
Natural

Operations

Version 8.2.7

October 2017

This document applies to Natural Version 8.2.7 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1979-2017 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NATMF-OPERATIONS-827-20180201

Table of Contents

Preface ... xi
I Configuring Natural .. 1

1 Linking Natural Objects to the Natural Nucleus .. 3
Benefits ... 4
ULDOBJ Utility .. 5
Using ULDOBJ to Generate an Object Module .. 5
Additional Considerations for Linking Subroutines ... 7
Operating System Dependency of Object Module Generation 7
Example of Linking a Natural Object to the Natural Nucleus 8

2 Natural User Exits ... 11
NATUEX1 - User Exit for Authorization Control .. 12
NATSREX2 and NATSREX3 - User Exits for Sort Processing 13
NATUSKnn - User Exit for Computation of Sort Keys 13
NATPM - User Exit for Inverted Output ... 15
NREXPG - User Exit for NATRJE ... 16
USR0070P - User Exit for Editor Profiles ... 16
USR2002P - User Exit for Help Window Text Strings 17
USR2003P - User Exit for Main Menu .. 17

3 Natural User Access Method for Print and Work Files ... 19
NATAMUSR Module Description ... 20
NATAMUSR Module Installation .. 20
Invoking the Third Party Product .. 20

4 Natural System Files .. 21
Natural Scratch-Pad File .. 22

5 Natural Text Modules and Macros .. 25
Function and Usage of Text Modules .. 26
NATTEXT - Natural Keyword Definitions .. 26
NATTXT2 -Output Text, Keywords andUser TerminationMessages (Mixed
Case) ... 27
NATTXT2U - Output Text, Keywords and User Termination Messages
(Uppercase) .. 29
NATTXT3 - Text Fragments for Placeholders in Natural Error
Messages .. 30
NTERMSG - Natural Termination Messages and Return Codes 31

6 Natural Configuration Tables .. 33
NATCONFG - Natural Configuration Tables .. 34
General Overview of Macros Used by NATCONFG 34
NTDVCE - Terminal-Device Specification Table ... 35
NTMSG - Message Log Table Definitions .. 36
NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus 36
NTCPAGE - Code Page Definitions ... 37
Code Page Support ... 39
Output Devices Supported .. 39

iii

Example of NTDVCE Macro .. 40
Translation Tables ... 41
Upper-/Lower-Case Translation ... 44
CMULT Entry ... 45
Output Translation ... 45
Input Translation .. 46
Code Translation of DBCS Data ... 46
NTTZ - Time Zone Definitions .. 46

7 Natural Storage Management ... 51
Thread and Non-Thread Environments .. 52
Buffer Types ... 52
Fixed Buffers .. 53
Variable Buffers .. 53
Customization of Buffer Characteristics .. 53

II Profile Parameter Usage ... 55
8 Natural Parameter Hierarchy .. 57

Natural Parameter Hierarchy Overview .. 58
General Rules for Parameter Usage ... 58
Natural Parameter Module .. 59
Predefined Dynamic Parameter Sets .. 60
Predefined User Parameter Profiles ... 60
Dynamic Parameter Entry .. 60
Natural Security Definitions .. 61
Session Settings for Profile Parameters .. 61
Program/Statement Level Settings ... 61
Development Environment Settings .. 62
Examples of Parameter Evaluation .. 62

9 Assignment of Parameter Values .. 65
Sources for Parameter Value Assignment .. 66
Static Assignment of Parameter Values ... 67
Dynamic Assignment of Parameter Values ... 68
Session Parameters for Runtime Assignment of Parameter Values 70

10 Building a Natural Parameter Module .. 71
NTPRM Parameter Macro .. 72
Additional Macros in the Natural Parameter Module 73
Example of Macros in the Natural Parameter Module 75

III z/OS Environment ... 79
11 Natural under z/OS ... 81

Natural Subsystem ... 82
TP Monitor Interfaces ... 82
Interfaces to Database Management Systems .. 83
Natural in Batch Mode under z/OS .. 83
Natural as a Server under z/OS .. 83

12 Authorized Services Manager under z/OS .. 85
ASM Overview ... 86

Operationsiv

Operations

ASM System Requirements .. 87
ASM Operation .. 88

13 Natural Roll Server Functionality .. 91
Natural Roll-Server Overview ... 92
Roll Server in a Single z/OS System ... 93
Roll Server in a z/OS Parallel Sysplex Environment .. 94
Roll File and LRB .. 96

14 Natural Roll Server Operation ... 99
Roll Server System Requirements .. 100
Formatting the Roll File .. 101
Starting the Roll Server ... 104
Roll Server Messages, Condition Codes and Abend Codes 107
Return Codes and Reason Codes of the Roll Server Request 108
Operating the Roll Server ... 109
Roll Server Performance Tuning .. 110
Roll Server User Exits ... 111

IV z/VSE Environment ... 113
15 z/VSE Environment ... 115

Natural Subsystem ... 116
TP Monitor Interfaces ... 116
Interfaces to Database Management Systems .. 116
Natural in Batch Mode under z/VSE .. 117

V BS2000 Environment ... 119
16 Refresh of Natural Load Pool .. 121

Prerequisites and Restrictions .. 122
Procedure ... 122
Keyword Parameters for the Program PREFRESH .. 123

17 Optimization of Message Handling .. 127
Screen Output Handling .. 128
Restoring the Screen Content ... 128

18 Terminal Types Supported under BS2000 ... 129
Type 9748 .. 130
975n Series .. 130
Type 9763M .. 131

19 Function Keys Supported under BS2000 ... 133
Key Assignment ... 134
Modes for Key Assignment .. 134

20 Common Memory Pools .. 137
Global Common Memory Pools ... 138
Local Common Memory Pools ... 142

21 Calling Dynamically Reloadable 3GL Programs in a Natural Application 149
Storage Allocation Rule .. 150
Thread-Creation Rule ... 150
Address-Mode Dependencies .. 150

22 Print File/Work File Server NATPWSV2 ... 153

vOperations

Operations

Setup ... 154
Operation .. 155

23 Using Network Attached Storage Files as Natural Print and Work Files 157
24 RPC Server Front-End .. 159

Setup ... 160
VI Natural in Batch Mode .. 165

25 Natural in Batch Mode under z/OS ... 167
Natural z/OS Batch Interface .. 168
Driver Parameters for z/OS Batch .. 168
Data Sets Used by Natural in z/OS Batch Mode .. 168

26 Natural in Batch Mode under z/VSE ... 175
Natural z/VSE Batch Interface .. 176
Driver Parameters for z/VSE Batch .. 176
Natural Data Sets Used under a z/VSE Batch Mode Session 176
NATVSE Print and Work File Support for z/VSE Library Members 182
NATVSE Print File Support for Direct POWER SPOOL Access 183
NATVSE Dynamic Work File Allocation (DYNALLOC) Support 184
Debugging Facilities for Natural under z/VSE .. 188
NATVSE Attention Interrupts .. 191

27 Natural in Batch Mode under BS2000 ... 193
Files and System Files Used by Natural in BS2000 Batch Mode 194
Keyword Parameters .. 196
BS2000 Job Variables ... 205

28 Natural in Batch Mode (All Environments) .. 207
Adabas Data Sets .. 208
Sort Data Sets .. 208
Subtasking Session Support for Batch Mode Environments 208

VII Natural Buffer Pools ... 213
29 Natural Buffer Pool - General .. 215

Natural Buffer Pool Principle of Operation ... 216
Buffer-Pool Monitoring and Maintenance ... 221
Natural Global Buffer Pool ... 224

30 Natural Global Buffer Pool under z/OS ... 227
Using a Natural Global Buffer Pool ... 228
Prerequisites ... 228
Operating the Natural Global Buffer Pool ... 229
Sample NATGBPvr Execution Jobs .. 231
Localization .. 232
Messages ... 233

31 Natural Global Buffer Pool under z/VSE ... 235
Using a Natural Global Buffer Pool ... 236
Prerequisites ... 236
Operating the Natural Global Buffer Pool ... 237
Sample NATGBPvr Execution Jobs .. 238
Localization .. 240

Operationsvi

Operations

Messages ... 240
32 Common Natural GBP Operating Functions under z/OS and z/VSE 241

Global Buffer Pool Manager Parameter Module .. 242
Global Buffer Pool Operating Functions .. 242
Global Buffer Pool Function Parameters .. 244
Examples of NATBUFFER Specifications .. 250

33 Natural Global Buffer Pool under BS2000 ... 253
Using a Natural Global Buffer Pool under BS2000 .. 254
Establishing the Global Buffer Pool under BS2000 .. 254
Administering the Global Buffer Pool under BS2000 255

VIII Message Buffer Pool .. 257
34 Message Buffer Pool ... 259

Purpose ... 260
Prerequisites ... 260
Operating the Message Buffer Pool .. 260
Sample NATMBPvr Execution Jobs ... 262
Message Buffer Pool Operating Functions ... 263
Function Parameters ... 264
Messages ... 265

IX Optimize Monitor Buffer Pool ... 267
35 Optimize Monitor Buffer Pool ... 269

Purpose ... 270
Prerequisites ... 270
Starting the Optimize Monitor Buffer Pool .. 271
Operator Commands .. 271
Messages ... 272

X Natural Swap Pool .. 273
36 Purpose of a Natural Swap Pool .. 275

Purpose of a Natural Swap Pool .. 276
Benefits of Using a Natural Swap Pool .. 276
Swap Pool Structure ... 276

37 Natural Swap Pool Operation .. 279
Users are On their Way to Natural - No Session Start 280
Users are Returning from Natural ... 280

38 Natural Swap Pool Initialization ... 281
Swap Pool Initialization Control .. 282
Swap Pool Initialization Parameters .. 283

39 Dynamic Swap-Pool Reorganization ... 285
Requirements for Dynamic Swap-Pool Reorganization 286
Statistics Tables ... 286
Swap-Pool-Reorganization Plus Table ... 286
Swap-Pool-Reorganization Minus Table .. 287
Parameters for Swap-Pool Reorganization ... 287
Checking for the Necessity of Swap-Pool Reorganization 288
Flow of Dynamic Swap-Pool Reorganization .. 288

viiOperations

Operations

Start of Dynamic Swap-Pool Reorganization ... 289
40 Defining the Natural Swap Pool .. 291

Environment-Specific Requirements .. 292
Keyword Parameters of Macro NTSWPRM ... 292

41 Natural User Area Size Considerations ... 301
Using the MAXSIZE Parameter ... 302
Defining the Size of the Individual Natural Buffers 302
Possible Error Messages ... 302
Displaying the Aggregate Size of All Buffers .. 303
Calculating the Maximum Size .. 303

42 Swap Pool Data Space .. 305
Using ESA Data Space in Addition .. 306
ESA Data Space Slot Size Adjustment .. 306

43 Global Restartable Swap Pool under openUTM .. 307
Purpose of a Natural Global Swap Pool under openUTM 308
Installing a Natural Global Swap Pool under openUTM 308
Starting a Natural Global Swap Pool under openUTM 309
Displaying Information about the Global Swap Pool 309

44 Terminating the Global Swap Pool under openUTM .. 311
Termination Using Console Commands .. 312
Abnormal Termination with Dump ... 312
Termination by Program .. 312

XI System Spool Access .. 315
45 System Spool Access .. 317

Purpose ... 318
Prerequisite ... 318
Using the Write-to-Spool Feature ... 318

XII Natural 3GL CALLNAT Interface .. 325
46 Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions 327

Purpose of 3GL CALLNAT Interface ... 328
Prerequisites ... 328
Restrictions ... 330

47 Natural 3GL CALLNAT Interface - Usage, Examples 333
Usage .. 334
Sample Environments .. 338

XIII Operating the Software AG Editor .. 341
48 Editor Work File ... 343

Editor Work File Structure ... 344
Editor Work File under z/OS, z/VSE and BS2000 ... 345
Using the Software AG Editor Work File Formatting Utility 346
Formatting during Initialization .. 346
Maintaining the Editor Work File under z/OS and z/VSE 346
Maintaining the Editor Work File under BS2000 ... 347
Editor Work File under Complete/SMARTS .. 348

49 Editor Buffer Pool .. 349

Operationsviii

Operations

Purpose of the Editor Buffer Pool .. 350
Obtaining Free Blocks .. 351
Initializing the Editor Buffer Pool .. 351
Restarting the Editor Buffer Pool ... 352
Editor Buffer Pool Parameters .. 352
Buffer Pool Initialization for Multi-User Environments 352

XIV Natural Net Data Interface NATNETTO .. 355
50 Natural Net Data Interface NATNETTO ... 357

Natural Net Data Driver Functional Description ... 358
General Message Layout .. 359
Layout of Header .. 359
Format Buffer Layout ... 363
Value Buffer Layout .. 366
Attribute Buffer .. 366

XV Selectable Units for New Natural Features .. 369
51 Selectable Units for New Natural Features ... 371

XVI Natural as a Server .. 373
52 Natural as a Server under z/OS ... 375

Functionality ... 376
Natural Nucleus Installation in a Server Environment 377
Print and Work File Handling with External Data Sets in a Server
Environment ... 377

53 Natural as a Server under z/VSE ... 379
Functionality ... 380
Natural Nucleus Installation in a Server Environment 381
Print and Work File Handling with External Data Sets in a Server
Environment ... 381

54 Natural as a Server under CICS ... 383
Functionality ... 384
Natural CICS Interface Installation in a Server Environment 384
Restrictions ... 385

XVII Natural Execution - Miscellaneous Topics ... 387
55 Natural 31-Bit Mode Support .. 389
56 Support and Use of Natural and Non-Natural Objects 391

Support for Natural Objects from Previous Natural Versions 392
Back-End Program Calling Conventions ... 392
LE Subprograms ... 394
External Sort Programs .. 397

57 Input/Output Devices .. 399
Terminal Support .. 400
Light Pen Support .. 400
Printer Support ... 401

58 Double-Byte Character Sets ... 405
Natural Profile Parameter SOSI ... 406
Output Format Specification .. 406

ixOperations

Operations

Parameter Definitions for DBCS Support .. 406
Editor Profile Options .. 407
Input Data Check .. 407
Output Data Adjustment .. 408
Natural Stack Data ... 408
Application Programming Interfaces for DBCS Handling 408
Alternate Text Module NATTXT2U ... 409

59 Asynchronous Processing .. 411
Identifying Asynchronous Natural Sessions ... 412
Handling Output of an Asynchronous Natural Session 412
Handling Unexpected or Unwanted Input .. 413
Other Profile Parameter Considerations .. 413

Operationsx

Operations

Preface

This documentation contains information for operating Natural in a mainframe environment
under various operating systems.

This documentation is organized under the following headings:

Describes how to link Natural objects to the Natural nucleus. Provides
information onNatural user exits, Natural user accessmethod for print and

Configuring Natural

work files, Natural systemfiles, Natural textmodules,Natural configuration
tables, and Natural storage management.

Provides an overview of the hierarchical structure of the different levels on
which Natural parameters can be set. Explains how values can be assigned

Profile Parameter Usage

to profile parameters statically, dynamically and at runtime. Describes how
to build a Natural parameter module.

Contains an overview of special considerations that apply when you are
runningNatural under z/OS online or in batchmode.Describes the functions

z/OS Environment

and the operation of the Authorized Services Manager (ASM). Explains the
functions of theNatural Roll Server. Provides information on the Roll Server
system requirements, operation, performance tuning and restart capability.

Contains special considerations that apply when you are running Natural
under z/VSE online or in batch mode.

z/VSE Environment

Contains special considerations that apply when running Natural under
BS2000.

BS2000 Environment

Contains considerations that applywhen runningNatural in batch (Adabas
data sets, sort data sets, subtasking session support for batch environments),

Natural in Batch Mode

and specifically when running Natural in batch mode under z/OS, z/VSE
and BS2000.

Contains information about the various storagemanagement functions that
are available to a Natural administrator under z/OS, z/VSE and BS2000.

Natural Buffer Pools

Provides information on how to start and operate the message text buffer
pool.

Message Buffer Pool

Provides information on how to start and operate the Optimize Monitor
Buffer Pool.

OptimizeMonitorBufferPool

Provides information on the Natural swap pool which is available when
you are using CICS or openUTM.

Natural Swap Pool

The Write-to-Spool feature enables Natural users to write reports to the
system spool directly. It can be used in anyNatural environment (Com-plete,

System Spool Access

TSO, CICS, IMS TM, batch, etc.) and uses the Entire System Server view
WRITE-SPOOL. This output may then be processed by any software which
expects output in JES or POWER spool (for example, Entire Output
Management).

xi

This feature applies to z/OS and z/VSE only.

Contains information about theNatural 3GL CALLNAT Interfacewithwhich
Natural enables 3GLprograms to invoke and executeNatural subprograms.

Natural 3GL CALLNAT
Interface

Contains information on how to operate the Software AG Editor.Operating the Software AG
Editor

Provides information on the Natural Net Data Interface and the net data
protocol definition.

Natural Net Data Interface
NATNETTO

Provides information on new Natural features supplied as selectabe units.Selectable Units for New
Natural Features

Describes the use of Natural as a Server and the Natural Server Monitor.Natural as a Server

Provides information on Natural 31-bit mode support, support and use of
Natural andnon-Natural objects, input/output devices, double-byte character
sets and asynchronous processing.

Natural Execution -
Miscellaneous Topics

Notation vrs or vr

When used in this documentation, the notation vrs or vr represents the relevant product version
(see also Version in the Glossary).

Operationsxii

Preface

I Configuring Natural

This part provides information on Natural configuration.

Linking Natural Objects to the Natural Nucleus

Natural User Exits

Natural User Access Method for Print and Work Files

Natural System Files

Natural Text Modules and Macros

Natural Configuration Tables

Natural Storage Management

See also the following documents in the Utilities documentation:

■ SYSCP Utility - Code Page Administration
■ SYSEXT - Natural Application Programming Interfaces
■ SYSAPI - APIs of Natural Add-On Products

1

2

1 Linking Natural Objects to the Natural Nucleus

■ Benefits .. 4
■ ULDOBJ Utility ... 5
■ Using ULDOBJ to Generate an Object Module .. 5
■ Additional Considerations for Linking Subroutines .. 7
■ Operating System Dependency of Object Module Generation .. 7
■ Example of Linking a Natural Object to the Natural Nucleus ... 8

3

The Natural nucleus is a collection of service programs such as memory administration, string
handling, operating system interfaces, the compiler and the runtime environmentwhich comprise
the kernel of Natural. It is independent of the operating-system and the TP system.

The Natural nucleus consists of the environment-independent and the environment-dependent
nucleus. The environment-independent nucleus can be used by several mainframe operating and
TP systems. The environment-dependent nucleus contains components that depend on the oper-
ating and TP systems. For further information, see Natural Nucleus Components in the Installation
for z/OS, Installation for BS2000 and Installation for z/VSE documentation.

This document describes the advantages of linking Natural objects to the Natural nucleus and
provides information on how to proceed.

Benefits

Linking Natural objects to the Natural nucleus provides the following benefits:

■ Better Performance
The objects are executed from the nucleus and not from theNatural buffer pool. This saves space
in the buffer pool and also results in fewer database calls. (If Natural cataloged objects are not
linked to the Natural nucleus, they are stored in a database file, for example Adabas, and the
actual code must be loaded from this file into the buffer pool before it can be executed.)

■ Consistency
As an object which is linked to the Natural nucleus is always executed from the nucleus, there
is no effect if the cataloged object fromwhich it was derived is deleted or changed in theNatural
system file. Thus, during each TP-monitor session, the status of the object remains unchanged.
A new version of an object which is linked to the nucleus can be obtained by unloading it with
ULDOBJ (see below), relinking the new version to theNatural nucleus and refreshing theNatural
module. (Refreshing implies that a new copy of a module is loaded into the TPmonitor region.)

■ Global Error Handling
If a cataloged object fetches another program to handle errors (for example, by using theNatural
system variable *ERROR-TA), and the error-handling program cannot be loaded into the buffer
pool, the original error might be missed and any subsequent error may mask the first error and
lead to confusion. To prevent this situation, you can link a user-written global error-handling
program to the nucleus.

Operations4

Linking Natural Objects to the Natural Nucleus

ULDOBJ Utility

You can use the ULDOBJ utility to link Natural cataloged objects to the Natural nucleus. With the
ULDOBJ utility, you generate an object module from a Natural cataloged object and write it to a
Natural work file. The generated object module is then processed by the linkage editor and linked
to the Natural nucleus.

Under z/OS and z/VSE:When an environment-independentNatural nucleus is used, the generated
object module has to be linked to the environment-independent part of the nucleus.

Using ULDOBJ to Generate an Object Module

To invoke the ULDOBJ utility

1 Log on to the library SYSMISC and issue the command ULDOBJ.

15:49:39 ***** NATURAL OBJECT MAINTENANCE ***** 2012-02-13
User: XYZ - NATURAL ULDOBJ UTILITY - Library: SYSMISC

Opsys .. z/OS

Specify parameters below

Object ________ (Enter '.' to exit)
Library SYSMISC_
OP System ... z/OS____

2 Specify and confirm the following parameters:

The name of the cataloged object to be processed. The object can be a program,
subprogram, subroutine, helproutine or map.

Object

The name of the library containing the cataloged object.Library

The name of the operating system forwhich the objectmodule is to be generated. (Different
operating systems have different rules to which the object module must conform.) The
name of the operating system must be one of the following:

OP System

z/OS systemsz/OS

z/VSE systemsz/VSE

BS2000 systemsBS2000

5Operations

Linking Natural Objects to the Natural Nucleus

For each object processed, the ULDOBJ utility displays a report containing the following inform-
ation:

■ the object type (Program, Subprogram, Subroutine, Helproutine,Map, Adapter); seeObjects
for Natural Application Management in the Programming Guide.

■ the name of the cataloged object processed;
■ the programming mode (S = structured mode, R = reporting mode);
■ the name of the library containing the cataloged object;
■ the name of the operating system for which the object deck was generated;
■ the size of the cataloged object and optimized code (if applicable);
■ the Natural version of the cataloged object (see Version in the Glossary);
■ statistics about the last cataloging of the object, including user and terminal IDs.

ULDOBJ prompts for another object and library after the data from the initial input have been
processed. The operating system is not requested, because it does not make sense to generate
object modules for more than one operating system for the same Natural work file.

To terminate the ULDOBJ utility

■ After the last cataloged object has been processed, enter a “.” in the first input field (Object)
and press ENTER.

The generated object module conforms to the format of the specified operating system. It is
in relocatable format with non-executable code and consists of:

■ an external symbol directory (ESD),
■ a relocation dictionary (RLD),
■ text with the instructions and data corresponding to the program,
■ an END statement (end-of-module indicator for the load module).

The generated object module is written to a Natural work file, which is used as input to a
linkage editor. (Depending on the operating system, it may be better to use ULDOBJ in batch
mode.)

The generated object module must be processed by the linkage editor of the corresponding
operating systembefore the code is executable as a loadmodule (see the example given below).
Each load module is valid once it is linked to the Natural nucleus and defined by an NTSTAT
entry definition in the Natural configuration module NATCONFG (see Natural Configuration
Tables).

Operations6

Linking Natural Objects to the Natural Nucleus

Additional Considerations for Linking Subroutines

Once a cataloged object has been unloaded by the ULDOBJ utility and linked to theNatural nucleus,
the cataloged object can be deleted from the Natural system file.

However, this is not true for an object of type “subroutine”. A subroutine has two names:

■ the name specified in the statements PERFORM and DEFINE SUBROUTINE and
■ the name of the object that contains the DEFINE SUBROUTINE statement.

Natural internally associates these two names, but this is possible only if the cataloged object still
exists on the Natural system file. If the cataloged object were deleted, this association would be
lost and the subroutine linked to the nucleus would not be executable.

Operating System Dependency of Object Module Generation

The object module is generated in different ways, according to the operating system. These differ-
ences are listed below.

RequirementPlatform

A NAME control statement is generated as the last card of the objectmodule. It specifies the replace
function. For example:

z/OS

NAME TEST (R)

TEST is the name of the cataloged object.

The object module(s) will be in LIBR format. A CATALOG control statement is generated as the
first card and a “/*” as the last card of the object module. For example:

z/VSE

CATALOG TEST.OBJ REPLACE-YES
... ... object module ...
/+

TEST.OBJ is the name of the cataloged object.

When the LIBR utility is executed, assign SYSIPT to the work file written by the ULDOBJ utility
(ASSIGN SYSIPT=work-file-1).

7Operations

Linking Natural Objects to the Natural Nucleus

RequirementPlatform

The object module(s) will be in LMS format. An ADD control statement is generated as the first
card and an END statement as the last card of the object module. For example:

BS2000

ADDR >TEST
... ... object module ...
END

When the LMS utility is executed, assign SYSDTA to the work file written by the ULDOBJ utility
(SYSFILE SYSDTA=work-file-1). The file name generated is Nvr.MOD, where vr represents
the relevant product version.

If multiple cataloged objects are unloaded during execution of the utility, the object decks are
appended to each other.

Example of Linking a Natural Object to the Natural Nucleus

If, for example, the objects LOGPROG and EDITPROG in the library SYSLIB are to be linked to the
Natural nucleus, the following steps could be taken:

1. Identify the cataloged objects to be linked.

Object Library
-------------- --------------
LOGPROG SYSLIB
EDITPROG SYSLIB

2. Set up the batchNatural job stream.Assuming a z/OS environment, include the following cards:

//CMWKF01 DD DSN=ULD.NAT.PGMS,UNIT=SYSDA,DISP=(,KEEP),
// SPACE=(CYL,(3,1),,RLSE),VOL=SER=VVVVVV,
// DCB=(RECFM=FB,BLKSIZE=800,LRECL=80)
//CMSYNIN DD *
LOGON SYSMISC
ULDOBJ LOGPROG,SYSLIB,OS
EDITPROG,SYSLIB
.
FIN
/*

3. Set up the linkage editor job stream.

Operations8

Linking Natural Objects to the Natural Nucleus

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X
//*
//* GENERATE OS LOAD MODULE FROM ULDOBJ UTILITY
//*
//LINK1 EXEC PGM=IEWL,PARM='LIST,LET,XREF,NCAL,RENT,REUS'
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=X
//SYSLIN DD DSN=NAT.ULD.PGMS,DISP=OLD,UNIT=SYSDA,VOL=SER=VVVVVV
/*

This step places the load modules LOGPROG and EDITPROG in the NATURAL.USER.LOAD data set.

With an additional link-edit job, these modules can be linked together as a single load module
before being linked to the nucleus in Step 5.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X
//*
//* OPTIONAL JOB TO LINK CATALOGED OBJECTS TOGETHER
//*
//LINK2 EXEC PGM=IEWL,PARM='LIST,LET,XREF,NCAL,RENT,REUS'
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=X
//SYSLIN DD *
INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM
NAME XXXXXX(R)
/*

4. Define the statically linked Natural programs in source module NATCONFG in the NSTATIC table
for linked Natural programs:

NTSTAT INPL,TYPE=W
NTSTAT INPLLIB,TYPE=W
NTSTAT AERROR,TYPE=W
NTSTAT LOGPROG <==== your entries
NTSTAT EDITPROG <====

TYPE=Wmeans that a “weak” external reference to the specified program is generated rather
than a normal one.

5. Review the linkage editor job stream for the Natural nucleus and include the following:

9Operations

Linking Natural Objects to the Natural Nucleus

//*
//* INCLUDE DDNAME AND DSN OF DATASET WHERE OBJECTS RESIDE
//*
//SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
//NATLIB DD DSN=NATURAL.USER.LOAD,DISP=SHR//*
//SYSLIN DD*
...
... INCLUDE MODULES FOR NUCLEUS
...
INCLUDE NATLIB(nat-parm-module) NATURAL PARAMETER MODULE
INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM
...
... INCLUDE ENTRY AND NAME CARDS
...
/*

nat-parm-module represents the name of theNatural parameter module.

If the cataloged objects were linked together (as done optionally in Step 3), include this load
module instead of the individual load modules in the link of the nucleus.

Operations10

Linking Natural Objects to the Natural Nucleus

2 Natural User Exits

■ NATUEX1 - User Exit for Authorization Control .. 12
■ NATSREX2 and NATSREX3 - User Exits for Sort Processing ... 13
■ NATUSKnn - User Exit for Computation of Sort Keys .. 13
■ NATPM - User Exit for Inverted Output ... 15
■ NREXPG - User Exit for NATRJE ... 16
■ USR0070P - User Exit for Editor Profiles .. 16
■ USR2002P - User Exit for Help Window Text Strings .. 17
■ USR2003P - User Exit for Main Menu .. 17

11

NATUEX1 - User Exit for Authorization Control

The user exit NATUEX1 is called whenever a user session is activated. It can be used to determine
whether or not the user is authorized to use Natural. The security data used to determine this can
be retrieved from the security system being used (for example, RACF or ACF2).

NATUEX1 is called using standard calling conventions:

ContentsRegister

Entry address of NATUEX115

Return address of Natural14

Address of a save area of 18 words13

Address of a parameter list1

The parameter list contains five addresses:

Points to an 8-byte field containing the value which is used to fill the Natural system variableAddress

*INIT-USER1

*ETID2

*INIT-ID3

*INIT-PROGRAM4

*USER (Note that this system variable will be overwritten during a Natural Security logon.)5

These five values can be modified by the user exit.

For normal completion, the user exit must return control with Register 15 set to 0. If Register 15
does not contain 0, the Natural session is terminated with the condition code equal to the value
in Register 15.

NATUEX1 can be linked to the environment-independent nucleus or to an environment-dependent
nucleus. It is also possible to link it to an alternative Natural parameter module, or as a separate
module if you are running with profile parameter RCA.

An example of the user exit is available as member XNATUEX1 in the Natural source library.

For CICS: See also NCIUIDEX - User ID Exit Interface in the Natural TP Monitor Interfaces docu-
mentation.

Operations12

Natural User Exits

NATSREX2 and NATSREX3 - User Exits for Sort Processing

Natural provides two user exits for sort processing: NATSREX2 and NATSREX3.

The two user exits can be used with Natural's own sort program as well as with an external sort
program. The exits are activated automatically when they are linked to the nucleus and so their
addresses get resolved. Since, under z/OS and z/VSE,many external SORT programs already supply
several exit functions, the exits NATSREX2 and NATSREX3may especially be used eitherwithNatural's
internal sort program or with external SORT under BS2000.

NATSREX2 is always called when Natural passes a record to the sort program. NATSREX3 is called
when the sort program, upon completion of the sort run, passes a record to Natural. The example
delivered shows how you can establish your own collating sequence for a SORT.

When the user exits are activated, the following register conventions must be adhered to:

ContentsRegister

Entry addresses of NATSREX2 and NATSREX315

Return address of Natural14

Address of the 18-word save area13

Address of the sort record1

Length of the sort record3

The user exits have to secure the Natural registers and restore them upon returning control to
Natural.

As the sort exit module is linked to the module NAT2SORT, programming has to be reentrant. The
format and structure of the sort records must not be modified.

NATUSKnn - User Exit for Computation of Sort Keys

Some national languages contain characters which are not sorted in the correct alphabetical order
by a sort program or database system. With the system function SORTKEY you can convert such
“incorrectly sorted” characters into other characters that are “correctly sorted” alphabetically.

When you use the SORTKEY function in a Natural program, the user exit NATUSKnnwill be invoked
- nn being the current language code (that is, the current value of the system variable *LANGUAGE).

You can write a NATUSKnn user exit in any programming language that provides a standard CALL
interface. The character string specified with SORTKEYwill be passed to the user exit. The user exit
has to be programmed so that it converts “incorrectly sorted” characters in this string into corres-

13Operations

Natural User Exits

ponding “correctly sorted” characters. The converted character string is then used in the Natural
program for further processing.

For the conversion, NATUSKnnmay use the translation table NTUTAB1 of the configuration module
NATCONFG; this means that NTUTAB1may have to be adjusted accordingly.

NATUSKnn is called using standard calling conventions:

ContentsRegister

Entry address of NATUSKnn15

Return address of Natural14

Address of a save area of 18 fullwords13

Address of a parameter list1

The parameter list contains the following addresses:

Address ofOffset

The character string passed from Natural.+0

The length of the character string (fullword).+4

The character string resulting from the conversion.+8

The length of the result string (fullword).+12

The translation table NTUTAB1.+16

NATUSKnn has to secure all registers, except 14 and 15, and restore them upon returning control to
Natural.

For normal completion, the user exit must return control with Register 15 set to Return Code 0. If
Register 15 does not contain "0", a corresponding Natural error will be issued.

Sample User Exit Programs

The following sample user exits are provided in source code form:

FunctionProgram

Applies to English and converts all English lower-case letters in the character string to upper-case.NATUSK01

Applies to German and converts the German umlauts ä, ö, ü, and ß into their corresponding
replacement characters ae, oe, ue, ss in order to provide a different sort sequence.

NATUSK02

NATUSKnn can be linked to the environment-independent nucleus or to an environment-dependent
nucleus. It is also possible to link it to an alternative Natural parameter module, or as a separate
module if you are running with profile parameter RCA=NATUSKnn.

For linkage and loading conventions, see also the CALL statement in the Natural Statements docu-
mentation.

Operations14

Natural User Exits

NATPM - User Exit for Inverted Output

The NATPMmodule is used to support inverse direction terminals. It contains the user exit routine
for field and line conversion which is called by Natural at terminal I/Os if for some fields the print
mode (profile parameter PM) has been set to I.

PM=I indicates inverse direction and is used to support languages writing from right to left (for
example, bi-directional languages); see also the description of the profile parameter PM.

The module NATPM is delivered as a source module and can be modified if required.

Inversion Logic

Natural provides a user-exit routine which is called for each field where the resulting attribute is
PM=I and for each line to be printed via hardcopy, additional report and primary batch output.
This exit is called with three parameters:

■ the source field to be inverted,
■ the target field to receive the inverted data,
■ a length field specifying the length of the source and target fields.

As this user exit routine is available in source code to all users, it might be used as an explicit field
exit triggered by the PM=I attribute. The user is then able to check andmodify line contents or field
contents.

Field User Exit

The user exit in NATPMwill be called for every field where the attribute PM=I is set.

This attribute can be set by the Natural programmer, or is automatically set for numeric fields
when the global print mode is set to PM=I. It does not matter whether the output is generated for
the terminal, for hardcopy, for additional reports or for the primary output in batch.

For printing devices, Natural does not expect automatic inversion from the hardware, but calls
NATPM again for the complete line. This feature can be used in countries where the field inversion
is not required to establish interface logic with Natural based on a field attribute.

15Operations

Natural User Exits

NREXPG - User Exit for NATRJE

NREXPG is a user exit for Natural Remote Job Entry (NATRJE). After the job is complete, each JCL
card is passed to the exit before it is submitted to the operating system. The following data are
available to the exit:

■ the JCL card to be submitted,
■ a return code field,
■ the name of the Natural program currently being executed,
■ the Natural user identification,
■ a 240-byte work area.

After each call, the exit passes a return code to NATRJE indicating one of the following events:

ExplanationCode

Submission: the card is submitted; the exit may modify the card before submission.0

Termination: the card is submitted; the exit is disabled for further cards of the current job.4

Insertion: the card is skipped based on the assumption that it contains only an insert character, for
example, the percent sign (%); additional specified cards are submitted.

8

Deletion: the card is not submitted.10

The current job is flushed.12

An example of the user exit, called NREXPG, is available as member XNATRJE in the Natural source
library. The exit can be assembled and linked according to the rules of programs specified as
CSTATIC. However, a CSTATIC entry for NREXPG is not required.

USR0070P - User Exit for Editor Profiles

The user exit routine USR0070P enables you to modify the parameter settings for the Natural pro-
gram editor or data area editor in the default profile SYSTEM.

For further information on the editor profile, seeGeneral Information in the Editors documentation.

USR0070P provides a list of all parameters which are to receive a default setting.

With this user exit, you can also determine whether editor profiles are to be stored in the FNAT
system file, the FUSER system file or the scratch-pad file.

In addition, USR0070P considers DBCS support and sets the editor profile options Editing in
Lower Case and Dynamic Conversion of Lower Case correspondingly.

Operations16

Natural User Exits

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text object USR0070T.

USR2002P - User Exit for Help Window Text Strings

The user exit routine USR2002P can be used to customize the text strings for the Current Natural
Messagewindow that is invoked by pressing the Help key while the cursor is on the message
line.

The object USR2002P itself contains the text strings used within the Current Natural Message
window, for example, the window title and the descriptive texts, such as, the field names Sh (short
message), Tx (long message), Ex (explanation) and Ac (action).

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text object USR2002T.

USR2003P - User Exit for Main Menu

The user exit routine USR2003P can be used to customize the following settings for the Natural
Main Menu and its subordinate menus:

■ position and color of the message line,
■ position and color of the PF key lines.

An example of this user exit routine is available in the library SYSEXT on the FNAT system file, both
in object and source form. Information on how to use it is contained in the text object USR2003T.

17Operations

Natural User Exits

18

3 Natural User Access Method for Print and Work Files

■ NATAMUSR Module Description ... 20
■ NATAMUSR Module Installation ... 20
■ Invoking the Third Party Product ... 20

19

This document describes the Natural User Access Method which is an interface for third party
vendor products for Natural print and/or work file support.

NATAMUSR Module Description

The NATAMUSRmodule provides an exit interface (entry point NATAM9EX) for software vendors to
handle Natural print and work files, that is, it actually consists of two parts:

■ the Natural User Access Method stub NATAMUSR delivered with Natural and
■ the Natural User Access Method exit NATAM9EX delivered by a software vendor.

NATAMUSR Module Installation

The NATAMUSRmodule (with the accessmethod exit) may be installed in one of the followingways:

■ linked to the environment-independent nucleus,
■ linked to the environment-dependent nucleus,
■ linked to an alternative Natural parameter module (as loaded via profile parameter PARM),
■ linked as a separate module; in this case, the followingNatural profile parameters are required:

RCA=(NATAM09),RCALIAS=(NATAM09,xxx),

where xxx is the name of the separate module in the load library.

The environment-independent nucleus and the environment-dependent nucleus are described in
Natural Nucleus Components for z/OS, z/VSE and BS2000 in theNatural Installation documentation.

Invoking the Third Party Product

To invoke the third party product for Natural print and/or work file processing

■ Specify AM=USER for the relevant files (see also NTPRINT and NTWORK).

For details about the Natural User Access Method exit installation and other information about
the third party exit handler, refer to the documentation of the relevant software vendor.

Operations20

Natural User Access Method for Print and Work Files

4 Natural System Files

■ Natural Scratch-Pad File ... 22

21

The table below lists and describes the Natural system files that are usually available in a Natural
environment. The availability of the system files and the data contained in the files depends on
the Software AG products installed in addition to base Natural.

The settings for the system files are defined with Natural profile parameters of the same names
(exception: scratch-pad file). You can follow the hyperlinks in the table below to read details about
these parameters in the Parameter Reference documentation.

File ContentsSupplied withSystem File

All objects required for Natural system applications.Base NaturalFNAT

User-specific objects required for user-defined applications.Base NaturalFUSER

Parameter profiles specified by the profile parameter PROFILE,
provided no database information is supplied as subparameter
of PROFILE.

Base NaturalFPROF

Data that is not stored explicitly as a Natural object in another
system file. See also Natural Scratch-Pad File in the Operations
documentation.

Base NaturalScratch-pad file

Natural Data Definition Modules (DDMs).

If Predict is installed, FDIC also contains data for the Predict
dictionary system.

Base NaturalFDIC

If theNatural Development Server is installed, FDIC also contains
application data and holds object locking information.

Registry data that is not stored explicitly in another system file.Base NaturalFREG

Control information required for security definitions.Natural SecurityFSEC

Control and spooling information required to output a report on
a screen or printer and obtain print statistics.

Natural Advanced
Facilities

FSPOOL

Natural Scratch-Pad File

The Natural scratch-pad file is used to store recordings and screen captures which cannot be ex-
plicitly saved as a Natural object in the Natural FNAT or FUSER system file.

In contrast to FNAT and FUSER, a scratch-pad file is notmandatory in a Natural session. However,
youmust define a scratch-pad file if you are working with read-only access to system files (profile
parameter ROSY=ON). Otherwise, the recordings and screen capture cannot be stored and a corres-
ponding error message (NAT0106) is issued instead. The scratch-pad file is excluded from read-
only access.

A reasonable estimate about the related storage requirements is hardly possible as the amount of
storage used by the Recording utility and the NATPAGE utility (for screen captures) cannot be calcu-
lated beforehand. However, the scratch-pad file size required at your site can be estimated with

Operations22

Natural System Files

a better understanding of the types of records that are stored on it. The content of the scratch-pad
file is described in the following section:

■ Recordings
■ Screen Captures - NATPAGE
■ File Maintenance

Related Topic:

Defining a Scratch-Pad File in the Installation for z/OS, Installation for BS2000 and Installation for z/VSE
documentation.

Recordings

The Recording utility is activated using terminal commands as described in theUtilities document-
ation. Recordings are stored like Natural source programs (or other object types). The size of a
recording depends on how many screen inputs have been done during a recording session. Re-
cordings are like programs related to a library.

Currently, it is not possible to list recordings on the scratch-pad file by using the Natural LIST
system command. SYSMAIN can be used, though, to list and maintain the recordings stored on the
scratch-pad file. To store the recordings on the FNAT/FUSER file instead of on the scratch-pad file,
set the profile parameter RFILE.

Recordings which are being stored on the system file FNAT or FUSER are affected (interrupted) by
transaction backouts (BTs) which are issued in the user's application programs. This is a very
common problem encountered by users of the recording facility and it can be avoided by using
the scratch-pad file.

Screen Captures - NATPAGE

The screen capturing utility NATPAGE can be used to store screen images (in chronological sequence
of their appearance) on the scratch-pad file. NATPAGE can be activated with the terminal command
%P. From themoment %P is issued, all screens presented to the end user are stored onto the scratch-
pad file (if it has been defined for your session) until the terminal command %O is entered. The
captured screens can be displayed using the terminal command %E.

For each screen image, the current content of the page buffer and the page attribute buffer is stored.
This means that the amount of data being stored depends on the settings of the profile parameters
PS/LS for the session and, of course, on the number of screen images. The number of possible
screens per user session depends on the profile parameter PD (default is 50; valid values are 0-255).

The size of the page buffer can be calculated as:

PS * LS

The size of the page attribute buffer is determined dynamically.

23Operations

Natural System Files

File Maintenance

The scratch-pad file does not need any maintenance, provided it is of sufficient size.

■ Recordings on the scratch-pad file can be deleted, copied, moved and listed by using the utility
SYSMAIN.

■ Captured screens can be deleted by using the %E terminal command.
■ Saved screen images, however, cannot be maintained in Natural at all.

Space on the scratch-pad file can be reclaimed by refreshing it with Adabas utilities in times of
non-activity without affecting subsequent Natural sessions which are using the scratch-pad file.

Operations24

Natural System Files

5 Natural Text Modules and Macros

■ Function and Usage of Text Modules ... 26
■ NATTEXT - Natural Keyword Definitions .. 26
■ NATTXT2 - Output Text, Keywords and User Termination Messages (Mixed Case) 27
■ NATTXT2U - Output Text, Keywords and User Termination Messages (Uppercase) 29
■ NATTXT3 - Text Fragments for Placeholders in Natural Error Messages ... 30
■ NTERMSG - Natural Termination Messages and Return Codes .. 31

25

This document describes the Natural text modules NATTEXT, NATTXT2, NATTXT2U, NATTXT3 and the
Natural macro NTERMSG.

Function and Usage of Text Modules

AllNatural keywords, alternative keywords and standard output text are contained in themodules
NATTEXT and NATTXT2. Natural system commands and alternate system commands are also included
as keywords and alternative keywords in these modules. Substitution text fragments for Natural
error messages are contained in module NATTXT3. The modules are contained in source form in
the Natural source library and in load module form in the Natural load library.

If necessary, you can modify Natural keywords, alternative keywords and text contained in these
modules. For example, Natural session termination messages can be changed from English to
another language, Natural keywords can be disabled, or synonyms can be added.

If any modifications are made to a NATTEXT, NATTXT2 or NATTXT3module, each modified module
must be assembled, link-edited and included into the executable Natural module; refer to the
corresponding Natural installation documentation.

NATTEXT - Natural Keyword Definitions

The NATTEXTmodule contains themacros NTKEY, NTALT and NTSYN for each keyword and alternative
keyword to be recognized by Natural.

Modifying NATTEXT

Caution: It is recommended that youmodify the NATTEXTmodule for very important reasons
only, because once modified, it can no longer be properly maintained by Software AG
personnel.

The following rules apply:

■ A keyword value for a NTKEY or NTALTmacro can be changed by replacing the current keyword
value with the desired value.

■ A keyword or alternative keyword can be disabled by replacing the keyword value with the
character "%".

■ The position of each NTKEY and NTALTmacrowithin themodule is fixed andmust not be shifted.
Additional NTKEY and NTALTmacros must not be inserted.

■ Synonyms can be assigned for any keyword or alternative keyword using the NTSYNmacro. One
or more NTSYNmacros can be inserted after a NTKEY or NTALTmacro. The NTSYNmacro includes

Operations26

Natural Text Modules and Macros

one parameter, which is the value to be used as the synonym. If the synonym contains embedded
blanks, the entire value must be enclosed in apostrophes.

Example of Modifying the NATTEXT Module

The following example illustrates how a NATTEXTmodule is modified. In this example

■ the synonym RECHERCHE is to be used for the keyword FIND;
■ the synonym LISEZ is to be used for the alternative keyword BROWSE;
■ the keywords GET and HISTOGRAM are to be disabled.

NATTEXT beforemodification:

STATNAM NTKEY FIND
NTALT BROWSE
NTALT GET
NTALT ACCEPT
NTALT REJECT
NTALT HISTOGRAM

NATTEXT aftermodification:

STATNAM NTKEY FIND
NTSYN RECHERCHE
NTALT BROWSE
NTSYN LISEZ
NTALT %
NTALT ACCEPT
NTALT REJECT
NTALT %

NATTXT2 - Output Text, Keywords and User Termination Messages (Mixed
Case)

The NATTXT2module contains the macros NTKEYT, NTALTT and NTSYNTwhich define the following:

■ Standard Natural Output Texts
■ Keywords and Alternative Keywords for Natural System Commands and Utilities

27Operations

Natural Text Modules and Macros

■ User-Written Termination Messages

Standard Natural Output Texts

Themodule NATTXT2 contains the following standardNatural output texts, each of which can also
be displayed in another language if the language code is set accordingly (see also below):

■ the literal Page used in the standard output page header;
■ the name of each month as used in the Natural system variable *DATG (Gregorian date), date
edit masks (L), and the name of each day as used in date edit masks (N);

■ the ENTER INPUT DATAmessage and the skeleton error messages for error numbers 1104, 1105
and 1106 (used during online input processing);

■ the error message used for system file open failure (which cannot be retrieved from the system
file); an error number of the form NAT8xxx (where xxx is the decimal Adabas response code) is
added to this error message by Natural;

■ the constants More, Top and Bottom used in windows for position information to be displayed
in text form;

■ the table to define reports and report handling for reports greater than 33.

Any values contained in NATTXT2 can be modified by replacing the current text with the desired
text. If a month-name synonym exceeds nine characters, only the first nine positions are used by
the system variable *DATG.

NTSYNTmacro statements can be added as described formodule NATTEXT. However, with NATTXT2,
a secondparameter can be specified. This parameter is optional and represents the language indic-
ator to be used for the synonym. When you specify the language indicator, Natural produces
message output resulting from the use of this synonym in the corresponding language. In addition,
if error message texts have been stored in the Natural system file using a language indicator other
than 1 (which is the default and stands for English), error messages are returned in the corres-
ponding language. For information on which language code stands for which language, refer to
the profile parameter ULANG.

Keywords and Alternative Keywords for Natural System Commands and Utilities

Themodule NATTXT2 contains NTKEYT and NTALTTmacros for each keyword and alternative keyword
to be recognized byNatural for the followingNatural system commands and utilities, parameters
of commands and their valueswhen applicable. Each of these can also be used in another language
if the language code is set accordingly (see also below):

■ all Natural system commands in general;
■ for the GLOBALS system command, the parameters and their values when applicable;
■ for the COMPOPT system command, the parameters and their values when applicable;

Operations28

Natural Text Modules and Macros

■ public system commands (these system commands are permanently valid and cannot be disal-
lowed, neither by means of Natural Security nor by the Natural profile parameter NC;

■ Natural utilities

The NTKEYT and NTALTTmacro statements can be used similar to the NTKEY and NTALTmacro
statements as described for module NATTEXT.

The NTSYNTmacro statements can be used as described under Standard Natural Output Texts.

User-Written Termination Messages

User-written termination messages can be added with the macro NTERMSG for all return codes (1
- 255) which can be issued with a TERMINATE statement and which normally lead to the Natural
termination message NAT9987.

You specify the termination message text with the first parameter, and the corresponding return
code with the second parameter.

Example:

NTERMSG 'USR0077 THIS IS A SAMPLE USER MESSAGE FOR RETURN CODE 77',77

A TERMINATE 77 statement in aNatural applicationwill result in the following terminationmessage:
USR0077 THIS IS A SAMPLE USER MESSAGE FOR RETURN CODE 77.

NATTXT2U - Output Text, Keywords and User Termination Messages (Upper-
case)

The NATTXT2Umodule contains the same items as the NATTXT2module. The difference is that certain
keywords for the English language are contained in mixed case in NATTXT2whereas they are in
all uppercase in NATTXT2U. This affects the keywords MORE, TOP, BOTTOM, PAGE, and all month and
weekday names.

NATTXT2U should be linked to the Natural nucleus instead of NATTXT2 in environments where
lower-case code points H'81' to H'A9' are used to display national characters, for example, if code
page 930 with half-width Katakana characters is used.

29Operations

Natural Text Modules and Macros

NATTXT3 - Text Fragments for Placeholders in Natural Error Messages

The NATTXT3module contains the macros to define the text fragments which will be used to sub-
stitute the :n: place holder in Natural error messages.

Each text fragment can be defined in various languages. For information on which language code
stands for which language, refer to the ULANG parameter.

The text fragments will be generated in EBCDIC and Unicode notation.

Note: To assemble the NATTXT3module, a high level assemblermust be usedwhich supports
themacro function UPPER and the definition of Unicode characters (DC CU’unicode text’).

Example:

The text for Natural error NAT0082 (when trying to execute a non existing program) looks as fol-
lows:

Invalid command, or :1: :2: does not exist in library.

Trying to execute the object NOTEXIST leads to following result:

NAT0082 Invalid command, or Program NOTEXIST does not exist in library.

:2:was replaced by the object name (NOTEXIST).

:1:was replaced by the text fragment Program.

The text fragment was declared in module NATTXT3 as follows:

*===
* PROGRAM 0002
*===

MSGSDEF &LC_PGM
SPACE

*---
MSGSLAN 01,Program 1 ENGLISH
MSGSLAN 02,Programm 2 GERMAN
MSGSLAN 03,programme 3 FRENCH
MSGSLAN 04,programa 4 SPANISH

SPACE
*---

MSGSGEN

Text fragment values for additional languages may be entered by adding further MSGSLANmacros.

Operations30

Natural Text Modules and Macros

NTERMSG - Natural Termination Messages and Return Codes

Natural has a number of standard session termination messages (NAT99...) that are delivered in
macro NTERMSG and can bemodified there (for example, to translate them it into another language).
The overall length of ID and text can be up to 72 characters. After the macro NTERMSG has been
modified, the Natural parameter module has to be re-assembled and linked.

Apart from the message ID and text, each standard termination message also includes one of the
following Natural system return codes, which are also defined within macro NTERMSG:

ExplanationCode

Normal termination.0

Error occurred during execution/compilation (batch mode only).4

Termination due to severe runtime error.8

Session initialization failure.12

Abnormal termination due to abend or severe environment failure..16

With the profile parameter TS set to ON, the terminationmessages are translated to upper case using
the upper case translation table NTUTAB1 as supplied in the NATCONFGmodule before they are dis-
played.

In addition to TS=ON, further parameters to provide for translation of messages into upper case
are provided by several Natural components. For further information, see Other Parameters to
Provide Upper Case Translation in the TS profile parameter description.

31Operations

Natural Text Modules and Macros

32

6 Natural Configuration Tables

■ NATCONFG - Natural Configuration Tables .. 34
■ General Overview of Macros Used by NATCONFG .. 34
■ NTDVCE - Terminal-Device Specification Table ... 35
■ NTMSG - Message Log Table Definitions ... 36
■ NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus .. 36
■ NTCPAGE - Code Page Definitions ... 37
■ Code Page Support ... 39
■ Output Devices Supported .. 39
■ Example of NTDVCE Macro .. 40
■ Translation Tables ... 41
■ Upper-/Lower-Case Translation .. 44
■ CMULT Entry .. 45
■ Output Translation ... 45
■ Input Translation ... 46
■ Code Translation of DBCS Data ... 46
■ NTTZ - Time Zone Definitions .. 46

33

This document provides general information on the Natural configuration tables which are con-
tained in the NATCONFGmodule.

See also:

■ Input/Output Devices Supported

NATCONFG - Natural Configuration Tables

The NATCONFGmodule contains the Natural configuration tables.

Caution: In general, the default specifications in NATCONFG need not and should not be
modified. In particular, do not modifywithout prior consultation of Software AG support
any of the tables marked with an asterisk (*) in the list below.

For most of the tables, there are corresponding macros in theNatural parameter module as well
as dynamic profile parameters. If you need to modify a NATCONFG table, use the corresponding
parameter-module macro, or dynamic profile parameter, to overwrite the table. (If you made the
modifications in the NATCONFG tables themselves, you would have to modify and reassemble
NATCONFG again with subsequent Natural releases.)

The NATCONFGmodule usesmacros for the definition of the followingNatural default configuration
tables.

In addition, it uses the following tables:

■ The default attention identifier table. It defines the physical terminal keys to Natural (*).
■ Various other tables (*).

General Overview of Macros Used by NATCONFG

The following table provides a general overview of the macros used by the NATCONFGmodule for
the definition of the Natural default configuration tables:

PurposeMacro

Table of terminal types. Used to specify the terminal driver to be used, see description
below, for details.

Important: Do not modify an existing NTDVCEmacro, rather create a new one.

NTDVCE *

Message log table. Natural messages which shall be written to the job message log or
to the operator console.

NTMSG

Operations34

Natural Configuration Tables

PurposeMacro

Definition of Natural objects linked to the Natural nucleus.NTSTAT

Code page definitions.NTCPAGE

Primary output translation table.NTTAB

Secondary output/input translation tables.NTTAB1 NTTAB2

Tables for translation between lower case and uppercase. These tables have to be
modified, for example, for the German character set.

NTUTAB1 NTUTAB2

Tables for translation of EBCDIC characters to ASCII characters and vice versa. These
tables are used by the Object Handler.

NTTABA1 NTTABA2

SYS* translation table. Translates output fromprograms contained inNatural SYS...
libraries.

NTTABL

Language translation table. Contains a list of all available language codes defined to
Natural.

NTLANG *

Scanner character type table. Determineswhich characters are lower-case alphabetical,
uppercase alphabetical, numeric and special characters (applies to dynamic profile
parameters, MASK and SCAN options).

NTSCTAB

Time zone definitions. The NTTZmacro enables specifications concerning time zones
and automatic switching to and from summertime.

NTTZ

The parameters MIN and MAX of this macro can be used to change the buffer size limits
for variable buffers, see Customization of Buffer Characteristics.

Important: The default values of the other parameters in this macro should not be
modified, because the results may be unpredictable.

NTBUFID

* Do not modifywithout prior consultation of Software AG support any of the tables marked with
an asterisk (*) in this list.

For further details, see Translation Tables.

NTDVCE - Terminal-Device Specification Table

For each terminal type supported byNatural, a terminal converter routine is provided. The corres-
ponding terminal drivers are responsible for the actual terminal I/Os. They build the physical data
stream from the screen buffer and the screen attribute buffer and place it in the terminal I/O buffer.

In addition, a telex driver is provided for Con-nect in order to provide faster telex, telefax and
teletext communication from and to the Topcallmessaging server. This driver supports the Topcall
full-page protocol.

With the NTDVCEmacro, it is possible to add new terminal drivers toNatural to specifymodifications
of the terminal-specific input/output or lower-to-upper case translation tables. Other information
which can be specified is the frame character, the position of the message line, whether screen

35Operations

Natural Configuration Tables

optimization is to be on or off, as well as various flags in the IOCB. In addition, the terminal spe-
cification can be routed to an existing driver by using other translate tables or can hook into a
driver routine.

The NTDVCEmacro is invoked by either the terminal command %T= from the Natural command
line or the SET CONTROL 'T=...' statement from within a Natural program. At the start of a Nat-
ural session, the translation tables NTTAB, NTTAB1, NTTAB2, NTUTAB1 and NTUTAB2 are copied from
the NATCONFGmodule into the user area where they are modified by NTDVCE.

Note that the translation tables can be modified by the same macros dynamically or within the
Natural parameter module.

NTMSG - Message Log Table Definitions

Themacro NTMSG is used to defineNaturalmessageswhich shall bewritten to the operator console
or to the job message log (if available). A defined message will be written in addition, that is, the
usualNatural processing remains unchanged. To find the logmessage definition table, locate label
NATMSGT in NATCONFG. There you can add your NTMSG definitions on a one message per line basis.

NTMSGMacro Syntax

The syntax of the NTMSGmacro is as follows:

NTMSG NATnnnn,logid

NTMSGMacro Parameters

DescriptionParameter

nnnn is the Natural message number (mandatory).NATnnnn

Indicates the log destination, that is, the operator console or job message log or both.

Possible values: WTO, WTL or WTO+WTL

logid

NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus

Any object to be linked to the Natural nucleus must be specified with an NTSTATmacro. When
searching for an object, Natural always scans this list first, regardless of the library specified. For
information on how to linkNatural objects to theNatural nucleus, see the ULDOBJutility inLinking
Natural Objects to the Natural Nucleus.

Operations36

Natural Configuration Tables

NTSTATMacro Syntax

The syntax of the NTSTATmacro is as follows:

NTSTAT object-name[,TYPE=W]

NTSTATMacro Parameters

DescriptionParameter

Specifies the name of the object linked to the Natural nucleus.object-name

Means that the entry point of the linked object is defined as a “weak external” to theNatural
nucleus. This avoids a linkage editor error message in case of the object is not linked to the
Natural nucleus.

