local data area (LDA) which defines the fields that
are to be used within the program only. Furthermore, a program can access application-independent
variables (AIVs); see Defining Application-Independent Variables in the Statements documentation
for details.

Programming Guide 35

Programs and Subordinate Routines

However, a program invoked with FETCH RETURN cannot have its own global data area (GDA).

Program Invoked with FETCH

Local Data Area LDA1 Local Data Area LDA2

Global Data Area GDA1 Global Data Area GDAZ

Invoking Ohbject M Program PROG2
DEFINE DATA
GLOBAL USING GDA1

LOCAL USING LDA1
END-DEFINE

FETCH 'PROGZ' -

END

A program invoked with FETCH as a main program usually establishes its own global data area
(as shown in the illustration above). However, it could also use the same global data area as estab-

lished by the invoking object.

] Note: A source program can also be invoked with a RUN statement; see the RUN statement

in the Statements documentation.

36 Programming Guide

Programs and Subordinate Routines

Subroutine

Typically, a subroutine implements functionality that is used by different objects in an application.

The statements that make up a subroutine must be defined within a DEFINE SUBROUTINE ...
END-SUBROUTINE statement block.

A subroutine is invoked with a PERFORM statement.
A subroutine may be an inline subroutine or an external subroutine:

*® Inline Subroutine
An inline subroutine is defined within the object which contains the PERFORM statement that in-
vokes it.

® External Subroutine
An external subroutine is defined in a separate object - of type subroutine - outside the object
which invokes it.

If you have a block of code which is to be executed several times within the same object, it is useful
to use an inline subroutine. You then only have to code this block once withina DEFINE SUBROUTINE
statement block and invoke it with several PERFORM statements.

The following topics are covered below:

= |nline Subroutine
= Data Available to an Inline Subroutine
= External Subroutine

Programming Guide 37

Programs and Subordinate Routines

= Data Available to an External Subroutine

Inline Subroutine

Local Data Area LDA1

Global Data Area GDA1

Invaoking Object

An inline subroutine can be contained within an object of type program, function, subprogram,
subroutine or helproutine.

38 Programming Guide

Programs and Subordinate Routines

Data Available to an Inline Subroutine
An inline subroutine has access to all data fields within the object in which it is contained.

External Subroutine

Local Data Area LDA1

Global Data Area GDA1

[nvaoking Ohbject I Subroutine
DEFIME DATA
GLOBAL USING GDA1

LOCAL USING LDAA
END-DEFINE

PERFORM SUBR1 #PARM1 #PARM2 |

END

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must
be invoked from another object. The invoking object can be a program, function, subprogram,
subroutine, helproutine or a processing rule in a map.

Programming Guide 39

Programs and Subordinate Routines

Data Available to an External Subroutine

An external subroutine can access the global data area (GDA) used by the invoking object.

Moreover, parameters can be passed with the PERFORM statement from the invoking object to the
external subroutine. These parameters must be defined either in the DEFINE DATA PARAMETER
statement of the subroutine, or in a parameter data area (PDA) used by the subroutine.

In addition, an external subroutine can have its local data area (LDA) in which the fields that are
to be used only within the subroutine are defined. However, an external subroutine cannot have
its own global data area (GDA).

An external subroutine can also access application-independent variables (AIVs); see Defining
Application-Independent Variables in the Statements documentation for details.

Subprogram

Typically, a subprogram implements functionality that is used by different objects in an application.

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking
object can be a program, function, subprogram, subroutine or helproutine.

A subprogram is invoked with a CALLNAT statement.

When the CALLNAT statement is executed, the execution of the invoking object will be suspended
and the subprogram executed. After the subprogram has been executed, the execution of the in-
voking object will be continued with the statement following the CALLNAT statement.

Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram.
These parameters are the only data available to the subprogram from the invoking object. They
must be defined either in the DEFINE DATA PARAMETER statement of the subprogram, or in a para-
meter data area (PDA) used by the subprogram.

40 Programming Guide

Programs and Subordinate Routines

Local Data Area LDA1

Global Data Area GDA1

Invoking Object I Subroutine

DEFINE DATA
GLOBAL USING GDA1
LOCAL USING LDA1
END-DEFINE

CALLNAT 'SUBP1' #PARMA1 #PARM2

END

In addition, a subprogram can have its own local data area (LDA) in which the fields to be used
within the subprogram are defined.

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global
data area (GDA) to be shared with the subroutine/helproutine.

Furthermore, a subprogram can access application-independent variables (AIVs); see Defining
Application-Independent Variables in the Statements documentation for details.

Programming Guide 41

Programs and Subordinate Routines

Function

Typically, a function implements functionality that is used by different objects in an application.

A function provides user-defined functionality as opposed to the standard system functions (see
the relevant documentation) supplied by Natural.

A function returns a result value that is used by the invoking object. The result value is computed
from the data available to the function.

A function object contains a single function defined with a DEFINE FUNCTION and an END statement.

A function itself is invoked by a function call.
Data Available to a Function

With the function call, parameters can be passed from the invoking object to the function. These
parameters are the only data available to the function from the invoking object. They must be
defined in the DEFINE FUNCTION statement.

In addition, a function can have its own local data area (LDA) in which the fields to be used
within the function are defined. However, a function cannot have its own global data area (GDA).

A function can also access application-independent variables (AIVs); see Defining Application-Inde-
pendent Variables in the Statements documentation for details.

If required, you can define the result and parameter layouts for the object calling a function by
using the DEFINE PROTOTYPE statement.

42 Programming Guide

Programs and Subordinate Routines

Local Data Area LDAT

Global Data Area GDA1

Invoking Object (e.g. Program)

DEFINE DATA
GLOBAL USING GDA1

LOCAL USING LDA1

LOCAL USING PDA1
EMD-DEFINE

M Function Call

Local Data Area LDA2

Farameter Data Area PDAA

1 #PARA
1 #PARAZ

—= Function Object

WRITE #Add(< #PARA1, #PARAZ =)

EMND

For further information, see the section Function Call.

Programming Guide

43

Programs and Subordinate Routines

Comparison of External Subroutine, Subprogram and Function

This section is a summarized feature comparison between external subroutines, subprograms and

functions.

This is the same for all of them:

® The programming code forming the routine logic is coded in a separate object which is stored

in a Natural library.

" Parameters are defined in the object using a DEFINE DATA PARAMETER statement.

The differences between an external subroutine, a subprogram and a function are indicated in the

following table:

Subject

External Subroutine

Subprogram

Function

Maximum length of
name

32 characters

8 characters

32 characters

of passed parameters
against definition in
called object at compile
time

compiler option
PCHECK is set to ON

compiler option PCHECK is
set to ON

Use of global data area |Shares a GDA with its |Creates an instance of a |A GDA is not allowed.
(GDA) caller GDA
Check of format/length |Only checked if the Only checked if the Only checked if a cataloged

function object exists at
compile time

Invoked by

Invoked by the
PERFORM statement

Invoked by the CALLNAT
statement

Invoked by a function call

A function call can be used in
statements instead of read-only
operands; a function call can
also be used as a statement.

Determination of the
object to be called at
compile/execution time

Determined at compile
time

Determined at compile or
execution time depending
on the operand used for
the CALLNAT statement

Determined at compile or
execution time depending on
the operand used for the
function call

Use of result value in a
statement

A result value must be
assigned to a parameter
to be used as an

operand in a statement.

A result value must be
assigned to a parameter to
be used as an operand in
a statement.

The result of a function call is
used as an operand in the
statement that contains the
function call.

The following examples compare a function call with a subprogram call:

= Example of a Function Call

44

Programming Guide

Programs and Subordinate Routines

= Example of a Subprogram Call
Example of a Function Call

The following example shows a program calling a function, and the function definition created
with a DEFINE FUNCTION statement.

Program Calling the Function

** Example 'FUNCAXO01': Calling a function (Program)

R R R b e b b e b e b e b b e b b e e b e b e e S e e e b e b e e b e b e b e e b e b e b e e b i b e b e e b o 4

*

WRITE 'Function call' F#ADD(K 2,3 >) /* Function call.
/* No temporary variables needed.
*

END

Definition of Function FtADD

** Example 'FUNCAX02': Calling a function (Function)
khkhkhkkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhkhhkhhkhkhkhhrhhkkhhhhhkhkhhkhhhkhkkhhkhhkhkhhhkdhkhkhhkhkhhkhkhhkhkhhkhkhixk
DEFINE FUNCTION F#fADD
RETURNS #RESULT (14)
DEFINE DATA PARAMETER
1 ##SUMMAND1 (I4) BY VALUE
1 #fSUMMAND2 (I4) BY VALUE
END-DEFINE
/*
#RESULT := #SUMMAND1 + #SUMMAND2
/*
END-FUNCTION

*

END
Example of a Subprogram Call

To implement the same functionality as shown in the example of a function call by using a subpro-
gram call instead, you need to specify temporary variables.

Program Calling the Subprogram

The following example shows a program calling a subprogram, involving the use of a temporary
variable.

Programming Guide 45

Programs and Subordinate Routines

** Example 'FUNCAX03': Calling a subprogram (Program)
khkhkkhkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhkkhhkhhkhkhkhhhhhkkhhhkhhkhkhhkhhhkhkkhhhhkhkhkhhkhhkhkhhkhhhkhkhhkkhhkhkhixx
DEFINE DATA LOCAL

1 #RESULT (I4) INIT <0>
END-DEFINE

*

CALLNAT 'FUNCAX04' fRESULT 2 3 /* Result is stored in #RESULT.

*

WRITE '=' #RESULT /* Print out the result of the
/* subprogram.

*

END

Called Subprogram FUNCAX04

** Example 'FUNCAX04': Calling a subprogram (Subprogram)
R R R R R R R e R R R R R e e e R R e e e e R R e R R R R R R e e e e e e R R e e e e R g
DEFINE DATA PARAMETER
1 ffRESULT (I4) BY VALUE RESULT
1 #/SUMMAND1 (14) BY VALUE
1 ##SUMMAND2 (I4) BY VALUE
END-DEFINE

*

#FRESULT := #SUMMANDL + #SUMMAND2

*

END <

46 Programming Guide

5 Helproutine

INVOKING HEID ettt e et et
SPECITYING HEIPIOULINESeeeiiiei et e et e e e e e et e e e
Programming Considerations for HEIProULINESviiiiiiiiiiiiie e
Passing Parameters t0 HEIPrOULINEScoouiiiiiiiiiii s
EQUAL SIgN OPLION Lo e
AITAY INGICES ..ottt
HEIP @S @ WINGOW ..vvvsiiisie ettt ettt ettt e ettt et e et e e et e e et et et e teteaaaeeeeeeeeeeees

47

Helproutine

Helproutines have specific characteristics to facilitate the processing of help requests. They may
be used to implement complex and interactive help systems. They are created with the program
editor.

Invoking Help

A Natural user can invoke a Natural helproutine either by entering the help character in a field,
or by pressing the help key (usually Pr1). The default help character is a question mark (?).

® The help character must be entered only once.
® The help character must be the only character modified in the input string.

® The help character must be the first character in the input string.

If a helproutine is specified for a numeric field, Natural will allow a question mark to be entered
for the purpose of invoking the helproutine for that field. Natural will still check that valid numeric
data are provided as field input.

If not already specified, the help key may be specified with the SET KEY statement:

SET KEY PFI=HELP

A helproutine can only be invoked by a user if it has been specified in the program or map from
which it is to be invoked.

Specifying Helproutines

A helproutine may be specified:

" in a program: at statement level and at field level;

" in a map: at map level and at field level.

If a user requests help for a field for which no help has been specified, or if a user requests help
without a field being referenced, the helproutine specified at the statement or map level is invoked.

A helproutine may also be invoked by using a REINPUT USING HELP statement (either in the program
itself or in a processing rule). If the REINPUT USING HELP statement contains a MARK option, the
helproutine assigned to the marked field is invoked. If no field-specific helproutine is assigned,
the map helproutine is invoked.

A REINPUT statement in a helproutine may only apply to INPUT statements within the same hel-
proutine.

48 Programming Guide

Helproutine

The name of a helproutine may be specified either with the session parameter HE of an INPUT
statement:

INPUT (HE="HELP2112')

or by using the extended field editing facility of the map editor (see Creating Maps and the Editors
documentation).

The name of a helproutine may be specified as an alphanumeric constant or as an alphanumeric
variable containing the name. If it is a constant, the name of the helproutine must be specified
within apostrophes.

Programming Considerations for Helproutines

Processing of a helproutine can be stopped with an ESCAPE ROUTINE statement.

Be careful when using END OF TRANSACTION or BACKOUT TRANSACTION statements in a helproutine,
because this will affect the transaction logic of the main program.

Passing Parameters to Helproutines

A helproutine can access the currently active global data area (but it cannot have its own global
data area). In addition, it can have its own local data area (LDA).

Data may also be passed from/to a helproutine via parameters. A helproutine may have up to 20
explicit parameters and one implicit parameter. The explicit parameters are specified with the HE
operand after the helproutine name:

HE='MYHELP', "001"

The implicit parameter is the field for which the helproutine was invoked:

INPUT #A (A5) (HE='YOURHELP','001")
where 001 is an explicit parameter and #A is the implicit parameter/the field.

This is specified within the DEFINE DATA PARAMETER statement of the helproutine as:

Programming Guide 49

Helproutine

DEFINE DATA PARAMETER

1 #fPARM1 (A3) /* explicit parameter
1 #fPARM2 (A5) /* implicit parameter
END-DEFINE

Please note that the implicit parameter (#PARMZ in the above example) may be omitted. The implicit
parameter is used to access the field for which help was requested, and to return data from the
helproutine to the field. For example, you might implement a calculator program as a helproutine
and have the result of the calculations returned to the field.

When help is called, the helproutine is called before the data are passed from the screen to the
program data areas. This means that helproutines cannot access data entered within the same
screen transaction.

Once help processing is complete, the screen data will be refreshed: any fields which have been
modified by the helproutine will be updated - excluding fields which had been modified by the
user before the helproutine was invoked, but including the field for which help was requested.
Exception: If the field for which help was requested is split into several parts by dynamic attributes
(DY session parameter), and the part in which the question mark is entered is after a part modified
by the user, the field content will not be modified by the helproutine.

Attribute control variables are not evaluated again after the processing of the helproutine, even
if they have been modified within the helproutine.

Equal Sign Option

The equal sign (=) may be specified as an explicit parameter:

INPUT PERSONNEL-NUMBER (HE="HELPROUT',=)

This parameter is processed as an internal field (format/length A65) which contains the field name
(or map name if specified at map level). The corresponding helproutine starts with:

DEFINE DATA PARAMETER

1 FNAME (A65) /* contains 'PERSONNEL-NUMBER'
1 FVALUE (N8) /* value of field (optional)
END-DEFINE

This option may be used to access one common helproutine which reads the field name and
provides field-specific help by accessing the application online documentation or the Predict data
dictionary.

50 Programming Guide

Helproutine

Array Indices

If the field selected by the help character or the help key is an array element, its indices are supplied
as implicit parameters (1 - 3 depending on rank, regardless of the explicit parameters).

The format/length of these parameters is 2.

INPUT A(*,*) (HE="HELPROUT',=)

The corresponding helproutine starts with:

DEFINE DATA PARAMETER

1 FNAME (A65) /* contains 'A'

1 FVALUE (N8) /* value of selected element
1 FINDEX1 (I2) /* 1st dimension index

1 FINDEX2 (I2) /* 2nd dimension index
END-DEFINE

Help as a Window

The size of a help to be displayed may be smaller than the screen size. In this case, the help appears
on the screen as a window, enclosed by a frame, for example:

R b R b R R I b b R S e b e e b e b R e e b b e b b R e I b b e S b b e e b b e e b b e e i b R S b b R e b

PERSONNEL INFORMATION
PLEASE ENTER NAME: ?
PLEASE ENTER CITY:

Type in the name of an
employee in the first
field and press ENTER.
You will then receive

a 1ist of all employees
of that name.

For a 1ist of employees
of a certain name who
live in a certain city,
type in a name in the
first field and a city
in the second field

and press ENTER.

Programming Guide 51

Helproutine

R R R e B B b b e b b e | IR R R R R R e e b b e b b e b b b b b b e e b 4

Within a helproutine, the size of the window may be specified as follows:

" by a FORMAT statement (for example, to specify the page size and line size: FORMAT PS=15 LS=30);

" by an INPUT USING MAP statement; in this case, the size defined for the map (in its map settings)
is used;

" by a DEFINE WINDOW statement; this statement allows you to either explicitly define a window
size or leave it to Natural to automatically determine the size of the window depending on its
contents.

The position of a help window is computed automatically from the position of the field for which
help was requested. Natural places the window as close as possible to the corresponding field
without overlaying the field. With the DEFINE WINDOW statement, you may bypass the automatic
positioning and determine the window position yourself.

For further information on window processing, please refer to the DEFINE WINDOW statement in
the Statements documentation and the terminal command %W in the Terminal Commands document-
ation.

52 Programming Guide

6 Copycode

= Use of Copycode

B ProcesSiNg Of COPYCOUEvvvieiiiii ettt ettt e e et e e ettt e e et e e e et e e e e et e e e e nnees

53

Copycode

This chapter describes the advantages and the use of copycode.

Use of Copycode

An object of type copycode contains a portion of source code which can be included in another
object via an INCLUDE statement.

So, if you have a statement block which is to appear in identical form in several objects, you may
use a copycode object instead of coding the statement block several times. This reduces the coding
effort and also ensures that the blocks are really identical.

Processing of Copycode

The copycode is included at compilation; that is, the source-code lines from the copycode are not
physically inserted into the object that contains the INCLUDE statement, but they will be included
in the compilation process and are thus part of the resulting cataloged object.

Consequently, when you modify the source code of copycode, you also have to catalog all objects
which use that copycode using the CATALOG or CATALL system command.

Attention:

® Copycode cannot be executed on its own. It cannot be stowed with a STOW system command,
but only saved using the SAVE system command.
" An END statement must not be placed within a copycode.

For further information, refer to the description of the INCLUDE statement (in the Staterments docu-
mentation).

54 Programming Guide

7 Text

B USE Of TEXE ODJECS ...ttt
LT 1< PRSP PRURR

95

Text

The Natural object type “text” is used to write text rather than programs.

Use of Text Objects

You can use this type of object to document Natural objects in more detail than you can, for example,
within the source code of a program.

Text objects may also be useful at sites where Predict is not available for program documentation
purposes.

Writing Text

You write the text using the program editor.

The only difference in handling as opposed to writing programs is that there is no lower to upper
case translation, that is, the text you write stays as it is.

You can remove empty lines by setting the editor profile option Empty Line Suppression for Text
to Y. See also Editor Defaults and General Defaults in the Editors documentation.

You can write any text you wish (there is no syntax check).

Text objects can only be saved with the system command SAVE, they cannot be stowed with the
system command STOW. They cannot be executed using the system command RUN, but only displayed
in the editor.

56 Programming Guide

8 Class

Classes are used to apply an object based programming style.

For details, refer to the NaturalX section of the Programming Guide.

57

58

9 Map

= Benefits of Using Maps

= Types of Maps
= Creating Maps

= Starting/Stopping Map PrOCESSINGc.vveiieiiiiii e

59

Map

As an alternative to specifying screen layouts dynamically, the INPUT statement offers the possib-
ility to use predefined map layouts which makes use of the Natural object type map.

Benefits of Using Maps

Using predefined map layouts rather than dynamic screen-layout specifications offers various
advantages such as:

® Clearly structured applications as a result of a consequent separation of program logic and
display logic.

® Map layout modifications possible without making changes to the main programs.

® The language of an applications's user interface can be easily adapted for internationalization

or localization.

The benefit of using objects such as maps will become obvious when it comes to maintaining ex-
isting Natural applications.

Types of Maps

Maps (screen layouts) are those parts of an application which the users see on their screens.
The following types of maps exist:
" Input Map

The dialog with the user is carried out via input maps.

® Output Map
If an application produces any output report, this report can be displayed on the screen by using
an output map.

® Help Map
Help maps are, in principle, like any other maps, but when they are assigned as help, additional
checks are performed to ensure their usability for help purpose.

The object type “map” comprises

* the map body which defines the screen layout and

" an associated parameter data area (PDA) which, as a sort of interface, contains data definitions
such as name, format, length of each field presented on a specific map.

Related Topics:

60 Programming Guide

Map

® For information on selection boxes that can be attached to input fields, see SB - Selection Box in
the INPUT statement documentation and SB - Selection Box in the Parameter Reference.

® For information on split screen maps where the upper portion may be used as an output map
and the lower portion as an input map, see Split-Screen Feature in the INPUT statement document-
ation.

Creating Maps

Maps and help map layouts are created and edited in the map editor.
The appropriate local data area (LDA) is created and maintained in the data area editor.

Depending on the platform on which Natural is installed, these editors have either a character
user interface or a graphical user interface.

Related Topics:
® For information on using the data area editor, see Data Area Editor in the platform-specific Editors
documentation.

® For information on using the map editor, see Map Editor in the platform-specific Editors docu-
mentation.

® For a comprehensive description of the full range of possibilities provided by the Natural map
editor (character-user-interface version), see Map Editor Tutorial.

® For information on input processing using screen layouts specified dynamically, see Syntax 1 -
Dynamic Screen Layout Specification in the INPUT statement documentation.

® For information on input processing using a map layout created with the map editor, see Syntax
2 - Using Predefined Map Layout in the INPUT statement documentation.

Starting/Stopping Map Processing

An input map is invoked with an INPUT USING MAP statement.
An output map is invoked with a WRITE USING MAP statement.

Processing of a map can be stopped with an ESCAPE ROUTINE statement in a processing rule.

Programming Guide 61

62

10 Adapter

The Natural object of type “adapter” is used to represent a rich GUI page in a Natural application.
This object type plays a similar role for the processing of a rich GUI page as the object type map
plays for terminal I/O processing. But it is different from a map in that it does not contain layout
information.

An object of type adapter is generated from an external page layout. It serves as an interface that
enables a Natural application to send data to an external I/O system for presentation and modific-
ation, using an externally defined and stored page layout. The adapter contains the Natural code
necessary to perform this task.

An application program refers to an adapter in the PROCESS PAGE USING statement.

For information on the object type “adapter”, see the Natural for Ajax documentation.

63

64

11 Dialog

Dialogs are used in conjunction with event-driven programming when creating Natural applications
for graphical user interfaces (GUISs).

J Note: Dialogs cannot be created or modified with Natural for Mainframes, Natural for UNIX
or Natural for OpenVMS, but can be stored in a Natural system file for display and other
purposes.

65

66

12 Resource

B At @I RESOUICES? ...t e e e e e e 68
B USE Of RESOUICES ... e e e 68
B API fOr ProceSSING RESOUITESeeeeiiiiieeeiie et 69

67

Resource

This section describes the Natural object of type resource.

| Note: In contrast to Natural for Open Systems, where shared and private resources are

available, currently only shared resources are available with Natural for Mainframes.

What are Resources?

Resources are non-Natural objects, like HTML pages, GIFs, etc. They are stored in libraries on the
system file FNAT or FUSER for being accessible from within Natural applications.

Resources in their technical meaning are large data objects in binary or character format, which
are processed either in a transient way or stored persistent as input to or result of a utility or user
application run.

Use of Resources

Objects of type resource are used by the XML Toolkit as containers for DTDs, XML schemas, style
sheets, etc. The Natural Web Interface makes use of resources, such as GIFs or JPEGs. In addition,
objects of type resource can be used to store XLIFF translation files.

The following topics are covered below:

= Naming Conventions for Resources
= Storage of Resources

Naming Conventions for Resources

Objects of type resource have a long name and a short name.
Resource Short Name
For each object of type resource an 8-byte object short name exists. This short name is in uppercase.

It can be specified in system commands, such as LIST, DELETE and RENAME, as well as in the Object
Handler and the utilities INPL and SYSMAIN.

Resource Long Name

A resource long name is stored in the third directory records of the resource using the following
structure:

68 Programming Guide

Resource

Bytes |Format|Content

1-2 |B2 Line number H' 0000

3-6 |A4 |Resource type, usually the extension of the resource name

7 Al |Resource format, where A = alphanumeric, B = binary, U = Unicode

8 - 2521 A245 |Resource name

The long name of a resource can be displayed using the system command LIST. It is shown in the
List of Objects when you issue the function code LN.

Storage of Resources

Objects of type resource are stored in libraries in the same way as the other Natural object sources.
They can be handled with the utilities SYSMAIN and INPL and with the Object Handler.

They cannot be edited with the Natural editors.

API for Processing Resources

In the library SYSEXT, the following application programming interface (API) exists, which gives
user applications access to resources' unique user exit routines:

API Purpose

USR4208N|Write, read, delete a resource by using short or long name.

Programming Guide 69

70

13 Recording

A recording is a Natural source object that contains binary data of a Natural session recorded with
the Recording Utility as described in the Utilities documentation.

7"

72

14 Error Message

Objects of type error message are used to manage application-specific messages defined by the
user, or customize the texts of Natural system messages supplied by Software AG.

Error message are created and maintained with the SYSERR utility with the following options:

* Define message ranges for different categories of messages.
® Standardize messages.
® Translate messages into other languages.

" Attach extended (long) message texts for further explanations.

73

74

15 Command Processor

Command processors are used to define command-driven navigation systems for Natural applic-
ations as an alternative to navigating through hierarchies of menus.

The Natural command processor (NCP) consists of two components: maintenance and runtime.
The SYSNCP utility is the maintenance part which comprises all facilities used to define command
processor sources and control the navigation within an application. The PROCESS COMMAND statement
(see the Statements documentation) is the runtime part used to invoke Natural programs.

75

76

16 Editor Profile

An editor profile determines the default settings to be used when editing a program or a data area,
for example, conversion of lower-case characters or assignments of PF and PA keys.

For detailed information, see Editor Profile in the Editors documentation.

77

78

17 Map Profile and Device Profile

A map profile determines the default map settings to be used for defining and executing a map.

A device profile determines the standard characteristics and settings for a device to ensure com-
patibility between the map definition and the device to be used.

You can check a map profile against a device profile.

For more information, see Maintenance of Profiles & Devices in the Map Editor section of the Editors
documentation.

79

80

18 Parameter Profile

A parameter profile is a set of dynamic Natural profile parameters to be used for each session
start.

You can put together a set of parameters with the SYSPARM utility, store this set under a parameter
profile name, and then invoke Natural with only one parameter: PROFILE=profiie-name.

The syntax of the PROFILE profile parameter and the individual dynamic profile parameters you
can specify in your parameter profile are described in the Parameter Reference documentation.

81

82

19 Debug Environment

A debug environment that has been established to control program execution can be stored in a
Natural system file for future use. You can also delete a debug environment or reset its counters
to their initial values.

The system file where debug environments are stored can be specified with the debugger command
PROFILE (see the Debugger documentation).

For detailed information, see Debug Environment Maintenance in the Debugger documentation.

83

84

I11

Function Call

85

86

20 Function Call

L V10 o PSPPSR 88
B RESHTICHIONS .o et e e e e e e e e e 88
B SYNEAX DESCIIPHION . 89
B EXAMIPIE ettt e et e e e ettt e e e e e et aeeeaa e e nnees 93
B FUNCHON RESUIL ...ttt e e e e ettt e e e e e e et eee e e e 96
= Parameter and Result SPECIfICAtiONSooiiiiiiiiii e 97
= Evaluation Sequence of Functions in Statementscocvvviiiiiiiiii e 100
B Using @ FUNCtion @s @ Statementooiiiiiiiii e 101

87

Function Call

function-name
(<[([prototype-clause][intermediate-result-clause])]

[parameter][,[parameter]]...>)

[array-index-expression]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE PROTOTYPE | DEFINE FUNCTION

Function

A function call invokes a Natural object of the type function.

A function is defined with the DEFINE FUNCTION statement which contains the parameters, local
and application-independent variables, the result value to be used and the statements to be executed
when the function is called.

A function is called by specifying either of the following:

= the function name as defined in the DEFINE FUNCTION statement, or

® an alphanumeric variable that contains the name of the function at execution time. In this case,
it is necessary to reference the variable in a DEFINE PROTOTYPE statement with the VARTABLE
keyword.

A function call can be used within a Natural statement instead of a read-only operand. In this case,
the function has to return a result which is then processed by the statement like a field containing
the same value.

It is also possible to use a function call in place of a Natural statement. In this case, the function
need not return a result value; if returned, the value result is discarded.

Restrictions

Function calls are not allowed in the following situations:
" in positions where the operand value is changed by the Natural statement, for example:

MOVE 1 TO #FCT(L..>);
" ina DEFINE DATA statement;
® in a database access statement, such as READ, FIND, SELECT, UPDATE and STORE;
" in an AT BREAK or IF BREAK statement;

88 Programming Guide

Function Call

" as an argument of Natural system functions, such as AVER, SUM and *TRIM;

" in an array index expression;

" as a parameter of a function call.

If a function call is used in an INPUT statement, the return value will be treated like a constant
value. This leads to an automatic assignment of the attribute AD=0 to make this field write-protected
(for output only).

Syntax Description

Operand Definition Table:

Operand Possible Structure| Possible Formats |Referencing Permitted | Dynamic Definition
function-name ‘S ‘A ‘ ‘ A‘U‘ ’ | ‘ ‘ ‘ ‘ ‘ ‘ ’ yes no
Syntax Element Description:

Syntax Element Description

function-name

Function Name:
function-name is either of the following:

= the name of the function to be called as referenced in the DEFINE
FUNCTION statement, or

® the name of an alphanumeric variable which contains the name of the
called function at execution time. This variable has to be referenced
in a prototype definition with the VARTABLE keyword of the DEFINE
PROTOTYPE statement. If this prototype does not contain the correct
parameter and result field definitions, another prototype can be
assigned with the prototype-clause.

prototype-clause

Prototype Clause:

See prototype-clause (PT=).

intermediate-result-clause

Intermediate Result Clause:

See intermediate-result-clause (IR=).

parameter

Parameter Specification:

See parameter.

array-index-expression

Array Index Notation:

If the result returned by the function call is an array, an index notation
must be provided to address the demanded array occurrences.

Programming Guide

89

Function Call

Syntax Element Description

For details, refer to Index Notation in User-Defined Variables.

prototype-clause (PT=)

PT= prototype-name‘

Natural requires parameter definitions and the function result to resolve a function call at compile
time. If no prototype matches function-name, the parameters or the function result defined for
the called function, you can assign a matching prototype with the prototype-clause. In this case,
the referenced prototype steps in place and is used to resolve the parameter and function result
definitions. The function-name declared in the referenced prototype is ignored.

Syntax Element Description:

Syntax Element Description

prototype-name|Prototype Name:
prototype-name is either of the following:

= the name of the prototype whose result and parameters layouts are to be used, or

B the name of an alphanumeric field specified as function-name in a function call.
This field must contain the name of the function to be called at execution time.

An array index expression must not be specified with the field name.

intermediate-result-clause (IR=)

format-length[larray-definition]
[(array-definition)] HANDLE OF OBJECT

IR= A
(U [farray-definition]) DYNAMIC
B

This clause can be used to specify the format-Tlength/array definition of the result value for a
function call if neither the cataloged object of the function nor a prototype definition is available.
If a prototype is available for this function call or if a cataloged object of the called function exists,
the result value format specified with the intermediate-result-clauseis checked for data
transfer compatibility.

Syntax Element Description:

90 Programming Guide

Function Call

Syntax Element Description

format-Tlength Format/Length Definition:
The format and length of the field.

For information on the format/length definition of user-defined variables; see Format
and Length of User-Defined Variables.

array-definition|Array Dimension Definition:

With an array-definition, you define the lower and upper bounds of the
dimensions in an array definition.

See Array Dimension Definition in the Statements documentation.

HANDLE OF OBJECT|Handle of Object:

Used in conjunction with NaturalX.

For further information, see NaturalX in the Programming Guide.

A, BorU Data Format:

Possible formats are alphanumeric, binary or Unicode for dynamic variables.

DYNAMIC Dynamic Variable:

A field can be defined as DYNAMIC.

For further information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields.

parameter
nX
M
operand (AD= 0)
A

You can specify single or multiple parameters to pass data values to the function. They can be
provided as constant values or variables, depending on the DEFINE DATA PARAMETER definition
within the function.

Multiple parameters must be separated from each other either by a comma or by the input delimiter
character specified with the session parameter 1D. If numbers are provided in the parameter list
and a comma is defined as the decimal character (with the session parameter DC), either separate
the comma from the value with an extra blank character or use the input delimiter character.

Example with 1D=; and DC=, delimiter settings: WRITE F#fADD (<1 , 2>) F#ADD (<1;2>)

Programming Guide N

Function Call

The semantic and syntactic rules which apply to the function parameters are the same as described
in the parameters section of subprograms; see Parameters in the description of the CALLNAT statement.

Operand Definition Table:

Operand |Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted
operand C‘S ‘A’G A‘N|P’I‘F‘B‘D‘T‘L‘C|G‘O yes no

Syntax Element Description:

Syntax
Element

Description

nx

Parameters to be Skipped:

With the notation X you can specify that the next 1 parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the next
n parameters no values are passed to the function.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the function's
DEFINE DATA PARAMETER statement. 0PTIONAL means that a value can - but need not - be passed
from the invoking object to such a parameter.

AD= Attribute Definition:
If operandis a variable, you can mark it in one of the following ways:
AD=0 Non-modifiable:
See session parameter AD=0.
Note: Internally, AD=0 is processed in the same way as
BY VALUE (see the section
parameter-data-definitionin the description of
the DEFINE DATA statement).
AD=M Modifiable:
See session parameter AD=M.
This is the default setting.
AD=A Input only:
See session parameter AD=A.
Note: If operandis a constant, the attribute definition AD cannot be explicitly specified. For
constants, AD=0 always applies.
92 Programming Guide

Function Call

Example

The example program FUNCEX01 uses the functions FADDITION, F#CHAR, FHFEVEN and F#TEXT

All example sources shown in this section are provided as source objects and cataloged objects in
the Natural SYSEXPG system library.

= |nvoking Program FUNCEX01:
= Called Function F#ADDITION
= Called Function FACHAR
= Called Function F#EVEN
= Called Function FETEXT

Invoking Program FUNCEX01:

** Example 'FUNCEXO1': Function call (Program)
khkkhkkhkhkhkhkhkhkhhkhkhhkhkhhkhhkhkhhhkhhkhkhkhhkrhhkkhhhhhkhkhhkhhhkhkkhhkhhkhkhhhkhhhkhhkhkhhkhkhhkkhhkhkhkixx
DEFINE DATA LOCAL
1 ##NUM (I2) INIT <5>
1 A (I2) INIT <1>
1 4B (I2) INIT <2>
1 4cC (I2) INIT <3>
1 #fCHAR (A1) INIT <'A'>
END-DEFINE
*
IF #fNUM = F{fADDITION(<#A,4B,7#C>) /* Function with three parameters.
WRITE 'Sum of #A,#B.#C" #NUM
ELSE
IF #NUM = F{fADDITION(K1X,#B,#C>) /* Function with optional parameters.
WRITE 'Sum of #B,#C' #NUM
END-IF
END-IF
*
DECIDE ON FIRST #CHAR
VALUE F#fCHAR (<>)(1) /* Function with result array.
WRITE 'Character A found'
VALUE F#fCHAR (<>)(2)
WRITE 'Character B found'
NONE
IGNORE
END-DECIDE
25
IF FHEVENC(<#B>) /* Function with logical result value.
WRITE #B 'is an even number'
END-TF

*

F#TEXT(<'Hello', "*'>) /* Function used as a statement.

*

Programming Guide 93

Function Call

WRITE FH#TEXT(<K(IR=A12) 'Good'>)

*

END

Output of Program FUNCEX01

Sum of #B,#tC 5
Character A found

2 is an even number
***% Hello world ***
Good morning

Called Function F#ADDITION

/* Function with intermediate result.

The function F#ADDITION is defined in the example function FUNCEX02.

** Example 'FUNCEX02': Function call (Function)

R R R B b R R e I b b R e S b b e e b b e e b b e e i b b e e b b S e b b R e e b b S e b b e e b R e b b b e b b e

DEFINE FUNCTION F#ADDITION

RETURNS (I2)

DEFINE DATA PARAMETER
1 #fPARM1 (I2) OPTIONAL
1 #fPARM2 (I2) OPTIONAL
1 #fPARM3 (I2) OPTIONAL

END-DEFINE

/*

RESET F#ADDITION

IF #PARM1 SPECIFIED

FHADDITION := F#ADDITION + #PARMI

END-IF
IF #PARM2 SPECIFIED

F#ADDITION := F#fADDITION + #PARM2

END-TIF
IF 4fPARM3 SPECIFIED

F#fADDITION := FffADDITION + #PARM3

END-IF
/%
END-FUNCTION

*

END <

94

Programming Guide

Function Call

Called Function F#CHAR
The function F#CHAR is defined in the example function FUNCEX03.

** Example 'FUNCEX03': Function call (Function)
Khkhkkhhkkhhkkhhkkhkhkhhkkhhkhhkhhkhhkkhhkhhkkhhkhhkkhhkhhkkhhkhhkhhkhhkhrkhhkhhkhhkhrkhhkhrkhhkhkrkhhkhkrkhkhkhkrkhkrkhrk
DEFINE FUNCTION F#CHAR

RETURNS (A1/1:2)

/*
FCHAR(1) := 'A"
F{FCHAR(2) := 'B'
/*

END-FUNCTION

*

END <
Called Function F#EVEN
The function F#EVEN is defined in the example function FUNCEX04.

** Example 'FUNCEX04': Function call (Function)
KhkhkAhhkkhhkkhhkkhhkkhhkkhhkhhkkhkhkhhkhhkhhkhhkhhkkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhrkhhkhrkhhkhkrkhhkhrkhhkhrkhkrkhxk
DEFINE FUNCTION FH#EVEN

RETURNS (L)

DEFINE DATA

PARAMETER

1 INUM (N4) BY VALUE
LOCAL

1 ffREST (I2)
END-DEFINE
/*
DIVIDE 2 INTO #NUM REMAINDER #REST
/*
IF #REST = 0

FHEVEN := TRUE
ELSE

FHEVEN := FALSE
END-IF
/%

END-FUNCTION

*

END <

Programming Guide 95

Function Call

Called Function FATEXT

The function F#TEXT is defined in the example function FUNCEX05 in library SYSEXPG.

** Example 'FUNCEX05': Function call (Function)
Khkhkkhhkkhhkkhhkkhhkhhkkhkhkhhkhhkhhkhhkhhkhhkhhkkhhkhhkhhkhhkhhkhhkhrkhhkhhkhhkhrkhhkhrkhhkhkrkhhkhrkhhkhkrkhkhkhrk
DEFINE FUNCTION FH#TEXT
RETURNS (A20) BY VALUE
DEFINE DATA
PARAMETER
1 #TEXT1 (A5) BY VALUE
1 #TEXT2 (A1) BY VALUE OPTIONAL
LOCAL
1 #fFRAME (A3)
END-DEFINE
/*
IF #TEXT2 SPECIFIED
MOVE ALL #TEXT2 TO #FRAME
/*
COMPRESS #FRAME #TEXT1 'world' #FRAME INTO F#TEXT
/*
WRITE FHTEXT
ELSE
COMPRESS #TEXT1 'morning' INTO F#TEXT
/*
END-TF
/*
END-FUNCTION

*

END <

Function Result

According to the function definition, a function call may return a single result field. This can be a
scalar value or an array field, which is processed like a temporary field in the statement where
the function call is embedded. If the result is an array, the function call must be immediately fol-
lowed by an array-index-expression addressing the required occurrences.

For example, to access the first occurrence of the array returned:

96 Programming Guide

Function Call

FFECT (<A, #B>) (1)

Parameter and Result Specifications

In order to properly resolve a function call at compile time, the compiler requires the format, length
and array structure of the parameters and the function result. The parameters specified in the
function call are checked against the corresponding definitions in the function to ensure that they
match. If a function is used within a statement instead of an operand, the function result must
match the format, length and array structure of the operand.

You have three options to provide this information:

1. Retrieve the parameter and result specifications implicitly from the cataloged object (if available)
of the called function if no DEFINE PROTOTYPE statement is executed earlier.

This method requires the least amount of programming effort.

2. Use a DEFINE PROTOTYPE statement. You have to use a DEFINE PROTOTYPE statement if the
cataloged object of the called function is not available or if the function name is not known at
compile time, that is, instead of a function name the name of an alphanumeric variable is specified
in the function call.

3. Specify an explicit (I1R=) clause in the function call.

The first two methods comprise a full validation of the format, length and array structure of the
parameters and the function result.

= Additional Clauses for the Function Call
= Validation of Parameters and Function Result
= Example with Multiple Definitions in a Function Call

Additional Clauses for the Function Call

If neither a DEFINE PROTOTYPE statement nor a cataloged function object exists, you can use the
following clauses in your function call:

® The (IR=) clause specifies the function result format/length/array structure.

This clause determines which format/length/array structure the compiler should assume for the
result field (the intermediate result as used by the statement that contains the function call). If
a prototype definition is available for a function call, the (IR=) clause overrules the specifications
in the prototype.

The (IR=) clause does not enforce any parameter checks.

Programming Guide 97

Function Call

® The (PT=) clause uses a previously defined prototype with a name other than the function name.
This clause validates the parameters and the function result by using a DEFINE PROTOTYPE
statement with the referenced name.

In the following example, the function #MULT is called, but the parameter and result specifications
from the prototype whose name is #ADD apply:

#I := #MULT(K(PT=fADD) 2 , 3>)

Validation of Parameters and Function Result

The first of the following definitions found is used to check the specified parameters:

* the prototype definition referenced in the (PT=) clause;

" the prototype definitionin the DEFINE PROTOTYPE statement where the prototype name matches
the function name used in the function call;

" the parameter specifications in the cataloged function object which are supplied with the DEFINE
FUNCTION statement.

If none of the above is specified, no parameter validation is performed. This provides you the
option to supply any number and layout of parameters in the function call without receiving a
syntax error.

The first of the following definitions found is used to check the function result:

" the definition provided in the (I1R=) clause;
" the RETURNS definition in the prototype referenced in the (PT=) clause;

" the prototype definition in the DEFINE PROTOTYPE statement where the prototype name matches
the function name used in the function call;

*® the function result specification in the cataloged function object.

If none of the above is specified, a syntax error occurs.
Example with Multiple Definitions in a Function Call

Program:

98 Programming Guide

Function Call

** Example 'FUNCBXO01': Declare result value and parameters (Program)
R R R R R R b b R e b b e b e I R R e i b e S b b e i b i R e b b R e b b e b R e i b b e S b b

*

DEFINE DATA LOCAL
1 #PROTO-NAME (A20)

1 #fPARM1 (I4)
1 {#fPARM2 (I4)
END-DEFINE

*

DEFINE PROTOTYPE VARIABLE #PROTO-NAME
RETURNS (I4)
DEFINE DATA PARAMETER
1 4/P1 (I4) BY VALUE OPTIONAL
1 #P2 (I14) BY VALUE
END-DEFINE
END-PROTOTYPE

*

#PROTO-NAME := 'F4MULTI"
#PARM1 =3
#PARM2 =5

*

WRITE #PROTO-NAME(<{PARM1, #PARM2>)
WRITE #PROTO-NAME(L1X ,5>)

*

WRITE F#MULTI(<K(PT=ffPROTO-NAME) #PARML,i#PARM2>)

*

WRITE F#MULTI(<K(IR=N20) #fPARM1, #PARM2>)

*

END

Function F#MULTI:

** Example 'FUNCBX02': Declare result value and parameters (Function)
khkkhkhkhkhkkhkhhhkhkhkkhkhhkhkhkkhkhhhhhkkhkhhhhkkhkhkhhhhkhkhhrhkhkhkhhhhkhkhkhhhhkkhkhkhhhkkhkhkhhkhkkhkhkhrkkkhkhxx
DEFINE FUNCTION F#MULTI
RETURNS #RESULT (I4) BY VALUE
DEFINE DATA PARAMETER
1 #FACTORL (I4) BY VALUE OPTIONAL
1 ##FACTOR2 (I4) BY VALUE
END-DEFINE
/*
IF ##fFACTOR1 SPECIFIED
#IRESULT := #FACTOR1 * #FACTOR2
ELSE
ffRESULT := fFFACTOR2 * 10
END-IF
/*
END-FUNCTION

*

END <

Programming Guide 99

Function Call

Evaluation Sequence of Functions in Statements

All function calls used within a Natural statement are evaluated before the statement execution
starts. They are evaluated in the same order in which they appear in the statement. Function result
values are stored in temporary fields that are later used as operands for execution of the statement.

Calling a function that has modifiable parameters which are repeatedly used within the same
statement can cause different function results as indicated in the following example.

Example:

Before the COMPUTE statement is started, variable #I has the value 1. In a first step, function F#RETURN
is executed. This changes the value of #I to 2 and returns a value of 2 as the function result. After
this, the COMPUTE operation starts and sums up the values of #I (2) and the temporary field (2)
to a value of 4.

Program:

** Example 'FUNCCXO01': Parameter changed within function (Program)
khkhkhkkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhhhkhhkhkhkhhhhhkhhhhhkhkhhkhhhkkhkkhhkhhkhkhhhkdhhkkhhkhkhhkhkhhkhkhhkhkhkhkxkx

DEFINE DATA LOCAL

1 #1 (I2) INIT <1>
1 #fRESULT (I2)
END-DEFINE

*

COMPUTE #RESULT := #fI + F#fRETURN(<Z#I>) /* First evaluate function call,
/* then execute the addition.
*
WRITE '#fI A 2
"#IRESULT: ' #RESULT

*

END

Function:

** Example 'FUNCCX02': Parameter changed within function (Function)
Kkhkkhkhkhkhkkhkhhhkhkhkkhkhhkhkhkkhkhhhhkhkkhkhhhhkhkhkhhhhkhkhhrhkhkhkhhhkhhkhhhhhkkhkhhhhkkhkhkhhkkkhkhkhrkkkhkhxx
DEFINE FUNCTION F{fRETURN
RETURNS RESULT (I2) BY VALUE
DEFINE DATA PARAMETER
1 #fPARM1 (I2) BY VALUE RESULT

END-DEFINE

/*

##PARM1 := {#fPARMI + 1 /* Increment parameter.
#FRESULT := #fPARM1 /* Set result value.
/*

END-FUNCTION

100 Programming Guide

Function Call

*

END

Output of Program FUNCCX01:

I g 2
#RESULT : 4

Using a Function as a Statement

You can also use a function call in place of a Natural statement without embedding the function
call in a statement. In this case, the function call need not return a result value; if returned, the
result value is discarded.

You can avoid that such a function call is considered to be part of a previous statement by separ-
ating the function call from the previous statement with a semicolon (;) as shown in the following
example.

Example:

Program:

** Example "FUNCDXO1': Using a function as a statement (Program)
KA KRR AR R AR AR KR AR A AR A AR AR R AR A AR A AR AR KR AR KA KA AR AR KR AR KA KR A AR AR KA KR KA KA A KA AR A Kk LK
DEFINE DATA LOCAL
1 A (I4) INIT <1>
1 4B (I4) INIT <2>
END-DEFINE

*

*

WRITE 'Write:' A 4B
F##PRINT-ADD(K 2,3 >) /* Function call belongs to operand Tist

/* immediately preceding it.
S

WRITE // R R R b b R e e b b R R e b b e S //
*

WRITE 'Write:"' #A #8; /* Semicolon separates operands and function.
F##PRINT-ADD(< 2,3 >) /* Function call does not belong to the

/* operand list.
*

END

Function:

Programming Guide 101

Function Call

** Example 'FUNCDX02': Using a function as a statement (Function)
khkhkkhkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhkkhhkhhkhkhkhhhhhkkhhhkhhkhkhhkhhhkhkkhhhhkhkhkhhkhhkhkhhkhhhkhkhhkkhhkhkhixx
DEFINE FUNCTION F4#PRINT-ADD
RETURNS (I4)
DEFINE DATA PARAMETER
1 ##SUMMAND1 (I4) BY VALUE
1 #fSUMMAND2 (I4) BY VALUE
END-DEFINE
/*
F#PRINT-ADD := #fSUMMAND1 + #SUMMAND?2 /* Result of function call.
WRITE 'Function call:' F#PRINT-ADD
/*
END-FUNCTION

*

END <

Output of Program FUNCDX01:

Function call: 5
Write: 1 A 5

R R b R R e b R S S b S b b S 4

Write: 1 2
Function call: 5 «

102 Programming Guide

IV Field Definitions

This part describes how you define the fields you wish to use in a program. These fields can be
database fields and user-defined fields.

Use and Structure of DEFINE DATA Statement
User-Defined Variables

Introduction to Dynamic Variables and Fields
Using Dynamic and Large Variables
User-Defined Constants

Initial Values (and the RESET Statement)
Redefining Fields

Arrays

X-Arrays

Please note that only the major options of the DEFINE DATA statement are discussed here. Further
options are described in the Statements documentation.

