§ software

Natural

Database Management System Interfaces

Version 8.2.7

October 2017

ADABAS & NATURAL

This document applies to Natural Version 8.2.7 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1979-2017 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: NATMF-NNATDBMS-827-20180201

Table of Contents

Database Management System Interfacescccoccooiiiiiiiiiiiii, xi
INatural for DB2ccoooiiiiiiiiiiiiicic 1
1 General INformationccooiiiiiiiiiiiiic 3
PUIPOSE ..o 4
Environment-Specific Considerationscccccoeciiviiiiiiiiiniiiniiiiiicee, 4
Integration with Predict ... 8
Integration with Natural Securitycccccoeeiiiiiiiiiiiiiice, 8
Incompatibilities and Constraintsccocevviiiiiiiiiiiiiiiii, 9
Messages Related t0 DB2ccooiiiiiiiiiii 9
Terms Used in this Documentationcccocovviiiiiiiiiiiiiiicc, 9

2 Accessing @ DB2 Tablecc.cocooiiiiiiiiiiccc 11
3 Using Natural Tools for DB2cccccociiiiiiiiiiiiiiiiiiiicececceecceec e 13
Invoking Natural Tools for DB2cccccoviiiiiiiiiiiiiicc 14
Editing within the Natural Tools for DB2c..ccccccoiiiiiiiiiiiniiiieniiciecee 15
Global PF-Key Settingsccccciiiiiiiiiiiiiiiiiiiiiiicccccecccee e 17
Global Maintenance Commandsccccoeoiiiiiiiiiiiiiiiii, 17

4 Application Plan Maintenancecccoccueviiiiiiiiiiiiiiiiiicccccec e 19
INtroductioncooiiiiiiiiiiii 20
Invoking the Application Plan Maintenance Functioncccccceceeeiininnen. 20
Commands and PF-Key Settingscccccooviiiiiiiiiiiiiic, 22
Prepare Job Profileccccooviiiiiiiiiiiiii 23
Create DBRIMSoooiiiiiiiicc 31
Bind PIanccoiiiiiiiii 33
Rebind Plancccccoviiiiiiiiiiiiiii 37
Free Plan ... 39
Bind Packaeccceoeviiiiiiiiiiiiicieceeeee e 40
Rebind Packageccccciiiiiiiiiiiiiiiiiiiii i 43
Free Packagec.oouiiiiiiiiiiiiiccc 46

List JCL FUNCHON .eeiiiiiiieeeeeeeeeecie et e ettt e e e e e e e e e aaaeee e e e e eeeeasannas 47
Display Job Outputc..ccooiiiiiiiiii 48

5 Catalog Maintenancecccueieuiiiiiiiiiiiiiiiieie e 51
Fixed Mode and Free Modeccccooiiiiiiiiiiiiiiiiiiiiiccee 52
Invoking the Catalog Maintenance Functioncccoeciiiiniiin, 54
Create Table FUNCHONccooiiiiiiiic 55
Create Tablespace FUNCHONccoooiiiiiiiii 66
Alter Table FUNCHONcocoiiiiiiiii 68
Alter Tablespace FUNCHONc.coooiiiiiiiiiiicc e 75

SQL SKeleton MEIMDETSoviiiiiiiiiiiieee ettt ettt e e e e et eeeeeeeees 78

6 Interactive SQLcoo i e et e e e e e e er b e e e eeeeaaaaaas 81
Invoking the Interactive SQL Functionc.cccooiiiiiiiiiii, 82

SQL Input MemDbersc.cocoiiiiiiiiiiiiiiiiiiiiii e 83
Data Output Members ... 92
Processing SQL Statementsccoccoiviiiiiiiiiiiiiii 96

Database Management System Interfaces

PF-Key Settingsccceviiiiiiiiiiiiiiiciiicciccc 100
Unloading Interactive SQL Resultsccoccooiiiiiiiiii 101
7 Retrieval of System Tablesccccccovviiiiiiiiiiiiiiiiiii 103
Invoking the Retrieval of System Tables Functioncccoccoeiiinnin, 104
List Databasesccccoouiiiiiiiiiiiiiiiiiccc 107
List TableSpacesccccvieiiiiiiiiiiiiccicec e 109
List PIANS ...oouviiiiiiiiiiiiiiiciccc 111
Commands Allowed on Plansccccccoviiiiiiiiiiiiinic 112
List PaCKaZeSoooveiviiiiiiieiicieeec 118
List Tablesc.cocviiiiiiiiiiiiicc 120
User Authorizationscccoiiiiiiiiiiiiiiiii 122
List Statistic Tablesc.cccooiiiiiiiiiiiiii 124
8 Environment Setting ..o 127
Invoking the Environment Setting Facilityccccoooiiiiiiniin. 128
CONMNECE ..ot 129
ReIASE ..o 130
Set CoNNECHIONocviiiiiiiiiiicci 131
Set Current SQLIDcccoooiiiiiiiiiiiiiiiicic 132
Set Current Packagesetcoceeviiiiiiiiiiiiiiiiiiicccc 133
Set Current DeGreecocoviiiiiiiiiiiiiiiiiicc 134
Set Current Rulescccooiiiiiiiiiiiii 135
Set Current Optimization Hintccocoiii 136
Set Current Locale LC_CTYPec..ocueviiiiiiiiiiiiiiccec e 137
Set Current Path ... 138
Set Current Precisionccoviiiiiiiiiiiiiiii 140
Set Current Maintained Types for Optimizationcccocceeviiiiiiciiniiincens 140
Set Current Package Pathcccccoiviiiiiiiiii 141
Set Current Refresh Agec.cccooiiiiiiiiiiiiic 142
Set Current Schema ..o 143
Set Current Application Encoding Schemecccocooiiiiiiiiii, 145
Set Encryption Passwordcccovviiiiiiiiiiiiiiiiiciccccce e, 146
Display Special Registerscccooieviiiiiniiiiiiiiiiic 148
9 Explain PLAN_TABLEccccccoiiiiiiiiiiiiii 151
EXPLAIN MOAESoooviiiiiiiiiiiiiiiicicccccc e 152
Invoking the EXPLAIN_TABLE Functionccocooiiiiiiiii 154
List PLAN_TABLE - Latest Explanationsccccccoevuiiiiiniiiiinninniiinienn. 157
List PLAN_TABLE - All Explanationsccccoeeviiiiiniiniiiciicciecieccns 157
Delete from PLAN _TABLEoovueiiiiieeeee e 160
Explain PLAN_TABLE Facility for Mass and Batch Processing 161
10 File Server StatiSticsccccoiviiiiiiiiiiiiiiiiiiicic 165
11 Issuing DB2 Commands from Naturalccccccovviiiiiiiiiiiiiiii, 171
Invoking the DB2 Command Partccoooiiiiiiiii, 172
Displaying the Command Filec.ccoccoiiiiiiiiiiiiiiiiiiie 173
Displaying the Output Reportc.cccoviiiiiiiiii 175
12 Using Natural System Commands for DB2ccccceoviiiiiiiiiiiiiiiiciieces 177

Database Management System Interfaces

Database Management System Interfaces

13 Generating Natural Data Definition Modules (DDMS)cccccooviiiiiiiiinnnnns 179
SQL Services (NDB/NSQ)uuveiruiiiiiiieniieeniee ettt 180
14 Dynamic and Static SQL SUPPOTtccoovviiiiiiiiiiiiiiiiiiiiiii, 189
SQL Support - General Informationcoccoooveeiiiiiiiiii 190
Internal Handling of Dynamic Statementscccccoociiiiiiiiiiiiniiiiinn, 191
Preparing Programs for Static Executioncccocoviiiiiiiiiiiiiini, 194
Execution of Natural in Static Modecccociviiiiiiiiiiiii, 200
Mixed Dynamic/Static Modeccccccviiiiiiiiiiiiiiiiii, 200
Messages and Codescooieiiiiiiiiiiiii 200
Application Plan SWitchingcccccoiviiiiiiiiiiiiiiii, 201
15 Using Natural Statements and System Variablescccoccoiinn. 207
DB2 Special Register Considerationccccceecuiiviiiiiiiiiniiiniciiccieccee, 208
Using Natural Native DML Statementscccoccooviiviiiiniiiiiiciics 208
Using Natural SQL Statementsccoccoviiiiiiiiiiiiii, 220
Using Natural System Variablesccccccooiiiiiiiiiiiiiiiiiiiiie, 234
Multiple ROW Processingc.coccoeieviiiiiniiiiiiiciiccccecec e 235
Error Handlingccccoooiiiiiiiiiiiiiiiiiiccccc 243
16 Processing Natural Stored Procedures and UDFscccccooiiiiiiiiiiinnnnn. 245
Types of Natural UDFcccoooiiiiiiiiiiiiiiiiiicceecc e 246
PARAMETER STYLE ...cooiiiiiiiiiiiiiiiiicccee e 246
Writing a Natural Stored Procedure ..., 255
Writing a Natural UDF ..o, 257
Example Stored Procedurec.ocooviiiiiiiiiiiii 258
Example Natural User Defined Functioncccceceeviiiiiiiiiniiiniiiinn, 261
17 Interface SUbPIroOgramscccccoeviiiiiiiiiiiiicc e 263
Natural SUDPrOgramsccccvevviiiiiiiiiiiniiiiiee e 264
NDBCONYV SUbprogramcccceeviiiiiiiiiiiiiiiiiiciiicecciccic e 265
NDBDBRM Subprogramcccceeieiiiiiiiiiciiccecie e 266
NDBDBR2 SUbPIrogramcccccccuiiiiiiiiiiiiiiiiiiiccicciecee e 267
NDBDBR3 SUbPIOZIamcccoevieiuieiiiiiiiieeicciecieeceee e 268
NDBERR SUDPIOGIamcccccoviiiiiiiiiiiiiiiiciiccec e 270
NDBISQL Subprogramccccocuiiiiiiiiiiiiiiiiiiciiciiccec e 270
NDBISQLD Subprogramccccoecuviiiiiiiiiiiiiiiiiiiccciccccccece e 273
NDBNOERR SUbProgramccccceiviiiiiiiiiiiiiiiiiicciccec e 275
NDBNROW Subprogramccccceeiiiiiiiiiiiiiiiicceccccceee e 275
NDBSTMP SUDPIOGIAmMccviiiiiiiiiiiiiiiiieiii et 276
DB2SERV Interfacecccooouiiiiiiiiiiiiiiiiiiiiiicciicccc 277
18 Natural File Server for DB2c.ccooiiiiiiiiiiiiiiii, 283
Concept of the File Serverccccoociiiiiiiiiiiiiiiiiiiii 284
19 Natural File Server for DB2cccccooiiiiiiiiiiiiiiii, 285
Concept of the File Serverccccocviiiiiiiiiiiiiiiiiiiiiii 286
Preparations for Using the File Servercccocooiiiiiiiiiini 286
Logical Structure of the File Servercccccooviiiiiiiiiiiiiiiiiiiiici 289
20 Natural for DB2 Version 8.4 - Documentation Updatescccoccooviiiiiinnnnns 293

Database Management System Interfaces v

Database Management System Interfaces

Using Natural Statements and System Variables under Natural for DB2

VErSion 8.4oooviiiiiiiiiic e 294
Select Expressions under Natural for DB2 Version 8.4c.cccceeviiniinnnnn. 298
Dynamic and Static SQL Support under Natural for DB2 Version 8.4 302
SELECT under Natural for DB2 Version 8.4cccccoviiiiiiiiiiiiiiniens 303
MERGE under Natural for DB2 Version 8.4cccccooeiiviiiiiiiiiiiiiinn, 304
Searched DELETE under Natural for DB2 Version 8.4ccccceviiiinnnnns 308
Search Conditions under Natural for DB2 Version 8.4c.ccccceeviiviinnnn. 309

IT Natural for SQL/DSvviiiiiiieeeieeee et e e e et e e e e e e e e e eatre e e e e e e e eeesaeassreeaeaaens 311
21 General INformationccccociiiiiiiiiiiiiiiii 313
PUIPOSE ... 314
Environment-Specific Considerationsc.ccccccevviiviiiiiiiiiiiiiiinienicieee 314
Integration with Predict ... 315
Integration with Natural Securitycccocccoiviiiiiiiii . 315
Messages Related to SQL/DScccccooiiiiiiiiiiiiiiiiiiicce 316
Terms Used in this Documentationccccociiiiiiiiiiiii, 316

22 Accessing an SQL/DS Tablecccccoooiiiiiiiiiiiiiiiiiiiiiicccc e 317
23 Database Managementccoccooiiiiiiiiiiiiieccccc e 319
SYSSQL UIEY .oovviiiiiiiiiiiiiiiiiiiccccc 320
Natural System Commands for SQL/DSccccocceiiiiiiiiiiiiiiiiiiiicce, 337

24 Generating Natural Data Definition Modules (DDMS)cccccccvviiiiiiiiiiinnnnne 339
SO SOIVICES vvuniiiiiieeeiiiieee et eeeete e et eee e e e aeeeeeaaeeeesaraeeeseateesssaaeessrraeessees 340

25 Dynamic and Static SQL SUPPOTtccoovviiiiiiiiiiiic 347
SQL Support - General Informationcccceveviiiiiiiiiiiiniiiieiccceee, 348
Internal Handling of Dynamic Statementscccocooviiiiiiiiiiini, 349
Preparing Natural Programs for Static Executioncccocceeviiiiiiinnnn. 352
Execution of Natural in Static Modec.ccocoiviiiiiiiiiiiiie 357
Mixed Dynamic/Static Modecocueiiiiiiiiiiiiiiiiicccccc 357
Messages and Codescccoooiiiiiiiiiiiiiiiiiii 358

26 Using Natural Statements and System Variablesc.coccooooi, 359
Using Natural Native DML Statementsc.cccocceeviiiiiiniiniiiiiiiiice. 360
Using Natural SQL Statementscccocooviiiiiiiiiiiiiiiccc, 369
Using Natural System Variablescccccocoiiiiiiiiiii, 375
Error Handlingccccoooiiiiiiiiiiiiiiiii 376

27 Interface SUbPTOZIAMSccveiviiiiiiiiiiiiccc 379
Natural Interface SUDProgramsccccecueeiiiiiiiiiiiiiiniiiiecccee, 380
NDBDBRM SUbPIOZIamcccccceviiiiiiiiiiiiiiiiiiiieiicieeie e 381
NDBDBR2 Subprogramccceiiiiiiiiiiiiiiiiiiiiiiiiciiciccccciee s 382
NDBDBR3 SUbprogramcccccceeviiiiiiiiiiiiiiiiiiiciicceccicciec e 383
NDBERR Subprogramcccoooiiuiiiiiiiiiiieiccci e 384
NDBISQL SUbProgramccccoecuiiviiiiiiiiiiiiiiiii i 385
NDBNOERR Subprogramcccoeviiiuiiiiiiciiiiiccicciecceceee e 387
NDBNROW SUDPIOGIaAMcc.oeiiuiiiiiiiiiiiiiiiiieiie e 388
NDBSTMP SUDPIrOgIramcccccoviiiiiiiiiiiiiiiiiiiciieenic e 388
DB2SERV Interfaceccccooviiiiiiiiiiiiiiiiiicicicccc 389

vi

Database Management System Interfaces

Database Management System Interfaces

II Natural SQL GateWaycccoccviiiiiiiiiiiiiiiiiciii e 393
28 General INformationccccoeiiiiiiiiiiiiiii 395
Environment-Specific Considerationscccocceviiiiiiiiiiiiiiiiiiiiiiiiees 396
Incompatibilities and Constraintscccocoevieiiiiiiiiiii 397
Messages Related to Natural SQL Gatewaycccccecevvviiiiiiiiiniiiiiiinicnnen. 398
Terms Used in this Documentationccccoooiiiiiiiiiiiiiiiii, 398

29 Introduction to Natural SQL Gatewayccccceeviivviiiiiiniiiiiiiiiicicceeeeeee, 399
Purpose and Usagecceoviiiiiiiiiiiiiiiiiiiiicc 400
Product Structure ..o 400

30 Accessing an SQL Tablecccociiiiiiiiiiiiiiiiiiiiiiic i 403
31 Using Natural System Commands for Natural SQL Gatewaycc.cc.e...... 405
32 Generating Natural Data Definition Modules (DDMS)c.cccccceeviiiiiiinnnnnnen. 407
SQL Services (INSB)cceiiiiiiiiiiiiiiiiiiicicccci e 408

33 Dynamic SQL SUPPOItcocviiiiiiiiiiiiiiiiicciccce 415
SQL Support - General Informationcccceeveiiiiiiiiiiiiiiiiiiiie, 416
Internal Handling of Dynamic Statementsccccooiiiiiiiiii, 417

34 Using Natural Statements and System Variablesccccooiiiiiniiiiiinnnnnn. 419
Special Register Considerationccccoeveeiiiiiiiiiiiiiciicccccec 420
Using Natural Native DML Statementscccccoceeeiiiiiiniiiiiinieiicecee 421
Using Natural SQL Statementscccocoeviiiiiiiiiiiiiiccc, 430
Using Natural System Variables ..o 442
Error Handlingcccccooviiiiiiiiiiiiiiiiicc 442

35 Interface SUbPTOZIAmMSc.oooviiiiiiiiiiic 443
NDBCONYV SUDbPIOZIamccccccviiiiiiiiiiiiiiieiiieiie et 444
NDBERR Subprogramccccocviiiiiiiiiiiiiiiiicicecc e 445
NDBISQL Subprogramccccceiiiiiiiiiiiiiiiiiiiiiiiicciccc s 446
NDBNOERR SUbprogramcccccceiiiiiiiiiiiiiiiiiiiie e 448
NDBNROW Subprogramc.cceeiiiiiiiiiiiiiiiicciccccceee e 449
NDBSTMP SUDPIrOGIamMccueiviiiiiiiiiiiiiiiiiiiiie et 449

36 Natural File Serverccccooiiiiiiiiiiiiiiiiiiiic 451
Concept of the File Servercccooiiiiiiiiiiiiiiiiiiiiiceccce 452
Preparations for Using the File Serverc..cccocoviniiiiiiiiiii 452
Logical Structure of the File Servercccccooviiiiiiiiiiiiiiiiiiieceecee 455

37 Natural SQL Gateway Serverccccooiiiiiiiiiiiiiiiiiiiiciiieic e 459
Natural SQL Gateway Server CONceptccoeveeviiiiiiiiiiiiiicicccccce 460
Configuring the Natural SQL Gateway Serverccccoccevviiviiiiiininnneenne. 460
Operating the Natural SQL Gateway Servercccocoovieiiiiiiiiicniinenn, 467
Monitor Client NATMOPIcccccoiiiiiiiiiiiiiiiiiiccce 471
HTML Monitor CHENtcceeeiviiiiiiiiiiiiiiiiceiiceeceeeceeeeeee e 475

IV Natural for VSAM ..o 479
38 General INformationccccooiiiiiiiiiiiii 481
PUIPOSE ..ot 482
Environment-Specific Considerationsc.ccccccevviiniiiiiiiiiiiiiniiiicceee 482
Natural for VSAM with Natural Securitycccooiviiiiiiiiii 483
Integration with Predictc.ccooiiiiiiiiiiiiiiiiccccec 483

Database Management System Interfaces vii

Database Management System Interfaces

Terms Used in this Documentationccccoociiiiiiiiiiiiiiiiii, 484
Messages Related to VSAMccooooiiiiiiiiiii 484

39 Introduction to Natural for VSAMc.cccoiiiiiiiiiiiiiiiie 485
Components of Natural for VSAMccooiiiiiiii, 486
Structure of the Natural Interface to VSAMc..cccooiiviiiiiiiiiiiiiii 487

40 Customizing Natural for VSAMcccoiiiiiiiiiic 489
Customizing the Natural Parameter Moduleccccooviiiiiniinniinnnn. 490
Assembling the VSAM-specific Natural Parameter Module 492
Natural I/O Modules for VSAMcccccoiiiiiiiiiiiiiiiiiiiiccccce 492

47 OPerationc..coiuiiiiiiiiiiiiiiii 497
Invoking Natural for VSAMc.ccccooiiiiiiic 498
OPEN/CLOSE ProCeSSINgcccviiiuiiiiiiiiiiiiiiiieeiieiie et 498
Natural File ACCeSSccccoviiiiiiiiiiiiiiiiiiici 501
Buffers for Memory Managementc..cccceeveiiiiiiniiiiiieniiiiecneecneeee e 511
Application Programming Interfacesccccoeiiiiiiiiiiiiininiiinnn, 516

42 Natural Statements and Transaction Logic with VSAM ... 519
Natural Statements with VSAMcccccoiiiiiiiii 520
Natural Transaction Logic with VSAMc.ccccooiiiiiiiiii 525

V Natural for DL/Tc.oooiiiiiiiiiiiii 529
43 General INformationcoccueeviiiiiiiiiiiiiiii e 531
44 Accessing DL/I Datac.cccoiiiiiiiiiiiiiiiiiiiccc 533
45 Natural Parameter Modifications for DL/Iccccccciviiiiiiniiiiiiniiiiien, 535
Parameters in NDLPARMcccccooiiiiiiiiiic 536
Storage Estimatesccccovviiiiiiiiiiiiiiiiiii 542
Natural for DL/I in z/OS ENVIFONMENESuuviviivinieiiiieeeeeiieeeeeiee e 544

46 OPErationcoiiiiiiiiiiiiiii i 545
Procedure NATPSBcccccooiiiiiiiiiiiiccccc 546
Procedure NATDBDcccccooiiiiiiiiiiiiiciccc 550
Procedure NATUDFc.cccoiiiiiiiiiiiiiccccc 552
Generation of DDMs from DL/I Segment Typesc.cccocveviviiiiiiiiiinnnnns 556

47 System File Structureccociiiiiiiiiiiiiiiii e, 557
The NDB Subfilecccciiiiiiiiiiiiiiiii 558

The NSB Subfileccccoiiiiiiiiiiiiiiiii 558

The UDF Subfilecccooiiiiiiiiiic 559
Natural for DL/TODJECtsccoooiiiiiiiiiiiiiciccccicceeeecc 559
Displaying Keys of UDF BIOCKSccccociiiiiiiiiiiiiiiiiiiiniciiccicciccice 560
Displaying the Size of Natural for DL/I Objectsc.ccccoviiviiiiiiiiiiiienn, 560
Displaying Natural for DL/I Objectscccccoeviiiiiiiiiiiiiiiiiiiicieciececee 560
Control Blocks in Separate Buffer Poolc.ccccooiiiiiiiiiii 560
Control Blocks in Buffer Pool Blacklistcccccccvviiiiiiiiiiiiiiiiiiiiiiice, 561
Natural for DL/I Objects and Natural DDMSsccccociiviiiiiiiiiiiiiiiiiine, 562

48 Natural Batch Utilitiesccccociiiiiiiiiiiii, 563
Transfer of NDBs/NSBs/UDFs from one System File to Another 564
Utility NDUDFGEN for Natural Data Areasccccooiiviiiiiiiiiniiininnn. 568

49 EX@CULION ...oviiiiiiiiiiiiciiic e 571

viii Database Management System Interfaces

Database Management System Interfaces

PSB Schedulingcccoociiiiiiiiiiiiiiiiiiiicic 572
CALLNAT INterfacecooooveeiiiiiiiiiiieeeeeeeee 577
Support of IMS-Specific Featuresc.ccocevviiiiiiiiiiniiiiiiiiiiiiicice 578

Fast Path SUPPOTtcooiiiiiii 580
SUPPOTt Of GSAM ..ot 581
Processing in CICS Pseudo-Conversational Mode or under IMS TM 583

50 Programming Language Considerationsccccccoecviiiiiiiiiiiiniiiiniiiininnne, 585
Natural versus Third Generation Languagesccccccocviiiiiiiiniiiiiinnnn. 586
Natural Statements With DL/Tuuuiuiiiiiiiiieiiieiiieieiiieeererereeeeereerereeeerarae—————. 587
Natural System Variables with DL/Ic.ccccooiiiiiiiiiiiiiiiiiiiiiie 592

51 Problem Determination GUIdeceeeeiiiiiiiiiiiiieeeeeieeeeeeeee e 593
52 Performance Considerationsccoovveieieiiiiiiiiiiieiiieieeeeeeeeeeee 595
Paramieltersovueiiiiiieeeeeee e aar s 596
Global and Local Data AT€ascooeeveeeeeeeeeiiieee 596
FIND Statementsouuuieeeiiiiiiiiiiceie et e e e et e e e e e e e eeabre e e e eeeeeens 596
Direct Access to LOWEr Levelsoovvueeiiiiiiiiiieieeeee e 596
DBLOG ULY ..oovviiiiiiiiiiiiiicieccecciecc e 597

53 DL/I SEIVICES ..cvvvvueeeeeeeeeeeieeee e et e e e e eee e e e e e e e e eaeeeeeeeeeesaaaaeeeeaaeeees 599
NDB MaiNteNanCecccvuuueeeiiiiieeeeiiiieeeeeiiieeeeetieeeeeriieeeeesteaeesrtraeesrtnaeeessssanaens 600
INSB MaiNteNaAnCEuuevivieeeeeiiieeeeeiiieeeeetiieeeeerteeeeeetieeeeeesteeessrteeesssnaeeessanaaaaees 611
INUAEX et e e e e e e et aaeeraaa——— 615

Database Management System Interfaces iX

Database Management System Interfaces

This documentation provides an overview of the Natural database management system interfaces
and a short summary of their functions.

The following topics are covered:

Natural for DB2 The Natural interface to DB2 enables Natural users to access data in a DB2
database. Natural for DB2 is supported under the TP monitors Com-plete, CICS,
IMS TM, in batch mode, and TSO.

Natural for SQL/DS The Natural interface to SQL/DS enables Natural users to access data in an SQL/DS

database. Natural for SQL/DS is supported under the TP monitor CICS and in
batch environments under z/VSE.

Natural SQL Gateway

The Natural SQL Gateway enables a Natural user residing on z/OS to access data
in an SQL database residing either on a Linux, UNIX or Windows system.

Natural for VSAM The Natural interface to VSAM enables Natural users to access data stored in
VSAM files.
Natural for DL/I The Natural interface to DL/I enables Natural users to access and update data

stored in a DL/I database. The Natural user can be executing in batch mode or
under the control of the TP monitor CICS or IMS TM.

| Note: See also Database Access (in the Programming Guide) on how to access data in Adabas.

Xi

Xii

I Natural for DB2

This documentation describes the functionality and the use of Natural for DB2, which is a Natural
interface required to access data in a DB2 database.

General Information

Accessing a DB2 Table
Using Natural Tools for DB2

Application Plan Maintenance
Catalog Maintenance

Interactive SQL

Retrieval of System Tables
Environment Setting

Explain PLAN_TABLE

File Server Statistics

Issuing DB2 Commands from Natural

Using Natural System Commands for
DB2

Generating Natural Data Definition
Modules (DDMs)

Dynamic and Static SQL Support

Using Natural Statements and System
Variables

Processing Natural Stored Procedures
and UDFs

Information such as purpose, environment-specific considerations,
integration with Software AG's Data Dictionary Predict,
incompatibilities and constraints, error messages related to DB2,
and terms used in this documentation.

Enable access to a DB2 table with a Natural program.

Invoke Natural Tools for DB2 to maintain DB2-specific objects
and SQL statements.

Maintain DB2 application plans online.

Maintain the DB2 catalog.

Process SQL statements that are not embedded.
Display/print DB2 objects and user authorizations.

Execute SQL statements and display special register values.
Interpret your PLAN_TABLE.

Display statistics on the generation and use of the file server.
Issue DB2 commands from Natural.

Use Natural system commands that have been incorporated into
the Natural Tools for DB2.

Generation of Natural data definition modules (DDMs) using the
SQL Services function of the Natural SYSDDM utility.

Internal handling of dynamic statements, creation and execution
of static DBRMs, mixed dynamic/static mode, and application
plan switching in the various supported environments.

Special considerations on Natural DML statements, Natural SQL
statements, and Natural system variables with DB2. In addition,
the Natural for DB2 enhanced error handling is discussed.

Processing Natural stored procedures and Natural user-defined
functions (UDFs).

Natural for DB2

Interface Subprograms Several Natural and non-Natural subprograms to be used for
various purposes.

Natural File Server for DB2 Description of the Natural File Server for DB2 in the various
supported environments.

Natural for DB2 Version 8.4 - Documentation updates that only apply to Natural for DB2

Documentation Updates Version 8.4.

Related Documentation

For installatation instructions and a description of the Natural for DB2 parameter module, refer
to Installing Natural for DB2 in the Installation for z/0OS documentation.

For the various aspects of accessing data in a database with Natural, see also Database Access in
the Natural Programming Guide.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

2 Database Management System Interfaces

1 General Information

B PUMDOSE .. teeeee ittt ettt e oo oottt e e et e e e e ettt e e e e e ettt e e e e e e e ettt e e e e e e e
Environment-Specific CONSIAEIAtIoONScoiiiiiiiiii e
INtegration WIth PrediCl it
Integration With NatUral SECUFIYcouiiiiii e
Incompatibilities and CONSITAINESvviiiiiiiiiii e
B Messages Related 10 DB2viiiiiiiii e
= Terms Used in this DOCUMENTALIONooiiiiiii e

General Information

Purpose

Natural for DB2 is a Natural interface designed to access data in a DB2 database.

In general, there is no difference between using Natural with DB2 and using it with Adabas, VSAM
or DL/I. The Natural interface to DB2 allows Natural programs to access DB2 data, using the same
Natural native data manipulation (DML) statements that are available for Adabas, VSAM, and
DL/I. Therefore, programs written for DB2 tables can also be used to access Adabas, VSAM, or
DL/I databases. In addition, Natural SQL DML statements are available.

All operations requiring interaction with DB2 are performed by Natural for DB2.

Environment-Specific Considerations

Natural for DB2 is supported in the following environments:

= Natural for DB2 under Com-plete

= Natural for DB2 under CICS

= Natural for DB2 under IMS TM

= Natural for DB2 under TSO

= Natural for DB2 Using CAF

= Natural for DB2 Using DB2 DL/I Batch Support

Natural for DB2 under Com-plete

DB2 is supported by Com-plete. Programs running under Com-plete can access DB2 databases
through the DB2 Call Attachment Facility (CAF). This facility, together with the Com-plete interface
to DB2, allows fully conversational access to DB2 tables.

If the DB2 plan created during the installation process is not specified in your DB2 SERVER para-
meter list for Com-plete, you must explicitly call NATPLAN before the first SQL call to allocate this
plan.

4 Database Management System Interfaces

General Information

Natural for DB2 under CICS

CICS/DB2 Attachment Facility

Under CICS, Natural uses the CICS/DB2 Attachment Facility to access DB2. Therefore, ensure that
this attachment is started. If not, the Natural session is abnormally terminated with the CICS abend
code AEY9, which leads to the Natural error message NAT0954 if the Natural profile parameter DU
is set to OFF.

CICS DB2 Plan Selection

If the Natural CICS transaction ID is not assigned to any DB2 plan in the RCT by DB2ENTRY and
DB2TRAN definitions, you must explicitly execute NATPLAN before the first SQL call to specify the
required DB2 plan and define NDBUEXT as dynamic plan selection exit (PLANEXit attribute). The
actual plan allocation is performed by the dynamic plan selection exit.

CICS Pseudo-Conversational Mode

Under CICS, a Natural program usually runs in pseudo-conversational mode (Natural profile
parameter PSEUDO set to ON, default value). In this case, at the end of the CICS transaction, the DB2
transaction is commited and all open DB2 cursors are closed implicitly and there is usually no
way to resume open Natural FIND/SELECT database access loops after the terminal I/O.

To circumvent the problem of CICS terminating a pseudo-conversational transaction during loop
processing and thus causing DB2 to close all cursors and lose all selection results, Natural for DB2
uses the file server to support the Natural transaction logic. If you intend to operate in CICS
pseudo-conversationl mode, specify the Natural for DB2 parameter FSERV=0N and provide a file
server file in the CICS region.

CICS Conversational Mode

If you do not provide a file server file in the CICS region and the Natural for DB2 parameter
CONVERS is set to ON, Natural for DB2 switches to conversational mode whenever a terminal I/O
takes place during an open database loop. This means the CICS transaction is spawned across
terminal I/O as long as there are open database loops. This could cause DB2 deadlocks, as DB2
resources are allocated across terminal I/Os.

CICS Conversational Mode 2

In order to support applications, which do not deploy the implicit commit at CICS terminal I/O
and which instead code explicit ROLLBACK or COMMIT to end their database transaction, a conversa-
tional mode 2 has been introduced.

Conversational mode 2 means that a DB2 update transaction is spawned across CICS terminal
I/Os until an explicit COMMIT or ROLLBACK is issued.

Conversational mode 2 could be requested by the Natural for DB2 parameter CONVRS2=0N or it can
dynamically set or rest by calling the CALLNAT program NDBCONV.

Database Management System Interfaces 5

General Information

@ Caution: These kinds of application tend to tie up CICS and DB2 resources, as the resources

are not freed across terminal I/O!
File Server under CICS
The usage of the file server depends on the FSERV parameter in the NTDB2 macro.

In a CICS environment, the file server is an optional feature to relieve the problems of switching
to conversational processing. Before a screen I/O, Natural detects if there are any open cursors
and if so, saves the data contained by these cursors into the file server. With the file server, database
loops can be continued across terminal I/Os, but database modifications made before a terminal
I/O can no longer be backed out.

For a detailed description of the file server, refer to the section Natural File Server for DB2.
Natural for DB2 under IMS TM

Under IMS TM, Natural uses the IMS DB2 Attachment Facility to access DB2. Therefore, ensure
that this attachment is started.

In IMS TM transaction processing environments, DB2 closes all cursors and thereby loses all selec-
tion results whenever the program returns to the terminal to send a reply message. This operation
mode is different from the way DB2 works in CICS conversational mode or TSO environments,
where cursors can remain open across terminal communication and therefore selected rows can
be retained for a longer time.

File Server under IMS TM MPP
The usage of the file server depends on the FSERV parameter in the NTDB2 macro.

The file server is required to support the Natural for DB2 cursor management, while IMS TM issues
an implicit end-of-transaction to DB2 after each terminal I/O operation. With the file server, database
loops can be continued across terminal I/Os, but database modifications made before a terminal
I/O can no longer be backed out.

For a detailed description of the file server, refer to the section Natural File Server for DB2.

6 Database Management System Interfaces

General Information

Natural for DB2 under TSO

Natural for DB2 can run under TSO without requiring any changes to the Natural/TSO interface.

Apart from z/OS Batch, the batch environment for Natural can also be the TSO background, which
invokes the TSO terminal monitor program by an EXEC PGM=IKJEFTO01 statement in a JCL stream.

Both TSO online or batch programs can be executed either under the control of the DSN command
or by using the Call Attachment Facility (CAF); the CAF interface is required if plan switching is
to be used.

File Server under TSO
The usage of the file server depends on the FSERV parameter in the NTDB2 macro.

In a TSO environment, the file server is an optional feature to be able to emulate during develop-
ment status a future CICS or IMS TM production environment.

With each terminal I/O, Natural issues a COMMIT WORK command to simulate CICS or IMS TM
Syncpoints. Therefore, database modifications made before a terminal I/O can no longer be backed
out.

For a detailed description of the file server, refer to the section Natural File Server for DB2.
Natural for DB2 Using CAF

If you run Natural for DB2 under TSO or in batch mode and use the CAF interface, you must ex-
plicitly call NATPLAN before the first SQL call to allocate the required DB2 plan.

NATPLAN can be edited to specify the appropriate DB2 subsystem ID.
Natural for DB2 Using DB2 DL/I Batch Support

If you want to access DB2 and DL/I in the same Natural session in batch mode (not BMP), you can
use the DB2 DL/I batch support facility, which allows you to coordinate recovery of both DB2 and
DL/I database systems.

If you want to use this facility, you must execute the DLIBATCH procedure to run the DSNMTV01
module as the application program. DSNMTV01 in turn executes the Natural batch nucleus which
must be linked with the DB2 interface DFSLI000.

If your PSB is generated with CMPAT=YES, all Syncpoints are executed and you must issue an END
TRANSACTION statement before you end your Natural session; otherwise, any database modifications
are lost, because Natural implicitly issues a BACKOUT TRANSACTION statement at the end of the
session.

If your PSB is generated with CMPAT=NO, all Syncpoints are ignored.

Database Management System Interfaces 7

General Information

Integration with Predict

Predict, Software AG's open, operational data dictionary for fourth-generation-language develop-
ment with Natural, is a central repository of application metadata and provides documentation
and cross-reference features. Predict lets you automatically generate code from definitions, enhan-
cing development and maintenance productivity.

Since Predict supports DB2, direct access to the DB2 catalog is possible via Predict and information
from the DB2 catalog can be transferred to the Predict dictionary to be integrated with data
definitions for other environments.

DB2 databases, tables and views can be incorporated and compared, new DB2 tables and views
can be generated, and Natural DDMs can be generated and compared. All DB2-specific data types
and the referential integrity of DB2 are supported. See the relevant Predict documentation for
details.

In addition, the Predict active references support static SQL for DB2 as described in WITH XREF
Option in Preparing Programs for Static Execution.

Integration with Natural Security

When run in an environment that is controlled by Natural Security, the use of certain features of
Natural for DB2 can be restricted by the security administrator, for example:

* Natural Tools for DB2
Access to the Natural system library SYSDB?2

Individual functions

= Static SQL

Static generation can be disallowed by

" restricting access to the Natural system library SYSDB2,

* disallowing the module CMD,

" restricting access to the libraries that contain the relevant Natural objects,

= disallowing one of the Natural system commands CATALOG or STOW for a library that contains

relevant Natural objects.

If a library is defined in Natural Security and the DBID and FNR of this library are different
from the default specifications, the static generation procedure automatically switches to the
DBID and FNR specifications defined in Natural Security.

8 Database Management System Interfaces

General Information

For further information, ask your security administrator.

Incompatibilities and Constraints

This section lists the known incompatibilities and constraints against DB2 when using Natural for
DB2 to access data from DB2.

® Data Type DECIMAL or NUMERIC

Most SQL database systems support packed decimal numbers with a maximal precision of 31
digits and a scale (fractional part of the number) of up to 31 digits. The scale has to be positive
and not greater than the precision. Natural allows precision and scale of up to 29 digits.

Messages Related to DB2

The message number ranges of Natural system messages related to DB2 are 3275 - 3286, 3700-3749,
and 7386-7395.

For a list of error messages that may be issued during static generation, see Static Generation Messages
and Codes Issued under NDB/NSQ in the Natural Messages and Codes documentation.

Terms Used in this Documentation

Term Explanation

DB2 DB2 refers to IBM's DB2 UDB for z/OS.

DBRM Database request module

DDM Data definition module.

DML Data manipulation language (Natural).

File Server In this document, the term “file server” refers to the Natural file server for DB2.

NDB This is the product code of Natural for DB2. In this documentation the product code is often
used as prefix in the names of data sets, modules, etc.

SQL/DS SQL/DS refers to IBM's DB2 Server for VSE and VM.

Database Management System Interfaces 9

10

2 Accessing a DB2 Table

> To enable access to a DB2 table with a Natural program

1 Use the Natural Tools for DB2 to define a DB2 table; see Using Natural Tools for DB2.

2 Use Predict or the SOL Services function of the Natural SYSDDM utility to create a Natural
data definition module (DDM) of the defined DB2 table.

3 Once you have defined a DDM for a DB2 table, you can access the data stored in this table by
using a Natural program.

Natural for DB2 translates the statements of a Natural program into SQL statements.

Natural automatically provides for the preparation and execution of each statement. In dynamic
mode, a statement is only prepared once (if possible) and can then be executed several times. For
this purpose, Natural internally maintains a table of all prepared statements (see Statement Table
in Internal Handling of Dynamic Statements).

Almost the full range of possibilities offered by the Natural programming language can be used
for the development of Natural applications which access DB2 tables. For a number of Natural
DML statements, however, there are certain restrictions and differences as far as their use with
DB2 is concerned; see Using Natural Native DML Statements. In the Statements documentation,
you can find notes on Natural usage with DB2 attached to the descriptions of the Natural DML
statements concerned.

As there is no DB2 equivalent to Adabas internal sequence numbers (ISNs), any Natural features
which use ISNs are not available when accessing DB2 tables with Natural.

For SQL databases, in addition to the Natural native DML statements, Natural provides Natural
SQL statements; see Using Natural SQL Statements. They are listed and explained in the Statements
documentation.

11

12

3

Using Natural Tools for DB2

Invoking Natural Tools for DB2 ..

Editing within the Natural TOOIS fOr DB2ccoiiiiiiiiiiiie et

Global PF-Key Settings

Global Maintenance Commands

13

Using Natural Tools for DB2

This section describes how to invoke Natural Tools for DB2 and maintain DB2-specific objects and
SQL statements. In addition, this section provides information on global PF-key settings and
global maintenance commands within Natural Tools for DB2.

Notes:

1. See also Special Requirements for Natural Tools for DB2 in Installing Natural for DB2 on z/OS.

2. If you have created a new SYSDB? library when installing Natural for DB2, ensure that it contains
all Predict interface programs necessary to run the Natural Tools for DB2. These programs are
loaded into SYSDB? at Predict installation time (see the relevant Predict documentation).

Invoking Natural Tools for DB2

> To invoke Natural Tools for DB2

= Enter the Natural system command SYSDB?

The Natural Tools for DB2 Main Menu is displayed, which offers you the functions listed below.

15:04:05 resieesss MATURAL TOOLS FOR DB2 #eoess:s 2009-11-27
- Main Menu -

Code Function

Application Plan Maintenance
Catalog Maintenance
Interactive SQL

Retrieval of System Tables
Environment Setting

Explain PLAN_TABLE

File Server Statistics

DB2 Commands Execution

Help

Exit

D O T X D O — O >

Code .. _

Command ===

Ent@r=PFl===PF2===PF3===PFld===PF5===PF&===PF7===PF8===PF9===PFLO==PF11l==PF12=--
Help Exit Canc <

14 Database Management System Interfaces

Using Natural Tools for DB2

Main Menu Functions

Function Description

Application Plan Maintenance |Maintain DB2 application plans online.

Catalog Maintenance Maintain the DB2 catalog.

Interactive SQL Process SQL statements that are not embedded.

Retrieval of System Tables Display/print DB2 objects and user authorizations.
Environment Setting Execute SQL statements and display special register values.
Explain PLAN_TABLE Interpret your PLAN_TABLE.

File Server Statistics Display statistics on the generation and use of the file server.
DB2 Commands Execution Issue DB2 commands from Natural.

Editing within the Natural Tools for DB2

The free-form editor available within the Natural Tools for DB2 requires that the Software AG
Editor is installed. The main and line commands available for use within the Natural Tools for
DB2 are a subset of those available within this editor.

Both main commands and line commands are described in detail as part of the Natural Tools for
DB2 online help facility, which is invoked by pressing PF1 (Help). For further details, please refer
to the Software AG Editor documentation.

Overview of Editor Main Commands

Main commands are entered in the command line of the editor screen. The most important main
commands are:

Command PF Key | Description

BOTTOM (++) Positions to the bottom of the data.

CHANGE Scans for a specified string and replaces each such string found with another specified
string.

CLEAR Clears the editor source area.

DELETE Deletes the line(s) containing a given string according to the specified selection
operands.

DOWN (+) PF8 |Scrolls the specified scroll amount downwards.

EIND Finds a string specified by command operands at the location(s) specified by selection
operands.

LEFT PF10 |Scrolls the specified scroll amount to the left.

LIMIT n Sets a limit for the FIND command; 1 lines are processed.

PRINT Prints the data displayed.

Database Management System Interfaces 15

Using Natural Tools for DB2

Command PF Key | Description

RESET Resets all pending line commands.

RFIND PF5 |Repeats the last FIND command.

RIGHT PF11 |Scrolls the specified scroll amount to the right.
T0P (--) Positions to the top of the data.

Up (-) PF7 |Scrolls the specified scroll amount upwards.

The scroll amount for the UP, DOWN, LEFT, and RIGHT commands is specified in the SCROLL field at
the top right corner of the list screen. Valid values for the scroll amount are:

Value |Explanation

CSR |Scroll amount is determined by cursor position

DATA|Scroll amount equals the page size less one line

HALF|Scroll amount is half the page size

MAX |Scroll amount equals the amount of data to the bottom/top

PAGE|Scroll amount is equal to the page size

n Scroll amount is equal to 1 lines

Overview of Editor Line Commands

Line commands are entered in the editor prefix area of the corresponding statement line. The most
important line commands are:

Command | Description

A Inserts line(s) to be moved or copied after the current line.

B Inserts line(s) to be moved or copied before the current line.

C Copies the current line.

cC Marks the beginning and end of a block of lines to be copied.
D Deletes the current line.

DD Marks the beginning and end of a block of lines to be deleted.
Inn Inserts nn new lines after the current line.

M Moves the current line.

MM Marks the beginning and end of a block of lines to be moved.

16 Database Management System Interfaces

Using Natural Tools for DB2

Global PF-Key Settings

Within the

Natural Tools for DB2, the following global PF-key settings apply:

Key |Setting

Description

PF1 |Help

Pressing PF1 invokes the Natural Tools for DB2 online help system from any screen within the
Natural Tools for DB2.

PF3 |Exit

Pressing PF3 always takes you to the previous screen or function. When pressed on an editor
screen where modifications have been made, the Exit Function window is displayed (as
described in Exit Function in the sections Program Editor and Data Area Editor in the Natural
Editors documentation). When you press PF3 on the Main Menu, you leave the Natural Tools
for DB2.

PF12|Canc

Pressing PF12 always takes you back to the menu from where the current screen has been
invoked. When you press PF12 on the Main Menu, you leave the Natural Tools for DB2.

Global Maintenance Commands

Within the Natural Tools for DB2, the following global maintenance commands apply:
Command Description
COPY name Copies the specified member from the current library into the editor, after (A) or before

(B) the current line.

LIBRARY name |Specifies the Natural library name as current library.

LIST name* |Lists all members from the current library whose names start with name. From the list, you

can select a member by marking it with “S”.

PURGE name |Purges the specified member from the current library.

READ name

Reads the specified member from the current library into the editor. The current name is
set to name.

SAVE [name] |Saves the generated code as the member name in the current library. If no name is specified,

the current name is taken. Current library and member names are displayed above the
Command line.

Member and library names must correspond to the Natural naming conventions: see Object Naming
Conventions and Library Naming Conventions in Using Natural. Members can be JCL members, SQL
members, or output members.

Database Management System Interfaces 17

18

4 Application Plan Maintenance

LI 11 o 10 oo PR SSUPPPPRRRR 20
= |nvoking the Application Plan Maintenance FUNCHONouuiiiiiiiii e 20
= Commands and PF-KEY SEHINGScoiiiiiieiiiii e 22
B Prepare JOD Profile e 23
B Create DBRMSttt e e 31
LI =110 P PP S PP PPPPPPRR 33
B REDINA PIaN <. e e 37
L - TC N o o PP ORI PTPPPPPPRRR 39
B BINA PACKAGE ... 40
B REDINA PACKAGE ... 43
B FTEE PACKAGE ... et 46
B LISTJCL FUNCHON ...ttt e ettt e et e e e e e e e e e e e e s 47
B DISPIAY JOD OULPUL ...ttt e e e e e e e e e e e 48

19

Application Plan Maintenance

Introduction

The application plan maintenance part of the Natural Tools for DB2 is used to generate JCL code
to:

" create database request modules (DBRMs) from your Natural programs,

® maintain DB2 application plans and packages from within your Natural environment.
Two modes of operation are available: fixed mode and free mode.

Fixed Mode

In fixed mode, maintenance screens with syntax graphs help you to specify the correct commands.
Complete JCL members can be generated using predefined job profiles. You simply enter the re-
quired data in input maps. The data are checked to ensure that they comply with the correct syntax.
Then JCL members are generated from these data. The members can be submitted directly by
pressing PF4 (Submi). But you can also switch to free mode by pressing pr5 (Free).

Free Mode

Pressing PFs5 in fixed mode invokes the free-mode editor, which can be used to modify JCL code
generated in fixed mode, without the syntactical restrictions imposed. In free mode you can submit
the JCL member currently in the source area by pressing PF4 (as in fixed mode).

Invoking the Application Plan Maintenance Function

> To invoke the Application Plan Maintenance function

s On the Natural Tools for DB2 Main Menu, enter function code A.

The Application Plan Maintenance menu is displayed:

20 Database Management System Interfaces

Application Plan Maintenance

16:14:02 xxxx% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Application Plan Maintenance -
Code Function Parameter
PP Prepare Job Profile
CD Create DBRMs Lib
BI Bind Lib, 0bj
RB Rebind Lib, 0bj
FR Free Lib, 0bj
LJ List JCL Lib, JCL
JO Display Job Qutput Node
? Help
Exit
Code .. __ Object
Library SAG
JCL Member .
Node 148
Command ===

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Logn Canc

The following functions are available:

Code Description

PP |Defines job profiles for DBRM creation and plan/package maintenance; see Prepare Job Profiles.
CD |Generates JCL to create database request modules.

BI |Generates JCL to bind a plan or package.

RB |Generates JCL to rebind a plan or package.

FR |Generates JCL to free a plan or package.

LJ |Invokes the free-mode editor.

JO |Displays job output.

Note: This function only applies if the Entire System Server is installed.

In addition, four parameters are available, which must be specified according to the selected
function:

Database Management System Interfaces 21

Application Plan Maintenance

Parameter Description

Object Specifies whether to maintain a plan (PLAN or PL) or a package (PACKAGE or PK).

Library Specifies the name of a Natural source library.

All existing libraries except the ones beginning with SYS can be specified; a library must
be specified for JCL maintenance. The library name is preset with your Natural user ID.

JCL Member |If a valid member name is specified, the corresponding JCL member is displayed.

If a value is specified followed by an asterisk (¥), all JCL members in the specified library
whose names begin with this value are listed.

If asterisk notation is specified only, a selection list of all JCL members in the specified
library is displayed.

If the JCL Member field is left blank, the empty free-mode editor screen is displayed.

Node Specifies the number of the node to be used by the Entire System Server. The default
number “148” can be overwritten.

Commands and PF-Key Settings

Within the maintenance screens in fixed mode, various windows can be invoked. These windows
are accessed via 1-byte control fields.

> To invoke a window
s Enter S in the corresponding control field.
If the control field displays an X, data have already been entered in the corresponding window.

In addition, the following PF-key settings apply in fixed mode:

Key |Function

PF4 |Generates JCL code and submits it.

PF5 |Generates JCL code and enters free mode.

PF6 |Scrolls to the top of a window.

PE7 |Scrolls backwards in windows.

PE8 |Scrolls forwards in windows.

PF9 |Scrolls to the bottom of a window.

PF10|Either shows the previous screen (<) or displays a Natural Process Logon window (Logn).

PF11 |Shows the next screen.

22 Database Management System Interfaces

Application Plan Maintenance

In free mode, JCL code can be edited and submitted. Editing of JCL code is done via edit and line
commands; see Editing within the Natural Tools for DB2.

Generated JCL code is submitted by pressing Pr4.

Apart from being submitted, JCL code can also be copied, listed, purged, retrieved from, or saved
in a Natural library. All this is done via maintenance commands; see Global Maintenenance
Commands.

Prepare Job Profile

If you want to generate JCL to create a DBRM or to bind, free, or rebind a plan or package, you
have to specify a job name, job cards, and the name of a job profile. Thus, you have to prepare the
job profiles first. Once your job profiles are defined, you can always immediately select the corres-
ponding function if you want to create a new DBRM or if you want to bind, free, or rebind an a
plan or package using your predefined job profiles.

> To define a job profile
1 On the Natural Tools for DB2 Main Menu, enter function code A.

The Application Plan Maintenance menu is displayed.

2 On the Application Plan Maintenance menu, invoke the Prepare Job Profile function by
entering function code PP.

The Prepare Job Profile menu is displayed.

Database Management System Interfaces 23

Application Plan Maintenance

Prepare Job Profile Menu

16:14:33 *xxAA NATURAL TOOLS FOR DB2 *xx*xx% 2009-10-30
- Prepare Job Profile -

Code Function

J Default Job Cards

D Profile for Create DBRM Job

P Profile for DSN Jobs

? Help

Exit
Code .. _ Profile ..
Command ===
Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

Code | Description

J |Defines user-specific default job cards.

D |Defines job profiles for the DBRM creation function.

P |Defines job profiles for the plan or package maintenance functions.

In addition, the parameter Profile is available, which is relevant to function codes D and P only.
With function code “J”, Profile corresponds to USER.

Parameter | Description

Profile|Specifies the name of an already existing job profile.

If a valid profile name is specified, the free-mode editor with the specified job profile is invoked,
where the profile can be modified and saved.

If a value is specified followed by an asterisk (*), all existing job profiles whose names begin with
this value are listed.

If asterisk notation is specified only, a selection list of all existing job profiles is displayed.

If the field is left blank, the corresponding fixed-mode profile screen is invoked, where a new
job profile can be created. To save the new profile, you have to switch to free mode.

Job profiles can be maintained (that is, copied, listed, purged, retrieved from, or saved in a Natural
library) via maintenance commands; see Global Maintenance Commands.

Note: Job profiles are saved on the Natural system file FNAT.

24 Database Management System Interfaces

Application Plan Maintenance

Default Job Cards

All jobs generated by the Application Plan Maintenance function require job cards. With the
Default Job Cards function, you can define a default job card for each user. The default job cards
apply to all function screens on which you can generate JCL. Default job cards can be invoked and
modified on all these screens. Asterisk notation (*) can be used to select the desired job card from
a list.

> To define a default job card

= On the Prepare Job Profile menu, enter function code J and press ENTER.

The Default Job Cards screen is displayed.

16:14:33 Fxxxx NATURAL TOOLS FOR DB2 ****x* 2009-10-30
- Default Job Cards -

R ead, S ave, L ist or P urge Default Job Cards _ User ID ..

Job Name ...
Job Cards ..
// JOB
//

//

//

//

Command ===
Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

On this screen, you can create and save your user-specific job cards. To do so, you can also
read (directly or from a list) and modify an already existing default job card. Existing job cards
can be purged, too.

Note: All other function screens used to specify jobs contain the same two fields - Job Name

and Job Cards - as the Default Job Cards screen. Thus, it is possible to override the default
job cards in each of these screens, too.

> To modify the job name

= Enter the new job name in the Job Name field and press ENTER.

Database Management System Interfaces 25

Application Plan Maintenance

> To modify the job cards
» In the Job Cards field, enter an S and press ENTER.

A window is displayed where you can modify all the job cards.

Profile for Create DBRM Job

The Profile for Create DBRM Job function enables you to define profiles for the Create DBRMs
functions. Job profiles for DBRM creation consist of JCL which includes the following predefined
set of substitution parameters:

Parameter Description

@JOBCARDS Is replaced by the job cards entered on the Create DBRMs screen (up to five lines).
You can also code the job cards in the profile and omit the job cards modifier.

@COMMAND Is replaced by the string CREATE DBRM.
@DBRMNAME Is replaced by the name of the DBRM, which can be up to eight characters long.

@CREATE-DBRM|Is replaced by the command input for the static generation step.
This parameter must be placed after the //CMSYNIN card and must comply with the
Assembler naming conventions.

@COMMANZ Is replaced by the string MODIFY.

@MODIFY Is replaced by the command input for the static modification step.

@XR-START Both mark the JCL to contain the Natural Assembler XREF data; if no XREF option is
@XR-END specified, the JCL is deleted again.

> To modify or rename a job profile for DBRM creation

1 Onthe Prepare Job Profile menu, invoke the Profile for Create DBRM Job function by entering
function code D.

2 Inthe Profile field, specify a valid profile name and press ENTER.

The free-mode editor containing the specified profile is invoked, where you can modify, save,
and rename the displayed profile.

> To create a job profile for DBRM creation

1 On the Prepare Job Profile menu, enter function code D.

2 Leave the Profile field blank, and press ENTER.

The Profile for Create DBRM Job screen is invoked, which helps you in creating a new profile.

26 Database Management System Interfaces

Application Plan Maintenance

16:15:18 Fxxkxx NATURAL TOOLS FOR DB2 ***#*x* 2009-10-30
- Profile for Create DBRM Job -

oo NATURAL Parameters --------------------------- +

I Name of Batch NATURAL g ©

NATURAL Parameter g !

! STEPLIB DD P o
!
o Precompile Parameters --------------------------- +
! DBRMLIB DD ; !
! STEPLIB DD 3 — ©
!
LR R Ass-Nat-Xref-Library ---------------------------- +
! CMWKF0Z DD : !
R R R AGEELLECLELLE i
Command ===

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Free Canc

> To save the newly created job profile

= Switch to free mode by pressing PFs.

Profile for DSN Jobs

The Profile for DSN Jobs function enables you to define profiles for the Bind, Rebind, and Free
functions. The same profiles can be used for each of the three functions.

Profiles for DSN jobs consist of JCL which includes the following predefined set of substitution
parameters:

Parameter

Description

@JOBCARDS

Is replaced by the current job cards; you can also code the job cards in the profile and omit the
job cards modifier.

@DSNCMD

Is replaced by the command input for the bind, rebind or free function.

@PLANNAME

For the bind function, it is replaced by the name of the plan or package.
For the rebind and free functions, it is set to blank.

@COMMAND

Is replaced by the string BIND, REBIND or FREE, respectively.

Database Management System Interfaces 27

Application Plan Maintenance

> To modify or rename a profile for DSN jobs

1 On the Prepare Job Profile menu, enter function code P.

2 In the Profile field, specify a valid profile name, and press ENTER.

The free-mode editor containing the specified profile is invoked, where you can modity, save,
and rename the displayed profile

> To create a new profile for DSN jobs

1 On the Prepare Job Profile menu, enter function code P.

2 Leave the Profile field blank, and press ENTER.

The Profile for DSN Jobs screen is invoked, which helps you in creating a new profile for
DSN jobs.

16:15:18 A S NATURAISSTOGIESSEORSDBZ2S s Axe 2009-10-30
- Profile for DSN Jobs -

DB2 System .. Retries .. __

! STEPLIB DD

! DBRMLIB DD

T I I +

Command ===

Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11l==PF12===
Help Exit Free Canc

> To save the newly created job profile

= Switch to free mode by pressing PFs.

28 Database Management System Interfaces

Application Plan Maintenance

Loading Job Profiles

Job profiles for DBRM creation and plan/package maintenance are loaded from the data set CMWKFO1
in batch mode.

> To load a job profile

1 Logon to library SYSDB2.

2 In the command line, issue the command LOADPROF.

The Load Job Profiles menu is displayed.

16:53:20 asvararss WATHURYAL THOOIES [FOIR DIRZ2 s 2009-10-30
- Load Job Profiles -
Code Function
D Load Profile for Create DBRM
B Load Profile for DSN Jobs
Exit
Code .. _ Profile ..
Replace .. N
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Exit Canc

The following functions are available:

Code |Description

D Serves to load job profiles for DBRM creation.
B

Serves to load job profiles for plan or package maintenance.

The following parameters apply:

Database Management System Interfaces 29

Application Plan Maintenance

Parameter | Description

Profile|Specifies the name of the profile to be loaded.
This parameter must be specified.

Replace|Specifies whether it is to be replaced or not if a profile with the specified name already exists.

Y An already existing profile is replaced.

N An already existing profile is not replaced.

This parameter is optional; the default setting is N.

Unloading Job Profiles

Job profiles for DBRM creation and plan/package maintenance are unloaded and written to the
data set CMWKFO1 in batch mode.

> To unload a job profile

1 Logon to library SYSDB2.

2 In the command line, issue the command UNLDPROF.

The Load Job Profiles menu is displayed.

16:53:20 Axaax NATURAL TOOLS EOR' DB2 s*~x= 2009-10-30
Load Job Profiles

Code Function

D Unload Profile for Create DBRM
B Unload Profile for DSN Jobs

Exit
Code .. _ Profile ..
Command ===
ERter=PFl===PF2===PFI===PFd===PF5===PFG===PF7===PF8===PF9===PFLO==PFLil==PF12==-
Exit Canc

The following functions are available:

30 Database Management System Interfaces

Application Plan Maintenance

Code |Description

D |Unloads job profiles for DBRM creation.

B |Unloads job profiles for plan or package maintenance.

The following parameter applies:

Parameter

Description

Profile

Specifies the name of the profile to be unloaded.

This parameter must be specified.

Create DBRMs

To create a DBRM, you have to generate JCL for DBRM creation.

> To create a DBRM

1 On the Application Plan Maintenance menu, enter function code CD, and press ENTER.

The Create DBRM screen is displayed where, in addition to a job name, your user-specific
default job cards, and the desired job profile, you can specify all necessary information for
the CREATE DBRM and MODIFY commands; see also Generation Procedure: CMD CREATE

Command and Modification Procedure: CMD MODIFY Command in the section Preparing

Programs for Static Execution.

Database Management System Interfaces

31

Application Plan Maintenance

16:15:44 **x%%x NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Create DBRM -

Job Name ... DBRMJOB_ Job Cards .. X Profile ..EXDBRM__

>>-- CREate DBRM -- DBRMI___ -- USing --+-- _ -- PREDict DOCumentation --+-->

+-- _ -- INput DAta ------------- +

P +o----- o +----- B +->

+- With XRef - =3 +- LIBrary - =4 +- FS - -+

(NO, YES, FORCE) ! (ON, OFF)

Pocsscosss P cooEs000550005500050005000050000000055000500000008550 fpeccssccosss ><
+---- _ --- NAT Library , NAT Member +--------------- +-+

+ , excl.Member-+

PP===c==ccs=ss2zscc2sc02sc22s MODT fFyy=dr============ e LR E L LR E L L ><
+- _ - XRef -+
Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Exit Submi Free Canc

2 Inthe Job Name field, a valid job name must be specified. If you only want to change the
name of the job, you can do this using the Job Name field, too.

3 Via the Job Cards field, you can override your default job cards. To do so, enter an S in the
Job Cards field.

A window containing your job cards is displayed.

An “X” in the Job Cards field indicates that job cards for DBRM creation are defined. A blank
Job Cards field indicates that no job cards are defined.

4 In the Profile field, you can specify the name of a valid job profile for DBRM creation. If a
value is specified followed by an asterisk (*), all existing job profiles whose names begin with
this value are listed. If asterisk notation is specified only, a selection list of all available job
profiles is displayed.

5 If you use the INput DAta option, a window is displayed, where you have to specify the
Natural libraries and programs (members) to be contained in the DBRM.

32 Database Management System Interfaces

Application Plan Maintenance

16:15:44 **x%* NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Create DBRM -

Job Name ... DBRMJOB_ Job Cards .. X Profile .. EXDBRM__
>>-- CREate DBRM -- DBRMI___ -- USing --+-- _ -- PREDict DOCumentation --+-->
+-- _ -- INput DAta ------------- I
R +--m- - B +----- R +->
+- With XRef - = +- LIBrary - =F == F§ = ==
(NO, YES, FORCE) ! (ON, OFF)
>--------- +------- R + ---------- ><
+----S | NAT Library,NAT Member,excl.Member 1 / 2 !
! Test_ , PROGI___ , !
! Test ;[P , PROGI____ !
PPe==sc=sccscc2020 ! , , | =========-= ><
I)) |
I , , |
Command === ! !
EMter=PFl===PF2===P d====================c======================= + Fll==PFl12==-=
Help Exit Submi Free -- > aF Snis Canc

In the third column of the above window, you can specify a program that is to be excluded
from the DBRM,; this is possible only if you specify an asterisk (*) with the program name in
the second column.

Within the window, you can scroll using PFé (--), PF7 (-), PF8 (+), Or PF9 (++).

The generated JCL code can be either edited and/or saved in free mode by pressing Prs (Free),
or submitted immediately by pressing Pr4 (Submi).

Bind Plan

To generate JCL to bind a plan, you have to invoke the Bind function. All parameters necessary
tobind a plan are entered on four screens, which show the syntax of the DB2 BIND PLAN command.

> To generate JCL to bind a plan

1 On the Application Plan Maintenance menu, enter function code BI.
In the Object field, enter PLAN or PL, and press ENTER.

The first Bind Plan screen is displayed, where all necessary information must be specified.

Database Management System Interfaces 33

Application Plan Maintenance

23:16:38 *xHkxk NATURAL TOOLS FOR DB2 ***+** 2009-10-30
- Bind Plan -

Job Name ... BINDJOB_ Job Cards .. X Profile .. EXBINDI1_
>>- BIND +----- S S LR LT fecsssssccsccsscscssscssos +>
| | I .

!
+ PLAN (TESTPLAN)+ + OWNER ()+ + QUALIFIER ()+
plan-name auth-id qualifier-name
>-+->-- MEMBER +- X ---(member name)---+-------------------~---~-~"-~-~-~-~-~ -~ - - 4=
! ! [
! +- LIBRARY -- _ --(library name)-+ !
! !
HF=P== PRLIST == X ==(d====== t------- - +collection-id.package-id)-------- =)

+-location-name. -+

Read member name/package Tist from PREDICT? N (Y/N) DONE

Command ===
Enter=RPFl===PF2===PF3===PFl===PF5===PF6===PF7===PF8===PFY===PFLO==PFll-=PFl2-==
Help Exit Submi Free Next Canc

2 Apart from the specifications to be made in the Job Name, Job Cards, and Profile fields, to
bind a plan, you have to specify the name of the plan and all DBRMs and/or packages that
are to be bound into the specified plan.

3 You invoke the window to specify the DBRM members and/or package lists by entering an
S in the MEMBER and/or PKLIST field respectively. Either or both windows must be invoked;
otherwise, you are prompted by the system to do so.

Within the windows for DBRM and package specification, you can scroll using PFeé (--), PF7 (-
), PE8 (+), Or PF9 (++).

4 If Predictisinstalled and a plan is documented in Predict, the DBRM members and/or package
lists assigned to a plan in Predict can be read by entering Y for this option (default is N). A
maximum of 50 DBRM members and/or 20 package lists can be read.

If you use this option and DBRM members and/or package lists have been successfully read,
the MEMBER and PKLIST selection fields are marked with X, and DONE is displayed next to
the (Y/N) input field; FATLED is displayed if:

" inconsistencies in the member/package list definition were detected,

® over 50 DBRM members or more than 20 package lists were defined for the specified plan,

" no members or package lists were defined for the specified plan,

the plan was not documented in Predict at all.

34 Database Management System Interfaces

Application Plan Maintenance

Note: If Predict is not installed, the field Read member name / package list from Pre-
dict? does not appear on the above screen.

5 Pressing PF11 (Next) takes you to a second Bind Plan screen, where you can specify further
options of the DB2 BIND command.

A keyword is generated by entering its first letter in the corresponding input field; the default
values are highlighted.

16:17:05 *xxkx NATURAL TOOLS FOR DB2 #****x* 2009-10-30
- Bind Plan -

Pe=e=dbecc=====cccccccc======== dreedheccccccccccc=== Jreedbcccccccccccccccc==== ===

! [[N !

- --(PREPARE)-+ +- FLAG --(_)-+ +- EXPLAIN --(_)-+

(NODEFER or DEFER) (I, W, Eor C) (YES or NO)
Po oo e e dhecdbo oo oo cccccccccoooo- O T LT de ==

! [[!

+- VALIDATE ()-+ +- ISOLATION ¢ __)-+ +- CACHESIZE ()+

(RUN or BIND) (RR, UR or CS) (0 - 4096)
P LT LT T . T dee ==

! ! ! !

+--- ACQUIRE --(y----- + +--- RELEASE --()=+

(USE or ALLOCATE) (COMMIT or DEALLOCATE)

Pocodbe e o= drmmmm oo dem e mdbe e oo ccccoccccccccoooo= ===

! ! ! !

+- CURRENTSERVER () =aF +-- CURRENTDATA (__)--+

location-name (NO or YES)
Command ===

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11l--PF12---
Help Exit Submi Free Prev Next Canc

Pressing PF10 (Prev) takes you back to the previous screen.

6 Pressing PFi1 (Next) takes you to a third Bind Plan screen, where you can again specify further
options of the DB2 BIND command.

Database Management System Interfaces 35

Application Plan Maintenance

16:17:18 *xk%k% NATURAL TOOLS FOR DB2 *x¥+*x 2009-10-30
- Bind Plan -
Do TR +--->
! I
EEN A GO NS RN (RERIFACE) NSRS R e R
! +-- _ RETAIN --+ |
TR (00) B EE R B R R R R R -
Do e +--->
! !
+-- DYNAMICRULES - _ (RUN or BIND) ------------------- +
Dot oooooooooooooooooooo- +-><
| |
+-+- _ - ENABLE -------- (*) =------- LR LT R R TR PR +-+
l ! +->- DLIBATCH- _ -(con.-names)-+
+- _ - ENABLE --+- _ -(con.-types)-+ +->- CICS ---- _ -(applids)----+
+- _ - DISABLE -+ +->- IMSBMP -- _ -(imsids)----- +
+->- IMSMPP -- _ -(imsids)----- +

Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Submi Free Prev Next Canc

7 Pressing PF11 (Next) takes you to a fourth Bind Plan screen, where you can again specify further
options of the DB2 BIND command.

16:17:38 FxkxE NATURAL TOOLS FOR DB2 **=x** 2009-10-30
- Bind Plan -

Pocoodiomooocoocccccccoocoooo demmooe T dee—mcooccccoo- >
! ! ! !
+-- DEGREE --- __ ----+ +-- SQLRULES --- __ ----+
(1 or ANY) (DB2 or STD)

N e R >
! !
do- DUSCOMEET ==-=d=== _ - (EELIGIT) ----- b +

+--- _ - (AUTOMATIC) ----+
+--- _ - (CONDITIONAL) ---+

Command ===
Enter=PFl===PF2===PF3===PFld===PF5===PFo===PF7/===PF8===PF9===PFlLO==PFll==PFl2===
Help Exit Submi Free Prev Canc

36 Database Management System Interfaces

Application Plan Maintenance

8 The generated JCL code can be either edited and/or saved in free mode by pressing Pr5 (Free),
or submitted immediately by pressing PF4 (Submi).

Rebind Plan

To generate JCL to rebind a plan, you have to invoke the Rebind function. All parameters necessary
to rebind a plan are entered in three screens, which show the syntax of the DB2 REBIND PLAN
command.

> To generate JCL to rebind a plan

1 On the Application Plan Maintenance menu, enter function code RB.
In the Object field, enter PLAN or PL, and press ENTER.

The first Rebind Plan screen is displayed, where all necessary information must be specified.

19:17:55 it [WATURAL TOOLS FOR DB2 e 2009-10-30
- Rebind Plan -

Job Name ... FREEJOB_ Job Cards .. X Profile .. EXBIND1_
Yo [NEEIND PLARN ssessssaaacc o s mmaasc e o mse oo oS n s e S oS C o e s aaa oo oo o >
>-+-(plan names)- X -+-+--------------------- Foto e +-->
| Lo Lo |
+-- (%) - _ - +-+- OWNER ()-+ +- QUALIFIER () -+
auth-id qualifier-name
P e T i I +----- >
! !
+-- PKLIST ---- _ --(4---------------- +collection-id.package-id)--+
! +-location-name.-+ !
Tr== MUPRLIST == 1 sssscccccccccscemnmn s oo oo ooooennnn s a oo oo oo oo *
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PF12---
Help Exit Submi Free Next Canc

2 Apart from the specifications to be made in the Job Name, Job Cards, and Profile fields, you
have to specify the names of the plans to be rebound in a window. If you specify asterisk
notation (*), all existing plans are rebound.

Database Management System Interfaces 37

Application Plan Maintenance

3 Pressing Pr11 (Next) takes you to a second Rebind Plan screen, where you can specify further
options of the DB2 REBIND command.

A keyword is generated by entering its first letter in the corresponding input field; the default
values are highlighted.

16:18:15 **x*%* NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Rebind Plan -

PR I B e +--->
! [[!
+- --(PREPARE)-+ +- FLAG --(_)-+ +- EXPLAIN --C ___)-+

(NODEFER or DEFER) (I, W, EorC) (YES or NO)

Pocodoccccnsncccncnocanns S cdbocooccnonccconoooae = P +-- -
! [[!
+- VALIDATE ()-+ +- ISOLATION (__)-+ +- CACHESIZE ()+

(RUN or BIND) (RR, CS or UR) (0 - 4096)

D e T +--->
! ! ! !
=== ACQUIRE =-=(IELLEL + - RE[FEASE - - ()= = oo

(USE or ALLOCATE) (COMMIT or DEALLOCATE)

D Fommm - B s +--->
! ! ! !
+- CURRENTSERVER ()-+ +-- CURRENTDATA (___)--+

location-name (NO or YES)
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Submi Free Prev Next Canc

Pressing PF10 (Prev) takes you back to the previous screen.

4 Pressing PF11 (Next) takes you to a third Rebind Plan screen, where you can again specify
further options of the DB2 REBIND command.

38 Database Management System Interfaces

Application Plan Maintenance

16:18:38 *xHkxk NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Rebind Plan -

P I B S s T +->
! ! ! ! ! !
+- DEGREE - _ ---+ +- SQLRULES - _ --+ +- DYNAMICRULES - _ --+

(1 or ANY) (DB2 or STD) (RUN or BIND)

P e i e +->

= DISCOMNECT ==ar== _ ==(EXPLICIT) ====== +
+-- _ --(AUTOMATIC) ----- +
+-- _ --(CONDITIONAL) ---+

D b o o oo +->¢<
| |
+-+- _ - ENABLE -------- (%) -------- R TR +-+

! I +->- DLIBATCH- _ -(con.-names)-+
#F= _ = ENABLE ==4= _ =(com.=-types)=4+ #=>= CICS ==== _ =(applids)====4
+- _ - DISABLE -+ +->- IMSBMP -- _ -(imsids)----- &
+->- IMSMPP -- _ -(imsids)----- +
Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Submi Free Prev Canc

5 The generated JCL code can be either edited and/or saved in free mode by pressing Pr5 (Free),
or submitted immediately by pressing Pr4 (Submi).

Free Plan

A free plan can be generated with the Free function of the Application Plan Maintenance menu.
> To generate JCL to free a plan

1 On the Application Plan Maintenance menu, enter function code FR.
In the Object field, enter PLAN or PL, and press ENTER.

The Free Plan screen is displayed, where all necessary information must be specified.

Database Management System Interfaces 39

Application Plan Maintenance

16:19:35 wxxkxx NATURAL TOOLS FOR DB2 ****x* 2009-10-30
- Free Plan -
Job Name ... FREEJOB_ Job Cards .. X Profile .. EXBINDI1_
Py FREE PLAN ----- +---(plan name)---- X ------ o >
| |
oo (%) ---- _ - +
D e e >
| |
=== FLAG ===== () +

Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Exit Submi Free Canc

2 Apart from the specifications to be made in the Job Name, Job Cards, and Profile fields, all
parameters necessary to free a plan are entered in a screen showing the syntax of the DB2
FREE PLAN command. The names of the plans to be freed are entered in a window. If you
specify asterisk notation (*), all plans are freed.

3 The generated JCL code can be either edited and/or saved in free mode by pressing Pr5 (Free),
or submitted immediately by pressing Pr4 (Submi).

Bind Package

Packages can be bound with the Bind function of the Application Plan Maintenance menu. All
parameters necessary to bind a package are entered on three screens, which show the syntax of
the DB2 BIND PACKAGE command.

> To generate JCL to bind a package
1 On the Application Plan Maintenance menu, enter function code “BI”.
In the Object field, enter PACKAGE or PK, and press ENTER.

The first Bind Package screen is displayed, where all necessary information must be specified.

40 Database Management System Interfaces

Application Plan Maintenance

16:19:58 *FHxxxx NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Bind Package -

Job Name ... BINDJOB_ Job Cards .. X Profile .. EXBINDZ_
>>- BIND PACKAGE -(-4----------------------- 4o llll. S

= s OF collection-id
location-name

P o T o >
+ OWNER ()+ + QUALIFIER ()+
auth-id qualifier-name
>-+- MEMBER (e 4=
! member-name +- LIBRARY --- _ (library-name)----------------- + |
| |
+- COPY (.)=d=cc=scsssccsccsssssssssc222 A==
collection-id package-id +- COPYVER - _ (version-id)-+
Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Submi Free Next Canc

2 Apart from the specifications to be made in the Job Name, Job Cards, and Profile fields, to
bind a package, you have to specify the collection ID of the package and a DBRM or a further
package to be bound into the specified package.

You specify the DBRM or the second package in the MEMBER or COPY field respectively.
Either of the fields must be selected and the package ID will be either the DBRM name or the
package ID of the copied package.

3 Pressing pr11 (Next) takes you to a second Bind Package screen, where you can specify further
options of the DB2 BIND command.

A keyword is generated by entering its first letter in the corresponding input field; the default
values are highlighted.

Database Management System Interfaces 41

Application Plan Maintenance

16:20:05 **x**x%x NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Bind Package -

PR e Fommmm - o B >
! ! ! !
+- SQLERROR () =4F +- FLAG --(_)-+
(NOPACKAGE or CONTINUE) (I, W, EorC)
P frmzseccco===== freedheccccc=zccccc=- fre==============cc==-= Jree====cc=-= >
! [! !
+- EXPLAIN --(C ___)-+ +- VALIDATE () -+
(NO or YES) (RUN or BIND)
P o fmmmm - e B >
! ! ! !
+- ISOLATION ¢ __)-+ +- RELEASE -() -+
(RR, RS, CS, UR or NC) (COMMIT or DEALLOCATE)
Semmm - o T tommm - >
! ! ! !
+- CURRENTDATA (___)-+ +- DYNAMICRULES --() -+
(NO or YES) (RUN or BIND)
Command ===
Enter=PFl===PF2===PFI===PFl===PF5===PFo===PF7===PFB===PFY===PFLO==PFLl==PFl12===
Help Exit Submi Free Prev Next Canc

Pressing PF10 (Prev) takes you back to the previous screen.

4 Pressing PF11 (Next) takes you to a third Bind Package screen, where you can again specify
further options of the DB2 BIND command.

42 Database Management System Interfaces

Application Plan Maintenance

16:20:18 *FHxxxx NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Bind Package -

Pedhe==============cccc=c========================== dr===di=ccc===c=cc=c====== =
! ! ! !
+- ACTION -+- _ (REPLACE) -#-------------- +--+--+ +- DEGREE - __ ----+

! + REPLVER - _ -+ ! (1 or ANY)
! (version-id) !
+- _ (ADD) ----emmememeniooao s +

DT T +-><
| |
+-+- _ - ENABLE -------- (%) -------- T T LR R LR PP PR +-+

! I +->- DLIBATCH- _ -(con.-names)-+
= _ = ENABLE ==4= _ =(com.=-types)=+ #=>= CICS ==== _ =(applids)====4
+- _ - DISABLE -+ +->- IMSBMP -- _ -(imsids)----- +
== IMSMPP == _ =(imsi@ds)===== +
+->- REMOTE -- _ -(loc/lu-name)+

Command ===

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Submi Free Prev Canc

5 The generated JCL code can be either edited and/or saved in free mode by pressing Pr5 (Free),
or submitted immediately by pressing Pr4 (Submi).

Rebind Package

A package can be rebound with the Rebind function of the Application Plan Maintenance menu.
All parameters necessary to rebind a package are entered in two screens, which show the syntax
of the DB2 REBIND PACKAGE command

> To generate JCL to rebind a package

1 On the Application Plan Maintenance menu, enter function code RB.
In the Object field, enter PACKAGE or PK, and press ENTER.

The first Rebind Package screen is displayed, where all necessary information must be specified.

Database Management System Interfaces 43

Application Plan Maintenance

16:20:55 *FHxFxxx NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Rebind Package -

Job Name ... FREEJOB_ Job Cards .. X Profile .. EXBINDZ_
Y2= REBIND PACKALE sc-ccccescccosccccsconccacnacncosonoosonnocannacncosancoas >
D I (R} =e===mmmmseememoee oo +->
! !
Foo (e +-collection-id.package-id-+--------------- +)-+
+-location-name. -+ +-.(version-id)-+

P e B oo >

! [!

+- OWNER ()-+ +- QUALIFIER () -+

auth-id qualifier-name

Command ===

Ent@r=PFl===PF2===PF3===PFl===PF5===PFE===PF7 ===[PF@===PFY===PFLO==PF1ll==PFl2===
Help Exit Submi Free Next Canc

2 Apart from the specifications to be made in the Job Name, Job Cards, and Profile fields, you
have to specify the names of the packages to be rebound in a window. If you specify asterisk
notation (*), all locally existing packages are rebound.

3 Pressing PF11 (Next) takes you to a second Rebind Package screen, where you can specify
further options of the DB2 REBIND command.

A keyword is generated by entering its first letter in the corresponding input field; the default
values are highlighted.

44 Database Management System Interfaces

Application Plan Maintenance

16:21:21 *FHxxxx NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Rebind Package -
PR o domme o e tomm e >
! ! ! !
+- FLAG ----- (_)---+ +- DEGREE --(C __)--+
(I, W, Eor(C) (1 or ANY)
Pr========= fre====c============== free=z=c===== drec==c=============== gre===c==== >
! ! ! !
+- EXPLAIN --(C ___)-+ +- VALIDATE () -+
(NO or YES) (RUN or BIND)
P I - R o e >
! ! ! !
+- ISOLATION (__)--+ +- RELEASE -() -+
(RR, RS, CS, UR or NC) (COMMIT or DEALLOCATE)
Semmm - o T tommm - >
! ! ! !
+- CURRENTDATA (___)-+ +- DYNAMICRULES -()--+
(NO or YES) (RUN OR BIND)
Command ===
Enter=PFl===PF2===PFI===PFl===PF5===PFo===PF/===PFB===PFY===PFLO==PFll==PFl2===
Help Exit Submi Free Prev Next Canc

Pressing PF10 (Prev) takes you back to the previous screen.

4 Pressing PFi1 (Next) takes you to a third Rebind Package screen, where you can again specify
further options of the DB2 REBIND command.

Database Management System Interfaces 45

Application Plan Maintenance

16:21:38 *FHxFxxx NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Rebind Package -

D T T +-><
| |
F=dr= _ = ENABLE ======== () ====s==== fodpecccssccmsccscacsscooscscamases =4

! ! +->- DLIBATCH- _ -(con.-names)-+
+- _ - ENABLE --+- _ -(con.-types)-+ +->- CICS ---- _ -(applids)----+
+- _ - DISABLE -+ +->- IMSBMP -- _ -(imsids)----- +
+->- IMSMPP -- _ -(imsids)----- +
+->- REMOTE -- _ -(Toc/lu-name)+
Command ===
Enter=PFl===PF2===PF3===PFé===PF5===PF6===PF7===PF8===PFY===PFlO==PFll=-=PFil2===
Help Exit Submi Free Prev Canc

5 The generated JCL code can be either edited and/or saved in free mode by pressing Pr5 (Free),
or submitted immediately by pressing PF4 (Submi).

Free Package

A package can be freed with the Free Package function of the Application Plan Maintenance
menu.

> To generate JCL to free a package

1 On the Application Plan Maintenance menu, enter function code FR.
In the Object field, enter PACKAGE or PK, and press ENTER.

The Free Package screen is displayed, where all necessary information must be specified.

46 Database Management System Interfaces

Application Plan Maintenance

16:22:05 **xxx% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Free Package -

Job Name ... FREEJOB_ Job Cards .. X Profile .. EXBINDZ_
>>-- FREE PACKAGE -----------------"-"---"---"--~-"-"-~-~-"-~-~----- - >
PEEE L R R R (%) ============cc=====cc=co=c====-==- +-->
! !
+- (e +collection-id.+----------- (%) ========= +-)--+
+location-name.+ +package-id+------------- ++
too-o- (X)) -t

+.(version-id)+

Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Exit Submi Free Canc

2 Apart from the specifications to be made in the Job Name, Job Cards, and Profile fields, all
parameters necessary to free a package are entered in a screen showing the syntax of the DB2
FREE PACKAGE command. The names of the packages to be freed are entered in a window. If
you specify asterisk notation (*), all local packages are freed.

3 The generated JCL code can be either edited and/or saved in free mode by pressing Pr5 (Free),
or submitted immediately by pressing PF4 (Submi).

List JCL Function

The List JCL function serves to invoke the free-mode editor via the Application Plan Maintenance
menu.

> To invoke the List JCL function

1 On the Application Plan Maintenance menu, enter function code LJ.
® If you leave the JCL Member field blank and press ENTER, the empty free-mode editor is
invoked.

= If you specify a value followed by an asterisk, or specify asterisk notation only and press
ENTER, a list of JCL members is displayed for selection.

Database Management System Interfaces 47

Application Plan Maintenance

* If you specify a valid member name and press ENTER, the invoked free-mode editor contains

the corresponding JCL.

16:18:18 **x%x%x NATURAL TOOLS FOR DB2 ****%* 2009-10-30
APM - free mode TESTLIB(TESTPLAN) S Ol= =============== Columns 001 072
=====) Scroll ===> PAGE

kkhkkkhkk hkhkhkkhkk top Of data kkhkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkhkkhkhkhkhkhkkhkkhkhkhkkhkhkhkhk

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017

//BINDJOB JOB TESTPLAN,CLASS=K,MSGCLASS=X

//**

//* EXAMPLE JOB PROFILE FOR BIND, FREE AND REBIND b
/] * *
//* BIND PLAN #

//**

//BINDJOB EXEC PGM=IKJEFTO1l,DYNAMNBR=20,REGION=4096K
//STEPLIB DD DSN=DBZ.Vnnn.DSNLOAD,DISP=SHR
//DBRMLIB DD DSN=DB2.Vnnn.DBRMLIB.DATA,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM (DB2)

BIND PLAN (PLANI)

MEMBER (DBRMI)
END

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Submi Rfind Rchan - + < > Canc

Within the free-mode editor, JCL members can be copied, listed, purged, retrieved from, or
saved in a Natural library. All this is done via maintenance commands; see Global Mainten-
enance Commands.

2 Press Pr4 (Submi) to submit JCL code listed in the editor, press Pr5 (Fix) to switch to fixed

mode.

Display Job Output

The Display Job Output function can be used to display the output of a JCL member.

stalled.

Note: The Display Job Output function is available only if the Entire System Server is in-

> To display the output of a JCL member

1 On the Application Plan Maintenance menu, enter function code J0.

48

Database Management System Interfaces

Application Plan Maintenance

In the Node field, the default node number (148) for Entire System Server can be modified.

A screen is displayed, where you can specify the desired job name and job number, as well
as the numbers of the SYSOUT types.

16:20:05 *xxA% NATURAL TOOLS FOR DB2 ****x* 2009-10-30
- Application Plan Maintenance -

Job Name
Job Number
Sysout Type _ (CC,JdL,ST,SM,SO)
Sysout Number ... __ (Sysout file number)
Node 148
Command ===
EMEEr= PRI === RPIEZ= = = PRS- = =PI = o PIEE = = S[REG = = = PIE7/= = SRIER)S = = PIEC)= = < RIET[()= = PR 1L = = PRl 2=
Help Exit Logn Canc

2 Inthe Job Name field, a valid job name can be specified.

= If you specify a value followed by an asterisk (*), or specify asterisk (*) notation only, a list
of job output members is displayed for selection. In a job output member selection list, you
can mark an output member with either B to display the member only, or L to display a list
of all the job output's SYSOUT data sets, which in turn can be marked with B for display.

® If you leave the Job Name field blank, you must specify a job number.

3 Inthe Job Number field, you can specify a unique job number. Only if a unique job number
has been specified, specifications can be made in the Sysout Type and Sysout Number fields,
too.

4 Inthe Sysout Type field, you can specify the type of SYSOUT data set of the job with the specified
job number to be displayed. The following codes apply:

Database Management System Interfaces 49

Application Plan Maintenance

Code |SYSOUT Type

CC |Condition Code
JL |Job Listing

ST |System Input

SM |System Message
SO |System Output

In the Sysout Number field, you can specify a file number to display a specific SYSOUT data

set of the type specified in the Sysout type field.

If you leave the Sysout Number field blank, all SYSOUT data sets of the specified type are
displayed.

50

Database Management System Interfaces

5 Catalog Maintenance

= Fixed Mode and Free Mode

= |nvoking the Catalog Maintenance FUNCHONcooiiiiiii e

= Create Table Function
= Create Tablespace Function
= Alter Table Function
= Alter Tablespace Function ..
= SQL Skeleton Members

51

Catalog Maintenance

The Catalog Maintenance part of the Natural Tools for DB2 enables you to generate SQL statements
to maintain the DB2 catalog (that is, DB2 tables and other DB2 objects) without leaving your de-
velopment environment.

The Catalog Maintenance function incorporates an SQL generator that automatically generates
from your input the SQLCODE required to maintain the desired DB2 object. You can display,
modify, save, and retrieve the generated SQLCODE.

The DDL/TML definitions are stored in the current Natural library.

Fixed Mode and Free Mode

The catalog maintenance function offers two modes of operation: fixed mode and free mode.

> To switch from fixed mode to free mode

m Press pr5 (Free).

> To return from free mode to fixed mode
m Press Pr3 (Exit) in free mode.

Fixed Mode

In fixed mode, input screens with syntax graphs help you to specify correct SQLCODE. You simply
enter the required data in the input screens, and the data are automatically checked to ensure that
they comply with the DB2 SQL syntax. If the input is incomplete, you are prompted for the missing
data. Then, SQL members are generated from the entered data. The members can be executed
directly by pressing PF4 (Submi). But you can also press PF5 (Free) to switch to free mode, where
the generated SQLCODE can be modified.

After the execution of an SQL statement, a message is returned, which indicates that the statement
has been successfully executed. If an error occurred, the resulting DB2 error message can be dis-
played by pressing Pr2 (Error), which executes the SQLERR command.

Input screens consist of various kinds of input fields. There are:

* fields to enter DB2 object names,
= fields to invoke windows,

" fields to be marked for selection,

fields to enter keywords,

fields to specify numeric values,

52 Database Management System Interfaces

Catalog Maintenance

= fields to enter string constants.

For each field where a window can be invoked, you can specify an S. When you press ENTER, the
window appears and you can select or enter the necessary information. If such a selection is re-
quired, an S is already preset when the corresponding screen is invoked.

When you press ENTER again, the window closes and if data have been entered, the field is marked
with X instead of S. If not, the field is left blank or marked with S again.

This will continue each time you press ENTER until no s remains. To redisplay a window where
data have been entered, you change its X mark back to S.

If another letter or character is used, an error message appears on the screen.
Mark field with S to show window.

The wrong character is automatically replaced by an S and if you press ENTER again, the corres-
ponding window appears.

In fields where keywords are to be entered, you must enter one of the keywords displayed beneath
the field. Default keywords are highlighted.

Free Mode

When free mode is invoked from fixed mode (by pressing Prs5 (Free)), the data that were entered
in fixed mode are shown as generated SQLCODE which can be saved for later use or modification.

If you modify an SQL member in free mode, this has no effect on the fixed-mode version of the
member. You can save your modified code in free mode, but when you return to fixed mode, the
original data appear again. Thus, both original and modified data are available.

In free mode you can execute the member currently in the source area by pressing PF4 (Submi), as
in fixed mode.

Execution of SQL statements automatically switches to the output screen, which shows the SQL
return code of the executed commands.

See the list of the SQLCODE maintenance commands available in free mode in the section Global
Maintenenance Commands.

Database Management System Interfaces 53

Catalog Maintenance

Invoking the Catalog Maintenance Function

> To invoke the Catalog Maintenance function

= On the Natural Tools for DB2 Main Menu, enter function code C, and press ENTER.

The Catalog Maintenance menu is displayed:

16:03:13 waswasss MATURAL TOOLS FOR DB2 e 2009-10-30
- Catalog Maintenance -

Code Maintenance Parameter Code Authorization Parameter
CR CREATE Object GR GRANT Object

AL ALTER Object RE REVOKE Object

DR DROP LO LOCK TABLE

SC SET SQLID

Code Description Parameter Code Function Parameter
EN EXPLAIN F Free Mode Member
co COMMENT ON ? Help
LB LABEL ON . Exit
Code .. __ Object
Library ...
Member
Command ===
Efter=PFl===PF2===PF3===PFd===PF5===PFo===PF7===PF8===PF9===PFlLO==PF1L1l-=PF12=-=
Help Exit Canc

In the Code field, the function code assigned to the desired function can be specified, together
with the desired Object, Library, and/or Member name.

If you switch to free mode and enter a valid member name, you can read this member from
the Natural library specified with the Library parameter. The Library parameter is preset
with your Natural user ID.

With the CREATE VIEW and EXPLAIN functions, a subselect or an explainable SQL statement
must be entered, respectively. Both can be done in a separate editor session, where previously
saved members can be used. The editor is invoked by entering an S in the appropriate field.

54 Database Management System Interfaces

Catalog Maintenance

With the functions CREATE, ALTER, GRANT, and REVOKE, an object code must be specified, for
example, TB for TABLE. If you leave the object field blank, a window is displayed which shows
you a list of all available objects together with their object codes.

If you enter for example the CREATE function without specifying an object, a window is invoked
which prompts you for the type of object to be created:

16:03:13 xHxxx%x NATURAL TOOLS FOR DB2 ***x** 2009-10-30
- Catalog Maintenance -

CoE@ drec=c=sc=ccsscsscsscasos A Code Authorization Parameter
I CREATE !
CR ! ! GR GRANT Object
AL AL ALTAS ! RE REVOKE Object
DR 1 DB DATABASE ! LO LOCK TABLE
SC I IX INDEX !
1 ST STOGROUP !
Code I SY SYNONYM ! Code Function Parameter
1 TB TABLE !
EN TS TABLESPACE ! F Free Mode Member
co VI VIEW ! ? Help
LB ! Exit ! Exit
| |
Code .. I __ Enter Object !
| |
e +
Command ===
Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc

In the following section some examples illustrate how to use the Catalog Maintenance function
in fixed mode.

Create Table Function

> To invoke the Create Table function

1 Inthe CREATE function, enter the object code TB, and press ENTER.
The first Create Table syntax input screen is displayed.

You can enter the creator and table names on this screen, as well as the individual column
names, formats, and lengths, as shown below:

Database Management System Interfaces 55

Catalog Maintenance

09:47:19 xxxxx NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Create Table - 1 /9
>>- CREATE TABLE - SAG , DEMOTABILE_____ ============================-= >
{creator.>table-name
Mp=== [LIKE ======= . e +-+>
! {creator.>table/view-name +- _ - INCLUDING IDENTITY + +
| ©
!
+(COL1 CHAR (20) - - _ - __ - _ ,*
+- COL2 INTEGER () _ - NN-_-2_-_,+
+- COL3 SMALLINT () _ - NN-_ -1_-_, +
+- COL4 CHAR (2) S - _ - _ - __ - _,+
= COL5 VARCHAR (30) _ - NN - _ -3 -_,+
+- COL6 DECIMAL (2,5)y = _ =X = __ = _ .4
+- COL7 FLOAT () = W = = =
+- COL8 DATE () _ - - _ - _ - _,+
+- COL9 TIME () - - _ - __ - _,t
+- ()y = _ = _=_ = _ .
column-name format length S/M NN fld PK/ R/C
B proc UK D/G
Command ===
EipEE=(REIL == = PEZ2= = = [PES)= = = [PFl= = S[PIEE = = S{PIIR(E = = = [PIE7/= = = [DIER]= = < PRe)= = SRR (0)= = PISILL S = PIETL 2= = =
Help Error Exit Exec Free -- - + ++ Next Canc

Note: Since the specification of any special characters as part of a Natural field or DDM

name does not comply with Natural naming conventions, any special characters allowed
within DB2 should be avoided. The same applies to DB2 delimited identifiers, which
are not supported by Natural.

In the top right-hand corner of the screen, the index of the top most column (1), and the total
number of columns specified (9) is displayed. If you want to specify more columns than fit
on one terminal screen, press PF8 (+) to scroll one page forward.

An S in the S/M/B field of column 4 means that the FOR SBCS DATA option is selected for this
column. Other possible values for this field are M (FOR MIXED DATA) and B (FOR BIT DATA).

Columns 3, 2, and 5 form the primary key, in the specified order. Primary key columns must
be selected with an S or ordered by specifying appropriate numbers between 1 and 16. In the
present example, all primary key columns are defined as NOT NULL. In addition, column 7 is
specified as NOT NULL.

For column 6, a field procedure has been entered in a window invoked by S. The window has
been closed again, and the fld proc field is now marked with X.

2 If you enter an R in the R/C/D/G field for a given column and press ENTER, a window is dis-
played, in which you can specify a references clause, which identifies this column as a foreign
key of a referential constraint.

56 Database Management System Interfaces

Catalog Maintenance

References-Clause for Column: COL1

! >--- REFERENCES ---- -2

| |
! !
! . !
! <creator.>table-name !
[D=dp=================c==============-= e=============== >
! = 0N DELETE =-=sF=-= = RESTRICT ==+ !
! T CASCADIENS S !
! +-- _ - SET NULL --+ !
! +-- _ - NO ACTION -+ !
| |
I e +

You must specify the name (with an optional creator name) of the parent table to be referenced.
In addition, you must specify the action to be taken when a row in the referenced table is de-
leted. The following options are provided:

® RESTRICT or NO ACTION prevents the deletion of the parent row until all dependent rows
are deleted.
" CASCADE deletes all dependent rows, too.

" SET NULL sets to null all columns of the foreign key in each dependent row that can contain
null values.

® A key that consists of more than one column must be defined by a FOREIGN KEY clause.

3 Ifyouentera Cinthe R/C/D/G field for a given column and press ENTER, a window is displayed,
in which you can specify a check constraint for this column.

Database Management System Interfaces 57

Catalog Maintenance

16:08:09 **xx*x% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Create Table - 1 /9
Py=== CREATE TABILE ========= SAG o DENMOTABLE ____ ================ >
{creator.>table-name
DAp======= LIKE ============-= - ================ =2
! {creator.>table/view-name !
+(COL1 - CHAR (e0___)-_-_--_-_-¢06,-+
B T I +
! --- check-constraint for Column: co,. — =========== ©
|
! o
!
| Dedpec==zcc=zcccczczc222c222 +- CHECK (
| | |
+- CONSTRAINT - -+

constraint-name

<«

<«

B T +
Command ===

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--

Exit Canc

You must specify a column check condition. A check condition is a search condition with
various restrictions which are described in detail in the relevant DB2 literature by IBM. In
addition, you may specify a name for the check constraint.