TYPE=W

NTCPAGE - Code Page Definitions

All code pages to be used during a Natural session must be predefined in the source module
NATCONFG. For each code page to be defined, a specific macro NTCPAGEmust be entered. During
session initialization, the code page specified by the profile parameters CP, CPOBJIN, CPSYNIN,
CPPRINT and the CP keyword subparameter of profile parameter PRINT or parametermacro NTPRINT
are verified. If this code page is not defined in NATCONFG, an error message is issued.

NTCPAGE Macro Syntax

The syntax of the NTCPAGEmacro is as follows:

NTCPAGE IANA=value, *
CCSID=value, *
CCSN=value, *
ALIAS=value, *
PHC=value, *
MULTI=value, *
ECS=value

The parameters CCSID and CCSN are platform-specific (IBM/SNI) and mutually exclusive.

37Operations

Natural Configuration Tables

NTCPAGE Macro Parameters

DescriptionParameter

This parameter is required under all operating systems. It specifies the standard name of the
code page. Maximum length: 64 characters.

IANA

This parameter is required under z/OS, z/VSE. It specifies the coded character set identification;
that is, a numeric value with up to 5 digits.

CCSID

Examples:
1141 German EBCDIC code page
62243 Hebrew/Latin (ISO 8859) code page

This parameter is required under BS2000. It specifies the coded character set name; that is, an
alphanumeric string of up to 8 characters.

CCSN

Examples:
EDF041 Latin code page for Western Europe
EDF045 Latin/Cyrillic code page

This parameter is optional. It specifies the code page alias name.Maximum length: 32 characters.ALIAS

This parameter is optional. It specifies the place holder character. Length: 2 bytes hexadecimal.PHC

This parameter is optional. It specifies the key number of the code page in Entire Conversion
Service (ADAECS), which is used by Adabas.

ECS

This parameter is optional. It specifies whether the code page is a single-byte code page or a
multi-byte or ASCII code page. Possible values:

MULTI

The code page is a single-byte code page; for example,
IBM01140. The code page can be used as a Natural

ON

session code page. The session code page is defined by
the Natural profile parameter CP.

The code page is a multi-byte code page or ASCII code
page. It cannot be used as a Natural session code page.

OFF

Any attempt to use this code page results in initialization
message NAT7019.

This is the default setting.

The code page is amulti-byte code page, but can be used
as a Natural session code page. For example, IBM-939

VALID

is a Japanese EBCDIC code page that contains DBCS
characters.

Examples:

Operations38

Natural Configuration Tables

NTCPAGE IANA=IBM819, *
CCSID=819, *
ALIAS='ISO-8859-1', *
PHC=003F

NTCPAGE IANA='IBM-939', *
CCSID=939, *
ECS=3035, *
ALIAS='ibm-939_P120-1999', *
PHC=3013, *
MULTI=VALID

See also Configuration and Administration of the Unicode/Code Page Environment.

Code Page Support

By using the NTDVCEmacro, different code pages can be defined and associated with a specific
terminal type and name. If Natural is then startedwith PM=C, all terminal I/O is translated on input
and retranslated on output. Thus, as long as the code pages are compatible, a common data rep-
resentation can still be maintained.

See also SYSCP Utility - Code Page Administration in the Utilities documentation.

Output Devices Supported

Attribute control variables and formats define attributes to generate a certain representation on
the output device. Natural offers a wide range of possible attributes to allow the end user the best
use in designing maps and reports on the terminal.

Unfortunately not all terminals support all features available with Natural. These features are
mostly ignored on such devices or are simulated via other techniques. Basically there are two data
stream definitions in an IBM environment called standard data stream and extended data stream
and a multitude of data stream definitions in an SNI environment.

The following output devices are supported:

■ Sequential Output Devices for Batch, Additional Reports
■ Line-Oriented Online Terminals

39Operations

Natural Configuration Tables

■ Block-Mode-Oriented Online Terminals

Sequential Output Devices for Batch, Additional Reports

The output data contain standard ASA control characters controlling the line advance and page-
eject facility of the given printer. This printer can be either the central printer in the computer
center supported by the online or batch spooling system or the SCS printer used as online terminal
printers.

The following devices can be used to print reports generated in this form:

TypeDevice

Standard central printer hardwareImpact printer

High-speed printer, terminal printerLaser printer

Terminal printerDaisy printer

Terminal printerInkjet

Line-Oriented Online Terminals

DescriptionTerminal Make

Data sent to TTYdevices are generated using the standard formfeed, linefeed, etc. characters.TTY

Block-Mode-Oriented Online Terminals

DescriptionTerminal Make

All models and sizes which support standard data stream and/or extended data stream.IBM

All 9750 and compatible monochrome devices and all 9763 and compatible color devices.SNI

All models.Wang

All models and sizes which support standard data stream and/or extended data stream.PC

Example of NTDVCE Macro

For information on how the NTDVCEmacro is specified and for descriptions of the individual
parameters, refer to the NTDVCEmacro itself.

Example of NTDVCEmacro:

Operations40

Natural Configuration Tables

NTDVCE TYP=EBS2, *
NAME=BS2CHAR, *
ENTRY=VC3270, *
WXTRN=OFF,RTAL=5, *
FLAG1=CM3270, *
TCIO=(X'C0',X'FB',X'6A',X'4F',X'D0',X'FD', *
X'4A',X'BB',X'E0',X'BC',X'5A',X'BD',X'A1',X'FF', *
X'4F',X'5A')

This samplemacro converts internal SNI code pages to external IBM code pages. This enables you
to develop applications on IBM terminals, which internally work with SNI code pages to, for ex-
ample, avoid data collision when migrating from IBM to SNI.

Translation Tables

All data printed, displayed or written by Natural programs are translated by Natural. This guar-
antees that no illegal control characters can cause terminal I/O errors or display garbage information
on the terminal.

Another feature is the translation to and from character sets different from the Latin definition,
especially Arabic, Cyrillic, Greek and Hebrew characters.

This section describes all features and functions concerning field translationswhen data arewritten
to external devices such as CRT (screen terminals) or online and batch spooling systems.

The statements INPUT, DISPLAY, PRINT and WRITEwrite data to or read data from external devices
such as CRT, TTY or sequential files. All these statements use parameters such as constants, vari-
ables, editmasks, attribute control variables and formats to control the output image and the input
representation. Constants and variables are generated by using their respective values in the output
image. The representation of these values is then controlled by the attribute control variables,
formats, edit masks and translation tables.

Natural uses several translation tables and also provides the use of alternative translation tables,
all included in NATCONFG.

The following tables are provided:

TableMacro

Required scanner table for Unicode characters. It maps the properties of Unicode characters
of the Unicode Specification (as supported by the delivered ICU version) to be used by the
Natural nucleus.

Important: This table must never be changed.

NATSCTU

41Operations

Natural Configuration Tables

TableMacro

Optional single-byte code page conversion accelerator tables.

If the table is present, conversion from one code page to another code page will be faster since
it is performed via this table rather than by calling ICU functions.

NATCPTAB

The following code pages are supported by the delivered NATCPTAB:

IBM01140
IBM01141
IBM01145
IBM01146
IBM01147
ASCII

It is possible to add new entries by using the NTCPCNVmacro. For each conversion direction,
an entry is needed that contains the IANA name of the source code page, the IANA name of
the target code page and optionally a blank character, a substitution character and a place
holder character, followed by a complete list of character mappings.

The table which defines the properties of charactersNTSCTAB

■ used in mask definitions for the MASK option,
■ recognized as delimiters in the EXAMINE and SEPARATE statements.

This table can be used to define upper-case attributes, lower-case attributes, special characters,
hexadecimal characters and numeric characters.

To modify this table, use the macro NTSCTAB in the Natural parameter module or the
corresponding dynamic profile parameter SCTAB.

If the CP profile parameter is set to a value other than OFF, the modification is ignored and the
table is adjusted according to the code page used for the Natural session. See also Translation
Tables in the Unicode and Code Page Support documentation.

The standard (primary) output translation table used for screen or printer output.

Basically this table is used to translate all characters below X'40', that is from the space
character to the questionmark (X'00' is not translated). This guarantees that all terminal-control

NTTAB

characters are translated before output and no control escape sequences can influence the
screen output. Special characters (X'FE' and X'FF') which could influence the screen output
are translated to the question mark (?).

If nothing else is specified, all Natural output data are translated with NTTAB.

To modify this table, use the macro NTTAB in the Natural parameter module or the
corresponding dynamic profile parameter TAB.

The modification is ignored if a code page is specified using profile parameter CP (CP=ON,
CP=AUTO or CP=code-page), and the table is adjusted by ICU according to the code page used
at session start.

Operations42

Natural Configuration Tables

TableMacro

Furthermore, all characters below X'40' are translated to the question mark (?) as described
above. A character is excluded from this translation if either of the following conditions is true:

■ The character is explicitly translated to the same character.
■ The character is one of the logical shift-out/shift-in characters specifiedwith the SOSI profile
parameter (see the Parameter Reference documentation), and the specified code page is not
an MBCS code page.

The alternative (secondary) output translation table for the secondary character set usedwhen
the Natural parameter PM is set to C.

The important aspect is the translation of all possible terminal-control characters. If PM=C is
specified, all Natural output data are translatedwith NTTAB1. A possible application of NTTAB1
is to avoid the translation of escape sequences for printer control.

NTTAB1

To modify this table, use the macro NTTAB1 in the Natural parameter module or the
corresponding dynamic profile parameter TAB1.

The modification is ignored if a code page is specified using profile parameter CP (CP=ON,
CP=AUTO or CP=code-page), and the table is not used.

The secondary input translation table used when the Natural parameter PM is set to "C". If
PM=C is specified, all Natural input data are translated with NTTAB2. Conversion between
different languages or code pages can be performed with this table together with NTTAB1.

To modify this table, use the macro NTTAB2 in the Natural parameter module or the
corresponding dynamic profile parameter TAB2.

NTTAB2

The modification is ignored if a code page is specified using profile parameter CP (CP=ON,
CP=AUTO or CP=code-page), and the table is not used.

This table defines all valid characters that can be used in Natural variable names; it is used for
the Natural syntax processor.

It also defines all valid characters that can be used in the first position of a Natural variable
name.

NTTABS

In addition, it defines whether the variable is a global variable, a non-database variable or a
source-code variable.

If a code page is specified using profile parameter CP (CP=ON, CP=AUTO or CP=code-page),
the table is adjusted by ICU according to the code page used at session start.

The sample user-specific translation table for input translation from lower to upper case.

In addition, this table performs the translation specified with the statement EXAMINE
TRANSLATE INTO UPPER CASE.

NTUTAB1

To modify this table, use the macro NTUTAB1 in the Natural parameter module or the
corresponding dynamic profile parameter UTAB1.

The modification is ignored if a code page is specified using profile parameter CP (CP=ON,
CP=AUTO or CP=code-page), and the table is not used.

43Operations

Natural Configuration Tables

TableMacro

The sample user-specific translation table which performs the translation specified with the
statement EXAMINE TRANSLATE INTO LOWER CASE.

To modify this table, you can use the macro NTUTAB2 in the Natural parameter module or the
corresponding profile parameter UTAB2.

NTUTAB2

The modification is ignored if a code page is specified using profile parameter CP (CP=ON,
CP=AUTO or CP=code-page), and the table is not used.

The language-code table, which defineswhich language number is assigned towhich language
code in the system variable *LANGUAGE.

NTLANG

The SYS* output translation table, which is controlled by the Natural profile parameter TS.
With TS=ON, this table is used to translate output produced by programs located in Natural
SYS* libraries (except modifiable fields) from Latin lower case to upper case.

This table allows the use of all upper- and lower-case characters in Latin oriented countries,
but still allows the use of these applications in countries where the lower-case characters have
been replaced with a native alphabet.

NTTABL

To modify this table, use the macro NTTABL in the Natural parameter module or the
corresponding dynamic profile parameter TABL.

If Natural is running with an MBCS code page (for example, CP='IBM-939'), the table is not
used, but translation is performed via ICU according to the current locale settings.

The DBCS translation tables used to translate double-byte characters into Latin characters and
vice versa.

Important: These tables have to be activated explicitly, for example, for Far East countries.

WRDFCUC1
WRDFCUC2
WRDFCSP2

Upper-/Lower-Case Translation

For modifiable and input fields, upper- and lower-case translation can be specified. In general,
lower-case translationmeans that data are taken as they come in; no translation is performed. This
evenmakes it possible in batchmode, for instance, to read in hexadecimal datawithout translation.

There are several ways of specifying upper-/lower-case translation:

Lower-case translation is switched off, which means that global upper-case translation
is in effect.

This profile parameter can be specified in the Natural parameter module or as dynamic
parameter. (Note that the session parameter LC has a completely different function.)

LC=OFF

Upper-case translation is globally on.

On the field level, the attribute AD=T or AD=W can be specified. These attributes only
take effect when the global upper-case translation is deactivated (LC=ON, %L). Then it is
possible to control the translation on a field level from within a Natural program.

%U

Operations44

Natural Configuration Tables

Upper-/lower-case translation can also be performed with the EXAMINE TRANSLATE
statement.

By default, EXAMINE TRANSLATE translates to upper case by using the translation table
NTUTAB1, and to lower case by using the translation table NTUTAB2.

EXAMINE
TRANSLATE

CMULT Entry

It is no longer recommended to use the CMULT entry; use the EXAMINE TRANSLATE statement instead
(see above).

Output Translation

All fields, after having been formatted by possible edit masks, AL or NL parameter values, filling
characters, etc. are translated using a translation table. This ensures that no data can be sent to the
front-end printing device with embedded control information which is not explicitly generated
byNatural. This means that fields can be sent to a display device even if they contain hexadecimal
informationwhich is identical to internal attributes. These attributes are translated before an output
operation and so Natural guarantees the screen layout as defined by the output statement.

There are several translation tables available. If nothing explicit is defined, the primary translate
table NTTAB is used.

If PM=C is specified, the secondary translation table NTTAB1 is used. For modifiable fields, PM=C also
means that the incoming data are translated again; that is, translated for output and retranslated
for input.

With this translation table logic it is possible, for example, to convert Arabic numerals to Latin
numerals. Arabic numerals have a different hexadecimal representation from the normal Latin
numerals on the terminal hardware. So on output, the Latin numerals can be translated into the
Arabic equivalent and on input, the Arabic numerals can be retranslated into Latin.

Special considerations have to bemade for theNatural system applicationswhich use Latin lower-
case and upper-case characters. Especially on terminals supporting Arabic, Greek, Cyrillic, etc.,
the hardware can be switched to not display lower-case Latin characters, but rather the native
characters.

Unfortunately, Latin lower-case characters are crabbed when displayed in, for instance, Cyrillic.
SoNatural can be usedwith the parameter TS=ON (translate systemoutput). TS=ON translates “SYS*”
libraries (not including library SYSTEM) and all Natural system commands by using a third trans-
lation table called NTTABL. By default, this translation table performs upper-case translation for all
lower-case Latin characters. Of course, only output data are treated this way. So this allows data
entry in the native character set even in Natural editors or system applications.

45Operations

Natural Configuration Tables

However, if Natural utilities are used to display data typed in the native character set, this results
in an upper-case translation even for data in, for example, Cyrillic representation. The result would
again be unreadable. So all Natural system utilities can use the format PM=C for fields containing
data entered in the native character set. In this case, neither the NTTABL translation table nor the
secondary translation table NTTAB1 is used. The data are simply translated by the primary translation
table NTTAB.

For further information, see the profile parameters PM, and TS in the Parameter Reference document-
ation.

Input Translation

The translation table NTUTAB1 is available to control translation from lower to upper case. This
might cause problems in countries where special characters are used which are not set up with
the simple logic that just one bit controls the status of this letter. This especially concerns German
umlauts orDanish special characters. In such cases, translation can only be achieved by customizing
the NTUTAB1 table, where for each character the corresponding lower-/upper-case character can be
specified.

If upper-case translation (%U) and PM=C is specified, first upper-case translation (using NTUTAB1)
and then the secondary input translation (using NTTAB2) is performed.

Code Translation of DBCS Data

So that double-byte character set (DBCS) data can be processed the user application programming
interface USR4213N is provided to translate double-byte characters into Latin characters, seeDouble-
Byte Character Sets (DBCS).

NTTZ - Time Zone Definitions

The NTTZmacro is used to specify a time zone and an automatic switch to and from summertime.

Note: Timedefinitions are determined by the systemadministrator, and the user can reference
these definitions by using theNatural profile parameter TD=zonename. With this parameter,
users from different countries and time zones are able to select their own local time.

The NTTZmacro can be used on a minimal basis to define a time difference for a time zone. In ad-
dition, an automatic switch to and from summertime can be specified, either as a fixed date or in
a more flexible definition like “first Sunday in April”. The automatic switch to and from summer-
time is processed during a running Natural session, without requiring any user interactions. Pre-

Operations46

Natural Configuration Tables

defined samples of NTTZmacro definitions are available in the Software AG-delivered NATCONFG
module.

Reference point for automatic switching to and from summertime is the current machine time,
which is UTC (GMT) time. Depending on the time period the currentmachine time is in, the current
local time is determined. The support of automatic switching to and from summertime is currently
for years in the range from 2002 to 2041.

The following topics are covered below:

■ NTTZ Macro Considerations and Restrictions
■ NTTZ Macro Syntax
■ NTTZ Macro Parameters
■ Example of NTTZ Macro

NTTZ Macro Considerations and Restrictions

The following considerations and restrictions apply:

1. Time Format

The basic time format is:

+hh:mm:ss

or:

-hh:mm:ss

ranging from 00:00:00 through 23:59:59; abbreviations are also allowed, for example: hh:mm
or simply hh. The plus sign (+) is assumed by default, the minus sign (-) may be necessary with
the parameters TDON or TDOFF.

2. UTC versus Local Time

In order to have a unique point of reference for the time switch, the NTTZmacro parameters
SWTON and SWTOFF are given in UTC time, whereas the weekday names and day numbers in the
NTTZmacro parameters DSTON and DSTOFF are specified in local time.

3. Concurrent Use of Natural Profile Parameters DD, YD, and TD

The Natural profile parameters DD and YD do not have any effect on the automatic switching to
and from summertime, since the switch is done on the basis of the current machine time.

It is recommended to avoid the concurrent use of DD or YD and profile parameter TD=zonename.

47Operations

Natural Configuration Tables

4. Concurrent Use of Natural Profile Parameter TD and User Exit CMCOTIME

Concurrent use of profile parameter TD=zonename and user exit CMCOTIME (override machine
time) is not recommended, because a change of machine time (TOD clock) may cause unpre-
dictable results for automatic switching invoked with TD=zonename.

NTTZ Macro Syntax

The syntax of the NTTZmacro is as follows:

NTTZ ZONE=value; *
TDON=value, *
TDOFF=value, *
SWTON=value, *
SWTOFF=value, *
DSTONvalue, *
DSTOFF=value

NTTZ Macro Parameters

ZONE | TDON | TDOFF | SWTON | SWTOFF | DSTON | DSTOFF

ZONE - Time Zone Name
ZONE=value specifies the SoftwareAGor user-defined time zone namewhich can be referenced
with the TD parameter. The first occurrence of a name will be selected.

ExplanationValue

The maximum length of a time zone name is 32 characters to allow for descriptive user
defined zone names, for example, the name of the capital city of a country.

32 characters.

TDON - Difference of Local Daylight Saving Time to UTC Time
TDON=value denotes the difference of local daylight saving time (summertime) to UTC time
(formerly GMT).

ExplanationValue

See Time Format.+hh:mm:ss
or
-hh:mm:ss

Notes:

1. If only the parameter TDON is defined, the user gets display of local time as his zone time,
without automatic switching to and from summertime.

2. The parameter TDON corresponds to the parameter SWTON.

Operations48

Natural Configuration Tables

TDOFF - Difference of Local Zone Time to UTC Time
TDOFF=value denotes the difference of local zone time to UTC time (formerly GMT).

ExplanationValue

See also Time Format.+hh:mm:ss
or
-hh:mm:ss

Note: This parameter corresponds to the parameter SWTOFF.

SWTON - Time when Daylight Saving Time Starts
SWTON=value denotes the UTC point of time when daylight saving time (summertime) is
switched on.

ExplanationValue

See also Time Format.hh:mm:ss

SWTOFF - Time when Daylight Saving Time Ends
SWTOFF=value denotes the UTC point of time when daylight saving time (summertime) is
switched off.

ExplanationValue

See also Time Format.hh:mm:ss

DSTON - Date when Daylight Saving Time Starts
DSTON=(value1,value2,value3,value4,day-number) denotes the day when daylight saving
time (summertime) is switched on.

Possible SettingsValue

FIRST, SECOND, THIRD, FOURTH or LAST.value1

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY or SUNDAY.value2

AFTER, BEFORE or IN.value3

JANUARY ... DECEMBER.value4

A valid day number for the respective month.

The default value is 1.

day-number

Notes:

1. The keyword LAST requires the keyword BEFORE or IN.

2. No day numbermust be specified if the keyword IN is specified.

49Operations

Natural Configuration Tables

DSTOFF - Date when Daylight Saving Time Ends
DSTOFF=(value1,value2,value3,value4,day-number) denotes the daywhen daylight saving
time (summertime) is switched off.

Possible SettingsValue

FIRST, SECOND, THIRD, FOURTH or LAST.value1

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY or SUNDAY.value2

AFTER, BEFORE or IN.value3

JANUARY ... DECEMBER.value4

A valid day number for the respective month.

The default value is 1.

day-number

Notes:

1. The keyword LAST requires the keyword BEFORE or IN.

2. No day numbermust be specified if the keyword IN is specified.

Example of NTTZ Macro

For daylight saving time switching in Western Europe:

NTTZ ZONE=MEZ, *
TDON=2, *
TDOFF=+01:00:00, *
SWTON=01:00:00, *
SWTOFF=01:00:00, *
DSTON=(LAST,SUNDAY,IN,MARCH), *
DSTOFF=(LAST,SUNDAY,IN,OCTOBER)

Additional examples of different time zones (North and South America, Asia, etc.) can be found
in the Software AG-delivered NATCONFGmodule.

Operations50

Natural Configuration Tables

7 Natural Storage Management

■ Thread and Non-Thread Environments .. 52
■ Buffer Types ... 52
■ Fixed Buffers .. 53
■ Variable Buffers .. 53
■ Customization of Buffer Characteristics .. 53

51

This document describes howNatural allocates andusesmain storage.A chunk of storage requested
by a Natural nucleus component is called a “buffer”.

Thread and Non-Thread Environments

There are two different types of storage environments:

■ Thread storage environment (typical for multi-user environments, for example, CICS)
■ Non-thread storage environment (typical for single-user environments, for example, batch)

In a thread environment, a big piece of storage called “thread” is pre-allocated for a session. The
thread sizemust be predefined by the system administrator. During a session each buffer allocation
request (GETMAIN) is satisfiedwithin its thread byNatural itself. Free space due to release buffer
requests (FREEMAIN) can be reused.

Upon certain events (terminal I/Os and long waits), the thread storage may be compressed and
rolled out (or swapped out) to external storage (swap pool or roll file). The released thread can be
reused by other Natural sessions. When a suspended session is to be resumed, it is rolled in from
external storage into a free thread again.

The place on the swap pool or roll file where the compressed thread storage is stored, is called a
“slot”. The slot size has a fixed length and is defined by the system administrator. It must be large
enough to contain the largest compressed thread storage. In the worst case, it may be equal to the
thread size.

In a non-thread environment, all storage requests are directly passed to the operating (sub)system.
No roll-out/roll-in is performed, that is, the buffers for a session are kept until session termination,
unless they were explicitly released before.

Buffer Types

There are three different types of buffers:

■ fixed buffers
■ variable buffers
■ physical buffers

Fixed buffers and variable buffers have a 32-byte prefix with a common layout for all environments.
The buffer prefix starts with the buffer name followed by 5 buffer length fields (total, used low-
end, max. used, used high-end, max. used high-end). The used length fields are maintained by
the buffer-owning components and are used for thread compression. Each buffer has a unique ID
number (1-255) and can exist only once. Some buffers are allocated during session initialization,

Operations52

Natural Storage Management

others are allocated when required. The system command BUS can be used to show information
about all fixed and variable buffers currently allocated. The characteristics of the buffers are defined
in the sourcemodule NATCONFG, which can be customized in exceptional cases (seeCustomization
of Buffer Characteristics below). The size of some buffers can be specified by a profile parameter.
For a complete list of such buffers, see the profile parameter DS.

Physical buffers are allocated outside the thread. They do not have a buffer prefix and they are not
unique. They are used in exceptional cases and temporarily only. Physical buffers are automatically
released at the next terminal I/O. It is possible to define work pools for physical buffers by profile
parameter WPSIZE.

Fixed Buffers

In a thread environment, fixed buffers are allocated from the low end of the thread only. In contrast
to variable buffers, fixed buffers cannot be moved relatively to the thread and their size cannot be
increased or decreased.

Variable Buffers

In a thread environment, variable buffers are allocated from the high end of the thread. If there is
nomore space in the thread, variable buffers are allocated temporarily outside of the thread. Upon
thread compression, all buffer parts used are compressed into the thread. If they do not fit into
the thread, the session is terminated abnormally. Thismay happen especially when large dynamic
variables are used.

After thread decompression, the variable buffers may have beenmoved to a different place inside
or outside of the thread. Variable buffers can be increased or decreased in size on request by the
owning component. Some variable buffers are defined to be reduced or released automatically
during thread compression.

The total amount of storage allocated outside the thread can be limited by profile parameter OVSIZE.

Customization of Buffer Characteristics

All buffers are defined in the source module NATCONFG by NTBUFIDmacro definitions.

Caution: Please, do not change any buffer characteristics except the MIN, MAX and CMPR

parameter settings explained below, because the results may be unpredictable.

53Operations

Natural Storage Management

It is possible to change the buffer size limits by the parameters MIN and MAX of the macro NTBUFID.
This makes sense for variable buffers (TYPE=VAR) only. Limits for all buffers are defined either by
default (0 - 2097151 KB) or by the limits of the corresponding profile parameters. For further
information, see the profile parameter DS. The limits of the buffer size profile parameters in the
Natural parameter module are not affected by the MIN and MAX parameters of NTBUFID, but the
limits for the dynamic profile buffer size parameters are overwritten by MIN and MAX.

Setting the MAX parameter to a value in KB means that the size of this buffer cannot exceed this
maximum during session execution. This may cause runtime errors if more buffer storage is re-
quested for the desired buffer.

Setting the MIN parameter to a value in KB means that the size of this buffer cannot be less than
this value during session execution. For example, in the case of the 3GL CALLNAT interface
(NAT3GCAN), the setting of a buffer minimum value makes sense for the following buffers, because
the sizes of these buffers may not be increased on a lower Natural program level called by a 3GL
program.

PurposeBuffer

Data areasDATSIZE

Utility GDAGLBTOOL

User GDAGLBUSER

System GDAGLBSYS

AIV areaAIVDAT

Context variablesCONTEXT

The parameter CMPR of the macro NTBUFID defines the compression optimization algorithm for the
buffer. It corresponds to the profile parameter CMPRwhich defines the default. Formore information
about the possible parameter values, seeCMPR–General Default CompressionOptimizationAlgorithm
in the Parameter Reference documentation.

Example of a buffer characteristics definition:

DATSIZE NTBUFID ID=GETMDATA,TYPE=VAR+INI,CMPR=OPT2,MAX=512

For further information on profile parameters affecting the buffer sizes, see Storage Management
in the Parameter Reference documentation.

Operations54

Natural Storage Management

II Profile Parameter Usage

This part describes the fundamentals and rules that apply to the use of Natural profile parameters
in a mainframe environment.

Overview of the hierarchical structure of the different levels on
which Natural parameters can be set. Examples are provided to
illustrate the various scenarios.

Natural Parameter Hierarchy

Assigning values to profile parameters statically, dynamically and
at runtime.

Assignment of Parameter Values

Building a Natural parameter module from NTPRM and other
parameter macros.

Building aNatural ParameterModule

Related Topics:

■ For details of the individual profile parameters, see the Parameter Reference documentation.
■ For an overview of the profile parameters grouped by category, see Profile Parameters Grouped
by Category in the Parameter Reference documentation.

55

56

8 Natural Parameter Hierarchy

■ Natural Parameter Hierarchy Overview .. 58
■ General Rules for Parameter Usage .. 58
■ Natural Parameter Module .. 59
■ Predefined Dynamic Parameter Sets ... 60
■ Predefined User Parameter Profiles .. 60
■ Dynamic Parameter Entry ... 60
■ Natural Security Definitions ... 61
■ Session Settings for Profile Parameters ... 61
■ Program/Statement Level Settings .. 61
■ Development Environment Settings .. 62
■ Examples of Parameter Evaluation ... 62

57

Natural Parameter Hierarchy Overview

Natural profile parameters affect the appearance and the response of a Natural user's working
environment. These parameters are set at different hierarchically organized levels as illustrated
in the table below (priority from high to low).

Short Description/References to Detailed DescriptionsLevel

During Session

■ Development Environment Settings
■ Program/Statement Level Settings
■ Session Parameter Settings
■ Natural Security Definitions

Dynamic during Session Start

■ Dynamic Parameter Entry
■ Predefined User Parameter Profiles
■ Predefined Dynamic Parameter Sets
■ Alternative Natural Parameter Module

Static ■ Natural Parameter Module

The hierarchically organized levels are discussed in the referenced sections, starting from the
lowest and ending with the highest priority.

General Rules for Parameter Usage

The following general rules apply:

■ Aparameter value set on a higher level overwrites the value defined on a lower level (exceptions:
PROFILE, SYS, DYNPARM and some other parameters that work by adding values).

■ Dynamic parameters during session start have sequence priority, that is, they are evaluated
from left to right.

Operations58

Natural Parameter Hierarchy

Example:

ESIZE=20,DATSIZE=60,ESIZE=100

The resulting value is ESIZE=100.
■ Not all of the parameters available at a lower level can be defined on a higher level, too.

Natural Parameter Module

A Natural parameter module contains a set of profile parameters required to configure your
Natural environment.

A Natural parameter module is built from the NTPRMmacro and additional macros during the
installation process as described in Building a Natural Parameter Module.

You can have more that one Natural parameter module depending on your personal preferences,
for example, one module for Natural batch and one for Natural online sessions.

The Natural parameter module constitutes the bottom level of the Natural parameter hierarchy.

In addition to the Natural parameter module, you may require an additional parameter module
for a Natural add-on product to be used in your environment, for example, the Natural CICS In-
terface.

■ Alternative Natural Parameter Module

Alternative Natural Parameter Module

In addition to aNatural parametermodulewhich is statically linked to the nucleus, you can define
alternative Natural parametermoduleswhich are stored in a TP or operating-system library. They
can be used to overwrite the parameter definitions of the static Natural parameter module for a
Natural session by specifying the profile parameter PARM as described in the Parameter Reference
documentation. Exception: CSTATIC parameter definitions are not overwritten.

Important: PARM should appear as the first parameter in a dynamic parameter string, because
otherwise the alternative Natural parameter module overwrites all parameter settings
previously entered in the dynamic parameter string.

Usage Restrictions

You can restrict the use of an alternative Natural parameter module to a certain user or to several
users by using the NTUSERmacro.

59Operations

Natural Parameter Hierarchy

In this macro, define the IDs of those users who are authorized to use that parameter module.
Only these users will be allowed to specify the name of that parameter module with the profile
parameter PARM.

Predefined Dynamic Parameter Sets

The assemblermacro NTSYS can be used to predefine parameter sets which are named in aNatural
parameter module. These sets can be addressed under their names when Natural is invoked,
provided that the corresponding parameter module is active.

When invoked, the predefined parameter sets react in the same way as dynamically entered
parameters in that position.

See also the profile parameter SYS.

Predefined User Parameter Profiles

You can use the Natural utility SYSPARM to create individual profiles which are stored in a system
file. Each profile is given a unique character name. You can set values for any dynamic Natural
parameters in such a profile.

The profiles created with the utility SYSPARM are activated by using the parameter PROFILEwhen
Natural is invoked.

You can use the profile parameter USER to restrict the use of a profile to a certain user or to several
users.

When invoked, the predefined parameter profiles behave in the sameway as dynamically entered
parameters in that position.

Dynamic Parameter Entry

Almost all of the parameters can be dynamically overwritten when Natural is started. Dynamic
parameters are evaluated strictly sequential.

This general overwrite facility can, however, be limited generally or for certain parameters through
the use of the profile parameter DYNPARM (only dynamically, for instance in a profile).

You can use the macro NTDYNP in the Natural parameter module to make analog settings. This,
however, will prohibit the use of the profile parameter DYNPARM.

Operations60

Natural Parameter Hierarchy

You can use the data set CMPRMIN to define dynamic parameters in batchmode under z/OS, BS2000
and z/VSE, or in batch-like systems such as TSO, TIAM or BMP environments under IMS TM.

The advantage of this method is that you need not modify the JCL when you wish to change
Natural settings. In addition, it overcomes the length limitation of the parameter string (for example,
100 characters under z/OS).

Natural Security Definitions

Apart from protecting the libraries, files and commands, Natural Security enables the setting of
certain session-relevant profile parameters. The definitions apply to the current library of the user.

The users can also define settings for their private or default libraries.

The current security settings (session parameters) can be displayed using the Natural system
command PROFILE.

TheNatural Security parameter definitions are evaluated after the regular profile parameters, that
is, they can overwrite them.

Session Settings for Profile Parameters

TheNatural system command GLOBALS or theNatural statement SET GLOBALS can be used to display
and to set (modify) certain session-relevant profile parameters within and for the duration of a
Natural session.

These definitions apply to the command mode and to all programs that are executed during the
current session.

See also Session Parameters for Runtime Assignment of Parameter Values or SET GLOBALS.

Program/Statement Level Settings

The Natural statement FORMAT can be used in a program to set parameter values which are valid
for that specific program.

In addition, it is possible to set certain parameters at statement level by a terminal command.

61Operations

Natural Parameter Hierarchy

Development Environment Settings

You can use theNaturalMainMenu optionDevelopment Environment Settings to invoke a submenu
which enables selection of the tools that are available for monitoring and setting up the Natural
development environment.

Examples of Parameter Evaluation

The examples below are based on the following parameter settings:

Parameter User ProfileAlternativeParameter Module

MYPROF
Parameter Module

ALTPARM

605040DATSIZE

Not specified2 (default)6DSIZE

80NTSYS A: 6028 (default)ESIZE

NTSYS A: 40
NTSYS B: 50

The following examples show the results for various dynamic parameter strings.

Example 1: No Dynamic Parameters

OriginResulting Values

Parameter moduleDATSIZE 40

Parameter moduleDSIZE 6

Parameter moduleESIZE 28

Parameter moduleOthers: Default

Example 2: PARM=ALTPARM

OriginResulting Values

ALTPARMDATSIZE 50

ALTPARMOthers: Default

Operations62

Natural Parameter Hierarchy

Example 3: SYS=A

OriginResulting Values

Parameter moduleDATSIZE 40

Parameter moduleDSIZE 6

NTSYSmacro in the parameter moduleESIZE 40

Example 4: PARM=ALTPARM,SYS=A

OriginResulting Values

ALTPARMDATSIZE 50

ALTPARMDSIZE 2

NTSYSmacro in ALTPARMESIZE 60

Example 5: PARM=ALTPARM,SYS=B

OriginResulting Values

ALTPARM does not have an NTSYS B specificationError

Example 6: SYS=A,PROFILE=MYPROF

OriginResulting Values

MYPROFDATSIZE 60

Parameter moduleDSIZE 6

MYPROFESIZE 80

Example 7: SYS=A,PROFILE=MYPROF,ESIZE=100

OriginResulting Values

MYPROFDATSIZE 60

Parameter moduleDSIZE 6

Dynamic parameterESIZE 100

63Operations

Natural Parameter Hierarchy

Example 8: PROFILE=MYPROF,SYS=A

OriginResulting Values

MYPROFDATSIZE 60

Parameter moduleDSIZE 6

NTSYSmacro in the parameter moduleESIZE 40

Example 9: DSIZE=8,SYS=A,PROFILE=MYPROF,PARM=ALTPARM

OriginResulting Values

ALTPARMDATSIZE 50

ALTPARMOthers Default

Operations64

Natural Parameter Hierarchy

9 Assignment of Parameter Values

■ Sources for Parameter Value Assignment ... 66
■ Static Assignment of Parameter Values .. 67
■ Dynamic Assignment of Parameter Values ... 68
■ Session Parameters for Runtime Assignment of Parameter Values .. 70

65

This document provides information on how values are assigned to profile parameters statically,
dynamically and at runtime.

For details of the individual profile parameters, refer to the Parameter Reference documentation.

Sources for Parameter Value Assignment

The values for profile parameters are taken from three sources:

1. Static assignments
Profile parameters specified in the parameter macro NTPRM and additional parameter macros
contained in theNatural parameter module.

2. Dynamic assignments
Parameters specified for the Natural session execution. These parameters override the static
assignments and are valid for the current Natural session. Dynamic parameters can be passed
by a front-end program, the parameter data set (CMPRMIN), session-initialization JCL, terminal
input or Natural Security. In addition, it is possible to overwrite certain parameters by Natural
program statements.

3. Session parameters
Parameters specified with the system command GLOBALS (or a SET GLOBALS statement) within
the current Natural session. The parameters override static and dynamic assignments.

Illustration of the Natural Parameter Assignment:

Operations66

Assignment of Parameter Values

Static Assignment of Parameter Values

The Natural parameter module is used for the static assignment of profile parameters for all Nat-
ural environments.

In the Natural parameter module, you use the macro NTPRM, and several other macros, to specify
the parameters.

All parameter settings (except the parameter CSTATIC) made in the Natural parameter module
can be overwritten dynamically at the start of a Natural session.

67Operations

Assignment of Parameter Values

For some profile parameters a corresponding macro is used for static assignment in the Natural
parameter module. Consequently, the syntax of the static and dynamic specifications differs
slightly, taking the following general form:

macro-name keyword1=value,keyword2=value1,value2,...Static:

parameter-name=(keyword1=value,keyword2=value1,value2,...)Dynamic:

Example:

■ Macro in the Natural parameter module: NTSORT WRKSIZE=500,EXT=ON

■ Equivalent dynamic profile parameters: SORT=(WRKSIZE=500,EXT=ON)

If there is a parameter macro for a profile parameter other than NTPRM, this macro is indicated in
the individual parameter description.

See also the section Building a Natural Parameter Module.

Dynamic Assignment of Parameter Values

You can specify profile parameters dynamically at the start of a Natural session to override - for
the duration of a single Natural session - individual profile parameter settings of theNatural
parameter module.

Example:

NUCNAME='NATNUC#5',IM=D,INTENS=1,DU=OFF,FUSER=(10,32),PROGRAM=' ',
WORK=((1),AM=STD,DEST=WORK1,OPEN=INIT),PS=60,LS=120

All profile parameters can be specified dynamically - except CSTATICwhich can be specified stat-
ically in the Natural parameter module only:

The dynamic parameter assignments are separated by (one or more) commas or blanks. If the
value for a dynamic parameter contains non-alphanumeric or special characters, the value must
be specified enclosed in apostrophes. Which characters are special characters is defined in the
character table macro NTSCTAB of NATCONFG; see Natural Configuration Tables.

The use of dynamic parameters can be enabled/disabled by themacro NTDYNP or the corresponding
dynamic profile parameter DYNPARM.

For a more comfortable specification of sets of dynamic parameters, you can use the profile para-
meter PROFILE or SYS. In addition, it is possible to set a number of dynamic parameters in Natural
Security.

Operations68

Assignment of Parameter Values

It is possible to insert comment strings within dynamic parameters. A comment starts with “/*”
and ends with “*/”. If the comment string end delimiter is missing, an error message is issued
during session initialization.

Example:

PARM=MYPARMS /* my comment */ ADANAME=ADALNKR,PROFILE=MYPROF

The dynamic parameter settings are passed to Natural when the session is started. The method
used for passing the parameter values to Natural varies depending on the environment.

Example for z/OS in Batch Mode:

■ The values are specified by the PARM keyword in the EXEC job control statement that initiates
Natural.

■ In addition, dynamic parameters can be specified in the data set CMPRMIN.
■ Moreover, it is possible to write a front-end program which passes control to Natural with dy-
namic parameters for the session according to z/OS standards.

Specifying Dynamic Parameters under z/VSE

The dynamic parameters can either be passed directly with a PARM specification in the JCL EXEC
statement:

// EXEC NATBATCH,PARM='dynamic parameters...',SIZE=...

Or you can specify PARM='SYSRDR' to causeNatural to read the dynamic parameters from SYSRDR:

// EXEC NATBATCH,SIZE=...,PARM='SYSRDR'
dynamic parameters
...
/* END OF DYNAMIC PARAMETERS

If the PARM keyword is not specified in the JCL EXEC statement, the SYSPARM parameter of the JCL
OPTION statement is checked for compatibility reasons:

...
// OPTION SYSPARM='SYSRDR'
// EXEC NATBATCH,SIZE=...
dynamic parameters
...
/* END OF DYNAMIC PARAMETERS

69Operations

Assignment of Parameter Values

Session Parameters for Runtime Assignment of Parameter Values

To some profile parameters a value can be assigned within a Natural session at runtime, using a
corresponding session parameter. The session parameter valuewill override the profile parameter
value.

If a corresponding session parameter exists for a profile parameter, this is indicated in the descrip-
tion of the profile parameter.

Session parameters are specified with the system command GLOBALS. Session parameters are de-
scribed in the Parameter Reference documentation. Further details on system commands can be
found in the Command Reference documentation.

Example:

GLOBALS SA=ON IM=D

Session parameters can also be specified with the SET GLOBALS statement in a program.

Some profile parameters can also be overriddenwithin a Natural session by a terminal command.
If a corresponding terminal command exists for a profile parameter, this is indicated in the descrip-
tion of the profile parameter. Terminal commands are described in the Terminal Commands docu-
mentation.

Example:

SET CONTROL 'T=3279'

The value of the profile parameter TTYPE is overwritten.

Operations70

Assignment of Parameter Values

10 Building a Natural Parameter Module

■ NTPRM Parameter Macro ... 72
■ Additional Macros in the Natural Parameter Module ... 73
■ Example of Macros in the Natural Parameter Module .. 75

71

You build (generate) a Natural parameter module during the installation of Natural by running
the appropriate installation jobs provided by SystemMaintenance Aid (SMA). These jobs are de-
scribed in the relevant installation steps in the Installation for z/OS, Installation for z/VSE and Install-
ation for BS2000 documentation.

A Natural parameter module is built from the NTPRM parameter macro and additional parameter
macros if required. You can change the default parameter settings provided by SMA and adapt
the installation jobs according to your needs.

To build a Natural parameter module using SMA jobs

1 Adapt the profile parameters in the default NTPRM parameter macro according to your needs
by using the NTPRMmacro syntax (see the Parameter Reference documentation).

2 If required, add additional parameter macros. They must follow NTPRM in any order.

3 Assemble the Natural parameter module and link it to the environment-dependent nucleus
(see the Installation documentation for z/OS, z/VSE and BS2000).

4 Link the Natural parameter module to the environment-independent nucleus (see the Install-
ation documentation for z/OS, z/VSE and BS2000) if either of the following is true:

■ Your NTPRMmacro contains CSTATIC entries.
■ Your Natural parameter module contains an NTCSTATmacro.

The CSTATIC profile parameter and the NTCSAT parametermacro are described in the Parameter
Reference documentation.

NTPRM Parameter Macro

The NTPRM parameter macro is mandatory; it must be specified in the Natural parameter module.
NTPRM contains the main profile parameter settings required to configure Natural. All profile
parameters for which no parameter macro is indicated in the individual parameter description in
the Parameter Reference documentation are defined in the NTPRMmacro.

See alsoNTPRMMacro Syntax (Parameter Reference documentation) and Example of Macros in the
Natural Parameter Module.

Operations72

Building a Natural Parameter Module

Additional Macros in the Natural Parameter Module

In addition to the NTPRMmacro, in the Natural parameter module you can specify the parameter
macros listed in the following table. You can specify the macros in any order.

The use of one or more additional parameter macros depends on your individual system require-
ment and the products installed in your Natural environment.

The name of an additional parametermacro and its syntax are contained in the individual descrip-
tion of the corresponding profile parameter in the Parameter Reference documentation.

See also Example of Macros in the Natural Parameter Module.

Naming Conventions and Overview of Macros

Each additional parameter macro usually has a corresponding dynamic profile parameter.

The nameof an additional parametermacro startswith NT followedby the nameof its corresponding
profile parameter. For example: the NTBPI parameter macro corresponds to the profile parameter
BPI. Any exceptions to this rule are indicated in the following table.

The following is an overview of available macros:

PurposeMacro

Defines external alias names for the modules linked to the Natural nucleus.

Corresponding dynamic profile parameter: RCALIAS.

NTALIAS

Assigns buffer pools to Natural sessions.NTBPI

Defines printer-control sequences.NTCCTAB

Enables Unicode and code page support.NTCFICU

Specifies compilation options.NTCMPO

Specifies configuration settings for the Natural Com-plete/SMARTS Interface (Natural under
Com-plete/SMARTS).

NTCOMP

Defines the modules to be linked to the Natural nucleus.

Corresponding dynamic profile parameter: CSTATIC.

NTCSTAT

Defines database types and options for databases.NTDB

Specifies configuration settings for Natural for DB2, Natural for SQL/DS and Natural SQL
Gateway.

NTDB2

Allows debugging of external Natural applications.NTDBGAT

Defines the sizes of storage buffers.NTDS

73Operations

Building a Natural Parameter Module

PurposeMacro

Controls the use of dynamic profile parameters.

Corresponding dynamic profile parameter: DYNPARM.

NTDYNP

Controls buffer pool operations of the Software AG Editor.NTEDBP

Specifies configuration settings for the Natural IMS TM Interface (Natural under IMS TM).

No dynamic parameter specification possible.

NTIMSP

Defines environment-specific parameter sets for the Natural IMS TM Interface (Natural under
IMS TM).

No dynamic parameter specification possible.

NTIMSPE

Defines Natural transaction codes for the Natural IMS TM Interface (Natural under IMS TM).

No dynamic parameter specification possible.

NTIMSPT

Associates physical database files with logical system files.NTLFILE

Controls the use of database open/close commands for Adabas or VSAM.NTOPRB

Controls the use and the option settings of the Natural Optimizer Compiler.NTOPT

Specifies configuration settings for the z/OS batch interface.NTOSP

Defines properties for external programs.NTPGP

Specifies print file assignments.NTPRINT

Configures the Natural Data Collector and its trace recording function used by the SYSRDC
and the Profiler utilities.

NTRDC

Controls the handling of Natural RPC (Remote Procedure Call).NTRPC

Overwrites the scanner character definitions in the NATCONFGmodule.NTSCTAB

Controls the sort program used for the SORT statement.NTSORT

Defines sets of dynamic profile parameters.NTSYS

Overwrites the output character translation definitions in the NATCONFGmodule.NTTAB

Defines alternative output character translation tables.NTTAB1

Defines alternative input character translation tables.NTTAB2

Overwrites the EBCDIC-to-ASCII conversion definitions in the NATCONFGmodule.NTTABA1

Overwrites the ASCII-EBCDIC conversion definitions in the NATCONFGmodule.NTTABA2

Overwrites the “SYS” library output translation definitions in the NATCONFGmodule.NTTABL

Converts database IDs and file numbers during program execution.NTTF

Defines the Natural components to be traced.NTTRACE

Specifies configuration settings for the Natural TSO Interface (Natural under TSO).NTTSOP

Restricts the use of dynamic parameter strings and alternative Natural parameter modules.NTUSER

Overwrites the lower-case/upper-case conversion definitions in the NATCONFGmodule.NTUTAB1

Overwrites the upper-case/lower-case conversion definitions in the NATCONFGmodule.NTUTAB2

Operations74

Building a Natural Parameter Module

PurposeMacro

Specifies user exits for VSAM files.

Corresponds to the keyword subparameter EXIT of the dynamic profile parameter VSAM.

NTVEXIT

Defines local shared resources subpools for VSAM files.

Corresponds to the LSR keyword subparameter of the dynamic profile parameter VSAM.

NTVLSR

Specifies configuration settings for Natural for VSAM.NTVSAM

Specifies configuration settings for the z/VSE batch interface.NTVSEP

Activates DFSMS Transactional VSAM Services.

Corresponds to the TVSD keyword subparameter of the dynamic profile parameter: VSAM.

NTVTVSD

Enables or disables features of the Natural Web I/O Interface display.NTWEBIO

Specifies the work files to be used during a session.NTWORK

Activates or deactivates the PARSE XML and REQUEST DOCUMENT statements.NTXML

Configures zIIP (System z Integrated Information Processor) processing for z/OS.NTZIIP

See also Example of Macros in the Natural Parameter Module.

Example of Macros in the Natural Parameter Module

In the following example ofmacro definitions in theNatural parametermodule, vrs and vr denote
a Natural product version.

NTPRM FNR=8, System File for NTPRM *
DBID=001, Database ID for NTPRM *
FNAT=(001,8), Natural System File *
FUSER=(001,9), Natural User File *
FDIC=(001,11), Predict System File *
FSEC=(001,10), Natural Security File *
FREG=(001,52), Registry System File *
ESIZE=128, User Extension Area *
SLOCK=SPOD, Source Locking *
THSIZE=0, Thread Size *
UCONMAX=0, Max. Session Number *
CSTATIC=(CMMSG, Static. Modules Links *
NSPPFUNC), Dummy Static. Module *
LE=OFF, Record Limit Error *
RECAT=OFF, Allow Stow of Macros *
PROFILE=, Profile Batch *
ADANAME=ADABAS, Adabas Link Routine *
ADASBV=OFF, Form. Buffer not Pass.*
DFOUT=S, Output Format of Date *
DFSTACK=S, Date Format for Stack *
NUCNAME=NATvrsSH, Natural Nucleus Name *

75Operations

Building a Natural Parameter Module

AUTO=OFF, Automatic Logon *
PC=ON, PC Connection *
LS=250, Default Line Size *
PS=80, Default Page Size *
STACK=OFF, Initial Natural Cmds. *
ET=OFF END/BACKOUT TRANSACT.

--
NTDB2 BTIGN=ON, Ignore Trans. Error *

CONVERS=ON, Convers. Mode CICS *
CONVRS2=OFF, Convers. Mode2 CICS *
DB2PLAN=PQANDBvr, Plan Name *
DB2SSID=DB2A, Subsystem ID *
DB2XID=ON, Global Transaction ID *
DDFSERV=CMFSERV, DD Name File Server *
DELIMID=OFF, Delimited Identifiers *
MAXLOOP=10, Nested Program Loops *
MAXSTMT=10, Dynamic SQL Statements*
NNPSF=OFF, Set Positive Sign *
NSBHOST=IBM2.HQ.SAG, NSB Server Host Name *
NSBPORT=7311, NSB Server TCP/IP Port*
PSCIGN=OFF, Positive SQLCODEs *
REFRESH=OFF, Refresh Setting *
RETRYPO=10, Positioning Retries *
RWRDONL=ON, Delimited Identifiers *
STATDYN=NEVER Static Dynamic Switch

--
NTOSP ABEXIT=ESTAE, Abend Processing *

LBPNAME=' ', Local Shared Buffer *
LEHDLR=ON, LE Error Handler *
SUBPOOL=0, Subpool for GETMAIN *
TIOBSZ=(8,64), Primary I/O Buffer *
USERID=OFF Init-User Job Name

--
NTVSAM BTSUPP=ON, BACKOUT TRANSACTION *

CLSUPP=ON, Close Call at Session *
DDMCHK=OFF, Support of DDM *
DDSWITE=0, Maximum Entries DLBLY *
DFBE=10, Decoded Format Buffer *
DFBN=100, Format Buffer Entries *
ENADIS=OFF, Enable Disabled Files *
ENAUNE=OFF, Enable Unenabled Files*
ETSUPP=ON, END TRANSACTION *
FORMAT=ON, Record Formatting *
KEYLGH=126, Length of VSAM Keys *
OPSUPP=OFF, Dynamic Open Calls *
PATH=CHECK, Path Processing *
PSIGNF=OFF, Compiler Option PSIGNF*
RETRY=(OFF,OFF), Retry ON ERROR Clause *
RLS=OFF, Record-Level Sharing *
ROLLSIZ=550, Session Status Info. *
SFILE=ON, Support of VSAM Files *
TAFE=10, Maximum No. DDMs *

Operations76

Building a Natural Parameter Module

TAFN=50, Maximum No. DDM Fields*
TIMEOUT=0, Timeout RLS Request *
TSAE=20, READ/FIND Statement *
TVS=OFF, Support of DFSMSTVS *
UPDL=32768 Size of Update Table

77Operations

Building a Natural Parameter Module

78

III z/OS Environment

This part contains information about Natural under the operating system z/OS.

Contains an overview of special considerations that apply when you
are running Natural under z/OS online or in batch mode.

Natural under z/OS

Describes the functionality and operation of the Authorized Services
Manager (ASM) which is available under z/OS.

Authorized Services Manager

Explains the functions of the Natural Roll Server in general, its use in
a single z/OS system and in a z/OS Parallel Sysplex environment.

Natural Roll Server Functionality

Provides information on the roll server system requirements, operation,
performance tuning and restart capability.

Natural Roll Server Operation

Note: The codes that Natural may receive when the Roll Server is used during a Natural
session runtime are output by the corresponding teleprocessing interfaces (Natural under
CICS orNatural under IMS TM). For a list of these codes, refer to the Return Codes and Reason
Codes of the Roll Server Request in theMessages and Codes documentation.

79

80

11 Natural under z/OS

■ Natural Subsystem .. 82
■ TP Monitor Interfaces ... 82
■ Interfaces to Database Management Systems ... 83
■ Natural in Batch Mode under z/OS .. 83
■ Natural as a Server under z/OS .. 83

81

This document contains an overview of special considerations that apply when you are running
Natural under z/OS.

Natural Subsystem

A Natural subsystem under z/OS consists of the following components:

■ one or moreGlobal Buffer Pools,
■ an Authorized Services Manager,
■ a Roll Server.

TheNatural subsystem is identified by theNatural profile parameter SUBSID and by corresponding
startup parameters for the components mentioned above. The default subsystem name is NATv,
where v is the first digit of the current Natural version.

Via theNatural subsystem technique,multiple roll servers can be used simultaneously andmultiple
independent sets of global buffer pools can be created - in fact, multiple Natural runtime environ-
ments can be created which will be totally independent of one another.

TP Monitor Interfaces

For information on the TP monitor interfaces that are available with Natural under z/OS, refer to
the sections

■ Natural under Com-plete
■ Natural under CICS
■ Natural under TSO
■ Natural under IMS TM

in the Natural TP Monitor Interfaces documentation.

Operations82

Natural under z/OS

Interfaces to Database Management Systems

Except for SoftwareAG's databasemanagement systemAdabas, all operations requiring database
interaction are performed by a corresponding Natural interface module.

For information on the database interfaces that are available with Natural under z/OS, refer to the
relevant separate documentation:

■ Natural for DB/2
■ Natural for VSAM
■ Natural for DL/I

Natural in Batch Mode under z/OS

See Natural in Batch Mode (All Environments) and Natural in Batch under z/OS.

Natural as a Server under z/OS

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. For detailed information, see Natural as a Server under z/OS.

83Operations

Natural under z/OS

84

12 Authorized Services Manager under z/OS

■ ASM Overview .. 86
■ ASM System Requirements ... 87
■ ASM Operation ... 88

85

This document describes functionality and operation of the Authorized Services Manager (ASM)
which is available with Natural under z/OS.

ASM Overview

The Authorized Services Manager (ASM) provides authorized operating system functions to
Natural. These functions include writing SMF records and z/OS Parallel Sysplex communication
through the Coupling Facility (CF). The ASM provides its functions via PC routines and runs in
its own address space.

The following authorized functions are provided:

■ communicating Natural buffer pool administration messages,
■ write-access to global buffer pools in system key,
■ writing SMF records,
■ holding Natural session information in the Session Information Pool (SIP),
■ executing authorized system services for IBM zIIP (System z Integrated Information Processor)
support.

The first three functions are always available, whereas the SIP is optional and can bemade available
via startup parameter. For more information on starting the ASM, see Starting the ASM.

You must use the ASM in the following cases:

■ TheNatural profile parameter BPPROP is set to PLEX or GLOBAL or GPLEX (buffer pool propagation
is used).

■ Natural global buffer pools are allocated in system key; see alsoAllocation of the Natural GBP
in the section Natural Global Buffer Pool under z/OS.

■ Natural under CICS is used in a z/OS Parallel Sysplex environment (SIP function required).
■ Natural under IMS TM is used in terminal-oriented, non-conversational mode (with the SIP
function).

■ Natural under IMS TM is used, with the Accounting function writing SMF records.
■ Enablement of zIIP support.

The Session Information Pool (SIP) holds the Natural session information records. In terminal-
oriented non-conversational mode, the Natural CICS Interface and the Natural IMS TM Interface
need these records to continue a Natural session after a terminal I/O. When running in a z/OS
Parallel Sysplex environment, the SIP is created in the CF and amemory object is used as an inter-
mediate buffer to avoid unnecessary access to the CF. Otherwise, the SIP is created in a memory
object. (A memory object resides in 64-bit-addressable storage above the 2-gigabyte address).

Operations86

Authorized Services Manager under z/OS

If the ASM is used in a z/OS Parallel Sysplex environment, one ASM instance must be started in
each participating z/OS image.

Note concerningNatural/CICS:TheCICS SystemRecovery Table should include the z/OS system
abend code 0D6.

ASM System Requirements

This section describes the ASM system requirements.

■ APF Authorization
■ System Linkage Index
■ CF Structure
■ XCF Signaling Paths

APF Authorization

Link the modules NATASMvr (where vr represents the relevant product version) and NATBPMGR to
anAuthorized Program Facility (APF) library, specifying IEWL parameter AC(1). Refer to Installing
Natural on z/OS.

System Linkage Index

As the ASM reserves one system linkage index (System LX), check whether there is a high enough
value of NSYSLX in member IEASYSxx of library SYS1.PARMLIB.