The particulars of database fields are described in Accessing Data in an Adabas Database. On
principle, the features and examples described there for Adabas also apply to other database
management systems. Differences, if any, are described in the relevant database interface docu-
mentation and in the Statements documentation or Parameter Reference.

103

104

21 Use and Structure of DEFINE DATA Statement

= Field Definitions in DEFINE DATA Statementoooiiiiiiiiiii e 106
= Defining Fields within a DEFINE DATA Statementooiiiiiiiiiiie e 106
= Defining Fields in @ Separate Data Arauviiiiiiiiiiiii e 107
= Structuring a DEFINE DATA Statement Using Level NUMDEISc.oviiiiiiiiiiiiic e 107
B SHOrage AlIGNMENE L...eiiiii i e e et e e e e e e e e e e 109

105

Use and Structure of DEFINE DATA Statement

The first statement in a Natural program written in structured mode must always be a DEFINE
DATA statement which is used to define fields for use in a program.

For information on structural indentation of a source program, see the Natural system command
STRUCT.

Field Definitions in DEFINE DATA Statement

In the DEFINE DATA statement, you define all the fields - database fields as well as user-defined
variables - that are to be used in the program.

There are two ways to define the fields:

® The fields can be defined within the DEFINE DATA statement itself (see below).

® The fields can be defined outside the program in a local or global data area, with the DEFINE
DATA statement referencing that data area (see below).

If fields are used by multiple programs/routines, they should be defined in a data area outside the
programs.

For a clear application structure, it is usually better to define fields in data areas outside the pro-
grams.

Data areas are created and maintained with the data area editor.

In the first example below, the fields are defined within the DEFINE DATA statement of the program.
In the second example, the same fields are defined in a local data area (LDA), and the DEFINE
DATA statement only contains a reference to that data area.

Defining Fields within a DEFINE DATA Statement

The following example illustrates how fields can be defined within the DEFINE DATA statement itself:

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)

1 #fVARI-B (N3.2)

1 J#VARI-C (I4)

END-DEFINE

106 Programming Guide

Use and Structure of DEFINE DATA Statement

Defining Fields in a Separate Data Area

The following example illustrates how fields can be defined in a local data area (LDA):

Program:

DEFINE DATA LOCAL
USING LDA39
END-DEFINE

. e

Local Data Area LDA39:

I T L Name F Leng Index/Init/EM/Name/Comment
V 1 VIEWEMP EMPLOYEES
2 NAME A 20
2 FIRST-NAME A 20
2 PERSONNEL-ID A 8
1 fFVARI-A A 20
1 #fVARI-B N 3.2
1 #fVARI-C I 4
s

Structuring a DEFINE DATA Statement Using Level Numbers

The following topics are covered:

= Structuring and Grouping Your Definitions
= | evel Numbers in View Definitions

= | evel Numbers in Field Groups

= | evel Numbers in Redefinitions

Structuring and Grouping Your Definitions

Level numbers are used within the DEFINE DATA statement to indicate the structure and grouping
of the definitions. This is relevant with:

= view definitions
® field groups

® redefinitions

Level numbers are 1- or 2-digit numbers in the range from 01 to 99 (the leading zero is optional).

Programming Guide 107

Use and Structure of DEFINE DATA Statement

Generally, variable definitions are on Level 1.

The level numbering in view definitions, redefinitions and groups must be sequential; no level
numbers may be skipped.

Level Numbers in View Definitions

If you define a view, the specification of the view name must be on Level 1, and the fields the view
is comprised of must be on Level 2. (For details on view definitions, see Database Access.)

Example of Level Numbers in View Definition:

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BIRTH

END-DEFINE
Level Numbers in Field Groups

The definition of groups provides a convenient way of referencing a series of consecutive fields.
If you define several fields under a common group name, you can reference the fields later in the
program by specifying only the group name instead of the names of the individual fields.

The group name must be specified on Level 1, and the fields contained in the group must be one
level lower.

For group names, the same naming conventions apply as for user-defined variables.

Example of Level Numbers in Group:

DEFINE DATA LOCAL
1 #FIELDA (N2.2)
1 f/FIELDB (I4)
1 {fGROUPA
2 JfFIELDC (A20)
2 {fFIELDD (A10)
2 #FIELDE (N3.2)
1 f/FIELDF (A2)

END-DEFINE <

In this example, the fields #FIELDC, #FIELDD and #FIELDE are defined under the common group
name #GROUPA. The other three fields are not part of the group. Note that #GROUPA only serves as
a group name and is not a field in its own right (and therefore does not have a format/length
definition).

108 Programming Guide

Use and Structure of DEFINE DATA Statement

Level Numbers in Redefinitions

If you redefine a field, the REDEFINE option must be on the same level as the original field, and the
fields resulting from the redefinition must be one level lower. For details on redefinitions, see
Redefining Fields.

Example of Level Numbers in Redefinition:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF STAFFDDM
2 BIRTH
2 REDEFINE BIRTH
3 #YEAR-OF-BIRTH (N4)
3 {fMONTH-OF-BIRTH (N2)
3 #DAY-OF-BIRTH (N2)
1 #FIELDA (A20)
1 REDEFINE #FIELDA
2 #SUBFIELDL (N5)
2 {SUBFIELD2 (A10)
2 #SUBFIELD3 (N5)

END-DEFINE <

In this example, the database field BIRTH is redefined as three user-defined variables, and the user-
defined variable #FIELDA is redefined as three other user-defined variables.

Storage Alignment

The storage area, in which all user-defined variables are stored, always begins on a double-word
boundary.

IfaDEFINE DATA statementisused, all data blocks (for example, LOCAL, GLOBAL blocks) are double-
word aligned, and all hierarchical structures (view definitions and groups) on Level 1 are full-
word aligned. Redefinitions, scalar and array variables are not aligned, even if they are defined
at level 1.

Alignment within the data area is the responsibility of the user and is governed by the order in
which variables are defined to Natural.

Programming Guide 109

110

22 User-Defined Variables

B DefiNItIoN Of VATADIEScoieiii e 112
= Referencing of Database Fields Using (1) NOtationcccoviiiiiiiiiiii e 113
= Renumbering of Source-Code Line Number REferenCescoooivviiiiiiiiiiiiic e 114
= Format and Length of User-Defined Variables ... 115
B SPECIAI FOMMALSvviiii e e e e e e e e e 116
B INAEX NOLAHON .ot e e 118
= Referencing @ Datahase AITAYiciiiiiiiiiii e 121
= Referencing the Internal Count for a Database Array (C* Notation)ccccooviiiiiiiiii e 129
® QUAlifying Data SITUCUIESeiiiiiieiie e 132
= Examples of User-Defined Variablescoouiviiiiiiii e 133

M

User-Defined Variables

User-defined variables are fields which you define yourself in a program. They are used to store
values or intermediate results obtained at some point in program processing for additional pro-
cessing or display.

See also Naming Conventions for User-Defined Variables in Using Natural.

Definition of Variables

You define a user-defined variable by specifying its name and its format/length in the DEFINE
DATA statement.

You define the characteristics of a variable with the following notation:

(r,format-Tength/index)

This notation follows the variable name, optionally separated by one or more blanks.
No blanks are allowed between the individual elements of the notation.

The individual elements may be specified selectively as required, but when used together, they
must be separated by the characters as indicated above.

Example:

In this example, a user-defined variable of alphanumeric format and a length of 10 positions is
defined with the name #FIELDI.

DEFINE DATA LOCAL
1 #FIELD1 (A10)

END-DEFINE
] Notes:

1. If operating in structured mode or if a program contains a DEFINE DATA LOCAL clause, variables
cannot be defined dynamically in a statement.

2. This does not apply to application-independent variables (AIVs); see also Defining Application-
Independent Variables

112 Programming Guide

User-Defined Variables

Referencing of Database Fields Using (r) Notation

A statement label or the source-code line number can be used to refer to a previous Natural
statement. This can be used to override Natural's default referencing (as described for each state-
ment, where applicable), or for documentation purposes. See also Loop Processing, Referencing
Statements within a Program.

The following topics are covered below:

= Default Referencing of Database Fields
= Referencing with Statement Labels
= Referencing with Source-Code Line Numbers

Default Referencing of Database Fields

Generally, the following applies if you specify no statement reference notation:

® By default, the innermost active database loop (FIND, READ or HISTOGRAM) in which the database
field in question has been read is referenced.

= If the field is not read in any active database loop, the last previous GET statement (in reporting
mode also FIND FIRST or FIND UNIQUE statement) is referenced which is not contained in an
already closed loop and which has read the field.

Referencing with Statement Labels

Any Natural statement which causes a processing loop to be initiated and/or causes data elements
to be accessed in the database may be marked with a symbolic label for subsequent referencing.

A label may be specified either in the form 7abel. before the referencing object or in parentheses
(Tabel.) after the referencing object (but not both simultaneously).

The naming conventions for labels are identical to those for variables. The period after the label
name serves to identify the entry as a label.

Example:

RD. READ PERSON-VIEW BY NAME STARTING FROM 'JONES'
FD. FIND AUTO-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FD.)
DISPLAY NAME (RD.) FIRST-NAME (RD.) MAKE (FD.)
END-FIND
END-READ

Programming Guide 13

User-Defined Variables

Referencing with Source-Code Line Numbers

A statement may also be referenced by using the number of the source-code line in which the
statement is located.

All four digits of the line number must be specified (leading zeros must not be omitted).

Example:

0110 FIND EMPLOYEES-VIEW WITH NAME = 'SMITH'
0120 FIND VEHICLES-VIEW WITH MODEL = 'FORD'
0130 DISPLAY NAME (0110) MODEL (0120)
0140 END-FIND

0150 END-FIND

Renumbering of Source-Code Line Number References

Line number references (see Referencing of Database Fields Using (r) Notation and Referencing
Statements within a Program) within a source are changed if a related line number is changed
by the RENUMBER command. Renumbering applies to all line reference patterns, except those
within an alphanumeric or a Unicode constant. For example:

#FIELDL := '(1150)"' /* is not renumbered
RESET NAME(1150) /* is renumbered

| Note: By default, line number references in alphanumeric and Unicode constants are not

renumbered. If they are also to be renumbered, you have to set the profile parameter RNCONST
to ON.

The following patterns are recognized as being valid source code line number references and are
renumbered (nnnn is a four-digit number):

Pattern |Sample Statement

(nnnn) |ESCAPE BOTTOM (0150)
(nnnn/ |DISPLAY ADDRESS-LINE(0010/1:5)
(nnnn, |DISPLAY ADDRESS-LINE (0010,A10/1:5)

If the left parenthesis is not immediately followed by nnnn or if nnnn is followed by any character
other than a right parenthesis, a comma or a slash, the pattern is not considered a line number
reference and will not be changed.

114 Programming Guide

User-Defined Variables

Format and Length of User-Defined Variables

Format and length of a user-defined variable are specified in parentheses after the variable name.
Fixed-length variables can be defined with the following formats and corresponding lengths.

For the definition of Format and Length in dynamic variables, see Definition of Dynamic Variables.

Format |Explanation Definable Length Internal Length (in Bytes)
A Alphanumeric 1-1073741824 (1GB) |1-1073741824
B Binary 1-1073741824 (1GB) |1-1073741824
c Attribute Control - 2

D Date - 4

F Floating Point 4or8 4or8

I Integer 1,2o0r4 1,20r4

L Logical - 1

N Numeric (unpacked)|1 - 29 1-29

P Packed numeric 1-29 1-15

T Time - 7

U Unicode (UTF-16) |1 -536870912 (0.5 GB)|2 - 1073741824

Length can only be specified if format is specified. With some formats, the length need not be ex-
plicitly specified (as shown in the table above).

For fields defined with format N or P, you can use decimal position notation in the form n.m,
where n represents the number of positions before the decimal point, and mrepresents the number
of positions after the decimal point. The sum of the values of n and m must not exceed 29.

The maximum “Definable Length” (1 GB for alphanumeric, binary and Unicode fields) represents
the limit which is imposed by the Natural compiler. In reality, however, the amount of memory
that can be obtained as data storage is very much smaller. Especially if running in a “Natural
thread” based environment, the size of the session dependent user areas, hence the extent of the
user fields in the data area is restricted to the value defined with the keyword parameter MAXSIZE
in the macro NTSWPRM.

] Notes:

1. When a user-defined variable of format P is output with a DISPLAY, WRITE, or INPUT statement,
Natural internally converts the format to N for the output.

Programming Guide 115

User-Defined Variables

2. Inreporting mode, if format and length are not specified for a user-defined variable, the default
format/length N7 will be used, unless this default assignment has been disabled by the pro-
file/session parameter FS.

For a database field, the format/length as defined for the field in the data definition module (DDM)
apply. (In reporting mode, it is also possible to define in a program a different format/length for
a database field.)

In structured mode, format and length may only be specified in a data area definition or with a
DEFINE DATA statement.

Example of Format/Length Definition - Structured Mode:

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

1 #NEW-SALARY (N6.2)

END-DEFINE

FIND EMPLOY-VIEW ...

COMPUTE #fNEW-SALARY = ...

In reporting mode, format/length may be defined within the body of the program, if no DEFINE
DATA statement is used.

Example of Format/Length Definition - Reporting Mode:

FIND EMPLOYEES
. COMPUTE #NEW-SALARY(N6.2) = ...

Special Formats

In addition to the standard alphanumeric (A) and numeric (B, F, I, N, P) formats, Natural supports
the following special formats:

= Format C - Attribute Control
= Formats D - Date, and T - Time
= Format L - Logical

116 Programming Guide

User-Defined Variables

= Format; Handle
Format C - Attribute Control

A variable defined with format C may be used to assign attributes dynamically to a field used in
a DISPLAY, INPUT, PRINT, PROCESS PAGE or WRITE statement.

For a variable of format C, no length can be specified. The variable is always assigned a length of
2 bytes by Natural.

Example:

DEFINE DATA LOCAL
1 fATTR (C)

1 A (N5)
END-DEFINE

MOVE (AD=I CD=RE) TO #ATTR
INPUT #A (CV=fFATTR)

For further information, see the session parameter CV.
Formats D - Date, and T - Time

Variables defined with formats D and T can be used for date and time arithmetic and display.
Format D can contain date information only. Format T can contain date and time information; in
other words, date information is a subset of time information. Time is counted in tenths of seconds.

For variables of formats D and T, no length can be specified. A variable with format D is always
assigned a length of 4 bytes (P6) and a variable of format T is always assigned a length of 7 bytes
(P12) by Natural. If the profile parameter MAXYEAR is set to 9999, a variable with format D is always
assigned a length of 4 bytes (P7) and a variable of format T is always assigned a length of 7 bytes
(P13) by Natural.

Example:

DEFINE DATA LOCAL

1 #fDAT1 (D)
END-DEFINE

*

MOVE *DATX TO #DAT1
ADD 7 TO {#DAT1
WRITE '=' #fDAT1

END

For further information, see the session parameter EM and the system variables *DATX and *TIMX.

Programming Guide 17

User-Defined Variables

The value in a date field must be in the range from 1st January 1582 to 31st December 2699.
Format L - Logical

A variable defined of format L may be used as a logical condition criterion. It can take the value
TRUE or FALSE.

For a variable of format L, no length can be specified. A variable of format L is always assigned a
length of 1 byte by Natural.

Example:

DEFINE DATA LOCAL

1 #SWITCH(L)
END-DEFINE

MOVE TRUE TO #SWITCH
IF ##SWITCH

MOVE FALSE TO #SWITCH
ELSE

MOVE TRUE TO #SWITCH
END-IF

For further information on logical value presentation, see the session parameter EM.
Format: Handle

A variable defined as HANDLE OF OBJECT can be used as an object handle.

For further information on object handles, see the section NaturalX.

Index Notation

An index notation is used for fields that represent an array.

An integer numeric constant or user-defined variable may be used in index notations. A user-
defined variable can be specified using one of the following formats: N (numeric), P (packed), I
(integer) or B (binary), where format B may be used only with a length of less than or equal to 4.

A system variable, system function or qualified variable cannot be used in index notations.

118 Programming Guide

User-Defined Variables

Array Definition - Examples:

1. #ARRAY (3)
Defines a one-dimensional array with three occurrences.

2. FIELD (Tabel.,A20/5) orlabel.FIELD(A20/5)
Defines an array from a database field referencing the statement marked by 7abel. with format
alphanumeric, length 20 and 5 occurrences.

3. #ARRAY (N7.2/1:5,10:12,1:4)
Defines an array with format/length N7.2 and three array dimensions with 5 occurrences in the
first, 3 occurrences in the second and 4 occurrences in the third dimension.

4. FIELD (Tabel./i:1 + 5) orlabel.FIELD(i:1 + 5)
Defines an array from a database field referencing the statement marked by 7abe’..

FIELD represents a multiple-value field or a field from a periodic group where 7 specifies the
offset index within the database occurrence. The size of the array within the program is defined
as 6 occurrences (1:1 + 5). The database offset index is specified as a variable to allow for the
positioning of the program array within the occurrences of the multiple-value field or periodic
group. For any repositioning of 7, a new access must be made to the database using a GET or
GET SAME statement.

Natural allows the definition of arrays where the index does not begin with 1. At runtime, Natural
checks that index values specified in the reference do not exceed the maximum size of dimensions
as specified in the definition.

] Notes:

1. For compatibility with earlier Natural versions, an array range may be specified using a hyphen
(-) instead of a colon ().

2. A mix of both notations, however, is not permitted.

3. The hyphen notation is only allowed in reporting mode (but not in a DEFINE DATA statement).
The maximum index value is 1,073,741,824 (1 GB).

Simple arithmetic expressions using the plus (+) and minus (-) operators may be used in index
references. When arithmetic expressions are used as indices, these operators must be preceded
and followed by a blank.

Arrays in group structures are resolved by Natural field by field, not group occurrence by group
occurrence.

Programming Guide 19

User-Defined Variables

Example of Group Array Resolution:

DEFINE DATA LOCAL
1 #fGROUP (1:2)
2 JfFIELDA (A5/1:2)
2 #fFIELDB (A5)
END-DEFINE

If the group defined above were output in a WRITE statement:

WRITE #GROUP (*)

the occurrences would be output in the following order:

JIFTELDA(1,1) #FIELDA(L,2) 4#FIELDA(2,1) #fFIELDA(2,2) #FIELDB(1) #FIELDB(2)

and not:

fFFIELDA(L,1) #FIELDA(L1,2) #FIELDB(1) #FIELDA(2,1) #FIELDA(2,2) #FIELDB(2)
Array Referencing - Examples:

1. fARRAY (1)
References the first occurrence of a one-dimensional array.

2. JARRAY (7:12)
References the seventh to twelfth occurrence of a one-dimensional array.

3. #ARRAY (i + 5)
References the i+fifth occurrence of a one-dimensional array.

4. #ARRAY (5,3:7,1:4)
Reference is made within a three dimensional array to occurrence 5 in the first dimension, oc-
currences 3 to 7 (5 occurrences) in the second dimension and 1 to 4 (4 occurrences) in the third
dimension.

5. An asterisk may be used to reference all occurrences within a dimension:

DEFINE DATA LOCAL

1 JARRAYL (N5/1:4,1:4)
1 ##ARRAY2 (N5/1:4,1:4)
END-DEFINE

ADD #ARRAYL (2,*) TO #ARRAY2 (4,%*)

. e

120 Programming Guide

User-Defined Variables

Using a Slash before an Array Occurrence

If a variable name is followed by a 4-digit number enclosed in parentheses, Natural interprets this
number as a line-number reference to a statement. Therefore a 4-digit array occurrence must be
preceded by a slash (/) to indicate that it is an array occurrence; for example:

#FARRAY (/1000)

not:
FARRAY (1000)

because the latter would be interpreted as a reference to source code line 1000.

If an index variable name could be misinterpreted as a format/length specification, a slash (/) must
be used to indicate that an index is being specified. If, for example, the occurrence of an array is
defined by the value of the variable N7, the occurrence must be specified as:

fFARRAY (/N7)

not:

#FARRAY (N7)

because the latter would be misinterpreted as the definition of a 7-byte numeric field.

Referencing a Database Array

The following topics are covered below:

= Referencing Multiple-Value Fields and Periodic-Group Fields
= Referencing Arrays Defined with Constants

= Referencing Arrays Defined with Variables

= Referencing Multiple-Defined Arrays

| Note: Before executing the following example programs, please run the program INDEXTST
in the library SYSEXPG to create an example record that uses 10 different language codes.

Programming Guide 121

User-Defined Variables

Referencing Multiple-Value Fields and Periodic-Group Fields

A multiple-value field or periodic-group field within a view/DDM may be defined and referenced
using various index notations.

For example, the first to tenth values and the Ith to Ith+10 values of the same multiple-value
field/periodic-group field of a database record:

DEFINE DATA LOCAL

11 (I2)

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 LANG (1:10)
2 LANG (I:I+10)

END-DEFINE

or:

RESET I (I2)

READ EMPLOYEES
OBTAIN LANG(1:10) LANG(I:I+10)

Notes:

1. The same lower bound index may only be used once per array (this applies to constant indexes
as well as variable indexes).

2. For an array definition using a variable index, the lower bound must be specified using the
variable by itself, and the upper bound must be specified using the same variable plus a constant.

Referencing Arrays Defined with Constants

An array defined with constants may be referenced using either constants or variables. The upper
bound of the array cannot be exceeded. The upper bound will be checked by Natural at compilation
time if a constant is used.

Reporting Mode Example:

** Example "INDEXIR': Array definition with constants (reporting mode)
khkhkkhkkhhkhkhhkhkhhkhkhhkhkhhhhkhkhkhhkhhkhkhhkhhhhkkhhkhhhkhkhhkdhhkhkhhkhhkhkhhkhkhhkhkhhkhhhkhkkhhkhhkhkhkhitx

*

READ (1) EMPLOYEES WITH NAME = "WINTER' WHERE CITY = "LONDON'
OBTAIN LANG (1:10)

/%
WRITE "LANG(1:10):' LANG (1:10) //
WRITE '"LANG(I) ;' LANG (1) /- "LANG(5:9) :' LANG (5:9)
LOOP
*
END

122 Programming Guide

User-Defined Variables

Structured Mode Example:

**% Example "INDEX1S': Array definition with constants (structured mode)
khkkhkhkhkhkkhkhkhhkhkhkhkhhhkhkkhkhhhkhhkhkhhhhkkhkhkhhhkhkhkhhhkhhkhkhhhkhkhkhkhhkhhkhkhkhhrhkhkhkhhkhkhkhkhhrkkkhkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
2 LANG (1:10)
END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'
WRITE "LANG(1:10):" LANG (1:10) //
WRITE 'LANG(1) ;' LANG (1) / "LANG(5:9) :' LANG (5:9)
END-READ
END

If a multiple-value field or periodic-group field is defined several times using constants and is to
be referenced using variables, the following syntax is used.

Reporting Mode Example:

** Example "INDEX2R': Array definition with constants (reporting mode)
ok (multiple definition of same database field)
khkhkkhkkhkhkhkhkhkhkhhkhkhhkhkhkhhhkhkhhhkhhkhkhhhhhhkkhhkhhkhkhkhhkdhkhkhkhhkhhkhkhhkhkhhkhkhhkhrhkhkhkhkhkhhkhkhkhitx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 LANG (1:5)
2 LANG (4:8)
END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = '"WINTER' WHERE CITY = 'LONDON'
DISPLAY 'NAME' NAME
"LANGUAGE/1:3" LANG (1.1:3)
"LANGUAGE/6:8" LANG (4.3:5)
LOOP

END

Programming Guide 123

User-Defined Variables

Structured Mode Example:

** Example "INDEX2S': Array definition with constants (structured mode)
ok (multiple definition of same database field)
khkhkkhkkhkhkhkhhkhkhhkhkhhkhkhkhkhhhkhhhkhhkhkhhhhhhkkhhkhhkhkhkhhkhhhkhkhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhkhkhhkhkhkitx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 LANG (1:5)
2 LANG (4:8)
END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = "WINTER' WHERE CITY = 'LONDON'
DISPLAY 'NAME' NAME
"LANGUAGE/1:3" LANG (1.1:3)
"LANGUAGE/6:8" LANG (4.3:5)
END-READ

*

END
Referencing Arrays Defined with Variables

Multiple-value fields or periodic-group fields in arrays defined with variables must be referenced
using the same variable.

Reporting Mode Example:

** Example "INDEX3R': Array definition with variables (reporting mode)
R R R R R B b R R R b b b b e e M b e e b b e e e e e S i b b i e e e i e b b e S e b b e S b b b Y

RESET I (I2)

*

I :=1

READ (1) EMPLOYEES WITH NAME = 'WINTER"' WHERE CITY = 'LONDON'
OBTAIN LANG (I:I+10)

/*
WRITE "LANG(I) :" LANG (I) /
"LANG(I+5:1+7):" LANG (I+5:I1+7)
LOOP
*
END

124 Programming Guide

User-Defined Variables

Structured Mode Example:

** Example "INDEX3S': Array definition with variables (structured mode)
khkkhkhkhkhkkhkhkhhkhkhkhkhhhkhkkhkhhhkhhkhkhhhhkkhkhkhhhkhkhkhhhkhhkhkhhhkhkhkhkhhkhhkhkhkhhrhkhkhkhhkhkhkhkhhrkkkhkx
DEFINE DATA LOCAL
11 (I2)
*
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 CITY

2 LANG (I:1+10)
END-DEFINE
*
I :=1
READ (1) EMPLOY-VIEW WITH NAME = '"WINTER' WHERE CITY = 'LONDON'

WRITE '"LANG(I) ;' LANG (I) /

"LANG(I+5:1+7):" LANG (I+5:1+7)

END-READ
END

If a different index is to be used, an unambiguous reference to the first encountered definition of
the array with variable index must be made. This is done by qualifying the index expression as
shown below.

Reporting Mode Example:

** Example "INDEX4R': Array definition with variables (reporting mode)

RRAR R b R R b b b R e e b b R S e b b e e b b e I b R e b b S S b b R e e b b R e e b b b e e b R R e e b b e S b b Y

RESET I (I2) J (I2)

*

I :=2

J :=3

*

READ (1) EMPLOYEES WITH NAME = '"WINTER' WHERE CITY = 'LONDON'
OBTAIN LANG (I:I+10)

/*
WRITE "LANG(I.J) " LANG (I.J) /
"LANG(I.1:5):" LANG (I.1:5)
LOOP
*
END

Programming Guide 125

User-Defined Variables

Structured Mode Example:

** Example "INDEX4S': Array definition with variables (structured mode)
khkkhkhkhkhkkhkhkhhkhkkhkhkhhhkhkhkhhhkhhkhkhhhhkkhkhkhhhhkkhkhhhkhhkhkhhhhkhkhkhhhhkkhkhkhrhkkhkhkhhkkhkhkhkhrrkkkikx
DEFINE DATA LOCAL
11 (I2)
1 J (I2)
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 CITY

2 LANG (I:1+10)
END-DEFINE
*
I :=2
J :=3
READ (1) EMPLOY-VIEW WITH NAME = "WINTER' WHERE CITY = 'LONDON'

WRITE '"LANG(I.J) :' LANG (I.J) /

"LANG(I.1:5):" LANG (I.1:5)

END-READ
END

The expression I. is used to create an unambiguous reference to the array definition and “positions”
to the first value within the read array range (LANG(1.1:5)).

The current content of I at the time of the database access determines the starting occurrence of
the database array.

Referencing Multiple-Defined Arrays

For multiple-defined arrays, a reference with qualification of the index expression is usually ne-
cessary to ensure an unambiguous reference to the desired array range.

Reporting Mode Example:

** Example "INDEX5R': Array definition with constants (reporting mode)

E (multiple definition of same database field)
R R R R R R R R R R R b B e i e b i i e i b i b b B i i b b i b i b b
DEFINE DATA LOCAL /* For reporting mode programs
1 EMPLOY-VIEW VIEW OF EMPLOYEES /* DEFINE DATA is recommended
2 NAME /* to use multiple definitions
2 CITY /* of same database field
2 LANG (1:10)
2 LANG (5:10)
*
11 (I2)
14J (I2)
END-DEFINE
*
[=1
\J_

126 Programming Guide

User-Defined Variables

*

READ (1) EMPLOY-VIEW WITH NAME = '"WINTER' WHERE CITY = 'LONDON'
WRITE 'LANG(1.1:10) :" LANG (1.1:10) /
"LANG(1.I:I4+2):" LANG (1.I:14+2) //

WRITE "LANG(5.1:5) :' LANG (5.1:5) /
"LANG(5.J) :' LANG (5.J)
LOOP
END

Structured Mode Example:

** Example 'INDEX5S': Array definition with constants (structured mode)
okl (multiple definition of same database field)
khkhkkhkhkkhkhkkhhkkhhkkhhkkhkhkkhhkkhhkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhhhkkhhkhhkkhhkhkkhkkhkkik
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 CITY

2 LANG (1:10)

2 LANG (5:10)

I (I2)
J (I2)
ND-DEFINE

*
1
1
E
*
*
I :=1

J =2

*

READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

WRITE "LANG(1.1:10) :" LANG (1.1:10) /
"LANG(L1.I:I+2):" LANG (1.1:1+2) //

WRITE "LANG(5.1:5) :' LANG (5.1:5) /
"LANG(5.J) :' LANG (5.Jd)
END-READ
END

A similar syntax is also used if multiple-value fields or periodic-group fields are defined using
index variables.

Reporting Mode Example:

** Example "INDEX6R': Array definition with variables (reporting mode)
P (multiple definition of same database field)
R R R R R R R R R e R R e R e R I R e S e b i e b b i i B i b b i b b
DEFINE DATA LOCAL
1 I (I2) INIT <1>
1 J (I2) INIT <2>
1 N (I2) INIT <1>
1 EMPLOY-VIEW VIEW OF EMPLOYEES /* For reporting mode programs
2 NAME /* DEFINE DATA is recommended

Programming Guide 127

User-Defined Variables

2 CITY /* to use multiple definitions
2 LANG (I:I+10) /* of same database field
2 LANG (J:J+5)
2 LANG (4:5)
*
END-DEFINE

*

READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'
*
WRITE "LANG(I.I) :' LANG (I.1) /
"LANG(1.1:1+2):' LANG (I.I1:1+10) //

WRITE "LANG(J.N) :' LANG (J.N) /
"LANG(J.2:4) ' LANG (J.2:4) //
*
WRITE "LANG(4.N) :" LANG (4.N) /
"LANG(4.N:N+1):" LANG (4.N:N+1) /
LOOP
END

Structured Mode Example:

** Example 'INDEX6S': Array definition with variables (structured mode)
okl (multiple definition of same database field)
R R R R i b S R B b S e b b b S S b b e e e S S S S e e b b S S S b b i S i i e i e b b e S e b e e b b b Y
DEFINE DATA LOCAL
1 T (I2) INIT <1>
1 J (I2) INIT <2>
1 N (I2) INIT <1>
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
CITY
LANG (I:I+10)
LANG (J:J+5)
LANG (4:5)

N N NN

*

END-DEFINE

*

READ (1) EMPLOY-VIEW WITH NAME = "WINTER' WHERE CITY = 'LONDON'
*
WRITE '"LANG(I.I) 2" LANG (I.1) /
"LANG(1.I:I+2):" LANG (I.I:I+10) //

WRITE "LANG(J.N) :' LANG (J.N) /
'LANG(J.2:4) :' LANG (J.2:4) //
*
WRITE 'LANG(4.N) :' LANG (4.N) /
"LANG(4.N:N+1):' LANG (4.N:N+1) /
END-READ
END

128 Programming Guide

User-Defined Variables

Referencing the Internal Count for a Database Array (C* Notation)

It is sometimes necessary to reference a multiple-value field and/or a periodic group without
knowing how many values/occurrences exist in a given record. Adabas maintains an internal
count of the number of values of each multiple-value field and the number of occurrences of each
periodic group. This count may be referenced by specifying C* immediately before the field name.

Note concerning databases other than Adabas:

SQL |with SQL databases, the C* notation cannot be used.

VSAM|with VSAM and DL/I databases, the C* notation does not return the number of values/occurrences
DL/ |but the maximum occurrence/value as defined in the DDM (MAXQOCC).

See also the data-area-editor line command . * (in the Editors documentation).
The explicit format and length permitted to declare a C* field is either

® integer (I) with a length of 2 bytes (I2) or 4 bytes (I4),
® numeric (N) or packed (P) with only integer (but no precision) digits; for example (N3).

If no explicit format and length is supplied, format/length (N3) is assumed as default.

Examples:
C*LANG Returns the count of the number of values for the multiple-value field LANG.
C*INCOME Returns the count of the number of occurrences for the periodic group INCOME.

C*BONUS(1) |Returns the count of the number of values for the multiple-value field BONUS in periodic
group occurrence 1 (assuming that BONUS is a multiple-value field within a periodic group.)

Example Program Using the C* Variable:

** Example 'CNOTXO01': C* Notation
R R R B b R e e b b e S b b e e b S S e b b S e e b b b S e b S e b b S e b b S e e b b S S e b S e e b S e b b b S S
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 C*INCOME
2 INCOME
3 SALARY (1:5)
3 C*BONUS (1:2)
3 BONUS (1:2,1:2)
2 C*LANG
2 LANG (1:2)

Programming Guide 129

User-Defined Variables

1 41 (N1)

END-DEFINE

*

LIMIT 2

READ EMPL-VIEW BY CITY
/*

WRITE NOTITLE 'NAME:' NAME /

"NUMBER OF LANGUAGES SPOKEN:' C*LANG 5X
"LANGUAGE 1:' LANG (1) 5X

"LANGUAGE 2:" LANG (2)

/%
WRITE 'SALARY DATA:'

FOR #I FROM 1 TO C*INCOME
WRITE 'SALARY' #I SALARY (1.41)

END-FOR
/*

WRITE 'THIS YEAR BONUS:' C*BONUS(1)
/ "LAST YEAR BONUS:' C*BONUS(2)

SKIP 1
END-READ
END

Output of Program CNOTX01:

NAME: SENKO

BONUS (1,1) BONUS (1,2)
BONUS (2,1) BONUS (2,2)

NUMBER OF LANGUAGES SPOKEN: 1 LANGUAGE 1: ENG LANGUAGE 2:
SALARY DATA:

SALARY 1 36225

SALARY 2 29900

SALARY 3 28100

SALARY 4 26600

SALARY 5 25200

THIS YEAR BONUS: 0 0 0

LAST YEAR BONUS: 0 0 0

NAME: CANALE

NUMBER OF LANGUAGES SPOKEN: 2 LANGUAGE 1: FRE LANGUAGE 2: ENG
SALARY DATA:

SALARY 1 202285

THIS YEAR BONUS: 1 23000 0

LAST YEAR BONUS: 0 0 0

130 Programming Guide

User-Defined Variables

C* for Multiple-Value Fields Within Periodic Groups

For a multiple-value field within a periodic group, you can also define a C* variable with an index
range specification.

The following examples use the multiple-value field BONUS, which is part of the periodic group
INCOME. All three examples yield the same result.

Example 1 - Reporting Mode:

** Example 'CNOTX02': C* Notation (multiple-value fields)

R R R R R R R R b R b R S R R i R e i R e i R b e b R R i b b e S b 4
*

LIMIT 2
READ EMPLOYEES BY CITY
OBTAIN C*BONUS (1:3)
BONUS (1:3,1:3)
/%
DISPLAY NAME C*BONUS (1:3) BONUS (1:3,1:3)
LOOP

*

END

Example 2 - Structured Mode:

** Example 'CNOTX03': C* Notation (multiple-value fields)
KA KRR AR A AR AR KR AR A AR A AR AR KR AR A AR A AR AR KA KR KA AR A AR AR KR AR KA KA AR AR KA KK A R A A KA AR A Kk LK
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 INCOME (1:3)
3 C*BONUS
3 BONUS (1:3)
END-DEFINE
*
LIMIT 2
READ EMPL-VIEW BY CITY
/*
DISPLAY NAME C*BONUS (1:3) BONUS (1:3,1:3)
END-READ

*

END

Programming Guide 131

User-Defined Variables

Example 3 - Structured Mode:

** Example 'CNOTX04': C* Notation (multiple-value fields)
R B R R i i S R e e b i S S b b e e b b b S S i b b e e S b b i S i b b i S e b S S b e S S b b i e i b
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME

2 CITY

2 C*BONUS (1:3)

2 INCOME (1:3)

3 BONUS (1:3)

END-DEFINE
*
LIMIT 2
READ EMPL-VIEW BY CITY

/*

DISPLAY NAME C*BONUS (*) BONUS (*,*)
END-READ

*

END

@ Caution: As the Adabas format buffer does not permit ranges for count fields, they are

generated as individual fields; therefore a C* index range for a large array may cause an
Adabas format buffer overflow.

Qualifying Data Structures

To identify a field when referencing it, you may qualify the field; that is, before the field name,
you specify the name of the level-1 data element in which the field is located and a period.

If a field cannot be identified uniquely by its name (for example, if the same field name is used in
multiple groups/views), you must qualify the field when you reference it.

The combination of level-1 data element and field name must be unique.

Example:

DEFINE DATA LOCAL
1 FULL-NAME
2 LAST-NAME (A20)
2 FIRST-NAME (A1l5)
1 OUTPUT-NAME
2 LAST-NAME (A20)
2 FIRST-NAME (A15)
END-DEFINE

132 Programming Guide

User-Defined Variables

MOVE FULL-NAME.LAST-NAME TO OUTPUT-NAME.LAST-NAME

The qualifier must be a level-1 data element.

Example:

DEFINE DATA LOCAL
1 GROUP1
2 SUB-GROUP
3 FIELDI (Alb)
3 FIELD2 (Alb)
END-DEFINE

MOVE '"ABC' TO GROUP1.FIELDI

Qualifying a Database Field:

If you use the same name for a user-defined variable and a database field (which you should not
do anyway), you must qualify the database field when you want to reference it

 Caution: If you do not qualify the database field when you want to reference it, the user-

defined variable will be referenced instead.

Examples of User-Defined Variables

DEFINE DATA LOCAL

1 #A1 (A10) /* Alphanumeric, 10 positions.

1 #A2 (B4) /* Binary, 4 positions.

1 #A3 (P4) /* Packed numeric, 4 positions and 1 sign position.

1 #A4 (N7.2) /* Unpacked numeric,
/* 7 positions before and 2 after decimal point.

1 #A5 (N7.) /* Invalid definition!!!

1 A6 (P7.2) /* Packed numeric, 7 positions before and 2 after decimal point
/* and 1 sign position.

1 #INT1 (I1) /* Integer, 1 byte.

1 ##INT2 (I2) /* Integer, 2 bytes.

1 #/INT3 (I3) /* Invalid definition!!!

1 ##INT4 (I4) /* Integer, 4 bytes.

1 ##INT5 (I5) /* Invalid definition!!!

1 #fFLT4 (F4) /* Floating point, 4 bytes.

1 #FLT8 (F8) /* Floating point, 8 bytes.

1 ##/FLT2 (F2) /* Invalid definition!!!

1 #DATE (D) /* Date (internal format/length P6).

1 #TIME (T) /* Time (internal format/length P12).

1 #FSWITCH (L) /* Logical, 1 byte (TRUE or FALSE).

Programming Guide

133

User-Defined Variables

/*
END-DEFINE <

134 Programming Guide

23 Introduction to Dynamic Variables and Fields

= Purpose of Dynamic VariabIEScoiiiiiiiiiiiii e 136
= Definition of DyNamiC VariablESuviiiiiiiii e 136
= Value Space Currently Used for a Dynamic Variableoovviiiioiiiiiccees e 137
= Allocating/Freeing Memory Space for a Dynamic Variablecoooiiiiiiiiiii e 137

135

Introduction to Dynamic Variables and Fields

Purpose of Dynamic Variables

In that the maximum size of large data structures (for example, pictures, sounds, videos) may not
exactly be known at application development time, Natural additionally provides for the definition
of alphanumeric and binary variables with the attribute DYNAMIC. The value space of variables
which are defined with this attribute will be extended dynamically at execution time when it be-
comes necessary (for example, during an assignment operation: #picturel := ffpicture2). This
means that large binary and alphanumeric data structures may be processed in Natural without
the need to define a limit at development time. The execution-time allocation of dynamic variables
is of course subject to available memory restrictions. If the allocation of dynamic variables results
in an insufficent memory condition being returned by the underlying operating system, the ON
ERROR statement can be used to intercept this error condition; otherwise, an error message will be
returned by Natural.

The Natural system variable *LENGTH can be used obtain the length (in terms of code units) of the
value space which is currently used for a given dynamic variable. For A and B formats, the size
of one code unit is 1 byte. For U format, the size of one code unit is 2 bytes (UTF-16). Natural
automatically sets *LENGTH to the length of the source operand during assignments in which the
dynamic variable is involved. *LENGTH(field) therefore returns the length (in terms of code units)
currently used for a dynamic Natural field or variable.

If the dynamic variable space is no longer needed, the REDUCE or RESIZE statements can be used
to reduce the space used for the dynamic variable to zero (or any other desired size). If the upper
limit of memory usage is known for a specific dynamic variable, the EXPAND statement can be used
to set the space used for the dynamic variable to this specific size.

If a dynamic variable is to be initialized, the MOVE ALL UNTIL statement should be used for this
purpose.

Definition of Dynamic Variables

Because the actual size of large alphanumeric and binary data structures may not be exactly known
at application development time, the definition of dynamic variables of format A, B or U can be
used to manage these structures. The dynamic allocation and extension (reallocation) of large
variables is transparent to the application programming logic. Dynamic variables are defined
without any length. Memory will be allocated either implicitly at execution time, when the dynamic
variable is used as a target operand, or explicitly with an EXPAND or RESIZE statement.

Dynamic variables can only be defined in a DEFINE DATA statement using the following syntax:

136 Programming Guide

Introduction to Dynamic Variables and Fields

level variable-name (A) DYNAMIC
level variable-name (B) DYNAMIC
level variable-name (U) DYNAMIC

Restrictions:
The following restrictions apply to a dynamic variable:

" A redefinition of a dynamic variable is not allowed.

® A dynamic variable may not be contained in a REDEFINE clause.

Value Space Currently Used for a Dynamic Variable

The length (in terms of code units) of the currently used value space of a dynamic variable can be
obtained from the system variable *LENGTH. *LENGTH is set to the (used) length of the source operand
during assignments automatically.

(Caution: Due to performance considerations, the storage area that is allocated to hold the

value of the dynamic variable may be larger than the value of *LENGTH (used size available
to the programmer). You should not rely on the storage that is allocated beyond the used
length as indicated by *LENGTH: it may be released at any time, even if the respective dynamic
variable is not accessed. It is not possible for the Natural programmer to obtain information
about the currently allocated size. This is an internal value.

*LENGTH(field) returns the used length (in terms of code units) of a dynamic Natural field or
variable. For A and B formats, the size of one code unitis 1 byte. For U format, the size of one code
unit is 2 bytes (UTF-16). *LENGTH may be used only to get the currently used length for dynamic
variables.

Allocating/Freeing Memory Space for a Dynamic Variable

The statements EXPAND, REDUCE and RESIZE are used to explicitly allocate and free memory space
for a dynamic variable.

Programming Guide 137

Introduction to Dynamic Variables and Fields

Syntax:

EXPAND [SIZE OF] DYNAMIC [VARIABLE] operandl TO operand?
REDUCE [SIZE OF] DYNAMIC [VARIABLE] operandl TO operand?
RESIZE [SIZE OFJ] DYNAMIC [VARIABLE] operandl TO operand?

- where operandl is a dynamic variable and operand? is a non-negative numeric size value.
EXPAND

Function

The EXPAND statement is used to increase the allocated length of the dynamic variable (operandI)
to the specified length (operand?).

Changing the Specified Size

The length currently used (as indicated by the Natural system variable *LENGTH, see above) for
the dynamic variable is not modified.

If the specified length (operand?) is less than the allocated length of the dynamic variable, the
statement will be ignored.

REDUCE

Function

The REDUCE statement is used to reduce the allocated length of the dynamic variable (operandI)
to the specified length (operand?).

The storage allocated for the dynamic variable (operandI) beyond the specified length (operand?)
may be released at any time, when the statement is executed or at a later time.

Changing the Specified Length

If the length currently used (as indicated by the Natural system variable *LENGTH, see above) for
the dynamic variable is greater than the specified length (operand?), the system variable *LENGTH
of this dynamic variable is set to the specified length. The content of the variable is truncated, but
not modified.

If the given length is larger than the currently allocated storage of the dynamic variable, the
statement will be ignored.

138 Programming Guide

Introduction to Dynamic Variables and Fields

RESIZE

Function

The RESIZE statement adjusts the currently allocated length of the dynamic variable (operandI)
to the specified length (operand?).

Changing the Specified Length

If the specified length is smaller then the used length (as indicated by the Natural system variable
*LENGTH, see above) of the dynamic variable, the used length is reduced accordingly.

If the specified length is larger than the currently allocated length of the dynamic variable, the al-
located length of the dynamic variable is increased. The currently used length (as indicated by the
system variable *LENGTH) of the dynamic variable is not affected and remains unchanged.

If the specified length is the same as the currently allocated length of the dynamic variable, the
execution of the RESIZE statement has no effect.

Programming Guide 139

140

24 Using Dynamic and Large Variables

B GENETAL REMAIKSeiiieei ettt e et e et e et 142
= Assignments with Dynamic Variables ... 143
= |nitialization of DyNamiC VariabIEScooiiiiiiiiiii s 145
= String Manipulation with Dynamic Alphanumeric Variablesccccoiiiiiii 145
= | ogical Condition Criterion (LCC) with Dynamic Variablescooviiiiiiiiiiiiiii e 146
= AT/IF-BREAK of Dynamic Control FIElASoooiiiiiiiiiiii s 148
= Parameter Transfer with Dynamic Variablesoooiiiiiiiiiiii e 148
= Work File Access with Large and Dynamic Variablescccooeiiiiiiiiiiiice e 151
= Performance Aspects with Dynamic Variablescooiiiiiiiiiiii e 151
m Qutputting Dynamic Variablescccoiiiiiiiiii e 153
B DYNAMIC X-ATTAYS ettt 153

141

Using Dynamic and Large Variables

General Remarks

Generally, the following rules apply:

® A dynamic alphanumeric field may be used wherever an alphanumeric field is allowed.
® A dynamic binary field may be used wherever a binary field is allowed.

® A dynamic Unicode field may be used wherever a Unicode field is allowed.
Exception:

Dynamic variables are not allowed within the SORT statement. To use dynamic variables in a
DISPLAY, WRITE, PRINT, REINPUT or INPUT statement, you must use either the session parameter AL
or EM to define the length of the variable.

The used length (as indicated by the Natural system variable *LENGTH, see Value Space Currently
Used for a Dynamic Variable) and the size of the allocated storage of dynamic variables are equal
to zero until the variable is accessed as a target operand for the first time. Due to assignments or
other manipulation operations, dynamic variables may be firstly allocated or extended (reallocated)
to the exact size of the source operand.

The size of a dynamic variable may be extended if it is used as a modifiable operand (target operand)
in the following statements:

ASSIGN operandl (destination operand in an assignment).

CALLNAT See Parameter Transfer with Dynamic Variables (except if AD=0, or if BY VALUE exists in
the corresponding parameter data area).

COMPRESS operandZ, see Processing.

EXAMINE operandlinthe DELETE REPLACE clause.

MOVE operandZ (destination operand), see Function.

PERFORM (except if AD=0, orif BY VALUE exists in the corresponding parameter data area).

READ WORK FILE |operandl and operandZ, see Handling of Large and Dynamic Variables.
SEPARATE operand4.

SELECT (SQL) parameterin the INTO clause, see into-clause.

SEND METHOD operand3 (except if AD=0).

Currently, there is the following limit concerning the usage of large variables:

142 Programming Guide

Using Dynamic and Large Variables

‘ CALL |Parameter size less than 64 KB per parameter (no limit for CALL with INTERFACE4 option).

In the following sections, the use of dynamic variables is discussed in more detail on the basis of
examples.

Assignments with Dynamic Variables

Generally, an assignment is done in the current used length (as indicated by the Natural system
variable *LENGTH) of the source operand. If the destination operand is a dynamic variable, its
current allocated size is possibly extended in order to move the source operand without truncation.

Example:

#IMYDYNTEXT1 := OPERAND
MOVE OPERAND TO #MYDYNTEXT1
/* #MYDYNTEXT1 IS AUTOMATICALLY EXTENDED UNTIL THE SOURCE OPERAND CAN BE COPIED «

MOVE ALL, MOVE ALL UNTIL with dynamic target operands are defined as follows:

" MOVE ALL moves the source operand repeatedly to the target operand until the used length
(*LENGTH) of the target operand is reached. The system variable *LENGTH is not modified. If
*LENGTH is zero, the statement will be ignored.