4 IfyouenteraDin the R/C/D/G field for a given column and press ENTER, a window is displayed,
in which you can specify a default value other than the system default value for this column.

58 Database Management System Interfaces

Catalog Maintenance

10:14:04 xxxx& NATURAL TOOLS FOR DB2 ****x 2009-10-30
- Create Table - 1 /9

Default-Clause for Column: COL1

! !
! !
P >--- = WITH DEFAULT ---------mmmmmmmmmmmmmmmo oo oo oo oo m oo o >
D R e Rl e e e b I
I 4 { ob o = ISER cccccosccccnccacncnans + +)+ !
! cast-function-name +-- _ - CURRENT SQLID ------------- + !
! +-- _ - NULL -----------mmmmmmm - - + !
' !
! !
| |
! |
! !
! constant !
| |
fb===========================c=====--=c=============-========================== +
B proc UK D/G

Command ===
Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12--
Exit Canc

One of the following types of default values can be specified:

" USER: an execution-time value of the special register USER.
® CURRENT SQLID: the SQL authorization ID.
" NULL: the null value.

B constant: a constant which names the default value for the column.

For further information on default values, refer to the relevant DB2 literature by IBM.

If you enter a G in the R/C/D/G field for a given column and press ENTER, a window is displayed,
in which you can define the GENERATED-Clause for this column.

Database Management System Interfaces 59

Catalog Maintenance

10:18:29 *xHkkxx NATURAL TOOLS FOR DB2 ****=* 2009-10-30
- Create Table - 1 /9

>>- CREATE TABLE - SAG . DEMOTABILE ___ ==============c============== >

fh= = —-=-===cc=-=-=---ccc-----cccc-----c-------c------c---c---c-----c-===--cc====<=== i

GENERATED-Clause for Column: COL1

Dyemmee- GENERATED --------- +-- _ ALWAYS ------- R R >

| |
| |
| _ |
! +-- _ BY DEFAULT ---+ !
D e +->
! +- AS TIDENTITY -4---------------------“---“---“-------------------- +-+
! +- (-+-- _ START WITH --- 1 -t) -+
! +-- _ INCREMENT BY - 1 = =4 !
! = N0 CACHE =================== S !
! = _ CACHE ======== 20 =4F
| |
B e i +
+- ()
column-name format length S/M NN fl1d PK/ R/C
B proc UK D/G
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12--
Exit Canc

GENERATED can only be defined if the column has a ROWID data type (or a distinct type that is
based on a ROWID data type), or if the column is to be an identity column.

For further information on the GENERATED-Clause, refer to the relevant DB2 literature by
IBM.

Windows like the one below may help you in making a valid selection. They are invoked by
entering the help character (?) in the appropriate field on the screen:

60

Database Management System Interfaces

Catalog Maintenance

10:23:44 Fe==sc=sc=sscc=ssccss5ccs25sc02=0x 4 2009-10-30
oI INTEGER ! 1 /9
IS SMALLINT !
>>- CREATE TABLE - SAG_ ! F FLOAT(integer) e >
{cr ! RE REAL !

Pr=== LIKE ======= DO DOUBLE [==cc===c====== A=aEy
! <cr ! DE DECIMAL(integer,integer) ! DING IDENTITY + +
! I N NUMERIC(integer,integer) ! !
+(COL1 ! CH CHAR(integer) Y- - -, +
+- COLZ I VARC VARCHAR(integer) I =_=2_=_ ,
+- COL3 ! CL CLOB(integer) o= _ =1 = _) %
+- COL4 ! B BLOB(integer) - - - _ .,
+- COLS I G GRAPHIC(integer) = _ =3 = _ , %
+- COL6 I VARG VARGRAPHIC(integer) L= _=_ = _ , %+
+- COL7Y ! DB DBCLOB(integer) b= _ = __ = _ %
+- COL8 ! DA DATE I = _=_. °=_,
+- COL9 ! TIME TIME - _ - _ - _ , +
+- ! TIMES TIMESTAMP L

column-name ! ! f1d PK/ R/C
I RO ROWID ! proc UK D/G
| |
Command === ! Enter Value !
ENter=PFil===PF2===PF3== d====c====22=c===22=cc==2==c=22====== + F10--PF11--PF12---
Help Error Exit Exec Free -- - + ++ Next Canc

In the case of complex SQL statements, more than one input screen may be required. If so,
you can switch to the following screen by pressing PF11 (Next), or return to the previous screen
by pressing Pri0 (Prev).

As you can see on the above screen, the beginning of the syntax specification for an SQL
statement is always indicated by >>.

7 Since the syntax of the CREATE TABLE statement is a rather complex one, three more screens
are required. Once all necessary information has been entered on the first screen, you press
Pr11 (Next) to display the next Create Table input screen, where you can specify additional
optional parameters.

Database Management System Interfaces 61

Catalog Maintenance

10:31:51 **xx*x% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Create Table - 1 /70
dhe=sc==c=====c==c==c=====c==c======= {e========c===========sc==c=========== 4
D e I +-+->
|
= o = FORETEGN KEY ===== __ = ======= --- (column-name) ->

{creator.>table-name

P EEEEEEE TP PR +oe- ON DELETE -+- S - RESTRICT -+-+

+-- _ --- (column-name) ----+ +- _ - CASCADE --+
+- _ - SET NULL -+
+- _ - NO ACTION +
Command ===
Ent@r=PFl===PF2===PF3===PFi===PF5===PFE===PF/===PF8===PFY===PFLO==PFL11==PF12===
Help Error Exit Exec Free -- - + ++ Prev Next Canc

On this screen, you can specify a referential constraint to another table. To do so, enter an S
in the column-name field. A list of all columns available in the current table (dependent table)
is displayed, where you can select the column(s) to comprise the foreign key related to another
table (parent table). You can also specify a name for the constraint. If not, the constraint name
is derived from the first column of the foreign key.

A foreign key consists of one or more columns in a dependent table that together must take
on a value that exists in the primary key of the related parent table.

In the REFERENCES part, you must specify the table name (with an optional creator name)
of the parent table which is to be affected by the specified constraint. In addition, you must
specify the action to be taken when a row in the referenced parent table is deleted.

The following options are provided:

® RESTRICT or NO ACTION prevents the deletion of the parent row until all dependent rows
are deleted.

" CASCADE causes all dependent rows to be deleted, too.

" SET NULL sets to null all columns of the foreign key in each dependent row that can contain

null values.

In the top right-hand corner of the screen, the index of the currently displayed referential
constraint block (1) and the total number of referential constraint blocks defined (0) is displayed.

62

Database Management System Interfaces

Catalog Maintenance

When all information has been entered, you can press either PF10 (Prev) to return to the previous
screen, or PF11 (Next) to go to the next screen.

8 On the next screen you have again the possibility to specify columns as unique. This time,
however, up to six groups of unique columns can be defined, with up to 16 columns per
group. The individual columns are specified in a window, which can be invoked for each

group.

10:43:52 st MATURAL TOOLS FOR D2 s 2009-10-30
- Create Table -

D e Poccsscsocsocooooaooooooas T

! | =====- column-name ---- !

+- , - UNIQUE ----------------------------- b (oLl J

J b CO0L2 !

+- , - UNIQUE -----------------------mo - b coLs]

] ! __ COL4 !

+- , - UNIQUE ----------------------------- b COoLs i

| | !

+- , - UNIQUE ------------mmmmmmmmm oo b __ COoLe]

! b CoL7]

+- , - UNIQUE -----------mmmmmmmmm oo b CoLs]

! Fooesosccoosioccconiooas +

+- , - UNIQUE --------mmmmmmmmmm oo oo _ ~- (column-name) ---+
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---

Exit -- - + ++ Canc

Since unique columns must not contain null values, a further window is invoked automatically,
on which you can define the columns specified as unique also as NOT NULL (unless you already
defined them as such on the first Create Table input screen).

When all information has been entered, you can press either PF10 (Prev) to return to the previous
screen or PF11 (Next) to go to the last syntax input screen.

9 On the last syntax input screen, you can now:

® Restrict dropping of the current table (and also of the database and tablespace that contain
this table).

* Define a check constraint for the current table. To define a check constraint, you must specify
a table check condition. A check condition is a search condition with various restrictions
which are described in the relevant DB2 literature by IBM. In addition, you may specify a
name for the check constraint.

Database Management System Interfaces 63

Catalog Maintenance

10:47:02 **xx*x% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Create Table -

! <database-name.>tablespace-name !
#= 1IN DATABASE ==============_ = ==========cc====c====== +

e EDITPROC ------ _ ==--e-o-- VALIDPROC -- _ =------- >
e AUDIT --------o e OBJID ------ _ meeee-e---- >
(NONE, CHANGES, ALL) integer
ocm- DATA CAPTURE -- __ -=-------- CCSID ==-=-- __ ==e-e--e- >
(NONE, CHANGES) (ASCII, EBCDIC)
et WITH RESTRICT ON DROP == _ === =-----ommooomaooaoi >
ooo-- L e ><

check-cgndition

Command ===
Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12--
Help Error Exit Exec Free Prev Canc

If you press PF10 (Prev) on this screen, you return to the previous screen.

As you can see on the above screen, the end of the syntax specification for an SQL statement
is always indicated by ><.

An active help facility that consists of selection lists in windows is available for all fields ref-
erencing existing database objects. Selection lists are invoked by entering either an asterisk
(*) or part of an object name followed by an asterisk in the corresponding input field.

If, for example, you enter D* in the “database-name” field of the above screen, a window ap-
pears where you can check your selection criteria. When you press ENTER, a list of all databases
whose names begin with D appears.

64

Database Management System Interfaces

Catalog Maintenance

10

10:47:02 warwss NATURAL TQ db====c===ssscc=ccccccs=a + 2009-10-30
- Create ! Database Tablespa !
! D* . !
De==== = I =========== Gl Lo | sessde==c== >
! <database-name.> +-----------"-"-"---------- + !
+- IN DATABASE -------------- | Select == | ====d
dat !
DSNDBO4 ALLDATAO !
o EDITPROC ------ -- DSNDBO4 CANTABRD ! _ -------- >
DSNDBO4 CDBPRO6 !
D======= AUDIT ========= === DSNDB04 DATEGRP ! ----------- >

DSNDBO4 DEMO

1

2

3

4

5 DSNDBO4 DECIMALR !

6 !

7 DSNRGFDB DSNRGFTS ! _ --------- >
8

9

|
|
|
|
!
(NONE, CHANGES, AL !
|
|
|
|
|
|

Pocoooos DATA CAPTURE -- saa _
(NONE, CHANGES DSNRLST DSNRLSO1 CDIC)
DB27WRK DSN32KO01
Pese===-s WITH RESTRICT ON DROP -- _ [sc=ccc====< >
! 10 DB27WRK DSN4KO1 !
Pecc=s=s CHECK ========= _ sc=sss=o-o ! 11 DSN8D71L DSN8S71B ! ---------- ><
check-condition ! 12 DSN8D71P DSN8S71C !
e +
Command ===
Enter=PFl===PF2===PF3===PFl===PF5===PFo===PF/===PF8===PF9===PFLO==PFll==PFLl2===
Help Error Exit Exec Free Prev Canc

£ 7

Within the selection list, you can scroll up (PFé / or PF7 / “-”) or down (PF8 / “+” or PF9 /
“++”), and select the desired database. The name of the selected database is copied to the
corresponding field in your input screen.

When all information has been entered, you can either switch to free mode (PF5) or submit
the created member directly to DB2 for execution (PF4). If execution is successful, you receive
the message:

Statement(s) successful, SQLCODE = 0
If not, an error code is returned.

In free mode, the following editor screen displays the generated SQLCODE:

Database Management System Interfaces 65

Catalog Maintenance

10:53:50 *xxxx* NATURAL TOOLS FOR DB2 **#*#** 2009-10-30
FREE - Input SAG S 01- --------------- Columns 001 072
= Scroll ===> PAGE

KhEAKRKA KAKAKAKRAKAAKRAKAAAA AR A A AA kA kA ki kkhk%k top Of data AR R R e R b b e b b B b b b e b e b

00001 CREATE TABLE SAG.DEMOTABLE

00002 (COL1 CHAR(20),

00003 coLz INTEGER NOT NULL,
00004 COL3 SMALLINT NOT NULL,
00005 coL4 CHAR(2) FOR SBCS DATA,
00006 COL5 VARCHAR(30) NOT NULL,
00007 COoL6 DECIMAL(Z,5)

00008 FIELDPROC PROGNAME

00009 ('STRINGL", "STRING2'),

00010 coL7 FLOAT NOT NULL,
00011 coLs DATE,

00012 CoL9 TIME,

00013 PRIMARY KEY (COL3, coLz,

00014 COL5)

00015)

00016 IN DSNDBO4.DEMO;

hhkkkk hhkhkkkhkhhkhkkkhkhhhkkkhkhhhrkkhkkhhirkkkhkik bOttOm of data khkkkhkkhkhkkkhkkhkhhkhkkhkkhkhhkhkkkhhhkkkkhkhhxk

Enter=RPFl===PF2===PF3===PFl===PF5===PF6===PF7===PF8===PFY===PFLO==PFll-=PFl2-==
Help Setup Exit Exec Rfind Rchan - + Outpu Canc

The free-mode editor is an adapted version of the Software AG Editor. It is almost identical
to the interactive ISQL - Input screen. However, no SELECT statements can be issued from
free mode.

For further details, please refer to the relevant Software AG Editor documentation.

Create Tablespace Function

> To invoke theCreate Tablespace function

1 On the Catalog Maintenance screen, enter the code CR.
In the Object field, enter TS and press ENTER.

The first Create Tablespace syntax input screen is displayed:

66 Database Management System Interfaces

Catalog Maintenance

2

16:08:09 *x%%% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Create Tablespace -
>>-- CREATE TABLESPACE ----- TS ======== MY =====__ =========== >
tablespace-name database-name
o YWCAT ==== ____ ccsccccoccccsccsccsccoosocsssocasccocooaans &
>- USING -+ catalog-name =2
+- STOGROUP- - PRIQTY - SECQTY ___ - ERASE __ -+
stogroup-name integer integer (YES or NO)
=== FREEPAGE ======== _ ===== PCTFREE == __ ===========-= COMPRESS _ --->
integer integer (YES or NO)
>--- NUMPARTS -------- ___ ==sso _ SSSoSoSccoco0cc05S000500000000C0SS0000000000s >
integer PART
=== SEGSIZE ========= __ ====s=====c=s===ss===s==s=ss====s=====ss=======cc==== >
integer
Command ===
EneEr=PEIL == =PFE2= = = [PFe)= = = [PFd= = = P[EE = = <PEE= = = P[F7 = = = PIFE)= = = [PIFG)= = = PFILE)= = P[FLil = = PFilZ2- =
Help Error Exit Exec Free Next Canc

Once you have entered all necessary information, press PFi1 (Next) to go to the next screen:

Database Management System Interfaces 67

Catalog Maintenance

16:08:09 xAAAA NATURAL TOOLS FOR DB2 ****x* 2009-10-30
- Create Tablespace -

bt R e SO EEL L R 4= =3¢
| |
+--- BUFFERPOOL ------ _ m----------momoooo-ooooooooooo oo +
! bufferpool-name !
oo LOCKSIZE sdecccc= = =csoccsccooooococsccoscsscsos fpocscosccoooa 1
! 1'(ANY, TABLE, TABLESPACE) ! !
! +------ R R +--+ !
! (ROW or PAGE)! ! !
! +- LOCKMAX -- = =4 !
! (SYSTEM or integer) !
Foce CLOSE ssc=cc==ssss ___ 5555000000008 00000000000000805000000000000a 1
! (YES or NO) !
oo IISEPASS secsssss . 55885550000 00000050C 0000000000000 oSos 4

password
Command ===

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--

Help Error Exit Exec Free

Prev Canc

On the second Create Tablespace syntax input screen, you can now specify additional buffer
pool names as well as the LOCKSIZE option with the LOCKMAX clause.

If you enter an S in the bufferpool-name field and press ENTER, a window is displayed, in

which you can specify additional buffer pool names.

Refer to the relevant DB2 literature by IBM for further details on the COMPRESS, LOCKSIZE and

LOCKMAX clauses.

Alter Table Function

The following example illustrates the use of the Alter Table syntax input screen.

> To invoke the Alter Table function

1 On the Catalog Maintenance screen, enter the code AL.

In the Object field, enter TB and press ENTER.

The Alter Table screen is displayed, where you can specify the following;:

68

Database Management System Interfaces

Catalog Maintenance

11:01:47 *x*x%*x NATURAL TOOLS FOR DB2 ****x* 2009-10-30
- Alter Table -

Pr== ALTER TABILE ============= o =========cc===c== >
{creator.>table-name

>-+- ALTER -- SET DATA TYPE - VARCHAR - () --+>
! column-name length !

>-+- ADD () = _ == __ = __ ==»
! column-name format length S/M/B NN UK/PK
! HF==<
! #Pp= _ ====== _ ===s====s= ==sss=sssscsss cosssssssssssos | sosssos +>

! field-proc de%;u1t check:Eonstr reference-constr GENERA%ED—C]ause!

>+ VALIDPROC -----==--=ssm=s _ meemmesoenosooeooiioiiolooo +>

! program-name or NULL

+- AUDIT ------------------- memmmoomooooo o oooooooooooooooo--o-- +
! (NONE, CHANGES, ALL) !
+- DATA CAPTURE ------------"_ ------------mmmmoooooom oo oo +

(NONE, CHANGES)

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Exec Free Next Canc

2 Ifyouenter an S in the field-proc input field and press ENTER, a window is displayed, in which
you can specify a field procedure to be executed for this column:

Database Management System Interfaces 69

Catalog Maintenance

11:05:47 **xx*x% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Alter Table -

>y== ALTER TABLE ============= o . ================= >
<creator.>table-name
>-+- ALTER -- SET DATA TYPE - VARCHAR - () ==aF»
! column-name length !
>-+- ADD () = _ == __ = __ ==»
! column-name format length S/M/B NN UK/PK
! +--< e +
! +>- S ------ _ - 1 /0 Iommmm e - +>
! field-proc default ! --- FIELDPROC ---- I -constr GENERATED-Clause!
| | | |
>-+- VALIDPROC --------- ! program-name R +>
! I« , ! !
o AUDIT =ss=cc=sscssas ! , [scescsccsscsscascsccssaase A
! !) ! !
+- DATA CAPTURE ------ ! (constants,) e +
| |
| I
o +
Command ===
BlcE = RIFIL == = PE2= = S [PIES= = = PEal= = SRR = = S IRIE(G = = = [PfEy/= = = PIEeh= = S PIIRE)= = S[PIE) (0)= S PIEIL L = = PRI 2= = =
Exit Canc

3 Ifyouenter an S in the default field and press ENTER, a window is displayed, in which you
can specify a default value other than the system default value for this column:

70 Database Management System Interfaces

Catalog Maintenance

11:07:31 **xx*x% NATURAL TOOLS FOR DB2 ****x* 2009-10-30
- Alter Table -

R e e +
b >--- = WITH DEFAULT --------------m-mmmmmmmmmmm oo oo oo m oo > |
[e e +ot- o<
o+ (=+ 4-- _ - USER ---------mmmmmmooe s ++)+ !
! cast-function-name +-- _ - CURRENT SQLID ------------- + !
! +-- _ - NULL ---------------------- + !
! !
| |
| |
| |
! !
! constant !
! !
| |
! !
e e T +

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Exit Canc

One of the following types of default values can be specified:

" USER: an execution-time value of the special register USER.
® CURRENT SQLID: the SQL authorization ID.
" NULL: the null value.

B constant: a constant which names the default value for the column.

For further information on default values, refer to the relevant DB2 literature by IBM.

4 If you enter an S in the check-constraint field and press ENTER, a window is displayed, in
which you can specify a check constraint for this column:

Database Management System Interfaces 71

Catalog Maintenance

11:09:02 **xx*x% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Alter Table -

>>== ALTER TABLE ============= S——— R >
{creator.>table-name
>-+- ALTER -- SET DATA TYPE - VARCHAR - () —-t+>
! column-name length !
>-+- ADD () = _ == __ = __ ==p
! column-name format length S/M/B NN UK/PK
| ==K
! pPe _, Scccea _ =ocscooooc S ===coccccccocas _ ©occscoocooooos _ cooeessc 4=
! field-proc default check-constr reference-constr GENERATED-CTause!
e +
N in b L L L L L LR +- CHECK (
| |
+- CONSTRAINT - -+

constraint-name

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Exit Canc

You must specify a column check condition. A check condition is a search condition with
various restrictions which are described in detail in the relevant DB2 literature by IBM. In
addition, you may specify a name for the check constraint.

If you enter an S in the reference-constraint field and press ENTER, a window is displayed, in
which you can specify a references clause, which identifies this column as a foreign key of a
referential constraint:

72

Database Management System Interfaces

Catalog Maintenance

11:10:36 *xxxE NATURAL TOOLS FOR DB2 ***** 2009-10-30

- Alter Table -

>>== ALTER TABLE ============= o ==esss=c=sc=ss=o= >
{creator.>table-name
>-+- ALTER -- SET DATA TYPE - VARCHAR - () -+
! column-name length !
>-+- ADD () = _ == __ = __ ==>
! column-name format length S/M/B NN UK/PK
| ==K
! FP= _ ====== _ =====s===== _ ======s======= § =========c===== _ ======= +>
! field-proc default check-constr reference-constr GENERATED-CTause!
! Fe=m====c=ss==s=c=25==s=c=c5==3===c55=Ss=S=cS=SssS=-cS=Ss=oS = !
>-+- VALID ! >--- REFERENCES ---- . ==y | ====== +>
! ! {creator.>table-name ! !
G AUDIT § Potreecccscsccsccccococccncoccnoscoos fPoccoocosooooscos » [sesosc 1
! ! +- ON DELETE --+-- _ - RESTRICT --+ ! !
+- DATA ! == _ = CASCADE ===+ [====== +
! +-- _ - SET NULL --+ !
! +-- _ - NO ACTION -+ !
| |
Command == ! I
Enter-PF1- ! I =PFl2==-=
R e + Canc

You must specify the name (with an optional creator name) of the parent table to be referenced.
In addition, you must specify the action to be taken when a row in the referenced table is de-

leted. The following options are provided:

" RESTRICT or NO ACTION prevents the deletion of the parent row until all dependent rows

are deleted.

" CASCADE deletes all dependent rows, too.

" SET NULL sets to null all columns of the foreign key in each dependent row that can contain

null values.

6 Once you have entered your column definitions, press pPF11 (Next).

A screen is invoked in which you can add or drop primary and/or foreign keys:

Database Management System Interfaces

73

Catalog Maintenance

11:14:42 **xx*x% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Alter Table -

>--+--- ADD ------ PRIMARY KEY ------------------- _ -- (column-name) ---+
| |
+--- DROP ----- PRIMARY KEY ------------------- R R +-->
>--+->- ADD ------ FOREIGN KEY --- = ------ _ -~ (column-name) -->
! constraint-name
! >- REFERENCES ----> B >
! {creator.>table-name
D SRR LR R +------ ON DELETE -+- S - RESTRICT -+-+-->
‘ +--- _ --- (column-name) ---+ +- _ - CASCADE --+ !
! +- _ - SET NULL -+ !
! +- _ - NO ACTION + !
+->- DROP ----- FOREIGN KEY --- _ -----mmmmmmmmmommmoooo oo +

constraint-name

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Exec Free Prev Next Canc

7 Once you have entered the required information for adding and/or dropping primary and/or
foreign keys, press PF11 (Next). A screen is invoked, in which you can specify a RESTRICT ON
DROP clause, add or drop a CHECK constraint, and/or drop any constraint:

74 Database Management System Interfaces

Catalog Maintenance

12:20:24 **x%* NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Alter Table -

>o-cto ADD --- _ - RESTRICT ON DROP - === -==--=sxmmsmmmaomaaa o >
| |
+-- DROP -- _ --+

s ADD CHECK === === - L mmsmomemioo i >

constraint-name

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Exec Free Prev Canc

Alter Tablespace Function

The following example illustrates the use of the Alter Tablespace syntax input screen.

> To invoke the Alter Tablespace function

1 On the Catalog Maintenance screen, enter the code AL.
In the Object field, enter TS and press ENTER.

The Alter Tablespace screen is displayed, where you can specify the following;:

Database Management System Interfaces 75

Catalog Maintenance

2

12:20:24 xxx%% NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Alter Tablespace -
PPecccccscccoas ALTER TABLESPACE -- 5. ccooooooocoocscocooc >
<database-name.>tablespace-name

+-->- BUFFERPOOL ------- _ = =---------------- +

! bufferpool-name !
poccocoooa Foope CLOSE sccccccccess ____ c©cocososososcososososoc fpoccccccscsssosa >

! (YES or NO) !

+-->- DSETPASS --------- _ scccc---------- +

! password !

Foope PART sccccsccscoss __ ©cocooooooooooososooos A

! integer !

F==>= FREEPAGE ========= ____ ©coocooooococoocosooos 4

! integer !

HF==>= PCTFREE ========== e G LR L 4

! integer !

HF==>= COMPRESS ========= . SSSo0S00000050aSoSSs S

(YES or NO)
Command ===

Eft@r=PFl===PF2===PF3===PFl===PF5===PFe===PF7 == =PFE===PFY===PFLO==PFLL==PF12===
Help Error Exit Exec Free Next Canc

If you enter an S in the bufferpool-name field and press ENTER, a window is displayed, in
which you can specify additional buffer pool names:

76

Database Management System Interfaces

Catalog Maintenance

12:20:24 *H*xx*x NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Alter Tablespace -
e +
PPe=cc==ccc==c2= ALTER TABLESPACE -- ! ©
!
<database-na ! Valid values for ©
!
! bufferpool-name: <
!
F==>= BUFFERPOOL ======= S [========cc=2zc2222c22222222> ©
|
! bufferpool-n ! ©
|
PEREEEEEE +-->- CLOSE ------------ _ --- ! - 4KB buffer pools - ©
|
! (YES or NO ! BPO, BP1, BP2, ..., BP49 ©
|
F==>= DSETPASS ========= ! ©
|
! passwor ! - 32KB buffer pools - ©
|
F==2= PART ============= __ ---- 1 BP32K, BP32K1l, ..., BP32K9 <
!
! integer ! ©
!
=== [FREEPAGE ========= - Selection ©
!
! integer ! ©
!
F==2= PCTFREE =========-= _ ===== ffe=c==c=c==sscc=sscs=sscc22====2= S
! integer !
F==2= COMPRESS ========= ___ e=====ss==s=c=ss==c= A
(YES or NO)
Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Exit Canc

3 Once you are back in the first Alter Tablespace syntax input screen, press PFi1 (Next) to go
to the next screen:

Database Management System Interfaces 77

Catalog Maintenance

12:20:24 *xxxxx NATURAL TOOLS FOR DB2 ***#** 2009-10-30
- Alter Tablespace -

= YCAT ===== = o
+-->- USING -+ catalog-name +--------------- +
! +- STOGROUP - = =k
! stogroup-name !
Pese====== F==>= PRIQTY =============_ ======s===c=====ss===== fro===== ><
! integer
F==>= SECQTY ============= ____ =====ss===sss===ss====-= 4
! integer
F==>= ERASE ============== ____ =s===cc==scsss==ss=s===- 4
! (YES or NO)
F==>= LOCKMAX ============_ = ==================== S
! (SYSTEM or integer) !
F==2= LOCKSIZE ===4======= _ --- LOCKMAX - =4F
I (PAGE or ROW) (SYSTEM or integer)!
dommmmme eeee e +

(ANY, TABLE or TABLESPACE)

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Exec Free Prev Canc

4 On the second Alter Tablespace syntax input screen, you can now specify the LOCKMAX and
LOCKSIZE options.

Refer to the relevant DB2 literature by IBM for further details on the COMPRESS, LOCKSIZE and
LOCKMAX clauses.

SQL Skeleton Members

SQL skeleton members are provided for processing the following SQL statements that are not
supported by the Catalog Maintenance function:

® CREATE AUXILIARY TABLE

" CREATE DISTINCT TYPE

® CREATE TRIGGER

" GRANT ALTERIN

® REVOKE ALTERIN

An SQL skeleton member is a Natural text object that contains an SQL skeleton that complies with
the DB2 SQL syntax rules as described in the relevant IBM literature. The replaceable items in the

78 Database Management System Interfaces

Catalog Maintenance

SQL skeleton shown in lower-case characters must be filled with user input so that the skeleton
becomes a valid SQL statement that can be executed in free mode (see Free Mode) or ISQL (see
Interactive SQL). The skeleton text objects are delivered in the Natural system library SYSDB?,
along with example SQL text objects.

Database Management System Interfaces 79

80

6

Interactive SQL
= |nvoking the Interactive SQL FUNCHONccoiuiiiiiiiiii s 82
B SQL INPUEIMEMDETS ...ttt et e e e et e e ettt e e e et e e e et e e e nnee s 83
B Data OUIPUE MEMDEIS ...t et 92
® Processing SQL SEAEMENLSuiiiiiii s 96
L o o T 11 1o TSP P PR PPTOPUPPPPPPR 100
= Unloading Interactive SQL RESUILSuvriiiiiiiie e 101

81

Interactive SQL

The Interactive SQL function of the Natural Tools for DB2 enables you to execute SQL statements
dynamically.

Invoking the Interactive SQL Function

> To invoke the Interactive SQL function

s On the Natural Tools for DB2 Main Menu, enter function code I.

The Interactive SQL screen is displayed:

16:21:04 *xxxx NATURAL TOOLS FOR DB2 ***x**

- Interactive SQL -

Code Function

I SQL Input Member

0 Data Qutput Member

? Help
Exit

Code.. _ Library .. SAG

Member ...

Command ===
Enter-PFl1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit

The following functions are available:

Code

Description

I

Displays SQL members (text objects) in the interactive SQL input screen.

0

Displays output members (text objects) in the interactive SQL output screen.

The following parameters can be specified:

2009-10-30

Canc

82

Database Management System Interfaces

Interactive SQL

Parameter

Description

Library

Specifies the name of the current Natural library which contains the specified input/output
members (text objects). Specification of libraries whose names begin with SY S is not allowed.
The library name is preset with your Natural user ID.

Member

If a valid member name is specified, the corresponding member is displayed.

If a value is specified followed by an asterisk (*), all input/output members in the current
library whose names begin with this value are listed.

If asterisk notation is specified only, a selection list of all input/output members in the current
library is displayed.

If the Member field is left blank, the empty SQL input/output screen is displayed.

SQL Input Members

> To invoke the SQL Input Member function

= On the Interactive SQL screen, enter function code I and press ENTER.

Depending on what member (text object) name you have specified, different screens are dis-

played.

These screens are explained in the following sections.

ISQL Input Screen

If you leave the Member field blank, the empty ISQL - Input screen is invoked:

Database Management System Interfaces 83

Interactive SQL

16:21:56 xxxxx NATURAL TOOLS FOR DB2 **#*#** 2009-10-30
IsQL - Input SAG S 01- --------------- Columns 001 072
— Scroll === PAGE

KhAAKk KAKAAAAKAAAAAA A AAA XA Ak AA kA AA kA Ak %k top Of data KAKAKAKRAKRAKRAKRARNAKNAXAA AR XA AKX K)%

khkkhkkhk khkhkhkhkkkhkhhkhkkkhkkhhhkkkhkkhhkhkkkAhhhkxkk bottom of data khkkkhkkhkkhkhkkkhkhhhkkkhkhhhkkkhkkhhrkkhkkhhrk

Enter=PFl===PF2===PF3===PFi===PF5===PFG===[PF7 == =PFE===PF9===PFLO==PFLil==PFl12===
Help Setup Exit Exec Rfind Rchan - + Outpu Canc

The ISQL - Input screen is a free-mode editor (see Editing within the Natural Tools for DB2)
which provides a functionality similar to the one of the Software AG Editor. Using the editor you
can enter or edit SQL statements via editor main and line commands. You can execute the SQL
statements immediately from within the editor by pressing Pr4 (Exec), or you can save them as an
SQL member (text object) in a Natural library for later execution.

For information on the PF keys available, see PF Key Settings.

Note: The PRINT command is not available in the SQL input screen.

Apart from the editor main and line commands, SQLCODE maintenance commands are also
available to maintain SQL members in a Natural library; see Global Maintenenance Commands.
With these maintenance commands, input members can be listed, retrieved, saved in a Natural
library, copied, and purged. They are entered in the command line of the input screen.

You can also obtain a list of the available maintenance commands by entering the help character,
that is, a question mark (?), in the command line of the input screen. A window is displayed from
which the desired command can be selected. The window can be scrolled forwards by pressing
PF8, or backwards by pressing PF7.

84 Database Management System Interfaces

Interactive SQL

12:22:12 xxxxx NATURAL TOOLS FOR DB2 **#*#** 2009-10-30
IsQL - Input SAG S 01- --------------- Columns 001 072
=3 3 Scroll ===> PAGE
hhkkhkkhkkhk AAKAIAIhhkhkhkhkhkkhkrArhhhhhkhkhk - - - - - - - EE S R R R R R i S g

| |
! List <*,member> !
! READ <member> !
! SAVE <member> !
! COPY <member> !
! Purge <member> !
! LIBrary <lTibrary> !
! SELect <TB,C0> namel nameZ2 !
| |

R R IR S e b b B b b R e S b R e S b b b e e b b b 4 bottom Of data R R R R R R e e b b B e b b e b b R e b b Y

Ent@r=PFl===PF2===PF3===PFl===PF5===PFG===PF7===PF8===PF9===PF10==PF11l==PFl12===
Help Setup Exit Exec Rfind Rchan - A Qutpu Canc

To assist you in coding your SQL member, existing DB2 tables and columns can be listed using
the SELECT command. From the list, you can include table and column names into the editor.

The SELECT command is available for table and column selection:

Command Description

SELECT TABLE |Selects all tables with the specified creator (optional) and name.
Lcreator. Iname
For both creator and name, you can specify a value followed by an asterisk (*), and

all tables whose names begin with this value are selected.

If you specify asterisk notation only, all existing tables are selected.

If you specify a table name without a creator, all tables with the specified name are
selected, regardless of their creator.

SELECT COLUMN [Selects all columns of the table creator. name.

creator.name
Since the table must be uniquely identified, asterisk notation cannot be used.

Database Management System Interfaces 85

Interactive SQL

Sample Input Screen with Table Listing Window

Ente

I Tab:

SYSIBM.*

Table Name
SYSDATABASE
SYSDATATYPES
SYSDBAUTH

SYSDBRM

SYSDUMMY1
SYSDUMMY A
SYSDUMMY E
SYSDUMMYU
SYSFIELDS
SYSFOREIGNKEYS
SYSINDEXES
SYSINDEXES_HIST
SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS
SYSINDEXSTATS_HIST
SYSJARCLASS_SOURCE
SYSJARCONTENTS

Creator
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM
SYSIBM

From the table list, you can select a table for display of its columns by marking it with C in front
of the table name. The columns of a table are listed together with their type and length. A creator
or table name longer than 32 characters will be truncated. This will be indicated by a > symbol at

the end of the creator or table name.

86

Database Management System Interfaces

Interactive SQL

Sample Input Screen with Column Listing Window

12:27:08 R SR L L AL LELLELLELLELLELLELLELL SIS +
ISQL - Input GGS ! Tab: SYSIBM.SYSTABLES !
====> ! !
kAhkkk Kk kEhkkkhkkhkhkAkhkikkhkikkhkikhkx Kk l Co]umn Name Type Len l
A SELECT I M NAME VARCHAR 128 !
00002 SYSIBM.SYSTABLES ! M CREATOR VARCHAR 128 !
*hkkkhkk khkkkhkkkhkhkkhkhkhkhkkhkhkhkhkrk l M TYPE CHAR 1 l
! M DBNAME VARCHAR 24 !

I M TSNAME VARCHAR 24 !

! _ DBID SMALLINT 2 !

! _ OBID SMALLINT 2 !

! _ COLCOUNT SMALLINT 2 !

! _ EDPROC VARCHAR 24 !

! _ VALPROC VARCHAR 24 !

! _ CLUSTERTYPE CHAR 1 !

! _ CLUSTERRID INTEGER 4 !

! _ CARD INTEGER 4 !

I _ NPAGES INTEGER 4 !

! _ PCTPAGES SMALLINT 2 !

! _ IBMREQD CHAR 1 !

! _ REMARKS VARCHAR 762 !

! _ PARENTS SMALLINT 2 !
Enter=PFl===PF2===PF3===P | !
felp SEtUp EXIE [E dreessc=cccccsscocsscoasscccococooccococoooooocnooococ 3

If you want to copy table or column names from a selection list into the editor, mark the corres-
ponding table or column with M as shown on the previous screen. The table or column names are
copied either after or before the line marked with an A or a B respectively, or to the top of the dis-

played data.

Database Management System Interfaces

87

Interactive SQL

Sample Input Screen with Copied Column Names

12:29:44 WX foccssccccccsscssoccsssssccssscssoosssssscosssossoos 4
ISQL - Input GGS ! Tab: SYSIBM.SYSTABLES

=====" | |

kAhkkk Kk kEhkkkhkkhkhkkhAkhkikkhkikhkihkxk l Co]umn Name Type Len |

A SELECT I _ NAME VARCHAR 128 !

00002 NAME I _ CREATOR VARCHAR 128 |

00003 , CREATOR I _ TYPE CHAR 1 !

00004 , TYPE I _ DBNAME VARCHAR 24 !

00005 , DBNAME I _ TSNAME VARCHAR 24 !

00006 , TSNAME ! _ DBID SMALLINT 2 !

00007 SYSIBM.SYSTABLES I _ 0BID SMALLINT 2 !

*hkkkhkk khkkkhkkkhkhkkhkhkkhkhkhkrkhkhkrk l COLCOUNT SMALLINT 2 |

I _ EDPROC VARCHAR 24 !

I _ VALPROC VARCHAR 24 !

I' _ CLUSTERTYPE CHAR 1 !

I _ CLUSTERRID INTEGER 4 !

I _ CARD INTEGER 4 !

I _ NPAGES INTEGER 4 !

I _ PCTPAGES SMALLINT 2 !

I _ IBMREQD CHAR 1 !

I _ REMARKS VARCHAR 762 !

! _ PARENTS SMALLINT 2 !

Enter=PFl===PF2===PF3===P | !

felp SEtUp EXIT [E drecss=cccccsscocsscoasscccococooccococoooooccnooccoc 3

Fixed Mode with Interactive SQL

All fixed-mode input screens from the Catalog Maintenance part of the Natural Tools for DB2
are available as help maps within the Interactive SQL part.

To invoke this help facility, enter the name of the SQL statement you want to create in the command
line of your ISQL - Input screen, for example, CREATE TABLE or CR TB for the CREATE TABLE com-
mand.

The same command abbreviations apply as with the Catalog Maintenance function.

If you enter CREATE TABLE or CR TB, the Create Table screen is invoked:

88 Database Management System Interfaces

Interactive SQL

01:22:12 Fxxxx NATURAL TOOLS FOR DB2 **#**x* 2009-10-30
- Create Table - 1 /9
>>- CREATE TABLE - SAG > DEMOTABLE_____ ============================= >
<creator.>table-name
=== [LIKE ======= . fpecsccscscsssccssccscsssoo +-+>
! <creator.>table/view-name +- _ - INCLUDING IDENTITY + +
| |
+(COL1 CHAR (20) _ - - _ - _ - _,+
+- COL2 INTEGER () _ - NN - _ -2_- _ ,+
+- COL3 SMALLINT () _ - NN - _ - 1_ - _ , +
+- COL4 CHAR (2) §=__=_=__=_,%F
+- COL5 VARCHAR (30) _ - NN - _ -3 - _,+
+- COL6 DECIMAL (2,5) = __. =X = =,
+- COL7 FLOAT () _ - NN - _ - _ - _ ,+
+- COL8 DATE () _ - - _ - - _ ., *
+- COL9 TIME () _ - - _ - __ - _,+
+- () _ = __ = _ = __ = _ .
column-name format length S/M NN fl1d PK/ R/C
B proc UK D/G
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Exec Free -- - + ++ Next Canc

If you have entered data for a complete SQL statement, you can generate an SQL statement from
the entered data and include it into the ISQL - Input screen.

Using PF4 (Incl), you include the generated SQLCODE and remain on the Create Table screen.

Using pF5 (IBack), you include the generated SQLCODE and return to the ISQL - Input screen.
Retrieve an SQL Member

If you specify a unique member (text object) name in the Member field of the Interactive SOL
screen, the corresponding SQL member is listed on the input screen. If no member exists with the
specified name, a corresponding message is returned.

Database Management System Interfaces 89

Interactive SQL

Sample SQL Member Listed in Input Screen

01:03:23

ISQL - Input SAG(TESTSEQ)

*kk kKX

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

*kk kKX

st ((ATHUIRAL TORIES [FOIR DIEZ wtss 2009-10-30
--------------- Columns 001 072

Scroll === PAGE

ERAR R b b R e b b R e b R R e S b b e S b b b 4 top Of data RR R R R R R e b b B R e b b R e b b b e S b b S

CREATE TABLE DEMOTABLE
(COL1 CHAR(8),
CcoL? INTEGER

) IN DATABASE DEMO;
INSERT INTO DEMOTABLE
VALUES ("AAAAA',1);
* INSERT INTO DEMOTABLE
s VALUES ('BBBBB',2);
SELECT FROM DEMOTABLE;
DROP TABLE DEMOTABLE;

R R R R R R e e b b R b b e e b b R e b b S bottom Of data R R R R R R e e b P R e b b R b b R e b b 4

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Setup Exit Exec Rfind Rchan -

Outpu Canc

Listed SQL members can be purged, modified, executed, or saved.

An asterisk (*) in front of a statement line turns this line into a comment line, which means that

the corresponding SQLCODE is not considered for execution.

List of SQL Members

If you specify a value followed by an asterisk (*) in the Member field of the Interactive SQL screen,
a list of all SQL input members (text objects) in the current library whose names begin with this
value is displayed.

If you specify an asterisk (*), a list of all SQL input members in the current library is displayed.

90

Database Management System Interfaces

Interactive SQL

Sample SQL Input Member Selection List

15:06:14 s [ATURAL TOOLS [FOR DEZ wwwsmss 2009-10-30
Select Member

C Member Type User Date Time
_ CRAXTB SQL SAG 2009-10-30 13:48:53
_ CRDITY SQL SAG 2009-10-30 13:39:14
_ CRPRQE SQL SAG 2009-10-30 13:54:21
_ CRTB SQL SAG 2009-10-30 13:48:14
_ CRTRIG SQL SAG 2009-10-30 13:53:01
_ CRTRIG?2 SQL SAG 2009-10-30 13:14:10
_ DRPRQE SQL SAG 2009-10-30 13:55:04
_ DRPRQEZ2 SQL SAG 2009-10-30 13:50:30
_ GGSDTYPE SQL SAG 2009-10-30 13:52:10
_ GRSHPR SQL SAG 2009-10-30 13:28:01
_ RESHPR SQL SAG 2009-10-30 13:31:05
_ SELPROCS SQL SAG 2009-10-30 13:09:05
SELTABS SQL SAG 2009-10-30 13:56:22

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Cont Exit > Canc

From the input screen selection list, SQL members can be selected for display by marking them
with an S.

If the list has been invoked by a PURGE command, members can be purged by marking them with
aP.

By pressing PF11 (>), you can switch from the default view of the Select Member screen as shown
above to the extended view with the first line of each member displayed in the Description column:

Database Management System Interfaces 91

Interactive SQL

15:09:17

C Member

CRAXTB
CRDITY
CRPRQE
CRTB
CRTRIG
CRTRIGZ
DRPRQE
DRPRQEZ
GGSDTYPE
GRSHPR
RESHPR
SELPROCS
SELTABS

FxkHk NATURAL TOOLS FOR DB2 ***** 2009-10-30

Select Member

Description (first line of member)

CREATE AUXILIARY TABLE aux-table-name

CREATE DISTINCT TYPE distinct-type-name

* ALL PROCEDURES FROM QARNDB31(10,110), WHICH HAVE 'C
CREATE TABLE NEWTYPE

CREATE TRIGGER trigger-name NO CASCADE BEFORE|

CREATE TRIGGER trigger-name (NO CASCADE BEFORE|

* ALL PROCEDURES FROM QARNDB31(10,110), WHICH HAVE 'C
DROP PROCEDURE CALLN2 RESTRICT;

SELECT COLTYPE,LENGTH,LENGTH2,DATATYPEID,SOURCETYPEID
GRANT ALTERIN [, CREATEIN] [, DROPIN]

REVOKE ALTERIN [, CREATEIN] [, DROPINI]

SELECT * FROM SYSIBM.SYSPROCEDURES

SELECT * FROM SYSIBM.SYSTABLES

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Cont Exit

< Canc

The first line of a member can be the first line of an SQL statement or a comment line which
provides more information on the member.

Data Output Members

> To invoke the Data Output Member function

= On the Interactive SQL screen, enter function code 0 and press ENTER.

Depending on what member (text object) name you have specified, different screens are dis-

played.

These screens are explained in the following sections.

92

Database Management System Interfaces

Interactive SQL

Data Output Screen

If you leave Member field of the Interactive SOL screen blank, the empty ISQL - Output screen
is invoked.

15:19:15 xxx%% NATURAL TOOLS FOR DB2 =****x% 2009-10-30
ISQL - Qutput SAG S 02- --------------- Columns 001 072
=——= Scroll ===> PAGE

khkkhkkhkhk Kk hkhkhkkkhkkhkhhhkkkhhhhkkkhkhhhrkkhkkhhrkkkk top of data kkkkhkkhkhkhkkkhkkhhkhkkkhkkhhhkkkkhhhrhrkkhkhhhk

Kkhkhkkhk KAhhkkhhkAhhkkhkAhhkkhkhhkkhkhhkkhkhkhkhkk bottom Of data B R R R R b R b I e b Y

Enter=PFl===PF2===PF3===PFld===PF5===PFG===PF7===PF8===PF9===PFL0=-=PFll==PFl2===
Help Exit Rfind Rchan - 1 < > Canc

From the data output screen you have access to output data members only. Output members
consist of data retrieved from the database as a result of executed SQL statements. These data can
be browsed and saved for later use as output members on the Natural system file FUSER. In addition
to the data retrieved from the database, output members also contain DB2 status information, and
the executed SQL member.

If you execute an SQL statement, the results are automatically shown on the output screen. Thus,
you can enter the interactive SQL output screen also by executing an SQL statement from the input
screen. From the output screen you can return to the input screen by pressing pr3 (Exit).

For information on the other PF keys available, see PF Key Settings.

The maintenance commands available for output members can be displayed and selected in a
window, too; see Global Maintenenance Commands. The window is invoked by entering the help
character, that is, a question mark (?), in the command line of the output screen.

Database Management System Interfaces 93

Interactive SQL

15257259 FxxA* NATURAL TOOLS FOR DB2 **#**% 2009-10-30
ISQL - Output SAG S 02- --------------- Columns 001 072
====> 7 Scroll === PAGE
hhkkhkkhkkhk AAKArAhhhkhkhkhkhkkhkrArhhhhhkkk - - - - - - - - B S R R R R R R i S i g
khkkkhkh khkkkhkhkhkhkkkkhkkhkkhkhkkkkhkhkkhkkkkhk I !*************

! _ List <*,member> !
! _ READ <member>

! _ SAve <member>

! _ Purge <member> !
! _ LIBrary <library>

| |
B +

Ent@r=PFl===PF2===PF3===PFl===PF5===PFG===PF7===PF8===PF9===PF10==PF11l==PFl12===
Help Exit Rfind Rchan - A < > Canc

Apart from the maintenance commands, only browse commands are available (see Editing within
the Natural Tools for DB2), since output members cannot be modified. Both browse and mainten-
ance commands are entered in the command line of the output screen.

If an output member is too large to fit on your terminal screen, you can use the FIX ON ncommand
to keep the first n characters on the screen when scrolling to the left or to the right.

Retrieve an Output Member
If you specify a unique member name in the Member field of the Interactive SQL screen, the

corresponding output member is listed on the output screen. If no member exists with the specified
name, a corresponding message is returned.

94 Database Management System Interfaces

Interactive SQL

Sample Output Member Listed in Output Screen

16:27:12 st ((ATHUIRAL TORIES [FOIR DIEZ wtss 2009-10-30
ISQL - Output SAG(TESTSEQO) § 02= =============== Columns 001 072
==== Scroll === PAGE

R IR b b R R e B b R S B b b e b b e b b b S e 4 tOp O-F data R R R R R R e b b B R e e b b R e b b b R e S b b S

00001 CREATE TABLE DEMOTABLE

00002 (COL1 CHAR(8),

00003 COL2 INTEGER

00004) IN DATABASE DEMO

00005 - === == ==Ll
00006 STATEMENT WAS SUCCESSFUL, SQLCODE = 0

A e

00008 INSERT INTO DEMOTABLE
00009 VALUES ('AAAAA',1)

00010 === - - - m - m ool
00011 STATEMENT WAS SUCCESSFUL, SQLCODE = 0O

00012 - mm s m o m Lol
00013 SELECT FROM DEMOTABLE

D004 === == m s m s m oLl
00015 COL1 coL2

D006 === === - == m = o m s m oLl
00017 AAAAA 1

Enter=PFl===PF2===PF3===PFld===PF5===PFG===PF7===PF8===PF9===PF10==PFll==PFL12===
Help Exit Rfind Rchan - 3 < > Canc

List of Output Members

If you specify a value followed by an asterisk (*) in the Member field of the Interactive SQL screen,
a list of all data output members in the current library whose names begin with this value is dis-
played.

If you specify asterisk notation only, a list of all data output members in the current library is
displayed.

Database Management System Interfaces 95

Interactive SQL

Sample Data Output Member Selection List

16:24:02 st ((ATHUIRAL TORIES [FOIR DIEZ wtss 2009-10-30
Select Member

C Member Type User Date Time

_ AAAA SQL-RESULT SAG 2009-10-30 13:54:54

_ ADEMVIEW SQL-RESULT SAG 2009-10-30 14:01:09

_ ATRCRAFT SQL-RESULT SAG 2009-10-30 10:01:32

_ BBBB SQL-RESULT SAG 2009-10-30 15:25:14
BSP1 SQL-RESULT SAG 2009-10-30 14:57:11

From the output member selection list, output members can be selected for display by marking
them with an S.

If the list has been invoked by a PURGE command, members can be purged by marking them with
aPp.

Processing SQL Statements

SQL input members (text objects) can only be accessed from the ISOL - Input screen. They are
executed from the input screen against DB2 by pressing PF4 (Exec).

After execution, the data output screen appears which contains the results of the executed SQL
member.

If an SQL member consists of more than one SQL statements, the individual statements must be
separated by a semicolon. They can be executed one by one or all together at the same time.

To choose the form of execution, a window is provided which can be invoked by pressing Pr2

(Setup).

96 Database Management System Interfaces

Interactive SQL

16:29:12 *xx%kx NATURAL TOO
ISQL - Input SAG(TESTSEQ)
— +
khkhkkhk khhkkhhkkhhkkhkkhhkkhkkkhhkhkrkhkkhkkxkhkkhrxkhhkhx*k l
00001 CREATE TABLE DEMOTABLE !
00002 (COLI CHAR(8 !
00003 coL2 INTEGE !
00004) IN DATABASE DEMO; !
00005 INSERT INTO DEMOTABLE !
00006 VALUES ('AAAAA',1); !
00007 * INSERT INTO DEMOTABLE !
00008 * VALUES ('BBBBB',2); !
00009 SELECT FROM DEMOTABLE; !
00010 DROP TABLE DEMOTABLE; !
|
|
|
|
|
|
|
|

khkkhkkhk khkkhhkhkkkhkkhhhkkkhkkhhhkkhkkhkhkhkkxkhkkhhhrxkk b

Enter-PF1---PF2---PF3---PF4---PF5---PF+

LS FOR DB2 ****x 2009-10-30

S Qll= ==c==cc=cc===== Columns 001 072

Execute statements one by one
X Execute all statements together

Optional Commit/Rollback
X Automatic Commit/Rollback

Ignore positive SQLCODEs

Text for NULL values : <NULL>

Sql termination character : ;
Maximum length of columns
Maximum number of rows

DB2 cost Timit

Database type(DB2,CNX) : DB2
Header Line every 15__ Data Lines
Record Length Data Session: _250

Help Setup Exit Exec Rfind Rchan - + Outpu Canc

Below is information on the options provided:

= Execute Statements One By One
= Execute All Statements Together
= Automatic Commit/Rollback

= Qptional Commit/Rollback

= Text For NULL Values

= SQL Termination Character

= Maximum Length of Columns

= Maximum Number of Rows

= DB2 Cost Limit

= Header Line Every n Data Lines

Database Management System Interfaces

97

Interactive SQL

= Record Length Data Session

Execute Statements One By One

After each SQL statement the output screen is shown. From the output screen, you can either execute
the next SQL statement from the input screen by pressing Pr4 (Next), or skip the remaining SQL
statements and return to the input screen immediately by pressing PF3 (Exit).

Execute All Statements Together

All statements are executed immediately one after the other. The output screen shows the results

of all statements together.

Statements containing cursor names, host variables, or parameter markers cannot be executed
with interactive SQL. Also not executed are statements available as embedded SQL only; that is,
statements whose functions are automatically performed by Natural.

These statements are:

CLOSE

CONNECT

DECLARE

DELETE WHERE CURRENT OF CURSOR

DESCRIBE

EXECUTE

FETCH

INCLUDE

OPEN

PREPARE

SELECT INTO

SET host-variable

SET CURRENT PACKAGESET

UPDATE WHERE CURRENT OF CURSOR

WHENEVER

98

Database Management System Interfaces

Interactive SQL

Automatic Commit/Rollback

If you select Automatic Commit/Rollback, each modification of the database is automatically
either committed or rolled back, depending on whether all the SQL statements involved execute
successfully. If so, an SOL COMMIT WORK command is executed; if not, an SQL ROLLBACK command
backs out all database modifications since the last commit point.

Optional Commit/Rollback

If you select Optional Commit/Rollback, a window is invoked after each SQL statement, offering
you the option to either commit or roll back the resulting database modifications shown on the
screen.

Note: Since under CICS and IMS TM each terminal I/O results in a SYNCPOINT, the optional

commit/rollback feature only applies in a TSO environment.

In all environments, you can include SQL COMMIT and ROLLBACK commands in your input member,
too. Under CICS and IMS TM, however, these commands are translated into the corresponding
TP-monitor calls.

Text For NULL Values

The text that is to be shown for NULL values can be specified here; the default string is - - -.

SQL Termination Character

If you enter multiple SQL statement, they need to be separated. The default statement termination
character is the semi-colon ().

Maximum Length of Columns

Limits the length for a single column to n characters. This limit only applies to character data.
DATE, TIME, or NUMERIC columns are not truncated. The value 0 indicates that no limit exists.

Maximum Number of Rows

Limits the number of rows returned by one SELECT statement. The value 0 indicates that no limit
exists.

Database Management System Interfaces 99

Interactive SQL

DB2 Cost Limit

Sets a limit for the DB2 cost estimate. SELECT statements which exceed this limit are not executed.
The value 0 indicates that no limit exists.

Header Line Every n Data Lines

For SELECT statements, you can specify that every n data lines a header line is inserted with the
names of the selected columns. If n is set to 0, only one header line is displayed at the top of the
data.

Record Length Data Session

The record length (n) for the output session can be specified. If the specified record length is
smaller than the record length of the output data, the output records are truncated accordingly.

The truncation of records is indicated by a greater than character (>) as the leftmost character in
the first line beneath each header line. The default value for nis 250 bytes.

PF-Key Settings

The following PF-key settings apply to the ISQL - Input screen:

Key | Setting [Function

PF2 |Setup |Invokes a window with further processing options.

PF4 |Exec |Executes the SQL member (text object) currently on the input screen.

PF5 |Rfind |Repeats the last executed FIND command.

PF6 [Rchan |Repeats the last executed CHANGE command.

PF7 |- Scrolls the display one page backward.

PF8 |+ Scrolls the display one page forward.

PF9 |Outpu |Invokes the output member (text object) selection list directly from within the input screen.

Apart from pr2 (Setup), PF4 (Exec), and PFo (Outpu), the same PF-key settings apply to the ISOL -
Output screen, too. In addition, the following PF-key settings are available:

Key |(Setting |Function

PF4 |Next |[Executes the next SQL statement if an SQL member consists of more than one statement, and
if you have chosen to execute them one after the other.
If not, the setting for PF4 is left blank.

PF10|< Scrolls the display of the output screen to the left.

PF11|> Scrolls the display of the output screen to the right.

100 Database Management System Interfaces

Interactive SQL

Unloading Interactive SQL Results

Results from interactive SQL are unloaded and written to a data set referred to by DD name
CMWKFO1 in batch mode using the UNLDDATA command.

CMWKFO1 should be of variable record format; the record length depends on the size of the SQL
output member (text object) and can range from 250 to 4000 bytes.

> To unload results from interactive SQL

1 Logon to the Natural system library SYSDB2.

2 Inthe command line, enter the command UNLDDATA and press ENTER.

The Unload SQL Results menu is displayed:

16:53:20 Axxxx NATURAL TOOLS FOR DB2 ****=* 2009-10-30
- Unload SQL Results -

Code Function

U Unload SQL Results

Exit
Code .. _ Library ..
Member ...
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Exit Canc

The following function is available:

Database Management System Interfaces 101

Interactive SQL

Code |Description

U Unloads results from interactive SQL execution.

The following parameters apply:

Parameter

Description

Library

Specifies the name of the Natural library from which the specified output members are to
be unloaded. You cannot specify libraries whose names begin with SYS.

This parameter must be specified.

Member

Specifies the name(s) of the output member(s) to be unloaded.

This parameter must be specified.

102

Database Management System Interfaces

7 Retrieval of System Tables

= |nvoking the Retrieval of System Tables FUNCHON ... 104
S QD = o= =T PSP PPPPPPPPPP 107
B LSE TADIESPACES ...ttt a e 109
B LSt PlANS .. e e 111
B Commands AlIOWE ON PIANSuviiiieiiii i 112
B LISE PACKAGES ..ottt 118
B LIS TADIES ...ttt 120
B USEI AULNOMIZAtONS ... e ettt ettt e e e e e e e e e e e e e e e e 122
B LISt SEAtISHC TADIES ... 124

103

Retrieval of System Tables

& Important: Before you use the Retrieval of System Tables function, refer to LISTSQL and

Explain Functions in the section Special Requirements for Natural Tools for DB2 in Installing
Natural for DB2 on z/OS.

The DB2 system tables provide information on the contents of your DB2 system. The Retrieval of
System Tables function enables you to:

display information on DB2 objects without coding SQL queries;

easily access related objects, such as indexes of a table.

The DB2 objects supported by the Retrieval of System Tables function are database, tablespace,
table, index, column, plan, check constraints, statistic tables, package, and DBRM (database request
module), as well as access rights to and relationships between these objects.

DB2 objects are presented in one of the following two ways:

As selection lists, where all objects are of the same type, and where commands can be issued to
display related objects.

You can list databases, tables, plans, and packages by name. From the database listings, you
can invoke listings of the tablespaces or tables of a database. From the table listing, you can invoke
listings of the columns and indexes of a table. From the plan listing, you can invoke listings of
the DBRMs of a plan, of the package list of a plan, of the tables and indexes used by a plan, and
of the systems which are enabled or disabled for a plan. From the package listing, you can invoke
listings of the tables and indexes used in a package and of the systems which are enabled or
disabled for a package. From the database, table, plan, or package listings, you can also invest-
igate who is authorized to access a DB2 object. In addition, the User Authorization menu enables
you to list all existing access rights by user ID.

As reports, which merely contain information on different types of DB2 objects, and where only
browse commands can be issued.

The most important browse commands can also be issued via PF keys; see Editing within the
Natural Tools for DB2.

This section covers the following topics:

Invoking the Retrieval of System Tables Function

> To invoke the Retrieval of System Tables function

On the Natural Tools for DB2 Main Menu, enter function code R.

The Retrieval of System Tables screen is displayed:

104 Database Management System Interfaces

Retrieval of System Tables

16:31:56 *FHxxxx NATURAL TOOLS FOR DB2 ***** 2006-05-25
- Retrieval of System Tables -

Code Function Parameter

D List Databases Database

K List Packages Collection, Name
p List Plans Plan

T List Tables Tbreator, Tbname
U User Authorizations

S Statistic Tables

? Help

Exit
Code .. _ Database Name

Package Collection ..
Package Name
Plan Name
Table Creator
Table Name

Command ===
Enter=RPFl===PF2===PF3===PFl===PF5===PF6===PF7 == =PF8===PFY===PFLO==PFll=-=PFl2-=-=
Help Setup Exit Canc

With pr2 (Setup) the maximum length of one column and the number of fixed characters when
scrolling left may be specified. The default values for both parameters may be changed in the
CONFIG subprogram in library SYSDB2.

When a column value is longer than the maximum length, it will be truncated and marked
with a greater than sign (>) in the case of strings truncated at the right end or a less than sign
(<) in the case of numbers truncated at the left end.

Note, that for further commands on a line, for example, the line command I, only the visible
value can be taken as input. This means that commands on lines will fail, when values for
further processing are truncated.

Database Management System Interfaces 105

Retrieval of System Tables

16:

31:56

Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Se

*FHxFxxx NATURAL TOOLS FOR DB2 ***** 2007-10-05
- Retrieval of System Tables -

Code Function Parameter

PReosoc Retrieval of System Tables------ i
List Dat
List Pac
List Pla
List Tab
User Aut
STATIST] dr========s=s=c==csc=scccscs=c=c=ssc=sc=-= 4
Help
Exit

|
Maximum length of columns ... g8 !
Number of fixed characters .. 0 !
!
|

Vv NS H O R O

Code .. _ Database Name
Package Collection
Package Name
Plan Name
Table Creator
Table Name

tup Exit Canc

The following functions are available:

Code

Description

Lists databases defined in the DB2 catalog.

Lists packages

defined in the DB2 catalog.

Lists plans defined in the DB2 catalog.

Statistic tables.

Lists tables defined in the DB2 catalog.

| H4| 0| O] }| O

Provides information on which user(s) can access which DB2 objects.

The following parameters must be specified as selection criteria:

Parameter

Description

Database Name

The name of the database to be listed. Asterisk notation (*) for range
specification is possible. The Database Name parameter is relevant to the
List Databases function only.

Package Collection|The collection of the package to be listed. Asterisk notation (*) for range

specification is possible. The Package Collection parameter is relevant to
the List Packages function only.

106

Database Management System Interfaces

Retrieval of System Tables

Parameter

Description

Package Name

The name of the package to be listed. Asterisk notation (*) for range
specification is possible. The Package Name parameter is relevant to the List
Packages function only.

Plan Name

The name of the plan to be listed. Asterisk notation (*) for range specification
is possible. The PTan Name parameter is relevant to the List Plans function
only.

Table Creator

The name of the creator of the table(s) to be listed. Asterisk notation (*) for
range specification is possible. The Table Creator parameter is relevant to
the List Tables function only.

Table Name

The name of the table to be listed. Asterisk notation (*) for range specification
is possible. The Table Name parameter is relevant to the List Tables function
only.

List Databases

> To invoke the List Databases function

1 On the Retrieval of System Tables screen, enter function code D.

Specify the name of the database(s) to be listed.

= If a value followed by an asterisk is specified, all databases defined in the DB2 catalog
whose names begin with this value are listed.

" If asterisk notation is specified only, all databases defined in the DB2 catalog are listed.

Database Management System Interfaces 107

Retrieval of System Tables

16:32:24 **xx%* NATURAL TOOLS FOR DB2 ***** 2007-10-05
DATABASES * S 01 Row 0 of 25 Columns 001 059
==== Scroll === PAGE

DATABASE CREATOR STOGROUP BPOOL DBID CREATEDBY ROSHARE TIMESTAMP GR

kk kkhkkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhk khk khkhk k) k%% top Of data BB R R R R R R b R b b b b b b b b b b b b b b b b b b b

_ DEMO DEFAULT SYSDEFLT BPO 269 DEFAULT 0001-01-0>
__ DEMODB SAGZ SYSDEFLT BPO 273 SAG2 0001-01-0>D8
__ DEVELOP SAG DEVELOP BPO 260 SAG 0001-01-0>DB
__ ECHDBO1 SAGZ SYSDEFLT BPO 272 SAGZ 0001-01-0>
__ EFGDB SAG SYSDEFLT BPO 263 SAG 0001-01-0>
__ HBUTST SAGZ SYSDEFLT BPO 275 SAGZ 0001-01-0>
__ PLANTAB SAGZ2 SYSDEFLT BPO 270 SAGZ 0001-01-0>
__ Predict SAGZ SYSDEFLT BPO 262 SAGZ 0001-01-0>
__ QA SAGZ SYSDEFLT BPO 265 SAG?2 0001-01-0>
__ SAGDB04 SYSIBM SYSDEFLT BPO 4 SYSIBM 0001-01-0>
__ SAGDBO6 SYSIBM 6 SYSIBM 0001-01-0>
__ SAGDBO7 SAG1 SYSDEFLT BPO 7 SAGI 0001-01-0>
__ SAGDDF SAGI SYSDEFLT BPO 257 SAGL 0001-01-0>
__ SAGRLST SAGI SYSDEFLT BPO 256 SAGI 0001-01-0>
__ SAG8DZ22A SAG1 SAG8G220 BPO 258 SAGI 0001-01-0>

SAG8D22P SAG1 SAG8G220 BPO 259 SAG1 0001-01-0>

Enter=RPFl===PF2===PF3===PFl===PF5===PF6===PF7===PF8===PFY===PFLO==PFll-=PFl2-==
Help Exit Rfind - + < > Canc

The following line commands are available on the database listing screen. Line commands
are entered in front of the desired database(s):

Command |Description

I Displays information on a database.

S Selects a database to be used with main commands (see below).
U Unselects a database.

AU Displays information on access rights to a database.

TB Displays all tables defined in a database.

TS Displays all tablespaces defined in a database.

The listings of tables or tablespaces displayed as a result of the TB or TS command can be used
for further processing, whereas the contents of the screens displayed as a result of the AU or
I command are for information purposes only.

A list of all line commands available with the List Database function can be invoked as a
window by entering the help character, that is, a question mark (?), in front of any of the listed
databases.

The commands AU, TB, and TS can also be used as main commands. Main commands are
entered in the command line of the database list screen and apply to all databases previously
selected with the line command S.

108

Database Management System Interfaces

Retrieval of System Tables

A further main command is the INFO command, which is the equivalent of the I line command,
but displays information on all previously selected databases. Instead of being displayed, all
information resulting from the I or INFO commands can also be marked for printing. Even if
already displayed, information can be printed by issuing the PRINT command.

16:32:24 Fxx%% NATURAL TOOLS FOR DB2 *#***%* 2007-10-05
DATABASES * S 01 Row 0 of 25 Columns 001 059

==== Scroll === PAGE
DATABASE CREATOR STOGROUP BPOOL DBID CREATEDBY ROSHARE TIMESTAMP GR

R S S e 4 AkkAkkAkAkK
I_ DEMO ! 1 01-01-0>

__ DEMO ! Select what to display 1 01-01-0>D8
__ DEVE ! 1 01-01-0>DB
__ ECHD ! 1 01-01-0>

__ EFGD ! _ authorizations for database 1 01-01-0>
___ HBUT ! _ tablespaces in database 1 01-01-0>
_ PLAN ! _ tables in database 1 01-01-0>

__ PRED ! 1 01-01-0>

__ QA ! 1 01-01-0>

__ SAGD ! 1 01-01-0>

__ SAGD ! Mark _ to print output 1 01-01-0>

__ SAGD ! 1 01-01-0>

__ SAED deccecccccscccccsscasosacoccoscasoocooccoscosoosoosoosaose + 01-01-0>
_ SAGRLST SAG1 SYSDEFLT BPO 256 SAGIL 0001-01-0>

_ SAG8D22A SAG1 SAG8G220 BPO 258 SAGIL 0001-01-0>

__ SAG8D22P SAGI1 SAG8G220 BPO 259 SAG1 0001-01-0>

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PF12---
Help Exit Rfind - + < > Canc

A list of all main commands available with the List Database function can be invoked as a
window by entering the help character, that is, a question mark (?), in the command line of
the database list screen.

List Tablespaces

The function to list tablespaces is not part of the Retrieval of System Tables main menu.

> To list tablespaces

= Issue the “TS” command on the database listing screen only.

A tablespace listing screen is displayed, for example:

Database Management System Interfaces 109

Retrieval of System Tables

16:35:07 *FHxFxxx NATURAL TOOLS FOR DB2 ***** 2006-05-25
TABLESPACES IN DATABASE DB2DEMO S 02 Row 0 of 2 Columns 032 075
==== Scroll === PAGE

DATABASE NAME CREATOR BPOOL PGSIZE PARTITIONS NTABLES SEGSIZE LO
*khk hkhkkkhkhkkhkhkkkhhkhhkkhhkhkhkkhhkkkhkkhhkkkhhkkhkx top Of data kdhkkhkhkkhkkhkkkhhkkkhkkhhkkkhhkkkhkkhhkkkhkkhhkkkhkk
__ DB2DEMO AUTOMOBI SAG BPO 4 0 1 0 A
__ DB2DEMO EMPLOYEE SAG BPO 4 0 1 0 A

kk hkhkkkhkkhk% bottom Of data khkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkkhkkhhkhkik

The following line commands are available on the tablespace listing screen. Line commands
are entered in front of the desired tablespace(s):

Command Description

I Displays information on a tablespace.

S Selects a tablespace to be used with main commands.
U Unselects a tablespace.

PT Displays all partitions of a tablespace.

TB Displays all tables defined in a tablespace.

The listings of tables displayed as a result of the TB command can be used for further pro-
cessing, whereas the listings resulting from the I and PT commands are for information pur-
poses only.

A list of all line commands available on the tablespace listing screen can be invoked as a
window by entering the help character, that is, a question mark (?), in front of any of the listed
tablespaces.

The commands PT and TB can also be used as a main commands entered on the command

line of the tablespace listing screen. Main commands apply to all tablespaces previously selected
with the line command S.

A further main command is the INFO command, which is the equivalent of the I line command,
but displays information on all previously selected tablespaces. Instead of being displayed,
all information resulting from the I or INFO commands can also be marked for printing. Even
if already displayed, information can be printed by issuing the PRINT command.

110

Database Management System Interfaces

Retrieval of System Tables

16:35:07 *FHxxxx NATURAL TOOLS FOR DB2 ***** 2006-05-25
TABLESPACES IN DATABASE DB2DEMO S 02 Row 0 of 2 Columns 032 075
==== Scroll === PAGE

DATABASE NAME CREATOR BPOOL PGSIZE PARTITIONS NTABLES SEGSIZE LO
R T R S B T T T 4 AkkAkkARKAK
___ DB2D ! ! 0 A
___ DB2D ! Select what to display ! 0 A
**x kKkk*k | I Xk khkkhkkkkkkh*k

!

!
_ partitions of tablespace !
_ tables in tablespace !
|
|
|
|
|

Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Exit Rfind > aF < > Canc

A list of all main commands available on the tablespace listing screen can be invoked as a
window by entering the help character, that is, a question mark (?), in the command line of
the screen.

List Plans

> To invoke the List Plans function

= On the Retrieval of System Tables screen, enter function code P.
The name of the plan(s) to be listed must be specified.

= If a value followed by an asterisk is specified, all plans defined in the DB2 catalog whose
names begin with this value are listed.

* If asterisk notation is specified only, all plans defined in the DB2 catalog are listed.

Press Enter.

Database Management System Interfaces 11

Retrieval of System Tables

16:37:59
PLAN *

PLAN CREATOR

xxxAk NATURAL TOOLS FOR DB2 *****

S 01

2007-10-05

Row 0 of 80 Columns 023 075

Scroll
VALIDATE ISO ACQUIRE REL VALID OPER EXPLAIN

===> PAGE
PLSIZE

kk kkhkkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhk khk khkhk k) k%% top Of data BB R R R R R R b R b b b b b b b b b b b b b b b b b b b

CAFPLAN SAG3
SAGEDCL SAGI
SAGESPCS SAG1
SAGESPRR SAG1
SAGTIAZZ SAGI
SAG8BHZ22 SAG1
SAG8CCZ22 SAG1
SAG8IC22 SAG1
SAG8SC22 SAGI
SAGPLA SAG
TREPHO1 SAG4
TREPLANC SAGZ
TREPLANG SAG2
TREPLANO SAGZ
TREPLANT SAG2
TREPLAN1 SAGZ

R

O o X0 X0 X WX X X0 oo oo oD

(2 RV I RV I R Vo R Vo BNV RNV IS RN Vol v RN Vo B2 BN s}

CcCCcCcCcccccaocaocacacacacacaccac

O O OO OO OO OO OO OO OO

Y

= < Z=Z==Z=2=Z2r X <X << <<<=<<<

Y

< <<—<—<—<—<=<=<=<=<=<=< =< =<

N

==2=2=2=2=2=2=2=2=2=2=2=Z2Z=2=2 =

2472
1992
1992
1992
1992
2296
4376
4264
2296
2648
2168
4560
8976
8976
2472
3248

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Commands Allowed on Plans

Help

Exit

Rfind

+

<

> Canc

The following line commands are available on the plan listing screen. Line commands are entered

in front of the desired plan(s):

Command

Description

I

Displays information on a plan.

S Selects a plan to be used with main commands.

U Unselects a plan.

AU Displays information on access rights to a plan.

DR Displays all DBRMs contained in a plan.

IX Displays all indexes used by a plan.

PK Displays the package list of a plan.

SY Displays the systems enabled or disabled for a plan.

B Displays tables used in a plan.

112 Database Management System Interfaces

Retrieval of System Tables

The listing displayed as a result of the DR, IX, PK, or TB command can be used for further processing,
whereas the contents of the screens displayed as a result of the I, AU, or SY command are for in-
formation purposes only.

A list of all line commands available with the List Plans function can be invoked as a window by
entering the help character “?” in front of any of the listed plans.

The commands AU, DR, IX, PK, SY, and TB can also be used as main commands, which are entered
on the command line of the plan listing screen and apply to all plans previously selected with the
line command S.

The INFO main command, which is the equivalent of the I line command, displays information
on the DBRMs and their SQL statements contained in the plans previously selected. As with the
List Database function, information resulting from the I or INFO commands can be printed, too.

16:37:59 FAAHk NATURAL TOOLS FOR DB2 xx**% 2007-10-05
PLAN * S 01 Row 0 of 80 Columns 023 075
==== Scroll === PAGE

PLAN CREATOR VALIDATE ISO ACQUIRE REL VALID OPER EXPLAIN PLSIZE
L T R B T T T I 4+ AAXKAXKkAXAK
[_ CAFP ! ! 2472

_ SAGE ! Select what to display ! 1992
__ SAGE ! ! 1992
__ SAGE ! _ DBRMs of plan ! 1992
__ SAGT ! _ package Tist of plan ! 1992
_ SAG8 ! _ systems enabled or disabled for plan ! 2296
__ SAG8 ! _ tables referenced in plan ! 4376
__ SAG8 ! _ indexes used in plan ! 4264
__ SAG8 ! _ authorizations for plan ! 2296
__ SAGP ! ! 2648
__ TREP ! Mark _ to print output ! 2168
__ TREP ! ! 4560
__ TREP deecc==cccccccoccsccocacecocconnoosoooococnocconoosonoacooos 1 8976
__ TREPLANO SAG2 R S U C N Y N 8976
__ TREPLANT SAG2 R S U C Y Y N 2472

TREPLAN1 SAG2 R S U C N Y N 3248

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Rfind - + < > Canc

A list of all main commands available with the List Plans function can be invoked as a window
by entering the help character, that is, a question mark (?), in the command line of the plan list
screen.

Database Management System Interfaces 13

Retrieval of System Tables

DBRMs of Plan

If you issue the DR command on the plan listing screen, a list of all DBRMs bound into the selected
plan(s) is displayed.

16:40:56 *FHx*xx%x NATURAL TOOLS FOR DB2 ****%* 2007-10-05
DBRMS OF PLAN SAGTEST S 02 Row 0 of 3 Columns 033 075
==== Scroll ===> PAGE

PLAN DBRM TIMESTAMP CREATOR TIME DATE PDS NAME QUOTE CO
K,k khkkkhkhkkhkhkkhkhkhkhkkhkhhhhkkkhkhhkkkhkkhkhrx%k top Of data R i B b b i B i b b i i g i b g b

_ SAGTEST TESTI1 148C251A1> SAG 16:24:10 07-10-05 DB2.V42.>N N

_ SAGTEST TEST? 148C251A1> SAG 16:24:42 07-10-05 DB2.V42.>N N
SAGTEST TEST3 148C251A1> SAG 16:25:15 07-10-05 DB2.V42.>N N

R R B b B b B b I e b B B b e i e b e e b o e b S bottom Of data R R e R R b R R R I R R b b e b b b b

Commands Allowed on DBRMs

The following line commands are available on the DBRM listing screen. Line commands are entered
in front of the desired DBRM(s):

Command | Description

I Displays information on a DBRM.

S Selects a DBRM to be used with main commands.
U Unselects a DBRM.

A list of all line commands available on the DBRM listing screen can be invoked as a window by
entering the help character, that is, a question mark (?), in front of any of the listed DBRMs.

The only main command that applies to DBRMs is the INFO command, which is the equivalent of
the I line command, but displays information on all previously selected DBRMs. Instead of being
displayed, all information resulting from the I or INFO commands can also be marked for printing.
Even if already displayed, information can be printed by issuing the PRINT command.

114 Database Management System Interfaces

Retrieval of System Tables

16:40:56 *x*xx%x NATURAL TOOLS FOR DB2 ****%* 2007-10-05
DBRMS OF PLAN SAGTEST S 02 Row 0 of 3 Columns 033 075
==== Scroll === PAGE

PLAN DBRM TIMESTAMP CREATOR TIME DATE PDS NAME QUOTE CO
R T T T FrAARA KK AK KK
I_ SAGT ! I >N N

_ SAGT ! Select what to display I UON N
__ SAGT ! I ON N
k Kkkhkk%k | !*********

! !
! _ Plans referencing DBRM !
! _ SQL statements of DBRM !
| |
! !
! !
! Mark _ to print output !
| |
B T +

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Rfind - + < > Canc

Indexes Used in Plan

If you issue the IX command on either the plan listing screen or the table listing screen, a list of
all indexes used in the selected plan(s) or table(s) is displayed.

16:40:56 *xkxk NATURAL TOOLS FOR DB2 ***** 2007-10-05
INDEXES OF PLAN SAGTEST S 02 Row 0 of 3 Columns 033 075
— Scroll === PAGE

CREATOR INDEX NAME CREATOR TABLE NAME COLCNT UNIQ CLSTRNG CLSTRD -RATI

*k hkkkkkhkkhkhkhkkkhkkhhkhkkkhkkhhkhkkkhkkhkhkhkkxkkhhhxkk top Of data hhkkkhkkhkkhkhkhkkkhkhhkhkkhkhhkhkkkhkkhhhkkxkhkkhhrxkk

__ SAGCRE XDEPTI1 SAGCRE DEPT 1P N Y 10
__ SAGCRE XEMP1 SAGCRE EMP 1P Y Y 10
SAGCRE ~ XEMP2 SAGCRE EMP 1D N N 4

kk hkhkkkkkhkhkhkkkhkkhkhhkkkhkkhhhkhkkkhhkhkkkkhkhikx bottom of data khkkkhkhkhkkkhkkhkhkhkhkkhkkhkhhkhkkkhkhhhkkkhkAhhhxkk

Commands Allowed on Indexes

The following line commands are available on the index listing screen. Line commands are entered
in front of the desired index(es):

Database Management System Interfaces 115

Retrieval of System Tables

Command |Description

I Displays information on an index.

S Selects an index to be used with main commands.
U Unselects an index.

CO Displays all columns of an index.

PT Displays the partitions of an index.

The listings of columns displayed as a result of the CO or PT command cannot be used for further
processing. Like the display resulting from the I command, they are for information purposes
only.

A list of all line commands available on the index listing screen can be invoked as a window by
entering the help character “?” in front of any of the listed indexes.

The commands C0 and PT can be used as main commands, too, and entered in the command line
of the index listing screen. If so, all columns of all indexes previously selected with the line command
S are displayed.

A further main command is the INFO command, which is the equivalent of the line command I,
but displays information on all previously selected indexes. Instead of being displayed, all inform-
ation resulting from the I or INFO commands can also be marked for printing. Even if already
displayed, information can be printed by issuing the PRINT command.

16:40:56 xHxxx NATURAL TOOLS FOR DB2 **x**%* 2007-10-05
INDEXES OF PLAN SAGTEST S 02 Row 0 of 3 Columns 033 075
==== Scroll === PAGE

CREATOR INDEX NAME CREATOR TABLE NAME COLCNT UNIQ CLSTRNG CLSTRD -RATI
WL WRWL dhcccooocococccconoonccconoonococnoonocnooncoocooonoonooansooo 4+ KAk AkkAkkK
I_ SAGC ! ! 10

__ SAGC ! Select what to display ! 10
__ SAGC ! ! 4
** Kkkhkk*%x | | *kkkkhkkhkhkkkk

! _ columns of index !
! _ portions of index !
! _ plans using index !
! _ packages using index !
| |
! !
! Mark _ to print output !
| |
B T +

Enter=PFl===PF2===PF3===PFd===PF5===PFG===[PF7 == =PFE===PF9===PFLO==PFLl==PF12-=-
Help Exit Rfind - + < > Canc

116 Database Management System Interfaces

Retrieval of System Tables

A list of all main commands available on the index listing screen can be invoked as a window by
entering the help character “?” in the command line of the screen.

Package List of Plan

If you issue the PK command on the plan listing screen, a list of all entries in the package list of
the selected plan(s) is displayed.

16:40:56 *xHxxx%x NATURAL TOOLS FOR DB2 ****%* 2007-10-05
PACKAGE LIST FOR PLAN SAGTEST S 02 Row 0 of 3 Columns 033 075
==== Scroll === PAGE

PLANNAME LOCATION COLLID NAME SEQNO TIMESTAMP IBM
K,k khkkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkkkhkhk top Of data khkkhkkhkkhkkhkkhkhkkkkhkkhkhkkhkxkkhkkhkhkx%k

_ SAGTEST SAGCOLLE> % 1 2007-10-0>N

_ SAGTEST SAG_STAT> & 2 2007-10-0>N

R R R R R b b b e e e e e R e e e e e bottom Of data *hkkkkhkkhkAAAhAkhhhkhk
Commands Allowed on Package List Entries

The following line commands are available on the package list screen. Line commands are entered
in front of the desired package list entry:

Command | Description

I Displays information on a package list entry.

S Selects a package list entry to be used with main commands.
U Unselects a package list entry.

PK Displays all packages of a package list entry.

The listing of packages as a result of the PK command can be used for further processing, whereas
the display resulting from the I command is for information purposes only.

A list of all line commands available with a package list can be invoked as a window by entering
the help character, that is, a question mark (?), in front of any of the listed entries.

The command PK can also be used as main command, which is entered in the command line of

the above screen and applies to all package list entries previously selected with the line command
S.

Database Management System Interfaces 17

Retrieval of System Tables

List Packages

> To invoke the List Packages function

= On the Retrieval of System Tables screen, enter function code K.
The collection and name of the package(s) to be listed can be specified.

If a value followed by an asterisk is specified, all packages defined in the DB2 catalog whose
collections/names begin with this value are listed.

If asterisk notation is specified only, all packages defined in the DB2 catalog are listed.

Press Enter.

11:06:11 FxxAx NATURAL TOOLS FOR DB2 *#***%* 2007-10-05
PACKAGE *.* S 01 Row 34 of 65 Columns 041 075
==== Scroll === PAGE

COLLID NAME CONTOKEN CONTOKEN (HEX) OWNER CREATOR QUALIFIER
__ SAGQCATV SAGQVPLN 2 12F 148C409316C673>SAG SAG SAG
_ SAGQCATV SAGQVPPA 2k 7?7 149270680F77E0>SAG SAG SAG
_ SAGQCATV SAGQVRAS ? ??7=7 148C409B09097E>SAG SAG SAG
_ SAGQCATV SAGQVREL ? ??7y0 148C409C06DFA8>SAG SAG SAG
__ SAGQCATV SAGQVREV ? 7 ?2v? 148CDFAD16A51F>SAG SAG SAG
_ SAGQCATV SAGQVRIL ? s 7B 148C40A20329C2>SAG SAG SAG
__ SAGQCATV SAGQVROO ? 7 Ay 148CDFAF03C18E>SAG SAG SAG
_ SAGQCATV SAGQVSCA ? u??S 148C40A409DEE2>SAG SAG SAG
__ SAGQCATV SAGQVSQL ? 2?7 148C40AB001D3F>SAG SAG SAG
_ SAGQCATV SAGQVSTM ? ? 7q 148C40AD078CF7>SAG SAG SAG
_ SAGQCATV SAGQVSTO ? ? 7?7 148C40B409681E>SAG SAG SAG
_ SAGQCATV SAGQVTAB ? ? +U 148C40B61F024E>SAG SAG SAG
_ SAGQCATV SAGQVTAS ? ? d 148C40B80874FF>SAG SAG SAG
_ SAGQCATV SAGQVTBA ? ? 7 148C40BB1854EC>SAG SAG SAG
_ SAGQCATV SAGQVTBC ? ?d ? 148C40BD1684EC>SAG SAG SAG
_ SAGQCATV SAGQVTBP ? ? 148C40BF07AEQD>SAG SAG SAG

SAGQCATV SAGQVTBS ? 7?7 148C40CA034928>SAG SAG SAG

Eft@r=PFl===PF2===PF3===PFh===PF5===PFe===PF7===PF8===PFY===PFLO==PFLl==PF12===
Help Exit Rfind - + < > Canc

Commands Allowed on Packages

The following line commands are available on the package listing screen. Line commands are
entered in front of the desired package(s):

118 Database Management System Interfaces

Retrieval of System Tables

Command | Description

I Displays information on a package.

S Selects a package to be used with main commands.

U Unselects a package.

AU Displays information on access rights to a package.

IX Displays all indexes used by a package.

SY Displays all systems enabled or disabled for a package.
TB Displays all tables used by a package.

The listings of indexes or tables displayed as a result of the IX or TB command can be used for
further processing, whereas the displays resulting from the AU, SY, or I command are for information
purposes only.

A list of all line commands available with the List Packages function can be invoked as a window
by entering the help character, that is, a question mark (?), in front of any of the listed packages.

The commands AU, IX, SY, and TB can also be used as main commands, which are entered in the
command line of the table listing screen and apply to all tables previously selected with the line
command S.

The INFO main command, which is the equivalent of the I line command, displays information
on all tables previously selected. All information resulting from the I or INFO commands can also
be printed.

Database Management System Interfaces 119

Retrieval of System Tables

11:06:11 *FHx*xx%x NATURAL TOOLS FOR DB2 ****%* 2007-10-05
PACKAGE *.~* S 01 Row 34 of 65 Columns 041 075
==== Scroll === PAGE

COLLID NAME CONTOKEN CONTOKEN (HEX) OWNER CREATOR QUALIFIER
1_ SAGQ dp=================2=s==222===22===22===ss===ssc==>=s=22=5== + G

__ SAGQ ! ' G
_ SAGQ ! Select what to display 1 G
__ SAGQ ! 1 G
_ SAGQ ! _ systems enabled or disabled for package ' G
__ SAGQ ! _ tables referenced in package I G
_ SAGQ ! _ indexes used in package ' G
__ SAGQ ! _ statements of package 1 G
_ SAGQ ! _ authorizations on package ' G
__ SAGQ ! I G
__ SAGQ ! I G
__ SAGQ ! Mark _ to print output 1 G
__ SAGQ ! I G
__ SAGQ dF============c==s====css==ssc==ssc==s=ss=s=s===ss==s=2s===> + G
_ SAGQCATV SAGQVTBC ? ?d ? 148C40BD1684EC>SAG SAG SAG
_ SAGQCATV SAGQVTBP ? ? 148C40BF07AEQD>SAG SAG SAG

SAGQCATV SAGQVTBS ? ?? 148C40CA034928>SAG SAG SAG

Enter=PFl===PF2===PF3===PFi===PF5===PFG===[PF7 == =PFE===PF9===PFLO==PFLil==PFl12===
Help Exit Rfind - + < > Canc

Alist of all main commands available with the List Packages function can be invoked as a window
by entering the help character, that is, a question mark (?), in the command line of the packages
list screen.

List Tables

> To invoke the List Tables function

= On the Retrieval of System Tables screen, enter function code T.
The creator and name of the table(s) to be listed can be specified.

= If a value followed by an asterisk is specified, all tables defined in the DB2 catalog whose
creator/name begins with this value are listed.

= If asterisk notation is specified only, all tables defined in the DB2 catalog are listed.

Press Enter.

120 Database Management System Interfaces

Retrieval of System Tables

16:42:58

TABLE SAG*.*

C

CREATOR TABLE NAME

S 01

*xxHk NATURAL TOOLS FOR DB2 *****

Scroll

2007-10-05
Row 34 of 361 Columns 036 0/5

TYPE COLCOUNT KEYCOLS RECLEN DATABASE TSNAME

PAGE

©

kk hkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkkk top Of data khkkhkrk

SAGCRE ACT
SAGCRE DEPT
SAGCRE EACT
SAGCRE EDEPT
SAGCRE EEMP
SAGCRE EEPA
SAGCRE EMP
SAGCRE EMPPROJACT
SAGCRE EPROJ
SAGCRE EPROJACT
SAGCRE PROJ
SAGCRE PROJACT
SAGCRE ~ TCONA
SAGCRE TDSPTXT
SAGCRE TOPTVAL
SAGCRE VACT

T

e e e B B B B B e e e B R

3

o~

—

—

— —
W = W o1 o1 00N O o 0O Oy OO O

1

O O OO WH OOOoOFrOOoOo o

38
59
54
75
123
52
107
36
86
45
70
29
4056
91
354
0

SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22A
SAG8D22P
SAG8D22P
SAG8D22P
SAG8D22A

ACT
SAG8S2
SAG8S2
SAG8S2
SAG8S2
SAG8S2
SAG8S2
EMPPRO
SAG8S2
SAG8S2
PROJ
PROJAC
SAG8S2
SAG8S2
SAG8S2
ACT

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit

Commands Allowed on Tables

+

<

>

Canc

The following line commands are available on the table listing screen. Line commands are entered
in front of the desired table(s):

Command

Description

I

Displays information on a table.

S Selects a table to be used with main commands.
U Unselects a table.

AU Displays information on access rights to a table.
CO Displays all columns of a table.

IX Displays all indexes on a table.

cC Checks constraints.

The listings of indexes displayed as a result of the I X command can be used for further processing,
whereas the listings of columns resulting from the C0 command, as well as the displays resulting

from the AU or I command, are for information purposes only.

A list of all line commands available with the List Tables function can be invoked as a window
by entering the help character, that is, a question mark (?), in front of any of the listed tables.

Database Management System Interfaces

121

Retrieval of System Tables

The commands AU, CO, and IX can also be used as main commands, which are entered in the
command line of the table listing screen and apply to all tables previously selected with the line

command S.

The INFO main command, which is the equivalent of the I line command, displays information
on all tables previously selected. All information resulting from the I or INFO commands can also
be printed.

16:42:58
TABLE SAG*.*

SAGC

SAGCR!

SAGCR+

SAGCRE
SAGCRE

FxxAE NATURAL TOOLS

FOR DB2 ***xx*

S 01 Row 34 of 361 Columns 036 075

2007-10-05

Scroll === PAGE

--- + C

columns of table/view
synonyms of table/view

_ plans using table/view
_ packages using table/view _
_ views using table/view _

Select what to

base tables of view

definition

of view

check conditions of table

display

_ referential constraints
__authorized wusers

indexes
columns

plans using indexes
packages using indexes

R o e e

|
!
1 S2
(YA
(YA
1 S2
1 S2
of table !
of indexes !
|
|
|
|
|

S2
RO
S2
S2

AC
S2

--- + 52

TOPTVAL
VACT

0

354 SAG8DZ22P SAG8S2
0 SAG8D22A ACT

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help

Exit

Rfind

+

< > Canc

A list of all main commands available with the List Tables function can be invoked as a window
by entering the help character, that is, a question mark (?), in the command line of the table listing
screen.

User Authorizations

> To invoke the User Authorization function

On the Retrieval of System Tables screen, enter function code U and press Enter.

The Retrieval of User Authorizations menu is displayed:

122

Database Management System Interfaces

Retrieval of System Tables

16:44:51 *xHkxk NATURAL TOOLS FOR DB2 ***** 2007-10-05
- Retrieval of User Authorizations -
Code Function Parameter
C Column Authorizations Grantee
D Database Authorizations Grantee
K Package Authorizations Grantee
p Plan Authorizations Grantee
R Resource Authorizations Grantee
T Table Authorizations Grantee
U User Authorizations Grantee
? Help
Exit
Code .. _ Grantee ..
Command ===

Enter-PFLl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Help Exit Canc

The following functions are available:

Code |Description

Displays the columns which can be accessed by the specified grantee.

Displays the databases which can be accessed by the specified grantee.

Displays the packages which can be accessed by the specified grantee.

Displays the plans which can be accessed by the specified grantee.

Displays the resources which can be accessed by the specified grantee.

Displays the tables which can be accessed by the specified grantee.

| H| o] O }| O O

Displays the system privileges of the specified grantee.

The following parameter must be specified:

Parameter

Description

Grantee

A list of all existing DB2 objects of the specified object type to which the specified grantee
has access is displayed.

Database Management System Interfaces 123

Retrieval of System Tables

List Statistic Tables

> To invoke the List Statistic Tables function

= On the Retrieval of System Tables screen, enter function code S and press Enter.

The Retrieval of Statistic Tables menu is displayed:

16:38:47 sesrsss [(ATURAL TOOLS FOR DBZ s 2007-10-05
- Retrieval of Statistic Tables -

Code Function Parameter
C List SYSCOLSTATS Creator, Name
D List SYSCOLDISTSTATS Creator, Name
I List SYSINDEXSTATS Index Owner, Name
T List SYSTABSTATS Creator, Name
? Help
Exit
Code .. _ Index Owner
Index Name

Table Creator
Table Name

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12--
Help Exit Canc

The following functions are available:

Code | Description

C |Displays the partitioned statistics for columns in a partitioned table space.

D Displays the distribution of the values of the first column of a partitioned index.

I Displays the statistics for a partitioned index.

T Displays the statistics for a partitioned table space.

The following parameters must be specified:

124 Database Management System Interfaces

Retrieval of System Tables

Parameter Description

Table Creator|The name of the creator of the table for which the statistics are to be displayed.

Table Name The name of the table for which the statistics are to be displayed.

Index Owner |Thename of the owner of the index for which the index statistics are to be displayed.

Index Name The name of the index for which the index statistics are to be displayed.

Database Management System Interfaces 125

126

8 Environment Setting

= |nvoking the Environment Setting FaClityoeoiiiiiiiii e 128
L7 1 1ot PSPPSR 129
I T T P 130
LI T B 070312 T=To o U SUPUPPPRSR 131
B Set CUITENE SQILID ...t e ettt e et e e e et e e et e e e e e e e 132
B Set CUMENE PACKAGESELeiiiiieii et 133
B SEE CUIENE DBYIEE ...ttt e e e e e ettt e e e e e e e st r e e e e e e e 134
B SEE CUMENE RUIES ...ttt e e e e e e e e e e e e e e e s et r e e e e eaene e 135
= Set Current Optimization HiNtoeiiii e 136
B Set CUITENt LOCAIE LC_CTYPE .. ittt e e a e e e e e 137
B St CUIMENT Path o et 138
B St CUITENTE PIECISION ..ttt ettt e et e e ettt e e et e e e et e e e e n e e e e nneeeas 140
= Set Current Maintained Types for Optimizationcooiiiiiiiiiii e 140
B Set Current Package Pathcuuiiii e 141
B Set CUMENt REfTESN AGEot 142
B St CUITENT SCNEMA ...ttt e e e et aeeaa e 143
= Set Current Application Encoding SChEMEvvviiiiiiiiiii e 145
B Set ENCIYPLON PASSWOI ..ottt 146
B Display SPeCial REJISIEIS ..o e e 148

127

Environment Setting

The Environment Setting facility of the Natural Tools for DB2 allows you to issue special SQL
statements interactively.

For details on the SQL statements described in this section, see the relevant DB2 literature by IBM.

Invoking the Environment Setting Facility

> To invoke the Environment Setting facility

On the Natural Tools for DB2 Main Menu, enter function code S and press Enter.

The Environment Setting screen is displayed.

15:01:49 *Hx*xx*x NATURAL TOOLS FOR DB2 ***** 2009-10-07
- Environment Setting -
Code Function Code Function SET CURRENT
CO CONNECT SS SQLID
RE RELEASE (connection) SP PACKAGESET
SC SET CONNECTION SD DEGREE
SY SET ENCRYPTION PASSWORD SU RULES
SR Display SPECIAL REGISTER SO OPTIMIZATION HINT
? Help SL LOCALE LC_CTYPE
Exit SA PATH
SE PRECISION
SM MAINTAINED TABLE TYPES FOR OPT
SB PACKAGE PATH
Code .. __ SF REFRESH AGE
SH SCHEMA
SN APPLICATION ENCODING SCHEME
Command ===

This screen offers you the following functions:

co

Specifies and executes the SQL statement CONNECT.

RE

Specifies and executes the SQL statement RELEASE.

SC

Specifies and executes the SQL statement SET CONNECTION.

SS

Specifies and executes the SQL statement SET CURRENT SQLID.

SP

Specifies and executes the SQL statement SET CURRENT PACKAGESET.

SD

Specifies and executes the SQL statement SET CURRENT DEGREE.

SU

Specifies and executes the SQL statement SET CURRENT RULES.