Note: If you terminate theASM, the address space ID is no longer available because a System
LX has been used. It becomes available again with the next IPL.

CF Structure

A CF structure is used if you run the SIP in a z/OS Parallel Sysplex environment.

XCF Signaling Paths

The XCF Signaling Services are used to propagate buffer pool administration messages in a z/OS
Parallel Sysplex environment. Theminimummessage is 64 bytes long, themaximum is 2048 bytes.
How often messages are sent depends on how often Natural objects are manipulated (with the
system command CATALOG, STOW or DELETE).

87Operations

Authorized Services Manager under z/OS

ASM Operation

The following is covered below:

■ Starting the ASM
■ ASM Messages, Condition Codes and Abend Codes
■ ASM Operator Commands

Starting the ASM

You start the ASM either as a batch job or as a started task by executing module NATASMvr, where
vr represents the relevant product version. On the JCL EXEC statement, specify as PARM the following
parameters:

subsystem-id,XCF-group-name,CF-structure-name,number-of-SIP-slots,SIP-slot-size,message-case

All parameters are positional and must be separated by a comma; they are explained in the table
below:

CommentDefaultPossible ValuesParameter

The specified value must match the value of the
Natural profile parameter SUBSID (v is version).

NATv4-byte non-blank
string

subsystem-id

Note: With Natural under CICS, refer to the
CICSPLX parameter in the NCMDIR macro for
setting the appropriate subsystem ID.

The name of the XCF group for Signaling services.noneany valid XCF group
name

XCF-group-name

Optional, only needed if SIP is used. The name of
the CF structure used for the SIP function.

noneany valid CF structure
name

CF-structure-name

Optional, only needed if SIP is used. The number
of slots to be allocated if the CF structure has not

none1 - 2147483647number-of-SIP-slots

yet been allocated. If omitted or specified as 0, the
entire structure will be used for as many slots as
it can hold.

The specified value is ignored if a CF structure
has already been allocated.

1024256, 512, 1024, 2048,
4096

SIP-slot-size

Specify UCTRAN if the Authorized Services
Manager is to issue all its messages in upper case.

blankUCTRAN or blankmessage-case

Examples:

In the following examples, v or vr represents the relevant one- or two-digit product version

Operations88

Authorized Services Manager under z/OS

//ASM EXEC PGM=NATASMvr,PARM='NATv,NATXCF,CFSIP,1500,512'

The subsystem ID is NATv, the message group for buffer pool communication is NATXCF, the
structure for the Session Information Pool is CFSIP. 1500 SIP slots are to be used, each having a
size of 512 bytes.

//ASM EXEC PGM=NATASMvr,PARM='NATv,NATXCF,CFSIP'

Same as above, except SIP slots:

The ASM will use as many SIP slots as the CFSIP structure can hold, each having a size of 1024
bytes.

//ASM EXEC PGM=NATASMvr,PARM='NATv,NATXCF,,500,512'

The SIP service is not to use the Coupling Facility, but to build 500 SIP slots in storage, each having
a size of 512 bytes.

//ASM EXEC PGM=NATASMvr,PARM='NATv,NATXCF'

The SIP service will not be available.

ASM Messages, Condition Codes and Abend Codes

TheASMwrites informational and errormessages to JESMSGLG using the WTOmacro (ROUTCDE=11).
The messages are preceded by a message identifier and the ASM's job name, for example:

ASM0005 FBASMvr

In this example, Authorized ServicesManager Version vr (where vr represents the relevant product
version) is active

The following condition codes are used:

ExplanationCondition Code

Normal completion0

Wrong parameter input12

Runtime error has occurred16

Subtask has failed20

Abend has occurred24

Working storage could not be allocated>100

The following user abend codes are used:

89Operations

Authorized Services Manager under z/OS

CommentReasonAbend Code

Abend Register 14 contains the reason code.IXCJOIN failed.U0100

Abend Register 14 contains the reason code.IXCQUERY failed.U0101

Contact Software AG Support.Active member list full.U0103

Abend Register 14 contains the reason code.IXCMSGI failed.U0104

Contact Software AG Support.Message Exit could not obtain a Purge Task
Request Block.

U0105

Contact Software AG Support.Work Space for IXLCONN could not be obtained.U0106

xx is the reason code.DSPSERV CREATE failed.U02xx

xx is the reason code.ALESERV ADD failed.U03xx

xx is the reason code.ALESERV ADD failed.U04xx

xx is the reason code.IXLCONN failed.U05xx

xx is the reason code.IXLLIST WRITE failed.U06xx

To find a description of reason codes, refer to Programming: Sysplex Services Reference (IBM docu-
mentation). If the error was environment-specific, and it is not clear what the reason was, contact
Software AG Support.

ASM Operator Commands

The following commands can be passed to the ASM using the MODIFY command:

DescriptionCommand

Terminates the ASM.TERM

Debugging function. The ASM's address space is dumped to SYSUDUMP.SNAP

Display name, version, and assembly time of modules that are linked to the ASM.VLIST

For a list of return codes and reason codes of the SIP Service, refer to SIP Service Return Codes and
Reason Codes in theMessages and Codes documentation.

Operations90

Authorized Services Manager under z/OS

13 Natural Roll Server Functionality

■ Natural Roll-Server Overview ... 92
■ Roll Server in a Single z/OS System ... 93
■ Roll Server in a z/OS Parallel Sysplex Environment .. 94
■ Roll File and LRB .. 96

91

See also Natural Roll Server Operation.

Natural Roll-Server Overview

With the Natural Roll Server, Natural can execute in a multiple-address-space system like CICS
or IMS TM; these address spaces may be located in multiple z/OS images (z/OS Parallel Sysplex
environment). You can, of course, also use the Roll Server if you are running a single z/OS system.

WhenNatural performs terminal I/O, itmust save the application's context data (the thread): Befre
the terminal I/O is started, the thread is given to the Roll Server which keeps it in its Local Roll
Buffer, or in the roll file. This is referred to as “roll out”. When the terminal I/O is completed,
Natural requests the thread from the Roll Server, and continues the application. This is referred
to as “roll in”. In a z/OS Parallel Sysplex environment, the Roll Server keeps information about
the threads (the roll file directory) in a data structure in the Coupling Facility. Thus, it is possible
for a Natural application to execute in different z/OS systems at different times: A thread can be
given to the Roll Server on one system, and requested back from another system.

Before a roll out is performed, Natural compresses the thread into one contiguous buffer, and
decompresses it after the roll-in is performed. Depending on the Natural version installed at your
site, the CPU load of compression and decompression can be taken off the hosting TP system and
moved to respective routines within the Roll Server. If you want to take advantage of this, use the
appropriate Roll Server module NATRSM83 instead of NATRSM82 as described in the appropriate in-
stallation step in the section Installing Natural on z/OS in the Installation for Natural on z/OS docu-
mentation.

The Roll Server runs in its own address space. It provides its services as PC routines. In a z/OS
Parallel Sysplex environment, one instance of the Roll Server must be started in each participating
z/OS image.

A list of applied Roll Server Zaps is displayed in the JESMSGLG data set of the Roll Server started
task, and by the SYSTP utility, function code R, line command Z.

Note concerning Natural under CICS: The CICS System Recovery Table should include the z/OS
system abend code 0D6.

Operations92

Natural Roll Server Functionality

Roll Server in a Single z/OS System

When the Roll Server receives a thread through a write request (before terminal output), it checks
whether enough space is available in the local roll buffer (LRB). If there is, the thread is copied to
the LRB. If not, the thread is written to the roll file. If the thread is larger than the roll file slot size,
additional overflow slots are allocated to accommodate the thread. Allocation of overflow slots is
restricted to the roll file that the Natural session was initially assigned to. If the roll file does not
have enough free space to allocate the necessary overflow slots, an error is generated and the re-
questingNatural session terminates abnormally. Overflow slots are implicitly freed by a subsequent
write request with a smaller thread.

When the Roll Server receives a read request for the thread (after terminal input), it tries to locate
the thread in the LRB. If the thread is found, it is copied from the LRB to the requestor's address
space. If not, the thread is read from the roll file and copied to the requestor's address space.

To ensure that the system performs well and that there is always enough space in the LRB, there
are “watermarks”. If the LRB's highwatermark is reached, the staging task is activated and copies
the LRB content to the roll file until the low water mark is reached. Where the high water mark
and the low water mark are placed is therefore an important issue of performance tuning. For
more information on performance tuning, see the section Roll Server Performance Tuning. For a
Roll Server running in a single z/OS system, the default high water mark is 80 percent and the low
water mark 70 percent.

93Operations

Natural Roll Server Functionality

Illustration of the Roll Server in a Single z/OS System:

Roll Server in a z/OS Parallel Sysplex Environment

In a z/OS Parallel Sysplex environment, the Roll Servers in the participating z/OS images commu-
nicate through the Coupling Facility's (CF) XCF Signaling Services, and the roll file directory
resides in an XES data structure.

When the Roll Server receives a thread through a write request (before terminal output), it checks
whether enough space is available in the local roll buffer (LRB). If there is enough space, the thread
is copied to the LRB. If there is not enough space in the LRB, the thread is written directly to the
roll file. The roll file directory in the CF structure is updated accordingly. Thread overflow is
handled as described under Roll Server in a Single z/OS System.

Operations94

Natural Roll Server Functionality

You can also set high and low water marks in a Parallel Sysplex environment. This option is not
provided by older Natural versions. The staging task writes threads to disk until the low water
mark is reached only when the LRB high water mark is reached. If a thread is requested from an-
other z/OS image and has not yet been written to disk, the Roll Server on the other z/OS image
sends a stage request message for this particular thread. The requested thread is then written to
disk regardless of the high and low water marks.

Note: When you specify a high water mark of zero, the Roll Server performs identically to
earlier versions of Natural in that all threads are immediately scheduled for staging to disk.
For a Roll Server running in a Parallel Sysplex environment, both the default high and the
low water marks are zero.

When the Roll Server receives a read request for a thread (after terminal input) and the last write
request was issued in the same z/OS image, the Roll Server copies the thread directly from the
LRB into the requestor's address space. If the last write request did not come from the same z/OS
image, the thread is read from the roll file and then copied into the requestor's address space. If
the thread does not yet reside on the roll file, the Roll Server on the other z/OS image receives a
stage request message. When the thread resides on the roll file, it is read from there and then
copied into the requestor's address space.

Illustration of Roll Servers in a z/OS Parallel Sysplex Environment:

95Operations

Natural Roll Server Functionality

Roll File and LRB

The roll file is a BDAM file logically subdivided into a directory and fixed-length slots. The slot size
is a parameter of the roll-file formatting routine NATRSRFI. There should be at least as many slots
as there are active Natural sessions. The slot size should be large enough to accommodate an av-
erage compressed Natural thread. Threads that are larger than the slot size will occupy multiple
slots. You can check the distribution of Natural thread sizes with the SYSTP utility, function code
R, line command R: Scroll down (using PF8) to the page entitledRoll Server Peak Loads andThread
Sizes.

The roll file directory contains one entry for each activeNatural session, togetherwith a timestamp
of its last write request. In a single z/OS system, the directory resides in the Roll Server's address
space. In a z/OS Parallel Sysplex environment, it resides in the Coupling Facility. The directory is
written back to the roll file only when the Roll Server terminates.

The local roll buffer acts as a cache for the roll file. The roll buffer is contained in a z/OS memory
object and subdivided into fixed-length slots. The LRB slot size is identical to the slot size of the
corresponding roll file. If the Roll Server is to run without a roll file, the LRB slot size must be

Operations96

Natural Roll Server Functionality

specified as parameter on the JCL EXEC statement. See Natural Roll Server Operation, Starting
the Roll Server.

The Roll Server can run with up to five different roll files. Each of these roll files is logically con-
nected to one local roll buffer. If there are five roll files, there are five corresponding LRBs. Each
roll file is accessed by its own dedicated read, write, and staging tasks. Thus, if the roll files are
created on different disks on different channels, the roll files can be accessed simultaneously.

Natural users are allocated to the roll file that has the most free slots. You can use theNATRSU14
user exit to implement your own allocation method. For more information on this user exit, see
the relevant section in Natural Roll Server Operation.

You can see how your user IDs are distributed in the roll files with theNatural Sub-Systems and
Roll Server Information statistics function (function code R) of the SYSTP utility.

97Operations

Natural Roll Server Functionality

98

14 Natural Roll Server Operation

■ Roll Server System Requirements ... 100
■ Formatting the Roll File ... 101
■ Starting the Roll Server ... 104
■ Roll Server Messages, Condition Codes and Abend Codes .. 107
■ Return Codes and Reason Codes of the Roll Server Request ... 108
■ Operating the Roll Server .. 109
■ Roll Server Performance Tuning ... 110
■ Roll Server User Exits ... 111

99

See also Natural Roll Server Functionality.

Roll Server System Requirements

This section describes the Roll Server system requirements.

■ APF Authorization
■ System Linkage Index
■ Virtual Storage
■ CF Structure
■ XCF Signaling Paths

APF Authorization

Link themodule NATRSMvr (vr represents the relevant product version) to an Authorized Program
Facility (APF) library, specifying IEWL parameter AC(1). Refer to Installing Natural on z/OS.

System Linkage Index

As the Roll Server reserves one system linkage index (System LX), check whether there is a high
enough value of NSYSLX in member IEASYSxx of library SYS1.PARMLIB.

When the Roll Server terminates, its address space ID is no longer available because a System LX
has been used. It becomes available again with the next IPL.

Once a System LX has been reserved, it is reused with every restart of the Roll Server until the
next IPL.

Virtual Storage

SizeStorage

84 bytesECSA

30 KB abovePrivate program storage

10 KB below, 50 KB aboveFixed subpool storage (incl. ELSQA):

32+(64*number of LRB slots)LRB directory

4 KB above100 slots per roll file

30 KB aboveEvery additional roll file

depending on load, about 1 MB aboveWorking storage

Operations100

Natural Roll Server Operation

CF Structure

A CF structure is used to hold the roll file directory in a z/OS Parallel Sysplex environment.

XCF Signaling Paths

In a z/OS Parallel Sysplex environment, the Roll Servers communicate via the XCF Signaling Ser-
vices. As the default XCF group name, the leftmost eight bytes of the CF structure name are used.

If youwant to specify your ownXCF group name, use the NATRSU24 user exit. Formore information
on this user exit, see NATRSU24 User Exit.

Formatting the Roll File

To format the roll file, proceed as follows:

1. Allocate it as a physical, sequential data set with a fixed-record format.

2. Format it using module NATRSRFI.

During formatting, the roll file is converted to BDAM format with a device-dependent block size.

Note: If you plan to use an existing roll file of a previous version, it is sufficient to execute
the NATRSRFI RESET function.

To format, enter the following parameter string under the DD name RFIPARMS, or as PARM on the
JCL EXEC statement:

function,dd-name,slot-size,number-of-slots

All parameters are positional; they are explained in the table below:

DescriptionParameter

Format the roll file.FORMATfunction

All roll file slots are reset (marked as free). You
can only use this parameter value if the roll file
has already been formatted.

RESET

The only other parameter allowed is dd-name.

Print a list of session IDs contained in the roll
file and their last activity.

LIST

The only other parameter allowed is dd-name.

The name of the DD statement under which the roll file has been specified.dd-name

101Operations

Natural Roll Server Operation

DescriptionParameter

The size of a roll file slot in bytes. This size is rounded to the next higher multiple of
the block size used.

slot-size

It is recommended to initially use a slot size equal to the size of the Natural thread.
Then look at the Roll Server statistics. They also show the largest occurrence of a thread
size. Use this value to reduce the slot size, if necessary.

The number of roll file slots to be allocated. This number is the maximum number of
concurrently active users.

number-of-slots

This parameter is optional. If omitted, the entire roll file, as allocated, will be formatted.

Note that during formatting, the system abend code SB37 or SD37 (or S209 for a VSAM
file) can be encountered. This abend is intercepted by the formatting routine and can
be ignored.

To calculate the required disk space in cylinders for a roll file (SPACE parameter of the DD statement),
use the following formula:

number-of-cylinders = ceiling (number-of-slots * slot-size / (30*block-size))

or in tracks

number-of-tracks = ceiling (number-of-slots * slot-size / (2*block-size))

The block size used is:

23476 for 3380 DASD

27998 for 3390 DASD

22928 for 9345 DASD

In addition, space is needed for the roll file directory header (40 bytes) and one directory entry
for each roll file slot (24 bytes). Thus, one additional block is needed for roughly 976 slots on 3380,
1164 slots on 3390, or 953 slots on 9345 DASD.

NATRSRFI Output

If a DD statement with ddname RFIPRINT is specified, NATRSRFI directs its output to this data set.
When RFIPRINT is omitted, output is written to JESMSGLG using the WTOmacro (ROUTDCE=11). Note
that RFIPRINTmust be specified for the LIST function.

NATRSRFI Condition and Abend Codes:

The following condition codes are used:

Operations102

Natural Roll Server Operation

ExplanationCode

Normal completion.0

Number of slots formatted is less than requested.4

Parameter error.20

The following user abend codes are used:

CauseAbend Code

Open for RFIPARMS or RFIPRINT failed.U0100

Open for roll file failed.U0101

Examples:

In the following examples, vr or vrs represents the relevant product version.

Example 1:

//FBRUNRFI JOB (FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
//FORMAT EXEC PGM=NATRSRFI
//STEPLIB DD DISP=SHR,DSN=NATURAL.NATvr.LOAD
//RF1 DD DISP=SHR,DSN=FB.SYSF.ROLLF1
//RF2 DD DISP=SHR,DSN=FB.SYSF.ROLLF2
//RFIPARMS DD *
FORMAT,RF1,200000,1000
FORMAT,RF2,200000

Excerpt from resulting JESMSGLG:

+FBRUNRFI: FORMAT,RF1,200000,1000
+FBRUNRFI: RF1: FB.SYSF.ROLLF1
+FBRUNRFI: Creation date: 2001/06/13 Volume: ADA002(3390)
IEC031I D37-04,IFG0554P,FBRUNRFI,FORMAT,RF1,305B,ADA002,FB.SYSF.ROLLF1
+FBRUNRFI: Not enough space for 1000 slots.
+FBRUNRFI: 60 Blocks written. Block size is 27998.
+FBRUNRFI: 1 Directory block.
+FBRUNRFI: 8 Blocks per slot. Slot size is 223984.
+FBRUNRFI: 7 Slots initialized. Roll file version vrs.
+FBRUNRFI: 3 Blocks unused.
+FBRUNRFI: FORMAT,RF2,200000
+FBRUNRFI: RF2: FB.SYSF.ROLLF2
+FBRUNRFI: Creation date: 2001/06/08 Volume: USRF08(3380)
IEC031I D37-04,IFG0554P,FBRUNRFI,FORMAT,RF2,020F,USRF08,FB.SYSF.ROLLF2
+FBRUNRFI: 60 Blocks written. Block size is 23476.
+FBRUNRFI: 1 Directory block.
+FBRUNRFI: 9 Blocks per slot. Slot size is 211284.
+FBRUNRFI: 6 Slots initialized. Roll file version vrs.
+FBRUNRFI: 5 Blocks unused.

103Operations

Natural Roll Server Operation

Example 2:

//FBRUNRFI JOB (FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
//FORMAT EXEC PGM=NATRSRFI,PARM='FORMAT,RF1,200000'
//STEPLIB DD DISP=SHR,DSN=NATURAL.NATvr.LOAD
//RF1 DD DISP=SHR,DSN=FB.SYSF.ROLLF1
//RFIPRINT DD SYSOUT=X

Resulting RFIPRINT:

Natural Roll Server - Roll File Utility Version
vrs
FORMAT,RF1,200000
RF1: FB.SYSF.ROLLF1
Creation date: YYYY/MM/DD Volume: ADA002(3390)
60 Blocks written. Block size is 27998.
1 Directory block.
8 Blocks per slot. Slot size is 223984.
7 Slots initialized. Roll file version vrs.
3 Blocks unused.

Notes Concerning the Formatting or Resetting of Roll Files

■ You can format or reset several roll files at once by specifying several parameter lines in RFIPARMS.
■ You cannot format or reset a roll file while the roll server is active.
■ When the roll file is formatted in a z/OS Parallel Sysplex environment, the roll server Coupling
Facility structure must also be cleared using the SETXCF operator command, for example:

SETXCF FORCE,STR,STRNAME=NATROLL1

Starting the Roll Server

You start the Roll Server either as a batch job or as a started task by executing module NATRSMvr
(where vr represents the relevant product version). The roll file(s)must be defined asDD statements
with ddname ROLLF1 to ROLLF5.

On the JCL EXEC statement, specify as PARM the following parameters:

Operations104

Natural Roll Server Operation

subsystem-id,number-of-roll-files,number-of-LRB-slots,LRB-slot-size,CF-structure-name,low-water-mark,high-water-mark,non-activity-time,timeout-check-time,message-case

All parameters are positional and must be separated by a comma. They are explained in the table
below:

CommentDefaultPossible ValuesParameter

The specified value must match the value of the
Natural profile parameter SUBSID (v = version
number).

NATv4-byte
non-blank
string

subsystem-id

Note: With Natural under CICS, refer to the
ROLLSRV parameter in the NCMDIRmacro for setting
the appropriate subsystem ID.

In a z/OS non-Parallel Sysplex environment, the Roll
Server can operate without a roll file, using only the
in-storage Local Roll Buffer.

10 - 5number-of-roll-files

The number of LRB slots multiplied by the slot size
must not exceed 2 GB.

none1 - 32767number-of-LRB-slots

The same number of LRB slots is assigned for each
LRB, i.e. for each roll file used. The total number of
LRB slots is calculated by the formula:

number-of-roll-files *
number-of-LRB-slots

Value in number of bytes.

This parameter must be specified if no roll file is
used.

roll file slot
size

any numeric
value

LRB-slot-size

If roll files are used, this parameter is ignored and
the roll file slot size is used instead.

If you specify less than 16 characters, blanks are
appended.

Only specify this parameter if you use the Coupling
Facility (with z/OS Parallel Sysplex).

noneany valid
structure
name

CF-structure-name

Specifies the low water mark in steps of 10 percent
of the number of LRB slots.

0 - 9low-water-mark 7
(single
z/OS)

0
(sysplex)

Analogous to low-water-mark parameter.

Value "10" means that the staging task will never be
activated. It is only recommended to specify "10" if

0 - 10high-water-mark 8
(single
z/OS)

105Operations

Natural Roll Server Operation

CommentDefaultPossible ValuesParameter

the LRB is large enough to serve all simultaneously
active Natural sessions.

0
(sysplex)

Number of hours a session can be inactive before it
is deleted from the roll file.

If this time is exceeded, the session is deleted during
the next scheduled timeout check.

none1 - 999999non-activity-time

If this parameter is omitted, no timeout check will
be executed.

This parameter can be changed using operator
command TIMEOUT, see below.

The time of day that the timeout check is to be run.

Sessions will be deleted if they have been inactive
longer than the non-activity time specified by the
preceding parameter.

none0000 - 2359timeout-check-time

If this parameter is omitted, no timeout check will
be scheduled.

This parameter can be changed using operator
command TIMEOUT, see below.

Specify UCTRAN if the Roll Server is to issue all its
messages in upper case.

blankUCTRAN or
blank

message-case

Note: The Local Roll Buffer resides in a Memory Object “above the bar”. Use the MEMLIMIT
parameter on the EXEC statement to ensure enough memory can be allocated “above the
bar”.

Examples for Starting the Roll Server as a Batch Job

In the following examples, vr represents the relevant product version

// EXEC PGM=NATRSMvr,PARM='NAvr,,1000'
//ROLLF1 DD DSN=SYSF.ROLLFILE

The subsystem ID is NAvr, one roll file is used (default), and the Local Roll Buffer has 1000 slots.
The slot size used is identical with the roll file's slot size. The lowwatermark is 70 percent (default),
the high water mark is 80 percent (default).

Operations106

Natural Roll Server Operation

// EXEC PGM=NATRSMvr,PARM=',5,1000,150000,NATROLL1',MEMLIMIT=800M
//ROLLF1 DD DSN=DASD1.ROLLFILE
//ROLLF2 DD DSN=DASD2.ROLLFILE
//ROLLF3 DD DSN=DASD3.ROLLFILE
//ROLLF4 DD DSN=DASD4.ROLLFILE
//ROLLF5 DD DSN=DASD5.ROLLFILE

The subsystem ID is NATv (default), five roll files are used, and each of the five Local Roll Buffers
has 1000 slots. The LRB slot size is 150000 bytes. The roll file directory resides in the Coupling
Facility structure NATROLL1. Low and high water marks are ignored, because every thread is
written to the roll file (see Natural Roll Server Functionality). Since this job is intended for z/OS,
the MEMLIMIT option specifies 800 Megabytes for the Local Roll Buffers.

Note: The Roll Server will not start in the following cases:

■ Another Roll Server is running with the same subsystem-id.
■ Another Roll Server is accessing a roll file specified in its JCL
■ A roll file has been reformatted without resetting the CF structure, using the SETXCF FORCE
command.

Roll Server Messages, Condition Codes and Abend Codes

The Roll Server writes informational and error messages to JESMSGLG using the WTOmacro
(ROUTCDE=11). The messages are preceded by a message identifier and the Roll Server's job name,
for example:

RSM0019 FBRSMvrs: Roll Server Version vrs is active

where vrs represents the relevant product version.

Themessages are explained in the sectionRoll ServerMessages in theMessages and Codesdocument-
ation.

Condition Codes of the Roll Server Started Task

The following condition codes are used:

107Operations

Natural Roll Server Operation

Normal completion0

Wrong parameter input12

Runtime error16

Abend has occurred20

Initialization error>100

User Abend Codes

When an unexpected return code is issued by an XCF or XES Service Call, an abend with a dump
is forced. Register 14 of the abend register contains the reason code. To find a description of the
reason, refer to Programming: Sysplex Services Reference (IBM documentation). If the error was not
environment-specific, send the dump to Software AG support.

The following user abend codes are used:

CauseAbend Code

IXLCONN failedU0200

IXLFORCE failedU0201

IXLLIST failedU0202

IXLDISC failedU0203

IXCLEAVE failedU0204

IXLLIST failedU0301

IXCMSGO failedU0302

IXLLIST failedU0401

IXLLIST failedU0501

Return Codes and Reason Codes of the Roll Server Request

These are codes that Natural may receive from the Roll Server's PC services routines. They are
reported by the respective teleprocessing interfaces (Natural CICS Interface or Natural IMS TM
Interface). For a list of these codes, refer to theReturn Codes and Reason Codes of the Roll Server Request
in theMessages and Codes documentation.

Operations108

Natural Roll Server Operation

Operating the Roll Server

The following commands can be passed to the Roll Server via the MODIFY operator command:

DescriptionCommand

Debugging function, only to be used at Software AG's advice.

This command does not have any function. Its intended future use is in connection with special
Zaps to aid in diagnosing specific customer problems, as the need arises.

DIAGNOSE

Sets the LRB high water mark to n times 10 percent of the number of LRB slots (n=0-10). If n is
not specified, the current low and high water marks are displayed.

HWM n

Sets the LRB low water mark to n times 10 percent of the number of LRB slots (n=0-9). If n is
not specified, the current low and high water marks are displayed.

LWM n

Debugging function. The Roll Server's address space is dumped to SYSUDUMP.SNAP

Write Roll Server statistics to JESMSGLG using theWTOmacro (ROUTCDE=11). Statistics include
information about roll-out and roll-in activity, as well as roll file I/O.

STATS

Stops the Roll Server. The roll file directory and all modified LRB slots are written to the roll
file and the address space is terminated. The address space ID is no longer available until the
next IPL.

Statistics are written to JESMSGLG using the WTO macro (ROUTCDE=11). Statistics include
information about roll-out and roll-in activity, as well as roll file I/O.

TERM

Specifies or replaces the non-activity time parameter.NAT nnnTIMEOUT

Specifies or replaces the time of day of the timeout
check.

TOC hhmm

Disables timeout checking.OFF

Reinstates timeout checking.ON

Starts an immediate timeout check. Normal timeout
check scheduling (if specified) remains in effect.

NOW

Suppresses the messages RSM0072 and RSM0074
during TIMEOUT NOW processing. Message RSM0047

TERSE

Operator command: TIMEOUT NOW is also
suppressed.

Displays the messages RSM0072, RSM0074 and
RSM0047 Operator command: TIMEOUT NOW. This
is the default setting.

VERBOSE

Displays current timeout settings. The question mark
(?) is optional and can be omitted.

?

(or no specification)

109Operations

Natural Roll Server Operation

Roll Server Performance Tuning

As a general rule for Roll Server performance tuning, give the Roll Server a higher dispatching
priority than the address spaces where Natural runs.

To find out where the weaknesses in performance are, analyze the system performance using the
Natural Subsystems and Roll Server Information function of the SYSTP utility.

When looking at Roll-Server Statistics, keep an eye especially on the following values:

■ The number of direct writes.

"Direct write"means that theNatural thread thatwas receivedwaswritten to the roll file directly.

There are two possible reasons:

1. No LRB slot available. Increase the LRB.

2. The compressed thread was larger than a single LRB slot. Increase the LRB slot size.

■ The number of direct reads.

“Direct read” means that the requested thread was no longer in the LRB and had to be read
directly from the roll file.

If the ratio of direct reads to the total number of reads is very high in a single z/OS system, the
LRB is too small (increase it).

If the ratio of direct reads to the total number of reads is very high in a z/OS Parallel Sysplex
environment, this may also mean that there are many inter-system activities, which in turn
means that a Natural session changes z/OS images quite frequently during its lifetime.

■ The number of staging waits (in a single z/OS environment).

A “staging wait” is a situation where a write request had to wait until the Staging Task had
written the LRB slot to the roll file. If the ratio of staging waits to the total number of write re-
quests is very high, this indicates that the high and low water marks are set inappropriately or
that there is a bottleneck on the roll file device/roll file channel.

Based on experience with stress tests, the following is recommended:

If the ratio of maximal number of active users to number of LRB slots is very small, increase the
high water mark. If not, decrease the high water mark.

The difference between high water mark and low water mark should not be larger than three
(30 percent).

Operations110

Natural Roll Server Operation

Ideally, if the number of LRB slots is definitely larger than the maximum number of concurrent
users, the high water mark should be set to 10.

Roll Server User Exits

The roll server has two user exits.

■ NATRSU14

■ NATRSU24

Sample source modules are delivered for these.

NATRSU14 User Exit

Specifies the roll file number to be used.

Entry calling conventions:

■ Register 1 addresses the parameter list that is described by the following DSECT:

PLIST DSECT
PLRSVER DS CL4 Roll server version (= 'vrs')
PLNRF DS H Number of roll files
PLUID DS CL16 Userid
PLTSNUM1 DS H Total number of slots Roll file 1
PLUSNUM1 DS H Number of slots in use Roll file 1
PLTSNUM2 DS H Total number of slots Roll file 2
PLUSNUM2 DS H Number of slots in use Roll file 2
PLTSNUM3 DS H Total number of slots Roll file 3
PLUSNUM3 DS H Number of slots in use Roll file 3
PLTSNUM4 DS H Total number of slots Roll file 4
PLUSNUM4 DS H Number of slots in use Roll file 4
PLTSNUM5 DS H Total number of slots Roll file 5
PLUSNUM5 DS H Number of slots in use Roll file 5
PLISTL EQU *-PLIST

where vrs represents the relevant product version.
■ Register 13 points to a 36-fullword save area.
■ Register 14 contains the return address.
■ Register 15 contains the entry address of NATRSU14.

Return calling convention:

■ Register 15 contains the number of the roll file in binary format.

111Operations

Natural Roll Server Operation

Note: If access registers are modified within this user exit, these access registers must be
saved and restored on return. This user exit is called in primary addressing mode with PSW

Key 8. Since it runs in cross-memory mode, no SVC except SVC 13may be used.

NATRSU24 User Exit

Specifies the XCF group name to be used.

Entry calling conventions:

■ Register 1 points to an 8-byte area in which the group name must be generated.
■ Register 13 points to an 18-fullword save area.
■ Register 14 contains the return address.
■ Register 15 contains the entry address of NATRSU24.

As a group name default, the Roll Server will use the leftmost 8 bytes of the CF structure name.

This user exit is called in primary mode, PSW Key 8 and in task mode.

Operations112

Natural Roll Server Operation

IV z/VSE Environment

113

114

15 z/VSE Environment

■ Natural Subsystem ... 116
■ TP Monitor Interfaces ... 116
■ Interfaces to Database Management Systems ... 116
■ Natural in Batch Mode under z/VSE .. 117

115

This document contains special considerations that apply when you are running Natural under
z/VSE.

Natural Subsystem

A Natural subsystem under z/VSE consists of the following components:

■ one or more global buffer pools.

TheNatural subsystem is identified by theNatural profile parameter SUBSID and by corresponding
startup parameters for the components mentioned above. The default subsystem name is NATv,
where v is the first digit of the current Natural version.

TP Monitor Interfaces

For information on the TP monitor interfaces that are available with Natural under z/VSE, refer
to the sections

■ Natural Com-plete Interface
■ Natural CICS Interface

in the Natural TP Monitor Interfaces documentation.

Interfaces to Database Management Systems

Except for SoftwareAG's databasemanagement systemAdabas, all operations requiring database
interaction are performed by a corresponding Natural interface module.

For information on the database interfaces that are available with Natural under z/VSE, refer to
the relevant separate documentation:

■ Natural for SQL/DS
■ Natural for VSAM
■ Natural for DL/I

Operations116

z/VSE Environment

Natural in Batch Mode under z/VSE

See Natural in Batch Mode (All Environments) and Natural in Batch under z/VSE.

117Operations

z/VSE Environment

118

V BS2000 Environment

This part contains special considerations that applywhen runningNatural on the operating system
BS2000.

Important: Software AGproducts on BS2000 are affected by the BS2000 C/C++ time overflow
problemwhich can occur after January 19, 2018. For instructions on how to proceed to avoid
this problem, refer to BS2000 C/C++ Time Overflow in the current Natural Release Notes.

Explains the applicability and the use of the load-pool refresh
program.

Refresh of Natural Load Pool

Describes the screen output optimizationmethod used byNatural
and the facilities to restore themost recent terminal screen content.

Optimization of Message Handling

Provides information on the various types of terminals that are
supported by Natural under BS2000.

Terminal Types Supported under
BS2000

Describes the specific Natural function-key assignments that are
supported for terminals under BS2000.

FunctionKeys SupportedunderBS2000

Provides information on the global and local common memory
pools.

Common Memory Pools

Defines rules for addressmode selectionwhen calling dynamically
reloadable 3GL programs in a Natural application.

Calling Dynamically Reloadable 3GL
Programs

Describes the print file/work file server NATPWSV2 for an RPC
batch server environment under BS2000.

Print File/Work File Server NATPWSV2

Provides information on how files on Network Attached Storage
servers can be processed as Natural print and work files.

Using Network Attached Storage Files
as Natural Print and Work Files

Describes the RPC server front-end for an RPC batch server
environment under BS2000 with the print file/work file server
NATPWSV2.

RPC Server Front-End

119

Related Topics

See also:

■ Natural in Batch Mode under BS2000
■ Using Natural with TP Monitors in the TP Monitor Interfaces documentation
■ Natural under openUTM in the TP Monitor Interfaces documentation
■ Natural under TIAM in the TP Monitor Interfaces documentation

Other Natural Functions for BS2000-Specific Purposes

Natural provides the following functions for BS2000-specific purposes:

■ P-Key Utility
Supports the loading of programmable P keys on terminal devices of the 975n series (types 974n,
975n and 976n).

■ Swap Pool Manager
Controls the use of the Natural swap pool (under openUTM and under CICS).

These functions are part of the Natural utility SYSTP.

Operations120

BS2000 Environment

16 Refresh of Natural Load Pool

■ Prerequisites and Restrictions .. 122
■ Procedure .. 122
■ Keyword Parameters for the Program PREFRESH ... 123

121

This document describes the prerequisites, restrictions and procedures that are applicable for re-
freshing aNatural load pool and contains a list of the keyword parameters provided in the PREFRESH
program.

Prerequisites and Restrictions

■ The Natural load pool must have been started with the keyword parameter ACCS=WRITE, using
the program CMPSTART.

■ A Natural load pool which is also used by batch applications must not be refreshed while the
Natural batch applications are in operation.A refresh is admissible onlywith TIAMand openUTM
applications.

■ A new Natural nucleus can be loaded only into a global common memory pool.

Procedure

■ When a new Natural nucleus is to be loaded into the common memory pool, the name of the
linked environment-independent nucleus must be identical with the existing name. The name
of the Natural nucleus is equal to the name of the global common memory pool.

Example:

The existing Natural nucleus was started with the following parameters using the program
CMPSTART:

/EXEC (CMPSTART,NATURAL.MOD)
NAME=NATSHARE,POSI=ABOVE,ADDR=250,PFIX=YES,SIZE=2MB,ALNK=NO
ACCS=WRITE,LIBR=NATURAL.USER.MOD.A

■ The newly linkedNatural nucleus is to be loaded from the library NATURAL.USER.MOD.B into the
global common memory pool. This is accomplished with the program PREFRESH.

Example:

/.PREFRESH LOGON
/OPTION DUMP=YES
/SYSFILE SYSOUT=LST.PREFRESH.NATSHARE
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (PREFRESH,NATURAL.MOD)
NAME=NATSHARE,LIBR=NATURAL.USER.MOD.B
/LOGOFF N

or:

Operations122

Refresh of Natural Load Pool

/load (prefresh,natural.mod) <enter>
% BLS0517 MODULE 'PREFRESH' LOADED
/r <enter>
*name=natshare,libr=natural.user.mod.b <enter>
* <enter>
REFR050: LOAD POOL NATSHARE IS SUCCESSFULLY REFRESHED
/

■ The successful loading of the new Natural nucleus is confirmed by the message:

REFR050: LOAD POOL name IS SUCCESSFULLY REFRESHED

Keyword Parameters for the Program PREFRESH

The program PREFRESH has the following keyword parameters:

NAME | LIBR | LOAD | ALNK | TIM1 | TIM2

The program PREFRESH has the following syntax (If available, default values are shown.):

REFRESHNAME=name,LIBR=library,LOAD=BIND,ALNK=NO,TIM1=10,TIM2=20

NAME - Common Memory Pool and Module Name

This parameter determines the name of the module and the name of the common memory pool.
The name must be specified. No default value exists.

xxxxxxxx: valid module and common memory pool name.

The name must be identical with the existing module/common memory pool name.

NAME=xxxxxxxx

The maximum number of characters is 8.

LIBR - Load Library

This parameter determines from where the defined module is to be loaded. The name must be
specified. No default value exists.

123Operations

Refresh of Natural Load Pool

library is the name of the load library.LIBR=library

LOAD - Module Load Method

This parameter determineswhichmacro shall be used for loading amodule into a commonmemory
pool.

The macro ASHAREwill be used.LOAD=ASHARE

By default, the macro BINDwill be used.LOAD=BIND

Important: When LOAD=ASHARE is defined, for the start of the common memory load pool
(with program CMPSTART), LOAD=ASHARE also must be defined.

ALNK - Activate AUTOLNK Function

This parameter determines whether the AUTOLNK function of the dynamic binder loader (DBL) is
activated.

The AUTOLNK function is activated.ALNK=YES

By default, the AUTOLNK function is deactivated.ALNK=NO

TIM1 - Wait Time in Seconds before the Load Pool Refresh is Started

This parameter determines the waiting time in seconds before the newNatural nucleus is loaded.
It serves to synchronize Natural sessions which are currently active in the nucleus.

xxmust be in the range from 1 up to 99.TIM1=xx

The default value is 10 seconds.TIM1=10

TIM2 - Wait Time in Seconds after the New Natural Nucleus was Loaded

This parameter determines the waiting time in seconds after the loading of the new Natural nuc-
leus is complete until the serialization identification for the corresponding application has been
enabled. It serves to synchronize the relativizing of all address constants in the newly loaded
nucleus.

Operations124

Refresh of Natural Load Pool

xxmust be in the range from 1 up to 99.TIM2=xx

The default value is 20 seconds.TIM1=20

125Operations

Refresh of Natural Load Pool

126

17 Optimization of Message Handling

■ Screen Output Handling .. 128
■ Restoring the Screen Content .. 128

127

Screen Output Handling

Natural provides an extensivemessage optimization capability. Prior to sending an output screen,
Natural determines which portion of the screen has beenmodified; only data which have actually
been modified are sent.

This is to be considered when, between two successive terminal outputs, portions or the entire
terminal contents are changed

■ by using the CLEAR key or
■ by intervening dialog steps at system level (K2 interruption or similar interruption).

This is particularly true if a subprogram called fromNatural by an external CALL interface produces
dialog output.

Restoring the Screen Content

In the above-mentioned cases, you can use one of the followingmethods to causeNatural to restore
the most recent terminal screen contents.

■ Issue the terminal command %R.
■ Use the statement SET CONTROL 'R'

Operations128

Optimization of Message Handling

18 Terminal Types Supported under BS2000

■ Type 9748 .. 130
■ 975n Series .. 130
■ Type 9763M ... 131

129

This document contains information on how Natural supports terminal types in a BS2000 envir-
onment.

The following types are supported:

■ 974n
■ 975n
■ 976n
■ telex devices

Type 9748

As various terminal types which were all defined as 9750 in PDN are often found in networks,
the terminal type can also be modified during a Natural session with the terminal command %T=
and thereby be made consistent with the device type currently in use.

975n Series

The various devices of the 975n series differ considerably (for example, possible number of field
separation characters per line, default brightness for protected blank lines, standard arrangement
of display characteristics to field properties, etc.).

Four terminal driver routines are provided which support these devices. This permits optimum
support of black/white devices of the type 9755 or 9756 with respect to their varying display
characteristics. The different devices can be generated in PDN as 975n.

Some device types cannot be distinguished by an operating system inquiry (SVC 70). Therefore,
Natural permits these "logical terminal types" to be associated with various physical device types
during generation.

■ Under TIAM, this is done with the parameter T975X.
■ Under openUTM, the parameter TERMN in the PTERM statement for the KDCDEF application gener-
ation is used for this purpose.

Operations130

Terminal Types Supported under BS2000

Type 9763M

Terminals of type 9763M (monochrome) are treated like 9756-type terminals.

131Operations

Terminal Types Supported under BS2000

132

19 Function Keys Supported under BS2000

■ Key Assignment .. 134
■ Modes for Key Assignment .. 134

133

This document describes the Natural function-key assignments that are supported for terminal
devices of the 975n series (types 974n, 975n and 976n).

Key Assignment

InNatural, function keys serve to transfer data togetherwith specific command/execution inform-
ation to a program.

For terminal device types that only support the keys F1 to F5, the programmable P keys (P1 to P20)
are used for this purpose. This means that these keys are assigned the function key values PF1 to
PF20 (in 3270 terminology).

The identification of the key pressed is made fromNatural-loaded key assignments in connection
with the send-key code F5. This allows the distinction of similar data types which were sent using
DUE1. Using F5, Natural recognizes the function-key resolution and interprets the P-key value as
a code. In the other instance the data are transferred to the executing program.

The loading of keys is controlled by terminal commands or from the executing program using SET
CONTROL statements.

Modes for Key Assignment

There are three types of modes for key assignment:

DescriptionMode

For terminal types 974n, 9750 - 9755, the literals %K1 to %K20 are assigned to the keys (terminal
command %KN or statement SET CONTROL 'KN').

For terminal types 9756, 9758, 976n, send-key codes F1 to F20 are loaded to the keys P1 to P20.

KN

The literals 01 to 20 and the send-key code F5 are assigned to the keys (terminal command %KO or
statement SET CONTROL 'KO').

KO

The literals A to T as well as the send-key code F5 are assigned to the keys (terminal command %KS
or statement SET CONTROL 'KS').

KS

In KSmode, a dummy field is generated in the last two terminal positions of each output message.
This field is used for receiving and transferring the key value. Prior to data transfer the cursor is
moved in this field using the movement functions assigned to the keys.

If an N is specified after the respective terminal command (that is, %KNN, %KON or %KSN), only the
corresponding function-key mode is activated, but no values are loaded to the P keys.

Operations134

Function Keys Supported under BS2000

For all modes, cursor-position-dependent key processing, according to current assignment, can
lead to differing results. For example, the help key, dependent on field assignment, can invoke
either the global or local help processing for a particular field. Such functions should be controlled
using PF21 to PF23 interpreted keys (F1 to F3).

135Operations

Function Keys Supported under BS2000

136

20 Common Memory Pools

■ Global Common Memory Pools .. 138
■ Local Common Memory Pools .. 142

137

This document describes the programs that are provided to start and stop global commonmemory
pools in Natural under BS2000 and the macros that enable you to define local (or global) common
memory pools in Natural under BS2000

Global Common Memory Pools

The following programs are provided to start and stop global common memory pools in Natural
under BS2000:

■ CMPSTART

■ CMPEND

Note: In the following, vrs or vr represents the relevant product version.

CMPSTART Program

The program CMPSTART does the following:

■ It starts global common memory pools with its own start task.
■ It loads a defined module into a global common memory pool.
■ It initializes a global common memory pool.

The keyword parameters TXTSIZE and BPLIST (see below) are only valid for program CMPSTART
and when starting a Natural global buffer pool.

The keyword parameters JV and JVSUFX (see below) are only valid for program CMPSTARTwhen
starting a global common memory pool.

All other keyword parameters are identical with the keyword parameters for the macro ADDON
used for generating the module BS2STUB.

The following keyword parameters are available:

TXTSIZE | BPLIST | JV | JVSUFX

TXTSIZE - Buffer-Pool Text-Record Size
This keyword parameter defines the Natural buffer-pool text-record size in KB.

Operations138

Common Memory Pools

Possible values for xx are: 1, 2, 4, 8, 12, 16.TXTSIZE=xx

By default, the Natural buffer pool has a text-record size of 4 KB.TXTSIZE=4

BPLIST - Preload List For Global Buffer Pool
This keyword parameter defines the name of a preload list for a Natural global buffer pool.
The defined Natural programs of the preload list will be loaded into the Natural global buffer
pool when the first user logs on.

See the Natural profile parameter BPLIST.BPLIST=name

JV - Create a Job Variable
This keywordparameter defineswhether a job variable shall be created. This job variable enables
the status of the common memory pool to be controlled in the job control language.

The common memory pool is not ready (in creation mode).JV=0

The common memory pool is ready (successfully enabled and initialized).JV=1

The name of the job variable has 2 parts:
■ Part 1 is the name of the common memory pool (operand of keyword parameter NAME)
■ Part 2 is the operand of keyword parameter JVSUFX (see below).

Logic of Job Variable Navigation:

When the program CMPSTART has started, a check is madewhether the job variable is available.
If so, the value of the job variable is set to "0". If not, the job variable is cataloged and its value
is set to "0". When the common memory pool was successfully enabled and initialized, the
value of the job variable is set to "1". When the global common memory pool is terminated,
the job variable is erased.

A job variable shall be created.JV=YES

By default, no job variable will be used.JV=NO

JVSUFX - Suffix of the Job Variable Name
This keyword parameter defines the second part of the job variable name.

Maximally 8 characters for the second part of the job variable name.JVSUFX=xxxxxxxx

This is the default value.JVSUFX=.SAG.JV

Example:

139Operations

Common Memory Pools

NAME=EDTvrsGA,TYPE=EDT,JV=YES,JVSUFX=.SAG##JV

where vrs represents the relevant product version.

The job variable name is EDTvrsGA.SAG##JV.

Operator Commands

These operator commands terminate a global common memory pool:

/INTRtsn,STOP

or

/INTRtsn,END

This operator command displays the global commonmemory pool's name, position, address, size
and activation time on the console:

/INTRtsn,DPRM

This operator command terminates the global common memory pool's start task with a dump:

/INTRtsn,DUMP

Examples:

■ To start a global load pool (environment-independent nucleus)

/.NATSHRE LOGON
/OPTION DUMP=YES
/SYSFILE SYSDTA=(SYSCMD)
/SYSFILE SYSOUT=LST.NATSHARE
/EXEC (CMPSTART,NATvrs.MOD)
NAME=NATSHARE,SIZE=2MB,POSI=ABOVE,ADDR=250,SCOP=GLOBAL
PFIX=YES,ALNK=NO,LIBR=NATvrs.USER.MOD
/SYSFILE SYSDTA=(PRIMARY)
/LOGOFF
/* NATSHARE IS THE NAME OF THE LINKED NATURAL REENTRANT MODULE. IT IS ALSO THE
/* NAME OF THE COMMON MEMORY POOL. THE ADDRESS OF THE GLOBAL NATURAL LOAD POOL
/* MUST BE DEFINED. THE ADDRESS MUST BE FIXED (PFIX=YES).

where vrs represents the relevant product version.

Operations140

Common Memory Pools

■ To start a Natural global buffer pool

/.BPvrsGA LOGON
/OPTION DUMP=YES
/SYSFILE SYSDTA=(SYSCMD)
/SYSFILE SYSOUT=LST.BPvrsGA
/EXEC (CMPSTART,NATvrs.MOD)
NAME=BPvrsGA,TYPE=NAT,POSI=ABOVE,SIZE=2048KB,SCOP=GLOBAL
/SYSFILE SYSDTA=(PRIMARY)
/LOGOFF
/* FOR A NATURAL BUFFER POOL, THE OPERAND OF PARAMETER "TYPE" MUST BE DEFINED
/* AS 'NAT'.

where vrs represents the relevant product version.
■ To start a Natural global buffer pool with ESA data space

/.BPvrsA LOGON
/OPTION DUMP=YES
/SYSFILE SYSOUT=LST.BPvrsGA
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPSTART,NATvrs.BS2.MOD)
NAME=BPvrsGA,TYPE=NAT,POSI=ABOVE,SIZE=10MB,ADDR=260,DESA=YES
DATA=32MB
/SYSFILE SYSDATA=(PRIMARY)
/LOGOFF N

where vrs represents the relevant product version.

CMPEND Program

Program CMPEND terminates the start tasks for all global common memory pools. The input for
CMPEND are the names of the global common memory pools.

Example:

/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPEND,NATvrs.MOD)
NATSHARE,BPvrsGA
/* THE DELIMITER FOR THE DEFINED NAMES IS ' ' OR ','.

where vrs represents the relevant product version.

141Operations

Common Memory Pools

Local Common Memory Pools

The following section describes the macros that enable you to define local (or global) common
memory pools in Natural under BS2000:

■ BS2STUB Macro
■ ADDON Macro
■ ADDEND Macro
■ Example of Assembling Macro BS2STUB

BS2STUB Macro

The macro BS2STUB does the following:

■ Starts local common memory pools.
■ Connects to a defined global common memory pool.
■ Loads a defined module into a local common memory pool.
■ Loads dynamically called 3GL programs.

The BS2STUBmacro has the following parameters:

name BS2STUB PARMOD=nn,PROGMOD=xxx

name - CSECT Name

Specifies the CSECT name. The first three characters must not contain the value NAT.name

This is the default name.name BS2STUB

PARMOD - Application Address Mode and Location
This parameter specifies whether 24 or 31 bit addressing mode is to be used.

Possible values for nn: 24 or 31 (bit).PARMOD=nn

By default, the address mode setting is 31 bit.PARMOD=31

PROGMOD - Loading above or below the 16-MB Line
This parameter specifieswhether dynamically loadedprograms are to be loaded above or below
the 16-MB line.

Operations142

Common Memory Pools

ANYmeans that themodule is loaded above or below the 16-MB line. This is the default
setting.

PROGMOD=ANY

24 means that the module is loaded below the 16-MB line.PROGMOD=24

ADDON Macro

Themacro ADDONdefines a commonmemory pool in the ADDON table of program BS2STUB. It contains
the following keyword parameters which are also applicable to program CMPSTART:

ACCS | ADDR | ALNK | DATA | DESA | LIBR | LOAD | NAME | PFIX | POSI | SCOP | SIZE | STAT | TYPE |
WAIT

ACCS - Access To Common Memory Pool
This parameter determines how the common memory pool can be accessed.

This means the access is read-only (write-protected).

To be able to set ACCS=READ, the user ID must be authorized for the BS2000 CSTMP
macro in the user catalog (JOIN command with C-M=YES).

ACCS=READ

By default, the common memory pool is write-enabled.ACCS=WRITE

ADDR - Size of Common Memory Pool Address
This parameter determines the number of megabytes for the defined address of the common
memory pool. The size must be specified. No default value exists.

numbermust be >=0.ADDR=number

ALNK - Activate AUTOLNK Function
This parameter determines whether the AUTOLNK function of the dynamic binder loader (DBL)
is activated.

The AUTOLNK function is deactivated.ALNK=NO

By default, the AUTOLNK function is activated.ALNK=YES

DATA - Size of Data Space Area
This parameter can be specified in conjunction with the DESA parameter and defines the size
of the data space area for the buffer pool or swap pool to be started. The following settings are
possible:

143Operations

Common Memory Pools

Specifies the size of the data space area in megabytes.DATA=nnnMB

Specifies the size of the data space area in kilobytes.DATA=nnnKB

Using the DATA parameter in the ADDONmacro
■ To start aNatural local buffer pool you specify DESA=YES and use this parameter to determine
the size of the data space area in megabytes/kilobytes. The size must be specified, because
no default value exists.

■ To connect a Natural global buffer pool or a global swap pool, you specify DESA=YES and omit
the DATA parameter, because it has been specified for the CMPSTART Program.

Using the DATA parameter for the CMPSTART program

To start a Natural global buffer pool you specify DESA=YES and use this parameter to determine
the size of the data space area in megabytes/kilobytes. The size must be specified, because no
default value exists.

DESA - ESA Data Space Area
This parameter must be specified to determine whether or not an ESA data space area is to be
created for a Natural buffer pool or a Natural swap pool.

An ESA data space area is to be created.DESA=YES

By default, no ESA data space area is to be created.DESA=NO

■ An ESA data space is only supported for buffer pools of TYPE=NAT or TYPE=SWP.
■ The parameter DESA=YES is relevant only if a global commonmemory pool (CMPSTART having
its own start task) with ESA data space or a local common memory pool (BS2STUB/ADDON)
with ESA data space is to be created.

■ For the connection (BS2STUB/ADDON) to an existing global common memory pool, the para-
meter DESA has no significance.

Caution: An ESA data space should be created only for one global common memory
pool which has its own start task. The ESA data space will no longer be available when
the task that created the ESA data space terminates normally or abnormally.

LIBR - Load Library
This parameter determines from where the defined module is to be loaded. No default value
exists. If the operand of parameter LIBR is not defined, only a common memory pool will be
enabled (ENAMP+REQMP).

Operations144

Common Memory Pools

library is the name of the load library.LIBR=library

The libraries with the link names BLSLIB and BLSLIB01 to BLSLIB99 are to be used.LIBR=BLSLIB

Module is loaded as subsystem in class 4 memory.LIBR=CLASS-4

LOAD - Method for Loading a Module into a Common Memory Pool
This parameter determines which macro shall be used for loading a module into a common
memory pool.

The macro ASHAREwill be used.

If ASHARE is defined, the operand of parameter PFIXmust be YES.

LOAD=ASHARE

By default, the macro BINDwill be used..LOAD=BIND

NAME - Common Memory Pool/Module Name
This parameter determines the name of the module and/or the name of the common memory
pool. The name must be specified. No default value exists.

name is a valid name of common memory pool or module.NAME=name

The maximum number of characters in a name is:

Module name (name of common memory pool); Natural buffer pool.8 characters

All other common memory pools.16 characters

PFIX - Fixed Address
This parameter determines whether or not the common memory pool's address should be
fixed.

The common memory pool's address should be fixed.PFIX=YES

By default, the common memory pool's address should not be fixed.PFIX=NO

For a global Natural load pool, this parameter must be set to YES.

POSI - Position Relative to 16-MB Line
This parameter determines the position of the common memory pool, which can be above or
below the 16-MB line.

The common memory pool is to be located above the 16-MB line.POSI=ABOVE

By default, the common memory pool is to be located below the 16-MB line.POSI=BELOW

SCOP - Scope of Common Memory Pool
This parameter determines the scope of the common memory pool.

145Operations

Common Memory Pools

For information on the scopes of a common memory pool, see the description of the
ENAMPmacro in the BS2000 documentation.

SCOP=LOCAL
SCOP=GROUP
SCOP=GLOBAL

This is the default setting.SCOP=GLOBAL

SIZE - Size of Common Memory Pool
This parameter specifies the size of the common memory pool in megabytes/kilobytes.

Specifies the size of the common memory pool in n kilobytes or nmegabytes.SIZE=nKB
SIZE=nMB

By default, the common memory pool has a size of 1 megabyte.SIZE=1MB

STAT - Status of Common Memory Pool
This parameter determines the status of the common memory pool.

The status of the common memory pool is GLOBAL (started by CMPSTART).STAT=GLOBAL

The status of the common memory pool is LOCAL (started by BS2STUB).STAT=LOCAL

By default, the status of the common memory pool is LOCAL.

Note: The STAT parameter will be ignored when the program CMPSTART runs.

TYPE - Type of Common Memory Pool
This parameter determines the type of the commonmemory pool. The type must be specified.
No default value exists.

Natural DCOM poolTYPE=COM

Editor buffer poolTYPE=EDT

Natural monitor pool (SYSMON)TYPE=MON

Natural buffer poolTYPE=NAT

Sort buffer poolTYPE=SRT

Natural swap poolTYPE=SWP

User buffer poolTYPE=USR

WAIT - Enabling or Waiting of Common Memory Pool During Application Startup
This parameter determines during startup of an application whether the common memory
pool is to be enabled at once or whether the common memory pool is to wait for a request
from Natural and is enabled then.

Operations146

Common Memory Pools

The common memory pool is to wait for a request from Natural and is enabled then.WAIT=YES

By default, the common memory pool is to be enabled at once.WAIT=NO

Note: The WAIT parameter will be ignored when the program CMPSTART runs.

ADDEND Macro

Themacro ADDENDdefines the end ofmacro ADDON's definitions. There are no parameters for ADDEND.