" MOVE ALL operandl TO operand? UNTIL operand3 moves operandl repeatedly to operand?
until the length specified in operand3is reached. If operand3is greater than *LENGTH(operand?2),
operand? is extended and *LENGTH(operand?) is set to operand3. If operand3 is less than
*LENGTH(operand?), the used length is reduced to operand3. If operand3 equals
*LENGTH(operand?), the behavior is equivalent to MOVE ALL.

Example:

fIMYDYNTEXT1 := "ABCDEFGHIJKLMNO' /* *LENGTH(#MYDYNTEXT1) = 15
MOVE ALL "AB' TO #MYDYNTEXT1 /* CONTENT OF #MYDYNTEXT1 = «
"ABABABABABABABA" ;

/* *LENGTH IS STILL 15

MOVE ALL 'CD' TO #MYDYNTEXT1 UNTIL 6 /* CONTENT OF #MYDYNTEXT1 = 'CDCDCD';
/* *LENGTH = 6

MOVE ALL '"EF' TO #MYDYNTEXT1 UNTIL 10 /* CONTENT OF #MYDYNTEXT1 = 'EFEFEFEFEF';
/* *LENGTH = 10

MOVE JUSTIFIED is rejected at compile time if the target operand is a dynamic variable.

MOVE SUBSTRand MOVE TO SUBSTR are allowed. MOVE SUBSTR will lead to a runtime error if a sub-
string behind the used length of a dynamic variable (*LENGTH) is referenced. MOVE TO SUBSTR will
lead to a runtime error if a sub-string position behind *LENGTH + 1 is referenced, because this
would lead to an undefined gap in the content of the dynamic variable. If the target operand

Programming Guide 143

Using Dynamic and Large Variables

should be extended by MOVE TO SUBSTR (for example if the second operand is set to *LENGTH+1),
the third operand is mandatory.

Valid syntax:

#fOP2 := *LENGTH(#MYDYNTEXT1)

MOVE SUBSTR (#MYDYNTEXT1, #0P2) TO OPERAND /* MOVE LAST CHARACTER «
TO OPERAND

#fOP2 := *LENGTH(#MYDYNTEXT1) + 1
MOVE OPERAND TO SUBSTR(#MYDYNTEXTL1, #0P2, #1EN_OPERAND) /* CONCATENATE OPERAND <
TO #MYDYNTEXT1 ©

Invalid syntax:

#fOP2 := *LENGTH(#MYDYNTEXT1) + 1

MOVE SUBSTR (#MYDYNTEXTL1, #0P2, 10) TO OPERAND /* LEADS TO RUNTIME ERROR; <«
UNDEFINED SUB-STRING

ffOP2 := *LENGTH(#MYDYNTEXT1 + 10)

MOVE OPERAND TO SUBSTR(#MYDYNTEXT1, #0P2, #fEN_OPERAND) /* LEADS TO RUNTIME ERROR;
UNDEFINED GAP

ffOP2 := *LENGTH(#MYDYNTEXT1) + 1

MOVE OPERAND TO SUBSTR(#MYDYNTEXTL, #0P2) /* LEADS TO RUNTIME ERROR; «
UNDEFINED LENGTH

i

Assignment Compatibility

Example:

#MYDYNTEXTL := #MYSTATICVARI
#MYSTATICVARL := #MYDYNTEXT2 <

If the source operand is a static variable, the used length of the dynamic destination operand
(*LENGTH(#fMYDYNTEXT1)) is set to the format length of the static variable and the source value is
copied in this length including trailing blanks (alphanumeric and Unicode fields) or binary zeros
(for binary fields).

If the destination operand is static and the source operand is dynamic, the dynamic variable is
copied in its currently used length. If this length is less than the format length of the static variable,
the remainder is filled with blanks (for alphanumeric and Unicode fields) or binary zeros (for
binary fields). Otherwise, the value will be truncated. If the currently used length of the dynamic
variable is 0, the static target operand is filled with blanks (for alphanumeric and Unicode fields)
or binary zeros (for binary fields).

144 Programming Guide

Using Dynamic and Large Variables

Initialization of Dynamic Variables

Dynamic variables can be initialized with blanks (alphanumeric and Unicode fields) or zeros
(binary fields) up to the currently used length (= *LENGTH) using the RESET statement. The system
variable *LENGTH is not modified.

Example:

DEFINE DATA LOCAL
1 JMYDYNTEXT1 (A) DYNAMIC

END-DEFINE

#MYDYNTEXTL := 'SHORT TEXT'

WRITE *LENGTH(#MYDYNTEXT1) /* USED LENGTH = 10

RESET #MYDYNTEXT1 /* USED LENGTH = 10, VALUE = 10 BLANKS <

To initialize a dynamic variable with a specified value in a specified size, the MOVE ALL UNTIL
statement may be used.

Example:

MOVE ALL 'Y' TO #MYDYNTEXT1 UNTIL 15 /* {IMYDYNTEXTL CONTAINS 15 'Y'S, USED <
LENGTH = 15 <«

String Manipulation with Dynamic Alphanumeric Variables

If a modifiable operand is a dynamic variable, its current allocated size is possibly extended in
order to perform the operation without truncation or an error message. This is valid for the con-
catenation (COMPRESS) and separation of dynamic alphanumeric variables (SEPARATE).

Example:

** Example 'DYNAMXO01': Dynamic variables (with COMPRESS and SEPARATE)

R R R R R B B b B R e R b i b S e i e b b b b S b b i e e b b b S e b b i e i b b e e b b e i S b b b b e b b g
DEFINE DATA LOCAL

1 #MYDYNTEXT1 (A) DYNAMIC

1 fFTEXT (A20)

1 #DYN1 (A) DYNAMIC
1 #fDYN2 (A) DYNAMIC
1 ffDYN3 (A) DYNAMIC
END-DEFINE

*

MOVE ' HELLO WORLD ' TO #MYDYNTEXT1
WRITE #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)

/* dynamic variable with Teading and trailing blanks
*

Programming Guide 145

Using Dynamic and Large Variables

MOVE ' HELLO WORLD " TO #TEXT

*

MOVE #TEXT TO #MYDYNTEXT1

WRITE #fMYDYNTEXT1 (AL=25) 'with Tength' *LENGTH (#MYDYNTEXT1)
/* dynamic variable with whole variable length of FTEXT

*

COMPRESS #TEXT INTO #MYDYNTEXT1

WRITE #MYDYNTEXT1 (AL=25) 'with Tength' *LENGTH (#MYDYNTEXT1)
/* dynamic variable with leading blanks of #TEXT

*

*

#MYDYNTEXT1 := 'HERE COMES THE SUN'

SEPARATE #MYDYNTEXT1 INTO #DYN1 #DYN2 #DYN3 IGNORE

*

WRITE / #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)
WRITE #DYN1 (AL=25) 'with length' *LENGTH (4DYN1)

WRITE #fDYN2 (AL=25) 'with length' *LENGTH (4fDYN2)

WRITE #DYN3 (AL=25) 'with length' *LENGTH (#DYN3)

/* {DYN1, #fDYN2, #DYN3 are automatically extended or reduced
S

EXAMINE #MYDYNTEXT1 FOR 'SUN' REPLACE 'MOON'

WRITE / #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)
/* {MYDYNTEXT1 is automatically extended or reduced

*

END

Note: In case of non-dynamic variables, an error message may be returned.

Logical Condition Criterion (LCC) with Dynamic Variables

Generally, a read-only operation (such as a comparison) with a dynamic variable is done with its
currently used length. Dynamic variables are processed like static variables if they are used in a
read-only (non-modifiable) context.

Example:

IF #MYDYNTEXT1 = #MYDYNTEXT2 OR #MYDYNTEXT1 = "#**" THEN ...
IF #MYDYNTEXT1 < #MYDYNTEXT2 OR #MYDYNTEXT1 < "**" THEN ...
IF #MYDYNTEXTL > #MYDYNTEXT2 OR #MYDYNTEXTL > "**" THEN ...

Trailing blanks for alphanumeric and Unicode variables or leading binary zeros for binary variables
are processed in the same way for static and dynamic variables. For example, alphanumeric vari-
ables containing the values AA and AA followed by a blank will be considered being equal, and
binary variables containing the values H’0000031" and H’3031" will be considered being equal.
If a comparison result should only be TRUE in case of an exact copy, the used lengths of the dynamic
variables have to be compared in addition. If one variable is an exact copy of the other, their used
lengths are also equal.

146 Programming Guide

Using Dynamic and Large Variables

Example:
#MYDYNTEXT1 = 'HELLO' /* USED LENGTH IS 5
#MYDYNTEXT2 := 'HELLO ! /* USED LENGTH IS 10
IF #MYDYNTEXTL = 4MYDYNTEXT2 THEN ... /* TRUE
IF #IMYDYNTEXT1 = #MYDYNTEXT2 AND

*LENGTH(#MYDYNTEXT1) = *LENGTH(4MYDYNTEXT2) THEN ... /* FALSE

Two dynamic variables are compared position by position (from left to right for alphanumeric
variables, and right to left for binary variables) up to the minimum of their used lengths. The first
position where the variables are not equal determines if the first or the second variable is greater
than, less than or equal to the other. The variables are equal if they are equal up to the minimum
of their used lengths and the remainder of the longer variable contains only blanks for alphanu-
meric dynamic variables or binary zeros for binary dynamic variables. To compare two Unicode
dynamic variables, trailing blanks are removed from both values before the ICU collation algorithm
is used to compare the two resulting values. See also Logical Condition Criteria in the Unicode and
Code Page Support documentation.

Example:

#MYDYNTEXT1 = 'HELLO1' /* USED LENGTH IS 6
#MYDYNTEXT2 := ‘'HELLO2' /* USED LENGTH IS 10
IF #MYDYNTEXT1 < 4#MYDYNTEXT2 THEN ... /* TRUE

#MYDYNTEXT2 := 'HALLO'

IF #MYDYNTEXT1 > 4#MYDYNTEXT2 THEN ... /* TRUE

Comparison Compatibility

Comparisons between dynamic and static variables are equivalent to comparisons between dy-
namic variables. The format length of the static variable is interpreted as its used length.

Example:

#IMYSTATTEXT1 := ‘'"HELLO' /* FORMAT LENGTH OF MYSTATTEXT1 IS <
A20

#MYDYNTEXTL := ‘'"HELLO' /* USED LENGTH IS 5

IF #MYSTATTEXT1 = 4MYDYNTEXTL THEN ... /* TRUE

IF #MYSTATTEXT1 > #MYDYNTEXT1 THEN ... /* FALSE

Programming Guide 147

Using Dynamic and Large Variables

AT/IF-BREAK of Dynamic Control Fields

The comparison of the break control field with its old value is performed position by position from
left to right. If the old and the new value of the dynamic variable are of different length, then for
comparison, the value with shorter length is padded to the right (with blanks for alphanumeric
and Unicode dynamic values or binary zeros for binary values).

In case of an alphanumeric or Unicode break control field, trailing blanks are not significant for
the comparison, that is, trailing blanks do not mean a change of the value and no break occurs.

In case of a binary break control field, trailing binary zeros are not significant for the comparison,
that is, trailing binary zeros do not mean a change of the value and no break occurs.

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
A call-by-reference is possible because the value space of a dynamic variable is contiguous. A call-
by-value causes an assignment with the variable definition of the caller as the source operand and
the parameter definition as the destination operand. A call-by-value result causes in addition the
movement in the opposite direction.

For a call-by-reference, both definitions must be DYNAMIC. If only one of them is DYNAMIC, a runtime
error is raised. In the case of a call-by-value (result), all combinations are possible. The following
table illustrates the valid combinations:

Call By Reference

Caller Parameter

Static | Dynamic

Static |ves [No

Dynamic| No |Yes

The formats of dynamic variables A or B must match.

148 Programming Guide

Using Dynamic and Large Variables

Call by Value (Result)

Caller Parameter

Static | Dynamic

Static |Yes |Yes

Dynamic|Yes |Yes

. Note: In the case of static/dynamic or dynamic/static definitions, a value truncation may

occur according to the data transfer rules of the appropriate assignments.

Example 1:

** Example 'DYNAMX02': Dynamic variables (as parameters)
khkkkhkhkkhkhkkhhkkhkhkhhkkhkhkhhkkhhkhhkkhhkhhkkhkhkhhkkhhkhhkkhhkhhkhhkhhkhhkhhkhhkhhkhkrkhhkhrkhhkhrkhhkhrkhhkhkrkhkrkhxk
DEFINE DATA LOCAL

1 #MYTEXT (A) DYNAMIC

END-DEFINE

*

IMYTEXT := '123456' /* extended to 6 bytes, *LENGTH(#MYTEXT) = 6

*

CALLNAT 'DYNAMX03' USING #MYTEXT

*

WRITE *LENGTH(#MYTEXT) /* *LENGTH(#MYTEXT) = 8

*

END ©

Subprogram DYNAMX03:

** Example 'DYNAMX03': Dynamic variables (as parameters)

R R R R b b R S S e b b e e b B b e S i b b b e S b b i S i b b i I b b i S S b e i S b b i e b b b
DEFINE DATA PARAMETER

1 #fMYPARM (A) DYNAMIC BY VALUE RESULT

END-DEFINE

*

WRITE *LENGTH({MYPARM) /* *LENGTH(4MYPARM) = 6
{IMYPARM := '1234567" /* *LENGTH(4MYPARM) = 7
#IMYPARM := '12345678" /* *LENGTH(4MYPARM) = 8

EXPAND DYNAMIC VARIABLE #MYPARM TO 10 /* 10 bytes are allocated

*

WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 8
*

/* content of #MYPARM is moved back to #MYTEXT

/* used length of #MYTEXT = 8

*

END ©

Programming Guide 149

Using Dynamic and Large Variables

Example 2:

** Example 'DYNAMX04': Dynamic variables (as parameters)

R B R R i i S R e e b i S S b b e e b b b S S i b b e e S b b i S i b b i S e b S S b e S S b b i e i b
DEFINE DATA LOCAL

1 #MYTEXT (A) DYNAMIC

END-DEFINE

*

IMYTEXT := '123456' /* extended to 6 bytes, *LENGTH(#MYTEXT) = 6

*

CALLNAT 'DYNAMX05' USING #MYTEXT
*
WRITE *LENGTH(#MYTEXT) /* *LENGTH(#MYTEXT) = 8
/* at least 10 bytes are
/* allocated (extended in DYNAMXO05)

*

END ©

Subprogram DYNAMX05:

** Example 'DYNAMX05': Dynamic variables (as parameters)

R R R R i i S R i S e e b S S b b e e b I b e S i b b e e S b b i S i b b i S e b S S b e e S b b i e i b
DEFINE DATA PARAMETER

1 #MYPARM (A) DYNAMIC

END-DEFINE
*

WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 6
{IMYPARM := '1234567" /* *LENGTH(#MYPARM) = 7
IMYPARM := '12345678" /* *LENGTH(4MYPARM) = 8

EXPAND DYNAMIC VARIABLE #MYPARM TO 10 /* 10 bytes are allocated

*

WRITE *LENGTH(4MYPARM) /* *LENGTH(#MYPARM) = 8

*

END ©
CALL 3GL Program

Dynamic and large variables can sensibly be used with the CALL statement when the option
INTERFACE4 is used. Using this option leads to an interface to the 3GL program with a different
parameter structure.

Before calling a 3GL program with dynamic parameters, it is important to ensure that the necessary
buffer size is allocated. This can be done explicitly with the EXPAND statement.

If an initialized buffer is required, the dynamic variable can be set to the initial value and to the
necessary size by using the MOVE ALL UNTIL statement. Natural provides a set of functions that
allow the 3GL program to obtain information about the dynamic parameter and to modify the
length when parameter data is passed back.

150 Programming Guide

Using Dynamic and Large Variables

Example:

MOVE ALL ' ' TO #MYDYNTEXTL UNTIL 10000
/* a buffer of length 10000 is allocated
/* #MYDYNTEXTL is initialized with blanks
/* and *LENGTH(#MYDYNTEXT1) = 10000
CALL INTERFACE4 'MYPROG' USING #MYDYNTEXT1
WRITE *LENGTH(#MYDYNTEXT1)
/* *LENGTH(#MYDYNTEXT1) may have changed in the 3GL program

For a more detailed description, refer to the CALL statement in the Statements documentation.

Work File Access with Large and Dynamic Variables

There is no difference in the treatment of fixed length variables with a length of less than or equal
to 253 and large variables with a length of greater than 253.

Dynamic variables are written in the length that is in effect (that is, the value of the system variable
*LENGTH for this variable) when the WRITE WORK FILE statement is executed. Since the length can
be different for each execution of the same WRITE WORK FILE statement, the keyword VARIABLE
must be specified.

When reading work files of type FORMATTED, a dynamic variable is filled in the length that is in
effect (that is, the value of the system variable *LENGTH for this variable) when the READ WORK FILE
statement is executed. If the dynamic variable is longer than the remaining data in the current re-
cord, it is padded with blanks for alphanumeric and Unicode fields and binary zeros for binary
fields.

When reading a work file of type UNFORMATTED, a dynamic variable is filled with the remainder of
the work file. Its size is adjusted accordingly, and is reflected in the value of the system variable
*LENGTH for this variable.

Performance Aspects with Dynamic Variables

If a dynamic variable is to be expanded in small quantities multiple times (for example, byte-wise),
use the EXPAND statement before the iterations if the upper limit of required storage is (approxim-
ately) known. This avoids additional overhead to adjust the storage needed.

Use the REDUCE or RESIZE statement if the dynamic variable will no longer be needed, especially
for variables with a high value of the system variable * LENGTH. This enables Natural you to release
or reuse the storage. Thus, the overall performance may be improved.

Programming Guide 151

Using Dynamic and Large Variables

The amount of the allocated memory of a dynamic variable may be reduced using the REDUCE
DYNAMIC VARIABLE statement. In order to (re)allocate a variable to a specified length, the EXPAND
statement can be used. (If the variable should be initialized, use the MOVE ALL UNTIL statement.)

Example:

** Example 'DYNAMX06': Dynamic variables (allocated memory)
khkhkkhkkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhhhkhhkhkhhhAhhhkhhhhhkhkhhkhhhkhkkhhkhhkhkhhhkhhkhkhhkhihhkhkhhkhkhhkhkhixkx
DEFINE DATA LOCAL

1 #fMYDYNTEXT1 (A) DYNAMIC

1 #FLEN (I4)

END-DEFINE

*

#MYDYNTEXTL := 'a' /* used length is 1, value is 'a'

/* allocated size is still 1
WRITE *LENGTH(#MYDYNTEXT1)
*
EXPAND DYNAMIC VARIABLE #MYDYNTEXT1 TO 100
/* used Tength is still 1, value is 'a'
/* allocated size is 100
*
CALLNAT 'DYNAMX05' USING #MYDYNTEXT1
WRITE *LENGTH(#MYDYNTEXT1)
/* used Tength and allocated size
/* may have changed in the subprogram
*
J#LEN := *LENGTH(#MYDYNTEXT1)
REDUCE DYNAMIC VARIABLE #MYDYNTEXT1 TO #LEN
/* if allocated size is greater than used length,
/* the unused memory is released
*
REDUCE DYNAMIC VARIABLE #MYDYNTEXT1 TO O
WRITE *LENGTH(#MYDYNTEXT1)
/* free allocated memory for dynamic variable
END

Rules:

® Use dynamic operands where it makes sense.
® Use the EXPAND statement if upper limit of memory usage is known.

" Use the REDUCE statement if the dynamic operand will no longer be needed.

152 Programming Guide

Using Dynamic and Large Variables

Outputting Dynamic Variables

Dynamic variables may be used inside output statements such as the following:

Statement |Notes

INPUT

DISPLAY |With these statements, you must set the format of the output or input of dynamic variables
WRITE using the AL (Alphanumeric Length for Output) or EM (Edit Mask) session parameters.

REINPUT |--

parameters may be omitted.

PRINT Because the output of the PRINT statement is unformatted, the output of dynamic variables in
the PRINT statement need not be set using AL and EM parameters. In other words, these

Dynamic X-Arrays

A dynamic X-array may be allocated by first specifying the number of occurrences and then ex-

panding the length of the previously allocated array occurrences.

Example:

DEFINE DATA LOCAL
1 #X-ARRAY(A/1:*) DYNAMIC
END-DEFINE

*

EXPAND ARRAY #X-ARRAY TO (1:10)

#FX-ARRAY (*) := 'ABC'
EXPAND ARRAY #X-ARRAY TO (1:20)
##X-ARRAY(11:20) := 'DEF'

/* Current boundaries (1:10)

/* Current boundaries (1:20)

Programming Guide

153

154

25 User-Defined Constants

B NUMEIIC CONSEANES vttt e e e e e, 156
B AlPhanUmMEC CONSIANES ...ttt e e e e e e e e e e 157
B UNICOTE CONS ANES .t 158
B Date AN TiME CONSTANTSiee it 161
B HEXadeCIMal CONSIANTSe e e 162
B L0GICAI CONSTANTS ...t 164
B Floating Point CONSTANTScoiiiiiiiiii e 164
B A TUIE CONS ANES et 165
B HANAIE CONSIANES .ot e e e e e e e 166
m Defining Named CONSIANTSvviiiiiiiee e 166

155

User-Defined Constants

Constants can be used throughout Natural programs. This document discusses the types of con-
stants that are supported and how they are used.

Numeric Constants

The following topics are covered below:

= Numeric Constants
= Validation of Numeric Constants

Numeric Constants

A numeric constant may contain 1 to 29 numeric digits, a special character as decimal separator
(period or comma) and a sign.

Examples:

1234 +1234 -1234

12.34 +12.34 -12.34

MOVE 3 TO #XYZ

COMPUTE #PRICE = 23.34
COMPUTE #XYZ = -103
COMPUTE #fA = #B * 6074

Numeric constants are represented internally in packed form (format P); exception: if a numeric
constant is used in an arithmetic operation in which the other operand is an integer variable (format
I), the numeric constant is represented in integer form (format I).

Validation of Numeric Constants

When numeric constants are used within one of the statements COMPUTE, MOVE, or DEFINE DATA
with INIT option, Natural checks at compilation time whether a constant value fits into the corres-
ponding field. This avoids runtime errors in situations where such an error condition can already
be detected during compilation.

156 Programming Guide

User-Defined Constants

Alphanumeric Constants

The following topics are covered below:

= Alphanumeric Constants
= Apostrophes Within Alphanumeric Constants
= Concatenation of Alphanumeric Constants

Alphanumeric Constants

An alphanumeric constant may contain 1 to 1 1073741824 bytes (1 GB) of alphanumeric characters.

An alphanumeric constant must be enclosed in either apostrophes (')

"text'

or quotation marks (")

lltextvl

Examples:

MOVE 'ABC' TO #FIELDX
MOVE '% INCREASE' TO #TITLE
DISPLAY "LAST-NAME" NAME

| Note: An alphanumeric constant that is used to assign a value to a user-defined variable

must not be split between statement lines.
Apostrophes Within Alphanumeric Constants

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes,
you must write this as two apostrophes or as a single quotation mark.

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation
marks, you write this as a single apostrophe.

Example:

If you want the following to be output:

Programming Guide 157

User-Defined Constants

HE SAID, 'HELLO'

you can use any of the following notations:

WRITE 'HE SAID, ''HELLO'"''
WRITE 'HE SAID, "HELLO"'
WRITE "HE SAID, ""HELLO"""
WRITE "HE SAID, '"HELLO'"

| Note: If quotation marks are not converted to apostrophes as shown above, this is due to

the setting of keyword subparameter TQMARK of profile parameter CMP0O or macro NTCMPO
(Translate Quotation Marks); ask your Natural administrator for details.

Concatenation of Alphanumeric Constants

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.

Examples:
MOVE ‘'XXXXXX' - "YYYYYY' TO #FIELD
MOVE "ABC" - 'DEF' TO #FIELD

In this way, alphanumeric constants can also be concatenated with hexadecimal constants.

Unicode Constants

The following topics are covered below:

= Unicode Text Constants

= Apostrophes Within Unicode Text Constants
= Unicode Hexadecimal Constants

= Concatenation of Unicode Constants

Unicode Text Constants

A Unicode text constant must be preceded by the character U and enclosed in either apostrophes

()

158 Programming Guide

User-Defined Constants

U'text'

"

or quotation marks (")

U"text"

Example:

U'HELLO'

The compiler stores this text constant in the generated program in Unicode format (UTF-16).
Apostrophes Within Unicode Text Constants

If you want an apostrophe to be part of a Unicode text constant that is enclosed in apostrophes,
you must write this as two apostrophes or as a single quotation mark.

If you want an apostrophe to be part of a Unicode text constant that is enclosed in quotation marks,
you write this as a single apostrophe.

Example:

If you want the following to be output:

HE SAID, 'HELLO'

you can use any of the following notations:

WRITE U'HE SAID, "'HELLO'''
WRITE U'HE SAID, "HELLO"'
WRITE U"HE SAID, ""HELLO"""
WRITE U"HE SAID, 'HELLO"'"

Note: If quotation marks are not converted to apostrophes as shown above, this is due to

the setting of the profile parameter TQ (Translate Quotation Marks); ask your Natural ad-
ministrator for details.

Unicode Hexadecimal Constants

The following syntax is used to supply a Unicode character or a Unicode string by its hexadecimal
notation:

Programming Guide 159

User-Defined Constants

UH"hhhh...'

where h represents a hexadecimal digit (0-9, A-F). Since a UTF-16 Unicode character consists of a
double-byte, the number of hexadecimal characters supplied has to be a multiple of four.

Example:

This example defines the string 45.
UH'00340035"
Concatenation of Unicode Constants

Concatenation of Unicode text constants (U) and Unicode hexadecimal constants (UH) is allowed.

Valid Example:

MOVE U'XXXXXX' - UH'00340035"' TO #FIELD

Unicode text constants or Unicode hexadecimal constants cannot be concatenated with code page
alphanumeric constants or H constants.

Invalid Example:

MOVE U'ABC' - 'DEF' TO #FIELD
MOVE UH'00340035"' - H'414243' TO0 #FIELD

Further Valid Example:

DEFINE DATA LOCAL

1 #U10 (U10) /* Unicode variable with 10 (UTF-16) characters, total <
byte length = 20

1 #fUD (U) DYNAMIC /* Unicode variable with dynamic length

END-DEFINE

*

F#UL0 := U'ABC" /* Constant is created as X'004100420043"' in the object, <«

the UTF-16 representation for string "ABC'.

#UL0 := UH'004100420043" /* Constant supplied in hexadecimal format only, <
corresponds to U'ABC'

#UL0 := U'A'-UH'0042'-U'C' /* Constant supplied in mixed formats, corresponds to <
U'ABC"'.
END

160 Programming Guide

User-Defined Constants

Date and Time Constants

The following topics are covered below:

= Date Constant
= Time Constant
= Extended Time Constant

Date Constant

A date constant may be used in conjunction with a format D variable.

Date constants may have the following formats:

D'yyyy-mm-dd' |International date format

D'dd.mm.yyyy' |German date format

D"dd/mm/yyyy' |European date format

D'mm/dd/yyyy' |US date format

where dd represents the number of the day, mm the number of the month and yyyy the year.

Example:

DEFINE DATA LOCAL

1 #fDATE (D)

END-DEFINE

MOVE D'2004-03-08' TO #fDATE

The default date format is controlled by the profile parameter DTFORM (Date Format) as set by the
Natural administrator.

Time Constant

A time constant may be used in conjunction with a format T variable.

A time constant has the following format:

Programming Guide 161

User-Defined Constants

T'hh:ii:ss'
where hh represents hours, 77 minutes and ss seconds.

Example:

DEFINE DATA LOCAL
1 #TIME (T)
END-DEFINE

MOVE T'11:33:00' TO #TIME

Extended Time Constant

A time variable (format T) can contain date and time information, date information being a subset
of time information; however, with a “normal” time constant (prefix T) only the time information
of a time variable can be handled:

T"hh:77:ss'

With an extended time constant (prefix E), it is possible to handle the full content of a time variable,
including the date information:

E'yvyyy-mm-dd hh:77:ss'

Apart from that, the use of an extended time constant in conjunction with a time variable is the
same as for a normal time constant.

| Note: The format in which the date information has to be specified in an extended time

constant depends on the setting of the profile parameter DTFORM. The extended time constant
shown above assumes DTFORM=I (international date format).

Hexadecimal Constants

The following topics are covered below:

= Hexadecimal Constants

162 Programming Guide

User-Defined Constants

= Concatenation of Hexadecimal Constants
Hexadecimal Constants

A hexadecimal constant may be used to enter a value which cannot be entered as a standard key-
board character.

A hexadecimal constant may contain 1 to 1073741824 bytes (1 GB) of alphanumeric characters.

A hexadecimal constant is prefixed with an H. The constant itself must be enclosed in apostrophes
and may consist of the hexadecimal characters 0-9, A - F. Two hexadecimal characters are required
to represent one byte of data.

The hexadecimal representation of a character varies, depending on whether your computer uses
an ASCII or EBCDIC character set. When you transfer hexadecimal constants to another computer,
you may therefore have to convert the characters.

ASCII examples:

H'313233" (equivalent to the alphanumeric constant '123')
H'414243" (equivalent to the alphanumeric constant 'ABC')
EBCDIC examples:

H'F1F2F3"' (equivalent to the alphanumeric constant '123')
H'C1C2C3"' (equivalent to the alphanumeric constant 'ABC')

When a hexadecimal constant is transferred to another field, it will be treated as an alphanumeric
value (format A).

The data transfer of an alphanumeric value (format A) to a field which is defined with a format
other than A,U or B is not allowed. Therefore, a hexadecimal constant used as initial value in a

DEFINE DATA statement is rejected with the syntax error NAT0094 if the corresponding variable
is not of format A, U or B.

Example:

DEFINE DATA LOCAL
1 fI(I2) INIT <H'OOOF'> /* causes a NAT0094 syntax error
END-DEFINE ©

Programming Guide 163

User-Defined Constants

Concatenation of Hexadecimal Constants

Hexadecimal constants may be concatenated by using a hyphen between the constants.

ASCII example:

H'414243" - H'444546' (equivalent to 'ABCDEF')

EBCDIC example:

H'C1C2C3" - H'C4C5C6' (equivalent to '"ABCDEF")

In this way, hexadecimal constants can also be concatenated with alphanumeric constants.

Logical Constants

The logical constants TRUE and FALSE may be used to assign a logical value to a field defined with
Format L.

Example:

DEFINE DATA LOCAL
1 #FLAG (L)
END-DEFINE

MOVE TRUE TO #FLAG
IF #FLAG ...
statement ...

MOVE FALSE TO #FLAG
END-IF

Floating Point Constants

Floating point constants can be used with variables defined with format F.

Example:

164 Programming Guide

User-Defined Constants

DEFINE DATA LOCAL
1 #FLT1 (F4)
END-DEFINE

COMPUTE #FLT1 = -5.34E+2

Attribute Constants

Attribute constants can be used with variables defined with format C (control variables). This type
of constant must be enclosed within parentheses.

The following attributes may be used:

Attribute | Description

AD=D |default
AD=B |blinking
AD=1 |intensified

AD=N |non-display

AD=V |reverse video
AD=U |underlined

AD=C |cursive/italic

AD=Y |dynamic attribute

AD=P |protected
CD=BL |blue
CD=GR |green

CD=NE |neutral
CD=PI |pink
CD=RE |red

CD=TU [|turquoise
CD=YE |yellow

See also session parameters AD and CD.

Example:

Programming Guide 165

User-Defined Constants

DEFINE DATA LOCAL

1 #ATTR (C)

1 #FIELD (A10)

END-DEFINE

MOVE (AD=I CD=BL) TO #ATTR

INPUT #FIELD (CV=#ATTR)

Handle Constants

The handle constant NULL-HANDLE can be used with object handles.

For further information on object handles, see the section NaturalX.

Defining Named Constants

If you need to use the same constant value several times in a program, you can reduce the main-
tenance effort by defining a named constant:

" Define a field in the DEFINE DATA statement,

" assign a constant value to it, and

* use the field name in the program instead of the constant value.

Thus, when the value has to be changed, you only have to change it once in the DEFINE DATA
statement and not everywhere in the program where it occurs.

You specify the constant value in angle brackets with the keyword CONSTANT after the field defin-
ition in the DEFINE DATA statement.
= If the value is alphanumeric, it must be enclosed in apostrophes.

® If the value is text in Unicode format, it must be preceded by the character U and must be enclosed
in apostrophes.

*® If the value is in hexadecimal Unicode format, it must be preceded by the characters UH and
must be enclosed in apostrophes.

Example:

166 Programming Guide

User-Defined Constants

DEFINE DATA LOCAL

1 JfFIELDA (N3) CONSTANT <100>

1 #FIELDB (A5) CONSTANT <'ABCDE'>

1 #/FIELDC (U5) CONSTANT <U'ABCDE'>

1 f/FIELDD (U5) CONSTANT <UH'00410042004300440045"'>
END-DEFINE

During the execution of the program, the value of such a named constant cannot be modified.

Programming Guide 167

168

26 Initial Values (and the RESET Statement)

= Default Initial Value of a User-Defined Variable/Arrayccoeoiiiiiiiiii e 170
= Assigning an Initial Value to a User-Defined Variable/Arrayccouiiiiiiiieiiiiiice e 170
= Resetting a User-Defined Variable to its Initial Value ... 172

169

Initial Values (and the RESET Statement)

This chapter describes the default initial values of user-defined variables, explains how you can
assign an initial value to a user-defined variable and how you can use the RESET statement to reset
the field value to its default initial value or the initial value defined for that variable in the DEFINE
DATA statement.

| Note: For example definitions of assigning initial values to arrays, see Example 2 - DEFINE
DATA (Array Definition/Initialization) in the Statements documentation.

Default Initial Value of a User-Defined Variable/Array

If you specify no initial value for a field, the field will be initialized with a default initial value
depending on its format:

Format Default Initial Value
B,FLN,P 0

AU blank

L F(ALSE)

D D' '

T T'00:00:00"

C (AD=D)

Object Handle|NULL-HANDLE

Assigning an Initial Value to a User-Defined Variable/Array

In the DEFINE

DATA statement, you can assign an initial value to a user-defined variable. If the

initial value is alphanumeric, it must be enclosed in apostrophes.

= Assigning a Modifiable Initial Value
= Assigning a Constant Initial Value
= Assigning a Natural System Variable as Initial Value

170

Programming Guide

Initial Values (and the RESET Statement)

= Assigning Characters as Initial Value for Alphanumeric/Unicode Variables
Assigning a Modifiable Initial Value

If the variable/array is to be assigned a modifiable initial value, you specify the initial value in
angle brackets with the keyword INIT after the variable definition in the DEFINE DATA statement.
The value(s) assigned will be used each time the variable/array is referenced. The value(s) assigned
can be modified during program execution.

Example:

DEFINE DATA LOCAL

1 #fFIELDA (N3) INIT <100>

1 JfFIELDB (A20) INIT <'ABC'>
END-DEFINE

Assigning a Constant Initial Value

If the variable/array is to be treated as a named constant, you specify the initial value in angle
brackets with the keyword CONSTANT after the variable definition in the DEFINE DATA statement.
The constant value(s) assigned will be used each time the variable/array is referenced. The value(s)
assigned cannot be modified during program execution.

Example:

DEFINE DATA LOCAL

1 /FIELDA (N3) CONST <100>

1 #FIELDB (A20) CONST <'ABC'>
END-DEFINE

Assigning a Natural System Variable as Initial Value

The initial value for a field may also be the value of a Natural system variable.
Example:

In this example, the system variable *DATX is used to provide the initial value.

Programming Guide 171

Initial Values (and the RESET Statement)

DEFINE DATA LOCAL
1 #MYDATE (D) INIT <*DATX>
END-DEFINE

Assigning Characters as Initial Value for Alphanumeric/Unicode Variables

As initial value, a variable can also be filled, entirely or partially, with a specific character string
(only possible for variables of the Natural data format A or U).

* Filling an entire field:
With the option FULL LENGTH <character-string>, the entire field is filled with the specified
characters.

In this example, the entire field will be filled with asterisks.

DEFINE DATA LOCAL
1 #FIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE

* Filling the firstn positions of a field:
With the option LENGTH n <character-string>, the first n positions of the field are filled with
the specified characters.

In this example, the first 4 positions of the field will be filled with exclamation marks.

DEFINE DATA LOCAL
1 #fFIELD (A25) INIT LENGTH 4 <'!'>
END-DEFINE

Resetting a User-Defined Variable to its Initial Value

The RESET statement is used to reset the value of a field. Two options are available:

= Reset to Default Initial Value
® Reset to Initial Value Defined in DEFINE DATA

| Notes:

1. A field declared with a CONSTANT clause in the DEFINE DATA statement may not be referenced
in a RESET statement, since its content cannot be changed.

172 Programming Guide

Initial Values (and the RESET Statement)

2. In reporting mode, the RESET statement may also be used to define a variable, provided that
the program contains no DEFINE DATA LOCAL statement.

Reset to Default Initial Value

RESET (without INITIAL) sets the content of each specified field to its default initial value depending
on its format.

Example:

DEFINE DATA LOCAL

1 #/FIELDA (N3) INIT <100>

1 #FIELDB (A20) INIT <'ABC'>
1 JfFIELDC (I4) INIT <5>
END-DEFINE

RESET #fFIELDA /* resets field value to default initial value

. e

Reset to Initial Value Defined in DEFINE DATA

RESET INITIAL sets each specified field to the initial value as defined for the field in the DEFINE
DATA statement.

For a field declared without INIT clause in the DEFINE DATA statement, RESET INITIAL has the
same effect as RESET (without INITIAL).

Example:

DEFINE DATA LOCAL

1 f/FIELDA (N3) INIT <100>

1 #FIELDB (A20) INIT <'ABC'>
1 JfFIELDC (I4) INIT <5>
END-DEFINE

RESET INITIAL #FIELDA #FIELDB #FIELDC /* resets field values to initial values as <
defined in DEFINE DATA

Programming Guide 173

174

27 Redefining Fields

= Using the REDEFINE Option of DEFINE DATA ...t 176
= Example Program lllustrating the Use of @ Redefinitionc.oooiiiiiiiiii e 177

175

Redefining Fields

Redefinition is used to change the format of a field, or to divide a single field into segments.

Using the REDEFINE Option of DEFINE DATA

The REDEFINE option of the DEFINE DATA statement can be used to redefine a single field - either
a user-defined variable or a database field - as one or more new fields. A group can also be re-
defined.

A\ Important: Dynamic variables are not allowed in a redefinition.

The REDEFINE option redefines byte positions of a field from left to right, regardless of the format.
Byte positions must match between original field and redefined field(s).

The redefinition must be specified immediately after the definition of the original field.
Example 1:

In the following example, the database field BIRTH is redefined as three new user-defined variables:

DEFINE DATA LOCAL
01 EMPLOY-VIEW VIEW OF STAFFDDM
02 NAME
02 BIRTH
02 REDEFINE BIRTH
03 #BIRTH-YEAR (N4)
03 #BIRTH-MONTH (N2)
03 #fBIRTH-DAY (N2)
END-DEFINE

Example 2:

In the following example, the group #VAR2, which consists of two user-defined variables of format
N and P respectively, is redefined as a variable of format A:

DEFINE DATA LOCAL
01 #VARL (A15)
01 #VAR2
02 F#VAR2A (N4.1)
02 #fVAR2B (P6.2)
01 REDEFINE #VAR2
02 #VAR2RD (A10)
END-DEFINE

With the notation FILLER nX you can define n filler bytes - that is, segments which are not to be
used - in the field that is being redefined. (The definition of trailing filler bytes is optional.)

176 Programming Guide

Redefining Fields

Example 3:

In the following example, the user-defined variable #FIELD is redefined as three new user-defined
variables, each of format/length A2. The FILLER notations indicate that the 3rd and 4th and 7th to
10th bytes of the original field are not be used.

DEFINE DATA LOCAL
1 #FIELD (Al2)
1 REDEFINE #FIELD
2 {fRFIELD1 (A2)
2 FILLER 2X
2 {fRFIELD2 (A2)
2 FILLER 4X
2 {fRFIELD3 (A2)
END-DEFINE

Example Program lllustrating the Use of a Redefinition

The following program illustrates the use of a redefinition:

** Example 'DDATAXO1': DEFINE DATA
khkhkkhkkhkhkhkhkhkhkhhkhkhkhkkhkhhkhhhkhkhhkhkhkhkhkhhhhkhkhhkhhkhkhkhhkhhhkhkhhkhhkhkhkhkhkhhkhkhkhkhhhkhkhkhkhhhkhkhkkxk
DEFINE DATA LOCAL
01 VIEWEMP VIEW OF EMPLOYEES
02 NAME
02 FIRST-NAME
02 SALARY (1:1)
*
01 #PAY (N9)
01 REDEFINE #PAY
02 FILLER 3X

02 fUSD (N3)
02 4000 (N3)
END-DEFINE

*

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'
MOVE SALARY (1) TO {fPAY
DISPLAY NAME FIRST-NAME #PAY #USD #000
END-READ
END

Output of Program DDATAXO01:

Note how #PAY and the fields resulting from its definition are displayed:

Programming Guide 177

Redefining Fields

Page 1 04-11-11 14:15:54
NAME FIRST-NAME EPAY #USD #000
JONES VIRGINTIA 46000 46 0
JONES MARSHA 50000 50 0
JONES ROBERT 31000 31 0
P
178 Programming Guide

28 Arrays

B DEFINING AITAYS ..ttt ettt 180
B Nitial VAIUES FOT AITAYS ...ttt e e et e e e et e e e e e ees 181
= Assigning Initial Values to One-DImensional AITaYSccvurieeiiiieiee e 181
= Assigning Initial Values to TWo-DImensional ArTaysc..eviiiiiiiiiiiiii e 182
B A THree-DimENSIONAI AITAYvvei e 186
= Arrays as Part of @ Larger Data STrUCIUIEoooiiiiiiiiii e 188
B D AADASE AITAYS ... 188
= Using Arithmetic Expressions in Index NOtationcooiiiiiiiiiiii e 189
B Arithmetic SUPPOM FOT ATAYS ...ttt e e e e e 189

179

Arrays

Natural supports the processing of arrays. Arrays are multi-dimensional tables, that is, two or
more logically related elements identified under a single name. Arrays can consist of single data
elements of multiple dimensions or hierarchical data structures which contain repetitive structures
or individual elements.

Defining Arrays

In Natural, an array can be one-, two- or three-dimensional. It can be an independent variable,
part of a larger data structure or part of a database view.

A\ Important: Dynamic variables are not allowed in an array definition.

> To define a one-dimensional array

» After the format and length, specify a slash followed by a so-called “index notation”, that is,
the number of occurrences of the array.

For example, the following one-dimensional array has three occurrences, each occurrence
being of format/length A10:

DEFINE DATA LOCAL
1 #FARRAY (A10/1:3)
END-DEFINE

> To define a two-dimensional array
» Specify an index notation for both dimensions:

DEFINE DATA LOCAL
1 #fARRAY (A10/1:3,1:4)
END-DEFINE

A two-dimensional array can be visualized as a table. The array defined in the example above
would be a table that consists of 3 “rows” and 4 “columns”:

180 Programming Guide

Arrays

Initial Values for Arrays

To assign initial values to one or more occurrences of an array, you use an INIT specification,
similar to that for “ordinary” variables, as shown in the following examples.

Assigning Initial Values to One-Dimensional Arrays

The following examples illustrate how initial values are assigned to a one-dimensional array.

® To assign an initial value to one occurrence, you specify:

1 fFARRAY (A1/1:3) INIT (2) <'A'>

A is assigned to the second occurrence.

To assign the same initial value to all occurrences, you specify:

1 ffARRAY (A1/1:3) INIT ALL <'A'>

A is assigned to every occurrence. Alternatively, you could specify:

1 ffARRAY (A1/1:3) INIT (*) <'A'>

To assign the same initial value to a range of several occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (2:3) <'A'>

A is assigned to the second to third occurrence.

* To assign a different initial value to every occurrence, you specify:

Programming Guide 181

Arrays

1 #ARRAY (A1/1:3) INIT <'A','B','C'>

A is assigned to the first occurrence, B to the second, and C to the third.

® To assign different initial values to some (but not all) occurrences, you specify:

1 ffARRAY (A1/1:3) INIT (1) <'A'> (3) <'C'>

A is assigned to the first occurrence, and C to the third; no value is assigned to the second occur-
rence.

Alternatively, you could specify:
1 #ARRAY (A1/1:3) INIT <'A',,'C'>
® If fewer initial values are specified than there are occurrences, the last occurrences remain empty:

1 ffARRAY (A1/1:3) INIT <'A','B'>

A is assigned to the first occurrence, and B to the second; no value is assigned to the third occur-
rence.

Assigning Initial Values to Two-Dimensional Arrays

This section illustrates how initial values are assigned to a two-dimensional array. The following
topics are covered:

= Preliminary Information
= Assigning the Same Value
= Assigning Different Values

Preliminary Information

For the examples shown in this section, let us assume a two-dimensional array with three occur-
rences in the first dimension (“rows”) and four occurrences in the second dimension (“columns”):

1 fARRAY (A1/1:3,1:4)

182 Programming Guide

Arrays

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(L1)[(1,2)[(1,3) |(1,4)
(21)[(22)|(23)|(24)
(3,1)|(3,2)|(3,3)|(34)

The first set of examples illustrates how the same initial value is assigned to occurrences of a two-
dimensional array; the second set of examples illustrates how different initial values are assigned.

In the examples, please note in particular the usage of the notations * and V. Both notations refer
to all occurrences of the dimension concerned: * indicates that all occurrences in that dimension
are initialized with the same value, while V indicates that all occurrences in that dimension are
initialized with different values.

Assigning the Same Value

® To assign an initial value to one occurrence, you specify:

1 fFARRAY (A1/1:3,1:4) INIT (2,3) <'A'>

* To assign the same initial value to one occurrence in the second dimension - in all occurrences
of the first dimension - you specify:

1 JFARRAY (A1/1:3,1:4) INIT (*,3) <'A'>

A
A
A

* To assign the same initial value to a range of occurrences in the first dimension - in all occurrences
of the second dimension - you specify:

Programming Guide 183

Arrays

1 #ARRAY (A1/1:3,1:4) INIT (2:3,*%) <'A'>

>
>
>
>

* To assign the same initial value to a range of occurrences in each dimension, you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <'A'>

>
>

* To assign the same initial value to all occurrences (in both dimensions), you specify:

1 #ARRAY (A1/1:3,1:4) INIT ALL <'A'>

AlAAA
AlAA|A
AlAA|A

Alternatively, you could specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,*) <'A'>

Assigning Different Values

= 1 #ARRAY (A1/1:3,1:4) INIT (V,2) <'A'",'B','C'>

A
B

184

Programming Guide

Arrays

1 fFARRAY

|
=
==
>
o)
X
>
=<

= 1 fARRAY

A

A

A

A

C

C

C

C

= 1 ffARRAY

= 1 ffARRAY

1 #FARRAY

(A1/1:

(A1/1:

(AL1/1:

(A1/1:

(A1/1:

(A1/1:

:4)

:4)

:4)

:4)

:4)

:4)

INIT

INIT

INIT

INIT

INIT

INIT

(V,2:3) <'A",'B",'C'>

(v,

QU

(v,

(v,

(3

*)

*)

*)

D)

V)

<UAY,

<UAY,,

<UAY,

<A

<A,

IBI’

'B'>

’|B|’|C|> (V,3) <|D|’|E|’|Fl>

IBI’

'C'>

"CT>

ICI’

IDI>

Programming Guide

185

Arrays

= 1 JfARRAY (A1/1:3,1:4) INIT (*,V) <'A','B','C','D'>

>
=
@)
O

= 1 ffARRAY (A1/1:3,1:4) INIT (2,1) <'A'> (*,2) <'B'> (3,3) <'C'> (3,4) <'D'>

B|C|D

= 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <'A'> (V,2) <'B','C','D'> (3,3) <'E'> (3,4) <'F'>

A Three-Dimensional Array

A three-dimensional array could be visualized as follows:

186 Programming Guide

Arrays

The array illustrated here would be defined as follows (at the same time assigning an initial value
to the highlighted field in Row 1, Column 2, Plane 2):

DEFINE DATA LOCAL
1 fFARRAY?2
2 #FROW (1:4)
3 #COLUMN (1:3)
4 #PLANE (1:3)
5 #FIELD2 (P3) INIT (1,2,2) <100>
END-DEFINE

If defined as a local data area in the data area editor, the same array would look as follows:

I T L Name F Leng Index/Init/EM/Name/Comment
1 #FARRAY?2
2 {FROW (1:4)
3 JFCOLUMN (1:3)
4 JFPLANE (1:3)
I 5 JfFIELD2 P 3 o

Programming Guide 187

Arrays

Arrays as Part of a Larger Data Structure

The multiple dimensions of an array make it possible to define data structures analogous to COBOL
or PL1 structures.