128

Database Management System Interfaces

Environment Setting

SO

Specifies and executes the SQL statement SET

CURRENT OPTIMIZATION HINT.

SL

Specifies and executes the SQL statement SET

CURRENT LOCALE LC_CTYPE.

SA

Specifies and executes the SQL statement SET

CURRENT PATH.

SE

Specifies and executes the SQL statement SET

CURRENT PRECISION.

SM

Specifies and executes the SQL statement SET
OPTIMIZATION.

CURRENT MAINTAINED TABLE TYPE FOR

SB

Specifies and executes the SQL statement SET

CURRENT PACKAGE PATH.

SF

Specifies and executes the SQL statement SET

CURRENT REFRESH AGE.

SH

Specifies and executes the SQL statement SET

CURRENT SCHEMA.

SN

Specifies and executes the SQL statement SET

CURRENT APPLICATION ENCODING SCHEME.

SY

Specifies and executes the SQL statement SET

ENCRYPTION PASSWORD.

SR

Displays the current values of the supported special registers.

Connect

> To invoke the Connect function

= On the Environment Setting screen, enter function code C0 and press Enter.

The Connect screen is displayed:

Database Management System Interfaces

129

Environment Setting

14:23:29 *xHkxk NATURAL TOOLS FOR DB2 ***+** 2006-04-13
- Connect -
>Y==== CONNECT ===d4F== _ ===========c==c==c==c=sc==c===== e LR LR ><
[!
! !
+-- _ --- T0 ---- - -+
! (location name) !
! !
S === RESET =========2==c=2==2=2==2=== 4
Current Server Version
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Canc

Help Error Exit Exec

The Connect function connects the current application to a designated server. This server is
the current server, which is displayed in the Current Server Version field.

On the Connect screen, you identify the current server by specifying a location name. The
identified server must be known to the local DB2 subsystem.

Release

> To invoke the Release function

= On the Environment Setting screen, enter function code RE and press Enter.

The Release screen is displayed:

130 Database Management System Interfaces

Environment Setting

14:24:29 **xx%x%* NATURAL TOOLS FOR DB2 ***** 2006-04-13
- Release -

>y=== RELEASE ====== === ====== fp=========c============ ><
! location-name !

+-= _ === CURRENT =-------------- +

! !
f==_ === ALL SQL =============== !
! !
F== _ === ALL PRIVATE =========== 4
Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Error Exit Exec Canc

The Release function places one or more connections in the release pending state.

Set Connection

- To invoke the Set Connection function

= On the Environment Setting screen, enter function code SC and press Enter.

The Set Connection screen is displayed:

Database Management System Interfaces 131

Environment Setting

14:23:47 **x%%x NATURAL TOOLS FOR DB2 ***** 2006-04-13
- Set Connection -

>y=== SET COMNECTIOQWN ======== _ = ==s=======c=sc=s=c=s=====<=== ><
location-name

Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Error Exit Exec Canc

On the Set Connection screen, you identify a server by specifying a location name. The
identified server must be known to the local DB2 subsystem.

Set Current SQLID

> To invoke the Set Current SQLID function

= On the Environment Setting screen, enter function code SS and press Enter.

The Set Current SQLID screen is displayed:

132 Database Management System Interfaces

Environment Setting

14:23:47 *kHkkxx NATURAL TOOLS FOR DB2 ****x% 2006-04-13
- Set Current SQLID -

>>=== SET CURRENT SQLID = ===== __ ========c============ ><
(USER,
string-constant)

Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Exec Free Canc

The Set Current SQLID function changes the value of the SQL authorization identifier. With
SQL statements that use unqualified table names, DB2 uses the SQLID as an implicit table
qualifier. This enables you to access identical tables with the same table name but with different
creator names.

On the Set Current SQLID screen, you can replace the value of CURRENT SQLID by the value
of the special register USER or by a string constant. The string constant can be up to 8 characters
long.

In all supported TP-monitor environments, the SQLID can then be kept across terminal I/Os
until its resetting or the end of the session.

Set Current Packageset

> To invoke the Set Current Packageset function

= On the Environment Setting screen, enter function code SP and press Enter.

The Set Current Packageset screen is displayed:

Database Management System Interfaces 133

Environment Setting

09:39:07 xxkAk NATURAL TOOLS FOR DB2 ***** 2006-04-18

- Set Current Packageset -

>>--- SET CURRENT PACKAGESET = === ----mmmmmmom oo >

(string-constant) !

-+
(string-constant cont.)
Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Exec Canc

The SET CURRENT PACKAGESET statement assigns a value to the special register CURRENT
PACKAGESET.

On the Set Current Packageset screen, you can replace the value of CURRENT PACKAGESET by
the value of the special register USER or by a string constant of up to 18 characters.

Set Current Degree

> To invoke the Set Current Degree function

= On the Environment Setting screen, enter function code SD and press Enter.

The Set Current Degree screen is displayed:

134 Database Management System Interfaces

Environment Setting

14:23:58 *FHxxxx NATURAL TOOLS FOR DB2 ***** 2006-04-13
- Set Current Degree -

>>--- SET CURRENT DEGREE ---------- ___ Seecccoccocssoccccoscsococsossoanaas ><
(1 or ANY)
Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Error Exit Exec Canc

CURRENT DEGREE specifies the degree of parallelism for the execution of queries that are dy-
namically prepared by the application process.

Set Current Rules

> To invoke the Set Current Rules function

= On the Environment Setting screen, enter function code SU and press Enter.

The Set Current Rules screen is displayed:

Database Management System Interfaces 135

Environment Setting

14:23:58 **xx%* NATURAL TOOLS FOR DB2 ***** 2006-04-13
- Set Current Rules -

>> == SET CURRENT RULES -------=n-= _ mmmmmmomoooooooooooooooo o ><
(DB2 or STD)

Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Error Exit Exec Canc

CURRENT RULES specifies whether certain SQL statements are executed in accordance with
DB2 rules or the rules of the SQL standard.

Set Current Optimization Hint

> To invoke the Set Current Optimization Hint function

= On the Environment Setting screen, enter function code S0 and press Enter.

The Set Current Optimization Hint screen is displayed:

136 Database Management System Interfaces

Environment Setting

09:41:43 *xxx% NATURAL TOOLS FOR DB2 ***** 2006-04-18

- Set Current Optimization Hint -

>>--- SET CURRENT OPTIMIZATION HINT -------mmommomom oo >

(string-constant)

---<

(string-constant cont.)
Command ===

Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Error Exit Exec Canc

CURRENT OPTIMIZATION HINT specifies the user-defined optimization hint that DB2 should
use to generate the access path for dynamic statements.

Set Current Locale LC_CType

> To invoke the Set Current Locale LC_CType function

= On the Environment Setting screen, enter function code SL and press Enter.

The Set Current Locale LC_CType screen is displayed:

Database Management System Interfaces 137

Environment Setting

14:58:12 *x*xx*x NATURAL TOOLS FOR DB2 ***** 2006-04-13
- Set Current Locale LC_CType -

>>--- SET CURRENT LOCALE LC_CTYPE =-------mmmmmmmmom oo >

(string-constant)

Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFE===PF/===PF8===PF9===PF10==PF11l==PFl12===
Help Error Exit Exec Canc

CURRENT LOCALE LC_CTYPE specifies the LC_CTYPE locale that will be used to execute SQL
statements that use a built-in function that references a locale.

Set Current Path

> To invoke the et Current Path function

= On the Environment Setting screen, enter function code SA and press Enter.

The Set Current Path screen is displayed:

138 Database Management System Interfaces

Environment Setting

09:42:09 Fxkxk NATURAL TOOLS FOR DB2 ***** 2006-04-18

- Set Current Path -

ffo _ Scccoococcoscccooscoooss SYSTEN PATR sceccscscscsccscacccssccaasc 4

! !

IR E LS ARG L L L USER eeessssescccccssccoscsscacacoaas 4

! !

I G LEEL L L CURRENT PATH ==============c============== 1

! !

f= _ =sssc=ccscecssosoc CURRENT PACKAGE PATH ======================== 4
Command===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFG===PF7 == =[PFG===PFY===PFLO--PFLi-=PFl2---

Help Error Exit Exec Canc

CURRENT PATH specifies the SQL path used to resolve unqualified data type names and function
names in dynamically prepared SQL statements.

Database Management System Interfaces 139

Environment Setting

Set Current Precision

> To invoke the Set Current Precision function

= On the Environment Setting screen, enter function code SE and press Enter.

The Set Current Precision screen is displayed:

15:01:17 westest (MATURAL TOOLS FOR D2 s 2006-04-13
- Set Current Precision -

>>--- SET CURRENT PRECISION ------- DECI5 =-=-=----smsmmmmmmmmememamaaaoas ><
(DEC15,DEC31,15,31,
D15.1 - D15.9,031.1 - D31.9)

Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7 == =PF8===PF9===PFLO==PFlLLl=-=PFl2===
Help Error Exit Exec Canc

CURRENT PRECISION specifies the rules to be used when both operands in a decimal operation
have precisions of 15 or less.

Set Current Maintained Types for Optimization

> To invoke the Set Current Maintained Types function

= On the Environment Setting screen, enter function code SM and press Enter.

The Set Current Maintained Types for Optimization screen is displayed:

140 Database Management System Interfaces

Environment Setting

09:36:51 Fxkxk NATURAL TOOLS FOR DB2 ***** 2006-04-18

- Set Current Maintained Types -

>>--- SET CURRENT MAINTAINED TYPES --- SYSTEM ---------mmommomoooo oo ><

(ALL, NONE, SYSTEM or USER)

Command ===

Eft@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF1l==PF12===
Help Error Exit Exec Canc

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION specifies a value that identifies the
types of objects that can be considered to optimize the processing of dynamic SQL queries.
This register contains a keyword representing table types.

Set Current Package Path

> To invoke the Set Current Package Path function

= On the Environment Setting screen, enter function code SB and press Enter.

The Set Current Package Path screen is displayed:

Database Management System Interfaces 141

Environment Setting

09:37:22 **xx*x% NATURAL TOOLS FOR DB2 ***** 2006-04-18
- Set Current Package Path -
»» = SET CURRENT PACKAGE PATH ==========c==c=====c=sc=2c====s=c=sc=sc==c=s===>=== >
fp============================== € ==(,)================================ A
! !
» edlbccccococnoocnnccacocosnconoc oo e ++-><
! (collection-id< ,collection-id,...>)
! !
I R LR R USIEIR =======sc==scc=ccczcoczoozooo=- +
! !
e L L e CURRIERT PATH ========sc=sccccccocacaaaa- +
! !
e R CURRENT PACKAGE PATH ------------ommmmmom o +
Command ===
Efter= Pl === 2F2= = =PlF3===[FFd===PIF5== = P[F&== =27 = = = PFlg= = =[2FY== = P[FLY== P 1L = = PFL2= =
Canc

Help Error Exit Exec

CURRENT PACKAGE PATH specifies a value that identifies the path used to resolve references to

packages that are used to execute SQL statements.

Set Current Refresh Age

> To invoke the Set Current Refresh Age function

= On the Environment Setting screen, enter function code SF and press Enter.

The Set Current Refresh Age screen is displayed:

142 Database Management System Interfaces

Environment Setting

09:37:40 Fxkxk NATURAL TOOLS FOR DB2 ***** 2006-04-18

- Set Current Refresh Age -

>> --- SET CURRENT REFRESH AGE ----- _ e ><

(0 or ANY/99999999999999.000000)

Command ===

Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Error Exit Exec Canc

CURRENT REFRESH AGE specifies a timestamp duration value with a data type of DECIMAL.

Set Current Schema

> To invoke the Set Current Schema function

= On the Environment Setting screen, enter function code SH and press Enter.

The Set Current Schema screen is displayed:

Database Management System Interfaces 143

Environment Setting

09:38:01 xxkAk NATURAL TOOLS FOR DB2 ***** 2006-04-18

- Set Current Schema -

>>= SET CURRENT SCHEMA - === === -- oo oo >

>

! (schema-name)

L C TR R R PP P USER == === =ccsosmomcaie e o+
! !
R R R R DEFAULT =------smmmmmmmmmmamaooaoe -
| |
+- -+

(string-constant)

Command ===

Enter=RPFl===PF2===PF3===PFl===PF5===PF6===PF7===PF8===PFY===PFLO==PFll==PFl2===
Help Error Exit Exec Canc

The CURRENT SCHEMA, or equivalently CURRENT_SCHEMA, special register specifies the schema
name used to qualify unqualified database object references in dynamically prepared SQL

statements.

144 Database Management System Interfaces

Environment Setting

Set Current Application Encoding Scheme

> To invoke the Set Current Application Encoding Scheme function

= On the Environment Setting screen, enter function code SN and press Enter.

The Set Current Application Encoding Scheme screen is displayed:

09:38:21 *xxxx NATURAL TOOLS FOR DB2 ****x 2006-04-18

- Set Current Application Encoding Scheme -

>>--- SET CURRENT APPLICATION ENCODING SCHEME ------------commommmooooo oo >

(ASCII, EBCDIC, UNICODE

or 1 - 65533)

Command ===

Enter=RPFl===PF2===PF3===PFl===PF5===PF6===PF7 == =PF8===PFY===PFLO==PFll=-=PFl2-==
Help Error Exit Exec Canc

CURRENT APPLICATION ENCODING SCHEME specifies which encoding scheme is to be used for
dynamic statements. It allows an application to indicate the encoding scheme that is used to
process data.

Database Management System Interfaces 145

Environment Setting

Set Encryption Password

> To invoke the Set Encryption Password function

= On the Environment Setting screen, enter function code SY and press Enter.

The Set Encryption Password screen is displayed:

146 Database Management System Interfaces

Environment Setting

09:36:13 Fxkxk NATURAL TOOLS FOR DB2 ***** 2006-04-18

- Set Encryption Password -

>>< == SET ENCRYPTION PASSWORD = === == -mmmmmmm e e >

(password-string-constant)

o
(password-string-constant cont.)

P EEE R E R R R S S PR E S R SRR EEE R LR +-3<
| |
e WITHOMTMT e o eeeeeeeeeeeeeea +

(hint-string-constant)
Command ===
Eft@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF1l==PF12===
Help Error Exit Exec Canc

The Set Encryption Password function sets the value of the encryption password and, option-
ally, the password hint.

Database Management System Interfaces 147

Environment Setting

Display Special Registers

> To invoke the Display Special Registers function

= On the Environment Setting screen, enter function code SR and press Enter.

The Display Special Registers screen is displayed:

15:18:07 Fxxxx NATURAL TOOLS FOR DB2 **x*#** 2006-04-13
- Display Special Registers -
Current
+Client_Acctng
+Client_ApplName
+Client_UserID
+Client_WrkStnName
Appl.Encoding Scheme .. EBCDIC

Date 13.04.2006

Degreeo.... 1

LC_CType ...,
+Maintained Types SYSTEM

Member DB28

Command ===
Ent@r=PFl===PF2===PF3===PFi===PF5===PFG===[PF7 == =PF@===PF9=-==PFLO=-=PFLL==PFl2===
Help Error Exit Updat Next Canc

When you press PF11, the next screen of Special Register values is displayed.

148 Database Management System Interfaces

Environment Setting

15:31:20 FxxF* NATURAL TOOLS FOR DB2 **#*** 2006-04-13
- Display Special Registers -
Current
+PackageSet
+Path "SYSIBM","SYSFUN","SYSPROC","GGS"
Precision DEC15
Refresh Age
Rules ..., DB?
+Schema GGS
Server, DAEFDB28
SQLID . .veii i GGS
Time ... 15.31.20
TimeStamp 2006-04-13-15.31.20.948481
TimeZone 10000
User ..., GGS
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Error Exit Updat Prev Canc

When you press PF10, the previous screen of Special Register values is displayed.

The Display Special Registers screens show you the current values of the Special Registers
of DB2 supported by Natural for DB2.

Fields, which are prefixed with a plus sign (+), may contain more data than displayed on the
screen. You can display the full contents either when you position the cursor on the field
(description or data) and press ENTER, or when you enter the abreviation of the field (which
are the capital letters of the description) prefoxed by the plus sign (+) in the command line.
For example, +PS shows a window with the full value of the Current Package Set.

Database Management System Interfaces 149

150

9 Explain PLAN_TABLE

= Delete from PLAN_TABLE

EXPLAIN Modes
Invoking the EXPLAIN_TABLE FUNCHONooiiiiiiii ettt
List PLAN_TABLE - Latest EXplanationscooviiiiiiiiiii
List PLAN_TABLE - All EXPIANATIONSuuviiiiiiiiiiiiiiiiiiiiiiiiiiissisesevessvessseaesessassssssssssssssssessssssssensnsnsnes

= Explain PLAN_TABLE Facility for Mass and Batch Processingcooovviiiiiiiiiiiiiiic e

151

Explain PLAN_TABLE

/A Important: Before you use the Explain PLAN_TABLE function, refer to LISTSQL and Explain

Functions in the section Special Requirements for Natural Tools for DB2 in Installing Natural for
DB2 on z/OS.

The Explain PLAN_TABLE facility of the Natural Tools for DB2 interprets the results of SQL
EXPLAIN commands from your PLAN_TABLE. The information contained in your PLAN_TABLE is
represented in so-called explanations.

Explanations of a PLAN_TABLE describe the access paths chosen by DB2 to execute SQL statements.

An SQL statement is executed by DB2 in one or more steps. For each execution step, one row is
inserted into the PLAN_TABLE. All rows together describing the access path for one SQL statement
are called an explanation.

The explanations are identified in the PLAN_TABLE by a combination of either plan name, DBRM
(database request module) name, and query number or collection name, package name, and query
number.

EXPLAIN Modes

DB2 provides three ways to explain SQL statements:

= Dynamic EXPLAIN
= Bind Plan EXPLAIN
= Bind Package EXPLAIN

Depending on the way the identifications of the explanations differ.
Dynamic EXPLAIN

Executes an SQL EXPLAIN command dynamically, where the explanation is inserted into the
PLAN_TABLE of your current SQLID.

The EXPLAIN command can be issued within the Catalog Maintenance and Interactive SOL facil-
ities of the Natural Tools for DB2. In addition, the Natural LISTSQL command can be used to extract
SQL statements from cataloged Natural programs, and to issue the SQL EXPLAIN command for
the extracted SQL statements.

If you issue the SQL EXPLAIN command dynamically, you should specify a query number to help
identify the explanation in the PLAN_TABLE. The same query number should be used for related
statements.

Depending on the method with which the DBRM used by the dynamic SQL processor is bound
into the plan, DB2 uses two different ways to identify rows in the PLAN_TABLE:

152 Database Management System Interfaces

Explain PLAN_TABLE

= Dynamic Mode
= Package Mode

Dynamic Mode

The DBRM is bound directly into the plan.

When an explanation is inserted, the plan name, the DBRM name, and the query number are de-
termined by DB2 as follows:

Parameter Description

plan name is left blank;

DBRM name is the name of the DBRM used by the dynamic SQL processor;

query number|is equal to the query number you specified with the EXPLAIN command (the default query
number is 1).

This explanation mode is called dynamic mode.
Package Mode

The DBRM is bound as package into the plan.

When an explanation is inserted, the collection name, the package name, and the query number
are determined by DB2 as follows:

Parameter Description

collection name|is the name of the collection that contains the package;

package name is the name of the package used by the dynamic SQL processor;

query number is equal to the query number you specified with the EXPLAIN command (the default
query number is 1).

This explanation mode is called package mode.
Bind Plan EXPLAIN

Binds an application plan with the option EXPLAIN YES, where the explanation is inserted into
the PLAN_TABLE of the owner of the plan. When an explanation is inserted, the plan name, the
DBRM name, and the query number are determined by DB2 as follows:

Database Management System Interfaces 153

Explain PLAN_TABLE

Parameter Description

plan name is the name of the plan;
DBRM name is the name of the DBRM that contains the SQL statement;

query number|is equal to the statement number (s tmtno), which is generated by the DB2 precompiler.

Bind Package EXPLAIN

Binds a package with the option EXPLAIN YES, where the explanation is inserted into the
PLAN_TABLE of the owner of the package. When an explanation is inserted, the collection name,
the package name, and the query number are determined by DB2 as follows:

Parameter Description

collection name|is the name of the collection that contains the package;

package name is the name of the package that contains the SQL statement;

query number is equal to the statement number (s tmtno), which is generated by the DB2 precompiler.

Invoking the EXPLAIN_TABLE Function

Explanations can be selected by either plan name, DBRM name, and query number or collection
name, package name, and query number. If you issue an EXPLAIN command various times, it is
possible that multiple explanations are identified by a given combination of these selection fields.
Thus, you can select either all explanations or only the most recent one. A list with all selected
explanations is displayed, from which you can select individual rows for a more detailed descrip-

tion.

The individual rows of a PLAN_TABLE are displayed one row per line. Rows that describe the same
SQL statement are shown together as one explanation. Different explanations, are separated by

empty lines. You can browse through the list and select a detailed report for individual explanations.
If rows have been inserted into your PLAN_TABLE as a result of a Natural system command LISTSQL,

the names of the Natural library and program are also displayed.

> To invoke the Explain PLAN_TABLE facility

s On the Natural Tools for DB2 Main Menu, enter function code X.

The Explain PLAN_TABLE screen is displayed:

154 Database Management System Interfaces

Explain PLAN_TABLE

16:45:35 *xxxx NATURAL TOOLS FOR DB2 ***#** 2009-10-30
- Explain PLAN_TABLE -

Code Function

List PLAN_TABLE - Latest Explanations
List PLAN_TABLE - ATl Explanations
Delete from PLAN_TABLE

Help

Exit

D O >

Code .. _ Mode DYNAMIC_ (Dynamic, Plan, Package)
Plan
Collection ..
DBRM/Package
Queryno =

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PFl2---
Help Setup Exit Canc

With pr2 (Setup) the maximum length of one column and the number of fixed characters when
scrolling left may be specified. The default values for both parameters may be changed in the
CONFIG subprogram in library SYSDB2.

When a column value is longer than the maximum length, it will be truncated and marked
with a greater than symbol (>), which means that strings are truncated at the right end, or a
or a less than symbol (<), which means that numbers are truncated at the left end. Note, that
for further commands on a line, for example, the line command I, only the visible value can
be taken as input. This means that commands on lines will fail, when values for further pro-
cessing are truncated.

Database Management System Interfaces 155

Explain PLAN_TABLE

16:45:35 *xxxx NATURAL TOOLS FOR DB2 ***#*x 2009-10-30
- Explain PLAN_TABLE -

Code Function t-------- Explain PLAN_TABLE---------- +

|
List PLAN_T ! Maximum length of columns ... 12 |
List PLAN_T ! Number of fixed characters .. 0 !
Delete from ! !
Help ! !
Exit e e L L L L L e EL L H

P =

Code .. _ Mode DYNAMIC_ (Dynamic, Plan, Package)
Plan
Collection ..
DBRM/Package
Queryno =

Command ===
Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PFl2---
Help Setup Exit Canc

The following functions are available:

Code | Description

L |The List PLAN_TABLE - Latest Explanations function lists the last explanation for any
combination of the parameters described below.

A |The List PLAN_TABLE - All Explanations function lists all explanations for any combination
of the parameters described below.

D |The Delete from PLAN_TABLE function deletes the specified explanations from your
PLAN_TABLE.

The following parameters can be specified:

Parameter Description
Mode Specifies the explanation mode (Dynamic, Plan, or Package).
Plan plan-name Specifies a valid plan name.

The parameter P1an is only required in Plan mode.

Collection Specifies a valid collection name.
collection-name
The parameter Collection is only required in Package mode.

DBRM/Package In Plan mode, specifies a valid DBRM name.
dbrm/package-name

In Package mode,specifies a valid package name.

156

Database Management System Interfaces

Explain PLAN_TABLE

Parameter Description

In dynamic mode, specifies the DBRM used by the dynamic SQL processor.

If a value followed by an asterisk (*) is specified, all DBRMs/packages of the
specified plan/collection whose names start with the specified value are
considered.

If asterisk notation is specified only, all DBRMs/packages of the specified
plan/collection are considered.

The DBRM/Package parameter is used to limit the display to individual
DBRMs/packages.

Queryno no.I1 - no.Z|Thisparameter specifies a valid range of query numbers, where the following
rules apply:

= If no query number is specified, all query numbers are displayed;

= If only the first query number is specified, only this query number is
displayed;

= If only the second query number is specified, all query numbers up to and
including the second query number are displayed;

® If both query numbers are specified, all query numbers between and
including the first and the second query number are displayed.

List PLAN_TABLE - Latest Explanations

This function only lists the most recent explanation for any specified combination of either plan
name, DBRM name, and query number or package name, collection name and query number.

List PLAN_TABLE - All Explanations

This function lists all explanations for any combination of either plan name, DBRM name, and
query number or package name, collection name and query number. The query number parameters
are interpreted as above.

Database Management System Interfaces 157

Explain PLAN_TABLE

Sample Listing of Explanations

11:04:04 *x*x**x NATURAL TOOLS FOR DB2 ***** 2007-09-05
PTan TESTPLAN S 01 Row 0 of 152 Columns 032 075
==== Scroll ===> PAGE

DBRM QNO ME ACC MA 10 PRE SORTN SORTC TCREATOR TABLENAME
*Kk hkkhkkkkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhhkkhkhkkxkkhkk tOp Of data khkhkkhkkhkhkhkhkhkhkhhkhkkhkkhkhkhkhrhkhkhkhkhkkhkhkhkitx

_ TEST 722 I 1 = ==== ==== SAGCRE DEPT
_ TEST 722 11 1 = ==== ==== SAGCRE EMP
_ TEST 722 3 = === ===
_ TEST 722 I 1 = ==== ==== SAGCRE DEPT
_ TEST 722 I 1Y ==== ==== SABCRE EMP
_ TEST 722 I 1 = ==== ==== SAGCRE DEPT
_ TEST 761 I 1 = ==== ==== SAGCRE EMP
_ TEST 761 11 1 - ==== ==== SAGCRE DEPT
_ TEST 761 3 = ---- --0-

__ TEST 761 I 1 - ==== ==== SAGCRE EMP
_ TEST 761 I 1Y ==== ==== SAGCRE DEPT
_ TEST 793 I 1 = ---- ---- SAGCRE DEPT
_ TEST 793 11 1 = ==== ==== SAGCRE EMP

TEST 793 11 1 - ==== ==== SABCRE EMP

Enter=RPFl===PF2===PF3===PFl===PF5===PFG===[PIF7 = = =PF@= = =PFY===PFLO=-=PFLL-==PF12==-
Help Exit Rfind - + < > Canc

Commands Available

The following line commands are available within listings of the Explain PLAN_TABLE facility.
Line commands are entered in front of any of the rows of the desired explanation(s).

Command |Description

I Displays a window where additional information about an explanation can be selected
S Selects an explanation to be used with the INFO command described below.

U Unselects an explanation for use with the INFO command.

A list of the line commands available can be invoked as a window by entering the help character,
that is a question mark (?), in front of any of the listed rows.

Apart from the line commands, the INFO command can be specified, too. The INFO command must
be entered in the command line of the listing screen and is the equivalent of the line command I.
INFO displays a window where additional information can be selected on all explanations previously
selected by the line command S.

In Plan mode, the following window is displayed, where you can select which additional inform-
ation you want to be displayed or printed.

158 Database Management System Interfaces

Explain PLAN_TABLE

16:48:24 FxxA* NATURAL TOOLS FOR DB2 **#**% 2009-10-30
Plan TESTPLAN S 01 Row 0 of 82 Columns 048 100
==== Scroll === PAGE

DBRM QN0 ME ACC MA I0 PRE SORTN SORTC TCREATOR TABLENAME
R T T T FrAARA KK AK KK

_ TEST ! !

_ TEST ! Select what to display !

_ TEST ! !

__ TEST ! _ information about plan !

__ TEST ! _ Statements of plan !

_ TEST ! _ data from PLAN_TABLE !

_ ! _ evaluation of PLAN_TABLE !

_ TEST ! _ catalog statistics !

_ TEST ! _ columns of used indexes !

_ TEST ! !

__ TEST ! Mark _ to print output !

_ TEST ! !

. B i i +
__ TEST 793 I 1 = ---- ---- SAGCRE DEPT
__ TEST 793 1 I 1 - ---- ---- SAGCRE EMP

TEST 793 1 I 1 - ---- ---- SAGCRE EMP

Enter=PFl===PF2===PF3===PFi===PF5===PFG===[PF7 == =PFE===PF9===PFLO-==PFLil==PFl2==-
Help Exit Rfind - + < > Canc

Accordingly, the following window is displayed in Package mode:

16:48:24 xHxxx%x NATURAL TOOLS FOR DB2 ****%* 2009-10-30
Package TESTPACK S 01 Row 0 of 82 Columns 048 100
==== Scroll === PAGE

DBR d===========c===22c==2222c=2222cc=22c==2=cc5=c=22=c==5==2°> A
K,k *k*k*k ! ! K*hkkkkkhkkhkkkx*k

_ TEST ! I ES
__ TEST ! Select what to display I ES
_ TEST ! I ES
_ TEST ! _ information about package I ES
_ TEST ! _ statements of package I ES
_ TEST ! _ data from PLAN_TABLE I ES
_ ! _ evaluation of PLAN_TABLE I ES
__ TEST ! _ catalog statistics ! ES
_ TEST ! _ columns of used indexes I ES
_ TEST ! I ES
__ TEST ! Mark _ to print output I ES
R T S 4+ KAk AkkAKKAK

Ent@pr=PFl===PF2===PF3===PFl===PF5===PFG===PF7===PF8===PF9===PFL10==PFll==PFLl2===
Help Exit Rfind - s < > Canc

Database Management System Interfaces 159

Explain PLAN_TABLE

Browsing of data displayed is performed with browse commands, of which the most important
can also be issued via PF keys; see Editing within the Natural Tools for DB2.

Option Description
Information about If a plan/package name has been specified, this option includes information
plan/package from the DB2 catalog, such as date and time of the bind, as well as several

bind options.

In Dynamic mode, this option is not available.

Statements of plan/package |If a plan/package name has been specified, this option provides information
on the explained SQL statements contained in this package. This information
is taken from the DB2 catalog.

In Dynamic mode, this option is not available.

Data from PLAN_TABLE This option provides information from the PLAN_TABLE about the selected
rows.

Evaluation of PLAN_TABLE |This option provides a description of the PLAN_TABLE. For each execution
step, it describes:

the locks chosen by DB2,

whether a join operation is performed,

whether the data is sorted and why the sort is performed,

the access path in detail.

Catalog statistics This option provides statistical information from the DB2 catalog.

Columns of used indexes This option provides the columns of used indexes including catalog statistics
on this columns.

Delete from PLAN_TABLE

The Delete from PLAN_TABLE function is also used to select PLAN_TABLE explanations depending
on the specified combination of either plan name, DBRM name, and query number or collection
name, package name, and query number. This time, however, the selected PLAN_TABLE explanations
are not displayed but deleted.

The Delete from PLAN_TABLE function is useful to delete old data before either binding or re-
binding a plan, or before executing an SQL EXPLAIN command.

To prevent PLAN_TABLE explanations from being deleted unintentionally, you are prompted for
confirmation:

160 Database Management System Interfaces

Explain PLAN_TABLE

16:50:23 **x*%* NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Delete from PLAN_TABLE -

The SQL Command

DELETE FROM PLAN_TABLE
WHERE APPLNAME = " '
AND COLLID = 'OLD"
AND PROGNAME LIKE "ANY%'
AND QUERYNO BETWEEN 1 AND 2

will be executed.

Press PF5 to delete the data from the PLAN_TABLE or
PF3 to return to the menu without deleting data

Command ===
Ent@r=PFl===PF2===PF3===PFl===PF5===PFG===PF7===PF8===PF9===PF10==PF11l==PFl12===
Help Exit Del Canc

Apart from the global PF-key settings, with the Delete from PLAN_TABLE function of the Explain
PLAN_TABLE facility, Pr5 (Del) is used to confirm the deletion of previously selected explanations.

Explain PLAN_TABLE Facility for Mass and Batch Processing

An adapted version of the Explain PLAN_TABLE facility is also available for online mass processing
and for batch mode execution.

EXPLAINB for Mass Processing

For online mass processing, a modified version of the Explain PLAN_TABLE facility is available.

> To invoke the modified version of the Explain PLAN_TABLE facility

1 Logon to the Natural system library SYSDB2.

2 In the command line, enter the command EXPLAINB and press ENTER.

The following screen is displayed:

Database Management System Interfaces 161

Explain PLAN_TABLE

16:45:35 *xHkxk NATURAL TOOLS FOR DB2 ***+** 2009-10-30
- Explain PLAN_TABLE -

Code Function

L List PLAN_TABLE - Latest Explanations
List PLAN_TABLE - ATl Explanations
0 Output Options

Exit

>

Code .. _ Mode DYNAMIC_ (Dynamic, Plan, Package)
Plan
Collection
DBRM/Package ..
Queryno -

Ent@r=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PF11==PF12===
Help Exit Canc

In addition to function codes L (List PLAN_TABLE - Latest Entries function) and A (List
PLAN_TABLE - All Entries function), function code 0 (Output Options) is available.

The Output Options function enables you to restrict the output of information on PLAN_TABLE
entries. The various options are listed in a window invoked by entering function code 0 on
the above Explain PLAN_TABLE menu. The window is similar to the one invoked by the
online I or INFO commands.

162 Database Management System Interfaces

Explain PLAN_TABLE

16:53:20 *xHkxk NATURAL TOOLS FOR DB2 ***** 2009-10-30
- Explain PLAN_TABLE -

Select what to display

information about plan/package
statements of plan/package
data from PLAN_TABLE
evaluation of PLAN_TABLE
catalog statistics

columns of used indexes kage)

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PF12---
Exit Canc

If the Output Options function has been selected, only information covered by the options
marked for output are printed.

If function code 0 has not been selected, all information on PLAN_TABLE entries covered by the
options listed in the above window are printed.

In both cases, you are prompted for a printer.
EXPLAINB in Batch Mode

Apart from being used for online mass processing, the functionality of EXPLAINB is especially in-
tended for batch processing. If EXPLAINB is used in batch mode, output is sent to a data set referred
to by DD name CMPRTO1 (logical printer 1).

Database Management System Interfaces 163

164

10 File Server Statistics

If a file server has been installed, the file server statistics part of the Natural Tools for DB2 is used
to display statistics on the use of the file server.

> To invoke the File Server Statistics function

= On the Natural Tools for DB2 Main Menu, enter function code F and press ENTER

The File Server - Generation Statistics screen is displayed:

16:53:20 **x%* NATURAL TOOLS FOR DB2 *#***%* 2009-10-30
- File Server - Generation Statistics -

File Server Dataset Name: SAG.N2122.FSERV
Enqueue Resource Name: FSERVV609
Total Number of File Server Blocks: 1000
File Server Block Size, : 4080
Number of Space Map Blocks: 2
Number of Global Directory Blocks: 1
Entries: 203
User Space Allocation Quantities Primary: 50
Secondary ..: 10
Total Number of Blocks permitted per User ...: 200
Command ===
Emter=PFl===PF2===PFI===PFl===PF5===PFo===PF/===PFB===PFY===PFLO==PFLl==PFl12===
Help Exit Dire Next Canc

165

File Server Statistics

This screen provides information on parameters that must be specified when generating the
file server.

If the file server storage medium is the Software AG Editor buffer pool, the File Server -
Generation Statistics screen looks as follows:

16:53:20 **x*%* NATURAL TOOLS FOR DB2 ***** 2009-10-30
- File Server - Generation Statistics -

File Server Dataset Name: STORAGE MEDIUM IS EDITOR BUFFER POOL

Enqueue Resource Name:

Total Number of File Server Blocks: O
File Server Block Size: 4088
Number of Space Map Blocks: 0
Number of Global Directory Blocks: O
Entries: 0
User Space Allocation Quantities Primary: 20
Secondary ..: 10
Total Number of Blocks permitted per User ...: 100
Command ===
Ent@r=PFl===PF2===PF3===PFd===PF5===PFo===PF7/===PF8===PF9===PFLO==PF11==PF12===
Help Exit Next Canc

If you press PF11 (Next), a second screen is displayed, the File Server - User Statistics screen,
showing statistics that have been kept since the file server was installed - Statistics since
Generation -, and statistics about the current Natural session - Current Session Statistics.

166

Database Management System Interfaces

File Server Statistics

16:53:20 **x%* NATURAL TOOLS FOR DB2 ***** 2009-10-30
- File Server - User Statistics -

Statistics since Generation:

Active Users - Maximum Number: 3 Current Number: 1
Maximum Number of used Blocks for single User: 200
for all Users: 200
Number of Block Allocations PRIMARY: 13
SECONDARY i 17
Number of free BlocksS ...ttt 997
Number of INIT SESSION Callsuiiiiiineenne.: 65

Current Session Statistics:

Total Number of Blocks: 0
Free Blocks: 0
Secondary Allocations: 0
VSAM 1/0 Buffer inside DB2AREA YES (Yes/No)
Command ===
Enter=PFl===PF2===PFI===PFl===PF5===PFo===PF/===PFB===PFY===PFLO==PFll==PFl2===
Help Exit Dire Prev Canc

If you press PF10 (Prev), you are returned to the File Server - Generation Statistics screen.
Statistics are updated, each time you press ENTER, PF10, Or PF11.

If the file server storage medium is the Software AG Editor buffer pool, the File Server - User
Statistics screen looks as follows:

Database Management System Interfaces 167

File Server Statistics

16:53:20 **xx%* NATURAL TOOLS FOR DB2 ***** 2009-10-30
- File Server - User Statistics -

Statistics since Generation:

Active Users - Maximum Number: 3 Current Number: 0
Maximum Number of used Blocks for single User: 0
for all Users: 0

Number of Block Allocations PRIMARY: 0
SECONDARY: 0

Number of free Blockst 0
Number of INIT SESSION Callsc.iiiiiininennen...: 0

Current Session Statistics:

Total Number of Blocks: 20
Free Blocks: 20
Secondary Allocations: 0
VSAM 1/0 Buffer inside DB2AREA YES (Yes/No)
Command ===
Enter=PFl===PF2===PFI===PFl===PF5===PFo===PF7===PFB===PFY===PFLO==PFLl==PFl12===
Help Exit Prev Canc

Note that the section Statistics since Generation could not be provided by this display.

For file server VSAM files, Natural for DB2 also provides file server directory display and
maintenance.

If you press PF9 (Dire), the active directory entries are listed showing the session identifiers
and their allocated file server blocks. The display looks like the following;:

168 Database Management System Interfaces

File Server Statistics

12:47:40 FAAHk NATURAL TOOLS FOR DB2 x***% 2009-11-03
User XYZ - File Server - Directory Entries - TID TCD4

C No Tpsessid Birth 1st Block Last Block Blocks Comment

| 0 Free Chn 826 964 597 Checked

| 1 TCKK pre NDB43 902 951 50 Checked

| 2 TCLB pre NDB43 50 99 50 Checked

| 3 TCRO pre NDB43 301 250 50 Checked

| 4 TCR7 pre NDB43 251 350 50 Checked

| 5 TCDW pre NDB43 604 503 50 Checked

| 6 TCEX pre NDB43 504 653 50 Checked

| 7 TCBW 2009-09-25 957 374 50 Checked

| 8 TC42 2009-10-15 357 993 50 Checked

| 9 - free - 0 0 0 Empty Chain

| 10 - free - 0 0 0 Empty Chain
Command ===
Enter=PFl===PF2===PF3===PFl===PF5===PFo===PF7===PF8===PF9===PFLO==PFll==PFLl2-==
Cont Help Exit List Pos == = A 4 Delet Fresh Canc <
©

Birth denotes a rough creation date of the file server session, if it was created by Natural for
DB2 Version 4.3. If the file server session was created by an earlier version of Natural for DB2,
the birthday of the file server session appears as pre NDB43.

The Directory Entries screen provides the functionality to scroll through the directory entries
and to position a particular entry to the top of the screen.

In addition, Directory Entries allows you to list all file server block numbers of a directory
entry (PF4, line command L) or to delete a directory entry from the file server (PF10, line com-
mand D). You should only delete directory entries, if you are sure the associated Natural session
is no longer alive, otherwise the deletion could destroy the file server structure.

Directory Entries reflects the file server sessions at one particular point in time. By pressing
PF11, the display will be refreshed from the file at another (actual) point in time.

Database Management System Interfaces 169

170

11 Issuing DB2 Commands from Natural

= |nvoking the DB2 Command Partuiiiiiiiiiiii e 172
= Displaying the Command Fileoiiiiiiiiiei e 173
= Displaying the OUIPUL REPOIooii e 175

171

Issuing DB2 Commands from Natural

The DB2 Command part of the Natural Tools for DB2 enables you to issue DB2 commands from
a Natural environment.

A file is maintained for each user on the system file FUSER. This file is stored under the object
name DB2$CMD in the Natural library of the current user.

You can select a command and submit it, save the command file and save and/or print the output
report.

Invoking the DB2 Command Part

- To invoke the Interactive SQL function

= On the Natural Tools for DB2 Main Menu, enter function code D and press ENTER.

The Execute DB2 Command screen is displayed:

16:07:56 werisess NATURAL TOOLS FOR D2 weses 2009-10-30
- Execute DB2 Command -

Code Function

C Display Commands

0 Display Output
? Help
Exit
Code .. _ Library .. DBA
Command ===
ERt@r=PFl===PF2===PF3===PFl===PF5===PFe===PF7===PF8===PF9===PFLO==PFL1L-=PF12===
Help Exit Canc

The following functions are available:

172 Database Management System Interfaces

Issuing DB2 Commands from Natural

Code |Description

C Displays your command file. If you have not saved a command file yet, a default file is displayed.

0 If an output file exists, the output report is displayed.

The following parameter can be specified:

Parameter | Description

Library|You can enter a user name or library. The default is the currrent user ID.

Displaying the Command File

> To display the command file

= On the Execute DB2 Command menu, enter function code C and press ENTER.

The DB2 Commands screen is displayed:

16:12:11 *xkxx NATURAL TOOLS FOR DB2 ****x= 2009-10-30
- DB2 Commands -

Mark the line of the command you want to execute with 'S' and press PF4

Cmd 1 _ SDISPLAY THREAD (%) ittt e e e e e e e et e et e e e e
Cmd 2 _ SDISPLAY LOCATION . & vttt et et e e et e et e et e et e et e
Cmd 3 _ -DISPLAY DATABASE(*) LIMIT(2500).0ttt
Cmd 4 _ SDISPLAY PROCEDURE (%) ittt it et e et et e et e e e e e
Cmd 5 _ -DISPLAY DATABASE(DSNDBO4) LIMIT (%) . vt
Cmd 6 e e
Cmd 7 e e
Cmd 8 S

Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Exit Subm Save Next Canc

Use Pr11 (Next) to scroll to the next page.

Database Management System Interfaces 173

Issuing DB2 Commands from Natural

You can modify the command file. Save your modifications with PF5 (Save).

> To execute a command

= Mark the command with an S and press PF4 (Subm).

The results are displayed on the DB2 Commands Output screen:

16:13:23 xxxxx NATURAL TOOLS FOR DB2 *#*#*** 2009-10-30
- DB2 Commands Qutput -

Command: -DISPLAY DATABASE(DSNDBO4) LIMIT (*)
Return Code 1: 00000000 Return Code 2: 00000000
Length of Output: O00001AFB

DSNT36OI - kkkkkhkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkhkkhhkkhkkhkhkkkhk
DSNT3611 - * DISPLAY DATABASE SUMMARY
& GLOBAL
DSNT36OI - kkkkhkkhkkhkkhkhkkhkkhkhkhhkhkhkkhkhkhkhkhkkhkkhkkhhkhkkhkkkkkhk
DSNT3621 - DATABASE = DSNDBO4 STATUS = RW
DBD LENGTH = 72674

DSNT3971 -

NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE

ADRESSE TS RW

ALTASRBY TS RW

ALLDATAQ TS RW
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---

Exit Save -- = 4 A Canc

> To save the command file

1 Press Prs5 (Save).

The output file is stored under the object name DB2$0UT in the Natural library of the current
user.

2 Press pr3 (Exit) to return to the command file.

You can submit further commands.

174 Database Management System Interfaces

Issuing DB2 Commands from Natural

Displaying the Output Report

> To display the last output record

= On the Execute DB2 Command menu, enter function code 0 and press ENTER.

The DB2 Commands Output screen is displayed:

16:13:57 *xxAA NATURAL TOOLS FOR DB2 **xx*xx% 2009-10-30
- DB2 Commands Output -

Command: -DISPLAY DATABASE(*) LIMIT(2500)
Return Code 1: 00000000 Return Code 2: 00000000
Length of Output: 00007468

DSNT36OI B R R B i b b b b b i b i b b b b b b i b o b b b b b b b o i
DSNT361I - * DISPLAY DATABASE SUMMARY *
& GLOBAL *
DSNT36OI - kkkkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhhkkhkkhkkkhk
DSNT3621 - DATABASE = DSNDBO1 STATUS = RW
DBD LENGTH = 8000

DSNT3971 -

NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE

DBDO1 TS RW

SPTO1 TS RW

SCT02 TS RW
Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Exit Print -- = e AR Canc

To print the output record, press Pr5 (Print).

Database Management System Interfaces 175

176

12 Using Natural System Commands for DB2

The following Natural system commands have been incorporated into the Natural Tools for DB2:

Natural System Command

Explanation

LISTSQL Lists Natural DML statements and their corresponding SQL statements.

LISTSQLB Provides explanations of SQL statements for a specific object.

SQLERR Provides information of the SQLCA on a DB2 error.

SQLDIAG Provides diagnostic information about the last SQL statement (other than a GET
DIAGNOSTICS statement) that was executed.

LISTDBRM Displays either a list of DBRMs (database request modules) for a particular Natural

program or a list of Natural programs that reference a particular DBRM.

For a description of these commands, follow the links leading to the Natural System Commands

documentation.

177

178

13 Generating Natural Data Definition Modules (DDMs)

® SQL Services (NDB/NSQ)couutiiiiiieeitie ettt ettt ettt ettt ettt et e et e et 180

179

Generating Natural Data Definition Modules (DDMs)

To enable Natural to access a DB2 table, a logical Natural data definition module (DDM) of the
table must be generated. This is done either with Predict (see the relevant Predict documentation
for details) or with the Natural utility SYSDDM; see also SYSDDM Utility in the Natural Editors
documentation.

If you do not have Predict installed, use the SYSDDM function SOL Services to generate Natural
DDMs from DB2 tables. This function is invoked from the main menu of SYSDDM and is described
on the following pages.

For further information on Natural DDMs, see Data Definition Modules - DDMs in the Natural
Programming Guide.

SQL Services (NDB/NSQ)

The SQL Services (NDB/NSQ) function of the Natural SYSDDM utility (see Using SYSDDM Main-
tenance and Service Functions in the Natural Editors documentation) is used to access DB2 tables.
You access the catalog of the DB2 server to which you are connected, for example, by using the
Environment Setting function as described in Natural Tools for DB2, or by entering the name of a
server in the Server Name field on the SQL Services Menu. The name of the DB2 server to which
you are connected is then displayed in the top left-hand corner of the screen SQL Services Menu.
You can access any DB2 server that is located on either a mainframe (z/OS or z/VSE) or a UNIX
platform if the servers have been connected via DRDA (Distributed Relational Database Architec-
ture). For further details on connecting DB2 servers and for information on binding the application
package (SYSDDM uses I/O module NDBIOMO) to access data on remote servers, refer to the relevant
IBM literature.

The SQL Services function determines whether you are connected to a mainframe DB2 (z/OS or
z/VSE) or a UNIX DB2, access the appropriate DB2 catalog and performs the functions listed below.

| Note: If you use SYSDDM SQL Services in a CICS environment without file server, specify
CONVERS=0N in the NTDB2 macro; otherwise you might get SQLCODE -518.

= Using SQL Services

= Select SQL Table from a List

= Generate DDM from an SQL Table
= |ist Columns of an SQL Table

180 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

= Making a User Exit Routine Available

Using SQL Services

> To invoke the SQL Services function

1 Inthe command line, enter the Natural system command SYSDDM and press Enter.
Or:

1. From the Natural main menu, choose Maintenance and Transfer Utilities to display the
Maintenance and Transfer Utilities menu.

2. From the Maintenance and Transfer Utilities menu, choose Maintain DDM:s.

The menu of the SYSDDM utility is displayed. The fields and functions provided on the SYSDDM
utility menu are explained in the section Using SYSDDM Maintenance and Service Functions.

2 Inthe Code field of the Natural SYSDDM utility Menu, enter code B and press Enter.

The SQL Services Menu is displayed.

11:31:39 **xxxx NATURAL SYSDDM UTILITY ***** 2009-11-27
Server DAEFDB29 - SQL Services: Menu -

Code Function

S Select SQL Table from a List
G Generate DDM from an SQL Table
L List Columns of an SQL Table
? Help
Exit
Code ... _
Table name ...
Creator
Replace N (Y,N) DDM Name with Creator .. Y (Y/N)
Server name .. DAEFDB29
Remark 0 (Overwrite/SQL/Comment)
Command ===
Enter=Prl===PF2===PF3===PFl===PF5===PFG===PF7===PF8===PF9Y===PF10==PFill==PFl12===
Help Exit Canc

Database Management System Interfaces 181

Generating Natural Data Definition Modules (DDMs)

The functions available on this screen are described in the corresponding sections.
Select SQL Table from a List

This function is used to select a DB2 table from a list for further processing.

> To invoke the Select SQL Table from a List function

m On the SQL Services Menu, enter Function Code S.

= If you enter the function code only, you obtain a list of all tables defined to the DB2 catalog.

* If you do not want a list of all tables but would like only a certain range of tables to be listed,
you can, in addition to the function code, specify a value in the Table Name and/or Creator
fields. You can use asterisk notation (*) or the greater-than character (>) for a start value.

Press ENTER.

The Select SQL Table From A List screen is invoked displaying a list of all DB2 tables reques-
ted. On the list, you can mark a DB2 table with a function code:

Code |Function Description

G Generate DDM from an SQL Table | This function can be used to generate a Natural DDM from
a DB2 table, based on the definitions in the DB2 catalog.

L |List Columns of an SQL Table This function lists all columns of a specific DB2 table.

Generate DDM from an SQL Table

This function is used to generate a Natural DDM from a DB2 table, based on the definitions in the
DB2 catalog.

The following topics are covered below:

= |nvoking the Generate DDM from an SQL Table function

= Assigning Default Values - Generating DDMs in Batch

= DBID/FNR Assignment

= | ong Field Generation

= | ength Indicator for Variable Length Fields: VARBINARY, VARCHAR, LONG VARCHAR, VARGRAPH-
IC, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB

= Null Values

182 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

m [ocator Field for LOB Column

Invoking the Generate DDM from an SQL Table function

> To invoke the function

= On the SQL Services Menu, enter function code G along with the name and creator of the
table for which you wish a DDM to be generated.

= If you do not know the table name/creator, you can use the function Select SQL Table from
a List to choose the table you want.

® If you do not want the creator of the table to be part of the DDM name, enter an N (No) in
the field DDM Name with Creator. The default setting is is Y (Yes).

= If you wish to generate a DDM for a table for which a DDM already exists and you want

the existing one to be replaced by the newly generated one, enter a Y (Yes) in the Replace
field.

By default, Replace is set to N (No) to prevent an existing DDM from being replaced acci-
dentally.

* In the Remark field you can specify the contents of the DDM Remark column. Enter:

0 (Overwrite) for SQL column remarks if defined, overwritten by field information gener-
ated by Natural if available. This is the default setting;

S (SQL) for SQL column remarks if defined and blank otherwise;

C (Comment) for field information generated by Natural if available. SQL column remarks
will be copied to a separate DDM comment line.

By default, Remark is set to 0 (Overwrite).

® To define or alter a default value for the fields Code, Table Name, Creator, Replace, DDM
Name with Creator or Remark use user exit NDBDDM- 2 and its data area NDBDDM- L provided
in library SYSDB2. See Making a User Exit Routine Available. For detailed information on
how to handle NDBDDM- 2, refer to the remarks in its source.

/), Important: Since the specification of any special characters as part of a field or DDM

name does not comply with Natural naming conventions, any special characters allowed
within DB2 must be avoided. DB2 delimited identifiers must be avoided, too.

Database Management System Interfaces 183

Generating Natural Data Definition Modules (DDMs)

Assigning Default Values - Generating DDMs in Batch

To avoid user interaction popup windows during DDM field generation, the user exit NDBDDM- 1
and its data area NDBDDM- L provided in library SYSDB2 can be used. For detailed information on
how to handle NDBDDM- 1, refer to the remarks in its source. See also Making a User Exit Routine
Available.

DBID/FNR Assignment

When the Generate DDM from an SQL Table function is invoked for a table for which a DDM
is to be generated for the first time, the DBID/FNR Assignment screen is displayed. If a DDM is
to be generated for a table for which a DDM already exists, the existing DBID and FNR are used
and the DBID/FNR Assignment screen is suppressed.

On the DBID/FNR Assignment screen, enter one of the database IDs (DBIDs) chosen at Natural
installation time, and the file number (FNR) to be assigned to the DB2 table. Natural requires these
specifications for identification purposes only.

The range of DBIDs which is reserved for DB2 tables is specified in the NTDB macro of the Natural
parameter module (see the Natural Parameter Reference documentation) for the database type DB2.
Any DBID not within this range is not accepted. The FNR can be any valid file number within the
database (between 1 and 65535).

After a valid DBID and FNR have been assigned, a DDM is automatically generated from the
specified table.

Long Field Generation

The maximum field length supported by Natural is 1 GB-1 (1073741823 bytes). If a DB2 table
contains a column which is longer than 253 bytes or if a DB2 column is defined as a DB2 LOB field,
the pop-up window Long Field Generation will be invoked automatically. A DB2 LOB field may
be defined as a simple Natural variable with a maximum length of 1GB-1, or as a dynamic Natural
variable.

A field which is longer than 253 bytes and which is not a DB2 LOB field may be defined as a simple
Natural field with a maximum length of 1GB-1, or as an array. In the DDM, such an array is rep-
resented as a multiple-value variable.

If, for example, a DB2 column has a length of 2000 bytes, you can specify an array element length
of 200 bytes, and you receive a multiple-value field with 10 occurrences, each occurrence with a
length of 200 bytes.

Since generated long fields are not multiple-value fields in the sense of Natural, the Natural C*
notation makes no sense here and is therefore not supported.

When such a generated long field is defined in a Natural view to be referenced by Natural SQL
statements (that is, by host variables which represent multiple-value fields), both when defined

184 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

and when referenced, the specified range of occurrences (index range) must always start with oc-
currence 1. If not, a Natural syntax error is returned.

Example:

UPDATE table SET varchar = farr(*)
SELECT ... INTO #farr(1:5)

Note: When such a generated long field is updated with the Natural DML UPDATE statement,
care must be taken to update each occurrence appropriately.

Length Indicator for Variable Length Fields: VARBINARY, VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB

For each of the column types listed above, an additional length indicator field (format/length 12
or I4 for LOB fields) is generated in the DDM. The length is always measured in number of characters,
not in bytes. To obtain the number of bytes of a VARGRAPHIC, LONG VARGRAPHIC or DBCLOB field, the
length must be multiplied by 2.

The name of a length indicator field begins with L@ followed by the name of the corresponding
field. The value of the length indicator field can be checked or updated by a Natural program.

If the length indicator field is not part of the Natural view and if the corresponding field is a re-
defined long field, the length of this field with UPDATE and STORE operations is calculated without
trailing blanks.

Null Values

With Natural, it is possible to distinguish between a null value and the actual value zero (0) or
blank in a DB2 column.

When a Natural DDM is generated from the DB2 catalog, an additional NULL indicator field is
generated for each column which can be NULL; that is, which has neither NOT NULL nor NOT NULL
WITH DEFAULT specified.

The name of the NULL indicator field begins with N@ followed by the name of the corresponding
field.

When the column is read from the database, the corresponding indicator field contains either zero
(0) (if the column contains a value, including the value 0 or blank) or -1 (if the column contains
no value).

Example:

The column NULLCOL CHAR(6) in a DB2 table definition would result in the following view fields:

Database Management System Interfaces 185

Generating Natural Data Definition Modules (DDMs)

NULLCOL A6.0
N@NULLCOL I 2.0

When the field NULLCOL is read from the database, the additional field NeNULLCOL contains:

" 0 (zero) if NULLCOL contains a value (including the value 0 or blank),

® -1 (minus one) if NULLCOL contains no value.

A null value can be stored in a database field by entering -1 as input for the corresponding NULL
indicator field.

| Note: Ifacolumnis NULL, an implicit RESET is performed on the corresponding Natural
field.

Locator Field for LOB Column

For each LOB column, an additional locator field will be generated in the 14 format.

A L0B locator may be used to reference a L0B value in the DB2 database server, when a LOB value
is not needed locally in a program.

List Columns of an SQL Table

This function lists all columns of a specific DB2 table.

> To invoke the List Columns function

= Onthe SQL Services Menu, enter function code L along with the name and creator of the
table whose columns you wish to be listed, and press Enter.

The List Columns screen for this table is invoked, which lists all columns of the specified
table and displays the following information for each column:

Variable |Content

Name |The DB2 name of the column.

Type |The column type.

Length|The length (or precision if type is DECIMAL) of the column as defined in the DB2 catalog.

Scale |The decimal scale of the column (only applicable if type is DECIMAL).

Updatel|Y The column can be updated.
N The column cannot be updated.
Nulls |Y The column can contain null values.
N The column cannot contain null values.

186 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

Variable |Content

Not A column whose scale length or whose type is not supported by Natural is marked with an
asterisk (*). For such a column, a view field cannot be generated. The maximum scale length
supported is 7 bytes.

The following SQL types are supported:

BIGINT, BINARY, VARBINARY, DECFLOAT, XML

CHAR, VARCHAR, LONG VARCHAR, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DECIMAL,
INTEGER, SMALLINT, DATE, TIME, TIMESTAMP, FLOAT, ROWID, BLOB, CLOB and DBCLOB.

The data types DATE, TIME, TIMESTAMP, FLOAT and ROWID are converted into numeric or alpha-
numeric fields of various lengths: DATE is converted into A10, TIME into A8, TIMESTAMP into
A26, FLOAT into F8 and ROWID into A40. DATE and TIME could be mapped alternatively to
Natural DATE and Natural TIME respectively.

For DB2, Natural provides a DB2 TIMESTAMP column as an alphanumeric field (A26) in the
format YYYY-MM-DD-HH. II.SS. MMMMMM. Alternatively, you can generate the Natural TIME field
(data format T) as DB2 TIMESTAMP data type if the DBTSTI option of the COMPOPT system com-
mand is set to ON (see the System Commands documentation).

You can use the Natural subprogram NDBSTMP to compute TIMESTAMP (A26) fields.

Making a User Exit Routine Available

You can customize the Generating Natural Data Definition Modules (DDMs) map with user
exit routine NDBDDM-1 or NDBDDM- 2.

> To make user exit routine NDBDDM-1 or NDBDDM-1 available

1 Catalog the NDBDDM- num source object under the name NDBDDMUnum in library SYSDB2.

| Note: The names of the source object and the cataloged object of the user exit routine

must be different to ensure that the overwriting of the source object during an update
installation does not affect the cataloged object.

2 Copy NDBDDMUnum to steplib SYSLIBS.

A subprogram used by SYSDDM searches for NDBDDMUnum in steplib SYSLIBS.

Database Management System Interfaces 187

188

14 Dynamic and Static SQL Support

= SQL Support - General INfOrMationccoiuiiiiiiiii e 190
= |nternal Handling of Dynamic SEateMENLSooiiiiiiiiiie e 191
= Preparing Programs for Static EXECULIONveiiiiiii e 194
= Execution of Natural in Static MOGEoooiiiiii e 200
B Mixed Dynamic/Static MOGEc.vvviiiiiei e 200
B MESSAGES AN COUBS ...ttt ettt 200
= Application Plan SWItChINGooiiiiiiii e 201

189

Dynamic and Static SQL Support

This section describes the dynamic and static SQL support provided by Natural.
Related Documentation

" For a list of error messages that may be issued during static generation, see Static Generation
Messages and Codes Issued under NDB/NSQ in the Natural Messages and Codes documentation.

® For information on Static SQL with Natural Security, see Integration with Natural Security.

SQL Support - General Information

The SQL support of Natural combines the flexibility of dynamic SQL support with the high per-
formance of static SQL support.

In contrast to static SQL support, the Natural dynamic SQL support does not require any special
consideration with regard to the operation of the SQL interface. All SQL statements required to
execute an application request are generated automatically and can be executed immediately with
the Natural RUN command. Before executing a program, you can look at the generated SQLCODE,
using the LISTSQL command.

Access to DB2 through Natural has the same form whether dynamic or static SQL support is used.
Thus, with static SQL support, the same SQL statements in a Natural program can be executed in
either dynamic or static mode. An SQL statement can be coded within a Natural program and,
for testing purposes, it can be executed using dynamic SQL. If the test is successful, the SQL
statement remains unchanged and static SQL for this program can be generated.

Thus, during application development, the programmer works in dynamic mode and all SQL
statements are executed dynamically, whereas static SQL is only created for applications that have
been transferred to production status.

190 Database Management System Interfaces

Dynamic and Static SQL Support

MNatural Program

FIND...
UPDATE...
INSERT...
DELETE...

Generated SQL Code

SELECT...
UPDATE...
INSERT...

DELETE...

DBZ Dyn. Access Method -4 >

Internal Handling of Dynamic Statements

Natural automatically provides for the preparation and execution of each SQL statement and
handles the opening and closing of cursors used for scanning a table.

The following topics are covered:

= |/O Module NDBIOMO for Dynamic SQL Statement Execution
= Statement Table
= Processing of SQL Statements Issued by Natural

I/0 Module NDBIOMO for Dynamic SQL Statement Execution

As each dynamic execution of an SQL statement requires a statically defined DECLARE STATEMENT
and DECLARE CURSOR statement, a special I/O module named NDBIOMO is provided which contains
a fixed number of these statements and cursors. This number is specified during the generation
of the NDBIOMO module in the course of the Natural for DB2 installation process.

Database Management System Interfaces 191

Dynamic and Static SQL Support

Statement Table

If possible, an SQL statement is only prepared once and can then be executed several times if re-
quired. For this purpose, Natural internally maintains a table of all SQL statements that have been
prepared and assigns each of these statements to a DECLAREd STATEMENT in the module NDBIOMO.
In addition, this table maintains the cursors used by the SQL statements SELECT, FETCH, UPDATE
(positioned), and DELETE (positioned).

Each SQL statement is uniquely identified by:

® the name of the Natural program that contains this SQL statement,
® the line number of the SQL statement in this program,
" the name of the Natural library into which this program was stowed,

® the time stamp when this program was stowed.

Once a statement has been prepared, it can be executed several times with different variable values,
using the dynamic SQL statement EXECUTE USING DESCRIPTORor OPEN CURSOR USING DESCRIPTOR.

When the full capacity of the statement table is reached, the entry for the next prepared statement
overwrites the entry for a free statement whose latest execution is the least recent one.

When anew SELECT statement is requested, a free entry in the statement table with the correspond-
ing cursor is assigned to it and all subsequent FETCH, UPDATE, and DELETE statements referring to
this SELECT statement will use this cursor. Upon completion of the sequential scanning of the table,
the cursor is released and free for another assignment. While the cursor is open, the entry in the
statement table is marked as used and cannot be reused by another statement.

If the number of nested FIND (SELECT) statements reaches the number of entries available in the
statement table, any further SQL statement is rejected at execution time and a Natural error message
is returned.

The size of the statement table depends on the size specified for the module NDBI0MO. Since the
statement table is contained in the DB2 buffer area, the setting of Natural profile parameter DB2SIZE
(see also Natural Parameter Modifications for Natural for DB2 in Installing Natural for DB2 on z/OS in
the Installation documentation) may not be sufficient and may need to be increased.

192 Database Management System Interfaces

Dynamic and Static SQL Support

Processing of SQL Statements Issued by Natural

The embedded SQL uses cursor logic to handle SELECT statements. The preparation and execution
of a SELECT statement is done as follows:

1. The typical SELECT statement is prepared by a program flow which contains the following em-
bedded SQL statements (note that X and SQL0BJ are SQL variables, not program labels):

DECLARE SQLOBJ STATEMENT
DECLARE X CURSOR FOR SQLOBJ
INCLUDE SQLDA (copy SQL control block)

Then, the following statement is moved into SQLSOURCE:

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES
WHERE NAME IN (?, ?)

AND AGE BETWEEN ? AND ?

Note: The question marks (?) above are parameter markers which indicate where values

are to be inserted at execution time.
PREPARE SQLOBJ FROM SQLSOURCE
2. Then, the SELECT statement is executed as follows:

OPEN X USING DESCRIPTOR SQLDA
FETCH X USING DESCRIPTOR SQLDA

The descriptor SOLDA is used to indicate a variable list of program areas. When the OPEN statement
is executed, it contains the address, length, and type of each value which replaces a parameter
marker in the WHERE clause of the SELECT statement. When the FETCH statement is executed, it
contains the address, length, and type of all program areas which receive fields read from the
table.

When the FETCH statement is executed for the first time, it sets the Natural system variable
*NUMBER to a non-zero value if at least one record is found that meets the search criteria. Then,
all records satisfying the search criteria are read by repeated execution of the FETCH statement.

To help improve performance, especially when using distributed databases, the DB2-specific
FOR FETCH ONLY clause can be used. This clause is generated and executed if rows are to be re-
trieved only; that is, if no updating is to take place.

3. Once all records have been read, the cursor is released by executing the following statement:

Database Management System Interfaces 193

Dynamic and Static SQL Support

CLOSE X

Preparing Programs for Static Execution

This section describes how to prepare Natural programs for static execution.
The following topics are covered:

= Basic Principles

= Generation Procedure: CMD CREATE Command

= Precompilation of the Generated Assembler Program
= Modification Procedure: CMD MODIFY Command

= BIND of the Precompiled DBRM

For an explanation of the symbols used in this section to describe the syntax of Natural statements,
see Syntax Symbols in the Statements documentation.

Basic Principles

Static SQL is generated in Natural batch mode for one or more Natural applications which can
consist of one or more Natural object programs. The number of programs that can be modified
for static execution in one run of the generation procedure is limited to 999.

During the generation procedure, the database access statements contained in the specified Nat-
ural objects are extracted, written to work files, and transformed into a temporary Assembler
program. If no Natural program is found that contains SQL access or if any error occurs during
static SQL generation, batch Natural terminates and condition code 40 is returned, which means
that all further JCL steps must no longer be executed.

The Natural modules NDBCHNK and NDBSTAT must reside in a steplib of the generation step. Both
are loaded dynamically during the execution of the generation step.

The temporary Assembler program is written to a temporary file (the Natural work file CMWKF06)
and precompiled. The size of the workfile is proportional to the maximum number of programs,
the number of SQL statements and the number of variables used in the SQL statements. During
the precompilation step, a database request module (DBRM) is created, and after the precompilation
step, the precompiler output is extracted from the Assembler program and written to the corres-
ponding Natural objects, which means that the Natural objects are modified (prepared) for static
execution. The temporary Assembler program is no longer used and deleted.

A static database request module is created by using either the sample job provided on the install-
ation medium or an appropriate job created with the Create DBRM function.

194 Database Management System Interfaces

Dynamic and Static SQL Support

Generation Procedure: CMD CREATE Command

The following topics are covered:

= Generating Static SQL for Natural Programs
= Static Name
= USING Clause

Generating Static SQL for Natural Programs

> To generate static SQL for Natural programs

1

Logon to the Natural system library SYSDB2.

Since a new SYSDB?2 library has been created when installing Natural for DB2, ensure that it
contains all Predict interface programs necessary to run the static SQL generation. These
programs are loaded into SYSDB? at Predict installation time (see the relevant Predict product
documentation).

Specify the CMD CREATE command and the Natural input necessary for the static SQL generation
process; the CMD CREATE command has the following syntax:

CMD CREATE DBRM static-name USING using-clause

{application-name,object-name,excluded-object}

The generation procedure reads but does not modify the specified Natural objects. If one of
the specified programs was not found or had no SQL access, return code 4 is returned at the
end of the generation step.

Static Name

If the PREDICT DOCUMENTATION option is to be used, a corresponding Predict static SQL entry must
be available and the static-name must correspond to the name of this entry. In addition, the

static-name must correspond to the name of the DBRM to be created during precompilation. The
static-name can be up to 8 characters long and must conform to Assembler naming conventions.

Database Management System Interfaces 195

Dynamic and Static SQL Support

USING Clause

The using-clause specifies the Natural objects to be contained in the DBRM. These objects can
either be specified explicitly as INPUT DATA in the JCL or obtained as PREDICT DOCUMENTATION
from Predict.

INPUT DATA YES OFF [LIB
{ PREDICT } WITH XREF NO [FS { oN }] Tib-name
DOCUMENTATION EORCE]

If the parameters to be specified do not fit in one line, specify the command identifier (CMD) and
the various parameters in separate lines and use both the input delimiter (as specified with the
Natural profile/session parameter ID - default is a comma (,) - and the continuation character in-
dicator - as specified with the Natural profile/session parameter CF; default is a percent (%) - as
shown in the following example:

Example:

CMD
CREATE,DBRM,static,USING,PREDICT,DOCUMENTATION,WITH, XREF,NO, %
LIB, 7ibrary

Alternatively, you can also use abbreviations as shown in the following example:

Example:

CMD CRE DBRM static US IN DA W XR Y FS OFF LIB Tibrary
The sequence of the parameters USING, WITH, S, and LIB is optional.
INPUT DATA

Asinput data, the applications and names of the Natural objects to be included in the DBRM must
be specified in the subsequent lines of the job stream (app7ication-name,object-name). A subset
of these objects can also be excluded again (excluded-objects). Objects in libraries whose names
begin with SYS can be used for static generation, too.

The applications and names of Natural objects must be separated by the input delimiter - as spe-
cified with the Natural profile parameter 1D; default is a comma (,). If you wish to specify all objects
whose names begin with a specific string of characters, use an object -name or excluded-objects
name that ends with asterisk notation (*). To specify all objects in an application, use asterisk
notation only.

Example:

196 Database Management System Interfaces

Dynamic and Static SQL Support

LIBI,ABC*
LIBZ2,A*,AB*
LIB2,*

The specification of applications/objects must be terminated by a line that contains a period (.)
only.

PREDICT DOCUMENTATION

Since Predict supports static SQL for DB2, you can also have Predict supply the input data for
creating static SQL by using already existing PREDICT DOCUMENTATION.

WITH XREF Option

Since Predict Active References supports static SQL for DB2, the generated static DBRM can be
documented in Predict, and the documentation can be used and updated with Natural.

WITH XREF is the option which enables you to store cross-reference data for a static SQL entry in
Predict each time a static DBRM is created (YES). You can instead specify that no cross-reference
data are stored (NO) or that a check is made to determine whether a Predict static SQL entry for
this static DBRM already exists (FORCE). If so, cross-reference data are stored; if not, the creation
of the static DBRM is not allowed. For more detailed information on Predict Active References,
refer to the relevant Predict documentation.

When WITH XREF (YES/FORCE) is specified, XREF data are written for both the Predict static SQL
entry (if defined in Predict) and each generated static Natural program. However, static generation
with WITH XREF (YES/FORCE) is possible only if the corresponding Natural programs have been
cataloged with XREF ON.

WITH XREF FORCE only applies to the USING INPUT DATA option.

Note: If you donotuse Predict, the XREF option must be omitted or set to NO and the module
NATXRF2 need not be linked to the Natural nucleus.

FS Option

If the FS (file server) option is set to ON, a second SELECT is generated for the Natural file server
for DB2. ON is the default setting.

If the FS option is set to 0FF, no second SELECT is generated, which results in less SQL statements
being generated in your static DBRM and thus in a smaller DBRM.

LIB Option

With the LIB (library) option, a Predict library other than the default library (*SYSSTA*) can be
specified to contain the Predict static SQL entry and XREF data. The name of the library can be up
to eight characters long.

Database Management System Interfaces 197

Dynamic and Static SQL Support

Precompilation of the Generated Assembler Program

In this step, the precompiler is invoked to precompile the generated temporary Assembler program.
The precompiler output consists of the DBRM and a precompiled temporary Assembler program
which contains all the database access statements transformed from SQL into Assembler statements.

Later, the DBRM serves as input for the BIND step and the Assembler program as input for the
modification step.

Modification Procedure: CMD MODIFY Command

The modification procedure modifies the Natural objects involved by writing precompiler inform-
ation into the object and by marking the object header with the static-name as specified with the
CMD CREATE command.

In addition, any existing copies of these objects in the Natural global buffer pool (if available) are
deleted and XREF data are written to Predict (if specified during the generation procedure).

> To perform the modification procedure

1 Logon to the Natural system library SYSDB2.
2 Specify the CMD MODIFY command which has the following syntax:

CMD MODIFY [XREF]

The input for the modify step is the precompiler output which must reside on a data set defined
as the Natural work file CMWKFO1.

The output consists of precompiler information which is written to the corresponding Natural
objects. In addition, a message is returned telling you whether it was the first time an object was
modified for static execution (modified) or whether it had been modified before (re-modified).

Assembler/Natural Cross-References

If you specify the XREF option of the CMD MODIFY command, an output listing is created on the
work file CMWKF02, which contains the DBRM name and the Assembler statement number of each
statically generated SQL statement together with the corresponding Natural source code line
number, program name, library name, database ID and file number.

198 Database Management System Interfaces

Dynamic and Static SQL Support

DBRMNAME STMTNO LINE NATPROG NATLIB DB FNR COMMENT
TESTDBRM 000627 0390 TESTPROG SAG 010 042 INSERT
000641 0430 INSERT
000652 0510 SELECT
000674 0570 SELECT
000698 0570 SELECT 2ND
000728 0650 UPD/DEL
000738 0650 UPD/DEL 2ND
000751 0700 SELECT
000775 0700 SELECT 2ND

Column Explanation

DBRMNAME |Name of the DBRM which contains the static SQL statement.
STMTNO | Assembler statement number of the static SQL statement.

LINE Corresponding Natural source code line number.

NATPROG |Name of the Natural program that contains the static SQL statement.

NATLIB |Name of the Natural library that contains the Natural program.
DB/ FNR [|Natural database ID and file number.

COMMENT |Type of SQL statement, where 2ND indicates that the corresponding statement is used for a
reselection; see also the Concept of the File Server.

BIND of the Precompiled DBRM

We recommend that you execute the DB2 BIND command after the CMD MODIFY command.

The DB2 BIND command binds the DBRM into a DB2 package. You can bind one or more DB2
packages into a DB2 application plan. In addition to the packages of static DBRMs created with
the CMD CREATE command, this application plan can also contain the package of the DBRM of the
NDBIOMO module Natural provides for dynamic SQL execution.

A DBRM can be bound into any number of packages and the packages can be bound into any
number of application plans where required. A plan is physically independent of the environment
where the program is to be run. However, you can group your packages logically into plans which
are to be used for either batch or online processing, where the same package can be part of both
a batch plan and an online plan.

Unless you are using plan switching, only one plan can be executed per Natural session. Thus,
you must ensure that the plan name specified in the BIND step is the same as the one used to execute
Natural.

Database Management System Interfaces 199

Dynamic and Static SQL Support

Execution of Natural in Static Mode

To be able to execute Natural in static mode, all users of Natural must have the DB2 EXECUTE
PLAN/PACKAGE privilege for the plan created in the BIND step.

To execute static SQL, start Natural and execute the corresponding Natural program. Internally,
the Natural runtime interface evaluates the precompiler data written to the Natural object and
then performs the static accesses.

To the user there is no difference between dynamic and static execution.

Mixed Dynamic/Static Mode

It is possible to operate Natural in a mixed static and dynamic mode where for some programs
static SQL is generated and for some not.

The mode in which a program is run is determined by the Natural object program itself. If a static
DBRM is referenced in the executing program, all statements in this program are executed in
static mode.

| Note: Natural programs which return a runtime error do not automatically execute in dy-

namic mode. Instead, either the error must be corrected or, as a temporary solution, the
Natural program must be recataloged to be able to execute in dynamic mode.

Within the same Natural session, static and dynamic programs can be mixed without any further
specifications. The decision which mode to use is made by each individual Natural program.

Messages and Codes

For a list of error messages that may be issued during static generation, refer to Static Generation
Messages and Codes Issued under NDB/NSQ in the Natural Messages and Codes documentation.

200 Database Management System Interfaces

Dynamic and Static SQL Support

Application Plan Switching

This section describes how to switch application plans within the same Natural session in different
TP-monitor environments or in batch mode.

The following topics are covered:

= Basic Principles of Plan Switching

= Plan Switching under CICS

= Plan Switching under Com-plete

= Plan Switching under IMS TM

= Plan Switching under TSO and in Batch Mode

Basic Principles of Plan Switching

When using application plan switching, you can switch to a different application plan within the
same Natural session.

If a second application plan is to be used, this can be specified by executing the Natural program
NATPLAN. NATPLAN is contained in the Natural system library SYSDB2 and can be invoked either
from within a Natural program or dynamically by entering the command NATPLAN at the NEXT
prompt. The only input value required for NATPLAN is an eight-character plan name. If no plan
name is specified, you are prompted by the system to do so.

Before executing NATPLAN, ensure that any open DB2 recovery units are closed.

Since the NATPLAN program is also provided in source form, user-written plan switching programs
can be created using similar logic.

The actual switch from one plan to another differs in the various environments supported. The
feature is available under Com-plete, CICS, and IMS TM MPP. When using the Call Attachment
Facility (CAF) or Resource Recovery Services Attachment Facility (RRSAF), it is also available in
TSO and batch environments.

In some of these environments, a transaction ID or code must be specified instead of a plan name.

Database Management System Interfaces 201

Dynamic and Static SQL Support

Plan Switching under CICS

Under CICS, you have the option of using either plan switching by transaction ID (default) or
dynamic plan selection exit routines. Thus, by setting the field #SWITCH-BY- TRANSACTION-ID in
the NATPLAN program to either TRUE or FALSE, either the subroutine CMTRNSET or the desired plan
name is written to temporary storage queue.

For more information on activating plan switching under CICS, see Installation Steps Specific to
CICS in the Installing Natural for DB2 on z/OS documentation.

Below is information on:

= Plan Switching by CICS/DB2 Exit Routine
Plan Switching by CICS/DB2 Exit Routine

If #SWITCH-BY-TRANSACTION-ID is set to FALSE, the desired plan name is written to a temporary
storage queue for a CICS/DB2 exit routine specified as PLANEXit attribute of a DB2ENTRY or of
the DB2CONN definition, the NATPLAN program must be invoked before the first DB2 access.
Natural for DB2 provides NDBUEXT as CICS DB2 plan selection exit program. For additional inform-
ation on CICS/DB2 exit routines, refer to the relevant IBM literature.

The name of the temporary storage queue is PLANxxxx, where xxxx is the CICS terminal identifier.

When running in a CICSplex environment, the CICS temporary storage queue PLANxxxx containing
the plan name must be defined with TYPE=SHARED or TYPE=REMOTE in a CICS TST.

For each new DB2 unit of recovery, the appropriate plan selection exit routine is automatically
invoked. This exit routine reads the temporary storage record and uses the contained plan name
for plan selection.

When no temporary storage record exists for the Natural session, a default plan name, contained
in the plan exit, can be used. If no plan name is specified by the exit, the name of the plan used is
the same as the name of the static program (DBRM) issuing the SQL call. If no such plan name
exists, an SQL error results.

Plan Switching under Com-plete

In Com-plete environments, plan switching is accomplished by using the Call Attachment Facility
(CAF), which releases the thread in use and attaches another one that has a different plan name.

Once the DB2 connection has been established, the same plan name continues to be used until the
plan is explicitly changed with IBM's call attachment language interface (DSNALI). For additional
information on the CAF interface, refer to the relevant IBM literature.

Under Com-plete, the NATPLAN program first issues an END TRANSACTION statement and then
invokes an Assembler routine by using DB2SERV.

202 Database Management System Interfaces

Dynamic and Static SQL Support

The assembler routine performs the actual switching. It issues a CLOSE request to DSNALI to terminate
the DB2 connection (if one exists). It then issues an 0PEN request to re-establish the DB2 connection
and to allocate the resources needed to execute the specified plan.

If NATPLAN has not been executed before the first SQL call, the default plan used is the one defined
in the Com-plete startup parameters. Once a plan has been changed using NDBPLAN, it remains
scheduled until another plan is scheduled by NDBPLAN or until the end of the Natural session.

Plan Switching under IMS TM

In an IMS MPP environment, the switch is accomplished by using direct or deferred message
switching. As a different application plan is associated with each IMS application program, message
switching from one transaction code to another automatically switches the application plan being
used.

Since Natural applications can perform direct or deferred message switches by calling the appro-
priate supplied routines, use of the NATPLAN program for plan switching is optional.

NATPLAN calls the Assembler routine CMDEF SW, which sets the new transaction code to be used with
the next following terminal I/O.

Plan Switching under TSO and in Batch Mode

In the TSO and batch environments, plan switching is accomplished by using the Call Attachment
Facility (CAF) or the Resource Recovery Services Attachment Facility (RRSAF). Either facility re-
leases the thread in use and attaches another one that has a different plan name.

Below is information on:

= Plan Selection with CAF
= Plan Selection with RRSAF

Plan Selection with CAF

Initial connection and plan setting can be done using the subparameters DB2PLAN and DB2SSID of
the NTDB2 macro or of the DB2 profile parameter without using the NATPLAN program. However,
the initial settings could be overwritten by using the NATPLAN program.

When using the Call Attachment Facility (CAF), plan selection is either implicit or explicit. If no
DB2 connection has been made before the first SQL call, a plan name is selected by DB2. If so, the
plan name used is the same as the name of the program (DBRM) issuing the SQL call.

Once the DB2 connection has been established, the plan name is retained until explicitly changed
by IBM's call attachment language interface (DSNALI). For additional information on the CAF in-
terface, refer to the relevant IBM literature.

Database Management System Interfaces 203

Dynamic and Static SQL Support

Under TSO and in batch mode, the NATPLAN program first issues an END TRANSACTION statement
and then invokes an Assembler routine by using DB2SERV.

Note: Modify the NATPLAN program by setting the #SSM field to the current DB2 subsystem
name; the default name is DB2.

The assembler routine performs the actual switching. It issues a CLOSE request to DSNALI to terminate
a possible DB2 connection. It then issues an OPEN request to re-establish the DB2 connection and
to allocate the resources needed to execute the specified plan.

If NATPLAN has not been executed before the first SQL call, plan selection is done by DSNALI. If so,
the plan name used is the same as the name of the program issuing the SQL call. The subsystem
ID used is the one specified during the DB2 installation. If no such plan name or subsystem ID
exists, a Natural error message is returned.

If a static DBRM issues the SQL call, a plan name must exist with the same name as the one of the
static DBRM.

If dynamic SQL is used, a DB2 plan must exist which contains a package with the DBRM of the
NDBIOMO module. If the name of the DB2 plan has neither been defined in the NATPLAN program
nor with the DB2PLAN keyword subparameter, the DB2 Call Attachment Facility (CAF) uses the
name of the NDBIOMO DBRM as the default plan name.

Note: To avoid any confusion concerning the chosen plan name and/or subsystem ID, always
call NATPLAN before the first SQL call.

Plan Selection with RRSAF

Initial connection and plan setting can be done using the keyword subparameters DB2COLL, DB2GROV,
DB2PLAN, DB2SSID and DB2XID of the NTDB2 macro or of the DB2 profile parameter without using
the NATPLAN program. However, the initial settings can be overwritten by using the NATPLAN pro-
gram.

When using the Resource Recovery Services Attachment Facility (RRSAF), plan selection is explicit.

RRSAF is used if IBM's DSNRLI interface module is linked to Natural. Once the DB2 connection
has been established, the plan name is retained until explicitly changed with RRSAF. For additional
information on RRSAF, refer to the relevant IBM literature.

The NATPLAN program performs the actual switching. It issues a TERMINATE IDENTIFY request to
DSNRLI to terminate a possible DB2 connection. NATPLAN then issues an IDENTIFY request to re-es-
tablish the DB2 connection. This request is followed by SIGNON and CREATE THREAD requests.

In an RRSAF environment, up to four of the following parameters can be specified in NATPLAN
where #PLAN is mandatory:

204 Database Management System Interfaces

Dynamic and Static SQL Support

Parameter | Default Value Format | Explanation

#fPLAN |None A8 |Name of the plan used for SQL processing in the thread created (CREATE
THREAD).
#SSM DB2 A4 Subsystem ID of the DB2 server connected (IDENTIFY).

#COLLID|COLLID A18 |Only used if the first character of #PLAN is a question mark (?).
Collection ID used for SQL processing in the thread created (CREATE
THREAD).

#X1ID 1 14 Indicates that a global transaction ID is used.
If set to 0 (SIGNON), no global transaction ID is used.

Example of Plan Selection with RRSAF under TSO

The example below demonstrates plan selection under TSO by using RRSAF.

NATPLAN
<Enter>
Please enter new plan name NDBPLAN4
,SUB SYSTEM ID DB27
,COLLECTION ID
,global XID (0/1) 1
<Enter>

Example of Plan Selection with RRSAF in Batch Mode

The example below demonstrates plan selection in batch mode by using RRSAF:

NATPLAN NDBPLAN4,DB27, ,1

Database Management System Interfaces 205

206

15 Using Natural Statements and System Variables

= DB2 Special Register CONSIAErationcooiuuiiiiiiiii e 208
= Using Natural Native DML StatemMeNtscooiiiiiiiiiiiic e 208
= Using Natural SQL STAtEMENTSoeiiiiiiii e 220
= Using Natural System Variablescoouiiiiiiiii e 234
B MUILIPIE ROW PrOCESSING ...vvvvtvivttettsttisttitisieeseteeesseeeseess s nnnnes 235
B B0 HANAING ...t 243

207

Using Natural Statements and System Variables

This section contains special considerations when using Natural native DML statements and
Natural system variables with Natural SQL statements and DB2.

It mainly consists of information also contained in the Natural basic documentation set where
each Natural statement and variable is described in detail.

For an explanation of the symbols used in this section to describe the syntax of Natural statements,
see Syntax Symbols in the Statements documentation.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

DB2 Special Register Consideration

NDB refreshes the following DB2 special registers automatically to the values, which applied to
the least previous executed transaction.

® CURRENT SQLID

" CURRENT SCHEMA

= CURRENT PATH

" CURRENT PACKAGE PATH

NDB refreshes the following DB2 special registers only automatically to the values, which applied
to the least previous executed transaction, if the parameter REFRESH=0N is set.

® CURRENT PACKAGESET
" CURRENT SERVER

Those special registers are refreshed regardless whether the previously executed transaction was
rolled back or was committed.

All other special registers are not implicitly manipulated by NDB.

Using Natural Native DML Statements

This section summarizes particular points you have to consider when using Natural data manip-
ulation language (DML) statements with DB2. Any Natural statement not mentioned in this section
can be used with DB2 without restriction.

Below is information on the following Natural DML statements:

= BACKOUT TRANSACTION

208 Database Management System Interfaces

Using Natural Statements and System Variables

= DELETE

= END TRANSACTION
= FIND

= HISTOGRAM

= READ

= STORE

= UPDATE

BACKOUT TRANSACTION

The Natural native DML statement BACKOUT TRANSACTION undoes all database modifications made
since the beginning of the last logical transaction. Logical transactions can start either after the
beginning of a session or after the last SYNCPOINT, END TRANSACTION, or BACKOUT TRANSACTION
statement.

How the statement is translated and which command is actually issued depends on the TP-mon-
itor environment:

If this command is executed within a Natural stored procedure or Natural user-defined function
(UDF), Natural for DB2 executes the underlying rollback operation. This sets the caller into a
must-rollback state. If this command is executed within a Natural stored procedure or UDF for
Natural error processing (implicit ROLLBACK), Natural for DB2 does not execute the underlying
rollback operation, thus allowing the caller to receive the original Natural error.

Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS ROLLBACK
command. However, in pseudo-conversational mode, only changes made to the database since

the last terminal I/O are undone. This is due to CICS-specific transaction processing, see Natural
for DB2 under CICS.

| Note: Beaware that with terminal input in database loops, Natural switches to conversa-

tional mode if no file server is used.

In batch mode and under TSO, the BACKOUT TRANSACTION statement is translated into an SQL
ROLLBACK command.

] Note: If running in a DSNMTVO01 environment, the BACKOUT TRANSACTION statement is
ignored if the used PSB has been generated without the CMPAT=YES option.

Under IMS TM, the BACKOUT TRANSACTION statement is translated into an IMS Rollback (ROLB)
command. However, only changes made to the database since the last terminal I/O are undone.
This is due to IMS TM-specific transaction processing, see Natural for DB2 under IMS TM.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the
outermost loop of nested loops.

Database Management System Interfaces 209

Using Natural Statements and System Variables

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural
program issues database calls, too. The calling Natural program must issue the BACKOUT
TRANSACTION statement for the external program.

If a program tries to backout updates which have already been committed, for example by a ter-
minal I/O, a corresponding Natural error message (NAT3711) is returned.

DELETE

The Natural native DML statement DELETE is used to delete a row from a table which has been
read with a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement DELETE
WHERE CURRENT OF cursor-name, which means that only the row which was read last can be deleted.

Example:

FIND EMPLOYEES WITH NAME = "SMITH'
AND FIRST_NAME = 'ROGER'
DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for
example, CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR

SELECT FROM EMPLOYEES

WHERE NAME = 'SMITH' AND FIRST_NAME = 'ROGER' FOR UPDATE OF NAME
DELETE FROM EMPLOYEES

WHERE CURRENT OF CURSORI

Both the SELECT and the DELETE statement refer to the same cursor.

Natural translates a Natural native DML DELETE statement into a Natural SQL DELETE statement
in the same way it translates a Natural native DML FIND statement into a Natural SQL SELECT
statement.

A row read with a FIND SORTED BY cannot be deleted due to DB2 restrictions explained with the
FIND statement. A row read with a READ LOGICAL cannot be deleted either.

DELETE when Using the File Server

If a row rolled out to the file server is to be deleted, Natural rereads automatically the original
row from the database to compare it with its image stored in the file server. If the original row has
not been modified in the meantime, the DELETE operation is performed. With the next terminal
I/O, the transaction is terminated, and the row is deleted from the actual database.

If the DELETE operates on a scrollable cursor, the row on the file server is marked as DELETE hole
and is deleted from the base table.

210 Database Management System Interfaces

Using Natural Statements and System Variables

However, if any modification is detected, the row will not be deleted and Natural issues the
NAT3703 error message for non-scrollable cursors.

If the DELETE operates on a scrollable cursor, Natural for DB2 simulates SQLCODE -224 THE
RESULT TABLE DOES NOT AGREE WITH THE BASE TABLE USING for DB2 compliance.

If the DELETE operates on a scrollable cursor and the row has become a hole, Natural for DB2
simulates SQLCODE -222 AN UPDATE OR DELETE OPERATION WAS ATTEMPTED AGAINST
A HOLE.

Since a DELETE statement requires that Natural rereads a single row, a unique index must be
available for the respective table. All columns which comprise the unique index must be part of
the corresponding Natural view.

END TRANSACTION

The Natural native DML statement END TRANSACTION indicates the end of a logical transaction
and releases all DB2 data locked during the transaction. All data modifications are committed and
made permanent.

How the statement is translated and which command is actually issued depends on the TP-mon-
itor environment:

= If this command is executed from a Natural stored procedure or user defined function (UDF),
Natural for DB2 does not execute the underlying commit operation. This allows the stored
procedure or UDF to commit updates against non DB2 databases.

B Under CICS, the END TRANSACTION statement is translated into an EXEC CICS SYNCPOINT com-
mand. If the file server is used, an implicit end-of-transaction is issued after each terminal I/O.

This is due to CICS-specific transaction processing in pseudo-conversational mode, see Natural
for DB2 under CICS.

® Inbatch mode and under TSO, the END TRANSACTION statement is translated into an SQL COMMIT
WORK command.

| Note: If running ina DSNMTVO01 environment the END TRANSACTION statement is ignored
if the used PSB has been generated without the CMPAT=YES option.

= Under IMS TM,, the END TRANSACTION statement is not translated into an IMS CHKP call, but is
ignored. Due to IMS TM-specific transaction processing (see Natural for DB2 under IMS TM),
an implicit end-of-transaction is issued after each terminal I/O.

Except when used in combination with the SQL WITH HOLD clause (see SELECT - SQL in Using
Natural SQL Statements), an END TRANSACTION statement must not be placed within a database
loop, since all cursors are closed when a logical unit of work ends. Instead, it has to be placed
outside such a loop or after the outermost loop of nested loops.

Database Management System Interfaces 211

Using Natural Statements and System Variables

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program
issues database calls, too. The calling Natural program must issue the END TRANSACTION statement
on behalf of the external program.

] Note: With DB2, the END TRANSACTION statement cannot be used to store transaction data.

FIND

The Natural native DML statement FIND corresponds to the Natural SQL statement SELECT.
Example:

Natural native DML statements:

FIND EMPLOYEES WITH NAME = "BLACKMORE'
AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent Natural SQL statement:

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES
WHERE NAME = 'BLACKMORE'
AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement as described in Pro-
cessing of SQL Statements Issued by Natural in the section Internal Handling of Dynamic State-
ments. The SELECT statement is executed by an OPEN CURSOR statement followed by a FETCH com-
mand. The FETCH command is executed repeatedly until either all records have been read or the

program flow exits the FIND processing loop. A CLOSE CURSOR command ends the SELECT processing.

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The
basic search criterion for a DB2 table can be specified in the same way as for an Adabas file. This
implies that only database fields which are defined as descriptors can be used to construct basic

search criteria and that descriptors cannot be compared with other fields of the Natural view (that
is, database fields) but only with program variables or constants.

| Note: Aseach database field (column) of a DB2 table can be used for searching, any database
field can be defined as a descriptor in a Natural DDM.

The WHERE clause of the FIND statement is evaluated by Natural after the rows have been selected
via the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields can
be compared with other database fields.

| Note: DB2 does not have sub-, super-, or phonetic descriptors.

212 Database Management System Interfaces

Using Natural Statements and System Variables

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT (*) clause. The
number of rows found is returned in the Natural system variable *NUMBER as described in the
Natural System Variables documentation.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing.
If the FIND UNIQUE statement is referenced by an UPDATE statement, a non-cursor (Searched) UPDATE
operation is generated instead of a cursor-oriented (Positioned) UPDATE operation. Therefore, it
can be used if you want to update a DB2 primary key. It is, however, recommended to use the
Natural SQL Searched UPDATE statement to update a primary key.

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated intoa SELECT SINGLE
statement as described in the section Using Natural SQL Statements.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN clauses
cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY clause,
which follows the search criterion. Because this produces a read-only result table, a row read with
a FIND statement that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation time. If this limit is
exceeded, a Natural error message is returned.

] Notes:

1. If a processing limit is specified as a constant integer number, for example, FIND (5), the limit-
ation value will be translated into a FETCH FIRST integer ROWS ONLY clause in the generated
SQL string.

2. Natural for DB2 supports DB2 multiple row processing on behalf of the MULTIFETCH clause of
the FIND statement.
FIND when using the File Server

As far as the file server is concerned, there are no programming restrictions with selection state-
ments. It is, however, recommended to make yourself familiar with its functionality considering
performance and file server space requirements.

Database Management System Interfaces 213

Using Natural Statements and System Variables

HISTOGRAM

The Natural DML statement HISTOGRAM returns the number of rows in a table which have the same
value in a specific column. The number of rows is returned in the Natural system variable *NUMBER
as described in the Natural System Variables documentation.

Example:

Natural native DML statements:

HISTOGRAM EMPLOYEES FOR AGE
O0BTAIN AGE

Equivalent Natural SQL statement:

SELECT COUNT(*), AGE FROM EMPLOYEES
WHERE AGE > -999
GROUP BY AGE
ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the
control flow is similar to the flow explained for the FIND statement.

Note: With Universal Database Server for z/OS Version 8, Natural for DB2 supports DB2
multiple row processing on behalf of the MULTIFETCH clause of the HISTOGRAM statement.

READ

The Natural native DML statement READ can also be used to access DB2 tables. Natural translates
a READ statement into an SQL SELECT statement.

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN, however, cannot be used, as there
is no DB2 equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used either.

Since a READ LOGICAL statement is translated into a SELECT ... ORDER BY statement, which pro-
duces a read-only table, a row read with a READ LOGICAL statement cannot be updated or deleted
(see Example 1). The start value can only be a constant or a program variable; any other field of
the Natural view (that is, any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and
can therefore be updated or deleted (see Example 2).

Example 1:

Natural native DML statements:

214 Database Management System Interfaces

Using Natural Statements and System Variables

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent Natural SQL statement:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
WHERE NAME >= " '
ORDER BY NAME
Example 2:

The Natural native DML statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent Natural SQL statement:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor
after the rows have been selected according to the descriptor value(s) specified in the search criterion.

Processing Limit

If a processing limit is specified as a constant integer number, for example, READ (5), in the SQL
string generated, the value that defines the limitation will be translated into the clause

FETCH FIRST integer ROWS ONLY

Cursors for DB2 Clauses

Natural for DB2 uses insensitive scrollable cursors to process the following READ statement:

READ .. [IN] [LOGICAL] VARIABLE/DYNAMIC operand5 [SEQUENCE]

Natural for DB2 uses insensitive scrollable cursors to process the READ statement below. If relating
to a Positioned UPDATE or Positioned DELETE statement, Natural for DB2 uses insensitive static
cursors.

Database Management System Interfaces 215

Using Natural Statements and System Variables

READ .. [IN] [PHYSICAL] DESCENDING/VARIABLE/DYNAMIC operand5 [SEQUENCE]

operandb

Value A will be translated intoa FETCH FIRST/NEXT DB2 access, and value Dintoa FETCH LAST/PRIOR
DB2 access.

| Note: Natural for DB2 supports DB2 multiple row processing on behalf of the MULTIFETCH
clause of the READ statement.