Example of Assembling Macro BS2STUB

BS2STUBA BS2STUB PARMOD=31,PROGMOD=24 31-BIT ADDRESSING MODE,
* LOAD 3GL PROGRAMS BELOW
* +--+
* I Define the Natural global load pool with Name NATSHARE
* +--+

ADDON NAME=NATSHARE,STAT=GLOBAL
* +--+
* I Define the Natural local swap pool
* +--+

ADDON NAME=SWAPvrsLA,TYPE=SWP,SIZE=16MB,STAT=LOCAL,POSI=ABOVE
* +--+
* I Connecting a Natural global buffer pool with ESA data space
* +--+

ADDON NAME=BPvrsGA,TYPE=NAT,STAT=GLOBAL
* +--+
* I Creating/Connecting a Natural local buffer pool with ESA data space
* +--+

ADDON NAME=BPvrsLA,TYPE=NAT,POSI=ABOVE,SIZE=10MB, -
STAT=LOCAL,SCOP=LOCAL,DESA=YES,DATA=32MB

ADDEND
END

where vrs represents the relevant product version.

147Operations

Common Memory Pools

148

21 CallingDynamically Reloadable 3GLPrograms in aNatural

Application
■ Storage Allocation Rule .. 150
■ Thread-Creation Rule ... 150
■ Address-Mode Dependencies .. 150

149

This document contains rules for addressmode selection that applywhen dynamically reloadable
3GL programs are called in a Natural application.

Storage Allocation Rule

Whether a dynamically reloadable 3GL program is loaded above or below the 16MB line depends
on the keyword parameter PROGMOD for macro BS2STUB.

ExplanationParameter

The program is loaded above or below the 16 MB line.

This depends on the application's address mode and on the possible existence of AMODE or
RMODE statements in the 3GL program to be loaded.

PROGMOD=ANY

The 3GL program is always loaded below the 16 MB line.PROGMOD=24

Thread-Creation Rule

Whether theNatural user thread is created above or below the 16MB line depends on the keyword
parameters NUAADDR for macro NATUTM and on REQMLOC for the macros NAMTIAM and NAMBS2.

Address-Mode Dependencies

The following paragraphs give you an overviewofwhich addressmode is used inwhich generation
configuration to call dynamically reloadable 3GL programs.

1. Calling a 3GL program using the ILCS or CRTE interface

2. Calling of 3GL programs without using the ILCS or CRTE interface

3. Calling of openUTMpartial programswhich are not 31-bit enabled fromNatural/UTMdriver
via PEND PR

1. Calling a 3GL program using the ILCS or CRTE interface

'ILCS=YES' or 'ILCS=CRTE'

Operations150

Calling Dynamically Reloadable 3GL Programs in a Natural Application

The 3GL program is called withThe application was generated withCase

AMODE=31PARMOD=31 or PARMOD=(31,ABOVE)1

AMODE=24PARMOD=242

2. Calling of 3GL programs without using the ILCS or CRTE interface

'ILCS=NO'

The 3GLprogram
is called with

The application was generated withCase

AMODE=31PARMOD=31

The Natural user thread is located above the 16 MB line and the 3GL program is
loaded above or below the 16 MB line.

1

AMODE=24PARMOD=31

The Natural user thread and the 3GL program are located below the 16 MB line.

2

AMODE=31PARMOD=(31,ABOVE)

The Natural user thread is located above the 16 MB line and the 3GL program is
loaded above or below the 16 MB line.

3

AMODE=24PARMOD=(31,ABOVE)

The Natural user thread is located below the 16 MB line and the 3GL program is
loaded below the 16 MB line.

4

ThemoduleBS2GLUEmust be located in the same
library as the loaded 3GL program,
or the load module library for module BS2GLUE
must be defined as BLSLIB in the STARTJOB.

1.

If such a configuration exists in the case of a
Natural/UTM application, the keyword
parameter KB has to be defined as KB=NO.

2.

AMODE=31A Natural/UTM application was generated using PARMOD=31.

The Natural user thread is located below or above the 16 MB line and keyword
parameter CALLM31 for macro NURENT is defined as CALLM31=YES.

5

3. Calling of openUTM Partial Programs which are not 31-bit enabled from Natural openUTM
driver via PEND PR

The application was generated using PARMOD=31 and the keyword parameter SWAMODE for macro
NATUM is defined as SWAMODE=YES:

Prior to each calling of the openUTM KDCS interface, Natural switches back to the 24-bit address
mode, and when control is returned to the openUTM driver, a switch-back occurs to the 31-bit
address mode.

151Operations

Calling Dynamically Reloadable 3GL Programs in a Natural Application

152

22 Print File/Work File Server NATPWSV2

■ Setup .. 154
■ Operation ... 155

153

This document describes the print file/work file server NATPWSV2 for the RPC batch server environ-
ment under BS2000 that is started via the RPC Server Front-End.

See also Print File/Work File Server NATPWSV2 Error Messages in theMessages and Codes document-
ation.

Setup

The print file/work file server NATPWSV2 communicates with the RPC batch server NATFSTB2 by
using the forward eventing method.

To setup the print file/work file server, perform the following steps:

■ Link the module NATFSTB2 to the Natural nucleus. The module NATFSTB2 replaces the program
NATWKFB2.

■ The module NATPWSV2must be linked, together with an ADDON parameter definition, for the
common memory pool with the new pool type PWK (print file/work file control pool) in the
program BS2STUB. This common memory pool must be set up using a defined fixed address,
for example:

PWKSTUB BS2STUB PARMOD=31,PROGMOD=ANY,UNRES=*DBLOPT
ADDON NAME=PWK#POOL, NAME OF CONTROL POOL -

TYPE=PWK, TYPE OF CONTROL POOL -
SIZE=1MB, POOL SIZE IN MB -
STAT=LOCAL, POOL STATUS IS LOCAL -
SCOP=GLOBAL, SCOPE IS GLOBAL -
POSI=ABOVE, POOL POSITION IS ABOVE -
ADDR=19, ADDRESS IS X'1300000' -
PFIX=YES, POOL ADDRESS IS FIXED -
ACCS=WRITE NO POOL PROTECTION

ADDEND

The same ADDON parameter definition (except for ADDR=) must be contained in the program BS2STUB
which is linked to the front-end part of the RPC batch server.

Example of linking the print file/work file server:

/START-PROGRAM $BINDER
START-LLM-CREATION INTERNAL-NAME=PWKSRV, -
SLICE-DEFINITION=*BY-ATTRIBUTES(RESIDENCY-MODE=*YES)
INCLUDE-MODULES NATPWSV,LIB=(NATvrs.MOD)
INCLUDE-MODULES PWKSTUB,LIB=(user-lib)
MODIFY-SYMBOL-ATTRIBUTES ADD-MODE=*31,RES-MODE=*ANY,READ-ONLY=*NO
MODIFY-SYMBOL-VISIBILITY -

SYMBOL-NAME = *ALL, -
SYMBOL-TYPE = *DEFINITIONS, -

Operations154

Print File/Work File Server NATPWSV2

VISIBLE = *NO(KEEP-RESOLUTION=*YES)
SAVE-LLM LIB=NATURAL.USER.MOD,ELEMENT=E.NATPWSV2,LOAD-ADDR=X'10000000'
END

where:

is the relevant product version of Natural for Mainframes andvrs

is the user library.user-lib

Operation

Data exchange between the print file/work file server and the RPC batch server takes place in the
print file/work file control pool (TYPE=PWK).

Starting the Print File/Work File Server

The print file/work file server has to be started before the RPC batch server.

The RPC batch server expects the presence of an initialized print file/work file control pool. This
initialization occurs when the print file/work file server is started.

A Natural RPC batch server communicates with exactly one print file/work file server and vice
versa (TSN1 <=> TSN2).

All print files andwork files (link names P01 to P32 andW01 toW32) to be used have to be defined
by a FILE command in the print file/work file server's job control.

Example of a start job:

/.PWKSRV LOGON
/ER LST.PWKSERVER.
/STEP
/OPTION DUMP=YES
/FILE WORK.W01,LINK=W01
/FILE WORK.W02,LINK=W02
.
.
/FILE PRINT.P01,LINK=P01
/FILE PRINT.P02,LINK=P02
.
.
/EXEC (NATPWSV2,NATURAL.NATvrs.MOD)
/LOGOFF N

where vrs represents the relevant product version.

155Operations

Print File/Work File Server NATPWSV2

Terminating the Print File/Work File Server

The print file/work file server can be terminated byway of P1 eventing, using the program CMPEND.
The event name for terminating the print file/work file server is the name of the print file/work
file control pool.

Example of a print file/work file server termination procedure:

/BEGIN-PROCEDURE LOGGING COMMANDS
/ASSIGN-SYSDTA TO=*SYSCMD
/SET-JOB-STEP
/START-PROGRAM FROM-FILE=*MODULE(LIBRARY=NATURAL.NATvrs.MOD,-
/ ELEMENT=CMPEND)
PWK#POOL <== name of the print file/work file control pool
/SET-JOB-STEP
/ASSIGN-SYSDTA TO=*PRIMARY
/EXIT-PROCEDURE

where vrs represents the relevant product version.

All errormessages (abnormal termination of the print file/work file server) arewritten to SYSLST99
into the file LST.PWKSERVER.tsnn.

Operations156

Print File/Work File Server NATPWSV2

23 Using Network Attached Storage Files as Natural Print

and Work Files

You can allocate and process files contained on remote Network Attached Storage (NAS) servers
as Natural print files and work files. Prerequisite: BS2000/OSD V9.0 (or above) must be installed
at your site.

Starting with BS2000/OSD V9.0, Net Storage supports access to Network Attached Storage (NAS)
servers over the BS2000 Network File System (NFS). Since NFS access is transparently mapped to
the access methods of the BS2000 data managment system, files on Net Storage volumes can be
processed with the Natural print/work file access method in the same way as files on local disk
storage.

For more information on Net Storage and NFS, refer to the appropriate BS2000 manuals from
Fujitsu.

The following are JCL examples for allocating a Natural work file on an NAS volume mounted
to a Pubset named NFS9.

Example of Work File Allocation - ISP Format:

/FILE :NFS9:$USERID.NETSTORAGE.WORK.01,LINK=W01,DEVICE=NETSTOR,-
/VOLUME=NET000
...

157

Example of Work File Allocation - SDF Format:

/CREATE-FILE FILE-NAME=-
/:NFS9:$USERID.NETSTORAGE.WORK.01,SUPPORT=PRIVATE-DISK(VOLUME=NET000,-
/DEVICE-TYPE=NETSTOR,SPACE=STD),SUPPRESS-ERRORS=*FILE-EXISTING
...
/ADD-FILE-LINK LINK-NAME=W01,FILE-NAME=-
/:NFS9:$USERID.NETSTORAGE.WORK.01
...

Operations158

Using Network Attached Storage Files as Natural Print and Work Files

24 RPC Server Front-End

■ Setup .. 160

159

This document describes how to set up the RPC server front-end for an RPC batch server environ-
ment under BS2000 with the print file/work file server NATPWSV2.

Setup

For the generation of the Natural RPC batch server, the non-reentrant part of the Natural batch
driver (macro NAMBS2) has to be assembled with the new keyword parameter SERVER=YES.

Example:

SERVFRNT NAMBS2 CODE=FRONT, -
APPLNAM=NATSERV, -
NUCNAME=RPCSERV, -
DYNPAR=SYSDTA, For server parameters -
SERVER=YES, Generate RPC server -
ROLLTSZ=384, Roll thread size in KB -
. All other parameter definitions as for
. the generation of the non-reentrant part
. of the Natural batch driver

END

For the generation of the reentrant part of the Natural RPC batch server, you can use the same
keyword parameter definitions as for the generation of the Natural batch driver.

For the generation of the module BS2STUB (front-end part of the RPC batch server), you have to
define the necessary common memory pools. If you intend to use the print file/work file server
NATPWSV2, define a print file/work file control pool and replace the module NATWKFB2with the
module NATFSTB2 in the Natural reentrant part.

RPCSTUB2 BS2STUB PARMOD031,PROGMOD=ANY,UNRES=*DBLOPT
ADDON NAME=RPCSERV, Name of reentrant part (load pool) -

.

.

.
ADDON definition for Natural Buffer Pool

.
ADDON definition for Natural Editor Pool

.
ADDON definition for Natural Swap Pool

.
ADDON NAME = PWK#POOL, Name of print file/work file control pool -

TYPE=PWK, Pool type -
SIZE=1MB, Pool size in MB -
STAT=LOCAL, Pool status is local -
SCOP=GLOBAL, Scope is global -
POSI=ABOVE, Pool position is above -
PFIX=YES, Pool address is fixed -

Operations160

RPC Server Front-End

ACCS=WRITE No pool protection
ADDEND

TheNatural RPC batch server stores the different client context in user threads. These user threads
are managed either in the swap pool or in the Natural roll file. Hence, a Natural roll file and a
Natural swap pool is required.

For the processing of print files and work files, a print file/work file server has to be generated
(see Print File/Work File Server NATPWSV2), using the new type “PWK”.

Data interchange between RPC batch server and print file/work file server takes place in a common
memory pool (print file/work file control pool), using the new type “PWK”.

Communication between RPC batch server (module NATFSTB2) and print file/work file server
(module NATPWSV2) is accomplished by way of P1 forward eventing. If you intend to work with
the print file/work file server, then themodule NATWKFB2 has to be replaced by themodule NATFSTB2
in the link job for the reentrant part.

Example of linking the environment-dependent nucleus for the RPC batch server:

/START-PROGRAM $BINDER
START-LLM-CREATION INTERNAL-NAME=SERVER, -
SLICE-DEFINITION=*BY-ATTRIBUTES(RESIDENCY-MODE=*YES)
INCLUDE-MODULES NATSFED2,LIB=(NATvrs.MOD) Must be bound as first module
INCLUDE-MODULES RPCSFE,LIB=(NATvrs.MOD) RPC front-end stub
INCLUDE-MODULES SERVFRNT,LIB=(user-lib) Non-reentrant part of Natural batch
INCLUDE-MODULES SERVRENT,LIB=(user-lib) Reentrant part of Natural batch
INCLUDE-MODULES RPCSTUB2,LIB=(user-lib) BS2STUB (see previous example) ↩

INCLUDE-MODULES SWPRMSRV,LIB=(user-lib) Swap pool parameter module
INCLUDE-MODULES NATPRMSV,LIB=(user-lib) Natural parameter module
INCLUDE-MODULES ADAUSER,LIB=(ADAvrs.MOD)
INCLUDE-MODULES SSFB2C,LIB=(ADAvrs.MOD)
MODIFY-SYMBOL-ATTRIBUTES ADD-MODE=*31,RES-MODE=*ANY,READ-ONLY=*NO
MODIFY-SYMBOL-VISIBILITY -

SYMBOL-NAME = *ALL, -
SYMBOL-TYPE = *DEFINITIONS, -
VISIBLE = *NO(KEEP-RESOLUTION=*YES)

SAVE-LLM LIB=NATURAL.USER.MOD,LOAD-ADDR=X'10000000',ELEMENT=BATCH.SERVER
END

where:

is the relevant product version of Natural for Mainframes or Adabas for Mainframes
and

vrs

is the user library.user-lib

For information on how to generate the swap pool parametermodule, refer to the sectionDefining
the Natural Swap Pool, Keyword Parameters of Macro NTSWPRM.

161Operations

RPC Server Front-End

Example of linking the environment-independent nucleus for the RPC batch server:

/START-PROGRAM $BINDER
START-LLM-CREATION INTERNAL-NAME=RCPSERV, -
SLICE-DEFINITION=*BY-ATTRIBUTES(RESIDENCY-MODE=*YES)
INCLUDE-MODULES NATINV,LIB=(NATvrs.MOD) Must be bound as first module
INCLUDE-MODULES NATURAL,LIB=(NATvrs.MOD) Natural nucleus
REMARK INCLUDE-MODULES NATWKFB2,LIB=(NATvrs.MOD) Is replaced by
INCLUDE-MODULES NAFSTB2,LIB=(NATvrs.MOD) print/work file server stub
. ALL OTHER
. MODULES
INCLUDE-MODULES NATLAST,LIB=(NATvrs.MOD)
MODIFY-SYMBOL-ATTRIBUTES ADD-MODE=*ANY,RES-MODE=*ANY,READ-ONLY=*NO
MODIFY-SYMBOL-VISIBILITY -

SYMBOL-NAME = *ALL, -
SYMBOL-TYPE = *DEFINITIONS, -
VISIBLE = *NO(KEEP-RESOLUTION=*YES)

SAVE-LLM LIB=NATURAL.USER.MOD
END

where vrs represents the relevant product version of Natural for Mainframes.

Example of parameters for the Natural batch server:

AUTO=ON,
STACK=(LOGON DFSERVER),
RPC=(
SERVER=ON,
SRVNODE='10.20.91.202:3860:TCP',SRVNAME=DFSRV1,
RPCSIZE=128,MAXBUFF=30,
TRACE=2
),
RCA=BROKER,RCALIAS=(BROKER,BKIMBTIA),
MADIO=0,MAXCL=0,MT=0,MENU=OFF,
PRINT=((10),AM=STD),WORK=((1-10),AM=STD)

Example of parameters for the Natural RPC server client:

STACK=(LOGON DFCLIENT),
RPC=(
DFS=(DFSRV1,BKR043,,,NOSERVDIR),
RPCSIZE=128,MAXBUFF=30
),
RCA=BROKER,RCALIAS=(BROKER,BKIMBTIA),
MADIO=0,MAXCL=0,MT=0,ETID=' '

The Natural RPC batch server requires the file named P10 for the output of server messages. If
the print file/work file server is used, this file has to be defined using the FILE instruction in the
job control for the print file/work file server, unless it is defined in the job control of the Natural
RPC batch server.

Operations162

RPC Server Front-End

Example of a start job:

/.SERVER LOGON
/SYSFILE SYSOUT=SERVER.OUT
/SYSFILE SYSLST=SERVER.LIST
/FILE NATvrs.EDIT.WORKFILE,LINK=CMEDIT
/FILE NATvrs.SERVER.ROLLFILE,LINK=PAMNAT,SHARUPD=YES
/FILE SERVER.MSG,LINK=P10 Is required for the server messages
/FILE ADAvrs.MOD,LINK=DDLIB
/FILE ADAPARM,LINK=DDLNKPAR
/FILE EXXvrs.LIB,LINK=BLSLIB01 Broker
/FILE EXXvrs.LIB,LINK=ETBLIB Load library
/SYSFILE SYSDTA=SERVERPARMS
/EXEC BATCH.SERVER
/LOGOFF N

where vrs represents the relevant product version of Natural for Mainframes, Adabas for Main-
frames or EntireX Communicator.

For information on how to generate and start the EntireX Broker, refer to the EntireX Communic-
ator documentation.

163Operations

RPC Server Front-End

164

VI Natural in Batch Mode

This part contains considerations that apply when running Natural in batch mode.

Provides special considerations that refer to Natural in batchmode
under the operating system z/OS.

Natural in Batch Mode under z/OS

Provides special considerations that refer to Natural in batchmode
under the operating system z/VSE.

Natural in Batch Mode under z/VSE

Provides special considerations that refer to Natural in batchmode
under the operating system BS2000.

Natural in Batch Mode under BS2000

Contains general considerations that apply when running Natural
in batch: Adabas data sets, sort data sets, subtasking session support
for batch environments.

Natural in Batch Mode (All
Environments)

See also Batch Mode in the section Profile Parameters Grouped by Category (Parameter Reference docu-
mentation) for an overview of theNatural profile parameters that apply if Natural is used in batch
mode.

165

166

25 Natural in Batch Mode under z/OS

■ Natural z/OS Batch Interface .. 168
■ Driver Parameters for z/OS Batch ... 168
■ Data Sets Used by Natural in z/OS Batch Mode ... 168

167

This document contains special considerations that refer to Natural in batch mode under the op-
erating system z/OS.

For considerations that refer to Natural in batch mode generally, see also:

■ Adabas Data Sets
■ Sort Data Sets
■ Subtasking Session Support for Batch Mode Environments

Natural z/OS Batch Interface

TheNatural z/OS batch interface consists of the NATOS objectmodulewhich is linked to theNatural
nucleus during the installation procedure for base Natural as described in the Installation for z/OS
documentation.

You can customize the Natural z/OS batch interface to meet your requirements by changing the
parameter settings in the NTOSPmacro in the Natural parameter module during the appropriate
installation step.

NATOS is fully reentrant and can run above the 16MB line. Multiple Natural sessions can be started
in parallel within one batch region; see Subtasking Session Support for Batch Environments.

Driver Parameters for z/OS Batch

For information on the driver parameters that are available for z/OS in batch mode, refer to the
description of profile parameter OSP or parameter macro NTOSP in the Parameter Reference docu-
mentation.

Data Sets Used by Natural in z/OS Batch Mode

The following data sets are required if certain functions are used during a Natural z/OS batch
mode session:

Operations168

Natural in Batch Mode under z/OS

ExplanationData Set

Software AG Editor Work FileCMEDIT

Hardcopy Print OutputCMHCOPY

Input for Natural INPUT StatementsCMOBJIN

Dynamic Profile Parameter Report OutputCMPLOG

Primary Report OutputCMPRINT

Dynamic Profile Parameter InputCMPRMIN

Additional Reports 01-31CMPRTnn

Primary Command InputCMSYNIN

External Trace OutputCMTRACE

Job Submit OutputNATRJE

Load Library for External ModulesSTEPLIB

Work Files 01-32CMWKFnn

These data sets are described below.

For sequential data output sets, the default DCB RECFM/LRECL information is as follows:

RECFM=FBA and LRECL=133

CMEDIT - Software AG Editor Work File

The Software AG Editor work file VSAM data set is required if a local or global Software AG ed-
itor buffer pool is to be used.

If not defined in the JCL, the name of the Editor work file specified by subparameter DSNAME of
profile parameter EDBP or parametermacro NTEDBP is used byNatural to do the dynamic allocation
for the Editor work file.

Alternatively, profile parameter EDPSIZE can be used to run with an auxiliary editor buffer pool,
which doesn't require an editor work file. For more information about the installation of the Soft-
ware AG editor, refer to Installing the Software AG Editor on z/OS in the Installation for z/OS docu-
mentation.

169Operations

Natural in Batch Mode under z/OS

CMHCOPY - Optional Report Output for Hardcopy

The default name of the hardcopy print output data set is CMHCOPY. It can be changed by one of
the following:

■ the subparameter DEST of profile parameter PRINT for Print File 0,
■ the profile parameter HCDEST, which is an equivalent of PRINT=((0),DEST=...),
■ the setting of the system variable *HARDCOPY during the session,
■ the terminal command %H during the session.

The subparameters of the profile parameter PRINT for Print File 0 can be used to change the default
values for the hardcopy data set. The default data set name CMHCOPY implies CLOSE=FIN for the
hardcopy print data set, that is, after the data set has been opened for output, any subsequent
change of the hardcopy print output data set name will not be honored. If a different name is
defined at open time, the hardcopy data set will be closed according to subparameter CLOSE of
profile parameter PRINT for Print File 0.

During the session, the hardcopy data set can be released and reallocated (before open or after
close) by the by dynamic allocation (via application programming interface USR2021N, see SYSEXT
- Natural Application Programming Interfaces).

CMOBJIN - Input for Natural INPUT Statements

This data set can be used to read data by theNatural INPUT statement rather than from the primary
input data set CMSYNIN.

The usage of CMOBJIN is controlled by the profile parameter OBJIN. The input record data length
forNatural is determined by profile parameter SL. Themaximum record length (LRECL) supported
is 255. The record format (RECFM) can be fixed or variable.

CMPLOG - Dynamic Profile Parameter Report Output

If profile parameter PLOG=ON is set and data set CMPLOG is available, the evaluated dynamic profile
parameters are written to this data set during session initialization. If data set CMPLOG is not
available, the evaluated dynamic profile parameters are written to CMPRINT.

Operations170

Natural in Batch Mode under z/OS

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

The record format (RECFM) for CMPRINT is FBA. If no DCB information for LRECL is available from
the data set or from the JCL, LRECL=133will be used as default. If no DCB information for BLKSIZE
is available from the data set or from the JCL, BLKSIZEwill be 10 times the value of LRECL as default.

If not defined in JCL, CMPRINTwill be allocated dynamically as

//CMPRINT DD SYSOUT=*

when the first record is to be written.

CMPRMIN - Dynamic Parameter Data Set

CMPRMIN can be used as a dynamic parameter data set to overcome the length restriction for the
character string in the job control PARM keyword of the EXEC statement.

If available, this file is read during session initialization to get the dynamic profile parameters.

All input records from CMPRMIN are concatenated into one parameter string. Only the first 72 pos-
itions of each CMPRMIN record are significant. Trailing blanks at the end of each record are truncated;
if the last non-blank character is a comma, all trailing blanks are truncated, otherwise just one
blank is left as delimiter; no commas are inserted.

Additional dynamic parameters can be supplied using the job control PARM keyword. They are
concatenated at the end of the parameter string which was built from the input of CMPRMIN, that
is, these can be used to overwrite the parameters from CMPRMIN.

CMPRTnn - Additional Reports 01 - 31

These data sets can be used byNatural print file statements like WRITE (nn). If no DCB information
(for example, RECFM, LRECL, BLKSIZE) is available, the defaults are defined by the PRINT profile
parameter or the NTPRINTmacro in the Natural parameter module. The print file names can be
overwritten by subparameter DEST.

171Operations

Natural in Batch Mode under z/OS

CMSYNIN - Primary Command Input

This data set is used to read command input and data requested by the Natural INPUT statement.
The latter is controlled by the profile parameter OBJIN (see also CMOBJIN).

The input record data length for Natural is determined by profile parameter SL. The maximum
record length (LRECL) supported is 255. The record format (RECFM) can be fixed or variable.

CMTRACE - Optional Report Output for Natural Tracing

If profile parameter ETRACE=ON is set or the equivalent terminal command %TRE+was issued, any
Natural trace output during the session is written to the CMTRACE data set. To define the Natural
components that are to be traced, the profile parameter TRACE is required.

If data set CMTRACE is not available, it will be allocated dynamically as

//CMTRACE DD SYSOUT=*

when the first trace record is to be written.

NATRJE - Job Submit Output

This data set is used for the Natural job submitting utility. If it is not defined, it will be allocated
dynamically as

//NATRJE DD SYSOUT=(A,INTRDR)

when the first job is submitted.

STEPLIB - Load Library for External Modules

STEPLIB is the default load library name for loading external modules, for example:

■ the environment-independent nucleus (profile parameter NUCNAME),
■ a separate Adabas link routine module (profile parameter ADANAME),
■ the session back-end program (profile parameter PROGRAM),
■ any external subprograms not linked to theNatural parameter module.

The load library name can be changed by profile parameter LIBNAM. The specified load library
name must be defined by a DD statement in the JCL.

Operations172

Natural in Batch Mode under z/OS

CMWKFnn - Work Files 01-32

These data sets can be used by Natural work file statements like READ WORK nn and WRITE WORK
nn.

If no DCB information (RECFM, LRECL, BLKSIZE, etc.) is available in the JCL or in the VTOC entry
for the data set, the defaults are defined by the WORK profile parameter or the NTWORKmacro in the
Natural parameter module.

The work file data set names can be overwritten by subparameter DEST.

173Operations

Natural in Batch Mode under z/OS

174

26 Natural in Batch Mode under z/VSE

■ Natural z/VSE Batch Interface .. 176
■ Driver Parameters for z/VSE Batch ... 176
■ Natural Data Sets Used under a z/VSE Batch Mode Session .. 176
■ NATVSE Print and Work File Support for z/VSE Library Members .. 182
■ NATVSE Print File Support for Direct POWER SPOOL Access ... 183
■ NATVSE Dynamic Work File Allocation (DYNALLOC) Support .. 184
■ Debugging Facilities for Natural under z/VSE .. 188
■ NATVSE Attention Interrupts .. 191

175

This document contains special considerations that refer to Natural in batch mode under the op-
erating system z/VSE.

For considerations that refer to Natural in batch mode generally, see also:

■ Adabas Data Sets
■ Sort Data Sets
■ Subtasking Session Support for Batch Mode Environments

Natural z/VSE Batch Interface

The Natural z/VSE batch interface consists of the object modules NATVSE, NATVSEL and NATLEOPT.
They are linked to the Natural nucleus during the installation procedure for base Natural as de-
scribed in the Installation for z/VSE documentation.

You can customize the Natural z/VSE batch interface to meet your requirements by changing the
parameter settings in the NTVSEPmacro in the Natural parameter module during the appropriate
installation step.

The batch interface must run below the 16 MB line. Multiple sessions can be started in parallel
within one batch region; see Subtasking Session Support for Batch Mode Environments.

Driver Parameters for z/VSE Batch

For information on the driver parameters that are available for z/VSE in batch mode, refer to the
description of profile parameter VSEP or parameter macro NTVSEP in the Parameter Reference docu-
mentation.

Natural Data Sets Used under a z/VSE Batch Mode Session

The following data sets are required if certain functions are used during a Natural z/VSE batch
mode session:

Operations176

Natural in Batch Mode under z/VSE

ExplanationData Set

Software AG Editor Work FileCMEDIT

Hardcopy Print OutputCMHCOPY

Input for Natural INPUT StatementsCMOBJIN

Dynamic Profile Parameter Report OutputCMPLOG

Primary Report OutputCMPRINT

Dynamic Profile Parameter InputCMPRMIN

Additional Reports 01-31CMPRTnn

Primary Command InputCMSYNIN

External Trace OutputCMTRACE

Work Files 01-32CMWKFnn

These data sets are described below.

CMEDIT - Software AG Editor Work File

The Software AG Editor work file VSAM data set is required if a local or global Software AG ed-
itor buffer pool is to be used.

If not defined in the JCL, the name of the Editor work file specified by subparameter DSNAME of
profile parameter EDBP or parametermacro NTEDBP is used byNatural to do the dynamic allocation
for the Editor work file.

Alternatively, profile parameter EDPSIZE can be used to run with an auxiliary editor buffer pool,
which does not require an editor work file. For more information about the installation of the
Software AG editor, see Installing the Software AG Editor on z/VSE in the Installation for z/VSE docu-
mentation.

CMHCOPY - Optional Report Output for Hardcopy

The default name of the hardcopy print output data set is CMHCOPY. It can be changed by one of
the following:

■ the subparameter DEST of profile parameter PRINT for Print File 0,
■ the profile parameter HCDEST, which is an equivalent of PRINT=((0),DEST=...),
■ the setting of the system variable *HARDCOPY during the session,
■ the terminal command %H during the session.

The subparameters of the profile parameter PRINT for Print File 0 can be used to change the default
values for the hardcopy data set. The default data set name CMHCOPY implies CLOSE=FIN for the
hardcopy print data set, that is, after the data set has been opened for output, any subsequent
change of the hardcopy print output data set name will not be honored. If a different name is

177Operations

Natural in Batch Mode under z/VSE

defined at open time, the hardcopy data set will be closed according to subparameter CLOSE of
profile parameter PRINT for Print File 0.

By default, the CMHCOPY file is assigned to SYSLST and is processed via the macro DTFPR.

If appropriate label information is supplied for the file name CMHCOPY, the print output may also
be routed to disk or tape by using the z/VSE macro DTFSD or DTFMTwith:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
member type is PRINT.

CMOBJIN - Input for Natural INPUT Statements

CMOBJIN is used for data intended to be read by Natural INPUT statements. This type of data can
alternatively be placed in the CMSYNIN input stream immediately following the relevant source
program or the relevant RUN or EXEC command.

When the setting for the profile parameter OBJIN is N, Natural reads input from CMSYNIN. When
OBJIN is set to Y, Natural reads input from CMOBJIN. When OBJIN is set to R, Natural determines
which option has been selected for a particular session depending upon the presence or absence
of a CMOBJIN label information.

By default, the CMOBJIN input file is assigned to SYSIPT. By using the profile parameter READER, it
can be assigned to SYSRDR.

Alternatively, a sequential disk or labeled tape file may be used rather than a real/logical (POWER)
reader file. In that case, you must supply appropriate label information for file name CMOBJIN.

Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

Youmust supply appropriate label information; for assignment, you have to use file names CMSYNIN
and /or CMOBJIN.

Operations178

Natural in Batch Mode under z/VSE

CMPLOG - Optional Report Output for Dynamic Parameters

If profile parameter PLOG=ON is set and data set CMPLOG is available, the evaluated dynamic profile
parameters are written to this data set during session initialization. If data set CMPLOG is not
available, the evaluated dynamic profile parameters are written to CMPRINT.

By default, the CMPLOG file is assigned to SYSLST and is processed with the macro DTFPR.

If appropriate label information is supplied for the file name CMPLOG, the print output may also
be routed to disk or tape by using the z/VSE macros DTFSD or DTFMTwith:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
member type is PRINT.

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

By default, the CMPRINT file is assigned to SYSLST and is processed via the macro DTFPR.

If appropriate label information is supplied for the file name CMPRINT, the print output may also
be routed to disk or tape by using the z/VSE macro DTFSD or DTFMTwith:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
file type is PRINT.

CMPRMIN - Dynamic Parameter Data Set

CMPRMIN can be used as a dynamic parameter data set to overcome the length restriction for the
character string in the job control PARM keyword of the EXEC statement.

If available, this file is read during session initialization to get the dynamic profile parameters.

All input records from CMPRMIN are concatenated into one parameter string. Only the first 72 pos-
itions of each CMPRMIN record are significant. Trailing blanks at the end of each record are truncated;
if the last non-blank character is a comma, all trailing blanks are truncated, else just one blank is
left for delimiter; no commas are inserted.

Additional dynamic parameters can be supplied using the job control PARM keyword: if the PARM
keyword contains a dynamic parameter string, these profile parameters are concatenated at the
end of the parameter string which was built from the input of CMPRMIN, i.e. these can be used to
overwrite the parameters from CMPRMIN. If the PARM keyword is specified as SYSRDR or SYSIPT,

179Operations

Natural in Batch Mode under z/VSE

Natural retrieves additional profile parameters from SYSRDR or SYSIPT respectively as a logical
extension of the CMPRMIN data set, i.e. the same rules apply.

CMPRMIN is a sequential disk or a labeled tape data set. Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

CMPRTnn - Additional Reports

CMPRTnn is used for each additional report referenced by anyNatural program compiled or executed
during the session. "nn" must be a two-digit decimal number in the range 01-31 corresponding to
the report number used in a DISPLAY, PRINT or WRITE statement.

Instead of CMPRTnn, another file name may be used by setting the DEST subparameter of profile
parameter PRINT to an appropriate value, for example:

PRINT=((nn),...,DEST=PRNTFIL)

When supplying label information with file name CMPRTnn, the print output can be written to a
disk or tape. Natural treats this print file like an unblocked fixed-lengthwork file.When “printing”
to disk or tape, the same logic as for work files applies (see below).

When mapped to a z/VSE library member, the record format is fix, the record length is 80 and the
default file type for these files is PRINT.

CMSYNIN - Primary Input

CMSYNIN is used for the primary input file that contains Natural commands, Natural source pro-
grams, and (optionally) data to be read by INPUT statements during the execution of Natural pro-
grams.

By default, the CMSYININ input file is assigned to SYSRDR. By using the profile parameter READER,
it may be assigned to SYSIPT.

Alternatively, a sequential disk or labeled tape file may be used rather than a real/logical (POWER)
reader file. In that case, you must supply appropriate label information for file name CMSYNIN.

Supported file formats are:

Operations180

Natural in Batch Mode under z/VSE

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

CMTRACE - Optional Report Output for Natural Tracing

If profile parameter ETRACE is set to "ON" or the equivalent terminal command %TRE+was issued,
any Natural trace output during the session is written to the CMTRACE data set. To define the Nat-
ural components that are to be traced, the profile parameter TRACE is required.

By default, the CMTRACE file is assigned to SYSLST and is processed via the macro DTFPR.

If appropriate label information is supplied for the file name CMTRACE, the print output may also
be routed to disk or tape by using the z/VSE macro DTFSD or DTFMTwith:

RECFORM=UNDEF,BLKSIZE=133

When routed to a z/VSE library, the record format is fix, the record length is 80 and the default
member type is PRINT.

CMWKFnn - Work Files 01-32

CMWKFnn is used for eachNaturalwork file referenced by anyNatural program compiled or executed
during the session. nnmust be a two-digit decimal number in the range 01 - 32 corresponding to
the number used in a READ WORK FILE or WRITE WORK FILE statement.

Instead of CMWKFnn, another file name may be used by setting the DEST subparameter of profile
parameter WORK to an appropriate value.

If the subparameter FILMNGR of profile parameter VSEP or macro NTVSEP is set to YES, and there is
label information for awork file, or if OFF or NOTM is specified for the LABEL subparameter of profile
parameter WORK for an unlabeled work file, Natural knows the file is available. Otherwise, the
Natural work-file logical-unit number must be assigned to the correct device type.

When mapped to a z/VSE library member, the record format is fix, the record length is 80 and the
default member type for these files is WORK.

If a Natural printer orwork file is assigned IGN, all I/O requests for these files are treated as dummy
and no Natural error is generated. However, if there is no assignment or the printer/work file is
assigned UA, any attempt to use this file is treated as an error.

181Operations

Natural in Batch Mode under z/VSE

NATVSE Print and Work File Support for z/VSE Library Members

NATVSE supports access to z/VSE librarymembers for input and/or output for all Natural data sets.
When a z/VSE librarymember is accessed, only “card image format” is supported, that is, a record
length of 80 bytes.

The access to a z/VSE library member is triggered via the file ID of an associated DLBL statement.
A special string (see subparameter LIBRID of profile parameter VSEP or macro NTVSEP) at the start
of the file ID field in the DLBL statement signals that theNatural data set actually is a z/VSE library
member which is specified in the remainder of the file ID field.

The following specifications are possible:

Specifies a library concatenation chain defined in JCL.C=chain

Specifies a specific sublibrary in a specific library.S=library.sublib

Specifies a library member name and its type.M=mbrname.mbrtype

The following rules apply:

■ All these possible specifications are optional.
■ Each parameter may be specified only once.
■ The parameters are separated by one ore more commas or blanks.
■ Chain (C=) and sublibrary (S=) specifications are optional, butmutually exclusivewhen specified.
■ If neither a chain (C=) nor a sublibrary (S=) is specified, a default of C=SOURCE is taken.
■ If a library member (M=) is not specified, a default of M=filename.type is taken, where

filename is the file name of the DLBL statement and
type indicates the Natural file class, namely WORK for Natural work files, PRINT for Natural print
files and CARD for the Natural input files CMPRMIN, CMSYNIN and CMOBJIN (the relevant default
member type for every Natural data set is mentioned below).

■ Anasterisk specified for any sub-parameter of the librarymember specification signals the default
to be taken; hence a specification of M=*.* has the same effect as omitting this parameter.

■ Omitting the member type subparameter also means the default to be taken.

Example:

Operations182

Natural in Batch Mode under z/VSE

// LIBDEF PROC,SEARCH=(...)
// LIBDEF SOURCE,SEARCH=(...)
// DLBL CMWKF01,'LIBR:M=FILE1.TEST S=SAGLIB.USRLIB'
// DLBL CMWKF02,'LIBR: S=SAGLIB.USRLIB' -> M=CMWKF02.WORK
// DLBL CMWKF03,'LIBR: M=TEST C=PROC' -> M=TEST.WORK
// DLBL CMPRT04,'LIBR:M=*.LISTING,S=SAGLIB.USRLIB' -> M=CMPRT04.LISTING
// DLBL CMPRT05,'LIBR:' -> M=CMPRT05.PRINT,C=SOURCE
// DLBL CMPRT06,'LIBR:M=WORK' -> M=WORK.PRINT,C=SOURCE
// DLBL CMWKF07,'LIBR: M=*.DATA' -> M=CMWKF07.DATA,C=SOURCE
// DLBL CMPRMIN,'LIBR:M=*.*' -> M=CMPRMIN.CARD,C=SOURCE

Notes:

1. When a chain is specified or defaulted for an output file, the output is written into the first
sublibrary specified in the chain.

2. If a member with the same name and type already exists in a target sublibrary of a Natural
output file, this member is replaced unconditionally.

3. The file ID field of a DLBL statement is just 44 characters in length,which is not enough to specify
all (sub)parameters in their full length. Therefore it is recommended to take advantage of the
defaults. Regarding the member name, there is also the option to specify the file name via the
DEST subparameter of the Natural profile parameter PRINT or WORK.

NATVSE Print File Support for Direct POWER SPOOL Access

Natural supports up to 35 print files per session, namely the system print files CMPRINT, CMTRACE,
CMPLOG and CMHCOPY, plus “application” print files 1 to 31. POWER on the other side just supports
up to 8 logical printers per VSE partition. This means, it is not possible to create more than 8 sep-
arate reports in parallel from a Natural program in one partition. This bottleneck becomes worse
inmulti-tasking or Natural server environments, where up to 32Natural tasksmay run in parallel
in one VSE partition. That limitation can be overcome by accessing POWER SPOOL directly; that
is, instead of LIOCS services, NATVSE uses “PUTSPOOL” services to create reports in the POWER
list queue.

The creation of a report directly in POWER SPOOL is triggered via the file ID of an associated
DLBL statement or a corresponding specification in aNatural DEFINE PRINTER statement. A special
string (see subparameter SPOOLID of profile parameter VSEP or macro NTVSEP) at the start of the
file IDfield in theDLBL statement signals that theNatural print file is not created by LIOCS services,
but by “PUTSPOOL” services.

For such print files, the keyword subparameters NAME, FORMS, DISP, COPIES, CLASS, PRTY of the
profile parameter PRINT or the macro NTPRINT in theNatural parameter module are sensitive;
they can also be set via a DEFINE PRINTER statement. When a report name is not specified, the
print file name (DEST=) is the default. For print files, where DEFINE PRINTER and the (NT)PRINT

183Operations

Natural in Batch Mode under z/VSE

profile do not apply, that is, CMPRINT, CMTRACE and CMPLOG, the POWER list attributes can be spe-
cified in the associated DLBL statement via keyword parameters, with the following meanings:

ClassC

DispositionD

FormsF

NameN

CopiesO

PrtyP

Example:

// DLBL CMPLOG,'SPL2PWR N=PARMSLOG,C=K,D=L,O=3,F=GREY'
// DLBL CMPRT01,'SPL2PWR'
// ASSGN SYS041,UA
// ASSGN SYS042,UA
...
PRINT=((1-2),AM=STD)
PRINT=((1),NAME=REPORT1,CLASS=K,DISP=L,COPIES=3,FORMS=BLUE)
...
EDT
DEFINE PRINTER (2) OUTPUT '*' /* Prepare for DYNALLOC
DEFINE PRINTER (2) OUTPUT 'DSN=SPL2PWR'
NAME 'MYREPORT' CLASS 'K' DISP 'L' COPIES 3 FORMS 'PINK'
WRITE (1) 'HELLO'
WRITE (2) 'HELLO'
END
.E
RUN

NATVSE Dynamic Work File Allocation (DYNALLOC) Support

Natural under z/VSE offers functionality to define work files dynamically, that is, these files need
not be predefined in JCL. This means that Natural under z/VSE adds labels into the partition's
temporary labels area for work files defined using a DEFINE WORK FILE statement.

In this respect Natural under z/VSE does not modify existing label information. All file labels dy-
namically added by a Natural session are deleted at session termination.

The following topics are covered below:

■ Prerequisites
■ DEFINE WORK FILE Keyword Parameters
■ Rules for Using the DEFINE WORK FILE Keyword Parameters

Operations184

Natural in Batch Mode under z/VSE

■ Samples

Prerequisites

A disk file manager is required, as it is not feasible to have fix file extent information within Nat-
ural application programs, particularly when these programs are executed in parallel in the same
partition or in several partitions. This is not a restriction, as at least VSAM/SAM is available under
z/VSE.

For dynamic allocation support by Natural under z/VSE, the following keyword subparameters
of Natural profile parameter WORK have been made sensitive:

■ BLOCKS (Number of Storage Blocks)
■ DISP (File Open Mode)

DEFINE WORK FILE Keyword Parameters

The following keyword parameters are available for dynamic work files under VSE:

PurposeKeyword Parameter

Triggers the usage for VSAM/SAM for the dynamic work file, where catalog is the 1 to
7 characters VSAM catalog file name. As this parameter is mandatory, if you want to
use VSAM/SAM, you have to specify a VSAM job catalog explicitly (CAT=IJSYSUC).

CAT=catalog

If specified a // EXTENT information is generated with that 1 to 5 characters volume
serial number; its content depends on the preceding DLBL information, see below.

VOL=volser

Is the DSN to set the file ID (optional).DSN=fileid

Rules for Using the DEFINE WORK FILE Keyword Parameters

Potential CAT or VOL parameters have to come first in the DEFINE WORK FILE string, as the end of
the parameter value can easily be found; the DSN= parametermust be specified as the last keyword
parameter.

In other words, if CAT or VOL parameters are specified, and the DSN keyword parameter is not
specified, all data in the DEFINE WORK FILE parameter string behind the last keyword parameter
is considered as file ID to be set.

For VSAM/SAM, NATVSE dynamically adds the following label information:

185Operations

Natural in Batch Mode under z/VSE

// DLBL xxyyyyz,'file-id',0,VSAM,CAT=catalog, +
RECORDS=n1,RECSIZE=n2,DISP=(dsp1,dsp2)

// EXTENT ,volser optional

where:

is the partition's SYSLOG ID, for example BG, F4, etc.xx

yyyy is the edited z/VSE two-byte hexadecimal task number (to allow Natural
subtasks in the same partition).

yyyy

is the Natural work file number: "1" through "9" for files 1 to 9, "A" through "W" for
files 10 to 32.

z

is the value specified by the keyword subparameter BLOCKS of profile parameter
WORK.

n1

is the value specified by the keyword subparameter BLKSIZE of profile parameter
WORK.

n2

is the value specified by the keyword subparameter DISP of profile parameter WORK.dsp1, dsp2

is the VSAM catalog which has to be set using a DEFINE WORK FILE statement.catalog

is the volume serial number on which the file is allocated.volser

Note that the EXTENT card is only generated when volser has been set in a DEFINE WORK FILE
statement in the Natural application.

For other disk file management systems, for example CA-DYNAM/D, NATVSE adds dynamically the
following label information:

// DLBL xxyyyyz,'file-id',0
// EXTENTsysnnn,volser,,,1,n1 optional

where:

is the partition's SYSLOG ID, for example BG, F4, etc.xx

is the edited z/VSE two-byte hexadecimal task number (to allowNatural subtasks in the
same partition).

yyyy

is the Natural work file number: 1 through 9 for files 1 to 9, A through W for files 10 to
32.

z

is the value specified by the keyword subparameter BLOCKS of profile parameter WORK.n1

is the value specified by the keyword subparameter SYSNR of profile parameter WORK.sysnnn

is the volume serial number on which the file is allocated.volser

Note that the EXTENT card is only generated when volser has been set in a DEFINE WORK FILE
statement in theNatural application. If n1 is zero, extent information (start track/block and number
of tracks/blocks) is omitted.

Operations186

Natural in Batch Mode under z/VSE

For Natural as a server the file name setup has the format:

xyyyyyz

where:

is the server session number in hexadecimal format (edited) with the very first character
forced alphabetic by translation of 0 through F into A to P.

xyyyyy

is the Natural work file number, as for normal Natural under z/VSE batch operation.z

Files to be dynamically allocatedmust have aNatural file name of '*' set in keyword subparameter
DEST='*' of profile parameter WORK or a statement definition of DEFINE WORK FILE '*' to enable
Natural under z/VSE to create new file names as described above.

The file identification to be used also has to be set using a DEFINE WORK FILE statement.

The regular z/VSE restrictions for file IDs apply.

In a Natural multitasking or server environment, it is recommended to provide some unique in-
formation in the file ID to prevent “equal file” conditions.

Samples

Natural parameters:

WORK=((1-6),AM=1,DEST='*',BLOCKS=100),WORK=((2),
DISP=(OLD,DELETE)),WORK=((6),BLOCKS=0)

Natural work file definition within application:

DEFINE WORK 1 'CAT=IJSYSUC,VSAM.SAM.FILE'
DEFINE WORK 2 'CAT=IJSYSCT,DSN=ANOTHER FILE'
DEFINE WORK 3 'CAT=IJSYSUC,VOL=DOSRES,ONE MORE FILE'
DEFINE WORK 4 '==.CATALOGED.FILE'
DEFINE WORK 5 'VOL=POOL01,DSN=FILE WITH EXTENT INFO'
DEFINE WORK 6 'VOL=DOSRES,ANY FILE'

z/VSE labels generated:

// DLBL xxyyyy1,'VSAM.SAM.FILE',0,VSAM,CAT=IJSYSUC, +
RECORDS=100,RECSIZE=4628,DISP=(NEW,KEEP)

// DLBL xxyyyy2,'ANOTHER FILE',0,VSAM,CAT=IJSYSCT, +
RECORDS=100,RECSIZE=4628,DISP=(OLD,DELETE)

// DLBL xxyyyy3,'ONE NORE FILE',0,VSAM,CAT=IJSYSUC, +
RECORDS=100,RECSIZE=4628,DISP=(NEW,KEEP)

// EXTENT ,DOSRES
// DLBL xxyyyy4,'==.CATALOGED.FILE',0
// DLBL xxyyyy5,'FILE WITH EXTENT INFO',0

187Operations

Natural in Batch Mode under z/VSE

// EXTENT SYS005,POOL01,,,1,100
// DLBL xxyyyy6,'ANY FILE',0
// EXTENT SYS006,DOSRES

Debugging Facilities for Natural under z/VSE

The Natural z/VSE batch mode interface contains some debugging facilities which can help you
to track down problems.

These facilities are controlled by the UPSI settings in the JCL.

Additionally, the UPSI settingsmay also be specified as aNatural profile parameter (UPSI=1XXXXXXX,
for example). This is useful if the UPSI settings in the JCL have produced side effects in the sense
that they have a differentmeaning for other programs such as for front-endNatural or for programs
called by Natural.

There may be the following UPSI settings:

MeaningUPSI Setting

Dump FlagUPSI 1xxxxxxx

Trace FlagUPSI x1xxxxxx

Print Output Identification FlagUPSI xx1xxxxx

Storage Freeze FlagUPSI xxx1xxxx

Abend Exit FlagUPSI xxxxxx1x

These settings are described below. In addition, a sample job is given to show you how to obtain
documentation for debugging.

UPSI 1xxxxxxx - Dump Flag

WhenNatural encounters a problem, the corresponding job usually cancelswithout a dump, unless
an abend actually occurred. When this UPSI flag is set, a dump is always created at the end of the
job when an error occurs, that is, when the Natural session termination message is other than
NAT9995.

Operations188

Natural in Batch Mode under z/VSE

UPSI x1xxxxxx - Trace Flag

When this flag is set, snapshots are taken of the register save area at some strategic points in Nat-
ural.

Note: Depending on the product sample output, setting this flag can lead to large output.

On entry of all NATVSE service routines, the name of this routine and the general registers 0 to 15
(GRG) are displayed.

Note: You can identify the caller from Register 14.

On exit of all NATVSE service routines, the name of this routine, the current general registers (GRG)
and Registers 0 to 15 of the currently assigned save area (CSA) are displayed.

Notes:

1. The contents of the CSA are returned to the caller of the service routine, except the Register 15
return code which is taken from the general registers.

2. The contents of the HSA are returned to the caller, which means that this save area contains
the return code in Register 15 if a return code was set at all.

Whenever the GRG registers are set, the debugging trace program tries to determine the name of
the calling routine and the offset of the call from the beginning of the routine.

The SYSnnn number for the debugging trace print output is SYS040, as long as this SYSnnn number
is assigned to a printer device; otherwise SYSLST is used. This is of particular interest if debugging
trace output and other Natural print output are to be separated; to do so, assign SYS040 appropri-
ately and supply a POWER * $$ LST statement for this logical print unit.

UPSI xx1xxxxx - Print Output Identification Flag

When this flag is set, the VSE (sub)task ID is inserted into the last four bytes of a print record to
help identify the task which printed the record.

Important: When this flag is set, potential print data may become overwritten. Overwritten
data is indicated by '...' preceding the VSE (sub)task ID.

189Operations

Natural in Batch Mode under z/VSE

UPSI xxx1xxxx - Storage Freeze Flag

Onnormal or abnormal session termination, Natural, by default, releases all its resources including
storage. Despite the setting of UPSI 1, a dump may be useless, because all relevant storage has
already been released duringNatural termination.When this flag is set, no GETVIS storage acquired
earlier is ever released within this job; this applies to all external subroutine programs called by
Natural including the Natural nucleus (if not linked to NATVSE) and RCA=ON subproducts.

Caution: This flag should be handled carefully, because more partition GETVIS storage is
used, but jobs may still cancel due to failed GETVIS requests if the operating system storage
requests cannot be satisfied.

UPSI xxxxxx1x - Abend Exit Flag

This flag may be helpful in the case of recurrent abends.

In batch mode, Natural usually has a check abend exit for active programs (STXIT PC) to recover
from program checks (NAT095n error messages). When DU=ON is specified, this exit creates a snap
dump and passes control to Natural for a clean session termination.

When this flag is set, the Natural session runs without any abend exit for active programs, which
means that all program checks are handled directly by the operating system.

If this flag is set, the dump flag, the storage freeze flag, the session abend flag and the formatted
dump-only flag are ignored.

Obtaining Documentation for Debugging

If a problem has to be analyzed, any information which might be relevant is important, in partic-
ular, the executed JCS and the corresponding console log.

The following sample job is intended to show you how to obtain comprehensive documentation:

// JOB sample job
// OPTION LOG,PARTDUMP to see JCL on printer
/* Library Definitions: labels and LIBDEFs
...
/* ADARUN Parameter Input Definition
// ASSGN SYS000,SYSRDR
/* Natural Work File Definitions
// DLBL CMWKFnn,'...',... disk work file
// EXTENT SYSnnn,volser,,,nn,mm
// ASSGN SYSnnn,DISK,VOL=volser,SHR
// TLBL CMWKFnn,'...',... labeled tape work file
// ASSGN SYSnnn,cuu assignment to tape unit
/* Natural Print File Definitions
// ASSGN SYSnnn,cuu assignment to print UR unit
// DLBL CMPRTnn,'...',... print file on disk

Operations190

Natural in Batch Mode under z/VSE

// EXTENT SYSnnn,volser,,,nn,mm
// ASSGN SYSnnn,DISK,VOL=volser,SHR
// TLBL CMPRTnn,'...',... print file on labeled tape
// ASSGN SYSnnn,cuu assignment to tape unit
/* Debugging Options
// ASSGN SYS040,SYSLST debugging trace unit
// UPSI 1xxx00xx flags as discussed above
// EXEC NATURAL,SIZE=...
... dynamic parameters
/* end of dynamic parameters
... ADARUN parameters
/* end of ADARUN parameters
... Natural input
/* end of Natural input
// EXEC LISTLOG print console messages
/& end of job

NATVSE Attention Interrupts

The Natural z/VSE batch mode interface (NATVSE) supports attention interrupts via the console
command MSG xx, where xx is the z/VSE partition ID a console operator can force on a NAT1016
attention interrupt event.

This special functionality is controlled by the Natural profile parameter ATTN.

191Operations

Natural in Batch Mode under z/VSE

192

27 Natural in Batch Mode under BS2000

■ Files and System Files Used by Natural in BS2000 Batch Mode .. 194
■ Keyword Parameters .. 196
■ BS2000 Job Variables .. 205

193

This document contains special considerations that refer to Natural in batch mode under the op-
erating system BS2000.

See also Natural under BS2000 Batch Mode Error Messages.

For considerations that refer to Natural in batch mode generally, see:

■ Adabas Data Sets
■ Sort Data Sets
■ Subtasking Session Support for Batch Mode Environments

Files and System Files Used by Natural in BS2000 Batch Mode

The following optional sequential files or system files are used during a Natural under BS2000
batch mode session:

ExplanationSystem FileLink Name

Dynamic Parameter Data SetCMPRMIN

Dynamic Parameter InputSYSIPT

Dynamic Parameter InputSYSDTA

Primary Input and Input for Natural INPUT StatementsSYSDTA

Primary Report OutputSYSLST

Primary Report OutputSYSOUT

Optional Report Output for Natural Tracing or Additional Reports, nn is the report
number

SYSLSTnn

Additional Reports, nn is the report numberPnn

Natural Work Files, nn is the work file numberWnn

CMPRMIN - Dynamic Parameter File

CMPRMIN can be used as dynamic parameter file if the system files SYSIPT or SYSDTA shall not be
used or are not available to Natural. The parameter file must be of FCBTYPE SAM.

All input records from CMPRMIN are concatenated into one parameter string. Trailing blanks at the
end of each record are truncated; no commas are inserted.

For further information on reading dynamic parameters, see the keyword parameter DYNPAR for
macro NAMBS2 (see DYNPAR=FILE).

Operations194

Natural in Batch Mode under BS2000

SYSIPT - Dynamic Parameter System File

The system file SYSIPT can be used as dynamic parameter file.

All input records from SYSIPT are concatenated into one parameter string.Only the first 72 positions
of each SYSIPT record are significant. Trailing blanks at the end of each record are truncated; no
commas are inserted.

For further information on reading dynamic parameters, see the keyword parameter DYNPAR for
macro NAMBS2.

SYSDTA - Dynamic Parameter System File

The system file SYSDTA can be used as dynamic parameter file.

All input records from SYSDTA are concatenated into one parameter string. Trailing blanks at the
end of each record are truncated; no commas are inserted.

Note: If SYSDTA is assigned to SYSCMD, the parameter input has to be closed off by an /EOF

command to separate it from succeeding primary input data.

For further information on reading dynamic parameters, see the keyword parameter DYNPAR for
macro NAMBS2 (see DYNPAR=FILE).

SYSDTA - Primary Input

The system file SYSDTA is used as the primary input file that contains Natural commands, Natural
source programs, and (optionally) data to be read by INPUT statements during the execution of
Natural programs.

The number of characters actually processed per line is determined by the current setting of the
profile/session parameter SL. This setting applies for both source statement and execution time
input data. This enables identification or sequence numbers to be placed in the rightmost columns
of every record, if desired.

SYSOUT, SYSLST - Primary Report Output

The system files SYSOUT or SYSLST are used for the primary output report, resulting from DISPLAY,
PRINT and WRITE statements in a Natural program.

The actually used systemfile depends on the value for the keywordparameter WRITE in the assembly
of the reentrant part of the Natural batch driver.

The system files SYSOUT or SYLST are also used as optional report output for dynamic parameters.
If the profile parameter PLOG is set to ON, all dynamic profile parameters are written to the same
destination as the primary report output.