Example:

DEFINE DATA LOCAL
1 ffAREA
2 #fFIELDL (Al0)
2 #GROUP1 (1:10)
3 #fFIELD2 (P2)
3 JfFIELD3 (N1/1:4)
END-DEFINE

In this example, the data area #AREA has a total size of:

10+ (10 * (2 + (1 * 4))) bytes =70 bytes

#FIELDL is alphanumeric and 10 bytes long. #GROUP1 is the name of a sub-area within #AREA, which
consists of 2 fields and has 10 occurrences. #FIELD?2 is packed numeric, length 2. #FIELD3 is the
second field of #GROUP1 with four occurrences, and is numeric, length 1.

To reference a particular occurrence of #FIELD3, two indices are required: first, the occurrence of
#GROUP1 must be specified, and second, the particular occurrence of #FIELD3 must also be specified.
For example, in an ADD statement later in the same program, #FIELD3 would be referenced as follows:

ADD 2 TO #FIELD3 (3,2)

Database Arrays

Adabas supports array structures within the database in the form of multiple-value fields and
periodic groups. These are described under Database Arrays.

The following example shows a DEFINE DATA view containing a multiple-value field:

188 Programming Guide

Arrays

DEFINE DATA LOCAL
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 NAME

2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD
END-DEFINE

The same view in a local data area would look as follows:

I T L Name F Leng Index/Init/EM/Name/Comment
V 1 EMPLOYEES-VIEW EMPLOYEES
2 NAME A 20
M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation

A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

MA (I:1+5) Values of the field MA are referenced, beginning with value I and ending with value I+5.

MA (I+2:J-3) |Values of the field MA are referenced, beginning with value I+2 and ending with value
J-3.

Only the arithmetic operators plus (+) and minus (-) may be used in index expressions.

Arithmetic Support for Arrays

Arithmetic support for arrays include operations at array level, at row/column level, and at indi-
vidual element level.

Only simple arithmetic expressions are permitted with array variables, with only one or two op-
erands and an optional third variable as the receiving field.

Only the arithmetic operators plus (+) and minus (-) are allowed for expressions defining index
ranges.

Programming Guide 189

Arrays

Examples of Array Arithmetics
The following examples assume the following field definitions:

DEFINE DATA LOCAL

01 #fA (N5/1:10,1:10)
01 #B (N5/1:10,1:10)
01 #C (N5)
END-DEFINE

1. ADD #FAC(*,*) TO #B(*,*)
The result operand, array #B, contains the addition, element by element, of the array #A and the
original value of array #B.

2. ADD 4 TO #A(*,2)

The second column of the array #A is replaced by its original value plus 4.

3. ADD 2 TO #A(2,*)

The second row of the array #A is replaced by its original value plus 2.

4. ADD #A(2,*) TO #B(4,*)

The value of the second row of array #A is added to the fourth row of array #8.

5. ADD #A(2,*) TO #B(*,2)
This is an illegal operation and will result in a syntax error. Rows may only be added to rows
and columns to columns.

6. ADD #A(2,*) TO #C

All values in the second row of the array #A are added to the scalar value #C.

7. ADD #A(2,5:7) TO #C

The fifth, sixth, and seventh column values of the second row of array #A are added to the
scalar value #C.

190 Programming Guide

29 X-Arrays

L B 1= 1104 PSP PPPPRRSR PP 192
= Storage Management Of X-ATTAYSciuiiiiieiiie ettt e e e e et e e et e e e e e e e 193
= Storage Management Of X-GroUDP AITAYSccouuuriiriiiiie ettt 193
B REFEIENCING @N K-AITAY ..ttt e et 195
= Parameter Transfer With X-AITAYScooiiiiiiiie e 196
= Parameter Transfer With X-Group ATQYScuuviiiiiiii e 197
= X-Array of DynamiC Variablesvvviiiiiiiiiiiiie e 198
= | ower and Upper BouNd Of N AITAYooiiiiiiiiiiie e 199

191

X-Arrays

When an ordinary array field is defined, you have to specify the index bounds exactly, hence the
number of occurrences for each dimension. At runtime, the complete array field is existent by
default; each of its defined occurrences can be accessed without performing additional allocation
operations. The size layout cannot be changed anymore; you may neither add nor remove field
occurrences.

However, if the number of occurrences needed is unknown at development time, but you want
to flexibly increase or decrease the number of the array fields at runtime, you should use what is
called an X-array (eXtensible array).

An X-array can be resized at runtime and can help you manage memory more efficiently. For ex-
ample, you can use a large number of array occurrences for a short time and then reduce memory
when the application is no longer using the array.

Definition

An X-array is an array of which the number of occurrences is undefined at compile time. It is
defined in a DEFINE DATA statement by specifying an asterisk (*) for at least one index bound of
at least one array dimension. An asterisk (*) character in the index definition represents a variable
index bound which can be assigned to a definite value during program execution. Only one bound
- either upper or lower - may be defined as variable, but not both.

An X-array can be defined whenever a (fixed) array can be defined, i.e. at any level or even as an
indexed group. It cannot be used to access MU-/PE-fields of a database view. A multidimensional
array may have a mixture of constant and variable bounds.

Example:

DEFINE DATA LOCAL

1 #X-ARR1 (A5/1:%) /* Tower bound is fixed at 1, upper bound is variable
1 #X-ARR2 (A5/%) /* shortcut for (Ab5/1:%)

1 #X-ARR3 (A5/*:100) /* lower bound is variable, upper bound is fixed at 100
1 #X-ARR4 (A5/1:10,1:%) /* 1st dimension has a fixed index range with (1:10)
END-DEFINE /* 2nd dimension has fixed lTower bound 1 and variable «

upper bound

192 Programming Guide

X-Arrays

Storage Management of X-Arrays

Occurrences of an X-array must be allocated explicitly before they can be accessed. To increase or
decrease the number of occurrences of a dimension, the statements EXPAND, RESIZE and REDUCE
may be used.

However, the number of dimensions of the X-array (1, 2 or 3 dimensions) cannot be changed.

Example:

DEFINE DATA LOCAL

1 #X-ARR(I4/10:%*)

END-DEFINE

EXPAND ARRAY #X-ARR TO (10:10000)

/* #X-ARR(10) to #X-ARR(10000) are accessible

WRITE *LBOUNDC(HX-ARR) /* is 10
UBOUND (#X-ARR) / is 10000
0OCCURRENCE (#£X-ARR) / is 9991
#X-ARR(*) := 4711 /* same as #X-ARR(10:10000) := 4711

/* resize array from current lTower bound=10 to upper bound =1000
RESIZE ARRAY #X-ARR TO (*:1000)

/* #X-ARR(10) to #X-ARR(1000) are accessible

/* #X-ARR(1001) to #X-ARR(10000) are released

WRITE *LBOUND(#X-ARR) /* is 10
UBOUND (#X-ARR) / is 1000
0CCURRENCE (#X-ARR) / is 991

/* release all occurrences
REDUCE ARRAY #X-ARR TO 0
WRITE *OCCURRENCE(#X-ARR) /* is 0

Storage Management of X-Group Arrays

If you want to increase or decrease occurrences of X-group arrays, you must distinguish between
independent and dependent dimensions.

A dimension which is specified directly (not inherited) for an X-(group) array is independent.
A dimension which is not specified directly, but inherited for an array is dependent.

Only independent dimensions of an X-array can be changed in the statements EXPAND, RESIZE and
REDUCE; dependent dimensions must be changed using the name of the corresponding X-group
array which owns this dimension as independent dimension.

Programming Guide 193

X-Arrays

Example - Independent/Dependent Dimensions:

DEFINE DATA LOCAL

1 #X-GROUP-ARRL(1:%) /* (1:%)
2 #X-ARRL (14) /% (1:%)
2 #X-ARR2 (I4/2:%) /3= (g% ,23%)
2 #X-GROUP-ARR2 /% (1:%)
3 ##X-ARR3 (14) /* (1:%)
3 #X-ARR4 (14/3:%) 7% (a* ,3s%)
3 #X-ARRS (I4/4:%, 5:%) /% (le*,4:%,5:%)
END-DEFINE

The following table shows whether the dimensions in the above program are independent or de-
pendent.

Name Dependent Dimension |Independent Dimension
##X-GROUP-ARR1 (1:%)

##X-ARR1 (1:%)

##X- ARR2 (1:%) (2:%)
##X-GROUP-ARR2[(1:%)

##X-ARR3 (1:%)

X -ARR4 (1:%) (3:%)

fEX - ARRS (1:%) (4:%,5:%)

The only index notation permitted for a dependent dimension is either a single asterisk (*), a range
defined with asterisks (*:*) or the index bounds defined.

This is to indicate that the bounds of the dependent dimension must be kept as they are and cannot
be changed.

The occurrences of the dependent dimensions can only be changed by manipulating the corres-
ponding array groups.

EXPAND ARRAY #X-GROUP-ARR1I TO (1:11) /* #X-ARR1(1:11) are allocated

/* #X-ARR3(1:11) are allocated
EXPAND ARRAY HX-ARR2 TO (*:*, 2:12) /* {EX-ARR2(1:11, 2:12) are allocated
EXPAND ARRAY #X-ARR2 TO (1:*, 2:12) /* same as before
EXPAND ARRAY #X-ARR2 TO (* , 2:12) /* same as before
EXPAND ARRAY #X-ARR4 TO (*:*, 3:13) /* #X-ARR4(1:11, 3:13) are allocated

EXPAND ARRAY #X-ARR5 TO (*:*, 4:14, 5:15) /* #fX-ARR5(1:11, 4:14, 5:15) are allocated
The EXPAND statements may be coded in an arbitrary order.

The following use of the EXPAND statement is not allowed, since the arrays only have dependent
dimensions.

194 Programming Guide

X-Arrays

EXPAND ARRAY #X-ARRL1 TO ...
EXPAND ARRAY #X-GROUP-ARR2 TO ...
EXPAND ARRAY #X-ARR3 TO ...

Referencing an X-Array

The occurrences of an X-array must be allocated by an EXPAND or RESIZE statement before they
can be accessed.

As a general rule, an attempt to address a non existent X-array occurrence leads to a runtime error.
In some statements, however, the access to a non materialized X-array field does not cause an error
situation if all occurrences of an X-array are referenced using the complete range notation, for ex-
ample: #X - ARR(*). This applies to

" parameters used in a CALL statement,

" parameters used in the statements CALLNAT, PERFORM or OPEN DIALOG, if defined as optional
parameters,

® gource fields used in a COMPRESS statement,
® output fields supplied in a PRINT statement,

" fields referenced in a RESET statement.

If individual occurrences of a non materialized X-array are referenced in one of these statements,
a corresponding error message is issued.

Example:

DEFINE DATA LOCAL

1 #fX-ARR (A10/1:*) /* X-array only defined, but not allocated

END-DEFINE

RESET #X-ARR(*) /* no error, because complete field referenced with (*)
RESET #X-ARR(1:3) /* runtime error, because individual occurrences (1:3) are <«
referenced

END <

The asterisk (*) notation in an array reference stands for the complete range of a dimension. If the
array is an X-array, the asterisk is the index range of the currently allocated lower and upper bound
values, which are determined by the system variables *LBOUND and *UBOUND.

Programming Guide 195

X-Arrays

Parameter Transfer with X-Arrays

X-arrays that are used as parameters are treated in the same way as constant arrays with regard
to the verification of the following;:

= format,

" length,

® dimension or

® number of occurrences.

In addition, X-array parameters can also change the number of occurrences using the statement
RESIZE, REDUCE or EXPAND. The question if a resize of an X-array parameter is permitted depends
on three factors:

" the type of parameter transfer used, that is by reference or by value,

" the definition of the caller or parameter X-array, and

" the type of X-array range being passed on (complete range or subrange).

The following tables demonstrate when an EXPAND, RESIZE or REDUCE statement can be applied to
an X-array parameter.

Example with Call By Value

Caller Parameter

Static|Variable (1:V) | X-Array

Static no |no yes

X-array subrange, for example: no |no yes

CALLNAT. . .#XA(1:5)

X-array complete range, for example: |no |no yes

CALLNAT. . XA ()

196 Programming Guide

X-Arrays

Call By Reference/Call By Value Result

Caller Parameter
Static|Variable |X-Array with a fixed |X-Array with a fixed
(1:V) lower bound, e.g. upper bound, e.g.
DEFINE DATA « DEFINE DATA <
PARAMETER PARAMETER
1 #PX (A10/1:*) |1 #PX (A10/*:1)
Static no |no no no
X-array subrange, for example: no |no no no
CALLNAT.. .ffXA(1:5)
X-Array with a fixed lower bound, no |no yes no
complete range, for example:
DEFINE DATA LOCAL
1 #XA(A10/1:%)
CALLNAT. . .4FXA(*)
X-Array with a fixed upper bound, no |no no yes
complete range, for example:
DEFINE DATA LOCAL
1 #XA(A10/*:1)
CALLNAT. . .#EXA(*)

Parameter Transfer with X-Group Arrays

The declaration of an X-group array implies that each element of the group will have the same
values for upper boundary and lower boundary. Therefore, the number of occurrences of dependent
dimensions of fields of an X-group array can only be changed when the group name of the X-
group array is given with a RESIZE, REDUCE or EXPAND statement (see Storage Management of X-

Group Arrays above).

Members of X-group arrays may be transferred as parameters to X-group arrays defined in a
parameter data area. The group structures of the caller and the callee need not necessarily be

Programming Guide

197

X-Arrays

identical. A RESIZE, REDUCE or EXPAND done by the callee is only possible as far as the X-group array

of the caller stays consistent.

Example - Elements of X-Group Array Passed as Parameters:

Program:

DEFINE DATA LOCAL

1 #£X-GROUP-ARRI(1:%*) 7% (1g%)
2 #X-ARR1 (I14) /% (1:%)
2 X-ARR2 (14) /* (1:%)

1 fX-GROUP-ARR2(1:%) /% (1:%)
2 #X-ARR3 (14) /% (1:%)
2 #X-ARR4 (14) /% (1:%)

END-DEFINE

CALLNAT ... #EX-ARRL(*) #EX-ARR4(*)

END

Subprogram:

DEFINE DATA PARAMETER

1 #X-GROUP-ARR(1:%*) /* (1:%)
2 #X-PARL (I14) /% (1:%)
2 #X-PAR2 (14) /* (1:%)

END-DEFINE

RESIZE ARRAY #X-GROUP-ARR to (1:5)

END

The RESIZE statement in the subprogram is not possible. It would result in an inconsistent number

of occurrences of the fields defined in the X-group arrays of the program.

X-Array of Dynamic Variables

An X-array of dynamic variables may be allocated by first specifying the number of occurrences
using the EXPAND statement and then assigning a value to the previously allocated array occurrences.

198

Programming Guide

X-Arrays

Example:

DEFINE DATA LOCAL
1 #X-ARRAY(A/1:*) DYNAMIC
END-DEFINE
EXPAND ARRAY JX-ARRAY TO (1:10)
/* allocate #X-ARRAY(1) to #X-ARRAY(10) with zero length.
/* *LENGTH(4X-ARRAY(1:10)) is zero
#FX-ARRAY (*) := 'abc'
/* ##X-ARRAY(1:10) contains 'abc',
/* *LENGTH(#X-ARRAY(1:10)) is 3
EXPAND ARRAY JX-ARRAY TO (1:20)
/* allocate #X-ARRAY(11) to #X-ARRAY(20) with zero length
/* *LENGTH(4X-ARRAY(11:20)) is zero
X-ARRAY (11:20) := 'def'
/* JX-ARRAY(11:20) contains 'def'
/* *LENGTH(4X-ARRAY(11:20)) is 3

Lower and Upper Bound of an Array

The system variables * LBOUND and *UBOUND contain the current lower and upper bound of an array
for the specified dimension(s): (1,2 or 3).

If no occurrences of an X-array have been allocated, the access to *LBOUND or *UBOUND is undefined
for the variable index bounds, that is, for the boundaries that are represented by an asterisk (*)
character in the index definition, and leads to a runtime error. In order to avoid a runtime error,
the system variable *0CCURRENCE may be used to check against zero occurrences before *LBOUND
or *UBOUND is evaluated:

Example:

IF *OCCURRENCE (#fA) NE 0 AND *UBOUND(#A) < 100 THEN ...

Programming Guide 199

200

V Database Access

This part describes various aspects of accessing data in a database with Natural.

| Note: On principle, the features and examples described for Adabas also apply to other

database management systems. Differences, if any, are described in the relevant sections
of the Database Management System Interfaces documentation, the Statements documentation
or the Parameter Reference.

Natural and Database Access
Accessing Data in an Adabas Database
Accessing Data in an SQL Database
Accessing Data in a VSAM Database
Accessing Data in a DL/I Database

See also DBMS Interface - Database Access for a description of the Natural database interfaces for
the various types of database management and file management systems.

201

202

30 Natural and Database Access

= Database Management Systems Supported by Naturalcccooiiiiiiii e 204
= Profile Parameters Influencing Database ACCESSoeviiiiiiiiiiiiii et 205
= Access through Data Definition MOQUIESoooiiiiiiiiiiie s 205
= Natural's Data Manipulation LANQUAGEccoiuriiiiiiiiii e 206
= Natural's Special SQL StAEMENTSooiiiiiiie e 207

203

Natural and Database Access

This chapter gives an overview of the facilities that Natural provides for accessing different types
of database management and file management systems.

Database Management Systems Supported by Natural

Natural offers specific database interfaces for the following types of database management systems
(DBMS):

® Nested-relational DBMS (Adabas)

® SQL-type DBMS (DB2 (SQL/DS), Oracle, Sybase, Informix, MS SQL Server)

* File systems (VSAM)

= DL/

The following topics are covered below:

= Adabas

= SQL Databases
= \VSAM

= DL/|

Adabas

Viaits integrated Adabas interface, Natural can access Adabas databases either on a local machine
or on remote computers. For remote access, an additional routing and communication software
such as Entire Net-Work is necessary. In any case, the type of host machine running the Adabas
database is transparent for the Natural user.

SQL Databases

Natural for DB2 offers one common set of statements to access DB2 and SQL/DS database manage-
ment systems. For detailed information, refer to the appropriate add-on product description in
the Database Management System Interfaces documentation:

® Natural for DB2

® Natural for SQL/DS

® Natural SQL Gateway

204 Programming Guide

Natural and Database Access

VSAM

With the Natural interface to VSAM, a Natural user can access data stored in VSAM files. For de-
tailed information and special considerations on the use of Natural statements and system variables
with VSAM, see Natural for VSAM in the Database Management System Interfaces documentation.

DL/

With Natural for DL/I, a Natural user can access and update data stored in a DL/I database. The
Natural user can be executing in batch mode or under the control of the TP monitor CICS or IMS
TM. A DL/I database is represented to Natural as a set of files, each file representing one database
segment type. Each file or segment type must have an associated DDM generated and stored on
the Natural FDIC system file.

The Natural statements used to access DL/I databases are a subset of those provided with the
Natural language. No new statements are needed to access a DL/I database.

For further information, see Natural for DL/I in the Database Management System Interfaces document-
ation.

Profile Parameters Influencing Database Access

There are various Natural profile parameters to define how Natural handles the access to databases.

For an overview of these profile parameters, see the section Database Management in Profile Para-
meters Grouped by Category in the Parameter Reference documentation.

For a detailed parameter description, refer to the corresponding section in the Parameter Reference.

Access through Data Definition Modules

To enable convenient and transparent access to the different database management systems, a
special object, the “data definition module” (DDM), is used in Natural. This DDM establishes the
connection between the Natural data structures and the data structures in the database system to
be used. Such a database structure might be a table in an SQL database or a file in an Adabas
database. Hence, the DDM hides the real structure of the database accessed from the Natural ap-
plication. DDMs are created using the Natural DDM editor.

Natural is capable of accessing multiple types of databases (Adabas, DB2, VSAM or DL/I from
within a single application by using references to DDMs that represent the specific data structures
in the specific database system. The diagram below shows an application that connects to different
types of database.

Programming Guide 205

Natural and Database Access

Natural's Data Manipulation Language

Natural has a built-in data manipulation language (DML) that allows Natural applications to access
all database systems supported by Natural using the same language statements such as FIND, READ,
STORE or DELETE. These statements can be used in a Natural application without knowing the type
of database that is going to be accessed.

Natural determines the real type of database system from its configuration files and translates the
DML statements into database-specific commands; that is, it generates direct commands for
Adabas, SQL statement strings and host variable structures for SQL databases.

Because some of the Natural DML statements provide functionality that cannot be supported for
all database types, the use of this functionality is restricted to specific database systems. Please,
note the corresponding database-specific considerations in the statements documentation.

206 Programming Guide

Natural and Database Access

Natural's Special SQL Statements

In addition to the “normal” Natural DML statements, Natural provides a set of SQL statements
for a more specific use in conjunction with SQL database systems; see SQL Statements Overview
(in the Statements documentation).

Flexible SQL and facilities for working with stored procedures complete the set of SQL commands.
These statements can be used for SQL database access only and are not valid for Adabas or other

non-SQL-databases.

Programming Guide 207

208

31 Accessing Data in an Adabas Database

= Data Definition MOAUIES = DDIMISviiieiesiiiiit et e e e e e e e e e e e e 210
B DAEADASE AITAYS ...ttt e ettt e e e e ettt e e e e e et aaeeeas 211
® Defining @ DAtaDASE VIBW ..ot 217
m Statements fOr Datahase ACCESSeiiii it 220
B MULTI-FETCH ClAUSE .ttt ettt e e et e e e e e e e e 231
= Database ProCESSING LOOPSvvviiiiiiiiiiiiitii ettt 235
= Database Update - Transaction ProCESSINGccooiiiiiiiii i, 240
= Selecting Records Using ACCEPT/REJECToiiiiiiiiiiiiiiee e 247
m AT START/END OF DATA StatEBMENTSeeieiiiiiiieeeiiiie ettt e e 251
B UNICOAR DAEA ..o e a e 253

209

Accessing Data in an Adabas Database

This chapter describes various aspects of accessing data in an Adabas database with Natural.

See also Database Management in Profile Parameters Grouped by Category (Parameter Reference docu-
mentation) for an overview of the Natural profile parameters that apply when Natural is used
with Adabas.

Data Definition Modules - DDMs

For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definition module (DDM).

This section covers the following topics:

= Use of Data Definition Modules
= Maintaining DDMs
= Listing/Displaying DDMs

Use of Data Definition Modules

The data definition module contains information about the individual fields of the file - information
which is relevant for the use of these fields in a Natural program. A DDM constitutes a logical
view of a physical database file.

For each physical file of a database, one or more DDMs can be defined. And for each DDM one
or more data views can be defined as described View Definition in the DEFINE DATA statement
documentation and explained in the section Defining a Database View.

E >
Physical file
in database o
— -

210 Programming Guide

Accessing Data in an Adabas Database

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with
the corresponding Natural function).

Maintaining DDMs

Use the system command SYSDDM to invoke the SYSDDM utility. The SYSDDM utility is used to perform
all functions needed for the creation and maintenance of Natural data definition modules.

For further information on the SYSDDM utility, see the section SYSDDM Utility in the Editors docu-
mentation.

For each database field, a DDM contains the database-internal field name as well as the “external”
field name, that is, the name of the field as used in a Natural program. Moreover, the formats and
lengths of the fields are defined in the DDM, as well as various specifications that are used when
the fields are output with a DISPLAY or WRITE statement (column headings, edit masks, etc.).

For the field attributes defined in a DDM, refer to Using the DDM Editor in the section SYSDDM
Utility of the Editors documentation.

Listing/Displaying DDMs

If you do not know the name of the DDM you want, you can use the system command LIST DDM
to get a list of all existing DDMs that are available in the current library. From the list, you can
then select a DDM for display.

To display a DDM whose name you know, you use the system command LIST DDM ddm-name.

For example:

LIST DDM EMPLOYEES

A list of all fields defined in the DDM will then be displayed, along with information about each
field. For the field attributes defined in a DDM, refer to SYSDDM Utility in the Editors document-
ation.

Database Arrays

Adabas supports array structures within the database in the form of multiple-value fields and
periodic groups.

This section covers the following topics:

= Multiple-Value Fields
= Periodic Groups
= Referencing Multiple-Value Fields and Periodic Groups

Programming Guide 211

Accessing Data in an Adabas Database

= Multiple-Value Fields within Periodic Groups
= Referencing Multiple-Value Fields within Periodic Groups
= Referencing the Internal Count of a Database Array

Multiple-Value Fields

A multiple-value field is a field which can have more than one value (up to 65534, depending on
the Adabas version and definition of the FDT) within a given record.

212 Programming Guide

Accessing Data in an Adabas Database

Example:
BARREDA SPAMISH
Mame Languages
(elementary field) (multiple-value field)

Assuming that the above is a record in an employees file, the first field (Name) is an elementary
field, which can contain only one value, namely the name of the person; whereas the second field
(Languages), which contains the languages spoken by the person, is a multiple-value field, as a
person can speak more than one language.

Periodic Groups

A periodic group is a group of fields (which may be elementary fields and/or multiple-value fields)
that may have more than one occurrence (up to 65534, depending on the Adabas version and
definition of the field definition table (FDT)) within a given record.

The different values of a multiple-value field are usually called “occurrences”; that is, the number
of occurrences is the number of values which the field contains, and a specific occurrence means
a specific value. Similarly, in the case of periodic groups, occurrences refer to a group of values.

Programming Guide 213

Accessing Data in an Adabas Database

Example:

RODRIGUEZ B-123ABC SEAT [BIZA ‘

Name Reg. No. Make Model
(elementary field)

Cars
(periodic group)

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field
which contains the name of a person; Cars is a periodic group which contains the automobiles
owned by that person. The periodic group consists of three fields which contain the registration
number, make and model of each automobile. Each occurrence of Cars contains the values for one
automobile.

Referencing Multiple-Value Fields and Periodic Groups

To reference one or more occurrences of a multiple-value field or a periodic group, you specify
an “index notation” after the field name.

Examples:

The following examples use the multiple-value field LANGUAGES and the periodic group CARS from
the previous examples.

The various values of the multiple-value field LANGUAGES can be referenced as follows.

214 Programming Guide

Accessing Data in an Adabas Database

Example Explanation

LANGUAGES (1) References the first value (SPANISH).

LANGUAGES (X) The value of the variable X determines the value to be referenced.
LANGUAGES (1:3) [References the first three values (SPANISH, CATALAN and FRENCH).
LANGUAGES (6:10) |References the sixth to tenth values.

LANGUAGES (X:Y) |The values of the variables X and Y determine the values to be referenced.

The various occurrences of the periodic group CARS can be referenced in the same manner:

Example Explanation

CARS (1) References the first occurrence (B-123ABC/SEAT/IBIZA).

CARS (X) The value of the variable X determines the occurrence to be referenced.
CARS (1:2) |References the first two occurrences (B-123ABC/SEAT/IBIZA and B-999XYZ/VW/GOLF).

CARS (4:7) |References the fourth to seventh occurrences.

CARS (X:Y) |The values of the variables X and Y determine the occurrences to be referenced.

Multiple-Value Fields within Periodic Groups

An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Programming Guide 215

Accessing Data in an Adabas Database

Example:

RODRIGUEZ B-123ABC a1-05-97 SEAT ‘
Name Reg. No. Servicing Make
(elementary field) (multiple-value
field)
Cars

(periodic group)

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field
which contains the name of a person; Cars is a periodic group, which contains the automobiles
owned by that person. This periodic group consists of three fields which contain the registration
number, servicing dates and make of each automobile. Within the periodic group Cars, the field
Servicing is a multiple-value field, containing the different servicing dates for each automobile.

Referencing Multiple-Value Fields within Periodic Groups

To reference one or more occurrences of a multiple-value field within a periodic group, you specify
a “two-dimensional” index notation after the field name.

Examples:

The following examples use the multiple-value field SERVICING within the periodic group CARS
from the example above. The various values of the multiple-value field can be referenced as follows:

216 Programming Guide

Accessing Data in an Adabas Database

Example Explanation
SERVICING (1,1) References the first value of SERVICING in the first occurrence of CARS
(31-05-97).

SERVICING (1:5,1) References the first value of SERVICING in the first five occurrences of CARS.

SERVICING (1:5,1:10) |References the first ten values of SERVICING in the first five occurrences of
CARS.

Referencing the Internal Count of a Database Array

It is sometimes necessary to reference a multiple-value field or a periodic group without knowing
how many values/occurrences exist in a given record. Adabas maintains an internal count of the
number of values in each multiple-value field and the number of occurrences of each periodic
group. This count may be read in a READ statement by specifying C* immediately before the field
name.

The count is returned in format/length N3. See Referencing the Internal Count for a Database
Array for further details.

Example Explanation
C*LANGUAGES Returns the number of values of the multiple-value field LANGUAGES.
C*CARS Returns the number of occurrences of the periodic group CARS.

C*SERVICING (1) |Returns the number of values of the multiple-value field SERVICING in the first
occurrence of a periodic group (assuming that SERVICING is a multiple-value field
within a periodic group.)

Defining a Database View

To be able to use database fields in a Natural program, you must specify the fields in a database
view.

In the view, you specify the name of the data definition module (see Data Definition Modules -
DDMs) from which the fields are to be taken, and the names of the database fields (see Field
Definitions) themselves (that is, their long names, not their database-internal short names).

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view
need not be the same as in the underlying DDM.

As described in the section Statements for Database Access, the view name is used in the statements
READ, FIND, HISTOGRAM to determine which database is to be accessed.

For further information on the complete syntax of the view definition option or on the definition/re-
definition of a group of fields, see View Definition in the description of the DEFINE DATA statement
in the Statements documentation.

Programming Guide 217

Accessing Data in an Adabas Database

Basically, you have the following options to define a database view:

* Inside the Program
You can define a database view inside the program, that is, directly within the DEFINE DATA
statement of the program.

® Outside the Program
You can define a database view outside the program, that is, in a separate object: either a local
data area (LDA) or a global data area (GDA), with the DEFINE DATA statement of the program
referencing that data area.

> To define a database view inside the program
1 AtLevel 1, specify the view name as follows:

1 view-name VIEW OF ddm-name

where view-name is the name you choose for the view, ddm-name is the name of the DDM
from which the fields specified in the view are taken.
2 AtLevel 2, specify the names of the database fields from the DDM.

In the illustration below, the name of the view is ABC, and it comprises the fields NAME,
FIRST-NAME and PERSONNEL-ID from the DDM XY7Z.

Fhysical File In Database DO "Xy 2" Wiew
Flelds: Fields: DEFINE DATA LOCAL
AA AA PERSONNEL-ID 18 1 ABC VIEW OF XYZ
BB BB NAME A20 2 NAME
cc CCFIRST-NAME A20 2 FIRST-NAME
DD DD BIRTH N8 2 PERSONNEL-ID
EE P EpjoBTITLE A250 ® END-DEFINE

In the view, the format and length of a database field need not be specified, as these are already
defined in the underlying DDM.

Sample Program:

218 Programming Guide

Accessing Data in an Adabas Database

In this example, the view-nameis VIEWEMP, and the ddm-name is EMPLOYEES, and the names of
the database fields taken from the DDM are NAME, FIRST-NAME and PERSONNEL-1ID.

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)

1 J/VARI-B (N3.2)

1 #VARI-C (I14)

END-DEFINE

> To define a database view outside the program
1 In the program, specify:

DEFINE DATA LOCAL
USING <data-area-name>
END-DEFINE

where data-area-name is the name you choose for the local or global data area, for example,
LDA39.

2 In the data area to be referenced:

1. AtLevel 1 in the Name column, specify the name you choose for the view, and in the
Miscellaneous column, the name of the DDM from which the fields specified in the view
are taken.

2. At Level 2, specify the names of the database fields from the DDM.
Example LDA39:

In this example, the view name is VIEWEMP, the DDM name is EMPLOYEES, and the names
of the database fields taken from the DDM are PERSONNEL-1ID, FIRST-NAME and NAME.

I T L Name F Length Miscellaneous ©
AJ] == =================s=======c======= = ========== ===s==s==s=s===s=c=c======= >
V1 VIEWEMP EMPLOYEES ©
2 PERSONNEL-ID A 8 ©

2 FIRST-NAME A 20 ©

2 NAME A 20 ©

Programming Guide 219

Accessing Data in an Adabas Database

1 JVARI-A A 20 .
1 #VARI-B N 3.2 .
1 JVARI-C I 4 .

Statements for Database Access

To read data from a database, the following statements are available:

Statement Meaning

READ Select a range of records from a database in a specified sequence.

FIND Select from a database those records which meet a specified search criterion.

HISTOGRAM |Read only the values of one database field, or determine the number of records which meet
a specified search criterion.

READ Statement

The following topics are covered:

= Use of READ Statement

= Basic Syntax of READ Statement

= Example of READ Statement

= | imiting the Number of Records to be Read
= STARTING/ENDING Clauses

= \WWHERE Clause

= Further Example of READ Statement

Use of READ Statement

The READ statement is used to read records from a database. The records can be retrieved from the
database

" in the order in which they are physically stored in the database (READ IN PHYSICAL SEQUENCE),
or

" in the order of Adabas Internal Sequence Numbers (READ BY ISN), or
® in the order of the values of a descriptor field (READ IN LOGICAL SEQUENCE).

In this document, only READ IN LOGICAL SEQUENCE is discussed, as it is the most frequently used
form of the READ statement.

220 Programming Guide

Accessing Data in an Adabas Database

For information on the other two options, please refer to the description of the READ statement in
the Statements documentation.

Basic Syntax of READ Statement

The basic syntax of the READ statement is:

’READ viewIN LOGICAL SEQUENCE BY descriptor

or shorter:

]READ view LOGICAL BY descriptor

- where

view is the name of a view defined in the DEFINE DATA statement and as explained in Defining
a Database View.

descriptor |is the name of a database field defined in that view. The values of this field determine the
order in which the records are read from the database.

If you specify a descriptor, you need not specify the keyword LOGICAL:

READ viewBY descriptor ‘

If you do not specify a descriptor, the records will be read in the order of values of the field defined
as default descriptor (under Default Sequence)in the DDM. However, if you specify no descriptor,
you must specify the keyword LOGICAL:

READ view LOGICAL

Example of READ Statement

** Example 'READX01': READ
Kkhkhkkhkhkkhkhkkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhkrkhhkkhkhkhhkkhkhkhhkkhkhkhhkhkrkhhkkhkhkhhkhkrkhhkhkrkhhkhkrkhhkhkrkhrkhkrkhkrkhxk
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME

2 PERSONNEL-1ID

2 JOB-TITLE
END-DEFINE
*
READ (6) MYVIEW BY NAME

DISPLAY NAME PERSONNEL-ID JOB-TITLE
END-READ
END

Programming Guide 221

Accessing Data in an Adabas Database

Output of Program READX01:

With the READ statement in this example, records from the EMPLOYEES file are read in alphabetical
order of their last names.

The program will produce the following output, displaying the information of each employee in
alphabetical order of the employees' last names.

Page 1 04-11-11 14:15:54
NAME PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order
by date of birth, the appropriate READ statement would be:

READ MYVIEW BY BIRTH

You can only specify a field which is defined as a “descriptor” in the underlying DDM (it can also
be a subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor or a non-descriptor).

Limiting the Number of Records to be Read

As shown in the previous example program, you can limit the number of records to be read by
specifying a number in parentheses after the keyword READ:

READ (6) MYVIEW BY NAME
In that example, the READ statement would read no more than 6 records.

Without the limit notation, the above READ statement would read all records from the EMPLOYEES
file in the order of last names from A to 7.

222 Programming Guide

Accessing Data in an Adabas Database

STARTING/ENDING Clauses

The READ statement also allows you to qualify the selection of records based on the value of a
descriptor field. With an EQUAL TO/STARTING FROM option in the BY clause, you can specify the
value at which reading should begin. (Instead of using the keyword BY, you may specify the
keyword WITH, which would have the same effect). By adding a THRU/ENDING AT option, you can
also specify the value in the logical sequence at which reading should end.

For example, if you wanted a list of those employees in the order of job titles starting with TRAINEE
and continuing on to Z, you would use one of the following statements:

READ MYVIEW WITH JOB-TITLE = '"TRAINEE'

READ MYVIEW WITH JOB-TITLE STARTING FROM 'TRAINEE'
READ MYVIEW BY JOB-TITLE = "TRAINEE'

READ MYVIEW BY JOB-TITLE STARTING FROM 'TRAINEE'

Note that the value to the right of the equal sign (=) or STARTING FROM option must be enclosed in
apostrophes. If the value is numeric, this text notation is not required.

The sequence of records to be read can be even more closely specified by adding an end limit with
a THRU/ENDING AT clause.

To read just the records with the job title TRAINEE, you would specify:

READ MYVIEW BY JOB-TITLE STARTING FROM 'TRAINEE' THRU 'TRAINEE'
READ MYVIEW WITH JOB-TITLE EQUAL TO 'TRAINEE'
ENDING AT 'TRAINEE'

To read just the records with job titles that begin with A or B, you would specify:

READ MYVIEW BY JOB-TITLE = "A" THRU 'C'
READ MYVIEW WITH JOB-TITLE STARTING FROM 'A' ENDING AT 'C'

The values are read up to and including the value specified after THRU/ENDING AT. In the two ex-
amples above, all records with job titles that begin with A or B are read; if there were a job title C,
this would also be read, but not the next higher value CA.

WHERE Clause

The WHERE clause may be used to further qualify which records are to be read.

For instance, if you wanted only those employees with job titles starting from TRAINEE who are
paid in US currency, you would specify:

Programming Guide 223

Accessing Data in an Adabas Database

READ MYVIEW WITH JOB-TITLE = 'TRAINEE'
WHERE CURR-CODE = "'USD'

The WHERE clause can also be used with the BY clause as follows:

READ MYVIEW BY NAME
WHERE SALARY = 20000

The WHERE clause differs from the BY clause in two respects:

® The field specified in the WHERE clause need not be a descriptor.

® The expression following the WHERE option is a logical condition.

The following logical operators are possible in a WHERE clause:

EQUAL EQ|=
NOT EQUAL TO NE [—=
LESS THAN LT|<
LESS THAN OR EQUAL TO LE|<=
GREATER THAN GT|>
GREATER THAN OR EQUAL TO|GE|>=

The following program illustrates the use of the STARTING FROM, ENDING AT and WHERE clauses:

** Example 'READXOZ2': READ (with STARTING, ENDING and WHERE clause)
R R R R R R e e e e R b e e e S e R i e e e e e e R e e e e e e e e e e e e e e e
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 INCOME (1:2)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
*
READ (3) MYVIEW WITH JOB-TITLE
STARTING FROM 'TRAINEE' ENDING AT 'TRAINEE'
WHERE CURR-CODE (*) = "USD'
DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
SKIP 1
END-READ
END

Output of Program READX02:

224 Programming Guide

Accessing Data in an Adabas Database

NAME INCOME
CURRENT
POSITION CURRENCY ~ ANNUAL
CODE SALARY
SENKO usb 23000
TRAINEE UsD 21800
BANGART usD 25000
TRAINEE usb 23000
LINCOLN usb 24000
TRAINEE usD 22000

Further Example of READ Statement

See the following example program:

® READXO03 - READ statement

FIND Statement

The following topics are covered:

= Use of FIND Statement

= Basic Syntax of FIND Statement

= Limiting the Number of Records to be Processed
= \WWHERE Clause

= Example of FIND Statement with WHERE Clause
= |F NO RECORDS FOUND Condition

= Further Examples of FIND Statement

Use of FIND Statement

BONUS

The FIND statement is used to select from a database those records which meet a specified search

criterion.

Programming Guide

225

Accessing Data in an Adabas Database

Basic Syntax of FIND Statement

The basic syntax of the FIND statement is:

’FIND RECORDS IN viewWITH field=value

or shorter:

’FIND viewWITH field=value

- where

view |is the name of a view as defined in the DEFINE DATA statement and as explained in Defining a
Database View.

field |is the name of a database field as defined in that view.

You can only specify a field which is defined as a “descriptor” in the underlying DDM (it can
also be a subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor).

For the complete syntax, refer to the FIND statement documentation.
Limiting the Number of Records to be Processed

In the same way as with the READ statement described above, you can limit the number of records
to be processed by specifying a number in parentheses after the keyword FIND:

FIND (6) RECORDS IN MYVIEW WITH NAME = 'CLEGG'
In the above example, only the first 6 records that meet the search criterion would be processed.
Without the limit notation, all records that meet the search criterion would be processed.

| Note: If the FIND statement contains a WHERE clause (see below), records which are rejected

as a result of the WHERE clause are not counted against the limit.
WHERE Clause
With the WHERE clause of the FIND statement, you can specify an additional selection criterion which

is evaluated after a record (selected with the WITH clause) has been read and before any processing
is performed on the record.

226 Programming Guide

Accessing Data in an Adabas Database

Example of FIND Statement with WHERE Clause

**% Example '"FINDXO1': FIND (with WHERE)
ek e ok ke ok ok ok ko ok o ok ok ok o ok o ko ok o ok ok ok o ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ko
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 CITY
END-DEFINE
*
FIND MYVIEW WITH CITY = '"PARIS'
WHERE JOB-TITLE = '"INGENIEUR COMMERCIAL'
DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
END-FIND
END

Note: In this example only those records which meet the criteria of the WITH clause and the

WHERE clause are processed in the DISPLAY statement.

Output of Program FINDX01:

CITY CURRENT PERSONNEL NAME
POSITION ID

PARIS INGENIEUR COMMERCIAL 50007300 CAHN

PARIS INGENIEUR COMMERCIAL 50006500 MAZUY

PARIS INGENIEUR COMMERCIAL 50004700 FAURIE

PARIS INGENIEUR COMMERCIAL 50004400 VALLY

PARIS INGENIEUR COMMERCIAL 50002800 BRETON

PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX

PARIS INGENIEUR COMMERCIAL 50000400 KORAB-BRZOZOWSKI

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified in the WITH and WHERE clauses, the
statements within the FIND processing loop are not executed (for the previous example, this would
mean that the DISPLAY statement would not be executed and consequently no employee data
would be displayed).

However, the FIND statement also provides an IF NO RECORDS FOUND clause, which allows you to
specify processing you wish to be performed in the case that no records meet the search criteria.

Example:

Programming Guide 227

Accessing Data in an Adabas Database

** Example 'FINDX02': FIND (with IF NO RECORDS FOUND)

R R R o R R b R R e b b e b e e b b R e i b b e e b e i b b R i b b R e S b b S b R R e b b e S b b

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME

END-DEFINE

*

FIND MYVIEW WITH NAME = 'BLACKSMITH'
IF NO RECORDS FOUND
WRITE 'NO PERSON FOUND.'
END-NOREC
DISPLAY NAME FIRST-NAME
END-FIND
END

The above program selects all records in which the field NAME contains the value BLACKSMITH. For
each selected record, the name and first name are displayed. If no record with NAME = 'BLACKSMITH'
is found on the file, the WRITE statement within the IF NO RECORDS FOUND clause is executed.

Output of Program FINDX02:

Page 1 04-11-11 14:15:54

NAME FIRST-NAME

NO PERSON FOUND.
Further Examples of FIND Statement

See the following example programs:

® FINDXO07 - FIND (with several clauses)

FINDXO08 - FIND (with LIMIT)

FINDXO09 - FIND (using *NUMBER, *COUNTER, *ISN)
FINDX10 - FIND (combined with READ)

FINDX11 - FIND NUMBER (with *NUMBER)

228 Programming Guide

Accessing Data in an Adabas Database

HISTOGRAM Statement

The following topics are covered:

= Use of HISTOGRAM Statement

= Syntax of HISTOGRAM Statement

= | imiting the Number of Values to be Read
= STARTING/ENDING Clauses

= \WWHERE Clause

= Example of HISTOGRAM Statement

Use of HISTOGRAM Statement

The HISTOGRAM statement is used to either read only the values of one database field, or determine
the number of records which meet a specified search criterion.

The HISTOGRAM statement does not provide access to any database fields other than the one specified
in the HISTOGRAM statement.

Syntax of HISTOGRAM Statement

The basic syntax of the HISTOGRAM statement is:

‘HISTOGRAM VALUE IN viewFOR field

or shorter:

‘HISTOGRAM viewFOR field

- where

view |is the name of a view as defined in the DEFINE DATA statement and as explained in Defining a
Database View.

field |is the name of a database field as defined in that view.

For the complete syntax, refer to the HISTOGRAM statement documentation.

Programming Guide 229

Accessing Data in an Adabas Database

Limiting the Number of Values to be Read

In the same way as with the READ statement, you can limit the number of values to be read by
specifying a number in parentheses after the keyword HISTOGRAM:

HISTOGRAM (6) MYVIEW FOR NAME
In the above example, only the first 6 values of the field NAME would be read.

Without the limit notation, all values would be read.
STARTING/ENDING Clauses

Like the READ statement, the HISTOGRAM statement also provides a STARTING FROM clause and an
ENDING AT (or THRU) clause to narrow down the range of values to be read by specifying a
starting value and ending value.

Examples:

HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD'
HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD' ENDING AT 'LANIER'
HISTOGRAM MYVIEW FOR NAME from 'BLOOM' THRU 'ROESER'

WHERE Clause

The HISTOGRAM statement also provides a WHERE clause which may be used to specify an additional
selection criterion that is evaluated after a value has been read and before any processing is performed
on the value. The field specified in the WHERE clause must be the same as in the main clause of the
HISTOGRAM statement.

Example of HISTOGRAM Statement

** Example "HISTOX01': HISTOGRAM
khkhkkhkkhkhkhkhkhkkhkhhkhkhkhkkhkhhkhhkhkhkhhkhkhkhkhkhkhhhhkhhhhkhkhkhhkhhhkhkhkhhhkhkhkhkhkhhhkhhkhhhkhkhhkhhhkhkhkkxk
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 CITY
END-DEFINE
*
LIMIT 8
HISTOGRAM MYVIEW CITY STARTING FROM 'M'
DISPLAY NOTITLE CITY 'NUMBER OF/PERSONS' *NUMBER *COUNTER
END-HISTOGRAM
END

In this program, the system variables *NUMBER and *COUNTER are also evaluated by the HISTOGRAM
statement, and output with the DISPLAY statement. *NUMBER contains the number of database records

230 Programming Guide

Accessing Data in an Adabas Database

that contain the last value read; *COUNTER contains the total number of values which have been
read.

Output of Program HISTOXO01:

CITY NUMBER OF CNT
PERSONS

MADTSON 3 1
MADRID 4 2
MATLLY LE CAMP 1 3
MAMERS 1 4
MANSFTELD 4 5
MARSETLLE 2 6
MATLOCK 1 7
ME LBOURNE 2 8
MULTI-FETCH Clause

The MULTI-FETCH clause supports the multi-fetch record retrieval functionality for Adabas databases.

The multi-fetch functionality described in this section is only supported for Adabas. For information
on the multi-fetch record retrieval functionality for DB2 or SQL/DS databases, see Multiple Row
Processing in the Natural for DB2 part of the Database Management System Interfaces documentation.

The following topics are covered:

= Purpose of Multi-Fetch Feature

= Considerations for Multi-Fetch Usage
= Size of the Multi-Fetch Buffer

= TEST DBLOG Support for Multi-Fetch

Purpose of Multi-Fetch Feature

In standard mode, Natural does not read multiple records with a single database call; it always
operates in a one-record-per-fetch mode. This kind of operation is solid and stable, but can take
some time if a large number of database records are being processed.

To improve the performance of those programs, you can use the MULTI - FETCH clause in the FIND,
READ or HISTOGRAM statements. This allows you to define the multi-fetch factor, a numeric value
that specifies the number of records read per database access.

Programming Guide 231

Accessing Data in an Adabas Database

FIND ON
‘ READ] MULTIFETCH‘ OFF l

HISTOGRAM OF multi-fetch-factor

Where the multi-fetch-factoris either a constant or a variable with a format integer (14).

At statement execution time, the runtime checksifamulti-fetch-factor greater than 1is supplied
for the database statement.

Ifthe multi-fetch-factoris:

a negative value |a runtime error is raised.

Oorl the database call is continued in the usual one-record-per-access mode.

2 or greater the database call is prepared dynamically to read multiple records (for example, 10) with
a single database access into an auxiliary buffer (multi-fetch buffer). If successful, the first
record is transferred into the underlying data view. Upon the execution of the next loop,
the data view is filled directly from the multi-fetch buffer, without database access. After
all records have been fetched from the multi-fetch buffer, the next loop results in the next
record set being read from the database. If the database loop is terminated (either by
end-of-records, ESCAPE, STOP, etc.), the content of the multi-fetch buffer is released.

Considerations for Multi-Fetch Usage

® A multi-fetch access is only supported for a browse loop; in other words, when the records are
read with “no hold”.

® The program does not receive “fresh” records from the database for every loop, but operates
with images retrieved at the most recent multi-fetch access.

= If a loop repositioning is triggered for a READ / HISTOGRAM statement, the content of the multi-
fetch buffer at that point is released.

® The multi-fetch feature is not possible and leads to a corresponding syntax error at compilation,

* if a dynamic direction change (IN DYNAMIC...SEQUENCE) is coded for a READ / HISTOGRAM
statement, or

" if an IN SHARED HOLD clause is used in a READ / FIND statement.