READ when Using the File Server

As far as the file server is concerned there are no programming restrictions with selection statements.
Itis, however, recommended to make yourself familiar with its functionality considering perform-
ance and file server space requirements.

STORE

The Natural native DML statement STORE is used to add a row to a DB2 table. The STORE statement
corresponds to the SQL statement INSERT.

Example:

The Natural native DML statement:

STORE RECORD IN EMPLOYEES

WITH PERSONNEL_ID = '2112°
NAME = '"LIFESON'
FIRST_NAME = "ALEX'

Equivalent Natural SQL statement:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
VALUES ('2112", 'LIFESON', "ALEX")

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses of the STORE statement cannot be used.

216 Database Management System Interfaces

Using Natural Statements and System Variables

UPDATE

The Natural native DML statement UPDATE updates a row in a DB2 table which has been read with
a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement UPDATE WHERE
CURRENT OF cursor-name (Positioned UPDATE), which means that only the row which was read
last can be updated.

UPDATE when Using the File Server

If a row rolled out to the file server is to be updated, Natural automatically rereads the original
row from the database to compare it with its image stored in the file server. If the original row has
not been modified in the meantime, the UPDATE operation is performed. With the next terminal
I/O, the transaction is terminated and the row is definitely updated on the database.

If the UPDATE operates on a scrollable cursor, the row on the file server and the row in the base
table are updated. If the row no longer qualifies for the search criteria of the related SELECT state-
ment after the update, the row is marked as UPDATE hole on the file server.

However, if any modification is detected, the row will not be updated and Natural issues the
NAT3703 error message for non-scrollable cursors.

If the UPDATE operates on a scrollable cursor, Natural for DB2 simulates SQLCODE -224 THE
RESULT TABLE DOES NOT AGREE WITH THE BASE TABLE USING for DB2 compliance.

If the UPDATE operates on a scrollable cursor and the row has become a hole, Natural for DB2
simulates SQLCODE -222 AN UPDATE OR DELETE OPERATION WAS ATTEMPTED AGAINST
A HOLE.

Since an UPDATE statement requires rereading a single row by Natural, a unique index must be
available for this table. All columns which comprise the unique index must be part of the corres-
ponding Natural view.

UPDATE with FIND/READ

As explained with the Natural native DML statement FIND, Natural translates a FIND statement
into an SQL SELECT statement. When a Natural program contains a DML UPDATE statement, this
statement is translated into an SQL UPDATE statement and a FOR UPDATE OF clause is added to the
SELECT statement.

Example:

Database Management System Interfaces 217

Using Natural Statements and System Variables

FIND EMPLOYEES WITH SALARY < 5000
ASSIGN SALARY = 6000
UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for
example, CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR

SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
FOR UPDATE OF SALARY

UPDATE EMPLOYEES SET SALARY = 6000
WHERE CURRENT OF CURSORI1

Both the SELECT and the UPDATE statement refer to the same cursor.

Due to DB2 logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF
clause; otherwise updating this column (field) is rejected. Natural includes automatically all
columns (fields) into the FOR UPDATE OF clause which have been modified anywhere in the Natural
program or which are input fields as part of a Natural map.

However, an DB2 column is not updated if the column (field) is marked as “not updateable” in
the Natural DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any
warning or error message. The columns (fields) contained in the FOR UPDATE OF list can be checked
with the LISTSQL command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

Short-Name Range | Type of Field

AA-N9 non-key field that can be updated

Aa-Nz non-key field that can be updated

OA -09 primary key field

PA -P9 ascending key field that can be updated
QA -Q9 descending key field that can be updated
RA -X9 non-key field that cannot be updated
Ra-Xz non-key field that cannot be updated

YA -Y9 ascending key field that cannot be updated
ZA-79 descending key field that cannot be updated
1A -9Z non-key field that cannot be updated
la-9z non-key field that cannot be updated

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can
only be updated by using a non-cursor UPDATE operation (see also Natural SQL UPDATE statement
in the section Using Natural SQL Statements).

218 Database Management System Interfaces

Using Natural Statements and System Variables

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to
DB2 limitations as explained with the FIND statement). A row read with a READ LOGICAL statement
cannot be updated either (as explained with the READ statement).

If a column is to be updated which is redefined as an array, it is strongly recommended to update
the whole column and not individual occurrences; otherwise, results are not predictable. To do
s0, in reporting mode you can use the 0BTAIN statement, which must be applied to all field occur-
rences in the column to be updated. In structured mode, however, all these occurrences must be
defined in the corresponding Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT WORK)
or BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

Note: If a length indicator field or NULL indicator field is updated in a Natural program

without updating the field (column) it refers to, the update of the column is not generated
for DB2 and thus no updating takes place.

UPDATE with SELECT

In general, the Natural native DML statement UPDATE can be used in both structured and reporting
mode. However, after a SELECT statement, only the syntax defined for Natural structured mode
is allowed:

UPDATE [RECORD] [IN] [STATEMENT] [()]

This is due to the fact that in combination with the SELECT statement, the Natural native DML
UPDATE statement is only allowed in the special case of:

SELECT ...
INTO VIEW view-name

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL

01 PERS VIEW OF SQL-PERSONNEL
02 NAME
02 AGE

END-DEFINE

SELECT *
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE NAME LIKE 'S%'

Database Management System Interfaces 219

Using Natural Statements and System Variables

IF NAME = 'SMITH'
ADD 1 TO AGE

UPDATE

END-IF

END-SELECT
In combination with the Natural native DML UPDATE statement, any other form of the SELECT
statement is rejected and an error message is returned.

In all other respects, the Natural native DML UPDATE statement can be used with the SELECT
statement in the same way as with the Natural FIND statement.

Using Natural SQL Statements

This section covers points you have to consider when using Natural SQL statements with DB2.
These DB2-specific points partly consist in syntax enhancements which belong to the Extended
Set of Natural SQL syntax. The Extended Set is provided in addition to the Common Set to support
database-specific features; see Common Set and Extended Set in the Statements documentation.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Ultility documentation.

Below is information on the following Natural SQL statements and on common syntactical items:

= Syntactical ltems Common to Natural SQL Statements
= CALLDBPROC - SQL

= COMMIT - SQL

= DELETE - SQL

= INSERT - SQL

= MERGE - SQL

= PROCESS SQL

= READ RESULT SET - SQL

= ROLLBACK - SQL

= SELECT - SQL

220 Database Management System Interfaces

Using Natural Statements and System Variables

= UPDATE - SQL
Syntactical tems Common to Natural SQL Statements

The following common syntactical items are either DB2-specific and do not conform to the
standard SQL syntax definitions (that is, to the Common Set of Natural SQL syntax) or impose
restrictions when used with DB2 (see also Using Natural SQL Statements in the Statements docu-
mentation).

Below is information on the following common syntactical items:

= atom

= comparison

= factor

= scalar-function
= column-function
= scalar-operator
= special-register
= Units

® Ccase-expression

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a con-
stant. When running dynamically, however, the use of host variables is restricted by DB2. For
further details, refer to the relevant DB2 literature by IBM.

comparison

The comparison operators specific to DB2 belong to the Natural Extended Set. For a description,
refer to Comparison Predicate in Search Conditions in the Statements documentation.

factor

The following factors are specific to DB2 and belong to the Natural SQL Extended Set:

special-register
scalar-function(scalar-expression, ...)
scalar-expression unit

case-expression

Database Management System Interfaces 221

Using Natural Statements and System Variables

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to DB2 and belong to the Natural SQL Extended Set.

The scalar functions Natural for DB2 supports are listed below in alphabetical order:

DECRYPT_BIT

MULTIPLY_ALT

A-H I-R S-Z

ABS IDENTITY_VAL_LOCAL |SCORE

ABSVAL IFNULL SECOND

ACOS INSERT SIGN
ADD_MONTHS INTEGER SIN

ASIN JULTAN_DAY SINH

ASCII LAST_DAY SMALLINT
ASCII_CHR LCASE SOAPHTTPC
ASCII_STR LEFT SOAPHTTPV
ATAN LENGTH SOAPHTTPNC
ATAN?Z LN SOAPHTTPNV
ATANH LOCATE SOUNDEX
BIGINT LOCATE_IN_STRING SPACE

BINARY LOG SQRT

BLOB LOGLO STRIP
CCSID_ENCODING LOWER SUBSTR

CEIL LPAD SUBSTRING
CEILING LTRIM TAN

CHAR MAX TANH
CHARACTER_LENGTH [MICROSECOND TIME

CLOB MIDNIGHT_SECONDS TIMESTAMP
COALESCE MIN TIMESTAMPADD
COLLATION_KEY MINUTE TIMESTAMP_FORMAT
COMPARE_DECFLOAT [MOD TIMESTAMP_ISO
CONCAT MONTH TIMESTAMP_TZ
CONTAINS MONTHS_BETWEEN TO_CHAR

N MQPUBLISH TO_DATE

COSH MQPUBLISHXML TOTALORDER
DATE MQREAD TRANSLATE
DAY MQREADCLOB TRUNC
DAYOFMONTH MQREADXML TRUNC_TIMESTAMP
DAYOFWEEK MQRECEIVE TRUNCATE
DAYOFWEEK_ISO MQRECEIVECLOB UCASE
DAYOFYEAR MQRECEIVEXML UNICODE

DAYS MQSEND UNICODE_STR
DBCLOB MQSENDXML UNISTR

DEC MQSENDXMLFILE UPPER
DECFLOAT MQSENDXMLFILECLOB |[VALUE
DECFLOAT_SORTKEY |MQSUBSCRIBE VARBINARY
DECIMAL MQUNSUBSCRIBE VARCHAR

VARCHAR_FORMAT

222

Database Management System Interfaces

Using Natural Statements and System Variables

A-H I-R S-Z
DECRYPT_CHAR NEXT_DAY VARGRAPHIC
DECRYPT_DB NORMALIZE_DECFLOAT |WEEK

DEGREES NORMALIZE_STRING WEEK_ISO
DIFFERENCE NULLIF XMLATTRIBUTES
DIGITS OVERLAY XMLCONCAT
DOUBLE POSSTR XMLCOMMENT
DOUBLE_PRECISION [POWER XMLDOCUMENT
DSN_XMLVALIDATE |QUANTIZE XMLELEMENT
EBCDIC_CHR QUARTER XMLFOREST
EBCDIC_STR RADIANS XMLMODIFY
ENCRYPT_TDES RAISE_ERROR XMLNAMESPACES
ENCRYPT RAND XMLPARSE

EXP REAL XMLPI

EXTRACT REPEAT XMLQUERY
FLOAT REPLACE XMLSERTALIZE
FLOOR RID XMLTEXT
GRAPHIC RIGHT XMLXSROBJECTID
GENERATE_UNIQUE [ROUND YEAR

GETHINT ROUND_TIMESTAMP

GETVARIABLE ROWID

HEX RPAD

HOUR RTRIM

Each scalar function is followed by one or more scalar expressions in parentheses. The number of
scalar expressions depends upon the scalar function. Multiple scalar expressions must be separated
from one another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE SUBSTR (NAME, 1, 3) = 'Fri'

column-function

A column function returns a single-value result for the argument it receives. The argument is a
set of like values, such as the values of a column. Column functions are also called aggregating
functions.

The following column functions conform to standard SQL. They are not specific to DB2:

AVG
COUNT
MAX
MIN

Database Management System Interfaces 223

Using Natural Statements and System Variables

SUM

The following column functions do not conform to standard SQL. They are specific to DB2 and
belong to the Natural SQL Extended Set.

COUNT_BIG
CORRELATION
COVARIANCE
COVARIANCE_SAMP
STDDEV
STDDEV_POP
STDDEV_SAMP
VAR

VAR_POP
VAR_SAMP
VARTANCE
VARTANCE_SAMP
XMLAGG

scalar-operator

The concatenation operator (CONCAT or | |) does not conform to standard SQL. It is specific to DB2
and belongs to the Natural Extended Set.

special-register

With the exception of USER, the following special registers do not conform to standard SQL. They
are specific to DB2 and belong to the Natural SQL Extended Set:

CURRENT APPLICATION ENCODING SCHEME
CURRENT CLIENT_ACCNTG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT DATE

CURRENT_DATE

CURRENT DEBUG MODE

CURRENT DECFLOAT ROUNDING MODE
CURRENT DEGREE

CURRENT FUNCTION PATH
CURRENT_LC_CTYPE

CURRENT LC_CTYPE

CURRENT LOCALE LC_CTYPE

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT_MEMBER

CURRENT OPTIMIZATION HINT

224 Database Management System Interfaces

Using Natural Statements and System Variables

CURRENT PACKAGE PATH
CURRENT PACKAGESET
CURRENT_PATH

CURRENT PRECISION
CURRENT REFRESH AGE
CURRENT ROUTINE VERSION
CURRENT RULES

CURRENT SCHEMA
CURRENT SERVER
CURRENT SQLID

CURRENT TIME
CURRENT_TIME

CURRENT TIMESTAMP
CURRENT TIMEZONE
CURRENT_TIMEZONE USER
SESSION TIME ZONE
SESSTON_USER

USER

A reference to a special register returns a scalar value.

Using the command SET CURRENT SQLID, the creator name of a table can be substituted by the
current SQLID. This enables you to access identical tables with the same table name but with dif-

ferent creator names.

units

Units, also called “durations”, are specific to DB2 and belong to the Natural SQL Extended Set.

The following units are supported:

DAY

DAYS

HOUR

HOURS
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MONTH
MONTHS
SECOND
SECONDS
YEAR

YEARS

Database Management System Interfaces

225

Using Natural Statements and System Variables

case-expression

searched-when-clause } [

ELSE { NoLL }] END

CASE _
scalar expression

simple-when-clause

Case-expressions do not conform to standard SQL and are therefore supported by the Natural
SQL Extended Set only.

Example:

DEFINE DATA LOCAL
01 fFEMP
02 #EMPNO (A10)
02 #FIRSTNME (A15)
02 #MIDINIT (A5)
02 #LASTNAME (A15)
02 ffEDLEVEL (A13)
02 #INCOME (P7)
END-DEFINE
SELECT EMPNQO, FIRSTNME, MIDINIT, LASTNAME,
(CASE WHEN EDLEVEL < 15 THEN "SECONDARY'
WHEN EDLEVEL < 19 THEN 'COLLEGE'
ELSE "POST GRADUATE'
END) AS EDUCATION, SALARY + COMM AS INCOME
INTO
#FEMPNO, #FFIRSTNME, #MIDINIT, fFLASTNAME,
#FEDLEVEL, #INCOME
FROM DSN8510-EMP
WHERE (CASE WHEN SALARY = 0 THEN NULL
ELSE SALARY / COMM
END) > 0.25
DISPLAY {FEMP
END-SELECT
END

CALLDBPROC - SQL

The Natural SQL statement CALLDBPROC is used to call DB2 stored procedures. It supports the
result set mechanism of DB2 and it enables you to call DB2 stored procedures. For further details
and statement syntax, see CALLDBPROC (SQL) in the Statements documentation.

The following topics are covered below:

= Static and Dynamic Execution
= Result Sets

= | ist of Parameter Data Types
= CALLMODE=NATURAL

226 Database Management System Interfaces

Using Natural Statements and System Variables

= Example of CALLDBPROC/READ RESULT SET
Static and Dynamic Execution

If the CALLDBPROC statement is executed dynamically, all parameters and constants are mapped
to the variables of the following DB2 SQL statement:

CALL :hv USING DESCRIPTOR :sqlda statement

: hv denotes a host variable containing the name of the procedure to be called and :sqg7dais a dy-
namically generated sqlda describing the parameters to be passed to the stored procedure.

If the CALLDBPROC statement is executed statically, the constants of the CALLDBPROC statement are
also generated as constants in the generated assembler SQL source for the DB2 precompiler.

Result Sets

If the SQLCODE created by the CALL statement indicates that there are result sets (SQLCODE +466
and +464), Natural for DB2 runtime executes a DESCRIBE PROCEDURE :hv INTO :sqlda statement
in order to retrieve the result set locator values of the result sets created by the invoked stored
procedure. These values are put into the RESULT SETS variables specified in the CALLDBPROC
statement. Each RESULT SETS variable specified in a CALLDBPROC for which no result set locator
value is present is reset to zero. The result set locator values can be used to read the result sets by
means of the READ RESULT SET statement as long as the database transaction which created the
result set has not yet issued a COMMIT or ROLLBACK.

If the result set was created by a cursor WITH HOLD, the result set locator value remains valid after
a COMMIT operation.

Unlike other Natural SQL statements, CALLDBPROC enables you (optionally!) to specify an SQLCODE
variable following the GIVING keyword which will contain the SQLCODE of the underlying CALL
statement. If GIVING is specified, it is up to the Natural program to react on the SQLCODE (error
message NAT3700 is not issued by the runtime).

List of Parameter Data Types

Below are the parameter data types supported by the CALLDBPROC statement:

Natural Format/Length [DB2 Data Type
An CHAR(n)

B2 SMALLINT
B4 INT

Bn CHAR(n)
(n=not equal 2 or 4)

F4 REAL

Database Management System Interfaces 227

Using Natural Statements and System Variables

Natural Format/Length DB2 Data Type

F8 DOUBLE PRECISION
12 SMALLINT

14 INT

Nnn.m NUMERIC (nn+m,m)
Pnn.m NUMERIC(nn+m, n)
Gn GRAPHIC(n)
An/l:m VARCHAR(n*m)

D DATE

T TIME

Note: The Natural format T has a wider data range than the equivalent DB2 TIME

data type. Compared with DB2 TIME, in addition, the Natural T variable has a date
fraction (year, month, day) and the tenths of a second. As a result, when converting
a Natural T variable into a DB2 TIME value, Natural for DB2 cuts off the date fraction
and the tenths of a second part. When converting DB2 TIME into Natural T format,
the date fraction is reset to 0000-01-02 and the tenths of a second part is reset to 0
in Natural.

CALLMODE=NATURAL

This parameter is used to invoke Natural stored procedures defined with PARAMETER STYLE
GENERAL/WITH NULL.

If the CALLMODE=NATURAL parameter is specified, an additional parameter describing the parameters
passed to the Natural stored procedure is passed from the client, that is, caller, to the server, that
is, the Natural for DB2 server stub. The parameter is the Stored Procedure Control Block (STCB;
see also STCB Layout in PARAMETER STYLE in the section Processing Natural Stored Procedures
and UDFs) and has the format VARCHAR from the viewpoint of DB2. Therefore, every Natural stored
procedure defined with PARAMETER STYLE GENERAL/WITH NULL has to be defined with the CREATE
PROCEDURE statement by using this VARCHAR parameter as the first in its PARMLIST row.

From the viewpoint of the caller, that is, the Natural program, and from the viewpoint of the stored
procedure, that is, Natural subprogram, the STCB is invisible. It is passed as first parameter by
the Natural for DB2 runtime and it is used as on the server side to build the copy of the passed
data in the Natural thread and the corresponding CALLNAT statement. Additionally, this parameter
serves as a container for error information created during execution of the Natural stored procedure
by the Natural runtime. It also contains information on the library where you are logged on and
the Natural subprogram to be invoked.

228 Database Management System Interfaces

Using Natural Statements and System Variables

Example of CALLDBPROC/READ RESULT SET

Below is a sample program for issuing CALLDBPROC and READ RESULT SET statements:

DEFINE DATA LOCAL

1 ALPHA (A8)

NUMERIC (N7.3)
PACKED (P9.4)
VCHAR (A20/1:5) INIT <'DB25SGCP'>

INTEGER?Z (I2)
INTEGER4 (I4)
BINARY2 (B2)
BINARY4 (B4)
BINARY1? (B12)
FLOAT4 (F4)
FLOATS (F8)

INDEX-ARRAY (I2/1:11)

INDEX-ARRAY1(I2)
INDEX-ARRAY2(12)
INDEX-ARRAY3(I2)
INDEX-ARRAY4(I2)
INDEX-ARRAY5(I2)
INDEX-ARRAY6(I2)
INDEX-ARRAY7(I2)
INDEX-ARRAY8(I2)
INDEX-ARRAY9(I2)
INDEX-ARRAY10(I2)
INDEX-ARRAY11(IZ2)

{FRESP

#FRS1

#RS2
OCAL

NAME

PROCEDURE
RESULT_SETS

ST ST T T R e B e N e T T = = S S S e e T = T = U S e G

—

END-DEFINE
CALLDBPROC 'DAE

(I4)
(I4) INIT <99>
(I4) INIT <99>

V1 VIEW OF SYSIBM-SYSTABLES

V2 VIEW OF SYSIBM-SYSPROCEDURES

V (I2) INIT <99>

FDB25.SYSPROC.SNGSTPC' DSN8510-EMP
ALPHA INDICATOR :INDEX-ARRAY1
NUMERIC INDICATOR :INDEX-ARRAYZ
PACKED INDICATOR :INDEX-ARRAY3
VCHAR(*) INDICATOR :INDEX-ARRAY4
INTEGER2 INDICATOR :INDEX-ARRAY5
INTEGER4 INDICATOR :INDEX-ARRAY6
BINARYZ INDICATOR :INDEX-ARRAY7
BINARY4 INDICATOR :INDEX-ARRAY8
BINARY12 INDICATOR :INDEX-ARRAY9
FLOAT4 INDICATOR :INDEX-ARRAY10
FLOATS INDICATOR :INDEX-ARRAY11

Database Management System Interfaces

229

Using Natural Statements and System Variables

RESULT SETS #RS1 #RS2
CALLMODE=NATURAL
READ (10) RESULT SET #RS2 INTO VIEW V2 FROM SYSIBM-SYSTABLES
WRITE 'PROC F RS :' PROCEDURE 50T RESULT_SETS
END-RESULT
END

COMMIT - SQL

The Natural SQL COMMIT statement indicates the end of a logical transaction and releases all DB2
datalocked during the transaction. All data modifications are made permanent. For further details
and statement syntax, see COMMIT (SQL) in the Statements documentation.

COMMIT is a synonym for the Natural native DML statement END TRANSACTION as described in the
section Using Natural Native DML Statements.

No transaction data can be provided with the COMMIT statement.

If this command is executed from a Natural stored procedure or user-defined function (UDF),
Natural for DB2 does not execute the underlying commit operation. This allows the Natural stored
procedure or UDF to commit updates against non DB2 databases.

Under CICS, the COMMIT statement is translated into an EXEC CICS SYNCPOINT command. If the
file server is used, an implicit end-of-transaction is issued after each terminal I/O. This is due to

CICS-specific transaction processing in pseudo-conversational mode, see Natural for DB2 under
CICS.

Under IMS TM, the COMMIT statement is not translated into an IMS CHECKPOINT command, but is
ignored. An implicit end-of-transaction is issued after each terminal I/O. This is due to IMS TM-
specific transaction processing, see Natural for DB2 under IMS TM.

Unless when used in combination with the WITH HOLD clause (see Syntax 1 - Cursor-Oriented Selection
in SELECT (SQL) in the Statements documentation), a COMMIT statement must not be placed within
a database loop, since all cursors are closed when a logical unit of work ends. Instead, it has to be
placed outside such a loop or after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program
issues database calls, too. The calling Natural program must issue the COMMIT statement on behalf
of the external program.

230 Database Management System Interfaces

Using Natural Statements and System Variables

DELETE - SQL

Both the cursor-oriented or Positioned DELETE, and the non-cursor or Searched DELETE statements
are supported as part of Natural SQL; the functionality of the Positioned DELETE statement corres-
ponds to that of the Natural DML DELETE statement. For further details and statement syntax, see
DELETE (SQL) in the Statements documentation.

With DB2, a table name in the FROM Clause of a Searched DELETE statement can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore
belongs to the Natural SQL Extended Set.

The Searched DELETE statement must be used, for example, to delete a row from a self-referencing
table, since with self-referencing tables a Positioned DELETE is not allowed by DB2.

INSERT - SQL

The Natural SQL INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the DB2-specific common syntactical
items described above apply.

For further details and statement syntax, see INSERT (SQL) in the Statements documentation.
MERGE - SQL

The MERGE statement is a hybrid SQL statement consisting of an UPDATE component and an INSERT
component. It allows you either to insert a row into a DB2 table or to update a row of a DB2 table
if the input data matches an already existing row of a table.

The MERGE statement belongs to the SQL Extended Set.

For further details and statement syntax, see MERGE (SQL) in the Statements documentation.
PROCESS SQL

The Natural PROCESS SQL statement is used to issue SQL statements to the underlying database.
The statements are specified in a statement -string, which can also include constants and para-
meters. The set of statements which can be issued is also referred to as Flexible SQL and comprises
those statements which can be issued with the SQL statement EXECUTE.

In addition, Flexible SQL includes the following DB2-specific statements:

CALL

CONNECT

GET DIAGNOSTICS

SET APPLICATION ENCODING SCHEME
SET CONNECTION

Database Management System Interfaces 231

Using Natural Statements and System Variables

SET CURRENT DEGREE

SET CURRENT LC_CTYPE

SET CURRENT OPTIMIZATION HINT

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
SET CURRENT PACKAGE PATH

SET CURRENT PACKAGESET

SET CURRENT PATH

SET CURRENT PRECISION

SET CURRENT REFRESH AGE

SET CURRENT RULES

SET CURRENT SCHEMA

SET CURRENT SQLID

SET ENCRYPTION PASSWORD

SET host-variable=special-register
RELEASE

] Notes:

1. SQL statements issued by PROCESS SQL are skipped during static generation. Thus they are al-
ways executed dynamically via NDBIOMO.

2. To avoid transaction synchronization problems between the Natural environment and DB2,
the COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

For further details and statement syntax, see PROCESS SQL in the Statements documentation.

READ RESULT SET - SQL

The Natural SQL READ RESULT SET statement reads a result set created by a Natural stored pro-
cedure that was invoked by a CALLDBPROC statement. For details on how to specify the scroll direc-
tion by using the variable scrol7-hv, see the SELECT statement.

For further details and statement syntax, see READ RESULT SET (SQL) in the Statements docu-
mentation.

ROLLBACK - SQL

The Natural SQL ROLLBACK statement undoes all database modifications made since the beginning
of the last logical transaction. Logical transactions can start either after the beginning of a session
or after the last COMMIT/END TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records
held during the transaction are released.

For further details and statement syntax, see ROLLBACK (SQL) in the Statements documentation.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION as described in the section
Using Natural Native DML Statements.

232 Database Management System Interfaces

Using Natural Statements and System Variables

If this command is executed from a Natural stored procedure or user-defined function (UDF),
Natural for DB2 executes the underlying rollback operation. This sets the caller into a must-rollback
state. If this command is executed by Natural error processing (implicit ROLLBACK), Natural for
DB2 does not execute the underlying rollback operation, thus allowing the caller to receive the
original Natural error.

Under CICS, the ROLLBACK statement is translated intoan EXEC CICS ROLLBACK command. However,
if the file server is used, only changes made to the database since the last terminal I/O are undone.

This is due to CICS-specific transaction processing in pseudo-conversational mode, see Natural
for DB2 under CICS.

Under IMS TM, the ROLLBACK statement is translated into an IMS Rollback (ROLB) command.
However, only changes made to the database since the last terminal I/O are undone. This is due
to IMS TM-specific transaction processing, see Natural for DB2 under IMS TM.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be
placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the ROLLBACK statement on behalf
of the external program.

SELECT - SQL

The Natural SQL SELECT statement supports both the cursor-oriented selection, which is used to
retrieve an arbitrary number of rows and the non-cursor selection (Singleton SELECT), which re-
trieves at most one single row.

For full details and statement syntax, see SELECT (SQL) in the Statements documentation.
SELECT - Cursor-Oriented

Like the Natural native DML FIND statement, the cursor-oriented SELECT statement is used to select
a set of rows (records) from one or more DB2 tables, based on a search criterion. Since a database
loop is initiated, the loop must be closed by a LO0P statement (in reporting mode) or by an
END-SELECT statement (in structured mode). With this construction, Natural uses the same loop
processing as with the FIND statement. In addition, no cursor management is required from the
application program:; it is automatically handled by Natural.

For further details and syntax, see Syntax 1 - Cursor-Oriented Selection in SELECT (SQL) in the
Statements documentation.

Database Management System Interfaces 233

Using Natural Statements and System Variables

SELECT SINGLE - Non-Cursor-Oriented

The Natural SQL statement SELECT SINGLE provides the functionality of a non-cursor selection
(Singleton SELECT); that is, a select expression that retrieves at most one row without using a
cursor.

Since DB2 supports the Singleton SELECT command in static SQL only, in dynamic mode, the
Natural SELECT SINGLE statement is executed in the same way as a set-level SELECT statement,
which results in a cursor operation. However, Natural checks the number of rows returned by
DB2. If more than one row is selected, a corresponding error message is returned.

For further details and syntax, see Syntax 2 - Non-Cursor Selection in SELECT (SQL) in the Statements
documentation.

UPDATE - SQL

Both the cursor-oriented or Positioned UPDATE and the non-cursor or Searched UPDATE statements
are supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With DB2, the name of a table or Natural view to be referenced by a Searched UPDATE can be as-
signed a correlation-name. This does not correspond to the standard SQL syntax definition and
therefore belongs to the Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since
DB2 does not allow updating of columns of a primary key by using a Positioned UPDATE statement.

] Note: If you use the SET * notation, all fields of the referenced Natural view are added to

the FOR UPDATE OF and SET lists. Therefore, ensure that your view contains only fields which
can be updated; otherwise, a negative SQLCODE is returned by DB2.

For further details and syntax, see UPDATE (SQL) in the Statements documentation.

Using Natural System Variables

When used with DB2, there are restrictions and/or special considerations concerning the following
Natural system variables:

= *TSN

= *NUMBER

= *ROWCOUNT

For information on restrictions and/or special considerations, refer to the section Database-Specific
Information in the corresponding system variable documentation.

234 Database Management System Interfaces

Using Natural Statements and System Variables

Multiple Row Processing

This section describes the multiple row functionality for DB2 databases.
You have to operate against DB2 for z/OS Version 8 or higher to use these features.
Natural for DB2 provides two kinds of multiple row processing features:

® Standard multiple row processing

® This feature does not influence the program logic. Although the Natural native DML and Nat-
ural SQL DML provide clauses for specification of the multi-fetch-factor, the Natural program
operates with one database row and from the program point of view only one row is received
from or is send to the database.

® Advanced multiple row processing

This feature is only available with Natural SQL DML and has a lot of impact on the program
logic, as it allows the retrieval of multiple rows from the database into the program storage by
a single Natural SQL SELECT statement into a set of arrays. Additionally it is possible to insert
multiple rows into the database from a set of arrays by the Natural SQL INSERT statement.

Below is information on the following topics:

= Purpose of Multi-Fetch Feature (Standard)

= Considerations for Multi-Fetch Usage (Standard)
= Size of the Multi-Fetch Buffer (Standard)

= Support of TEST DBLOG Q (Standard)

= Multiple Rows to Program (Advanced)

= Multiple Rows from Program (Advanced)

Purpose of Multi-Fetch Feature (Standard)

In standard mode, Natural does not read multiple records with a single database call; it always
operates in a one-record-per-fetch mode. This kind of operation is solid and stable, but can take
some time if a large number of database records are being processed.

To improve the performance of those programs, you can use the Multi-Fetch Clause in the Natural
DML FIND, READ or HISTOGRAM statements. This allows you to specify the number of records read
per database access.

Database Management System Interfaces 235

Using Natural Statements and System Variables

FIND ON
‘ READ] MULTIFETCH‘ OFF] l
HISTOGRAM OF multi-fetch-factor

Where the multi-fetch-factoris either a constant or a variable with a format integer (14).

To improve the performance of the Natural SQL SELECT statements, you can use the WITH ROWSET
POSITIONING FOR Clause to specify a multi-fetch-factor.

[[] row_hv
WITH ROWSET POSITIONING FOR) ROWS
integer

At statement execution time, the runtime checksifamulti-fetch-factor greater than 1is supplied
for the database statement.

If the multi-fetch-factoris

less than or equal |the database call is continued in the usual one-record-per-access mode.
tol

greater than 1 the database call is prepared dynamically to read multiple records (e.g. 10) with a single
database access into an auxiliary buffer (multi-fetch buffer). If successful, the first record
is transferred into the underlying data view. Upon the execution of the next loop, the
data view is filled directly from the multi-fetch buffer, without database access. After
all records are fetched from the multi-fetch buffer, the next loop results in the next
record set being read from the database. If the database loop is terminated (either by
end-of-records, ESCAPE, STOP, etc.), the content of the multi-fetch buffer is released.

Considerations for Multi-Fetch Usage (Standard)

® The program does not receive “fresh” records from the database for every loop, but operates
with images retrieved at the most recent multi-fetch access.

® If a dynamic direction change (IN DYNAMIC...SEQUENCE) is coded for a Natural DML READ or
HISTOGRAM statement, the multi-fetch feature is not possible and leads to a corresponding syntax
error at compilation.

® The size occupied by a database loop in the multi-fetch buffer is determined according to the
rule:

236 Database Management System Interfaces

Using Natural Statements and System Variables

header + sqldaheader + columns*(sqlvar+lise) + mf*(udind + sum(collen) + sum(LF(columns) +
sum(nullind))

32 + 16 + columns*(44+12) + mf*(1 + sum(collen) + sum(LF(column)) + sum(2))

where

® header denotes the length of the header of a entry in the DB2 multifetch buffer, that is, 32
® sqldaheader denotes the length of the header of a sqlda, that is, 16

® columns denotes the number of receiving fields of a SQL request

" sqlvar denotes the length of a sqlvar, that is, 44

" lise denotes the length of a Natrual for DB2 specific sqlvar extension

* mf denotes the multifetch factor, that is, the number of rows fetched by one database call
® collen denotes the length of the receiving field

® LF(column) denotes the size of the length field of the receiving field, that is, 0 for fixed length
fields, 2 for variable length fields, and 4 for large object columns (LOBs)

® nullind denotes the length of a null indicator, that is, 2
Size of the Multi-Fetch Buffer (Standard)

The multifetch buffer is released at terminal i/o in pseudo conversional mode. Therefore there is
no size limitation for the DB2 multifetch buffer (0B2S1ZE6). The buffer will be automatical enlarged
if necessary.

Support of TEST DBLOG Q (Standard)

When multi-fetch is used, real database calls are only submitted to get a new set of records.

The TEST DBLOG Q facility is also called from the Natural for DB2 multi fetch handler for every
rowset fetch from DB2 and for every record moved from the multi fetch buffer to the program
storage. The events are distinguished by the literal MULTI FETCH ... and <BUFF FETCH ...

Database Management System Interfaces 237

Using Natural Statements and System Variables

Example: TEST DBLOG List Break-Out

10:5
User
M No

Comm

1:57 *xx%% NATURAL Test Utilities ***** 2006-01-27
HGK - DBLOG Trace - Library NDB42
R SQL Statement (truncated) CU SN SREF M Typ SQLC/W Program Line LV
1 SELECT EMPNO,FIRSTNME,LASTNAM 01 01 0260 D DB2 MF000001 0260 01
2 MULTI FETCH NEX 01 01 0260 D DB2 MF000001 0260 01
3 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
4 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
5 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
6 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
7 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
8 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
9 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
10 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
11 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
12 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
13 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
14 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
15 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
16 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
17 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
and ===

where column No represents the following:

1 is a open cursor DB2 call.

2 is a “real” database call that reads a set of records via multi-fetch (see MULTI FETCH NEX in column
SQL Statement).

3-17 |are “no real” database calls, but only entries that document that the program has received these

records from the
multi-fetch buffer (see <BUFF FETCH NEX in column SQL Statement).

Multiple Rows to Program (Advanced)

The feature allows programs to retrieve multiple rows from DB2 into arrays.

This

feature is only available with the SELECT statement.

= Prerequisites

= DB2ARRY=0ON

= INTO Clause

= WITH ROWSET POSITIONING Clause
= ROWS_RETURNED Clause

= Restrictions and Constraints

238

Database Management System Interfaces

Using Natural Statements and System Variables

= File Server Usage and Positioned UPDATE and DELETE

Prerequisites

> To use this feature

1 Set the compiler option DB2ARRY=0N (by using an 0PTIONS statement or the COMPOPT command
or the CMPO profile parameter).

2 Specify alist of receiving arrays in the INTO clause (see into-clause) of the SELECT statement.

3 Specify the number of rows to be retrieved from the database by a single FETCH operation via
the WITH ROWSET POSITIONING Clause.

4 Specify a variable receiving the number of rows retrieved from the database via the
ROWS_RETURNED Clause.

DB2ARRY=ON

DB2ARRY=0N is necessary to allow the specification of arrays in the INTO clause (see into-clause).
DB2ARRY=0N also prevents the usage of arrays as sending or receiving fields for DB2 CHAR/VARCHAR
/GRAPHIC/VARGRAPHIC columns. Instead Natural scalar fields with the appropriate length have to
be used.

INTO Clause

Each array specified in the INTO clause (see into-clause) has to be contiguous (one occurrence
following immediately by another, this is expected by DB2) and has to be one-dimensional. The
arrays are filled from the first occurrence (low) to last occurrence (high). The first array occurrences
compose the first row of the received rowset, the second array occurrences compose the second
row of the received rowset. The array occurrences of the nth index compose the nth row returned
from DB2. If an LINDICATOR Clause or INDICATOR Clause is used in the INTO clause for arrays,
the specified length indicators or null indicators have also to be arrays. The number of occurrences
of LINDICATOR and INDICATOR arrays have to equal or greater than the number of occurrences of
the master array.

WITH ROWSET POSITIONING Clause

The WITH_ROWSET_POSITIONING Clause is used to specify the number of rows to be retrieved from
the database by one processing cycle. The specified number has to be equal or smaller than the
minimum of occurrences of all specified arrays. If a variable, not a constant, is specified the actual
content of the variable will be used during each processing cycle. The specified number has to be
greater 0 and smaller than 32768.

Database Management System Interfaces 239

Using Natural Statements and System Variables

ROWS_RETURNED Clause

The ROWS_RETURNED Clause is used to specify a variable, which will contain the number of rows
read from the database during the actual fetch operation. The format of the variable has to be I4.

Restrictions and Constraints

Natural Views: Itis not possible to use Natural arrays of views in the INTO clause (see into-clause),

that is, the use of keyword VIEW is not possible.

File Server Usage and Positioned UPDATE and DELETE

The purpose of this feature is to reduce the number of database and database interface calls for
bulk batch processing. Therefore it is not recommended to use this kind of programming in online
CICS or IMS environments, when terminal I/Os occur within open cursor loops; that is, the file
server is used. A fortiori it is not possible to perform a Positioned UPDATE or Positioned DELETE

statement after terminal I/O.

Example:

DEFINE DATA LOCAL

01 NAME (A20/1:10)
01 ADDRESS (A100/1:10)
01 DATEOFBIRTH (A10/1:10)
01 SALARY (P4.2/1:10)
01 L$ADDRESS (I2/1:10)
01 ROWS (I4)

01 NUMBER (I4)

01 INDEX (I4)
END-DEFINE

OPTIONS DB2ARRY=0ON

ASSIGN NUMBER := 10

SEL.

SELECT NAME, ADDRESS , DATEOFBIRTH, SALARY

INTO :NAME(*), /* <-- ARRAY
:ADDRESS(*) LINDICATOR :L$ADDRESS(*), /* <-- ARRAY
:DATEOFBIRTH(1:10), /* <-- ARRAY
:SALARY (01:10) /* <-- ARRAY

FROM NAT-DEMO

WHERE NAME > ' '

WITH ROWSET POSITIONING FOR :NUMBER ROWS /* <-- ROWS REQ

ROWS_RETURNED :ROWS /* <-- ROWS RET

IF ROWS > 0
FOR INDEX =1 TO ROWS STEP 1

DISPLAY
INDEX (EM=99) *COUNTER (SEL.) (EM=99) ROWS (EM=99)
NAME (INDEX)
ADDRESS(INDEX) (AL=20)
DATEOFBIRTH(INDEX)

240 Database Management System Interfaces

Using Natural Statements and System Variables

SALARY (INDEX)
END-FOR
END-IF
END-SELECT
END

Multiple Rows from Program (Advanced)

The feature allows programs to insert multiple rows into a DB2 table from arrays.

This feature is only available with the Natural SQL INSERT statement.

Prerequisites

> To use this feature

1 Set the compiler option DB2ARRY=0N (by using an 0PTIONS statement or the COMPOPT command
or the CMPO profile parameter).

2 Specify a list of sending arrays in the VALUES Clause of the Natural SQL INSERT statement.

3 Specify the number of rows to be inserted into the database by a single Natural SQL INSERT
statement via the FOR n ROWS Clause.

DB2ARRY=ON

DB2ARRY=0N is necessary to allow the specification of arrays in the VALUES Clause. DB2ARRY=0N
also prevents the usage of arrays as sending or receiving fields for DB2 CHAR/VARCHAR
/GRAPHIC/VARGRAPHIC columns. Instead Natural scalar fields with the appropriate length have to
be used.

VALUES Clause

Each array specified in the VALUES Clause has to be contiguous (one occurrence following imme-
diately by another, this is expected by DB2) and has to be one-dimensional. The arrays are read
from the first occurrence (low) to last occurrence (high). The first array occurrences compose the
first row inserted into the database, the second array occurrences compose the second row inserted
into the database. The array occurrences of the nth index compose the nth row inserted into the
database. If an LINDICATOR Clause or INDICATOR Clause is used in the VALUES Clause for arrays,
the specified length indicators or null indicators have also to be arrays. The number of LINDICATOR
and INDICATOR array occurrences has to be equal or greater than the number of occurrences of the
master array.

Database Management System Interfaces 241

Using Natural Statements and System Variables

FOR n ROWS Clause

The FOR n ROWS Clause is used to specify how many rows are to be inserted into the database
table by one INSERT statement. The specified number has to be equal or smaller than the minimum
of occurrences of all specified arrays in the VALUES Clause. The specified number has to be
greater than 0 and smaller than 32768.

Restrictions and Constraints

= Natural Views

It is not possible to use Natural arrays of views in the VALUES Clause, that is, the use of keyword
VIEW is not possible.

= Static Execution

Due to DB2 restrictions it is not possible to execute multiple row inserts in static mode. Therefore,
multiple row inserts are not generated static and are always dynamically prepared and executed
by Natural for DB2. The Natural for DB2 static generation creates an assembler language SQL
program, which is precompiled by the DB2 precompiler, which in turn creates a DBRM necessary
for static execution. However, the DB2 assembler precompiler has no support for host variable
arrays. They can only be used when specified in a SQLDA structure, which has to be build at

execution time. But a static INSERT with a multiple-row-insert VALUES clause does not allow the
specification of an SQLDA, but only host-variable arrays, which are not supported by the DB2
assembler precompiler.

It is not possible to use Natural arrays of views in the INTO clause (see into-clause), thatis, the
use of keyword VIEW is not possible.

Example:

DEFINE DATA LOCAL

01

01

01

INIT <'"ZILLERI',"ZILLER2','ZILLER3","'ZILLER4"

,"ZILLERS","ZILLERG","ZILLER7","ZILLERS"

1',"ANGEL STREET 2'
3',"ANGEL STREET 4
5',"ANGEL STREET 6
7', "ANGEL STREET 8'
9',"ANGEL STREET 10'>

NAME (A20/1:10)

,"ZILLER9", "ZILLERA'>
ADDRESS (A100/1:10) INIT <'ANGEL STREET

, "ANGEL STREET

, "ANGEL STREET

, "ANGEL STREET

, "ANGEL STREET
DATENATD (D/1:10)

INIT <D'1954-03-27"',D0'1954-03-27",D0"'1954-03-27"

,D'1954-03-27"',D0"'1954-03-27"',D0"'1954-03-27"
,0'1954-03-27",D0'1954-03-27"',D0"'1954-03-27"

,0'1954-03-27">

01 SALARY (P4.2/1:10) INIT <1000,2000,3000,4000,5000
,6000,7000,8000,9000,9999>
01 SALARY_N (N4.2/1:10) INIT <1000,2000,3000,4000,5000
,6000,7000,8000,9000,9999>
01 LSADDRESS (I2/1:10) INIT <14,14,14,14,14,14,14,14,14,15>
242 Database Management System Interfaces

Using Natural Statements and System Variables

01 NSADDRESS (I2/1:10) INIT <00,00,00,00,00,00,00,00,00,00>
01 ROWS (I4)

01 INDEX (I4)

01 V1 VIEW OF NAT-DEMO_ID

02 NAME

02 ADDRESS (EM=X(20))

02 DATEOFBIRTH

02 SALARY

01 ROWCOUNT (I4)

END-DEFINE

OPTIONS DBZARRY=0N /* <-- ENABLE DB2 ARRAY

ROWCOUNT := 10
INSERT INTO NAT-DEMO_ID
(NAME ,ADDRESS,DATEOFBIRTH, SALARY)

VALUES

(:NAME(*), /* <-- ARRAY
:ADDRESS (*) /* <-- ARRAY
INDICATOR :NSADDRESS(*) /* <-- ARRAY
LINDICATOR :LSADDRESS(*), /* <-- ARRAY DB2 VCHAR
:DATENATD(1:10), /* <-- ARRAY NATURAL DATES
:SALARY_N(01:10) /* <-- ARRAY NATURAL NUMERIC

)

FOR :ROWCOUNT ROWS
SELECT * INTO VIEW V1 FROM NAT-DEMO_ID WHERE NAME > 'Z'
DISPLAY V1 /* <-- VERIFY INSERT
END-SELECT
BACKOUT
END

Error Handling

In contrast to the normal Natural error handling, where either an ON ERROR statement is used to
intercept execution time errors or standard error message processing is performed and program
execution is terminated, the enhanced error handling of Natural for DB2 provides an application
controlled reaction to the encountered SQL error.

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error
handling and to check the encountered SQL error for the returned SQLCODE. This functionality
replaces the E function of the DB2SERV interface, which is still provided but no longer documented.

For further information on Natural subprograms provided for DB2, see the section Interface Sub-
programs.

Example:

Database Management System Interfaces 243

Using Natural Statements and System Variables

DEFINE DATA LOCAL

01 #SQLCODE (14)

01 #SQLSTATE (A5)

01 #SQLCA (A136)

01 4fDBMS (B1)

END-DEFINE

*

& Ignore error from next statement

*

CALLNAT "NDBNOERR'

*

% This SQL statement produces an SQL error

*

INSERT INTO SYSIBH-SYSTABLES (CREATOR, NAME, COLCOUNT)
VALUES ('SAG', 'MYTABLE', '3")

*

& Investigate error
*

CALLNAT 'NDBERR' #SQLCODE #SQLSTATE #SQLCA #DBMS
*
IF #fDBMS NE 2 /* not DB2
MOVE 3700 TO *ERROR-NR
END-IF
*
DECIDE ON FIRST VALUE OF 4#SQLCODE
VALUE 0, 100 /* successful execution
IGNORE
VALUE -803 /* duplicate row
/* UPDATE existing record
/*
IGNORE
NONE VALUE
MOVE 3700 TO *ERROR-NR
END-DECIDE

*

END

244 Database Management System Interfaces

16 Processing Natural Stored Procedures and UDFs

B Types Of NATUFAl UDF ... 246
B PARAMETER STYLE ...ttt ettt e et e e et e e e et e e e e nneeas 246
= Writing @ Natural Stored ProCeAUIEooiiiiiiiii e 255
m WHtING @ NaLUFal UDF ...t 257
B Example SOred ProCEAUEviiiiiiicecce e 258
= Example Natural User Defined FUNCHONoviiiiiii e 261

245

Processing Natural Stored Procedures and UDFs

Natural for DB2 supports the writing and executing of Natural stored procedures and Natural
user-defined functions (Natural UDFs).

Natural stored procedures are user-written programs that are invoked by the SQL statement CALL
and executed by DB2 in the SPAS (Stored Procedure Address Space). SPAS is a separate address
space reserved for stored procedures.

A function is an operation denoted by a function name followed by zero or more operands that
are enclosed in parentheses. A function represents a relationship between a set of input values
and a set of result values. If a function has been implemented by a user-written program, DB2
refers to it as a user-defined function (UDF).

The following topics are covered below:

Types of Natural UDF

There are two types of Natural used defined functions (UDF):
® Scalar UDF

The scalar UDF accepts several input arguments and returns one output value. It can be invoked
by any SQL statement like a DB2 built-in-function.

= Table UDF

The table UDF accepts several input arguments and returns a set of output values comprising
one table row during each invocation.

You invoke a table UDF with a Natural SQL SELECT statement by specifying the table-function
name in the FROM Clause. A table UDF performs as a DB2 table and is invoked for each FETCH
operation for the table-function specified in the SELECT statement.

PARAMETER STYLE

The PARAMETER STYLE identifies the linkage convention used to pass parameters to a DB2 stored
procedure or a DB2 user defined functions (UDFs).

This section describes the PARAMETER STYLEs and the STCB Natural for DB2 uses for processing
Natural for DB2 stored procedures or Natural UDFs.

] Note: PARAMETER STYLE GENERAL (or GENERAL WITH NULL) and STCB Layout only apply to
Natural stored procedures.

= GENERAL and GENERAL WITH NULL

246 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

= STCB Layout
= DB2SQL

GENERAL and GENERAL WITH NULL

| Note: Only applies to Natural stored procedures.

A Natural stored procedure defined with PARAMETER STYLE GENERAL only receives the user para-
meters specified.

A Natural stored procedure defined with PARAMETER STYLE GENERAL WITH NULL receives the user
parameters specified and, additionally, a NULL indicator array that contains one NULL indicator for
each user parameter.

Natural stored procedures defined with PARAMETER STYLE GENERAL/PARAMETER STYLE GENERAL
WITH NULL, require that the definition of the stored procedure within the DB2 catalog includes one
additional parameter of the type VARCHAR in front of the user parameters of the stored procedure.

This parameter in front of the parameters is the Stored Procedure Control Block (STCB); see also
STCB Layout below.

Below is information on:

= Stored Procedure Control Block
= Example of PARAMETER STYLE GENERAL
= Example of GENERAL WITH NULL

Stored Procedure Control Block

The Stored Procedure Control Block (STCB) contains information the Natural for DB2 server stub
uses to execute Natural stored procedures, such as the library and the subprogram to be invoked.
It also contains the format descriptions of the parameters passed to the stored procedure.

The STCB is invisible to the Natural stored procedure called. The STCB is evaluated by the Natural
for DB2 server stub and stripped off the parameter list that is passed to the Natural stored proced-
ure.

If the caller of a Natural stored procedure defined with PARAMETER STYLE GENERAL/PARAMETER
STYLE GENERAL WITH NULLisaNatural program, the program must use a Natural SQL CALLDBPROC
statement with the keyword CALLMODE=NATURAL.

If the caller of the Natural stored procedure is not a Natural program, the caller has to set up the
STCB for the DB2 CALL statement and pass the STCB as the first parameter.

If an error occurs during the execution of a Natural stored procedure defined with PARAMETER
STYLE GENERAL/PARAMETER STYLE GENERAL WITH NULL, the error message text is returned to the
STCB.

Database Management System Interfaces 247

Processing Natural Stored Procedures and UDFs

If the caller is a Natural program that uses CALLDBPROC and CALLMODE=NATURAL, the Natural for
DB2 runtime will wrap up the error text in the NAT3286 error message.

Example of PARAMETER STYLE GENERAL

In the Natural stored procedure, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER
01 P1 ...
01 P2 ...

01 Pn ...
LOCAL

éNb-DEFINE
Example of GENERAL WITH NULL

In the Natural stored procedure, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER
01 P1 ...
01 P2 ...

01 Pn ...
01 NULL-INDICATOR-ARRAY (I2/1:n)
LOCAL

END-DEFINE
STCB Layout

Note: Only applies to Natural stored procedures.

The following table describes the first parameter passed between the caller and the Natural stored
procedure if CALLMODE=NATURAL is specified in a Natural SQL CALLDBPROC statement.

248 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

Name Format Processing Mode Server

STCBL 12 Input (size of following information)

Procedure Information

STCBLENG A4 Input (printable STCBL)
STCBID A4 Input (STCB)
STCBVERS A4 Input (version of STCB 310)
STCBUSER A8 Input (user ID)
STCBLIB A8 Input (library)
STCBPROG A8 Input (calling program)
STCBPSW A8 Unused (password)
STCBSTNR A4 Input (CALLDBPROC statement number)
STCBSTPC A8 Input (procedure called)
STCBPANR A4 Input (number of parameters)
Error Information
STCBERNR A5 Output (Natural error number)
STCBSTAT Al Unused (Natural error status)
STCBLIB A8 Unused (Natural error library)
STCBPRG A8 Unused (Natural error program)
STCBLVL Al Unused (Natural error level)
STCBOTP Al Unused (error object type)
STCBEDYL A2 Output (error text length)
STCBEDYT AB88 Output (error text)

A100 Reserved for future use

Parameter Information

STCBPADE A variable ‘ Input. See also PARAMETER DESCRIPTION (STCBPADE) below.

PARAMETER DESCRIPTION (STCBPADE)

PARAMETER DESCRIPTION contains a description for each parameter passed to the Natural
stored procedure consisting of parameter type, format specification and length. Parameter type
is the AD attribute of the Natural CALLNAT statement as described in the Statements documentation.

Each parameter has the following format description element in the STCBPADE string
atl,pl,dI]....
where

" ais an attribute mark which specifies the parameter type:

Database Management System Interfaces 249

Processing Natural Stored Procedures and UDFs

Mark | Type Equivalent |Equivalent
AD Attribute | DB2 Clause

M modifiable AD=M INOUT

0 non-modifiable |AD=0 IN

A |input only AD=A ouT

" tis one of the following Natural format tokens:

: Description 7 p |1 Example
A |Alphanumeric 1-253 [0 |1-32767 |A30,0
or or
- A30,0,10
N [Numeric unpacked |1-29 |0-7|- N10,3
P |Packed numeric 1-29 |0-7|- P13,4
I |Integer 20r4|0 |- 12,0
F |Floating point 0 |- 14,0
B |Binary 0 |- B23,0
D |Date 6 0 |- D6
T |Time 12 |0 |- T12
L |Logical (unsupported)

®]is an integer denoting the length/scale of the field. For numeric and packed numeric fields, 7
denotes the total number of digits of the field that is, the sum of the digits left and right of the
decimal point. The Natural format N7.3 is, for example, represented by N10.3. See also the table
above.

" pisaninteger denoting the precision of the field. It is usually 0, except for numeric and packed
fields where it denotes the number of digits right of the decimal point. See also the table above.

® d1is also an integer denoting the occurrences of the alphanumeric array (alphanumeric only).
See also the table above.

This descriptive/control parameter is invisible to the calling Natural program and to the called
Natural stored procedure, but it has to be defined in the parameter definition of the stored procedure
row with the CREATE PROCEDURE statement and the DB2 PARAMETER STYLE GENERAL/PARAMETER
STYLE GENERAL WITH NULL.

The following table shows the number of parameters which have to be defined with the CREATE
PROCEDURE statement for a Natural stored procedure defined with PARAMETER STYLE GENERAL de-
pending on the number of user parameters and whether the client (that is, the caller of a stored
procedure for DB2) and the server (that is, the stored procedure for DB2) is written in Natural or
in another standard programming host language. n denotes the number of user parameters.

250 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

Client\Server |Natural |not Natural

Natural n+1 |n(CALLMODE=NONE)

non-Natural|{n+1 |n

DB2SQL

. Note: PARAMETER DB2SQL applies to Natural stored procedures and Natural UDFs.

A Natural stored procedure or Natural user defined function (UDF) with PARAMETER STYLE DB2SQL
first receives the user parameters specified and then the parameters listed below, under Additional
Parameters Passed. For a Natural UDF, the input parameters are passed before the output parameters.

Additional Parameters Passed:

® A NULL indicator for each user parameter of the CALL statement,

the SQLSTATE to be returned to DB2,

the qualified name of the Natural stored procedure or UDF,

the specific name of the Natural stored procedure or UDEF,
the SQL DIAGNOSE field with a diagnostic string to be returned to DB2.

The SQLSTATE, the qualified name, the specific name and the DIAGNOSE field are defined in the
Natural parameter data area (PDA) DB2SQL_P which is supplied in the Natural system library
SYSDBZ.

If the optional feature SCRATCHPAD nnnis specified additionally in the CREATE FUNCTION statement
for the Natural UDEF, the SCRATCHPAD storage parameter is passed to the Natural UDF.

Use the following definitions:

01 SCRATCHPAD A(4+nnn)
01 REDEFINE SCRATCHPAD
02 SCRATCHPAD_LENGTH(I4)
02 ...

Redefine the SCRATCHPAD in the Natural UDF according to your requirements.

The first four bytes of the SCRATCHPAD area contain an integer length field. Before initially invoking
the Natural UDF with an SQL statement, DB2 resets the SCRATCHPAD area to x'00' and sets the
size nnn specified for the SCRATCHPAD into the first four bytes as an integer value.

Thereafter, DB2 does not reinitialize the SCRATCHPAD between the invocations of the Natural UDF
for the invoking SQL statement. Instead, after returning from the Natural UDF, the contents of
the SCRATCHPAD is preserved and restored at the next invocation of the Natural UDF.

Below is information on:

Database Management System Interfaces 251

Processing Natural Stored Procedures and UDFs

Parameter CALL TYPE

Parameter DBINFO

Determining Library, Subprogram and Parameter Formats
Invoking a Natural Stored Procedure

= Error Handling

= Lifetime of Natural Session

= Example of DB2SQL - Natural Stored Procedure

= Example of DB2SQL - Natural UDF

Parameter CALL TYPE

| Note: This parameter is optional and only applies to Natural UDFs.

The CALL TYPE parameter is passed if the FINAL CALL option is specified for a Natural scalar UDF,
or if the Natural UDF is a table UDF. The CALL TYPE parameter is an integer indicating the type
of call DB2 performs on the Natural UDF. See the DB2 SQL GUIDE for details on the parameter
values provided in the CALL_TYPE parameter.

Parameter DBINFO

This parameter is optional.

If the option DBINFO is used, the DBINFO structure is passed to the Natural stored procedure or
UDE. The DBINFO structure is described in the Natural PDA DBINFO_P supplied in the Natural
system library SYSDB2.

Determining Library, Subprogram and Parameter Formats

The Natural for DB2 server stub determines the subprogram and the library from the qualified
and specific name of the Natural stored procedure or UDF. The SCHEMA name is used as library
name, and the procedure or function name is used as subprogram name.

The ROUTINEN subprogram is supplied in the Natural system library SYSDB2. This subprogram is
used to access the DB2 catalog to determine the formats of the user parameters defined for the
Natural stored procedure or UDEF. After the formats have been determined, they are stored in the
Natural buffer pool. During subsequent invocations of the Natural stored procedure, the formats
are then retrieved from the Natural buffer pool. This requires that at least READS SQL DATA is
specified for Natural stored procedures or UDFs with PARAMETER STYLE DB2SQL.

The ROUTINEN subprogram is generated statically. The DBRM of ROUTINEN is bound as package in
the COLLECTION SAGNDBROUTINENPACK. Before starting to access the DB2 catalog, the subprogram
will save the CURRENT PACKAGESET and set SAGNDBROUTINENPACK to CURRENT PACKAGESET. After
processing, the ROUTINEN subprogram will restore the CURRENT PACKAGESET saved.

252 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

Invoking a Natural Stored Procedure

If the caller of the Natural stored procedure with PARAMETER STYLE DB2SQL is a Natural program,
the caller must use the Natural SQL CALLDBPROC statement with the specification CALLMODE=NATURAL,
which is the default.

Error Handling

If a Natural runtime error occurs during the execution of a Natural stored procedure or UDF with
PARAMETER STYLE DB2SQL, SQLSTATE is set to 38N99 and the diagnostic string contains the text
of the Natural error message.

If an error occurs in the Natural for DB2 server stub during the execution of the Natural stored
procedure or UDF with PARAMETER STYLE DB2SQL, the SQLSTATE is set to 38599 and the diagnostic
string contains the text of the error message.

If the application wants to raise an error condition during the execution of a Natural stored pro-
cedure or UDEF, the SQLSTATE parameter must be set to a value other than '00000". See the DB2
SQL Guide for specifications of user errors in the SQLSTATE parameter.

Additionally, a text describing the errors can be placed in the DIAGNOSE parameter.

If a Natural table UDF wants to signal to DB2 that it has found no row to return, ' 02000 " must be
returned in the SQLSTATE parameter.

Lifetime of Natural Session

For a Natural UDF that contains the attributes DISALLOW PARALLEL and FINAL CALL, the Natural
for DB2 server stub retains the Natural session allocated earlier. This Natural session will then be
reused by all subsequent UDF invocations until Natural encounters the final call.

Example of DB2SQL - Natural Stored Procedure

In a Natural stored procedure, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER
01 P1
01 P2 ...

01 PN ...
01 N1 (I2)
01 N2 (I2)

01 N
n (I12)
PARAMETER USING DBZ2SQL_P

Database Management System Interfaces 253

Processing Natural Stored Procedures and UDFs

[PARAMETER USING DBINFO_P 1 /* only if DBINFO is defined
LOCAL

END-DEFINE
Example of DB2SQL - Natural UDF

In a Natural UDF, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER

01 PIT ... /* first input parameter
01 PI2 ...

01 PIn ... /* 1last input parameter
01 RS1... /* first result parameter
01 RSn ... /* last result parameter

01 N_PI1 (I2) /* first NULL indicator
01 N_PI2 (I2)

01 N_Pin (I2)
01 N_RSI (I2)

01 N_RSn (I2) /* Tast NULL indicator
PARAMETER USING DB2SQL_P /* function, specific, sqglstate, diagnose
PARAMETER
01 SCRATCHPAD A(4+nnn) /* only if SCRATCHPAD nnn is specified
01 REDEFINES SCRATCHPAD
02 SCRATCHPAD_LENGTH (I4)

02 ...

01 CALL_TYPE (I4) /* --- only if FINAL CALL is specified or table UDF
PARAMETER USING DBINFO_P /* ---- only if DBINFO is specified

LOCAL

END-DEFINE

254 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

Writing a Natural Stored Procedure

This section provides a general guideline of how to write a Natural Stored Procedure and what
to consider when writing it.

> To write a Natural stored procedure

1 Determine the format and attributes of the parameters that are passed between the caller and
the stored procedure. Consider creating a Natural parameter data area (PDA). Stored proced-
ures do not support data groups and redefinition within their parameters.

2 Determine the PARAMETER STYLE of the stored procedure: GENERAL, GENERAL WITH NULL or
DBZSQL.

= If youuse GENERAL WITH NULL, append the parameters to the Natural stored procedure by
defining a NULL indicator array that contains a NULL indicator (I2) for each other parameter.

® If youuse DB2SQL, append the parameters of the Natural stored procedure by defining NULL
indicators (one for each parameter), include the PDA DB2SQL_P and the PDA DBINFO_P (only
with DBINFO specified), if desired. See also the relevant DB2 literature by IBM.

3 Decide which and how many result sets the stored procedure will return to the caller.

4 Code your stored procedure as a Natural subprogram.

® Returning result sets
To return result sets, code a Natural SQL SELECT statement with the WITH RETURN option.

To return the whole result set, code an ESCAPE BOTTOM statement immediately after the
SELECT statement.

To return part of the result set code, an IF *COUNTER = 1 ESCAPE TOP END-IFimmediately
following the SELECT statement. This ensures that you do not process the first empty row
that is returned by the SELECT WITH RETURN statement. To stop row processing, execute an
ESCAPE BOTTOM statement.

If you do not leave the processing loop initiated by the SELECT WITH RETURN via ESCAPE
BOTTOM, the result set created is closed and nothing is returned to the caller.

® Attention when accessing other databases
You can access other databases (for instance Adabas) within a Natural stored procedure.
However, keep in mind that your access to other databases is synchronized neither with
the updates done by the caller of the stored procedure, nor with the updates done against
DB2 within the stored procedure.

Database Management System Interfaces 255

Processing Natural Stored Procedures and UDFs

® Natural for DB2 handling of COMMIT and ROLLBACK statements
DB2 does not allow a stored procedure to issue Natural SQL COMMIT or ROLLBACK statements
(the execution of those statements puts the caller into a must-rollback state). Therefore, the
Natural for DB2 runtime handles those statements as follows when they are issued from a
stored procedure:

COMMIT against DB2 will be skipped. This allows the stored procedure to commit Adabas
updates without getting a must-rollback state from DB2.

ROLLBACK against DB2 will be skipped if it is created by Natural itself.

ROLLBACK against DB2 will be executed if it is user-programmed. Thus, after a Natural error,
the caller receives the Natural error information and not the unqualified must-rollback
state. Additionally, this function ensures that, if the user program backs out the transaction,
every database transaction of the stored procedure is backed out.

5 For DB2 UDB: Issue a CREATE PROCEDURE statement that defines your stored procedure, for
example:
CREATE PROCEDURE <PROCEDURE>
(INOUT STCB VARCHAR(274+13*N),
INOUT <PARMI> <FORMAT>,
INOUT <PARMZ> <FORMAT>,
INOUT <PARM3> <FORMAT>
)
DYNAMIC RESULT SET <RESULT_SETS>
EXTERNAL NAME <LOADMOD>
LANGUAGE ASSEMBLE
PROGRAM TYPE <PGM_TYPE>
PARAMETER STYLE GENERAL <WITH NULLS depending on LINKAGE>;
The data specified in angle brackets (<>) correspond to the data listed in the table above,
PARMI - PARM3 and FORMAT depend on the call parameter list of the stored procedure. See also
Example Stored Procedure NDBPURGN, Member CR6PURGN.
6 Code your Natural program invoking the stored procedure via the Natural SQL CALLDBPROC
statement.
Code the parameters in the CALLDBPROC statement in the same sequence as they are specified
in the stored procedure. Define the parameters in the calling program in a format that is
compatible with the format defined in the stored procedure.
If you use result sets, specify a RESULT SETS clause in the CALLDBPROC statement followed by
a number of result set locator variables of FORMAT (I4). The number of result set locator
variables should be the same as the number or result sets created by the stored procedure. If
you specify fewer than are created, some result sets are lost. If you specify more than are
256 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

created, the remaining result set locator variables are lost. The sequence of locator variables
corresponds to the sequence in which the result sets are created by the stored procedure.

Keep in mind that the fields into which the result set rows are read have to correspond to the
fields used in the SELECT WITH RETURN statement that created the result set.

Writing a Natural UDF

This section provides a general guideline of how to write a Natural user defined function (UDF)
and what to consider when writing it.

See also the section Writing a Natural Stored Procedure.

> To write a Natural UDF

1 Determine the format and attributes of the parameters, which are passed between the caller
and the stored procedure.

2 Create a Natural parameter data area (PDA).

3 Append the parameter definitions of the Natural UDF by defining NULL indicators (one for
each parameter) and include the PDA DB2SQL_P.

4 If required, code a SCRATCHPAD area in the parameter list.

5 Ifrequired, code a call-type parameter. If you have specified DBINFO, include the PDA DBINFO_P.
See also the relevant DB2 literature by IBM.

6 Code your UDF as a Natural subprogram and consider the following:

= Attention when accessing other databases
You can access other databases (for example, Adabas) within a Natural UDF. However,
keep in mind that your access to other databases is synchronized neither with the updates
done by the caller of the stored procedure, nor with the updates done against DB2 within
the stored procedure.

® Natural for DB2 handling of COMMIT and ROLLBACK statements
DB2 does not allow a stored procedure to issue COMMIT or ROLLBACK statements; the execution
of these statements results in a must-rollback state. If a Natural stored procedure issues a
COMMIT or ROLLBACK, the Natural for DB2 runtime processes these statements as follows:

COMMIT against DB2 is skipped. This allows the stored procedure to commit Adabas updates
without entering a must-rollback state by DB2.

ROLLBACK against DB2 is skipped if it is implicitly issued by the Natural runtime.

ROLLBACK against DB2 is executed if it is user-programmed. Thus, after a Natural error, the
caller receives a corresponding Natural error message text, but does not enter an unqualified

Database Management System Interfaces 257

Processing Natural Stored Procedures and UDFs

must-rollback state. Additionally, this reaction ensures that every database transaction the
stored procedure performs is backed out if the user program backs out the transaction.

7 Issuea CREATE FUNCTION statement that defines your UDF, for example:

CREATE FUNCTION <FUNCTION>
([PARM1] <FORMAT>,
[PARMZ] <FORMAT>,
[PARM3] <FORMAT>

)
RETURNS <FORMAT>

EXTERNAL NAME <LOADMOD>
LANGUAGE ASSEMBLE

PROGRAM TYPE <PGM TYPE>
PARAMETER STYLE DBZ2SQL

In the example above, the variable data are enclosed in angle brackets (< >) and refer to the
keywords preceding the brackets. Specify a valid value, for example:

LOADMOD denotes the Natural for DB2 server stub module, for example, NDBvrSRV, where vr
stands for the Natural version number. PARM1 - PARM3 and FORMAT relate to the call parameter
list of the UDF. See also the Example Natural User Defined Function.

8 Code a Natural program containing SQL statements that invoke the UDF.

Specity the parameters of the Natural UDF invocation in the same sequence as specified in
the Natural UDF definition. The format of the parameters in the calling program must be
compatible with the format defined in the Natural UDEF.

Example Stored Procedure

This section describes the example stored procedure NDBPURGN, a Natural subprogram which
purges Natural objects from the buffer pool used by the Natural stored procedures server.

The following topics are covered below:

= Objects of NDBPURGN

258 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

= Defining the Stored Procedure NDBPURGN

Objects of NDBPURGN

The example stored procedure NDBPURGN comprises the following text objects (members) which
are stored in the Natural system library SYSDB2:

Object Explanation

CR6PURGN |Input member (text object) for SYSDBZ ISQL.

Contains SQL statements used to declare NDBPURGN in DB2.
NDBPURGP|The client (Natural) program which

= Requests the name of the program to be purged and the library where it resides,
= Invokes the stored procedure NDBPURGN and

® Reports the outcome of the request.

NDBPURGN|The stored procedure which purges objects from the buffer pool.

NDBPURGN invokes the application programming interface USR0340N supplied in the Natural
system library SYSEXT.

Therefore, USRO340N must be available in the library defined as the steplib for the execution
environment.

Defining the Stored Procedure NDBPURGN

> To define the example stored procedure NDBPURGN

1 Define the stored procedure in the DB2 catalog by using the SQL statements provided as text
objects CR5PURGN (for DB2 Version 5) and CR6PURGN (for DB2 Version 6).

2 Specify the name of the Natural stored procedure stub (here: NDBvrSRV, where vr stands for
the Natural version number) as LOADMOD (V5) or EXTERNAL NAME (V6). The Natural stored
procedure stub is generated during the installation by assembling the NDBSTUB macro.

3 Asthe first parameter, pass the internal Natural parameter STCB to the stored procedure. The
STCB parameter is a VARCHAR field which contains information required to invoke the stored
procedure in Natural:
® The program name of the stored procedure and the library where it resides,
® The description of the parameters passed to the stored procedure and
® The error message created by Natural if the stored procedure fails during the execution.

The STCB parameter is generated automatically by the CALLMODE=NATURAL clause of the Natural
SQL CALLDBPROC statement and is removed from the parameters passed to the Natural stored

Database Management System Interfaces 259

Processing Natural Stored Procedures and UDFs

procedure by the server stub. Thus, STCB is invisible to the caller and the stored procedure.
However, if a non-Natural client intends to call a Natural stored procedure, the client has to
pass the STCB parameter explicitly. See also Stored Procedure Control Block below.

Stored Procedure Control Block (STCB)

Below is the Stored Procedure Control Block (STBC) generated by the CALLMODE=NATURAL clause
as generated by the stored procedure NDBPURGN before and after execution. Changed values are
emphasized in boldface:

STCB before Execution:

004C82 0132F0F3 FOF6E2E3 C3C2F3F1 F040C8C7 *..0306STCB310 HG* 11097D42
004C92 D2404040 4040C8C7 D2404040 4040D5C4 *K SAG ND* 11097D52
004CA2 C2D7E4D9 C7D74040 40404040 4040F0F5 *BPURGP 05* 11097D62
004CB2 F7F0D5C4 C2D7E4D9 C7D5FOFO FOF6FOF9 *70NDBPURGNO00609* 11097D72

004CC2 FOF9F940 40404040 40404040 40404040 *999 * 11097D82
004CD2 40404040 40404040 40404040 40404040 = * 11097D92
004CE2 40404040 40404040 40404040 40404040 ~* * 11097DA2
004CF2 40404040 40404040 40404040 40404040 ~* 2 11097DB2
004D02 40404040 40404040 40404040 40404040 = * 11097DC2
004D12 40404040 40404040 40404040 40404040 ~* b 11097DD2
004D22 40404040 40404040 40404040 40404040 = * 11097DE?2
004D32 40404040 40404040 40404040 40404040 = * 11097DF2
004D42 40404040 40404040 40404040 40404040 =* * 11097E02
004D52 40404040 40404040 40404040 40404040 = * 11097E12
004D62 40404040 40404040 40404040 40404040 = * 11097E22
004D72 40404040 40404040 40404040 40404040 ~* * 11097E32
004D82 40404040 40404040 40404040 40404040 = * 11097E42

004092 40404040 D4C1F86B FOD4ClF4 FO6BFOD4 * MA8, OMA40, OM* 11097E52
004DA2 C2F26BFO D4C2F26B FOD4C9F2 6BFOD4CY9 *I12,0MI2,0MI2,0MI* 11097E62
004DB2 F26BF04B *2,0. * 11097E72

STCB after Execution:

004C82 0132F0F3 FOF6EZ2E3 C3C2F3F1 FO040C8C7 *..0306STCB310 HG* 11097042

004C92 D2404040 4040C8C7 D2404040 4040D5C4 *K SAG ND* 11097D52
004CA2 C2D7E4D9 C/D74040 40404040 4040F0F5 *BPURGP 05* 11097D62
004CB2 F7F0D5C4 C2D7E4D9 C7D5FOFO FOF6FOFO *7ONDBPURGNO00600* 11097D72
004CC2 FOFOF040 40404040 40404040 40404040 *000 s 11097D82
004CD2 40404040 40404040 40404040 40404040 = * 11097D92
004CE2 40404040 40404040 40404040 40404040 = I 11097DA2
004CF2 40404040 40404040 40404040 40404040 =* * 11097DB2
004D02 40404040 40404040 40404040 40404040 = * 11097DC2
004D12 40404040 40404040 40404040 40404040 = * 11097DD2
004D22 40404040 40404040 40404040 40404040 ~* * 11097DE2
004D32 40404040 40404040 40404040 40404040 = * 11097DF2
004D42 40404040 40404040 40404040 40404040 ~* * 11097E02
004D52 40404040 40404040 40404040 40404040 = * 11097E12
004D62 40404040 40404040 40404040 40404040 ~* * 11097E22

260 Database Management System Interfaces

Processing Natural Stored Procedures and UDFs

004D72 40404040 40404040 40404040 40404040 ~* I 11097E32
004D82 40404040 40404040 40404040 40404040 = * 11097E42
004D92 40404040 D4CI1F86B FOD4ClF4 FO6BFOD4 * MA8, OMA40, OM* 11097E52
004DA2 C2F26BFO D4C2F26B FOD4C9F2 6BFOD4CY9 *12,0MI2,0MI2,0MI* 11097E62
004DB2 F26BF04B *2,0. * 11097E72

Example Natural User Defined Function

This section describes the example user-defined function (UDF) NAT.DEM2UDFN, a Natural subpro-
gram used to calculate the product of two numbers.

The example UDF NAT.DEM2UDF comprises the following objects that are supplied in the Natural
system library SYSDB2:

Object Explanation

DEM2CUDF | Contains SQL statements used to create DEMZUDFN (see below).
DEM2UDFP|The client (Natural) program that

® Fetches rows from the UDF NAT.DEMO table,
= invokes the NAT.DEM2UDFN (see below) in the WHERE clause, and
= Displays the rows fetched.

DEM2UDFN|The UDF that builds the product of two numbers. DEM2UDFN has to be copied to the Natural
library NAT on the Natural sytem file FUSER in the executing environment.

Database Management System Interfaces 261

262

17 Interface Subprograms

B NAUTAl SUDPIOGIAMS ...t e b e 264
B NDBCONV SUDPIOGIAM ...ttt e et e et e e e e s e e e et e e e e s rneeeaa e 265
= NDBDBRM SUDPIOGIAM ...ttt ettt e et e ettt e ettt e e et e e e nnraee e 266
® NDBDBR2 SUDPIOGIAM ...ttt 267
B NDBDBR3 SUDPIOGIAM ...ttt e 268
B NDBERR SUDPIOGIAM ..ttt 270
B NDBISQL SUDPIOGIAM ...ttt e et e e ettt e e et e e e et ee e e e annneeeas 270
= NDBISQLD SUDPIOGIAM ...ttt ettt et e et e e s 273
= NDBNOERR SUDPIOGIAM ...ttt ettt 275
B NDBNROW SUDPIOGrAM ..ottt e e et e e e e e s ba e e e e e e e 275
B NDBSTMP SUDPIOGIAM ...ttt 276
B DB2SERV INEITACE ... 277

263

Interface Subprograms

Several Natural and non-Natural subprograms are available to provide you with internal inform-
ation from Natural for DB2 or specific functions for which no equivalent Natural statements exist.

This section covers the following topics:

® Natural Subprograms

® DB2SERV Interface

Natural Subprograms

The following Natural subprograms are provided:

Subprogram |Function

NDBCONV |[Sets or resets conversational mode 2.

NDBDBRM |Checks whether a Natural program contains SQL access and whether it has been modified for
static execution.

NDBDBR2 |Checks whether a Natural program contains SQL access and whether it has been modified for
static execution.

NDBDBR3 |Checks whether a Natural program contains SQL access, whether it has been modified for
static execution, and whether it can be generated as static.

NDBERR |Provides diagnostic information on the most recently executed SQL call.

NDBISQL |Executes SQL statements in dynamic mode.

NDBISQLD |Executes SQL statements in dynamic mode, using dynamic variables.

NDBNOERR |Suppresses normal Natural error handling.

NDBNROW |Obtains the number of rows affected by a Natural SQL statement.
NDBSTMP |Provides a DB2 TIMESTAMP column as an alphanumeric field and vice versa.

All these subprograms are provided in the Natural system library SYSDB2 and the Natural library
SYSTEM on the system file FNAT.

In addition, the Natural library SYSTEM in the FNAT system file contains the subprogram DBTLIB2N
and the subroutine DBDL219S. They are used by NDBDBRM and NDBDBR?2. The corresponding parameters
must be defined in a DEFINE DATA statement.

The Natural subprograms NDBDBRM, NDBDBR2 and NDBDBR3 allow the optional specification of the
database ID, file number, password and cipher code of the library file containing the program to
be examined.

If these parameters are not specified, either the actual FNAT file or the FUSER file is used to locate
the program to be examined depending on whether the library name begins with "SYS" or not.

264 Database Management System Interfaces

Interface Subprograms

Programs invoking NDBDBRM, NDBDBR2 or NDBDBR3 without these parameters will also work like
before this change as the added parameters are declared as optional.

For detailed information on these subprograms, follow the links shown in the table above and
read the description of the call format and of the parameters in the text object provided with the
subprogram (subprogram-nameT).

Invoking Subprograms from within a Natural Program

® Natural subprograms are invoked with the Natural CALLNAT statement.

® Non-Natural subprograms are invoked with the Natural CALL statement.

NDBCONYV Subprogram

The Natural subprogram NDBCONV is used to either set or reset the conversational mode 2 in CICS
environments. Conversational mode 2 means that update transactions are spawned across terminal
I/Os until either a COMMIT or ROLLBACK has been issued (Caution DB2 and CICS resources are kept
across terminal I/Os!). This means conversational mode 2 has the same effect as the Natural profile
parameter PSEUDO=0FF, except that the conversational mode is entered after an DB2 update state-
ment (UPDATE, DELETE, INSERT) and left again after a COMMIT or ROLLBACK, while PSEUDO=0FF causes
conversational mode for the total Natural session.

A sample program called CALLCONV is provided in library SYSDB?2; it demonstrates how to invoke
NDBCONV. A description of the call format and of the parameters is provided in the text object
NDBCONVT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBCONV' ffCONVERS #RESPONSE

The various parameters are described in the following table:

Parameter |Format/Length |Explanation

##FCONVERS |11 Contains the desired conversational mode (input)
#fRESPONSE |14 Contains the response of NDBCONV (output)

The #CONVERS parameter can contain the following values:

Database Management System Interfaces 265

Interface Subprograms

Code |Explanation

0 The conversational mode 2 has to be reset.

1 The conversational mode 2 has to be set.

The #fRESPONSE parameter can contain the following response codes:

Code [Explanation

0 |The conversational mode 2 has been successfully set or reset.

-1 |The specified value of #CONVERS is invalid, the conversational mode has not been changed.

-2 |NDBCONV is called in a environment, which is not a CICS environment, where the conversational mode
2 is not supported.

NDBDBRM Subprogram

The Natural subprogram NDBDBRM is used to check whether a Natural program contains SQL access
and whether it has been modified for static execution. It is also used to obtain the corresponding
DBRM (database request module) name from the header of a Natural program generated as static
(see also Preparing Programs for Static Execution).

A sample program called CALLDBRM is provided on the installation medium; it demonstrates how
to invoke NDBDBRM. A description of the call format and of the parameters is provided in the text
object NDBDBRMT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBDBRM' {ffLIB #MEM {#fDBRM #RESP #DBID #FILENR #fPASSWORD #CIPHER

The various parameters are described in the following table:

Parameter |Format/Length|Explanation

{FLIB A8 Contains the name of the library of the program to be checked.
#FMEM A8 Contains the name of the program (member) to be checked.
#FDBRM A8 Returns the DBRM name.

#FRESP 2 Returns a response code. The possible codes are listed below.
##DBID N5 Optional. Database ID of library file.

#FILENR |N5 Optional. File number of library file.

#FPASSWORD | A8 Optional. Password of library file.

#CIPHER |N8 Optional. Cipher code of library file.

The #RESP parameter can contain the following values:

266 Database Management System Interfaces

Interface Subprograms

Code |Explanation

0 |The member #MEM in library #LIB has SQL access; it is static if #DBRM contains a value.
-1 |The member #MEM in library #LIB has no SQL access.
-2 |The member #MEM in library #L IB does not exist.

-3 |No library name has been specified.

-4 |No member name has been specified.

-5 |The library name must start with a letter.

>-5 |Further negative response codes correspond to error numbers of Natural error messages.

>0 |Positive response codes correspond to error numbers of Natural Security messages.

NDBDBR2 Subprogram

The Natural subprogram NDBDBR? is used to check whether a Natural program contains SQL access
and whether it has been modified for static execution. It is also used to obtain the corresponding
DBRM (database request module) name from the header of a Natural program generated as static
(see also Preparing Programs for Static Execution) and the time stamp generated by the precom-
piler.

A sample program called CALLDBRZ is provided on the installation medium; it demonstrates how
to invoke NDBDBR2. A description of the call format and of the parameters is provided in the text
object NDBDBR2T.

The calling Natural program must use the following syntax:

CALLNAT 'NDBDBR2' #LIB #MEM #DBRM #TIMESTAMP #PCUSER #PCRELLEV #ISOLLEVL #fDATEFORM <
ffTIMEFORM #fRESP #DBID #FILENR #PASSWORD #CIPHER

The various parameters are described in the following table:

Parameter Format/Length | Explanation

fFLIB A8 Contains the name of the library of the program to be checked.
#IMEM A8 Contains the name of the program (member) to be checked.
{#FDBRM A8 Returns the DBRM name.

#fTIMESTAMP |B8 Consistency token generated by precompiler.

#FPCUSER Al User ID used at precomplile (only SQL/DS).

#fPCRELLEV |A1l Release level of precompiler (only SQL/DS).

#FISOLLEVL |Al Precomplier isolation level (only SQL/DS).

#fDATEFORM |Al Date format (only SQL/DS).

#TIMEFORM |A1 Time format (only SQL/DS).

Database Management System Interfaces 267

Interface Subprograms

Parameter Format/Length | Explanation

#FRESP 2 Returns a response code. The possible codes are listed below.
#fDBID N5 Optional. Database ID of library file.

#FILENR N5 Optional. File number of library file.

#FPASSWORD |A8 Optional. Password of library file.

#fCIPHER N8 Optional. Cipher code of library file.

The #fRESP parameter can contain the following values:

Code |[Explanation

0 The member #MEM in library #LIB has SQL access; it is static if fDBRM contains a value.

-1 |The member #MEM in library #L 1B has no SQL access.

-2 |The member #MEM in library #L 1B does not exist.

-3 |No library name has been specified.

-4 |No member name has been specified.

-5 |The library name must start with a letter.

>-5 |Further negative response codes correspond to error numbers of Natural error messages.

>0 |Positive response codes correspond to error numbers of Natural Security messages.

NDBDBR3 Subprogram

The Natural subprogram NDBDBR3is used to check whether a Natural program contains SQL access
(#RESP 0), whether the Natural program contains solely SQL statements, which are dynamically
executable (#RESP 0, #DBRM “*DYNAMIC’) and whether it has been modified for static execution
(#/RESP 0, #DBRM dbrmname). It is also used to obtain the corresponding DBRM (database request
module) name from the header of a Natural program generated as static (see also Preparing Pro-
grams for Static Execution) and the time stamp generated by the precompiler.

A sample program called CALLDBR3 is provided on the installation medium; it demonstrates how
to invoke NDBDBR3. A description of the call format and of the parameters is provided in the text
object NDBDBR3T.

The calling Natural program must use the following syntax:

268

Database Management System Interfaces

Interface Subprograms

CALLNAT 'NDBDBR3' #LIB #MEM #DBRM #TIMESTAMP #PCUSER #PCRELLEV #ISOLLEVL #DATEFORM «
#TIMEFORM #IRESP #DBID #FILENR #fPASSWORD #CIPHER

The various parameters are described in the following table:

Parameter Format/Length |Explanation

fFLIB A8 Contains the name of the library of the program to be checked.
#FMEM A8 Contains the name of the program (member) to be checked.
#DBRM A8 Returns the DBRM name.

B Space, if program has SQL access,
= *DYNAMIC, if program contains only dynamically executable SQL,

= DBRM name, if program has been generated static.

#TIMESTAMP | B8 Consistency token generated by precompiler.
#fPCUSER Al User ID used at precomplile (only SQL/DS).
#fPCRELLEV |Al Release level of precompiler (only SQL/DS).
#FISOLLEVL |Al Precomplier isolation level (only SQL/DS).
#fDATEFORM |A1 Date format (only SQL/DS).

#fTIMEFORM |A1 Time format (only SQL/DS).

fFRESP 2 Returns a response code. The possible codes are listed below.
##DBID N5 Optional. Database ID of library file.
#FFILENR N5 Optional. File number of library file.
#FPASSWORD |A8 Optional. Password of library file.

#FCIPHER N8 Optional. Cipher code of library file.

The #RESP parameter can contain the following values:

Code [Explanation

0 |The member #MEM in library #L 1B has SQL access; it is static if #DBRM contains a value other than
space and *DYNAMIC.

-1 |The member #MEM in library #L IB has no SQL access.
-2 |The member #MEM in library #L IB does not exist.

-3 |No library name has been specified.

-4 |No member name has been specified.

-5 |The library name must start with a letter.

>-5 |Further negative response codes correspond to error numbers of Natural error messages.

>0 |Positive response codes correspond to error numbers of Natural Security messages.

Database Management System Interfaces 269

Interface Subprograms

NDBERR Subprogram

The Natural subprogram NDBERR replaces Function E of the DB2SERV interface, which is still provided
but no longer documented. It provides diagnostic information on the most recent SQL call. It also
returns the database type which returned the error. NDBERR is typically called if a database call
returns a non-zero SQLCODE (which means a NAT3700 error).

A sample program called CALLERR is provided on the installation medium; it demonstrates how
to invoke NDBERR. A description of the call format and of the parameters is provided in the text
object NDBERRT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBERR' #SQLCODE #SQLSTATE #SQLCA #DBTYPE

The various parameters are described in the following table:

Parameter |Format/Length Explanation

#SQLCODE |14 Returns the SQL return code.

#SQLSTATE|A5 Returns a return code for the output of the most recently executed SQL statement.

#SQLCA Al136 Returns the SQL communication area of the most recent DB2 access.

#fDBTYPE |B1 Returns the identifier (in hexadecimal format) for the currently used database
(where X'02"' identifies DB2).

NDBISQL Subprogram

The Natural subprogram NDBISQL is used to execute SQL statements in dynamic mode. The SELECT
statement and all SQL statements which can be prepared dynamically (according to the DB2 liter-
ature by IBM) can be passed to NDBISQL.

A sample program called CALLISQL is provided on the installation medium; it demonstrates how
to invoke NDBISQL. A description of the call format and of the parameters is provided in the text
object NDBISQLT.

The calling Natural program must use the following syntax:

270 Database Management System Interfaces

Interface Subprograms

CALLNAT 'NDBISQL'#FUNCTION #TEXT-LEN #TEXT (*) #SQLCA F#fRESPONSE #WORK-LEN #WORK (*)

The various parameters are described in the following table:

Parameter |Format/Length Explanation
FFFUNCTION|AS8 For valid functions, see below.
#FTEXT - LEN|I2 Length of the SQL statement or of the buffer for the return area.
FFTEXT A1(1:V) Contains the SQL statement (EXECUTE) or receives a data row (FETCH).
##SQLCA A136 Contains the SQLCA.
#FRESPONSE |14 Returns a response code.
#FWORK - LEN |12 Length of the workarea specified by #WORK (optional).
FFWORK Al(1:V) Workarea used to hold SQLDA/SQLVAR and auxiliary fields across calls
(optional).
#DBTYPE |12 Database type (optional).
0 Default
2 DB2
4 CNX

Valid functions for the #FUNCTION parameter are:

Function |Parameter Explanation

CLOSE Closes the cursor for the SELECT statement.

EXECUTE [#TEXT-LEN |Executes the SQL statement.

#TEXT (*) |Contains the length of the statement.
Contains the SQL statement.

The first two characters must be blank.

FETCH |[#TEXT-LEN |Returns a record from the SELECT statement.
#TEXT (*) |Size of #TEXT (in bytes).
Buffer for the record.

TITLE [#TEXT-LEN |Returns the header for the SELECT statement.

#FTEXT (*) |Size of #TEXT (in bytes);

receives the length of the header (= length of the record).
Buffer for the header line.

The #RESPONSE parameter can contain the following response codes:

Database Management System Interfaces 271

Interface Subprograms

Code [Function Explanation

5 EXECUTE The statement is a SELECT statement.

6 TITLE, FETCH|Data are truncated; only set on first TITLE or FETCH call.
100 |FETCH No record / end of data.

-2 Unsupported data type (for example, GRAPHIC).

-3 |TITLE, FETCH|No cursor open;
probably invalid call sequence or statement other than SELECT.

-4 Too many columns in result table.

-5 SQLCODE from call.

-6 Version mismatch.

-7 Invalid function.

-8 Error from SQL call.

-9 Workarea invalid (possibly relocation).

-10 Interface not available.

-11 |EXECUTE First two bytes of statement not blank.
Call Sequence

The first call must be an EXECUTE call. NDBISQL has a fixed SQLDA AREA holding space for 50
columns. If this area is too small for a particular SELECT it is possible to supply an optional work
area on the calls to NDBISQL by specifying #WORK-LEN (12) and #fWORK(AL1/1:V).

This workarea is used to hold the SQLDA and temporary work fields like null indicators and
auxiliary fields for numeric columns. Calculate 16 bytes for SQLDA header and 44 bytes for each
result column and 2 bytes null indicator for each column and place for each numeric column,
when supplying #WORK- LEN and #WORK(*) during NDBISQL calls. If these optional parameters are
specified on an EXECUTE call they have also to be specified on any following call.

If the statement is a SELECT statement (that is, response code 5 is returned), any sequence of TITLE
and FETCH calls can be used to retrieve the data. A response code of 100 indicates the end of the
data.

The cursor must be closed with a CLOSE call.

Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE
call for a SELECT statement.

In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE,
FETCH or CLOSE call that refers to the same statement.

272 Database Management System Interfaces

Interface Subprograms

NDBISQLD Subprogram

The Natural subprogram NDBISQLD is used to execute SQL statements in dynamic mode. The
SELECT statement and all SQL statements which can be prepared dynamically (according to the
DB2 literature by IBM) can be passed to NDBISQLD.

A sample program called CALISQLD is provided on the installation medium. It demonstrates how
to invoke NDBISQLD. A description of the call format and of the parameters is provided in the text
object ISQLDT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBISQLD'#fFUNCTION #fTEXT #SQLCA #fRESPONSE #WORK #DBTYPE

The various parameters are described in the following table:

Parameter |Format/Length |Explanation

#FFUNCTION|AS8 For valid functions, see below.

FFTEXT A DYNAMIC |Contains the SQL statement (EXECUTE) or receives the data row (FETCH).

#SQLCA A136 Contains the SQLCA.

#FRESPONSE |14 Returns a response code.

FFWORK A DYNAMIC |Workarea used to hold SQLDA/SQLVAR and auxiliary fields across calls
(optional).

If specified, #WORK has to be sized large enough to hold all auxiliary fields
(SQLDA) for the SQL request.

#DBTYPE |12 Database type (optional).
0 Default
2 DB2
4 CNX

Valid functions for the #FUNCTION parameter are:

Function |Parameter|Explanation

CLOSE Closes the cursor for the SELECT statement.

EXECUTE|#TEXT |Executes the SQL statement.
Contains the SQL statement.
The first four characters must be blank.

FETCH |#fTEXT |Returns a row from the SELECT statement.

#TEXT has to be sized large enough to hold the row of the result set created by the
SELECT statement.

Database Management System Interfaces 273

Interface Subprograms

Function |Parameter|Explanation

After FETCH, the *LENGTH (#/TEXT) is reduced to the exact size of the row.
TITLE [#fTEXT |Returns the header literals for the SELECT statement.

#FTEXT has to be sized large enough to hold the row of the result set created by the
SELECT statement.

The #RESPONSE parameter can contain the following response codes:

Code [Function Explanation

5 EXECUTE The statement is a SELECT statement.

6 TITLE, FETCH|Data are truncated; only set on first TITLE or FETCH call.
100 |FETCH No record/end of data.

-2 |- Unsupported data type (for example, GRAPHIC).

-3 |TITLE, FETCH|No cursor open.
Probably invalid call sequence or statement other than SELECT.

-4 |- Too many columns in result table.

-5 - SQLCODE from call.

-6 |- Version mismatch.

-7 |- Invalid function.

-8 |- Error from SQL call.

-9 |- Workarea invalid (possibly relocation).

-10 |- Interface not available.

-11 |EXECUTE First two bytes of statement not blank.
Call Sequence

The first call must be an EXECUTE call. NDBISQLD has a fixed SQLDA AREA, holding space for 50
columns. If this area is too small for a particular SELECT, it is possible to supply an optional work
area on the calls to NDBISQLD by #WORK(A)DYNAMIC.

This workarea is used to hold the SQLDA and temporary work fields like null indicators and
auxiliary fields for numeric columns. Calculate 16 bytes for SQLDA header and 44 bytes for each
result column and 2 bytes null indicator for each column and place for each numeric column,
when supplying #WORK(A)DYNAMIC during NDBISQLD calls. If these optional parameters are specified
on an EXECUTE call, they have also to be specified on any following call.

If the statement is a SELECT statement (that is, response code 5 is returned), any sequence of TITLE
and FETCH calls can be used to retrieve the data. A response code of 100 indicates the end of the
data.

The cursor must be closed with a CLOSE call.

274 Database Management System Interfaces

Interface Subprograms

Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE
call for a SELECT statement.

In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE,
FETCH or CLOSE call that refers to the same statement.

NDBNOERR Subprogram

The Natural subprogram NDBNOERR is used to suppress Natural NAT3700 errors caused by the
next SQL call. This allows a program controlled continuation if an SQL statement produces a non-
zero SQLCODE. After the SQL call has been performed, NDBERR is used to investigate the SQLCODE.

A sample program called CALLNOER is provided on the installation medium; it demonstrates how
to invoke NDBNOERR. A description of the call format and of the parameters is provided in the text
object NDBNOERT.

The calling Natural program must use the following syntax:

CALLNAT "NDBNOERR'
There are no parameters provided with this subprogram.

| Note: Only NAT3700 errors (that is, non-zero SQL response codes) are suppressed, and
also only errors caused by the next following SQL call.

Restrictions with Database Loops

" If NDBNOERR is called before a statement that initiates a database loop and an initialization error
occurs, no processing loop will be initiated, unless a IF NO RECORDS FOUND clause has been
specified.

= If NDBNOERR is called within a database loop, it does not apply to the processing loop itself, but
only to the SQL statement subsequently executed inside this loop.

NDBNROW Subprogram

The Natural subprogram NDBNROW is used to obtain the number of rows affected by the Natural
SQL statements Searched UPDATE, Searched DELETE, and INSERT. The number of rows affected is
read from the SQL communication area (SQLCA). A positive value represents the number of affected
rows, whereas a value of minus one (- 1) indicates that all rows of a table in a segmented tablespace
have been deleted; see also the Natural system variable *NUMBER as described in the Natural System
Variables documentation.

Database Management System Interfaces 275

Interface Subprograms

A sample program called CALLNROW is provided on the installation medium; it demonstrates how
to invoke NDBNROW. A description of the call format and of the parameters is provided in the text
object NDBNROWT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBNROW' #NUMBER

The parameter #NUMBER (I4) contains the number of affected rows.

NDBSTMP Subprogram

For DB2, Natural provides a TIMESTAMP column as an alphanumeric field (A26) of the format
YYYY-MM-DD-HH.MM.SS . MMMMMM.

Since Natural does not yet support computation with such fields, the Natural subprogram NDBSTMP
is provided to enable this kind of functionality. It converts Natural time variables to DB2 time
stamps and vice versa and performs DB2 time stamp arithmetics.

A sample program called CALLSTMP is provided on the installation medium; it demonstrates how
to invoke NDBSTMP. A description of the call format and of the parameters is provided in the text
object NDBSTMPT.