195Operations

Natural in Batch Mode under BS2000

SYSLSTnn - Optional Report Output for Natural Tracing

If profile parameter ETRACE is set to ON, all trace output is written to this file during the session.

Depending on the value for the keyword parameter TRACE in the assembly of the reentrant part
of the Natural batch driver, one of the alternate SYSLST system files SYLST01 - SYSLST99 is used as
destination for the trace records.

Pnn - Additional Reports 01-31

Pnn is used for each additional report referenced by any Natural program compiled or executed
during the session. nnmust be a two-digit decimal number in the range 01-31, corresponding to
the report number used in a DISPLAY, PRINT and WRITE statement.

Instead of Pnn, any other link names may be used by setting the keyword subparameter DEST of
profile parameter PRINT to an appropriate value, for example:

PRINT=((nn),...,DEST=PRNTnn)

Wnn - Natural Work Files 01-32

Wnn is used for each Natural work file referenced by any Natural program compiled or executed
during the session. nnmust be a two-digit decimal number in the range 01 - 32, corresponding to
the number used in a READ WORK FILE or WRITE WORK FILE statement.

Instead of Wnn, any other link names may be used by setting the subparameter DEST of profile
parameter WORK to an appropriate value, for example:

WORK=((nn),...,DEST=WRKnn)

Keyword Parameters

The Natural BS2000 batch mode driver is generated by assembling the macro NAMBS2. For the
control of conditional assembly of the driver modules, the following keyword parameters are
available:

ADACOM | ADDBUFF | APPLNAM | CODE | DELETE | DYNPAR | ILCS | JV | LF | LINK | LINK2/LINK3/LINK4
| NUCNAME | PARMOD | REQMLOC | SYSDTA | TERM | TIMESTMP | TRACE | USERID | WRITE

Operations196

Natural in Batch Mode under BS2000

ADACOM

This parameter applies to the generation of the environment-dependent nucleus. It determines
which Adabas link module is to be used.

Possible values:

The module ADAUSER is linked to the environment-dependent nucleus.ADACOM=ADAUSER

The module ADAUSER is linked to the environment-dependent nucleus.ADACOM=ADABAS

The module ADALNK is linked to the environment-dependent nucleus or the modules
ADALNK and SSFB2C are linked to the environment-dependent nucleus.

This is the default.

ADACOM=ADALNK

In any case a resolve to the Adabas module library has to be given in the linkage step for the en-
vironment-dependent nucleus.

ADDBUFF

This parameter applies to the generation of the non-reentrant part.

It determines the additional number of pages for the terminal I/O buffer.

Possible values:

n specifies the number of pages in 4 KB units. Range of values: 1 to 8.ADDBUFF=n

There is no default.

APPLNAM

This parameter applies to the generation of the non-reentrant part.

Possible values:

name is the name (maximum 8 characters) of the Natural batch application. This name
is part of the serialization ID when the Natural batch task is initialized.

APPLNAM=name

This is the default.APPLNAM=NATBS2

197Operations

Natural in Batch Mode under BS2000

CODE

This parameter applies to the generation of both the non-reentrant part and the reentrant part.

It determines which part of the Natural BS2000 interface is to be generated.

Possible values:

Indicates the generation/assembly of the non-reentrant part.

This is the default.

CODE=FRONT

Indicates the generation/assembly of the reentrant part.CODE=RENT

DELETE

This parameter applies to the generation of the reentrant part.

Possible values:

The setting of the profile parameter DELETE in theNatural parameter modulemodule
determines whether dynamically loaded non-Natural programs are unloaded at the end

DELETE=ON

of the Natural program in which they are loaded or whether they are unloaded when
command mode is entered.

This is the default.

A dynamically loaded non-Natural program once loaded is kept for the duration of the
whole Natural session.

DELETE=OFF

DYNPAR

This parameter applies to the generation of the non-reentrant part.

Possible values:

No dynamic parameters are read.

This is the default.

DYNPAR=NO

The dynamic parameters are read from SYSDTA. If SYSDTA is assigned to SYSCMD, at
least an /EOF card must follow the /EXEC Natural card.

DYNPAR=SYSDTA

Example:

Operations198

Natural in Batch Mode under BS2000

/LOGON
/SYSFILE SYSDTA=(SYSCMD)
/EXEC NATBAT
/EOF * Null dynamic parameters
LOGON SYSEXTP
L * *
FIN
/LOGOFF

The dynamic parameters are read from SYSIPT.DYNPAR=SYSIPT

The dynamic parameters are read from a sequential file. The input of this SAM file is
interpreted as one single text string, which means that the individual entries must be

DYNPAR=FILE

separated from each other by a comma, even at the end of a line. Such a parameter file
must be defined with a FILE command by using the LINK parameter CMPRMIN.

Example:

/FILE NAT.PARAMS,LINK=CMPRMIN

ILCS

This parameter applies to the generation of the reentrant part.

Possible values:

3GL subprograms are invoked with common runtime environment convention. For this to
be possible, the ILCS initialization routine IT0SL#must be linked to the Natural
environment-dependent nucleus (see the Installation documentation):

ILCS=CRTE

INCLUDE IT0SL#,SYSLNK.CRTE.010
RESOLVE,SYSLNK.CRTE.010

3GL subprograms are invokedwith enhancedILCS linkage convention. For this to be possible,
the ILCS initialization routine IT0INITSmust be linked to the Natural
environment-dependent nucleus (see the Installation documentation):

ILCS=YES

INCLUDE IT0INITS,SYSLNK.ILCS
RESOLVE,SYSLNK.ILCS

Standard processing applies.

This is the default.

ILCS=NO

199Operations

Natural in Batch Mode under BS2000

JV

This parameter applies to the generation of the non-reentrant part.

Possible values:

The condition code created when the Natural session is terminated is passed to a job variable if
one has been declared with the link name *NATB2JV.

JV=ON

If your BS2000 installation does not include the BS2000 Job Variables subsystem, this parameter
must be set to OFF; otherwise assembly errors in the NAMBS2 compilation occur.

This is the default.

JV=OFF

LF

This parameter applies to the generation of the non-reentrant part.

With this parameter, you specify the control character to be used for line advance when printing
on the local printer.

Possible values:

zz: line advance control character in hexadecimal format.LF=X'zz'

This is the default.LF=X'25'

LINK

This parameter applies to the generation of the non-reentrant part.

Possible values:

The name(s) of programs and modules that are called from Natural programs and
linkedwith the non-reentrant partmust be specifiedwith this parameter. Conversely,

LINK=name
(LINK=name,name,...)

the programs and modules whose names are specified must be linked with the
non-reentrant part, otherwise the application is put into status SYSTEMERROR and
all users are rejected with an error message.

There is no default.

A “TABLE” macro call is performed for the specified programs and modules, which enters their
load addresses into the dynamic loader's link table. It is therefore not necessary to dynamically
load these programswhen they are called byNatural programs. For dynamically loaded programs,
only the load library needs to be defined in theNatural parameter module.

Example:

Operations200

Natural in Batch Mode under BS2000

LINK=PROG1
LINK=(PROG1,PROG2,MODUL111)

LINK2/LINK3/LINK4

These parameters apply to the generation of the non-reentrant part.

The parameters LINK2, LINK3 and LINK4 are an extension of the LINK parameter. Since an operand
definition cannot be longer than 127 characters (including parentheses), these parameters are
provided for cases where the operand of parameter LINKwould be too long.

Possible values:

n: 2, 3 or 4. The rest of the parameter syntax is analogous to that of LINK.LINKn=name
LINKn=(name,name,...)

There is no default.

Examples:

NAMBS2 LINK=(PROG1,PROG2,...),
LINK2=(PROG54,...)
NAMBS2 LINK=(PROG1,PROG2,PROG3,PROG4)

NUCNAME

This parameter applies to the generation of the non-reentrant part.

With this parameter, you specify the name of the bounded, reentrant Natural module. You must
use this name for the Natural pool and load information in macro ADDON (macro ADDON assembles
BS2STUB).

Possible values:

name is the name of the bounded, reentrant Natural moduleNUCNAME=name

This is the default.NUCNAME=NB2RENT

201Operations

Natural in Batch Mode under BS2000

PARMOD

This parameter applies to the generation of both the non-reentrant part and the reentrant part.

Possible values:

PARMOD=(nn,loc) nn: 24/31
loc: BELOW/ABOVE

This is the default.PARMOD=(31,ABOVE)

The first part of this parameter (nn) is used to define an addressing mode (24-bit or 31-bit mode)
for the Natural BS2000 application.

31-bit mode is required if the Natural buffer pool, the reentrant part of the Natural BS2000 applic-
ation, Adabas or the Adabas Fast Path pool is located above 16 MB.

The second part of this parameter (loc) is used to define the location of the Natural environment-
dependent nucleus (see the Installation documentation). If you load the environment-dependent
nucleus, this must be defined in the environment-dependent nucleus link procedure as follows:

LOADPT=*XS

or

LOADPT=X'address'

Example:

/EXEC TSOLINK
PROG NATvrs,FILENAM=NATvrs,LOADPT=*XS,...
TRAITS RMODE=ANY,AMODE=31
INCLUDE....
/* PARMOD=(nn,loc) MUST BE IDENTICAL IN THE NON-REENTRANT AND REENTRANT PARTS

vrs represents the relevant product version (see also Version in the Glossary).

REQMLOC

This parameter applies to the generation of both the non-reentrant part and reentrant part in 31-
bit mode (PARMOD=31).

This parameter determines where the requested Natural work areas are to be allocated by the
system using request memory.

Possible values:

Operations202

Natural in Batch Mode under BS2000

All areas are requested below 16 MB.REQMLOC=BELOW

All areas are requested above 16 MB.REQMLOC=ABOVE

All areas are requested depending on the location of the reentrant part.

This is the default.

REQMLOC=RES

The REQMLOC parameter corresponds to the LOC parameter of the BS2000 system macro REQM.

SYSDTA

This parameter applies for the generation of the non-reentrant part.

Possible values:

After reading of dynamic parameters from SYSDTA, SYSDTA is set to SYSFILE
SYSDTA=(PRIMARY).

This is the default.

SYSDTA=PRIMARY

After reading of dynamic parameters from SYSDTA, SYSDTA is set to SYSFILE
SYSDTA=(SYSCMD).

SYSDTA=SYSCMD

TERM

This parameter applies to the generation of the non-reentrant part.

Possible values:

The Natural batch application will be terminated.

This is the default.

TERM=PRGR

The system additionally executes the next SET-JOB-STEP command.TERM=STEP

TIMESTMP

This parameter applies to the generation of the non-reentrant part.

It determines the time base for all system variables and time stamps derived from the machine
time.

Possible values:

203Operations

Natural in Batch Mode under BS2000

Time base is UTC (former GMT).

This is the default.

TIMESTMP=UTC

Time base is the local machine timeTIMESTMP=LOCAL

TRACE

This parameter applies to the generation of the reentrant part.

With this parameter, you specify the number of a trace file and the maximum length of a trace
print record.

Possible values:

nn is the number for the SYSLSTnn trace file in the range of 01 to 99.

ll is the maximal length in characters of a trace print record in the range of 71 to 132.

TRACE=nn,ll

This is the default.TRACE=99,71

If any external Natural trace function is active, the trace records will be written to SYSLSTnn. In
this case, the Natural batch mode driver creates the following trace file:

Example:

NATURAL.TRACE.BTCH.TTTT,SPACE=(30,3)
SYSFILE SYSLSTnn=Natural.TRACE.BTCH.TTTT
/* TTTT is the task sequence number

Before the Natural batch mode session is terminated, the trace file will be closed as follows:

SYSFILE SYSLSTnn=(PRIMARY)

USERID

This parameter applies to the generation of the non-reentrant part.

Possible values:

The Natural user ID is created by using the BS2000 user ID.USERID=SYSTEM
or
USERID=YES

TheNatural user ID is created by using the job name; that is, the /.JOBNAME of the LOGON
command. If no BS2000 job namehas been specifiedwith theLOGON command, theNatural
user ID is created as with USERID=SYSTEM or YES.

USERID=USER
or
USERID=NO

This is the default.USERID=USER

Operations204

Natural in Batch Mode under BS2000

WRITE

This parameter applies to the generation of both the non-reentrant and the reentrant part.

This parameter defines the destination of the output produced by Natural.

Possible values:

Natural output is written to SYSOUT.WRITE=SYSOUT

Natural output is written to SYSLST.

This is the default value.

WRITE=SYSLST

BS2000 Job Variables

The Natural batch mode driver uses the BS2000 facility “Job Variables” to pass return codes to the
user or to subsequent jobs (steps). The return codes are created either by Natural itself (in the
range 1 to 31) or by the Natural application if a TERMINATE statement is used with the condition-
code option (the range to be used is 32 to 256).

The job variablewhich is to contain the return code has to be declared using the link name *NATB2JV.
The support of job variables depends on the setting of the SET parameter &JV in theNatural BS2000
batch mode driver NATBS2.

Example:

/LOGON
/DCLJV NATBJV,LINK=*NATB2JV
/EXEC NATnnnB
*TERMCC
/LOGOFF

To assign Return Code 36 to NATBJV, the Natural program TERMCC could be coded as follows:

ASSIGN CC(N8) = 36
TERMINATE CC
END

205Operations

Natural in Batch Mode under BS2000

206

28 Natural in Batch Mode (All Environments)

■ Adabas Data Sets .. 208
■ Sort Data Sets .. 208
■ Subtasking Session Support for Batch Mode Environments .. 208

207

This document contains general considerations that apply when running Natural in batch mode.

Adabas Data Sets

Adabas data sets must be specified only in single-user mode. They are identical to those required
for the execution of any normal application program using Adabas. See the relevant Adabas doc-
umentation for detailed information on Adabas data sets.

Sort Data Sets

Sort data sets must be specified if a Natural program containing a SORT statement is to be executed
during the Natural session.

The requirements are identical to those for execution of a normal COBOL or PL/1 application
program that invokes the operating system sort programand can vary according to the sort program
in use.

Natural does not require the intermediate data sets SORTIN and SORTOUT, but communicates with
the sort program via the E15 and E35 user-exit routine interfaces.

Subtasking Session Support for Batch Mode Environments

■ Purpose
■ Prerequisites
■ Functionality
■ Starting a Natural Session
■ Starting a Subtask
■ Accessing the User Parameter Area

Purpose

With subtasking support, you can run multiple Natural batch mode sessions within one address
space. This allows parallel processingwithin one address space, rather than executing subsequent
job steps, and can increase throughput dramatically.

Typically, client/server applications and products would take advantage of this functionality, for
example, theNatural remote procedure call.Multiple server subtasks can be started to communicate
with remote clients.

Operations208

Natural in Batch Mode (All Environments)

Prerequisites

If you wish to restart the Natural nucleus, it must be linked as a reentrant module (linkage editor
option RENT).

The Adabas link routine (ADALNK) must be generated with reentrancy support.

Functionality

You start a subtask by issuing a CALL statement from aNatural program. The newNatural session
(“subtask”) is started with an extended front-end parameter list. This list contains up to three
parameter sets:

■ dynamic Natural profile parameters,
■ startup parameters,
■ user parameters.

Variable names for standard I/O data sets (for example CMPRINT) and other parameters for the
batch mode interface startup can be passed from the starting program in the startup parameter
area. Standard I/O data sets can be undefined or dummy data sets; they can be owned by one
session or shared by multiple sessions.

Furthermore, a CALL interface is provided for reading the user parameter area with a Natural
program.

Starting a Natural Session

Extended Parameter List
The Natural batch mode interface without extended parameter list gets initial control from
the operating system using standard linkage call. Register 1 points to an address with high-
order bit on as the last address indicator. This address points to a halfword field containing
the length of the following parameter area.

The extended parameter list contains up to three parameter addresses. This is indicated by the
high-order bit in the last address which can be the first, second or third address. All parameter
addresses point to a halfword field containing the parameter length of the following parameter
area. Zero length indicates that there is no parameter area.
■ The first parameter area contains the dynamic profile parameters for the Natural session.
■ The second contains special startup parameters for the initialization of the batchmode inter-
face.

■ The third contains a user parameter area which can be accessed during the Natural session.

Startup Parameter Area
Whenmultiple batchmodeNatural (sub)tasks are running in the same region, by default these
sessions access the very same Natural standard I/O data sets (such as CMPRINT, CMSYNIN, etc),

209Operations

Natural in Batch Mode (All Environments)

as there are no Natural profile parameters available to set these file names. Also by default the
Natural system variables *INIT-ID and *INIT-USER are identical because of their definition
for batch mode.

In order to provide unique standard I/O data set names and unique IDs for Natural subtask
sessions the startup parameters in the extended parameter list can be used to overwrite the
Natural system defaults. The Startup Parameter area is a table of pairs of 8-character fields:
■ The first entry contains the 8-byte keyword to be replaced,
■ the second entry contains the 8-byte replacement value.

Keywords and replacement values must be padded with trailing blanks, if necessary.

The following keywords are valid:

Permanent hardcopy destinationCMHCOPY

Command input data set nameCMSYNIN

Object input data set nameCMOBJIN

Standard output data set nameCMPRINT

Dynamic parameter input data set nameCMPRMIN

Dynamic parameter output data set nameCMPLOG

Trace output data set nameCMTRACE

Job step name (system variable *INIT-ID)INITID

Spool class for dynamic allocation of CMPRINT and CMTRACE (z/OS only)MSGCLASS

Job submission data set name (z/OS only)NATRJE

Program load library name (see also profile parameter LIBNAM, Name of Load Library,
z/OS only)

STEPLIB

z/OS storage subpool (0 - 127, right justified)SUBPOOL

Initial user identification (system variable *INIT-USER)USERID

The usage of these entries is optional and no particular sequence is required. A blank value
for a data set means that this data set is not available or is empty.

Note concerning z/VSE:

By default, all print output (that is, the one resulting from CMPRINT, CMHCOPY, CMTRACE and
CMPLOG) is routed to SYSLST. An overwrite specification for these files starting with SYS is
considered a z/VSE system number overwrite. Possible format is SYSnnnwhere nnn is a three-
digit number in the range from 000 to 099; if you specify an invalid number nnn, it is ignored.

User Parameter Area
The format of the user parameter area is free. It can be accessed from any Natural program by
a special CALL interface see Accessing the User Parameter Area.

Operations210

Natural in Batch Mode (All Environments)

Starting a Subtask

The following call interface is supplied to be used by Natural programs to start a subtask in the
same address space.

Natural nucleus name getting control (mandatory). To restartwith the same nucleus, an asterisk
can be specified as the first character. The actual nucleus name is passed back in this field.

PGMNAME

Natural dynamic parameter areaNATPARML

Startup parameter areaSTRPARML

User parameter areaUSRPARML

All parameter areasmust start with the length of the following parameters. The following example
illustrates the usage of CMTASK.

Example:

DEFINE DATA LOCAL
01 PGMNAME (A8) INIT <'*'>
01 PARM1
02 NATPARML (I2) INIT <30>
02 NATPARMS (A30) INIT <'INTENS=1,IM=D,STACK=MYPROG'>
01 PARM2
02 STRPARML (I2) INIT <32>
02 STRPARM1 (A16) INIT <'CMPRINT SYSPRINT'>
02 STRPARM2 (A16) INIT <'CMPRMIN MYPARMS'>
01 PARM3
02 USRPARML (I2) INIT <80>
02 USRPARMS (A80) INIT <'special user parameters'>
END-DEFINE
CALL 'CMTASK' PGMNAME NATPARML STRPARML USRPARML
END

A sample program, ASYNBAT, can be found in library SYSEXTP.

Accessing the User Parameter Area

The user parameter area passed during startup can be read from any Natural program with the
following CALL statement:

CALL 'CMUPARM' USRPARML USRPARMS

USRPARML is the length (I2) of the USRPARMS area (before the call) and the length of the data returned
(after the call). USRPARMS is the parameter data area.

If the length of the data to be returned is greater than the area length, the data is truncated to the
area length. The following return codes are possible:

211Operations

Natural in Batch Mode (All Environments)

Data successfully moved0

Data moved but truncated4

No data available8

Length value not positive12

Insufficient number of parameters16

A sample program, GETUPARM, can be found in library SYSEXTP.

Operations212

Natural in Batch Mode (All Environments)

VII Natural Buffer Pools

This part contains information about the various storagemanagement functions that are available
to a Natural administrator under the operating systems z/OS, z/VSE and BS2000.

Natural Buffer Pool - General

Natural Global Buffer Pool under z/OS

Natural Global Buffer Pool under z/VSE

Common GBP Operating Functions under z/OS and z/VSE

Natural Global Buffer Pool under BS2000

For a functional overview of the Natural buffer pool, see Natural Buffer Pool in the Natural System
Architecture documentation.

For an overview of the Natural profile parameters that affect the Natural buffer pools, see Storage
Management in the section Profile Parameters Grouped by Category in the Parameter Reference docu-
mentation.

213

214

29 Natural Buffer Pool - General

■ Natural Buffer Pool Principle of Operation ... 216
■ Buffer-Pool Monitoring and Maintenance .. 221
■ Natural Global Buffer Pool ... 224

215

The buffer pool is a storage area into which Natural programs are placed in preparation for their
execution. Programs are moved into and out of the buffer pool as Natural users request Natural
objects. Conceptually, it serves a function similar to that of an operating system in loading programs
in and out of a reentrant area. TheNatural buffer pool is an integral part of Natural in all supported
environments.

Natural Buffer Pool Principle of Operation

Natural generates reentrant Natural object code. A compiled program is loaded into the buffer
pool and executed from the buffer pool. Thus, it is possible that a single copy of aNatural program
can be executed by more than one user at the same time.

This section covers the following topics:

■ Objects in the Buffer Pool
■ Directory Entries
■ Text Pool
■ Buffer Pool Hash Table
■ Buffer Pool Initialization
■ Buffer Pool Search Methods
■ Local Buffer Pool
■ Global Buffer Pool
■ Buffer Pool Cache

Objects in the Buffer Pool

Objects in the buffer pool can be programs, subprograms,maps and global data areas. Global data
areas are placed in the buffer pool only for compilation. In this case, two objects with the same
name are loaded in the buffer pool: the GDA itself and the corresponding symbol table.

Directory Entries

When a Natural object is loaded into the buffer pool, a control block called a directory entry is al-
located to this object.

A directory entry contains such information as the name of the object, what library it belongs to,
what database ID andNatural system file number the object was retrieved from, and some statist-
ical information (for example, the number of users who are concurrently executing the program
at a given point in time).

When a user executes a program, Natural checks the directory entries to see if the program has
already been loaded into the buffer pool. If it is not already in the buffer pool, a copy of the program
is retrieved from the appropriate Natural system file and loaded into the buffer pool.

Operations216

Natural Buffer Pool - General

When an object is loaded in the buffer pool, one or more other Natural objects which are currently
not being executed may be deleted from the buffer pool in order to make room for the newly
loaded object. When the new object is loaded, a new directory entry is created in order to identify
this object.

When an object is deleted from the system file, it will also be deleted from the buffer pool as soon
as it is no longer being used. When an object is newly cataloged or stowed, its old version will
also be deleted from the buffer pool as soon as it is no longer being used; when it is requested for
execution again, the new version will then be loaded from the system file into the buffer pool.

Text Pool

The actual object code of a program that is loaded into the buffer pool is placed into an area called
the text pool and must be allocated as a contiguous piece of memory within this text pool. This
text pool is divided into a number of 4 KB buffers. This is an arbitrary size and can be changed at
the Natural administrator's discretion. When an object is loaded, one or more text buffers that are
contiguous to each other are allocated to store the object code of the object.

Buffer Pool Hash Table

This section applies to buffer pools of TYPE=NAT only.

To speed up the search time for looking up an object in the buffer pool directory, a hash table is
used. The number of entries in the hash table is twice the number of directory entries, rounded
up to the next prime number. This will ensure that only half of the table is filled at any point in
time and that the probability of collisions is near zero. As a consequence, the average number of
tests to find an existing object in the hash table is theoretically less than 2.

The hash criterion is the eight character long program name. If more than one program name is
hashed to the same location in the hash table, an overflow technique resolves the collisions.

The storage required for the hash table is roughly 16 bytes per text block. Thus, the available
storage in the text pool is reduced by between 1.6% (1 KB text blocks) and 0.1% (16 KB text blocks).

Buffer Pool Initialization

In case of a global buffer pool the initialization occurs during start of the global buffer pool.

In case of a local buffer pool the initialization time varies depending on the environment.

■ In batch mode, TSO and TIAM, the initialization occurs when you begin the execution of the
Natural session.

■ In a TP monitor environment, the initialization generally occurs when the first user invokes
Natural under this TP monitor. Under Com-plete and CICS, it is also possible to initialize the
local buffer pool when the TP monitor is started.

217Operations

Natural Buffer Pool - General

Buffer Pool Search Methods

Asmentioned earlier and explained below, there are different searchmethods for allocating space
in the buffer pool.

To select a search method, use

■ The Natural profile parameters BPMETH and BPI.
Or the macro NTBPI in the Natural parameter module.
Or the function parameter METHOD of the global buffer pool.

For a description of these parameters and the macro NTBPI refer to the Natural Parameter Reference
documentation.

Below is information on the search methods:

■ METHOD=S

■ METHOD=N

■ Choosing Search Methods

METHOD=S
METHOD=S indicates that a selection process is used as search algorithm for allocating storage
in the buffer pool in order to obtain the space required to accomplish a new load.

The selection process used is a combination of search Algorithms 1 and Algorithm 2:
■ Algorithm 1
Search Algorithm 1 attempts to find storage in the buffer pool that is either free space or
space occupied by an unused (active but not used) object.

If free space of the exact object size required is found, the selection process ends immediately.
Otherwise, the search continues by browsing the buffer pool from top to bottom and com-
paring the entries in the buffer pool for best size fit. Additionally, in the case of unused objects,
the search also considers the last attached time of the object, that is, the time the object was
last referenced at a load or locate.

When the selection process has finished, either free space or the space of an unused object
with a size greater than or equal to the size requested is selected. The rule of precedence
that applies to the search is: free space is taken first and space of unused objects next. In the
case of unused objects, the oldest objects are removed first.

If the selection process of Algorithm 1 was not successful, Algorithm 2 is invoked.

Operations218

Natural Buffer Pool - General

■ Algorithm 2
Search Algorithm 2 starts if Algorithm 1 fails. Algorithm 2 starts searching from a position
in the buffer pool which is passed by Algorithm 1 and attempts to combine two or more
entities (free storage and/or space occupied by unused objects) in order to obtain the necessary
storage for a new load. However, the age of the object is not taken into account.

Algorithm 2 continues processing to the bottom of the text record section and, if necessary,
wraps around to the top of the text record section tomake one final pass from top to bottom.
If space is still unavailable, Algorithm 2 fails, the object cannot be loaded andNatural issues
a corresponding error message.

METHOD=N
METHOD=N indicates that the next available free or unused space is used in order to obtain the
space required to accomplish a new load. Unused space is space that is occupied by an active
but not used object.

The search for the next available space starts from a pointer that moves through the buffer
pool in a wrap-around fashion. Any next available buffer pool entries that are free or contain
unused objects can be used and possibly chained together to obtain the amount of storage re-
quested.

If the bottom of the buffer pool is reached during an allocation request, the pointer is wrapped
around to the top of the buffer pool and one final search is performed through the buffer pool
from top to bottom. If the bottom of the buffer pool is reached again and the object cannot be
loaded, the load fails and Natural issues a corresponding error message.

METHOD=N can especially be considered for large buffer pools in combination with the buffer
pool cache function. For details, see also Choosing Search Methods below.

Choosing Search Methods
Bydefault, METHOD=S is used. The advantage of thismethod is, that a diligent search is performed
to allocate space, taking into account the size and the age of objects and guaranteeing that the
most dispensable unused objects are removed from the buffer pool to provide space for a new
load.

A disadvantage of METHOD=S can be the highCPU time that is consumed by the selection process
when browsing the buffer pool from top to bottom.

The advantage of METHOD=N is the short selection process and, usually, little browsing that require
less CPU time for allocating space. This can be significant to large buffer pools.

The disadvantage of METHOD=N is that objects are selected less carefully for removal from the
buffer pool. To avoid an increase inAdabas I/Os for reloading removed objects, we recommend
that you use METHOD=N in combination with the buffer pool cache function.

219Operations

Natural Buffer Pool - General

Local Buffer Pool

Using Natural as supplied on the installation tape, you are running a local buffer pool. This is a
buffer pool area that is allocated in the same partition (or region or address space) of the particular
environment in use.

For example, in a batch or TSO environment, each user has his/her own local buffer pool. In a TP
monitor environment such as Com-plete, CICS or IMS TM, there is one buffer pool per TPmonitor
from which all TP users execute.

Global Buffer Pool

In a z/OS environment, a global buffer pool is allocated from CSA or ECSA storage. In such an
environment, all TSOusers, batch users andTPmonitor users could be executing fromone common
global area.

In a z/VSE environment, a global buffer pool is allocated from System GETVIS Area (below or
above). In such an environment, all batch users and TP monitor users could be executing from
one common global area.

In a BS2000 environment, a global buffer pool is a common memory pool, see Natural Global
Buffer Pool under BS2000.

For further information on the global buffer pool, see Natural Global Buffer Pool.

Buffer Pool Cache

This section applies to global buffer pools of TYPE=NAT and local buffer pools of TYPE=NAT or
TYPE=SWAP.

The buffer pool cache is available in conjunction with global and local buffer pools. It is used only
for Natural objects (programs, subprograms, maps, etc.), whereas it is not used for example for
objects generated by Natural for DL/I.

When a buffer pool is not large enough to take up all objects requested by the different users,
special overload strategies are used to replace existing objects with requested objects. The number
of overload situations has a direct relation to the efficiency of the buffer pool. The best and most
efficient way to reduce the disliked overloads, hence to improve the buffer pool performance, is
simply to increase its size.

However, this choice is not applicable at most customer sites, due to a lack of available storage in
the primary address space and/or the z/OS (E)CSA, z/VSE systemGETVIS area or BS2000Common
Memory Pool.

In order to improve the situation described above, a buffer pool cache is used. The main purpose
of this mechanism is to prevent a loss of all objects which were deleted from the buffer pool due
to “short-on-buffer-pool-storage” situations. This means, that an object delete results in a “swap

Operations220

Natural Buffer Pool - General

out to buffer pool cache”. The intended benefit of this feature is a reduction of database calls used
for object loading and consequently a performance improvement.

Note for Global Buffer Pools:
The buffer pool cache area is allocated in a data space. When a data space is created for a buffer
pool (profile parameter BPCSIZE specified for z/OS or z/VSE, or DATA parameter specified for
BS2000), the ownership is assigned to the creator task. If this task terminates, the system automat-
ically deletes the data space. Therefore, the creator task will stay alive in this case, regardless of
whether RESIDENT=Y has been set or not.

Note for Local Buffer Pools: (z/OS and z/VSE only, not for Com-plete and not for IMS TM)
The buffer pool cache is allocated in a data space or in a memory object "above the bar", that is, in
64-bit memory (z/OS only). When a data space or memory object is created for a buffer pool (see
profile parameters BPCSIZE and BPC64), the ownership is assigned to the creator task. If this task
terminates, the system automatically deletes the data space or the memory object.

Buffer-Pool Monitoring and Maintenance

The Natural utility SYSBPM (described in the Natural Utilities documentation) provides statistical
information on the current status of the buffer pool. SYSBPM also allows you to adjust the buffer
pool to your requirements.

The following topics are covered below:

■ Preload List
■ Blacklist
■ Propagation of Buffer-Pool Changes
■ Performance Considerations

Preload List

Apreload list is a list of objects that will be loaded into the buffer pool and remain there as resident.
When a user requests such an object for execution, it is always already in the buffer pool and need
not be loaded from the system file.

This may improve performance, may avoid buffer pool fragmentation, or may be useful to ensure
that central error transactions are always available, even if the database containing the system file
is not active.

At the start of the Natural session, Natural checks which of the objects on the preload list are
already in the buffer pool. Those which are not will then be loaded from the system file into the
buffer pool. This checking and loading is also performed whenever the buffer pool is connected,
re-connected and re-initialized using the SYSBPM utility. If a global buffer pool is re-initialized by
a REFRESH command, no checking takes place for existing Natural sessions. That is, as long as no

221Operations

Natural Buffer Pool - General

new Natural session is started that accesses this buffer pool, the objects on the preload list are not
loaded.

The load of the preload list is not serialized. That means, if multiple Natural sessions start concur-
rently, each session tries to load all objects named in the preload list into the buffer pool. This may
lead to duplicate entries of the same Natural object in the buffer pool (see also hint below).

A preload list is identified by name, and is attached to a specific buffer pool by specifying its name
as startup parameter (for a global buffer pool) or in the NTBPImacro (for a local buffer pool). Thus,
a different preload list may be defined for each buffer pool; or the same preload list may be used
for different buffer pools.

If the specified preload list cannot be located, or if objects contained on the preload list cannot be
loaded, Natural will issue a corresponding warning message at session initialization. In either
case, the preloading will be repeated for each subsequent session initialization.

As the objects on the preload list are the first to be loaded, they are located at the beginning of the
buffer pool (except if the initial preloading could not load all objects, in which case the objects
may be located anywhere in the buffer pool).

To maintain preload lists, you use the SYSBPM utility, see SYSBPM - Preload List Maintenance in the
Natural Utilities documentation.

Tip: To avoid problems with the load of the objects on a preload list by user sessions the
following procedure is recommended:

■ For a global buffer pool:
Immediately after the allocation or refresh of the global buffer pool, start a batchNatural session
that accesses the global buffer pool and that executes a FIN.

■ For a local buffer pool under CICS and Com-plete:
During startup of the TP system, start an asynchronous Natural session that access the local
buffer pool, and put a FIN command on the Natural stack. Ensure that this Natural session ref-
erences the name of the preload list in its NTBPImacro.

Blacklist

To prevent aNatural object from being executed, you can put it on a so-called “blacklist”: the object
can then not be loaded into the buffer pool; and if it is already in the buffer pool, it cannot be ex-
ecuted. A user requesting such an object to be executed will then receive an appropriate error
message.

You can put not only individual objects on the blacklist, but also entire libraries.

Examples

■ The blacklist may be useful, when you upgrade a Natural application and do not wish users to
continue to work with that application until you have finished the upgrade. Without the

Operations222

Natural Buffer Pool - General

blacklist, a usermight execute a newmodulewhich in turnwould invoke an oldmodule -which
might lead to an abnormal termination of the Natural session. With the blacklist, the user can
will receive a message that the requested object can currently not be executed, and can then
continue his/her Natural session.

■ Performance aspects may be another reason for using the blacklist to prevent certain resource-
consuming objects from being executed in a specific environment.

■ Youmay use the blacklist to prevent the execution of test programs in a production environment.

To maintain the blacklist, you use the SYSBPM utility. See SYSBPM - Blacklist Maintenance in the
Natural Utilities documentation.

Propagation of Buffer-Pool Changes

Note: Under z/OS, the propagation of buffer-pool changes is always restricted to the Nat-
ural subsystem inwhich the change has occurred (for details on the Natural subsystem, see
Natural Subsystem (z/OS) or Natural Subsystem (z/VSE). Thus, “all global buffer pools”
in this context means “all global buffer pools within the same subsystem”.

In some environments, it is important that changeswhich occur in one (local or global) buffer pool
are also propagated to all other global buffer pools - that is, the same changes are also automatically
made in the other global buffer pool - so as to ensure the consistency of the buffer pools and the
Natural applications being used. This is particularly important in a z/OS Parallel Sysplex environ-
ment.

For example, if a Natural program is newly cataloged in one z/OS image, the propagation will
cause the program to be deleted from all other global buffer pools in the z/OS Parallel Sysplex
environment, so that its new version has to be loaded from the system file when the program is
to be executed again.

The following changes are propagated:

■ an object is deleted from the buffer pool,
■ the buffer pool's blacklist is modified,
■ the buffer pool is re-initialized.

Changes can be propagated to all other global buffer pools within the current z/OS image, or
within the entire z/OS Parallel Sysplex environment, or all other global buffer pools of the same
name within the z/OS Parallel Sysplex environment.

The propagation does not affect those objects in another global buffer pool which are defined as
resident in that buffer pool.

The propagation is activated and its scope controlled by the Natural profile parameter BPPROP.

223Operations

Natural Buffer Pool - General

Note: As the propagation is performed asynchronously and an object is only deleted from
a buffer poolwhen it is not longer being used, itmay take some time until the current version
of an object is available in all buffer pools.

Propagation to other local buffer pools is not possible.

Performance Considerations

For general advice on performance-related issues regarding the buffer pool and the BP cache, see
Performance Considerations in the section SYSBPM Utility - Buffer Pool Management of the Natural
Utilities documentation.

Natural Global Buffer Pool

The Natural global buffer pool is an optional Natural component.

It is available for the following operating systems

■ z/OS (refer to Global Buffer Pool under z/OS)
■ z/VSE (refer to Global Buffer Pool under z/VSE)
■ BS2000 (refer to Global Buffer Pool under BS2000).

Profile Parameters Used

The following Natural profile parameters are used to establish a global buffer pool:

Specifies the name of the global buffer pool (see BPNAME). BPNAME=' ' (blank) is used to establish
a connection to the local buffer pool.

BPNAME

Specifies the ID of the Natural subsystem to be used (see profile parameter SUBSID; applies only
under z/OS and z/VSE).

SUBSID

During Natural startup, Natural attempts to locate the global buffer pool using these parameters.

Operations224

Natural Buffer Pool - General

Buffer Pool Opening / Closing Procedure

With the NTBPImacro of the Natural parameter module or the corresponding profile parameter
BPI, you can define more than one buffer pool.

At session initialization, Natural attempts to establish a connection to the first buffer pool defined.
If this fails, Natural attempts to establish a connection to the second buffer pool defined. If that
fails, too, it tries the next buffer pool defined, etc. Whenever an attempt to establish a connection
to a buffer pool fails, Natural will issue a corresponding message.

The same procedure applies when a buffer pool is stopped: if you close the currently connected
buffer pool while a Natural session is still active, Natural attempts to connect to another buffer
pool (in the order in which they are defined) and continue the session. Thus, it is possible for the
Natural administrator to close a global buffer pool without having to terminate all active Natural
sessions.

225Operations

Natural Buffer Pool - General

226

30 Natural Global Buffer Pool under z/OS

■ Using a Natural Global Buffer Pool .. 228
■ Prerequisites .. 228
■ Operating the Natural Global Buffer Pool .. 229
■ Sample NATGBPvr Execution Jobs ... 231
■ Localization .. 232
■ Messages .. 233

227

This document describes purpose and usage of a Natural global buffer pool (GBP) under the op-
erating system z/OS.

Certain parts of the Natural global buffer pool are identical under z/OS and z/VSE. These parts
are concentrated in a separate section (see Common GBP Operating Functions under z/OS and
z/VSE) which covers the following topics:

■ Global Buffer Pool Operating Functions
■ Global Buffer Pool Function Parameters
■ Examples of NATBUFFER Specifications

Using a Natural Global Buffer Pool

Purpose

The Natural global buffer pool is a segment of storage assigned from the z/OS extended common
system area (ECSA) above 16 MB (or from CSA storage below, if requested), used by Natural to
load and execute Natural programs.

Benefits

Using a global buffer pool,multipleNatural sessions under different TPmonitors (multiple copies
of CICS, TSO, IMS TM, etc.) and/or in multiple batch sessions share the same area - thus requiring
less storage than would be required for a local buffer pool in each environment.

Prerequisites

The following prerequisites must be met if you want to use a global buffer pool:

1. Themodule NATGBPvrmust have been linked into anAuthorized ProgramFacility (APF) library;
see the corresponding step in InstallingNatural on z/OS in the Installation for z/OSdocumentation.

2. The global buffer pool must have been started; see the corresponding step in Installing Natural
on z/OS in the Installation for z/OS documentation.

Operations228

Natural Global Buffer Pool under z/OS

Operating the Natural Global Buffer Pool

The global buffer pool is operated using the program NATGBPvrwhich must be executed from
within an Authorized Program Facility (APF) library.

The following topics are covered below:

■ Allocation of the Natural GBP
■ Setting up the Natural GBP
■ Starting the Natural GBP Operating Program
■ Stopping the Natural GBP Operating Program

Note: In the following document, vrs or vr represents the relevant version of the product.
For information on product versions, see Version in the Glossary.

Allocation of the Natural GBP

If the z/OS parameter ALLOWUSERKEYCSA(YES) has explicitly been specified in
SYS1.PARMLIB(DIAGxx), aNatural global buffer pool is allocated in user key, so thatNatural sessions
accessing a global buffer pool have write permission for that buffer pool.

If ALLOWUSERKEYCSA(NO) is in effect, a Natural global buffer pool is allocated in system key;
therefore, Natural sessions accessing a global buffer pool do not have any write permission for
that buffer pool. These Natural sessions call the Authorized Services Manager (ASM) to perform
all buffer pool functions. As a consequence, installation of the ASM is mandatory. The ASM is not
only called to load a Natural object into the buffer pool but also to maintain the use count of a
Natural object if the execution of this Natural object is started or terminated. The calls to the Au-
thorized Services Manager will increase Natural’s resource consumption. The overhead is hard
to predict and depends on the application profile (ratio of program calls to program execution
time).

Setting up the Natural GBP

The functions provided by the operating program NATGBPvr are activated in that they are

■ specified in a parameter card (PARM=),
■ read from a file (see below),
■ or supplied by the MODIFY operator command.

NATGBPvr expects the first command in the parameter field (PARM=) of the EXEC statement.

You may enter:

229Operations

Natural Global Buffer Pool under z/OS

■ one of the functions (described in the section Common GBP Operating Functions under z/OS
and z/VSE)

■ or a reference to an input file with CF=dd-name, where dd-name represents a DD name defined
in the JCL. Only “card image” files are supported, that is, RECFM=F,LRECL=80, and only the first
72 bytes of the input record are honored. Every record included from the input file represents
a command. Blank records or records prefixedwith an asterisk (*) are ignored. A file is processed
until End-Of-File (EOF). Example: PARM='CF=SYSIN1'

If the parameter field is not supplied or blank, the commandswill be read fromfile SYSIN by default.

It is only possible to enter one function at a time at the console or one function per line using the
command file, otherwise an error message will be returned.

Each command received, from the parameter card, from file input or from operator console input
is shown on the operator console.

Starting the Natural GBP Operating Program

To start the program NATGBPvr, either start a started task or submit a job, which executes NATGBPvr.

Important: To ensure that the global buffer pool is retained after a system failure, the global
buffer pool should be started automatically during machine IPL.

Stopping the Natural GBP Operating Program

After all commands are processed, the program NATGBPvr terminates, unless

■ RESIDENT=Ywas specified
■ or a buffer pool with a cache was created.

NATGBPvrwill return one of the following condition codes:

ExplanationCondition Code

All functions executed successfully.0

An error has occurred; see the message log for details.

See also the CC function parameter of the global buffer pool.

20

Operations230

Natural Global Buffer Pool under z/OS

Sample NATGBPvr Execution Jobs

The following examples show sample batch jobs for creating and terminating a global buffer pool.

In the following examples, the notation vrs or vr represents the relevant product version. For in-
formation on product versions, see Version in the Glossary.

Example 1:

//GBPSTART JOB
//*
//* Starts a global buffer pool with the name NATvrGBP, a size of 1 MB and
//* a text block size of 4 KB. The global buffer pool is allocated above 16 MB.
//* The subsystem used is NATv.
//* After the allocation, the job GBPSTART terminates.
//*
//STEP EXEC PGM=NATGBPvr,PARM='BPN=NATvrGBP,N=(1M)'
//SETPLIB DD DISP=SHR,DSN=USER.APF.LINKLIB

Example 2:

//GBPRES JOB
//*
//* Starts a global buffer pool with the name GBP, a default size of
//* 100 KB and a text block size of 1 KB. The global buffer pool is allocated
//* below 16 MB. The subsystem used is SAGS.
//* After the allocation, the job GBPRES will wait for further commands.
//* Further commands may be entered using the MODIFY operator command:
//* F GBPRES,command-string
//*
//STEP EXEC PGM=NATGBPvr,PARM='BPN=GBP,N=(,BL,1),S=SAGS,R=Y'

Example 3:

//GBPSTOP
//*
//* Stops the global buffer pool GPB if it contains no active objects. If it
//* does contain active objects, the operator console will prompt for a reply.
//* Depending on the reply, the shutdown will be forced (Y) or aborted (N).
//* The subsystem used is NATv.
//*
//STEP EXEC PGM=NATGBPvr,PARM='FSHUT,BPN=GPB'

231Operations

Natural Global Buffer Pool under z/OS

Example 4:

//GBPSTRT2
//* Read commands from SYSIN1:
//*
//* Start two global buffer pools (subsystem ID Nvrs) with names
//* NATGBP1 - size=1024KB and a cache with size 2048KB, and
//* NATGBP2 - size=2048KB without cache.
//* Display all buffer pools of subsystem ID Nvrs.
//*
//* Note: The job does not terminate by itself, but stays resident and waits
//* for operator commands because it owns the data space allocated for
//* buffer pool NATGBP1.
//*
//* To shut down the buffer pools, send the operator command MODIFY with
//* parameter CF=SYSIN2 to execute the corresponding FSHUTs.
//*
//STEP EXEC PGM=NATGBPvr,PARM='CF=SYSIN1'
//SYSIN1 DD *
CREATE,BPN=NATGBP1,S=Nvrs,N=(1M),BPC=2M
CREATE,BPN=NATGBP2,S=Nvrs,N=(2M)
SHOWBP S=Nvrs
//SYSIN2 DD *
FSHUT,BPN=NATGBP1,S=Nvrs
FSHUT,BPN=NATGBP2,S=Nvrs
SHOWBP S=Nvrs
//*

Localization

The module NATGBPTX is delivered in source form. It contains all error messages in English in
mixed case. The messages can be translated into other languages as required. In this case, the
“new” NATGBPTX source module has to be assembled and the module NATGBPvr has to be relinked.

To issue the global buffer pool messages including their variable parts in upper case, the global
buffer pool parameter module NATGBPRM has to be assembled with the UCTRAN parameter set to
YES, and the module NATGBPvr has to be relinked.

To relink the module NATGBPvr, use the following JCL:

Operations232

Natural Global Buffer Pool under z/OS

//SYSLIN DD *
SETCODE AC(1)
SETOPT PARM(REUS=RENT)
INCLUDE NATLIB(NATGBPMG)
INCLUDE SMALIB(NATGBPRM)
INCLUDE SMALIB(NATGBPTX)
INCLUDE NATLIB(NATBPMGR)
NAME NATGBPvr(R)
/*

Messages

Refer toNatural Global Buffer PoolManagerMessages in theNaturalMessages andCodesdocumentation

233Operations

Natural Global Buffer Pool under z/OS

234

31 Natural Global Buffer Pool under z/VSE

■ Using a Natural Global Buffer Pool .. 236
■ Prerequisites .. 236
■ Operating the Natural Global Buffer Pool .. 237
■ Sample NATGBPvr Execution Jobs ... 238
■ Localization .. 240
■ Messages .. 240

235

This document describes purpose and usage of a Natural global buffer pool (GBP) under the op-
erating system z/VSE.

Certain parts of the Natural global buffer pool are identical under z/VSE and z/OS. These parts
are concentrated in a separate section (see Common GBP Operating Functions under z/OS and
z/VSE) which covers the following topics:

■ Global Buffer Pool Operating Functions
■ Global Buffer Pool Function Parameters
■ Examples of NATBUFFER Specifications

Using a Natural Global Buffer Pool

Purpose

The Natural global buffer pool is a segment of storage assigned from the z/VSE system GETVIS
storage above 16 MB (or from storage below, if requested), used by Natural to load and execute
Natural programs. The Natural global buffer pool is allocated in storage key 9, so that all particip-
ating partitions have write-access to it.

Benefits

Using a global buffer pool,multipleNatural sessions under different TPmonitors (multiple copies
of CICS, Com-plete, etc.) and/or in multiple batch sessions share the same area - thus requiring
less storage than would be required for a local buffer pool in each environment.

Prerequisites

1. The global buffer pool manager module NATGBPvrmust have been linked, and the start and
stop jobs must have been created. See the corresponding step in the section Installing Natural
on z/VSE in the Installation for z/VSE documentation.

2. A Natural global buffer pool under z/VSE requires the subsystem storage protection facility of
an ESA/390 or compatible processor. Consequently, it also requires aminimumoperating system
level of z/VSE Version 2 Release 4 for support of this hardware feature.

Operations236

Natural Global Buffer Pool under z/VSE

Operating the Natural Global Buffer Pool

The global buffer pool is operated by the program NATGBPvrwhich is contained in and executed
from the Natural load library.

The following topics are covered below:

■ Setting Up the Natural GBP
■ Starting the Natural GBP Operating Program
■ Stopping the Natural GBP Operating Program

Setting Up the Natural GBP

The functions available from the operating program NATGBPvr are activated in that they are

■ provided by a parameter card (PARM=),
■ read from a file (see below)
■ or supplied by the operator (AR command MSGxxwith xx being the z/VSE partition ID) unless
NATGBPvr has not been terminated.

NATGBPvr expects the first command in the parameter field (PARM=) of the EXEC job control statement.

You may enter:

■ one of the functions described in the section Common GBP Operating Functions under z/OS and
z/VSE

■ or a reference to an input file with CF=dlbl-name, where dlbl-name represents a DLBL name
defined in the JCL or the z/VSE (partition) standard labels. Only “card image” files are supported,
that is, RECFM=F,LRECL=80, and only the first 72 bytes of the input record are honored. Every
record included from the input file represents a command. Blank records or records prefixed
with an asterisk "*" are ignored. An asterisk (*) for dlbl-name indicates to the module NATGBPvr
that input has to be read from SYSIPT. A file is processed until End-Of-File (EOF).

Example: PARM='CF=SYSIN1'

If the parameter field is not supplied or is blank, the commandswill be read from SYSIPT by default.

It is only possible to enter one function at a time at the console or one function per line using the
command file, otherwise an error message will be returned.

Each command received from the parameter card, from file input or from operator console input
is shown on the operator console and is logged to SYSLST.

237Operations

Natural Global Buffer Pool under z/VSE

Starting the Natural GBP Operating Program

To start the program NATGBPvr, submit a job that executes NATGBPvr.

Important: To ensure that the global buffer pool is retained after a system failure, the global
buffer pool should be started automatically during machine IPL.

Stopping the Natural GBP Operating Program

After all commands are processed, the operating program NATGBPvr terminates unless

■ RESIDENT=Ywas specified or
■ a buffer pool with a cache was created.

NATGBPvrwill return one of the following condition codes:

ExplanationCondition Code

All functions executed successfully.0

An error has occurred; see the message log for details.20

Sample NATGBPvr Execution Jobs

The following examples show sample batch jobs for creating and terminating a global buffer pool.

In the following examples, the notation vrs or vr represents the relevant product version. For
further information on product versions, see Version in the Glossary.

Example 1:

// JOB GBPSTART
/*
/* Starts a global buffer pool with the name NATvrGBP, a size of 1 MB and
/* a text block size of 4 KB. The global buffer pool is allocated above 16 MB.
/* The subsystem used is NATv.
/* After the allocation, the job GBPSTART terminates.
/*
// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
// EXEC NATGBPvr,SIZE=NATGBPvr,PARM='BPN=NATvrGBP,N=(1000)'
/*
// EXEC LISTLOG
/&

Operations238

Natural Global Buffer Pool under z/VSE

Example 2:

// JOB GBPRES
/*
/* Starts a global buffer pool with the name GBP, a default size of
/* 100 KB and a text block size of 1 KB. The global buffer pool is allocated
/* below 16 MB. The subsystem used is SAGS.
/* After the allocation, the job GBPRES will wait for further commands.
/* Further commands may be entered using AR command MSG partition-id:
/* the job GBPRES will then prompt for console input.
/*
// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
// EXEC NATGBPvr,SIZE=NATGBPvr,PARM='BPN=GBP,N=(,BL,1),S=SAGS,R=Y'
/*
// EXEC LISTLOG
/&

Example 3:

// JOB GBPSTOP
/*
/* Stops the global buffer pool GPB if it contains no active objects. If it
/* does contain active objects, the operator console will prompt for a reply.
/* Depending on the reply, the shutdown will be forced (Y) or aborted (N).
/* The subsystem used is NATv.
/*
// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
// EXEC NATGBPvr,SIZE=NATGBPvr,PARM='FSHUT,BPN=GBP'
/*
// EXEC LISTLOG
/&

Example 4:

// JOB GBPSTRT2
/* Read commands from SYSIPT:
/*
/* Start two global buffer pools (subsystem ID Nvrs) with names
/* NATGBP1 - size=1024KB and a cache with size 2048KB, and
/* NATGBP2 - size=2048KB without cache.
/* Display all buffer pools of subsystem ID Nvrs.
/*
/* Note: The job does not terminate by itself, but stays resident and waits
/* for operator commands because it owns the data space allocated for
/* buffer pool NATGBP1.
/*
/* If the buffer pools should shut down, wake up the sleeping job by the MSG ↩
partition ID
/* and enter the parameter "CF=*" to execute the corresponding FSHUTs.
/*

239Operations

Natural Global Buffer Pool under z/VSE

// LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
// EXEC NATGBPvr,SIZE=NATGBPvr
CREATE,BPN=NATGBP1,S=Nvrs,N=(1M),BPC=2M
CREATE,BPN=NATGBP2,S=Nvrs,N=(2M)
SHOWBP S=Nvrs
/*
FSHUT,BPN=NATGBP1,S=Nvrs
FSHUT,BPN=NATGBP2,S=Nvrs
SHOWBP S=Nvrs
/*

Localization

The module NATGBPTX is delivered in source form. It contains all error messages in English in
mixed case. The messages can be translated into other languages as required. In this case, the
“new” NATGBPTX source module has to be assembled and NATGBPvr has to be relinked.

To issue the global buffer pool messages including their variable parts in upper case, the global
buffer pool parameter module NATGBPRM has to be assembled with the UCTRAN parameter set to
YES, and NATGBPvr has to be relinked.

To relink NATGBPvr, use the following JCL:

// OPTION CATAL,LIST
ACTION NOAUTO,SMAP
PHASE NATGBPvr,*
INCLUDE NATGBPMG
INCLUDE NATGBPRM
INCLUDE NATGBPTX
INCLUDE NATBPMGR
ENTRY CMSTART
/*

Messages

Refer toNatural Global Buffer PoolManagerMessages in theNaturalMessages andCodesdocumentation

Operations240

Natural Global Buffer Pool under z/VSE

32 Common Natural GBP Operating Functions under z/OS

and z/VSE
■ Global Buffer Pool Manager Parameter Module ... 242
■ Global Buffer Pool Operating Functions .. 242
■ Global Buffer Pool Function Parameters ... 244
■ Examples of NATBUFFER Specifications ... 250

241

This document provides a summary of those operating functions of the Natural global buffer pool
which are identical under z/OS and z/VSE.

Global Buffer Pool Manager Parameter Module

The global buffer pool parameter module NATGBPRM is used to set global processing options which
apply to all functions and buffer pools. The global buffer pool parameter module is delivered in
source and object form with all defaults set.

The following parameter is available:

■ UCTRAN - Lower/Mixed Case Support

UCTRAN - Lower/Mixed Case Support

This parameter enables or disables the lower/mixed case support for the global buffer poolmessages.

Lower/mixed case support is fully enabled.

This is the default value.

UCTRAN=NO

All global buffer pool messages are issued in upper case.UCTRAN=YES

Global Buffer Pool Operating Functions

The following functions are available:

■ ADDCACHE - Allocate Cache for an Existing Global Buffer Pool
■ CREATE - Create Global Buffer Pool
■ DELCACHE - Release Cache of a Global Buffer Pool
■ FSHUT - Shut Down Global Buffer Pool
■ GLOBALS - Show Global Parameter Settings
■ LISTCACHE - List All Global Buffer Pool Caches Owned by Job
■ NOP - No-Operation
■ REFRESH - Re-initialize Global Buffer Pool
■ SHOWBP - Show Existing Buffer Pools
■ TERMINATE - Terminate GBP Operating Program
■ ZAPS - Display Zaps Applied to GBP

Note: If no function is specified, CREATE is assumed when the profile parameter BPNAME is
specified, otherwise NOP is assumed.

Operations242

Common Natural GBP Operating Functions under z/OS and z/VSE

ADDCACHE - Allocate Cache for an Existing Global Buffer Pool

This function adds cache storage to an existing global buffer pool.

CREATE - Create Global Buffer Pool

This function creates a global buffer pool with the specified parameters.

DELCACHE - Release Cache of a Global Buffer Pool

This function removes the cache storage of a global buffer pool without shutting down the buffer
pool itself.

FSHUT - Shut Down Global Buffer Pool

The global buffer pool is shut down, and the storage area is released.

If there are no active objects in the buffer pool, FSHUT is executed immediately.

If there are still active objects in the buffer pool, this will be indicated to the operator. Depending
on the setting of the parameter CONFIRM, the operator is asked for a confirmation or FSHUT is executed
immediately.

GLOBALS - Show Global Parameter Settings

This function shows all global parameter settings, that is, parameters which do not only apply to
the statement for which they have been specified.

In addition, the storage key of the global buffer pool(s) is shown.

LISTCACHE - List All Global Buffer Pool Caches Owned by Job

This function lists all global buffer pool caches currently owned by the job.

NOP - No-Operation

This function code particularly can be used to set global parameters.

243Operations

Common Natural GBP Operating Functions under z/OS and z/VSE

REFRESH - Re-initialize Global Buffer Pool

With the REFRESH command it is possible to re-initialize an already active buffer pool. As no storage
allocation takes place, the buffer pool size and location (above or below 16MB) remain unchanged.
However, it is possible to change the text-block size (see NATBUFFER parameter).

You should use this function only if the Current Use Count (see Fields for Buffer Pool Objects in
SYSBPM Directory Information) is equal to zero (see warning below) or if the buffer pool has been
destroyed.

Caution: If you re-initialize the buffer poolwhileNatural objects are being executed by active
sessions in this buffer pool, the results of the active sessions are unpredictable and Natural
may even abend.

SHOWBP - Show Existing Buffer Pools

Displays all buffer pools currently existing.

TERMINATE - Terminate GBP Operating Program

TheGBP operating program is terminated. This termination does not affect any active global buffer
pool.