* The first record of a FIND loop is retrieved with the initial S1 command. Since Adabas multi-
fetch is just defined for all kinds of Lx commands, it first can be used from the second record.

® The size occupied by a database loop in the multi-fetch buffer is determined according to the
rule:

232 Programming Guide

Accessing Data in an Adabas Database

((record-length + isn-entry-length) * multi-fetch-factor) + 4 + header-length

((size-of-view-fields + 20) * multi-fetch-factor) + 4 + 128

The multi-fetch factor is automatically reduced at runtime if

® the number of records to be read (e.g. READ (2) ..)is less than the multi-fetch factor, but
only if no WHERE clause is involved;

® the number of records selected (*NUMBER in FIND statement) is less than the multi-fetch factor;

= the size of the multi-fetch buffer is not sufficient to receive the number of records requested
by the multi-fetch factor;

Moreover, the multi-fetch option is completely ignored at runtime if

® the multi-fetch factor contains a value less than or equal to 1;

® the multi-fetch buffer is not available or does not have enough free space (for more details,
refer to Size of the Multi-Fetch Buffer below.

Example:

The statement executed is READ MULTI-FETCH 100 EMPL-VIEW BY NAME.

The record size (length of the fields in the EMPL-VIEW view) is 1000 bytes; the multi-fetch buffer
(MULFETCH) size is 64 KB.

At runtime, the multi-fetch factor 100 is automatically reduced to 64 to arrange that the total
record buffer fits into the MULFETCH buffer.

Size of the Multi-Fetch Buffer

In order to control the amount of storage available for multi-fetch purposes, you can limit the
maximum size of the Natural multi-fetch buffer (MULFETCH).

In the Natural parameter module (described in the Operations documentation), you can specify a
static assignment via the parameter macro NTDS:

NTDS MULFETCH, nn

At session start, you can also use the profile parameter DS:

DS=(MULFETCH, nn)

where nn represents the complete size allowed to be allocated for multi-fetch purposes (in KB).
The value may be set in the range (0 - 1024), with a default value of 64. Setting a high value does
not necessarily mean having a buffer allocated of that size, since the multi-fetch handler makes
dynamic allocations and resizes, depending on what is really needed to execute a multi-fetch
database call. If no multi-fetch database call is executed in a Natural session, the multi-fetch buffer
will never be created, regardless of which value was set.

Programming Guide 233

Accessing Data in an Adabas Database

If the value 0 is specified, the multi-fetch processing is completely disabled, no matter if a database
access statement contains a MULTI-FETCH OF ... clause or not. This allows to completely switch
off all multi-fetch activities when there is not enough storage available in the current environment
or for debugging purposes.

Notes:

1. The execution of a multi-fetch call requires an intermediate user buffer area in Adabas. The size
of this buffer is set with the Adabas LU parameter, with a default value of 65535 (64 KB). If the
size of the Adabas LU parameter is less than the size of the Natural MULFETCH buffer, Natural
runtime error NAT3152 (Internal user buffer too small.)can occur during multi-fetch
processing, indicating insufficient user buffer space.

You can avoid such errors by setting the size of the MULFETCH buffer (default is 64 KB) to the
same value or less than the Adabas intermediate buffer size (default is 64 KB, set with the
Adabas LU parameter). This implies that if you increase the MULFETCH buffer, you must increase
the Adabas intermediate user buffer accordingly. Example: set LU=102400 (100 KB) if
DS=(MULFETCH,100).

2. The Natural MULFETCH buffer has an unused reserve space of 6 KB. This prevents Natural
NAT3152 runtime errors that can occur if the Adabas LU parameter is set to 64 KB (default) or
higher, and is the same as or larger than the MULFETCH buffer.

3. A multi-fetch call is usually executed in the ACB (Adabas control block) layout.
However, a multi-fetch call is executed in the ACBX (extended Adabas control block) layout if
all of the following are true:
® The Natural profile parameter ADAACBX is set to ON.

® The total record buffer size (= single record size * multi-fetch factor) of the multi-fetch call is
larger than 32 KB.

® The Natural DB profile parameter is set to Adabas Version 8 (or above) for the database accessed
when the program is cataloged.

® The Natural MULFETCH buffer is larger than 32 KB (default is 64 KB).
TEST DBLOG Support for Multi-Fetch

For information on how multi-fetch related database calls are supported by TEST DBLOG, see DBLOG
Utility, Displaying Adabas Commands that use MULTI-FETCH in the Utilities documentation.

234 Programming Guide

Accessing Data in an Adabas Database

Database Processing Loops

This section discusses processing loops required to process data that have been selected from a
database as a result of a FIND, READ or HISTOGRAM statement.

The following topics are covered:

= Creation of Database Processing Loops

= Hierarchies of Processing Loops

= Example of Nested FIND Loops Accessing the Same File
= Further Examples of Nested READ and FIND Statements

Creation of Database Processing Loops

Natural automatically creates the necessary processing loops which are required to process data
that have been selected from a database as a result of a FIND, READ or HISTOGRAM statement.

Example:

In the following example, the FIND loop selects all records from the EMPLOYEES file in which the
field NAME contains the value ADKINSON and processes the selected records. In this example, the
processing consists of displaying certain fields from each record selected.

** Example 'FINDX03': FIND
ko o e ok o e ok o ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok ko o ok ok ok ok ok ok ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
END-DEFINE
*
FIND MYVIEW WITH NAME = "ADKINSON'
DISPLAY NAME FIRST-NAME CITY
END-FIND
END

If the FIND statement contained a WHERE clause in addition to the WITH clause, only those records
that were selected as a result of the WITH clause and met the WHERE criteria would be processed.

The following diagram illustrates the flow logic of a database processing loop:

Programming Guide 235

Accessing Data in an Adabas Database

select records ‘ -4

v

no
read records

v

A Processing
Loop

v ves

process records -

v

no

¥
Exit Processing Loop

Hierarchies of Processing Loops

The use of multiple FIND and/or READ statements creates a hierarchy of processing loops, as shown
in the following example:

236 Programming Guide

Accessing Data in an Adabas Database

Example of Processing Loop Hierarchy

** Example 'FINDX04': FIND (two FIND statements nested)
R B R R i o S R e e e b S S b b e e b I b S S i b e e S b b i S i b i S e b S S S i e S S b b i e b b
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES
2 PERSONNEL-1ID
2 NAME
1 AUTOVIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
2 MODEL
END-DEFINE
*
EMP. FIND PERSONVIEW WITH NAME = "ADKINSON'
VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
DISPLAY NAME MAKE MODEL
END-FIND
END-FIND
END

The above program selects from the EMPLOYEES file all people with the name ADKINSON. Each record
(person) selected is then processed as follows:

1. The second FIND statement is executed to select the automobiles from the VEHICLES file, using
as selection criterion the PERSONNEL - IDs from the records selected from the EMPLOYEES file with
the first FIND statement.

2. The NAME of each person selected is displayed; this information is obtained from the EMPLOYEES
file. The MAKE and MODEL of each automobile owned by that person is also displayed; this inform-
ation is obtained from the VEHICLES file.

The second FIND statement creates an inner processing loop within the outer processing loop of
the first FIND statement, as shown in the following diagram.

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example
program:

Programming Guide 237

Accessing Data in an Adabas Database

select records from
EMPLOYEES file

A J

yes

no
r A

Outer read records
Loop

v

select records from
VYEHICLES file

v

yes

no
A

read record ‘

v

display data ‘

v

- Exit

Inner
Loop

238

Programming Guide

Accessing Data in an Adabas Database

Example of Nested FIND Loops Accessing the Same File

It is also possible to construct a processing loop hierarchy in which the same file is used at both
levels of the hierarchy:

** Example 'FINDXO5': FIND (two FIND statements on same file nested)
R R R B b R R e I b b R e S b b e e b b S e b b e e i b R e e b b S e b b R e I b b b b S e b b R e b R e e b b b S
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 CITY
1 #INAME (A40)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED

"PEOPLE IN SAME CITY AS:' #NAME / 'CITY:' CITY SKIP 1
*
FIND PERSONVIEW WITH NAME = "JONES'

WHERE FIRST-NAME = 'LAUREL'

COMPRESS NAME FIRST-NAME INTO #NAME

/*

FIND PERSONVIEW WITH CITY = CITY

DISPLAY NAME FIRST-NAME CITY

END-FIND
END-FIND
END

The above program first selects all people with name JONES and first name LAUREL from the
EMPLOYEES file. Then all who live in the same city are selected from the EMPLOYEES file and a list
of these people is created. All field values displayed by the DISPLAY statement are taken from the
second FIND statement.

Output of Program FINDX05:

PEOPLE IN SAME CITY AS: JONES LAUREL
CITY: BALTIMORE

NAME FIRST-NAME CITY
JENSON MARTHA BALTIMORE
LAWLER EDDIE BALTIMORE
FORREST CLARA BALTIMORE
ALEXANDER GIL BALTIMORE
NEEDHAM SUNNY BALTIMORE
ZINN CARLOS BALTIMORE
JONES LAUREL BALTIMORE

Programming Guide

239

Accessing Data in an Adabas Database

Further Examples of Nested READ and FIND Statements

See the following example programs:

® READX04 - READ statement (in combination with FIND and the system variables “NUMBER
and *COUNTER)

® LIMITXO01 - LIMIT statement (for READ, FIND loop processing)

Database Update - Transaction Processing

This section describes how Natural performs database updating operations based on transactions.
The following topics are covered:

= | ogical Transaction

= Record Hold Logic

= Backing Out a Transaction

= Restarting a Transaction

= Example of Using Transaction Data to Restart a Transaction

Logical Transaction

Natural performs database updating operations based on transactions, which means that all
database update requests are processed in logical transaction units. A logical transaction is the
smallest unit of work (as defined by you) which must be performed in its entirety to ensure that
the information contained in the database is logically consistent.

A logical transaction may consist of one or more update statements (DELETE, STORE, UPDATE) in-
volving one or more database files. A logical transaction may also span multiple Natural programs.

Alogical transaction begins when a record is put on “hold”; Natural does this automatically when
the record is read for updating, for example, if a FIND loop contains an UPDATE or DELETE statement.

The end of a logical transaction is determined by an END TRANSACTION statement in the program.
This statement ensures that all updates within the transaction have been successfully applied, and
releases all records that were put on “hold” during the transaction.

240 Programming Guide

Accessing Data in an Adabas Database

Example:

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
END-DEFINE
FIND MYVIEW WITH NAME = 'SMITH'
DELETE
END TRANSACTION
END-FIND
END

Each record selected would be put on “hold”, deleted, and then - when the END TRANSACTION
statement is executed - released from “hold”.

Note: The Natural profile parameter ETEQP, as set by the Natural administrator, determines

whether or not Natural will generate an END TRANSACTION statement at the end of each
Natural program. Ask your Natural administrator for details.

Example of STORE Statement:

The following example program adds new records to the EMPLOYEES file.

** Example 'STOREXO01': STORE (Add new records to EMPLOYEES file)

*

** CAUTION: Executing this example will modify the database records!
khkhkkhkkhkhkhkhkhkhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhkhkhkhhkhkhhkhkhhkhkhhkhhhkkhkkhhkhhkhkhkhhkhhkhkhhkhkhhkhkhhkhkhhkhkhkxkx
DEFINE DATA LOCAL
1 EMPLOYEE-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID(A8)

2 NAME (A20)
2 FIRST-NAME (A20)
2 MIDDLE-I (A1)
2 SALARY (P9/2)
2 MAR-STAT (A1)
2 BIRTH (D)
2 CITY (A20)
2 COUNTRY (A3)
*
1 #PERSONNEL-ID (A8)
1 fINAME (A20)
1 #fFIRST-NAME (A20)
1 JFINITIAL (A1)
1 #fMAR-STAT (A1)
1 JFSALARY (N9)
1 #BIRTH (A8)
1 ##iCITY (A20)
1 #fCOUNTRY (A3)
1 #fCONF (A1) INIT <'Y'>
END-DEFINE

Programming Guide 241

Accessing Data in an Adabas Database

*

REPEAT
INPUT '"ENTER A PERSONNEL ID AND NAME (OR ''END'' TO END)' //
"PERSONNEL-ID : ' #PERSONNEL-ID //
"NAME : ' #INAME
"FIRST-NAME : ' #FIRST-NAME

/***

/* wvalidate entered data
/***
IF #fPERSONNEL-ID = "END' OR #NAME = 'END'
STOP
END-IF
IF #fINAME = '
REINPUT WITH TEXT 'ENTER A LAST-NAME'
MARK 2 AND SOUND ALARM
END-IF
IF #fFIRST-NAME = ' '
REINPUT WITH TEXT '"ENTER A FIRST-NAME'
MARK 3 AND SOUND ALARM
END-IF

/***

/* ensure person is not already on file
/***
FIP2. FIND NUMBER EMPLOYEE-VIEW WITH PERSONNEL-ID = #PERSONNEL-ID
/*
IF *NUMBER (FIP2.) > O

REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS'

MARK 1 AND SOUND ALARM

END-TIF

/***

/* get further information
/***

INPUT

"ENTER EMPLOYEE DATA' /117
"PERSONNEL-ID :' #fPERSONNEL-ID (AD=I0) /
"NAME :' {ENAME (AD=I0) /
"FIRST-NAME ' #fFIRST-NAME (AD=IQ) ///
"INITIAL 2 FFINITIAL /
"ANNUAL SALARY ' JISALARY /
"MARITAL STATUS ' #IMAR-STAT /
"DATE OF BIRTH (YYYYMMDD) :' #BIRTH /
"CITY 2 JICITY /
"COUNTRY (3 CHARS) ' #fCOUNTRY //
"ADD THIS RECORD (Y/N) : ' JfCONF (AD=M)

/***

/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
/***
IF #SALARY < 10000

REINPUT TEXT 'ENTER A PROPER ANNUAL SALARY' MARK 2
END-IF
IF NOT (#MAR-STAT = 'S' OR = 'M' OR = 'D' OR = 'W')

REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -

242 Programming Guide

Accessing Data in an Adabas Database

"M=MARRIED D=DIVORCED W=WIDOWED' MARK 3
END-IF
IF NOT(#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))
REINPUT TEXT "ENTER CORRECT DATE' MARK 4
END-IF
IF #CITY ="' '
REINPUT TEXT "ENTER A CITY NAME' MARK 5
END-IF
IF #COUNTRY = " '
REINPUT TEXT '"ENTER A COUNTRY CODE"' MARK 6
END-IF
IF NOT (#CONF = 'N' OR= 'Y")
REINPUT TEXT '"ENTER Y (YES) OR N (NO)' MARK 7
END-IF
IF #CONF = 'N'
ESCAPE TOP
END-IF

/***

/* add the record with STORE

/***

MOVE #fPERSONNEL-ID TO EMPLOYEE-VIEW.PERSONNEL-ID

MOVE #NAME TO EMPLOYEE-VIEW.NAME

MOVE #FIRST-NAME TO EMPLOYEE-VIEW.FIRST-NAME
MOVE #INITIAL TO EMPLOYEE-VIEW.MIDDLE-I
MOVE #SALARY TO EMPLOYEE-VIEW.SALARY (1)
MOVE #MAR-STAT TO EMPLOYEE-VIEW.MAR-STAT
MOVE EDITED #BIRTH TO EMPLOYEE-VIEW.BIRTH (EM=YYYYMMDD)
MOVE #CITY TO EMPLOYEE-VIEW.CITY

MOVE #COUNTRY TO EMPLOYEE-VIEW.COUNTRY

/*

STP3. STORE RECORD IN FILE EMPLOYEE-VIEW

] *

/***

/* mark end of Togical transaction
/***

END OF TRANSACTION
RESET INITIAL {CONF
END-REPEAT
END

Output of Program STOREX01:

ENTER A PERSONNEL ID AND NAME (OR "END' TO END)
PERSONNEL ID :

NAME
FIRST NAME

Programming Guide

243

Accessing Data in an Adabas Database

Record Hold Logic

If Natural is used with Adabas, any record which is to be updated will be placed in “hold” status
until an END TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time
limit is exceeded.

When a record is placed in “hold” status for one user, the record is not available for update by
another user. Another user who wishes to update the same record will be placed in “wait” status
until the record is released from “hold” when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session parameter WH (Wait for Record in
Hold Status) can be used (see the Parameter Reference).

When you use update logic in a program, you should consider the following:

® The maximum time that a record can be in hold status is determined by the Adabas transaction
time limit (Adabas parameter TT). If this time limit is exceeded, you will receive an error message
and all database modifications done since the last END TRANSACTION will be made undone.

® The number of records on hold and the transaction time limit are affected by the size of a
transaction, that is, by the placement of the END TRANSACTION statement in the program. Restart
facilities should be considered when deciding where to issue an END TRANSACTION. For example,
if a majority of records being processed are not to be updated, the GET statement is an efficient
way of controlling the “holding” of records. This avoids issuing multiple END TRANSACTION
statements and reduces the number of ISNs on hold. When you process large files, you should
bear in mind that the GET statement requires an additional Adabas call. An example of a GET
statement is shown below.

* The placing of records in “hold” status is also controlled by the profile parameter RI (Release
ISNs), as set by the Natural administrator.

Example of Hold Logic:

** Example 'GETX01': GET (put single record in hold with UPDATE stmt)

**

** CAUTION: Executing this example will modify the database records!
khkhkkhkkhkhkhkhhkhkhhkhkhhkkhkhhkhhkhkhhhkhhkhkhhhhhhkkhhkhhkhkhkhhkhhhkhkhkhkhhkhkhhkhkhhkhkhhkhkhkhkhkkhhkhhhkhkitx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 SALARY (1)
END-DEFINE
*
RD. READ EMPLOY-VIEW BY NAME
DISPLAY EMPLOY-VIEW
IF SALARY (1) > 1500000

/*

GE. GET EMPLOY-VIEW *ISN (RD.)

/*

WRITE '=" (50) 'RECORD IN HOLD:' *ISN(RD.)

244 Programming Guide

Accessing Data in an Adabas Database

COMPUTE SALARY (1) = SALARY (1) * 1.15
UPDATE (GE.)
END TRANSACTION
END-IF
END-READ
END

Backing Out a Transaction

During an active logical transaction, that is, before the END TRANSACTION statement is issued, you
can cancel the transaction by using a BACKOUT TRANSACTION statement. The execution of this
statement removes all updates that have been applied (including all records that have been added
or deleted) and releases all records held by the transaction.

Restarting a Transaction

With the END TRANSACTION statement, you can also store transaction-related information. If pro-
cessing of the transaction terminates abnormally, you can read this information with a GET
TRANSACTION DATA statement to ascertain where to resume processing when you restart the
transaction.

Example of Using Transaction Data to Restart a Transaction

The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the
user is informed of the last EMPLOYEES record successfully processed. The user can resume processing
from that EMPLOYEES record. It would also be possible to set up the restart transaction message to
include the last VEHICLES record successfully updated before the restart operation.

** Example "GETTRXO01': GET TRANSACTION

*

**% CAUTION: Executing this example will modify the database records!
KAhkhkkhkkhhkhkhhkhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhkhkhhhhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhkhhkhhkhkhkhkhrhhkhkhhkkhhkhkhixk
DEFINE DATA LOCAL

01 PERSON VIEW OF EMPLOYEES

02 PERSONNEL-ID (A8)
02 NAME (A20)
02 FIRST-NAME (A20)
02 MIDDLE-I (A1)
02 CITY (A20)
01 AUTO VIEW OF VEHICLES
02 PERSONNEL-ID (A8)
02 MAKE (A20)
02 MODEL (A20)
*
01 ET-DATA
02 #APPL-1D (A8) INIT <' '>
02 #USER-ID (A8)
02 #fPROGRAM (A8)

Programming Guide 245

Accessing Data in an Adabas Database

02
02

END-

*

#IDATE
#FTIME

DEFINE

(A10)

(A8)
02 #fPERSONNEL-NUMBER (A8)

GET TRANSACTION DATA #APPL-ID ffUSER-ID #PROGRAM

*

IF

END-

*

REPE
/*

INPUT (AD=MIL) // 20T 'ENTER PERSONNEL NUMBER:' #PERSONNEL-NUMBER

/*

##APPL-ID NOT
AND #APPL-ID NOT
INPUT (AD=0IL)

#IDATE

"NORMAL

#TIME

#fPERSONNEL -NUMBER

/* if last execution ended abnormally

// 20T "*** [LAST SUCCESSFUL TRANSACTION ***"' (1)
/ DOT ! Fkokokkokokkkok sk kok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kok ok ok !

///] 25T "APPLICATION:"' #APPL-ID

/ 32T "USER:" #USER-ID

/ 29T "PROGRAM: ' #PROGRAM

/ 24T "COMPLETED ON:' #DATE 'AT"' #TIME

/ 20T 'PERSONNEL NUMBER:' #PERSONNEL-NUMBER

IF

AT

IF #PERSONNEL-NUMBER = '99999999"
ESCAPE BOTTOM

EN
/*
FI

D-IF

ND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
REINPUT 'SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.'

END-NOREC

FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND
WRITE 'PERSON DOES NOT OWN ANY CARS'
ESCAPE BOTTOM
END-NOREC
IF *COUNTER (FINDZ2.) =1
INPUT (AD=M)

/
/
/17
/
/
/
/

20T
20T
20T
22T
22T
22T
21T

"EMPLOYEES/AUTOMOBILE DETATILS

/* first pass through the loop

(1)

"NUMBER:
"NAME :
"CITY:
"MAKE :

"MODEL:

UPDATE (FINDI.)

ELSE

END-IF
/*

UPDATE (FIND2.)

PERSONN
NAME
CITY
MAKE
MODEL

EL-ID (AD=0)
" FIRST-NAME ' ' MIDDLE-I

/* update the EMPLOYEES file

/* subsequent passes through the loop
INPUT NO ERASE (AD=M IP=0FF) //////// 28T MAKE / 28T MODEL

/* update the VEHICLES file

246

Programming Guide

Accessing Data in an Adabas Database

/*

MOVE *APPLIC-ID TO #APPL-1ID
MOVE *INIT-USER TO #USER-ID
MOVE *PROGRAM TO #PROGRAM

MOVE *DAT4E TO #tDATE
MOVE *TIME TO #TIME
/*

END TRANSACTION #APPL-1ID #USER-ID #PROGRAM
IDATE #TIME #FPERSONNEL - NUMBER

/*
END-FIND /* for VEHICLES (FIND2.)
END-FIND /* for EMPLOYEES (FINDI1.)
END-REPEAT /* for REPEAT
*
STOP /* Simulate abnormal transaction end
END TRANSACTION 'NORMAL '

END

Selecting Records Using ACCEPT/REJECT

This section discusses the statements ACCEPT and REJECT which are used to select records based
on user-specified logical criteria.

The following topics are covered:

= Statements Usable with ACCEPT and REJECT

= Example of ACCEPT Statement

= | ogical Condition Criteria in ACCEPT/REJECT Statements
= Example of ACCEPT Statement with AND Operator

= Example of REJECT Statement with OR Operator

= Further Examples of ACCEPT and REJECT Statements

Statements Usable with ACCEPT and REJECT

The statements ACCEPT and REJECT can be used in conjunction with the database access statements:

" READ
= FIND
" HISTOGRAM

Programming Guide 247

Accessing Data in an Adabas Database

Example of ACCEPT Statement

** Example 'ACCEPXO1': ACCEPT IF
R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD’
ACCEPT IF SALARY (1) >= 40000
DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of Program ACCEPXO01:

Page 1 04-11-11 1II1:11:11
NAME CURRENT ANNUAL
POSITION SALARY
ADKINSON DBA 46700
ADKINSON MANAGER 47000
ADKINSON MANAGER 47000
AFANASSIEV DBA 42800
ALEXANDER DIRECTOR 48000
ANDERSON MANAGER 50000
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000 ©

Logical Condition Criteria in ACCEPT/REJECT Statements

The statements ACCEPT and REJECT allow you to specify logical conditions in addition to those that
were specified in WITH and WHERE clauses of the READ statement.

The logical condition criteria in the IF clause of an ACCEPT / REJECT statement are evaluated after
the record has been selected and read.

Logical condition operators include the following (see Logical Condition Criteria for more detailed
information):

248 Programming Guide

Accessing Data in an Adabas Database

EQUAL EQ|:=
NOT EQUAL TO [NE|—=
LESS THAN LT|<

LESS EQUAL LE|<=
GREATER THAN [GT|>
GREATER EQUAL|GE|>=

Logical condition criteria in ACCEPT / REJECT statements may also be connected with the Boolean
operators AND, OR, and NOT. Moreover, parentheses may be used to indicate logical grouping; see

the following examples.

Example of ACCEPT Statement with AND Operator

The following program illustrates the use of the Boolean operator AND in an ACCEPT statement.

** Example '"ACCEPX02': ACCEPT IF ... AND ...

R R B b R R e I b b R e S b b e e b b S b b e e i b b e e b b S e b b R e e b b e b b S e e b R e b b e e S b b S 4

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) =
ACCEPT IF SALARY (1) >= 40000
AND SALARY (1) <= 45000
DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of Program ACCEPX02:

Page 1
NAME CURRENT
POSITION
AFANASSTEV DBA
ATHERTON ANALYST
ATHERTON MANAGER

"usp'

ANNUAL
SALARY

42800
43000
40000

04-12-14 12:22:01

Programming Guide

249

Accessing Data in an Adabas Database

Example of REJECT Statement with OR Operator

The following program, which uses the Boolean operator OR in a REJECT statement, produces the
same output as the ACCEPT statement in the example above, as the logical operators are reversed.

** Example 'ACCEPX03': REJECT IF ... OR ...

R R R B b R R e I b R R e S b b e e b e e b b e e i b b e e b b S e b b R e e b b S e e b b e e b b e b R e S b b e

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)
END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = "USD'
REJECT IF SALARY (1) < 40000
OR SALARY (1) > 45000
DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of Program ACCEPX03:

Page 1
NAME CURRENT ANNUAL
POSITION SALARY
AFANASSTEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000

Further Examples of ACCEPT and REJECT Statements

See the following example programs:

" ACCEPX04 - ACCEPT IF ... LESS THAN ...
® ACCEPXO05 - ACCEPTIF ... AND ...
" ACCEPXO06 - REJECTIF ... OR ...

04-12-14 12:26:27

250

Programming Guide

Accessing Data in an Adabas Database

AT START/END OF DATA Statements

This section discusses the use of the statements AT START OF DATA and AT END OF DATA.
The following topics are covered:

= AT START OF DATA Statement

= AT END OF DATA Statement

= Example of AT START OF DATA and AT END OF DATA Statements
= Further Examples of AT START OF DATA and AT END OF DATA

AT START OF DATA Statement

The AT START OF DATA statement is used to specify any processing that is to be performed after
the first of a set of records has been read in a database processing loop.

The AT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be output before the first field
value. By default, this output is displayed left-justified on the page.

AT END OF DATA Statement

The AT END OF DATA statement is used to specify processing that is to be performed after all records
for a database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be output after the last field value.
By default, this output is displayed left-justified on the page.

Example of AT START OF DATA and AT END OF DATA Statements

The following example program illustrates the use of the statements AT START OF DATA and AT
END OF DATA.

The Natural system variable *TIME has been incorporated into the AT START OF DATA statement
to display the time of day.

The Natural system function 0LD has been incorporated into the AT END OF DATA statement to
display the name of the last person selected.

Programming Guide 251

Accessing Data in an Adabas Database

** Example "ATSTAXO01': AT START OF DATA

sk ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ko ok
DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES

2 CITY

2 NAME

2 JOB-TITLE

2 INCOME (1:1)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)

END-DEFINE

*

WRITE TITLE "XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT' /
READ (3) MYVIEW BY CITY STARTING FROM 'E'
DISPLAY GIVE SYSTEM FUNCTIONS
NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)
/*
AT START OF DATA
WRITE 'RUN TIME:' *TIME /
END-START
AT END OF DATA
WRITE / 'LAST PERSON SELECTED:' OLD (NAME) /
END-ENDDATA
END-READ
*
AT END OF PAGE
WRITE / '"AVERAGE SALARY:' AVER (SALARY(1))
END-ENDPAGE
END

The program produces the following output:

XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

NAME CURRENT INCOME
POSITION
CURRENCY ANNUAL BONUS
CODE SALARY

RUN TIME: 12:43:19.1

DUYVERMAN PROGRAMMER usD 34000 0
PRATT SALES PERSON UsD 38000 9000
MARKUSH TRAINEE usD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333 @

252 Programming Guide

Accessing Data in an Adabas Database

Further Examples of AT START OF DATA and AT END OF DATA

See the following example programs:

= ATENDXO01 - AT END OF DATA
B ATSTAXO02 - AT START OF DATA
® WRITEX09 - WRITE (in combination with AT END OF DATA)

Unicode Data

Natural enables users to access wide-character fields (format W) in an Adabas database.
The following topics are covered:

= Data Definition Module
= Access Configuration
m Restrictions

Data Definition Module

Adabas wide-character fields (W) are mapped to Natural format U (Unicode).

The length definition for a Natural field of format U corresponds to half the size of the Adabas
field of format W. An Adabas wide-character field of length 200 is, for example, mapped to (U100)
in Natural.

Access Configuration

Natural receives data from Adabas and sends data to Adabas using UTF-16 as common encoding.

This encoding is specified with the OPRB parameter and sent to Adabas with the open request. It
is used for wide-character fields and applies to the entire Adabas user session.

Restrictions

Collating descriptors are not supported.

For further information on Adabas and Unicode support refer to the specific Adabas product
documentation.

Programming Guide 253

254

32 Accessing Data in an SQL Database

On principle, the features and examples contained in the document Accessing Data in an Adabas
Database also apply to the SQL databases supported by Natural.

Differences, if any, are described in the documents for the individual database access statements
(see the Statements documentation) in paragraphs named Database-Specific Considerations or in the
documents for the individual Natural parameters (see the Parameter Reference).

In addition, Natural for DB2 offers a specific set of statements to access DB2 and SQL/DS database
management systems. For detailed information, refer to the appropriate add-on product description
in the Database Management System Interfaces documentation:

® Natural for DB2
® Natural for SQL/DS
® Natural Gateway for SQL

255

256

33 Accessing Data in a VSAM Database

On principle, the features and examples contained in the document Accessing Data in an Adabas
Database also apply to VSAM databases.

Differences, if any, are described in the documents for the individual database access statements
(see the Statements documentation) in paragraphs named Database-Specific Considerations or in the
documents for the individual Natural parameters (see the Parameter Reference).

For detailed information, refer to the following add-on product description in the Database Man-
agement System Interfaces documentation:

® Natural for VSAM

257

258

34 Accessing Data in a DL/l Database

On principle, the features and examples contained in the document Accessing Data in an Adabas
Database also apply to DL/I databases.

Differences, if any, are described in the documents for the individual database access statements
(see the Statements documentation) in paragraphs named Database-Specific Considerations or in the
documents for the individual Natural parameters (see the Parameter Reference).

For detailed information, refer to the following add-on product description in the Database Man-
agement System Interfaces documentation:

® Natural for DL/I

259

260

VI Report Format and Control

This part describes how to proceed if a Natural program is to produce multiple reports. Further-
more, it discusses various aspects of how you can control the format of an output report created
with Natural, that is, the way in which the data are displayed.

Report Specification - (rep) Notation

Layout of an Output Page

Statements DISPLAY and WRITE

Index Notation for Multiple-Value Fields and Periodic Groups
Page Titles, Page Breaks, Blank Lines

Column Headers

Parameters to Influence the Output of Fields

Edit Masks - EM Parameter

Unicode Edit Masks - EMU Parameter

Vertical Displays

261

262

35 Report Specification - (rep) Notation

B Use of Report SPECIfiCAtiONSvviiiiiie i 264
B StAteMENtS CONCEIMEiiieiiiiie ettt et e e e e e e et e e e et e e e sttt e e e e anneeeas 264
= Examples of Report SPeCIfiCationcuvriiiiii e 264

263

Report Specification - (rep) Notation

(rep) is the output report identifier for which a statement is applicable.

Use of Report Specifications

If a Natural program is to produce multiple reports, the notation (rep) must be specified with
each output statement (see Statements Concerned, below) which is to be used to create output for
any report other than the first report (Report 0).

A valueof 0 - 31 may be specified.

This notation only applies to reports created in batch mode, to reports under Com-plete, IMS TM
or TIAM; or when using Natural Advanced Facilities under CICS, TSO or openUTM.

The value for (rep) may also be a logical name which has been assigned using the DEFINE PRINTER
statement, see Example 2 below.

Statements Concerned

The notation (rep) can be used with the following output statements:

AT END OF PAGE | AT TOP OF PAGE | COMPOSE | DISPLAY | EJECT | FORMAT | NEWPAGE | PRINT |
SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE TRAILER

Examples of Report Specification

Example 1 - Multiple Reports

DISPLAY (1) NAME ...
WRITE (4) NAME ...

Example 2 - Using Logical Names

DEFINE PRINTER (LIST=5) QUTPUT 'LPTL'
WRITE (LIST) NAME ...

264 Programming Guide

36 Layout of an Output Page

= Statements Influencing @ REPOI LAYOULovviiiiiiiii e 266
B General Layout EXAMPIEoiiiiiiiiiieiie et 266

265

Layout of an Output Page

This chapter gives an overview of the statements that may be used to define a specific layout for

a report.

Statements Influencing a Report Layout

The following statements have an impact on the layout of the report:

Statement

Function

WRITE TITLE

With this statement, you can specify a page title, that is, text to be output at the top
of a page. By default, page titles are centered and not underlined.

WRITE TRAILER

With this statement, you can specify a page trailer, that is, text to be output at the
bottom of a page. By default, the trailer lines are centered and not underlined.

AT TOP OF PAGE

With this statement, you can specify any processing that is to be performed whenever
a new page of the report is started. Any output from this processing will be output
below the page title.

AT END OF PAGE

With this statement, you can specify any processing that is to be performed whenever
an end-of-page condition occurs. Any output from this processing will be output
below any page trailer (as specified with the WRITE TRAILER statement).

AT START OF DATA

With this statement, you specify processing that is to be performed after the first
record has been read in a database processing loop. Any output from this processing
will be output before the first field value. See note below.

AT END OF DATA

With this statement, you specify processing that is to be performed after all records
for a processing loop have been processed. Any output from this processing will be
output immediately after the last field value. See note below.

DISPLAY /WRITE

With these statements, you control the format in which the field values that have
been read are to be output. See section Statements DISPLAY and WRITE.

| Note: The relevance of the statements AT START 0F DATAand AT END OF DATA for the output

of data is described under Database Access, AT START/END OF DATA Statements. The
other statements listed above are discussed in other sections of the part Report Format and

Control.

General Layout Example

The following example program illustrates the general layout of an output page:

266

Programming Guide

Layout of an Output Page

** Example 'OUTPUXO01': Several sections of output
R R R R R R b b R e b b e b e I R R e i b e S b b e i b i R e b b R e b b e b R e i b b e S b b
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 BIRTH
END-DEFINE
*
WRITE TITLE "Xk kkkkkkkx%k Page Tjt]e kAhkkkhkkkhkkkhkkk!
WRITE TRAILER '#*x*k*xxx* Page Trajler **k#xiksxt
*
AT TOP OF PAGE

WRITE '===== Top of Page ====='
END-TOPPAGE
AT END OF PAGE

WRITE '===== End of Page ====='
END-ENDPAGE
*
READ (10) EMP-VIEW BY NAME

/*

DISPLAY NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD)

/*

AT START OF DATA

WRITE '>>>>> Start of Data >>>>>'
END-START
AT END OF DATA
WRITE '<<<<< End of Data <<<K<K<!

END-ENDDATA
END-READ
END

Output of Program 0UTPUXO1:

kkkAhkkkkkkkk Page Tjt]e khkkkAhkhkhkkk*k

===== Teop 07T Page =——=
NAME FIRST-NAME DATE
OF
BIRTH
>>>>> Start of Data >>>>>
ABELLAN KEPA 1961-04-08
ACHIESON ROBERT 1963-12-24
ADAM SIMONE 1952-01-30
ADKINSON JEFF 1951-06-15
ADKINSON PHYLLIS 1956-09-17
ADKINSON HAZEL 1954-03-19
ADKINSON DAVID 1946-10-12
ADKINSON CHARLIE 1950-03-02
ADKINSON MARTHA 1970-01-01
ADKINSON TIMMIE 1970-03-03

Programming Guide 267

Layout of an Output Page

<KL End of Data <<<K<K

khkkkAhkhkhkkkk Page Tr\a-i]er khkkkAhkkhkhkkkk

268 Programming Guide

37 Statements DISPLAY and WRITE

B DISPLAY SEAIEMENE ... e a e e e e e e 270
B WRITE SEAIEMENL ...ttt e et e e et e e et e e e e e e e e e e e 271
= Example of DISPLAY STAteMENToooiiiiii e 272
= Example of WRITE Statemento 272
= Column Spacing - SF Parameter and nX NOtationccovvvviiiiiiiiii e 273
m Tab Setting - NT NOTAHON ... 274
® Line Advance - SIash NOLAtIONouuiiiiiiie e 275
= Further Examples of DISPLAY and WRITE Statementscooiviiiiiiiiiiiicicec e 278

269

Statements DISPLAY and WRITE

This chapter describes how to use the statements DISPLAY and WRITE to output data and control
the format in which information is output.

DISPLAY Statement

The DISPLAY statement produces output in column format; that is, the values for one field are
output in a column underneath one another. If multiple fields are output, that is, if multiple
columns are produced, these columns are output next to one another horizontally.

The order in which fields are displayed is determined by the sequence in which you specify the
field names in the DISPLAY statement.

The DISPLAY statement in the following program displays for each person first the personnel
number, then the name and then the job title:

** Example 'DISPLXOL': DISPLAY
R R b e b e b b e b b e b b e b b e e b e e b e e e b e e e B (e e b e b e b e e b e b e b e e b i b e b e e b i 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
*
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME JOB-TITLE
END-READ
END

Output of Program DISPLX01:

Page 1 04-11-11 14:15:54
PERSONNEL NAME CURRENT
ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

To change the order of the columns that appear in the output report, simply reorder the field
names in the DISPLAY statement. For example, if you prefer to list employee names first, then job
titles followed by personnel numbers, the appropriate DISPLAY statement would be:

270 Programming Guide

Statements DISPLAY and WRITE

** Example 'DISPLX02': DISPLAY
KhkhkAhhkhhkhhkkhhkhhkkhhkhhkhhhhhhhhkhhhhkhhhhkhhhhkhhhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhrkhrkhrkhxk
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME

2 BIRTH

2 JOB-TITLE
END-DEFINE
*
READ (3) VIEWEMP BY BIRTH

DISPLAY NAME JOB-TITLE PERSONNEL-ID
END-READ
END

Output of Program DISPLX02:

Page 1 04-11-11 14:15:54
NAME CURRENT PERSONNEL
POSITION ID
GARRET TYPIST 30020013
TATLOR WAREHOUSEMAN 30016112
PIETSCH SECRETARY 20017600

A header is output above each column. Various ways to influence this header are described in the
document Column Headers.

WRITE Statement

The WRITE statement is used to produce output in free format (that is, not in columns). In contrast
to the DISPLAY statement, the following applies to the WRITE statement:

® If necessary, it automatically creates a line advance; that is, a field or text element that does not
fit onto the current output line, is automatically output in the next line.

® It does not produce any headers.

® The values of a multiple-value field are output next to one another horizontally, and not under-

neath one another.

The two example programs shown below illustrate the basic differences between the DISPLAY
statement and the WRITE statement.

You can also use the two statements in combination with one another, as described later in the
document Vertical Displays, Combining DISPLAY and WRITE .

Programming Guide 271

Statements DISPLAY and WRITE

Example of DISPLAY Statement

** Example 'DISPLX03': DISPLAY

R R R R R R e b R R b b e b e e I b R e i b b e e b e i b R e b b R e i b b S b R R e i b b e b b

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:3)
END-DEFINE
*
READ (2) VIEWEMP BY NAME STARTING FROM
DISPLAY NAME FIRST-NAME SALARY (1:3)
END-READ
END

Output of Program DISPLX03:

Page 1

NAME FIRST-NAME
JONES VIRGINTA
JONES MARSHA

Example of WRITE Statement

"JONES"

ANNUAL
SALARY

46000
42300
39300
50000
46000
42700

04-11-11 14:15:54

** Example '"WRITEXO1': WRITE

R R b e b S b b e b b e e b e b e b e e e e b e e e e e S b e e b e b e b e e b i e b e e i b e b e e i S

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:3)
END-DEFINE
*
READ (2) VIEWEMP BY NAME STARTING FROM
WRITE NAME FIRST-NAME SALARY (1:3)
END-READ
END

"JONES"

272

Programming Guide

Statements DISPLAY and WRITE

Output of Program WRITEXO1:

Page 1 04-11-11 14:15:55
JONES VIRGINIA 46000 42300 39300
JONES MARSHA 50000 46000 42700

Column Spacing - SF Parameter and nX Notation

By default, the columns output with a DISPLAY statement are separated from one another by one
space.

With the session parameter SF, you can specify the default number of spaces to be inserted between
columns output with a DISPLAY statement. You can set the number of spaces to any value from 1
to 30.

The parameter can be specified with a FORMAT statement to apply to the whole report, or with a
DISPLAY statement at statement level, but not at element level.

With the nX notation in the DISPLAY statement, you can specify the number of spaces (n) to be in-
serted between two columns. An nX notation overrides the specification made with the SF para-
meter.

** Example 'DISPLX04': DISPLAY (with nX)
R R R R R b e e e e R R b b e e e S R b b e e e e e R R i e e e e e e R b e e e e e i b e e e e e
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
*
FORMAT SF=3
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME 5X JOB-TITLE
END-READ
END

Output of Program DISPLX04:

The above example program produces the following output, where the first two columns are
separated by 3 spaces due to the SF parameter in the FORMAT statement, while the second and third
columns are separated by 5 spaces due to the notation 5X in the DISPLAY statement:

Programming Guide 273

Statements DISPLAY and WRITE

Page 1 04-11-11 14:15:54
PERSONNEL NAME CURRENT
ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

The nX notation is also available with the WRITE statement to insert spaces between individual
output elements:

WRITE PERSONNEL-ID 5X NAME 3X JOB-TITLE

With the above statement, 5 spaces will be inserted between the fields PERSONNEL - ID and NAME,
and 3 spaces between NAME and JOB-TITLE.

Tab Setting - nT Notation

With the nT notation, which is available with the DISPLAY and the WRITE statement, you can specify
the position where an output element is to be output.

** Example 'DISPLX05': DISPLAY (with nT)
R R R R R R R b e e e R R R b b e e e e e R b b e e e e e R R e e e e e e R R i e e e e e b b e e e e e
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY 5T NAME 30T FIRST-NAME
END-READ
END

Output of Program DISPLXO05:

The above program produces the following output, where the field NAME is output starting in the
5th position (counted from the left margin of the page), and the field FIRST-NAME starting in the
30th position:

274 Programming Guide

Statements DISPLAY and WRITE

Page 1 04-11-11 14:15:54
NAME FIRST-NAME
JONES VIRGINIA
JONES MARSHA
JONES ROBERT

Line Advance - Slash Notation

With a slash (/) in a DISPLAY or WRITE statement, you cause a line advance.

" Ina DISPLAY statement, a slash causes a line advance between fields and within text.

® Ina WRITE statement, a slash causes a line advance only when placed between fields; within text,
it is treated like an ordinary text character.

When placed between fields, the slash must have a blank on either side.
For multiple line advances, you specify multiple slashes.

Example 1 - Line Advance in DISPLAY Statement:

** Example 'DISPLX06': DISPLAY (with slash '/')
R R R R B b B R B e R b b S B e i b b b b S b e e e b b b e b e e i b b e e b b e i S b b b b e b b b
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 DEPARTMENT
END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY NAME / FIRST-NAME 'DEPART-/MENT' DEPARTMENT
END-READ
END

Output of Program DISPLX06:

The above DISPLAY statement produces a line advance after each value of the field NAME and
within the text DEPART-MENT:

Programming Guide 275

Statements DISPLAY and WRITE

Page 1 04-11-11 14:15:54
NAME DEPART-
FIRST-NAME MENT
JONES SALE
VIRGINIA
JONES MGMT
MARSHA
JONES TECH
ROBERT

Example 2 - Line Advance in WRITE Statement:

** Example 'WRITEX02': WRITE (with Tine advance)
khkhkkhkkhkhkhkhkhkhkhhkhkhkhkkhkhhkhhkhkhkhhkhkhkhkhhkhhhhkhhkhhkhkhkhhkhhhkkhkkhkhkhhkhkhkhhkrhkhkhhkhhhkhkhhkhkhhkhkhkkxk
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 DEPARTMENT
END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM '"JONES'

WRITE NAME / FIRST-NAME 'DEPART-/MENT' DEPARTMENT //
END-READ
END

Output of Program WRITEX02:

The above WRITE statement produces a line advance after each value of the field NAME, and a double
line advance after each value of the field DEPARTMENT, but none within the text DEPART-/MENT:

Page 1 04-11-11 14:15:55
JONES
VIRGINIA DEPART-/MENT SALE

JONES
MARSHA DEPART-/MENT MGMT

JONES
ROBERT DEPART-/MENT TECH

276 Programming Guide

Statements DISPLAY and WRITE

Example 3 - Line Advance in DISPLAY and WRITE Statements:

**% Example 'DISPLX21': DISPLAY (usage of slash '/' in DISPLAY and WRITE)
khkkhkhkhkhkkhkhhhkhkkhkhkhhkhkhkkhkhhhkhkhkhkhhhrhkkhkhkhhhkhkhkhhhhkhkhkhhhhkhkhkhhkhhkkhkhkhhrhkkhkhkhhkhkkhkhkhrkkkhkhkrx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 NAME

2 FIRST-NAME

2 ADDRESS-LINE (1)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

*TIME

5X 'PEOPLE LIVING IN SALT LAKE CITY'

21X 'PAGE:' *PAGE-NUMBER /

15X 'AS OF' *DAT4E //

*

WRITE TRAILER UNDERLINED 'REGISTER OF' / 'SALT LAKE CITY'
*
READ (2) EMPLOY-VIEW WITH CITY = 'SALT LAKE CITY'
DISPLAY NAME /
FIRST-NAME
"HOME/CITY" CITY
"STREET/0OR BOX NO.' ADDRESS-LINE (1)
SKIP 1
END-READ
END

Output of Program DISPLX21:

14:15:54.6 PEOPLE LIVING IN SALT LAKE CITY PAGE :
AS OF 11/11/2004

NAME HOME STREET
FIRST-NAME CITY OR BOX NO.
ANDERSON SALT LAKE CITY 3701 S. GEORGE MASON

JENNY
SAMUELSON SALT LAKE CITY 7610 W. 86TH STREET
MARTIN

REGISTER OF
SALT LAKE CITY

Programming Guide

277

Statements DISPLAY and WRITE

Further Examples of DISPLAY and WRITE Statements

See the following example programs:

® DISPLX13 - DISPLAY (compare with WRITEX08 using WRITE)
® WRITEXO08 - WRITE (compare with DISPLX13 using DISPLAY)
® DISPLX14 - DISPLAY (with AL, SF and nX)

® WRITEX09 - WRITE (in combination with AT END OF DATA)

278 Programming Guide

38 Index Notation for Multiple-Value Fields and Periodic

Groups

B USE Of INAEX NOLAHIONeeeiieei e e e a e e 280
= Example of Index Notation in DISPLAY Statementcooiiiiiiiiiiiiii e 280
= Example of Index Notation in WRITE Statement ..o 281

279

Index Notation for Multiple-Value Fields and Periodic Groups

This chapter describes how you can use the index notation (n:n) to specify how many values of
a multiple-value field or how many occurrences of a periodic group are to be output.

Use of Index Notation

With the index notation (n:n) you can specify how many values of a multiple-value field or how
many occurrences of a periodic group are to be output.

For example, the field INCOME in the DDM EMPLOYEES is a periodic group which keeps a record of
the annual incomes of an employee for each year he/she has been with the company.

These annual incomes are maintained in chronological order. The income of the most recent year
is in occurrence 1.

If you wanted to have the annual incomes of an employee for the last three years displayed - that
is, occurrences 1 to 3 - you would specify the notation (1:3) after the field name in a DISPLAY or
WRITE statement (as shown in the following example program).

Example of Index Notation in DISPLAY Statement

** Example 'DISPLXO7': DISPLAY (with index notation)
R R R R e e b b e e b b S e b S S o b b S S e b S e b S e S e e b b S e e b S S e b S S e b I e e e b b e e
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 INCOME (1:3)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE
*
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME INCOME (1:3)
SKIP 1
END-READ
END

Output of Program DISPLX07:

Note that a DISPLAY statement outputs multiple values of a multiple-value field underneath one
another:

280 Programming Guide

Index Notation for Multiple-Value Fields and Periodic Groups

Page 1 04-11-11 14:15:54
PERSONNEL NAME INCOME
ID
CURRENCY ANNUAL BONUS
CODE SALARY

30020013 GARRET UKL 4200 0

UKL 4150 0
0 0

30016112 TAILOR UKL 7450 0
UKL 7350 0
UKL 6700 0

20017600 PIETSCH ush 22000 0
N 20200 0
Usb 18700 0

As a WRITE statement displays multiple values horizontally instead of vertically, this may cause
a line overflow and a - possibly undesired - line advance.