The functions available are:

Code |Explanation

ADD |Adds time units (labeled durations) to a given DB2 time stamp and returns a Natural time variable
and a new DB2 time stamp.

CNT2 |Converts a Natural time variable (format T) into a DB2 time stamp (column type TIMESTAMP) and
labeled durations.

C2TN|Converts a DB2 time stamp (column type TIMESTAMP) into a Natural time variable (format T) and
labeled durations.

DIFF|Builds the difference between two given DB2 time stamps and returns labeled durations.

GEN |Generates a DB2 time stamp from the current date and time values of the Natural system variable
*TIMX and returns a new DB2 time stamp.

SUB |Subtracts labeled durations from a given DB2 time stamp and returns a Natural time variable and a
new DB2 time stamp.

TEST|Tests a given DB2 time stamp for valid format and returns TRUE or FALSE.

i Note: Labeled durations are units of year, month, day, hour, minute, second and micro-
second.

276 Database Management System Interfaces

Interface Subprograms

DB2SERV Interface

DB2SERV is an Assembler program entry point which can be called from within a Natural program.
DB2SERV performs either of the following functions:

= Function D
= Function P

® Function D, which performs the SQL statement EXECUTE IMMEDIATE.

= Function P, invokes an Assembler module named NDBPLAN.

The parameter or variable values returned by each of these functions are checked for their format,
length, and number.

Function D

Function D performs the SQL statement EXECUTE IMMEDIATE. This allows SQL statements to be issued
from within a Natural program.

The SQL statement string that follows the EXECUTE IMMEDIATE statement must be assigned to the
Natural program variable STMT. It must contain valid SQL statements allowed with the EXECUTE
IMMEDIATE statement as described in the relevant IBM literature. Examples can be found below
and in the demonstration programs DEM2* in the Natural system library SYSDB2.

| Note: The conditions that apply to issuing the Natural END TRANSACTION or BACKOUT
TRANSACTION statements also apply when issuing the SQL COMMIT or ROLLBACK statements.

Command Syntax

CALL 'DBZ2SERV' 'D' STMT STMTL SQLCA RETCODE

The variables used in this command are described in the following table:

Variable |Format/Length |Explanation

STMT Annn Contains a command string which consists of SQL syntax as described above.
STMTL |12 Contains the length of the string defined in STMT.

SQLCA |A136 Returns the current contents of the SQL communication area.

RETCODE|I2 Returns an interface return code. The following codes are possible:

0 No warning or error occurred.

4 SQL statement produced an SQL warning.

Database Management System Interfaces 277

Interface Subprograms

Variable |Format/Length |Explanation

8 SQL statement produced an SQL error.

12 Internal error occurred; the corresponding Natural error message number can
be displayed with SQLERR.

The current contents of the SQLCA and an interface return code (RETCODE) are returned. The
SQLCA is a collection of variables that are used by DB2 to provide an application program with
information on the execution of its SQL statements.

The following two examples show you how to use DB2SERV with Function D.

Example of Function D - DEM2CREA:

ok ok ok kK ok ok ok kK ok o ok
* DEM2CREA - CREATE TABLE NAT.DEMO e
ok ok ok ok ok ok ok ok ok ok ok ok ko ok ko ok ko ok ko ok ko ok ko ok ko ok
*

DEFINE DATA
LOCAL USING DEMSQLCA

LOCAL

% Parameters for DB2SERV
1 STMT (A250)

1 STMTL (I2) CONST <250>

1 RETCODE (I2)

*

END-DEFINE

*

COMPRESS 'CREATE TABLE NAT.DEMO'

" (NAME CHAR(20) NOT NULL,'
" ADDRESS VARCHAR(100) NOT NULL,"
" DATEOFBIRTH DATE NOT NULL,'
" SALARY DECIMAL(6,2),"

" REMARKS VARCHAR(500))"

INTO STMT

CALL 'DB2SERV' 'D' STMT STMTL SQLCA RETCODE

*

END TRANSACTION
*
IF RETCODE = 0
WRITE 'Table NAT.DEMO created’
ELSE
FETCH "SQLERR'
END-IF
END

R R R R R R R b R R i b b R e i b b R b b b e b b R S i e S b R R e b R e b R e S b b b e S b b b e b b R e i b b

278 Database Management System Interfaces

Interface Subprograms

Note: The functionality of the DB2SERV Function D is also provided with the PROCESS SQL

statement.

Example of Function D - DEM2SET:

R R R R b R b R b R e R b I R e I R b e e B i b b S e e I e e e b e e b e b b e b i e b b b i b e b e e b e b e S S
* DEMZ2SET - Set Current SQLID *
R R R b R b S R b S R b e I S e I i b e e B i e B e S b i e b e e b e e b i b i i b e i b e b e e b i b e S i S

*

DEFINE DATA
LOCAL USING DEMSQLCA

LOCAL

% Parameter for DBZ2SERV
1 STMT (A250)

1 STMTL (I2) CONST <250>

1 RETCODE (12)

1 OLDSQLID (A8)

1 NEWSQLID (A8)

*

END-DEFINE

*

SELECT DISTINCT CURRENT SQLID
INTO OLDSQLID
FROM SYSIBM.SYSTABLES
ESCAPE BOTTOM
END-SELECT
*
MOVE "SET CURRENT SQLID="PROD"';
TO STMT
CALL 'DB2SERV' 'D' STMT STMTL SQLCA RETCODE
*
IF RETCODE > 0
FETCH 'SQLERR®
ELSE
SELECT DISTINCT CURRENT SQLID
INTO NEWSQLID
FROM SYSIBM.SYSTABLES
ESCAPE BOTTOM
END-SELECT

WRITE ' O1d SQLID was :' OLDSQLID
WRITE ' New SQLID is :' NEWSQLID
END-IF

*

END

R R R R R R b R R I b b R e i b b R e e b b b e b b R S i b b e e b R R e b b R e b b e S b b R e S b b b e b b b e i b

When using SET CURRENT SQLID, the creator name of a table can be substituted by the current
SQLID. This enables you to access identical tables with the same table name but with different

Database Management System Interfaces 279

Interface Subprograms

creator names. Thus, table names must not be qualified by a creator name if this is to be substituted
by the SQLID.

In all supported TP-monitor environments, the SOLID can then be kept across terminal I/Os until
either the end of the session or its resetting via DB2SERV.

Function P

Function P invokes an Assembler module named NDBPLAN, which is used to establish and/or ter-
minate the DB2 connection under TSO and in batch mode. This allows a Natural application to
perform plan switching under TSO and in batch mode.

The program DEM2PLAN is an example of the use of DB2SERV with Function P.

The name of the current DB2 subsystem (#SSM) and the name of the new application plan (#PLAN)
must be specified. In addition, an interface return code (#RETCODE) and the DB2 reason code
(#fREASON) are returned.

Command Syntax

CALL 'DB2SERV' 'P' #SSM #PLAN #RETCODE #fREASON

Variable Format/Length | Explanation

{FSSM A4 Contains the name of the current DB2 subsystem.

{FPLAN A8 Contains the new plan name.

#FRETCODE Returns an interface return code. The following codes are possible:
0 No warning or error occurred.

12 The specified new application plan is not scheduled.

99 The current environment is not a Call Attachment Facility (CAF)
environment.

nnn Return code from the CAF interface (see also the relevant DB2 literature
by IBM).

##REASON |14 Returns the reason code of the CAF interface (see also the relevant DB2 literature
by IBM).

280 Database Management System Interfaces

Interface Subprograms

Example of Function P - DEM2PLAN:

KAk kA hkkhkhhkhkkhkhhkhhkhhkhhkhhhkhkhhkhkhkhhkhkhhhhkhhkhkhkhhhhkhhkhhkhhkhhkhhkhkhkhhkhkrkhhkhkrkhhkhkrkhhkhrkhkrkhxk
* DEMZ2PLAN - Switch application plan under TSO/Batch with CAF interface *
dhkhkhkhkkhkhhkhkhkhhkhkhkhhkhkhhhkhkhkhhkhkhhhkhkhhhkhkhhhkhkhhhhkhhkhkhkhhkhhkhhkhkhkhhkhkrkhhkhkrkhkhkhkrkhhkhkrkhkrkhxk
*

DEFINE DATA

LOCAL

% Parameter for DB2SERV
01 #SSM (A4)) CONST <'DB2'>

01 #fPLAN (A8

01 #RETCODE (I2)

01 #REASON (14)

*

END-DEFINE

*

INPUT 'PLEASE ENTER NEW PLAN NAME' #PLAN (AD='_'T)

*

END TRANSACTION

*

CALL "DB2SERV' 'P' #SSM #PLAN #RETCODE {fREASON

*

DECIDE FOR FIRST VALUE OF {#RETCODE
*
VALUE O
IGNORE
VALUE 99
INPUT 12/23 'This is not a CAF environment !!'
VALUE 8,12
INPUT 12/18 'New plan not scheduled, reason code'
#FREASON (AD=0I EM=H(4))
NONE
INPUT 12/15 'CAF interface error'
#RETCODE (AD=0I1 EM=Z(3))
'with reason code'
#FREASON (AD=01 EM=H(4))

*

END-DECIDE

*

END

R R b R R e b b R R e I b b e S b b R e S b b b e e b b I e e B b b e S b b S e b b R e B b e e b b b S e b b e b b S e e b b

/) Important: Plan switching under TSO and in batch mode is possible with the CAF interface
only; see also the section Plan Switching under TSO and in Batch Mode.

Database Management System Interfaces 281

282

18 Natural File Server for DB2

B CONCEPL OF tNE FlE SEIVET .. vuiitiiiittttttt ettt sttt ennnnsnae 284

283

Natural File Server for DB2

In all supported TP-monitor environments (CICS, IMS/TM, and TSO), the Natural interface to
DB2 provides an intermediate work file, referred to as the File Server, to prevent database selection
results from being lost with each terminal I/O. Exception: Com-plete.

This section covers the following topics:

Concept of the File Server

To avoid reissuing the selection statement used and repositioning the cursors, Natural writes the
results of a database selection to an intermediate file. The saved selected rows, which may be re-
quired later, are then managed by Natural as if the facilities for conversational processing were
available. This is achieved by automatically scrolling the intermediate file for subsequent screens,
maintaining position in the work file rather than in DB2.

All rows of all open cursors are rolled out to the file server before the first terminal I/O operation.
Subsequently, all data is retrieved from this file if Natural refers to one of the cursors which were
previously rolled out (see the description of roll out in Logical Structure of File Server below).

If a row is to be updated or deleted, the row is first checked to see if it has been updated in the
meantime by some other process. This is done by reselecting and fetching the row from the DB2
database, and then comparing it with the original version as retrieved from the file server. If the
row is still unchanged, the update or delete operation can be executed. If not, a corresponding
error message is returned. The reselection required when updating or deleting a row is possible
in both dynamic mode and static mode.

Only the fields which are stored in the file server are checked for consistency against the record
retrieved from DB2.

As the row must be uniquely identified, the Natural view must contain a field for which a unique
row has been created. This field must be defined as a unique key in DB2. In a Natural DDV, it
will then be indicated as a unique key via the corresponding Natural-specific short name.

284 Database Management System Interfaces

19 Natural File Server for DB2

B CoNCEP OF the il SEIVEN ... e e e e 286
= Preparations for Using the File SEIVETooiiiiii e 286
= Logical Structure 0f the File SEIVETc.eiiiie e 289

285

Natural File Server for DB2

In all supported TP-monitor environments (CICS, IMS TM, and TSO), Natural for DB2 provides
an intermediate work file, referred to as the File Server, to prevent database selection results from
being lost with each terminal I/O. Exception: Com-plete.

Concept of the File Server

To avoid reissuing the selection statement used and repositioning the cursors, Natural writes the
results of a database selection to an intermediate file. The saved selected rows, which may be re-
quired later, are then managed by Natural as if the facilities for conversational processing were
available. This is achieved by automatically scrolling the intermediate file for subsequent screens,
maintaining position in the work file rather than in DB2.

All rows of all open cursors are rolled out to the file server before the first terminal I/O operation.
Subsequently, all data is retrieved from this file if Natural refers to one of the cursors which were
previously rolled out (see the description of roll out in Logical Structure of File Server below).

If a row is to be updated or deleted, the row is first checked to see if it has been updated in the
meantime by some other process. This is done by reselecting and fetching the row from the DB2
database, and then comparing it with the original version as retrieved from the file server. If the
row is still unchanged, the update or delete operation can be executed. If not, a corresponding
error message is returned. The reselection required when updating or deleting a row is possible
in both dynamic mode and static mode.

Only the fields which are stored in the file server are checked for consistency against the record
retrieved from DB2.

As the row must be uniquely identified, the Natural view must contain a field for which a unique
row has been created. This field must be defined as a unique key in DB2. In a Natural data definition
module (DDM), it will then be indicated as a unique key via the corresponding Natural-specific
short name.

Preparations for Using the File Server

The size of a row which can be written to the file server is limited to 32 KB or 32767 bytes. If a row
is larger, a corresponding error message is returned.

The File Server can use either a VSAM RRDS file or the Software AG Editor buffer pool as storage
medium to save selected rows of DB2 tables.

This section covers the following topics:

= File Server - VSAM

286 Database Management System Interfaces

Natural File Server for DB2

= File Server - Editor Buffer Pool
File Server - VSAM

The file server is installed via a batch job, which defines and formats the intermediate file. Samples
of this batch job are supplied on the installation medium as described in the relevant section.

Defining the Size of the File Server

The file server is created by defining an RRDS VSAM file using AMS (Access Method Services).
Its physical size and its name must be specified.

Formatting the File Server

The file server is formatted by a batch job, which requires five input parameters specified by the
user, and which formats the file server according to these parameters. The parameters specify:

1. The number of blocks to be formatted (logical size of the VSAM file); this value is taken from
the first parameter of the RECORD subcommand of the AMS DEFINE CLUSTER command.

The number of users that can log on to Natural concurrently.

The number of formatted blocks to be defined as primary allocation per user.

The number of formatted blocks to be used as secondary allocation per user.

S S

The maximum number of file server blocks to be allocated by each user. If this number is ex-
ceeded, a corresponding Natural error message is returned.

Immediately before the first access to the file server, a file server directory entry is allocated to the
Natural session and the amount of blocks specified as primary allocation is allocated to the Natural
session.

The primary allocation is used as intermediate storage for the result of a database selection and
should be large enough to accommodate all rows of an ordinary database selection. Should more
space in the file server be required for a large database selection, the file server modules allocate
a secondary allocation equal to the amount that was specified for secondary allocation when the
file server was formatted.

Thus, a secondary area is allocated only when your current primary allocation is not large enough
to contain all of the data which must be written to the intermediate file. The number of secondary
allocations allowed depends upon the maximum number of blocks you are allowed to allocate.
This parameter is also specified when formatting the file server.

The number of blocks defined as the secondary allocation is allocated repeatedly, until either all
selected data has been written to the file or the maximum number of blocks you are allowed to
allocate is exceeded. If so, a corresponding Natural error message is returned. When the blocks
received as a secondary allocation are no longer needed (that is, once the Natural loop associated
with this allocation is closed), they are returned to the free blocks pool of the file server.

Database Management System Interfaces 287

Natural File Server for DB2

Your primary allocation of blocks, however, is always allocated to you, until the end of your
Natural session.

Changes Required for a Multi-Volume File Server

To minimize channel contention or bottlenecks that can be caused by placing a large and heavily
used file server on a single DASD volume, you can create a file server that spans several DASD
volumes.

To create and format such a file server, two changes are needed in the job that is used to define
the VSAM cluster:

1. Change VOLUME () to VOLUMES (voll,volZ,...).

2. Divide the total number of records required for the file (as specified with the first format job
parameter) by the number of volumes specified above. The result of the calculation is used for
the RECORDS parameter of the DEFINE CLUSTER command.

This means that in the file server format job, the value of the first parameter is the result of mul-
tiplying two parameters taken from the DEFINE CLUSTER command: RECORDS and VOLUMES.

File Server - Editor Buffer Pool

The Software AG Editor buffer pool is used as storage medium when EBPFSRV=0N is set in the
NTDB2 macro. In this case, the primary, secondary and maximum allocation amounts for the file
server are specified by EBPPRAL, EBPSEC, EBPMAX parameters of the NTDB2 macro. Before Natural
for DB2 tries to write data from a Natural user session to the file server for the first time, a Software
AG Editor buffer pool logical file is allocated with the Natural terminal identifier as user name
and the number 2240 as session number.

The operation of the file server is in this case depending on the definition of the Software AG Ed-
itor buffer pool; see Editor Buffer Pool in the Natural Operations documentation.

The number of logical files for the buffer pool limits the number of users concurrently accessing
the file server. The number of work file blocks limits the amount of data to be saved at a specific
moment. (You also have to consider that there are other users than Natural for DB2 of the Software
AG Editor.)

However, using the Software AG Editor buffer pool as storage medium for the file server enables
Natural for DB2 to run in a Sysplex environment.

If you like to use the file server in a sysplex environment, it is recommended to use the Software
AG Editor buffer pool as storage medium.

288 Database Management System Interfaces

Natural File Server for DB2

Logical Structure of the File Server

Immediately before a Natural user session accesses the file server, a file server directory entry
(VSAM) or a logical file (Software AG Editor buffer pool) is allocated to the Natural user session
and the number of blocks specified as primary allocation is reserved until the end of the session.

Generally, the file server is only used when a terminal I/O occurs within an active READ, FIND, or

SELECT loop, where database selection results would be lost. Before each terminal I/O operation,

Natural checks for any open cursors. For each non-scrollable cursor found, all remaining rows are
retrieved from DB2 and written to an intermediate file. For each scrollable cursor, all rows are re-
trieved from DB2 and written to an intermediate file. In the Natural for DB2 documentation, this
process is referred to as cursor roll out.

For each cursor roll out (scrollable and non-scrollable), a logical file is opened to hold all the rows
fetched from this cursor. The space for the intermediate file is managed within the space allocated
to your session. The logical file is then positioned on the row that was CURRENT OF CURSOR when
the terminal I/O occurred.

Subsequent requests for data are then satisfied by reading the rows directly from the intermediate
file. The database is no longer involved, and DB2 is only used for update, delete or store operations.

Positioned UPDATE and/or Positioned DELETE statements against rolled-out scrollable cursors are
performed against the DB2 base table and against the logical file on the file server.

Once the corresponding processing loop in the application has been closed, the file is no longer
needed and the blocks it occupies are returned to your pool of free blocks. From here, the blocks
are returned to the free blocks pool of the file server, so that you are left with your primary alloc-
ation only.

In the following example, the space allocated to the first selection is not released until all rows
selected during the third selection have been retrieved. The same applies to the space allocated to
the third selection.

The space allocated to the second selection, however, is released immediately after the last row
of the corresponding selection result has been retrieved.

Therefore, the space allocated to the second selection can be used for the selection results of the
third selection.

Database Management System Interfaces 289

Natural File Server for DB2

Example:

FIND __. (1st selection)

FIND ... (2nd selection) Primary Allocation Area
INPUT ..
END-FIND 1st Selection |

FIND ... (3rd selection)

INPUT .

END-FIND
; 2nd Selection 2ndf3rd Selection

3rd Selection

If the primary allocation area is not large enough, for example, if the third selection is nested
within the second selection, the secondary allocation area is used.

290 Database Management System Interfaces

Natural File Server for DB2

Example:

FIND __. {15t selection)

EIND . (2nd selection) Primary Allocation Area

//

FIND ... (3rd selection) _
: 15t Selection |
INPUT ...
END-FIND
END-FIND
. 1st Selection
: 2nd Selection
END-FIND _h
: 2nd Selection

3rd Selection

Secondary Allocation Area -

Jrd Selection

When a session is terminated, all of a user's blocks are returned to the free blocks pool. If a session
ends abnormally, Natural checks, where possible, whether a file server directory entry for the
corresponding user exists. If so, all resources held by this user are released.

If Natural is unable to free the resources of an abnormally-ended user session, these resources are
not released until the same user ID logs on from the same logical terminal again.

If the same user ID and/or logical terminal are not used again for Natural, the existing directory
entry and the allocated space remain until the file server is formatted again. A new run of the
formatting job deletes all existing data and recreates the directory.

Database Management System Interfaces 291

292

20 Natural for DB2 Version 8.4 - Documentation Updates

= Using Natural Statements and System Variables under Natural for DB2 Version 8.4ccoocvvieeennn. 294
= Select Expressions under Natural for DB2 VErSION 8.4cooiiiiiiiiiiiiiiiie e 298
= Dynamic and Static SQL Support under Natural for DB2 Version 8.4oooviiiiiiiiiiiiiee e, 302
m SELECT under Natural for DB2 VEISION 8.4 ... e 303
= MERGE under Natural for DB2 VEISION 8.4uueueieieieeeieitieeeestseessssaessssnssnnnsnsnssnnnnnnnnnnnnnnes 304
= Searched DELETE under Natural for DB2 VEIrSion 8.4c.cooiiiiiiiieee e 308
= Search Conditions under Natural for DB2 VEISION 8.4uuvvviviriririiiiiiieiiisisisisiseeesesesesssisssesssenesnnennns 309

293

Natural for DB2 Version 8.4 - Documentation Updates

| Note: The documentation updates provided here only cover the changes specific to Natural
for DB2 Version 8.4 and above.

Most changes have been implemented in the SQL statements of Natural for DB2 Version 8.4.1 in
support of IBM DB2 Version 12.

For the changes in installation, see Installing Natural for DB2 Version 8.4.2 in the Natural Installation
documentation.

Using Natural Statements and System Variables under Natural for DB2 Version
8.4

| Note: This is an extract of the chapter Using Natural SQL Statements and System Variables
and only describes the changes specific to Natural for DB2 Version 8.4.

UPDATE with FIND/READ
scalar-function
column-function
special-register

UPDATE with FIND/READ

When a Natural program contains a DML UPDATE statement, this statement is translated into an
SQL UPDATE statement and a FOR UPDATE OF clause is added to the SELECT statement.

Be aware that a primary key field is not part of a FOR UPDATE OF list except that the compiler option
DB2PKYU is set to ON. If DB2PKYU is set to OFF (default), a primary key field can only be updated by
using a non-cursor UPDATE operation (see also Natural SQL UPDATE statement in the section Using
Natural SQL Statements).

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to DB2 and belong to the Natural SQL Extended Set.

The scalar functions Natural for DB2 supports are listed below in alphabetical order:

294 Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

A-H I-R S-Z

ABS IDENTITY_VAL_LOCAL |SCORE

ABSVAL IFNULL SECOND

ACOS INSERT SIGN
ADD_MONTHS INTEGER SIN

ASIN JULTAN_DAY SINH

ASCII LAST_DAY SMALLINT
ASCII_CHR LCASE SOAPHTTPC
ASCII_STR LEFT SOAPHTTPV
ATAN LENGTH SOAPHTTPNC
ATAN?Z LN SOAPHTTPNYV
ATANH LOCATE SOUNDEX
BIGINT LOCATE_IN_STRING SPACE

BINARY LOG SQRT

BITAND LOG1O STRIP
BITANDNOT LOWER SUBSTR

BITNOT LPAD SUBSTRING
BITOR LTRIM TAN

BITXOR MAX TANH

BLOB MICROSECOND TIME
CCSID_ENCODING MIDNIGHT_SECONDS TIMESTAMP
CEIL MIN TIMESTAMPADD
CEILING MINUTE TIMESTAMPDIFF
CHAR MOD TIMESTAMP_FORMAT
CHARACTER_LENGTH MONTH TIMESTAMP_ISO
CLOB MONTHS_BETWEEN TIMESTAMP_TZ
COALESCE MQPUBLISH TO_CHAR
COLLATION_KEY MQPUBLISHXML TO_DATE
COMPARE_DECFLOAT MQREAD TO_NUMBER
CONCAT MQREADCLOB TOTALORDER
CONTAINS MQREADXML TRANSLATE

N MOQRECEIVE TRIM

COSH MQRECEIVECLOB TRUNC

DATE MQRECEIVEXML TRUNC_TIMESTAMP
DAY MQSEND TRUNCATE
DAYOFMONTH MQSENDXML UCASE
DAYOFWEEK MQSENDXMLFILE UNICODE
DAYOFWEEK_ISO MOQSENDXMLFILECLOB |UNICODE_STR
DAYOFYEAR MQSUBSCRIBE UNISTR

DAYS MQUNSUBSCRIBE UNPACK

DBCLOB MULTIPLY_ALT UPPER

DEC NEXT_DAY VALUE
DECFLOAT NORMALIZE_DECFLOAT |VARBINARY
DEDCFLOAT_FORMAT NORMALIZE_STRING VARCHAR
DECFLOAT_SORTKEY NULLIF VARCHARY
DECIMAL NVL VARCHAR_BIT_FORMAT
DECODE OVERLAY VARCHAR_FORMAT
DECRYPT_BIT PACK VARGRAPHIC
DECRYPT_CHAR POSSTR WEEK

Database Management System Interfaces

295

Natural for DB2 Version 8.4 - Documentation Updates

GENERATE_UNIQUE
GENERATE_UNIQUE_BINARY
GETHINT

GETVARIABLE

HASH_CRC32

HASH_MD5

HASH_SHAL

HASH_SHAZ256

HEX

HOUR

A-H I-R S-Z
DECRYPT_DB POWER WEEK_ISO
DEGREES QUANTIZE XMLATTRIBUTES
DIFFERENCE QUARTER XMLCONCAT
DIGITS RADIANS XMLCOMMENT
DOUBLE RAISE_ERROR XMLDOCUMENT
DOUBLE_PRECISION RAND XMLELEMENT
DSN_XMLVALIDATE REAL XMLFOREST
EBCDIC_CHR REPEAT XMLMODIFY
EBCDIC_STR REPLACE XMLNAMESPACES
ENCRYPT_TDES RID XMLPARSE
ENCRYPT RIGHT XMLPI

EXP ROUND XMLQUERY
EXTRACT ROUND_TIMESTAMP XMLSERTALIZE
FLOAT ROWID XMLTEXT

FLOOR RPAD XMLXSROBJECTID
GRAPHIC RTRIM YEAR

Each scalar function is followed by one or more scalar expressions in parentheses. The number of
scalar expressions depends upon the scalar function. Multiple scalar expressions must be separated

from one another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE SUBSTR (NAME,

1, 3

) = "Fri’

296

Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

column-function

The following column functions do not conform to standard SQL. They are specific to DB2 and
belong to the Natural SQL Extended Set.

COUNT_BIG
CORRELATION
COVARIANCE
COVARIANCE_SAMP
MEDIAN
PERCENTILE_CONT
PERCENTILE_DISC
STDDEV
STDDEV_POP
STDDEV_SAMP

VAR

VAR_POP
VAR_SAMP
VARTANCE
VARTANCE_SAMP
XMLAGG

special-register

With the exception of USER, the following special registers do not conform to standard SQL. They
are specific to DB2 and belong to the Natural SQL Extended Set:

CURRENT APPLICATION COMPATIBILITY
CURRENT APPLICATION ENCODING SCHEME
CURRENT CLIENT_ACCNTG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_CORR_TOKEN

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT DATE

CURRENT_DATE

CURRENT DEBUG MODE

CURRENT DECFLOAT ROUNDING MODE
CURRENT DEGREE

CURRENT FUNCTION PATH

CURRENT GET_ACCEL_ARCHIVE
CURRENT_LC_CTYPE

CURRENT LC_CTYPE

CURRENT LOCALE LC_CTYPE

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

Database Management System Interfaces 297

Natural for DB2 Version 8.4 - Documentation Updates

CURRENT_MEMBER

CURRENT OPTIMIZATION HINT
CURRENT PACKAGE PATH
CURRENT PACKAGESET
CURRENT_PATH

CURRENT PRECISION

CURRENT QUERY ACCELERATION
CURRENT REFRESH AGE
CURRENT ROUTINE VERSION
CURRENT RULES

CURRENT SCHEMA

CURRENT SERVER

CURRENT SQLID

CURRENT TEMPORAL BUSINESS_TIME
CURRENT TEMPORAL_SYSTEM_TIME
CURRENT TIME

CURRENT_TIME

CURRENT TIMESTAMP

CURRENT TIMEZONE
CURRENT_TIMEZONE USER
SESSION TIME ZONE
SESSTON_USER

USER

A reference to a special register returns a scalar value.

Using the command SET CURRENT SQLID, the creator name of a table can be substituted by the
current SQLID. This enables you to access identical tables with the same table name but with dif-

ferent creator names.

Select Expressions under Natural for DB2 Version 8.4

| Note: Thisis an extract of the chapter Select Expressions (Statements documentation) and only

describes the changes specific to Natural for DB2 Version 8.4.

= Selection

298

Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

= GROUP BY Clause

Selection
scalar-expression [[AS] correlation-name]
ALL unpack-row a
DISTINCT

*

A selection specifies the columns of the result set tables to be selected.

Syntax Element Description:

Syntax Element Description

ALL|DISTINCT Elimination of Duplicate Rows:

Duplicate rows are not automatically eliminated from the result of a
select-expression. To request this, specify the keyword DISTINCT.

The alternative to DISTINCT is ALL. ALL is assumed if neither is specified.

scalar-expression|Scalar Expression:

Instead of, or as well as, simple column names, a selection can also include general
scalar expressions containing scalar operators and scalar functions which provide
computed values (see also the section Scalar Expressions).

Example:

SELECT NAME, 65 - AGE
FROM SQL-PERSONNEL

AS The optional keyword AS introduces a correlation-name for a column.

correlation-name |Correlation Name:

A correlation-name canbe assigned toa scalar-expression as an alias name
for a result column.

The correlation-nameneed notbeunique.Ifno correlation-nameis specified
for a result column, the corresponding column-name will be used (if the result
column is derived from a column name; if not, the result table will have no name).
The name of a result column may be used, for example, as column name in the
ORDER BY clause of a SELECT statement.

unpack-row See unpack-row below.

* Asterisk Notation:

All columns of the result table are selected.

Database Management System Interfaces 299

Natural for DB2 Version 8.4 - Documentation Updates

Syntax Element Description

Example:

SELECT *

FROM SQL-PERSONNEL, SQL-AUTOMOBILES

unpack-row

UNPACK (scalar-expression) .* AS ({field-name data-type}, ...)

An unpack - rowspecifies a row of unpacked binary values that are returned when the SQL UNPACK
functionis invoked. The number of field-names and data-types must match the number of fields

returned by the UNPACK function.

GROUP BY Clause

grouping-expression
GROUP BY § grouping-set L o
super-group

The GROUP BY clause specifies a grouping of the result table. The result of GROUP BY is a set of
groups of rows. Within each group of more than one row, all values defining the group are equal.

grouping-expression

A grouping expression is a scalar expression that defines the grouping of a result set.

grouping-set

{ grouping-expression
super-group
GROUPING SETS (_ _
grouping-expression

({ super-group

}
},...)

A grouping-set is used to specify multiple grouping clauses in a single statement. A
grouping-set combines two or more groups of rows into a single result set. It is the same as
the union of multiple select expressions with a GROUP BY clause where each expression corres-
ponds toone grouping-set. A grouping-setisasingle element or a list of elements delimited
by parentheses. An elementiseithera grouping-expressionora super-group. A grouping-set
has the advantage that the groups are computed with a single pass over the base table.

300

Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

super-group

ROLLUP (grouping-expression-11ist)
CUBE (grouping—expressfon—77'5t]
(

)

A super-group is a more complex grouping-set.

A grouping-expression-1ist defines the number of elements used in a ROLLUP or CUBE oper-
ation. Elements with multiple grouping-expressions are delimited by parentheses:

{ grouping-expression }
(grouping-expression,...) o

Grand total ():

ROLLUP and CUBE return a row which is the overall (grand total) aggregation. This can be spe-
cified with empty parentheses () within the GROUPING SETS clause.

ROLLUP
A ROLLUP grouping is like a series of grouping-sets. In addition to the regular grouped
rows, a ROLLUP grouping produces a result set that contains subtotal rows. Subtotal rows
are “super-aggregate” rows which contain additional aggregates. The aggregate values
are retrieved with the same column functions that are used to obtain the regular grouped
rows.

In general, you specify a ROLLUP with n elements as

GROUP BY ROLLUP (cl, c2, ..., cn-1, cn)

which is the equivalent of:

GROUP BY GROUPING SETS ((cl, c2, ..., cn-1, cn),
(cl, c2, ..., cn-1),
(cl, c2),
(cl),
€))
CUBE

A CUBE grouping is like a series of grouping-sets. In addition to the ROLLUP aggregation
rows, CUBE produces aresult set that contains cross-tabulation rows. Cross-tabulation rows

Database Management System Interfaces 301

Natural for DB2 Version 8.4 - Documentation Updates

are additional “super-aggregate” rows. The grouping-expression-1ist of a CUBE computes
all permutations along with the grand total. As a result, the n elements of a CUBE translate
to 2**n grouping-sets. For example:

GROUP BY CUBE (a, b, c)

is the equivalent of:

GROUP BY GROUPING SETS ((a, b, c),

(a, b),
(a, c),
(b, ¢),

(a),
(b),
(c),

())

Dynamic and Static SQL Support under Natural for DB2 Version 8.4

Note: This is an extract of the chapter Dynamic and Static SQL Support and only describes
the changes specific to Natural for DB2 Version 8.4.

Plan Switching by CICS/DB2 Exit Routine

If ##SWITCH-BY -TRANSACTION-1ID is set to FALSE, the desired plan name is written to a temporary
storage queue for a CICS/DB2 exit routine specified as PLANEXit attribute of a DB2ENTRY or of
the DB2CONN definition, the NATPLAN program must be invoked before the first DB2 access.
Natural for DB2 provides NDBUEXT as CICS DB2 plan selection exit program. For additional inform-
ation on CICS/DB2 exit routines, refer to the relevant IBM literature.

The name of the temporary storage queueis PLANsssstttt, where ssssis the remote or local CICS
system identifier and tttt the CICS terminal identifier.

When running in a CICSplex environment, the CICS temporary storage queue PLANsssstttt
containing the plan name must be defined with TYPE=SHARED or TYPE=REMOTE in a CICS TST.

For each new DB2 unit of recovery, the appropriate plan selection exit routine is automatically
invoked. This exit routine reads the temporary storage record and uses the contained plan name
for plan selection.

302 Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

When no temporary storage record exists for the Natural session, a default plan name, contained
in the plan exit, can be used. If no plan name is specified by the exit, the name of the plan used is
the same as the name of the static program (DBRM) issuing the SQL call. If no such plan name
exists, an SQL error results.

SELECT under Natural for DB2 Version 8.4

| Note: Thisis an extract of Syntax 1 - Extended Set and Syntax Element Description in the section

SELECT (SQL) (Statements documentation) and only describes the changes specific to Nat-
ural for DB2 Version 8.4.

Syntax 1 - Extended Set

[WITH_CTE common-table-expression, ...]
SELECT selection into-clause table-expression

UNTON (SELECT selection
DISTINCT table-expression)
EXCEPT ALL [SELECT selection
INTERSECT)
table-expression

[ORDER BY criterial

ROWS

OPTIMIZE FOR integer { ROU }]

[WITH 7solation-Tlevell

[SKIP LOCKED DATA]

[QUERYNO 7integer]

[OFFSET row-count]

[FETCH FIRST row-1imit]

[WITH HOLD]

[WITH RETURN]

[WITH scroll-model

[WITH ROWSET POSITIONING FOR max-rowsets]
[IF NO RECORDS FOUND instruction]

statement ..
{ END-SELECT }
LOOP

Database Management System Interfaces 303

Natural for DB2 Version 8.4 - Documentation Updates

OFFSET row-count

ROWS

OFFSET [offset-row-count] { ROU }

The 0FFSET clause specifies the number of rows to skip in the result table before retrieving any
rows from there. A limited number of rows at the end of a result set can improve the perform-
ance of queries with potentially large result sets.

offset-row-count is a numeric variable or constant which determines the number of rows to
be skipped. The number must be zero (0) or a positive integer.

FETCH FIRST row-Timit

1 ROW
FETCH FIRST [row-count]{ ROWS }

The FETCH FIRST clause limits the number of rows to be fetched. A limited number of rows
can improve the performance of queries with potentially large result sets.

row-count specifies a numeric variable or constant which determines the number of rows to
be fetched. The number must be zero (0) or a positive integer.

MERGE under Natural for DB2 Version 8.4

] Note: This is an extract of the chapter MERGE (SQL) (Statements documentation) and only
describes the changes specific to Natural for DB2 Version 8.4.

MERGE INTO table-namellAS] correlation-name]
[Tnclude-columns] USING source-table

ON search-condition

{WHEN matching-condition THEN modification-operation}...
[ELSE IGNORE]

[NOT ATOMIC CONTINUE ON SQLEXCEPTION]

[QUERYNO 7integer]

304 Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

Syntax Element Description

MERGE INTO MERGE INTO Clause:
MERGE INTO initiates an SQL MERGE statement, which is a combination of
an SQL INSERT and an SQL Searched UPDATE statement.

table-name Table Name:

Identifies the target of the INSERT or UPDATE operation of the MERGE
statement.

LAS] correlation-name

[AS] correlation-name Clause:

Specifies an alternate name for the target table. The alternate name can be
used as qualifier when referencing columns of the intermediate result table.

include-columns

Include Columns Clause:

Specifies a set of columns that are included, along with the columns of the
target table, in the result table of the MERGE statement if it is nested in the
FROM clause in a SELECT statement. The included columns are appended to
end of the column list identified by the target table.

USING source-table

USING source-table Clause:

Specifies the values for the row data to merge into the target table.

ON search-condition

ON search-condition Clause:

Specifies join conditions between the source-table and the target table.
Each column name in the search condition must name a column of the target
table or source-table.

WHEN matching-condition

WHEN matching-condition Clause:

Specifies the condition for which to perform the modification operation
defined in the following THEN clause. See matching-condition.

THEN
modification-operation

THEN modification-operation Clause:

Specifies the operation to perform on the matches of the condition defined
in the preceding WHEN clause. See modification-operation.

ELSE IGNORE

Specifies that no action is taken on source columns that do not match the
condition specified in the WHEN clause.

NOT ATOMIC CONTINUE ON

NOT ATOMIC CONTINUE ON SQLEXCEPTION Clause:

SQLEXCEPTION
Specifies whether merge processing continues in case an error occurred
during processing one row of a set of source rows.

QUERYNO integer QUERYNO integer Clause:

Specifies the number for this SQL statement that is used in EXPLAIN output
and DB2 trace records.

Database Management System Interfaces

305

Natural for DB2 Version 8.4 - Documentation Updates

source-table

table-reference

(VALUES{

values-
values-

[AS] correlation-name (column-name,...)

single-row }
multiple-row

Syntax Element

Description

table-reference

Specifies the source table to merge into the target table.

VALUES

VALUES introduces the specification of values for the row data to merge into
the target table.

values-single-row

Specifies a single row of source data.

values-multiple-row

Specifies multiple rows of source data.

[AS] correlation-name

Specifies a correlation name for the source table.

column-name

Specifies a column name to associate the input data to the UPDATE SET
assignment clause for an UPDATE operation or the VALUES clause for an INSERT

operation.

matching-condition

[NOT] MATCHED [AND search-condition]

Syntax Element

Description

[NOT] MATCHED

Specifies the modification-operation to perform when an ON
search-condition evaluates to true or not true (NOT can be specified
optionally).

[AND search-condition]

Specifies an (optional) additional condition to evaluate to true before the
modification-operation performs.

modification-operation

update-operation
DELETE

signal-operation
insert-operation

306

Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

Syntax Element

Description

update-operation

Specifies that the matching target row is updated with the values assigned in the
UPDATE SET assignment clause.

An UPDATE operation is only allowed if the matching-conditionevaluates to true.

DELETE

Specifies that the matching target row is deleted.

A DELETE operation is only allowed if the matching-condition evaluates to true.

signal-operation

Specifies the SQL error to raise.

A SIGNAL operation is only allowed if the matching-condition evaluates to true.

insert-operation

Specifies the rows to insert into the target table.

An INSERT operation is only allowed if the matching-condition evaluates to not
true.

signal-operation

SIGNAL SQLSTATE [VALUE] sqlstate[SET MESSAGE_TEXT =scalar-expression]

Syntax Element

Description

SIGNAL

Specifies the STGNAL operation to perform when the matching-condition
evaluates to true.

DB2 sets an SQLCODE -438 if an error is raised by the SIGNAL statement.

SQLSTATE [VALUE] sqglstate|Specifies the SQLSTATE to be set by DB2.

sqlstateis a5-character alphanumeric constant or an alphanumeric
variable.

sqlstate values are assigned to SQLSTATE by DB2. See the appropriate
DB2 documentation for recommended values.

[SET MESSAGE_TEXT = This optional clause specifies an error or warning message which is placed
scalar-expression] into the SQLEERRMC field of the SQLCA or which can be retrieved with

the GET DIAGNOSTICS statement.

Database Management System Interfaces 307

Natural for DB2 Version 8.4 - Documentation Updates

Examples - Example 3:

Merge sales data from the MSALES table into the MPRODUCT table. Demonstrate the MERGE operation
with DELETE, UPDATE, INSERT and SIGNAL statements.

DEFINE DATA

LOCAL USING DEMSQLCA

LOCAL

1 V1 VIEW OF MPRODUCT

2 1D

2 NAME

2 INVENTORY

1 {#M_TEXT (A10) INIT <'Oversold: '>
END-DEFINE

MERGE INTO MPRODUCT AS T
USING (SELECT MSALES.ID , SUM(MSALES.SOLD) AS SOLD,
MAX (MCATALOG.NAME) AS NAME
FROM MSALES, MCATALOG
WHERE MSALES.ID = MCATALOG.ID
GROUP BY MSALES.ID) AS S
(ID,SOLD, NAME)
ON S.ID = T.1ID
WHEN MATCHED AND T.INVENTORY = S.SOLD
THEN DELETE
WHEN MATCHED AND T.INVENTORY < S.SOLD
THEN SIGNAL SQLSTATE '78000°
SET MESSAGE_TEXT =:4M_TEXT || S.NAME
WHEN MATCHED
THEN UPDATE SET T.INVENTORY = T.INVENTORY - S.SOLD
WHEN NOT MATCHED
THEN INSERT VALUES(S.ID, S.NAME, -S.SOLD)
END TRANSACTION
END

Searched DELETE under Natural for DB2 Version 8.4

Note: This is an extract of Syntax 1 - Searched DELETE in the chapter DELETE (SQL) (State-

ments documentation) and only describes the changes specific to Natural for DB2 Version
8.4.

308 Database Management System Interfaces

Natural for DB2 Version 8.4 - Documentation Updates

Syntax 1 - Extended Set

DELETE FROM table-name[period-clause][correlation-name]
[Tnclude-columns [SET assignment-clause]]

[WHERE search-condition]

[FETCH FIRST row-1imit

RR
WITH ‘ RS] [SKIP LOCKED DATA][QUERYNO 7nteger]
CS

The FETCH FIRST clause limits the effects of the DELETE statement to a subset of qualifying rows.
It corresponds to the FETCH FIRST clause of the SELECT statement described in FETCH FIRST row-
limit.

Search Conditions under Natural for DB2 Version 8.4

| Note: This is an extract of the chapter Search Conditions (Statements documentation) and

only describes the changes specific to Natural for DB2 Version 8.4.

Comparison Predicate

scalar-expression comparison scalar-expression

row-value-expression comparison row-value-expression

A comparison predicate compares two values or a set of values with another set of values.

In the syntax diagram above, comparison can be one of the following operators:

equal to

less than

V| A

greater than

<= |less than or equal to

>= |greater than or equal to

<> |notequal to

Database Management System Interfaces 309

310

I I Natural for SQL/DS

This documentation describes the functionality and the use of Natural for SQL/DS, which is a
Natural interface required to access data in a SQL/DS database.

General Information

Accessing an SQL/DS Table

Database Management

Generating Natural Data
Definition Modules (DDMs)

Information such as purpose, special considerations on the various
environments supported by Natural for SQL/DS, integration with
Software AG's Data Dictionary Predict, incompatibilities and constraints,
error messages related to SQL/DS, and terms used in this documentation.

Enable access to an SQL/DS table with a Natural program.

Maintenance of SQL/DS tables and other SQL/DS objects with the
SYSSQL utility; Natural system commands for SQL/DS.

Generation of Natural data definition modules (DDMs) by using the
SQL Services function of the Natural utility SYSDDM.

Dynamic and Static SQL Support Internal handling of dynamic statements, creation and execution of

Using Natural Statements and
System Variables

Interface Subprograms

Related Documentation

static DB access modules (SQL/DS packages) in the various supported
environments, mixed dynamic/static mode.

Special considerations on Natural native DML statements, Natural SQL
statements, Natural system variables, and Natural for SQL/DS error
handling.

Several Natural and non-Natural subprograms to be used for various
purposes.

For installatation instructions and a description of the Natural for SQL/DS parameter module,
refer to Installing Natural for SQL/DS in the Installation for z/VSE documentation.

For the various aspects of accessing data in a database with Natural, see also Database Access in

the Natural Programming Guide.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SOL Statements in the DBLOG Utility documentation.

3N

312

21 General Information

B PUMDOSE .ttt e ee e e ettt e e oottt e e e oottt e e oottt et e e e e ettt e e e e e e ettt e e e e e e e ettt raaaeaaaa s 314
m Environment-Specific CONSIABIALIONScooiiiiiiie i 314
B |ntegration With PrediCl ... e 315
= |ntegration With Natural SECUMILYeeiiiiiiii e 315
= Messages Related t0 SQL/DSeeiiiiiiii e 316
m Terms Used in this DOCUMENTAtIONcoiiiiiiiiiit et e e e 316

313

General Information

This section covers the following topics:

Purpose

With the Natural interface to SQL/DS, a Natural user can access data in an SQL/DS database.
Natural for SQL/DS is supported in CICS and batch environments under z/VSE.

In general, there is no difference between using Natural with SQL/DS and using it with Adabas,

DB2 or DL/I. The Natural interface to SQL/DS allows Natural programs to access SQL/DS data by
using the same Natural DML statements that are available for Adabas, DB2 and DL/I. Therefore,
programs written for SQL/DS tables can also be used to access Adabas, DB2 or DL/I databases. In
addition, Natural SQL statements are available.

All operations requiring interaction with SQL/DS are performed by the Natural interface module.

Environment-Specific Considerations

Natural for SQL/DS can be run in the TP-monitor environment CICS and in z/VSE batch mode.

A\ Important: As all dynamic access to SQL/DS is performed by NDBIOMO, all users of Natural

for SQL/DS must have RUN privilege on the package NDBIOMO. If running in static mode,
users must also have RUN privilege on all static SQL/DS packages.

This section covers the following topics:

= Natural for SQL/DS under CICS
= Natural for SQL/DS in z/VSE Batch Mode

Natural for SQL/DS under CICS

Under CICS, Natural uses the SQL/DS online support to access SQL/DS. Therefore ensure that
this attachment is started. If not, the Natural session is abnormally terminated with CICS abend
code AEY9, which leads to Natural error message NAT(0954 if the Natural profile parameter DU is
set to OFF.

Since Natural for SQL/DS does not issue any explicit CONNECT statements, it takes advantage of
the implicit CONNECT facility of the SQL/DS online support.

Under CICS, a Natural program which accesses an SQL/DS table can also be run in pseudo-con-
versational mode. Then, at the end of a CICS task, all SQL/DS cursors are closed, and there is no
way to reposition an SQL/DS cursor when the task is resumed.

314 Database Management System Interfaces

General Information

To circumvent the problem of CICS terminating a pseudo-conversational transaction during loop
processing and thus causing SQL/DS to close all cursors and lose all selection results, Natural
switches from pseudo-conversational mode to conversational mode for the duration of a Natural
loop which accesses an SQL/DS table.

To enable multiple Natural sessions to run concurrently, all Natural areas are written to the threads
just before a terminal I/O operation is executed. When the terminal input is received, storage is
acquired again, and all Natural areas are read from the threads.

Natural for SQL/DS in z/VSE Batch Mode
An explicit connection to the database must be performed. The sample program DEM2CONN can be

used for this purpose. DEM2CONN calls the DB2SERV module with function code U which in turn calls
the database connect services.

Integration with Predict

Predict, Software AG's open, operational data dictionary for fourth-generation-language develop-
ment with Natural, is a central repository of application metadata and provides documentation
and cross-reference features. Predict lets you automatically generate code from definitions, enhan-
cing development and maintenance productivity.

Since Predict supports SQL/DS, direct access to the SQL/DS catalog is possible via Predict, and
information from the SQL/DS catalog can be transferred to the Predict dictionary to be integrated
with data definitions for other environments.

SQL/DS databases, tables and views can be incorporated and compared, new SQL/DS tables and
views can be generated and Natural DDMs can be generated and compared. All SQL/DS-specific
data types and the referential integrity of SQL/DS are supported. See the relevant Predict docu-
mentation for details.

In addition, Predict active references support static SQL for SQL/DS.

Integration with Natural Security

When run in an environment that is controlled by Natural Security, the use of certain features of
Natural for SQL/DS can be restricted by the security administrator, for example:

" Static SQL

Static generation can be disallowed by

" restricting access to the Natural system library SYSSQL,

Database Management System Interfaces 315

General Information

* disallowing the module CMD,
" restricting access to the libraries that contain the relevant Natural objects,

* disallowing one of the Natural system commands CATALOG or STOW for a library that contains
relevant Natural objects.

If a library is defined in Natural Security and the DBID and FNR of this library are different
from the default specifications, the static generation procedure automatically switches to the
DBID and FNR specifications defined in Natural Security.

For further information, ask your security administrator.

Messages Related to SQL/DS

The message number ranges of Natural system messages related to SQL/DS are 3700-3749 4750 -
4799, 6700 - 6799 and 7386-7395.

For a list of error messages that may be issued during static generation, see Static Generation Messages
and Codes Issued under NDB/NSQ in the Natural Messages and Codes documentation.

Terms Used in this Documentation

Term Explanation

DB2 DB2 refers to IBM's DB2 UDB for z/OS.
DBRM Database request module

DDM Data definition module.

DML Data manipulation language (Natural).

NSQ This is the product code of Natural for SQL/DS. In this documentation the product code is often
used as prefix in the names of data sets, modules, etc.

SQL/DS SQL/DS refers to IBM's DB2 Server for VSE and VM.

316 Database Management System Interfaces

22 Accessing an SQL/DS Table

> To be able to access an SQL/DS table with a Natural program

1 Use the SYSSQL utility to define an SQL/DS table.

2 Use Predict or the SOL Services function of the Natural SYSDDM utility to create a Natural
data definition module (DDM) of the defined SQL/DS table.

3 Once you have defined a DDM for an SQL/DS table, you can access the data stored in this
table by using a Natural program.

The Natural interface to SQL/DS translates the statements of a Natural program into SQL statements.

Natural automatically provides for the preparation and execution of each statement. In dynamic
mode, a statement is only prepared once (if possible) and can then be executed several times. For
this purpose, Natural internally maintains a table of all prepared statements.

Almost the full range of possibilities offered by the Natural programming language can be used
for the development of Natural applications which access SQL/DS tables. For a number of Natural
native DML statements, however, there are certain restrictions and differences as far as their use
with SQL/DS is concerned; see Using Natural Native DML Statements. In the Statements docu-
mentation, you can find notes on Natural usage with SQL/DS in the descriptions of the statements
concerned.

As there is no SQL/DS equivalent to Adabas internal sequence numbers (ISNs), any Natural features
which use ISNs are not available when accessing SQL/DS tables with Natural.

For SQL databases, in addition to the Natural native DML statements, Natural provides SQL
statements; see Using Natural SQL Statements. They are listed and explained in the Statements
documentation

317

318

23 Database Management

B SYSSQL ULIIIEY ..ottt 320
= Natural System Commands for SQL/DScoiiiiiiiiiii e 337

319

Database Management

This section covers the following topics:

SYSSQL Utility

The Natural interactive catalog utility SYSSQL allows you to do SQL/DS database management
without leaving your development environment.

With SYSSQL you can maintain SQL/DS tables and other SQL/DS objects.

The SYSSQL utility incorporates an SQL generator that automatically generates from your input
the SQLCODE required to maintain the desired SQL/DS object. You can display, modify, save and
retrieve the generated SQLCODE.

The DDL/DCL definitions are stored in the library SYSSQL on the Natural system file FDIC.

The SYSSQL utility offers two modes of operation: Fixed Mode and Free Mode. To switch between
the two modes, you press PF4.

= Fixed Mode
= Free Mode

Fixed Mode

In fixed mode, input screens with syntax graphs help you to specify correct SQLCODE. You simply
enter the required data on input screens, and the data are automatically checked to ensure that
they comply with the SQL syntax of SQL/DS. Then, SQL members are generated from the entered
data. The members can be executed directly by pressing Pr5 (Exec). But you can also switch to free
mode, where the generated SQLCODE can be modified.

For each field where a window can be invoked, you can specify an S. When you press ENTER, the
window appears and you can select or enter the necessary information. If such a selection is re-
quired, an S is already preset when the corresponding screen is invoked.

When you press ENTER again, the window closes and if data have been entered, the field is marked
with X instead of S. If not, the field is left blank or marked with S again.

This continues each time you press ENTER until no S remains. To redisplay a window where data
have been entered, you change its X mark back to S.

If another letter or character is used, an appropriate error message appears on the screen. The
wrong character is automatically replaced by an S and if you press ENTER again, the corresponding
window appears.

In fields where keywords are to be entered, you have to enter one of the keywords displayed be-
neath the field. Default keywords are highlighted.

320 Database Management System Interfaces

Database Management

Creating an SQL/DS Table

The following example illustrates how to use the SYSSQL utility to create an SQL/DS table in fixed
mode.

> To create an SQL/DS table in fixed mode

1 Log on to library SYSSQL and issue the command MENU.

The SYSSQL Main Menu appears:

Database Management System Interfaces 321

Database Management

14:41:38 wwwss SYSSOL UEdTity =% 2006-05-25
- Main Menu - ©

| x CREATE ! ! _ GRANT .
! _ ACQUIRE DBSPACE ! | _ REVOKE I«
! _ ALTER ! ! _ LOCK TABLE [
! _ DROP ! ! _ CONNECT [

! _ UPDATE STATISTICS ! ! [

t----- Descriptions ---------- + ©
! _ EXPLAIN ! e

! _ COMMENT ON ! =

I Enter ? for HELP or press PF1 I e
! Enter . to QUIT or press PF12 I e

I Press PF4 to enter Free-Mode ()

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PF12---
Help Free Exit <

SYSSQL4776 Please mark your choice.

2 Mark the CREATE function with an X.

Awindow is invoked which shows you a list of all available objects, and you are prompted
for the type of object to be created::

322 Database Management System Interfaces

Database Management

14:41:39 rsst SYSSOL Ui lfiy = 2006-05-25
- Main Menu - ©

-

t---om-- M+---------mmmm - - + - Authorizations ------- + <
! x CREATE ! _ INDEX ! ! _ GRANT I e
! _ ACQUIRE ! _ SYNONYM ! I _ REVOKE I e
! _ ALTER ! x TABLE ! ! _ LOCK TABLE I o
! _ DROP ! _ VIEW ! ! _ CONNECT [
_ UPDATE ! ! ! [
R LR T R I T +
Fe======= Descriptions ---------- s ©

! _ EXPLAIN ! ©

! _ COMMENT ON ! ©

R e e T T + o

o

LR Comments -----------------"--------"------ + <
I Enter ? for HELP or press PF1 I e
! Enter . to QUIT or press PF12 I e
! Press PF4 to enter Free-Mode I e
R e i + o
o

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PF12---
Help Free Exit <

SYSSQL4776 Please mark your choice.

3 Mark the TABLE keyword with an X and press ENTER.

The first Create Table syntax input screen is displayed:

Database Management System Interfaces 323

Database Management

14:44:52 s SYSSQL/DS WieT 11y e 2006-05-25
- Create Table - Page: 01 «

<«

>>---- CREATE TABLE ----- SAG - PERSONNEL______ ===========ccccc====== >
{creator.>table-name <

<«

>- PERS-NO DECIMAL (8 JNN -- _ -- _ -- _ -(S_-A+
+- NAME CHAR (25)NN -- _ --_--_--_ -_+
+- FIRST-NAME CHAR (25)NN -- _ --_--_--__-_+
+- AGE DECIMAL (2 JNN -- _ - _ - _ - __ - _+
+- SALARY DECIMAL (5,2) - _ - _ - _ - - _+
+- FUNCTION INTEGER () - _ - _ - _ - __ - _+
+- EMPL_SINCE DATE (JNN -- _ -- - _ - - _+
+- () -)
column-name format length NN S field CCS PRIMARY !

NU M proc ID KEY A/D !

NP B to-me e +

+- PCTFREE= =>

0-99

<«

<«

Enter=PFl===PF2===PF3===PFd===PF5===PFo===PF7/===PF8===PF9===PFLO==PFll==PFl12===
Help Next Free Exec Top Bwd Fwd Bot Error Menu

You can enter the creator and table names on this screen, as well as the individual column
names, formats and lengths, as shown below:

Note: Since the specification of any special characters as part of a Natural field or DDM

name does not comply with Natural naming conventions, any special characters allowed
within SQL/DS should be avoided. The same applies to SQL/DS delimited identifiers,
which are not supported by Natural.

In addition, various attributes can be specified for each column.

* In the NN/NU/NP field you can specify:
" NN (NOT NULL) if the column may not contain null values,
" NP (NOT NULL PRIMARY KEY) if the column is the primary key
" NU (NOT NULL UNIQUE) if the column is a unique key

* In the S/M/B field you can specify the following for character columns:
" S (FOR SBCS DATA)

324 Database Management System Interfaces

Database Management

" B (FOR BIT DATA)
" M (FOR MIXED DATA)

® You can mark the field fieldproc to display a window where you can specify a field proced-
ure which has to be executed for that column.

® For character and graphic columns you can mark the CCSID to display a window where
you can specify a CCSID to be used for that column.

You can also specify which columns are to be part of a primary key if the primary key is
comprised of multiple columns. To do so enter an “S” or the positional number in the first
column of the field PRIMARY KEY.

A primary key is a set of column values that enforce referential integrity. Only one primary
key definition is allowed per table. Primary key values must be unique and must be defined
as NOT NULL.

If a column is to be part of a primary key, you also have to specify whether the values from
this column are to be arranged in ascending (A) or descending order (D), where A (Asc) is the
default value. In addition, you can specify the percentage of space within each index page
for later insertions and updates of the primary key (the default value is 10%).

If aletter or character other than those mentioned above is used, an appropriate error message
appears on the screen and the wrong character is automatically replaced by the appropriate
one.

4 If you need help for field input, enter the help character, that is, a question mark (?), in the
appropriate field on the screen.

Windows like the one below may help you in making a valid selection:

Database Management System Interfaces 325

Database Management

14:50:09 weseesr SYSSQL Uilty s 2006-05-25
- Create Table - Page: <

01
<«
>>--- CREATE TABLE ----- SAG o PERSOMMEL ____ =======s=cc========== >
{creator.>table-na +----------------------------- +
! Please mark your choice: ©

!
>-(PERS-NO - DECIMAL (8_ ! _ INTEGER o

!
>-- NAME - CHAR (25 ! _ SMALLINT o

!
>-- FIRST-NAME - CHAR (25 ! _ FLOAT(integer,integer) <

!
>-- AGE - DECIMAL (25 ! _ DECIMAL(integer,integer) !
>-- SALARY - DECIMAL (2_ ! _ CHAR(integer) <

!
>-- FUNCTION - INTEGER (5, ! _ VARCHARC(integer) ©

!
>-- EMPL-SINCE - DATE (__ ! _ LONG VARCHAR o

!
P== -7 (__ ! _ GRAPHIC(integer) o

!
column-name format (__ ! _ VARGRAPHIC(integer) <

!
(__ ! _ LONG VARGRAPHIC ©

!
! _ DATE ©

|
! _ TIME ©

|
I TIMESTAMP ©

!
I Valid abbreviations: ©

! I,S,F,DE,C,VARC,L VARC,G, <
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7 ! VARG,L VARG,DA,TIME,TIMES <

Help Next Free Exec Top Bwd ! <

As you can see on the above screen, the beginning of the syntax specification for an SQL
statement is always indicated by >>.
Press ENTER to close the window again.

5 In the case of complex SQL statements, more than one input screen may be required. If so,
you can switch to the following screen by pressing PF2 (Next).

326 Database Management System Interfaces

Database Management

If you press PF2 (Next), the next Create Table input screen screen is displayed, where you
can specify up to 16 foreign keys for the current table together with their corresponding parent
table and up to 16 unique keys.

14:52:52 wiessss SYSSQL/DS WEd 1ty s 2006-05-25
- Create Table - Page: <
01

P e e e +-+-)->
I +- , - FOREIGN KEY --- AUTO-NAME CRTNGETTID SETEED BETTED S S G

! <constraint-name> column-names Il e

' >---- REFERENCES ----> Il e
I >--- SAG . AUTOMOBILES - ON DELETE -+- _ - RESTRICT -+-+ ! «
! {creator> table-name +- _ - CASCADE --+ [

! +- S - SET NULL -+ [

! {constraint-name> column-names I e

I >---- PCTFREE= ------ o

Efter=PFl===PF2===PF3===PFd===PF5===PFe===PF7===PF8===PF9===PFLO==PF11-==PF12===
Help Next Prev Free Exec Top Bwd Fwd Bot Error Menu

On this screen, you can specify a referential constraint to another table. To do so, enter an S
in the first column-names field and press ENTER.

A list of all columns available in the current table (dependent table) is displayed, where you
can select the column(s) to comprise the foreign key related to another table (parent table).

Database Management System Interfaces 327

Database Management

You can also specify a name for the constraint. If not, the constraint name is derived from the
first column of the foreign key.

A foreign key consists of one or more columns in a dependent table that together must take
on a value that exists in the primary key of the related parent table.

In the REFERENCES part, you must specify the table name (with an optional creator name)
of the parent table which is to be affected by the specified constraint. In addition, you must
specify the action to be taken when a row in the referenced parent table is deleted. You have
three options available:

® RESTRICT prevents the deletion of the parent row until all dependent rows are deleted
(this is the default value).

® CASCADE deletes all dependent rows, too.

® SET NULL sets to null all columns of the foreign key in each dependent row that can contain
null values.

You can also specify a unique key for that table. To do so, enter an S in the second column-
names field and press ENTER.

A list of all columns available in the current table is displayed, where you can select the
column(s) to comprise the key. All selected columns must have been defined with the NOT
NULL attribute. If this is not the case, a window is displayed where you can set NOT NULL for
this column. You can also specify a name for the constraint. If you do not, the constraint name
is derived from the first column of the unique key.

You can specify up to 16 constraint blocks. In each block you can define a foreign key and a
unique key. In the top right-hand corner of the screen, the index of the currently displayed
referential constraint block (1) is displayed. You can page forward and backward through the
contraint blocks by pressing PF7 (-) and PFs (+).

6 When you have entered all information, you can press either PF3 (Prev) to return to the previous
screen, or PF2 (Next) to go to the last screen as shown below:

328 Database Management System Interfaces

Database Management

15:05:38 wwits SYSSQL/DS WEd 11ty %= 2006-05-25
- Create Table - Page: <
01

IRREEEEE IN -- SAG CDEMO__ e + -

<owner.>dbspace-name <

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Prev Free Exec Error Menu

On this screen, you can specify the dbspace where the table is to be created.

As you can see on the above screen, the end of the syntax specification for an SQL statement
is always indicated by ><.

If you press PF2 (Prev) on this screen, you return to the previous screen.

Database Management System Interfaces 329

Database Management

7 When all information has been entered, you can either switch to free mode by pressing Pr4
(Free) or submit the created member directly to SQL/DS for execution by pressing PF5 (Exec).

If execution is successful, you receive the message:

Statement(s) successful, SQLCODE = 0
If not, an error code is returned.

Once a table has been created, the data type of its columns cannot be changed and columns cannot
be deleted. However, new columns can be added using the ALTER TABLE function as described
in the following section.

Altering an SQL/DS Table
With the ALTER TABLE function you can add single columns to an existing table. You can also

add, drop, activate or deactivate primary and foreign keys. The following example illustrates how
to use the SYSSQL utility to alter an SQL/DS table in fixed mode.

> To alter an SQL/DS table

1 Onthe SYSSQL Main Menu, mark the ALTER function with an X and press ENTER.

A window appears and prompts you for the type of object to be altered:

330 Database Management System Interfaces

Database Management

15:07:33 wwwss SYSSOL Uity =% 2006-05-25
- Main Menu - ©

| _ CREATE ! ! _ GRANT .
! _ ACQUIRE +------------------ + ! _ REVOKE I e
! X ALTER ! _ DBSPACE ! ! _ LOCK TABLE [
! _ DROP ! x TABLE ! ! _ CONNECT [

_ UPDATE ! ! ! [

t----- Descriptions ---------- + ©
! _ EXPLAIN ! e

! _ COMMENT ON ! =

I Enter ? for HELP or press PF1 I e
! Enter . to QUIT or press PF12 I e

I Press PF4 to enter Free-Mode ()

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/7---PF8---PF9---PF10--PF11--PF12---
Help Free Exit <

SYSSQL4776 Please mark your choice.

2 Mark the TABLE keyword with an X and press ENTER.

When you press ENTER again, the first Alter Table input screen is displayed:

Database Management System Interfaces 331

Database Management

15:07:04

>>--- ALTER TABLE

>-+-- ADD --

T +-- PRIMARY KEY --- (

+-- DROP --+-- PRIMARY KEY --- _

*x%x% SYSSQL/DS Utility *

- Alter Table -

{creator.>table-name

() -

+- ADD -+

+-- FOREIGN KEY ---

+__

Help Next

column-name

UNIQUE KEY

Free

format length

---) ---- PCTFREE= --

column-names

constraint-name

constraint-name

Exec

M

B

2006-05-25

©

=4F=>

S field CCS !

proc ID <

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Error Menu

You can enter the creator and table names on this screen, as well as the name, format and
length of an additional column.

In addition, you can define a primary key as described in the section Creating an SQL/DS
Table. You can also drop an already existing primary key, thereby removing all referential
constraints in which the current table is a parent table.

You can also drop any already existing foreign key or unique key by specifying its constraint
name. If a foreign key is dropped the corresponding referential constraint is removed.

Once you have entered all necessary information, press pr2 (Next) to display the next Alter
Table input screen, where you can add or drop foreign keys and unique keys.

332

Database Management System Interfaces

Database Management

15:09:56 Axx% SYSSQL/DS Utility * 2006-05-25
- Alter Table - ©

TS PP +- FOREIGN KEY --- T SEEEEE TS B

+- ADD -+ constraint-name column-names ©

p==== REFERENCES ========== e ============ >
{creator.> table-name ©

>---- ON DELETE -+#- S - RESTRICT =-s-=--msmmmmmmmommaa oo ><
+- _ - CASCADE --+ .

+- _ - SET NULL -+ ©

5 e am e +- UNIQUE KEY ---- se= === ===) === >

+- ADD -+ constraint-name column-names ©

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PF12---
Help Next Prev Free Exec Error Menu

A foreign key or unique key is added as described in the section Creating an SQL/DS Table.

4 When you have entered all information you can press either PF3 (Prev) to return to the previous
screen, or PF2 (Next) to go to the last screen as shown below:

Database Management System Interfaces 333

Database Management

15:12:40

>--- ACTIVATE ---4---- _

+_____

>--- DEACTIVATE -+---- _

+____

UNIQUE kEY ---

_ --- PRIMARY KEY

s SYSSQIL/DS WETT iy =

- Alter Table -

FOREIGN KEY --

constraint-name

constraint-name

FOREIGN KEY --

constraint-name

UNIQUE KEY ---

constraint-name

2006-05-25

Sem ALL mmmm e +-><

[

ERter=PFl===PF2===PFI===PFd===PF5===PFE===PF7===PF8===PF9===PFL0Q==PFLil==PFL12==-
Error Menu

Help Prev

Exec

In the ACTIVATE part you have three options available. You can activate:

= ALL, which automatically enforces all the referential constraints defined for a primary key.

* PRIMARY KEY, which automatically enforces the primary key.

® FOREIGN KEY constraint-name, which automatically enforces the specified referential

constraint.

334

Database Management System Interfaces

Database Management

In the DEACTIVATE part you have three options available. You can deactivate:

® ALL, which deactivates the primary key and all active foreign keys in the table.

* PRIMARY KEY, which drops the primary key index from the table and implicitly deactivates
all active dependent foreign keys.

* FOREIGN KEY constraint-name, which deactivates the specified referential constraint.

By specifying any of these options, the restrictions imposed by the referential constraints are
suspended and the parent and dependent tables involved in a referential constraint are made
unavailable to users other than the DBA and the owner of the table.

Press pr2 (Prev) to return to the previous screen.
Free Mode

When free mode is invoked from fixed mode, the data that were entered in fixed mode are shown
as generated SQLCODE, which can be saved for later use or modification. The editor provided is
an adapted version of the Natural program editor.

If you modify an SQL member in free mode, this has no effect on the fixed-mode version of the
member. You can save your modified code in free mode, but when you return to fixed mode, the
original data appear again. Thus, both original and modified data are available.

In free mode you can execute the member currently in the source area by pressing Pr5 (Exec) (as
in fixed mode).

If you switch to free mode after you have created an SQL/DS table in fixed mode as described in
the section Creating an SQL/DS Table, the free-mode editor displays the generated SQLCODE as
in the following sample screen:

Database Management System Interfaces 335

Database Management

15:15:39 wasss SYSSOL Uity === 2006-05-25
- Free Mode - Member:

Command:
T +
! CREATE TABLE SAG.PERSONNEL

(PERS-NO DECIMAL(8) NOT NULL,

NAME CHAR(25) NOT NULL,

FIRST-NAME CHAR(25) NOT NULL,

AGE DECIMAL(2) NOT NULL,

SALARY DECIMAL(5,2),

EMPL-SINCE DATE NOT NULL,

PRIMARY KEY
FOREIGN KEY

(PERS-NO),
AUTO-NAME (NAME)

REFERENCES SAG.AUTOMOBILES

ON DELETE SET NULL

)

|
|
|
|
|
!
I FUNCTION
|
|
|
|
|
|
| IN SAG.DEMO

Enter-PF1---PF2---
Help

Free-Mode Editor

|
|
|
|
|
]
INTEGER, !
|
|
|
|
|
|
|

PF3===PFh===PF5===PFE===PF7/===PF8===PFY===PF10==PFLL==PF12===
Fix Exec Top Bwd Fwd Bot Error Menu

The free-mode editor available is almost identical to the Natural program editor and allows you
to edit the generated SQLCODE. All program editor line commands and the following editor
commands are available:

Command Function

ADD dnf Adds n empty lines.

CHANGE Scans for the value entered as scandata and replaces each such value found with
the value entered as replacedata. The syntax for this command is:

CHANGE 'scandata'
"replacedata’

CLEAR Clears the editor source area (including the line markers X and Y).

DX, DY, DX-Y Deletes the X-marked line or the Y-marked line or the block of lines delimited by
Xand Y.

EX, EY, EX-Y Deletes source lines from the top of the source area to - but not including - the
X-marked line, or from the source line following the Y-marked line to the bottom
of the source area, or all source lines in the source area excluding the block of
lines delimited by X and Y.

LET Undoes all modifications made to the current screen since the last time ENTER
was pressed, including all line commands already entered but not yet executed.

336 Database Management System Interfaces

Database Management

Command Function

POINT Positions the line in which the line command . N was entered to the top of the
current screen.

RESET

Deletes the current X and/or Y line markers and any marker previously set with
the line command . N.

SCAN ['scan-value']

Scans for the string scan-value in the source area.

SCAN = [+]-]

Scans forwards (+) or backwards (-) for the next occurrence of the scan value.

SHIFT [-|+ nn]

Shifts the block of source lines delimited by the X and Y markers to the left (-) or
right (+). nn represents the number of characters the source line is to be shifted.

For further details, refer to Program Editor in the Natural Editors documentation.

In addition, the following SQLCODE maintenance commands are available:

Command

Function

INSERT member-name

Saves the code in the source area as a member. If you press PF5 (Exec), the
code in the source area can also be executed as in fixed mode.

SELECT member-name

Reads the specified member into the source area.

DELETE member-name

Deletes the specified member.

LIST QUERY member-name|Displays a list of members on the screen using asterisk notation (*). For

example, L Q A* would display a list of all SQLCODE members beginning
with A.

Member names must correspond to the naming conventions for Natural objects, which means
they can be up to eight characters long and must start with a letter.

You can also always refer to the SYSSQL help system, which is invoked via Pr1 (Help).

Natural System Commands for SQL/DS

The following Natural system commands have been incorporated into the Natural Tools for DB2:

Natural System Command |Explanation

LISTSQL Lists Natural DML statements and their corresponding SQL statements.
SQLERR Provides diagnostic information about an SQL/DS error
LISTDBRM Displays either a list of packages for a particular Natural program or a list of Natural

programs that reference a particular package.

For a description of these commands, follow the links leading to the Natural Systemn Commands

documentation.

Database Management System Interfaces 337

338

24 Generating Natural Data Definition Modules (DDMs)

B S L SO VI 0 ettt 340

339

Generating Natural Data Definition Modules (DDMs)

To enable Natural to access an SQL/DS table, a Natural DDM of the table must be generated. This
is done either with Predict (see the relevant Predict documentation for details) or with the Natural
utility SYSDDVM; see also SYSDDM Utility in the Natural Editors documentation.

If you do not have Predict installed, use the SYSDDM function SQL Services to generate Natural
DDMs from SQL/DS tables. This function is invoked from the main menu of SYSDDM and is described
on the following pages.

For further information on Natural DDMs, see Data Definition Modules - DDMs in the Natural
Programming Guide.

This section covers the following topics:

SQL Services

The SQL Services function of the Natural SYSDDM utility (see Using SYSDDM Maintenance and
Service Functions in the Natural Editors documentation) is used to access SQL/DS tables. You access
the catalog of the SQL/DS server to which you are connected, for example, by using the CONNECT
command of the SYSSQL Utility (see the section Database Management), or by entering the name
of a server in the Server Name field on the SQL Services Menu. The name of the SQL/DS server
to which you are connected is then displayed in the top left-hand corner of the screen SQL Services
Menu. You can access any SQL/DS server that is located on either a mainframe (z/OS or z/VSE) or
a UNIX platform if the servers have been connected via DRDA (Distributed Relational Database
Architecture). For further details on connecting SQL/DS servers and for information on binding
the application package (SYSDDM uses I/O module NDBI0MO) to access data on remote servers, refer
to the relevant IBM literature.

The SQL Services function determines whether you are connected to a mainframe DB2 (z/OS or
z/VSE) or a UNIX DB2, access the appropriate DB2 catalog and performs the functions listed below.

] Note: If you use SYSDDM SQL Services in a CICS environment without file server, set the

subparameter CONVERS of profile parameter DB2 or macro NTDB2 to ON for z/VSE; otherwise
you might get SQLCODE -518.

= Using SQL Services

= Select SQL Table from a List

= Generate DDM from an SQL Table
= List Columns of an SQL Table

The individual functions are described below.

340 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

Using SQL Services

> To invoke the SQL Services function

1 Inthe command line, enter the Natural system command SYSDDM and press Enter.
Or:

1. From the Natural main menu, choose Maintenance and Transfer Utilities to display the
Maintenance and Transfer Utilities menu.

2. From the Maintenance and Transfer Utilities menu, choose Maintain DDMs.

The menu of the SYSDDM utility is displayed. The fields and functions provided on the SYSDDM
utility menu are explained in the section Using SYSDDM Maintenance and Service Functions.

2 Inthe Code field of the Natural SYSDDM utility Menu, enter code B and press Enter.

The SQL Services Menu is displayed.

14:43:41 *xxx% NATURAL SYSDDM UTILITY ***x** 2009-12-04
Server DAVNDBZ2 - SQL Services: Menu -

Code Function

S Select SQL Table from a List
G Generate DDM from an SQL Table
L List Columns of an SQL Table
? Help
Exit
Code ... _
Table name ...
Creator
Replace N (Y,N) DDM Name with Creator .. Y (Y/N)

Server name .. DAVNDBZ

Command ===
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Help Exit Canc <«

©

The functions available on this screen are described in the corresponding sections.

Database Management System Interfaces 341

Generating Natural Data Definition Modules (DDMs)

Select SQL Table from a List

This function is used to select an SQL/DS table from a list for further processing.

> To invoke the Select SQL Table from a List function

s On the SQL Services Menu, enter Function Code S.
= If you enter the function code only, you obtain a list of all tables defined to the SQL/DS
catalog.

* If you do not want a list of all tables but would like only a certain range of tables to be listed,
you can, in addition to the function code, specify a start value in the Table Name and/or
Creator fields. You can also use asterisk notation (*) for the start value.

Press Enter.

The Select SQL Table From A List screen is invoked displaying a list of all SQL/DS tables
requested. On the list, you can mark an SQL/DS table with a function code:

Code |Function Description

G Generate DDM from an SQL Table | This function can be used to generate a Natural DDM from
an SQL/DS table, based on the definitions in the SQL/DS
catalog.

L List Columns of an SQL Table This function lists all columns of a specific SQL/DS table.

Generate DDM from an SQL Table

This function is used to generate a Natural DDM from an SQL/DS table, based on the definitions
in the SQL/DS catalog.

The following topics are covered below:

= |nvoking the Generate DDM from an SQL Table function

= DBID/FNR Assignment

= Long Field Redefinition

= Length Indicator for Variable Length Fields: VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG
VARGRAPHIC

342 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

= Null Values

Invoking the Generate DDM from an SQL Table function

> To invoke the function

= On the SQL Services Menu, enter function code G along with the name and creator of the
table for which you wish a DDM to be generated.

= If you do not know the table name/creator, you can use the function Select SQL Table from
a List to choose the table you want.

® If you do not want the creator of the table to be part of the DDM name, enter an N (No) in
the field DDM Name with Creator when you invoke the Generate function. The default
setting is is Y (Yes).

A\ Important: Since the specification of any special characters as part of a field or DDM

name does not comply with Natural naming conventions, any special characters allowed
within SQL/DS must be avoided. SQL/DS delimited identifiers must be avoided, too.

= If you wish to generate a DDM for a table for which a DDM already exists and you want
the existing one to be replaced by the newly generated one, enter a Y (Yes) in the Replace
field when you invoke the Generate function.

* By default, Replace is set to N (No) to prevent an existing DDM from being replaced acci-
dentally. If Replace is N, you cannot generate another DDM for a table for which a DDM
has already been generated.

DBID/FNR Assignment

When the Generate DDM from an SQL Table function is invoked for a table for which a DDM
is to be generated for the first time, the DBID/FNR Assignment screen is displayed. If a DDM is
to be generated for a table for which a DDM already exists, the existing DBID and FNR are used
and the DBID/FNR Assignment screen is suppressed.

On the DBID/FNR Assignment screen, enter one of the database IDs (DBIDs) chosen at Natural
installation time, and the file number (FNR) to be assigned to the SQL/DS table. Natural requires
these specifications for identification purposes only.

The range of DBIDs which is reserved for SQL/DS tables is specified in the NTDB macro of the
Natural parameter module (see the Natural Parameter Reference documentation) for the database
type DB2. Any DBID not within this range is not accepted. The FNR can be any valid file number
within the database (between 1 and 65535).

After a valid DBID and FNR have been assigned, a DDM is automatically generated from the
specified table.

Database Management System Interfaces 343

Generating Natural Data Definition Modules (DDMs)

Long Field Redefinition

The maximum field length supported by Natural is 1 GB-1 (1073741823 bytes). If an SQL/DS table
contains a column which is longer than 253 bytes, the pop-up window Long Field Generation
will be displayed automatically.

A field which is longer than 253 bytes may be defined as a simple Natural field with a maximum
length of 32KB-1, or as an array. In the DDM, such an array is represented as a multiple-value
variable.

On the Long Field Generation screen you specify the element length of the array, which means
the length of the occurrences. The number of occurrences depends on the length you specify.

If, for example, an SQL/DS column has a length of 2000 bytes, you can specify an array element
length of 200 bytes, and you receive a multiple-value field with 10 occurrences, each occurrence
with a length of 200 bytes.

Since redefined long fields are no multiple-value fields in the sense of Natural, the Natural C*
notation cannot be applied to those fields.

When such a redefined long field is defined in a Natural view for being referenced by Natural
SQL statements (that is, by host variables which represent multiple-value fields), both when defined
and when referenced, the specified range of occurrences (index range) must always start with oc-
currence 1. If not, a Natural syntax error is returned.

Example:

UPDATE table SET varchar = #arr(*)
SELECT ... INTO #arr(1:5)
Note: When such a redefined long field is updated with the Natural native DML UPDATE

statement, care must be taken to update each occurrence appropriately.
Length Indicator for Variable Length Fields: VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC

For each variable length column, an additional length indicator field (format/length I2) is generated
in the DDM. The length is always measured in number of characters, not in bytes. To obtain the
number of bytes of a VARGRAPHIC or LONG VARGRAPHIC field, the length must be multiplied by 2.

The name of a length indicator field begins with “L@” followed by the name of the corresponding
field. The value of the length indicator field can be checked or updated by a Natural program.

If the length indicator field is not part of the Natural view and if the corresponding field is a re-
defined long field, the length of this field with UPDATE and STORE operations is calculated without
trailing blanks.

344 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

Null Values

With Natural, it is possible to distinguish between a null value and the actual value zero (0) or
blank in an SQL/DS column.

When a Natural DDM is generated from the SQL/DS catalog, an additional NULL indicator field is
generated for each column which can be NULL; that is, which has neither NOT NULL nor NOT NULL
WITH DEFAULT specified.

The name of the NULL indicator field begins with N@ followed by the name of the corresponding
field.

When the column is read from the database, the corresponding indicator field contains either zero
(0) (if the column contains a value, including the value 0 or blank) or -1 (if the column contains
no value).

Example:

The column NULLCOL CHAR(6) in an SQL/DS table definition would result in the following view
fields:

NULLCOL A 6.0
N@NULLCOL I 2.0

When the field NULLCOL is read from the database, the additional field NeNULLCOL contains:

" 0 (zero) if NULLCOL contains a value (including the value 0 or blank),

® -1 (minus one) if NULLCOL contains no value.

A null value can be stored in a database field by entering -1 as input for the corresponding NULL
indicator field.

| Note: Ifacolumnis NULL, an implicit RESET is performed on the corresponding Natural
field.

List Columns of an SQL Table

This function lists all columns of a specific SQL/DS table.

> To invoke the List Columns function

= Onthe SOL Services Menu, enter function code L along with the name and creator of the
table whose columns you wish to be listed, and press ENTER.

The List Columns screen for this table is invoked, which lists all columns of the specified
table and displays the following information for each column:

Database Management System Interfaces 345

Generating Natural Data Definition Modules (DDMs)

Variable |Content

Name |The SQL/DS name of the column.

Type |The column type.

Length|The length (or precision if type is DECIMAL) of the column as defined in the SQL/DS catalog.

Scale |The decimal scale of the column (only applicable if type is DECIMAL).

Updatel|Y The column can be updated.
N The column cannot be updated.

Nulls |Y The column can contain null values.

N The column cannot contain null values.

Not A column which is of a scale length or type not supported by Natural is marked with an
asterisk (¥). For such a column, a view field cannot be generated. The maximum scale length
supported is 7 bytes.

Types supported are:

CHAR, VARCHAR, LONG VARCHAR, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DECIMAL,
INTEGER, SMALLINT, DATE, TIME, TIMESTAMP, and FLOAT.

The data types DATE, TIME, TIMESTAMP, and FLOAT are converted into numeric or alphanumeric
fields of various lengths: DATE is converted into A10, TIME into A8, TIMESTAMP into A26, and
FLOAT into E8.

For SQL/DS, Natural provides an SQL/DS TIMESTAMP column as an alphanumeric field (A26)
in the format YYYY-MM-DD-HH. I1.SS. MMMMMM. Alternatively, you can generate the Natural TIME
field (data format T) as the SQL/DS TIMESTAMP data type if the DBTSTI option of the COMPOPT
system command is set to ON (see the System Commands documentation).

You can use the Natural subprogram NDBSTMP to compute TIMESTAMP (A26) fields.

346

Database Management System Interfaces

25 Dynamic and Static SQL Support

= SQL Support - General INfOrMationccoiuiiiiiiiii e 348
= |nternal Handling of Dynamic SEateMENLSooiiiiiiiiiie e 349
= Preparing Natural Programs for Static EXECULIONoiiiiiiiiiiii e 352
= Execution of Natural in Static MOTEoviiiiiiiii e 357
B Mixed Dynamic/Static MOGEc.vvviiiiiei e 357
B MESSAGES AN COUBS ...ttt ettt 358

347

Dynamic and Static SQL Support

This section describes the dynamic and static SQL support provided by Natural.
Related Documentation

For alist of error messages that may be issued during static generation, see Static Generation Messages
and Codes Issued under NDB/NSQ in the Natural Messages and Codes documentation.

SQL Support - General Information

The SQL support of Natural combines the flexibility of dynamic SQL support with the high per-
formance of static SQL support.

In contrast to static SQL support, the Natural dynamic SQL support does not require any special
consideration with regard to the operation of the SQL interface. All SQL statements required to
execute an application request are generated automatically and can be executed immediately with
the Natural RUN command. Before executing a program, you can look at the generated SQLCODE,
using the LISTSQL command.

Access to SQL/DS through Natural has the same form whether dynamic or static SQL support is
used. Thus, with static SQL support, the same SQL statements in a Natural program can be executed
in either dynamic or static mode. An SQL statement can be coded within a Natural program and,
for testing purposes, it can be executed using dynamic SQL. If the test is successful, the SQL
statement remains unchanged and static SQL for this program can be generated.

Thus, during application development, the programmer works in dynamic mode and all SQL
statements are executed dynamically, whereas static SQL is only created for applications that have
been transferred to production status.

348 Database Management System Interfaces

Dynamic and Static SQL Support

MNatural Program

FIND...
UPDATE...
INSERT...
DELETE...

Generated SQL Code

SELECT...
UPDATE...
INSERT...

DELETE...

SQL/DS Dyn. Access Method -4 >

Internal Handling of Dynamic Statements

Natural automatically provides for the preparation and execution of each SQL statement and
handles the opening and closing of cursors used for scanning a table.

The following topics are covered:

= |/O Module NDBIOMO for Dynamic SQL Statement Execution
= Statement Table
= Processing of SQL Statements Issued by Natural

I/0 Module NDBIOMO for Dynamic SQL Statement Execution

As each dynamic execution of an SQL statement requires a statically defined DECLARE STATEMENT
and DECLARE CURSOR statement, a special I/O module named NDBIOMO is provided which contains
a fixed number of these statements and cursors. This number is specified during the generation
of the NDBIOMO module in the course of the Natural for DB2 installation process.

Database Management System Interfaces 349

Dynamic and Static SQL Support

Statement Table

If possible, an SQL statement is only prepared once and can then be executed several times if re-
quired. For this purpose, Natural internally maintains a table of all SQL statements that have been
prepared and assigns each of these statements to a DECLAREd STATEMENT in the module NDBIOMO.
In addition, this table maintains the cursors used by the SQL statements SELECT, FETCH, UPDATE
(positioned), and DELETE (positioned).

Each SQL statement is uniquely identified by:

® the name of the Natural program that contains this SQL statement,
® the line number of the SQL statement in this program,
" the name of the Natural library into which this program was stowed,

® the time stamp when this program was stowed.

Once a statement has been prepared, it can be executed several times with different variable values,
using the dynamic SQL statement EXECUTE USING DESCRIPTORor OPEN CURSOR USING DESCRIPTOR.

When the full capacity of the statement table is reached, the entry for the next prepared statement
overwrites the entry for a free statement whose latest execution is the least recent one.

When anew SELECT statement is requested, a free entry in the statement table with the correspond-
ing cursor is assigned to it and all subsequent FETCH, UPDATE, and DELETE statements referring to
this SELECT statement will use this cursor. Upon completion of the sequential scanning of the table,
the cursor is released and free for another assignment. While the cursor is open, the entry in the

statement table is marked as used and cannot be reused by another statement.

If the number of nested FIND (SELECT) statements reaches the number of entries available in the
statement table, any further SQL statement is rejected at execution time and a Natural error message
is returned.

The size of the statement table depends on the size specified for the module NDBI0MO. Since the
statement table is contained in the SQL/DS buffer area, the setting of Natural profile parameter
DB2SIZE (see also Natural Parameter Modification for SQL/DS in Installing Natural for SQL/DS in the
Installation for z/VSE documentation) may not be sufficient and may need to be increased.

350 Database Management System Interfaces

Dynamic and Static SQL Support

Processing of SQL Statements Issued by Natural

The embedded SQL uses cursor logic to handle SELECT statements. The preparation and execution
of a SELECT statement is done as follows:

1. The typical SELECT statement is prepared by a program flow which contains the following em-
bedded SQL statements (note that X and SQL0BJ are SQL variables, not program labels):

DECLARE SQLOBJ STATEMENT
DECLARE X CURSOR FOR SQLOBJ
INCLUDE SQLDA (copy SQL control block)

Then, the following statement is moved into SQLSOURCE:

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES
WHERE NAME IN (?, ?)

AND AGE BETWEEN ? AND ?

Note: The question marks (?) above are parameter markers which indicate where values

are to be inserted at execution time.
PREPARE SQLOBJ FROM SQLSOURCE
2. Then, the SELECT statement is executed as follows:

OPEN X USING DESCRIPTOR SQLDA
FETCH X USING DESCRIPTOR SQLDA

The descriptor SOLDA is used to indicate a variable list of program areas. When the OPEN statement
is executed, it contains the address, length, and type of each value which replaces a parameter
marker in the WHERE clause of the SELECT statement. When the FETCH statement is executed, it
contains the address, length, and type of all program areas which receive fields read from the
table.

When the FETCH statement is executed for the first time, it sets the Natural system variable
*NUMBER to a non-zero value if at least one record is found that meets the search criteria. Then,
all records satisfying the search criteria are read by repeated execution of the FETCH statement.

3. Once all records have been read, the cursor is released by executing the following statement:

Database Management System Interfaces 351

Dynamic and Static SQL Support

CLOSE X

Preparing Natural Programs for Static Execution

This section describes how to prepare Natural programs for static execution.
The following topics are covered:

= Basic Principles
= Generation Procedure; CMD CREATE Command
= Modification Procedure: CMD MODIFY Command

For an explanation of the symbols used in this section to describe the syntax of Natural statements,
see Syntax Symbols in the Statements documentation.

Basic Principles

Static SQL is generated in Natural batch mode for one or more Natural applications which can
consist of one or more Natural object programs. The number of programs that can be modified
for static execution in one run of the generation procedure is limited to 999.

During the generation procedure, the database access statements contained in the specified Nat-
ural objects are extracted, written to work files, and transformed into a temporary Assembler
program. If no Natural program is found that contains SQL access or if any error occurs during
static SQL generation, batch Natural terminates and condition code 40 is returned, which means
that all further JCL steps must no longer be executed.

The temporary Assembler program is written to a temporary file (the Natural work file CMWKF06)
and precompiled. The size of the workfile is proportional to the maximum number of programs,
the number of SQL statements and the number of variables used in the SQL statements. During
the precompilation step, a static SQL/DS module (access module) is created, and after the precom-
pilation step, the precompiler output is extracted from the Assembler program and written to the
corresponding Natural objects, which means that the Natural objects are modified (prepared) for
static execution. The temporary Assembler program is no longer used and deleted.

| Note: Since the Assembler precompiler of SQL/DS does not support GRAPHIC field types,

you cannot generate a static Assembler program if your Natural program(s) contain any
references to GRAPHIC-type columns.

The Natural subprogram NDBDBRM can be used to check whether a Natural program contains an
SQL access and whether it has been modified for static execution.

352 Database Management System Interfaces

Dynamic and Static SQL Support

Generation Procedure: CMD CREATE Command

The following topics are covered:

= Generating Static SQL for Natural Programs
= Static Name
= USING-Clause

Generating Static SQL for Natural Programs

> To generate static SQL for Natural programs

1

Logon to the Natural system library SYSSQL.

Since a new SYSSQL library has been created when installing Natural for SQL/DS, ensure that
it contains all Predict interface programs necessary to run the static SQL generation. These
programs are loaded into SYSSQL at Predict installation time (see the relevant Predict product
documentation).

Specify the CMD CREATE command and the Natural input necessary for the static SQL generation
process; the CMD CREATE command has the following syntax:

CMD CREATE DBRM static-name USING using-clause

{application-name,object-name,excluded-object}

The generation procedure reads but does not modify the specified Natural objects. If one of
the specified programs was not found or had no SQL access, return code 4 is returned at the
end of the generation step.

Static Name

If the PREDICT DOCUMENTATION option is to be used, a corresponding Predict static SQL entry must
be available and the static-name must correspond to the name of this entry. In addition, the
static-name must correspond to the name of the static SQL/DS package to be created during
precompilation. The static-name can be up to 8 characters long and must conform to Assembler
naming conventions.

Database Management System Interfaces 353

Dynamic and Static SQL Support

USING-Clause

The using-clause specifies the Natural objects to be contained in the the static SQL/DS package.
These objects can either be specified explicitly as INPUT DATA in the JCL or obtained as PREDICT
DOCUMENTATION from Predict.

YES
INPUT DATA - o
{ PREDICT DOCUMENTATION } UTTH XREF ‘ %RCE] [LIB Tib-name]

If the parameters to be specified do not fit in one line, specify the command identifier (CMD) and
the various parameters in separate lines and use both the input delimiter (as specified with the
Natural profile/session parameter ID - default is a comma (,) - and the continuation character in-
dicator - as specified with the Natural profile/session parameter CF; default is a percent (%) - as
shown in the following example:

Example:

CMD
CREATE,DBRM,static,USING,PREDICT,DOCUMENTATION,WITH, XREF,NO, %
LIB, 7ibrary

Alternatively, you can also use abbreviations as shown in the following example:

Example:

CMD CRE DBRM static US IN DA W XR Y LIB J/ibrary
The sequence of the parameters USING, WITH, and LIB is optional.
INPUT DATA

As input data, the applications and names of the Natural objects to be included in the static SQL/DS
package must be specified in the subsequent lines of the job stream (
application-name,object-name). A subset of these objects can also be excluded again
(excluded-objects). Objects in libraries whose names begin with SYS can be used for static gener-
ation, too.

The applications and names of Natural objects must be separated by the input delimiter - as spe-
cified with the Natural profile parameter 1D; default is a comma (,). If you wish to specify all objects
whose names begin with a specific string of characters, use an object-name or excluded-objects
name that ends with asterisk notation (¥). To specify all objects in an application, use asterisk
notation only.

Example:

354 Database Management System Interfaces

Dynamic and Static SQL Support

LIBI,ABC*
LIBZ,A*,AB*
LIBZ2,*

The specification of applications/objects must be terminated by a line that contains a period (.)
only.

PREDICT DOCUMENTATION

Since Predict supports static SQL for SQL/DS, you can also have Predict supply the input data for
creating static SQL by using already existing PREDICT DOCUMENTATION.

WITH XREF Option

Since Predict Active References supports static SQL for SQL/DS, the generated static SQL/DS
package can be documented in Predict, and the documentation can be used and updated with
Natural.

WITH XREF is the option which enables you to store cross-reference data for a static SQL entry in
Predict each time a static SQL/DS package is created (YES). You can instead specify that no cross-
reference data are stored (NO) or that a check is made to determine whether a Predict static SQL
entry for this static DBRM already exists (FORCE). If so, cross-reference data are stored; if not, the
creation of the static DBRM is not allowed. For more detailed information on Predict Active Ref-
erences, refer to the relevant Predict documentation.

When WITH XREF (YES/FORCE) is specified, XREF data are written for both the Predict static SQL
entry (if defined in Predict) and each generated static Natural program. However, static generation
with WITH XREF (YES/FORCE) is possible only if the corresponding Natural programs have been
cataloged with XREF ON.

WITH XREF FORCE only applies to the USING INPUT DATA option.

Note: If you donot use Predict, the XREF option must be omitted or set to NO and the module
NATXRF2 need not be linked to the Natural nucleus.

LIB Option

With the LIB (library) option, a Predict library other than the default library (*SYSSTA*) can be
specified to contain the Predict static SQL entry and XREF data. The name of the library can be up
to eight characters long.

Database Management System Interfaces 355

Dynamic and Static SQL Support

Modification Procedure: CMD MODIFY Command

The modification procedure modifies the Natural objects involved by writing precompiler inform-
ation into the object and by marking the object header with the stat7ic-name as specified with the
CMD CREATE command.

In addition, any existing copies of these objects in the Natural global buffer pool (if available) are
deleted and XREF data are written to Predict (if specified during the generation procedure).

> To perform the modification procedure

1 Logon to the Natural system library SYSSQL.
2 Specify the CMD MODIFY command which has the following syntax:

CMD MODIFY [XREF]

The input for the modify step is the precompiler output which must reside on a data set defined
as the Natural work file CMWKFO1.

The output consists of precompiler information which is written to the corresponding Natural
objects. In addition, a message is returned telling you whether it was the first time an object was
modified for static execution (modified) or whether it had been modified before (re-modified).

If the XREF option is specified, the Natural work file CMWKF02 must be defined to contain the resulting
list of cross-reference information concerning the statically generated SQL statements (see also
Assembler/Natural Cross-References).

Assembler/Natural Cross-References

If you specify the XREF option of the MODIFY command, an output listing is created on the work
file CMWKF 02, which contains the static SQL/DS package name and the Assembler statement number
of each statically generated SQL statement together with the corresponding Natural source code
line number, program name, library name, database ID and file number.

Example:

DBRMNAME STMTNO LINE NATPROG NATLIB DB FNR COMMENT
DEMZS 000087 0170 DEM2SUPD HGK 00010 00032 SELECT

000111 0230 UPD/DEL
DEM2S 000121 0370 DEM2SINS HGK 00010 00032 INSERT
DEMZS 000131 0150 DEM2SDEL HGK 00010 00032 SELECT

000155 0170 UPD/DEL
DEMZS 000165 0040 DEM2SDL2 HGK 00010 00032 UPD/DEL

356 Database Management System Interfaces

Dynamic and Static SQL Support

Column Explanation

DBRMNAME | Name of the static SQL/DS package which contains the static SQL statement.
STMTNO | Assembler statement number of the static SQL statement.