ZAPS - Display Zaps Applied to GBP

Displays all Zaps applied to the global buffer pool operating program.

Global Buffer Pool Function Parameters

The functions of theNatural GBP operating program can be controlledwith the aid of parameters.
These parameters can be specified in any sequence. They can be abbreviated so that they are still
unique.

Note: If you like to start multiple global buffer pools with an associated cache, you are re-
commended to use a single job or (under z/OS only) a single started task and to supply the
different CREATE commands in an input data set. See Example 4 in the sectionNatural Global
Buffer Pool under z/OS or Example 4 in the section Natural Global Buffer Pool under z/VSE.

The following parameters are available:

■ BPNAME - Name of Global Buffer Pool
■ BPLIST - Name of Preload List
■ BPCSIZE - Buffer Pool Cache Size
■ CC - Count Condition Code

Operations244

Common Natural GBP Operating Functions under z/OS and z/VSE

■ CONFIRM - FSHUT Confirmation
■ IDLE - Wait Time before Check
■ METHOD - Search Algorithm for Allocating Space in Buffer Pool
■ NATBUFFER - Buffer Size, Mode, Text Block Size
■ RESIDENT - Behavior after Function Execution
■ SUBSID - Natural Subsystem ID
■ TYPE - Type of Buffer Pool

BPNAME - Name of Global Buffer Pool

BPNAME=value is required (except for the TERMINATE function). It specifies the name of the global
buffer pool to be created.

ExplanationValue

The name of the global buffer pool.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

8 bytes

For the functions DELCACHE and FSHUT, you may supply a value of "*" to process all buffer pools
for the specified Natural subsystem.

*

BPLIST - Name of Preload List

BPLIST=value specifies the name of the preload list.

ExplanationValue

The name of the preload list.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

8 bytes

BPCSIZE - Buffer Pool Cache Size

BPCSIZE=value specifies the amount of storage (in KB) used to allocate a data space for the buffer
pool cache.

ExplanationValue

The amount of storage (in KB) used to allocate a data space for the buffer pool cache.100 - 2097148

Notes:

1. The cache size can also be specified in units of MB or GB, for example, by specifying 10M for
10 MB.

2. If the BPCSIZE parameter is omitted (or set to zero), the buffer pool is not supplied with a cache.

3. A cache is only supported for buffer pools of TYPE=NAT.

245Operations

Common Natural GBP Operating Functions under z/OS and z/VSE

CC - Count Condition Code

CC=value determineswhether a condition code is ignoredwhen returned by a command executed
by the global buffer pool manager.

ExplanationValue

The condition code returned after command execution is counted for the condition code of the
NATGBPvr job.

This is the default value.

Y

The condition code returned after command execution is ignored.

This may lead to a job response code of zero although the command execution failed.

N

Note: This parameter is valid for all commands.

Example of Command Execution:

The global buffer pool QA82GBP is stopped and restarted with the following command sequence:

FSHUT BPN=QA82GBP,S=QA82,CONFIRM=N,CC=N
CREATE BPN=QA82GBP,S=QA82,N=(1024),M=S,BPC=4096,I=60

The FSHUT command usually returns a condition code of 20 when it executes and the buffer pool
is not active. However, with CC=N set, any condition code is ignored. In this case, a job response
code greater than zero is only returned if the following CREATE command fails.

CONFIRM - FSHUT Confirmation

CONFIRM=value controls the FSHUT behavior if there are still active objects in the buffer pool.

ExplanationValue

A confirmation for the FSHUT function is required from the operator. The operator can decide to abort
or to force the FSHUT function.

This is the default value.

Y

FSHUT is forced without interaction with the operator.N

Note: This parameter is only valid for the FSHUT command it has been specified with, that
is, CONFIRM has to be specified with each FSHUT parameter, and it does not apply to sub-
sequent FSHUT commands.

Operations246

Common Natural GBP Operating Functions under z/OS and z/VSE

IDLE - Wait Time before Check

IDLE=value is ignored when the task does not own a buffer pool cache.

ExplanationValue

The number of seconds to elapse before the GBP operating program checks for each buffer pool
cache if its associated buffer pool is still active; if not, that buffer pool cache is released; when the

Numeric

last buffer pool cache owned by the task has been released, the task terminates, unless RESIDENT=Y
has been specified.

This is the default value.60

Notes:

1. IDLE is a “global” parameter. Once specified, IDLEwill also apply to subsequent commands,
without your having to specify it again.

2. Under z/OS, the GBP operating program also checks the specified IDLE time value against the
job's timeout value: the specified IDLE time value internallymay reduce IDLE to prevent timeout
abends (S322).

METHOD - Search Algorithm for Allocating Space in Buffer Pool

METHOD=value controls which algorithm is to be used for allocating storage in the Natural buffer
pool.

ExplanationValue

Indicates that a selection process is to be used for allocating storage.

The selection process consists of browsing the whole buffer pool directory and comparing different
entries in order to find a most suitable entry. This method was formerly known as algorithm 1+2.

S

This is the default value.

Indicates that the next available unused or free space is to be used.

The search for the next available space is done from a pointer to directory entries which moves in a
wrap-around fashion. This method may be used in combination with a buffer pool cache.

N

Note: This parameter is only valid for the CREATE function. If you want to change the alloc-
ation method, restart the buffer pool.

247Operations

Common Natural GBP Operating Functions under z/OS and z/VSE

NATBUFFER - Buffer Size, Mode, Text Block Size

NATBUFFER=(size,mode,tsize) specifies the size and the mode of the buffer pool, and the text
block size.

ExplanationValueSyntax

is the amount of storage (in KB) to be allocated.sizeNATBUFFER=(size,mode,tsize)

For the Natural buffer pool (TYPE=NAT), the default and
minimum possible size is 256 KB.

For the other buffer pools, the default and minimum
possible size is 100 KB.

The specified amount of storage is always rounded up
to a multiple of 4 KB.

The pool size can also be specified in units of MB or GB,
e.g. by specifying 10M for 10 MB.

Next to the storage specified by size, one page (4 KB)
of write protected storage will be allocated for
administrative purposes.

determines if the global buffer pool is to be allocated
above or below 16 MB.

mode

Possible values are: XA = above (default), BL = below.

determines the text block size (in KB).tsize

Possible values are: 1, 2, 4, 8, 12, and 16. The default
value is 4.

size, mode and tsize have to be specified in the sequence shown above.

Note: If NATBUFFER is not specified, the default values will be used. See also Examples of
NATBUFFER Specifications.

RESIDENT - Behavior after Function Execution

RESIDENT=value specifies the behavior of the GBP operating program after the specified function
has been executed. The following values are possible:

Operations248

Common Natural GBP Operating Functions under z/OS and z/VSE

ExplanationValue

The GBP operating program will remain active after executing the specified function and await
further commands. Once specified, RESIDENT=Ywill also apply to subsequent commands, without
your having to specify it again. (To stop theGBPoperating program, youuse the TERMINATE function.)

Y

The GBP operating program will terminate after executing the specified function, if no further
command is available. If the task owns a buffer pool cache, RESIDENT=N is ignored and the task is
not terminated.

N

The GBP operating program automatically decides how to behave after having processed all
commands. It will terminate if

A

■ no further command is available and
■ no buffer pool with an associated cache exists that was created by this task.

In other words: If no buffer pool cache is owned by the task, RESIDENT=Aworks in the same way
as RESIDENT=N. When the task owns a buffer pool cache, RESIDENT=Aworks the same way as
RESIDENT=Y, but switches automatically to RESIDENT=N, when the last buffer poolwhose associated
buffer pool cache was owned by this task has terminated.

This is the default setting.

Note: RESIDENT is a “global” parameter. Once specified, RESIDENTwill also apply to sub-
sequent commands until explicitly specified/overwritten.

SUBSID - Natural Subsystem ID

SUBSID=value specifies the ID of the Natural subsystem.

ExplanationValue

The 4-byte ID of the Natural subsystem.

Once specified, SUBSIDwill also apply to subsequent commands, without your having to specify
it again.

4 bytes

The default value is NATv, where v is the first digit of the current Natural version.

This is the default value. v is the first digit of the current Natural version.NATv

Notes:

1. SUBSID is a “global” parameter, that is, once specified, SUBSIDwill also apply to subsequent
commands until explicitly specified/overwritten.

2. For the functions DELCACHE, FSHUT and SHOWBP, you may supply a value of "*" to process all
buffer pools for the specified Natural subsystem.

3. For further information on the Natural subsystem, see Natural Subsystem (z/OS) or Natural
Subsystem (z/VSE).

249Operations

Common Natural GBP Operating Functions under z/OS and z/VSE

TYPE - Type of Buffer Pool

TYPE=value specifies the type of the buffer pool. Possible values are:

ExplanationValue

Natural buffer pool (this is the default).NAT

Sort buffer pool.SORT

DL/I buffer pool.DLI

Editor buffer pool.EDIT

Monitor buffer pool.MON

Review Natural Monitor buffer pool.RNM

Examples of NATBUFFER Specifications

The following examples refer to the NATBUFFER parameter which is used to set buffer size, mode
and text block size, the parameter name being abbreviated (N).

Example 1: To allocate a global buffer pool above 16 MB, with a size of 1 MB and a text block size
of 1 KB, you specify:

N=(1000,,1)

or

N=(1M,,1)

Example 2: To allocate a global buffer pool above 16MB, with a size of 10 MB and a text block size
of 4 KB, you specify:

N=(10000)

or

N=(10M)

Example 3: To allocate a global buffer pool above 16 MB, with a size of 256 KB and a text block
size of 4 KB, you specify:

Operations250

Common Natural GBP Operating Functions under z/OS and z/VSE

N=(,,)

This is equivalent to omitting the NATBUFFER parameter altogether, as it causes the default values
to apply.

251Operations

Common Natural GBP Operating Functions under z/OS and z/VSE

252

33 Natural Global Buffer Pool under BS2000

■ Using a Natural Global Buffer Pool under BS2000 .. 254
■ Establishing the Global Buffer Pool under BS2000 ... 254
■ Administering the Global Buffer Pool under BS2000 ... 255

253

This document describes purpose and usage of a Natural global buffer pool (GBP) under the op-
erating system BS2000.

In the examples below, the notation vrs or vr represents the relevant product version. For further
information on product versions, see Version in the Glossary.

Using a Natural Global Buffer Pool under BS2000

The Natural global buffer pool is a common memory pool that can be used with BS2000 Version
10.0 and above.

On XS31 computers, it can be located either below 16 MB or in the extended address space above
16 MB. On non-XS31 computers, it can be located in the user address space below Class 4 storage
(whose size depends on how the operating system was generated).

The global buffer pool can be used by several Natural under TIAM, Natural under openUTM and
batch applications simultaneously. It is possible to have more than one global buffer pool per op-
erating system.

The global buffer pool has to be activated before the firstNatural application is started. It can remain
active as long as the operating system is active, even after the last Natural session has been termin-
ated. This means that the global buffer pool's contents are still available when a new session is
started and need not be loaded into the buffer pool again.

Establishing the Global Buffer Pool under BS2000

The global buffer pool is established by executing a batch jobwhich starts the programCMPSTART.
The global buffer pool's name, size, virtual address, etc. are determined by parameters specified
in this job.

Example of CMPSTART Job:

/SYSFILE SYSOUT.LST.BPvrsGA
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPSTART,$NATvrs.NATvrs.BS2.MOD)
NAME=BPvrsGA,TYPE=NAT,POSI=ABOVE,SIZE=2MB,ADDR=260,PFIX=NO,SCOP=GLOBAL
/SYSFILE SYSDTA=(PRIMARY)

If the parameter values are invalid or do not match the BS2000 environment, the buffer pool task
is terminated with an error message. The error message contains the reason for the termination
and (if applicable) the SVC return code. All error messages are output on SYSOUT. In the case of
grave errors, they are also displayed on the operator console.

Operations254

Natural Global Buffer Pool under BS2000

Administering the Global Buffer Pool under BS2000

Once the global buffer pool is active, it is administered via the operator console.

The following BS2000 console commands are available:

FunctionCommand

Displays the current parameters settings and the start time of the global buffer pool./INTRtsn,DPRM

Terminates the buffer pool task normally./INTRtsn,SHUT
/INTRtsn,STOP

Terminates the buffer pool task abnormally and produces a dump./INTRtsn,DUMP

Where tsn is the TSN of the buffer pool task.

The termination of the buffer pool task does not necessarily mean the termination of the global
buffer pool, as the commonmemorypool remains active until the end of the lastNatural application.

You can also terminate global buffer pools by executing the CMPEND program, for example:

/PROC C
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPEND,NATvrs.MOD)
name /* name of the global buffer pool
/SYSFILE SYSDTA=(PRIMARY)
/ENDP

255Operations

Natural Global Buffer Pool under BS2000

256

VIII Message Buffer Pool

257

258

34 Message Buffer Pool

■ Purpose ... 260
■ Prerequisites .. 260
■ Operating the Message Buffer Pool ... 260
■ Sample NATMBPvr Execution Jobs ... 262
■ Message Buffer Pool Operating Functions .. 263
■ Function Parameters .. 264
■ Messages .. 265

259

This part describes the use of the message buffer pool.

Note: The message buffer pool is available under z/OS.

Purpose

The message buffer pool is a cache memory which is used to store the Natural system messages
and the user texts.

Before an error message is output, Natural first checks whether the corresponding message text
is available in the message buffer pool. If so, this text is output. Otherwise, the error message
would be read from the database, and would be stored in the message buffer pool.

Themessage buffer pool is available only as a global buffer pool. Its use is optional, and is controlled
by the Natural profile parameter BPI or the corresponding macro NTBPI. When used, the message
buffer pool is allocated in a data space.

Prerequisites

The following prerequisites must be met if you want to use the message buffer pool:

1. Themodule NATMBPvrmust have been linked into anAuthorized ProgramFacility (APF) library;
see the corresponding step in InstallingNatural on z/OS in the Installation for z/OSdocumentation.

2. The message buffer pool must have been created and started; see the corresponding step in In-
stalling Natural on z/OS in the Installation for z/OS documentation.

3. The keyword subparameter TYPE of profile parameter BPI or macro NTBPImust be set to MSG.

Operating the Message Buffer Pool

The message buffer pool is operated by the program NATMBPvrwhich must be executed from
within an Authorized Program Facility (APF) library.

The following topics are covered below:

■ Setting up the Message Buffer Pool
■ Starting the Message Buffer Pool Operating Program

Operations260

Message Buffer Pool

■ Stopping the Message Buffer Pool Operating Program

Note: In the following document, vrs or vr represents the relevant version of the product.
For information on product versions, see Version in the Glossary.

Setting up the Message Buffer Pool

The functions available from NATMBPvr (see also Function Parameters) are activated in that they
are

■ provided by a parameter card (PARM=),
■ read from a file (see below),
■ or supplied by the MODIFY operator command unless NATMBPvr has not been terminated.

NATMBPvr expects the first command in the parameter field (PARM=) of the EXEC statement.

You may enter:

■ one of the functions described in the sectionCommonMessage Buffer PoolOperating Functions,
■ or a reference to an input file with CF=<dd-name>, where <dd-name> represents a DD name
defined in the JCL.

Only “card image” files are supported; that is, RECFM=F,LRECL=80, and only the first 72 bytes of
the input record are honored.

Every record included from the input file represents a command.

Blank records or records prefixed with an asterisk (*) are ignored.

A file is processed until End-Of-File (EOF).

Example: PARM='CF=SYSIN1'

If the parameter field is not supplied or blank, the commandswill be read fromfile SYSIN by default.

It is only possible to enter one function at a time at the console, or one function per line using the
command file, otherwise an error message will be returned.

Each command received from parameter card, from file input or from operator console input is
displayed on the operator console.

261Operations

Message Buffer Pool

Starting the Message Buffer Pool Operating Program

To start the program NATMBPvr, either start a started task or submit a jobwhich executes NATMBPvr.

Stopping the Message Buffer Pool Operating Program

The program NATMBPvr is stopped by using the TERMINATE function (see CommonMessage Buffer
Pool Operating Functions) or, in case of emergency, by using the CANCEL operating program.

Sample NATMBPvr Execution Jobs

The following examples show sample batch jobs for creating and terminating a global buffer pool.

■ Example 1
■ Example 2
■ Example 3

Note: In the following examples, v, vrs or vr represents the relevant version of the product.
For information on product versions, see Version in the Glossary.

Example 1

//MBPSTART JOB
//*
//* Starts a message buffer pool with the name NATvrMBP and
//* a size of 10 MB.
//* The subsystem used is NATv.
//*
//STEP EXEC PGM=NATMBPvr,PARM='BP=NATvrMBP,SI=10'
//SETPLIB DD DISP=SHR,DSN=USER.APF.LINKLIB

Example 2

//MBPRES JOB
//*
//* Starts a message buffer pool with the name MBP and a default size of
//* 100 MB. The subsystem used is SAGS.
//*
//STEP EXEC PGM=NATMBPvr,PARM='BP=MBP,S=SAGS'

Operations262

Message Buffer Pool

Example 3

//MBPSTRT2
//* Read commands from SYSIN1:
//*
//* Start 2 message buffer pools (subsystem ID Nvrs) with name
//* NATMBP1 - size=1000MB
//* NATMBP2 - size=2000MB
//* If the buffer pools should shut down, send operator command MODIFY with
//* parameter "CF=SYSIN2" to execute the corresponding FSHUTs.
//*
//STEP EXEC PGM=NATMBPvr,PARM='CF=SYSIN1'
//SYSIN1 DD *
CREATE,BP=NATMBP1,S=Nvrs,SI=1000M
CREATE,BP=NATMBP2,S=Nvrs,SI=2000M
SHOWBP S=Nvrs
//SYSIN2 DD *
FSHUT,BP=NATMBP1,S=Nvrs
FSHUT,BP=NATMBP2,S=Nvrs
//*

Message Buffer Pool Operating Functions

The following functions are available:

■ CREATE - Create a Message Buffer Pool
■ FSHUT - Shut Down Message Buffer Pool
■ TERMINATE - Terminate Message Buffer Pool Operating Program
■ ZAPS - Display Zaps Applied to Message Buffer Pool

Note: The function names can be abbreviated. It is sufficient to use the first character only,
for example T for TERMINATE.

CREATE - Create a Message Buffer Pool

This function creates a message buffer pool with the specified parameters.

263Operations

Message Buffer Pool

FSHUT - Shut Down Message Buffer Pool

The message buffer pool with the specified parameters is deallocated.

TERMINATE - Terminate Message Buffer Pool Operating Program

The message buffer pool operating program is terminated. Prior to that, all active message buffer
pools are deallocated.

ZAPS - Display Zaps Applied to Message Buffer Pool

Displays all Zaps applied to the message buffer pool operating program.

Function Parameters

The functions of the message buffer pool operating program can be controlled with the aid of
parameters. These parameters can be specified in any sequence. They can be abbreviated.

The following parameters are available:

Name of message buffer pool.BPNAME

Name of the preload list (optional).BPLIST

Natural subsystem ID.SUBSID

Size of the message buffer pool.SIZE

Note: The underlined part of the parameter namemarks the shortest possible abbreviation.

BPNAME - Name of Message Buffer Pool

BPNAME=value specifies the name of the message buffer pool to be created.

ExplanationValue

The name of the message buffer pool.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

8 bytes

This is the default value.MTBP

Operations264

Message Buffer Pool

BPLIST - Name of Preload List

BPLIST=value specifies the name of the optional preload list.

ExplanationValue

The name of the preload list.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

8 bytes

There is no default value.

SUBSID - Natural Subsystem ID

SUBSID=value specifies the ID of the Natural subsystem.

ExplanationValue

The ID of the Natural subsystem.

Note: If the specified name is shorter than 8 bytes, blanks will be appended to it.

4 bytes

This is the default value, where v is the first digit of the current Natural version.NATv

SIZE - Size of Message Buffer Pool

SIZE=value specifies the size of the message buffer pool.

ExplanationValue

The size of the message buffer pool.1 - 2000 MB

This is the default value.100

Messages

Refer toMessage Buffer Pool Messages in theMessages and Codes documentation.

265Operations

Message Buffer Pool

266

IX Optimize Monitor Buffer Pool

267

268

35 Optimize Monitor Buffer Pool

■ Purpose ... 270
■ Prerequisites .. 270
■ Starting the Optimize Monitor Buffer Pool ... 271
■ Operator Commands .. 271
■ Messages .. 272

269

The Software AG product ETS Optimize for Infrastructure enables you to monitor all Software
AG component resources in real time. A global buffer pool, in the following called Optimize
Monitor Buffer Pool, is available inNatural to provide system and operational data formonitoring
all Natural components running in one LPAR (z/OS), on one machine (z/VSE) or on one host
(BS2000).

This part describes the use of the Optimize Monitor Buffer Pool.

Purpose

All Optimize for Infrastructure Key Performance Indicator (KPI) data is collected in an Optimize
Monitor Buffer Pool per LPAR (z/OS), machine (z/VSE) or host (BS2000). This buffer pool actually
is a data space.

It consists of the following parts:

■ Pool Header

The pool header holds control information and statistical data.
■ KPI Pool

The KPI pool holds all instances with their KPI data slots.
■ Session Data Pool

This is the pool where all sessions put their session data per dialog step.

The session data pool is written to in a wrap-around manner. Session data is aggregated by a
back-ground task (aggregation daemon) into the associated KPI slots.

Prerequisites

The following prerequisites must be met if you want to use the Optimize Monitor Buffer Pool:

1. The Optimize Monitor Buffer Pool must have been created and started; see the corresponding
step in Installing Natural on z/OS in the Installation documentation.

2. The profile parameter O4Imust be set to ON.

Operations270

Optimize Monitor Buffer Pool

Starting the Optimize Monitor Buffer Pool

You start the Optimize Monitor Buffer Pool either as a batch job or as a started task by executing
module NATO4Ivr (where vr represents the relevant product version).

To start the Optimize Monitor Buffer Pool

■ Specify the following parameters as PARM in the JCL EXEC statement (z/OS and z/VSE) or in
the SYSDTA logical system file (BS2000):

bp-size,subpool-size,daemon-idle-time,filled-threshold

All parameters are positional and must be separated by a comma. They are explained in the
table below:

Total Optimize Monitor Buffer Pool size in KB. Can also be specified in units of
MB or GB by adding a trailing M or G at the end of the size value.

bp-size

Size of KPI sub-pool.subpool-size

Aggregation daemon idle time in seconds. Valid Values:daemon-idle-time

This is the time interval the aggregation daemon will regularly wake
up and aggregate the session data into KPI data.

1 - 60

This is the default value.30

Session data pool “filled” threshold, when the aggregation daemon is triggered
for immediate wake-up. Valid values:

filled-threshold

“Filled” threshold in percent.20 - 80

This is the default value.50

Operator Commands

Notation:

The operator commands can be specified in any length from minimum (capital letter) up to full
command name length.

271Operations

Optimize Monitor Buffer Pool

End

Terminates the Optimize Monitor Buffer Pool.

In z/OS, the OptimizeMonitor Buffer Pool can also be terminated via the operator command STOP.

Halt

Stops the aggregation daemon.

Start

Restarts the aggregation daemon.

When restarted, the aggregation daemon starts from session data pool start.

Idle=nn

Sets the aggregation daemon idle time. nn = value in seconds.

Trigger=nn

Sets the aggregation daemon trigger threshold. nn = value in percent

Messages

Refer to Optimize Monitor Buffer Pool Messages in theMessages and Codes documentation.

Operations272

Optimize Monitor Buffer Pool

X Natural Swap Pool

This part provides information on the Natural swap pool which is available when you are using
either of the following TP monitors:

■ CICS
(where the Natural swap pool is optional)

■ openUTM
(where the Natural swap pool is necessary)

The behavior and the functionality of the Natural swap pool is to a large extent identical in these
environments. However, differences or TP-monitor-specific features exist. These are marked ac-
cordingly in the following texts.

Purpose of a Natural Swap Pool

Natural Swap Pool Operation

Swap Pool Initialization

Dynamic Swap-Pool Reorganization

Defining the Natural Swap Pool

Natural User Area Size Considerations

Swap Pool Data Space

Global Restartable Swap Pool under openUTM

Terminating the Global Swap Pool

Related Topics:

■ Natural Swap Pool under CICS in the TP Monitor Interfaces documentation
■ Using the Natural Swap Pool under CICS in the TP Monitor Interfaces documentation
■ Natural Swap Pool under openUTM in the TP Monitor Interfaces documentation
■ ErrorMessages from the Natural Swap Pool Manager Valid under CICS and openUTM in theMessages
and Codes documentation

273

274

36 Purpose of a Natural Swap Pool

■ Purpose of a Natural Swap Pool ... 276
■ Benefits of Using a Natural Swap Pool ... 276
■ Swap Pool Structure ... 276

275

This document describes the purpose, benefits and structure of a Natural swap pool.

Purpose of a Natural Swap Pool

A Natural user work area is required for each online Natural user. The size of this work area is
determined by the parameter MAXSIZE in the macro NTSWPRM.) The user work area must be in the
computer's main storage whenever the user initiates any form of dialog transaction.

In order to reduce the frequency with which the user work area is rolled out to the swap file (or
roll facility under CICS) and rolled in again, it is possible to set up a Natural swap pool.

For more details, refer toNatural Swap Pool Theory of Operation.

Benefits of Using a Natural Swap Pool

The user work areas are held in the Natural swap pool in compressed form as much as possible.
The amount by which disk swapping is reduced depends upon the size of the swap pool, the size
of each compressed Natural user work area and the number of online users.

If the userwork areas of all the online users can be kept resident in the swap pool, no disk swapping
takes place.

CommentTP Monitor

The size, name and cache size of the swap pool are specified using profile parameter BPI or
the correspondingmacro NTBPI in theNatural parametermodule, that is, the (NT)BPI settings
in effect for the Natural session initializing the Natural CICS environment are taken.

CICS

The size of the Natural swap pool is specified with the keyword parameter SIZE in the macro
ADDON or by program CMPSTART (see also the keyword parameters DATA and DESA for the
generation of swap pool data space).

openUTM

Swap Pool Structure

The physical swap pool is made up of the following parts:

■ Main directory
■ Logical swap pools with

■ Subdirectories
■ Swap pool slots

Operations276

Purpose of a Natural Swap Pool

Swap Pool Main Directory

The swap pool main directory refers to the entire swap pool. Up to 15 logical swap pools can be
defined.

Subdirectories

Each logical swap pool has its own subdirectory.

Swap Pool Slots

In the swap pool slots, the Natural user work areas are held in compressed form.

For the first initialization of the swap pool, the number of logical swap pools and the size of their
slots can be defined with the parameter SWPSLSZ in the macro NTSWPRM to generate the swap pool
parameter module.

Logical Swap Pools

Each logical swap pool contains a subdirectory and a guest table.

Each swap pool directory entry used is chained to its predecessor entry and successor entry. This
is also true for the entries in the guest table. In this way, the most recent and the oldest swap pool
users/guests are always known.

To define a guest in a logical swap pool, proceed as in the following example:

There is a swap pool with three logical swap pools (LSPs).

■ LSP 1 has a slot size of 62 KB.
■ LSP 2 has a slot size of 72 KB.
■ LSP 3 has a slot size of 82 KB.

The size of the compressed Natural user work area is 60 KB and therefore, this user work area
should be compressed into a slot of the logical swap pool 1. If LSP 1 is currently full (which is the
case in the above example) and LSP 2 contains a free slot, the user work area will be compressed
into LSP 2; if it is full, and LSP 3 contains a free slot, the user work area will be compressed into
LSP 3. A user work area in LSP 2 or 3 is a guest in these LSPs because its own LSP was full.

277Operations

Purpose of a Natural Swap Pool

CommentTP Monitor

TheNatural swappool is optional underCICS.Due toCICS command-level overhead, swapping
into or from the swap pool is faster than expensive roll I/Os. Nevertheless, if virtual storage is

CICS

a bottleneck, the installation of a swap pool may lead to performance degradations due to
paging overhead; see also Natural Swap Pool under CICS and Using the Natural Swap Pool under
CICS in the Natural TP Monitor Interfaces documentation.

TheNatural swap pool is necessary under openUTM. See alsoNatural Swap Pool under openUTMopenUTM

Operations278

Purpose of a Natural Swap Pool

37 Natural Swap Pool Operation

■ Users are On their Way to Natural - No Session Start .. 280
■ Users are Returning from Natural .. 280

279

Users are On their Way to Natural - No Session Start

If the user's work area is held in the swap pool, the corresponding slot is read and decompressed
into the Natural user thread. The corresponding swap pool directory entry is unlinked from the
directory chain and declared as a free entry. If it was a guest, the guest table will be updated.

If the user's work area is not held in the swap pool, it is read and decompressed from the Data
Space or from the swap file (or roll facility under CICS) into the Natural user thread.

Natural is activated.

Users are Returning from Natural

Natural checks whether the compressed length of the user work area exceeds the highest slot size
of the logical swap pools.

If it exceeds the highest slot size, the user work area is compressed and written asynchronously
to the swap file (or rolled to the roll facility, which is associated with the session under CICS).

If it does not exceed the highest slot size, Natural finds out whether there is a free slot in the user
work area's own swap pool:

■ If there is a free slot, the user work area is compressed into this slot. The corresponding directory
entry is linked into the directory chain as latest entry.

■ If there is no free slot, Natural finds out whether there are guests in the user work area's own
logical swap pool.

If there are one or more guests, a slot is made available: The oldest guest-table entry is unlinked
from the guest table and the until then second oldest ismade oldest guest. The adequate directory
entry is unlinked from the directory chain.

If there are no guests, a slot is made available: The oldest directory entry is unlinked from the
directory chain and the until then second oldest is made oldest.

■ If ESA Data Space is generated and there is a free slot available, this slot will be used before a
thread will be rolled out into a swap file.

The compressed user area of the unlinked user is transferred to the write buffer and written
asynchronously to the swap file (or rolled synchronously to the roll facility, which is associated
with the session under CICS). The current user's work area is compressed into the slot which has
become available. The corresponding directory entry is linked to the directory chain as latest entry.

The statistics tables for swap pool reorganization and slot size calculation are updated.

Operations280

Natural Swap Pool Operation

38 Natural Swap Pool Initialization

■ Swap Pool Initialization Control .. 282
■ Swap Pool Initialization Parameters ... 283

281

This document describes how to control the initialization of a Natural swap pool and contains an
overview of the keyword parameters available for initialization in the macro NTSWPRM.

Swap Pool Initialization Control

The parameter SWPINIT in the macro NTSWPRM controls the initialization of the swap pool.

If You Set SWPINIT=AUTO

■ The swap pool manager tries to read the swap pool initialization data with the swap pool name
as key from the Natural system file FNAT or FUSER (see keyword parameters SWPFILE of macro
NTSWPRM). If it finds data, they are used and the corresponding parameters in themacro NTSWPRM
are ignored. If it does not find data, the operand(s) of the keyword parameter SWPSLSZ in the
macro NTSWPRMwill be used for initializing the swap pool.

■ If the parameter SWPSLSZ contains only one slot size definition, the swap pool is initialized with
one logical swap pool. In the specified time interval (see parameter SWPTIM1 in the macro
NTSWPRM), the swap pool manager controls whether the swap pool needs to be reorganized or
optimized (see also the section Dynamic Swap-Pool Reorganization). If the swap pool was re-
organized, the newly calculated initialization data for the swap pool are stored in the Natural
systemfile for the next initialization. If the swap pool's reorganization has resulted inmore than
one logical swap pool, there will be no further dynamic swap pool reorganization.

■ Dynamic swap pool reorganization is not possible when the swap pool contains more than one
logical swap pool.

■ Further swap pool optimizations can be explicitly initialized with the following Natural SYSTP
utility functions:
■ Slot Size Calculation,
■ Swap Pool Parameter Service (modification of the swap pool initialization data in the Natural
system file),

■ Deactivate the Swap Pool and Activate the Swap Pool.

■ The maximum number of logical swap pools for dynamically reorganizing or optimizing the
swap pool can be defined in the operand of the keyword parameter SWPLSWP in macro NTSWPRM.

Operations282

Natural Swap Pool Initialization

If You Set SWPINIT=

■ No swap pool initialization data in theNatural systemfilewill be read or stored. The operand(s)
of the keyword parameter SWPSLSZ in the macro NTSWPRMwill be used for initializing the swap
pool.

■ The rules for dynamically reorganizing or optimizing the swap pool are the same as described
under SWPINIT=AUTO above, except that no initialization datawill be stored in theNatural system
file.

Swap Pool Initialization Parameters

The following is an overview of the keyword parameters that are available for initialization in the
macro NTSWPRM.

ExplanationParameter

Defines the number of logical swap pools, their slot sizes and the numerical relation between
slot number and logical swap pools.

SWPSLSZ

Defines the access to the swap pool initialization data through the Natural system file.SWPINIT

Defines the maximum number of logical swap pools for reorganizing swap pools dynamically.SWPLSWP

Defines the even-numbered minimum difference between the slot sizes of the different logical
swap pools. This value will be controlled during slot-size calculation and dynamic swap-pool
reorganization.

SWPSDIF

The following TP-monitor-specific requirements apply:

■ Under openUTM:
The size of the swap poolmust be specified in the operand of keyword parameter SIZE formacro
ADDON or program CMPSTART.

■ Under CICS:
The size, name and cache size of the swap pool are specified using profile parameter BPI or the
corresponding macro NTBPI in theNatural parameter module, that is, the (NT)BPI settings in
effect for the Natural session initializing the Natural CICS environment are taken.

283Operations

Natural Swap Pool Initialization

284

39 Dynamic Swap-Pool Reorganization

■ Requirements for Dynamic Swap-Pool Reorganization .. 286
■ Statistics Tables .. 286
■ Swap-Pool-Reorganization Plus Table ... 286
■ Swap-Pool-Reorganization Minus Table ... 287
■ Parameters for Swap-Pool Reorganization .. 287
■ Checking for the Necessity of Swap-Pool Reorganization .. 288
■ Flow of Dynamic Swap-Pool Reorganization ... 288
■ Start of Dynamic Swap-Pool Reorganization ... 289

285

This document describes the prerequisites, process, control and start of a dynamic swap pool re-
organization.

Requirements for Dynamic Swap-Pool Reorganization

Dynamic swap pool reorganization is only possible when the physical swap pool contains only
one logical swap pool. In this case, the swap pool slots are all of the same size. If necessary, the
number of logical swap pools and the slot sizes can be adjusted to meet the requirements. Slot
sizes are adjusted by reorganizing the swap pool dynamically.

Statistics Tables

The statistical area of the swap pool directory contains two statistics tables which are used for
swap pool reorganization:

■ swap-pool-reorganization plus table
■ swap-pool-reorganization minus table

Swap-Pool-Reorganization Plus Table

The swap-pool-reorganization plus table contains information on the Natural user areas which
could not be placed into the swap pool because their compressed length exceeded the swap-pool
slot size.

The table contains 11 entries:

■ The first 9 entries count the number of user areas whose length exceeded the slot size by 1 to 9
units.

■ The 10th entry counts the number of user areas whose length exceeded the slot size by more
than 9 units.

■ The 11th entry contains the average length of those user areas counted by the 10th entry.

Operations286

Dynamic Swap-Pool Reorganization

Swap-Pool-Reorganization Minus Table

The swap-pool-reorganization minus table contains information on the Natural user areas whose
compressed length was smaller than the swap-pool slot size.

The table contains 11 entries:

■ The first 9 entries count the number of user areas whose length was smaller than the slot size
by 1 to 9 “units”.

■ The 10th entry counts the number of user areas whose length was smaller than the slot size by
more than 9 units.

■ The 11th entry contains the average length of those user areas counted by the 10th entry.

The size of a “unit” is defined with the keyword parameter SWPFACT.

Parameters for Swap-Pool Reorganization

Dynamic swap-pool reorganization is controlled via the following keyword parameters in the
macro NTSWPRM.

SpecifiesParameter

the slot size for the first initialization of the swap pool. The default size is 62 KB.SWPSLSZ

if the slot size is to be fixed or dynamic. With fixed slot size, there is no dynamic swap pool
reorganization. If the slot size is defined as not fixed, the swap pool is dynamically reorganized
when necessary (this is the default).

SWPTFIX

the time interval at which a check is to be performed to ascertain whether a swap pool
reorganization is necessary. By default, the check is performed every 30 minutes.

SWPTIM1

the time to elapse after the check for the necessity of a swap pool reorganization is performed
and before the reorganization is to be started. By default, a reorganization is started 2 minutes
after a check has proved a reorganization to be necessary.

SWPTIM2

the rate of compressed user threads (in percent) which are too long for the actual SWP slot
length. If this value is reached and the physical SWP contains only one logical swap pool, an
SWP reorganization will be announced.

SWPUSER

the factor for a “unit” in the swap pool reorganization plus table and minus table.SWPFACT

There is no need to change the default values for any of these parameters (unless you feel that slot
size optimization is not performed efficiently enough).

For testing and optimizing, you can dynamically change the values for these parameters online
using the Natural Swap Pool Manager, which is part of the Natural utility SYSTP.

287Operations

Dynamic Swap-Pool Reorganization

Checking for the Necessity of Swap-Pool Reorganization

The check is based on:

■ the overall number of dialog steps during the time between two checks;
■ the percentage defined with the SWPUSER parameter;
■ the maximum number of logical swap pools defined with the SWPLSWP parameter;
■ the minimum difference of slot sizes for different logical swap pools;
■ the values of the swap-pool reorganization plus and minus tables (these tables are influenced
by the setting of the SWPFACT parameter);

■ the total size of the physical swap pool.

The number of necessary logical swap pools with the corresponding slot sizes will be computed
if the number of user areas whose compressed length was greater or smaller (by at least one unit)
than the current slot size is more than n percent of the number of dialog steps (n being the value
of the SWPUSER parameter).

When the swap pool is reorganized, the new logical swap pools are used. If the physical swap
pool contains more than one logical swap pool after the reorganization, there will be no further
dynamic swap-pool reorganization.

Flow of Dynamic Swap-Pool Reorganization

Natural will only check whether the swap pool needs to be reorganized if the physical swap pool
contains no more than one logical swap pool.

Once the time specifiedwith the SWPTIM1 parameter has elapsed, a check is performed to determine
whether a swap-pool reorganization is necessary.

■ If swap-pool reorganization is not necessary, the timer set with the SWPTIM1 parameter (time
interval between checks) is activated again.

■ If swap-pool reorganization is found necessary, the timer set with the SWPTIM2 parameter (time
interval between end of check and start of reorganization) is activated: no further user areas can
be placed in the swap pool; user areas held in the swap pool can still be used and read into the
user thread. Once this second time interval has elapsed, swap-pool reorganization is started.

Operations288

Dynamic Swap-Pool Reorganization

Start of Dynamic Swap-Pool Reorganization

After the time specified with the SWPTIM2 parameter has elapsed, the swap pool is reorganized
while the current online session continues:

1. The compressed user areas which are still held in the swap pool are written to the swap file (or
roll facility under CICS).

2. The contents of the swap-pool-reorganization statistics tables are written to SYSLST and then
deleted from the tables.

3. The swap-pool is re-initialized with the newly computed values.

4. The timer set with the SWPTIM1 parameter (time interval between checks) is activated again.

TheNatural swap-poolmanager, which is part of theNatural utility SYSTP (see theNaturalUtilities
documentation), can be used to obtain information on swap pool statistical data, sizes of Natural
buffers and user threads.

289Operations

Dynamic Swap-Pool Reorganization

290

40 Defining the Natural Swap Pool

■ Environment-Specific Requirements .. 292
■ Keyword Parameters of Macro NTSWPRM ... 292

291

This document describes the TP monitor environment-specific requirements that apply and the
keyword parameters can be used to define the Natural swap pool.

Environment-Specific Requirements

The following environment-specific requirements apply:

■ Under openUTM:
TheNatural swap pool is defined by specifyingmacro NTSWPRM for assembling theNatural swap-
pool parameter module.

■ Under CICS:
TheNatural swappool is defined by specifying NTSWPRM in the NCISCPCB environment definition
module or in theNatural parameter module. If the NTSWPRMmacro is specified both in the
NCISCPCB environment definitionmodule and in theNatural parametermodule, the specification
in NCISCPCB takes precedence over the specification in the Natural parameter module.

Keyword Parameters of Macro NTSWPRM

The following keyword parameters can be used to define the Natural swap pool details:

DSPCONT | DSPLIFE | LABEL | MAXLOCK | MAXSIZE | NOVPA | NOVPW | SWPCOPT | SWPFACT | SWPFILE
| SWPINIT | SWPLSWP | SWPPWRD | SWPSDIF | SWPSLSZ | SWPTFIX | SWPTIM1 | SWPTIM2 | SWPUSER |
WAITMS | WRITMS |

DSPCONT - Minutes for Data Space Slot Control

This parameter defines the time (in minutes) after which data space control takes place when the
ESA Data Space area is full. When this time has elapsed, the slots in the Data Space are checked
for whether their threads' life time has expired. If so, the compressed Natural user thread of each
affected slot is rolled out into the roll file.

nnnmust be in the range from 1 to 480.DSPCONT=nnn

The default value is 10 (minutes).DSPCONT=10

Operations292

Defining the Natural Swap Pool

DSPLIFE - Life Time in Minutes for a Thread in the ESA Data Space

This parameter defines the life time for a compressedNatural user thread in a slot of the ESAData
Space. When the data space slots control logic becomes active, the thread is rolled out if its life
time has elapsed. The life time of a thread starts when the thread is written to the ESAData Space.

nnmust be in the range from 1 to 60.DSPLIFE=nn

The default value is 5 (minutes).DSPLIFE=5

LABEL - Name of Swap-pool Parameter Module

This parameter defines the CSECT name of the swap-pool parameter module.

The name nnnnnnnnmay be 8 characters at maximum.LABEL=nnnnnnnn

The default setting is the name of macro NTSWPRM.LABEL=NATSWPRM

MAXLOCK - Maximum Lock Count

This parameter sets the timeout limit for users of the swap pool. If the limit is exceeded, the swap
pool is considered to be destroyed and permanently locked,which is indicated by the errormessage
NUS0180.

nnnmust be in the range from 10 to 999.MAXSIZE=nnn

This is the default setting.MAXSIZE=10

MAXSIZE - Size of Natural User Threads

This parameter defines the size nnn of the Natural user threads in KB. For information on how to
determine this size, see Using the MAXSIZE Parameter.

nnnmust be in the range from 64 to 32768.MAXSIZE=nnn

The default setting is 400 (KB).MAXSIZE=400

Under CICS, this parameter specification is ignored, because the Natural CICS Interface will
automatically take the size of the largest thread for this parameter.

293Operations

Defining the Natural Swap Pool

NOVPA - Number of Waits for Completed Asynchronous Write

This parameter determines the number of waits for a completed asynchronous write.

nnnmust be in the range from 1 to 999.NOVPA=nnn

The default value is 20 (waits).NOVPA=20

NOVPW - Number of Waits for Unlocked Swap Pool

This parameter determines the number of waits for an unlocked swap pool.

nnnmust be in the range from 1 to 999.NOVPW=nnn

The default value is 15 (waits).NOVPW=15

SWPCOPT - Optimizing Size Use of Swap Pool Cache Slot

This parameter determines whether to adjust the size of the swap pool cache slot to optimize
storage utilization of the roll file slot.

The slot size of the swap pool cache is set to half the size of the roll file slot.

SWPCOPT=Y is only accepted if the roll file slot is at least the size of the maximum thread size
(MAXSIZE). This is always the case under CICS since the roll file slot is internally set to the
maximum thread size.

SWPCOPT=Y

The slot size of the swap pool cache is set to the slot size of the roll file.

This is the default setting.

SWPCOPT=N

SWPFACT - Size of Unit in Reorganization Tables

The factor n you specify with this parameter determines the size of a “unit” in the swap-pool reor-
ganization plus tables and minus tables.

Possible values for n are 0 to 4. n determines the size of a “unit” as follows:SWPFACT=n

Corresponds toValue

2 KB0

4 KB1

8 KB2

16 KB3

32 KB4

The default setting is 4 KB.SWPFACT=1

Operations294

Defining the Natural Swap Pool

These tables are used to calculate slot sizes, to dynamically reorganize the swap pool and to get
swap-pool statistics see Dynamic Swap-Pool Reorganization.

SWPFILE - Location of Swap Pool Initialization Data

This parameter defines whether the swap-pool initialization data are stored in the Natural system
file FNAT or FUSERwhen the function SWPINIT=AUTO is used.

File definition for the swap pool initialization data.SWPFILE=FNAT/FUSER

The default value is FNAT.SWPFILE=FNAT

Note:

The FNAT default setting is for compatibility reasons. However, we recommend that you set this
parameter to FUSER if you want to achieve the following:

■ Ensure that the FNAT system file does not contain user-specific swap pool changes you defined
with the SYSTP utility.

■ Share an FUSER system file between different Natural versions. This is impossible with the FNAT
system file.

SWPINIT - Access to Swap-Pool Initialization Data

This parameter specifies the access to the swap-pool initialization data through theNatural system
file.

Blank, as described above under Swap Pool Initialization, see If You Set SWPINIT=.SWPINIT=

This is the default setting. The swap-pool initialization data are to be read from/stored in
the Natural system file. See also Swap Pool Initialization, If You Set SWPINIT=AUTO.

SWPINIT=AUTO

For more information on how to use this parameter, see Swap Pool Initialization.

SWPLSWP - Number of Logical Swap Pools

This parameter defines the maximum number n of logical swap pools to be used.

Possible values for n are 0 to 15.SWPLSWP=n

See Note 3 below.SWPLSWP=0

Notes:

1. The minimum size of a logical swap pool is 64 KB.

2. The value defined must not be smaller than the number of slot sizes defined in the parameter
SWPSLSZ.

295Operations

Defining the Natural Swap Pool

3. If the default value 0 is used, the swap-pool manager will compute the maximum number of
logical swap pools.

4. This parameter will be ignored if the swap-pool initialization data could be read from the Nat-
ural system file.

SWPPWRD - Administration Password

With this parameter, you specify the password for the administration of the swap-pool reorganiz-
ation control data and the Buffer Usage Statistics in the swap-pool manager subsystem of the
Natural utility SYSTP.

The password can be up to 4 characters long.SWPPWRD=password

This is the default value.SWPPWRD=ADMI

SWPSDIF - Minimum Difference of Slot Sizes

With this parameter, you specify theminimumdifference of the slot sizes in the logical swap pools.

nnmust be an even number and specifies the number of kilobytes (KB). nnmust be in the
range from 2 to 98.

SWPSDIF= nn

The default value is 8 KB.SWPSDIF=8

Note: This parameterwill be ignored if the swap-pool initialization data could be read from
the Natural system file.

SWPSLSZ - Number of Logical Swap Pools, Slot Sizes

This parameter determines the number of logical swap pools, the slot sizes and the relation of slot
numbers between the different logical swap pools.

This parameter will be ignored if the swap-pool initialization data could be read from the Natural
system file.

Under openUTM:
Make sure that the size specified for a logical swap pool does not exceed the size specified
with the ROLLTSZ keyword subparameter of the NATUTMmacro (see the TP Monitor Interfaces
documentation).

Possible values of SWPSLSZ are:

Operations296

Defining the Natural Swap Pool

Determines the slot size of a logical swap pool in
kilobytes (must be an even number). nnmust be in
the range from 40 to 4096.

nnSWPSLSZ=(nn,f(,nn,f...))
SWPSLSZ=(nn(,nn...),f(,f...))
SWPSLSZ=(nn(, nn...))

Determines the relation in terms of a numerical
factor between the slot numbers of the different

f

logical swap pools. fmust be in the range from 1
to 9.

The default slot size is 62 KB. The default relation is 1.SWPSLSZ=(62,1)

Examples:

SWPLSZ=(44,1,62,2)
/* SWAP POOL SIZE IS 2048 KB
/* THERE WILL BE TWO LOGICAL SWAP POOLS, RELATION BETWEEN THEM IS 1:2
/* 1 LOGICAL SWAP POOL WITH 12 (1) 44-KB SLOTS
/* 1 LOGICAL SWAP POOL WITH 24 (2) 62-KB SLOTS<

SWPLSZ=(64,80,96)
/* SWAP POOL SIZE IS 8 MB
/* THERE WILL BE THREE LOGICAL SWAP POOLS, RELATION BETWEEN THEM IS 1:1:1
/* 1 LOGICAL SWAP POOL WITH 34 (1) 64-KB SLOTS
/* 1 LOGICAL SWAP POOL WITH 34 (1) 80-KB SLOTS
/* 1 LOGICAL SWAP POOL WITH 34 (1) 96-KB SLOTS

SWPTFIX - Fixed Slot Size

This parameter determines if the size of the swap pool slots is to be fixed or not. Possible values
are:

The slot size defined with the SWPSLSZ parameter (see above) is taken as a fixed size and no
reorganization of the swap pool takes place.

SWPTFIX=Y

This is the default value. The slot size defined with the SWPSLSZ parameter (see above) is not
taken as a fixed size and the swap pool is reorganized when necessary; that is, the size of the
slots is dynamically adjusted to meet the actual requirements.

SWPTFIX=N

Note: This parameter will be ignored if the physical swap pool contains more than one lo-
gical swap pool.

297Operations

Defining the Natural Swap Pool

SWPTIM1 - Time Interval for Reorganization Check

With this parameter, you specify the time interval nnn at which a check is to be performed to as-
certain whether a swap-pool reorganization is necessary. Possible values are:

nnnmust be in the range from 1 to 540 (minutes).SWPTIM1=nnn

The contents of the swap-pool-reorganization statistics tables are deleted after
the check (normally, they are only deleted after a swap-pool reorganization).

SWPTIM1=(nnn,RESET)

The default value is 30 (minutes).SWPTIM1=30

For details on how the check and a possible swap pool reorganization are performed, seeDynamic
Swap-Pool Reorganization.

Important: If the parameter SWPTFIX is set to Y or if the physical swap pool contains more
than one logical swap pool, the SWPTIM1 parameter does not apply.

SWPTIM2 - Lapse of Time Before Start of Reorganization

With this parameter, you can specify the time nn to elapse after the check for the necessity of a
swap-pool reorganization is performed and before the actual reorganization is to be started.

nnmust be in the range from 1 to 99 (minutes)SWPTIM2=nn

The default value is 2 (minutes).SWPTIM2=2

During this time, no further user areas can be placed in the swap pool, while user areas still held
in the swap pool can still be used and read in the Natural user thread.

For details on how the check and a possible swap-pool reorganization are performed, seeDynamic
Swap-Pool Reorganization.

If the parameter SWPTFIX is set to Y or if the physical swap pool contains more than one logical
swap pool, the SWPTIM2 parameter does not apply.

SWPUSER - Condition for Swap Pool Reorganization

With this parameter you can define which condition has to be met for a swap-pool reorganization
to take place.

Operations298

Defining the Natural Swap Pool

nnmust be in the range from 1 to 99.SWPUSER=nn

The default value is 20 (percent).SWPUSER=20

You can define a percentage value nnwhich determines the percentage of dialog steps of all users
where the length of the compressed user areas was 1 or more units larger (or 1 or more units
smaller) than the current slot size. If a check establishes that this percentage is reached, a swap-
pool reorganization takes place.

For details on how the check is performed, seeDynamic Swap-Pool Reorganization.

If the parameter SWPTFIX is set to Y or if the physical swap pool contains more than one logical
swap pool, the SWPUSER parameter does not apply.

WAITMS - Wait Time for Unlocked Swap Pool

This parameter determines the number of milliseconds for one wait of an unlocked swap pool.

nnnmust be in the range from 1 to 999.WAITMS=nnn

The default value is 5 (milliseconds).WAITMS=5

WRITMS - Wait Time for Completed Asynchronous Write

This parameter determines the number of milliseconds for one wait of a completed asynchronous
write.

nnnmust be in the range from 1 to 999.WRITMS=nnn

The default value is 10 (milliseconds).WRITMS=10

299Operations

Defining the Natural Swap Pool

300

41 Natural User Area Size Considerations

■ Using the MAXSIZE Parameter .. 302
■ Defining the Size of the Individual Natural Buffers .. 302
■ Possible Error Messages .. 302
■ Displaying the Aggregate Size of All Buffers .. 303
■ Calculating the Maximum Size ... 303

301

This document describes how to manage the size of the Natural user area and the size of the indi-
vidual Natural buffers.

Using the MAXSIZE Parameter

The overall size of the Natural user area is determined by the MAXSIZE parameter in the swap-pool
parameter module. Therefore the MAXSIZEmust be set large enough to contain the aggregate size
of all buffers that are required by Natural and also by possibly used subsystems (Con-nect, TRS,
etc.). The buffer requirements ofNatural and subsystems aremet by the TPdriver.When aNatural
application is started, a user thread with a size of MAXSIZE is created. This is done by a physical
request memory to the operating system.

The buffer requests of Natural to the TP driver cause only “logical” GETMAINs; that is, the Natural
user thread is then divided into “logical” units: the Natural buffers.

Defining the Size of the Individual Natural Buffers

The size of the individual Natural buffers is either explicitly defined in theNatural parameter
module (with the parameters ESIZE (size of user-buffer extension area), CSIZE (size of Con-nect
buffer area), etc.) or is implicitly determined by the definitions of the parameters PS (page size for
Natural reports), LS (line size), etc.

Themaximum sizes of theNatural buffers can be displayedwith the function Buffer Usage Statistics
of the Natural utility SYSTP. SYSTP also offers functions for ascertaining the overall maximum
Natural buffer sizes used for all users of a specific application.

Possible Error Messages

When the Natural error message NOT ENOUGH MEMORY or BUFFER SIZES EXCEED MAXSIZE appears,
this indicates that the MAXSIZE parameter value has not been defined large enough.

Operations302

Natural User Area Size Considerations

Displaying the Aggregate Size of All Buffers

The aggregate size of all buffers requested by Natural (that is, the amount of MAXSIZE actually
used by the users of an application) can be obtained via the Natural Swap Information function of
the SYSTP utility.

Calculating the Maximum Size

A standard way of calculating the MAXSIZE is:

Add all explicitly defined buffer sizes (for example, ESIZE) and 40 KB (the sum of the internal
Natural buffer sizes).

This gives you roughly the required size for MAXSIZE.

303Operations

Natural User Area Size Considerations

304

42 Swap Pool Data Space

■ Using ESA Data Space in Addition .. 306
■ ESA Data Space Slot Size Adjustment ... 306

305

This document describes how to extend the Natural Swap Pool capacity by generating ESA Data
Space.

Using ESA Data Space in Addition

To achieve a further reduction of the swap I/O operations, you can use the keyword parameters
DATA and DESA of the CMPSTART program to extend the Natural Swap Pool capacity by generating
ESA Data Space. This Data Space will be available to store compressed Natural user threads
whenever the Swap Pool runs out of space.

When this Data Space has been also consumed, a check occurs whether it is necessary to write
user threads from theData Space to the roll file, because their life time has ended (see the keyword
parameters DSPCONT and DSPLIFE of macro NTSWPRM).

If there is no free storage space in the Data Space, the swap pool logic will cause the oldest inactive
user thread to be written from the swap pool to the roll file.

ESA Data Space Slot Size Adjustment

The generated ESA Data Space is divided into slots of equal size.

■ If you are using the TP monitor openUTM, you can define the slot size by appropriately setting
the keyword parameter ROLLTSZ of the NATUTMmacro.

■ If you are using the TP monitor CICS, the Data Space slot size will automatically take the size
of the longest thread.

■ You can optimize use of the roll file slot by setting the keyword parameter SWPCOPT=Y (NTSWPRM
macro) to adjust the Data Space slot size.

The size, name and cache size of the swap pool are specified using profile parameter BPI or the
correspondingmacro NTBPI in theNatural parametermodule, that is, the (NT)BPI settings in effect
for the Natural session initializing the Natural CICS environment are taken.

Operations306

Swap Pool Data Space

43 Global Restartable Swap Pool under openUTM

■ Purpose of a Natural Global Swap Pool under openUTM ... 308
■ Installing a Natural Global Swap Pool under openUTM .. 308
■ Starting a Natural Global Swap Pool under openUTM ... 309
■ Displaying Information about the Global Swap Pool .. 309

307

This document describes how to install and operate aNatural global swap pool in aNatural under
openUTM environment.

Purpose of a Natural Global Swap Pool under openUTM

If all tasks of a Natural under openUTM application are terminated abnormally, the contents of a
local Natural swap pool are deleted. Consequently, when a task is started again, a new swap pool
is initialized and all users affected by the abnormal termination must start their Natural sessions
again.

To avoid this situation, a global (that is, restartable) swap pool can be used: after an abnormal
termination of the Natural under openUTM application, when the users log on to the application
again, the last screen displayed before the termination is sent again and the users can resume their
session at the point where they were interrupted.

Installing a Natural Global Swap Pool under openUTM

The following prerequisites are required for the installation of a global swap pool:

If a global swap pool is to be used, a global buffer pool must also be used. Before the restart of a
Natural under openUTM application, the global buffer pool must have been initialized; that is, at
least one user must have used this buffer pool by normally starting a new Natural session.

If a new global buffer pool is started before an abnormally terminated Natural under openUTM
application is restarted, a new global swap pool must also be started. However, if a new global
swap pool is started, a new global buffer pool need not be started as well.

The relation between the swap pool and the swap file is as follows: When the first openUTM task
uses a newly started swap pool, the swap file is opened with OPEN 'OUTIN', which means that the
contents of the swap file are deleted. When a subsequent openUTM task uses an already used
(initialized) swap pool, the swap file is openedwith OPEN 'INOUT', whichmeans that the contents
of the swap file can still be used.

Operations308

Global Restartable Swap Pool under openUTM

Starting a Natural Global Swap Pool under openUTM

A Natural global swap pool must be started with program CMPSTART. It can be used from a max-
imum of five Natural under openUTM applications.

Displaying Information about the Global Swap Pool

To obtain information on the current parameters settings of the global swap pool, as well as the
date and time of its start,

Issue the console command:

/INTRtsn,DPR

309Operations

Global Restartable Swap Pool under openUTM

310

44 Terminating the Global Swap Pool under openUTM

■ Termination Using Console Commands .. 312
■ Abnormal Termination with Dump .. 312
■ Termination by Program .. 312

311

This document describes the ways in which a Natural global swap pool can be terminated under
openUTM.