If you use only a single field within a periodic group (for example, SALARY) instead of the entire
periodic group, and if you also insert a slash (/) to cause a line advance (as shown in the following
example between NAME and JOB-TITLE), the report format becomes manageable.

Example of Index Notation in WRITE Statement

** Example 'WRITEX03': WRITE (with index notation)
KhkhkAhhkkhhkhhkkhhhhkkhhhhkhhhhhhkhhkhhkhhkhhkhhkhrhhkhhkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhrkhrkhrkhrk
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:3)
END-DEFINE
*
READ (3) VIEWEMP BY BIRTH
WRITE PERSONNEL-ID NAME / JOB-TITLE SALARY (1:3)
SKIP 1
END-READ
END

Output of Program WRITEX03:

Programming Guide 281

Index Notation for Multiple-Value Fields and Periodic Groups

Page 1 04-11-11 14:15:55

30020013 GARRET
TYPIST 4200 4150 0

30016112 TAILOR
WAREHOUSEMAN 7450 7350 6700

20017600 PIETSCH
SECRETARY 22000 20200 18700

282 Programming Guide

39 Page Titles, Page Breaks, Blank Lines

B DEfaUIt Page TIlE ... 284
= Suppress Page Title - NOTITLE OPtONoviiiiiiieeeiie et 284
= Define Your Own Page Title - WRITE TITLE Statementoooeiiiiiiii e 285
= Logical Page and PhYSIiCal PAGEcooiuiiiiiiiiii e 288
B PAge SiZ€ - PS Parameter ...t 290
B PAGE AGQVANCE ...t 290
B NEW PAGE WIth TIHlE ..vvviiiiiiiiiiiiiiis ettt ettt e e et e aatetetateaeraaeaeeees 293
= Page Trailer - WRITE TRAILER Statementooiiiiiiiiii e 294
= Generating Blank Lines - SKIP Statementooiiiiiiiiii e 296
m AT TOP OF PAGE STAtBMENL ..o 297
® AT END OF PAGE SEAt@MENL ...ttt 298
B EUTTNEE EXAMPIE L.ttt s 300

283

Page Titles, Page Breaks, Blank Lines

This chapter describes various ways of controlling page breaks in a report, the output of page
titles at the top of each report page and the generation of empty lines in an output report.

Default Page Title

For each page output via a DISPLAY or WRITE statement, Natural automatically generates a single
default title line. This title line contains the page number, the date and the time of day.

Example:

WRITE "HELLO'
END

The above program produces the following output with default page title:

Page 1 04-12-14 13:19:33

HELLO ©

Suppress Page Title - NOTITLE Option

If you wish your report to be output without page titles, you add the keyword NOTITLE to the
statement DISPLAY or WRITE.

Example - DISPLAY with NOTITLE:

** Example 'DISPLX20': DISPLAY (with NOTITLE)
R R b R R I b R e b b e e b b e e b b R e i b b e b b S e i b b R e i b b R e I b b e e b S R e b b e b b b o
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 FIRST-NAME
END-DEFINE
*
READ (5) EMPLOY-VIEW BY CITY FROM 'BOSTON'
DISPLAY NOTITLE NAME FIRST-NAME CITY
END-READ
END

Output of Program DISPLX20:

284 Programming Guide

Page Titles, Page Breaks, Blank Lines

NAME FIRST-NAME CITY
SHAW LESLIE BOSTON
STANWOOD VERNON BOSTON
CREMER WALT BOSTON
PERREAULT BRENDA BOSTON
COHEN JOHN BOSTON

Example - WRITE with NOTITLE:

WRITE NOTITLE "HELLO'
END

The above program produces the following output without page title:

HELLO <

Define Your Own Page Title - WRITE TITLE Statement

If you wish a page title of your own to be output instead of the Natural default page title, you use
the statement WRITE TITLE.

The following topics are covered below:

= Specifying Text for Your Title

= Specifying Empty Lines after the Title
= Title Justification and/or Underlining
= Title with Page Number

Specifying Text for Your Title
With the statement WRITE TITLE, you specify the text for your title (in apostrophes).

WRITE TITLE 'THIS IS MY PAGE TITLE'
WRITE '"HELLO'
END

The above program produces the following output:

Programming Guide 285

Page Titles, Page Breaks, Blank Lines

THIS IS MY PAGE TITLE
HELLO ©

Specifying Empty Lines after the Title
With the SKIP option of the WRITE TITLE statement, you can specify the number of empty lines

to be output immediately below the title line. After the keyword SKIP, you specify the number of
empty lines to be inserted.

WRITE TITLE 'THIS IS MY PAGE TITLE" SKIP 2
WRITE "HELLO'
END

The above program produces the following output:

THIS IS MY PAGE TITLE

HELLO <

SKIP isnot only available as part of the WRITE TITLE statement, but also as a stand-alone statement.
Title Justification and/or Underlining

By default, the page title is centered on the page and not underlined.

The WRITE TITLE statement provides the following options which can be used independent of
each other:

Option Effect

LEFT JUSTIFIED|Causes the page trailer to be displayed left-justified.

UNDERLINED Causes the title to be displayed underlined. The underlining runs the width of the line
size (see also Natural profile and session parameter LS). By default, titles are underlined
with a hyphen (-). However, with the UC session parameter you can specify another
character to be used as underlining character (see Underlining Character for Titles and
Headers).

The following example shows the effect of the LEFT JUSTIFIED and UNDERLINED options:

286 Programming Guide

Page Titles, Page Breaks, Blank Lines

WRITE TITLE LEFT JUSTIFIED UNDERLINED 'THIS IS MY PAGE TITLE'
SKIP 2

WRITE '"HELLO'

END

The above program produces the following output:

THIS IS MY PAGE TITLE

HELLO <

The WRITE TITLE statement is executed whenever a new page is initiated for the report.
Title with Page Number

In the following examples, the system variable *PAGE - NUMBER is used in conjunction with the WRITE
TITLE statement to output the page number in the title line.

** Example '"WTITLXO01': WRITE TITLE (with *PAGE-NUMBER)
Sk ok o o o o o ok ok ok kK ko ok o ok ok ok ok ok ok ok ok ko ko o ok ok ok ok ok ok ok ok ok ko ko ok o ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok
DEFINE DATA LOCAL
1 VEHIC-VIEW VIEW OF VEHICLES
2 MAKE
2 YEAR
2 MAINT-COST (1)
END-DEFINE

*

LIMIT 5
*
READ VEHIC-VIEW
END-ALL
SORT BY YEAR USING MAKE MAINT-COST (1)
DISPLAY NOTITLE YEAR MAKE MAINT-COST (1)
AT BREAK OF YEAR
MOVE 1 TO *PAGE-NUMBER
NEWPAGE
END-BREAK
/*
WRITE TITLE LEFT JUSTIFIED
"YEAR:"' YEAR 15X 'PAGE' *PAGE-NUMBER
END-SORT
END

Output of Program WTITLX01:

Programming Guide 287

Page Titles, Page Breaks, Blank Lines

YEAR: 1980 PAGE 1
YEAR MAKE MAINT-COST
1980 RENAULT 20000
1980 RENAULT 20000
1980 PEUGEQT 20000

Logical Page and Physical Page

A logical page is the output produced by a Natural program. A physical page is your terminal screen
on which the output is displayed; or it may be the piece of paper on which the output is printed.

The size of the logical page is determined by the number of lines output by the Natural program.

If more lines are output than fit onto one screen, the logical page will exceed the physical screen,
and the remaining lines will be displayed on the next screen.

288 Programming Guide

Page Titles, Page Breaks, Blank Lines

Physical Page (Screen)

] Note: Ifinformation you wish to appear at the bottom of the screen (for example, output
created by a WRITE TRAILER or AT END OF PAGE statement) is output on the next screen in-
stead, reduce the logical page size accordingly (with the session parameter PS, which is
discussed below).

Programming Guide 289

Page Titles, Page Breaks, Blank Lines

Page Size - PS Parameter

With the parameter PS (Page Size for Natural Reports), you determine the maximum number of
lines per (logical) page for a report.

When the number of lines specified with the PS parameter is reached, a page advance occurs
(unless page advance is controlled with a NEWPAGE or EJECT statement; see Page Advance Controlled
by EJ Parameter below).

The PS parameter can be set either at session level with the system command GLOBALS, or within
a program with the following statements:

At report level:
" FORMAT PS=nn
At statement level:

= DISPLAY (PS=nn)

" WRITE (PS=nn)

® WRITE TITLE (PS=nn)

= WRITE TRAILER (PS=nn)
= INPUT (PS=nn)

Page Advance

A page advance can be triggered by one of the following methods:

= Page Advance Controlled by EJ Parameter
= Page Advance Controlled by EJECT or NEWPAGE Statements
= Eject/New Page when less than n Lines Left

These methods are discussed below.

290 Programming Guide

Page Titles, Page Breaks, Blank Lines

Page Advance Controlled by EJ Parameter

With the session parameter EJ (Page Eject), you determine whether page ejects are to be performed
or not. By default, EJ=0N applies, which means that page ejects will be performed as specified.

If you specify EJ=0FF, page break information will be ignored. This may be useful to save paper
during test runs where page ejects are not needed.

The EJ parameter can be set at session level with the system command GLOBALS; for example:

GLOBALS EJ=0FF

The EJ parameter setting is overridden by the EJECT statement.
Page Advance Controlled by EJECT or NEWPAGE Statements

The following topics are covered below:

= Page Advance without Title/Header on Next Page
= Page Advance with End/Top-of-Page Processing

Page Advance without Title/Header on Next Page

The EJECT statement causes a page advance without a title or header line being generated on the
next page. A new physical page is started without any top-of-page or end-of-page processing being
performed (for example, no WRITE TRAILER or AT END OF PAGE, WRITE TITLE, AT TOP OF PAGE
or *PAGE-NUMBER processing).

The EJECT statement overrides the EJ parameter setting.
Page Advance with End/Top-of-Page Processing

The NEWPAGE statement causes a page advance with associated end-of-page and top-of-page pro-
cessing. A trailer line will be displayed, if specified. A title line, either default or user-specified,
will be displayed on the new page, unless the NOTITLE option has been specified in a DISPLAY or
WRITE statement (as described above).

If the NEWPAGE statement is not used, page advance is automatically controlled by the setting of
the PS parameter; see Page Size - PS Parameter above).

Programming Guide 291

Page Titles, Page Breaks, Blank Lines

Eject/New Page when less than n Lines Left

Both the NEWPAGE statement and the EJECT statement provide a WHEN LESS THAN n LINES LEFT
option. With this option, you specify a number of lines (). The NEWPAGE/EJECT statement will then
be executed if - at the time the statement is processed - less than n lines are available on the current

page.

Example 1:

FORMAT PS=55

NEWPAGE WHEN LESS THAN 7 LINES LEFT

In this example, the page size is set to 55 lines.

If only 6 or less lines are left on the current page at the time when the NEWPAGE statement is pro-
cessed, the NEWPAGE statement is executed and a page advance occurs. If 7 or more lines are left,
the NEWPAGE statement is not executed and no page advance occurs; the page advance then occurs
depending on the session parameter PS (Page Size for Natural Reports), that is, after 55 lines.

Example 2:

** Example 'NEWPAX02': NEWPAGE (in combination with EJECT and
taf parameter PS)
R R e b e b b e b b e e b e b b e e b e e b e S e e e S e e b e e e e b e e b e e e b e e e b i S
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 JOB-TITLE
END-DEFINE

*

FORMAT PS=15

*

READ (9) EMPLOY-VIEW BY CITY STARTING FROM 'BOSTON'
AT START OF DATA

EJECT

WRITE /// 20T '%"' (29) /
20T "%%" 47T "B%
20T '%%' 3X 'REPORT OF EMPLOYEES' 47T 'Z%' /
20T "%%" 3X ' SORTED BY CITY " A4TT "Rk
20T '"%%" 47T %%/
20T '%' (29) /

NEWPAGE

END-START

AT BREAK OF CITY

NEWPAGE WHEN LESS 3 LINES LEFT
END-BREAK
DISPLAY CITY (IS=ON) NAME JOB-TITLE

292 Programming Guide

Page Titles, Page Breaks, Blank Lines

END-READ
END

New Page with Title

The NEWPAGE statement also provides a WITH TITLE option. If this option is not used, a default title
will appear at the top of the new page or a WRITE TITLE statement or NOTITLE clause will be ex-
ecuted.

The WITH TITLE option of the NEWPAGE statement allows you to override these with a title of your
own choice. The syntax of the WITH TITLE option is the same as for the WRITE TITLE statement.

Example:

NEWPAGE WITH TITLE LEFT JUSTIFIED 'PEOPLE LIVING IN BOSTON:'

The following program illustrates the use of the session parameter PS (Page Size for Natural Reports)
and the NEWPAGE statement. Moreover, the system variable *PAGE - NUMBER is used to display the
current page number.

** Example 'NEWPAXO1': NEWPAGE
R R R R b S R b S S e b B b i e B b e S b b e e S b b S S i b e B e b e S i b e i S b b i e b b
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME

2 CITY

2 DEPT
END-DEFINE
*
FORMAT PS=20
READ (5) VIEWEMP BY CITY STARTING FROM 'M'

DISPLAY NAME 'DEPT' DEPT 'LOCATION' CITY

AT BREAK OF CITY

NEWPAGE WITH TITLE LEFT JUSTIFIED
"EMPLOYEES BY CITY - PAGE:' *PAGE-NUMBER

END-BREAK
END-READ
END

Output of Program NEWPAXO1:

Note the position of the page breaks and the title line:

Programming Guide 293

Page Titles, Page Breaks, Blank Lines

Page 1

NAME DEPT
FICKEN TECH10
KELLOGG TECH10
ALEXANDER SALE20
Page 2:

EMPLOYEES BY CITY - PAGE:

NAME DEPT
DE JUAN SALEO3
DE LA MADRID PRODO1

Page 3:

EMPLOYEES BY CITY - PAGE: 3

LOCATION

MADISON
MADISON
MADISON

LOCATION

MADRID
MADRID

Page Trailer - WRITE TRAILER Statement

04-11-11 14:15:54

The following topics are covered below:

= Specifying a Page Trailer

= Considering Logical Page Size
= Page Trailer Justification and/or Underlining

Specifying a Page Trailer

The WRITE TRAILER statement is used to output text (in apostrophes) at the bottom of a page.

WRITE TRAILER 'THIS IS THE END OF THE PAGE'

The statement is executed when an end-of-page condition is detected, or as a result of a SKIP or

NEWPAGE statement.

294

Programming Guide

Page Titles, Page Breaks, Blank Lines

Considering Logical Page Size

As the end-of-page condition is checked only after an entire DISPLAY or WRITE statement has been
processed, it may occur that the logical page size (that is, the number of lines output by a DISPLAY

or WRITE statement) causes the physical size of the output page to be exceeded before the WRITE
TRAILER statement is executed.

To ensure that a page trailer actually appears at the bottom of a physical page, you should set the
logical page size (with the PS session parameter) to a value less than the physical page size.

Page Trailer Justification and/or Underlining

By default, the page trailer is displayed centered on the page and not underlined.

The WRITE TRAILER statement provides the following options which can be used independent of
each other:

Option Effect

LEFT JUSTIFIED |Causes the page trailer to be displayed left justified.

UNDERLINED The underlining runs the width of the line size (see also Natural profile and session
parameter LS). By default, titles are underlined with a hyphen (-). However, with the
UC session parameter you can specify another character to be used as underlining
character (see Underlining Character for Titles and Headers).

The following examples show the use of the LEFT JUSTIFIED and UNDERLINED options of the WRITE
TRATLER statement:

Example 1:

WRITE TRAILER LEFT JUSTIFIED UNDERLINED 'THIS IS THE END OF THE PAGE'

Example 2:

** Example 'WTITLX02': WRITE TITLE AND WRITE TRAILER
KhkhkAhhkhhkhhkkhhkhhkhhhhkkhhhhhhhhkhhhhkkhhhhkhhhhkhhhhkhhkhhkhhhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhrkhxk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 NAME

2 FIRST-NAME

2 ADDRESS-LINE (1)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

*TIME
5X 'PEOPLE LIVING IN SALT LAKE CITY'
21X 'PAGE:' *PAGE-NUMBER /

Programming Guide 295

Page Titles, Page Breaks, Blank Lines

15X "AS OF' *DAT4E //

*

WRITE TRAILER UNDERLINED 'REGISTER OF' / 'SALT LAKE CITY'
*
READ (2) EMPLOY-VIEW WITH CITY = "SALT LAKE CITY'
DISPLAY NAME /
FIRST-NAME
"HOME/CITY" CITY
"STREET/0R BOX NO."' ADDRESS-LINE (1)
SKIP 1
END-READ
END

Generating Blank Lines - SKIP Statement

The SKIP statement is used to generate one or more blank lines in an output report.

Example 1 - SKIP in conjunction with WRITE and DISPLAY:

** Example 'SKIPX01': SKIP (in conjunction with WRITE and DISPLAY)
R R R o R R b R e b i b e I R R R i b b e i b R e b i R e i R i i b e b R e i I b e S b b 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 NAME

2 FIRST-NAME

2 ADDRESS-LINE (1)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

"PEOPLE LIVING IN SALT LAKE CITY AS OF' *DAT4E 7X
"PAGE: " *PAGE-NUMBER

SKIP 3
*
READ (2) EMPLOY-VIEW WITH CITY = "SALT LAKE CITY'

DISPLAY NAME / FIRST-NAME CITY ADDRESS-LINE (1)

SKIP 1
END-READ
END

296 Programming Guide

Page Titles, Page Breaks, Blank Lines

Example 2 - SKIP in conjunction with DISPLAY VERT:

**% Example 'SKIPX02': SKIP (in conjunction with DISPLAY VERT)
khkkhkhkhkhkkhkhhhkhkkhkhkhhkhkhkkhkhhhkhkhkhkhhhrhkkhkhkhhhkhkhkhhhhkhkhkhhhhkhkhkhhkhhkkhkhkhhrhkkhkhkhhkhkkhkhkhrkkkhkhkrx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 CITY

2 JOB-TITLE
END-DEFINE
*
READ (2) EMPLOY-VIEW WITH JOB-TITLE = 'SECRETARY'

DISPLAY NOTITLE VERT

NAME FIRST-NAME / CITY

SKIP 3

END-READ

*

NEWPAGE
*
READ (2) EMPLOY-VIEW WITH JOB-TITLE = 'SECRETARY'
DISPLAY NOTITLE
NAME FIRST-NAME / CITY
SKIP 3
END-READ
END

AT TOP OF PAGE Statement

The AT TOP OF PAGE statement is used to specify any processing that is to be performed whenever
a new page of the report is started.

If the AT TOP OF PAGE processing produces any output, this will be output below the page title
(with a skipped line in between).

By default, this output is displayed left-justified on the page.

Example:

*x Example 'ATTOPX01': AT TOP OF PAGE
ER R R B b R R b b R e b b e e b b R e e b b R e i b b e e b b S e b b R e I b b R e e b b e e b R e b b e b b b o 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-1D
NAME
MAR-STAT
BIRTH
CITY

N N NN

Programming Guide 297

Page Titles, Page Breaks, Blank Lines

2 JOB-TITLE
2 DEPT
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000°
DISPLAY NOTITLE (AL=10)
NAME DEPT JOB-TITLE CITY 5X
MAR-STAT 'DATE OF/BIRTH' BIRTH (EM=YY-MM-DD)
/*
AT TOP OF PAGE
WRITE / '-BUSINESS INFORMATION-'
26X '-PRIVATE INFORMATION-'
END-TOPPAGE
END-READ
END

Output of Program ATTOPXO01:

-BUSINESS INFORMATION- -PRIVATE INFORMATION-

NAME DEPARTMENT CURRENT CITY MARITAL DATE OF

CODE POSITION STATUS BIRTH

CREMER TECH10 ANALYST GREENVILLE S 70-01-01
MARKUSH SALEOQO TRAINEE LOS ANGELE D 79-03-14
GEE TECHOS MANAGER CHAPEL HIL M 41-02-04
KUNEY TECHIO DBA DETROIT S 40-02-13
NEEDHAM TECHI10 PROGRAMMER CHATTANOQG S 55-08-05
JACKSON TECHIO PROGRAMMER ST LOUIS D 70-01-01
PIETSCH MGMT10 SECRETARY VISTA M 40-01-09
PAUL MGMT10 SECRETARY NORFOLK S 43-07-07
HERZOG TECHOS5 MANAGER CHATTANOOG S 52-09-16
DEKKER TECH10 DBA MOBILE W 40-03-03
AT END OF PAGE Statement

The AT END OF PAGE statement is used to specify any processing that is to be performed whenever
an end-of-page condition occurs.

If the AT END OF PAGE processing produces any output, this will be output after any page trailer
(as specified with the WRITE TRAILER statement).

By default, this output is displayed left-justified on the page.

298 Programming Guide

Page Titles, Page Breaks, Blank Lines

The same considerations described above for page trailers regarding physical and logical page
sizes and the number of lines output by a DISPLAY or WRITE statement also apply to AT END OF
PAGE output.

Example:

** Example "ATENPXO1': AT END OF PAGE (with system function available
B via GIVE SYSTEM FUNCTIONS in DISPLAY)
khkkhkhkhkhkkhkhkhhkhkkhkhkhhhkhkhkhhhkhhkhkhhhrhkkhkhkhhhhkhhhhrhhkhkhhhkhkhkhkhhhhkhkhhhrhkkhkhkhhkkhkhkhkhrhkkkhkhkrkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME

2 JOB-TITLE

2 SALARY (1)
END-DEFINE
*
READ (10) EMPLOY-VIEW BY PERSONNEL-ID = '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS

NAME JOB-TITLE 'SALARY' SALARY(1)
/*
AT END OF PAGE
WRITE / 24T 'AVERAGE SALARY: ...' AVER(SALARY (1))

END-ENDPAGE
END-READ
END

Output of Program ATENPX01:

NAME CURRENT SALARY
POSITION

CREMER ANALYST 34000
MARKUSH TRAINEE 22000
GEE MANAGER 39500
KUNEY DBA 40200
NEEDHAM PROGRAMMER 32500
JACKSON PROGRAMMER 33000
PIETSCH SECRETARY 22000
PAUL SECRETARY 23000
HERZOG MANAGER 48500
DEKKER DBA 48000
AVERAGE SALARY: ... 34270

©

Programming Guide 299

Page Titles, Page Breaks, Blank Lines

Further Example

See the following example program:

® DISPLX21 - DISPLAY (with slash '/" and compare with WRITE)

300 Programming Guide

40 Column Headers

B DEfAUIt COIUMN HEAAELS ... vutiiitiiiiitiiiieii ittt b b a s s ssbsnsnees 302
= Suppress Default Column Headers - NOHDR Optionovvviiiiiiiiiiiiiee e 303
m Define Your OWNn Column HEAEISeveiiiiiiiiiii et e e e e e e e 303
= Combining NOTITLE @nd NOHDRuiiiiiiiiiieeiiii ettt e 304
= Centering of Column Headers - HC Parametercooiiiiiiiiiii e 304
= Width of Column Headers - HW Parametercoooiiiiiiiiiiiiiiieee e 304
= Filler Characters for Headers - Parameters FC and GCooiiiiiiiiiiiiiiee e 305
= Underlining Character for Titles and Headers - UC Parameterccocoiiiiiiiiiiicicccce 306
= Suppressing Column Headers - Slash Notationc..ooviiiiiiiii e 307
= Further Examples of Column HEAAETSvvvviiiiiiieii it 308

301

Column Headers

This chapter describes various ways of controlling the display of column headers produced by a
DISPLAY statement.

Default Column Headers

By default, each database field output with a DISPLAY statement is displayed with a default column
header (which is defined for the field in the DDM).

** Example 'DISPLXO1': DISPLAY
R R R R B R R R R R e R R R R R R B e e e e e e e i e b 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
*
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID NAME JOB-TITLE
END-READ
END

Output of Program DISPLXO01:

The above example program uses default headers and produces the following output.

Page 1 04-11-11 14:15:54
PERSONNEL NAME CURRENT
ID POSITION
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

302 Programming Guide

Column Headers

Suppress Default Column Headers - NOHDR Option

If you wish your report to be output without column headers, add the keyword NOHDR to the
DISPLAY statement.

DISPLAY NOHDR PERSONNEL-ID NAME JOB-TITLE

Define Your Own Column Headers

If you wish column headers of your own to be output instead of the default headers, you specify
'text' (in apostrophes) immediately before a field, text being the header to be used for the field.

** Example 'DISPLX08': DISPLAY (with column title in 'text')
khkhkkhhkkhkhkhhkkhhkhhkkhkhkhhkkhhkhhkkhhkhhkhkhkhhkkhhkhhkhhkhhkhkrkhhkhhkhhkhrkhhkhkrkhhkhkrkhhkhkrkhhkhrkhkrkhkrkhkrkhrk
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
END-DEFINE
*
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID
"EMPLOYEE' NAME
"POSITION' JOB-TITLE
END-READ
END

Output of Program DISPLX08:

The above program contains the header EMPLOYEE for the field NAME, and the header POSITION for
the field JOB-TITLE; for the field PERSONNEL - ID, the default header is used. The program produces
the following output:

Page 1 04-11-11 14:15:54
PERSONNEL EMPLOYEE POSITION
ID
30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

Programming Guide 303

Column Headers

Combining NOTITLE and NOHDR

To create a report that has neither page title nor column headers, you specify the NOTITLE and
NOHDR options together in the following order:

DISPLAY NOTITLE NOHDR PERSONNEL-ID NAME JOB-TITLE

Centering of Column Headers - HC Parameter

By default, column headers are centered above the columns. With the HC parameter, you can influ-
ence the placement of column headers.

If you specify

HC=L |headers will be left-justified.
HC=R |headers will be right-justified.

HC=C |headers will be centered.

The HC parameter can be used in a FORMAT statement to apply to the whole report, or it can be used
in a DISPLAY statement at both statement level and element level, for example:

DISPLAY (HC=L) PERSONNEL-ID NAME JOB-TITLE

Width of Column Headers - HW Parameter

With the HW parameter, you determine the width of a column output with a DISPLAY statement.

If you specify

HW=ON |the widthofa DISPLAY column is determined by either the length of the header text or the length
of the field, whichever is longer. This also applies by default.

HW=0FF |the width of a DISPLAY column is determined only by the length of the field. However, HW=0FF
only applies to DISPLAY statements which do not create headers; that is, either a first DISPLAY
statement with NOHDR option or a subsequent DISPLAY statement.

The HW parameter can be used in a FORMAT statement to apply to the entire report, or it can be used
in a DISPLAY statement at both statement level and element (field) level.

304 Programming Guide

Column Headers

Filler Characters for Headers - Parameters FC and GC

With the FC parameter, you specify the filler character which will appear on either side of a header
produced by a DISPLAY statement across the full column width if the column width is determined
by the field length and not by the header (see HW parameter above); otherwise FC will be ignored.

When a group of fields or a periodic group is output via a DISPLAY statement, a group header is
displayed across all field columns that belong to that group above the headers for the individual
fields within the group. With the GC parameter, you can specify the filler character which will appear
on either side of such a group header.

While the FC parameter applies to the headers of individual fields, the GC parameter applies to the
headers for groups of fields.

The parameters FC and GC can be specified in a FORMAT statement to apply to the whole report, or
they can be specified in a DISPLAY statement at both statement level and element (field) level.

** Example 'FORMAXO1': FORMAT (with parameters FC, GC)
R R R R R R B B R R R R b R R R R R i e e b e e b e e b e e b e b S e e b e b e S e i e b 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 INCOME (1:1)
3 CURR-CODE
3 SALARY
3 BONUS (1:1)
END-DEFINE

*

FORMAT FC=* GC=$
*
READ (3) VIEWEMP BY NAME
DISPLAY NAME (FC==) INCOME (1)
END-READ
END

Output of Program FORMAXO1:

Page 1 04-11-11 14:15:54
NAME $$$5SSS$SSESINCOMESS$8$35588%9
CURRENCY **ANNUAL** **BONUS***
CODE SALARY
ABELLAN PTA 1450000 0
ACHIESON UKL 10500 0
ADAM FRA 159980 23000

Programming Guide 305

Column Headers

Underlining Character for Titles and Headers - UC Parameter

By default, titles and headers are underlined with a hyphen (-).
With the UC parameter, you can specify another character to be used as underlining character.

The UC parameter can be specified in a FORMAT statement to apply to the whole report, or it can be
specified in a DISPLAY statement at both statement level and element (field) level.

** Example 'FORMAX02': FORMAT (with parameter UC)
khkhkkhkkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhkhhkhhkhkhhhkhhkhkhhhhhkhkhhkhhhkhkkhhkhhkhkhkhhkhhkhkhhkhhhkhkhhkhkhhkhkhkixk
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME

2 BIRTH

2 JOB-TITLE
END-DEFINE

*

FORMAT UC==

*

WRITE TITLE LEFT JUSTIFIED UNDERLINED 'EMPLOYEES REPORT'
SKIP 1
READ (3) VIEWEMP BY BIRTH
DISPLAY PERSONNEL-ID (UC=*) NAME JOB-TITLE
END-READ
END

In the above program, the UC parameter is specified at program level and at element (field) level:
the underlining character specified with the FORMAT statement (=) applies for the whole report -
except for the field PERSONNEL - ID, for which a different underlining character (*) is specified.

Output of Program FORMAX02:

EMPLOYEES REPORT

PERSONNEL NAME CURRENT
ID POSITION

kAhkkAhkkAhkkhKk

30020013 GARRET TYPIST

30016112 TAILOR WAREHOUSEMAN

20017600 PIETSCH SECRETARY

306 Programming Guide

Column Headers

Suppressing Column Headers - Slash Notation

With the notation apostrophe-slash-apostrophe ('/'), you can suppress default column headers for

individual fields displayed with a DISPLAY statement. While the NOHDR option suppresses the

headers of all columns, the notation ' /' can be used to suppress the header for an individual

column.

The apostrophe-slash-apostrophe ('/') notation is specified in the DISPLAY statement immediately

before the name of the field for which the column header is to be suppressed.
Compare the following two examples:

Example 1:

DISPLAY NAME PERSONNEL-ID JOB-TITLE

In this case, the default column headers of all three fields will be displayed:

Page 1 04-11-11 14:15:54
NAME PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON ©
Example 2:

DISPLAY '"/' NAME PERSONNEL-ID JOB-TITLE

In this case, the notation ' /' causes the column header for the field NAME to be suppressed:

Page 1 04-11-11 14:15:54
PERSONNEL CURRENT
ID POSITION
ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER

Programming Guide

307

Column Headers

ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON ©

Further Examples of Column Headers

See the following example programs:

® DISPLX15 - DISPLAY (with FC, UC)
® DISPLX16 - DISPLAY (with /', "text’, "text/text’)

308 Programming Guide

41 Parameters to Influence the Output of Fields

Overview of Field-Output-Relevant Parametersoooivviiiiiiiiiiie e 310
Leading Characters - LC Parameterouiiiiiiiieeiii et 310
Unicode Leading Characters - LCU Parametercoovviiiiiiiiiiiiie e 311
Insertion Characters - 1C Parameterooiiieiiiiei e 311
Unicode Insertion Characters - ICU Parametercovviiiiiiiiiiiiie e 312
Trailing Characters - TC Parameteruiiiiiiiiie e 312
Unicode Trailing Characters - TCU Parametercoiiiiiiiiiiiiiiecieee e 312
Output Length - AL and NL Parameterscoouurieiiiiiiiiiiiie et 313
Display Length for Output - DL Parameteroooiiiiiiiiiiiiieiice e 313
Sign POSItioN = SG Parametervvviiiiiiee e 315
[dentical SUPPrESS - IS Parameterei i 317
Zer0 Printing = ZP Parametero 319
Empty Line Suppression - ES Parameterooiiiiiiiiiii e 319
Further Examples of Field-Output-Relevant Parameterscooiviiiiiiiiiiiiiiiiiiiic e 321

309

Parameters to Influence the Output of Fields

This chapter discusses the use of those Natural profile and/or session parameters which you can
use to control the output format of fields.

See also Output Reports and Work Files (in the Parameter Reference documentation) for an overview
of the Natural profile parameters that control various standard attributes used during the creation
of Natural reports.

Overview of Field-Output-Relevant Parameters

Natural provides several profile and/or session parameters you can use to control the format in
which fields are output:

Parameter Function

LC, ICand TC |With these session parameters, you can specify characters that are to be displayed before
or after a field or before a field value.

AL and NL With these session parameters, you can increase or reduce the output length of fields.

DL With this session parameter, you can specify the default output length for an alphanumeric
map field of format U.

SG With this session parameter, you can determine whether negative values are to be displayed
with or without a minus sign.

IS With this session parameter, you can suppress the display of subsequent identical field
values.

LP With this profile and session parameter, you can determine whether field values of 0 are
to be displayed or not.

ES With this session parameter, you can suppress the display of empty lines generated by a

DISPLAY or WRITE statement.

These parameters are discussed in the following sections.

Leading Characters - LC Parameter

With the session parameter LC, you can specify leading characters that are to be displayed imme-
diately before a field that is output with a DISPLAY statement. The width of the output column is
enlarged accordingly. You can specify 1 to 10 characters.

By default, values are displayed left-justified in alphanumeric fields and right-justified in numeric
fields. (These defaults can be changed with the AD parameter; see the Parameter Reference). When

a leading character is specified for an alphanumeric field, the character is therefore displayed im-
mediately before the field value; for a numeric field, a number of spaces may occur between the

leading character and the field value.

310 Programming Guide

Parameters to Influence the Output of Fields

The LC parameter can be used with the following statements:

= FORMAT
= DISPLAY

The LC parameter can be set at statement level and at element level.

Unicode Leading Characters - LCU Parameter

The session parameter LCU is identical to the session parameter LC. The difference is that the
leading characters are always stored in Unicode format.

This allows you to specify leading characters with mixed characters from different code pages,
and assures that always the correct character is displayed independent of the installed system
code page.

For further information, see Unicode and Code Page Support in the Natural Programming Language,
Session Parameters, section EMU, ICU, LCU, TCU wversus EM, IC, LC, TC.

The parameters LCU and ICU cannot both be applied to one field.

Insertion Characters - IC Parameter

With the session parameter IC, you specify the characters to be inserted in the column immediately
preceding the value of a field that is output with a DISPLAY statement. You can specify 1 to 10 charac-
ters.

For a numeric field, the insertion characters will be placed immediately before the first significant
digit that is output, with no intervening spaces between the specified character and the field value.
For alphanumeric fields, the effect of the IC parameter is the same as that of the LC parameter.

The parameters LC and IC cannot both be applied to one field.
The IC parameter can be used with the following statements:

" FORMAT
= DISPLAY

The IC parameter can be set at statement level and at element level.

Programming Guide 311

Parameters to Influence the Output of Fields

Unicode Insertion Characters - ICU Parameter

The session parameter ICU is identical to the session parameter IC. The difference is that the insertion
characters are always stored in Unicode format.

This allows you to specify insertion characters with mixed characters from different code pages,
and assures that always the correct character is displayed independent of the installed system
code page.

For further information, see Unicode and Code Page Support in the Natural Programming Language,
Session Parameters, section EMU, ICU, LCU, TCU versus EM, IC, LC, TC.

The parameters LCU and ICU cannot both be applied to one field.

Trailing Characters - TC Parameter

With the session parameter TC, you can specify trailing characters that are to be displayed imme-
diately to the right of a field that is output with a DISPLAY statement. The width of the output column
is enlarged accordingly. You can specify 1 to 10 characters.

The TC parameter can be used with the following statements:

= FORMAT
= DISPLAY

The TC parameter can be set at statement level and at element level.

Unicode Trailing Characters - TCU Parameter

The session parameter TCU is identical to the session parameter TC. The difference is that the trailing
characters are always stored in Unicode format.

This allows you to specify trailing characters with mixed characters from different code pages,
and assures that always the correct character is displayed independent of the installed system
code page.

For further information, see Unicode and Code Page Support in the Natural Programming Language,
Session Parameters, section EMU, ICU, LCU, TCU versus EM, IC, LC, TC.

312 Programming Guide

Parameters to Influence the Output of Fields

Output Length - AL and NL Parameters

With the session parameter AL, you can specify the output length for an alphanumeric field; with the
NL parameter, you can specify the output length for a numeric field. This determines the length of a
field as it will be output, which may be shorter or longer than the actual length of the field (as
defined in the DDM for a database field, or in the DEFINE DATA statement for a user-defined vari-
able).

Both parameters can be used with the following statements:

" FORMAT
= DISPLAY
" WRITE

= PRINT

= INPUT

Both parameters can be set at statement level and at element level.

| Note: If an edit mask is specified, it overrides an NL or AL specification. Edit masks are de-
scribed in Edit Masks - EM Parameter.

Display Length for Output - DL Parameter

| Note: You should use the Web I/O Interface to make use of the full functionality of the DL

parameter. When using the terminal emulation, it is not possible, for example, to scroll in
a field when the value defined with DL is smaller than the field length.

With the session parameter DL, you can specify the display length for a field of format A or U, since
the display width of a Unicode string can be twice the length of the string, and the user must be
able to display the whole string. The default will be the length, for example, for a format/length
U10, the display length can be 10 to 20, whereas the default length (when DL is not specified) is
10.

The session parameter DL can be used with the following statements:

" FORMAT
= DISPLAY
" WRITE

= PRINT

Programming Guide 313

Parameters to Influence the Output of Fields

= INPUT
The session parameter DL can be set at statement level and at element level.

The difference between the session parameters AL and DL is that AL defines the data length of a
field whereas DL defines the number of columns which are used on the screen for displaying the
field. The user can scroll in input fields to view the entire content of a field if the value specified
with the DL session parameter is less than the length of the field data.

Using the DL parameter with a length that is smaller than the length of the field is only recommen-
ded with the Web I/O Interface. When running Natural in a terminal emulation, scrolling in a field
is not possible and so the effect is the same as using the AL parameter. Moreover, when changing
the field contents, all characters which are beyond the display length will be lost.

Note: DL is allowed for A-format fields as well. In conjunction with the Web I/O Interface,

this would allow making the edit control size smaller than the content of a field.

Example:

DEFINE DATA LOCAL

1 #UL (U10)

1 U2 (U10)
END-DEFINE

*

#U1 := U'latintxt00"
U2 := U'HBRGERSEHEEES"
*

INPUT (AD=M) U1 {fU2

END

The above program produces the following output where the content of the field #U?2 is incomplete:

UL Tatintxt00 F#U2 #EIE{EIR

When the session parameter DL is used with the field #U2 and is specified accordingly, the content
of this field will be displayed correctly:

DEFINE DATA LOCAL

1 U1 (U10)

1 U2 (U10)

END-DEFINE

*

#U1 := U'latintxt00"

U2 := U'HBRGERSEHEEES"

*

INPUT (AD=M) #UL #U2 (DL=20)
END

Result:

314 Programming Guide

Parameters to Influence the Output of Fields

F#U1 Tatintxt00 #U2 BEIERIFEHEES

Sign Position - SG Parameter

With the session parameter SG, you can determine whether or not a sign position is to be allocated
for numeric fields.

® By default, SG=0N applies, which means that a sign position is allocated for numeric fields.

® If you specify SG=0FF, negative values in numeric fields will be output without a minus sign (-

)-
The SG parameter can be used with the following statements:

" FORMAT
= DISPLAY
= PRINT

" WRITE

= INPUT

The SG parameter can be set at both statement level and element level.

| Note: If an edit mask is specified, it overrides an SG specification. Edit masks are described
in Edit Masks - EM Parameter.

Example Program without Parameters

** Example 'FORMAX03': FORMAT (without FORMAT and compare with FORMAX04)
R R R o R R b b R e e b b e e b b R e e b b R e e i b b e b b S e b i R e i b b R e e b b i e e b R e b I b e b b b o
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
END-DEFINE
*
READ (5) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY NAME
FIRST-NAME
SALARY (1:1)
BONUS (1:1,1:1)
END-READ
END

Programming Guide 315

Parameters to Influence the Output of Fields

The above program contains no parameter settings and produces the following output:

Page 1 04-11-11 11:11:11
NAME FIRST-NAME ANNUAL BONUS
SALARY
JONES VIRGINIA 46000 9000
JONES MARSHA 50000 0
JONES ROBERT 31000 0
JONES LILLY 24000 0
JONES EDWARD 37600 0

Example Program with Parameters AL, NL, LC, IC and TC
In this example, the session parameters AL, NL, LC, IC and TC are used.

** Example 'FORMAX04': FORMAT (with parameters AL, NL, LC, TC, IC and
P compare with FORMAX03)
R R R R R e R R R R R R R R R R e R e e i e R e b e I e b e e b e e b e e b e b b S e i e b 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)
END-DEFINE

*

FORMAT AL=10 NL—6
*
READ (5) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY NAME (LC=*)
FIRST-NAME (TC=*)
SALARY (1:1) (IC=$)
BONUS (1:1,1:1) (LC=>)
END-READ
END

The above program produces the following output. Compare the layout of this output with that
of the previous program to see the effect of the individual parameters:

316 Programming Guide

Parameters to Influence the Output of Fields

Page 1 04-11-11 11:11:11
NAME FIRST-NAME ~ ANNUAL BONUS
SALARY
*JONES VIRGINIA * $46000 > 9000
*JONES MARSHA * $50000 > 0
*JONES ROBERT * $31000 > 0
*JONES LILLY 2 $24000 > 0
*JONES EDWARD * $37600 > 0

As you can see in the above example, any output length you specify with the AL or NL parameter
does not include any characters specified with the LC, IC and TC parameters: the width of the NAME
column, for example, is 11 characters - 10 for the field value (AL=10) plus 1 leading character.

The width of the SALARY and BONUS columns is 8 characters - 6 for the field value (NL=6), plus 1
leading/inserted character, plus 1 sign position (because SG=0N applies).

Identical Suppress - IS Parameter

With the session parameter IS, you can suppress the display of identical information in successive
lines created by a WRITE or DISPLAY statement.

® By default, IS=0FF applies, which means that identical field values will be displayed.

= If 1S=0N is specified, a value which is identical to the previous value of that field will not be
displayed.

The IS parameter can be specified

" with a FORMAT statement to apply to the whole report, or

®" jna DISPLAY or WRITE statement at both statement level and element level.

The effect of the parameter IS=0N can be suspended for one record by using the statement SUSPEND
IDENTICAL SUPPRESS; see the Statements documentation for details.

Compare the output of the following two example programs to see the effect of the IS parameter.
In the second one, the display of identical values in the NAME field is suppressed.

Programming Guide 317

Parameters to Influence the Output of Fields

Example Program without IS Parameter

** Example "FORMAX05': FORMAT (without parameter IS
T and compare with FORMAX06)
B R R R e i e e e e i e e i i e R R e i e e e e e S e e A e i S S
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY NAME FIRST-NAME
END-READ
END

The above program produces the following output:

Page 1 04-11-11 11:11:11
NAME FIRST-NAME

JONES VIRGINIA

JONES MARSHA

JONES ROBERT ©

Example Program with IS Parameter

** Example 'FORMAX06': FORMAT (with parameter IS
ol and compare with FORMAX05)
R R R e b e b e b e b e R e b b e b R e e B e i e b e e S e e e e B e e b e b e b S e b S b e b S b e b e b e b e e b o 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
END-DEFINE

*

FORMAT IS=ON

*

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY NAME FIRST-NAME

END-READ

END

The above program produces the following output:

318 Programming Guide

Parameters to Influence the Output of Fields

Page 1 04-11-11 11:54:01
NAME FIRST-NAME
JONES VIRGINIA
MARSHA
ROBERT

Zero Printing - ZP Parameter

With the profile and session parameter ZP, you determine how a field value of zero is to be dis-
played.

® By default, ZP=0N applies, which means that one 0 (for numeric fields) or all zeros (for time
fields) will be displayed for each field value that is zero.

= If you specify 7P=0FF, the display of each field value which is zero will be suppressed.
The 7P parameter can be specified

" with a FORMAT statement to apply to the whole report, or

® jna DISPLAY or WRITE statement at both statement level and element level.

Compare the output of the following two example programs to see the effect of the parameters
ZP and ES.

Empty Line Suppression - ES Parameter

With the session parameter ES, you can suppress the output of empty lines created by a DISPLAY
or WRITE statement.
® By default, ES=0FF applies, which means that lines containing all blank values will be displayed.

" If ES=0N is specified, a line resulting from a DISPLAY or WRITE statement which contains all blank
values will not be displayed. This is particularly useful when displaying multiple-value fields
or fields which are part of a periodic group if a large number of empty lines are likely to be
produced.

The ES parameter can be specified

" with a FORMAT statement to apply to the whole report, or

®" jna DISPLAY or WRITE statement at statement level.

Programming Guide 319

Parameters to Influence the Output of Fields

Note: To achieve empty suppression for numeric values, in addition to ES=0N the parameter

ZP=0FF must also be set for the fields concerned in order to have null values turned into
blanks and thus not output either.

Compare the output of the following two example programs to see the effect of the parameters
ZP and ES.

Example Program without Parameters ZP and ES

** Example 'FORMAXO7': FORMAT (without parameter ES and ZP
el and compare with FORMAX08)
KA KRR AR A AR AR KA AR A AR A AR AR KA KR A A KA AR AR KA KK AR AA KA R KA KK A R A AR AR KA kA h kAR A A kA hkAK
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BONUS (1:2,1:1)
END-DEFINE
*
READ (4) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)
END-READ
END

The above program produces the following output:

Page 1 04-11-11 11:58:23
NAME FIRST-NAME BONUS

JONES VIRGINIA 9000
6750
JONES MARSHA 0
0
JONES ROBERT 0
0
JONES LILLY 0
0

320 Programming Guide

Parameters to Influence the Output of Fields

Example Program with Parameters ZP and ES

** Example 'FORMAX08': FORMAT (with parameters ES and ZP
T and compare with FORMAX07)
R R R R R R R R R R R b R R R R R R R R R S b R b R e i b b e S b i 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 BONUS (1:2,1:1)
END-DEFINE

*

FORMAT ES=ON

*

READ (4) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)(ZP=0FF)

END-READ

END

The above program produces the following output:

Page 1 04-11-11 11:59:09
NAME FIRST-NAME BONUS
JONES VIRGINIA 9000
6750
JONES MARSHA
JONES ROBERT
JONES LILLY

Further Examples of Field-Output-Relevant Parameters

For further examples of the parameters LC, IC, TC, AL, NL, IS, ZP and ES, and the SUSPEND IDENTICAL
SUPPRESS statement, see the following example programs:
® DISPLX17 - DISPLAY (with NL, AL, IC, LC, TC)

® DISPLX18 - DISPLAY (using default settings for SE, AL, UC, LC, IC, TC and compare with
DISPLX19)

® DISPLX19 - DISPLAY (with SF, AL, LC, IC, TC and compare with DISPLX18)

® SUSPEXO01 - SUSPEND IDENTICAL SUPPRESS (in conjunction with parameters IS, ES, ZP
in DISPLAY)

® SUSPEXO02 - SUSPEND IDENTICAL SUPPRESS (in conjunction with parameters IS, ES, ZP
in DISPLAY). Identical to SUSPEX01, but with 1S=OFF.

Programming Guide 321

Parameters to Influence the Output of Fields

® COMPRX03 - COMPRESS

322 Programming Guide

42 Code Page Edit Masks - EM Parameter

B USE OF EM Parametercoi i 324
m Edit Masks for NUMETIC FIEIASvviieiiiie e 324
= Edit Masks for Alphanumeric FIEIASooiiiiiiee e 325
B LENGHh OF FIBIAS ... 325
= Edit Masks for Date and Time FIEIASevieeiiiiiie e 326
= Customizing Separator Character DISPIAYScoiiiiiiiiiiiiii e 326
B EXamPles Of EQIEMASKSooiiiiiiii e 328
m Further EXamples of Edit MASKSooiiiiiiiiiiicc e 330

323

Code Page Edit Masks - EM Parameter

This chapter describes how you can specify an edit mask for an alphanumeric or numeric field.

Use of EM Parameter

With the session parameter EM you can specify an edit mask for an alphanumeric or numeric field,
that is, determine character by character the format in which the field values are to be output.
Using the session parameter EMU, you can define edit masks with Unicode characters in the same
way as described below for the EM session parameter.