LINE Corresponding Natural source code line number.

NATPROG |Name of the Natural program that contains the static SQL statement.

NATLIB |Name of the Natural library that contains the Natural program.
DB/ FNR |Natural database ID and file number.
COMMENT |Type of SQL statement.

Execution of Natural in Static Mode

To be able to execute Natural in static mode, all users of Natural must have the SQL/DS EXECUTE
PLAN/PACKAGE privilege for the plan created in the precompilation step.

To execute static SQL, start Natural and execute the corresponding Natural program. Internally,
the Natural runtime interface evaluates the precompiler data written to the Natural object and
then performs the static accesses.

To the user there is no difference between dynamic and static execution.

Mixed Dynamic/Static Mode

It is possible to operate Natural in a mixed static and dynamic mode where for some programs
static SQL is generated and for some not.

The mode in which a program is run is determined by the Natural object program itself. If a static
SQL/DS package is referenced in the executing program, all statements in this program are executed
in static mode.

| Note: Natural programs which return a runtime error do not automatically execute in dy-

namic mode. Instead, either the error must be corrected or, as a temporary solution, the
Natural program must be recataloged to be able to execute in dynamic mode.

Within the same Natural session, static and dynamic programs can be mixed without any further
specifications. The decision which mode to use is made by each individual Natural program.

Database Management System Interfaces 357

Dynamic and Static SQL Support

Messages and Codes

For a list of error messages that may be issued during static generation, refer to Static Generation
Messages and Codes Issued under NDB/NSQ in the Natural Messages and Codes documentation.

358 Database Management System Interfaces

26 Using Natural Statements and System Variables

= Using Natural Native DML StatemMeNtScooiriiiiiiiiiii e 360
= Using Natural SQL SEAteMENTSooiiiiiiii e 369
= Using Natural System Variables ..o 375
B B0 HANAING ...t 376

359

Using Natural Statements and System Variables

This section contains special considerations concerning Natural data manipulation language (DML)
statements (that is, Natural native DML statements and Natural SQL DML statements), and Nat-
ural system variables when used with SQL/DS

It mainly consists of information also contained in the Natural basic documentation set where
each Natural statement and variable is described in detail.

For an explanation of the symbols used in this section to describe the syntax of Natural statements,
see Syntax Symbols in the Statements documentation.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

Using Natural Native DML Statements

This section summarizes particular points you have to consider when using Natural native data
manipulation language (DML) statements with SQL/DS. Any Natural statement not mentioned
in this section can be used with SQL/DS without restriction.

Below is information on the following Natural DML statements:

= BACKOUT TRANSACTION
= DELETE

= END TRANSACTION

= FIND

= GET

= HISTOGRAM

= READ

= STORE

= UPDATE

BACKOUT TRANSACTION

The Natural native DML statement BACKOUT TRANSACTION undoes all database modifications made
since the beginning of the last logical transaction. Logical transactions can start either after the
beginning of a session or after the last SYNCPOINT, END TRANSACTION, or BACKOUT TRANSACTION
statement.

How the statement is translated and which command is actually issued depends on the environ-
ment:

Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS ROLLBACK
command. However, in pseudo-conversational mode, only changes made to the database since

the last terminal I/O are undone. This is due to CICS-specific transaction processing, see Natural
for DB2 under CICS.

360 Database Management System Interfaces

Using Natural Statements and System Variables

In batch mode, the BACKOUT TRANSACTION statement is translated into an SQL ROLLBACK command.

Note: Be aware that with terminal input in SQL/DS database loops, Natural switches to

conversational mode if no file server is used.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the
outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural
program issues database calls, too. The calling Natural program must issue the BACKOUT
TRANSACTION statement for the external program.

DELETE

The Natural native DML statement DELETE is used to delete a row from a DB2 table which has
been read with a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement

DELETE WHERE CURRENT OF cursor-name, which means that only the row which was read last can
be deleted.

Example:

FIND EMPLOYEES WITH NAME = *"SMITH'
AND FIRST_NAME = 'ROGER'
DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for
example, CURSOR1) as follows:

DECLARE CURSORL CURSOR FOR

SELECT FROM EMPLOYEES

WHERE NAME = 'SMITH' AND FIRST_NAME = 'ROGER'
DELETE FROM EMPLOYEES

WHERE CURRENT OF CURSORI

Both the SELECT and the DELETE statement refer to the same cursor.

Natural translates a Natural native DML DELETE statement into a Natural SQL DELETE statement
in the same way it translates a Natural native DML FIND statement into a Natural SQL SELECT
statement.

A row read with a FIND SORTED BY cannot be deleted due to DB2 restrictions explained with the
FIND statement. A row read with a READ LOGICAL cannot be deleted either.

Database Management System Interfaces 361

Using Natural Statements and System Variables

END TRANSACTION

The Natural native DML statement END TRANSACTION indicates the end of a logical transaction
and releases all DB2 data locked during the transaction. All data modifications are committed and
made permanent.

How the statement is translated and which command is actually issued depends on the environ-
ment:

Under CICS, the END TRANSACTION statement is translated intoan EXEC CICS SYNCPOINT command.
In batch mode, the END TRANSACTION statement is translated into an SQL COMMIT WORK command.

As all cursors are closed when a logical unit of work ends, the END TRANSACTION statement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the
outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program
issues database calls, too. The calling Natural program must issue the END TRANSACTION statement
on behalf of the external program.

) Note: With SQL/DS, the END TRANSACTION statement cannot be used to store transaction
data.

FIND

The Natural native DML statement FIND corresponds to the Natural SQL statement SELECT.
Example:

Natural native DML statements:

FIND EMPLOYEES WITH NAME = 'BLACKMORE'
AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent Natural SQL statement:

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES
WHERE NAME = 'BLACKMORE'
AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement as described in Pro-
cessing of SQL Statements Issued by Natural in the section Internal Handling of Dynamic State-
ments. The SELECT statement is executed by an OPEN CURSOR statement followed by a FETCH com-

362 Database Management System Interfaces

Using Natural Statements and System Variables

mand. The FETCH command is executed repeatedly until either all records have been read or the
program flow exits the FIND processing loop. A CLOSE CURSOR command ends the SELECT processing.

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The
basic search criterion for an SQL/DS table can be specified in the same way as for an Adabas file.
This implies that only database fields which are defined as descriptors can be used to construct
basic search criteria and that descriptors cannot be compared with other fields of the Natural view
(that is, database fields) but only with program variables or constants.

| Note: Aseach database field (column) of a SQL/DS table can be used for searching, any
database field can be defined as a descriptor in a Natural DDM.

The WHERE clause of the FIND statement is evaluated by Natural after the rows have been selected
via the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields can
be compared with other database fields.

| Note: SQL/DS does not have sub-, super-, or phonetic descriptors.

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT (*) clause. The
number of rows found is returned in the Natural system variable *NUMBER as described in the
Natural System Variables documentation.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing.
If the FIND UNIQUE statement is referenced by an UPDATE statement, a non-cursor (Searched) UPDATE
operation is generated instead of a cursor-oriented (Positioned) UPDATE operation. Therefore, it
can be used if you want to update an SQL/DS primary key. It is, however, recommended to use
the Natural SQL Searched UPDATE statement to update a primary key.

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated intoa SELECT SINGLE
statement as described in the section Using Natural SQL Statements.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN clauses
cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY clause,
which follows the search criterion. Because this produces a read-only result table, a row read with
a FIND statement that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation time. If this limit is
exceeded, a Natural error message is returned.

Database Management System Interfaces 363

Using Natural Statements and System Variables

GET

The Natural native DML statement GET is based on Adabas internal sequence numbers (ISNs) and
therefore cannot be used with SQL/DS tables.

HISTOGRAM

The Natural native DML statement HISTOGRAM returns the number of rows in a table which have
the same value in a specific column. The number of rows is returned in the Natural system variable
*NUMBER as described in the Natural System Variables documentation.

Example:

Natural native DML statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent Natural SQL statement:

SELECT COUNT(*), AGE FROM EMPLOYEES
WHERE AGE > -999
GROUP BY AGE
ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the
control flow is similar to the flow explained for the FIND statement.

READ

The Natural native DML statement READ can also be used to access SQL/DS tables. Natural translates
a READ statement into a Natural SQL SELECT statement.

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN, however, cannot be used, as there
is no DB2 equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used either.

Since a READ LOGICAL statement is translated into a SELECT ... ORDER BY statement, which pro-
duces a read-only table, a row read with a READ LOGICAL statement cannot be updated or deleted
(see Example 1). The start value can only be a constant or a program variable; any other field of
the Natural view (that is, any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and
can therefore be updated or deleted (see Example 2).

Example 1:

The Natural native DML statements:

364 Database Management System Interfaces

Using Natural Statements and System Variables

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent Natural SQL statement:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
WHERE NAME >= " '
ORDER BY NAME
Example 2:

The Natural native DML statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent Natural SQL statement:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor
after the rows have been selected according to the descriptor value(s) specified in the search criterion.

STORE

The Natural native DML statement STORE is used to add a row to an SQL/DS table. The STORE
statement corresponds to the SQL statement INSERT.

Example:

The Natural native DML statement:

STORE RECORD IN EMPLOYEES

WITH PERSONNEL_ID = '2112°
NAME = "LIFESON'
FIRST_NAME = "ALEX'

Equivalent Natural SQL statement:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
VALUES ('2112", 'LIFESON', "ALEX")

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses of the STORE statement cannot be used.

Database Management System Interfaces 365

Using Natural Statements and System Variables

UPDATE

The Natural native DML statement UPDATE updates a row in an SQL/DS table which has been read
with a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement UPDATE
WHERE CURRENT OF cursor-name (Positioned UPDATE), which means that only the row which was
read last can be updated.

UPDATE with FIND/READ

As explained with the Natural native DML statement FIND, Natural translates a FIND statement
into an SQL SELECT statement. When a Natural program contains a DML UPDATE statement, this
statement is translated into an SQL UPDATE statement and a FOR UPDATE OF clause is added to the
SELECT statement.

Example:

FIND EMPLOYEES WITH SALARY < 5000
ASSIGN SALARY = 6000
UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for
example, CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR

SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
FOR UPDATE OF SALARY

UPDATE EMPLOYEES SET SALARY = 6000
WHERE CURRENT OF CURSORI1

Both the SELECT and the UPDATE statement refer to the same cursor.

Due to DB2 logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF
clause; otherwise updating this column (field) is rejected. Natural includes automatically all
columns (fields) into the FOR UPDATE OF clause which have been modified anywhere in the Natural
program or which are input fields as part of a Natural map.

However, a DB2 column is not updated if the column (field) is marked as “not updateable” in the
Natural DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any
warning or error message. The columns (fields) contained in the FOR UPDATE OF list can be checked
with the LISTSQL command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

366 Database Management System Interfaces

Using Natural Statements and System Variables

Short-Name Range | Type of Field

AA-N9 non-key field that can be updated

Aa-Nz non-key field that can be updated

OA - 09 primary key field

PA -P9 ascending key field that can be updated
QA -Q9 descending key field that can be updated
RA -X9 non-key field that cannot be updated
Ra-Xz non-key field that cannot be updated

YA -Y9 ascending key field that cannot be updated
ZA -79 descending key field that cannot be updated
1A -9Z2 non-key field that cannot be updated
la-9z non-key field that cannot be updated

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can
only be updated by using a non-cursor UPDATE operation (see also Natural SQL UPDATE statement
in the section Using Natural SQL Statements).

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to
SQL/DS limitations as explained with the FIND statement). A row read with a READ LOGICAL
statement cannot be updated either (as explained with the READ statement).

If a column is to be updated which is redefined as an array; it is strongly recommended to update
the whole column and not individual occurrences; otherwise, results are not predictable. To do
so, in reporting mode you can use the 0BTAIN statement, which must be applied to all field occur-
rences in the column to be updated. In structured mode, however, all these occurrences must be
defined in the corresponding Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT WORK)
or BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

| Note: If alength indicator field or NULL indicator field is updated in a Natural program

without updating the field (column) it refers to, the update of the column is not generated
for SQL/DS and thus no updating takes place.

Database Management System Interfaces 367

Using Natural Statements and System Variables

UPDATE with SELECT

In general, the Natural native DML statement UPDATE can be used in both structured and reporting
mode. However, after a SELECT statement, only the syntax defined for Natural structured mode
is allowed:

UPDATE [RECORD] [IN] [STATEMENT] [()]

This is due to the fact that in combination with the SELECT statement, the Natural native DML
UPDATE statement is only allowed in the special case of:

SELECT ...
INTO VIEW view-name

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL

01 PERS VIEW OF SQL-PERSONNEL
02 NAME
02 AGE

END-DEFINE

SELECT *
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE NAME LIKE 'S%'

I[F NAME = 'SMITH'
ADD 1 TO AGE

UPDATE

END-IF

END-SELECT
In combination with the Natural native DML UPDATE statement, any other form of the SELECT
statement is rejected and an error message is returned.

In all other respects, the Natural native DML UPDATE statement can be used with the SELECT
statement in the same way as with the Natural FIND statement.

368 Database Management System Interfaces

Using Natural Statements and System Variables

Using Natural SQL Statements

This section covers points you have to consider when using Natural SQL statements with SQL/DS.
These SQL/DS-specific points partly consist in syntax enhancements which belong to the Extended
Set of Natural SQL syntax. The Extended Set is provided in addition to the Common Set to support
database-specific features; see Common Set and Extended Set in the section Using Natural SQL
Statements in the Statements documentation. It also includes features not supported by SQL/DS.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

Below is information on the following Natural SQL statements and on common syntactical items:

= Syntactical ltems Common to Natural SQL Statements
= COMMIT - SQL

= DELETE - SQL

= INSERT - SQL

= PROCESS SQL

= ROLLBACK - SQL

= SELECT - SQL

= UPDATE - SQL

Syntactical tems Common to Natural SQL Statements

The following common syntactical items are either SQL/DS-specific and do not conform to the
standard SQL syntax definitions (that is, to the Common Set of Natural SQL syntax) or impose
restrictions when used with SQL/DS (see also Using Natural SQL Statements in the Statements doc-
umentation).

Below is information on the following common syntactical items:

= atom

= comparison

= factor

= scalar-function
= scalar-operator
= special-register

Database Management System Interfaces 369

Using Natural Statements and System Variables

= units
atom
An atom can be either a parameter (that is, a Natural program variable or host variable) or a con-
stant. When running dynamically, however, the use of host variables is restricted by SQL/DS. For
turther details, refer to the relevant SQL/DS literature by IBM.
comparison
The comparison operators specific to SQL/DS belong to the Natural Extended Set. For a description,
refer to Comparison Predicate in Search Conditions, Using Natural SQL Statements in the Statements
documentation.

factor

The following factors are specific to SQL/DS and belong to the Natural SQL Extended Set:

special-register
scalar-function(scalar-expression, ...)
scalar-expression unit

case-expression

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to SQL/DS and belong to the Natural SQL Extended Set.

The following scalar functions are supported:

CHAR
DATE
DAY
DAYS
DECIMAL
DIGITS
FLOAT
HEX
HOUR
INTEGER
LENGTH
MICROSECOND
MINUTE
MONTH
SECOND

370 Database Management System Interfaces

Using Natural Statements and System Variables

STRIP
SUBSTR
TIME
TIMESTAMP
TRANSLATE
VALUE
VARGRAPHIC
YEAR

Each scalar function is followed by one or more scalar expressions in parentheses. The number of
scalar expressions depends upon the scalar function. Multiple scalar expressions must be separated
from one another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE SUBSTR (NAME, 1, 3) = '"Fri'

scalar-operator

The concatenation operator (CONCAT or | |) does not conform to standard SQL. It is specific to
SQL/DS and belongs to the Natural Extended Set.

special-register

The following special registers do not conform to standard SQL. They are specific to SQL/DS and
belong to the Natural SQL Extended Set:

USER

CURRENT TIMEZONE
CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP

A reference to a special register returns a scalar value.

Database Management System Interfaces 371

Using Natural Statements and System Variables

units

Units, also called “durations”, are specific to SQL/DS and belong to the Natural SQL Extended
Set.

The following units are supported:

DAY

DAYS

HOUR

HOURS
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MONTH
MONTHS
SECOND
SECONDS
YEAR

YEARS

COMMIT - SQL

The Natural SQL statement COMMIT indicates the end of a logical transaction and releases all SQL/DS
datalocked during the transaction. All data modifications are made permanent. For further details
and statement syntax, see COMMIT (SQL) in the Statements documentation.

COMMIT is a synonym for the Natural native DML statement END TRANSACTION as described in the
section Using Natural DML Statements.

As all cursors are closed when a logical unit of work ends, the COMMI T statement must not be placed
within a database loop; instead, it has to be placed outside such a loop or after the outermost loop
of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMI T command if the Natural program
issues database calls, too. The calling Natural program must issue the COMMIT statement on behalf
of the external program.

372 Database Management System Interfaces

Using Natural Statements and System Variables

DELETE - SQL

Both the cursor-oriented or Positioned DELETE, and the non-cursor or Searched DELETE statements
are supported as part of Natural SQL; the functionality of the Positioned DELETE statement corres-
ponds to that of the Natural native DML DELETE statement. For further details and statement
syntax, see DELETE (SQL) in the Statements documentation.

With SQL/DS, a table name in the FROM Clause of a Searched DELETE statement can be assigned
a correlation-name. This does not correspond to the standard SQL syntax definition and therefore
belongs to the Natural SQL Extended Set.

INSERT - SQL

The Natural SQL statement INSERT is used to add one or more new rows to a table.

Since the SQL INSERT statement can contain a select expression, all the SQL/DS-specific common
syntactical items described above apply.

For further details and statement syntax, see INSERT (SQL) in the Statements documentation.

PROCESS SQL

The Natural SQL statement PROCESS SQL is used to issue SQL statements to the underlying database.
The statements are specified in a statement -string, which can also include constants and para-
meters. The set of statements which can be issued is also referred to as Flexible SQL and comprises
those statements which can be issued with the SQL statement EXECUTE.

In addition, Flexible SQL includes the following SQL/DS-specific statement CONNECT.

With the PROCESS SQL statement you can also specify the statement-string SOLDISCONNECT to
release the connection to your SQL/DS application server. SQLDISCONNECT is transformed into the
SQL/DS ROLLBACK WORK RELEASE command.

Execution of SOLDISCONNECT is only allowed if no transaction (logical unit of work) is open.
Therefore, an explicit COMMIT (END TRANSACTION) or ROLLBACK (BACKOUT TRANSACTION) statement
is required before executing SQLDISCONNECT, otherwise an error message is returned.

| Note: To avoid transaction synchronization problems between the Natural environment
and SQL/DS, the COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

For further details and statement syntax, see PROCESS SQL in the Statements documentation.

Database Management System Interfaces 373

Using Natural Statements and System Variables

ROLLBACK - SQL

The Natural SQL statement ROLLBACK undoes all database modifications made since the beginning
of the last logical transaction. Logical transactions can start either after the beginning of a session
or after the last COMMIT/END TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records
held during the transaction are released.

For further details and statement syntax, see ROLLBACK (SQL) in the Statements documentation.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION as described in the section
Using Natural Native DML Statements.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be
placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the ROLLBACK statement on behalf
of the external program.

SELECT - SQL

The Natural SQL SELECT statement supports both the cursor-oriented selection, which is used to
retrieve an arbitrary number of rows, and the non-cursor selection (Singleton SELECT), which re-
trieves at most one single row.

SELECT - Cursor-Oriented

Like the Natural native DML FIND statement, the cursor-oriented SELECT statement is used to select
a set of rows (records) from one or more SQL/DS tables, based on a search criterion. Since a database
loop is initiated, the loop must be closed by a LO0P statement (in reporting mode) or by an
END-SELECT statement (in structured mode). With this construction, Natural uses the same loop
processing as with the FIND statement. In addition, no cursor management is required from the
application program; it is automatically handled by Natural.

For further details and syntax, see Syntax 1 - Cursor-Oriented Selection in SELECT (SQL) in the
Statements documentation.

374 Database Management System Interfaces

Using Natural Statements and System Variables

SELECT SINGLE - Non-Cursor-Oriented

The Natural SQL statement SELECT SINGLE provides the functionality of a non-cursor selection
(Singleton SELECT); that is, a select expression that retrieves at most one row without using a
cursor.

Since SQL/DS supports the Singleton SELECT command in static SQL only, in dynamic mode, the
Natural SELECT SINGLE statement is executed like a set-level SELECT statement, which results in
a cursor operation. However, Natural checks the number of rows returned by SQL/DS. If more
than one row is selected, a corresponding error message is returned.

For further details and syntax, see SELECT SQL, Syntax 2 - Non-Cursor Selection in the Natural
Statements documentation.

UPDATE - SQL

Both the cursor-oriented or Positioned UPDATE and the non-cursor or Searched UPDATE statements
are supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With SQL/DS, the name of a table or Natural view to be referenced by a Searched UPDATE can be
assigned a correlation-name. This does not correspond to the standard SQL syntax definition
and therefore belongs to the Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since
SQL/DS does not allow updating of columns of a primary key by using a Positioned UPDATE
statement.

Note: If you use the SET * notation, all fields of the referenced Natural view are added to

the FOR UPDATE OF and SET lists. Therefore, ensure that your view contains only fields which
can be updated; otherwise, a negative SQLCODE is returned by SQL/DS.

For further details and syntax, see UPDATE (SQL) in the Natural Statements documentation.

Using Natural System Variables

When used with DB2, there are restrictions and/or special considerations concerning the following
Natural system variables:

= *TSN

= *NUMBER

= *ROWCOUNT

For information on restrictions and/or special considerations, refer to the section Database-Specific
Information in the corresponding system variable documentation.

Database Management System Interfaces 375

Using Natural Statements and System Variables

Error Handling

In contrast to the normal Natural error handling, where either an ON ERROR statement is used to
intercept execution time errors or standard error message processing is performed and program
execution is terminated, the enhanced error handling of Natural for DB2 provides an application
controlled reaction to the encountered SQL error.

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error
handling and to check the encountered SQL error for the returned SQLCODE. This functionality
replaces the E function of the DB2SERYV interface, which is still provided but no longer documented.

For further information on Natural subprograms provided for SQL/DS, see the section Interface
Subprograms.

Example:

DEFINE DATA LOCAL

01 #SQLCODE (I4)

01 #SQLSTATE (A5)

01 #SQLCA (A136)

01 4fDBMS (B1)

END-DEFINE

*

& Ignore error from next statement

*

CALLNAT "NDBNOERR'

*

o This SQL statement produces an SQL error

*

INSERT INTO SYSIBH-SYSTABLES (CREATOR, NAME, COLCOUNT)
VALUES ('SAG', 'MYTABLE', '3")

*

% Investigate error
*

CALLNAT 'NDBERR' #SQLCODE 4SQLSTATE 4SQLCA #DBMS
*
IF #fDBMS NE 2 /* not DB2
MOVE 3700 TO *ERROR-NR
END-IF
*
DECIDE ON FIRST VALUE OF #SQLCODE
VALUE 0, 100 /* successful execution
IGNORE
VALUE -803 /* duplicate row
/* UPDATE existing record
/*
IGNORE
NONE VALUE

376 Database Management System Interfaces

Using Natural Statements and System Variables

MOVE 3700 TO *ERROR-NR
END-DECIDE

*

END

Database Management System Interfaces 377

378

27 Interface Subprograms

Natural Interface SUDPrOGramMScoiiiiiiiiiii e 380
NDBDBRM SUDPIOGIAM ... ettt e et e e et e e e et e e et ee e e e ennees 381
NDBDBR2 SUDPIOGIAMeeeeeiiiii ettt et e et e et e e e e e neeeees 382
NDBDBR3 SUDPIOGIAMceeiie ettt ettt 383
NDBERR SUDPIOGIAM ...ttt ettt e ettt e e e e e ettt e e e e e e e s et beeaeeens 384
NDBISQL SUDPIOGrAM ...ttt 385
NDBNOERR SUDPIOGIAM ©..viviiiiiee ettt e e e e e e e 387
NDBNROW SUDPIOGIAM ...ttt ettt e et e et e e e 388
NDBSTMP SUDPIOGIAM ...ttt 388
DB2SERV INEITACE ... 389

379

Interface Subprograms

Several Natural subprograms and a non-Natural program (DB2SERV Interface, written in Assembler)
are available to provide you with internal information from the Natural interface to SQL/DS or
specific functions that are not available within the interface itself.

Natural Interface Subprograms

From within a Natural program, Natural subprograms are invoked with the CALLNAT statement
and non-Natural subprograms are invoked with the CALL statement.

All Natural subprograms are provided in the library SYSSQL and should be copied to the SYSTEM
or steplib library, or to any library where they are needed. The corresponding parameters must
be defined by using either the DEFINE DATA statement in structured mode or the RESET statement
in reporting mode.

The Natural subprograms NDBBRM, NDBDBR2, NDBDBR3 allow the optional specification of the database
ID, file number, password and cipher code of the library file containing the program to be examined.

If these parameters are not specified, either the current system file FNAT or the system file FUSER
is used to locate the program to be examined depending on whether the library name begins with
SYS or the library name does not begin with SYS.

Programs invoking NDBBRM, NDBDBR2, NDBDBR3 without these parameters will also work like before
this change as the added parameters are declared as optional.

Overview of Interface Subprograms

Subprogram |Function

NDBDBRM |Checks whether a Natural program contains SQL access and whether it has been modified for
static execution.

NDBDBR2 |Checks whether a Natural program contains SQL access and whether it has been modified for
static execution.

NDBDBR3 |Checks whether a Natural program contains SQL access, whether it has been modified for
static execution, and whether it can be generated as static.

NDBERR Provides diagnostic information on the most recently executed SQL call.

NDBISQL |Executes SQL statements in dynamic mode.

NDBNOERR |Suppresses normal Natural error handling.

NDBNROW |Obtains the number of rows affected by a Natural SQL statement.
NDBSTMP |Provides an SQL/DS TIMESTAMP column as an alphanumeric field and vice versa.

For detailed information on these subprograms, follow the links shown in the table above and
read the description of the call format and of the parameters in the text object provided with the
subprogram (subprogram-nameT).

380 Database Management System Interfaces

Interface Subprograms

NDBDBRM Subprogram

The Natural subprogram NDBDBRM is used to check whether a Natural program contains SQL access
and whether it has been modified for static execution. It is also used to obtain the corresponding
package name from the header of a Natural program generated as static (see also Preparing Nat-
ural Programs for Static Execution).

A sample program called CALLDBRM is provided on the installation medium; it demonstrates how
to invoke NDBDBRM. A description of the call format and of the parameters is provided in the text
object NDBDBRMT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBDBRM' #LIB {MEM {#fDBRM #RESP #DBID #FILENR #PASSWORD #CIPHER

The various parameters are described in the following table:

Parameter |Format/Length|Explanation

#LIB A8 Contains the name of the library of the program to be checked.
#FMEM A8 Contains the name of the program (member) to be checked
{FDBRM A8 Returns the DBRM name.

fFRESP 2 Returns a response code. The possible codes are listed below.
#fDBID N5 Optional, Database ID of library file.

#IFILENR |N5 Optional, File number of library file.

#FPASSWORD |A8 Optional, Password of library file.

#fCIPHER |N8 Optional, Cipher code of library file.

The #RESP parameter can contain the following response codes:

Code |[Explanation

0 |The member #MEM in library #L1B has SQL access; it is static if #DBRM contains a value.
-1 | The member #MEM in library #LIB has no SQL access.
-2 |The member #MEM in library #L 1B does not exist.

-3 |No library name has been specified.

-4 |No member name has been specified.

-5 |The library name must start with a letter.

<-5 |Further negative response codes correspond to error numbers of Natural error messages.

> 0 |Positive response codes correspond to error numbers of Natural Security messages.

Database Management System Interfaces 381

Interface Subprograms

NDBDBR2 Subprogram

The Natural subprogram NDBDBR? is used to check whether a Natural program contains SQL access
and whether it has been modified for static execution. It is also used to obtain the corresponding
DBRM name from the header of a Natural program generated as static (see also Preparing Natural
Programs for Static Execution) and the time stamp generated by the precompiler.

A sample program called CALLDBR?Z is provided on the installation medium; it demonstrates how
to invoke NDBDBR2. A description of the call format and of the parameters is provided in the text
object NDBDBR2T.

The calling Natural program must use the following syntax:

CALLNAT 'NDBDBR2' #LIB #MEM #DBRM #TIMESTAMP #PCUSER #PCRELLEV #ISOLLEVL #fDATEFORM <
ffTIMEFORM #fRESP #DBID #FILENR #PASSWORD #CIPHER

The various parameters are described in the following table:

Parameter Format/Length | Explanation

f#FLIB A8 Contains the name of the library of the program to be checked.
#FMEM A8 Contains the name of the program (member) to be checked
#IDBRM A8 Returns the DBRM name.

#fTIMESTAMP | B8 Consistency token generated by precompiler

#PCUSER Al User ID used at precomplile (only SQL/DS)

#fPCRELLEV |Al Release level of precompiler (only SQL/DS)

#FISOLLEVL |A1l Precomplier isolation level (only SQL/DS)

#fDATEFORM |Al Date format (only SQL/DS)

#TIMEFORM |A1 Time format (only SQL/DS)

#FRESP 2 Returns a response code. The possible codes are listed below.
#fDBID N5 Optional, Database ID of library file.

#FFILENR N5 Optional, File number of library file.

#FPASSWORD |A8 Optional, Password of library file.

#CIPHER N8 Optional, Cipher code of library file.

The #RESP parameter can contain the following response codes:

382 Database Management System Interfaces

Interface Subprograms

Code |Explanation

0 |The member #MEM in library #LIB has SQL access; it is static if #DBR2 contains a value.
-1 |The member #MEM in library #LIB has no SQL access.
-2 |The member #MEM in library #L IB does not exist.

-3 |No library name has been specified.

-4 |No member name has been specified.

-5 |The library name must start with a letter.

<-5 |Further negative response codes correspond to error numbers of Natural error messages.

> 0 |Positive response codes correspond to error numbers of Natural Security messages.

NDBDBR3 Subprogram

The Natural subprogram NDBDBR3 is used to check whether a Natural program contains SQL access
(#iRESP 0), whether the Natural program contains solely SQL statements, which are dynamically
executable (#RESP 0, ##/DBRM '*DYNAMIC') and whether it has been modified for static execution
(#RESP 0, #fDBRM dbrmname). It is also used to obtain the corresponding DBRM name from the
header of a Natural program generated as static (see also Preparing Natural Programs for Static
Execution) and the time stamp generated by the precompiler.

A sample program called CALLDBR3 is provided on the installation medium; it demonstrates how
to invoke NDBDBR3. A description of the call format and of the parameters is provided in the text
object NDBDBR3T.

The calling Natural program must use the following syntax:

CALLNAT 'NDBDBR3' #LIB #MEM #DBRM #TIMESTAMP #PCUSER #PCRELLEV #ISOLLEVL #DATEFORM «
#TIMEFORM #RESP #DBID #FILENR ffPASSWORD #CIPHER

The various parameters are described in the following table:

Parameter Format/Length |Explanation

{FLIB A8 Contains the name of the library of the program to be checked.
#FMEM A8 Contains the name of the program (member) to be checked
#FDBRM A8 Returns the DBRM name.

B Space, if program has SQL access

= *DYNAMIC, if program contains only dynamically executable
SQL

= DBRM name, if program has been generated static.

#TIMESTAMP | B8 Consistency token generated by precompiler

Database Management System Interfaces 383

Interface Subprograms

Parameter Format/Length | Explanation

#fPCUSER Al User ID used at precomplile (only SQL/DS)
#fPCRELLEV |Al Release level of precompiler (only SQL/DS)
#ISOLLEVL |Al Precomplier isolation level (only SQL/DS)
#fDATEFORM |A1 Date format (only SQL/DS)

#fTIMEFORM |A1 Time format (only SQL/DS)

fFRESP 2 Returns a response code. The possible codes are listed below.
{#fDBID N5 Optional, Database ID of library file.
#FFILENR N5 Optional, File number of library file.
#FPASSWORD |A8 Optional, Password of library file.

#FCIPHER N8 Optional, Cipher code of library file.

The #RESP parameter can contain the following response codes:

Code |[Explanation

0 The member #MEM in library #L 1B has SQL access; it is static, if #DBRM contains a value other than
space and *DYNAMIC.

-1 |The member #MEM in library #L1B has no SQL access.
-2 |The member #MEM in library #L 1B does not exist.

-3 |No library name has been specified.

-4 |No member name has been specified.

-5 |The library name must start with a letter.

<-5 |Further negative response codes correspond to error numbers of Natural error messages.

>0 |Positive response codes correspond to error numbers of Natural Security messages.

NDBERR Subprogram

The Natural subprogram NDBERR replaces the E function of the DB2SERV interface, which is still
provided but no longer documented. It provides diagnostic information on the most recent SQL
call. It also returns the database type which returned the error. NDBERR is typically called if a
database call returns a non-zero SQLCODE (which means a NAT3700 error); see Error Handling.

A sample program called CALLERR is provided on the installation medium; it demonstrates how
to invoke NDBERR. A description of the call format and of the parameters is provided in the text
object NDBERRT.

The calling Natural program must use the following syntax:

384 Database Management System Interfaces

Interface Subprograms

CALLNAT "NDBERR' #SQLCODE #SQLSTATE #SQLCA #DBTYPE

The various parameters are described in the following table:

Parameter |Format/Length | Explanation

#SQLCODE |14 Returns the SQL return code.

#SQLSTATE|A5 Returns a return code for the output of the most recently executed SQL statement.

##SQLCA A136 Returns the SQL communication area of the most recent SQL/DS access.

ffDBTYPE |B1 Returns the identifier (in hexadecimal format) for the currently used database
(where X' 03" identifies SQL/DS).

NDBISQL Subprogram

The Natural subprogram NDBISQL is used to execute SQL statements in dynamic mode. The SELECT
statement and all SQL statements which can be prepared dynamically (according to the Adabas
SQL Server documentation) can be passed to NDBISQL.

A sample program called CALLISQL is provided on the installation medium; it demonstrates how
to invoke NDBISQL. A description of the call format and of the parameters is provided in the text
object NDBISQLT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBISQL'#fFUNCTION #TEXT-LEN #TEXT (*) #SQLCA ffRESPONSE #fWORK-LEN #WORK (*)

The various parameters are described in the following table:

Parameter |Format/Length |Explanation

#FFUNCTION|AS8 For valid functions, see below.

#FTEXT-LEN|I2 Length of the SQL statement or of the buffer for the return area.

FFTEXT Al1(1:V) Contains the SQL statement or receives the return code.

##SQLCA A136 Contains the SQLCA.

#FRESPONSE |14 Returns a response code.

fFWORK- LEN |12 Length of the workarea specified by #WORK (optional).

FFWORK Al1(1:V) Workarea used to hold SQLDA/SQLVAR and auxiliary fields across calls (optional).

Valid functions for the #FUNCTION parameter are:

Database Management System Interfaces 385

Interface Subprograms

Function (Parameter

Explanation

CLOSE

Closes the cursor for the SELECT statement.

EXECUTE

#TEXT - LEN |Executes the SQL statement.
#TEXT (*) |Contains the length of the statement.

Contains the SQL statement.
The first two characters must be blank.

FETCH

JFTEXT-LEN |Returns a record from the SELECT statement.
#TEXT (*) |Size of #TEXT (in bytes).

Buffer for the record.

TITLE

#FTEXT-LEN |Returns the header for the SELECT statement.
#TEXT (*) |Size of #TEXT (in bytes);

receives the length of the header (= length of the record).
Buffer for the header line.

The #RESPONSE parameter can contain the following response codes:

Code|Function Explanation

5 EXECUTE The statement is a SELECT statement.

6 TITLE, FETCH|Data are truncated; only set on first TITLE or FETCH call.
100 |FETCH No record / end of data.

-2 Unsupported data type (for example, GRAPHIC).

-3 |TITLE, FETCH|No cursor open;

probably invalid call sequence or statement other than SELECT.

-4 Too many columns in result table.

-5 SQLCODE from call.

-6 Version mismatch.

-7 Invalid function.

-8 Error from SQL call.

-9 Workarea invalid (possibly relocation).

-10 Interface not available.

-11 |EXECUTE First two bytes of statement not blank.
Call Sequence

The first call must be an EXECUTE call. NDBISQL has a fixed SOLDA AREA holding space for 50 columns.
If this area is too small for a particular SELECT it is possible to supply an optional work area on
the calls to NDBISQL by specifying #WORK-LEN (12) and #WORK(A1/1:V).

This workarea is used to hold the SOLDA and temporary work fields like null indicators and auxil-
iary fields for numeric columns. Calculate 16 bytes for SQLDA header and 44 bytes for each result
column and 2 bytes null indicator for each column and place for each numeric column, when

386

Database Management System Interfaces

Interface Subprograms

supplying #WORK - LEN and #WORK (*) during NDBISQL calls. If these optional parameters are specified
on an EXECUTE call, they have also to be specified on any following call.

If the statement is a SELECT statement (that is, response code 5 is returned), any sequence of TITLE
and FETCH calls can be used to retrieve the data. A response code of 100 indicates the end of the
data.

The cursor must be closed with a CLOSE call.

) Notes:

1. Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE
call for a SELECT statement.

2. In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE,
FETCH or CLOSE call that refers to the same statement.

NDBNOERR Subprogram

The Natural subprogram NDBNOERR is used to suppress Natural NAT3700 errors caused by the
next SQL call. This allows a program-controlled continuation if an SQL statement produces a non-
zero SQLCODE. After the SQL call has been performed, NDBERR is used to investigate the SQLCODE;
see Error Handling.

A sample program called CALLNOER is provided on the installation medium; it demonstrates how
to invoke NDBNOERR. A description of the call format and of the parameters is provided in the text
object NDBNOERT.

The calling Natural program must use the following syntax:

CALLNAT "NDBNOERR'
There are no parameters provided with this subprogram.

| Note: Only NAT3700 errors (that is, non-zero SQL response codes) are suppressed, and
also only errors caused by the next following SQL call.

Restrictions with Database Loops

= If NDBNOERR is called before a statement that initiates a database loop and an initialization error
occurs, no processing loop will be initiated, unlessa IF NO RECORDS FOUND clause has been
specified.

= If NDBNOERR is called within a database loop, it does not apply to the processing loop itself, but
only to the SQL statement subsequently executed inside this loop.

Database Management System Interfaces 387

Interface Subprograms

NDBNROW Subprogram

The Natural subprogram NDBNROW is used to obtain the number of rows affected by the Natural
SQL statements Searched UPDATE, Searched DELETE, and INSERT. The number of rows affected is
read from the SQL communication area (SQLCA). A positive value represents the number of affected
rows, whereas a value of minus one (- 1) indicates that all rows of a table in a segmented tablespace
have been deleted; see also the Natural system variable *NUMBER as described in the Natural System
Variables documentation.

A sample program called CALLNROW is provided on the installation medium; it demonstrates how
to invoke NDBNROW. A description of the call format and of the parameters is provided in the text

object NDBNROWT.

The calling Natural program must use the following syntax:

CALLNAT "NDBNROW' #NUMBER

The parameter #NUMBER (I4) contains the number of affected rows.

NDBSTMP Subprogram

For SQL/DS, Natural provides a TIMESTAMP column as an alphanumeric field (A26) of the format
YYYY-MM-DD-HH.MM. SS. MMMMMM; see also List Columns of an SQL Table.

Since Natural does not yet support computation with such fields, the Natural subprogram NDBSTMP
is provided to enable this kind of functionality. It converts Natural time variables to SQL/DS time
stamps and vice versa and performs SQL/DS time stamp arithmetics.

A sample program called CALLSTMP is provided on the installation medium; it demonstrates how
to invoke NDBSTMP. A description of the call format and of the parameters is provided in the text
object NDBSTMPT.

The functions available are:

Code |Explanation

ADD |Adds time units (labeled durations) to a given SQL/DS time stamp and returns a Natural time variable
and a new SQL/DS time stamp.

CNT2|Converts a Natural time variable (format T) into a SQL/DS time stamp (column type TIMESTAMP)
and labeled durations.

C2TN|Converts a SQL/DS time stamp (column type TIMESTAMP) into a Natural time variable (format T)
and labeled durations.

DIFF|Builds the difference between two given SQL/DS time stamps and returns labeled durations.

388 Database Management System Interfaces

Interface Subprograms

Code |Explanation

GEN |Generates a SQL/DS time stamp from the current date and time values of the Natural system variable
*TIMX and returns a new SQL/DS time stamp.

SUB |Subtracts labeled durations from a given SQL/DS time stamp and returns a Natural time variable
and a new SQL/DS time stamp.

TEST|Tests a given SQL/DS time stamp for valid format and returns TRUE or FALSE.

] Note: Labeled durations are units of year, month, day, hour, minute, second and micro-

second.

DB2SERYV Interface

DB2SERV is an Assembler program entry point which can be called from within a Natural program.
DB2SERV performs either of the following functions:

® Function D, which performs the SQL statement EXECUTE IMMEDIATE;

® Function U, which calls the database connection services (z/VSE batch mode only).

The parameter or variable values returned by each of these functions are checked for their format,
length and number.

Function D

Function D performs the SQL statement EXECUTE IMMEDIATE. This allows SQL statements to be issued
from within a Natural program.

The SQL statement string that follows the EXECUTE IMMEDIATE statement must be assigned to the
Natural program variable STMT. It must contain valid SQL statements allowed with the EXECUTE
IMMEDIATE statement as described in the relevant IBM documentation. Examples can be found
below and in the demonstration programs DEM2* in library SYSSQL.

| Note: The conditions that apply to issuing Natural END TRANSACTION or BACKOUT

TRANSACTION statements also apply when issuing Natural SQL COMMIT or ROLLBACK state-
ments.

Database Management System Interfaces 389

Interface Subprograms

Command Syntax

CALL 'DBZ2SERV' 'D' STMT STMTL SQLCA RETCODE

The variables used in this command are described in the following table:

Variable |Format/Length|Explanation
STMT Annn Contains a command string which consists of SQL syntax as described above.
STMTL |12 Contains the length of the string defined in the Natural program variable STMT.
SQLCA |A136 Returns the current contents of the SQL communication area.
RETCODE|I2 Returns an interface return code. The following codes are possible:
0 No warning or error occurred.
4 SQL statement produced an SQL warning.
8 SQL statement produced an SQL error.
12 Internal error occurred;the corresponding Natural
error message number can be displayed with
SYSERR.

The current contents of the SQLCA and an interface return code (RETCODE) are returned. The
SQLCA is a collection of variables that are used by SQL/DS to provide an application program
with information on the execution of its SQL statements.

The following example shows you how to use DB2SERV with function “D”:

Example of Function D - DEM2CREA:

R R e b e i e b o b i b o b b S S b S i e e e i e i e e i e e S e e i e i e i S o e e i b e S i S

* DEM2CREA - CREATE TABLE NAT.DEMO ©

*

ok ok ok ok ke ok ko ok
*

DEFINE DATA

LOCAL USING DEMSQLCA

LOCAL

% Parameters for DB2SERV
1 STMT (A250)

1 STMTL (I2) CONST <250>

1 RETCODE (I2)

*

END-DEFINE

*

COMPRESS 'CREATE TABLE NAT.DEMO'

" (NAME CHAR(20) NOT NULL,'
" ADDRESS VARCHAR(100) NOT NULL,"
" DATEOFBIRTH DATE NOT NULL,'
" SALARY DECIMAL(6,2),"

390 Database Management System Interfaces

Interface Subprograms

" REMARKS VARCHAR(500))"
INTO STMT

CALL 'DB2SERV' 'D' STMT STMTL SQLCA RETCODE

*

END TRANSACTION

*

IF RETCODE = 0

WRITE 'Table NAT.DEMO created'
ELSE

FETCH "SQLERR'
END-IF
END

R R R R R R R b R b b R I b b e b b R R e S b e b b R e b b R b R e S b b b e S b b b e i b R e i i b

Note: The functionality of the DB2SERV function D is also provided with the PROCESS SQL

statement (see also the section Using Natural SQL Statements in the Statements documentation).

Function U

Function U calls the database connection services when running in batch mode under z/VSE; see
also Sample Batch Verification Job (z/VSE only).

The user ID and password for the connection to SQL/DS must be assigned to the Natural program
variables USER-ID and PASSWORD, respectively. An interface return code (RETCODE) is returned.

Command Syntax

CALL "DB2SERV' 'U' USER-ID PASSWORD RETCODE

The variables used in this command are described in the following table:

Variable Format/Length |Explanation

USER-ID |AS8 A Natural variable that contains the user ID for the connection to SQL/DS.

PASSWORD|A8 A Natural variable that contains the user password for the connection to SQL/DS.

RETCODE |I2 A Natural variable that returns an interface return code. The following codes are
possible:

0 No warning or error occurred.
4 SQL statement produced an SQL warning,.
8 SQL statement produced an SQL error.

12 Internal error occurred; information on this error can be displayed with the
Natural Utility SYSERR.

Database Management System Interfaces 391

Interface Subprograms

Variable |Format/Length |Explanation
USER-ID |AS8 A Natural variable that contains the user ID for the connection to SQL/DS.
PASSWORD|AS8 A Natural variable that contains the user password for the connection to SQL/DS.
RETCODE |I2 A Natural variable that returns an interface return code. The following codes are
possible:
0 No warning or error occurred.
4 SQL statement produced an SQL warning.
8 SQL statement produced an SQL error.
12 Internal error occurred;the corresponding Natural
error message number can be displayed with the
Natural Utility SYSERR.
392 Database Management System Interfaces

I I I Natural SQL Gateway

With Natural SQL Gateway, a Natural user residing on z/OS can access data in an SQL database
residing either on a UNIX or a Windows system.

This documentation describes the client and server parts of Natural SQL Gateway.

General Information

Introduction to Natural SQL
Gateway

Accessing an SQL Table

Using Natural System Commands
for Natural SQL Gateway

Generating Natural Data Definition
Modules (DDMs)

Dynamic SQL Support

Using Natural Statements and
System Variables

Interface Subprograms

Natural File Server
Natural SQL Gateway Server

Special considerations on the environments supported by Natural
SQL Gateway, known incompatibilities and constraints when using
Natural SQL Gateway, terms used in this documentation, and on
error messages related to Natural SQL Gateway.

Purpose, usage, and product structure.

Enable access to an SQL table with a Natural program.

An overview of special Natural system commands which are part of
Natural SQL Gateway.

Generation of Natural data definition modules (DDMs) using the
SQL Services function of the Natural SYSDDM utility.

Internal handling of dynamic statements.

Special considerations on Natural DML statements, Natural SQL
statements and Natural system variables when used with SQL. In
addition, the Natural SQL Gateway enhanced error handling is
discussed.

Several Natural and non-Natural subprograms to be used for various
purposes.

Information on the Natural File Server in the supported environments.

Concept and structure of the server for Natural SQL Gateway, how
to install, configure and operate a server for the Natural SQL Gateway
under the operating system z/OS, purpose and use of the monitor
client NATMOPI and the HTML monitor client.

393

Natural SQL Gateway

Related Documentation

® For installatation instructions and a description of the parameter module NDBPARM, refer to In-
stalling Natural SQL Gateway on z/OS in the Installation for z/OS documentation.

® For various aspects of accessing data in a database with Natural, refer to Database Access.

® For information on logging SQL statements contained in a Natural program, refer to DBLOG
Utility in the Natural Utilities documentation.

394 Database Management System Interfaces

28 General Information

® Environment-Specific CONSIABIALIONScoiiiiiiiiii e e e e 396
= |ncompatibilities and CONSITAINESeiiiiiiiiiii e 397
= Messages Related to Natural SQL GatEWAYceeiiiiiiiiiiiiiiee e 398
= Terms Used in this DOCUMENTAtIONooiiiiiiiii et 398

395

General Information

This section covers the following topics:

Environment-Specific Considerations

Natural SQL Gateway can be run in the TP-monitor environments CICS and Com-plete and in
TSO and as well as in a z/OS batch environment.

This section covers the following topics:

= Natural SQL Gateway under CICS

= Natural SQL Gateway under Com-plete
= Natural SQL Gateway under TSO

= Natural SQL Gateway in Batch Mode

Natural SQL Gateway under CICS

The following topics are covered below:

= Natural SQL Gateway Server Deployment
= File Server under CICS

Natural SQL Gateway Server Deployment

In order to access SQL tables from a CICS environment via Natural SQL Gateway, the Natural
SOL Gateway Server has to be deployed. The NDBPARM parameters NSBHOST and NSBPORT are used
to specify the address and port number of the Natural SQL Gateway server.

File Server under CICS

In a CICS environment, the file server is an optional feature to relieve the problems of switching
to conversational processing. Before a screen I/O, Natural detects if there are any open cursors
and if so, saves the data contained by these cursors into the file server. With the file server, database
loops can be continued across terminal I/Os, but database modifications made before a terminal
I/O can no longer be backed out.

For a detailed description of the file server, refer to the section Natural File Server.

396 Database Management System Interfaces

General Information

Natural SQL Gateway under Com-plete

In order to access SQL tables from a Com-plete environment via Natural SQL Gateway, the Nat-
ural SQL Gateway server has to be deployed. The NDBPARM parameters NSBHOST and NSBPORT are
used to specify the address and port number of the Natural SQL Gateway server.

Natural SQL Gateway under TSO

Natural SQL Gateway can run under TSO without requiring any changes to the Natural/TSO in-
terface. Just supply the h1q.RCI.LOAD library from the CXX Adabas precompiler installation in
the JCL.

Apart from z/OS Batch, the batch environment for Natural can also be the TSO background, which
invokes the TSO terminal monitor program by an EXEC PGM=IKJEFTO1 statement in a JCL stream.

File Server under TSO

In a TSO environment, the file server is an optional feature to be able to emulate during develop-
ment status a future CICS production environment.

With each terminal I/O, Natural issues a COMMIT WORK command to simulate CICS or IMS TM
syncpoints. Therefore, database modifications made before a terminal I/O can no longer be backed
out.

For a detailed description of the file server, refer to the section Natural File Server.
Natural SQL Gateway in Batch Mode

Natural SQL Gateway can run in a z/OS batch environment. Just supply the h1q.RCI.LOAD library
from the CXX Adabas precompiler installation in the JCL.

Incompatibilities and Constraints

This section lists the known incompatibilities and constraints when using Natural SQL Gateway
to access data from an SQL database system:

Database Management System Interfaces 397

General Information

Data Type DECIMAL or NUMERIC
Most SQL database systems support packed decimal numbers with a maximal precision of 31 digits

and a scale (fractional part of the number) of up to 31 digits. The scale has to be positive and not
greater than the precision. Natural allows precision and scale of up to 29 digits.

LOBs

Natural SQL Gateway does not support large database objects.
Stored Procedures

Natural SQL Gateway does not support stored procedures.
Static Execution

Natural SQL Gateway does not support static execution of Natural programs.

Messages Related to Natural SQL Gateway

The message number ranges of Natural system messages related to Natural SQL Gateway are
3275 - 3286, 3700-3749, and 7386-7395.

Terms Used in this Documentation

The following table provides an overview of important terms used in the Natural SQL Gateway
documentation:

Term Explanation

NSB This is the product code of Natural SQL Gateway. In this documentation the product code is
often used as prefix in the names of data sets, modules, etc.

NSERV |Short for Natural SQL Gateway server.

File Server | The term “file server” refers to the Natural file server.

DB2 DB2 refers to the family of IBM's licensed programs for relational database management.

398 Database Management System Interfaces

29 Introduction to Natural SQL Gateway

B PUMOSE @NG USBGE ..ttt ettt ettt 400
B PROGUCE STTUCIUIE ...ttt e ettt e ettt e e e et e e e e st e e e e et e e e e srneeeaans 400

399

Introduction to Natural SQL Gateway

Purpose and Usage

With Natural SQL Gateway, a Natural user residing on z/OS can access data in an SQL database
residing either on a UNIX or a Windows system.

In general, there is no difference between using Natural with an SQL database and using it with
Adabas, VSAM or DL/I. Natural SQL Gateway allows Natural programs to access SQL data, using
the same Natural DML statements that are available for Adabas, VSAM, and DL/I.

Therefore, programs written for SQL tables can also be used to access Adabas, VSAM, or DL/I
databases. Moreover, some additional Natural SQL statements are available. The are listed on the
overview page of the Statements documentation and further explained in Using Natural SQL
Statements in the Statements documentation.

Product Structure

Natural SQL Gateway is comprised of the following parts:
® ConnecX Client
The ConnecX client part resides on the z/OS platform and communicates with the JDBC Server

from a batch or TSO address space .
* Natural SQL Gateway Client

The Natural SQL Gateway client part resides on the z/OS platform linked to Natural in a TP
environment.

The client part of Natural SQL Gateway is currently supported for CICS and Com-plete.
® Natural SQL Gateway Server

The Natural SQL Gateway server runs the Natural SQL Gateway Client in a batch address
space.

® ConnecX SQL Engine JDBC Server

The ConnecX SQL Engine JDBC server resides either on a Windows or a Unix platform which
accesses the SQL database system residing elsewhere.

The ConnecX SQL Engine JDBC server utilises a data dictionary (CDD) in order to access the
SQL database. The CDD describes the structures of tables and databases being accessed. The
CDD provides a Windows based administration tool for easy maintenance of the metadata
contained in the CDD. In addition, a Windows based query tool named InfoNaut is offered.
InfoNaut allows developing SQL syntax, saving queries and query results in different formats.

400 Database Management System Interfaces

Introduction to Natural SQL Gateway

For further information, see the ConnecX SQL Engine documentation.

zI0s Windows or UNIX Windows or UNIX
ConnecX
Ll SQL Engine SQL Server
SQL Program JDBC Server
o B o B
HATEAREM
NIDBE 5L, {249,250}
) Data
DFEN cDD
ﬁggzgkgm: 244 Source

The z/OS section in the figure above differs depending on whether the SQL program runs in
Batch/TSO or within a TP environment.

SQL Program Running under Batch/TSO

The following figure shows the constellation under batch/TSO.

z/0S

Natural
SQL Program

ConnecX Client
(API3GL) E > JDBC Server

The ConnecX Client (namely AP13GL) is directly linked to the Natural SQL program.
SQL Program Running in a TP Environment

The following figure shows the constellation if the SQL program runs within a TP environment.

Database Management System Interfaces 401

Introduction to Natural SQL Gateway

Natural SQL
Gateway Client
(CXXCLNT)

ConnecX Client

Since the ConnecX Client is not capable to run in a TP environment, it is moved into the Natural
SQL Gateway server process, which runs in a batch environment. The Natural SQL Gateway
Client and the Natural SQL Gateway server are responsible for transmitting the SQL requests
from the Natural program to the JDBC server and the results backward.

402 Database Management System Interfaces

30 Accessing an SQL Table

> To be able to access an SQL table with a Natural program via Natural SQL Gateway

1 Establish a connection to the ConnecX SQL Engine JDBC server.

2 Deploy a ConnecX SQL Engine data dictionary (CDD) containing the definition of the SQL
table to be accessed.

= If the table does not yet exists on the SQL database system, it can be created with a CREATE
TABLE statement.

= If the table already exists, the table definition can be imported from the SQL catalog into
the CDD, using the ConnecX SQL Engine data dictionary manager. Keep in mind that the
Import function of the data dictionary manager creates the table definition with the quali-
fier name dbo. This is usually undesired and can be easily reverted to the original qualifier
by means of the Change Owner tool of the data dictionary manager.

3 Invoke the Natural utility SYSDDM and enter function code 7 to create a Natural data definition
module (DDM) describing the SQL table.

4 Inthe NTDB macro in the Natural parameter module, define the DBID of the DDM as database
type CXX.

5 Once you have defined a DDM for an SQL table, you can access the data stored in this table,
using a Natural program.

Natural SQL Gateway translates the statements of a Natural program into SQL statements.

Natural SQL Gateway automatically provides for the preparation and execution of each
statement in dynamic mode. Static execution is currently not supported. A statement is only
prepared once (if possible) and can then be executed several times. For this purpose, Natural
internally maintains a table of all prepared statements (see Statement Table in Internal Handling
of Dynamic Statements).

403

Accessing an SQL Table

Almost the full range of possibilities offered by the Natural programming language can be
used for the development of Natural applications which access SQL tables. For a number of
Natural DML statements, however, there are certain restrictions and differences as far as their
use with SQL is concerned; see Using Natural Native DML Statements. In the Statements
documentation, you can find notes on Natural usage with SQL in the descriptions of the
statements concerned.

| Note: As there isno SQL equivalent to Adabas Internal Sequence Numbers (ISNs), any

Natural features which use ISNs are not available when accessing SQL tables with
Natural.

In addition to the Natural DML statements, Natural provides SQL statements for SQL data-

bases; see Using Natural SQL Statements. They are listed and explained in the Statements
documentation.

404

Database Management System Interfaces

31 Using Natural System Commands for Natural SQL Gateway

The following Natural system commands are part of Natural SQL Gateway:

Natural System Command

Explanation

LISTSQL

Lists Natural DML statements and their corresponding SQL statements.

SQLERR

Provides information of the SQLCA on an SQL error.

For a description of these commands, follow the links leading to the Natural System Commands

documentation.

405

406

32 Generating Natural Data Definition Modules (DDMs)

B SQL SEIVICES (NSB) ...ttt ettt et et ettt et e e e e e e 408

407

Generating Natural Data Definition Modules (DDMs)

To enable Natural to access an SQL table, a logical Natural data definition module (DDM) of the
table must be generated. This is done either with Predict (see the relevant Predict documentation
for details) or with the Natural utility SYSDDM.

If you do not have Predict installed, use the SYSDDM function SQL Services to generate Natural
DDMs from SQL tables. This function is invoked from the main menu of SYSDDM and is described
on the following pages.

For further information on Natural DDMs, see Data Definition Modules - DDMs in the Natural
Programming Guide.

This section covers the following topics:

SQL Services (NSB)

To access SQL tables, you may use the SQL Services (NSB) function of the Natural SYSDDM utility;
see Function Code Z in the section Description of Functions in the Natural Editors documentation.
You access the CXX CDD (ConnecX data dictionary) of your current CXX connection to retrieve
table definitions for Natural DDM generation. The name of the CDD catalog you access is displayed
in the top left-hand corner of the screen SQL Services Menu. You can access any catalog contained
in the CDD. For further details on the CDD structure read the ConnecX documentation.

> To invoke the SQL Services (NSB) function

1 Inthe command line, enter the Natural system command SYSDDM.

The menu of the SYSDDM utility appears.
2 In the Code field, enter function code 7.

A menu is displayed, which offers you the following functions.

= Select Catalog Name from a List

= CXX Connection Handling

= Select SQL Table from a List

= Generate DDM from an SQL Table

408 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

= List Columns of an SQL Table
Select Catalog Name from a List

This function is used to select a catalog from the catalogs defined in the CDD for further processing.

> To invoke the Select Catalog Name from a List function

1 Onthe SQL Services (NSB) menu, enter function code C and press ENTER.

A list of all catalogs defined in the current CDD is displayed.

2 On the list, you can mark an SQL catalog with an S to select a catalog for further processing.

The selected catalog is displayed in the left corner of the second header line of following maps
and in the Catalog name field of the SQL Services (NSB) menu, where the catalog name
could also be entered. If you did not explicitly specify a catalog name it is set to either the
current default catalog of the CXX connection — if it is not equal spaces — or the first catalog
found in the current CDD.

CXX Connection Handling

This function is used to verify and to change the actual CXX connection. It displays the current
parameters of the connection.

> To invoke the CXX Connection Handling function

m On the SQL Services (NSB) menu, enter function code X and press ENTER.
The CXX Connection Handling screen is displayed.

The following parameters are available:

Parameter |Description

GATEWAY |Specifies the IP-address of the CXX server connected to.

DD Specifies the registered data source name of the CDD in use.
PORT Specifies the port number the CXX server is listening to.
User Specifies the user name of the CXX connection.

Password |Specifies the password used for the CXX connection(invisible).

Catalog |Specifies the current default catalog name of the CXX connection.

Schema |Specifies the current default schema name of the CXX connection.

Version |Displays the RCI version string of the CXX connection.

State Displays the CXX connection state.

Database Management System Interfaces 409

Generating Natural Data Definition Modules (DDMs)

> To change the parameters of the connection

Enter the new parameter data and press pPr5 (Update).

The connection is (re-)established with the entered parameters.

Select SQL Table from a List

This function is used to select an SQL table from a list for further processing.

> To invoke the Select SQL Table from a List function

1

On the SQL Services (NSB) menu, enter function code S.
* If you enter the function code only, you obtain a list of all tables defined in the selected SQL
catalog.

* If you do not want a list of all tables but would like only a certain range of tables to be listed,
you can, in addition to the function code, specify a start value in the Table Name and/or
Schema fields. You can also use asterisk notation (¥) for the start value.

Press ENTER.

The Select SQL Table from a List screen appears, displaying a list of all SQL tables requested.

On the list, you can mark an SQL table with either G for Generate DDM from an SQL Table
or L for List Columns of an SQL Table.

Press ENTER.

The selected function is displayed for the marked table. For further information, see the cor-
responding descriptions in the following sections.

Generate DDM from an SQL Table

This function is used to generate a Natural DDM from a DB2 table, based on the definitions in the
DB2 catalog.

The following topics are covered below:

= |nvoking the Generate DDM from an SQL Table function

= DBID/FNR Assignment

= | ong Field Redefinition

= | ength Indicator for Variable Length Fields: VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG
VARGRAPHIC

410

Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

= Null Values

Invoking the Generate DDM from an SQL Table function

> To invoke the Generate DDM from an SQL Table function

m On the SQL Services (NSB) menu, enter function code G along with the name and creator of
the table for which you wish a DDM to be generated.

® If you do not know the table name/schema, you can use the function Select SQL Table
from a list to choose the table you want.

® If you do not want the schema name of the table to be part of the DDM name, enter an N in
the field DDM Name with Creator (default is Y).

/A, Important: Since the specification of any special characters as part of a field or DDM

name does not comply with Natural naming conventions, any special characters al-
lowed within SQL must be avoided. SQL delimited identifiers must be avoided, too.

® If you wish to generate a DDM for a table for which a DDM already exists and you want
the existing one to be replaced by the newly generated one, enter a Y in the Replace field.

By default, Replace is set to N to prevent an existing DDM from being replaced accidentally.

Note: If Replace is N, you cannot generate another DDM for a table for which a DDM
has already been generated.

DBID/FNR Assignment

When the function Generate DDM from an SQL Table is invoked for a table for which a DDM
is to be generated for the first time, the DBID/FNR Assignment screen is displayed.

If a DDM is to be generated for a table for which a DDM already exists, the existing DBID and
FNR are used and the DBID/FNR Assignment screen is suppressed.

On the DBID/FNR Assignment screen, enter one of the database IDs (DBIDs) chosen at Natural
installation time, and the file number (FNR) to be assigned to the DB2 table. Natural requires these
specifications for identification purposes only.

The range of DBIDs which is reserved for SQL tables is specified in the NTDB parameter macro of
the Natural parameter module (see the Natural Parameter Reference documentation) for the database
type CXX. Any DBID not within this range is not accepted. The FNR can be any valid file number
within the database (between 1 and 65535).

Database Management System Interfaces 41

Generating Natural Data Definition Modules (DDMs)

Long Field Redefinition

The maximum field length supported by CXXis 32 KB - 1. If an SQL table contains a column which
is longer than 253 bytes, the pop-up window Long Field Generation will appear automatically.

A field which is longer than 253 bytes may be defined as a simple Natural field with a maximum
length of 32 KB -1, or as an array. In the DDM, such an array is represented as a multiple-value
variable.

If, for example, a DB2 column has a length of 2000 bytes, you can specify an array element length
of 200 bytes, and you receive a multiple-value field with 10 occurrences, each occurrence with a
length of 200 bytes.

Since redefined long fields are not multiple-value fields in the sense of Natural, the Natural C*
notation makes no sense here and is therefore not supported.

When such a redefined long field is defined in a Natural view to be referenced by Natural SQL
statements (that is, by host variables which represent multiple-value fields), both when defined
and when referenced, the specified range of occurrences (index range) must always start with oc-
currence 1. If not, a Natural syntax error is returned.

Example:

UPDATE table SET varchar = ffarr(*)
SELECT ... INTO farr(l:5)

Note: When such a redefined long field is updated with the Natural DML UPDATE statement

(see the relevant section in the Statements documentation), care must be taken to update
each occurrence appropriately.

Length Indicator for Variable Length Fields: VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC

For each of the columns listed above, an additional length indicator field (format/length 12) is
generated in the DDM. The length is always measured in number of characters, not in bytes. To
obtain the number of bytes of a VARGRAPHIC or LONG VARGRAPHIC field, the length must be multiplied
by 2.

The name of a length indicator field begins with L@ followed by the name of the corresponding
field. The value of the length indicator field can be checked or updated by a Natural program.

If the length indicator field is not part of the Natural view and if the corresponding field is a re-
defined long field, the length of this field with UPDATE and STORE operations is calculated without
trailing blanks.

412 Database Management System Interfaces

Generating Natural Data Definition Modules (DDMs)

Null Values

With Natural, it is possible to distinguish between a null value and the actual value zero (0) or
blank in an SQL column.

When a Natural DDM is generated from the SQL catalog, an additional NULL indicator field is
generated for each column which can be NULL; that is, which has neither NOT NULL nor NOT NULL
WITH DEFAULT specified.

The name of the NULL indicator field begins with N@ followed by the name of the corresponding
field.

When the column is read from the database, the corresponding indicator field contains either zero
(0) (if the column contains a value, including the value 0 or blank) or -1 (if the column contains no
value).

Example:

The column NULLCOL CHAR(6) in an SQL table definition would result in the following view fields:

NULLCOL A 6.0
NeNULLCOL I 2.0 <

When the field NULLCOL is read from the database, the additional field NeNULLCOL contains:

" 0 (zero) if NULLCOL contains a value (including the value 0 or blank),

® -1 (minus one) if NULLCOL contains no value.

A null value can be stored in a database field by entering -1 as input for the corresponding NULL
indicator field.

Note: If a column is NULL, an implicit RESET is performed on the corresponding Natural
field.

List Columns of an SQL Table

This function lists all columns of a specific SQL table.

> To invoke the List Columns of an SQL Table function

» On the SQL Services Menu, enter Function Code L along with the name and creator of the
table whose columns you wish to be listed, and press Enter.

The List Columns screen for this table is invoked, which lists all columns of the specified
table and displays the following information for each column:

Database Management System Interfaces 413

Generating Natural Data Definition Modules (DDMs)

Variable

Content

Name

The name of the column.

Type |The column type.
Length |The length (or precision if Type is DECIMAL) of the column as defined in the DB2 catalog.
Scale |The decimal scale of the column (only applicable if Type is DECIMAL).
Update |Y - The column can be updated.
N - The column cannot be updated.
Nulls |Y - The column can contain null values.
N - The column cannot contain null values.
Not A column which is of a scale length or type not supported by Natural is marked with an

asterisk (*). For such a column, a view field cannot be generated. The maximum scale length
supported is 7 bytes.

Types supported are:

CHAR, VARCHAR, LONG VARCHAR, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DECIMAL,
INTEGER, SMALLINT, DATE, TIME, TIMESTAMP, FLOAT, ROWID, BLOB, CLOB and DBCLOB.

The data types DATE, TIME, TIMESTAMP, FLOAT and ROWID are converted into numeric or alpha-
numeric fields of various lengths: DATE is converted into A10, TIME into A8, TIMESTAMP into
A26, FLOAT into F8 and ROWID into A40.

For SQL, Natural provides an SQL TIMESTAMP column as an alphanumeric field (A26) in the
format YYVYVY-MM-DD-HH:I11:SS. MMMMMM. Alternatively, you can generate the Natural TIME field
(data format T) as the SQL TIMESTAMP data type if the DBTSTI option of the COMPOPT system
command is set to ON (see the System Commands documentation).

You can use the Natural subprogram NDBSTMP to compute TIMESTAMP (A26) fields.

414

Database Management System Interfaces

33 Dynamic SQL Support

= SQL Support - General INFOrmationcoooiiiiiiiii e 416
= |nternal Handling of Dynamic SEateMENLSooiiiiiiiiiie e 417

415

Dynamic SQL Support

This section describes the dynamic SQL support provided by Natural SQL Gateway. Natural SQL
Gateway does not support static SQL.

SQL Support - General Information

The SQL support of Natural SQL Gateway provides the flexibility of dynamic SQL support.

In contrast to static SQL support, the Natural dynamic SQL support does not require any special
consideration with regard to the operation of the SQL interface. All SQL statements required to
execute an application request are generated automatically and can be executed immediately with
the Natural RUN command. Before executing a program, you can look at the generated SQLCODE,
using the LISTSQL command.

Matural Program

FIND...
UPDATE...
INSERT...
DELETE...

Generated SOL Code

SELECT...
UPDATE...
INSERT...

DELETE...

SQL Dyn. Access Method -4 >

416 Database Management System Interfaces

Dynamic SQL Support

Internal Handling of Dynamic Statements

Natural automatically provides for the preparation and execution of each SQL statement and
handles the opening and closing of cursors used for scanning a table.

Statement Table

If possible, an SQL statement is only prepared once and can then be executed several times if re-
quired. For this purpose, Natural internally maintains a table of all SQL statements that have been
prepared. In addition, this table maintains the cursors used by the SQL statements SELECT, FETCH,
UPDATE (positioned), and DELETE (positioned).

Each SQL statement is uniquely identified by:

® the name of the Natural program that contains this SQL statement,
* the line number of the SQL statement in this program,
® the name of the Natural library, into which this program was stowed,

*® the time stamp when this program was stowed.

Once a statement has been prepared, it can be executed several times with different variable values,
using the dynamic SQL statement EXECUTE USING DESCRIPTORor OPEN CURSOR USING DESCRIPTOR
respectively.

When the full capacity of the statement table is reached, the entry for the next prepared statement
overwrites the entry for a free statement whose latest execution is the least recent one.

When anew SELECT statement is requested, a free entry in the statement table with the correspond-
ing cursor is assigned to it and all subsequent FETCH, UPDATE, and DELETE statements referring to
this SELECT statement will use this cursor. Upon completion of the sequential scanning of the table,
the cursor is released and free for another assignment. While the cursor is open, the entry in the
statement table is marked as used and cannot be reused by another statement.

If the number of nested FIND (SELECT) statements reaches the number of entries available in the
statement table, any further SQL statement is rejected at execution time and a Natural error message
is returned.

Since the statement table is contained in the SQL buffer area, the DB2SIZE parameter may not be
sufficient and may need to be increased.

Database Management System Interfaces 417

418

34 Using Natural Statements and System Variables

= Special Register CONSIAEIAtIONoiiiiiiiiiiii e 420
= Using Natural Native DML StatemMeNtscooiiiiiiiiiiiic e 421
= Using Natural SQL STAtEMENTSoeiiiiiiii e 430
= Using Natural System Variablescoouiiiiiiiii e 442
B0 HANAING .. ————— 442

419

Using Natural Statements and System Variables

This section contains special considerations concerning Natural data manipulation language (DML)
statements (that is, Natural native DML statements and Natural SQL DML statements), and Nat-
ural system variables when used with SQL.

It mainly consists of information also contained in the Natural basic documentation set where
each Natural statement and variable is described in detail.

For an explanation of the symbols used in this section to describe the syntax of Natural statements,
see Syntax Symbols in the Statements documentation.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

Special Register Consideration

Natural SQL Gateway supports the following special registers, which can be set via the PROCESS
SQL statement:

= SCHEMA

The SCHEMA special register determines the implicitly first level qualifier of table names, that is,
the schema or creator name of the table, if the first qualifier is not explicitly specified. The SCHEMA
special register could be set by PROCESS SQL ddm-name << SET SCHEMA = :hv>>, where ddm-name
denotes the DDM whose DBID is mapped to type CNX and : hv denotes an alphanumeric variable
containing the first level qualifier.

The SCHEMA special register cannot be retrieved or interrogated by SQL statements.
" CATALOG

The CATALOG special register determines the implicitly second level qualifer of table names, that
is, the location or database name of the table, if the second level qualifier is not explicitly specified.
The CATALOG special register could be set by PROCESS SQL ddm-name << SET CATALOG = :hv>>,
where ddm-name denotes DDM whose DBID is mapped to type CNX and : hv denotes a alphanumeric
variable containing the second level qualifier.

The CATALOG special register could not be retrieved or interrogated by SQL statements.
® RCI_VERSION

The RCI_VERSION is an alphanumeric character string containing the version of the remote client
interface used to communicate with the CONNX JDBC server. The RCI_VERSION is a read-only
special register which could be retrieved by PROCESS SQL ddm-name <<GET :hv = RCI_VERSION>>,
where ddm-name denotes a DDM whose DBID is mapped to type CNX and :hv denotes a alphanu-
meric variable.

420 Database Management System Interfaces

Using Natural Statements and System Variables

Using Natural Native DML Statements

This section summarizes particular points you have to consider when using Natural DML statements
with SQL. Any Natural statement not mentioned in this section can be used with SQL without
restriction.

= BACKOUT TRANSACTION
= DELETE

= END TRANSACTION

= FIND

= GET

= HISTOGRAM

= READ

= STORE

= UPDATE

BACKOUT TRANSACTION

The Natural native DML statement BACKOUT TRANSACTION undoes all database modifications made
since the beginning of the last logical transaction. Logical transactions can start either after the
beginning of a session or after the last SYNCPOINT, END TRANSACTION, or BACKOUT TRANSACTION
statement.

How the statement is translated and which command is actually issued depends on the TP-mon-
itor environment:

" In batch mode and under TSO, the BACKOUT TRANSACTION statement is translated into an SQL
ROLLBACK command.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the
outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the BACKOUT TRANSACTION
statement for the external program.

If a program tries to backout updates which have already been committed, for example by a ter-
minal I/O, a corresponding Natural error message (NAT3711) is returned.

Database Management System Interfaces 421

Using Natural Statements and System Variables

DELETE

The Natural native DML statement DELETE is used to delete a row from an SQL table which has
been read with a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement
DELETE WHERE CURRENT OF cursor-name, which means that only the row which was read last can
be deleted.

Example:

FIND EMPLOYEES WITH NAME = "SMITH'
AND FIRST_NAME = 'ROGER'
DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for
example, CURSOR1) as follows:

DECLARE CURSORI CURSOR FOR

SELECT FROM EMPLOYEES

WHERE NAME = 'SMITH' AND FIRST_NAME = 'ROGER'
DELETE FROM EMPLOYEES

WHERE CURRENT OF CURSORI1

Both the SELECT and the DELETE statement refer to the same cursor.

Natural translates a DML DELETE statement into an SQL DELETE statement in the same way it
translates a FIND statement into an SQL SELECT statement.

A row read with a FIND SORTED BY cannot be deleted due to SQL restrictions explained with the
FIND statement. A row read with a READ LOGICAL cannot be deleted either.

DELETE when using the File Server

If a row rolled out to the file server is to be deleted, Natural rereads automatically the original
row from the database to compare it with its image stored in the file server. If the original row has
not been modified in the meantime, the DELETE operation is performed. With the next terminal
I/O, the transaction is terminated, and the row is deleted from the actual database.

If the DELETE operates on a scrollable cursor, the row on the file server is marked as DELETE hole
and is deleted from the base table.

However, if any modification is detected, the row will not be deleted and Natural issues the
NAT3703 error message for non-scrollable cursors.

Since a DELETE statement requires that Natural rereads a single row, a unique index must be
available for the respective table. All columns which comprise the unique index must be part of
the corresponding Natural view.

422 Database Management System Interfaces

Using Natural Statements and System Variables

END TRANSACTION

The Natural native DML statement END TRANSACTION indicates the end of a logical transaction
and releases all SQL data locked during the transaction. All data modifications are committed and
made permanent.

How the statement is translated and which command is actually issued depends on the TP-mon-
itor environment:

= Jn batch mode and under TSO, the END TRANSACTION statement is translated into an SQL COMMIT
WORK command.

An END TRANSACTION statement must not be placed within a database loop, since all cursors are
closed when a logical unit of work ends. Instead, it has to be placed outside such a loop or after
the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMI T command if the Natural program
issues database calls, too. The calling Natural program must issue the END TRANSACTION statement
for the external program.

Note: Transaction data cannot be written to SQL databases.

FIND

The Natural native DML statement FIND corresponds to the SQL SELECT statement.
Example:

Natural statements:

FIND EMPLOYEES WITH NAME = "BLACKMORE'
AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent SQL statements:

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES
WHERE NAME = 'BLACKMORE'
AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement as described in Pro-
cessing of SQL Statements Issued by Natural in the section Internal Handling of Dynamic Statements.
The SELECT statement is executed by an OPEN CURSOR statement followed by a FETCH command.
The FETCH command is executed repeatedly until either all records have been read or the program
flow exits the FIND processing loop. A CLOSE CURSOR command ends the SELECT processing.

Database Management System Interfaces 423

Using Natural Statements and System Variables

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The
basic search criterion for an SQL table can be specified in the same way as for an Adabas file. This
implies that only database fields which are defined as descriptors can be used to construct basic
search criteria and that descriptors cannot be compared with other fields of the Natural view (that
is, database fields) but only with program variables or constants.

| Note: Aseach database field (column) of an SQL table can be used for searching, any database
field can be defined as a descriptor in a Natural DDM.

The WHERE clause of the FIND statement is evaluated by Natural after the rows have been selected
via the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields can
be compared with other database fields.

| Note: SQL tables do not have sub-, super-, or phonetic descriptors.

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT (*) clause. The
number of rows found is returned in the Natural system variable *NUMBER as described in the
Natural System Variables documentation.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing.
If the FIND UNIQUE statement is referenced by an UPDATE statement, a non-cursor (searched) UPDATE
operation is generated instead of a cursor-oriented (positioned) UPDATE operation. Therefore, it
can be used if you want to update an SQL primary key. It is, however, recommended to use Nat-
ural SQL Searched UPDATE statement to update a primary key.

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated intoa SELECT SINGLE
statement as described in the section in Using Natural SQL Statements.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN clauses
cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY clause,
which follows the search criterion. Because this produces a read-only result table, a row read with
a FIND statement that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation time. If this limit is
exceeded, a Natural error message is returned.

FIND when Using the File Server

As far as the file server is concerned, there are no programming restrictions with selection state-
ments. It is, however, recommended to make yourself familiar with its functionality considering
performance and file server space requirements.

424 Database Management System Interfaces

Using Natural Statements and System Variables

GET

The Natural native DML statement GET is based on Adabas internal sequence numbers (ISNs) and
therefore cannot be used with SQL tables.

HISTOGRAM

The Natural DML statement HI STOGRAM returns the number of rows in a table which have the same
value in a specific column. The number of rows is returned in the Natural system variable *NUMBER
as described in Natural System Variables documentation.

Example:

Natural native DML statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent Natural SQL statement:

SELECT COUNT(*), AGE FROM EMPLOYEES
WHERE AGE > -999
GROUP BY AGE
ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the
control flow is similar to the flow explained for the FIND statement.

READ

The Natural DML statement READ can also be used to access SQL tables. Natural translates a READ
statement into an SQL SELECT statement.

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN, however, cannot be used, as there
is no SQL equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used either.

Since a READ LOGICAL statement is translated intoa SELECT ... ORDER BY statement - which pro-
duces a read-only table -, a row read with a READ LOGICAL statement cannot be updated or deleted
(see Example 1). The start value can only be a constant or program variable; any other field of the
Natural view (that is, any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and
can therefore be updated or deleted (see Example 2).

Example 1:

Natural native DML statements:

Database Management System Interfaces 425

Using Natural Statements and System Variables

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent Natural SQL statements:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
WHERE NAME >= " '
ORDER BY NAME
Example 2:

Natural native DML statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent Natural SQL statement:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor
after the rows have been selected according to the descriptor value(s) specified in the search cri-
terion.

READ when Using the File Server

As far as the file server is concerned there are no programming restrictions with selection statements.
Itis, however, recommended to make yourself familiar with its functionality considering perform-
ance and file server space requirements.

STORE

The Natural DML statement STORE is used to add a row to an SQL table. The STORE statement
corresponds to the SQL statement INSERT.

Example:

Natural native DML statements:

STORE RECORD IN EMPLOYEES
WITH PERSONNEL_ID = '2112°
NAME "LIFESON'
FIRST_NAME = "ALEX'

Equivalent Natural SQL statements:

426 Database Management System Interfaces

Using Natural Statements and System Variables

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
VALUES ('2112', 'LIFESON", "ALEX')

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses cannot be used.
UPDATE

The Natural DML UPDATE statement updates a row in an SQL table which has been read with a
preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement UPDATE WHERE
CURRENT OF cursor-name (positioned UPDATE), which means that only the row which was read
last can be updated.

UPDATE when Using the File Server

If a row rolled out to the file server is to be updated, Natural automatically rereads the original
row from the database to compare it with its image stored in the file server. If the original row has
not been modified in the meantime, the UPDATE operation is performed. With the next terminal
I/O, the transaction is terminated and the row is definitely updated on the database.

If the UPDATE operates on a scrollable cursor, the row on the file server and the row in the base
table are updated. If the row no longer qualifies for the search criteria of the related SELECT state-
ment after the update, the row is marked as UPDATE hole on the file server.

However, if any modification is detected, the row will not be updated and Natural issues the
NAT3703 error message.

Since an UPDATE statement requires rereading a single row by Natural, a unique index must be
available for this table. All columns which comprise the unique index must be part of the corres-
ponding Natural view.

UPDATE with FIND/READ

As explained with the FIND statement, Natural translates a FIND statement into an SQL SELECT
statement. When a Natural program contains a Natural native DML UPDATE statement, this statement
is translated into an SQL UPDATE statement and a FOR UPDATE OF clause is added to the SELECT
statement.

Example:

FIND EMPLOYEES WITH SALARY < 5000
ASSIGN SALARY = 6000
UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for
example, CURSOR1) as follows:

Database Management System Interfaces 427

Using Natural Statements and System Variables

DECLARE CURSOR1 CURSOR FOR

SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
FOR UPDATE OF SALARY

UPDATE EMPLOYEES SET SALARY = 6000
WHERE CURRENT OF CURSORI1

Both the SELECT and the UPDATE statement refer to the same cursor.

Due to SQL logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF
clause; otherwise updating this column (field) is rejected. Natural includes automatically all
columns (fields) into the FOR UPDATE OF clause which have been modified anywhere in the Natural
program or which are input fields as part of a Natural map.

However, an SQL column is not updated if the column (field) is marked as “not updateable” in
the Natural DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any
warning or error message. The columns (fields) contained in the FOR UPDATE OF list can be checked
with the LISTSQL command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

Short-Name Range |Type of Field

AA-N9 non-key field that can be updated.

Aa-Nz non-key field that can be updated.

OA-09 primary key field.

PA -9 ascending key field that can be updated.
QA -Q9 descending key field that can be updated.
RA -X9 non-key field that cannot be updated.

Ra - Xz non-key field that cannot be updated.

YA -Y9 ascending key field that cannot be updated.
ZA-79 descending key field that cannot be updated.
1A -9Z non-key field that cannot be updated.
la-9z non-key field that cannot be updated.

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can
only be updated by using a non-cursor UPDATE operation (see also UPDATE in the Statements docu-
mentation).

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to
SQL limitations as explained with the FIND statement). A row read with a READ LOGICAL cannot
be updated either (as explained with the READ statement).

If a column is to be updated which is redefined as an array; it is strongly recommended to update
the whole column and not individual occurrences; otherwise, results are not predictable. To do

428 Database Management System Interfaces

Using Natural Statements and System Variables

s0, in reporting mode you can use the 0BTAIN statement (as described in the Statements document-
ation), which must be applied to all field occurrences in the column to be updated. In structured
mode, however, all these occurrences must be defined in the corresponding Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT WORK)
or BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

Note: If a length indicator field or NULL indicator field is updated in a Natural program

without updating the field (column) it refers to, the update of the column is not generated
for SQL and thus no updating takes place.

UPDATE with SELECT

In general, the DML UPDATE statement can be used in both structured and reporting mode. However,
after a SELECT statement, only the syntax defined for Natural structured mode is allowed:

UPDATE [RECORD 1 [IN J [STATEMENT 1 [C r)]

This is due to the fact that in combination with the SELECT statement, the DML UPDATE statement
is only allowed in the special case of:

SELECT ...
INTO VIEW view-name

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL

01 PERS VIEW OF SQL-PERSONNEL
02 NAME
02 AGE

END-DEFINE

SELECT =
INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE NAME LIKE 'S%'

IF NAME = 'SMITH'
ADD 1 TO AGE

UPDATE

END-IF

END-SELECT

Database Management System Interfaces 429

Using Natural Statements and System Variables

In combination with the Natural native DML UPDATE statement, any other form of the SELECT
statement is rejected and an error message is returned.

In all other respects, the Natural native DML UPDATE statement can be used with the SELECT
statement in the same way as with the Natural FIND statement described earlier in this section and
in the Statements documentation.

Using Natural SQL Statements

This section covers points you have to consider when using Natural SQL statements with Natural
SQL Gateway. These SQL specific points mainly consists in syntax restrictions or enhancements
which belong to the Extended Set of Natural SQL syntax. The Extended Set is provided in addition
to the Common Set to support database specific features; see Common Set and Extended Set in the
Statements documentation.

This section covers the following topics:

= Syntactical ltems Common to Natural SQL Statements
= CALLDBPROC - SQL

= COMMIT - SQL

= DELETE - SQL

= INSERT - SQL

= PROCESS SQL

= READ RESULT SET - SQL

= ROLLBACK - SQL

= SELECT - SQL

= UPDATE - SQL

Syntactical tems Common to Natural SQL Statements

The following common syntactical items are either Natural SQL Gateway (NSB) specific and do
not conform to the standard SQL syntax definitions (that is, to the Common Set of Natural SQL
syntax) or impose restrictions when used with Natural SQL Gateway (see also Using Natural SQL
Statements in the Statements documentation).

This section covers the following topics:

= atom

= factor
scalar-function
column-function
scalar-operator
= special-register

430 Database Management System Interfaces

Using Natural Statements and System Variables

® Case-expression
atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a con-
stant.

factor

The following factors are specific to Natural SQL Gateway and belong to the Natural Extended
Set:

special-register
scalar-function(scalar-expression, ...)
case-expression

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to Natural SQL Gateway and belong to the Natural Ex-
tended Set.

See the CONNX Users Guide for available scalar functions.

Each scalar function is followed by one or more scalar expressions in parentheses. The number of
scalar expressions depends upon the scalar function. Multiple scalar expressions must be separated
from one another by commas.

Example:

SELECT NAME
INTO NAME
FROM SQL-PERSONNEL
WHERE SUBSTR (NAME, 1, 3) = "Fri'

column-function

A column function returns a single-value result for the argument it receives. The argument is a
set of like values, such as the values of a column. Column functions are also called aggregating
functions.

The following column functions conform to standard SQL.

Database Management System Interfaces 431

Using Natural Statements and System Variables

AVG
COUNT
MAX
MIN
SUM

scalar-operator

//I III

The concatenation operator (CONCAT or) does not conform to standard SQL and belongs to

the Extended Set.
special-register
The following special registers do not conform to standard SQL and belong to the Extended Set:

USER

A reference to a special register returns a scalar value.

case-expression

searched-when-clause
CASE } [ELSE { NULL }] END

) scalar expression
simple-when-clause

case-expressions do not conform to standard SQL and are therefore supported by the Natural
SQL Extended Set only.

Example:

DEFINE DATA LOCAL
01 #tEMP
02 #FEMPNO (A10)
02 #fFIRSTNME (A15)
02 #MIDINIT (Ab)
02 ##LASTNAME (A15)
02 #EDLEVEL (AL3)
02 #INCOME (P7)
END-DEFINE
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
(CASE WHEN EDLEVEL < 15 THEN 'SECONDARY'
WHEN EDLEVEL < 19 THEN 'COLLEGE"
ELSE "POST GRADUATE'
END) AS EDUCATION, SALARY + COMM AS INCOME
INTO
fFEMPNO, #FIRSTNME, #MIDINIT, #LASTNAME,
F#FEDLEVEL, #fINCOME
FROM DSN8510-EMP
WHERE (CASE WHEN SALARY = 0 THEN NULL

432 Database Management System Interfaces

Using Natural Statements and System Variables

ELSE SALARY / COMM
END) > 0.25
DISPLAY #EMP
END-SELECT
END

CALLDBPROC - SQL

The Natural SQL statement CALLDBPROC is used to call DB2 stored procedures. It supports the
result set mechanism of DB2, and it enables you to call DB2 stored procedures. For further details
and statement syntax, see CALLDBPROC (SQL) in the Statements documentation. Before a stored
procedure can be called from Natural, the stored procedure has to be imported into the ConnecX
SQL Engine CDD used by the connection to the ConnexX SQL Engine JDBC server.

For further details and syntax, see CALLDBPROC (SQL) in the Statements documentation.
The following topics are covered below:

= Result Sets
= | jst of Parameter Data Types
= Example of CALLDBPROC/READ RESULT SET

Result Sets

The Natural SQL Gateway can only handle one (1) result set at any point of time, which implies
a stored procedure called via the Natural SQL Gateway can only create one (1) result set.

If the stored procedure creates a result set, the CALLDBPROC statement should contain the RESULT
SETS clause. In this case the Natural SQL Gateway places a value other than zero (0) into the
variable specified in the RESULT SETS clause of the CALLDBPROC statement. That variable has to be
specified in the READ RESULT SET statement when reading the result set created by the stored
procedure. The CALLDBPROC and the READ RESULT SET statement have to be coded within the same
program.

INOUT and OUT parameters of the CALLDBPROC statement passed to the stored procedure, which
creates a result set, are only returned to the calling program after the result set created by the
stored procedure has been completely read by the READ RESULT SET statement (that is, immediately
after SQLCODE +100). In other words, the INOUT and OUT parameter values are not available before
the READ RESULT SET statement has encountered SQLCODE 100.

The result set is only available as long as the application does not encounter a COMMIT or ROLLBACK
statement.

Unlike other Natural SQL statements, CALLDBPROC enables you (optionally) to specify an SOLCODE
variable following the GIVING keyword, which will contain the SQLCODE of the underlying CALL
statement. If GIVING is specified, it is up to the Natural program to react on the SQLCODE (error
message NAT3700 is not issued by the runtime).

Database Management System Interfaces 433

Using Natural Statements and System Variables

List of Parameter Data Types

Below are the parameter data types supported by the CALLDBPROC statement:

Natural Format/Length DB2 Data Type

An CHARCn)

B2 SMALLINT

B4 INT

Bn (n=not equal to 2 or 4) |CHAR(n)

F4 REAL

F8 DOUBLE PRECISION

12 SMALLINT

14 INT

Nnn.m NUMERIC Cnn+m, m)

Pnn.m NUMERICCnn+m, n)

Pnn.m NUMERICCnn+m, n)

Gn GRAPHIC(n)

An/l:m VARCHAR (n*m)

D DATE

T TIME
Note: The Natural format T has a wider data range than the equivalent DB2
TIME data type. Compared to DB2 TIME, the Natural T variable in addition has
a date fraction (year, month, day) and the tenths of a second. As a result, when
converting a Natural T variable into a DB2 TIME value, Natural SQL Gateway
cuts off the date fraction and the tenths of a second part. When converting DB2
TIME into Natural T format, the date fraction is reset to 0000-01-02 and the
tenths of a second part is reset to 0 in Natural.

Example of CALLDBPROC/READ RESULT SET

Below are sample programs for creating a stored procedure and for issuing CALLDBPROC and READ
RESULT SET statements:

Stored procedure creation

Sample Program NSBDCRPR:

434 Database Management System Interfaces

Using Natural Statements and System Variables

AR b e b b B R b R e b e e R e i e b e i b e b S b S b e i e e b e S S e b e b e e b e e b e b e S e b e b o i g

* Create stored procedure sample *
R B B B b B R B R R R B b i R b S e e e i b b e S b b S e e i b e S i b b b i e i b b e b 4
DEFINE DATA LOCAL
01 CNX_SERVER_VERSTION(A32)
END-DEFINE
* Tell CXX to disable sgl delimiter
SELECT <<connx_version()>>
INTO CNX_SERVER_VERSION
FROM NSB-DEMO
<< {disablesgldelimiter}>>
ESCAPE BOTTOM
END-SELECT
* Create procedure NSBDSPT
PROCESS SQL NSB-DEMO
<K
CREATE PROCEDURE NSB.NSBDSPT
(IN P1 CHAR(15),
INOUT P2 CHAR(15),
ouT P3 CHAR(5)
)
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN
DECLARE cursorl CURSOR WITH RETURN FOR
SELECT PERS_ID, NAME FROM NSB.DEMO
WHERE NAME >= P1 ORDER BY NAME;
IF P2 = 'return employee' THEN
OPEN cursorl;

SET P2 = 'you are welcome';
SET P3 = 'done';
ELSE
SET P2 = 'undesired request';
SET P3 = 'error';
END IF;
END
{passthrough}
>>
END

Issuing CALLDBPROC and READ RESULT SET

Sample Program NSBDCSPT:

Database Management System Interfaces 435

Using Natural Statements and System Variables

R B b e b e R e i b e e b b e b e S b e b g b S b S b g b S b b b b b b b b S b b b b 3

* Sample program invoking stored procedure NSB.NSBDSPT W

R b B b b e b b e b e b e b S e b e S e b R b e i S b S b S i S b S b e b S b b b b b b b e e b b b b 3

DEFINE DATA LOCAL

01 P1 (Alb) /* IN

01 P2 (Alb) /* INOUT

01 P3 (A5) /* OUT

01 I3 (I2)

01 SC (I4)

01 RS (I4)

01 V1 VIEW OF NSB-DEMO

02 PERS_ID

02 NAME

END-DEFINE

PT :="A"

P2 :="'return employee'

P3 :='HHHHH'

* Invoke stored procedure NSBDSPT

WRITE *PROGRAM '=' P1 '=' P2 '=' P3 '=' I3
'='" SC '='" RS 'before Call NSBDSPT'

CALLDBPROC 'NSBDSPT' NSB-DEMO
USING P1 P2 P3 INDICATOR I3
RESULT SETS RS
GIVING SC
WRITE *PROGRAM '=' P1 '=' P2 '=' P3 '=' [3
'=' SC '=" RS 'after Call NSBDSPT'
* Check outcome of procedure call
IF SC < 0
BACKOUT TRANSACTION
ESCAPE ROUTINE
END-IF
* Read Result Set created by store procedure
IF RS > 0
READ RESULT SET RS
INTO VIEW V1
FROM NSB-DEMO

WRITE *PROGRAM '=' P1 '=' P2 '=' P3 '=' I3
'='" SC '='" RS 'after fetch Result set NSBDSPT'
DISPLAY V1
END-RESULT
END-IF
WRITE *PROGRAM '=' P1 '="' P2 '=' P3 '=' I3
'=" SC '='" RS 'after Read Result set NSBDSPT'
END TRANSACTION
END «

436 Database Management System Interfaces

Using Natural Statements and System Variables

COMMIT - SQL

The Natural SQL COMMIT statement indicates the end of a logical transaction and releases all SQL
data locked during the transaction. All data modifications are made permanent. For further details
and statement syntax, see COMMIT (SQL) in the Statements documentation.

COMMIT is a synonym for the Natural native DML statement END TRANSACTION as described in the
section Using Natural Native DML Statements.

No transaction data can be provided with the COMMIT statement.
If the file server is used, an implicit end-of-transaction is issued after each terminal I/O.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program
issues database calls, too. The calling Natural program must issue the COMMIT statement for the
external program.

DELETE - SQL

Both the cursor-oriented or positioned DELETE, and the non-cursor or searched DELETE SQL state-
ments are supported as part of Natural SQL Gateway; the functionality of the positioned DELETE
statement corresponds to that of the Natural DML DELETE statement.

With Natural SQL Gateway, a table name in the FROM Clause of a Searched DELETE statement can
be assigned a correlation-name. This does not correspond to the standard SQL syntax definition
and therefore belongs to the Natural Extended Set.

The searched DELETE statement must be used, for example, to delete a row from a self-referencing
table, since with self-referencing tables a positioned DELETE is not allowed by Natural SQL Gateway.

Further details and syntax: DELETE (SQL) in the Statements documentation.
INSERT - SQL

The Natural SQL INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the syntactical items described in
the section Syntactical Items Common to Natural SQL Statements apply.

For further details and statement syntax, see INSERT (SQL) in the Statements documentation.

Database Management System Interfaces 437

Using Natural Statements and System Variables

PROCESS SQL

The Natural PROCESS SQL statement is used to issue SQL statements to the underlying database.
The statements are specified in a statement-string, which can also include constants and parameters.

The set of statements which can be issued is also referred to as Flexible SQL and comprises those
statements which can be issued with the SQL statement EXECUTE.

In addition, Flexible SQL includes the following Natural SQL Gateway specific statements:

CONNECT

SET CATALOG

SET SCHEMA

GET host-variable = RCI_VERSION

For further details and statement syntax, see PROCESS SQL in the Statements documentation.
CONNECT

The CONNECT statement establishes a connection to the CONNX JDBC server. It has to be executed
before any SQL statement is issued against the CONNX JDBC server.

Syntax

PROCESS SQL ddm << CONNECT TO :U:server USER :U:user PASSWORD :U:password >>

Parameter |Format/Length Explanation

ddm Constant 1-32 Specifies the name of a DDM whose DBID is mapped to type CXX by
characters NTDB.

server |Al to A128 Specifies a string addressing the CONNX JDBC server, the port number

the server listens to and the CDD to be used to access the RDBMS.