Caution: Before the swap pool is terminated, the Natural under openUTM application that
uses it must be terminated.

Termination Using Console Commands

To terminate the global swap pool normally

1 Issue the console command:

/INTRtsn,STOP

2 or issue the console command:

/INTRtsn,END

Abnormal Termination with Dump

To terminate the global swap pool abnormally, producing a dump

■ Issue the console command:

/INTRtsn,DUMP

The swap pool is terminated abnormally and a dump is produced.

Termination by Program

To terminate the global swap pool normally, using the program CMPEND

■ Issue the following command:

Operations312

Terminating the Global Swap Pool under openUTM

/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPEND,NAT230,MOD) name

313Operations

Terminating the Global Swap Pool under openUTM

314

XI System Spool Access

315

316

45 System Spool Access

■ Purpose ... 318
■ Prerequisite .. 318
■ Using the Write-to-Spool Feature .. 318

317

This document describes the Write-to-Spool feature for Natural.

This feature is available under z/OS and z/VSE only.

See also:

■ Installing and Activating the Write-to-Spool Feature in the section Installing Entire System Server
Interface on z/OS in the Installation for z/OS documentation.

■ Installing and Activating the Write-to-Spool Feature in the section Installing Entire System Server
Interface on z/VSE in the Installation for z/VSE documentation.

Purpose

The Write-to-Spool feature enables Natural users to write reports to the system spool directly. It
can be used in any Natural environment (Com-plete, TSO, CICS, IMS TM, batch, etc.) and uses
the Entire System Server view WRITE-SPOOL.

Under z/OS, the SYSOUT is part of the Entire System Server job stream within the JES spool, and it
may be processed by any software which expects output in JES Spool, for example, Entire Output
Management. The JES spool may be a JES2 or a JES3 spool.

Under z/VSE, the SYSOUT is a separate entry in POWER queue.

Prerequisite

To use the Write-to-Spool feature, the Entire System Server needs to be installed.

Using the Write-to-Spool Feature

TheWrite-to-Spool feature is handled by a so called “accessmethod”, which is called ESS for Entire
System Server. You may define your printer in theNatural parameter module or dynamically in
your session parameters.

Operations318

System Spool Access

Defining Your Printer

To define your printer

1 Define the printer in theNatural parameter module.

Use the NTPRINTmacro to specify the printer number (n) and the access method (AM):

NTPRINT (n),AM=ESS

Example:

NTPRINT (1,3),AM=ESS

In this example, the printers 1 and 3 are defined for usewith accessmethod ESS (Entire System
Server).

Or:

Define the printer during session startup by specifying the profile parameter PRINT, for ex-
ample:

PRINT=((1-6),AM=ESS)

In this example, the printers 1 to 6 are defined for use with access method ESS (Entire System
Server).

2 Link the access-method modules to the Natural nucleus.

See the platform-specific Installation documentation.

Or:

Load it dynamically by specifying the following profile parameters RCA and RCALIAS:

RCA=(NATAM11),RCALIAS=(NATAM11,NATPWSAM)

where NATPWSAM is the delivered write-to-spool module containing the default parameters.

If you have linked a module with adapted parameters, use the name of this module instead.

3 Define the JES destination with the OUTPUT option of the DEFINE PRINTER statement. You can
use one of the following examples depending on whether you want to send the output to a
spool file, a local JES printer, or through a remote JES node to a remote user or device.

Example:

319Operations

System Spool Access

DEFINE PRINTER (n) OUTPUT 'LOCAL' /* For printing on local JES/POWER printers

Or:

DEFINE PRINTER (n) OUTPUT 'DAEF' /* For printing to JES spool called DAEF

Or:

DEFINE PRINTER (n) OUTPUT 'DEST=node-name,REMOTE-USERID=user-id' /* For printing ↩
to remote JES nodes

where:

■ n is the number in the NTPRINT entry in theNatural parameter module described in Step
1.

■ node-name is the name of the remote JES node.
■ user-id the ID of the user or device who receives the output.

Reports can now be written to the system spool using one of the following statements:

DISPLAY (n)

or

PRINT (n)

where n is the number in the NTPRINT entry in theNatural parameter module in Step 1.

Users can set the output format and number of copies using the FORMS and COPIES clauses of
the DEFINE PRINTER statement.

Example:

DEFINE PRINTER (2) OUTPUT 'DEST'
FORMS 'FORM'

The defaults for items such as Entire System Server node, forms and output class can be found
in the module NATWSPDF.

Operations320

System Spool Access

Examples for z/OS

Example 1
Assume using the factory settings and executing the Natural program:

DEFINE PRINTER (2) OUTPUT 'WK1'
WRITE (2) 'THIS IS A SMART RECORD'
CLOSE PRINTER (2)

During the execution of this program, you can see the following fields with their values in the
Display Active Tasks panel:

DDNAME DSID Owner C Dest Rec-Cnt Forms Wtr PageDef FormDef
SYS00001 104 WKK A WK1 2 STD

Browsing this data set, you can see:

Page 1
THIS IS A SMART RECORD

Example 2
Assume using the default member:

Explanation (Possible Values)Parameter

Entire System Server target node number (5 characters at maximum)WSPDFLT NODE=55526,

JES writer (8 characters at maximum)PROGRAM=HUGO,

SYSOUT class (1 character)CLASS=Y,

Hold (YES or NO)HOLD=YES,

Carriage control (A or M)CNTL=A,

Form (4 characters at maximum)FORM=WOFO,

JES remote (8 characters at maximum)RMT=JESWOLF,

Form definition (6 characters at maximum)FORMDEF=FOWOLF,

Page definition (6 characters at maximum)PAGEDEF=PAWOLF

Execute the following Natural program:

DEFINE PRINTER (2) OUTPUT 'WK1'
WRITE (2) 'THIS IS A SMART RECORD'
CLOSE PRINTER (2)

During the execution of this program, you can see the following fields with their values in the
Display Active Tasks panel:

321Operations

System Spool Access

DDNAME DSID Owner C Dest Rec-Cnt Forms Wtr PageDef FormDef
SYS00002 105 WKK Y WK1 2 WOFO HUGO PAWOLF FOWOL

Browsing this data set, you can see:

Page 1
THIS IS A SMART RECORD

Example 3
Assume using the default member:

Explanation (Possible Values)Parameter

Entire System Server (NPR) target node (node number)WSPDFLT NODE=55526,

JES writer (8 characters at maximum)PROGRAM=*OUTPUT,

The other parameters in the default member are not changed.

Run the following example program:

DEFINE PRINTER (2) OUTPUT 'KURT'
PRINT (2) ' here comes KURT'
CLOSE PRINTER (2)

After that, Entire System Server fetches the value from the field OUTPUT in the DEFINE PRINTER
statement and inherits it as the JES writer attribute for the specific spool data set.

Looking in TSO/SDSF under the job name of Entire System Server, you can see the following:

PREFIX=NPR* DEST=(ALL) OWNER=* SYSNAME=
NP DDNAME Time Forms FCB UCS Wtr Flash

SYS00005 10:20:48 **** **** KURT ****

If in JES an associated JES writer program is defined, it gets control and handles this output
as defined in the program.

Examples for z/VSE

In z/VSE, the output is written into the POWER spool under a new job number. The name of the
printed spool data set will be the name of the original batch job or the user ID of the TP monitor.

Example 1
Assume we are using the factory settings for NATWSPDF and have the natural program:

Operations322

System Spool Access

DEFINE PRINTER (2) OUTPUT 'ELSA'
WRITE (2) 'THIS IS A SMART RECORD'
CLOSE PRINTER (2)

User WKK is running this program in a batch-mode Natural, with JOBNAME=GERHARD.

The power queue contains the following information:

JOBNAME JOBNO Q NUM C D PR STAT FROM TO CP PAGES RECORDS ID
GERHARD 0020443 L A H 003 HOLD WKK ELSA 1 1 2

Browsing this output displays the following information:

BROWSE-DJ:GERHARD(20443)-Queue:LS --------------------- Row 0 - Columns 001 076
COMMAND===> SCROLL===> CSR

****************************** top of list *******************************
1Page 1 date, time
0THIS IS A SMART RECORD
**************************** bottom of list ******************************

Example 2
Assume we are using the factory settings for NATWSPDF and have the natural program:

DEFINE PRINTER (2) OUTPUT 'KARL'
FORMS 'F001'
COPIES 4

WRITE (2) 'PRINTER TEST'
WRITE (2) 'OK?'
CLOSE PRINTER (2)

The power queue contains the following information:

JOBNAME JOBNO Q NUM C D PR STAT FROM TO FORM CP PAGES RECORDS ID PR
GERHARD 0020465 L A H 003 HOLD WKK KARL F001 4 1 3

323Operations

System Spool Access

324

XII Natural 3GL CALLNAT Interface

This part contains information about the Natural 3GL CALLNAT Interface which enables 3GL
programs to invoke and execute Natural subprograms.

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Natural 3GL CALLNAT Interface - Usage, Examples

325

326

46 Natural 3GLCALLNAT Interface - Purpose, Prerequisites,

Restrictions
■ Purpose of 3GL CALLNAT Interface .. 328
■ Prerequisites .. 328
■ Restrictions .. 330

327

This document describes the purpose of the 3GL CALLNAT interface and its prerequisites and
restrictions.

Purpose of 3GL CALLNAT Interface

With the 3GL CALLNAT interface, Natural enables 3GL programs to invoke and execute Natural
subprograms.

The 3GL can be any programming language which supports the standard linkage call interface.
Inmost cases thiswill be aCOBOLprogram, but the functionality can also be used by, for example,
PL/1, FORTRAN, C or Assembler programs.

Availability

The interface is available in batch mode under the following operating systems:

■ z/OS,
■ z/VSE,
■ BS2000,

and for the following TP-monitor environments:

■ CICS,
■ Com-plete,
■ IMS TM,
■ TIAM,
■ TSO,
■ openUTM.

Prerequisites

This section describes the prerequisites to execute a Natural subprogram from a 3GL program,
using an internal CALLNAT statement. To achieve the desired functionality, a Natural environment
must be set up before you execute the CALLNAT interface from your 3GL program.

■ Space Requirements
■ Linking

Operations328

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

■ Environment Dependencies

Space Requirements

Themechanismof parameter addressing in aNatural program requires that the parameters passed
reside in an area allocated byNatural, that is, in any of its sizes. The 3GL program, however, alloc-
ates the storage for its variables somewhere in the address space of the task. To make addressing
still successful, a “call-by-value” mechanism is used for those variables which do not already
reside in aNatural area. Thismeans that, prior to invoking theNatural subprogram, the parameters
to be passed are transferred into a Natural area, namely the DATSIZE buffer.

In addition to the storage used for the contents of the variables, additional storage will be needed
depending on the number of parameters. The total amount of space required is approximately the
same as the space thatwould be needed in the DATSIZE buffer if the subprogram-invoking program
were coded in Natural.

Linking

To invoke the Natural subprogram, the 3GL programmust call the CALLNAT interface. Depending
on the power and functionality of the call interface of the 3GL programming language, the CALLNAT
interface can be either placed in an accessible load library for dynamic loading or linked to the
3GL program.

It is recommended, whenever possible, to load the CALLNAT interface dynamically from a Natural
steplib, as this method makes sure that always the most recent version of that program is used.

The samples XNATGC2 and XNATGCP2 are provided to elucidate the technique of dynamically loading
and calling the CALLNAT interface from COBOL or PL/I, respectively.

Note: Check with the responsible system programmer for the best solution in your envir-
onment.

Environment Dependencies

The foreign 3GL module can be either linked to Natural as a CSTATICmodule and then invoked
via a branch and link instruction, or loaded dynamically and invoked via a TP-dependent link
method.

In the latter case, the 3GL module is written in a TP-specific way and the CALLNAT interface must
be adapted accordingly. For this purpose, multiple TP-specific interface modules are provided:

329Operations

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

PurposeInterface Module

To be used in the following cases:NATXCAL

■ if the 3GL module is either loaded dynamically or linked to Natural and then invoked
by a branch and link instruction (batch, Com-plete, IMS TM, TIAM, TSO, openUTM, %P=S
and %P=LS in CICS).

■ if the 3GLmodule is called via the INTERFACE4 option of the CALL statement. It provides
the INTERFACE4Natural Callnat Interface aswell as the INTERFACE4Callback Functions.
For further information on the INTERFACE4 functionality, see the CALL statement
documentation.

Note: For CALL INTERFACE4 purposes, NATXCAL cannot be loaded dynamically but
must be linked to the 3GL program.

To be used in a CICS environment if the 3GL module has been invoked using EXEC CICS
LINK; NCIXCALL is delivered in source code to be compiled with your CICS macros. See

NCIXCALL

also Installing the Natural CICS Interface on z/OS or Installing the Natural CICS Interface on
z/VSE in the Installation documentation.

To be used in a CICS environment to build the parameter address list used as COMMAREA
for the subsequent EXEC CICS LINK command.

NCIXCPRM

Restrictions

Terminating a Natural Subprogram

The invoked Natural subprogram should be terminated with a return to the calling program.

Inadmissible Natural Statements

The following statements must not be used.

■ FETCH

■ RUN

■ STOP

■ TERMINATE

When used in the invoked Natural subprogram they will bring about an appropriate Natural
runtime error (NAT0967).

Operations330

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Parameter Values Passed by the 3GL Program

The parameter values passed by the 3GL program must not reside in a write-protected storage
area.

Dynamic Arrays

Arrays with dynamic ranges are not possible.

BS2000 Operating System Specific Restriction

Since BS2000 CRTE does not allow recursions, Natural subprograms, called by the 3GL module,
cannot execute any subsequent 3GL calls. A subsequent 3GL call would cause either an enforced
abnormal termination of the current Natural session or Natural error NAT0920.

This applies to BS2000 batch, TIAM, and openUTM.

TP-Monitor-Specific Restrictions

■ Under CICS
For CICS environments, the 3GL program that uses the Natural 3GL CALLNAT interface must
be written for conversational mode. The 3GL program runs on the second CICS program level
and pseudo-conversational program technique can therefore not be used.

■ Under IMS TM and openUTM
IMS TM and openUTM environments running Natural can use the 3GL CALLNAT interface
only if both the 3GL program and the Natural subprogram do not issue any terminal I/O; when
DISPLAY, INPUT and WRITE are used in the invoked Natural subprogram they will bring about
an appropriate Natural runtime error (NAT0967).

331Operations

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

332

47 Natural 3GL CALLNAT Interface - Usage, Examples

■ Usage ... 334
■ Sample Environments .. 338

333

This section describes the usage of the 3GLCALLNAT interface and describes a number of sample
3GL CALLNAT environments.

Usage

The following topics are covered:

■ Overview
■ Call Structure
■ Parameter Handling

Overview

When you invoke a Natural subprogram from a 3GL program, a Natural session must be active,
i.e. the 3GL program itself must be called by Natural.

Therefore youmust take special precautions if you do not want the Natural layer to show up. The
following figure is intended to give you an overview of how an application using the Natural 3GL
CALLNAT interface may be designed in such a case:

Operations334

Natural 3GL CALLNAT Interface - Usage, Examples

The necessary environment is established by first invoking a Natural start-up program. By using
the Natural CALL statement, this start-up program can then invoke a 3GL program from where
you can invoke the CALLNAT interface.

335Operations

Natural 3GL CALLNAT Interface - Usage, Examples

Call Structure

The Natural main program is very simple; it only calls, for example, a COBOL program:

.....
CALL 'COBPGM'
END
.....

The CALL statement of the 3GL programming language (for example, COBOL) must have access
to the Natural 3GL CALLNAT interface, which then invokes the Natural subprogram:

.....
CALL 'interface' USING natpgm p1 ... pn
.....

The parameter interface is environment-dependent (for example, NATXCAL) and linked to the
calling program. The parameter natpgmmust be an alphanumeric variable of 8 bytes that contains
the name of the Natural subprogram to be invoked. The parameters p1 ... pn are passed to the
Natural subprogram.

Example (for all environments except CICS):

The COBOL program COBPGM could contain coding similar to the following one:

.....
MOVE 'FINDNPGM' TO natpgm
CALL 'interface' USING natpgm number name
IF natpgm NE 'FINDNPGM'
THEN GOTO error_handling_1
.....

The invokedNatural subprogram FINDNPGM calculates the number of persons in the file EMPLOYEES
with name equal to a value passed from the COBOL program:

DEFINE DATA
PARAMETER
1 pnumber (P10)
1 pname (A20)
LOCAL
1 emp VIEW OF employees
END-DEFINE
*
RESET presp
FIND NUMBER emp WITH name=pname
MOVE *NUMBER TO pnumber
ESCAPE ROUTINE

Operations336

Natural 3GL CALLNAT Interface - Usage, Examples

If an error occurs while the subprogram is executed, information about this error will be returned
in the variable natpgm in the form *NATnnnn, where nnnn is the corresponding Natural error
number.

Example (for CICS only):

Under CICS, the call of a Natural subroutine from, for example, COBOL should be as follows:

...
WORKING STORAGE SECTION
...
01 PARM-LIST PIC X(132).
01 NATPGM PIC X(8).
01 NUMBER PIC 9(10) comp-3.
01 NAME PIC X(20).
...
PROCEDURE DIVISION
...
MOVE 'FINDNPGM' TO NATPGM
CALL 'NCIXCPRM' USING PARM-LIST NATPGM NUMBER NAME ...
EXEC CICS LINK PROGRAM('NCIXCALL')
COMMAREA(PARM-LIST) LENGTH(132) END-EXEC.
...

The called subroutine NCIXCPRM builds the parameter address list used as COMMAREA in the sub-
sequent EXEC CICS LINK command.

Parameter Handling

There is no format and length checking. It is the caller's responsibility to pass a correct parameter
list. The number, format and length of the parameters are defined by the invokedNatural subpro-
gram.

When you are passing parameters, group arrays should not be passed, since they are resolved as
individual arrays:

Example of Invalid Syntax:

.....
01 GROUP (1:2)
02 F1
02 F2
.....
.....
CALL F1 F2
.....

337Operations

Natural 3GL CALLNAT Interface - Usage, Examples

Example of Valid Syntax:

.....
01 F1 (1:2)
01 F2 (1:2)
....
.....
CALL F1 F2
.....

Arrays with dynamic ranges cannot be used as parameters.

Sample Environments

The objective for the sample 3GLCALLNAT environments below is to demonstrate howaCOBOL
routine can call a Natural subprogram under specific TP-monitor systems or in batch mode, and
to give system-specific instructions to create such environments.

The following topics are covered:

■ Sample Environment for CICS
■ More Samples
■ Sample for Any Other Supported Environment

Sample Environment for CICS

Perform the following steps to create a sample Natural 3GL CALLNAT environment under CICS:

Step 1: Create the Environment Initialization
■ Set up the front-end program that initializes the 3GL CALLNAT environment.
■ Use the COBOL front-end XNCIFRCX in the Natural/CICS source library. It starts Natural,
stacks LOGON YOURLIB and executes the program TSTCOB, which initializes the Natural 3GL
CALLNAT environment.

■ Locate the string NCvr (where vr represents the relevant product version) in the source code
and replace it with the valid transaction ID for Natural.

■ Compile and link-edit the COBOL program and define program to CICS via CEDA DEFINE
PROGRAM.

Step 2: Install the Sample COBOL Call
Provided in the Natural/CICS source library NCI.SRCE is the samplemember XNCI3GC1, which
contains a default call to the Natural subprogram MYPROG.
■ For test purposes, create the following program in the library SYSTEM and stow it as:

Operations338

Natural 3GL CALLNAT Interface - Usage, Examples

WRITE 'BEFORE PGM EXECUTION'
CALL 'COBNAT'
WRITE 'AFTER PGM EXECUTION'
END

■ Look at the XNCI3GC1 source and review the CALL and LINK. Compile and link as COBNAT
with the following CICS INCLUDE directives or use Step 2 of the Sample Job NCTI070:

INCLUDE CICSLIB(DFHECI)
INCLUDE XNCI3GC1 <= output from translator and compiler
INCLUDE NCILIB(NCIXCPRM)
ENTRY XNCI3GC1
NAME COBNAT(R)

Step 3: Create a Sample Natural Subprogram
By default, the source member XNCI3GC1 is set up to call the Natural subprogram MYPROG in
the library YOURLIB. The program TSTCOB, as mentioned above, starts up the process by calling
COBNAT that contains the actual call to the Natural subprogram MYPROG.
■ Create the subprogram MYPROG to demonstrate the executing Natural subprogram.

DEFINE DATA PARAMETER
01 PARM1 (A18)
01 PARM2 (A18)
01 PARM3 (A18)

END-DEFINE
*
MOVE 'PARAM01' TO PARM1
MOVE 'PARAM02' TO PARM2
MOVE 'PARAM03' TO PARM3

END

Step 4: Verify the CICS Resources
■ Use the job NCII005 for a guide to defining the CICS resources (PPT and PCT).
■ Define the required CICS resources (PPT and PCT).

Step 5: Test the Environment
Test the environment by using theNCYCdefault transaction.UseCEDF tomonitor the program
control and observe the data areas in use.

Important: Since Natural is at the top of the CICS program hierarchy, any COBOL sub-
program issuing terminal I/Osmust run in conversationalmode. Pseudo-conversational
programs would need to be modified, and any new development using the Natural
3GL CALLNAT interface should be done in conversational mode.

339Operations

Natural 3GL CALLNAT Interface - Usage, Examples

More Samples

DescriptionSample Program

COBOL sample with same functionality as XNCI3GC1, but accepting parameters from the
calling Natural program.

XNCI3GC2

PL/I sample with same functionality as COBOL sample XNCI3GC1.XNCI3GP1

PL/I sample with same functionality as XNCI3GC1, but accepting parameters from the
calling Natural program.

XNCI3GP2

More Non-CICS Samples

DescriptionSample Program

COBOL sample with same functionality as CICS sample XNCI3GC2.XNAT3GC2

PL/I sample with same functionality as CICS sample XNCI3GP2.XNAT3GP2

Sample for Any Other Supported Environment

Perform the following steps to create a sample Natural 3GL CALLNAT:

Step 1: Assemble and Link ASMNAT
The sample Assembler routine XNAT3GA1 contains a basic example to access the CALLNAT inter-
face. The register calling conventions are in the source of this program.

Link NATXCALwith XNAT3GA1with entry point ASMNAT.

Step 2: Start the Natural Session
Start a Natural session stacking a program that calls the ASMNAT program which in turn calls
the Natural subroutine ASMNAT.

Operations340

Natural 3GL CALLNAT Interface - Usage, Examples

XIII Operating the Software AG Editor

This part contains information on how to operate the Software AG Editor.

The Software AG Editor is a feature that represents basic functionality within Natural, exclusively
used by several Natural subproducts and other Software AG products.

Editor Work File

Editor Buffer Pool

See also:

■ SYSEDT Utility - Editor Buffer Pool Administration in the Utilities documentation
■ Installing the Software AG Editor in the Installation for z/OS documentation
■ Installing the Software AG Editor in the Installation for z/VSE documentation
■ Installing the Software AG Editor in the Installation for BS2000 documentation
■ Software AG Editor in the Editors documentation

341

342

48 Editor Work File

■ Editor Work File Structure .. 344
■ Editor Work File under z/OS, z/VSE and BS2000 ... 345
■ Using the Software AG Editor Work File Formatting Utility .. 346
■ Formatting during Initialization .. 346
■ Maintaining the Editor Work File under z/OS and z/VSE .. 346
■ Maintaining the Editor Work File under BS2000 ... 347
■ Editor Work File under Complete/SMARTS ... 348

343

This document describes structure, use andmaintenance of the editor work file under the various
operating systems.

See also:

■ SYSEDT Utility - Editor Buffer Pool Administration in the Utilities documentation
■ Installing the Software AG Editor on z/OS in the Installation for z/OS documentation
■ Installing the Software AG Editor on z/VSE in the Installation for z/VSE documentation
■ EDBP - Software AG Editor Buffer Pool Definitions in the Parameter Reference documentation
■ Software AG Editor in the Editors documentation

Editor Work File Structure

The editor work file is a relative record data set with fixed length records. It is divided into three
parts:

■ Control Record
■ Work Records
■ Recovery Records

Note: If you use an editor auxiliary buffer pool defined by the profile parameter EDPSIZE,
no editor work file is required.

Control Record

The control record contains buffer pool control information including the buffer pool parameters.

During the first initialization of the work file or during a buffer pool cold start (triggered by editor
buffer pool subparameter COLD), the values defined in the editor buffer pool parameter EDBP and/or
in the correspondingmacro NTEDBP are saved in thework file control record.Moreover, the current
operating system Id (system variable *HOSTNAME) and the global buffer pool name or the current
job name are saved for subsequent verification.

You can modify the control record by using the Generation Parameters function of the SYSEDT
Utility.

For buffer pool warm restarts, the buffer pool parameters are read from the control record.

Operations344

Editor Work File

Work Records

The work records contain logical file records which have been moved out of the buffer pool due
to a lack of free buffer pool blocks.

Logical work file records are lost during a restart of the buffer pool or if a timeout occurs for the
logical file.

Recovery Records

The recovery records hold checkpoint information of editor sessions. If the system terminates ab-
normally, this information can be used by the editor recovery facility to recover logical files. Re-
covery records are lost during a cold restart of the buffer pool.

The recovery facility is used by Natural ISPF only. If you do not intend to use this product, you
can run without the recovery part by defining the editor buffer pool subparameter PWORK=100.

Editor Work File under z/OS, z/VSE and BS2000

One editor work file corresponds to one Editor Buffer Pool. If you intend to use a global editor
buffer pool, the editor work file must be shared by all users using the same global editor buffer
pool. The accessed editor work file can be used only by sessions within the same operating system
(system variable *HOSTNAME) and with the same global buffer pool or the same job name for local
buffer pools. This connection can be dropped by a buffer pool cold start only. Alternatively, the
Software AG editor work file formatting utility can be used to reset the work file connection.

The editor work file must be large enough to contain the editor sessions of all users. A minimum
number of 100 records per editor user is recommended. The record length of the work file must
be fixed, can be defined from 504 to 16384 bytes, and must be a multiple of 8.

Note: The record length of data sets or PDS members, which will be edited with Natural
ISPF, cannot be larger as the record length of this editor work file.

The size of a work file record is specified either when allocating the editor work file (under z/OS
and z/VSE; default size is 4088) or by definition in the buffer pool parametermacro (under BS2000;
default size is 4096).

The total number of editor work file records depends on the allocated data set space for the editor
work file.

There are two alternative ways of formatting the editor work file:

■ offline by using the Software AG editor work file formatting utility,
■ online during buffer pool initialization.

345Operations

Editor Work File

Using the Software AG Editor Work File Formatting Utility

This method is to be preferred, because no online user has to wait until formatting is finished.
Optionally, theNatural parameter modulemay be assembled and linked to the Software AG ed-
itor work file formatting utility to specify editor buffer pool parameters by means of the macro
NTEDBP. Otherwise, the default parameter values apply.

During reformatting, however, the work file must not be in use, which means that the system(s)
using the corresponding buffer pool have been terminated before reformatting.

Formatting during Initialization

When the editor buffer pool is in uninitialized or terminated state, then during the first session
which uses the Software AG editor, a "buffer pool cold start" is performed on one of the following
conditions:

1. if the work file has not been formatted yet,

2. if the control record indicates “cold start” (which can also be specified by using the Editor
Buffer Pool Administration utility SYSEDT),

3. if the buffer pool subparameter COLD=ONwas specified.

Otherwise, a buffer pool warm start is performed if a valid control record is found during buffer
pool initialization. In this case, all buffer pool parameters are taken from thework file control record
and no records are formatted.

Maintaining the Editor Work File under z/OS and z/VSE

If you want to change the size of the editor work file (for example, because it is too small), the
COPY function of the Software AG editor work file formatting utility can be used to avoid a buffer
pool cold start; that is, the loss of the recovery records.

To copy an existing editor work file, perform the following steps:

1. Modify any buffer pool parameters by using the SYSEDT Utility, for example, PWORK if you
want to change the percentage of work records in the file.

2. Terminate the editor buffer pool by using the System Administration Facilities of the SYSEDT
Utility and ensure that no Natural session is using the editor after the buffer pool termination.

3. Close (if necessary) and deallocate the editor work file.

4. Rename the editor work file by using the VSAM utility IDCAMS (ALTER command).

Operations346

Editor Work File

5. Define a new editor work file with the original name and possibly a different size, but with the
same record length.

6. Perform the following steps:
■ In the EXEC JCL card, add PARM=COPY.
■ For the renamed editor work file CMCOPY to be copied into the new work file CMEDIT, add the
following card:

//CMCOPY DD...Under z/OS:

//DLBL CMCOPY...Under z/VSE:

■ Run the Software AG editor work file formatting utility with the new file.

7. Check the job log for potential errors.

8. Reallocate and (if necessary) reopen the editor work file.

9. Use the Editor Buffer Pool Administration utility SYSEDT to check that the buffer pool and the
work file have been restarted successfully.

Important: All Natural sessions must be restarted if you want them to use the editor after
the buffer pool restart.

Maintaining the Editor Work File under BS2000

If you want to change the size of the editor work file, format a new editor work file and copy the
recovery records from the old work file into the new one as follows:

1. Shutdown all systems that use the editor.

2. Terminate the editor buffer pool.

3. Rename the current editor work file.

4. Create a new editor work file with the original name.

5. Execute the editor work file formatting program with the COPY instead of the FORMAT function
after having added:

Example:

347Operations

Editor Work File

/CAT NATEDT.WORKFILE,NATEDT.COPYFILE
/FILE NATEDT.WORKFILE,LINK=CMEDIT,SPACE=nnn
/LOGON
/FILE NATEDT.COPYFILE,LINK=CMCOPY
/FILE NATEDT.WORKFILE,LINK=CMEDIT
/SYSFILE SYSLST=LST.NATEDFM2
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (NATEDFM2,NATvrs.MOD)
COPY
/LOGOFF N

where vrs represents the relevant product version.

See also Installing the Software AG Editor on z/OS, Installing the Software AG Editor on z/VSE, Installing
the Software AG Editor on BS2000)

Editor Work File under Complete/SMARTS

SMARTS work files are located in the SMARTS Portable File System. The path must be specified
with the SMARTS environment variable $NAT_WORK_ROOT. The name of the editor work file is
specified with the EDBP subparameter DDNAME.

Formatting of an editor work file is only possible during buffer pool initialization (online). There
is currently no tool under SMARTS to format an editor work file offline.

Operations348

Editor Work File

49 Editor Buffer Pool

■ Purpose of the Editor Buffer Pool .. 350
■ Obtaining Free Blocks .. 351
■ Initializing the Editor Buffer Pool ... 351
■ Restarting the Editor Buffer Pool ... 352
■ Editor Buffer Pool Parameters .. 352
■ Buffer Pool Initialization for Multi-User Environments .. 352

349

This document describes purpose, use and operation of the Editor Buffer Pool which is an inter-
mediate main storage area used by the Software AG Editor.

Purpose of the Editor Buffer Pool

The editor buffer pool can be seen as an extension of the editor buffer (SSIZE). It is an intermediate
main storage area used by the Software AG Editor to maintain its logical files.

A logical file consists of one ormore logical records and contains the data of aNatural source object
or a file (for example, a job, a PDS member or an LMS element) maintained by the editor. As a
user canworkwithmore than one object at the same time, several logical files can exist concurrently
for each user.

The number of logical files (as well as the percentage of recovery records in the Editor Work File
is defined in the buffer pool parameter macro.

The editor buffer pool can be defined as a local or a global (z/OS and BS2000 only) or an auxiliary
(EDPSIZE) buffer pool. In multi-user environments (CICS, IMS TM, openUTM), the editor buffer
pool is shared by all editor users of either the same region (local pool) or more than one region
(global pool).

The editor buffer pool contains various control tables and a number of data blocks:

SizeArea

500 bytesMain control block

20 bytes per logical fileLogical file table

4 bytes per recordWork file table

16 bytes per recordRecovery file table

28 bytes per blockBuffer pool block table

see text belowBuffer pool blocks

As the size of a buffer pool block is equal to the size of a work file record, one buffer pool block
can contain one logical file record.

The buffer pool is initialized by the first editor user. During warm start buffer pool initialization,
all recovery records are checked to build the recovery file table.

Several functions are provided to access the buffer pool (for example, functions to allocate, read,
write or delete a record).

Operations350

Editor Buffer Pool

Obtaining Free Blocks

If the buffer pool becomes full, buffer pool blocks have to be moved to an external data set, the
editor work file, to obtain free blocks.

In such a situation, the editor checks all logical files for their timeout value and deletes any logical
filewhich has not been accessedwithin the specified time. Thismeans that all its buffer pool blocks
and work file records are freed, and the logical file is lost.

If there is still no buffer pool block available, the editor moves the oldest block to the work file,
according to the specified timeout parameter values (see the Generation Parameters function of the
SYSEDT Utility in the Natural Utilities documentation).

Initializing the Editor Buffer Pool

An uninitialized editor buffer pool is initialized when the Software AG editor is called for the first
time. Then the various control blocks are created. There are two different modes of buffer pool
and work file initialization: “cold start” and “warm start”.

Buffer Pool Cold Start

A buffer pool cold start can be triggered by the editor buffer pool subparameter COLD or by the
Editor Buffer Pool Administration utility SYSEDT or automatically (if the editor work file is un-
formatted).

During a buffer pool cold start, the values of the editor buffer pool parameter EDBP or the corres-
pondingmacro NTEDBP are stored into thework file control record and all work file recovery records
are cleared.

Buffer Pool Warm Start

During a buffer pool warm start, the buffer pool parameters are read from the work file control
record and all work file recovery records are read to build the recovery file table in the buffer pool.

The accessed editor work file can be used only by sessions within the same operating system
(system variable *HOSTNAME) and with the same global buffer pool or the same job name for local
buffer pools. This connection can be dropped by a buffer pool cold start only. Alternatively, the
Software AG editor work file formatting utility can be used to reset the work file connection.

351Operations

Editor Buffer Pool

Restarting the Editor Buffer Pool

The Editor Buffer Pool Administration utility SYSEDT can be used to terminate the editor buffer
pool, that is, to set it to the uninitialized state. This avoids the restart of the TP system or of the
global buffer pool.

If SYSEDT is not available due to buffer-pool problems, the program BPTERM can be used to terminate
the buffer pool.

Important: All Natural sessions must be restored if you want them to use the editor after
buffer-pool restart.

Editor Buffer Pool Parameters

The editor buffer pool parameter EDBP or the correspondingmacro NTEDBP in theNatural parameter
module is required to define parameters for the operation of the editor buffer pool.

When the editorwork file is formatted, these parameters are stored into thework file control record
while all other records are cleared. Thus, reformatting a work file that has been previously used,
means that all editor checkpoint and recovery information is lost.

Some of these parameters can be modified dynamically during execution of the buffer pool by
using the Editor Buffer Pool Administration utility SYSEDT.

Buffer Pool Initialization for Multi-User Environments

During the buffer pool initialization, all recovery records are read from the editor work file.
Therefore, the first users have to wait for a long time or even receive a timeout message until the
editor buffer pool initialization is finished.

For this reason, a special Natural programhas been supplied to trigger the buffer pool initialization
before the first user becomes active. This program can be activated either during the startup of
the TP monitor, or by a batch job if a global buffer pool is used.

The session must then be started with the session parameter:

Operations352

Editor Buffer Pool

STACK=(LOGON SYSEDT,user,password;BPINIT;FIN)

Under CICS: If the session runs asynchronously, SENDER=CONSOLEmust be specified to obtain any
error messages issued during initialization. The source program FRONTPLT is supplied as a sample
program to showyou how to start an asynchronousNatural session duringCICS startup via PLTPI.

353Operations

Editor Buffer Pool

354

XIV Natural Net Data Interface NATNETTO

355

356

50 Natural Net Data Interface NATNETTO

■ Natural Net Data Driver Functional Description .. 358
■ General Message Layout .. 359
■ Layout of Header ... 359
■ Format Buffer Layout .. 363
■ Value Buffer Layout .. 366
■ Attribute Buffer .. 366

357

This document provides information on theNatural Net Data Interface and the net data protocol
definition.

See also:

■ Installing Natural Net Data Interface on z/OS in the Installation for z/OS documentation.
■ Installing Natural Net Data Interface on BS2000 in the Installation for BS2000 documentation.

Natural Net Data Driver Functional Description

TheNatural Net Data Driver NATNETTO is a component that was introduced to support the EntireX
CICS 3270 Bridge and similar client/server solutions in message oriented server environments,
that is, TP monitors.

NATNETTO implements a protocol driver, which allows program-to-program communication with
Natural (legacy) applications from client applications, using a net-data protocol. One typical
scenario is a desktop client (for example, built with Natural for Windows or VBA) accessing a
Natural application that runs under a TP monitor such as CICS, IMS TM or openUTM.

“Net data” means, that the protocol neither contains format data such as text constants nor any
device-dependent control sequences. All data is communicated in printable format. This implies
that eventually necessary marshaling and unmarshaling of non-alpha fields has to be done by the
clients.

Basically, the protocol consists of two parts:

■ A header or control block and a value buffer which contains the raw net data. This part is
mandatory. The header contains control, environment and session information and maintains
pointers to the other parts of the data buffer. The value buffer contains the actual net data which
is to be exchanged between client and server.

■ In addition, optional variable parts are available: format buffer and/or attribute buffer. The op-
tional format buffer has an entry with descriptive data for each field in the value buffer. The
attribute buffer consists of one byte with a preset value of 0 for each field in the value buffer.
The client has to switch this value to 1 for each modified field, if the appropriate option is set,
thus emulating the setting of MDT bits.

Header, value buffer and attribute buffer are parts of outbound and inbound messages; only the
format buffer may occur in the outbound message only. The header maintains a transaction
numberwhich has to bemirrored by the client for flow-control purposes. Since legacy applications
are mostly designed to be driven from block mode terminals, the protocol supports 3270 like
functionality such as PF keys and cursor position.

Operations358

Natural Net Data Interface NATNETTO

General Message Layout

The following parts of the general message layout are mandatory:

■ Header (the first two rows in the table below)
■ Value buffer

The following parts are optional:

■ Format buffer
■ Attribute buffer

...Format Buffer OffsetValue Buffer OffsetFSCB

...Cursor Pos.Aid Char.Attribute Buffer Offset

Value Buffer

Format Buffer

Attribute Buffer

For detailed information on the layout parts, refer to Table 1.

Layout of Header

Table 1: Control Block - Fixed Part

MeaningScopeFormatField

Eye catcherFSCBA4Eyecatcher

Product identification-A3Product code

Version for specific product01 - 99N2Protocol version

Value buffer offset from start of messagecalculatedN10Value buffer offset

Format buffer offset from start of messagecalculatedN10Format buffer offset

Cumulated length of all bufferscalculatedN10Total message length

Echoed by communication partnerincremented by 1 every callN6Message number

For block splitting within one message01 - 99 (normally 01)N5Block number

Number of parameters in VBcalculatedN5Number of parameters

Security tokenA32Session token

Mode of field separation within value buffersee Table 2A1Message format

-A1Delimiter character

359Operations

Natural Net Data Interface NATNETTO

MeaningScopeFormatField

Architecture of sending partnersee Table 3A2Architecture

Type of current callsee Table 4A2Call type

Response code from client0001 - 9999N4Response code

Block is last one of msg or a next one followsL or NA1Block status

TP transaction code or name of server-A8Server name / TAC

Aid character depressed or generated on clientsee Table 5A2Aid character

Cursor line or 000 *)1 - max phys. line on clientN3Cursor line

Cursor column or cursor field number *)1 - max phys. col. on clientN3Cursor column

AB offset from start of messagecalculatedN10Attribute buffer offset

Store clock value: map stow time hex printablegenericA16Timestamp

DBID of FNAT on server1 - 32767N5DBID

File number of FNAT on server1 - 32767N5File number

Date format according to NaturalI, G, E, UA1Date form

Natural delimiter character on server-A1Decimal character

Natural input delimiter character (server)-A1Input delimiter char.

Natural control character (server)-A1Control character

Natural language code (server)01 - 99N2Language code

Natural application ID-A8Application ID

Program in execution / map or format name-A8Program name / map

Natural error number00001 - 99999N5Error number

Line number of current I/O statement0001 - 9999N4Line number

Status byte-A1Error state

Object causing an error-A8Error program

Subroutine level of object in error01 - 15N2Error level

Type of messagesee Table 6A1Message type

Control flagsee Table 7A1Option flag 1

Control flagsee Table 7A1Option flag 2

Control flagsee Table 7A1Option flag 3

Control flagsee Table 7A1Option flag 4

Control flagsee Table 7A1Option flag 5

Control flagsee Table 7A1Option flag 6

Control flagsee Table 7A1Option flag 7

Control flagsee Table 7A1Option flag 8

*) If the cursor field number notation is set in NATCONFG, the cursor line will always be 000 and the
cursor column will contain the absolute number of the field, where the cursor shall be placed
(outbound) or was located at send time (inbound).

Operations360

Natural Net Data Interface NATNETTO

Note: Not all header fields are currently used!

Table 2: Modes of Field Separation

Format A1

MeaningValue

Delimited modeD

Fixed format modeF

Length field precedes field (N3)L

Table 3: Architecture of Sending Partner

Mask in Format A2

MeaningValue

Mask for low order byte first (Vax)1-

Unused2-

Mask for EBCDIC architecture4-

Mask for ASCII 8 architecture8-

Mask for float representation VAX-1

Mask for float representation IEEE-2

Table 4: Call Type

Format A2

MeaningValueType of Communication

Map data (net data using format)MDNatural net data/3GL

Net dataND

Command mode (server)CM

Map-format downloadFD

Normal input statementIP

Close session termination messageCS

361Operations

Natural Net Data Interface NATNETTO

Table 5: Aid Character Table

Format A2

PF KeyAid Char.

EnterEN

ClearCL

PA1P1

PA2P2

PA3P3

PF101

PF202

PF303

.

PF4747

PF4848

Close SessionCS

Note: CS - Close Session - allows clients to enforce an immediate close of the server session.
Therefore, it is in fact not a real PF key, but a command code for the server.

Table 6: Message Type

MeaningValue

Dialog messageD

Async. messageA

Printout messageP

Table 7: Option Flags for Natural Net-Data Communication

All flags are of format A1.

MeaningValuesFlag

Message includes format buffer (fb-option).FOption 1

Net data is generated from screen buffer.SOption 2

Net data is generated from page buffer.P

Message includes attribute buffer (ab-option).AOption 3

Data in VB is in presentation format (printable).POption 4

Data in VB is in internal format of sender.I

Operations362

Natural Net Data Interface NATNETTO

MeaningValuesFlag

Data is in internal format converted to alpha.A

Outbound message contains overlay part.MOption 5

Extended format buffer option 1.1Option 6

Extended format buffer option 2.2

For future use.Option 7

For future use.Option 8

Format Buffer Layout

Base Part

Each format buffer entry is a variable length string consisting of four elements:

■ Identifier
■ Protection indicator
■ Format indicator
■ Printable field length

Table 8: Format Buffer Entry

MeaningValueElement

FieldFIdentifier

SubfieldS

Modifiable fieldMProtection

Output only field, protected fieldO

AlphaAFormat

NumericN

Length specification according to Natural standardL - LLL,LField length

363Operations

Natural Net Data Interface NATNETTO

Examples:

Field, modifiable, format alpha 20FMA20

Subfield, modifiable, format numeric 12.4SMN12,4

Output only field, protected fieldO

Note: The precision part of a numeric length is always separated by a comma (,), regard-
less of the current values of delimiter and decimal character profile parameters! For alpha
type fields the precision part is omitted.

Subfields are used to determine fields which had been separated out of a base field using the
Natural dynamic attribute facility. If a field is dynamically divided into various subfields, this
is marked as follows:

The first subfield is marked with identifier F as usual, all other subfields are identified by S.

Extension 1

The following figure shows a part of a DSECT, which describes layout of the Natural internal
screen attribute buffer. If the format buffer extension option 1 is set, for each field those attribute
bytes (PATTR1 - PATTR4) will be brought into printable format and added to the appropriate fields
format buffer entry. The extension is separated by a "/" (slash) from the base format entry.

ATTRIBUTE BYTE 1XDSPATTR1

TEMPORARY PROTECTED (ONLY PAGE)1000 0000X'80'EQUP1TMP

EXTENDED LENGTH (ONLY SCREEN)1000 0000X'80'EQUP1EXTLNG

FIELD CAN BE REPEATED0100 0000X'40'EQUP1RPA

FIELD IS PROTECTED0010 0000X'20'EQUP1PROT

FIELD IS NUMERIC0001 0000X'10'EQUP1NUM

FIELD WILL BE SKIPPED
AUTOMATICALLY

P1PROT+P1NUM
(X'30')

EQUP1SKIP

FIELD IS HIGHLIGHTED0000 1000X'08'EQUP1HIGH

FIELD IS BLINKING0000 0100X'04'EQUP1BLINK

FIELD IS NON-DISPLAYP1HIGH+P1BLINK
(X'0C')

EQUP1NOND

FIELD MAY NOT BE PRINTED0000 0010X'02'EQUP1NHC

SET CURSOR HERE (ONLY UNPROT)0000 0001X'01'EQUP1CURS

SPACE

ATTRIBUTE BYTE 2XDSPATTR2

ITALIC/CURSIVE1000 0000X'80'EQUP2ITAL

INPUT MANDATORY0100 0000X'40'EQUP2MAND

Operations364

Natural Net Data Interface NATNETTO

MANDATORY FILL0010 0000X'20'EQUP2MFILL

DO NOT TRANSLATE (LOWER CASE)0001 0000X'10'EQUP2LC

SECOND CHARACTER SET0000 1000X'08'EQUP2CS2

UNDERLINED0000 0100X'04'EQUP2UL

REVERSED VIDEO0000 0010X'02'EQUP2RVID

RIGHT-LEFT0000 0001X'01'EQUP2RL

SPACE

ATTRIBUTE BYTE 3COLOR ATTRIBUTEXDSPATTR3

TERMINAL PROGRAM AVAILABLE1000 0000X'80'EQUP3TP

*COM FIELD0100 0000X'40'EQUP3PFK

NUMERIC FIELDS0010 0000X'20'EQUP3NUM

HELP ROUTINE AVAILABLE0001 0000X'10'EQUP3HELPR

FRAME ATTRIBUTE0000 1000X'08'EQUP3FRAME

NEUTRAL0000 0111X'07'EQUP3NEUTR

YELLOW0000 0110X'06'EQUP3YELL

TURQUOISE0000 0101X'05'EQUP3TURQ

GREEN0000 0100X'04'EQUP3GREEN

PINK0000 0011X'03'EQUP3PINK

RED0000 0010X'02'EQUP3RED

BLUE0000 0001X'01'EQUP3BLUE

(FIELD PROCESSING INFORMATION)FBI (DB)*

SPACE

INTERNAL PROCESSING ATTRIBUTESXDSPATTR4

FIELD IS TEXT CONSTANT1000 0000X'80'EQUP4TEXT

SAME ATTRIBUTE AS BEFORE0100 0000X'40'EQUP4SAME

FIELD NEW ATTRIBUTE0010 0000X'20'EQUP4NATTR

PAGE BUFFER, DYNAMIC ATTRIBUTE*

FIELD BELONGS TO OVERLAY BUFFER0001 0000X'10'EQUP4OVL

FIELD HAS BEEN MODIFIED0000 1000X'08'EQUP4MDT

UPDATE FROM HELP (PAGE BUFFER)0000 0100X'04'EQUP4MDTH

FIELD NEW ON SCREEN0000 0100X'04'EQUP4NFLD

IF SET FOR OVL, NEW LINE*

FIELD IS CONT OF BEFORE0000 0010X'02'EQUP4CONT

LAST ATTRIBUTE IN BUFFER0000 0001X'01'EQUP4LAST

HELP REQUEST FOR THIS FIELDP4TEXT+P4MDTEQU**P4HELP

365Operations

Natural Net Data Interface NATNETTO

Example:

An extended format buffer entry 18820300means, the field is numeric and shall be presented
highlighted italic in reversed video mode. The color of the field is pink!

Value Buffer Layout

Three modes of value buffer structure are possible:

■ Fixed Format
All parameters are simply concatenated without any delimitation. This means, that the single
parameters have to be separated either according to the format description in the format buffer
or by covering them with a C-structure, a data area or a DSECT.

■ Delimited Format
The parameters are separated by an configurable delimiter character.

■ Length Preceded Format
Each parameter is preceded by a length field of format N3. The length notation is explicit.

Attribute Buffer

The attribute buffer is optional. It consists of a one-byte entry for each parameter field, which
represents the MDT flag. The MDT has to be set by the client for each modified field. The value
of this flag is "0" or "1". A value of 1 means the MDT is set.

Example:

This example shows the screen image of a 3270 format in Figure 1 and the generated net-data
stream for the same format in Figure 2. The name of the Natural map is NETM002.

Operations366

Natural Net Data Interface NATNETTO

TESTMAP NWI

AL20.0 ABCDEFGHIJKLMNOPQRST
NL20.0 1234567890
NL10.4 0000001234.5678
AL20C AAAAABBBBBCCCCDDDDDZ
N20.0 999999999999999999

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-
Help - + %%

Figure 1: NETM002 on a 3270 Device

FSCBNAT010000000206000000038000000004710000120000100006
F 04MD0000LNATvrsXSEN0000010000000465B3E0C25A1A1DE4000000000000I.,%01NETT

O NETM002 000000170 D FSAP 1 ABCDEFGHIJKLMNOPQRST1234567890
0000001234.5678AAAAABBBBBCCCCDDDDDZ999999999999999999

FMA20/08100024FOA20/
38102024FMA15/08102024FOA20/38101624FOA20/38102024FOA79/70000035.000000

where vrs represents the relevant product version.

Figure 2: Net-Data Stream Generated from NETM002 Execution

Configuration Settings: Fixed format, format buffer + extended format buffer, attribute buffer option,
cursor position represented as field number.

367Operations

Natural Net Data Interface NATNETTO

368

XV Selectable Units for New Natural Features

369

370

51 Selectable Units for New Natural Features

Natural selectable units provide the option to use selective new or changed Natural features as
required instead of completely upgrading Natural.

Selectable units are implemented as NATSUPGMmodule which is loaded on request during Natural
session start. However, if you want to use selectable units under CICS TS, you need to perform
the optional installation step described in Selectable Units Module NATSUPGM in Installing Natural
CICS Interface on z/OS in the Installation documentation.

To select and activate or deactivate selectable units

■ Set the SELUNIT profile parameter as described in the Parameter Reference documentation.

To list all available selectable units and their operational status

■ Issue the SHOWSU system command described in the System Commands documentation.

The SHOWSU Selectable Units screen appears with a list of all selectable units available in
your environment and indicates their current status (available and/or active) as specifiedwith
the SELUNIT profile parameter.

To list active selectable units only

1 If you only want to list all selectable units that are currently active in your environment, issue
the SYSPROD system command (see the System Commands documentation).

2 On the Installed Products screen, enter the line command SU in the Product Name column
next to Natural.

If a selectable unit is active in your environment, a window opens indicating the number of
the unit and the Natural feature supported by this unit. Otherwise, the window shows the
message No unit activated.

371

If you enter the command SU for a Product Name that does not support Natural selectable
units, a corresponding message appears.

Operations372

Selectable Units for New Natural Features

XVI Natural as a Server

This part describes the use of Natural as a Server under the operating systems z/OS and z/VSE in
batch mode, and under the TP monitor CICS.

Explains how Natural can act as a server in a client/server environment
under z/OS in batch mode.

Natural as a Server under z/OS

Explains how Natural can act as a server in a client/server environment
under z/VSE in batch mode.

Natural as a Server under z/VSE

Explains how Natural can act as a server in a client/server environment
under the TPmonitorCICS; describes the functionality and the installation

Natural as a Server under CICS

of the Natural CICS Interface in a server environment and informs about
restrictions that apply in such an environment.

373

374

52 Natural as a Server under z/OS

■ Functionality ... 376
■ Natural Nucleus Installation in a Server Environment .. 377
■ Print and Work File Handling with External Data Sets in a Server Environment ... 377

375

This document applies under z/OS only.

Functionality

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. Part of the server
functionality is the enhanced batch driver. There are a lot of underlying protocols for the client/serv-
er communication, such as the execution of stored procedures for DB2 and the execution of remote
procedure calls, see the Natural RPC (Remote Procedure Call) documentation.

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example,
for DB2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server front-end.

There are different server stubs for DB2, for Natural RPC and for others.

Natural Batch Driver

The Natural batch driver (that is, for example, NATOS under z/OS) has been enhanced to act as the
environment-specific interface componentwhichmaintains theNatural server sessions and supplies
environment-specific services to Natural. It can be linked to the server stub module or loaded by
the server stub as a separate module.

The batch driver is able to create and to controlmultiple sessions by using storage threads including
functionality for thread storage compression, decompression and rollout to external storage devices.

When the batch driver is called by the server stub for the first time (during server initialization),
the storage threads are created in main storage. The number and size of the storage threads is de-
termined by the server stub. Then a static Natural session is initialized. This includes profile
parameter evaluation and the allocation of static storage buffers. The resulting pre-initialized
storage thread is saved in main storage separately. For every new Natural session, this initial
'session clone' is copied into the thread.

When decided by the server stub, a session can be rolled out to be resumed at a later point of time.
TheNatural Roll Server is used by the driver to save the compressed thread storage of a session.
As an alternative, main storage can be used to save the compressed thread storage. In this case,
the number of sessions in rolled-out state is limited by the region size.

Operations376

Natural as a Server under z/OS

Natural Nucleus Installation in a Server Environment

The Natural nucleus and its batch driver are designed to support both, server and non-server en-
vironments. For the server-specific definitions and requirements, please refer to the specific docu-
mentation (for example, to theNatural RPC (Remote Procedure Call)documentation or to theNatural
for DB2 documentation).

If the number of sessions is not limited to a small number and if the server type supports session
rollout, theNatural Roll Servermust be installed and be started before the server initializes. To
do this, ensure that the SUBSID parameter in theNatural parameter module is set to the correct
value. For the server, the Adabas link interface (ADALNK) must be generated so that ADALNK is also
reentrant, in addition to the server.

You can use a local or a globalNatural buffer pool. If you define a local buffer pool, it will be
shared by all sessions within the server region.

If a logical print or work file number is to be used for processingwithin any server session, it must
be associated with an access method at session start time. This can be done in theNatural para-
meter modulewith the macros NTWORK and NTPRINT, as in the following example, if you want to
allow the full range of all print and work file numbers possible:

NTPRINT (1-31),AM=STD,OPEN=ACC,DEST=*
NTWORK (1-32),AM=STD,OPEN=ACC,DEST=*

The subparameter DEST=* defines generic DD name generation during the first DEFINE WORK FILE
or DEFINE PRINTER statement, OUTPUT clause (see below). Subparameter OPEN=ACC avoids pre-
opening of the files at program start time. The open is issued upon the first access of the file.

Print andWork File Handling with External Data Sets in a Server Environment

When running many concurrent sessions in one region, there may be resource conflicts with ex-
ternal print and work files. The logical names (DD names) for print and work files are defined by
the subparameter DEST of macro NTPRINT, respectively NTWORK or its dynamic equivalents, PRINT
or WORK (defaults CMPRTnn and CMWKFnn). For normal Natural batch processing, these files are
defined in JCL by a logical (DD) and a physical data set name.

However, DDnames are reserved by the operating system for exclusive use by one task, respectively
session, that is, if CMWKF01 is opened by one session for processing, no other session could use
this file until it is closed again. Other sessions would get an error if they would try to open it.

In a server environment, all print and work file requests are handled by a dedicated I/O subtask.
This ensures data set integrity and avoids resource contention. It enables the shared usage of print
and work files across Natural session boundaries, that is, multiple sessions can access the same

377Operations

Natural as a Server under z/OS

file concurrently. This is true only for print and work files whose DD-name starts with CM. All
other files are considered as exclusive and cannot be shared.

For exclusive usage of print and work files, Natural offers the following two features to support
print and work files in a server environment (both require a special implementation within the
Natural application programs for the server environment):

■ DEFINE WORK FILE or DEFINE PRINTER statements, OUTPUT clause and
■ dynamic data set allocation (application programming interface USR2021N, see SYSEXT -Natural
Application Programming Interfaces).

The DEFINE WORK FILE and the DEFINE PRINTER statement OUTPUT clause can be used

■ to define the logical DD name for a work or print file, or
■ to define the physical data set name, or
■ to define an output spool class.

If a DD name is specified, the access method checks whether the data set is allocated. If not, an
error is issued. The data set can be allocated by any Natural program using the USR2021N subpro-
gram supplied in library SYSEXT.

If a physical data set name or a spool file class is specified, the access method itself allocates the
data set dynamically during the execution of the DEFINE ... statement. To ensure that a unique
DD name is used, DEST=* should be predefined in theNatural parameter module. This avoids
any DD name conflicts.

If the application is using the application programming interface USR2021N, it may specify an as-
terisk value for the DD name variable to get back a unique DD name from the access method. This
DD name can be used for a subsequent DEFINE ... statement.

By default, the access properties of the server job are used for print and work files. Some server
types, for example, Natural Development Server and Natural RPC, support impersonation, that
is, the access properties of the individual client account is used for exclusive print and work files.
For more information, refer to the corresponding section in your server documentation.

Operations378

Natural as a Server under z/OS

53 Natural as a Server under z/VSE

■ Functionality ... 380
■ Natural Nucleus Installation in a Server Environment .. 381
■ Print and Work File Handling with External Data Sets in a Server Environment ... 381

379

This document applies under z/VSE only.

Functionality

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. Part of the server
functionality is the enhanced batch driver. There are a lot of underlying protocols for the client/serv-
er communication, such as the execution of stored procedures for DB2 and the execution of remote
procedure calls, see the Natural RPC (Remote Procedure Call) documentation.

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example
for DB2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server front-end.

There are different server stubs for DB2, for RPC and for others.

Natural Batch Driver

The Natural batch driver (that is, for example, NATVSE under z/VSE) has been enhanced to act as
the environment-specific interface component which maintains the Natural server sessions and
supplies environment-specific services to Natural. It can be linked to the server stub module or
loaded by the server stub as a separate module.

The batch driver is able to create and to controlmultiple sessions by using storage threads including
functionality for thread storage compression, decompression and rollout to external storage devices.