Example:
DISPLAY NAME (EM=XAXAXAXAXAXAXAXAXAX)

In this example, each X represents one character of an alphanumeric field value to be displayed,
and each " represents a blank. If displayed via the DISPLAY statement, the name JOHNSON would
appear as follows:

JOHNSON
You can specify the session parameter EM

" at report level (in a FORMAT statement),
" at statement level (ina DISPLAY, WRITE, INPUT, MOVE EDITED or PRINT statement) or
" atelement level (ina DISPLAY, WRITE or INPUT statement).

An edit mask specified with the session parameter EM will override a default edit mask specified
for a field in the DDM; see Using the DDM Editor, Specifying Extended Field Attributes.

If EM=0FF is specified, no edit mask at all will be used.
An edit mask specified at statement level will override an edit mask specified at report level.

An edit mask specified at element level will override an edit mask specified at statement level.

Edit Masks for Numeric Fields

An edit mask specified for a field of format N, P, I, or F must contain at least one 9 or Z. If more
nines or Zs exist, the number of positions contained in the field value, the number of print positions
in the edit mask will be adjusted to the number of digits defined for the field value. If fewer nines
or Zs exist, the high-order digits before the decimal point and/or low-order digits after the
decimal point will be truncated.

324 Programming Guide

Code Page Edit Masks - EM Parameter

For further information, see session parameter £M, Edit Masks for Numeric Fields in the Parameter
Reference documentation.

Edit Masks for Alphanumeric Fields

Edit masks for alphanumeric fields must include an X for each alphanumeric character that is to
be output.

With a few exceptions, you may add leading, trailing and insertion characters (with or without
enclosing them in apostrophes).

The circumflex character (") is used to insert blanks in edit mask for both numeric and alphanu-
meric fields.

For further information, see session parameter £M, Edit Masks for Alphanumeric Fields in the Parameter
Reference documentation.

Length of Fields

It is important to be aware of the length of the field to which you assign an edit mask.

= If the edit mask is longer than the field, this will yield unexpected results.

= If the edit mask is shorter than the field, the field output will be truncated to just those positions
specified in the edit mask.

Examples:

Assuming an alphanumeric field that is 12 characters long and the field value to be output is
JOHNSON, the following edit masks will yield the following results:

Edit Mask Output
EM=X.X.X.X.X J.0.H.N.S

EM=* % XX XXX Xk %% | %k JOHNS O * %

Programming Guide 325

Code Page Edit Masks - EM Parameter

Edit Masks for Date and Time Fields

Edit masks for date fields can include the characters D (day), M (month) and Y (year) in various
combinations.

Edit masks for time fields can include the characters H (hour), I (minute), S (second) and T (tenth
of a second) in various combinations.

In conjunction with edit masks for date and time fields, see also the date and time system variables.

Customizing Separator Character Displays

Natural programs are used in business applications all over the world. Depending on the local
conventions, it is usual to present numeric data fields and those with a date or time content in a
special output style, when displayed in I/O statements. The different appearance should not be
realized by alternate program coding that is processed selectively as a function of the locale where
the program is being executed, but should be carried out with the same program image in conjunc-
tion with a set of runtime parameters to specify the decimal point character and the “thousands
separator character”.

The following topics are covered below:

= Decimal Separator
= Dynamic Thousands Separator
= Examples

Decimal Separator

The Natural parameter DC is available to specify the character to be inserted in place of any char-
acters used to represent the decimal separator (also called “radix” character) in edit masks. This
parameter enables the users of a Natural program or application to choose any (special) character
to separate the integer positions from the decimal positions of a numeric data item and enables,
for example, U.S. shops to use the decimal point (.) and European shops to use the comma (,).

326 Programming Guide

Code Page Edit Masks - EM Parameter

Dynamic Thousands Separator

To structure the output of a large integer values, it is common practice to insert separators between
every three digits of an integer to separate groups of thousands. This separator is called a “thou-
sands separator”. For example, shops in the United States generally use a comma for this purpose
(1,000,000), whereas shops in Germany use the period (1.000.000), in France a space (1 000 000),
etc.

In a Natural edit mask, a “dynamic thousands separator” is a comma (or period) indicating the
position where thousands separator characters (defined with the THSEPCH parameter) are inserted
at runtime. At compile time, the option THSEP of system command COMPOPT or the subparameter
THSEP of profile parameter CMPO or macro NTCCMPO enables or disables the interpretation of the
comma (or period) as dynamic thousands separator.

If THSEP is set to OFF (default), any character used as thousands separator in the edit mask is treated
as literal and displayed unchanged at runtime. This setting retains downwards compatibility.

If THSEP is set to ON, any comma (or period) in the edit mask is interpreted as dynamic thousands
separators. In general, the dynamic thousands separator is a comma, but if the comma is already
in use as decimal character (DC), the period is used as dynamic thousands separator.

At runtime the dynamic thousands separators are replaced by the current value of the THSEPCH
parameter (thousands separator character).

Examples

A Natural program that is cataloged with parameter settings DC='." and THSEP=0N uses the edit
mask (EM=77,777,779.99).

Parameter Settings at Runtime |Displays as

DC="."'and THSEPCH=","' |[1,234,567.89
DC=','and THSEPCH="." |1.234.567,89
DC=', ' and THSEPCH="/" |1/234/567,89
DC=','and THSEPCH=" " |1 234 567,89
DC=', ' and THSEPCH=""""]1"234"567,89

Programming Guide 327

Code Page Edit Masks - EM Parameter

Examples of Edit Masks

Some examples of edit masks, along with possible output they produce, are provided below.

In addition, the abbreviated notation for each edit mask is given. You can use either the abbreviated
or the long notation.

Edit Mask Abbreviation Output A Output B
EM=999.99 EM=9(3).9(2) |367.32 005.40
EM=777779 EM=7(5)9(1) 0 579
EM=X"XXXXX EM=X(1)"X(5) B LUE A 19379
EM=XXX. .. XX EM=X(3)...X(2)|BLU...E AAB...01
EM=MM.DD.YY [* 01.05.87 |12.22.86
EM=HH.II.SS.T|** 08.54.12.7|14.32.54.3

" Use a date system variable.
" Use a time system variable.

For further information about edit masks, see the session parameter EM in the Parameter Reference.

Example Program without EM Parameters

**% Example "EDITMX01': Edit mask (using default edit masks)
KA A h A A A hkhhkhhkhkhkhhkhhkrAhhhkhhkhkhhkhkhkhAhhhkhhkhkhhkhkhhkhhhkhkhkhkhkhhkhkhhkhhkhkhhkhhhkhkhkhkkhhkhkhkkxk
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 SALARY (1:3)
2 CITY
END-DEFINE

*

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY 'N A M E' NAME /
"OCCUPATION' JOB-TITLE
"SALARY SALARY (1:3)
"LOCATION' CITY
SKIP 1
END-READ
END

Output of Program EDITMXO01:

The output of this program shows the default edit masks available.

328 Programming Guide

Code Page Edit Masks - EM Parameter

Page 1 04-11-11 14:15:54
NAME SALARY LOCATION
OCCUPATION
JONES 46000 TULSA
MANAGER 42300
39300
JONES 50000 MOBILE
DIRECTOR 46000
42700
JONES 31000 MILWAUKEE
PROGRAMMER 29400
27600

Example Program with EM Parameters

** Example 'EDITMX02': Edit mask (using EM)
R R R R R R R R S R R R R R R R R R b b B R R R R R b b e R R R R b e e e R R R R b e e e
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 JOB-TITLE
2 SALARY (1:3)
END-DEFINE

*

READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY 'N A M E' NAME (EM=XAXAXAXAXAXAXAXAXAXAXAXAXAXAX) /
FIRST-NAME (EM=...X(10)...)
"OCCUPATION' JOB-TITLE (EM=" ___ 'X(12))
"SALARY' SALARY (1:3) (EM=' USD 'Z77,999)
SKIP 1
END-READ
END

Output of Program EDITMX02:

Compare the output with that of the previous program (Example Program without EM Parameters)
to see how the EM specifications affect the way the fields are displayed.

Programming Guide 329

Code Page Edit Masks - EM Parameter

Page 1

NAME
FIRST-NAME

0CCUPATION

SALARY

__ MANAGER

__ DIRECTOR

__ PROGRAMMER

Further Examples of Edit Masks

N
usD
usSb

USb
usD
uSb

ush
Usb
usb

46,
,300
39,

42

50,
46,
,700

42

31

27

000

300

000
000

,000
29,
,600

400

04-11-11 14:15:54

See the following example programs:

® EDITMXO03 - Edit mask (different EM for alpha-numeric fields)
® EDITMX04 - Edit mask (different EM for numeric fields)
® EDITMXO05 - Edit mask (EM for date and time system variables)

330

Programming Guide

43 Unicode Edit Masks - EMU Parameter

Unicode edit masks can be used similar to code page edit masks. The difference is that the edit
mask is always stored in Unicode format.

This allows you to specify edit masks with mixed characters from different code pages and assures
that always the correct character is displayed, independent of the installed system code page.

For the general usage of edit masks, see Edit Masks - EM Parameter.

For information on the session parameter EMU, see EMU - Unicode Edit Mask (in the Parameter Ref-
erence).

331

332

44 Vertical Displays

m Creating VertiCal DISPIAYSooiiiiiiii it 334
= Combining DISPLAY @nd WRITE ...ttt 334
B Tab NOtAtioN = THIEIAeviei e et 335
® POSItIONING NOTALION X/Y ... 336
B DISPLAY VERT SEIEMENT ...t 337
= Further Example of DISPLAY VERT with WRITE Statement ... 343

333

Vertical Displays

This chapter describes how you can combine the features of the statements DISPLAY and WRITE to
produce vertical displays of field values.

Creating Vertical Displays

There are two ways of creating vertical displays:

®" You can use a combination of the statements DISPLAY and WRITE.

" You can use the VERT option of the DISPLAY statement.

Combining DISPLAY and WRITE

As described in Statements DISPLAY and WRITE, the DISPLAY statement normally presents the
data in columns with default headers, while the WRITE statement presents data horizontally without
headers.

You can combine the features of the two statements to produce vertical displays of field values.

The DISPLAY statement produces the values of different fields for the same record across the page
with a column for each field. The field values for each record are displayed below the values for
the previous record.

By using a WRITE statement after a DISPLAY statement, you can insert text and/or field values spe-
cified in the WRITE statement between records displayed via the DISPLAY statement.

The following program illustrates the combination of DISPLAY and WRITE:

** Example '"WRITEX04': WRITE (in combination with DISPLAY)
Khkhkkhhkkhhkkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhhkhhkhkhkhhkkhhkhhkhhkhhkhhkhhkhrkhhkhkhkhhkhkrkhhkhrkhhkhkrkhhkhrkhhkhkrkhkrkhrk
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 CITY
2 DEPT
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO'
DISPLAY NAME JOB-TITLE
WRITE 22T 'DEPT:' DEPT
SKIP 1
END-READ
END

334 Programming Guide

Vertical Displays

Output of Program WRITEX04:

Page 1 04-11-11 14:15:55

NAME CURRENT
POSITION

KOLENCE MANAGER
DEPT: TECHO5

GOSDEN ANALYST
DEPT: TECH10

WALLACE SALES PERSON
DEPT: SALEZ20

Tab Notation - T*field

In the previous example, the position of the field DEPT is determined by the tab notation nT (in this
case 20T, which means that the display begins in column 20 on the screen).

Field values specified in a WRITE statement can be lined up automatically with field values specified
in the first DISPLAY statement of the program by using the tab notation T*field (where fieldis
the name of the field to which the field is to be aligned).

In the following program, the output produced by the WRITE statement is aligned to the field
JOB-TITLE by using the notation T*JOB-TITLE:

** Example '"WRITEXO05': WRITE (in combination with DISPLAY)
R R R o R R b R i b i I b R e e I b R R i b e i b e i b i R e b R e i i b e b R e i b b e b b o 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 DEPT
2 CITY
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO'
DISPLAY NAME JOB-TITLE
WRITE T*JOB-TITLE 'DEPT:' DEPT
SKIP 1
END-READ
END

Output of Program WRITEXO5:

Programming Guide 335

Vertical Displays

Page 1
NAME
KOLENCE
GOSDEN
WALLACE

CURRENT
POSITION

MANAGER
DEPT: TECHO5

ANALYST
DEPT: TECHIO

SALES PERSON
DEPT: SALEZ20

Positioning Notation x/y

04-11-11

14:15:55

When you use the DISPLAY and WRITE statements in sequence and multiple lines are to be produced

by the WRITE statement, you can use the notation x/y (number-slash-number) to determine in

which row/column something is to be displayed. The positioning notation causes the next element
in the DISPLAY or WRITE statement to be placed x lines below the last output, beginning in column
y of the output.

The following program illustrates the use of this notation:

** Example '"WRITEXO06': WRITE

(with n/n)

R R b b e b b e b b e b e b e o b e e b e e b e e o e e S e e b e S e e b e S b e e e b e b e e i S

DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES

2 NAME

MIDDLE-I

N N NN

CITY
2 LIP
END-DEFINE

*

READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

FIRST-NAME

ADDRESS-LINE (1:1)

DISPLAY 'NAME AND ADDRESS' NAME

WRITE 1/5

FIRST-NAME

1/30 MIDDLE-I
2/5 ADDRESS-LINE (1:1)

3/5

3/30 ZIP /

END-READ
END

Output of Program WRITEX06:

336

Programming Guide

Vertical Displays

Page 1

NAME AND ADDRESS

RUBIN
SYLVIA
2003 SARAZEN PLACE
NEW YORK

WALLACE
MARY
12248 LAUREL GLADE C
NEW YORK

KELLOGG
HENRIETTA
1001 JEFF RYAN DR.
NEWARK

DISPLAY VERT Statement

10036

10036

19711

04-11-11

14:15:55

The standard display mode in Natural is horizontal.

With the VERT clause option of the DISPLAY statement, you can override the standard display and

produce a vertical field display.

The HORIZ clause option, which can be used in the same DISPLAY statement, re-activates the
standard horizontal display mode.

Column headings in vertical mode are controlled with various forms of the AS clause. The following

example programs illustrate the use of the DISPLAY VERT statement:

= DISPLAY VERT without AS Clause

= DISPLAY with VERT AS CAPTIONED and HORIZ Clause

= DISPLAY with VERT AS 'text' Clause
= DISPLAY with VERT AS 'text' CAPTIONED Clause

Programming Guide

337

Vertical Displays

= Tab Notation P*field

DISPLAY VERT without AS Clause

The following program has no AS clause, which means that no column headings are output.

** Example 'DISPLX09': DISPLAY (without column title)
R R R R e e b b e b b e e b b S o b b S e b S e b S e b b S e b b S e b b S S e b S S e b b I e e b b e S
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'
DISPLAY VERT NAME FIRST-NAME / CITY
SKIP 2
END-READ
END

Output of Program DISPLX09:

Note that all field values are displayed vertically underneath one another.

Page 1 04-11-11 14:15:54
RUBIN

SYLVIA

NEW YORK

WALLACE

MARY

NEW YORK

KELLOGG

HENRIETTA

NEWARK

338 Programming Guide

Vertical Displays

DISPLAY with VERT AS CAPTIONED and HORIZ Clause

The following program contains a VERT and a HORIZ clause, which causes some column values to
be output vertically and others horizontally; moreover AS CAPTIONED causes the default column
headers to be displayed.

** Example 'DISPLX10': DISPLAY (with VERT as CAPTIONED and HORIZ clause)
RO R b e b e b b e b b e e b e b b e e b e e b e e e e e e e e b e e e e b e e b e e e b e i e b i S
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 CITY

2 JOB-TITLE

2 SALARY (1:1)
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY VERT AS CAPTIONED NAME FIRST-NAME

HORIZ JOB-TITLE SALARY (1:1)

SKIP 1
END-READ
END

Output of Program DISPLX10:

Page 1 04-11-11 14:15:54
NAME CURRENT ANNUAL
FIRST-NAME POSITION SALARY
RUBIN SECRETARY 17000
SYLVIA
WALLACE ANALYST 38000
MARY
KELLOGG DIRECTOR 52000
HENRIETTA

Programming Guide 339

Vertical Displays

DISPLAY with VERT AS 'text' Clause

The following program contains an AS 'text' clause, which displays the specified ' text' as
column header.

Note: A slash (/) within the text element in a DISPLAY statement causes a line advance.

** Example 'DISPLX11': DISPLAY (with VERT AS 'text' clause)
R R R R B B R R R e R b e R i e R R R i e R e e e e e b e I e b e e b e b b e e b e b b S e e b o 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 CITY

2 JOB-TITLE

2 SALARY (1:1)
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY VERT AS 'EMPLOYEES' NAME FIRST-NAME

HORIZ JOB-TITLE SALARY (1:1)

SKIP 1
END-READ
END

Output of Program DISPLX11:

Page 1 04-11-11 14:15:54
EMPLOYEES CURRENT ANNUAL
POSITION SALARY
RUBIN SECRETARY 17000
SYLVIA
WALLACE ANALYST 38000
MARY
KELLOGG DIRECTOR 52000
HENRIETTA

340 Programming Guide

Vertical Displays

DISPLAY with VERT AS 'text' CAPTIONED Clause

The AS 'text' CAPTIONED clause causes the specified text to be displayed as column heading,
and the default column headings to be displayed immediately before the field value in each line
that is output.

The following program contains an AS ' text' CAPTIONED clause.

** Example 'DISPLX12': DISPLAY (with VERT AS 'text' CAPTIONED clause)
R R R R R R B e R R R R R R B R R e B R e i e b R e b e e b e e b e b i e e B e e S e i e b 4
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 CITY

2 JOB-TITLE

2 SALARY (1:1)
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY VERT AS 'EMPLOYEES' CAPTIONED NAME FIRST-NAME

HORIZ JOB-TITLE SALARY (1:1)

SKIP 1
END-READ
END

Output of Program DISPLX12:

This clause causes the default column headers (NAME and FIRST - NAME) to be placed before the field
values:

Page 1 04-11-11 14:15:54
EMPLOYEES CURRENT ANNUAL
POSITION SALARY
NAME RUBIN SECRETARY 17000

FIRST-NAME SYLVIA

NAME WALLACE ANALYST 38000
FIRST-NAME MARY

NAME KELLOGG DIRECTOR 52000
FIRST-NAME HENRIETTA

Programming Guide 341

Vertical Displays

Tab Notation P*field

If you use a combination of DISPLAY VERT statement and subsequent WRITE statement, you can
use the tab notation P*field-name in the WRITE statement to align the position of a field to the
column and line position of a particular field specified in the DISPLAY VERT statement.

In the following program, the fields SALARY and BONUS are displayed in the same column, SALARY
in every first line, BONUS in every second line. The text ***SALARY PLUS BONUS*** is aligned to
SALARY, which means that it is displayed in the same column as SALARY and in the first line,
whereas the text (IN US DOLLARS) is aligned to BONUS and therefore displayed in the same column
as BONUS and in the second line.

** Example 'WRITEXO7': WRITE (with P*field)
R R R R R R b e e e R R R b b e e e e S e R b b e e e e R R e e e e e R i e e e e e e i b e e e e e
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 CITY
2 NAME
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'LOS ANGELES'
DISPLAY NAME JOB-TITLE
VERT AS "INCOME' SALARY (1) BONUS (1,1)
WRITE P*SALARY '***SALARY PLUS BONUS**='
P*BONUS " (IN US DOLLARS)'’
SKIP 1
END-READ
END

Output of Program WRITEX07:

Page 1 04-11-11 14:15:55

NAME CURRENT INCOME
POSITION

SALARY PLUS BONUS
(IN US DOLLARS)

POORE JR SECRETARY 25000
0
SALARY PLUS BONUS
(IN US DOLLARS)

342 Programming Guide

Vertical Displays

PREPARATA MANAGER 46000
9000
SALARY PLUS BONUS
(IN US DOLLARS)

Further Example of DISPLAY VERT with WRITE Statement

See the following example program:

® WRITEX10 - WRITE (with nT, T*field and P*field)

Programming Guide 343

344

VII Further Programming Aspects

Text Notation

User Comments

Data Computation

Rules for Arithmetic Assignment
Conditional Processing - IF Statement
Logical Condition Criteria

Loop Processing

Control Breaks

Stack Processing

System Variables and System Functions
Processing of Date Information

End of Statement, Program or Application
Processing of Application Errors

Compilation Aspects

345

346

45 Text Notation

= Defining a Text to Be Used with a Statement - the 'text' Notation ... 348
= Defining a Character to Be Displayed n Times before a Field Value - the 'c'(n) Notationcc.cccvveenne 349

347

Text Notation

Inan INPUT, DISPLAY, WRITE, WRITE TITLE or WRITE TRAILER statement, you can use text notation
to define a text to be used in conjunction with such a statement.

Defining a Text to Be Used with a Statement - the 'text' Notation

The text to be used with the statement (for example, a prompting message) must be enclosed in
either apostrophes (') or quotation marks ("). Do not confuse double apostrophes ("') with a quotation
mark (").

Text enclosed in quotation marks can be converted automatically from lower-case letters to upper
case. To switch off automatic conversion, change the settings in the editor profile.

For details, see Dynamic Conversion of Lower Case in General Defaults in Editor Profile (General
Information, Editors documentation).

The text itself may be 1 to 72 characters and must not be continued from one line to the next.
Text elements may be concatenated by using a hyphen.

Examples:

DEFINE DATA LOCAL
1 #fACALD)
END-DEFINE

INPUT 'Input XYZ' (CD=BL) #A

WRITE '=' #A
WRITE 'Writel ' - 'Write2 ' - 'Write3' (CD=RE)
END

Using Apostrophes as Part of a Text String

The following applies, if (Translate Quotation Marks) is set to ON. This is the default setting.

If you want an apostrophe to be part of a text string that is enclosed in apostrophes, you must
write this as double apostrophes (") or as a quotation mark ("). Either notation will be output as a
single apostrophe.

If you want an apostrophe to be part of a text string that is enclosed in quotation marks, you write
this as a single apostrophe.

348 Programming Guide

Text Notation

Examples of Apostrophe:
##FIELDA = '0''CONNOR'
J#FIELDA = '0"CONNOR'

#]FTELDA = "0'CONNOR"

In all three cases, the result will be:
0'CONNOR
Using Quotation Marks as Part of a Text String

The following applies, if the Natural profile parameter TQ (Translate Quotation Marks) or the
keyword subparameter TOMARK of the Natural profile parameter CMPO is set to OFF. The default
setting is ON.

If you want a quotation mark to be part of a text string that is enclosed in single apostrophes, write
a quotation mark.

If you want a quotation mark to be part of a text string that is enclosed in quotation marks, write
double quotation marks ().

Example of Quotation Mark:

#FFTIELDA "0"CONNOR"
f]FTELDA = "0""CONNOR"

In both cases, the result will be:

0"CONNOR

Defining a Character to Be Displayed n Times before a Field Value - the 'c'(n)
Notation

If a single character is to be output several times as text, you use the following notation:

As c you specify the character, and as n the number of times the character is to be generated. The
maximum value for nis 249.

Programming Guide 349

Text Notation

Example:

WRITE "*'(3)

Instead of apostrophes before and after the character c you can also use quotation marks.

350 Programming Guide

46 User Comments

= Using an Entire Source Code Line for COMMENEScoiiiiiiiiiiiieiee e
= Using the Latter Part of a Source Code Line for COmMMENtSccoviiiiiiiiiiieiiiiecec e

351

User Comments

User comments are descriptions or explanatory notes added to or interspersed among the statements
of the source code. Such information may be particularly helpful in understanding and maintaining
source code that was written or edited by another programmer. Also, the characters marking the
beginning of a comment can be used to temporarily disable the function of a statement or several
source code lines for test purposes.

Using an Entire Source Code Line for Comments

If you wish to use an entire source-code line for a user comment, you enter one of the following
at the beginning of the line:

" an asterisk and a blank (*),
" two asterisks (**¥), or

® aslash and an asterisk (/*).

* USER COMMENT
** USER COMMENT
/* USER COMMENT

Example:

As can be seen from the following example, comment lines may also be used to provide for a clear
source code structure.

** Example 'LOGICX03': BREAK option in logical condition
*hkkkhkkkhkkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhdhkkhxkhhkhxkxkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 BIRTH
*
1 #BIRTH (A8)
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY BIRTH

MOVE EDITED BIRTH (EM=YYYYMMDD) TO #BIRTH

/*

IF BREAK OF #BIRTH /6/

NEWPAGE IF LESS THAN 5 LINES LEFT
WRITE / '-" (50) /

END-IF

/*

DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME

352 Programming Guide

User Comments

END-READ
END

Using the Latter Part of a Source Code Line for Comments

If you wish to use only the latter part of a source-code line for a user comment, you enter a blank,
a slash and an asterisk (/*); the remainder of the line after this notation is thus marked as a comment:

ADD 5 TO #A /* USER COMMENT

Example:

** Example 'LOGICX04': IS option as format/length check

khkkkhkkhkhkhkhkkhkhhkhkkhkkhkhhhkhkkhhhhhkkhkkhhhhkhkkhhhhhkkhhhhhkhhhrhkkhkhhhhkkhkkhhhkhkhkhhhrhkkhhhrhkkhhrrtkk

DEFINE DATA LOCAL

1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED

1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION
1 {DATE (A10) /* INPUT FIELD FOR DATE

END-DEFINE

*

INPUT #DATE #FIELDA
IF #DATE IS(D)
IF #FIELDA IS (N5)
COMPUTE #FIELDB = VAL(#FIELDA)
WRITE NOTITLE 'VAL FUNCTION OK' // '=' {fFIELDA '=' #fFIELDB
ELSE
REINPUT 'FIELD DOES NOT FIT INTO N5 FORMAT'
MARK *#FIELDA
END-IF
ELSE
REINPUT 'INPUT IS NOT IN DATE FORMAT (YY-MM-DD)
MARK *#fDATE
END-IF

*

END

Programming Guide 353

354

47 Data Computation

B COMPUTE SEAtBMENT ..o ettt et e e e e et e e e e e e eaaans 356
= Statements MOVE and COMPUTEovviiiiiiiiiiieieeeeee e aaaes 357
= Statements ADD, SUBTRACT, MULTIPLY @nd DIVIDEuuuiiiiiiiiiiiiieee e 358
= Example of MOVE, SUBTRACT and COMPUTE Statementsccooooeiiiiii oo, 358
B COMPRESS SEAtBMENT ...oeeeeeeeeeeeeeee e 359
= Example of COMPRESS and MOVE Statementscoouuiiiiiiiiiieiie e 360
= Example of COMPRESS StateMENtcooiiiiiiiiiicieee e 361
B Mathematical FUNCHIONSoiiiii ettt e e e e e e e aaaaes 362
= Further Examples of COMPUTE, MOVE and COMPRESS Statementscccccoviiiiiiiiiiieeiiiiiiiieeee, 363

355

Data Computation

This chapter discusses arithmetic statements that are used for computing data:

= COMPUTE
= ADD

= SUBTRACT
= MULTIPLY
= DIVIDE

In addition, the following statements are discussed which are used to transfer the value of an op-
erand into one or more fields:

= MOVE
= COMPRESS

A\ Important: For optimum processing, user-defined variables used in arithmetic statements
should be defined with format P (packed numeric).

COMPUTE Statement

The COMPUTE statement is used to perform arithmetic operations. The following connecting oper-
ators are available:

%% |Exponentiation

* Multiplication

/ Division
+ Addition
Subtraction

() Parentheses may be used to indicate logical grouping.

356 Programming Guide

Data Computation

Example 1:

COMPUTE LEAVE-DUE = LEAVE-DUE * 1.1

In this example, the value of the field LEAVE-DUE is multiplied by 1.1, and the result is placed in
the field LEAVE-DUE.

Example 2:

COMPUTE #fA = SQRT (#B)

In this example, the square root of the value of the field #8 is evaluated, and the result is assigned
to the field #A.

SQRT is a mathematical function supported in the following arithmetic statements:

= COMPUTE
= ADD

= SUBTRACT
= MULTIPLY
= DIVIDE

For an overview of mathematical functions, see Mathematical Functions below.

Example 3:

COMPUTE #INCOME = BONUS (1,1) + SALARY (1)

In this example, the first bonus of the current year and the current salary amount are added and
assigned to the field #INCOME.

Statements MOVE and COMPUTE

The statements MOVE and COMPUTE can be used to transfer the value of an operand into one or more
fields. The operand may be a constant such as a text item or a number, a database field, a user-
defined variable, a system variable, or, in certain cases, a system function.

The difference between the two statements is that in the MOVE statement the value to be moved is
specified on the left; in the COMPUTE statement the value to be assigned is specified on the right, as
shown in the following examples.

Programming Guide 357

Data Computation

Examples:

MOVE NAME TO #LAST-NAME
COMPUTE #fLAST-NAME = NAME

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

The ADD, SUBTRACT, MULTIPLY and DIVIDE statements are used to perform arithmetic operations.

Examples:

ADD +5 -2 -1 GIVING #A
SUBTRACT 6 FROM 11 GIVING #B
MULTIPLY 3 BY 4 GIVING #C
DIVIDE 3 INTO #D GIVING #E

All four statements have a ROUNDED option, which you can use if you wish the result of the operation
to be rounded.

For rules on rounding, see Rules for Arithmetic Assignment.

The Statements documentation provides more detailed information on these statements.

Example of MOVE, SUBTRACT and COMPUTE Statements

The following program demonstrates the use of user-defined variables in arithmetic statements.
It calculates the ages and wages of three employees and outputs these.

** Example 'COMPUXO01': COMPUTE

Sk ok o o o o o ok ok ok ko ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ko ko ko ok ok ok ok ok
DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)
*
1 #DATE (N8)
1 REDEFINE #DATE
2 #YEAR (N4)
2 MONTH (N2)
2 DAY (N2)
1 #BIRTH-YEAR (A4)

1 REDEFINE #BIRTH-YEAR

358 Programming Guide

Data Computation

2 #BIRTH-YEAR-N (N4)

1 fAGE (N3)
1 ##INCOME (P9)
END-DEFINE

*

MOVE *DATN TO #DATE

*

READ (3) MYVIEW BY NAME STARTING FROM 'JONES'
MOVE EDITED BIRTH (EM=YYYY) TO #BIRTH-YEAR
SUBTRACT #BIRTH-YEAR-N FROM #YEAR GIVING #AGE
/*

COMPUTE #1INCOME = BONUS (1:1,1:1) + SALARY (1:1)
/*
DISPLAY NAME 'POSITION' JOB-TITLE #AGE #INCOME

END-READ

END

Output of Program COMPUXO1:

Page 1 14-01-14 14:15:54
NAME POSITION J#AGE #FINCOME

JONES MANAGER 63 55000

JONES DIRECTOR 58 50000

JONES PROGRAMMER 48 31000

COMPRESS Statement

The COMPRESS statement is used to transfer (combine) the contents of two or more operands into
a single alphanumeric field.

Leading zeros in a numeric field and trailing blanks in an alphanumeric field are suppressed before
the field value is moved to the receiving field.

By default, the transferred values are separated from one another by a single blank in the receiving
field. For other separating possibilities, see the COMPRESS statement option LEAVING NO SPACE (in
the Statements documentation).

Programming Guide 359

Data Computation

Example:

COMPRESS 'NAME:' FIRST-NAME #LAST-NAME INTO #FULLNAME

In this example, a COMPRESS statement is used to combine a text constant (' NAME: '), a database
field (FIRST-NAME) and a user-defined variable (#LAST-NAME) into one user-defined variable
(#FULLNAME).

For further information on the COMPRESS statement, please refer to the COMPRESS statement descrip-
tion (in the Statements documentation).

Example of COMPRESS and MOVE Statements

The following program illustrates the use of the statements MOVE and COMPRESS.

** Example 'COMPRX01': COMPRESS
R R b e b e b e b e b e R e b e b e b b e e b e e b e e e b e e e I e e b e b e b e e b e e S e e b i b e b e e b o 4
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
*
1 #LAST-NAME (A15)
1 #FULL-NAME (A30)
END-DEFINE
*
READ (3) MYVIEW BY NAME STARTING FROM 'JONES'
MOVE NAME TO #fLAST-NAME
/*
COMPRESS 'NAME:' FIRST-NAME MIDDLE-I #LAST-NAME INTO #FULL-NAME
/*
DISPLAY #FULL-NAME (UC==) FIRST-NAME 'I' MIDDLE-1 (AL=1) NAME
END-READ
END

Output of Program COMPRXO01:

Notice the output format of the compressed field.

360 Programming Guide

Data Computation

Page 1 14-01-14 14:15:54
#FFULL - NAME FIRST-NAME I NAME

NAME: VIRGINIA J JONES VIRGINIA J JONES

NAME: MARSHA JONES MARSHA JONES

NAME: ROBERT B JONES ROBERT B JONES

In multiple-line displays, it may be useful to combine fields/text in a user-defined variables by
using a COMPRESS statement.

Example of COMPRESS Statement

In the following program, three user-defined variables are used: #FULL-SALARY, #FULL-NAME, and
fFFULL-CITY.#FULL-SALARY, for example, contains the text ' SALARY : ' and the database fields SALARY
and CURR-CODE. The WRITE statement then references only the compressed variables.

** Example 'COMPRX02': COMPRESS

R R R R R R b b R e b b e e b b R e i b b e i b R e i b i R e e b b R e b b b e e b R R e i b b e b b S
DEFINE DATA LOCAL

1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 CURR-CODE (1:1)
2 CITY
2 ADDRESS-LINE (1:1)
2 LIP
*
1 ffFULL-SALARY (A25)
1 #fFULL-NAME (A25)
1 #FULL-CITY (A25)
END-DEFINE

*

READ (3) VIEWEMP BY CITY STARTING FROM "NEW YORK'
COMPRESS 'SALARY:' CURR-CODE(1) SALARY(1) INTO #FULL-SALARY

COMPRESS FIRST-NAME NAME INTO fFFULL-NAME
COMPRESS ZIP CITY INTO ffFULL-CITY
/*

DISPLAY 'NAME AND ADDRESS' NAME (EM=XAXAXAXAXAXAXAXAXAXAXAX)
WRITE 1/5 #FULL-NAME
1/37 #fFULL-SALARY
2/5 ADDRESS-LINE (1)
3/5 #FULL-CITY
SKIP 1
END-READ
END

Programming Guide 361

Data Computation

Output of Program COMPRX02:

Page 1 14-01-14 14:15:54

NAME AND ADDRESS

RUBTIN
SYLVIA RUBIN SALARY: USD 17000
2003 SARAZEN PLACE
10036 NEW YORK

WALLACE
MARY WALLACE SALARY: USD 38000
12248 LAUREL GLADE C
10036 NEW YORK

KELLOGGEG
HENRIETTA KELLOGG SALARY: USD 52000
1001 JEFF RYAN DR.
19711 NEWARK

Mathematical Functions

The following Natural mathematical functions are supported in arithmetic processing statements
(ADD, COMPUTE, DIVIDE, SUBTRACT, MULTIPLY).

Mathematical Function Natural System Function
Absolute value of field. ABS(field)
Arc tangent of field. ATN(field)
Cosine of field. COS(field)
Exponential of field. EXP(field)
Fractional part of field. FRAC(field)
Integer part of field. INT(field)
Natural logarithm of field. LOG(field)
Sign of field. SGN(field)
Sine of field. SIN(field)
Square root of field. SQRT(field)
Tangent of field. TAN(field)
Numeric value of an alphanumeric f7eld.|VAL(field)

See also the System Functions documentation for a detailed explanation of each mathematical
function.

362 Programming Guide

Data Computation

Further Examples of COMPUTE, MOVE and COMPRESS Statements

See the following example programs:

® WRITEX11 - WRITE (with nX, n/n and COMPRESS)
® IFX03 - IF statement
" COMPRX03 - COMPRESS (using parameters LC and TC)

Programming Guide 363

364

48 Rules for Arithmetic Assignment

B Field INIGALIZALION ... e e aaa e 366
B DA TrANSTE ... ettt e e 366
= Field Truncation and Field ROUNGINGoooiiiiii e 369
= Result Format and Length in Arithmetic Operationsooooiiiiiiiiiii e 369
= Arithmetic Operations with Floating-Point NUMDETSvvviiiiiiiiiii e 370
= Arithmetic Operations with Date and TIMEoiiiiiiiiii e 372
= Performance Considerations for Mixed Format EXpreSSionsccovvviviiiiiiiiiiiiiiiiiie e 376
= Precision of Results of Arithmetic OPerationsooiiiiiiiiiiiie e 376
= Error Conditions in Arithmetic OPErationscoiiiiiiiiiiiii e 378
B PrOCESSING OF AITAYS ...eiieiiiei ittt et e e e e e et e e e e e e e e s ettt e e e e e e e s s e baaaeaea e 378

365

Rules for Arithmetic Assignment

Field Initialization

A field (user-defined variable or database field) which is to be used as an operand in an arithmetic
operation must be defined with one of the following formats:

Format

Numeric unpacked

Packed numeric

Integer

Floating point

Date

SISIEINEE

Time

| Note: For reporting mode: A field which is to be used as an operand in an arithmetic oper-

ation must have been previously defined. A user-defined variable or database field used
as a result field in an arithmetic operation need not have been previously defined.

All user-defined variables and all database fields defined in a DEFINE DATA statement are initialized
to the appropriate zero or blank value when the program is invoked for execution.

Data Transfer

Data transfer is performed with a MOVE or COMPUTE statement. The following table summarizes the
data transfer compatibility of the formats an operand may take.

Sending Field Format Receiving Field Format

NorP & U Bng<sBagmgy ' NC D TFEO
NorP Y (2] [14] (3] - Y-- - YY--
A Y (131 (1] (1] --- - - ---
L - [11] Y [12] [12] - - - - - - - -
Bn (n<5) [4]1 [2] [14] [5] [5] Y-- - YY- -
Bn (n>4) - [6] [15] [5] [5] --- - - ---
: Y (21 (141 (3] - Y-- - YY--
. - 191 [16] - T oy- - - -
¢ - - - - N .

366 Programming Guide

Rules for Arithmetic Assignment

D Y [9] [16] Y - Y-- Y [71Y- -
T Y [9] [16] Y - Y- -[8]YY- -
F Y [9][10][10][16] [3] - Y- - YY- -
G - - - - - .- - - . .Y -
o - - - - - Y
Where

Y

Indicates data transfer compatibility.

Indicates data transfer incompatibility.

[]

Numbers in brackets [] refer to the corresponding rule for data transfer given below.

Data Conversion

The following rules apply to converting data values:

1.

Alphanumeric to binary:
The value will be moved byte by byte from left to right. The result may be truncated or padded
with trailing blank characters depending on the length defined and the number of bytes specified.

(N,PI) and binary (length 1-4) to alphanumeric:

The value will be converted to unpacked form and moved into the alphanumeric field left jus-
tified, that is, leading zeros will be suppressed and the field will be filled with trailing blank
characters. For negative numeric values, the sign will be converted to the hexadecimal notation
Dx. Any decimal point in the numeric value will be ignored. All digits before and after the
decimal point will be treated as one integer value.

(N,PLF) to binary (1-4 bytes):

The numeric value will be converted to binary (4 bytes). Any decimal point in the numeric
value will be ignored (the digits of the value before and after the decimal point will be treated
as an integer value). The resulting binary number will be positive or a two's complement of the
number depending on the sign of the value.

Binary (1-4 bytes) to numeric:

The value will be converted and assigned to the numeric value right justified, that is, with
leading zeros. (Binary values of the length 1-3 bytes are always assumed to have a positive sign.
For binary values of 4 bytes, the leftmost bit determines the sign of the number: 1=negative,
O=positive.) Any decimal point in the receiving numeric value will be ignored. All digits before
and after the decimal point will be treated as one integer value.

. Binary to binary:

The value will be moved from right to left byte by byte. Leading binary zeros will be inserted
into the receiving field.

Programming Guide 367

Rules for Arithmetic Assignment

6. Binary (>4 bytes) to alphanumeric:
The value will be moved byte by byte from left to right. The result may be truncated or padded
with trailing blanks depending on the length defined and the number of bytes specified.

7. Date (D) to time (T):
If date is moved to time, it is converted to time assuming time 00:00:00:0.

8. Time (T) to date (D):
If time is moved to date, the time information is truncated, leaving only the date information.

9. LD,T,F to A:
The values are converted to display form and are assigned left justified.

10. F:
If F is assigned to an alphanumeric or Unicode field which is too short, the mantissa is reduced
accordingly.

11. Unicode to alphanumeric:
The Unicode value will be converted to alphanumeric character codes according to the default
code page (value of the system variable *CODEPAGE) using the International Components for
Unicode (ICU) library. The result may be truncated or padded with trailing blank characters,
depending on the length defined and the number of bytes specified. If the characters of the
Unicode value are not defined in the default code page, a runtime error is output or the characters
are replaced with the substitution character, depending on the setting of the profile/session
parameter CPCVERR.

12 Unicode to binary:
The value will be moved code unit by code unit from left to right. The result may be truncated
or padded with trailing blank characters, depending on the length defined and the number of
bytes specified. The length of the receiving binary field must be even.

13. Alphanumeric to Unicode:
The alphanumeric value will be converted from the default code page to a Unicode value using
the International Components for Unicode (ICU) library. The result may be truncated or padded
with trailing blank characters, depending on the length defined and the number of code units
specified.

14 (N,P]) and binary (Iength 1-4) to Unicode:
The value will be converted to unpacked form from which an alphanumeric value will be ob-
tained by suppression of leading zeros. For negative numeric values, the sign will be converted
to the hexadecimal notation Dx. Any decimal point in the numeric value will be ignored. All
digits before and after the decimal point will be treated as one integer value. The resulting value
will be converted from alphanumeric to Unicode. The result may be truncated or padded with
trailing blank characters, depending on the length defined and the number of code units specified.

15. Binary (>4 bytes) to Unicode:
The value will be moved byte by byte from left to right. The result may be truncated or padded
with trailing blanks, depending on the length defined and the number of bytes specified. The
length of the sending binary field must be even.

368 Programming Guide

Rules for Arithmetic Assignment

16.L,D,T,F to U:
The values are converted to an alphanumeric display form. The resulting value will be converted
from alphanumeric to Unicode and assigned left justified.

If source and target format are identical, the result may be truncated or padded with trailing blank
characters (format A and U) or leading binary zeros (format B) depending on the length defined
and the number of bytes (format A and B) or code units (format U) specified.

See also Using Dynamic Variables.

Field Truncation and Field Rounding

The following rules apply to field truncation and rounding;:

® High-order numeric field truncation is allowed only when the digits to be truncated are leading
zeros. Digits following an expressed or implied decimal point may be truncated.

*® Trailing positions of an alphanumeric field may be truncated.

= If the option ROUNDED is specified, the last position of the result will be rounded up if the first
truncated decimal position of the value being assigned contains a value greater than or equal
to 5. For the result precision of a division, see also Precision of Results of Arithmetic Operations.

Result Format and Length in Arithmetic Operations

The following table shows the format and length of the result of an arithmetic operation:

1 (12 (4 [NorP |F4 |F8

1 I1 |12 |14 |P* F4 (F8
12 2 |12 |14 |P* F4 (F8
14 4 |14 |14 |P* |F4 |F8
NorP |p+ p*|p* |P* |F4 |F8
F4 |F4|F4|F4|F4 |F4 |F8
F8 F8|F8|F8|F8 |F8 |F8

On a mainframe computer, format/length F8 is used instead of F4 for improved precision of the
results of an arithmetic operation.

P* is determined from the integer length and precision of the operands individually for each oper-
ation, as shown under Precision of Results of Arithmetic Operations.

The following decimal integer lengths and possible values are applicable for format I:

Programming Guide 369

Rules for Arithmetic Assignment

Format/Length |Decimal Integer Length |Possible Values

11 3 -128to 127

2 5 -327681t0 32767

14 10 -2147483648 to 2147483647

Arithmetic Operations with Floating-Point Numbers

The following topics are covered below:

= General Considerations

= Precision of Floating-Point Numbers

= Conversion to Floating-Point Representation
= Platform Dependency

General Considerations

Floating-point numbers (format F) are represented as a sum of powers of two (as are integer
numbers (format I)), whereas unpacked and packed numbers (formats N and P) are represented
as a sum of powers of ten.

In unpacked or packed numbers, the position of the decimal point is fixed. In floating-point
numbers, however, the position of the decimal point (as the name indicates) is “floating”, that is,
its position is not fixed, but depends on the actual value.

Floating-point numbers are essential for the computing of trigonometric functions or mathematical
functions such as sinus or logarithm.

Precision of Floating-Point Numbers

Due to the nature of floating-point numbers, their precision is limited:

® For a variable of format/length F4, the precision is limited to approximately 7 digits.
® For a variable of format/length F8, the precision is limited to approximately 16 digits.
Values which have more significant digits cannot be represented exactly as a floating-point number.

No matter how many additional digits there are before or after the decimal point, a floating-point
number can cover only the leading 7 or 16 digits respectively.

An integer value can only be represented exactly in a variable of format/length F4 if its absolute
value does not exceed 2 ** -1.

370 Programming Guide

Rules for Arithmetic Assignment

Conversion to Floating-Point Representation

When an alphanumeric, unpacked numeric or packed numeric value is converted to floating-point
format (for example, in an assignment operation), the representation has to be changed, that is, a
sum of powers of ten has to be converted to a sum of powers of two.

Consequently, only numbers that are representable as a finite sum of powers of two can be repres-
ented exactly; all other numbers can only be represented approximately.

Examples:

This number has an exact floating-point representation:

Thus, the conversion of alphanumeric, unpacked numeric or packed numeric values to floating-
point values, and vice versa, can introduce small errors.

Note: If an integer, unpacked or packed result of an arithmetic operation (see Result Format
and Length in Arithmetic Operations) has to be converted to floating point representation,
you should consider to perform the arithmetic operation already in floating point format
to improve the precision.

Example:
ffFL (F8) :=1 / 12 /* Result is +8.333330000000000E-02
#fF2 (F8) := 1.0E0 / 12 /* Result is +8.333333333333333E-02

Platform Dependency

Because of different hardware architecture, the representation of floating-point numbers varies
according to platforms. This explains why the same application, when run on different platforms,
may return slightly different results when floating-point arithmetic are involved. The respective
representation also determines the range of possible values for floating-point variables, which is
(approximately) +5.4 * 107 to 7.2 * 10”° for F4 and F8 variables.

Note: The representation used by your pocket calculator may also be different from the

one used by your computer - which explains why results for the same computation may
differ.

Programming Guide 371

Rules for Arithmetic Assignment

Arithmetic Operations with Date and Time

With formats D (date) and T (time), only addition, subtraction, multiplication and division are
allowed. Multiplication and division are allowed on intermediate results of additions and subtrac-
tions only.

Date/time values can be added to/subtracted from one another; or integer values (no decimal digits)
can be added to/subtracted from date/time values. Such integer values can be contained in fields
of formats N, P, I, D, or T.

The intermediate results of such an addition or subtraction may be used as a multiplicand or di-
vidend in a subsequent operation.

An integer value added to/subtracted from a date value is assumed to be in days. An integer value
added to/subtracted from a time value is assumed to be in tenths of seconds.

For arithmetic operations with date and time, certain restrictions apply, which are due to the
Natural's internal handling of arithmetic operations with date and time, as explained below.

Internally, Natural handles an arithmetic operation with date/time variables as follows:

COMPUTE result-field=operandl +/- operand?

The above statement is resolved as:

1. intermediate-result = operandl +/- operand?

2. result-field = intermediate-result

That is, in a first step Natural computes the result of the addition/subtraction, and in a second step
assigns this result to the result field.

More complex arithmetic operations are resolved following the same pattern:

COMPUTE result-field=operandl +/- operandZ+/- operand3+/- operand4

The above statement is resolved as:

. intermediate-resultl operandl +/- operand?

. intermediate-result? = intermediate-resultl +/- operand3

1

2

3. intermediate-result3 intermediate-result? +/- operand4
4

. result-field = intermediate-result3

The resolution of multiplication and division operations is similar to the resolution for addition
and subtraction.

372 Programming Guide

Rules for Arithmetic Assignment

The internal format of such an intermediate result depends on the formats of the operands, as
shown in the tables below.

Addition

The following table shows the format of the intermediate result of an addition

(intermediate-result = operandl + operand?):

Format of operandl

Format of operand?

Formatof intermediate-result

D D Di
D T T

D Di, Ti, N, P 1 D

T D, T,Di, Ti, N, P I |T

Di, Ti, N, P I D D

Di, Ti, N, P I T T

Di,N, P 1 Di Di
Ti, N, P 1 Ti Ti
Di Ti, N, P 1 Di
Ti Di, N, P I Ti
Subtraction

The following table shows the format of the intermediate result of a subtraction

(intermediate-result = operandl - operand?):

Format of operandl

Format of operand?