The string has to have the following format:
GATEWAY=Tocation-name;PORT=number;DD=cdd-registered-name

lTocation-name denotes the the TCP/IP name of the location where the
CONNX JDBC server resides.

number denotes the port number the CONNX JDBC server listens to.
Default port number is 7500.

cdd-registered-name denotes the CDD to be used for this connection.
It is a registry name entry, which is mapped to file name in the registry.

user Al to A32 Denotes the user ID to logon to the CONNX JDBC server or RDBMS.
password |Al to A32 Denotes the password to logon to the CONNX JDBC server or RDBMS.

438 Database Management System Interfaces

Using Natural Statements and System Variables

SET CATALOG

Syntax

PROCESS SQL ddm << SET CATALOG :U:catalog >>

The SET CATALOG statement sets the default catalog to the catalog identified by catalog. The default
catalog will be used to identify the database system to be accessed, if the database system is not
explicitly specified as first qualifier of a table name in the SQL syntax and if the CDD contains
definitions of more than one database system.

Parameter | Format/Length Explanation

ddm Constant 1-32 characters |Specifies the name of a DDM whose DBID is mapped to type CXX by

NTDB.
catalog|Alto A32 Denotes the catalog name to be used as default catalog.
SET SCHEMA
Syntax

PROCESS SQL ddm << SET SCHEMA :U:schema >>

The SET SCHEMA statement sets the default schema to the schema identified by schema. The default
schema will be used to identify the schema to be accessed, if the schema is not explicitly specified
as qualifier of a table name in the SQL syntax and if the CDD contains definitions of more than
one schema.

Parameter | Format/Length Explanation

ddm Constant 1-32 characters |Specifies the name of a DDM whose DBID is mapped to type CXX by
NTDB.

schema |Alto A32 Denotes the schema name to be used as default schema.

GET host-variable = RCI_VERSION

Syntax

PROCESS SQL ddm << GET:G:version = RCI_VERSION >>

The GET RCI_VERSION statement retrieves the version of the CONNX client software used in the
actual session. It could be executed before any connection is established.

Database Management System Interfaces 439

Using Natural Statements and System Variables

Parameter |Format/Length Explanation

ddm Constant 1-32 characters |Specifies the name of a DDM whose DBID is mapped to type CXX by
NTDB.

version |Al to A128 Receives the version string of the CONNX client software.

To avoid transaction synchronization problems between the Natural environment and SQL, the
COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

For further details and statement syntax, see PROCESS SQL in the Statements documentation.

READ RESULT SET - SQL

The Natural SQL READ RESULT SET statement reads a result set created by a stored procedure that
was invoked by a CALLDBPROC statement.

Parameter values returned from the stored procedure are only available to the calling program
after the result set created by the stored procedure has been read completely by the calling program
via the READ RESULT SET statement.

For further details and statement syntax, see READ RESULT SET (SQL) in the Statements docu-
mentation.

ROLLBACK - SQL

The Natural SQL ROLLBACK statement undoes all database modifications made since the beginning
of the last logical transaction. Logical transactions can start either after the beginning of a session
or after the last COMMIT/END TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records
held during the transaction are released.

For further details and statement syntax, see ROLLBACK (SQL) in the Statements documentation.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION as described in the section
Using Natural DML Statements.

However, if the file server is used, only changes made to the database since the last terminal I/O
are undone.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be
placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the ROLLBACK statement for the
external program.

440 Database Management System Interfaces

Using Natural Statements and System Variables

SELECT - SQL

The Natural SQL SELECT statement supports both the cursor-oriented selection, which is used to
retrieve an arbitrary number of rows, and the non-cursor selection (singleton SELECT), which re-
trieves at most one single row.

For further details and statement syntax, see SELECT (SQL) in the Statements documentation.
SELECT - Cursor-Oriented

Like the Natural native DML FIND statement, the cursor-oriented SELECT statement is used to select
a set of rows (records) from one or more SQL tables, based on a search criterion. Since a database
loop is initiated, the loop must be closed by a LO0P (in reporting mode) or END-SELECT statement
(in structured mode). With this construction, Natural uses the same loop processing as with the
FIND statement. In addition, no cursor management is required from the application program; it
is automatically handled by Natural.

For further details and syntax, see Syntax 1 - Cursor-Oriented Selection in SELECT (SQL) in the
Statements documentation.

SELECT SINGLE - Non-Cursor-Oriented

The Natural SQL statement SELECT SINGLE provides the functionality of a non-cursor selection
(Singleton SELECT); that is, a select expression that retrieves at most one row without using a
cursor.

Since SQL supports the Singleton SELECT command in static SQL only, in dynamic mode, the
Natural SELECT SINGLE statement is executed in the same way as a set-level SELECT statement,
which results in a cursor operation. However, Natural checks the number of rows returned by
SQL. If more than one row is selected, a corresponding error message is returned.

For further details and syntax, see Syntax 2 - Non-Cursor Selection in SELECT (SQL) in the Statements
documentation.

UPDATE - SQL

Both the cursor-oriented or positioned UPDATE and the non-cursor or Searched UPDATE SQL state-
ments are supported as part of Natural SQL. Both of them reference either a table or a Natural
view.

With SQL, the name of a table or Natural view to be referenced by a searched UPDATE can be assigned
a correlation-name. This does not correspond to the standard SQL syntax definition and therefore
belongs to the Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since
SQL does not allow updating of columns of a primary key by using a positioned UPDATE statement.

Database Management System Interfaces 441

Using Natural Statements and System Variables

) Note: If you use the SET * notation, all fields of the referenced Natural view are added to

the FOR UPDATE OF and SET lists. Therefore, ensure that your view contains only fields which
can be updated; otherwise, a negative SQLCODE is returned by SQL.

For further details and syntax, see UPDATE (SQL) in the Statements documentation.

Using Natural System Variables

When used with SQL, there are restrictions and/or special considerations concerning the following
Natural system variables:

= *ISN
= *NUMBER
= *ROWCOUNT

For information on restrictions and/or special considerations, refer to the section Database-Specific
Information in the corresponding system variable documentation.

Error Handling

In contrast to the normal Natural error handling, where either an ON ERROR statement is used to
intercept execution time errors or standard error message processing is performed and program
execution is terminated, the enhanced error handling of Natural SQL Gateway provides an applic-
ation controlled reaction to the encountered SQL error.

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error
handling and to check the encountered SQL error for the returned SQLCODE.

For further information on Natural subprograms provided for SQL, see the section Interface
Subprograms.

442 Database Management System Interfaces

35 Interface Subprograms

B NDBCONV SUDPIOGIAM ...ttt e e e 444
B NDBERR SUDPIOGIAM ...iiiiiees ittt ettt e e et e e e e e et e e e e 445
B NDBISQL SUDPIOGIAM ...ttt e et e et e e et e e e as 446
= NDBNOERR SUDPIOGIAM ..ottt ettt 448
B NDBNROW SUDPIOGrAM ..ot e e e e s e e e e e e 449
B NDBSTMP SUDPIOGIAM ...ttt ettt e 449

443

Interface Subprograms

Several Natural and non-Natural subprograms are available to provide you with internal inform-
ation from Natural SQL Gateway or specific functions for which no equivalent Natural statements
exist. Natural subprograms are invoked with the Natural CALLNAT statement.

Overview of Interface Subprograms

Subprogram |Function

NDBCONV |[Sets or resets conversational mode 2.

NDBERR |Provides diagnostic information on the most recently executed SQL call.

NDBISQL |Executes SQL statements in dynamic mode.

NDBNOERR |Suppresses normal Natural error handling.

NDBNROW |Obtains the number of rows affected by a Natural SQL statement.

NDBSTMP |Provides an SQL TIMESTAMP column as an alphanumeric field and vice versa.

All these subprograms are provided in the Natural system library SYSTEM on the system file FNAT.

For detailed information on these subprgrams, follow the links shown in the table above and read
the description of the call format and of the parameters in the text object provided with the sub-
program (subprogram-nameT).

NDBCONYV Subprogram

The Natural subprogram NDBCONV is used to either set or reset the conversational mode 2 in CICS
environments. Conversational mode 2 means that update transactions are spawned across terminal
I/Os until either a COMMIT or ROLLBACK has been issued (Caution SQL and CICS resources are kept
across terminal I/Os!). This means conversational mode 2 has the same effect as the Natural profile
parameter PSEUDO=0FF, except that the conversational mode is entered after an SQL update state-
ment (UPDATE, DELETE, INSERT) and left again after a COMMIT or ROLLBACK, while PSEUDO=0FF causes
conversational mode for the total Natural session.

A sample program called CALLCONV is provided in library SYSDB?2; it demonstrates how to invoke
NDBCONV. A description of the call format and of the parameters is provided in the text object
NDBCONVT.

The calling Natural program must use the following syntax:

444 Database Management System Interfaces

Interface Subprograms

CALLNAT "NDBCONV' ffCONVERS #RESPONSE

The various parameters are described in the following table:

Parameter |Format/Length |Explanation

#FCONVERS |11 Contains the desired conversational mode(input)
#FRESPONSE |14 Contains the response of NDBCONV(output)

The #CONVERS parameter can contain the following values:

Code |[Explanation

0 The conversational mode 2 has to be reset.

1 The conversational mode 2 has to be set.

The #RESPONSE parameter can contain the following response codes:

Code |Explanation

0 |The conversational mode 2 has been successfully set or reset.

-1 |The specified value of #CONVERS is invalid, the conversational mode has not been changed.

-2 |NDBCONV is called in a environment, which is not a CICS environment, where the conversational mode
2 is not supported.

NDBERR Subprogram

The Natural subprogram NDBERR replaces Function E of the DB2SERV interface, which is still provided
but no longer documented. It provides diagnostic information on the most recent SQL call. It also
returns the database type which returned the error. NDBERR is typically called if a database call
returns a non-zero SQLCODE, which means a NAT3700 error.

A sample program called CALLERR is provided on the installation medium; it demonstrates how
to invoke NDBERR. A description of the call format and of the parameters is provided in the text

object NDBERRT.

The calling Natural program must use the following syntax:

Database Management System Interfaces 445

Interface Subprograms

CALLNAT "NDBERR' #SQLCODE #SQLSTATE #SQLCA #DBTYPE

The parameters are described in the following table:

Parameter |Format/Length |Explanation

#SQLCODE |14 Returns the SQL return code.

#SQLSTATE|A5 Returns a return code for the output of the most recently executed SQL statement.

##SQLCA A136 Returns the SQL communication area of the most recent SQL access.

ffDBTYPE |B1 Returns the identifier (in hexadecimal format) for the currently used database.
X'04" Identifies access via Natural SQL Gateway.
X'02' Identifies access via Natural for DB2.

NDBISQL Subprogram

The Natural subprogram NDBISQL is used to execute SQL statements in dynamic mode. The SELECT
statement and all SQL statements which can be prepared dynamically by the accessed SQL database
system can be passed to NDBISQL.

A sample program called CALLISQL is provided on the installation medium; it demonstrates how
to invoke NDBISQL. A description of the call format and of the parameters is provided in the text
object NDBISQLT.

The calling Natural program must use the following syntax:

CALLNAT 'NDBISQL'#fFUNCTION #TEXT-LEN #TEXT (*) #SQLCA #RESPONSE #WORK-LEN #WORK (*)

The various parameters are described in the following table:

Parameter |Format/Length | Explanation

FFFUNCTION|AS8 For valid functions, see below.

#FTEXT - LEN|I2 Length of the SQL statement or of the buffer for the return area.

FFTEXT A1(1:V) Contains the SQL statement or receives the return code.

##SQLCA A136 Contains the SQLCA.

fFRESPONSE |14 Returns a response code.

#FWORK - LEN (12 Length of the workarea specified by #fWORK (optional).

FFWORK A1(1:V) Workarea used to hold SQLDA/SQLVAR and auxiliary fields across calls (optional).

Valid functions for the #FUNCTION parameter are:

446

Database Management System Interfaces

Interface Subprograms

Function |Parameter Explanation
CLOSE Closes the cursor for the SELECT statement.
EXECUTE [#TEXT-LEN |Executes the SQL statement.
#TEXT (*) |Contains the length of the statement.
Contains the SQL statement.
The first two characters must be blank.
FETCH |[#TEXT-LEN |Returns a record from the SELECT statement.
#TEXT (*) |Size of #TEXT (in bytes).
Buffer for the record.
TITLE [#TEXT-LEN |Returns the header for the SELECT statement.
#TEXT (*) |Size of #TEXT (in bytes);
receives the length of the header (= length of the record).
Bulffer for the header line.

The #fRESPONSE parameter can contain the following response codes:

Code|Function Explanation

5 EXECUTE The statement is a SELECT statement.

6 TITLE, FETCH|Data are truncated; only set on first TITLE or FETCH call.
100 |FETCH No record / end of data.

-2 Unsupported data type (for example, GRAPHIC).

-3 |TITLE, FETCH|No cursor open;

probably invalid call sequence or statement other than SELECT.

-4 Too many columns in result table.

-5 SQLCODE from call.

-6 Version mismatch.

-7 Invalid function.

-8 Error from SQL call.

-9 Workarea invalid (possibly relocation).

-10 Interface not available.

-11 |EXECUTE First two bytes of statement not blank.
Call Sequence

The first call must be an EXECUTE call. NDBISQL has a fixed SQLDA AREA holding space for 50
columns. If this area is too small for a particular SELECT it is possible to supply an optional work
area on the calls to NDBISQL by specifying #fWORK-LEN (12) and #WORK(A1/1:V).

This workarea is used to hold the SQLDA and temporary work fields like null indicators and
auxiliary fields for numeric columns. Calculate 16 bytes for SQLDA header and 44 bytes for each
result column and 2 bytes null indicator for each column and place for each numeric column,

Database Management System Interfaces 447

Interface Subprograms

when supplying #WORK- LEN and #WORK(*) during NDBISQL calls. If these optional parameters are
specified on an EXECUTE call they have also to be specified on any following call.

If the statement is a SELECT statement (that is, response code 5 is returned), any sequence of TITLE
and FETCH calls can be used to retrieve the data. A response code of 100 indicates the end of the
data.

The cursor must be closed with a CLOSE call.

Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE
call for a SELECT statement.

In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE,
FETCH or CLOSE call that refers to the same statement.

NDBNOERR Subprogram

The Natural subprogram NDBNOERR is used to suppress Natural NAT3700 errors caused by the
next SQL call. This allows a program controlled continuation if an SQL statement produces a non-
zero SQLCODE. After the SQL call has been performed, NDBERR is used to investigate the SQLCODE.

A sample program called CALLNOER is provided on the installation medium; it demonstrates how
to invoke NDBNOERR. A description of the call format and of the parameters is provided in the text
object NDBNOERT.

The calling Natural program must use the following syntax:

CALLNAT "NDBNOERR'
There are no parameters provided with this subprogram.

| Note: Only NAT3700 errors (that is, non-zero SQL response codes) are suppressed, and
also only errors caused by the next following SQL call.

Restrictions with Database Loops

" If NDBNOERR is called before a statement that initiates a database loop and an initialization error
occurs, no processing loop will be initiated, unless a IF NO RECORDS FOUND clause has been
specified.

= If NDBNOERR is called within a database loop, it does not apply to the processing loop itself, but
only to the SQL statement subsequently executed inside this loop.

448 Database Management System Interfaces

Interface Subprograms

NDBNROW Subprogram

The Natural subprogram NDBNROW is used to obtain the number of rows affected by the Natural
SQL statements Searched UPDATE, Searched DELETE, and INSERT. The number of rows affected is
read from the SQL communication area (SQLCA). A positive value represents the number of affected
rows, whereas a value of minus one (- 1) indicates that all rows of a table in a segmented tablespace
have been deleted; see also the Natural system variable *NUMBER as described in the Natural System
Variables documentation.

A sample program called CALLNROW is provided on the installation medium; it demonstrates how
to invoke NDBNROW. A description of the call format and of the parameters is provided in the text
object NDBNROWT.

The calling Natural program must use the following syntax:

CALLNAT "NDBNROW' #NUMBER

The parameter #NUMBER (I4) contains the number of affected rows.

NDBSTMP Subprogram

For SQL, Natural provides a TIMESTAMP column as an alphanumeric field (A26) of the format
YYYY-MM-DD-HH.MM.SS. MMMMMM.

Since Natural does not yet support computation with such fields, the Natural subprogram NDBSTMP
is provided to enable this kind of functionality. It converts Natural time variables to SQL time
stamps and vice versa and performs SQL time stamp arithmetics.

A sample program called CALLSTMP is provided on the installation medium; it demonstrates how
to invoke NDBSTMP. A description of the call format and of the parameters is provided in the text
object NDBSTMPT.

The functions available are:

Code |Explanation

ADD |Adds time units (labeled durations) to a given SQL time stamp and returns a Natural time variable
and a new SQL time stamp.

CNT2|Converts a Natural time variable (format T) into a SQL time stamp (column type TIMESTAMP) and
labeled durations.

C2TN|Converts a SQL time stamp (column type TIMESTAMP) into a Natural time variable (format T) and
labeled durations.

DIFF|Builds the difference between two given SQL time stamps and returns labeled durations.

Database Management System Interfaces 449

Interface Subprograms

Code |Explanation

GEN |Generates a SQL time stamp from the current date and time values of the Natural system variable
*TIMX and returns a new SQL time stamp.

SUB |Subtracts labeled durations from a given SQL time stamp and returns a Natural time variable and a
new SQL time stamp.

TEST |Tests a given SQL time stamp for valid format and returns TRUE or FALSE.

] Note: Labeled durations are units of year, month, day, hour, minute, second and micro-
second.

450 Database Management System Interfaces

36 Natural File Server

B CoNCEP OF the il SEIVEN ... e e e e 452
= Preparations for Using the File SEIVETooiiiiii e 452
= Logical Structure 0f the File SEIVETc.eiiiie e 455

451

Natural File Server

In all supported TP-monitor environments, the Natural SQL Gateway provides an intermediate
work file, referred to as the File Server, to prevent database selection results from being lost with
each terminal I/O.

This section covers the following topics:

Concept of the File Server

To avoid reissuing the selection statement used and repositioning the cursors, Natural writes the
results of a database selection to an intermediate file. The saved selected rows, which may be re-
quired later, are then managed by Natural as if the facilities for conversational processing were
available. This is achieved by automatically scrolling the intermediate file for subsequent screens,
maintaining position in the work file rather than in the SQL table.

All rows of all open cursors are rolled out to the file server before the first terminal I/O operation.
Subsequently, all data is retrieved from this file if Natural refers to one of the cursors which were
previously rolled out (see the description of roll out in Logical Structure of File Server below).

If a row is to be updated or deleted, the row is first checked to see if it has been updated in the
meantime by some other process. This is done by reselecting and fetching the row from the SQL
database, and then comparing it with the original version as retrieved from the file server. If the
row is still unchanged, the update or delete operation can be executed. If not, a corresponding
error message is returned. The reselection required when updating or deleting a row is possible
in both dynamic mode and static mode.

Only the fields which are stored in the file server are checked for consistency against the record
retrieved from the SQL table.

As the row must be uniquely identified, the Natural view must contain a field for which a unique
row has been created. This field must be defined as a unique key in the SQL table. In a Natural
DDV, it will then be indicated as a unique key via the corresponding Natural-specific short name.

Preparations for Using the File Server

The size of a row which can be written to the file server is limited to 32 KB or 32767 bytes. If a row
is larger, a corresponding error message is returned.

The File Server can use either a VSAM RRDS file or the Software AG Editor buffer pool as storage
medium to save selected rows of SQL tables.

This section covers the following topics:

= File Server - VSAM

452 Database Management System Interfaces

Natural File Server

= File Server - Editor Buffer Pool
File Server - VSAM

The file server is installed via a batch job, which defines and formats the intermediate file. Samples
of this batch job are supplied on the installation medium described in Installing Natural SQL
Gateway in the Installation for z/OS documentation.

Defining the Size of the File Server

The file server is created by defining an RRDS VSAM file using AMS (Access Method Services).
Its physical size and its name must be specified.

Formatting the File Server

The file server is formatted by a batch job, which requires five input parameters specified by the
user, and which formats the file server according to these parameters. The parameters specify:

1. The number of blocks to be formatted (logical size of the VSAM file); this value is taken from
the first parameter of the RECORD subcommand of the AMS DEFINE CLUSTER command.

The number of users that can log on to Natural concurrently.

The number of formatted blocks to be defined as primary allocation per user.

The number of formatted blocks to be used as secondary allocation per user.

AR

The maximum number of file server blocks to be allocated by each user. If this number is ex-
ceeded, a corresponding Natural error message is returned.

Immediately before the first access to the file server, a file server directory entry is allocated to the
Natural session and the amount of blocks specified as primary allocation is allocated to the Natural
session.

The primary allocation is used as intermediate storage for the result of a database selection and
should be large enough to accommodate all rows of an ordinary database selection. Should more
space in the file server be required for a large database selection, the file server modules allocate
a secondary allocation equal to the amount that was specified for secondary allocation when the
file server was formatted.

Thus, a secondary area is allocated only when your current primary allocation is not large enough
to contain all of the data which must be written to the intermediate file. The number of secondary
allocations allowed depends upon the maximum number of blocks you are allowed to allocate.
This parameter is also specified when formatting the file server.

The number of blocks defined as the secondary allocation is allocated repeatedly, until either all
selected data has been written to the file or the maximum number of blocks you are allowed to
allocate is exceeded. If so, a corresponding Natural error message is returned. When the blocks

Database Management System Interfaces 453

Natural File Server

received as a secondary allocation are no longer needed (that is, once the Natural loop associated
with this allocation is closed), they are returned to the free blocks pool of the file server.

Your primary allocation of blocks, however, is always allocated to you, until the end of your
Natural session.

Changes Required for a Multi-Volume File Server

To minimize channel contention or bottlenecks that can be caused by placing a large and heavily
used file server on a single DASD volume, you can create a file server that spans several DASD
volumes.

To create and format such a file server, two changes are needed in the job that is used to define
the VSAM cluster:

1. Change VOLUME () to VOLUMES (voll,volZ,...).

2. Divide the total number of records required for the file (as specified with the first format job
parameter) by the number of volumes specified above. The result of the calculation is used for
the RECORDS parameter of the DEFINE CLUSTER command.

This means that in the file server format job, the value of the first parameter is the result of mul-
tiplying two parameters taken from the DEFINE CLUSTER command: RECORDS and VOLUMES.

File Server - Editor Buffer Pool

The Software AG Editor buffer pool is used as storage medium when EBPFSRV=0N is set in the
Natural parameter module. In this case, the primary, secondary and maximum allocation amounts
for the file server are specified by EBPPRAL, EBPSEC, EBPMAX parameters of the NTDB2 macro. Before
Natural SQL Gateway tries to write data from a Natural user session to the file server for the first
time, a Software AG Editor buffer pool logical file is allocated with the Natural terminal identifier
as user name and the number 2240 as session number.

The operation of the file server is in this case depending on the definition of the Software AG Ed-
itor buffer pool as described in the Natural Operations documentation.

The number of logical files for the buffer pool limits the number of users concurrently accessing
the file server. The number of work file blocks limits the amount of data to be saved at a specific
moment. (You also have to consider that there are other users than Natural SQL Gateway of the
Software AG Editor.)

However, using the Software AG Editor buffer pool as storage medium for the file server enables
Natural SQL Gateway to run in a Sysplex environment.

If you like to use the file server in a sysplex environment, it is recommended to use the Software
AG Editor buffer pool as storage medium.

454 Database Management System Interfaces

Natural File Server

Logical Structure of the File Server

Immediately before a Natural user session accesses the file server, a file server directory entry
(VSAM) or a logical file (Software AG Editor buffer pool) is allocated to the Natural user session
and the number of blocks specified as primary allocation is reserved until the end of the session.

Generally, the file server is only used when a terminal I/O occurs within an active READ, FIND, or
SELECT loop, where database selection results would be lost. Before each terminal I/O operation,
Natural checks for any open cursors. For each non-scrollable cursor found, all remaining rows are
retrieved from the SQL table and written to an intermediate file. In the Natural SQL Gateway
documentation, this process is referred to as cursor roll out.

For each cursor roll out, a logical file is opened to hold all the rows fetched from this cursor. The
space for the intermediate file is managed within the space allocated to your session. The logical
file is then positioned on the row that was CURRENT OF CURSOR when the terminal I/O occurred.

Subsequent requests for data are then satisfied by reading the rows directly from the intermediate
file. The database is no longer involved, and SQL is only used for update, delete or store operations.

Once the corresponding processing loop in the application has been closed, the file is no longer
needed and the blocks it occupies are returned to your pool of free blocks. From here, the blocks
are returned to the free blocks pool of the file server, so that you are left with your primary alloc-
ation only.

In the following example, the space allocated to the first selection is not released until all rows
selected during the third selection have been retrieved. The same applies to the space allocated to
the third selection.

The space allocated to the second selection, however, is released immediately after the last row
of the corresponding selection result has been retrieved.

Therefore, the space allocated to the second selection can be used for the selection results of the
third selection.

Database Management System Interfaces 455

Natural File Server

Example:

FIND __. (1st selection)

FIND ... (2nd selection) Primary Allocation Area
INPUT ..
END-FIND 1st Selection |

FIND ... (3rd selection)

INPUT .

END-FIND
; 2nd Selection 2ndf3rd Selection

3rd Selection

If the primary allocation area is not large enough, for example, if the third selection is nested
within the second selection, the secondary allocation area is used.

456 Database Management System Interfaces

Natural File Server

Example:

FIND __. {15t selection)

EIND . (2nd selection) Primary Allocation Area

//

FIND ... (3rd selection) _
: 15t Selection |
INPUT ...
END-FIND
END-FIND
. 1st Selection
: 2nd Selection
END-FIND _h
: 2nd Selection

3rd Selection

Secondary Allocation Area -

Jrd Selection

When a session is terminated, all of a user's blocks are returned to the free blocks pool. If a session
ends abnormally, Natural checks, where possible, whether a file server directory entry for the
corresponding user exists. If so, all resources held by this user are released.

If Natural is unable to free the resources of an abnormally-ended user session, these resources are
not released until the same user ID logs on from the same logical terminal again.

If the same user ID and/or logical terminal are not used again for Natural, the existing directory
entry and the allocated space remain until the file server is formatted again. A new run of the
formatting job deletes all existing data and recreates the directory.

Database Management System Interfaces 457

458

37 Natural SQL Gateway Server

= Natural SQL Gateway Server CONCEPLoiiiuiiieeiiiiii e 460
= Configuring the Natural SQL Gateway SEIVETcc.ooiiiiiiiiiiiiiii e 460
= Operating the Natural SQL Gateway SEIVETcoiiiiiiiiiiiii e 467
B Monitor CENt NATMOPI ...ttt e e e et aeee e 471
B HTML MONIOr CHENE ... 475

459

Natural SQL Gateway Server

This section covers the following topics:

Natural SQL Gateway Server Concept

This section describes the concept and the structure of the server for the Natural SQL Gateway:.

This server is necessary if the Natural SQL Gateway runs within a TP environment. For additional
information, see Product Structure in the section Introduction to Natural SQL Gateway.

A Natural SQL Gateway server is a multi-user, multi-tasking application. The server is responsible
for maintaining the persistent connection to the JDBC server for each client, because a client running
in a TP environment cannot cope with persistent JDBC connections. The client opens a so called
SQL session at the Natural SQL Gateway server. This is done implicitly with the SQL CONNECT
statement. This session represents the client from the JDBC server point of view and keeps the
persistent connection. The client is loosely coupled to this session just by maintaining a session
identifier. The session remains until the client disconnects with the SQL DISCONNECT statement.

The Natural SQL Gateway server can host SQL sessions for multiple users and execute their requests
concurrently.

To enable the administrator to monitor the status of the Natural SQL Gateway server, a monitor
task is provided which is initialized automatically at server startup. Using the monitor commands,
the administrator is able to control the server activities, cancel particular user sessions, terminate
the entire server, etc. For further information, see Monitoring the Natural SQL Gateway Server
in the section Operating the SQL Gateway Server.

Configuring the Natural SQL Gateway Server

This document describes how to configure a Natural SQL Gateway server.
The following topics are covered:

= Configuration Requirements

= Natural SQL Gateway Server Configuration File

= Natural SQL Gateway Server Configuration Parameters
= Natural SQL Gateway Server Configuration File Example

460 Database Management System Interfaces

Natural SQL Gateway Server

= Natural SQL Gateway Server Data Sets
Configuration Requirements

A Natural SQL Gateway server requires the following IBM Language Environment (LE) parameter
configuration for z/OS:

Parameter Definition

POSIX(ON) Enables a Natural SQL Gateway server to access the POSIX functionality of z/OS.
If you start a Natural SQL Gateway server server with POSIX(OFF), it terminates
immediately with a user abend U4093 and the system message EDC5167.

IBM supplies the default value OFF.

TERMTHDACT (UADUMP) |Defines the level of information that is produced in case of an abend. The option
UADUMP generates an LE CEEDUMP and system dump of the user address space.
The CEEDUMP does not contain the Natural relevant storage areas.

IBM supplies the default value TRACE.

ENVAR(TZ=...) The ENVAR option enables you to set UNIX environment variables. The only
environment variable applicable for the Natural SQL Gateway server is TZ (time
zone). This variable allows you to adjust the timestamp within the Natural SQL
Gateway server's trace file to your local time.

Example:

ENVAR(TZ=CET-1DST) CET

- 1 hour daylight saving time

To set the z/OS LE parameters, you have the following options:
® Use the PARM parameter specified in the EXEC card of the Natural SQL Gateway server startup
job. The length of the options is limited by the maximum length of the PARM parameter.

" Assemble an LE/370 runtime option module CEEUOPT and link it to the Natural SQL Gateway
server load module.

" As of z/OS Version 1.8, you can define the DD card for CEEOPTS to specify your LE options in a
data set.

Database Management System Interfaces 461

Natural SQL Gateway Server

Natural SQL Gateway Server Configuration File

A configuration file is allocated to the name <serverid>C (for example, NSBS1C) or STGCONFG al-
ternatively.

The configuration file contains the server configuration parameters in the form of a keyword=value
syntax. In addition, it may contain comments whose beginning is marked with a hash symbol (#).

See also the Natural SQL Gateway Server Configuration File Example shown below.
Natural SQL Gateway Server Configuration Parameters

The following Natural SQL Gateway server configuration parameters are available:

= FRONTEND_NAME

= HANDLE_ABEND

= HOST_NAME

= HTPMON_ADMIN_PSW
= HTPMON_PORT

= PORT_NUMBER

= SESSION_TIMEOUT

= TRACE_FILTER

= TRACE_LEVEL

FRONTEND_NAME

This configuration parameter specifies the name of the CXX server front-end to be used to commu-
nicate with the JDBC server. The front-end resides on the CXX load library.

Value Explanation

frontend-name|Name of the CXX front-end to be used. Maximum length: 8 characters.

The default value is CXXNSERV.

Example:

FRONTEND_NAME=CXXNSERV

462 Database Management System Interfaces

Natural SQL Gateway Server

HANDLE_ABEND

It is recommended that you leave this parameter on its default value in order to limit the impact
of an abend to a single user. If you set the value of this parameter to NO, any abend in the server
processing terminates the complete server processing. That is, it affects all users running on that
server.

Value |Explanation

YES |Trap abends in the server processing, write a snap dump and abort the affected user.

This is the default value.

NO |Suspend the server abend handling.

Example:

HANDLE_ABEND=NO

or
HANDLE_ABEND=NO
HOST_NAME

This optional configuration parameter is necessary only if the server host supports multiple TCP/IP
stacks.

Value Explanation

host-name|If HOST_NAME is specified, the server listens on the particular stack specified by HOST_NAME,
otherwise the server listens on all stacks.

No default value is provided.

Example:

HOST_NAME=nodel

or

HOST_NAME=157.189.160.55

Database Management System Interfaces 463

Natural SQL Gateway Server

HTPMON_ADMIN_PSW

This configuration parameter defines the password required for some monitor activities (for ex-
ample, Terminate Server) performed by the HTML Monitor Client.

Value Explanation

character-string|The password (any character string) to be entered at the HTML Monitor Client for
some monitor activities.

No default value is provided.

Example:

HTPMON_ADMIN_PSW=GHAU129B

HTPMON_PORT

A Natural SQL Gateway server can be configured to host an HTTP monitor task which serves the
HTML Monitor Client running in a web browser. It is not required to run this monitor task on
each server. A single task allows you to monitor all servers running at one node.

This configuration parameter defines the TCP/IP port number under which the server monitor
task can be connected from a web browser.

Value Explanation

1 - 65535|The password to be entered at the HTML Monitor Client for some monitor activities.

No default value is provided.

Example:
HTPMON_PORT=3141
PORT_NUMBER

This configuration parameter defines the TCP/IP port number under which the server can be
connected.

Value Explanation

1 - 65535|TCP/IP port number.

No default value is provided.

Example:

464 Database Management System Interfaces

Natural SQL Gateway Server

PORT_NUMBER=3140

SESSION_TIMEOUT

Cancel inactive sessions when the SESSTON_TIMEOUT parameter is met. Check for sessions inactive
longer then n minutes once a day at HH: MM (24 hours) or every n minutes.

The server will not start if an invalid SESSTON_TIMEOUT parameter is given.

Value Explanation

hh:mm,n <numeric value greater than |If formatishh:mm, check once a day at hh:mm for sessions
0> or more than 1 minutes inactive.

m <numeric value greater than 0>,n or
<numeric value>0>
If format is a numeric value, check every mminutes for
sessions more than n minutes inactive.

Examples:

SESSTION_TIMEOUT=19:30,480

Every day at 19:30 cancel sessions more than 480 minutes inactive.
SESSION_TIMEOUT=360,480

Every 360 minutes cancel sessions more than 480 minutes inactive.

TRACE_FILTER

This optional configuration parameter enables you to restrict the trace by a logical filter in order
to reduce the volume of the server trace output, for example:

TRACE_FILTER="Client=(XYZ P*)"
Each request of the user ID XY7 and each request of the user IDs starting with a P are traced.

See Trace Filter in the section Operating the Natural Gateway Server.

Database Management System Interfaces 465

Natural SQL Gateway Server

TRACE_LEVEL

Value Explanation

trace-Tlevel|See Trace Level in the section Operating the Natural Gateway Server.

0 This is the default value.

Example:

TRACE_LEVEL=0x00000011

or alternatively

TRACE_LEVEL=31+27

The setting in the example switches on the TSW bits 31 and 27; see Trace Level in the section Op-
erating the Natural Gateway Server.

Natural SQL Gateway Server Configuration File Example

For z/OS:

This is a comment

FRONTEND_NAME=CXXNSERV # and another comment
PORT_NUMBER=4811

TRACE_LEVEL=31+27

Natural SQL Gateway Server Data Sets

The Natural SQL Gateway server requires the following data sets:

Data Set Name |Purpose

STGCONFG |Defines the server configuration file.

STGTRACE |The server trace output.
STGSTDO The stdo data set.
STGSTDE The stde error output.

Alternatively, you can qualify each data set name by the server ID.

466 Database Management System Interfaces

Natural SQL Gateway Server

Data Set Name | Purpose

NSBSIC Defines the server configuration file for the server NSBS1.
NSBSIT The server trace output for the server NSBS1.

NSBS10 The stdo data set for the server NSBS1.

NSBSI1E The stde error output for the server NSBS1.

Operating the Natural SQL Gateway Server

The following topics are covered below:

= Starting the Natural SQL Gateway Server
= Monitoring the Natural SQL Gateway Server
= Runtime Trace Facility

Starting the Natural SQL Gateway Server

Under z/OS:

The Natural SQL Gateway server can be started as a “started task”:

//NSBSRV ~ PROC

//SRV EXEC PGM=NATRNSV,REGION=4000K, TIME=1440,
// PARM=('POSIX(ON)/NSBSRV1")

//STEPLIB DD DISP=SHR,DSN=NSBvrs.LOAD

//CMPRINT DD SYSOUT=X

//STGCONFG DD DISP=SHR,DSN=NSBvrs.CONFIG(SRV1)
//STGTRACE DD SYSOUT=X

//STGSTDO DD SYSOUT=X

//STGSTDE DD SYSOUT=X

- where NSB is the product code and vrs is the version number of the Natural SQL Gateway server.

| Note: PARM=('POSIX(ON)/NSBSRV1") - POSIX(ON) is required for a proper LE370 initializ-

ation, and NSBSRV1 is the name of the server for the communication with the monitor client.

The name of the started task must be defined under RACF and the z/OS UNIX System Services.

Database Management System Interfaces 467

Natural SQL Gateway Server

Monitoring the Natural SQL Gateway Server

To enable the administrator to monitor the status of the Natural SQL Gateway server, a monitor
task is provided which is initialized automatically at server startup. Using the monitor commands
described below, the administrator is able to perform functions such as control the server activities,
cancel particular user sessions, terminate the entire server, etc.

The following topics are covered below:

= Monitor Communication
= Monitor Commands

Monitor Communication

> To communicate with the monitor

m Use the monitor client NATMOPI.
See Monitor Client NATMOPI.
Or:
Use the HTML Monitor Client that supports a standard web browser.
See HTML Monitor Client.
Or:

Under z/OS, you can alternatively use the operator command MODIFY to execute the monitor
commands described below in the section Monitor Commands.

The output of the executed monitor command will be written to the system log.

Example:

F jobname,APPL=ping

sends the command ping to the Natural SQL Gateway server running under the job jobname.

468 Database Management System Interfaces

Natural SQL Gateway Server

Monitor Commands

The Natural SQL Gateway server supports the following monitor commands:

Command Name

Action

ping Verifies whether the server is active. The server responds and sends the
string
I'm still up

terminate Terminates the server.

abort Terminates the server immediately without releasing any resources.

set configvariable value

With the set command, you can modify server configuration settings. For
example, to modify TRACE_LEVEL:

set TRACE_LEVEL 0x00000012

1ist sessions

Returns a list of active Natural sessions within the server. For each session,
the server returns information about the user who owns the session, the
session initialization time, the last activity time and an internal session
identifier (session-id).

cancel session
session-id

Cancels a specific Natural session within the Natural SQL Gateway server.
To obtain the session ID, use the monitor command 1ist sessions.

help

Returns help information about the monitor commands supported.

Runtime Trace Facility

For debugging purposes, the server code has a built-in trace facility which can be switched on, if

desired.

The following topics are covered below:

= Trace Medium
= Trace Configuration
= Trace Level

Database Management System Interfaces 469

Natural SQL Gateway Server

= Trace Filter
Trace Medium

Under z/OS, the Natural SQL Gateway server writes its runtime trace to the logical system file
STGTRACE.

Trace Configuration

The trace is configured by a trace level which defines the details of the trace. Once a trace is switched
on, it can be restricted to particular clients or client requests by specifying a trace filter, see also
Natural SQL Gateway server configuration parameter TRACE_FILTER.

Every session is provided with a 32-bit trace status word (TSW) which defines the trace level for
this session. The value of the TSW is set in the Natural SQL Gateway server configuration para-
meter TRACE_LEVEL. A value of zero (0) means that the trace is switched off.

Trace Level

Each bit of the TSW is responsible for certain trace information. Starting with the rightmost bit:

Trace Bit | Trace Information

31 Trace main events (server initialization/termination, client request/result).
30 Detailed functions (session allocation, rollin/rollout calls, detailed request processing).
29 Dump internal storage areas.

28 Session directory access.

27 Dump send/reply buffer.

26 Dump send/reply buffer short. Only the first 64 bytes are dumped.

25-16 |Free.

15 Trace error situations only.

14 Apply trace filter definitions.

13-08 |Free.

07-01 |Free.

00 Reserved for trace-level extension.

470 Database Management System Interfaces

Natural SQL Gateway Server

Trace Filter

It is possible to restrict the trace by a logical filter in order to reduce the volume of the server trace
output.

® The filter can be set with the configuration parameter TRACE_FILTER.

® The filter may consist of multiple keyword=filtervalue assighments separated by spaces.

® To activate the filter definition, the trace bit 14 in the trace status word (see Trace Level) must

be set.

The filter keyword is:

‘C]1ent‘Fﬂhnsthetnme(nnputbyspedﬁcchenm.

The following rules apply:

® If a keyword is defined multiple times, the values are cumulated.
® The value must be enclosed in braces and can be a list of filter values separated by spaces.
® The values are not case sensitive.

" Asterisk notation is possible.

Example:

TRACE_FILTER="Client=(XYZ P*)"

Each request of the user ID XYZ and each request of the user IDs starting with a P are traced.

Monitor Client NATMOPI

= |ntroduction

= Command Interface Syntax
= Command Options Available
= Monitor Commands

= Directory Commands

Database Management System Interfaces 471

Natural SQL Gateway Server

= Command Examples
Introduction

The Monitor Client NATMOPI is a character-based command interface for monitoring the various
types of servers that are provided in a mainframe Natural environment. Each of these servers has
its own set of monitor commands which is described in the corresponding server documentation.
In addition, a set of directory commands is available which can be used independent of the server
type. One NATMOPI can be used to monitor different server types.

Command Interface Syntax

Basically the syntax of the command interface consists of a list of options where each option
can/must have a value. For example:

-s <server-id> -c help

where -s and -c are options and <server-7id> and help are the option values.

It is possible to specify multiple options, but each option can have only one value assigned.
The command options available are listed below.

Command Options Available

Words enclosed in <> are user supplied values.

Command Option Action

-s <server-id> Specify a server ID for sending a monitor command. If the server ID is not
unique in the server directory, NATMOPI prompts the user to select a server.

-c <monitor command> |Specify a monitor command to be sent to the server ID defined with the -s
option

-d <directory command>|Specify a directory command to be executed.

-3 Suppress prompting for ambiguous server ID. Process all servers which apply
to the specified server ID.
-h Print NATMOPI help.

472 Database Management System Interfaces

Natural SQL Gateway Server

Monitor Commands

These are commands that are sent to a server for execution. The monitor commands available de-
pend on the type of server, however, each server is able to support at least the commands ping,
terminate, and help.

For further commands, refer to Operating the Natural SQL Gateway Server where the correspond-
ing server commands are described.

Directory Commands

Directory commands are not executed by a server, but directly by the monitor client NATMOPI.

You can use the directory commands to browse through the existing server entries and to remove
stuck entries.

The following directory commands are available. Words enclosed in <> are user supplied values
and words enclosed in straight brackets [] are optional.

Directory Command |Action

1s [<server-id>]|List all servers from the server directory that apply to the specified server ID. The
server list is in short form.

11 [<server-id>]|Same as 15, but the server list contains extended server information.

rs [<server-id>]|Remove server entries from server directory.

Note: If youremove the entry of an active server, you will loose the ability to monitor

this server process.

cl [<server-id>]|Clean up server directory. This command pings the specified server. If the server
does not respond, its entry will be removed from the directory.

ds Dump the content of the server directory.

m List pending IPC messages.

Command Examples

Example: Ping a Server in Different Environments
Server in z/OS (started task or batch mode):

® Execute NATMOPI in batch job:

Database Management System Interfaces 473

Natural SQL Gateway Server

NATMOPI,PARM=("'-sServerName -cPING')

Sample job:

//SAGMOPI J0B

SAG, CLASS=K,MSGCLASS=X

//NATEX EXEC PGM=NATMOPI,REGION=3000K,

// PARM=('-Sname -CPING')
//* PARM=("'-H")

//STEPLIB DD DISP=SHR,DSN=NATURAL.XXXvr.LE.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN

//SYSOUT DD SYSOUT=X

//SYSPRINT DD SYSOUT=X

/1*

Where XXX is the Natural SQL Gateway product code (NSB) and vr is the two-digit version

number.

" Execute NATMOPI in TSO (Command):

NATMOPI -sServerName -cPING

The NSB load library must be included in the steplib of TSO.

Further Command Examples:

natmopi -dls List all servers registered in the directory in short format.
natmopi -dcl TST -1s TST Clean up all servers with ID TST* (ping server and remove it, if it

does not respond), and list all servers with ID TST* after cleanup.
natmopi -sSRV1 -cping -sSRV2 «|Send command pingtoSRV1.Send command terminatetoSRV?2
-SSRV3 -cterminate and SRV3.

natmopi -cterminate -sSRV1 <«
-cping -sSRV2 -sSRV3

Is equivalent to the previous example. That is, NATMOP I sends the
command following the - s option to the server. If no - ¢ option
follows the - s option, the first - ¢ option from the command line
will be used.

natmopi -sSRV1 -cterminate -a |Send command terminate to SRV1.If SRV1 is ambiguous in the
server directory, send the command to all SRV1 servers without
prompting for selection.

474 Database Management System Interfaces

Natural SQL Gateway Server

HTML Monitor Client

= |ntroduction

= Prerequisites for HTML Monitor Client
= Server List

= Server Monitor

Introduction

The HTML Monitor Client is a monitor interface that supports any web browser as a user interface
for monitoring the various types of servers that are provided in a mainframe Natural environment.
Each of these servers has its own set of monitor details which are described in the corresponding
server documentation. The HTML Monitor Client enables you to list all existing servers and to
select a server for monitoring.

Prerequisites for HTML Monitor Client

To run the HTML Monitor Client, any server must host an HTTP Monitor Server. The HTTP
Monitor Server is a subtask that can run in any Natural SQL Gateway server address space and
is configured with the configuration parameter HTPMON_PORT and HTPMON_ADMIN_PSW. An HTTP
Monitor Server is accessible through a TCP/IP port number and can monitor all servers running
on the current node (for SMARTS: running within the current SMARTS). Although it is not neces-
sary, you can run multiple HTTP Monitor Servers on one node. But each one needs an exclusive
port number.

Server List

Open your web browser and connect the HTTP Monitor Server using the following url:
http://nodename: port, where nodenameis the name of the host on which the Natural SQL Gateway
server hosting the monitor is running. And port is the port number the administrator has assigned
as the monitor port in the configuration file.

Example:

Database Management System Interfaces 475

Natural SQL Gateway Server

Natural Server List

Refresh

Server ID Iﬂl Started Config Parameters Sesswn Parameters

QASB4852

The server list consists of green and red entries. The red ones represent potentially dead server
entries which can be deleted from the server directory by choosing the attached Remove button.
The Remove button appears only for the red entries. “Potentially dead” means, that the HTTP
Monitor Server “pinged” the server while assembling the server list, but the server did not answer
within a 10 seconds timeout. Thus, even if you find a server entry marked red, it still might be
active but could not respond to the ping. Choosing the Remove button does not terminate such a
server but removes its reference in the monitor directory. Hence, it cannot be reached by the
monitor anymore.

Choosing the Select button opens a window for monitoring the selected server.
Server Monitor

Example:

476 Database Management System Interfaces

Natural SQL Gateway Server

Monitor server QASB4851 200

Fing

Terminate

Abort

ListSess

CancelSession Please press command key

Configuration

Flush

Cleanup

With the buttons, you can perform the labeled monitor commands.

The selection box allows you to modify the server configuration parameters. If you select a para-
meter for modification, it has a predefined value. This predefined value does not reflect the setting
of the server. It is just a sample value.

If you choose the ListSess button, a list of all Natural sessions appears in the window, for example:

Monitor server QASB4851 200

Reply for server pid 44:

| Terminate | [Userla | SessionId | InitTime [LastActivity [St
l1|cF [D2ECEC17EFD90D46 |02 07:24:01 |02 10:19:32
[2|QFSTEST |[D2ECCDCEC74B4142 [02 05:08:31[02 05:40:08

| Cancelsession |

[3/QFSTEST |D2ECCDB50A4CC242 [02 05:08:04 [02 05:18:10
[4|QFSTEST |[D2ECBS0CA40AFF43 [0203:17:45[02 03:23:08
[s|QFSUSER |[D2ECBF3CSAEC6344 [0204:03:20[02 04:41:43
|6|QFSUSER |[D2ECBBFC020A4B43 02 03:48:47 (02 03:52:22
[7|QFTEST [D2ECEBIDB7DA7C43 [02 07:19:39[02 07:23:36
8 [STARGATE [D2EC53BA2E7BSA46 [01 20:02:21[01 20:02:23

Configuration
Flush

Cleanup

I il el il il il il il

Database Management System Interfaces 477

Natural SQL Gateway Server

You can cancel sessions by selecting the session ID in the Sessionld column and choosing the
CancelSession button.

478 Database Management System Interfaces

IV Natural for VSAM

This documentation describes the various aspects of Natural when used in a VSAM environment.

General Information

Introduction to Natural for
VSAM

Special considerations on the environments supported by Natural for
VSAM, known incompatibilities and constraints when using Natural for
VSAM, terms used in this documentation, and on error messages related
to Natural for VSAM.

Components of Natural for VSAM, structure of the Natural interface to
VSAM.

Customizing Natural for VSAM Description of the Natural for VSAM parameters, macros and 1/O

Operation

Natural Statements and
Transaction Logic with VSAM

Related Documentation

modules.

Information on operational aspects like how to invoke Natural for VSAM,
OPEN/CLOSE processing, Natural file access, buffers for memory
management, and application programming interfaces.

Special considerations on the use of Natural statements and system
variables with VSAM. In addition, the Natural transaction logic with
VSAM is discussed.

For installation instructions, see Installing Natural for VSAM in the Installation for z/OS and Install-

ation for z/VSE documentation.

For various aspects of accessing data in a database with Natural, see also Database Access in the

Natural Programming Guide.

For a list of the abend codes of Natural for VSAM, refer to Natural for VSAM Abend Codes (in the
Natural Messages and Codes documentation).

479

480

38

General Information

PUMPOSE ...
Environment-Specific Considerations ...

Natural for VSAM with Natural Security

Integration with Predict
Terms Used in this Documentation
Messages Related to VSAM

481

General Information

Purpose

With the Natural interface to VSAM, a Natural user can access data stored in VSAM files. As a
prerequisite, the current version of Natural for Mainframes must be installed.

In general, there is no difference between using Natural with VSAM and using it with Adabas or
any other supported database management system. The Natural interface to VSAM allows Natural
programs to access VSAM data, using the same Natural DML statements that are available for
Adabas. Therefore, programs written for VSAM can also be used to access, for example, Adabas
databases.

All operations requiring interaction with VSAM are performed by the Natural interface to VSAM.

Environment-Specific Considerations

Natural for VSAM is fully ESA- and z/OS Parallel Sysplex-compliant. It runs in batch mode or
under the online environments CICS, Com-plete and TSO. Under CICS, it also runs in conversa-
tional or pseudo-conversational mode.

Natural for VSAM supports the following types of VSAM file:

= KSDS,
= ESDS,
= RRDS,
= VRDS.

Under z/OS, Natural for VSAM supports the data set access modes record-level sharing (RLS) and
DFSMS Transactional VSAM Services (DFSMStvs).

The Natural system files FNAT, FUSER, FDIC, FSPOOL and FSEC can also be located on VSAM system
files. For VSAM system files, Natural for VSAM uses the multi-fetch option to speed up the process
of loading objects into the buffer pool.

Natural for VSAM supports local shared resources (LSR) under TSO and in z/OS and z/VSE batch
modes. For CICS and Com-plete, the appropriate file definition tools must be used. The LSR option
for VSAM files improves the performance of random access.

Natural for VSAM supports Create/Loading Mode for empty files under TSO as well as in batch
mode.

Natural for VSAM supports the following types of Data Table under CICS z/OS:

482 Database Management System Interfaces

General Information

= User-Maintained Data Tables (UMT),
® CICS-Maintained Data Tables (CMT),
® Coupling Facility Data Tables (CFDT).

It also supports data set name sharing (DSN) under TSO, and batch-mode processing in z/OS and
z/VSE, in particular to access data sets using a defined path.

Natural for VSAM supports extended-format data sets for all types of VSAM data set organization.
There are, however, restrictions for ESDS, RRDS and VRDS which result from the use of the Nat-
ural system variable *ISN (see Database-Specific Information) and its internal size limit of 4 bytes.

Natural for VSAM with Natural Security

Since Natural Security supports the FSEC system file as VSAM system file, the following restrictions
must be considered:

® Generation of ETIDs is disabled.
* Logging of maintenance actions is disabled.
® Password history is disabled.

® Definition of utility profiles is disabled.

Integration with Predict

Predict, Software AG's open, operational data dictionary for fourth-generation-language develop-
ment with Natural, is a central repository of application metadata and provides documentation
and cross-reference features. Predict lets you automatically generate code from definitions, enhan-
cing development and maintenance productivity.

Since Predict supports VSAM, direct access to VSAM files is possible via Predict and information
from VSAM can be transferred to the Predict dictionary to be integrated with data definitions for
other environments.

VSAM physical and logical views can be incorporated and compared, new VSAM views can be
generated, and Natural views can be generated and compared. All VSAM-specific data types and
the referential integrity of VSAM are supported. See the Predict documentation for details.

Database Management System Interfaces 483

General Information

Terms Used in this Documentation

Term Explanation

CFDT Coupling Facility Data Tables

CMT CICS-Maintained Data Tables

DDM Natural data definition module

DFSM Data Facility Storage Management Subsystem

DESMStvs | DESMS Transactional VSAM Services

Front-end |When used in this documentation, the term “front-end” refers to the driver in conjunction with
the Natural parameter module.

LSR Local Shared Resources

NVS This is the product code of Natural for VSAM. In this documentation the product code is often
used as prefix in the names of data sets, modules, etc.

UMT User-Maintained Data Tables

Messages Related to VSAM

The message number ranges of Natural system messages related to VSAM are 3500-3599.

For a list of the abend codes that may be issued by the Natural interface to VSAM, see Natural for
VSAM Interface Abend Codes in the Natural Messages and Codes documentation.

484

Database Management System Interfaces

39 Introduction to Natural for VSAM

= Components of NatUral For VSAMoooiiii e a e 486
= Structure of the Natural Interface t0 VSAMvviiiiii e 487

485

Introduction to Natural for VSAM

This section describes the components and the structure of the Natural interface to VSAM.

Components of Natural for VSAM

The Natural interface to VSAM consists of the following components:

® The NVSNUC module, which is mandatory, environment-independent, and delivered as a load
module only.

® The Natural parameters specific to VSAM, defined in the Natural parameter module.

® The I/O module, which is mandatory, differs depending on the actual environment, and is de-
livered in source form only.

® The modules necessary when running with VSAM system files; they are optional and delivered
as load modules only.

® The user exits.
® Callable system services.
Natural for VSAM is fully (E)LPA or SVA-compliant for multiple environments (for example,

CICS, Com-plete and batch). The Natural parameter module and the appropriate I/O module must
be linked to the front-end module.

486 Database Management System Interfaces

Introduction to Natural for VSAM

Structure of the Natural Interface to VSAM

Front End (E)LPA or SVA
TP Driver HATSTUB
(Batch/CICS/
Com-plete/TS0)
NATURAL
NATPARM RATCONEG
IO Interface
NVSMISC
NVSCICS NVSHUC
IGWARLS &
NVSFNAT
User Exit
defined with NVSFSPO
NIVEXIT
NVSFSEC
WVSISFC
NVSISPEV

WSAM system-file handling for FHAT , FISER and FOIC .
WVSAM system-file handling for FSPOOL .

WVSAM system-file handling for FSZC .

WVSAM system-file handling for Natural ISPF.

o s () (R =

IBM's record-level sharing (RLS) query routine to support RLE=CEZCK , /05 only (not CICS).

Database Management System Interfaces

487

488

40 Customizing Natural for VSAM

= Customizing the Natural Parameter MOQUIEcueviiiiiiiiiii e 490
= Assembling the VSAM-specific Natural Parameter Moduleccooeeiiiiiiiiiiiiiecice e 492
B Natural /O Modules fOr VSAMeeiiiiie et e e e e e 492

489

Customizing Natural for VSAM

The Natural parameters in a VSAM environment are defined in one location:

® the Natural standard parameters, contained in the Natural parameter module; see Building a
Natural Parameter Module in the Operations documentation,

® the Natural parameters specific to VSAM, also contained in the Natural parameter module; see

parameter macro NTVSAM in the Parameter Reference documentation.

The Natural parameter module can be edited to conform to your site standards, and then assembled
and linked using the appropriate jobs (see Installing Natural for VSAM Installation for z/OS and In-
stallation for z/VSE documentation).

Customizing the Natural Parameter Module

To be able to run Natural in a VSAM environment, you must include the profile parameter VSIZE,
the NTDB and the NTVSAM macro in your Natural parameter module (see the section Installing Nat-
ural for VSAM in the Installation for z/OS and Installation for z/VSE documentation).

For an Adabas system file:

VSIZE=72,
NTDB VSAM, vsam-dbid
NTVSAM

For a VSAM system file:

VSIZE=160,

FNAT=(vsam-dbid, fnr,dd-name) ,
FUSER=(vsam-dbid, fnr,dd-name),
FDIC=(vsam-dbid, fnr,dd-name),
FSPOOL=(vsam-dbid, fnr,dd-name),
FSEC=(vsam-dbid, fnr,dd-name)

NTDB VSAM, vsam-dbid
NTVSAM ... SFILE=ON,...

dd-name is the logical name (DD or DLBL) of the system file; see also Installing Natural for VSAM
in the Installation for z/OS and Installation for z/VSE documentation.

Note: If you use VSAM system files with Natural ISPF, see also the Natural ISPF document-

ation.
Below is information on:

= \/SIZE Parameter
= NTDB Macro

490 Database Management System Interfaces

Customizing Natural for VSAM

= NTVSAM Macro
VSIZE Parameter

VSIZE is a Natural profile parameter which can also be specified dynamically. It is used to specify
the size of the Natural buffer area for VSAM and defines the maximum memory usage for the in-
ternal tables of the Natural interface to VSAM,; the actual sizes of these tables depend on the values
set in the Natural parameter module (see Assembling the VSAM-specific Natural Parameter
Module).

Possible values are 0, 1 - 512 KB.

If you use the default values specified in the Natural parameter module, the value of the VSIZE
parameter must be at least 72 KB.

If VSIZE is set to 0, Natural for VSAM is not available and a corresponding error message is returned
when trying to access VSAM files. Disabling Natural for VSAM leads to slight performance im-
provements because of skipping the initialization, relocation and roll efforts of the Natural interface
to VSAM.

NTDB Macro

The NTDB macro is used to specify the database numbers that relate to VSAM files; that is, the lo-
gical assignments available for Natural.

The value range of NTDB parameters is described in the Natural Parameter Reference documentation.

] Note: Ensure that the DBIDs selected in the NTDB macro for VSAM do not conflict with

DBIDs selected for other database management systems.
NTVSAM Macro

The NTVSAM macro is used to specify the VSAM specific parameters.

The value range of the NTVSAM keyword subparameters is described in the Natural Parameter Ref-
erence documentation

Database Management System Interfaces 491

Customizing Natural for VSAM

Assembling the VSAM-specific Natural Parameter Module

If the default values supplied in the Natural parameter module do not meet your requirements,
you can change the parameter values to suit your environment. The individual VSAM-specific
parameters contained in the Natural parameter module are described in the following section.

The VSAM-specific Natural parameter module is created by assembling the macro:
B NTVSAM
and optionally one or more of the following macros:

= ONTVEXIT
= NTVLSR
= NTVTVSD

If more than one macro is specified, the NTVSAM macro must be specified first; further macros after
the NTVSAM macro can be specified in any order.

Natural 1/0 Modules for VSAM

The Natural I/O module for VSAM depends on the actual environment in use.

All available I/O modules are delivered in source form so you can make site-specific modifications
and use environment-specific macros and/or precompilers. The I/O module must be linked to the
Natural parameter module.

The I/O modules available are:

= NVSCICS Module
= NVSMISC Module

NVSCICS Module

The NVSCICS module is required for CICS under z/OS or z/VSE. The module contains the following
parameter:

492 Database Management System Interfaces

Customizing Natural for VSAM

&FCTRELI - Indicator of Reliable Remote FCT Entries

The &FCTRELI parameter indicates whether the key length and record size of a remote file are
correctly defined in the FCT entry of the Application Owning Region (AOR).

Possible values | Default value

Oorl 0

When this parameter is set to 1, NVSCICS assumes a correct FCT entry.

When this parameter is set to 0, NVSCICS issues dummy commands to force opening of the file in
the File Owning Region (FOR) region and then repeats inquiring for the real values.

If the FCT entry does not contain a key length definition, NVSCICS uses the key length of the cor-
responding VSAM DDM.

NVSMISC Module

The NVSMISC module is required in all environments except for CICS. The module mainly consists
of the name of the relocatable module for z/VSE and the NVMMISC macro, which is used to generate
the NVSMISC I/O interface according to your operating system and/or TP-monitor environment.

NVSMISC is specified as follows:

name NVMMISC NONRLS=value TIMEOUT=valueDSECTS=valueDEFER=value COMMIT=value ERROR=value
HFACTOR=value READINT=value SMARTS=value TVS=value

The name of the relocatable module must be 8 characters long; the default name is NVSMISCD (z/VSE
only).

The individual parameters are described in the following section; specify these parameters according
to your requirements.

NONRLS - Switch from RLS to Non-RLS Mode
This parameter is ignored under z/VSE.

When Natural for VSAM issues an RLS-0PEN for an RLS file and this file has already been opened
in non-RLS mode in this z/OS session, this parameter specifies whether Natural for VSAM issues
an open retry in a non-RLS mode, or whether an open error occurs.

Database Management System Interfaces 493

Customizing Natural for VSAM

Possible values | Default value

YES/NO YES

TIMEOUT - Timeout in Seconds for an RLS Request
This parameter is ignored under z/VSE.

This parameter specifies the time in seconds Natural for VSAM is waiting to obtain a lock on a
Natural for VSAM record when a lock on the record is already held by another user. For further
details refer to the IBM manual z/OS DFSMS Version 1.6 or higher, Macro Instructions for Data Sets.

Possible values | Default value

0-10 0

DEFER - Defer Writes in LSR Pools
This parameter only applies in batch mode and under TSO.

This parameter specifies whether write operations to disk are to be deferred in the LSR pool. If so
and if the LSR pool becomes full, Natural for VSAM writes to disk those 5% of the pool area which
have not been used for the longest time.

Possible values | Default value

YES/NO NO

DSECTS - List VSAM System DSECTs

The DSECTS parameter specifies whether the VSAM system DSECTs are to be listed or not.

Possible values | Default value

YES/NO NO

COMMIT - Support of Buffer Flush for LSR Pools
This parameter only applies in batch mode and under TSO.

The COMMIT parameter specifies whether all non-committed updates in any LSR pool are to be
written to disk with each END TRANSACTION statement of a user program.

494 Database Management System Interfaces

Customizing Natural for VSAM

Possible values | Default value

YES/NO NO

| Note: The specification of COMMIT=YES increases the I/O rate considerably.

ERROR - Issue Initialization Error

This parameter issues a Natural initialization error if any DD or DLBL card is omitted in the
runtime JCL (see also the macro NTVLSR).

Possible values | Default value

YES/NO YES

If set to NO, processing is continued and Natural for VSAM will be initialized.
HFACTOR - Factor for Hiperspace Buffers

The HFACTOR parameter specifies a factor for the creation of ESO Hiperspace buffers. When initial-
izing such a Hiperspace, the corresponding BLDVRP request may lead to a Natural error message,
in which case the value of HFACTOR must be reduced.

Possible values Default value

0 - a value where a corresponding Natural error message is returned 100

READINT - Read Integrity for Upgrade Set

The READINT parameter specifies whether read integrity for an upgrade set should be granted or
not.

Possible values | Default value

YES/NO NO

SMARTS - Support of SMARTS and Com-plete

The SMARTS parameter is required if installing Natural for VSAM under SMARTS and/or in a
Complete environment.

Possible values | Default value

YES/NO NO

TVS - Support of DFSMS Transactional VSAM Services (DFSMStvs)

This parameter is ignored under z/VSE. The TVS parameter specifies the support of DFSMStvs in
a z/OS environment.

Database Management System Interfaces 495

Customizing Natural for VSAM

Possible values

Default value

YES/NO

NO

496

Database Management System Interfaces

41 Operation

®[NVOKING NATUTAl FOr VSAM ...t 498
B OPEN/CLOSE PrOCESSING ... vvvteettiietee ettt e ettt e e ettt et e e ettt e e et e e e et e e e ettt e e e e sttt e e e e nneeee e e 498
L L0 = oot 501
= Buffers for Memory ManagemeNntuuiiiiiiiii e 511
= Application Programming INEIACESooouviiiiiiiiee e 516

497

Operation

This section provides information on various operational aspects of Natural for VSAM:

Invoking Natural for VSAM

If the Natural interface to VSAM is available, it is initialized when you start a Natural session. It
can be switched off by setting the VSIZE parameter to 0 (see also the relevant description in the
section Natural for VSAM Parameters).

OPEN/CLOSE Processing

In this section, VSAM files means both VSAM user files and VSAM Natural system files.

Database OPEN/CLOSE processing is controlled by the Natural parameter 0PRB, which is described
in Profile Parameters in the Natural Parameter Reference documentation.

Instead of using the OPRB parameter, you can also use the NTOPRB macro of the Natural parameter
module, which is described in Parameter Modules in the Natural Parameter Reference document-
ation.

An OPEN/CLOSE error must be followed by the NAT3539 error message. In a TP environment, the
NAT3516 error message can also occur during an active Natural session if the file is closed.

| Note: Fordynamic 0PEN handling within a session, you can use the application programming
interface USR2008N.

The section below covers the following topic:

= OPRB Parameter for VSAM Databases
OPRB Parameter for VSAM Databases

The 0PRB parameter is not applicable under CICS or Com-plete, because in these environments,
the TP monitor controls the OPEN/CLOSE processing of VSAM files.

By default, thatis, without the 0PRB parameter being specified, VSAM files are opened for input/out-
put so that they can be read and/or updated.

If you want all used VSAM files to be opened for input only, you specify the 0PRB parameter using
the following syntax:

498 Database Management System Interfaces

Operation

OPRB = (.ALL)

With this syntax, you specify an OPEN request for all VSAM files to be addressed. All files are
opened for input only; individual files, however, are only opened when they are actually addressed
by a given program.

| Note: If you want all VSAM system files to be opened for input, you have to set the Natural

profile parameter ROSY=0N; see also the relevant section in the Natural Parameter Reference
documentation.

If you want to open VSAM files for input (I) or output (0) per DBID, use the following syntax:

I
{ } [,string; ...]
MODE = 0 [, ...1)

string;

OPRB = (DBID =nnn,

With MODE, you specify a global default handling for DBID nnn.

If you do not want to specify a default handling per DBID or if, for some VSAM files, you want
an input/output handling other than the default one, you specify the string parameter in the ap-
propriate way.

The DBID must be defined with the NTDB macro as a VSAM DBID, and string varies depending
on the operating system (see below).

Important: If several strings are to be defined, a semicolon (;) must be specified as delimiter
character. If not, the semicolon must be omitted.

Under z/0S

Under z/OS, you specity the string as follows:

FNR =nnn

DD =dd-name, TYP =

o o m X
——
— ©
[——
— e,
[——
—/
O
[

The specified VSAM files must be defined as DDMs. However, instead of specifying the file
number of the Natural DDM that corresponds to the VSAM file to be addressed, the dd-name and
type (KSDS, ESDS, RRDS, or PATH) of this file can be specified directly, which saves you from having
to look into the DDM first.

Database Management System Interfaces 499

Operation

Individual files can be opened for output (option O), input (option I), opened before they are ac-
tually accessed (option B), or when they are accessed for the first time (option A), opened as reusable
file (option R).

For performance reasons, it is sometimes desirable to modify the VSAM STRNO (string number)
parameter to provide more index and data buffers. By default, Natural uses string number 3 for
input processing and string number 5 for output processing. Since STRNO is specified in the JCL,
both values can be modified with the AMP parameter in the corresponding DD card.

Under z/VSE

Under z/VSE, no string number can be specified in the JCS. Therefore, the syntax has been enhanced
to be able to specify a string number with the 0PRB parameter, where nn can be in the range from
1to 10. Thus , string represents:

FNR = nnn

0 B [,STRNO
, , [LR]
DD =dd-name, TYP = I A =nn]

o o m X

Sample OPRB Specification

The following 0PRB example opens the specified files for input, while files not specified are opened
for output by default:

OPRB=(DBID=254,MODE=1I)
or
OPRB=(DBID=254,FNR=21,1,A;FNR=22,1,A)

The VSAM DBID and FNR as specified in the DDM are required. Option I specifies the corres-
ponding FNR to be opened for input; option A specifies the corresponding FNR to be opened only
if the file is accessed by a Natural program.

The corresponding NTOPRB macro example would be:
NTOPRB 254, 'MODE=I"
or

NTOPRB 254, 'FNR=21,I,A";'FNR=22,1,A"

500 Database Management System Interfaces

Operation

Natural File Access

The Natural interface to VSAM supports VSAM entry-sequenced data sets (ESDS), key-sequenced
data sets (KSDS), relative record data sets (RRDS), variable relative record data sets (VRDS), and
paths for alternate indexes.

To enable Natural to access VSAM files, a Natural DDM is required for each VSAM file that is to
be made accessible to Natural programs.

The section below covers the following topics:

= Natural Data Definition Modules (DDMs)

= SYSDDM Main Menu

= Catalog DDM

= Edit DDM

= Restrictions with DDM Generation as Compared to Adabas

Natural Data Definition Modules (DDMs)

A data definition module (DDM) must be set up for each file. DDMs are created and maintained
with Predict (see the Predict documentation for details) or with the Natural utility SYSDDM; they
are stored in the Natural dictionary system file (FDIC).

With VSAM, in addition to logical Natural DDMs, also VSAM user DDMs can be created from
one physical DDM.

If you do not have Predict installed, use the SYSDDM utility to generate DDMs from VSAM files.
The SYSDDM utility is described in the Natural Editors documentation; the parts of it relevant to
VSAM are described in the following sections.

All DDMs used within a session are located in the Natural buffer pool. This increases performance
and enables synchronization of DDM usage across multiple sessions.

SYSDDM Main Menu

The following functions on the main menu of the SYSDDM utility are relevant to Natural for VSAM:

Function Explanation

Catalog DDM The DDM currently in the work area is cataloged, making it available for use within
Natural applications. The DDM must have previously been placed in the work area
by a READ command (see also Editor and System Commands in the SYSDDM Utility
documentation), or have been entered by using the Edit DDM function described
below.

Below are further details about Catalog DDM.

Database Management System Interfaces 501

Operation

Function

Explanation

Edit DDM

Reads a DDM from the system file FDIC and into the SYSDDM work area, where it can
be edited.

List DDMs

Displays a single DDM source (DDM editor not invoked) or a list of DDMs. The
display format and options are identical to those of the LIST DDM command (see also
Editor and System Commands in the SYSDDM Utility documentation).

Copy DDM to
Another FDIC File

One or all DDMs can be copied to a different Natural system file (FDIC) and/or to a
different database. This is, for example, necessary during conversion of a Natural
application from test to production status.

In addition to the DDM name, DBID and FNR, with Natural for VSAM the file type
V must be specified, as well as the DD/FCT name of the Natural system file FDIC, if
the FDIC file is a VSAM file.

List DDMs
with Additional
Information

Displays a list of the DDMs stored in the specified FDIC system file. From the list,
you can select individual DDMs for further processing. This function differs from

the List DDMs function in that it displays additional items of information on the
individual DDMs.

The information displayed includes file name, DBID, file number, DDM length,
security type (with Natural Security only), file type (thatis, LOG.DDM, PHY .FILE,
LOG.FILE or USERDDM for VSAM DDMs) and remarks as, for example, the VSAM
file organization (KSDS, VRDS, RRDS, ESDS); see the section SYSDDM Utility in the
Natural Editors documentation for details.

Delete DDM

Deletes a previously cataloged DDM from the Natural system file FDIC. The DDM
remains in the work area.

Important: If a DDM is deleted with SYSDDM, the corresponding Natural Security
file profile is automatically deleted.

The following parameters relevant to Natural for VSAM can be specified for the various functions:

Parameter |Explanation

DDM Name |The name of the DDM to be processed.

FNR The file number of the DDM to be processed.

DBID The database which contains the DDM to be processed.

Replace |IfY is entered, DDMs which are being copied or cataloged and which are already existent are
replaced. If N is entered, such DDMs are not replaced.

FDIC Type|The type of the system file FDIC.

DDM Type |The type of the DDM. For VSAM, the type must be V.

DBID Type|The type of the DDM. For VSAM, the typeis V.

502

Database Management System Interfaces

Operation

Catalog DDM

A DDM can be cataloged by either using function code C in the SYSDDM main menu or entering the
CATALOG command in the Command line of the DDM maintenance editor.

File name and file number are required for this function. With Natural for VSAM, a DBID assigned
to VSAM must be specified. If no DBID is entered, it is assumed to be 0 and is generated dynam-
ically at execution time based on the DBID of the Natural user system file (FUSER) in use (see also
the description of the UDB parameter in the section Profile Parameters in the Natural Parameter Ref-
erence documentation).

If a DBID assigned to VSAM is specified (and V for VSAM in the field Type of this DDM), SYSDDM
prompts you for additional information.

Note: The actual DBID assignments for VSAM is made with NTDB macros when assembling

the Natural parameter module; see Installing Natural for VSAM in the Installation for z/OS
and Installation for z/VSE documentation.

Additional Options for VSAM Files

If the DDM is to access a VSAM file, an additional screen, requiring the entry of additional VSAM
options, is displayed:

11:24:04 Fxxxx NATURAL SYSDDM UTILITY *#***x* 2006-05-25
- Catalog a VSAM file/DDM -

DBID 254 FNR 12 DDM AUTOMOBILES-VS Def seq

VSAM file information

VSAM file name AUTO
VSAM View (Y/N) N
Logical related to FNR

User defined prefix

VSAM file organization

KSDS, ESDS, RRDS, VRDS (K,E,R,V) .. K

Compress file (Y/N) N
Zones X'0C'" / X'OF' (C/F) F

The additional options for VSAM files consist of two parts: VSAM File Information and VSAM
File Organization.

Database Management System Interfaces 503

Operation

VSAM File Information Options

Option Explanation

name example:

VSAM file The DDNAME/ECT entry as defined to the TP monitor or when using batch mode, for

//PERSON DD ...

where PERSON would be entered under VSAM file name.

(DDM)

VSAM View | Indicates whether this DDM represents a logical user DDM or a physical DDM.

Y

Indicates that the DDM represents a logical DDM, which means that it does
not necessarily correspond to the physical layout of the VSAM file. A logical
DDM must use the same file number as the physical DDM from which it is
derived, and the corresponding physical DDM must exist at the time the
user DDM is invoked during execution. The short names of the logical DDM
must be identical to those defined in the physical DDM. The sequence of
fields within the DDM can be different from the physical sequence. The
primary-key field must not be deleted from the DDM.

Since the logical DDM is a subset of the physical DDV, the corresponding
subsets of the underlying VSAM file appear to the user as independent files
with different record layouts. When processing a logical DDM, the user
obtains records only from the corresponding subset and not from any other
subset contained in the same physical VSAM file.

Indicates that the DDM represents a physical DDM. Only one DDM with
a given file number can be used as the physical DDM for a VSAM file. This
physical DDM is used internally by Natural to calculate field offsets.

Logical DDMs are used to define different record types in a physical VSAM file. At DDM generation,
these record types are identified by specifying a prefix for the primary key.

If a logical DDM is read, only records whose key begins with the specified prefix are returned
from the VSAM file. Records beginning with any other prefix are ignored. If not specified otherwise,
the prefix corresponds to the logical file number.

A different prefix must be assigned to each logical DDM. Natural automatically links the prefix
with the logical key. The field layout in the logical DDM need not be the same as in the physical

DDM.

The following two options are used only if the DDM represents a logical file which is to be derived
from a physical VSAM file.

504 Database Management System Interfaces

Operation

Option Explanation

Logical related to FNR |This option is used to enter the file number of the physical DDM from which the
logical file or DDM is derived.

A logical DDM corresponds to a record type which is controlled by a prefix. Several
logical record types can be contained in a physical VSAM file. The record types
are distinguished by a prefix which determines which records are to be processed.
See the example below.

User defined prefix |The prefix value which is to be assigned for the logical file.

The default prefix value is the logical file number (length 3).

Example of Logical Related to FNR

Physical Data
Set

Key

X1234 DDM1| PREFIX «| FNR «
X2345 =X = 10
X3456

11234 DDM2 |PREFIX «<|FNR «

21209 =7 = 11
29000
Read DDM1
with key
Display key
results in:
Key
1234
2345
3456

Database Management System Interfaces 505

Operation

VSAM File Organization Options

Option Explanation

KSDS, ESDS, The type of VSAM file:
RRDS, VRDS

K KSDS file (default)
ESDS file
R RRDS file
v VRDS file
Compress file Specifies whether the file is to be compressed or not. The default is .
N Indicates that the file is not to be compressed. The file is written in the

maximum length (that is, the length of all fields within this file) as
defined in SYSDDM or Predict.

Y Indicates that the file is to be written in variable record length. During
compression, the record is scanned backwards for default values, which
are blank for alphanumeric fields, low values for binary fields, low values
with a zone for packed fieldsand X ' F0 ' for numeric fields. Compression
stops as soon as the first non-default value is detected or the first
descriptor is found. The new computed length is used to write the record
to the file; this applies to KSDS and ESDS files only.

Compression of trailing null values in VSAM records minimizes the
space required for VSAM records. The application programming interface
USRO100N in the library SYSEXT is provided to be able to maintain the
logical record length by a Natural program.

Zones X'0C'/ X'0F'|In Adabas all positive packed values have X' 0F ' as a zone. This value could be different
in VSAM.

F Indicates that all packed data are written to the VSAM file with the zone X' 0F '.
This is the default.

C Indicates that all packed values are written to the VSAM file with the zone X' 0C".

Edit DDM

To edit the DDM currently loaded in the work area, you can use the DDM editor of the SYSDDM
utility. If no DDM has been read into the work area, an empty screen is displayed, allowing the
manual entry of a DDM definition.

Instead of entering a complete DDM manually, you can read an existing DDM definition into the
work area, by entering EDIT ddm-name in the DDM editor Command line. This DDM can be
modified and cataloged under a different name.

| Note: When you modify a DDV, all objects which reference this DDM have to be cataloged

again.

506 Database Management System Interfaces

Operation

DDM Editor
Example:
11:26:09 xxx%x% EDIT DDM (VSAM) ****x* 2007-02-25
DDM Name EMPLOYEES-VS Def.Seq. DBID 254 FNR 1
Command
I T L DB Name F Leng S D Remark
5 © © oo cooosccooooooos BOP cccccs=ssssos = oocoo > © coooooocoosoococooooooos
1 AA PERSONNEL-ID A 8.0 P
CNNNNNNN
C=COUNTRY
1 AB FULL-NAME
2 AC FIRST-NAME A 20.0 N
2 AD MIDDLE-NAME A 20.0 N
2 AE NAME A 20.0 A
1 AF MAR-STAT A1.0 F
o M=MARRIED
b S=SINGLE
o D=DIVORCED
% W=WIDOWED
1 AG SEX A1.0 F
1 AH BIRTH N 6.0
G 1 Al FULL-ADDRESS
M 2 Al ADDRESS-LINE A 20.0 N
2 AJ CITY A 20.0 N

If you enter the HELP command or a question mark (?) in the Command line, the editor help in-
formation is displayed.

The header information of the DDM editor is:

DDM Name

The name used to reference the DDM in a Natural program. The name must be unique within
the specified Natural system file.

Def. Seq.

The default sequence by which the file is read when it is accessed with a READ LOGICAL
statement in a Natural program.

DBID

The database in which the file to be accessed with the DDM is contained.

With Natural for VSAM, a DBID assigned to VSAM must be specified. If 0 is specified, the
default DBID for the Natural user system file (FUSER) as defined in the Natural parameter
module is used.

Note: The actual DBID assignments for VSAM are made with NTDB macros when assembling

the Natural parameter module; see Installing Natural for VSAM in the Installation for z/OS and
Installation for z/VSE documentation.

FNR

The number of the file being referenced.

The specified file number is used internally by Natural for VSAM.

Database Management System Interfaces

507

Operation

The DDM itself comprises the following field definition attributes which can be entered or modified:

Attribute |Explanation

I Line indicator. This field is used by the DDM editor to mark lines.

E Lines containing an error detected during execution of the CHECK command.
S Lines containing a scanned value.

X/Y Lines selected for copy/move operation.

T Field Type:
G Group header.
M Multiple-value field.
P Periodic group header.
* Comment line.

blank Elementary field.

L Level number assigned to the field. Valid level numbers are 1 - 7. Level numbers have to be
specified in consecutive ascending order.

DB For VSAM files, the two-character code which is used in VSAM.

Name |A 3- to 32-character external field name. This is the field name used in Natural programs to
reference the field.

F Field format. For valid formats, refer to User-Defined Variables, Format and Length of User-Defined
Variables (in the Natural Programming Guide).

Leng |Standard field length. This length can be overridden in a Natural program. For numeric fields
(format N), the length is specified as nn.m where nn represents the number of digits before the
decimal point and m represents the number of digits after the decimal point.

S This attribute is not applicable to Natural for VSAM.

Descriptor Option.

A Indicates that the field is an alternate index for a VSAM file.
P Indicates that the field is a primary key.

S Indicates that the field is a primary subdescriptor or superdescriptor; that is, a primary key
for a VSAM file.

X Indicates that the field is an alternate subdescriptor or superdescriptor; that is, an alternate
index for a VSAM file.

Remark|A comment which applies to a field and/or the DDM.

Most of the editor and line commands available with the Natural program editor also apply to
the Natural DDM editor. Special commands, such as PROFILE, RENUMBER, SET, SHIFT, etc. and some
line commands are not available. Refer to the section SYSDDM Utility in the Natural Editors doc-
umentation and to the section Program Editor in the Natural Editors documentation for more details
on editor commands.

508 Database Management System Interfaces

Operation

Extended Editing at Field Level

The DDM editor can also be used to enter or modify DDM definitions at field level.

Extended editing mode is used to specity field headers and edit masks to be applied when the
field is used in a DISPLAY or INPUT statement, as well as further specifications for VSAM DDM
definitions. All the other information specific to the field (field type, length, name, format, remarks)
can also be modified at this point.

The extended editing mode is invoked by entering the line command . E in the first positions of
the line containing the field.

A range of field definitions can be selected for editing by entering . Ennn where nnn is the number
of fields to be selected.

The field level editing mode is terminated when you press ENTER with or without having made
any modifications.

The Extended Field Editing screen displays special attributes of the field definition if the edited
DDM is a VSAM DDM:

11:25:26 xxFxx*x EDIT DDM (VSAM) ****x% 2007-02-25
- Extended Field Editing -
DDM Name AUTOMOBILES-VS Def.Seq. DBID 254 FNR 12
I T L DB Name F Leng S D Remark
S TOp ~-mmmmmmmmmm s oo s s mmmmsom oo
1 GA OWNER-PERSONNEL-NUMBER N 8.0 A SECONDARY KEY
Field Header OWNER/NUMBER

Field Edit Mask

Alternate Index Name .. AUTOY___

Maximum Occurrence 1

Upgrade Flag _ (X)
Unique Key Flag _ (XD
Null Flag _ (XD

Field GA redefines field __ with offset 0

The following attributes can be specified:

Database Management System Interfaces 509

Operation

Attribute

Explanation

Alternate Index Name

If the field references a VSAM alternate index or a path (denoted by an A in column
D), the index or path name must be entered here.

Maximum Occurrence

The number of occurrences for a multiple-value field or a periodic group (denoted
by an M or P in column T).

The following flags only apply to alternate indexes and not to paths:

Upgrade Flag

Since Natural does not use VSAM paths, upgrading can be performed either by
Natural or by VSAM when using a KSDS or ESDS file with alternate indices defined.

A blank value indicates that upgrading the alternate index is to be done by VSAM,
which is the default. If VSAM is to perform the upgrading, define the VSAM file
using IDCAMS with UPGRADE.

If you enter an X, upgrading of the alternate index is performed by Natural. If so,
the AIX must be defined with the NONUPGRADE option.

Note: For LSR handling, it is recommended that you specify this option. Under
CICS, the FCT entry must also contain the VARIABLE option.

Sort Flag

If this option is marked with an X, the alternate index is to be read in ascending or
descending value order.

This option only takes effect if the Upgrade Flag option is specified, too.

Unique Key Flag

If this option is marked with an X, Natural ensures that the values of the alternate
index field are unique. An attempt to update with a non-unique value results in
an error message. The default value is a blank.

This option only takes effect if the Upgrade Flag option is also specified.

Null Flag

A value of S indicates that null values for the alternate index field are suppressed.
The default value is a blank.

This option only takes effect if the Upgrade Flag option is also specified.

Note: For all DDMs cataloged with Natural which contain alternate indexes and any spe-

cifications for the above flags, all flags are nullified during runtime as soon as path processing
is activated for these DDMs.

The last two fields on the screen are used to define sub-/superdescriptors for a VSAM file. For
example, to define the field S1 as superdescriptor beginning in field BA and ending in field BB, the
following would be entered:

510

Database Management System Interfaces

Operation

S1 redefines BA with offset 0
The field S1 must have been defined to VSAM as a primary or secondary key.

VSAM superdescriptors can only be constructed from fields which are contiguous. To define the
field S2 as a superdescriptor which begins in the 11th position of field BA and ends with the first
two positions of field BB, the following would be entered:

S2 redefines BA with offset 10

In addition, the length of S2 would have to be set to 7. As mentioned above, S2 must have been
defined as a primary or alternate index to VSAM.

Restrictions with DDM Generation as Compared to Adabas

® No keys can be defined within periodic groups.

® Descriptors that contain multiple-value fields are not allowed with VSAM.

Natural DDMs for VSAM cannot contain multiple-value fields or periodic groups within periodic
groups.

The same field cannot be defined more than once in the same DDM. A data definition as in the
following example would lead to unpredictable results when used with VSAM:

Example:

G 01 AB FULL-NAME
02 AC FIRST-NAMEA 20.0 N

02 AD MIDDLE-TI A 1.0 N /* duplicate short name
02 AE NAME A 20.0
01 AD MIDDLE-NAME A 20.0 N /* duplicate short name

Natural would treat the field MIDDLE - I not as a redefinition of MIDDLE - NAME but as a separate field.

Buffers for Memory Management

The VSIZE parameter is suballocated into ten different areas whose sizes are determined by the
assembly of the Natural parameter module. The different VSAM areas are split into fixed and
variable buffer types. If there is insufficient space in the VSIZE buffer for all Natural parameter
module areas, you receive error message NAT3592 during initialization. At runtime, error message
NAT3513 can occur for fixed buffer types. In this case, you must adapt the corresponding the
Natural parameter module value. Variable buffers are increased during runtime, NAT3513 does
not occur. Some buffer sizes depend on the use of VSAM system files. The relevant buffers are
FCT, FWA, TSA and UPD.

Database Management System Interfaces 511

Operation

The VSIZE parameter is suballocated as follows:

= FCT - File Control Table

= FWA - File Work Area

= OPV - Open Table

= SFT - System File Table

= SWT - Switch Table

= TAF - Table of Accessed Files

= ROLL - Table of Session Status Information
= DFB - Table of Decoded Format Buffers
= TSA - Table of Sequential Access

= UPD - Table of Update Records

= \/CA - Natural Control Area for VSAM

FCT - File Control Table

FCT contains file-specific information and is a fixed buffer type.

FCT also contains the complete VSAM access control block (ACB), information on existing user
exits, and information on the application programming interface USRO100N.

The size of the table is determined by using the following formula and then rounding up to a
double-word boundary:

(72+ ACB-Tength) (TAFE*2)+80

Without VSAM system files, the default setting is:
(72+76)(10*2)+80=3040

With VSAM system files, the default setting is:
(72+76)(26%2)+80=7776

FCT and SWT (see below) share a common buffer area.
FWA - File Work Area

FWA contains information on a VSAM request and is a fixed buffer type.
FWA also contains information on the VSAM request parameter list (RPL).

The size of the table is determined by using the following formula and then rounding up to a
double-word boundary.

(40 + RPL-Tength) (TAFE *2) + 80

Without VSAM system files the default setting is:

512 Database Management System Interfaces

Operation

(40+76)(10*2)+80=2400
With VSAM system files the default setting is:
(40 +(76*4)) (26*2)+80=17968

FWA and OPV (see below) share a common buffer area.
OPV - Open Table

OPV contains information on an 0PRB string and is a fixed buffer type.

The size of the table is determined by using the following formula and then rounding up to a
double-word boundary:

24* (TAFE*2)+48

The default setting is :
24*(10*2)+48=528

OPV and FWA share a common buffer area.

SFT - System File Table

This table is only active if VSAM system files are defined. The buffer type is fixed.

This area contains the description of the VSAM system files FNAT, FUSER, FDIC, FSEC and FSPOOL
as well as the system file used by Natural ISPF, if available.

The size of the area is 8192 for SFILE=0N. The default setting is 0.
SWT - Switch Table

SWT contains information necessary for the application programming interface USR1047N for dy-
namic DD/DLBL modification. SWT is allocated only if the value specified for the parameter
DDSWITE in NTVSAM is greater than 0.

The SWT buffer type is fixed.

The size of the table is determined by using the following formula and then rounding up to a
double-word boundary:

24 * DDSWITE + 48
The default setting is 0.

SWT and FCT (see above) share a common buffer area.

Database Management System Interfaces 513

Operation

TAF - Table of Accessed Files

This area describes the record layout for each file accessed by Natural; it is created by reading the
physical or logical DDM for the file. Each TAF entry consists of a header entry and an entry for
each field in the DDM. The header entry describes the type of file, file name, primary key, etc. The
field entries describe the format, offset, and length of every field in the file. The layouts for the
header and field entries are described in the macros NVMTAF and NVMFLD respectively.

The TAF buffer type is fixed.

The size of the table is determined by using the following formula and then rounding up to a
double-word boundary:

(((32*TAFN)+112)* TAFE) + 80
The default setting is:

(((32*50)+112)*10)+80=17200
ROLL - Table of Session Status Information

This table is used to keep track of the position within a file for every active FIND or READ statement;
it is identified by the CID. This allows Natural to release all VSAM resources during a ROLLOUT
operation and then reposition itself correctly after a ROLLIN operation.

The ROLL buffer type is fixed.

The size of this area is determined by the subparameter ROLLSIZ of macro NTVSAM in the Natural
parameter module, rounded up to a double-word boundary:

TAXSIZE + 80
The default setting is:

550 + 80 =632
DFB - Table of Decoded Format Buffers

The table is suballocated into two areas, one for global format IDs (GFIDs) and one for command
IDs (CIDs).

For any given I/O request, this area describes which fields from the VSAM record area are returned
to the Natural record buffer. Each DFB (decoded format buffer) entry consists of one header,
identified by the CID or the GFID of the I/O request, plus an entry for each field to be returned to
Natural. Each field entry in the DFB contains the format, offset, and length of the field as derived
from the associated TAF entry for the file. The layouts of the header and field entries are described
in the macros NVMDFB and NVMDFF respectively.

514 Database Management System Interfaces

Operation

The DFB buffer type is fixed. If the no-space-condition occurs for GFID-oriented entries, the oldest
entries are deleted.

The size of the TDFB area is determined by using the following formula and then rounding up to
a double-word boundary:

(16 * DFBN *2+36) * DFBE * 2 + 128
The default setting is:

(16*50*2+36)*10*2+ 128 = 32848
TSA - Table of Sequential Access

The TSA is used to keep important pointers and information on each READ or F IND statement. There
is one TSA entry for each active READ and FIND statement, and each entry is identified by the CID.
The layout of the TSA is described in the macro NVMTSA.

The TSA bulffer type is variable.

The size of the area is determined by using the following formula and then rounding up to a
double-word boundary:

(104 + KEYLGH) * TSAE + 80
Where TSAE = TSA entry.
The default setting is:

(104 +32) * 10 + 80 = 1440
UPD - Table of Update Records

This area contains an entry for every READ or FIND loop that contains an UPDATE or DELETE statement.
These entries are released when an END TRANSACTION or BACKOUT TRANSACTION statement is executed.
Each entry contains control information about the record and the values of all the fields that might
be updated within the loop. The layout of each UPD entry is described in the macro NVMUPD.

The UPD buffer type is variable.

The size of the UPD area is determined by the subparameter UPDL of macro NTVSAM in the Natural
parameter module, rounded up to a double-word boundary.

The default setting is 8272 without VSAM system files and 32848 with VSAM system files.

Database Management System Interfaces 515

Operation

VCA - Natural Control Area for VSAM

VCA is a fixed length area which contains pointers, addresses, flags, and work areas that are im-
portant to a Natural environment for VSAM. The layout for this area is described in the macro
NVMCA. Within a Natural environment for VSAM, R3 always points to this area.

The size of this area is 6744 bytes.

Application Programming Interfaces

Natural for VSAM provides the following application programming interfaces (APIs) in the Nat-
ural system library SYSEXT:

API Function

USRO100N|Controls the VSAM variable record length (LRECL).
USR1047N|Supports dynamic switching of DD/DLBL names defined in a DDM.
USRZ2008N|Supports dynamic OPEN calls for VSAM data sets.

A short description of the APIs is provided in the following section; for more detailed information,
log on to the system library SYSEXT and display the text object (USRxxxxT) that corresponds to the
required APL

The section below contains information on the following APISs:

= USRO100N
= USR1047N
= USR2008N
USRO0100N
The API USRO100N controls the record length of variable VSAM files.

The APl is invoked as follows (a sample program called USR0100P is provided in the library SYSEXT):

CALLNAT "USROI10ON" parml parmZ parm3 parm4 parmb

The parameters are described in the following table:

516 Database Management System Interfaces

Operation

Parameter | Format/Length |Explanation

parml Al Specifies either of the following function codes:
G For retrieval statements; the current record length is determined for parm5.
P Forupdate/store statements; the length specified in pa rm5 becomes the current

record length.

parmZ |A8 Specifies the DD/DLBL name for the current file (optional); if specified, parmb5 is
only valid for this file.

parm3 |N5 Specifies the DBID taken from the DDM (optional); is used instead of the DD/DLBL
name and only in conjunction with parm4.

parm4 |N5 Specifies the FNR taken from the DDM (optional).

parm5 |N5 Specifies or returns the record length depending on the setting of parml.

] Note: If neither parm2nor parm3and parm4 are specified, parm5 is valid for all files.

USR1047N

The application programming interface USR1047N enables dynamic modification of DD/DLBL
names within a Natural program if the DDSWITE subparameter is specified in the NTVSAM macro. It
can be used if data are spread over several VSAM files which have different DD/DLBL names, but
the same record structure.

The APIis invoked as follows (a sample program called USR1047P is provided in the library SYSEXT):

CALLNAT 'USRIO047N" parml parmZ parm3 parm4

The various parameters are described in the following table:

Parameter | Format/Length | Explanation
parml Al Specifies either of the following function codes:
S For switching of DD names with the next following database calls.
R For resetting of DD names; the switch table entry of function S has been deleted
(see SWT - Switch Table).
parm2 |A8 Specifies the old DD name taken from the DDM.
parm3 |A8 Specifies the new DD name for the next database calls.
parm4 |P4 Return code of Natural for VSAM.

The parameter parm4 can contain the following response codes:

Database Management System Interfaces

517

Operation

Code |Explanation

0 Normal return.

4 The switch table (SWT) is too small; increase the DDSWITE subparameter in macro NTVSAM.

8 |The switch table entry has not been found; program error.

12 |Invalid function code.

16 |The switch table is not allocated; that is, the DDSWITE parameter is set to 0.

USR2008N

This application programming interface (API) is not applicable under Com-plete and CICS.

USR2008N supports dynamic OPEN calls during a Natural session if 0PSUPP=0N is specified in the
NTVSAM macro.

The APIis invoked as follows (a sample program called USR2008P is provided in the library SYSEXT):

CALLNAT 'USR2008N"' parml parmZ parm3 parm4 parmbs parmé

The parameters are described in the following table:

Parameter | Format/Length | Explanation

parml N5 Specifies the DBID taken from the NTDB macro definition; see NTDB Macro in the
section Natural for VSAM Parameters.

parmZ Al Specifies the global OPEN MODE; see OPEN/CLOSE Processing.

parm3 |A4 Specifies the data management type, for example, VSAM.

parm4 |A40/16 Specifies the valid 0PRB syntax and/or DDM long name instead of the DD=or FNR=
definitions.

parmbs |P4 Returns the Natural for VSAM error number.

parmé |A50 Returns the Natural for VSAM error text.

518 Database Management System Interfaces

42 Natural Statements and Transaction Logic with VSAM

B Natural StatemeENnts With VS AM ..o e 520
= Natural Transaction LOGIic With VSAMoiiiiiii i 525

519

Natural Statements and Transaction Logic with VSAM

This section describes special considerations on Natural statements and Natural transaction logic
when used with VSAM.

The Natural statements used to access VSAM files are a subset of those provided with the Natural
language. No new statements are needed to access a VSAM file, since each Natural statement
performs the same function regardless of the database management system or access method used.
Therefore, programs written for VSAM files can also be used to access Adabas databases.

The Natural interface to VSAM has no built-in transaction logic and uses the one of the environment
it is running in. This leads to different results depending on the environment.

Natural Statements with VSAM

This section mainly consists of information also contained in the Natural Statements documentation,
where each Natural statement is described in detail, including notes on VSAM usage where ap-
plicable. Summarized below are the particular points a programmer has to bear in mind when
using Natural statements with VSAM.

| Note: Since the Natural compiler does not check if a program adheres to the restrictions

imposed by the Natural interface to VSAM, VSAM-specific programming errors concerning
the use of Natural statements only occur when the program is executed.

Any Natural statement not mentioned in this section can be used with VSAM without restrictions.

= BACKOUT TRANSACTION
= DELETE

= END TRANSACTION

= FIND

= GET

= GET SAME

= GET TRANSACTION DATA
= HISTOGRAM

= READ

= STORE

520 Database Management System Interfaces

Natural Statements and Transaction Logic with VSAM

= UPDATE
BACKOUT TRANSACTION

The BACKOUT TRANSACTION statement is used to back out all database updates performed during
the current user logical transaction. This statement also releases all records held during the trans-
action.

If used with Natural for VSAM, the BACKOUT TRANSACTION statement releases records held in the
UPD table. It does not back out transactions unless Natural is running under a TP monitor or
DFSMStvs which supports dynamic transaction backout (for example, CICS). In this case, a ROLLBACK
to the last SYNCPOINT is issued.