When the batch driver is called by the server stub for the first time (during server initialization),
the storage threads are created in main storage. The number and size of the storage threads is de-
termined by the server stub. Then a static Natural session is initialized. This includes profile
parameter evaluation and the allocation of static storage buffers. The resulting pre-initialized
storage thread is saved in main storage separately. For every new Natural session, this initial
'session clone' is copied into the thread.

When decided by the server stub, a session can be rolled out to be resumed at a later point of time.
A roll cache is used by the driver to save the compressed thread storage of a session.

Operations380

Natural as a Server under z/VSE

Natural Nucleus Installation in a Server Environment

The Natural nucleus and its batch driver are designed to support both, server and non-server en-
vironments. For the server-specific definitions and requirements, please refer to the specific docu-
mentation (for example to theNatural RPC (Remote Procedure Call) documentation or to theNatural
for DB2 documentation).

You can use a local or a globalNatural buffer pool. If you define a local buffer pool, it will be
shared by all sessions within the server region.

If a logical print or work file number is to be used for processingwithin any server session, it must
be associated with an access method at session start time. This can be done in theNatural para-
meter modulewith the macros NTWORK and NTPRINT, as in the following example, if you want to
allow the full range of all print and work file numbers possible:

NTPRINT (1-31),AM=STD,OPEN=ACC,DEST=*
NTWORK (1-32),AM=STD,OPEN=ACC,DEST=*

The subparameter DEST=* defines generic DD name generation during the first DEFINE WORK FILE
or DEFINE PRINTER statement, OUTPUT clause (see below). Subparameter OPEN=ACC avoids pre-
opening of the files at program start time. The open is issued upon the first access of the file.

Print andWork File Handling with External Data Sets in a Server Environment

When running many concurrent sessions in one region, there may be resource conflicts with ex-
ternal print and work files. The logical names (DD names) for print and work files are defined by
the subparameter DEST of macro NTPRINT orNTWORK, or its dynamic equivalents PRINT or WORK
(defaults CMPRTnn and CMWKFnn). For normal Natural batch processing, these files are defined in
JCL by a logical file and a physical data set name.

However, DDnames are reserved by the operating system for exclusive use by one task, respectively
session, that is, if CMWKF01 is opened by one session for processing, no other session could use this
file until it is closed again. Other sessions would get an error if they would try to open it.

In a server environment, all print and work file requests are handled by a dedicated I/O subtask.
This ensures data set integrity and avoids resource contention. It enables the shared usage of print
and work files across Natural session boundaries, that is, multiple sessions can access the same
file concurrently.

For exclusive usage of print and work files, Natural offers the following feature to support print
and work files in a server environment (both require a special implementation within the Natural
application programs for the server environment):

381Operations

Natural as a Server under z/VSE

■ DEFINE WORK FILE or DEFINE PRINTER statements, OUTPUT clause

The OUTPUT clause of these statements can be used

■ to define the logical file name for a work or print file, or
■ to define the physical data set name.

If a physical data set name or a spool file class is specified, the access method itself allocates the
data set dynamically during the execution of the DEFINE ... statement. To ensure an unique file
name is used, DEST=* should be predefined in theNatural parameter module. This avoids any
file name conflicts.

Operations382

Natural as a Server under z/VSE

54 Natural as a Server under CICS

■ Functionality ... 384
■ Natural CICS Interface Installation in a Server Environment ... 384
■ Restrictions .. 385

383

This document applies under CICS only.

See also:

■ Natural under CICS in the TP Monitor Interfaces documentation
■ Natural RPC (Remote Procedure Call) documentation

Functionality

Natural as a Server

Besides being a programming language, Natural can also act as a server in a client/server environ-
ment. It can provide services, such as the execution of Natural subprograms. There are a lot of
underlyingprotocols for the client/server communication, such as the execution of storedprocedures
for DB2 (seeNatural for DB2) and the execution of remote procedure calls (seeNatural RPC (Remote
Procedure Call)).

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example
for DB2 stored procedures. To run Natural as a server, a service-specific server stub is required.
This server stub is supplied as part of the server product. It controls all service requests and is the
only interface to the Natural server front-end.

There are different server stubs for DB2, for RPC and for others.

Natural CICS Interface Installation in a Server Environment

There is nothing specific to define when installing the Natural CICS Interface in order to serve as
a Natural server environment. There are no requirements on thread type or type of rolling (CICS
roll facilities or roll server).

Actually, Natural server sessions may share a Natural under CICS environment with “normal”,
for example, terminal bound Natural sessions. The difference is that, in case of a Natural server
session, the Natural CICS Interface does not deal with a principal facility, such as a terminal or
printer, butwith a server stub. In terms of CICS, aNatural server session is a series of asynchronous
CICS tasks, and the session context (session restart data) is maintained by the server stub using a
unique 8-byte session ID.

Operations384

Natural as a Server under CICS

Restrictions

The following restrictions apply when Natural is used as a server under CICS:

1. Natural server sessions under CICS can only run in pseudo-conversational mode. A Natural
server session cannot run in conversational mode, as the Natural CICS Interface always has to
pass control back to the server stub; therefore PSEUDO=ON is forced for Natural server sessions
under CICS. Because of the same reason RELO=ON is forced for Natural server sessions using
TYPE=GETM threads.

2. 3GL programs called by Natural should be aware of the fact that Natural server sessions are
running asynchronously in CICS, that is, no CICS terminal (TCTTE) is available.

3. The profile parameter ADAMODE should be set to 1 or 2, otherwise Adabas may build a different
UQE ID for each dialog step of the Natural server session.

4. The profile parameter PROGRAM or equivalent back-end program settings by Natural are not
honored, as the logic flow at session termination from the Natural CICS Interface to the server
stub must not be interrupted and/or falsified by a potential back-end program.

5. Care should be takenwhen using the parameter TERMVAR (&TID) in themacro NCMPRM or NTCICSP
(depending on the Natural CICS Interface version installed) in the file name setting for Natural
print and work files: As a Natural server session runs asynchronously, there is no (unique)
terminal ID or other unique four-character session identifier to insert. In CICS/TS 1.3 and above,
the CICS Interface internally uses the QNAME option when dealing with CICS temporary storage
for suchNatural print andwork files, that is internally a 16-byte temporary storage queue name
is used (the 8-byte unique server session ID is appended to the file's DEST specification). This
means on the other hand that such CICS temporary storage queues can only be accessed by the
originating session.

385Operations

Natural as a Server under CICS

386

XVII Natural Execution - Miscellaneous Topics

This part provides general information on Natural execution.

Natural 31-Bit Mode Support

Support and Use of Natural and Non-Natural Objects

Input/Output Devices

Double-Byte Character Sets

Asynchronous Processing

For explanations of the terms used in this document, see the Glossary.

387

388

55 Natural 31-Bit Mode Support

In general, Natural runs with the following settings:

AMODE=31

RMODE=ANY

Exceptions to this are described with the corresponding environment documentation.

389

390

56 Support and Use of Natural and Non-Natural Objects

■ Support for Natural Objects from Previous Natural Versions ... 392
■ Back-End Program Calling Conventions ... 392
■ LE Subprograms ... 394
■ External Sort Programs ... 397

391

Support for Natural Objects from Previous Natural Versions

Natural objects created in an earlier version ofNatural (from version 2.2 onwards) can be executed
in the currentNatural versionwithout any adjustments to the objects or any conversion ormigration
procedure being required. This also applies to objects that have been cataloged with the Natural
Optimizer Compiler.

Back-End Program Calling Conventions

This section describes the conventions that apply to invoking a back-end program.

Notes:

1. This section does not apply to BS2000; refer toCallingNon-Natural Programs andCalling openUTM
Chained Partial Programs in the Natural TP Monitor Interfaces documentation, section Natural
under openUTM.

2. Except under z/OS in batch mode, a specified back-end program is not invoked if the Natural
session is executing on a Natural Development Server.

This section covers the following topics:

■ Back-End Program Calling Conventions (Batch Mode)
■ Special Considerations under CICS
■ Special Considerations under IMS TM
■ Sample Back-End Programs

Back-End Program Calling Conventions (Batch Mode)

If the profile parameter PROGRAM is specified (or set dynamically during aNatural session by calling
the subprogram CMPGMSET in the library SYSEXTP), a back-end program is invoked, regardless of
whether the session terminated normally or abnormally. The back-end program is called using
standard OS linkage conventions and must return the control to its caller.

If a back-end program is available, Natural does not issue any session terminationmessages. Non-
zero user return codes, specified via operand1 of the Natural TERMINATE statement, are indicated
by the Natural error message NAT9987.

A parameter area containing the following information is passed to the back-end program:

■ a fullword that holds the Natural system or user return code,
■ a Natural termination message of 72 characters,

Operations392

Support and Use of Natural and Non-Natural Objects

■ a fullword that holds the length of the Natural termination data (or zero),
■ the termination data passed by operand2 of the TERMINATE statement (if any).

The back-end programparameter area is at least 80 bytes long. Themacro NAMBCKP, which contains
a DSECT layout of the back-end program parameter area, is supplied in the Natural source library
and can be used by Assembler back-end programs.

Special Considerations under CICS

UnderCICS, the back-endprogramparameter data is passed in theCOMMAREAand in the TWA.
In the TWA, only 80 bytes are passed, containing return code and message, while the length field
contains an address that points to the full back-end program parameter area. The same TWA is
also provided if Natural has been invoked via EXEC CICS LINK; see alsoNatural under CICS, Front-
End Invoked via LINK in the Natural TP Monitor Interfaces documentation.

If the parameter BACKRPL=ALL is set in the NCPRM or NTCICSPmacro (depending on the Natural
CICS Interface version installed), only the termination data is passed in the COMMAREA.

Special Considerations under IMS TM

Under IMS TM, the calling conventions for a back-end program are different in a dialog-oriented
environment. There, the back-end program is called by a program-to-program switch and the
name of the back-end program is used as an IMS TM transaction code. In this case, the Natural
environment is terminated before the program-to-program switch takes place; see Natural under
IMS TM, Support of Natural Profile Parameter PROGRAM in the Natural TPMonitor Interfaces docu-
mentation.

Sample Back-End Programs

The following table contains a number of sample programs:

Sample Back-end Program for Batch and TSO Environments in COBOL:

LINKAGE SECTION
01 BACKEND-PARM-AREA.
02 TERMINATION-RETURN-CODE PIC S9(8) COMP.
02 TERMINATION-MESSAGE PIC X(72).
02 TERMINATION-DATA-LENGTH PIC S9(8) COMP.
02 TERMINATION-DATA PIC X(100)

...
PROCEDURE DIVISION USING BACKEND-PARM-AREA

Sample Back-end Program for Batch and TSO Environments in Assembler:

393Operations

Support and Use of Natural and Non-Natural Objects

BACKPROG CSECT
SAVE (14,12)
LR 11,15
USING BACKPROG,11
L 2,0(1)
USING BCKPARM,2

...
RETURN (14,12)

BCKPARM NAMBCKP
END

Sample Back-end Program for CICS in Assembler:

L 2,DFHEICAP
USING BCKPARM,2
...
BCKPARM NAMBCKP

END

Sample Back-end Program XNATBACK for Batch Mode (z/OS and z/VSE):

A sample program for batch mode is supplied as XNATBACK in the Natural source library. This program
issues the Natural termination message on both SYSPRINT (z/OS) or SYSLST (z/VSE) and the operator
console; potential termination data is printed on SYSPRINT or SYSLST in dump format.

LE Subprograms

This section applies to z/OS batchmode, z/VSE batchmode, IMS TM and TSO. It provides inform-
ation on how Natural supports IBM Language Environment (LE) subprograms.

This section covers the following topics:

■ Support of IBM LE Subprograms
■ Enabling Natural Support of LE Subprograms
■ Passing LE Runtime Options

Operations394

Support and Use of Natural and Non-Natural Objects

■ LE Abend Handling

Support of IBM LE Subprograms

To support IBMLanguage Environment (LE) subprograms,Naturalmust be prepared for the CALL
statement to be able to call LE subprograms. LE subprograms can be static (profile parameters
CSTATIC and RCA) or dynamic subprograms of Natural.

Dynamic subprograms ofNatural (LE and non-LE) are loaded via LE services (CEEFETCH or CEELOAD
macro). All dynamic subprograms loaded during a Natural session are deleted upon LE environ-
ment termination, i.e. during termination of the Natural session. That is, the profile parameter
DELETE does not have any effect.

Enabling Natural Support of LE Subprograms

The following is required to be able to call IBM Language Environment (LE) subprograms from
Natural:

1. When installingNatural, the corresponding drivermust be generated as described in the appro-
priate installation steps in Installing Natural CICS Interface on z/OS and Installing Natural CICS
Interface on z/VSE in the Installation documentation.

For LE enablement of Natural under CICS, see also the appropriate installation steps and the
section Natural CICS Interface and IBM Language Environment (LE) in the TP Monitor Interfaces
documentation.

For LE enablement ofNatural under Com-plete, the LE370 keyword subparameter of the NTCOMP
macro must be set to ON (see the Parameter Reference documentation). See also the chapter IBM
Language Environment Considerations in your Com-plete documentation.

2. The IBM LE runtime modules must automatically be included from the IBM LE library during
the linkage editor step. There must not be any unresolved externals starting with “CEE”. Do
not set the linkage editor option NCAL for z/OS or NOAUTO for z/VSE.

3. Under z/OS batch, IMS TM and TSO, Natural can also call LE main programs, but only as dy-
namic subprograms. If an LEmain program is to be called dynamically, this has to be indicated
by specifying SET CONTROL 'P=L' before the CALL statement. Otherwise, the LE environment
created by Natural will be terminated by the LE main program.

395Operations

Support and Use of Natural and Non-Natural Objects

Passing LE Runtime Options

Under z/OS Batch and TSO:
You have three options:

1. You can pass LE run-time options by using the PARM= parameter in your JCL. The following
applies:
■ The run-time options that are passed to the main routine must be followed by a slash (/)
to separate them from the Natural parameters.

■ If youwant to use a slash within your Natural parameters, then your Natural parameters
must begin with a slash.

Example:

PARM='/ID=/,...'

2. You can pass LE run-time options by using the CEEOPTS input data set in your JCL. With
the use of CEEOPTS the LE run-time options are also available to all subtasks. The use of
CEEOPTS is especially required with a Natural RPC server in batch mode.

Example:

//CEEOPTS DD *
POSIX(ON)
/*

3. You can define LE run-time options by modifying and re-assembling the supplied source
module NATLEOPT. For example, if you have any subprograms still running in 24 bit mode,
set SYSPARM(RMODE24) as parameter for the assembler rather than changing NATLEOPT.

If you have other specific requirements for your LE subprograms, you can add the desired
LE options for the CEEXOPTmacro in source module NATLEOPT.

Under z/VSE Batch:
You can pass LE run-time options by using the PARM= parameter in your JCL. The following
applies:
■ The run-time options that are passed to the main routine must be followed by a slash (/) to
separate them from the Natural parameters.

■ If you want to use a slash within your Natural parameters, then your Natural parameters
must begin with a slash.

Example:

Operations396

Support and Use of Natural and Non-Natural Objects

PARM='/ID=/,...'

Under IMS TM:
You can pass LE run-time options by providing the region-specific run-time options load
module CEEROPT in your STEPLIB concatenation. In addition, the LE library routine retention
initialization routine CEELRRINmust be present on the PREINIT list of your region JCL.

The following is a sample definition of a CEEROPT load module that allows the execution of
AMODE(24) subprograms:

CEEROPT CSECT
CEEROPT AMODE ANY
CEEROPT RMODE ANY

CEEXOPT ALL31=((OFF),OVR), X
STACK=((128K,128K,BELOW,KEEP,512K,128K),OVR)

END CEEROPT

LE Abend Handling

Natural supports the LE-specific user error handling, that is, if an LE subprogram has defined a
user error handler, this handler gets controlwhen an abend, a program check or any other LE error
condition occurs in the subprogram. If no LE user error handler has been defined, Natural reacts
according to the setting of the DU profile parameter.

In this case, a special error message (NAT0950 if DU=OFF or NAT9967 if DU=ON) is issued which in-
dicates the LE error number. In addition, the corresponding LE error message is issued on CEEMSG
and an LE snap dump is written to CEEDUMP according to LE run-time option TERMTHDACT.

Note: In case of DU=FORCE, the abend handling of Natural is disabled and the LE error
handling takes place even if no LE subprogram is active at the time of the abend. In this
case, it is strongly recommended to specify the LE run-time option TERMTHDACT(UAIMM) to
get all required diagnostic information.

External Sort Programs

This document provides information on using external sort programs with Natural.

The following topics are covered:

■ Support of External Sort Programs
■ Special Considerations for z/OS
■ Special Considerations for z/VSE

397Operations

Support and Use of Natural and Non-Natural Objects

■ Special Considerations for BS2000

Support of External Sort Programs

The Natural SORT statement may optionally invoke an external sort program that carries out the
actual sorting. An external sort program is used if the keyword subparameter EXT of the macro
NTSORT is set to ON in the Natural parameter module.

Natural supports all external sort programs that comply with the sort interface documented in
the manuals for the relevant operating system.

The requirements (for example, space and data sets) are identical to those for the execution of a
3GL (for example, COBOL, PL/I) application program that invokes the operating system sort
program and can vary according to the external sort program in use.

The communication with the external sort program is via the E15 and E35 user-exit routines. As
a consequence, Natural does not require the data sets SORTIN and SORTOUT.

Special Considerations for z/OS

All external sort programs supporting the extended parameter list can be used.

Special Considerations for z/VSE

The external sort program is loaded into the partition program area. For this reason, you must
add round about 200 KB additional storage to the size requirements of the Natural batch nucleus
specified in the SIZE parameter of the EXEC statement.

Example:

// EXEC natural,SIZE(natural,200K)

where natural is the name of your Natural phase.

Special Considerations for BS2000

The external sort program is called using the level 1 interface. That is, Natural passes all SORT
control statements to the external sort program and data set SYSDTA is not used for input.

The external sort program is searched for in the following libraries:

■ User TASKLIB concatenated with the BLSLIB chain, if a User TASKLIBwas specified,
■ System TASKLIB ($TSOS.TASKLIB) concatenated with the BLSLIB chain.

Operations398

Support and Use of Natural and Non-Natural Objects

57 Input/Output Devices

■ Terminal Support ... 400
■ Light Pen Support .. 400
■ Printer Support .. 401

399

This document provides some additional information on input/output devices supported by
Natural.

Terminal Support

Natural supports a wide variety of terminal types for the use with mainframe computers. In TP
monitor environments in which the terminal type information is not supplied automatically to
Natural, you can use the Natural profile parameter TTYPE so that Natural can activate the appro-
priate converter routine to operate a specific type of terminal.

Links to related topics:

■ NTDVCE - Terminal-Device Specification Table
■ Terminal Communication - Profile Parameters Grouped by Function (Parameter Reference documenta-
tion)

■ NATCONFGModule (various I/O translation topics)
■ Terminal Types Supported under BS2000
■ Natural Terminal Commands

Light Pen Support

The support of light pens has been enhanced by the terminal command %RM. This command causes
all light-pen-sensitive fields on the screen to be made write-protected; that is, the user can select
them with a light pen, but cannot overwrite their contents.

For a field to be light-pen sensitive, it must be displayed intensified (session parameter AD=I) or
blinking (AD=B), and the first character of the field must be a light-pen designator character (see
below). Selecting a field with a light pen causes the designator character to be changed; therefore,
you can make the processing of fields selected with a light pen dependent on the values of the
designator characters.

The following designator characters are available:

MeaningCharacter

You can select multiple fields before pressing ENTER.?

It was selected and if it is selected again, it becomes a question mark ?; the characters ? and
>will toggle.

>

You can select only one field and it will be as an ENTER for both the field and the MDT
(modified data tag).

&

Operations400

Input/Output Devices

MeaningCharacter

You can select only one field and you will only see the MDT.' ' (blank)

As designator characters, you have to distinguish selection fields (?, >) and attention fields (&,
blank or null). Selection fields do not start an immediate data transmission, so you are able to select
more than one field. Attention fields result in an immediate action.

The SELECT CURSOR key emulates a light-pen selection. If you move the cursor to the field you want
to select and press SELECT CURSOR, this field will be selected.

Sample Natural Program for Light Pen Usage

RESET #FIELD-1 (A8)
#FIELD-2 (A8) #FIELD-3 (A8) #CV-1 (C) #CV-2 (C) #CV-3 (C)

SET KEY ALL
/* SET CONTROL 'RM' IS A TOGGLE. AFTER IT IS EXECUTED ONCE MAKE IT A
/* COMMENT, SO THAT YOU DO NOT TOGGLE IT 'OFF'.
**SET CONTROL 'RM'
REPEAT

IF *PF-KEY NOT = 'ENTR' AND *PF-KEY NOT = 'PEN' ESCAPE BOTTOM
MOVE (AD=I CD=YE) TO #CV-1
MOVE (AD=I CD=RE) TO #CV-2
MOVE (AD=I CD=BL) TO #CV-3
MOVE ' FIELD-1' TO #FIELD-1
MOVE '&FIELD-2' TO #FIELD-2
MOVE '?FIELD-3' TO #FIELD-3
INPUT (SG=OFF IP=OFF)

01/01 #FIELD-1 (CV=#CV-1 AD=M)
03/01 #FIELD-2 (CV=#CV-2 AD=M)
05/01 #FIELD-3 (CV=#CV-3 AD=M)

WRITE 'PF-KEY =' *PF-KEY
IF #CV-1 MODIFIED WRITE '#CV-1 MODIFIED' #FIELD-1
IF #CV-2 MODIFIED WRITE '#CV-2 MODIFIED' #FIELD-2
IF #CV-3 MODIFIED WRITE '#CV-3 MODIFIED' #FIELD-3

LOOP
END

Printer Support

The following topics are covered:

■ Printer-Advance Control Characters

401Operations

Input/Output Devices

■ Natural Laser-Printer Support

Printer-Advance Control Characters

Printer-advance control characters can be generatedwithin aNatural programby using the DEFINE
PRINTER statement as follows:

....
DEFINE PRINTER (n) OUTPUT 'name'
DEFINE PRINTER (n+1) OUTPUT 'CCONTROL'
....

Both DEFINE PRINTER statementswork together so that all Natural output for the printer (n) follows
the normal Natural report-output rules and all Natural output for the printer (n+1) is also written
to the printer (n). Natural does not generate a printer-advance control character for this report.
Therefore, the first character in the output variable is the control character.

With this method, it is possible to merge control characters for laser-printer systems and channel-
advance characters for line printers in a normal Natural output report.

Sample Natural Program for Printer-Advance Control Character

...
DEFINE PRINTER (1) OUTPUT 'CMPRT01'
DEFINE PRINTER (2) OUTPUT 'CCONTROL'
WRITE (1) 'TEST'
WRITE (2) NOTITLE '+TEST'
MOVE H'5A' TO A(A1)
WRITE (2) A '....'
...

The corresponding hexadecimal data in the spool file starting from column 0 are:

I..I..I..I..I..I..I..I..I..I..I..I..I..I..I
F1 E3 C5 E2 E3
1 T E S T
4E E3 C5 E2 E3
+ T E S T
5A

CCONTROL is the name of a special printer control table associated to the printer n-1; it must not
be modified.

Operations402

Input/Output Devices

Natural Laser-Printer Support

Natural supports IBM 3800 laser-printer systems.

The DEFINE PRINTER statement is used to control and allocate a report for the 3800 printer system.
With this statement, you can specify that the Natural print output for report 1 is routed to a 3800
printer system.

DEFINE PRINTER (1) OUTPUT 'LAS3800'
I I => 1-31 for CMPRT01 to CMPRT31
....

Depending on the setting of the INTENS parameter, Natural repeats each line up to four times and
recognizes the Natural attributes AD=D, AD=I, AD=C and AD=V (see session parameter AD).

The first line contains the ASA control code in the first column and the 3800-font control character
(hexadecimal F0) for the first font in the second column. The columns 2 to nnn contain the print
data which are not flagged with the attribute AD=I, AD=C or AD=V.

The second line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F1) for the second font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=I.

The third line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F2) for the third font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=C.

The fourth line contains the ASA control code + (for printing without line advance) in the first
column and the 3800-font control character (hexadecimal F3) for the fourth font in the second
column. The columns 2 to nnn contain the print data which are flagged with AD=V.

If INTENS is specifiedwith a value less than 4, all non-supported fonts are printedwith hexadecimal
F0.

Sample Natural Program for Laser Printer Usage

....
DEFINE PRINTER (1) OUTPUT 'LAS3800'
WRITE (1) 'FIRST' 'SECOND' (AD=I) 'THIRD' (AD=C) 'FOURTH' (AD=V)
....

The corresponding hexadecimal data in the spool file starting from column 0 are:

403Operations

Input/Output Devices

I..I
40 F0 C6 C9 D9 E2 E3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 (hex)

0 F I R S T
4E F1 40 40 40 40 40 40 E2 C5 C3 E4 D5 C4 C4 40 40 40 40 40 40 40 (hex)
+ 1 S E C O N D
4E F2 40 40 40 40 40 40 40 40 40 40 40 40 40 E3 C8 C9 D9 D4 40 40 (hex)
+ 2 T H I R D
4E F3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 C5 (hex)
+ 3 F

Sample JCL for Laser Printer Usage

....
//xxxx JOB xxxxx,....
.
//xxxxx EXEC PGM= XXXXXX;......
.
// PARM='INTENS=4,XXXX,.......
.
.
//OUT1 OUTPUT PAGEDEF=XXXX,FORMDEF=XXXX,TRC=ON
. I I
. I I => 3800 form definition
. I
. I => 3800 page definition .
//CMPRT01 DD SYSOUT=Y
// DCB=(RECFM=FBA,LRECL=133),OUTPUT=*,OUT1
// CHARS=(WWWW,XXXX,YYYY, ZZZZ)

I
I => IBM font names

...

Operations404

Input/Output Devices

58 Double-Byte Character Sets

■ Natural Profile Parameter SOSI .. 406
■ Output Format Specification ... 406
■ Parameter Definitions for DBCS Support .. 406
■ Editor Profile Options .. 407
■ Input Data Check ... 407
■ Output Data Adjustment .. 408
■ Natural Stack Data ... 408
■ Application Programming Interfaces for DBCS Handling .. 408
■ Alternate Text Module NATTXT2U ... 409

405

This document is only relevant forAsian countrieswhich use double-byte character sets. It describes
all features implemented in Natural to support DBCS terminals and printers.

Natural Profile Parameter SOSI

In alphanumeric fields with SBCS and DBCS characters mixed, the DBCS character strings are
separated from the SBCS strings by shift codes called SO (shift-out) and SI (shift-in). The Natural
profile parameter SOSI is used to pass the values of the shift-in and shift-out codes used in the
current environment to Natural.

It is strongly recommended to use the IBM characters X'0E' and X'0F' internally. With this tech-
nique, all applications anddata can be handled in a compatiblemanner,whichmeans that a network
supporting different mainframe types can still use the same Natural applications and process the
same data.

For detailed information on this parameter, see SOSI.

Output Format Specification

The Natural session parameter PM=D is used to define DBCS-only fields. A DBCS-only field must
contain only valid DBCS characters; shift-out/shift-in characters (SO/SI) are not allowed within
such a field. To display a field with the session parameter PM=D specified, the screen attribute
X'43F8' is added for IBM terminals; for Fujitsu terminals, the field content is enclosed in the re-
quired shift-out/shift-in characters (SO/SI).

Parameter Definitions for DBCS Support

The following parameters must be specified in the setup for Natural for the support of double-
byte character sets:

ExplanationParameter

If Latin lower-case characters are not available, this parameter translates all
Natural systemoutput using the translation table defined by themacro NTTABL
in the NATCONFGmodule.

TS=ON

Defines the DBCS shift-out and shift-in values for IBM hardware.SOSI=(0E,0E,0F,0F,1)

Defines the DBCS shift-out and shift-in values for Fujitsu hardware.SOSI=(28,28,29,29,0)

Does not translate all input data to uppercase, which again would destroy
possible DBCS input data.

LC=ON

Operations406

Double-Byte Character Sets

In addition to TS=ON, further parameters to provide for translation of messages into upper case
are provided by several Natural components. For detailed information, see Other Parameters to
Provide Upper Case Translation in the TS profile parameter documentation.

Editor Profile Options

If you want to enter DBCS or half-width Katakana characters in one of the Natural editors, the
following editor general default options should be set in the editor profile to avoid that character
constants or field names containing DBCS or half-width Katakana characters are unintentionally
converted to upper case:

ExplanationValueOption

Lower-case characters in the source code are not automatically
converted to upper case. This option is required if you are using
DBCS or half-width Katakana characters.

YEditing in Lower Case

Any source code remains as you enter it. This option is required if
you are using half-width Katakana characters.

NDynamic Conversion of Lower
Case

For detailed information on the editor general default options, see General Defaults. For detailed
information on the editor profile, see Editor Profile in the Editors documentation. To avoid the need
to change these options for every user, you can modify the default profile for your installation by
means of the user exit routine USR0070P, which also supports DBCS; seeUSR0070P - User Exit for
Editor Profiles in the section Configuring Natural.

Input Data Check

If the session parameter PM=D is set for a field, it is verified that the input data

■ contains an even number of bytes,
■ contains only valid DBCS characters,
■ does not contain shift-out/shift-in characters (SO/SI).

Because the detection of non-DBCS characters requires ICU, this check will not be performed if
ICU is not available (that is, if the profile parameter CFICU=OFF has been set).

407Operations

Double-Byte Character Sets

Output Data Adjustment

If a window is to be displayed for user interaction, the window might overlay DBCS characters
that are already displayed, or thewindowmight itself containDBCS characterswhich are truncated
because of the window size. An overlay may also occur if the NO ERASE option is used with an
INPUT statement. In order to prevent screen corruption in case of such an overlay, the following
actions are performed to adjust the output data, if necessary:

■ if the session parameter PM=D is set for a field, an orphan byte (that is, a single byte left at the
beginning or end of the data to be displayed as a result of a partial overlay of a DBCS character)
is replaced by an attribute; this operation assures that only valid DBCS characters are displayed;

■ if the profile parameter SOSI has been set, the field contents of an alphanumeric field for which
PM=D is not specified is examined for shift-out/shift-in characters (SO/SI); if a shift-out character
(SO) is found for which the correlating shift-in character (SI) is missing, either the last character
of the output data is replaced by a shift-in character (SI) or the last two characters are replaced
by a shift-in character (SI) followed by a blank; if a shift-in character (SI) is found for which the
correlating shift-out character (SO) is missing, either the first character of the output data is re-
placed by a shift-out character (SO) or the leading two characters are replaced by a blank followed
by a shift-out character (SO); this operation assures that DBCS characters are enclosed properly
by shift-out/shift-in characters (SO/SI).

Natural Stack Data

To avoid unintentional interpretation of DBCS characters as delimiter or control characters, the
FORMATTED option of the STACK statement should be used if the data to be placed on the Natural
stack contains DBCS characters.

See the Statements documentation for further information on the STACK statement.

See the Programming Guide for further information on the Natural Stack.

Application Programming Interfaces for DBCS Handling

The following user application programming interfaces (API) are available to support DBCS
handling:

■ USR4211N - Get DBCS Characters

Operations408

Double-Byte Character Sets

■ USR4213N - String Handling for DBCS Support

These APIs are contained as subprograms in the Natural library SYSEXT. Detailed information on
how to use anAPI is included in the corresponding text object (USRxxxxT). See also SYSEXTUtility
- Natural Application Programming Interfaces in the Utilities documentation.

USR4211N - Get DBCS Characters

The application programming interface USR4211N can be used to obtain information on the avail-
ability of DBCS support and the defined SOSI characters.

USR4213N - String Handling for DBCS Support

The application programming interface USR4213N can be used to perform the following functions:

■ Convert a normal Latin character string into the corresponding DBCS character string.
■ Convert a DBCS character string that contains Latin data only into a single-byte character string.
■ Add the current shift codes at the beginning and at the end of a character string.
■ Remove leading and trailing shift codes from a character string.

The last two functions can be used to either produce native DBCS strings or generate mixed-mode
data out of native DBCS strings.

Alternate Text Module NATTXT2U

The alternate text module NATTXT2U contains certain keywords for English language in all upper
case which are contained in mixed case in text module NATTXT2. NATTXT2U should be linked to the
Natural nucleus instead of NATTXT2 in environments where lower case code points H'81' to H'A9'
are used to display national characters.

409Operations

Double-Byte Character Sets

410

59 Asynchronous Processing

■ Identifying Asynchronous Natural Sessions ... 412
■ Handling Output of an Asynchronous Natural Session ... 412
■ Handling Unexpected or Unwanted Input .. 413
■ Other Profile Parameter Considerations ... 413

411

This document describes asynchronous Natural processing, a method which is available under
all TP monitors supported by Natural.

An asynchronous Natural session is a session which is not associated with any terminal and
therefore cannot interact with a terminal user. It can be used to execute a time-consuming task “in
the background” without the user having to wait for the task to finish.

Related Topics:

■ Asynchronous Natural Processing under CICS
■ Asynchronous Natural Processing under Com-plete/SMARTS
■ Asynchronous Transaction Processing under openUTM

Identifying Asynchronous Natural Sessions

To identify a session as being asynchronous, the Natural system variable *DEVICE is assigned the
value ASYNCH.

Note: The value of *DEVICEmay be modified by the Natural profile parameter TTYPE and
by any SET CONTROL 'T=xxxx' statement; see also profile parameter TTYPE in the Parameter
Reference documentation and terminal command %T= in the Terminal Command documenta-
tion.

Handling Output of an Asynchronous Natural Session

As an asynchronous session is a session that is not associated with any terminal, this means that
any output produced by the session cannot simply be displayed on the screen; instead, you have
to explicitly specify an output destination. You specify this destination with the Natural profile
parameter SENDERwhen invoking Natural. The SENDER destination applies to hardcopy output
and primary reports; any additional reports are sent to the destinations specified with the DEFINE
PRINTER statement, just as in a synchronous online session.

As an asynchronous session can also cause a Natural error, the destination to which any Natural
error message is to be sent must also be specified; this is done with the Natural profile parameter
OUTDEST. This parameter also provides an option to have errormessages sent to the operator console.
After an error message has been sent, Natural terminates the asynchronous session.

The profile parameters SENDER and OUTDEST should be set accordingly to be prepared for unexpected
output by the asynchronous Natural session; otherwise, the asynchronous Natural session may
abend in such a scenario.

Operations412

Asynchronous Processing

Handling Unexpected or Unwanted Input

An asynchronousNatural session only has theNatural stack to enter the name ofNatural programs
andNatural system commands to be executed. If aNatural programor aNatural system command
fails with an unhandled Natural error or if the entire Natural stack is exhausted and NEXTmode
would be entered, the asynchronous Natural session is terminated with termination message
NAT9943.

Depending on the TP monitor in use and depending on the TTYPE setting, either the CLEAR key
or the EOF indicator is passed back to Natural on an INPUT request by default. This measure helps
to prevent error loop situations if a program unintentionally executes an INPUT statement. To pass
the ENTER key indicator back, you can issue a SET CONTROL 'N' statement prior to the INPUT
statement.

Tip: You can make your application compatible with asynchronous sessions by evaluating
the system variable *SCREEN-IO accordingly.

Other Profile Parameter Considerations

The following Natural profile parameters should be considered in the case of an asynchronous
Natural session:

CommentProfile Parameter

Asynchronous sessionsmay have non-alphabetical user IDs. In this case, AUTO=ONwill
fail.

AUTO

Anunwanted input situationmay happen if theNatural session accidentally falls onto
the NEXT level. Setting CM=OFFwill terminate the session immediately in such a
situation.

CM

The error message NAT9995 (normal termination message) can be suppressed by
specifying ENDMSG=OFF.

ENDMSG

Natural initialization error messages and warnings can be suppressed by specifying
IMSG=OFF.

IMSG

Asynchronous sessions only have the Natural stack for command inputs; therefore, it
is recommended to specify MENU=OFF and to navigate throughNatural by using direct
commands.

MENU

Dynamic parameter logging is executed by sending all parameters line by line to the
SENDER destination.

PLOG

If a standard back-end program/transaction is defined in your installation, it should
be checked if this program can run asynchronously or if it is desired to deal with
terminal-bound sessions only. Specifying PROGRAM=0 bypasses the back-end logic.

PROGRAM

413Operations

Asynchronous Processing

414

	Operations
	Table of Contents
	Preface
	I Configuring Natural
	1 Linking Natural Objects to the Natural Nucleus
	Benefits
	ULDOBJ Utility
	Using ULDOBJ to Generate an Object Module
	Additional Considerations for Linking Subroutines
	Operating System Dependency of Object Module Generation
	Example of Linking a Natural Object to the Natural Nucleus

	2 Natural User Exits
	NATUEX1 - User Exit for Authorization Control
	NATSREX2 and NATSREX3 - User Exits for Sort Processing
	NATUSKnn - User Exit for Computation of Sort Keys
	NATPM - User Exit for Inverted Output
	Inversion Logic
	Field User Exit

	NREXPG - User Exit for NATRJE
	USR0070P - User Exit for Editor Profiles
	USR2002P - User Exit for Help Window Text Strings
	USR2003P - User Exit for Main Menu

	3 Natural User Access Method for Print and Work Files
	NATAMUSR Module Description
	NATAMUSR Module Installation
	Invoking the Third Party Product

	4 Natural System Files
	Natural Scratch-Pad File
	Recordings
	Screen Captures - NATPAGE
	File Maintenance

	5 Natural Text Modules and Macros
	Function and Usage of Text Modules
	NATTEXT - Natural Keyword Definitions
	Modifying NATTEXT
	Example of Modifying the NATTEXT Module

	NATTXT2 - Output Text, Keywords and User Termination Messages (Mixed Case)
	Standard Natural Output Texts
	Keywords and Alternative Keywords for Natural System Commands and Utilities
	User-Written Termination Messages

	NATTXT2U - Output Text, Keywords and User Termination Messages (Uppercase)
	NATTXT3 - Text Fragments for Placeholders in Natural Error Messages
	NTERMSG - Natural Termination Messages and Return Codes

	6 Natural Configuration Tables
	NATCONFG - Natural Configuration Tables
	General Overview of Macros Used by NATCONFG
	NTDVCE - Terminal-Device Specification Table
	NTMSG - Message Log Table Definitions
	NTSTAT - Definition of Natural Objects Linked to the Natural Nucleus
	NTCPAGE - Code Page Definitions
	NTCPAGE Macro Syntax
	NTCPAGE Macro Parameters

	Code Page Support
	Output Devices Supported
	Sequential Output Devices for Batch, Additional Reports
	Line-Oriented Online Terminals
	Block-Mode-Oriented Online Terminals

	Example of NTDVCE Macro
	Translation Tables
	Upper-/Lower-Case Translation
	CMULT Entry
	Output Translation
	Input Translation
	Code Translation of DBCS Data
	NTTZ - Time Zone Definitions
	NTTZ Macro Considerations and Restrictions
	NTTZ Macro Syntax
	NTTZ Macro Parameters
	Example of NTTZ Macro

	7 Natural Storage Management
	Thread and Non-Thread Environments
	Buffer Types
	Fixed Buffers
	Variable Buffers
	Customization of Buffer Characteristics

	II Profile Parameter Usage
	8 Natural Parameter Hierarchy
	Natural Parameter Hierarchy Overview
	General Rules for Parameter Usage
	Natural Parameter Module
	Alternative Natural Parameter Module

	Predefined Dynamic Parameter Sets
	Predefined User Parameter Profiles
	Dynamic Parameter Entry
	Natural Security Definitions
	Session Settings for Profile Parameters
	Program/Statement Level Settings
	Development Environment Settings
	Examples of Parameter Evaluation

	9 Assignment of Parameter Values
	Sources for Parameter Value Assignment
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Specifying Dynamic Parameters under z/VSE

	Session Parameters for Runtime Assignment of Parameter Values

	10 Building a Natural Parameter Module
	NTPRM Parameter Macro
	Additional Macros in the Natural Parameter Module
	Naming Conventions and Overview of Macros

	Example of Macros in the Natural Parameter Module

	III z/OS Environment
	11 Natural under z/OS
	Natural Subsystem
	TP Monitor Interfaces
	Interfaces to Database Management Systems
	Natural in Batch Mode under z/OS
	Natural as a Server under z/OS

	12 Authorized Services Manager under z/OS
	ASM Overview
	ASM System Requirements
	APF Authorization
	System Linkage Index
	CF Structure
	XCF Signaling Paths

	ASM Operation
	Starting the ASM
	ASM Messages, Condition Codes and Abend Codes
	ASM Operator Commands

	13 Natural Roll Server Functionality
	Natural Roll-Server Overview
	Roll Server in a Single z/OS System
	Illustration of the Roll Server in a Single z/OS System:

	Roll Server in a z/OS Parallel Sysplex Environment
	Roll File and LRB

	14 Natural Roll Server Operation
	Roll Server System Requirements
	APF Authorization
	System Linkage Index
	Virtual Storage
	CF Structure
	XCF Signaling Paths

	Formatting the Roll File
	NATRSRFI Output
	Notes Concerning the Formatting or Resetting of Roll Files

	Starting the Roll Server
	Examples for Starting the Roll Server as a Batch Job

	Roll Server Messages, Condition Codes and Abend Codes
	Condition Codes of the Roll Server Started Task
	User Abend Codes

	Return Codes and Reason Codes of the Roll Server Request
	Operating the Roll Server
	Roll Server Performance Tuning
	Roll Server User Exits
	NATRSU14 User Exit
	NATRSU24 User Exit

	IV z/VSE Environment
	15 z/VSE Environment
	Natural Subsystem
	TP Monitor Interfaces
	Interfaces to Database Management Systems
	Natural in Batch Mode under z/VSE

	V BS2000 Environment
	Related Topics
	Other Natural Functions for BS2000-Specific Purposes
	16 Refresh of Natural Load Pool
	Prerequisites and Restrictions
	Procedure
	Keyword Parameters for the Program PREFRESH
	NAME - Common Memory Pool and Module Name
	LIBR - Load Library
	LOAD - Module Load Method
	ALNK - Activate AUTOLNK Function
	TIM1 - Wait Time in Seconds before the Load Pool Refresh is Started
	TIM2 - Wait Time in Seconds after the New Natural Nucleus was Loaded

	17 Optimization of Message Handling
	Screen Output Handling
	Restoring the Screen Content

	18 Terminal Types Supported under BS2000
	Type 9748
	975n Series
	Type 9763M

	19 Function Keys Supported under BS2000
	Key Assignment
	Modes for Key Assignment

	20 Common Memory Pools
	Global Common Memory Pools
	CMPSTART Program
	Operator Commands
	CMPEND Program

	Local Common Memory Pools
	BS2STUB Macro
	ADDON Macro
	ADDEND Macro
	Example of Assembling Macro BS2STUB

	21 Calling Dynamically Reloadable 3GL Programs in a Natural Application
	Storage Allocation Rule
	Thread-Creation Rule
	Address-Mode Dependencies

	22 Print File/Work File Server NATPWSV2
	Setup
	Operation
	Starting the Print File/Work File Server
	Terminating the Print File/Work File Server

	23 Using Network Attached Storage Files as Natural Print and Work Files
	24 RPC Server Front-End
	Setup

	VI Natural in Batch Mode
	25 Natural in Batch Mode under z/OS
	Natural z/OS Batch Interface
	Driver Parameters for z/OS Batch
	Data Sets Used by Natural in z/OS Batch Mode
	CMEDIT - Software AG Editor Work File
	CMHCOPY - Optional Report Output for Hardcopy
	CMOBJIN - Input for Natural INPUT Statements
	CMPLOG - Dynamic Profile Parameter Report Output
	CMPRINT - Primary Report Output
	CMPRMIN - Dynamic Parameter Data Set
	CMPRTnn - Additional Reports 01 - 31
	CMSYNIN - Primary Command Input
	CMTRACE - Optional Report Output for Natural Tracing
	NATRJE - Job Submit Output
	STEPLIB - Load Library for External Modules
	CMWKFnn - Work Files 01-32

	26 Natural in Batch Mode under z/VSE
	Natural z/VSE Batch Interface
	Driver Parameters for z/VSE Batch
	Natural Data Sets Used under a z/VSE Batch Mode Session
	CMEDIT - Software AG Editor Work File
	CMHCOPY - Optional Report Output for Hardcopy
	CMOBJIN - Input for Natural INPUT Statements
	CMPLOG - Optional Report Output for Dynamic Parameters
	CMPRINT - Primary Report Output
	CMPRMIN - Dynamic Parameter Data Set
	CMPRTnn - Additional Reports
	CMSYNIN - Primary Input
	CMTRACE - Optional Report Output for Natural Tracing
	CMWKFnn - Work Files 01-32

	NATVSE Print and Work File Support for z/VSE Library Members
	NATVSE Print File Support for Direct POWER SPOOL Access
	NATVSE Dynamic Work File Allocation (DYNALLOC) Support
	Prerequisites
	DEFINE WORK FILE Keyword Parameters
	Rules for Using the DEFINE WORK FILE Keyword Parameters
	Samples

	Debugging Facilities for Natural under z/VSE
	UPSI 1xxxxxxx - Dump Flag
	UPSI x1xxxxxx - Trace Flag
	UPSI xx1xxxxx - Print Output Identification Flag
	UPSI xxx1xxxx - Storage Freeze Flag
	UPSI xxxxxx1x - Abend Exit Flag
	Obtaining Documentation for Debugging

	NATVSE Attention Interrupts

	27 Natural in Batch Mode under BS2000
	Files and System Files Used by Natural in BS2000 Batch Mode
	CMPRMIN - Dynamic Parameter File
	SYSIPT - Dynamic Parameter System File
	SYSDTA - Dynamic Parameter System File
	SYSDTA - Primary Input
	SYSOUT, SYSLST - Primary Report Output
	SYSLSTnn - Optional Report Output for Natural Tracing
	Pnn - Additional Reports 01-31
	Wnn - Natural Work Files 01-32

	Keyword Parameters
	ADACOM
	ADDBUFF
	APPLNAM
	CODE
	DELETE
	DYNPAR
	ILCS
	JV
	LF
	LINK
	LINK2/LINK3/LINK4
	NUCNAME
	PARMOD
	REQMLOC
	SYSDTA
	TERM
	TIMESTMP
	TRACE
	USERID
	WRITE

	BS2000 Job Variables

	28 Natural in Batch Mode (All Environments)
	Adabas Data Sets
	Sort Data Sets
	Subtasking Session Support for Batch Mode Environments
	Purpose
	Prerequisites
	Functionality
	Starting a Natural Session
	Starting a Subtask
	Accessing the User Parameter Area

	VII Natural Buffer Pools
	29 Natural Buffer Pool - General
	Natural Buffer Pool Principle of Operation
	Objects in the Buffer Pool
	Directory Entries
	Text Pool
	Buffer Pool Hash Table
	Buffer Pool Initialization
	Buffer Pool Search Methods
	Local Buffer Pool
	Global Buffer Pool
	Buffer Pool Cache

	Buffer-Pool Monitoring and Maintenance
	Preload List
	Blacklist
	Propagation of Buffer-Pool Changes
	Performance Considerations

	Natural Global Buffer Pool
	Profile Parameters Used
	Buffer Pool Opening / Closing Procedure

	30 Natural Global Buffer Pool under z/OS
	Using a Natural Global Buffer Pool
	Purpose
	Benefits

	Prerequisites
	Operating the Natural Global Buffer Pool
	Allocation of the Natural GBP
	Setting up the Natural GBP
	Starting the Natural GBP Operating Program
	Stopping the Natural GBP Operating Program

	Sample NATGBPvr Execution Jobs
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Localization
	Messages

	31 Natural Global Buffer Pool under z/VSE
	Using a Natural Global Buffer Pool
	Purpose
	Benefits

	Prerequisites
	Operating the Natural Global Buffer Pool
	Setting Up the Natural GBP
	Starting the Natural GBP Operating Program
	Stopping the Natural GBP Operating Program

	Sample NATGBPvr Execution Jobs
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Localization
	Messages

	32 Common Natural GBP Operating Functions under z/OS and z/VSE
	Global Buffer Pool Manager Parameter Module
	UCTRAN - Lower/Mixed Case Support

	Global Buffer Pool Operating Functions
	ADDCACHE - Allocate Cache for an Existing Global Buffer Pool
	CREATE - Create Global Buffer Pool
	DELCACHE - Release Cache of a Global Buffer Pool
	FSHUT - Shut Down Global Buffer Pool
	GLOBALS - Show Global Parameter Settings
	LISTCACHE - List All Global Buffer Pool Caches Owned by Job
	NOP - No-Operation
	REFRESH - Re-initialize Global Buffer Pool
	SHOWBP - Show Existing Buffer Pools
	TERMINATE - Terminate GBP Operating Program
	ZAPS - Display Zaps Applied to GBP

	Global Buffer Pool Function Parameters
	BPNAME - Name of Global Buffer Pool
	BPLIST - Name of Preload List
	BPCSIZE - Buffer Pool Cache Size
	CC - Count Condition Code
	CONFIRM - FSHUT Confirmation
	IDLE - Wait Time before Check
	METHOD - Search Algorithm for Allocating Space in Buffer Pool
	NATBUFFER - Buffer Size, Mode, Text Block Size
	RESIDENT - Behavior after Function Execution
	SUBSID - Natural Subsystem ID
	TYPE - Type of Buffer Pool

	Examples of NATBUFFER Specifications

	33 Natural Global Buffer Pool under BS2000
	Using a Natural Global Buffer Pool under BS2000
	Establishing the Global Buffer Pool under BS2000
	Administering the Global Buffer Pool under BS2000

	VIII Message Buffer Pool
	34 Message Buffer Pool
	Purpose
	Prerequisites
	Operating the Message Buffer Pool
	Setting up the Message Buffer Pool
	Starting the Message Buffer Pool Operating Program
	Stopping the Message Buffer Pool Operating Program

	Sample NATMBPvr Execution Jobs
	Example 1
	Example 2
	Example 3

	Message Buffer Pool Operating Functions
	CREATE - Create a Message Buffer Pool
	FSHUT - Shut Down Message Buffer Pool
	TERMINATE - Terminate Message Buffer Pool Operating Program
	ZAPS - Display Zaps Applied to Message Buffer Pool

	Function Parameters
	BPNAME - Name of Message Buffer Pool
	BPLIST - Name of Preload List
	SUBSID - Natural Subsystem ID
	SIZE - Size of Message Buffer Pool

	Messages

	IX Optimize Monitor Buffer Pool
	35 Optimize Monitor Buffer Pool
	Purpose
	Prerequisites
	Starting the Optimize Monitor Buffer Pool
	Operator Commands
	End
	Halt
	Start
	Idle=nn
	Trigger=nn

	Messages

	X Natural Swap Pool
	36 Purpose of a Natural Swap Pool
	Purpose of a Natural Swap Pool
	Benefits of Using a Natural Swap Pool
	Swap Pool Structure
	Swap Pool Main Directory
	Subdirectories
	Swap Pool Slots
	Logical Swap Pools

	37 Natural Swap Pool Operation
	Users are On their Way to Natural - No Session Start
	Users are Returning from Natural

	38 Natural Swap Pool Initialization
	Swap Pool Initialization Control
	If You Set SWPINIT=AUTO
	If You Set SWPINIT=

	Swap Pool Initialization Parameters

	39 Dynamic Swap-Pool Reorganization
	Requirements for Dynamic Swap-Pool Reorganization
	Statistics Tables
	Swap-Pool-Reorganization Plus Table
	Swap-Pool-Reorganization Minus Table
	Parameters for Swap-Pool Reorganization
	Checking for the Necessity of Swap-Pool Reorganization
	Flow of Dynamic Swap-Pool Reorganization
	Start of Dynamic Swap-Pool Reorganization

	40 Defining the Natural Swap Pool
	Environment-Specific Requirements
	Keyword Parameters of Macro NTSWPRM
	DSPCONT - Minutes for Data Space Slot Control
	DSPLIFE - Life Time in Minutes for a Thread in the ESA Data Space
	LABEL - Name of Swap-pool Parameter Module
	MAXLOCK - Maximum Lock Count
	MAXSIZE - Size of Natural User Threads
	NOVPA - Number of Waits for Completed Asynchronous Write
	NOVPW - Number of Waits for Unlocked Swap Pool
	SWPCOPT - Optimizing Size Use of Swap Pool Cache Slot
	SWPFACT - Size of Unit in Reorganization Tables
	SWPFILE - Location of Swap Pool Initialization Data
	SWPINIT - Access to Swap-Pool Initialization Data
	SWPLSWP - Number of Logical Swap Pools
	SWPPWRD - Administration Password
	SWPSDIF - Minimum Difference of Slot Sizes
	SWPSLSZ - Number of Logical Swap Pools, Slot Sizes
	SWPTFIX - Fixed Slot Size
	SWPTIM1 - Time Interval for Reorganization Check
	SWPTIM2 - Lapse of Time Before Start of Reorganization
	SWPUSER - Condition for Swap Pool Reorganization
	WAITMS - Wait Time for Unlocked Swap Pool
	WRITMS - Wait Time for Completed Asynchronous Write

	41 Natural User Area Size Considerations
	Using the MAXSIZE Parameter
	Defining the Size of the Individual Natural Buffers
	Possible Error Messages
	Displaying the Aggregate Size of All Buffers
	Calculating the Maximum Size

	42 Swap Pool Data Space
	Using ESA Data Space in Addition
	ESA Data Space Slot Size Adjustment

	43 Global Restartable Swap Pool under openUTM
	Purpose of a Natural Global Swap Pool under openUTM
	Installing a Natural Global Swap Pool under openUTM
	Starting a Natural Global Swap Pool under openUTM
	Displaying Information about the Global Swap Pool

	44 Terminating the Global Swap Pool under openUTM
	Termination Using Console Commands
	Abnormal Termination with Dump
	Termination by Program

	XI System Spool Access
	45 System Spool Access
	Purpose
	Prerequisite
	Using the Write-to-Spool Feature
	Defining Your Printer
	Examples for z/OS
	Examples for z/VSE

	XII Natural 3GL CALLNAT Interface
	46 Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions
	Purpose of 3GL CALLNAT Interface
	Availability

	Prerequisites
	Space Requirements
	Linking
	Environment Dependencies

	Restrictions
	Terminating a Natural Subprogram
	Inadmissible Natural Statements
	Parameter Values Passed by the 3GL Program
	Dynamic Arrays
	BS2000 Operating System Specific Restriction
	TP-Monitor-Specific Restrictions

	47 Natural 3GL CALLNAT Interface - Usage, Examples
	Usage
	Overview
	Call Structure
	Parameter Handling

	Sample Environments
	Sample Environment for CICS
	More Samples
	Sample for Any Other Supported Environment

	XIII Operating the Software AG Editor
	48 Editor Work File
	Editor Work File Structure
	Control Record
	Work Records
	Recovery Records

	Editor Work File under z/OS, z/VSE and BS2000
	Using the Software AG Editor Work File Formatting Utility
	Formatting during Initialization
	Maintaining the Editor Work File under z/OS and z/VSE
	Maintaining the Editor Work File under BS2000
	Editor Work File under Complete/SMARTS

	49 Editor Buffer Pool
	Purpose of the Editor Buffer Pool
	Obtaining Free Blocks
	Initializing the Editor Buffer Pool
	Buffer Pool Cold Start
	Buffer Pool Warm Start

	Restarting the Editor Buffer Pool
	Editor Buffer Pool Parameters
	Buffer Pool Initialization for Multi-User Environments

	XIV Natural Net Data Interface NATNETTO
	50 Natural Net Data Interface NATNETTO
	Natural Net Data Driver Functional Description
	General Message Layout
	Layout of Header
	Table 1: Control Block - Fixed Part
	Table 2: Modes of Field Separation
	Table 3: Architecture of Sending Partner
	Table 4: Call Type
	Table 5: Aid Character Table
	Table 6: Message Type
	Table 7: Option Flags for Natural Net-Data Communication

	Format Buffer Layout
	Base Part
	Extension 1

	Value Buffer Layout
	Attribute Buffer
	Example:

	XV Selectable Units for New Natural Features
	51 Selectable Units for New Natural Features

	XVI Natural as a Server
	52 Natural as a Server under z/OS
	Functionality
	Natural Server Stub
	Natural Batch Driver

	Natural Nucleus Installation in a Server Environment
	Print and Work File Handling with External Data Sets in a Server Environment

	53 Natural as a Server under z/VSE
	Functionality
	Natural Server Stub
	Natural Batch Driver

	Natural Nucleus Installation in a Server Environment
	Print and Work File Handling with External Data Sets in a Server Environment

	54 Natural as a Server under CICS
	Functionality
	Natural as a Server
	Natural Server Stub

	Natural CICS Interface Installation in a Server Environment
	Restrictions

	XVII Natural Execution - Miscellaneous Topics
	55 Natural 31-Bit Mode Support
	56 Support and Use of Natural and Non-Natural Objects
	Support for Natural Objects from Previous Natural Versions
	Back-End Program Calling Conventions
	Back-End Program Calling Conventions (Batch Mode)
	Special Considerations under CICS
	Special Considerations under IMS TM
	Sample Back-End Programs

	LE Subprograms
	Support of IBM LE Subprograms
	Enabling Natural Support of LE Subprograms
	Passing LE Runtime Options
	LE Abend Handling

	External Sort Programs
	Support of External Sort Programs
	Special Considerations for z/OS
	Special Considerations for z/VSE
	Special Considerations for BS2000

	57 Input/Output Devices
	Terminal Support
	Light Pen Support
	Sample Natural Program for Light Pen Usage

	Printer Support
	Printer-Advance Control Characters
	Natural Laser-Printer Support

	58 Double-Byte Character Sets
	Natural Profile Parameter SOSI
	Output Format Specification
	Parameter Definitions for DBCS Support
	Editor Profile Options
	Input Data Check
	Output Data Adjustment
	Natural Stack Data
	Application Programming Interfaces for DBCS Handling
	USR4211N - Get DBCS Characters
	USR4213N - String Handling for DBCS Support

	Alternate Text Module NATTXT2U

	59 Asynchronous Processing
	Identifying Asynchronous Natural Sessions
	Handling Output of an Asynchronous Natural Session
	Handling Unexpected or Unwanted Input
	Other Profile Parameter Considerations