Formatof intermediate-result

D D Di
D T Ti
D Di, Ti, N, P, I D
T D, T Ti
T Di, Ti, N, P, I T
Di, N, P, I D Di
Di, N, P, I T Ti
Di Di, Ti, N, P, I Di
Ti D,T,Di, Ti, N,DI |Ti
N, P 1 Di, Ti P12

Programming Guide

373

Rules for Arithmetic Assignment

Multiplication or Division

The following table shows the format of the intermediate result of a multiplication
(intermediate-result = operandl * operandZ)ordivision (intermediate-result = operandl
/ operand?2):

Format of operandl |Format of operand? |Formatof intermediate-result
D D,Di, Ti,N, P I Di
D T Ti
T D, T,Di, Ti, N,P T |Ti
Di T Ti
Di D,Di, Ti,N, P I Di
Ti D Di
Ti Di, T, Ti, N, P 1 Ti
N,PI D, Di Di
N,PI T, Ti Ti

Internal Assignments

Di is a value in internal date format; Ti is a value in internal time format; such values can be used
in further arithmetic date/time operations, but they cannot be assigned to a result field of format
D (see the assignment table below).

In complex arithmetic operations in which an intermediate result of internal format Di or Ti is
used as operand in a further addition/subtraction/multiplication/division, its format is assumed
to be D or T respectively.

The following table shows which intermediate results can internally be assigned to which result
fields (result-field = intermediate-result).

Assi ibl
Format of resuilt-field |Formatof intermediate-result ssignment possible
D DT yes

D Di, Ti, N, P 1 no

T D, T, Di, Ti, N, P 1 yes

N,P 1 D, T, Di, Ti, N, P 1 yes

A result field of format D or T must not contain a negative value.

374 Programming Guide

Rules for Arithmetic Assignment

Examples 1 and 2 (invalid):

COMPUTE DATEL (D)
COMPUTE DATEL (D)

DATEZ (D) + DATE3 (D)
DATE2 (D) - DATE3 (D)

These operations are not possible, because the intermediate result of the addition/subtraction
would be format Di, and a value of format D i cannot be assigned to a result field of format D.

Examples 3 and 4 (invalid):

COMPUTE DATEL (D) = TIMEZ (T) - TIME3 (T)
COMPUTE DATE1 (D) = DATEZ (D) - TIME3 (T)

These operations are not possible, because the intermediate result of the addition/subtraction
would be format Ti, and a value of format Ti cannot be assigned to a result field of format D.

Example 5 (valid):

COMPUTE DATEL (D) = DATEZ (D) - DATE3 (D) + TIME3 (T)

This operation is possible. First, DATE3 is subtracted from DATE?2, giving an intermediate result of
format Di; then, this intermediate result is added to TIME3, giving an intermediate result of format
T; finally, this second intermediate result is assigned to the result field DATEL.

Examples 6 and 7 (invalid):

COMPUTE DATEL (D)
COMPUTE TIMEL (T)

DATEZ (D) + DATE3 (D) * 2
TIME2 (T) - TIME3 (T) / 3

These operations are not possible, because the attempted multiplication/division is performed
with date/time fields and not with intermediate results.

Example 8 (valid):

COMPUTE DATEL (D) = DATEZ (D) + (DATE3(D) - DATE4 (D)) * 2

This operation is possible. First, DATE4 is subtracted from DATE3 giving an intermediate result of
format Di; then, this intermediate result is multiplied by two giving an intermediate result of
format Di; this intermediate result is added to DATE? giving an intermediate result of format D;
finally, this third intermediate result is assigned to the result field DATEL.

If a format T value is assigned to a format D field, you must ensure that the time value contains a
valid date component.

Programming Guide 375

Rules for Arithmetic Assignment

Performance Considerations for Mixed Format Expressions

When doing arithmetic operations, the choice of field formats has considerable impact on perform-

ance:

For business arithmetic, only fields of format P (packed numeric) should be used. The number of
decimal digits in all operands should agree where possible.

For scientific arithmetic, fields of format F (floating point) should be used, if possible.

In expressions where formats are mixed between numeric (N, P) and floating point (F), a conversion
to floating point format is performed. This conversion results in considerable CPU load. Therefore
it is recommended to avoid mixed format expressions in arithmetic operations.

Precision of Results of Arithmetic Operations

Operation Digits Before Decimal Point Digits After Decimal Point
Addition/Subtraction |Fi+1 or Si+ 1 (whichever is Fd or Sd (whichever is greater)
greater)
Multiplication Fi+Si = if Fd + Sd is less than MAXPREC: Fd + Sd
= if Fd + Sd is greater than or equal to MAXPREC:
Fd or Sd or MAXPREC (whichever is greater)
Division Fi+Sd (see below)
Exponentiation 29 - Fd (See Exception below) |Fd
Square Root ® if Fiis even: Fi/2 ® if Fiis even: 31 — Fi/2 or MAXPREC (whichever
= if Fi is odd: (Fi + 1)/2 is less)
® if Fiis odd: 31 — (Fi+ 1)/2 or MAXPREC
(whichever is less)
- where:
F First operand
S Second operand
R Result
i Digits before decimal point
d Digits after decimal point
376 Programming Guide

Rules for Arithmetic Assignment

MAXPREC | Maximum number of digits after the decimal point as determined by means of the MAXPREC
option of the COMPOPT system command or by the MAXPREC keyword parameter of the CMPO
profile parameter; the default value is 7

Exception:

If the exponent has one or more digits after the decimal point, the exponentiation is internally
carried out in floating point format and the result will also have floating point format. See Arith-
metic Operations with Floating-Point Numbers for further information.

Digits after Decimal Point for Division Results

The precision of the result of a division depends whether a result field is available or not:

" If a result field is available, the precision is: Fd or Rd (whichever is greater) .

* If no result field is available, the precision is: Fd or Sd (whichever is greater) ".

"If the ROUNDED option is used, the precision of the result is internally increased by one digit before
the result is actually rounded, as long as the value of the MAXPREC option is not exceeded.

A result field is available (or assumed to be available) in a COMPUTE and DIVIDE statement, and in
a logical condition in which the division is placed after the comparison operator (for example: IF
#A = #B / fC THEN ...).

A result field is assumed to be not available in a logical condition in which the division is placed
before the comparison operator (for example: IF #B / #C = #A THEN ...).

Exception:

If both dividend and divisor are of integer format and at least one of them is a variable, the division
result is always of integer format (regardless of the precision of the result field and of whether the
ROUNDED option is used or not).

Precision of Results for Arithmetic Expressions

The precision of arithmetic expressions, for example: #A / (#B * #C) + #D * (#E - #F + #0G),
is derived by evaluating the results of the arithmetic operations in their processing order. For
further information on arithmetic expressions, see arithmetic-expressioninthe COMPUTE statement
description.

Programming Guide 377

Rules for Arithmetic Assignment

Error Conditions in Arithmetic Operations

In an addition, subtraction, multiplication or division, an error can occur if the total number of
digits (before and after the decimal point) of the result is greater than 31.

In an exponentiation, an error occurs in any of the following situations:

= if the base is of packed format with precision digits (for example, P3.2) and an exponent greater
than 16;

" if the base is of floating-point format and the result is greater than approximately 7 * 10”.

Processing of Arrays

Generally, the following rules apply:

= All scalar operations may be applied to array elements which consist of a single occurrence.

= If a variable is defined with a constant value (for example, #FIELD (12) CONSTANT <8>), the
value will be assigned to the variable at compilation, and the variable will be treated as a constant.
This means that if such a variable is used in an array index, the dimension concerned has a def-
inite number of occurrences.

® If an assignment/comparison operation involves two arrays with a different number of dimen-

sions, the “missing” dimension in the array with fewer dimensions is assumed to be (1:1).

Example: If #ARRAY1 (1:2) is assigned to #fARRAY2 (1:2,1:2),#ARRAY1 is assumed to be #ARRAY1
(1:1,1:2).

The following topics are covered below:

= Definitions of Array Dimensions
= Assignment Operations with Arrays
= Comparison Operations with Arrays

378 Programming Guide

Rules for Arithmetic Assignment

= Arithmetic Operations with Arrays
Definitions of Array Dimensions

The first, second and third dimensions of an array are defined as follows:

Number of Dimensions |Properties

3 #a3(3rd dim., 2nd dim., 1st dim.)
2 #a2(2nd dim., 1st dim.)

1 #al(1st dim.)

Assignment Operations with Arrays

If an array range is assigned to another array range, the assignment is performed element by ele-
ment.

Example:

DEFINE DATA LOCAL
1 #ARRAY(I4/1:5) INIT <10,20,30,40,50>
END-DEFINE

*

MOVE fFARRAY(2:4) TO ffARRAY(3:5)

/* is identical to

/* MOVE FARRAY(2) TO fFARRAY(3)

/* MOVE #ARRAY(3) TO #ARRAY(4)

/* MOVE #ARRAY (4) TO fFARRAY(5)

/*

/* {#fARRAY contains 10,20,20,20,20

If a single occurrence is assigned to an array range, each element of the range is filled with the
value of the single occurrence. (For a mathematical function, each element of the range is filled
with the result of the function.)

Before an assignment operation is executed, the individual dimensions of the arrays involved are
compared with one another to check if they meet one of the conditions listed below. The dimensions
are compared independently of one another; that is, the 1st dimension of the one array is compared
with the 1st dimension of the other array, the 2nd dimension of the one array is compared with
the 2nd dimension of the other array, and the 3rd dimension of the one array is compared with
the 3rd dimension of the other array.

The assignment of values from one array to another is only allowed under one of the following
conditions:

® The number of occurrences is the same for both dimensions compared.

® The number of occurrences is indefinite for both dimensions compared.

Programming Guide 379

Rules for Arithmetic Assignment

® The dimension that is assigned to another dimension consists of a single occurrence.

Example - Array Assignments:

The following program shows which array assignment operations are possible.

DEFINE DATA LOCAL

Al (N1/1:8)
B1 (N1/1:8)

A2 (N1/1:8,1:8)
B2 (N1/1:8,1:8)

I (I2)
J (I2)
K (I2)
D,

ND-DEFINE

*

COMPUTE A1(1:3)
COMPUTE A1(1:1)
COMPUTE A1(*)
COMPUTE A1(2:3)
COMPUTE A1(1)
COMPUTE A1(1:1)
COMPUTE A1(I:J)
COMPUTE A1(1:1)
COMPUTE A1(1:1)
COMPUTE A1(1:2)
(NAT0631)
COMPUTE A1(*)
(NAT0631)
COMPUTE A1(*)
COMPUTE A1(1:J)
(NAT0631)

*

COMPUTE A1(*)
COMPUTE A1(1:3)
COMPUTE A1(1:3)
(NAT0631)

*

COMPUTE A2(1,1:3)
COMPUTE A2(*,1:1)

COMPUTE A2(*,1)
(NATO0631)

COMPUTE A2(1:1,1)

(NATO0631)

COMPUTE A2(1:1,1:J)

*

COMPUTE A2(1,1)

COMPUTE A2(1:1,1)
COMPUTE A2(1:2,1:8)

*

1
1
1
1
1 A3 (N1/1:8,1:8,1:8)
1
1
1
E

INIT <45
INIT <8>
CONST <8>

= B1(6:8)
= BI(1:1)

B1(1:8)
BI(I:I+1)
B1(I)
B1(3)

= B1(I+2)

B1(5:J)

= B1(2)
= B1(1:J)

B1(1:J)

= B1(1:K)
= B1(1:K)

= B2(1,*)
= B2(1,I:1+2)
= B2(1:3,1)

= B1(6:8)
= B1(5:J)
= B1(*)

B1(1:J)

B1(1:J)

= B2(1,1)
B2(1:1,2)
B2(I:I+1,%*)

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*

/*
/*

allowed
allowed
allowed
allowed
allowed
allowed
allowed
allowed
allowed
NOT ALLOWED <

NOT ALLOWED «
allowed

NOT ALLOWED <

allowed
allowed
NOT ALLOWED <«

allowed
allowed
NOT ALLOWED «

NOT ALLOWED «
allowed
allowed

allowed
allowed

380

Programming Guide

Rules for Arithmetic Assignment

COMPUTE A3(1,1,1:I) = B1(1) /* allowed
COMPUTE A3(1,1,1:J) = BL(*) /* NOT ALLOWED <
(NATO0631)

COMPUTE A3(1,1,1:1) = B1(1:1) /* allowed
COMPUTE A3(1,1:2,1:1) = B2(1,1:1I) /* allowed
COMPUTE A3(1,1,1:1) = B2(1:2,1:1) /* NOT ALLOWED <

(NATO0631)
END

Comparison Operations with Arrays

Generally, the following applies: if arrays with multiple dimensions are compared, the individual
dimensions are handled independently of one another; that is, the 1st dimension of the one array
is compared with the 1st dimension of the other array, the 2nd dimension of the one array is
compared with the 2nd dimension of the other array, and the 3rd dimension of the one array is
compared with the 3rd dimension of the other array.

The comparison of two array dimensions is only allowed under one of the following conditions:

® The array dimensions compared with one another have the same number of occurrences.
® The array dimensions compared with one another have an indefinite number of occurrences.

® All array dimensions of one of the arrays involved are single occurrences.
Example - Array Comparisons:

The following program shows which array comparison operations are possible:

DEFINE DATA LOCAL
1 A3 (N1/1:8,1:8,1:8)
1 A2 (N1/1:8,1:8)

1 A1 (N1/1:8)

11 (I2) INIT <4>
14 (I2) INIT <8>
1K (I2) CONST <8>

END-DEFINE
*

IF A2(1,1) - AL(1) THEN IGNORE END-IF /* allowed

IF A2(1,1) - AL(D) THEN IGNORE END-IF /* allowed

IF A2(1,%) - AL(1) THEN IGNORE END-IF /* allowed

IF A2(1,%) - AL(D) THEN IGNORE END-IF /* allowed

IF A2(1,%) = AL(*) THEN IGNORE END-IF /* allowed

IF A2(1,%) = AL(I -3:1+4) THEN IGNORE END-IF /* allowed

IF A2(1,5:9) = Al(1:1) THEN IGNORE END-IF /* allowed

IF A2(1,%) = AL(1:1) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
IF A2(1,%) = AL(1:K) THEN IGNORE END-IF /* allowed

*

IF A2(1,1) = A2(1,1) THEN IGNORE END-IF /* allowed

IF A2(1,1) = A2(1,1) THEN IGNORE END-IF /* allowed

Programming Guide 381

Rules for Arithmetic Assignment

IF A2(1,%)

IF A2(1,%)

IF A2(1,1:1)
IF A2(1,1:1)
IF A2(*,1)

IF A2(1,1:1)

*

IF A3(1,1,%)
IF A3(1,1,%)
IF A3(1,%,1:J)
IF A3(1,%,1:J)
END

A2(1,1:8)
A2(I,1 -3:1+4)
A2(1,1+1:3J)
A2(1,1:1+1)
A2(1,*)
Al1(2,1:K)

A2(1,*)

A2(1,1 -3:1+4)
A2 (*,1:1+1)
A2(*,1:J)

THEN
THEN
THEN
THEN
THEN
THEN

THEN
THEN
THEN
THEN

IGNORE
IGNORE
IGNORE
IGNORE
IGNORE
IGNORE

IGNORE
IGNORE
IGNORE
IGNORE

END-
END-
END-
END-
END-
END-

END-
END-
END-
END-

IF
IF
IF
IF
IF
IF

IF
IF
IF
IF

/*
/*
/*
/~k
/*
/*

/*
/*
/*
/*

allowed
allowed
allowed

NOT ALLOWED(NAT0629)
NOT ALLOWED(NAT0629)
NOT ALLOWED(NAT0629)

allowed
allowed
allowed
allowed

When you compare two array ranges, note that the following two expressions lead to different

results:

F#FARRAYL(*) NOT EQUAL #ARRAY2(*)
NOT fFARRAY1(*) = #fARRAY2(*)

Example:

= Condition A:

IF f#ARRAYL(1:2) NOT EQUAL #ARRAY2(1:2)

This is equivalent to:

IF (#ARRAY1(1) NOT EQUAL #ARRAY2(1)) AND (#ARRAY1(2) NOT EQUAL #ARRAY2(2))

Condition A is therefore true if the first occurrence of #ARRAY 1 does not equal the first occurrence
of #ARRAY?2 and the second occurrence of #ARRAY1 does not equal the second occurrence of

#FARRAY 2.

= Condition B:

IF NOT #FARRAY1(1:2) = #ARRAY2(1:2)

This is equivalent to:

IF NOT (#ARRAY1(1)= #fARRAY2(1) AND #ARRAY1(2) = #ARRAY2(2))

This in turn is equivalent to:

382

Programming Guide

Rules for Arithmetic Assignment

IF (#fARRAY1(1) NOT EQUAL #ARRAY2(1)) OR (#fARRAY1(2) NOT EQUAL #ARRAY2(2))

Condition B is therefore true if either the first occurrence of #ARRAY1 does not equal the first oc-
currence of #ARRAY 2 or the second occurrence of #ARRAY1 does not equal the second occurrence
of #ARRAY2.

Arithmetic Operations with Arrays

A general rule about arithmetic operations with arrays is that the number of occurrences of the
corresponding dimensions must be equal.

The following illustrates this rule:

#c(2:3,2:4) := #a(3:4,1:3) + #b(3:5)

In other words:

Array [Dimension Number |Number of Occurrences |[Range
#c |2nd 2 2:3
#c |1st 3 2:4
#a |2nd 2 3:4
#a |Ist 3 1:3
#b |1st 3 3:5

The operation is performed element by element.

Note: An arithmetic operation of a different number of dimensions is allowed.

For the example above, the following operations are executed:

fic(2,2) := #a(3,1) + #b(3)
fc(2,3) := #a(3,2) + #b(4)
fhc(2,4) := #a(3,3) + #b(5)
#c(3,2) = #a(4,1) + #b(3)

#c(3,3) :

#a(4,2) + #b(4)
#c(3,4) := #a(4,3) + #b(5)

Below is a list of examples of how array ranges may be used in the following ways in arithmetic
operations (in COMPUTE, ADD or MULTIPLY statements). In examples 1-4, the number of occurrences
of the corresponding dimensions must be equal.

Programming Guide 383

Rules for Arithmetic Assignment

1. range+ range= range.

The addition is performed element by element.

2. range®* range= range.

The multiplication is performed element by element.

3. scalar+ range= range.

The scalar is added to each element of the range.

4. range®* scalar= range.

Each element of the range is multiplied by the scalar.

5. range+ scalar=scalar.

Each element of the range is added to the scalar and the result is assigned to the scalar.

6. scalar®* range=scalar’.
The scalar is multiplied by each element of the array and the result is assigned to scalar2.

Since no intermediate results will be generated for arithmetic operations as shown in the examples
1-4, the format of the computed result (see Result Format and Length in Arithmetic Operations)
must be the same as the format of the result operand (the formats P and N are considered to be
the same).

Example:

DEFINE DATA LOCAL
1 JARRAYI4(I4/1:5)
1 #FARRAYP5(P5/1:5)
END-DEFINE

*

fFARRAYT4A(*) := #ARRAYP5(*) + 1 /* NOT ALLOWED(NAT0294)

Since no intermediate results will be generated for arithmetic operations as shown in the above
examples, the result of overlapping index ranges is computed element by element.

Example:

DEFINE DATA LOCAL

1 #fARRAY(I4/1:5) INIT <10,20,30,40,50>
END-DEFINE

*

FFARRAY (3:5) := #ARRAY(2:4) + 1

/* is identical to

/* fFARRAY (3) := #ARRAY(2) + 1

/* JFARRAY (4) := #f/ARRAY(3) + 1

/* fFARRAY (5) := #ARRAY(4) + 1

384 Programming Guide

Rules for Arithmetic Assignment

/*
/* #fARRAY contains 10,20,21,22,23

Programming Guide 385

386

49 Conditional Processing - IF Statement

B SHUCHUNE Of [F S mMeNt ..o e e, 388
BN ESIEA [F S A OMONES oot 390

387

Conditional Processing - IF Statement

With the IF statement, you define a logical condition, and the execution of the statement attached
to the IF statement then depends on that condition.

Structure of IF Statement

The IF statement contains three components:

IF In the IF clause, you specify the logical condition which is to be met.

THEN |In the THEN clause you specify the statement(s) to be executed if this condition is met.

ELSE |In the (optional) ELSE clause, you can specify the statement(s) to be executed if this condition is not
met.

So, an IF statement takes the following general form:

IF condition

THEN execute statement(s)

ELSE execute other statement(s)
END-IF

Note: If you wish a certain processing to be performed only if the IF condition is not met,

you can specify the clause THEN IGNORE. The IGNORE statement causes the IF condition to
be ignored if it is met.

Example 1:

** Example '"IFX01': IF
kA hkkhkhhkhkhhkhkhhkhkhkhkhkhhkhhkhkhkhhkhkhkhkhkhhhhhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhkhkhkhhkhkhhkhkhhkhkhhkkhhkhkhikxk
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
2 BIRTH
2 CITY
2 SALARY (1:1)
END-DEFINE
*
LIMIT 7
READ MYVIEW BY CITY STARTING FROM 'C'
IF SALARY (1) LT 40000 THEN
WRITE NOTITLE '*****x' NAME 30X 'SALARY LT 40000’
ELSE
DISPLAY NAME BIRTH (EM=YYYY-MM-DD) SALARY (1)
END-IF
END-READ
END

388 Programming Guide

Conditional Processing - IF Statement

The IF statement block in the above program causes the following conditional processing to be
performed:

" IF the salary is less than 40000, THEN the WRITE statement is to be executed;
" otherwise (ELSE), that is, if the salary is 40000 or more, the DISPLAY statement is to be executed.

Output of Program IFX01:

NAME DATE ANNUAL
OF SALARY
BIRTH

KkkAkk KEEN SALARY LT 40000
%%%% FORRESTER SALARY LT 40000
*x&kx*x JONES SALARY LT 40000
*xkx%k*k MELKANOFF SALARY LT 40000
DAVENPORT 1948-12-25 42000
GEORGES 1949-10-26 182800
*x&kHx EULLERTON SALARY LT 40000
Example 2:

** Example '"IFX03': IF
khkhkkhkkhhkhkhkhkhkhhkhkhhkhkhhkhhkhkhhhkhhkhkhhhAhhkhkkhhkhhhkhkhhkhhhkhkkhhkhhkhkhhhkhhkhkkhhkhkdhkhkhhkhkhhkhkhkixkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 BONUS (1,1)
2 SALARY (1)
*
1 #INCOME (N9)
1 #TEXT (A26)
END-DEFINE

*

WRITE TITLE '-- DISTRIBUTION OF CATALOGS I AND II --' /
*
READ (3) EMPLOY-VIEW BY CITY = '"SAN FRANCISCO'
COMPUTE #INCOME = BONUS(1,1) + SALARY(1)
/*
IF #INCOME > 40000
MOVE 'CATALOGS I AND II' TO #TEXT
ELSE
MOVE 'CATALOG I' TO #TEXT
END-IF
/%
DISPLAY NAME 5X 'SALARY' SALARY(1) / BONUS(1,1)
WRITE T*SALARY '-'(10) /
16X 'INCOME:"' T*SALARY #INCOME 3X #TEXT /

Programming Guide 389

Conditional Processing - IF Statement

16X '="'(19)
SKIP 1
END-READ
END

Output of Program IFX03:

-- DISTRIBUTION OF CATALOGS I AND II --
NAME SALARY
BONUS

COLVILLE JR 56000

INCOME: 56000 CATALOGS I AND II

RICHMOND 9150

INCOME : 9150 CATALOG I

MONKTON 13500

INCOME : 14100 CATALOG 1

Nested IF Statements

It is possible to use various nested IF statements; for example, you can make the execution of a
THEN clause dependent on another IF statement which you specify in the THEN clause.

Example:

** Example 'IFX02': IF (two IF statements nested)
Khkkkhkhkkhkhkkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhhkhhkhkhkhhkkhhkhhkhkhkhhkhhkhhkhkhkhhkhkhkhhkhkrkhhkhrkhhkhkrkhhkhrkhrkhkrkhkrkhxk
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 NAME
CITY
SALARY (1:1)
BIRTH
2 PERSONNEL-ID
1 MYVIEW2 VIEW OF VEHICLES
2 PERSONNEL-ID

N NN

390 Programming Guide

Conditional Processing - IF Statement

2 MAKE
*
1 #BIRTH (D)
END-DEFINE

*

MOVE EDITED '19450101" TO #BIRTH (EM=YYYYMMDD)
*
LIMIT 20
FND1. FIND MYVIEW WITH CITY = "BOSTON'
SORTED BY NAME
IF SALARY (1) LESS THAN 20000
WRITE NOTITLE '*****' NAME 30X °'SALARY LT 20000’
ELSE
IF BIRTH GT #BIRTH
FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FNDI1.)
DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8 IS=0FF)
END-FIND
END-IF
END-IF
SKIP 1
END-FIND
END

Output of Program IFX02:

NAME DATE ANNUAL MAKE
OF SALARY
BIRTH

xxxkk% COHEN SALARY LT 20000
CREMER 1972-12-14 20000 FORD
AR R EMITNIG SALARY LT 20000
PERREAULT 1950-05-12 30500 CHRYSLER
*xxxkx SHAW SALARY LT 20000
STANWOOD 1946-09-08 31000 CHRYSLER

FORD

Programming Guide 391

392

50 Logical Condition Criteria

LI 121 (oo 1 o110 o PRSP PPPTPPRR 394
B REIAHONAI EXPIESSION ..vvttvtttiiittitttttteaseeasseeeaete sttt nnnen 395
= Extended Relational EXPrESSIONcooiiiiiiiiiiie et 399
= Evaluation of @ Logical VariabIecc.uviiiiii 400
= Fields Used within Logical Condition CrLEriacooiiiiiiiiiiici e 401
= | ogical Operators in Complex Logical EXPreSSIONSccoiiiiiiiiiiiiie it 403
= BREAK Option - Compare Current Value with Value of Previous Loop Passccccvveeiiiiiiiiiiiiecceeee, 404
= |S Option - Check whether Content of Alphanumeric or Unicode Field can be Convertedccccceeeeennn 406
= MASK Option - Check Selected Positions of a Field for Specific Contentcccccooviiiiiiiiiiiiiee, 408
= MASK Option Compared With IS Optionuvviiiiiiiii e 415
= MODIFIED Option - Check whether Field Content has been Modifiedcccccoiiiiiiii, 417
= SCAN Option - Scan for a Value within @ Fieldoooiiiiiiii e 418
= SPECIFIED Option - Check whether a Value is Passed for an Optional Parametercccccoovviviinninenn. 420

393

Logical Condition Criteria

This chapter describes purpose and use of logical condition criteria that can be used in the state-
ments FIND, READ, HISTOGRAM, ACCEPT/REJECT, IF, DECIDE FOR, REPEAT.

Introduction

The basic criterion is a relational expression. Multiple relational expressions may be combined
with logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

Logical condition criteria can be used in the following statements:

Statement Usage

FIND A WHERE clause containing logical condition criteria may be used to indicate criteria in
addition to the basic selection criteria as specified in the WI TH clause. The logical condition
criteria specified with the WHERE clause are evaluated after the record has been selected
and read.

InaWITH clause, “basic search criteria” (as described with the FIND statement) are used,
but not logical condition criteria.

READ A WHERE clause containing logical condition criteria may be used to specify whether a
record that has just been read is to be processed. The logical condition criteria are
evaluated after the record has been read.

HISTOGRAM A WHERE clause containing logical condition criteria may be used to specify whether the
value that has just been read is to be processed. The logical condition criteria are evaluated
after the value has been read.

ACCEPT/REJECT |An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read with
a FIND, READ, or HISTOGRAM statement. The logical condition criteria are evaluated after
the record has been read and after record processing has started.

IF Logical condition criteria are used to control statement execution.
DECIDE FOR Logical condition criteria are used to control statement execution.
REPEAT The UNTIL or WHILE clause of a REPEAT statement contain logical condition criteria which

determine when a processing loop is to be terminated.

394 Programming Guide

Logical Condition Criteria

Relational Expression

Syntax:

EQ

EQUAL

EQUAL TO

NE

<>

NOT =

NOT EQ
NOTEQUAL

NOT EQUAL
NOT EQUAL TO
LT

LESS THAN

<

GE

GREATER EQUAL
>=

NOT <

NOT LT

GT

GREATER THAN
>

LE

LESS EQUAL
(=

NOT >

NOT GT

operandl operand?

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition

)
©)

operandl |C|S |A| |N|E |A|U|N|P|I|F|B|D|T|L yes yes
operand? |C|S |A| |N|E [A|U|N|P|I|F|B|D|T|L| |G|O yes no

For an explanation of the Operand Definition Table shown above, see Syntax Symbols and Operand
Definition Tables in the Statements documentation.

In the “Possible Structure” column of the table above, “E” stands for arithmetic expressions; that
is, any arithmetic expression may be specified as an operand within the relational expression. For

Programming Guide 395

Logical Condition Criteria

further information on arithmetic expressions, see arithmetic-expressioninthe COMPUTE statement
description.

Explanation of the comparison operators:

Comparison Operator |Explanation

EQ equal to
EQUAL
EQUAL TO

NE not equal to
<&

NOT =

NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL TO

LT less than
LESS THAN
<

GE greater than or equal to
GREATER EQUAL
S=

NOT < not less than
NOT LT

GT greater than
GREATER THAN
>

LE less than or equal to
LESS EQUAL
(=

NOT > not greater than
NOT GT

Examples of Relational Expressions:

IF NAME = 'SMITH'
IF LEAVE-DUE GT 40
IF NAME = #NAME

For information on comparing arrays in a relational expression, see Processing of Arrays.

| Note: If a floating-point operand is used, comparison is performed in floating point.

Floating-point numbers as such have only a limited precision; therefore, rounding/truncation

396 Programming Guide

Logical Condition Criteria

errors cannot be precluded when numbers are converted to/from floating-point represent-
ation.

Arithmetic Expressions in Logical Conditions

The following example shows how arithmetic expressions can be used in logical conditions:
IF #fA + 3 GT #B - 5 AND #fC * 3 LE #fA + 4B

Handles in Logical Conditions

If the operands in a relation expression are handles, only EQUAL and NOT EQUAL operators may be
used.

SUBSTRING Option in Relational Expression

Syntax:

EQ

EQUAL [TO]
<>

NE

NOT =

NOT EQ

NOT EQUAL

SUBSTRING } ﬁOT FQUAL TO { operand?

(operandl,operand3, operand4) LT SUBSTRING
operandl LESS THAN (operand?,operand5, operand6)

(=

LE

LESS EQUAL

>

GT

GREATER THAN
>=

GE

GREATER EQUAL

Operand Definition Table:

Programming Guide 397

Logical Condition Criteria

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C|S |A| |N| |A|U B yes yes
operand2 |C|S |A| |N| |A|U B yes no
operand3 |C |S N|P|I| |B yes no
operand4 |C|S N|P|I yes no
operand5 |C (S N|P|I yes no
operand6 |C |S N|P|I yes no

With the SUBSTRING option, you can compare a part of an alphanumeric, a binary or a Unicode
field. After the field name (operandI) you specify first the starting position (operand3) and then
the length (operand4) of the field portion to be compared.

Also, you can compare a field value with part of another field value. After the field name (operand?)
you specify first the starting position (operand5) and then the length (operand6) of the field portion
operandl is to be compared with.

You can also combine both forms, that is, you can specify a SUBSTRING for both operandI and
operand?Z.

Examples:

The following expression compares the 5th to 12th position inclusive of the value in field #A with
the value of field #B8:

SUBSTRING(#A,5,8) = #B
- where 5 is the starting position and 8 is the length.

The following expression compares the value of field #A with the 3rd to 6th position inclusive of
the value in field #B:

ffA = SUBSTRING(#B,3,4)

| Note: If you omit operand3/operands, the starting position is assumed to be 1. If you omit

operand4/operandé, the length is assumed to be from the starting position to the end of the
field.

398 Programming Guide

Logical Condition Criteria

Extended Relational Expression

Syntax:
operandl EQ] operand?
EQUAL [TO]
‘OR EQ] operand3]
EQUAL[TO]
THRU operand4 [BUT NOT operand5 [THRU operandé6]]

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C|S |A| |N*E [A|U|N|PI|F|B|D|T| | |G|O yes no
operand? |C|S |A| |N*IE [A|U|N|PI|F|B|D|T| | |G|O yes no
operand3 |C|S |A| |N*IE [A|U|N|PI|F|B|D|T| | |G|O yes no
operand4 |C|S |A| |N*|E |A|U|N|P|I|F|B|D|T| | |G|O yes no
operand5 |C|S |A| |N*|E |A|U|N|P|I|F|B|D|T| | |G|O yes no
operand6 |C|S |A| |N*IE [A|U|N|PI|F|B|D|T| | |G|O yes no

" Mathematical functions and system variables are permitted. Break functions are not permitted.

operand3 can also be specified using a MASK or SCAN option; that is, it can be specified as:

MASK (mask-definition)[operand]
MASK operand
SCAN operand

For details on these options, see the sections MASK Option and SCAN Option.

Programming Guide

399

Logical Condition Criteria

Examples:

IF #A
IF A

2 OR =4 0R =7
5 THRU 11 BUT NOT 7 THRU 8

Evaluation of a Logical Variable

Syntax:

This option is used in conjunction with a logical variable (format L). A logical variable may take
the value TRUE or FALSE. As operandl you specify the name of the logical variable to be used.

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

operandt [C[s |A| | | |[[|II]IM]]] no no

Example of Logical Variable:

** Example '"LOGICX05': Logical variable in logical condition
khkkhkhkhkhkkhkhkhhkhkhkkhkhhkhkhkkhkhhhkhkhkkhkhhhhkkhkhkhhhkhkhhhhhhkhkhhhkhkhkhkhhkhhkkhkhhrhkkhkhkhhkhkkhkhkhrkkkhkhxx
DEFINE DATA LOCAL
1 #SWITCH (L) INIT <true>
1 #INDEX (I1)
END-DEFINE
*
FOR #INDEX 1 5
WRITE NOTITLE #SWITCH (EM=FALSE/TRUE) 5X 'INDEX ="' #INDEX
WRITE NOTITLE #SWITCH (EM=0FF/ON) 7X 'INDEX ="' fINDEX
IF #SWITCH
MOVE FALSE TO #SWITCH
ELSE
MOVE TRUE TO SWITCH
END-IF
/*
SKIP 1
END-FOR
END

Output of Program LOGICXO05:

400 Programming Guide

Logical Condition Criteria

TRUE INDEX =
ON INDEX =
FALSE INDEX = 2
OFF INDEX = 2
TRUE INDEX = 3
ON INDEX = 3
FALSE INDEX = 4
OFF INDEX = 4
TRUE INDEX =
ON INDEX =

Fields Used within Logical Condition Criteria

Database fields and user-defined variables may be used to construct logical condition criteria. A
database field which is a multiple-value field or is contained in a periodic group can also be used.
If a range of values for a multiple-value field or a range of occurrences for a periodic group is
specified, the condition is true if the search value is found in any value/occurrence within the

specified range.

Each value used must be compatible with the field used on the opposite side of the expression.
Decimal notation may be specified only for values used with numeric fields, and the number of
decimal positions of the value must agree with the number of decimal positions defined for the

field.

If the operands are not of the same format, the second operand is converted to the format of the

first operand.

The following table shows which operand formats can be used together in a logical condition:

operandl operand?
AU B (r=<d) B (n5=5) DT GH[OH
A Y|Y|Y Y
U Y|Y|[2] 2]
Bn (n=<4) Y|Y Y Y |Y
Bn(m=5) |Y[Y|Y Y
D Y Y |Y
T Y Y |Y

Programming Guide

401

Logical Condition Criteria

operandl operand2
A D [T[I [F]L|N]P[GH[OH
v Bn (n=<4)|Bn (n>=5) GH|0
I Y Y |Y|Y|Y]| [Y]Y
F Y Y [Y|Y]Y]| |Y|Y
L
N Y Y [Y|Y]Y]| |Y|Y
P Y Y |Y|Y|Y] |Y]Y
GH[1] Y
OH [1] Y

Notes:

1. [1] where GH = GUI handle, OH = object handle.

2. [2] The binary value will be assumed to contain Unicode code points, and the comparison is
performed as for a comparison of two Unicode values. The length of the binary field must be
even.

If two values are compared as alphanumeric values, the shorter value is assumed to be extended
with trailing blanks in order to get the same length as the longer value.

If two values are compared as binary values, the shorter value is assumed to be extended with
leading binary zeroes in order to get the same length as the longer value.

If two values are compared as Unicode values, trailing blanks are removed from both values before
the ICU collation algorithm is used to compare the two resulting values. See also Logical Condition
Criteria in the Unicode and Code Page Support documentation.

Comparison Examples:

AL(AL) := "A"

A5(A5) := "A '

BI(B1) := H'FF'

B5(B5) := H'00000000FF"

Ul(ul) := UH'OO0E4"

Uz2(u2) := UH'00610308"

IF Al = A5 THEN ... /* TRUE

IF Bl = B5 THEN ... /* TRUE
IF Ul = U2 THEN ... /* TRUE <

If an array is compared with a scalar value, each element of the array will be compared with the
scalar value. The condition will be true if at least one of the array elements meets the condition
(OR operation).

402 Programming Guide

Logical Condition Criteria

If an array is compared with an array, each element in the array is compared with the corresponding
element of the other array. The result is true only if all element comparisons meet the condition
(AND operation).

See also Processing of Arrays.

| Note: An Adabas phonetic descriptor cannot be used within a logical condition.

Examples of Logical Condition Criteria:

FIND EMPLOYEES-VIEW WITH CITY = "BOSTON' WHERE SEX = 'M’
READ EMPLOYEES-VIEW BY NAME WHERE SEX = 'M'

ACCEPT IF LEAVE-DUE GT 45

IF #A GT #fB THEN COMPUTE #C = #A + #B

REPEAT UNTIL #X = 500

Logical Operators in Complex Logical Expressions

Logical condition criteria may be combined using the Boolean operators AND, OR, and NOT. Paren-
theses may also be used to indicate logical grouping.

The operators are evaluated in the following order:

Priority |Operator |Meaning

1 () Parentheses

2 NOT Negation

3 AND AND operation
4 OR OR operation

The following Togical-condition-criteria may be combined by logical operators to form a
complex logical-expression:

® Relational expressions

® Extended relational expressions

" MASK option

® SCAN option

® BREAK option

The syntax for a Togical-expressionis as follows:

Programming Guide 403

Logical Condition Criteria

. _ . . _ . . OR
[NOT] { logical-condition cmtemon} [{

) . logical - j
(Togical-expression) AND} ogrca expressmn]

Examples of Logical Expressions:

FIND STAFF-VIEW WITH CITY = "TOKYO'
WHERE BIRTH GT 19610101 AND SEX = 'F'
IF NOT (#CITY = "A'" THRU 'E")
For information on comparing arrays in a logical expression, see Processing of Arrays.

| Note: If multiple logical-condition-criteria are connected with AND, the evaluation terminates

as soon as the first of these criteria is not true.

BREAK Option - Compare Current Value with Value of Previous Loop Pass

The BREAK option allows the current value or a portion of a value of a field to be compared with
the value contained in the same field in the previous pass through the processing loop.

Syntax:

BREAK [OF] operandl [/n/]

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted
operandl ‘s | ‘ ‘ | A‘U‘N|P‘I‘F‘B‘D‘T‘L‘] | yes no

Syntax Element Description:

operandl |Specifies the control field which is to be checked. A specific occurrence of an array can also be
used as a control field.

/n/ The notation /n/ may be used to indicate that only the first n positions (counting from left to
right) of the control field are to be checked for a change in value. This notation can only be
used with operands of format A, B, N, or P.

The result of the BREAK operation is true when a change in the specified positions of the field
occurs. The result of the BREAK operation is not true if an AT END OF DATA condition occurs.

Example:

In this example, a check is made for a different value in the first position of the field
FIRST-NAME.

404 Programming Guide

Logical Condition Criteria

BREAK FIRST-NAME /1/

Natural system functions (which are available with the AT BREAK statement) are not available
with this option.

Example of BREAK Option:

** Example '"LOGICX03': BREAK option in logical condition
R R R R i b S R i S S e b e e b I b S S i b b e e S b b i S i b i S e b S S b b b e S b b i e i b
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 FIRST-NAME

2 BIRTH
*
1 #BIRTH (A8)
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY BIRTH

MOVE EDITED BIRTH (EM=YYYYMMDD) TO #BIRTH

/*

IF BREAK OF #BIRTH /6/

NEWPAGE TIF LESS THAN 5 LINES LEFT

WRITE / '-" (50) /
END-IF
/*
DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME
END-READ
END

Output of Program LOGICX03:

DATE NAME FIRST-NAME
OF

BIRTH
1940-01-01 GARRET WILLTAM
1940-01-09 TAILOR ROBERT
1940-01-09 PIETSCH VENUS
1940-01-31 LYTTLETON BETTY
1940-02-02 WINTRICH MARTA
1940-02-13 KUNEY MARY
1940-02-14 KOLENCE MARSHA
1940-02-24 DILWORTH TOM

Programming Guide 405

Logical Condition Criteria

1940-03-03 DEKKER SYLVIA
1940-03-06 STEFFERUD BILL

IS Option - Check whether Content of Alphanumeric or Unicode Field can be
Converted

Syntax:

operandlIS (format)

This option is used to check whether the content of an alphanumeric or Unicode field (operandI)
can be converted to a specific other format.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operandl C‘S ‘A‘ ‘N’ A‘UHHHHH‘ yes no

The format for which the check is performed can be:

N77.17 |Numeric withlength 77.77.
F11 Floating point with length 77.

D Date. The following date formats are possible: dd-mm-yy, dd-mm-yyyy, ddmmyyyy (dd= day,
mm=month, yy or yyyy = year). The sequence of the day, month and year components as well
as the characters between the components are determined by the profile parameter DTFORM
(which is described in the Parameter Reference).

T Time (according to the default time display format).
PI17.171 |Packed numeric with length 77.71.

177 Integer with length 77.

When the check is performed, leading and trailing blanks in operandl will be ignored.

The IS option may, for example, be used to check the content of a field before the mathematical
function VAL (extract numeric value from an alphanumeric field) is used to ensure that it will not
result in a runtime error.

| Note: The IS option cannot be used to check if the value of an alphanumeric field is in the
specified “format”, but if it can be converted to that “format”. To check if a value is in a
specific format, you can use the MASK option. For further information, see MASK Option
Compared with IS Option and Checking Packed or Unpacked Numeric Data.

406 Programming Guide

Logical Condition Criteria

Example of IS Option:

** Example 'LOGICX04': IS option as format/length check

Ak kAhkhkhkhkhkkhhhhkkhkkhhhhkhkhkhhhhkkhkkhhhhkkhkkhhhhhkkhhhhhkkhhhrhkkhkhhhhkkhkkhhhhkhkhhkrrhkkhhrhkkhirrkkk

DEFINE DATA LOCAL

1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED

1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION
1 {DATE (A10) /* INPUT FIELD FOR DATE

END-DEFINE

*

INPUT #DATE #FIELDA
IF {fDATE IS(D)
IF #fFIELDA IS (N5)
COMPUTE #FIELDB = VAL(#FIELDA)
WRITE NOTITLE 'VAL FUNCTION OK' // '=' #FIELDA '=' #FIELDB
ELSE
REINPUT 'FIELD DOES NOT FIT INTO N5 FORMAT'
MARK *#FIELDA
END-IF
ELSE
REINPUT 'INPUT IS NOT IN DATE FORMAT (YY-MM-DD) '
MARK *#fDATE
END-IF

*

END

Output of Program LOGICX04:

ffDATE 150487 fFFIELDA

INPUT IS NOT IN DATE FORMAT (YY-MM-DD)

Programming Guide 407

Logical Condition Criteria

MASK Option - Check Selected Positions of a Field for Specific Content

With the MASK option, you can check selected positions of a field for specific content.
The following topics are covered below:

= Constant Mask

= Variable Mask

= Characters in a Mask

= Mask Length

= Checking Dates

= Checking Against the Content of Constants or Variables
= Range Checks

= Checking Packed or Unpacked Numeric Data

Constant Mask

Syntax:
EQ

operandl EQUAL TO MASK (mask-definition)[operand?)
NE
NOT EQUAL

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl |C|S |A| |N| |A|{UN|P yes no

operand? |C|S A|U|N|P| | |B yes no

operandZ can only be used if the mask-definitioncontains at least one X. operandl and operand2
must be format-compatible:

® If operandl is of format A, operand? must be of format A, B, N or U.

= If operandl is of format U, operand? must be of format A, B, N or U.

" If operandl is of format N or P, operand? must be of format N or P.

An X in the mask-definition selects the corresponding positions of the content of operandl and
operandZ for comparison.

408 Programming Guide

Logical Condition Criteria

Variable Mask

Apart from a constant mask-definition (see above), you may also specify a variable mask defin-
ition.

Syntax:
EQ

operandl EQUAL TO MASK operand?
NE
NOT EQUAL

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl |C|S |A| |N| [A|U|N|P yes no

operandz? S A|U yes no

The content of operand2 will be taken as the mask definition. Trailing blanks in operand? will be
ignored.

® If operandl is of format A, N or P, operand2 must be of format A.

= If operandl is of format U, operand? must be of format U.

Characters in a Mask

The following characters may be used within a mask definition (the mask definition is contained
in mask-definition for a constant mask and operand? for a variable mask):

Character Meaning

.or?or_ A period, question mark or underscore indicates a single position that is not to be checked.

*or’% An asterisk or percent mark is used to indicate any number of positions not to be checked.

/ A slash (/) is used to check if a value ends with a specific character (or string of characters).
For example, the following condition will be true if there is either an E in the last position
of the field, or the last E in the field is followed by nothing but blanks:

Programming Guide 409

Logical Condition Criteria

Character Meaning
IF #FIELD = MASK (*'E'/)

A The position is to be checked for an alphabetical character (upper or lower case).

¢! One or more positions are to be checked for the characters bounded by apostrophes.
Alphanumeric characters with hexadecimal numbers lower than H'40' (blank) are not
allowed.
The characters to be checked for are dependent on the TQMARK parameter:
= if TQMARK=0N a quotation mark (“) is checked for an apostrophe (*)
= if TQMARK=0FF a quotation mark () is checked for a quotation mark (*“).
If operandlI is in Unicode format, ' ¢' must contain Unicode characters.

C The position is to be checked for an alphabetical character (upper or lower case), a numeric
character, or a blank.

DD The two positions are to be checked for a valid day notation (01 - 31; dependent on the
values of MM and YY/YYYY, if specified; see also Checking Dates).

H The position is to be checked for hexadecimal content (A - F, 0 - 9).

JJJd The positions are to be checked for a valid Julian Day; that is, the day number in the year
(001-366, dependent on the value of YY/YYYY, if specified. See also Checking Dates.)

L The position is to be checked for a lower-case alphabetical character (a - z).

MM The positions are to be checked for a valid month (01 - 12); see also Checking Dates.

N The position is to be checked for a numeric digit.

n. One (or more) positions are to be checked for a numeric value in the range 0 - 1.

nl-n2 or The positions are checked for a numeric value in the range nl1-n2.

e nl and n2 must be of the same length.

P The position is to be checked for a displayable character (U, L, N or S).

S The position is to be checked for special characters.

U The position is to be checked for an upper-case alphabetical character (A - Z).

X The position is to be checked against the equivalent position in the value (operand?)
following the mask-definition.
X is not allowed in a variable mask definition, as it makes no sense.

Yy The two positions are to be checked for a valid year (00 - 99). See also Checking Dates.

YYYY The four positions are checked for a valid year (0000 - 2699). Use the COMPOPT option
MASKCME=ON to restrict the range of valid years to 1582 - 2699; see also Checking Dates. If
the profile parameter MAXYEAR is set to 9999, the upper year limit is 9999.

410 Programming Guide

Logical Condition Criteria

Character Meaning

Z The position is to be checked for a character whose left half-byte is hexadecimal A - F, and
whose right half-byte is hexadecimal 0 - 9.

This may be used to correctly check for numeric digits in negative numbers. With N (which
indicates a position to be checked for a numeric digit), a check for numeric digits in negative
numbers leads to incorrect results, because the sign of the number is stored in the last digit
of the number, causing that digit to be hexadecimal represented as non-numeric.

Within a mask, use only one 7 for each sequence of numeric digits that is checked.

The definition of the character properties (for example, special character) may be modified using
the SCTAB profile parameter.

If the CP profile parameter is set to a value other than 0FF, the character properties (such as upper
or lower case alphabetical character) derive from the character properties of the code page that is
being used for the Natural session. As a consequence, for example, the characters recognized as
alphabetical characters may be different from the default characters a -z and A - Z.

Mask Length

The length of the mask determines how many positions are to be checked.

Example:

DEFINE DATA LOCAL
1 ##CODE (Al15)
END-DEFINE

IF #CODE = MASK (NN'ABC'....NN)

In the above example, the first two positions of #CODE are to be checked for numeric content. The
three following positions are checked for the contents ABC. The next four positions are not to be
checked. Positions ten and eleven are to be checked for numeric content. Positions twelve to fifteen
are not to be checked.

Checking Dates

Only one date may be checked within a given mask.