DELETE

The DELETE statement is used to delete a record from a VSAM file.

The use of the DELETE statement places each record selected in the corresponding FIND or READ
statement in hold status.

The DELETE statement is not valid for VSAM entry-sequenced data sets (ESDS).
END TRANSACTION

The END TRANSACTION statement is used to indicate the end of a logical transaction. A logical
transaction is the smallest logical unit of work (as defined by the user) which must be performed
in its entirety to ensure that the information contained in the VSAM file is logically consistent.

The END TRANSACTION statement also releases all records placed in hold status during the transaction.

An END TRANSACTION only releases records held in the UPD table unless Natural is running under
a TP monitor or DFSMStvs which supports dynamic transaction backout (for example, CICS). In
this case, an END TRANSACTION statement causes a SYNCPOINT to be issued.

FIND

The FIND statement is used to select a set of records from the VSAM file based on a search criterion
consisting of fields defined as descriptors (keys).

The WITH clause is used to specify the search criterion consisting of key fields (descriptors) defined
in the VSAM file.

Only VSAM key fields can be used.

The number of records to be selected as a result of a WITH clause can be limited by specifying the
keyword LIMIT together with a limit value (operand I)expressed as a numeric constant or a user-

Database Management System Interfaces 521

Natural Statements and Transaction Logic with VSAM

defined variable. The limit value is enclosed within parentheses. If the number of records selected
exceeds the limit value, the program is terminated with an error message.

The descriptor must be defined in a VSAM file as a VSAM key field. In a DDV, it is marked with
P for primary key, S for primary sub/superdescriptor, X for alternate sub/superdescriptor or A for
alternate key (see Edit DDM in the section Operation, and the SYSDDM Utility as described in the
Natural Editors documentation).

The formats of the descriptor and the search value must be compatible.

The following Natural system variables are available with the FIND statement:

Variable Content

*ISN The system variable *ISN contains the relative byte address of the record currently being
processed (ESDS files only).

This variable is not available for the FIND NUMBER and FIND FIRST statements.

*NUMBER |The system variable *NUMBER contains the number of records which satisfied the basic search
criterion specified in the WITH clause, and before evaluation of any WHERE criterion.

*NUMBER only contains a meaningful value if the EQUAL TO operator is used in the search
criterion. With any other operator, *"NUMBER will be 0 if no records have been found; any other
value indicates that records have been found, but the value will have no relation to the number
of records actually found.

The same applies to *NUMBER with the FIND NUMBER statement.

*COUNTER|The system variable *COUNTER contains the number of times the processing loop has been
entered.

This system variable is not available for the FIND NUMBER statement.

The FIND statement is only valid for key-sequenced (KSDS) and entry-sequenced (ESDS) VSAM
data sets. For ESDS, an alternate index or a path for an alternate index must be defined. Relative
record data sets (RRDS) are not allowed, since they do not contain any key fields (descriptors).

GET

The GET statement is used to read a record with a given VSAM record number. For an ESDS file,
the record number (ISN) would be the relative byte address (RBA); for RRDS and VRDS files, it
would be the relative record number (RRN). The GET statement does not initiate a processing loop.
As aresult, a subsequent UPDATE or DELETE statement will not be processed and Natural returns
a corresponding error message.

For ESDS, the RBA must be contained in a user-defined variable (numeric format) or specified as
an integer constant. The same rules apply for RRDS and VRDS with the exception that the RRN
must be provided instead of the RBA.

522 Database Management System Interfaces

Natural Statements and Transaction Logic with VSAM

GET SAME

The GET SAME statement applies to VSAM ESDS, RRDS, and VRDS only (see also the GET statement
above).

GET TRANSACTION DATA
The GET TRANSACTION DATA statement is not applicable to the Natural interface to VSAM.
HISTOGRAM

The HISTOGRAM statement is used to read the values of a field which is defined as a descriptor,
subdescriptor, or superdescriptor.

The HISTOGRAM statement initiates a processing loop, but does not provide access to any fields
other than the field specified in the statement.

Only VSAM key fields can be used as descriptors.

The following Natural system variable is available with the HISTOGRAM statement:

Variable |Content

*NUMBER|When used in conjunction with a KSDS primary key or a unique alternate index, *NUMBER is
always 1.

| Note: The *ISN system variable is not available for the Natural interface to VSAM.

When used with VSAM, the HISTOGRAM statement is only valid for KSDS and ESDS data sets. For
ESDS, an alternate index or a path for an alternate index must be defined.

The values are read directly from the VSAM index and are returned in ascending or descending
value sequence.

READ

The READ statement is used to read records from a VSAM file. The records can be retrieved in the
value sequence (ascending or descending) of a descriptor (key) field. The READ sequence initiates
a processing loop.

IN LOGICAL SEQUENCE is used to read records in the order of the values of a descriptor (key). If
LOGICAL is specified with a descriptor, the records are read in the value sequence of the descriptor.
A descriptor can be used for sequence control. A descriptor within a periodic group cannot be
used. If LOGICAL is specified without a descriptor, the records are read in the default descriptor
sequence, as defined in the DDM.

Database Management System Interfaces 523

Natural Statements and Transaction Logic with VSAM

WITH REPOSITION canbe used for skip-sequential processing inside the active loop, the new position
must be defined as the new start value for the loop and must reset the system variable *COUNTER.

IN LOGICAL SEQUENCE is only valid for KSDS with primary and alternate keys defined and ESDS
with alternate keys defined. A subdescriptor or superdescriptor can be used for sequence control,
too.

The following Natural system variables are available with the READ statement:

Variable Content

*TSN The system variable *I SN contains either the RRN (for RRDS or VRDS) or the RBA (for ESDS)
of the current record.

*COUNTER|This system variable contains the number of times the processing loop has been entered.

Records can also be retrieved IN PHYSICAL SEQUENCE, which is used to read records in the order
in which they are physically stored in a database. It is only valid for VSAM ESDS, RRDS and
VRDS. This is the default sequence.

STARTING WITH ISN can be used as start value for the loop in ascending or descending physical
sequence.

BY ISNisused toread recordsin RBA and RRN order for ESDS, RRDS and VRDS files, respectively.

STORE

The STORE statement is used to add a record to a database.

A unique value for the primary-key field or the alternate-index field must be provided if the data
set is defined with a primary key or a unique alternate index.

The USING/GIVING NUMBER clause is only valid for RRDS or VRDS, in which case the ISN corres-
ponds to the relative record number.

USING/GIVING NUMBER is used to store a record with a user-supplied RRN. If a record with the
specified RRN already exists, an error message is returned and the execution of the program is
terminated, unless ON ERROR processing was specified.

The Natural system variable *ISN contains the RRN assigned to the new record as a result of the
STORE

statement execution. A subsequent reference to *ISN must include the statement number of the
related STORE statement. *ISN is available for RRDS or VRDS files only.

524 Database Management System Interfaces

Natural Statements and Transaction Logic with VSAM

UPDATE

The UPDATE statement is used to update one or more fields of a record in a database. The record
to be updated must have been previously selected using a FIND or READ statement.

The primary key cannot be updated.

Natural Transaction Logic with VSAM

Natural for VSAM uses the transaction logic of the environment it is running in. Thus, the results
of the Natural END TRANSACTION and BACKOUT TRANSACTION statements (see also the relevant sections
in Natural Statements with VSAM) differ depending on the actual environment:

= With Native VSAM
= Under CICS
= Under DFSMStvs

With Native VSAM

Since VSAM itself has no transaction logic, there is no transaction logic available if Natural is
working in a native VSAM environment. This is the case under Com-plete, TSO, and in batch
mode, which means when NVSMISC is the I/O module in use.

With NVSMISC, END TRANSACTION and BACKOUT TRANSACTION statements do not return any error
messages, but are ignored by the Natural interface to VSAM.

Under CICS

Under CICS, VSAM files can be defined as “recoverable resources” or for RLS as “recoverable
sphere”, all of which are synchronized by CICS using the concept of “logical units of work” (LUWs).
An LUW ends if a SYNCPOINT command is issued or if the CICS task is terminated. For details,
refer to the relevant IBM literature on CICS.

Below is information on:

= NVSCICS Module
= Conversational Tasks

Database Management System Interfaces 525

Natural Statements and Transaction Logic with VSAM

= Pseudo-Conversational Tasks
NVSCICS Module

For CICS, the I/O module NVSCICS is a normal command-level application program. It transfers
END TRANSACTION and BACKOUT TRANSACTION statements to the NATCICS driver which issues the
EXEC CICS SYNCPOINT and EXEC CICS ROLLBACK commands.If an error occursin a Natural session
with uncommitted updates and no error transaction is supplied, Natural itself triggers the interface
to VSAM to issue a ROLLBACK command.

If a SYNCPOINT or ROLLBACK command fails (for example, when CICS answers with a ROLLEDBACK
condition to a SYNCPOINT request), error messages NAT3544 or NAT3545 are returned.

Conversational Tasks

If the Natural session runs in CICS conversational mode, the LUW is not ended by a terminal I/O.
Natural runs in conversational mode if either the Natural parameter PSEUDO=0FF has been specified
or Natural itself has determined that pseudo-conversational processing is not possible.

Since terminal I/Os do not disturb the transaction logic of an application as long as Natural is
running in conversational mode, a program like the following one would work without problems:

Example:

READ vsam-file
UPDATE

INPUT ...

END-READ

BACKOUT TRANSACTION

Pseudo-Conversational Tasks

If the Natural session is running in pseudo-conversational mode, each terminal I/O terminates the
CICS task, thus implicitly performing a SYNCPOINT. Therefore, the impact of a BACKOUT TRANSACTION
statement, that is of an EXEC CICS SYNCPOINT ROLLBACK command, only goes back to the most
recent terminal I/O. The example program above would, therefore, end with error message
NAT3548, because it is not possible to roll back all the updates.

Note: Keep in mind that all messages of the Natural interface to VSAM are issued at runtime
only, since the Natural compiler is not able to detect this kind of logical error.

526 Database Management System Interfaces

Natural Statements and Transaction Logic with VSAM

Under DFSMStvs

DEFSMS Transactional VSAM Services (DFSMStvs) provides the same features CICS provides:
forward and backward recovery logging, backout processing and a two-phase commit process.
An LUW ends if the RRS (Resource Recovery Service) call SRRCMIT or SRRBACK is issued (END
TRANSACTION or BACKOUT TRANSACTION). For details, refer to the relevant IBM literature on DFSMStvs
and RRS.

Database Management System Interfaces 527

528

V Natural for DL/I

This documentation provides information on Natural in a DL/I environment. It describes the op-
eration of Natural for DL/I, as well as special considerations on Natural statements when used

with DL/I.

This documentation covers:

General Information
Accessing DL/I Data

Natural Parameter Modifications
for DL/I

Operation
System File Structure

Natural Batch Utilities

Execution

Programming Language
Considerations

Problem Determination Guide
Performance Considerations

DL/I Services

Related Documentation

Brief information on features.
How to enable access to DL/I databases using Natural statements.

Parameters contained in NDLPARM, storage estimates, and Natural for
DL/I in z/OS environments.

Describes the procedures NATPSB, NATDBD, NATUDF, and the generation
of DDMs from DL/I segment types.

Describes the database structure, the segment data and the processing
intent of an application.

Describes the system file transfer of NDBs, NSBs and UDFs from one
FDIC and the use of the batch utility NDUDFGEN to generate Natural
data areas.

Describes PSB scheduling, the CALLNAT interface, support of IMS
TM-specific features, fast path and GSAM, and CICS mode processing
under IMS TM.

Natural versus third generation languages, Natural statements with
DL/I, Natural system variables with DL/L

Actions required to correct a given problem.
How to increase the performance of Natural in a DL/I environment.

Terminology and maintenance of NDBs and NSBs.

For installatation instructions, see Installing Natural for DL/I in the Installation for z/OS and Installation

for z/VSE documentation.

529

Natural for DL/I

For various aspects of accessing data in a database with Natural, refer to Database Access in the
Programming Guide.

For a list of DL/I status codes and abend codes (under CICS only), refer to Status Codes and Abend
Codes in the Natural Messages and Codes documentation.

530 Database Management System Interfaces

43 General Information

With Natural for DL/I, a Natural user can access and update data stored in a DL/I database. The

Natural user can be executing in batch mode or under the control of the TP monitor CICS or IMS
M.

A DL/I database is represented to Natural as a set of files, each file representing one database
segment type. Each file or segment type must have an associated DDM generated and stored on
the Natural system file FDIC.

Since Natural for DL/I is an extension to Natural, nearly all of the information contained in the
Natural documentation applies to its use in the DL/I environment as well as in the Adabas envir-
onment.

The Natural statements used to access DL/I databases are a subset of those provided with the
Natural language. No new statements are needed to access a DL/I database.

Applications developed using Natural for DL/I operate as standard DL/I applications. This means
that all access to DL/I databases performed by Natural follows the DL/I product conventions. For
an online Natural session or batch Natural program to issue a DL/I database call, a PSB must first
be scheduled. The PCB in use must have segment sensitivity and the appropriate PROCOPT para-
meter must be specified for Natural, to be able to perform a segment update. Only standard DL/I
database calls are issued by Natural.

531

532

44 Accessing DL/l Data

Natural for DL/I allows Natural programs to access DL/I databases using Natural statements.

To access DL/I data, Natural requires certain information on these data. This information mainly
consists of four types of control blocks:

® the original database descriptions (DBDs) and program specification blocks (PSBs) which are
required by DL/I itself;

*® suitable copies of DL/I DBDs and PSBs for Natural, called NDBs and NSBs;
® user-defined fields (UDFs);
® Natural DDMs generated from NDBs and UDFs.

All information required by Natural to access DL/I databases is stored and maintained in the
Natural system file FDIC. The Natural system file FDIC can be an Adabas file (if Adabas is installed),
or a VSAM file (only in CICS environments).

As is the case with any DL/I application, a DL/I DBDGEN and PSBGEN must be performed to
define the data structure the Natural application is to have access to, and the processing intent
this application has on these data. This same information, which is contained in the DBD and PSB
source statements, must also be defined to Natural.

The Natural batch procedures NATDBD and NATPSB are used to add this information to the Natural
FDIC system file. They generate NDBs and NSBs from the respective DBDs and PSBs, using the
DBDGEN and PSBGEN source respectively, as input.

It is the administrator's responsibility to ensure that the contents of the DL/I DBDLIB and PSBLIB
and the Natural system file FDIC are compatible. It is therefore recommended that the DL/I pro-
cedures DBDGEN and PSBGEN and the Natural procedures NATDBD and NATPSB always be executed
as a pair.

The DBDGEN source usually does not define all fields within a segment. Additional segment
fields, called user-defined fields (UDFs), can be entered as part of creating the DDMs. UDFs in

533

Accessing DL/ Data

Natural are added by using either the batch utility NATUDF, the Edit an NDB Segment Description
facility of the SYSDDM utility, or Predict.

Once all the necessary information has been stored on the Natural system file FDIC, Natural DDMs
defining the DL/I database segment types can be created.

534 Database Management System Interfaces

45 Natural Parameter Modifications for DL/I

B ParameterS iN NDLPARM ... e e e 536
B St0rage ESHMALESooiiiiii e 542
m Natural for DL/LIN Z/OS ENVIFONMENTS ... e 544

535

Natural Parameter Modifications for DL/I

Natural parameter default values for DL/I can be changed to meet your particular requirements.
The object module NDLPARM, which is used for Natural static parameter assignment in a DL/I en-
vironment, must then be appropriately modified and reassembled.

This section covers the following topics:

Parameters in NDLPARM

The following parameters are contained in NDLPARM:

= DFBNUM - Maximum Entries in Translated Format Buffer

= DFFNUM - Maximum Fields in Single Entry of Translated Format Buffer

= FLBNUM - Number of Entries in Fast Locate Buffer

= INGSIZE - Initial Size of Buffer to Copy Parameter List
= INGOSIZ - Initial Size of I/0 Area for DL/I Calls

= [NITCAL - Issues INIT Call at Transaction Start

= PCBLEV - Maximum Number of PCB Levels

= PCBNUM - Maximum Number of PCBs in a PSB

= RELEVNT - Requests Relocation Event

= RESINDB - NDB Resident in Buffer Pool

= RESINSB - NSB Resident in Buffer Pool

= RESIUDF - UDF Resident in Buffer Pool

m SASIZE - Size of Natural Save Area for DL/I

= SEQNUM - Maximum Number of Nested Sequential Accesses
= SEQSSA - Maximum Size of an SSA

= THCSIZE - Table Size to Save Natural Field Values

= TRACE - Trace Options

= TYPCHCK - Numeric/Packed Data Check

= TYPWARN - Issues Data Check Warning

= VALNSB - Validate NSB (against PSB)

= WORKLGH - Size of Work Areas

DFBNUM - Maximum Entries in Translated Format Buffer

Possible Values

Default Value

5-200

25

This parameter is used to indicate the maximum number of entries in the table of translated format

buffers.

An entry in this table is created for each active Natural input/output statement (FIND, READ, UPDATE,

STORE).

536

Database Management System Interfaces

Natural Parameter Modifications for DL/I

When increasing DFBNUM or DFFNUM, take into consideration that the allocated storage area size is
obtained by multiplying these values and not by adding them.

DFFNUM - Maximum Fields in Single Entry of Translated Format Buffer

Possible Values | Default Value

5-1000 10

This parameter is used to indicate the average number of fields contained in each single entry of
the table of translated format buffers.

A field entry in this table is created for each field referenced in a Natural input/output statement
(FIND, READ, UPDATE, STORE).

When increasing DFFNUM or DFBNUM, take into consideration that the allocated storage area size is
obtained by multiplying these values and not by adding them.

FLBNUM - Number of Entries in Fast Locate Buffer

Possible Values |Default Value

0-32767 50

This parameter is used to indicate the number of entries in the Fast Locate Buffer. This buffer holds
absolute addresses of Natural for DL/I objects (that is, NDBs, NSBs, UDFs) in the buffer pool.

The addresses are stored in wrap-around technique.

This buffer is especially useful if Natural for DL/I objects have been marked as “resident” in the
buffer pool (see the related parameters RESINDB, RESINSB, RESTUDF).

It allows Natural for DL/I to use the Fast Locate algorithm of the Natural buffer pool manager
when locating objects.

INGSIZE - Initial Size of Buffer to Copy Parameter List

Possible Values Default Value

1000-32767 (bytes)|1000

This parameter is used to indicate the initial size of the buffer which is used to copy the DL/I call
parameter list and the call parameters below 16 MB if Natural operates in a z/OS environment. If
the initial size is not sufficient, Natural automatically increases the size of this buffer accordingly.

Database Management System Interfaces 537

Natural Parameter Modifications for DL/I

INGOSIZ - Initial Size of I/0O Area for DL/I Calls

Possible Values Default Value

1000-32767 (bytes)|1000

This parameter is used to indicate the initial size of the I/O area for DL/I calls. This area is re-used
for subsequent DL/I calls if no GET HOLD call has been issued.

If the initial size is not sufficient, Natural automatically increases the size of this buffer accordingly.

INITCAL - Issues INIT Call at Transaction Start

Possible Values |Default Value

NO/YES NO

This parameter is used to inform IMS TM that Natural is prepared to accept status codes BA or BB
regarding data unavailability.

The setting of this parameter only applies if Natural runs in a BMP or MPP region.

PCBLEV - Maximum Number of PCB Levels

Possible Values |Default Value

1-15 10

This parameter is used to indicate the maximum number of PCB levels which can be processed
by Natural.

When increasing PCBLEYV, take into consideration that the allocated storage area size is obtained
by multiplying these values and not by adding them.

PCBNUM - Maximum Number of PCBs in a PSB

Possible Values |Default Value

1-255 25

This parameter is used to indicate the maximum number of PCBs which can be contained within
a single PSB.

When increasing PCBNUM, take into consideration that the allocated storage area size is obtained
by multiplying these values and not by adding them.

538 Database Management System Interfaces

Natural Parameter Modifications for DL/I

RELEVNT - Requests Relocation Event

Possible Values | Default Value

NO/YES NO

This parameter is used to inform the Natural nucleus whether or not Natural for DL/I requests
relocation events.

With RELEVNT=YES, Natural for DL/I is called for relocation on every relocation event, that is, even
if no DL/I call has been issued since the last relocation event.

With RELEVNT=NO, Natural for DL/I is not called for relocation. Instead, it checks itself whether
relocation is required before a DL/I call is issued.

RESINDB - NDB Resident in Buffer Pool

Possible Values |Default Value

NO/YES YES

This parameter is used to indicate whether NDBs are to be kept resident in the buffer pool.

RESINSB - NSB Resident in Buffer Pool

Possible Values | Default Value

NO/YES YES

This parameter is used to indicate whether NSBs are to be kept resident in the buffer pool.

RESIUDF - UDF Resident in Buffer Pool

Possible Values |Default Value

NO/YES YES

This parameter is used to indicate whether UDFs are to be kept resident in the buffer pool.

Database Management System Interfaces 539

Natural Parameter Modifications for DL/I

SASIZE - Size of Natural Save Area for DL/I

Possible Values Default Value

1000 - 3000 (bytes)|[1000

This parameter is used to indicate the size of the save area.

Do not increase the default value, unless you receive an error message which indicates that a save
area overflow has occurred.

SEQNUM - Maximum Number of Nested Sequential Accesses

Possible Values |Default Value

5-100 20

This parameter is used to indicate the maximum number of nested sequential accesses which can
be processed by Natural.

When increasing the values for the SEQNUM and SEQSSA parameters, remember that the storage
area allocated is dependent on the product of these areas, not their sum.

SEQSSA - Maximum Size of an SSA

Possible Values |Default Value

10-500 (bytes) |50

This parameter is used to indicate the maximum size of an SSA related to sequential access.

When increasing the values for the SEONUM and SEQSSA parameters, remember that the storage
area allocated is dependent on the product of these areas, not their sum.

THCSIZE - Table Size to Save Natural Field Values

Possible Values Default Value

2000 - 32000 (bytes)|3000

This parameter only applies under IMS TM or under CICS in pseudo-conversational mode.

This parameter is used to indicate the size of the table which is used to save field values in hold
status when running under IMS TM or under CICS in pseudo-conversational mode.

540 Database Management System Interfaces

Natural Parameter Modifications for DL/I

TRACE - Trace Options

Possible Values |Explanation

ALL Trace all modules

CMD Trace command execution

REQ Trace request modules

ROU Trace routines

SER Trace service modules

OFF Trace is not active. Default value.

This parameter is used to indicate whether Natural trace information is to be created and printed
or not.

The options CMD, REQ, SER and ROU can be combined.

TYPCHCK - Numeric/Packed Data Check

Possible Values | Default Value

NO/YES NO

This parameter is used to indicate whether numeric or packed segment fields from DL/I are to be
checked for valid data and repaired, if necessary.

With TYPCHCK=NO, no data check is performed. Natural for DL/l would abend with data exception
if, for example, a packed field contained blanks.

With TYPCHCK=YES, a data check is performed. If the field does not contain format compatible data,
it is filled with zeroes. In addition, a message is issued, depending on the setting of the parameter
TYPWARN (see below).

TYPWARN - Issues Data Check Warning

Possible Values | Default Value

NO/YES NO

This parameter only applies if TYPCHCK has been specified (see above).

This parameter is used to indicate whether a message is to be issued if a data check and repair has
been performed.

With TYPWARN=NO, no message is issued if a data repair has been performed.

With TYPWARN=YES, a message is issued if a data repair has been performed. This message displays
the short name of the field in error. The message is issued as a warning (only), which means that:

Database Management System Interfaces 541

Natural Parameter Modifications for DL/I

The message is not issued via the Natural error exit but is directly inserted into the page buffer.

The message(s) is (are) only issued when the page buffer is full.

® There is no backout transaction.

The program flow is not interrupted.

VALNSB - Validate NSB (against PSB)

Possible Values | Default Value

NO/YES YES

This parameter is used to indicate whether the NSB is to be validated (against the PSB).

With VALNSB=YES, the NSB is validated. The NSB name in the NATPSB command is checked against
the PSB name in the EXEC statement of the batch environment.

If the names are not identical, a message is issued.

With VALNSB=NO, NSB validation is bypassed. This allows for multiple business units sharing the
same application. Improper use may cause mismatch problems or abends.

WORKLGH - Size of Work Areas

Possible Values | Default Value

1000-3000 |1000

This parameter is used to indicate the size of the work areas. Natural allocates six work areas of
this size.

Do not increase the default value, unless you receive an error message which indicates that a work
area overflow has occurred.

Storage Estimates

The memory size required by Natural for DL/I is determined by the following items:

1. Object code: 90 KB.

2. Save areas: 3 KB.

3. Work areas: 6 KB.

4. Fast Locate Buffer: 12 bytes for each entry.
5

. XRST buffer: 2 KB.

542 Database Management System Interfaces

Natural Parameter Modifications for DL/I

6. Internal tables: the amount of storage allocated depends on parameters specified in the module
NDLPARM. The following formula can be used to compute the amount of storage required for
initial table allocation:

Amount of Storage =

SEQNUM * (SEQSSA + 64) + 32 +

DFBNUM * (28 + (DFFNUM * 12)) + 20 +
PCBNUM * (24 + 12 + (PCBLEVL * 5)) + 20 +
TCHSIZE

The above formula can be described as follows:

Term Computational Expression

Sequential Access Table |SEQNUM * (SEQSSA + 64) + 32

Field Table DFBNUM * (28 + (DFENUM * 12)) + 20
PCB Map PCBNUM * (24 + 12 + (PCBLEVL * 5)) + 20
Table of Fields in Hold |TCHSIZE

If the standard values of these NDLPARM parameters are used in the above formula, 14 KB of
storage is allocated.

7. Segment I/O areas are to be added on additionally.

| Note: The object code is shared among all Natural sessions. There is a copy of all other areas

for each active Natural session.

The storage required for save areas, work areas, Fast Locate Buffer, XRST buffer and internal tables
is allocated from the thread at the initialization of the Natural session. Six GETMAINs are per-
formed, the sizes of which are determined by the values of the parameters in the NDLPARM module.
If the default values of the NDLPARM parameters are used, the total size required is 27 KB.

The total size available is determined by the profile parameter DLISIZE in the Natural parameter
module; see the Natural Parameter Reference documentation.

The BUS (Buffer Usage Statistics) command can be used to obtain information on the sizes of the
buffers allocated by Natural for DL/I. The following information is provided:

Buffer Content

DLISIZEOQ|contains the Fast Locate Buffer, the XRST buffer, and the save areas.

DLISIZE1 |contains the work areas.

DLISIZEZ|contains the sequential access table.
DLISIZE3|contains the field table .
DLISIZE4|contains the PCB map .

Database Management System Interfaces 543

Natural Parameter Modifications for DL/I

Buffer Content

DLISIZE5|contains the table of fields in hold status.

Natural for DL/l in z/OS Environments

Before Natural issues a DL/I call in a z/OS environment, it checks whether the call parameter list
or any of the call parameters reside above the 16 MB line. This is the case if the Natural threads
have been placed above this line. If so, the parameter list and all parameters are copied into a
buffer which has been allocated below the line via GETMAIN. The pointers in the parameter list
are modified accordingly to point to the new parameters.

The initial size of this buffer is set by the INGSIZE parameter of NDLPARM. If the initial size is not
sufficient, Natural automatically increases the size of this buffer accordingly.

This overhead is required because DL/I terminates programs abnormally if parameter addresses
passed in DL/I calls do not refer to code or storage areas below the 16 MB line.

544 Database Management System Interfaces

46 Operation

B PTOCEAUTE NATP S ..ottt e e e e e e bt et e e e e e e e e e 546
B PrOCEAUrE NATDBDoiiiiiiiiiiei ettt e oottt e e e e ettt e e e e e e et eeaaa e 550
B ProCedUre NATUDF ..ottt 552
= Generation of DDMs from DL/I SEgMENT TYPESeeeiiiiiiiiiiiiii e 556

545

Operation

Natural for DL/I operates as a standard DL/I application.

Prior to running a Natural application, a PSB must be scheduled. The method for scheduling PSBs
varies depending on the actual environment (see the relevant sections under PSB Scheduling), but
as for any other DL/I application, PSB scheduling is a requirement.

This section covers the following topics:

Procedure NATPSB

Every PSB required by DL/I to accommodate Natural requests must be processed by the Natural
batch utility NDPBNSBO. This utility stores DL/I PSB information, in a form suitable for Natural, on
the FDIC system file. This information is referred to as NSB control block. A batch procedure called
NATPSB has been established for this purpose.

A sample NATPSB job has been included in the source library from the installation medium. The
information used to create NSB control blocks comes from the actual PSBGEN source. It is essential
that the same input is used for the NATPSB procedure as was used for the DL/I PSBGEN. Otherwise,
unpredictable results are likely.

The NATPSB job is a three step procedure:

® The first step executes the normal DL/I PSBGEN procedure. This step is included to guarantee
compatibility between DL/I and Natural.

® The second step performs another assembly and link of the PSBGEN source, this time using
macros supplied by Natural.

® The final step executes the Natural batch utility NDOPBNSBO, which uses the linked PSB module
from the previous step to create NSB control blocks which are stored on the FDIC system file.
NDPBNSBO dynamically loads the Natural module NDLB0002, which therefore must be present in
an allocated load library.

Natural requires one or more PSBs for batch and/or online processing. Depending on application
requirements, the PSB can be switched during a Natural session. Each PSB describes all user views
that can be used to access DL/I databases from Natural programs if this PSB is active. A PSB must
contain one or more program communication blocks (PCBs) for each DBD to be accessed. Since
Natural only uses the single positioning option on PCBs, Natural programs that maintain two or
more independent positions in a database require a PCB (of the appropriate type) for each separate
position.

If this requirement is not fulfilled, Natural for DL/I issues the runtime error message:

546 Database Management System Interfaces

Operation

NAT3789 Active PSB contains too few PCBs for program execution

The PCB in use must have segment sensitivity and the appropriate PROCOPT parameter specified
for Natural, to be able to perform a segment update.

Nested I/O loops (FIND or READ) in Natural programs frequently require separate positions in the
same database to be maintained. To reduce the number of PCBs needed, as many I/O loops as
possible should be closed before opening subsequent I/O loops.

Consider the following sample DL/I database:

Database Management System Interfaces 547

Operation

Sample Education Database EDO0DBD:

Course SEQFLD=COURSENO

Prereq Offering SEQFLD=DATE

Teacher Student

The following Natural program based on the above database requires two PCBs:

READ EDOODBD-COURSE BY COURSENO
FIND EDOODBD-PREREQ WITH COURSENO-COURSE = COURSENO
FIND EDOODBD-OFFERING WITH COURSENO-COURSE = COURSENO
LOOP
LOOP
LOOP
END

The first PCB is used to maintain position on the COURSE and PREREQ segments. A second PCB is
required for the OFFERING segment since the FIND loop has not been terminated for the PREREQ
segment prior to invoking a FIND on the 0FFERING segment. By closing the first FIND loop prior to
opening the second one, this program would only require one PCB.

Natural selects the PCB to be used for a database request in the following manner:

1. Natural selects the first PCB in the PSB with the correct DBD name and the appropriate PROCSEQ
parameter (if applicable).

2. Natural then determines if the PCB can be used for the request or if there is a conflict due to
current database positioning.

3. If there was a positioning conflict or the PCB did not contain the correct DBD name or PROCSEQ
parameter, Natural would continue scanning the PSB.

548 Database Management System Interfaces

Operation

4. If the database search request refers to a secondary index, Natural attempts to use a PCB with
the corresponding PROCSEQ parameter. If there is no PCB of this type in the PSB, Natural tries
to use a PCB without the PROCSEQ parameter. In this case, it is assumed that the INDICES para-
meter has been coded in the appropriate SENSEQ statement.

5. If no eligible PCB could be found, an error message would be generated.

In general, PCBs for use by Natural can have different PROCOPT parameters. However, if there are
two or more PCBs in the PSB referring to the same DBD, these PCBs must appear consecutively
in the PSB source and they must specify the same SENSEG statements and same PROCOPT parameters.
They can, however, have different PROCSEQ parameters.

When locating an eligible PCB, Natural disregards the PROCOPT parameter of the PCB. The first
free PCB is selected independently of the PROCOPT parameter, so that if the chosen PCB has a
PROCOPT that does not support the request, an error message that corresponds to a DL/I status code
is returned.

Natural assumes that all PCBs with the same DBD name and the same PROCSEQ parameter contain
the same SENSEG statements as the first PCB. If this is not true and a PCB is selected that does not
contain a SENSEG statement for the segment being referenced, an error message that corresponds
to a DL/I status code is returned.

The following example PSB and Natural program demonstrate that the sequence of the PCBs, re-
ferring to the same DBD, may affect Natural programs if the PROCOPT parameters are different:

PCB TYPE=DB,DBDNAME=EDOODBD, PROCOPT=GO, . ..
SENSEG NAME=COURSE

SENSEG NAME=OFFERING, PARENT=COURSE

PCB TYPE=DB,DBDNAME=EDOODBD, PROCOPT=A, ...
SENSEG NAME=COURSE

The following program requires two PCBs: the first PCB is used for the READ loop (which reads
all COURSE segments) and the second nested FIND loop (which finds one offering to a given course);
the second PCB is used for the first FIND loop (which updates a specific COURSE segment). The
program does not work if the order of the two PCBs is reversed.

READ COURSE BY COURSENO
FIND (1) COURSE WITH COURSENO = "120°
UPDATE WITH TITLE = 'Natural'
LOOP
FIND (1) OFFERING WITH COURSENO-COURSE = COURSENO (0010)
DISPLAY COURSENO-COURSE
LOOP
LOOP
END

The following figure shows the logical connections between DL/I PSBs, PCBs, sensitive segment
types and Natural DDMs:

Database Management System Interfaces 549

Operation

PSBE-1 PSB-2

PCB-1 PCB-3
SENSEG-1 p—r - DDM1 - SEMNSEG-1

SENSEG-2 F—r - ODMZ - SEMSEG-2
SENSEG-3 [F—T » DDOM3

PCB-2

SENSEG-4 F—r P DDM4
SENSEG-5 F—+ p DDM5S

Natural DDMs which are derived from segment descriptions in the DBD correspond to DL/I seg-
ment types.

Since each DL/I application program requires the specification of its sensitive segment types, an
appropriate PSB must be scheduled before Natural program execution. A PSB can be scheduled
at the start of a Natural session or at any time during the session.

If, in the configuration shown in the diagram above, PSB-2 has been scheduled, only the DDMs
DDM1 and DDM?2 are accessible to Natural application programs. If an attempt is made to use
DDMS5, for example, Natural for DL/I returns the error message:

NAT3768 PCB with requested DBD not found in NSB

Procedure NATDBD

Every DL/I database structure, both physical and logical, which is supposed to be used by Natural,
must be processed by the Natural batch utility NDPBNDBO.

This utility stores DL/I database information on the FDIC system file, in a form suitable for Natural.
This information is referred to as NDB control block. A batch procedure called NATDBD has been
established for this purpose.

550 Database Management System Interfaces

Operation

A sample NATDBD job has been included in the source library on the installation medium. The in-
formation used to create NDB control blocks comes from the actual DBDGEN source. It is essential
that the same input is used for the NATDBD procedure as was used for the DL/ DBDGEN. Otherwise,
unpredictable results are likely.

The NATDBD job is a three step procedure:

*® The first step executes the normal DL/I DBDGEN procedure. This step is included to guarantee
compatibility between DL/I and Natural.

* The second step performs another assembly and link of the DBDGEN source, this time using
macros supplied by Natural.

® The final step executes the Natural batch utility NDPBNDBO, which uses the linked DBD module
from the previous step to create NDB control blocks which are stored on the FDIC system file.
NDPBNDBO dynamically loads the Natural module NDLB0001, which therefore must be present in
an allocated load library.

The NATDBD procedure assigns a short name of two bytes to each DL/I field; that is, to each field
defined in the DBD. All field short names are generated in the range from NA to 79, which means
that up to 13 * (26 + 10) =468 DL/I fields can be managed per DBD. DL/I short names are generated
uniquely within an NDB.

When replacing an NDB, NATDBD reassigns short names in a consistent way; that is, the same short
name to the same field name. In addition, the UDFs are maintained, where the new NDB contains
the new DL/I layout followed by the old UDF layout, which means that UDFs are not deleted by
NATDBD. It is the administrator's responsibility to edit the segment description after NATDBD has
been executed, in order to modify the UDFs accordingly.

Using Logical Databases with Natural

The following information must be considered when using logical databases with Natural:

" Execute the NATDBD procedure for a logical database only after successful execution of the pro-
cedure for the physical databases referred to. In other words, if the input DBD is a “logical”
DBD, the NDBs generated from the “physical” DBDs must already be stored in the Natural FDIC
system file to correctly generate the NDB control blocks related to this segment.

® When a segment specifying the SOURCE=keywordis processed by the NATDBD procedure, the related
“physical” DBD must already be stored in the Natural FDIC system file.

If the SOURCE=keywordis specified (in one or more segments) in a “physical” DBD, which means
that one or more logical virtual child segments are involved (recursively or not), the NATDBD
procedure run against this DBD stores the NDB structure on the Natural FDIC system file even
if one or more physical DBDs referred to by the SOURCE=keyword specifications have not already
been stored.

Database Management System Interfaces 551

Operation

In this case, the logical virtual child segments whose source DBD is not yet in the Natural FDIC
system file as well as their descendants are not accessible to the user since Natural has marked
these segments as inhibited. An appropriate Natural error message is issued indicating the
name(s) of the related physical DBD(s) that need to be stored into the Natural system file.

If the logical relationship is the result of a recursive database structure, the NATDBD procedure
for the physical DBD must be run at least twice: the first time, the NDB is stored on the Natural
system file with the undefined segment marked as inhibited; the second time, the reference to
the SOURCE segment is resolved.

If multiple physical databases are logically related, the NATDBD procedure must be run for each
of these physical databases and then rerun for any database that contained logical child segments
marked as inhibited.

= If the SOURCE=keyword is specified in a “logical” DBD and one or more source DBDs are not
found in the Natural FDIC system file while running the NATDBD procedure, the NDB structure
is not stored and an appropriate error message is returned.

® If an attempt is made to generate a DDM for a segment whose NDB control blocks are not in
the Natural FDIC system file, a Natural error message is returned.

Using Index Databases with Natural

The following information must be considered when using index databases with Natural:

* To access a secondary index database as data, the secondary index database must be defined as
an independent physical database to both DL/I and Natural.

® The NATDBD procedure need not be executed for primary or secondary index DBDs.

Procedure NATUDF

The DBDGEN source usually does not define all fields within a segment. Additional segment
fields called User-Defined Fields (UDFs) can be entered as part of creating the DDMs. UDFs define
the additional data in the segment that can be referenced by a Natural program. UDFs can be
generated online using Predict or the Natural SYSDDM Utility, or they can be generated in batch
mode using the NATUDF procedure.

The NATUDF procedure invokes the batch utility NDOPBCUDF, which stores segment description layout
information on an FDIC system file.

& Important: Before NDPBCUDF can be executed, the DL/I DBD must have been stored as an

NDB on the FDIC system file, and a DBID and FNR must have been assigned (with Predict
or SYSDDM) to each segment concerned. Otherwise, NDPBCUDF cannot read the segments
concerned.

552 Database Management System Interfaces

Operation

The input for this utility is provided by the segment description read from a work file. This work
file contains segment identification statements and segment field descriptions.

You can format data by using either delimiter mode (IM=D) or forms mode (IM=F); see also the IM
profile parameter in the Natural Parameter Reference documentation. In delimiter mode, the delimiter
character can be used. In forms mode (for example, if input is passed from other programs), input
data fields are assumed to be in contiguous storage and must be filled up to the internally defined
full length.

One line is required for the segment identification statement, and two lines are required for each
segment field description.

The section below covers the following topics:

= Segment Identification Statement
= Segment Field Description

Segment Identification Statement

One line has to be supplied for each segment being defined. The following syntax is used (the
parameters must be specified in the sequence shown below):

FUNC=(function) ,DBD=dbd-name,SEGM=segment -name

function Function to be applied to the segment:

ADD to create a new segment layout;
REP to replace an existing segment layout;
MOD to add or modify fields without deleting existing fields not present in the input file;

END to indicate termination of the UDF redefinition.

dbd-name A1 to 8 character alphanumeric DBD name; that is, the name of the DL/I DBD which
owns the segment to be defined.

segment-name |A1 to 8 character alphanumeric name of the DL/I segment to be defined.

Segment Field Description

The segment identification statement has to be followed by at least one segment field description.
The following syntax is used for each field to be defined (the parameters must be specified in the
sequence shown below):

Database Management System Interfaces 553

Operation

FUNC=FLD,NAME=fnam, TYPE=type, LEVEL=Tev, LENGTH=T1gh,MAXOCC=moc,VAR=var
FUNC=STR,BEGIN=begin

After each FLD card, a STR card must be coded, except for the last FLD card, which is specified
with four dollar signs ($$$$) in the field name. After this last FLD card, an END card must be
coded.

fnam |The name of the field being defined. This must be an alphanumeric value of 1 to 19 bytes. The
value $$$$ closes the definition of the current segment.

type |The UDF field format (1 character). The following formats can be specified: A, B, F, P, U, N, S.
Tev The field level (1 digit).
Tgh The field length (4 digits).

moc The maximum occurrence (3 digits) of the field (only applicable for a multiple-value field or a
periodic group).
var Possible values:

V variable field length
N fixed field length

begin |The starting position of the field being redefined. This can be specified either in terms of bytes
relative to the beginning of the segment or as a field name of the DL/I field being redefined. The
value must be alphanumeric and 1 to 19 characters long (32 bytes in forms mode, as the field is 32
characters long in this mode).

The short name is automatically assigned by the utility in the range from AA to G9, excluding EA
to E9. The range from HA to M9 is reserved for UDFs of logical child segments. Thus, up to 216 fields
can be provided as input, which is the maximum number of UDF fields.

For further information on UDF field parameters, please refer to DL/I Services.

Delimiter Mode (IM=D) Example:

FUNC=REP,DBD=ED02DBD, SEGM=COURSE
FUNC=FLD,NAME=GENGL,TYPE=N, LEVEL=1,LENGTH=5
FUNC=STR,BEGIN=11
FUNC=FLD,NAME=DUMI1,TYPE=A,LEVEL=1, LENGTH=6
FUNC=STR,BEGIN=TITLE

FUNC=FLD,NAME=DUMZ, TYPE=A,LEVEL=1,LENGTH=6
FUNC=STR,BEGIN=DESCRIPN
FUNC=FLD,NAME=GENG3, LEVEL=1,MAX0CC=2
FUNC=STR,BEGIN=GENG1
FUNC=FLD,NAME=GRUZ21,TYPE=N,LEVEL=2,LENGTH=1
FUNC=STR
FUNC=FLD,NAME=GRUZ22,TYPE=A, LEVEL=2, LENGTH=2
FUNC=STR

FUNC=FLD, NAME=GRUZ23, TYPE=N, LEVEL=2, LENGTH=3
FUNC=STR

FUNC=FLD, NAME=$$$$

554 Database Management System Interfaces

Operation

FUNC=REP,DBD=ED02DBD, SEGM=COURSE
FUNC=FLD,NAME=DUM41,TYPE=B,LEVEL=1,LENGTH=9
FUNC=STR,BEGIN=DESCRIPN

FUNC=FLD,NAME=DUNZ, LEVEL=1,MAX0CC=2
FUNC=STR,BEGIN=TITLE
FUNC=FLD,NAME=GRUZ21,TYPE=N,LEVEL=2,LENGTH=1
FUNC=STR
FUNC=FLD,NAME=GRUZ22,TYPE=A, LEVEL=2, LENGTH=2
FUNC=STR
FUNC=FLD,NAME=GRUZ23, TYPE=N, LEVEL=2, LENGTH=3
FUNC=STR

FUNC=FLD, NAME=$$$$

FUNC=END

Forms Mode (IM=F) Example:

ADDDBD1 SEGM1

FLD 1FIELD-1
STR

FLD 1FTELD-ANY
STRFIELD-1

FLD 2FIELD-ANYZ2
STR

FLD $$59%

STR

REPDBD?2 SEGM2

FLD INEW-FIELD-NAME
STR

FLD $$39%

END

Sample JCL:

//NATUDF ~ J0B

//NATUDF EXEC PGM=NATBATCH,PARM="..."
//STEPLIB DD DSN=...

// DD DSN=...

//SYSUDUMP DD DUMMY

//CMPRINT DD SYSOUT=Y

//DDCARD DD DSN=NAT23n.SRCE(CADAPARM),DISP=SHR
//CMSYNIN DD *

LOGON SYSDDM

NDPBCUDF

FUNC=REP,DBD=ED02DBD, SEGM=COURSE
FUNC=FLD,NAME=DUMI1,TYPE=A,LEVEL=1, LENGTH=6
FUNC=STR,BEGIN=TITLE
FUNC=FLD,NAME=DUMZ2, TYPE=A, LEVEL=1, LENGTH=6
FUNC=STR,BEGIN=DESCRIPN

FUNC=FLD,NAME=$$$$

FUNC=END

FIN

000A0012N00O

000A NOOO

000A0024N000

000A0012N00O

Database Management System Interfaces

955

Operation

Generation of DDMs from DL/I Segment Types

DDMs that represent DL/I segment types are generated from information contained in the NDB
and UDF control blocks. These DDMs contain all fields that have been defined for the segment,
both in the NDB and in the UDF.

In addition, the DDMs contain the fields from the ancestor segments that have been defined in
the DBDGEN for these segments. Ancestor segments are defined as segments that form the hier-
archical path from the root segment down to the current segment. Ancestor segment fields that
might have been defined in the DBDGEN for a segment include sequence fields, secondary index
fields and search fields.

The DDM for a DL/I segment contains all fields that could be specified in the segment search ar-
gument (SSA), all fields that are available as part of the key feedback area and any segment I/O
fields as well. Each DDM, therefore, contains all the fields that Natural requires to automatically
build the concatenated key for the segment.

Once all fields have been defined for a specific segment DDM, the corresponding Natural DDM
can be generated and cataloged (stored) on the Natural FDIC system file. This is done either with
Predict or with the Natural SYSDDM Utility.

If you do not have Predict installed, use the SYSDDM function DL/I Services to generate Natural
DDMs from DL/I segment types. This function is invoked from the main menu of SYSDDM.

556 Database Management System Interfaces

47 System File Structure

B THE NDB SUDFIIE ... e s e e e e et ra e e 558
B THE NSB SUDFIIE ...t e e e e e e e 558
B ThE UDF SUDFIIE ... 559
® NatUural for DL/ ODJECESvieiiiiie et 559
m Displaying Keys of UDF BIOCKSccciiiiiiiiiiiiciie e 560
= Displaying the Size of Natural for DL/ ODJECEScoiiiiiiiiiiiiici e 560
= Displaying Natural for DL/ OBJECESvvvviiiiiiiiiiiiie e 560
= Control Blocks in Separate BUfEr POOIcovvvviiiiiii e 560
= Control Blocks in Buffer POol BIACKIiStcc.uviiiiiiiii e 561
= Natural for DL/l Objects and Natural DDIMScoooiiiiiiiiiiiie e 562

557

System File Structure

As described in section Accessing DL/I Data, certain information must be stored and maintained
on the Natural FDIC system file in order to access DL/I data. This information describes the database
structure, the segment data and the processing intent of an application. Four elements on the
Natural FDIC system file contain this information. One of these elements, the Natural DDV, is
common to all DBMS environments. The remaining three elements, however, are used only by
Natural for DL/I; they are NDB control blocks, NSB control blocks and UDF control blocks.
Therefore, the Natural FDIC system file used by Natural for DL/I contains three subfiles.

This section covers the following topics:

The NDB Subfile

The NDB subfile contains the NDBs. The NDB, or Natural DBD, control blocks contain most of
the information present in the DL/I DBD, combined with additional data used by Natural, such
as the file number (FNR) and database identification (DBID) of the segment, and short names for
fields defined in the DBD. The NDB control blocks are created and stored on the Natural FDIC
system file by the NATDBD procedure.

An NDB consists of the following fields:

Field | Description

ND |DBD name (8 characters) combined with sequence number (1 byte, “binary”).

NC |The first two bytes contain the number of N/ fields in the record times 20. The second two bytes contain
the total number of NZ fields in the NDB multiplied by 20.

NZ |NDB data.

The NSB Subfile

The NSB subfile contains the NSBs. The NSB, or Natural PSB, control blocks contain most of the
information present in the DL/I PSB. These control blocks are created and stored on the Natural
FDIC system file by the NATPSB procedure.

An NSB consists of the following fields:

558 Database Management System Interfaces

System File Structure

Field | Description

NP |PSB name (8 characters) combined with sequence number (1 byte, “binary”).

NC |The first two bytes contain the number of NZ fields in the record times 20. The second two bytes contain
the total number of NZ fields in the NSB multiplied by 20.

NZ |NSB data.

The UDF Subfile

The UDF subfile contains the UDFs. The UDF, or User-Defined Field, control blocks contain in-
formation on segment fields which have been specified by the user, either through the online DL/I
Services function of the SYSDDM Utility, the NATUDF procedure, or by using Predict.

The fields are as follows:

Field | Description

NS |Database identification (1 byte, “binary”), file number (1 byte, “binary”) and sequence number (1
byte, “binary”). The DBID and FNR are those of the segment being described by this record.

NC |The first two bytes contain the number of NZ fields in the record times 20. The second two bytes contain
the total number of NZ fields in the UDF multiplied by 20.

NZ |Field description as specified by the user using Predict, the EDIT segment layout facility of the SYSDDM
Utility or the procedure NATUDF.

NW | The long field name.

Natural for DL/I Objects

Natural for DL/I objects are created during execution of the NATPSB procedure (NSB), during exe-
cution of the NATDBD procedure (NDB)), or when assigning DBID/FNR to a segment type (UDF).
Consequently, at least one UDF block for each segment type with an assigned DBID/FNR is always
present on FDIC - whether user-defined fields (UDF fields) have been defined by the user or not.

When displaying type definitions in the SYSDDM Ultility, the NDB and its related UDF are combined
automatically. The only way to display an UDF separately (for debugging purposes) is by using
NDLBLOCK.

Database Management System Interfaces 559

System File Structure

Displaying Keys of UDF Blocks

The utility program NDLULIST, cataloged in the library SYSDDVM, is provided for listing the keys of
all UDF blocks and for checking for duplicates.

For each duplicate found the following warning is issued:

More than one record with same DBID/FNR

Displaying the Size of Natural for DL/I Objects

The following utility programs, cataloged in library SYSDDM, are provided for displaying the sizes
of the various Natural for DL/I objects:

® NDLSIZED displays the sizes of all NDBs stored on FDIC.
" NDLSIZEP displays the sizes of all NSBs stored on FDIC.
® NDLSIZEU displays the sizes of all UDFs stored on FDIC.

Displaying Natural for DL/ Objects

The utility program NDLBLOCK, cataloged in library SYSDDV, is provided for displaying the NDBs,
NSBs and UDFs stored on FDIC. The utility displays the objects in hexadecimal format.

Control Blocks in Separate Buffer Pool

The Natural for DL/I control blocks NDB, NSB and UDF are read from FDIC and loaded into a
buffer pool - resident or not, depending on the NDLPARM parameters RESINDB, RESINSB, and RESTUDF.
This allows a given object to be shared by several users.

By means of the NTBPI macro (as described in the Natural Parameter Reference documentation) it
is possible to have a buffer pool for NDB, NSB and UDF control blocks which is different from
the buffer pool for Natural programs, thus allowing for better isolation between the different
Natural objects.

If a separate buffer pool is allocated, Natural for DL/I locates its control blocks in this buffer pool.
Otherwise, they are located in the Natural buffer pool.

560 Database Management System Interfaces

System File Structure

The Individual Object Statistics function of the SYSBPM utility displays the NDB, NSB and UDF
control blocks kept in the buffer pool as follows:

Library DBID |FNR
NDB|SYSDLIND|255 [253
NSB [SYSDLINS|255 [253
UDF |U mmmnnn|255 |253

i Notes:

1. The library names of NDB and NSB are fixed internal names and are not related to any Natural
library.

2. The DBID/FNR values are fixed internal values and are not related to any Natural system file.

3. mmmis the DBID of the corresponding segment, nnn is the FNR of the corresponding segment.

The Display Object Hexadecimally function of the SYSBPM utility also allows you to display

Natural for DL/I objects. This function might be useful when in doubt if the expected object has
been read from FDIC, or if the object has been read from the expected FDIC (test/production).

Control Blocks in Buffer Pool Blacklist

The Natural for DL/I control blocks NDB, NSB and UDF can be added to the buffer pool blacklist.
This is done by the Blacklist Maintenance function of the SYSBPM utility.
As “Library” you enter SYSDLIND for NDBs, SYSDLINP for NSBs, and SYSDLINS for UDFs.

As Object you enter the NDB name for NDBs, the NSB name for NSBs, and Ummmnnn for UDFs
where mmm/ nnn are the DBID/FNR of the corresponding segment.

This feature allows you to modify NDBs, NSBs or UDFs without causing unpredictable results
for active users.

If an attempt is made to load a locked object into the buffer pool, Natural for DL/I will issue error
message NAT3935.

Database Management System Interfaces 561

System File Structure

Natural for DL/I Objects and Natural DDMs

When referencing a DDM in a Natural program, Natural translates the DDM name into the corres-
ponding DBID/FNR pair. If this DBID identifies the DDM as a DL/l DDM (by means of the NTDB
macro), the Adabas control block is passed to Natural for DL/I for further processing.

Natural for DL/I takes DBID from the control block and tries to locate an UDF with this DBID/FNR
in the buffer pool. If it is not found there, it is read from FDIC and loaded into the buffer pool.

The UDF contains the name of the related NDB in its header. Using this name, Natural for DL/I
tries to locate the NDB in the buffer pool. If it is not found there, it is read from FDIC and loaded
into the buffer pool.

The segment description including all DL/I fields is part of the NDB.
From this it is clear that:

® the NDB/UDF is required during runtime,

" the relation between the Natural program and the related NDB is established by means of
DBID/FNR only.

This implies that the DBA has to ensure that DDMs and NDBs are always kept in synchronization.
For example, it is not sufficient to transfer only the Natural programs from test to production.

562 Database Management System Interfaces

48 Natural Batch Utilities

= Transfer of NDBs/NSBs/UDFs from one System File 10 AnOther ... 564
= Utility NDUDFGEN for Natural Data ArEaSc.ueiiuiiiiiiiiieaiiieiiie ettt 568

563

Natural Batch Utilities

This section covers the following topics:

Transfer of NDBs/NSBs/UDFs from one System File to Another

= Unloading the NDBs, NSBs and UDFs
= | oading NDBs, NSBs and UDFs
= Selecting NDBs, NSBs and UDFs from a Data Set

The transfer of NDBs, NSBs and UDFs from one FDIC system file to another is performed either
online using the utility SYSMAIN (as described in the Natural Utilities documentation) or in two
batch steps, using two Natural batch utilities provided for this purpose:

® With the ULDDLI unload utility, the NDBs, NSBs and UDFs are transferred from one FDIC system
file to a sequential work file.

® With the INPLDLI load utility, the NDBs, NSBs and UDFs are transferred from the sequential
work file to another FDIC system file.

Both programs, ULDDLI and INPLDLI, are contained in the library SYSDDM.
Unloading the NDBs, NSBs and UDFs

The utility ULDDLI is used to unload NDBs, NSBs and UDFs from an FDIC system file to a sequential
work file.

ULDDLI requires the following input:

" the specification of the FDIC system file to be unloaded (either in the Natural parameter module
or dynamically) and

" one or more parameter lines containing the following;:

® Function code (A1); the following function codes can be specified:

A All NSBs, NDBs and UDFs are unloaded.

D All NDBs with valid object names and their UDFs are unloaded. If no object names are
specified, all NDBs and their UDFs are unloaded.

P All NSBs with valid object names are unloaded. If no object names are specified, all NSBs
are unloaded.

U All UDFs with valid object names are unloaded. If no object names are specified, all UDFs
are unloaded.

"o

. (period) | Terminate ULDDLI; at least one parameter card with function code “.” is required.

® Object name (A8); 0 - 6 occurrences.

564 Database Management System Interfaces

Natural Batch Utilities

Note: With UDFs, the object name must be in the form nnn**nnn; that is, a 3-digit
database ID, followed by 2 asterisks, followed by a 3-digit file number.

Work files: CMWKFO1 DD card must be provided with:

DCB=(RECFM=VB, LRECL=4624 ,BLKSIZE=4628)

When ULDDLI is executed, the specified NDBs, NSBs and UDFs are written from the FDIC system
file to the CMWKF01 data set.

Note: DL/I fields of a segment are part of the NDB block and not of the UDF block, which

means that you must still transfer the entire NDB block if you have modified a DL/I field
in a segment.

Example 1 - Unload the NDBs TESTDB1 and TESTDB2:

LOGON SYSDDM
ULDDLI D TESTDB1 TESTDBZ

Example 2 - Unload all UDF Blocks:

LOGON SYSDDM
ULDDLI U

Example 3 - Unload UDF Blocks with DBID 10/FNR 150 and DBID 246/FNR 3:

LOGON SYSDDM
ULDDLI U 010**150 246**003

Loading NDBs, NSBs and UDFs

The utility INPLDLI is used to load NDBs, NSBs and UDFs - previously unloaded with ULDDLI -
from the work file to an FDIC system file.

INPLDLI requires the following input:

" the specification of the FDIC system file into which the NDBs, NSBs and UDFs are to be loaded
(either in the Natural parameter module or dynamically);

" (optionally) the parameter DEL=Y:
If you specify DEL=Y, all existing NDBs and UDFs found on the FDIC system file are first deleted.

The ones contained on the input work file are added to the file. NSB definitions contained on
the work file replace any identically named NSBs on the FDIC system file.

Database Management System Interfaces 565

Natural Batch Utilities

If you do not specify DEL=Y, existing identically named NDBs and NSBs are not replaced. Existing
UDFs which have been allocated identical DBID/FNR combinations are not replaced either.
Non-existent definitions are added. If you do not specify DEL=Y, it may occur that an NDB is
loaded but all or some of its segments (UDFs) are not, or that segments (UDFs) are loaded
without the corresponding NDB being loaded.

" (optionally) the parameter REP=Y: If you specify REP=Y, NDBs, NSBs and UDFs contained on the
work file replace any identically named NDBs, NSBs and UDFs on the FDIC system file.

DEL=Y and REP=Y are mutually exclusive. If neither DEL=Y nor REP=Y is specified, existing NDBs,
NSBs and UDFs are neither deleted nor replaced.

Work files: CMWKF01 DD card must be assigned to the work file which was created by the utility
program ULDDLI.

When INPLDLI is executed, the NDBs, NSBs and UDFs are loaded from the work file into the
specified FDIC system file, depending on whether they already exist and on whether DEL=Y was
specified.

Example:

LOGON SYSDDM
INPLDLI REP=Y

Selecting NDBs, NSBs and UDFs from a Data Set

The utility SELDLI allows you to select Natural for DL/I objects (NDBs, NSBs, UDFs) from a data
set created by the ULDDLI utility. The output of SELDLI can be used as input for INPLDLI. Since
INPLDLI does not allow to select objects from a data set created by ULDDLI, you can use SELDLI to
perform this function on desired objects prior to running INPLDLI.

SELDLI can, therefore, be used for backup/recovery or transfer of selected objects from test to
production.

SELDLI also supports a SCAN (command SCN) feature that will list all of the objects on the input
data set without selecting any for output.

SELDLI can be used in batch mode only.
SELDLI requires the following input:

* the specification of the output data set CMWKFO1 from ULDDLI
" up to 30 parameter lines containing the following:
= Object type (A3); the following types can be specified:
" NSB - Select specified NSB
® NDB - Select specified NDB

566 Database Management System Interfaces

Natural Batch Utilities

® NDU - Select specified NDB and related UDF
= UDF - Select specified UDF
" SCN - List input data set CMWKFO1

" terminate SELDLI

® Object name (A8); 1 occurrence

Notes:

1. With NDB/NSB, a wildcard (*) can be specified at the end of the name to select a range of names.

2. With UDFs, the object name must be in the form nnn**nnn; that s, a 3-digit database ID, followed
by 2 asterisks, followed by a 3-digit file number.

SELDLI provides the following output:

® Data set containing selected objects to be used as input to INPLDLI. Itis specified with DDNAME
CMWKFOZ2.

When SELDLI is executed, the specified NDBs, NSBs and UDFs are copied from CMWKFO1 to CMWKFO02.

Example 1 - Select all NDBs:

LOGON SYSDDM
SELDLI
NDB, *
FIN
Example 2 - Select NSB "ORDPSB" and UDF for DBID 151, FNR 3:

LOGON SYSDDM
SELDLI
NSB,ORDPSB
UDF,151**003

#IN
Example 3 - Select NDB "CUSTDBD" and its related UDFs:

LOGON SYSDDM
SELDLI
NSB,ORDPSB
NDU,CUSTDBD

FIN

Database Management System Interfaces 567

Natural Batch Utilities

Example 4 - List all objects on the input data set:

LOGON SYSDDM
SELDLI

SCN

FIN

Utility NDUDFGEN for Natural Data Areas

The batch utility NDUDFGEN can be used to generate Natural data areas.
Input is provided by a UDF definition read from a work file.
Two kinds of data areas can be generated:

= a Natural view,

" adata structure (local data area).

A view in a local data area is generated from all fields contained in the input work file. The utility
normalizes the data to the requirements of a view according to the Natural syntax. The field lengths
are adapted to Natural field lengths, multiple-value fields and periodic groups are generated from
record data structures. Arrays are generated by NDUDFGEN with the maximum length allowed by
Natural. Field definitions are collected into a redefinition and the redefined field is generated ac-
cording to the length of the individual fields collected. The generated field can then be used in the
segment description as UDF; this means that not all UDFs need to be defined in the segment de-
scription, but only the generated fields.

A data structure as local data area is generated of all input fields. A level increment value can be
specified for the fields. No other modifications to the input file data are permitted, so that the data
are generated as specified in the input file.

Input for NDUDFGEN

The input layout is similar to the one for the NDPBCUDF utility.

The first card is the definition card; it contains the definition which is valid for all of the UDF
definitions.

The FLD cards contain the actual field definitions and are separated from each other by STR cards.

The END card indicates the end of the field definitions. The input is required in forms mode (IM=F)
as follows:

568 Database Management System Interfaces

Natural Batch Utilities

Definition Card

Definition Explanation

Bytes 1-3 |The first 3 bytes are not used.

Bytes 4 - 11 |These 8 bytes contain the DBD name.

Bytes 12 - 19| These 8 bytes contain the segment name.

Bytes 20 - 27| These 8 bytes contain a prefix (generated for fields).

Bytes 28 - 30| These 3 bytes contain the maximum occurrence (default is 191).

Byte 31 This byte contains either S if a data structure is to be generated or V if a view is to be generated.

Byte 32 This byte contains the level increment.

Field Card

Definition Explanation

Bytes 1-3 |The first 3 bytes contain FLD.

Bytes 4 - 19 |These 16 bytes are not used.

Byte 20 This byte contains the field level.

Bytes 21 - 39| These 19 bytes contain the name of the field being defined. This must be an alphanumeric
value.

Bytes 40 - 42| These 3 bytes are not used.

Byte 43 This byte contains the format of the field.

Bytes 44 - 47| These 4 bytes contain the byte length of the field.

Byte 48 This byte is not used.

Byte 49 - 52 | This byte contains the length as required by Natural (if this length is specified, the byte length
is ignored).

Byte 53 - 57 | These 4 bytes contain the maximum size of the 1st dimension of an array.

Byte 58 - 62 | These 4 bytes contain the maximum size of the 2nd dimension of an array.

Byte 63 - 66 | These 4 bytes contain the maximum size of the 3rd dimension of an array.

Example 1 - View Generation:

FLD
STR
FLD
STR
FLD
STR

DBDNAME SEGMENT PREFIX 191V
1VAR1 000A0745
1GROUP 000AO000ONO000000200020000
2VAR2 000A0006N00060005
2VAR3 000A0030

FLD
STR
END

Database Management System Interfaces

569

Natural Batch Utilities

The above input generates the following view:

13:38:41 s (B (D) T F
Library: XYZ1 Name: LOCAL
Command:
I T L Name
1 VARI1
1 GROUP
2 VAR2
2 VAR3
Example 2 - Structure Generation:
DBDNAME SEGMENT PREFIX 191S
FLD 1VAR1
STR
FLD 1GROUP
STR
FLD 2VAR2
STR
FLD 2VAR3
STR
END

DATA e 2006-05-25
DBID: 10 FNR: 5
> +
F Leng Index/Init/EM/Name/Comment
A 149 (5)
(4)
A 6 (5)
A 30
000A0745

000A0000N0000000200020000

000A0006N00060005

000A0030

The above input generates the following data structure:

*kk kK

13:41:20 EDIT
Library:
Command:
I T L Name

DBDNAME-SEGMENT-VIEW

VAR1

GROUP

PREFIX-1

PREFIX-1

VARZ

VAR3

XYZ1 Name:

o X <

B B wmh N

LOCAL

DATA *xxxx 2006-05-25
DBID: 10 FNR: 5
> +

F Leng Index/Init/EM/Name/Comment
DBDNAME - SEGMENT

A 149 (5)
(4)

A 60 /*PREFIX-1

A 6 (5)

A 30

570

Database Management System Interfaces

49 Execution

B PSB SCREAUING ...ttt 572
B CALLNAT INTEITACE ...veeeeiiee ettt ettt et e e e e e e et e e e et e e e e neees 577
B Support Of IMS-SPECITIC FEATUIMESvviieiiiei e 578
B FASE Path SUPPOI ...t e a e 580
B SUPPOI OF GSAM .ot e e e e e s e e e e e e e e e e 581
= Processing in CICS Pseudo-Conversational Mode or under IMS TMuvviiiiiiiiiiiee e 583

571

Execution

This section covers the following topics:

PSB Scheduling

In all environments, Natural must know the name of the scheduled PSB, not only the address of
the PCB list. In the online environments, the application developer must have the ability to change
the scheduled PSB during a Natural session. This is accomplished by the Natural command NATPSB
(in batch or CICS environments) or by calling CMDEFSWX/CMDIRSWX (in IMS TM environments).

= The NATPSB Command

= PSB Scheduling in a Batch Environment

= PSB Scheduling in a CICS Environment

= PSB Scheduling in an IMS TM Environment

The NATPSB Command

The NATPSB command handles PSB scheduling status and can be invoked with one of the following
three options:

Option Description

INQ Performs an inquiry on PSB scheduling status.

ON psbname|Issues a PSB schedule of the PSB psbname.

OFF Issues a SYNCPOINT to commit all updates and terminate the PSB.

] Note: The NATPSB INQ command is valid in an IMS TM environment, too.

The following command, for example, issues a PSB schedule of EDOOPSB:

NATPSB ON EDOOPSB

A PSB scheduling operation is allowed only if there is no active PSB. If a PSB is active and another
PSB is to be scheduled, the ON request for this new PSB must be preceded by an 0FF request. Oth-
erwise, the following message is issued:

NAT3900 PSB ... scheduled, but PSB ... already active

Since NATPSB is actually a Natural program, it can also be invoked with a FETCH or FETCH RETURN
statement. The options described above should then be passed in the FETCH statement as two
parameters. The first parameter would be an alphanumeric field of three bytes for INQ, ON or OFF.
If the first parameter is ON, the second parameter must also be passed. It is an alphanumeric field
of eight bytes and contains the name of the PSB to be scheduled.

572 Database Management System Interfaces

Execution

Execution time errors of NATPSB can be intercepted by an ON ERROR statement. The error messages
from NAT3900 to NAT3903 and from NAT3817 to NAT3820 are generated by NATPSB.

Example:

FETCH RETURN 'NATPSB' 'ON' 'PBNDLO1'
ON ERROR
IF *ERROR = 3900 /* PSB already scheduled
STACK TOP COMMAND 'NATPSB' 'ON' PBNDLO1'
STACK TOP COMMAND 'NATPSB' 'OFF'
STOP
END-IF
END-ERROR
END

PSB Scheduling in a Batch Environment

To execute a batch program that accesses a DL/I database, it is necessary to use the DL/I batch
procedure which executes an application program under DL/I control. Therefore in the JCL/JCS
used to execute Natural batch accessing DL/I databases, the first program in the step is a DL/I
system program (DFSRRCO0 for z/OS, DLZRRCOO for z/VSE).

PSB scheduling is performed by DL/I before control is passed to Natural. Since Natural requires
the name of the scheduled PSB, it is necessary to invoke the Natural PSB scheduling program
NATPSB before executing a Natural application program. This can be achieved by specifying the
command NATPSB ON psbname as the first command in the batch input stream to Natural.

Batch Execution under z/0OS

Under z/OS, the DL/I region controller program (DFSRRC00) invokes the NDLSINIB bootstrap
module for Natural for DL/I by specifying MBR=NDLSINIB in the PARM field of the EXEC card. NDLSINIB
reads two statements from the NDINPUT DD card:

" Statement 1 contains the name of the Natural module to be executed.

" Statement 2 contains the dynamic Natural parameters.

Before executing the user program, the command NATPSB ON psbname must be specified in the
input stream to pass the name of the current PSB to Natural.

Database Management System Interfaces 573

Execution

Example 1 - z/OS with Adabas System File:

// EXEC DLIBATCH,PSB=psbname,MBR=NDLSINIB
//G.STEPLIB DD ... Steplibs

//G.NDINPUT DD * Input for NDLSINIB
natbatch Natural Toad module name
STACK=(LOGON user),DU=0N Any Natural parameters
//DDCARD DD * Primary input file

ADARUN MODE=MULTI,PR=USER ADARUN cards

//G.CMSYNIN DD * Primary input file

NATPSB ON psbhname Mandatory Natural PSB scheduling
pgmname Natural user program name
1% End of Natural commands

Example 2 - z/OS with VSAM System File:

// EXEC DLIBATCH,PSB=psbname,MBR=NDLSINIB

//G.STEPLIB DD ... Steplibs

//G.NDINPUT DD * Input for NDLSINIB

natbatch Natural load module name
STACK=(LOGON user),DU=0N Any Natural parameters
//G.CMSYNIN DD * Primary input file

NATPSB ON psbhname Mandatory Natural PSB scheduling
pgmname Natural user program name

/= End of Natural commands

In both examples, natbatch is assumed to be the load module produced by the respective link-

edit procedure.

Batch Execution under z/VSE

Under z/VSE, the DL/I region controller program (DLZRRC00) invokes the NDLSINID bootstrap

module for Natural for DL/I.
The SYSIPT cards are as follows:
= DL/I control statements:

DLI,NDLSINID, psbname

natbatch

where:

® DLI is a parameter for DLZRRCOO,

® NDLSINID is the name of the bootstrap module,

® psbname is the name of the PSB,

" natbatch is the name of the Batch Natural nucleus;

® dynamic parameters to be passed to Natural;

574

Database Management System Interfaces

Execution

" ADARUN statements (only if Adabas system file is being used);

® Natural input cards.

A /* delimiter card is required before the ADARUN statements (if present) and before the Natural

dynamic parameters and input cards.

Before executing the user program, the NATPSB ON psbname command must be specified in the
input stream to pass the name of the current PSB to Natural.

Example 1 - z/VSE with Adabas System File:

// EXEC DLZRRCOO
DLI,NDLSINID,psbname
natbatch
/*

STACK=(LOGON user),DU=0N
/*

ADARUN MODE=MULTI,PR=USER
/*

NATPSB ON psbhname

pgmname

/*

Example 2 - z/VSE with VSAM System File:

// EXEC DLZRRCOO
DLI,NDLSINID,psbname
natbatch

/*

STACK=(LOGON user),DU=0N
/*

NATPSB ON psbhname
pgmname

/*

DL/I control statements
Batch Natural nucleus name

Any Natural parameters

End of Natural parameters

ADARUN cards

End of ADARUN cards

Mandatory Natural PSB scheduling
Natural user program name

End of Natural commands

DL/I control statements
Batch Natural nucleus name

Any Natural parameters

End of Natural parameters
Mandatory Natural PSB scheduling
Natural user program name

End of Natural commands

In both examples, natbatchis assumed to be the load module produced by the respective link-

edit procedure.

PSB Scheduling in a CICS Environment

Under CICS, the PSB must be scheduled using the NATPSB command, which actually invokes the

appropriate scheduling or termination calls.

The active PSB can be changed dynamically during the Natural session using the NATPSB command.
Therefore, more than one PSB can be used during a Natural session. Only one PSB, however, can

be active for a CICS task at a time.

Database Management System Interfaces

975

Execution

The NATPSB command can be entered in the Natural Command line or passed to Natural dynam-
ically with the Natural STACK statement when starting a Natural session.

Examples:

MOVE 'STACK=(NATPSB ON EDOOPSB)'
TO DYNAMIC-PARM-KEYWORD-LIST.
EXEC CICS
XCTL PROGRAM('NATvrs"')
END-EXEC.

This example taken from a COBOL/CICS program assumes that NATvrs is the value supplied for
the PROGRAM keyword in the CICS PPT; where vrs is the current Natural version number.

Another possibility is to assign NATPSB commands to one or more PF keys when starting a Natural
session as illustrated in the following example:

NATD STACK=(KEY PF1 = EDOOPSB)

This example assumes that NATD is the value supplied for the TRANSID keyword in the CICS PCT.
EDOOPSB is the following Natural program (cataloged in the library SYSTEM):

STACK TOP COMMAND 'NATPSB ON EDOOPSB'
STACK TOP COMMAND 'NATPSB OFF'
END

Whenever PF1 is pressed, the commands NATPSB OFF and NATPSB ON EDOOPSB are executed.
PSB Scheduling in an IMS TM Environment

Under IMS TM, Natural for DL/I runs as a conversational transaction. It has the ability to perform
direct or deferred message switching. This means that several different Natural transactions and
PSBs can be invoked during a single Natural session. It is also possible to invoke multiple PSBs
and provide the user with access to databases defined in different PSBs. This is accomplished by
calling CMDEFSWX or CMDIRSWX.

Under IMS TM, PSB scheduling is performed by the IMS Control Region before control is passed
to the Natural transaction running as an MPP (Message Processing Program) or BMP (Batch
Message Processing). As in the batch environment, Natural needs to know the name of the
scheduled PSB. This is accomplished internally at Natural session start by the driver which stores
the pointer to the PCB address list and the name of the PSB into IOCB fields. The NATPSB INQ
command can be issued in this environment but the NATPSB ON/NATPSB OFF commands cannot.

576 Database Management System Interfaces

Execution

CALLNAT Interface

The Natural subprograms NDLPCBAD and NDLPSBSC are provided, which can be invoked with a
CALLNAT statement from within a Natural program.

See the following sections:

= NDLPCBAD Subprogram
= NDLPSBSC Subprogram

NDLPCBAD Subprogram

The Natural subprogram NDLPCBAD provides the calling Natural program with the name of the
currently scheduled PSB and the pointer to the PCB address list.

Example:

DEFINE DATA LOCAL

01 PSBNAME (A8)

01 PCBADDR (B4)

END-DEFINE

CALLNAT "NDLPCBAD' PSBNAME PCBADDR
DISPLAY PSBNAME PCBADDR

END

This pointer can then be used by non-Natural programs to obtain the individual PCB addresses
and to establish addressability to the PCBs. For example, move these addresses to the BLL cells
(COBOL/VS) or use the SET ADDRESS instruction (COBOL II).

NDLPSBSC Subprogram

The Natural subprogram NDLPSBSC allows for scheduling a PSB in CICS or batch environments.
It performs the same functions as the NATPSB command.

Using CALLNAT "NDLPSBSC"' (instead of FETCH RETURN 'NATPSB')avoids the NAT1108 error message,
which is issued if a PSB is scheduled in an INPUT loop as follows:

INPUT ...
FETCH RETURN 'NATPSB' 'ON' 'psbname'
REINPUT ... /* returns NAT1108

Database Management System Interfaces 577

Execution

Example:

DEFINE DATA LOCAL
01 COMMAND (A3)

* IONl
x 'OFF!
x UINQ

01 PSBNAME (A8)

01 RETCODE (B1)

* 01: Command invalid

02: PSB name missing

03: PSB psbhname active

04: PSB psbname not active
05: Not used

* 06: No PSB active
END-DEFINE

MOVE 'ON' TO COMMAND

MOVE '"psbname'TO PSBNAME
CALLNAT "NDLPSBSC' COMMAND PSBNAME RETCODE
DISPLAY PSBNAME RETCODE

END

* % X o

Under IMS TM, NDLPSBSC can only be used with parameter ' INQ', because PSB scheduling is
performed by the IMS control region before control is passed to Natural.

Support of IMS-Specific Features

This section covers the following topics:

= Symbolic Checkpoint/Restart Functions - CHKP, XRST
= The INIT Call to Enable Data Availability Status Codes

Symbolic Checkpoint/Restart Functions - CHKP, XRST

A Natural program can make use of the IMS TM symbolic checkpoint and restart facilities by using
the statements GET TRANSACTION DATA and END TRANSACTION.

The executing program can checkpoint user data on the IMS system log data sets by supplying
an 8-byte checkpoint ID as the first operand in the END TRANSACTION statement and by specifying
the areas to be checkpointed as additional operands.

To ensure that the checkpoints are written to the IMS log data set, the Natural profile parameter
ETDB (see the Natural Parameter Reference documentation) must be specified, and the database
specified with the ETDB parameter must be a DL/I database.

If no operands are specified with the END TRANSACTION statement, Natural uses NATDLICK as the
default checkpoint ID.

578 Database Management System Interfaces

Execution

This checkpoint data are retrieved by executing the GET TRANSACTION DATA statement. The first
operand of this statement must also be an 8-byte checkpoint ID. The remaining operands must be
listed in the same sequence, length and format as in the corresponding END TRANSACTION statement.

Example:

RESET CKPID(A8) KEY(A10) AREAI(A20) AREA2(N6) AREA3(A120)
GET TRANSACTION DATA CKPID KEY AREAL AREAZ AREA3

I[F CKPID NE " ' /* checkpoint restart
MOVE KEY TO START-KEY(A10)

ELSE
RESET START-KEY /* normal restart

MOVE *PROGRAM-ID TO CKPID
RE/;D DLI-DB BY XKEY > START-KEY
L:JPDATE
I;ND TRANSACTION CKPID XKEY AREA1 AREAZ AREA3

END

Normal Restart: Simply run the job. The checkpoint ID parameter in the program's GET TRANSACTION
DATA statement is set to blanks by the DL/I call handler NDLSIOBA.

Checkpoint Restart: | To restart after an abnormal termination, specify one of the following checkpoint IDs
in the PARM field of the EXEC statement in your program's JCL:

CKPTID=LAST to restore data areas written to the log by the job at the last
successful checkpoint; or

CKPTID=ccccccecc to restore data areas written with checkpoint ID cccccccc.

These are the usual IMS TM restart procedures. Each checkpoint ID used in an END TRANSACTION

statement is displayed in the job output once the extended checkpoint has been successfully ex-
ecuted by IMS.

The checkpoint ID parameter of the program's GET TRANSACTION DATA statement is set to the actual
checkpoint ID used by IMS.

The data areas are restored into the areas you specify in your GET TRANSACTION DATA statement.
Ensure that the //IMSLOGR DD statement specifies the correct IMS log data set.

When Natural is started in a BMP region, the initialization routine issues an XRST call, to ensure
that symbolic checkpointing is available. This is done whether the Natural user programs to be
executed make use of IMS symbolic checkpoint logic or not. If the XRST was unsuccessful, Natural
returns the following error message:

Database Management System Interfaces 579

Execution

NAT3959 XRST call failed with DL/I status code xx <

When a GET TRANSACTION DATA statement is directed to the Natural call handler and the initial
XRST call has been flagged as successfully executed, the restart checkpoint ID and contents of this
buffer are copied into the program's user fields.

When an END TRANSACTION statement is directed to the Natural call handler, the user fields to be
checkpointed are copied into the buffer before a symbolic checkpoint call (CKPT) is issued.

If the database specified with the profile parameter ETDB (see the Natural Parameter Reference doc-
umentation) is not the same as the database affected by the transaction, the first operand of the
END TRANSACTION statement will be used as checkpoint ID for the ETDB database, while NATDLICK
will be used as checkpoint ID for the other database not specified with the ETDB parameter.

The total area to be checkpointed must not exceed 1992 bytes.
The INIT Call to Enable Data Availability Status Codes

If the INITCAL parameter of NDLPARMis set to YES, Natural issues an INIT call during session initial-
ization and during each MPP transaction start. The character string in the I/O area is STATUS
GROUPA. This informs IMS that Natural is prepared to accept status codes regarding data unavail-
ability. IMS returns status codes BA or BB when the DL/I call requires access to unavailable data
(for example, if the accessed database has been stopped).

The corresponding error messages of Natural for DL/I are:

NAT3897 DL/I status code 'BA'
NAT3898 DL/I status code 'BB'

For compatibility reasons, the default setting of INITCAL is NO.

The INIT call is issued only if Natural runs in a BMP or MPP region.

Fast Path Support

Natural supports Fast Path databases.

Fast Path database types include Main Storage Databases (MSDB) and Data Entry Databases
(DEDB).

® MSDB:

MSDBs have root only segments that are fixed-length. There are two types of MSDBs: terminal-
related and non-terminal-related.

580 Database Management System Interfaces

Execution

To read segments in an MSDB, GU and GN are used.

To update segments in an MSDB, REPL, DLET, ISRT, and FLD are used.
= DEDB:

DEDBs use the design concept that database content can be physically partitioned by ranges of
root keys or by groupings produced by a randomizing algorithm.

As a basic requirement, the non-conversational NATIMS driver must be used. This is because Fast
Path programs cannot be conversational programs, that is, they cannot use an SPA.

For DEDB databases, no special processing is required by Natural for DL/I.

For MSDB databases, the (one and only) SSA is built without command codes because DL/I does
not allow for it (not even the null command code must be used in case of MSDB databases).

When updating segments in an MSDB database, Natural for DL/I uses the REPL call (rather than
the FLD call) because the UPDATE statement of the Natural language does not provide a search
condition that indicates which segments must be updated (searched update).

Support of GSAM

Natural for DL/I supports the Generalized Sequential Access Method (GSAM), with which a se-
quential data set can be handled as a sequential non-hierarchic database by IMS.

Although GSAM databases have no segments, keys or parentage, they are handled internally by
Natural as root-only databases with fixed or variable-length segment types. Thus, it is possible to
use DDMs instead of work files for GSAM record types.

For variable-length GSAM records, Natural maintains the record length; you need not reserve a
field for the record length in the DDM.

A FIND or READ statement generates a GN (get next) call sequence for GSAM. Due to GSAM restric-
tions, UPDATE and DELETE statements are not allowed. Due to GSAM restrictions, a STORE statement
must insert records at the end of the database.

IMS repositions GSAM databases for sequential processing, which means that the position need
not be re-established by the application program after checkpoint calls. Therefore, Natural performs
no repositioning after checkpoint calls in the case of PCBs for GSAM.

In order to use the extended restart feature of IMS, the Natural job has to terminate abnormally.
This can be accomplished by calling the Natural IMS TM service module CMSVC13D. If the job ter-
minates either normally or with a condition code, IMS does a clean-up and no restart is possible.

Database Management System Interfaces 581

Execution

Every GSAM database structure which is to be used by Natural must be processed by the NATDBD
procedure. The assembly step of this procedure extracts the relevant information from the DBD
source and simulates an appropriate SEGM statement as shown in the following examples.

Example 1 - Segment Description of Fixed-Length GSAM Records:

DBD NAME=TESTDB,ACCESS=(GSAM,BSAM)

DATASET DD1=INPUT,DD2=0UTPUT,RECFM=F,RECORD=80
DBDGEN

END

From the above source statements, NATDBD would simulate a segment with the name of the DBD
and the length as specified with the RECORD keyword:

SEGM NAME=TESTDB,BYTES=80

Example 2 - Segment Description of Variable-Length GSAM Records:

DBD NAME=TESTDB,ACCESS=(GSAM,BSAM)
DATASET DDI=INPUT,DD2=0UTPUT,RECFM=VB
DBDGEN

END

From the above source statements, NATDBD would simulate a segment with the name of the DBD, a
maximum length of 32760 and a minimum length of 8:

SEGM NAME=TESTDB,BYTES=(32760,8)

In both examples, the NDB name and the segment name are TESTDB, and the generated DDM
name would be TESTDB-TESTDB.

The Natural program to read this GSAM database would be as simple as:

READ TESTDB-TESTDB

DISPLAY FIELDS-OF-TESTDB
LOOP
END

582 Database Management System Interfaces

Execution

Processing in CICS Pseudo-Conversational Mode or under IMS TM

When Natural is running under CICS in pseudo-conversational mode (that is, with the parameter
PSEUDO=0N set in the Natural parameter module) or under IMS TM, the Natural task/transaction
is terminated following each write to a terminal, and a new task/transaction is started when new
input is entered through the terminal. Because a Syncpoint is forced at the end of the task/transac-
tion, all resources are released when the message is sent to the terminal. Therefore, the DL/I PSB
is no longer active, nor are any DL/I GET HOLD calls in effect.

To avoid consistency problems on the DL/I databases, Natural performs additional processing
when it is running in CICS pseudo-conversational mode or under IMS TM:

1. If a DL/I GET HOLD call is still active at the end of the task/transaction, the values of the fields
read by the program that issued the corresponding READ or FIND (only the fields used, not the
whole segment) are saved in an internal table of Natural for DL/I.

2. When a new task/transaction resumes the Natural session and the program issues an UPDATE
or DELETE statement, Natural checks whether the field contents have been changed. If the check
shows that the field contents have not been changed, the UPDATE/DELETE is executed. If they
have been changed, an error message is returned by Natural notifying the user that the field
values just read were changed by another user in the system and that, therefore, the
UPDATE/DELETE operation is not carried out.

Natural also performs automatic PSB repositioning following resumption of the task/transaction.
A Natural application is, therefore, not affected by pseudo-conversational mode, unless it uses
conventional programming techniques, for example COBOL or PL/1.

If the task/transaction is terminated due to a screen I/O while a READ or FIND loop is being executed
on a segment without a unique sequence field, Natural is not able to reposition the PSB in the
database when the task/transaction is resumed. The same may occur when using secondary indices
with non-unique key fields in pointer segments. Natural is not able to reposition the PSB in these
instances because DL/I does not provide a method of re-establishing position in the middle of non-
unique keys or non-keyed segments.

Database Management System Interfaces 583

584

50 Programming Language Considerations

= Natural versus Third Generation LaNQUAGEScuuriieiiiiiiieiiiiii et 586
® Natural Statements With DL/co.uiiiii s 587
= Natural System Variables With DL/oeviiieii e 592

585

Programming Language Considerations

This section covers the following topics:

Natural versus Third Generation Languages

With a few exceptions Natural provides all of the functionality of third generation language pro-
gramming in the DL/I environment.

However, accessing DL/I data using Natural is significantly different from programming techniques
used in a third generation language. Natural application programmers do not have to code specific
DL/I calls or build the segment search arguments (S5As). They do not need to concern themselves
with PCB mask information or keep track of PCB positioning between Syncpoints.

Natural for DL/I operates as a standard DL/I application and although most of the DL/I call pro-
cessing is done internally, it is important to realize that all of the required DL/I processing is still
performed:

PSBs are scheduled and terminated, PCBs are selected for use, database positioning is maintained,
SSAs are created, the most efficient DL/I calls are issued, PCB mask information is evaluated, GET
HOLD calls are issued before update or delete operations.

These tasks are all being performed for the application by Natural.

It is important to note that Natural is performing these tasks based on the information available
in the application program. If, for example, a READ or FIND statement in a program is lacking essen-
tial segment search information, Natural selects a PCB, builds an SSA and issues a certain DL/I
call based on this lacking information.

The Natural programmers use the same Natural statements to manipulate data in DL/I as they
would for VSAM, Adabas or DB2.

Natural accesses DL/I segments based on the Natural DDM which is being referenced. Since the
data access is always for one specific segment type (the one defined by the DDM), Natural does
not issue path calls nor unqualified calls; that is, calls where the segment name is not specified.

i Notes:

1. Due to the structure of the Natural programming language, application control over DL/I call
command codes is not available.

2. The LOG, STAT and GSCD call functions are not supported for the IMS TM environment.

586 Database Management System Interfaces

Programming Language Considerations

Natural Statements with DL/I

= BACKOUT TRANSACTION
= DELETE

= DISPLAY

= END TRANSACTION

= FIND

= GET TRANSACTION DATA
= READ

= RELEASE

= STORE

= UPDATE

= WRITE

= Statements not Available for DL/I

This section mainly consists of information also contained in the Natural Statements documentation,
where each Natural statement is described in detail, including notes on DL/I usage where applicable.
Summarized below are the particular points a programmer has to bear in mind when using Nat-
ural statements with DL/I.

Any Natural statement not mentioned in this section can be used without restrictions with DL/I.

BACKOUT TRANSACTION

The Natural statement BACKOUT TRANSACTION is used to back out all database updates performed
during the current logical transaction.

How the statement is translated and which command is actually issued depends on the TP-mon-
itor environment:

= Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS ROLLBACK
command. However, in pseudo-conversational mode (PSEUDO=0N), only changes made to the
database since the last terminal I/O are undone. This is due to CICS-specific transaction pro-
cessing.

® Inbatch mode and under IMS TM, Natural for DL/Iissues ROLB calls without checking the CMPAT
setting in the corresponding NSB. However, under IMS TM, only changes made to the database
since the last terminal I/O are undone. This is due to IMS TM-specific transaction processing.

Because PSB scheduling is terminated by a Syncpoint/checkpoint request, Natural saves the PCB
position before executing the BACKOUT TRANSACTION statement. Before the next command execution,
Natural reschedules the PSB and tries to set the PCB position as it was before the backout.

| Note: The PCB position might be shifted forward if any pointed segment had been deleted
in the time period between the BACKOUT TRANSACTION and the following statement.

Database Management System Interfaces 587

Programming Language Considerations

DELETE

The Natural statement DELETE is used to delete a segment from a DL/I database, which also deletes
all descendants of the segment.

DISPLAY

The DL/I AIX fields can be displayed with the Natural statement DISPLAY only if a PCB is used
with the AIX specified in the parameter PROCSEQ. If not, an error message is returned by Natural
for DL/I at runtime.

END TRANSACTION

The Natural statement END TRANSACTION indicates the end of a logical transaction and releases all
DL/I data locked during the transaction. All data modifications are committed and made permanent.

How the statement is translated and which command is actually issued depends on the TP-mon-
itor environment:

= Under CICS, the END TRANSACTION statement is translated into an EXEC CICS SYNCPOINT com-
mand.

* In batch mode and non message-driven BMP environments, Natural for DL/I issues CHKP calls
without checking the CMPAT setting in the corresponding NSB.

® In MPP and message-driven BMP environments, the END TRANSACTION statement is not translated
into a CHKP call, but is ignored, because CHKP calls imply GU calls. As Natural is a conversational
transaction, you must reply to the terminal before requesting the next message (that is, before
issuing the next GU call). An implicit end-of-transaction is issued after each terminal I/O.

Because PSB scheduling is terminated by a SYNCPOINT/CHECKPOINT request, Natural saves the PCB
position before executing the END TRANSACTION statement. Before the next command execution,
Natural reschedules the PSB and tries to set the PCB position as it was before the END TRANSACTION
statement.

Note: The PCB position might be shifted forward if any pointed segment had been deleted
in the time period between the END TRANSACTION and the following command.

With batch-oriented BMP regions, user data can be checkpointed on the IMS system log data sets.
This is done by supplying an 8-byte checkpoint ID as the first operand in the END TRANSACTION
statement, and by specifying the areas to be checkpointed as additional operands.

If the database specified with the Natural profile parameter ETDB is not the same as the database
affected by the transaction, the first operand of the END TRANSACTION statement will be used as
checkpoint ID for the ETDB database, while NATDLICK will be used as checkpoint ID for the other
database not specified with the ETDB parameter.

588 Database Management System Interfaces

Programming Language Considerations

The total area to be checkpointed must not exceed 1992 bytes; see also Symbolic Checkpoint/Restart
Functions.

FIND

With DL/I, the Natural FIND statement is typically used when a specific search criterion is known
and specific segments are to be retrieved. This issues a DL/I GET UNIQUE call. However, if the FIND
statement specifies a lower level segment and is within an active READ or FIND loop for an ancestor
segment, it generally results in a DL/I GET NEXT WITHIN PARENT call.

The FIND statement initiates loop processing, which is active until all segment occurrences which
match the search criterion have been read.

When accessing a field starting after the last byte of the given segment occurrence, the storage
copy of this field is filled according to its format (numeric, blank, etc.).

FIND FIRST, FIND NUMBER and FIND UNIQUE are not permitted. The PASSWORD, CIPHER, COUPLED
and RETAIN clauses are not permitted either.

In the WITH clause, you can only use descriptors that are defined as key fields in DL/I and marked
with “D” in the DDM.

When connecting search criteria, the following has to be observed:

basic-search—crfterfon} { OR

(search-expression) NOT} search-expression

[NOT] {

Connecting search criteria for segment type A results in multiple qualification statements within
one DL/I segment search argument (SSA). Connecting search criteria for segment types A and B
results in multiple SSAs. Therefore, the Boolean operator OR cannot be used to combine search
criteria for different segment types.

GET TRANSACTION DATA

The Natural statement GET TRANSACTION DATA retrieves checkpoint data saved by an END
TRANSACTION statement. The first parameter of this statement must be an 8-byte checkpoint ID.
The remaining operands must be listed in the same sequence, length and format as in the corres-
ponding END TRANSACTION statement; see also Symbolic Checkpoint/Restart Functions.

Database Management System Interfaces 589

Programming Language Considerations

READ

The Natural statement READ should be used to process a set of segment occurrences in sequential
order and usually results in a DL/I GET NEXT call.

When the READ statement is used, segments are retrieved based on the sequence field of the root
segment or based on a secondary index field. Since the READ statement initiates sequential access
of the database, it is important to understand that the EQUAL TO clause means the same thing as

the STARTING FROM clause; it initiates a sequential read loop beginning with the key value specified.

The READ statement initiates loop processing. A loop is active until all segment occurrences which
match the search criterion have been read.

The PASSWORD and CIPHER clauses are not permitted.

IN PHYSICAL SEQUENCE is used to read records in the order in which they are physically stored in
a database. The physical sequence is the default sequence.

. Note: This is only valid when using Natural with HDAM databases.
BY ISN is not valid when using Natural with DL/I.

For Natural, the descriptor used must be either the sequence field of the root segment or a secondary
index field. If a secondary index field is specified, it must also be specified in the PROCSEQ parameter
of a PCB. Natural uses this PCB and the corresponding hierarchical structure to process the database.

RELEASE

The Natural statement RELEASE is not applicable for DL/I usage, since it releases sets of records
retained by a FIND statement that contained a RETAIN clause, which is not valid when using Nat-
ural with DL/I.

STORE

The Natural statement STORE can be used to add a segment occurrence.

If the segment occurrence is defined with a primary key, a value for the primary key field must
be provided.

In the case of a GSAM database, records must be added at the end of the database (due to GSAM
restrictions).

The USING/GIVING NUMBER clause is not valid when using Natural with DL/I.

If the SET/WITH clause is used, the following applies with Natural for DL/I:

590 Database Management System Interfaces

Programming Language Considerations

® Values must be provided for the segment sequence field and for all sequence fields of the ancest-
ors.

® Only I/O (sensitive) fields can be provided.

" A segment of variable length is stored with the minimum length necessary to contain all fields
as specified with the STORE statement. The segment length will never be less than the minimum
size specified in the SEGM macro of the DBD.

® If a multiple-value field or a periodic group is defined as variable in length, at the end of the
segment only the occurrences as specified in the STORE statement are written to the segment
and define the segment length.

UPDATE

The Natural statement UPDATEcan be used to update a segment in a DL/I database. The segment
length is increased (if necessary) to accommodate all fields specified with the UPDATE statement.
If a multiple-value field or a periodic group is defined as variable in length, only the occurrences
as specified in the UPDATE statement are written to the segment.

The DL/I AIX field name cannot be used in an UPDATE statement. AIX fields, however, can be up-
dated by referring to the source field which comprises the AIX field.

DL/I sequence fields cannot be updated because of DL/I restrictions.

If the SET/WITH clause is used, only I/O (sensitive) fields can be provided. A segment sequence
field cannot be updated (DELETE and STORE must be used instead).

Due to GSAM restrictions, the UPDATE statement cannot be used for GSAM databases.
WRITE

With the Natural statement WRITE, the DL/I AIX fields can be displayed only if a PCB is used with
the AIX specified in the parameter PROCSEQ. If not, an error message is returned by Natural for
DL/I at runtime.

Statements not Available for DL/I

The following Natural statements are not available for DL/I users:

= OGET

= GET SAME
" HISTOGRAM
= PASSW

® RELEASE

Database Management System Interfaces 591

Programming Language Considerations

Natural System Variables with DL/I

With DL/, the following restrictions apply to the following Natural system variables:
*ISN

As there is no DL/I equivalent to Adabas internal sequence numbers (ISNs), the system variable
*ISN is not available with Natural for DL/I.

*NUMBER
With Natural for DL/I, the Natural system variable *NUMBER does not contain the number of segment

occurrences found. It contains 0 if no segment occurrence satisfies the search criterion and a value
of 8,388,607=X"'7FFFFF" if at least one segment occurrence satisfies the search criterion.

592 Database Management System Interfaces

51 Problem Determination Guide

The items listed below are cross-referenced by Natural for DL/I error messages. They are supplied
to advise Natural programmers, DL/I database administrators and system support personnel of
actions required to correct a given problem.

Item Corresponding Action
Number
1 Activate Natural Trace Facility for DL/I

Note: The Natural trace facility for DL/I is available in all Natural for DL/I environments.

To activate the Natural trace facility for DL/I (Dynamic Trace Activation)

= Execute the command NDLTRACE in library SYSDDM as follows:

NDLTRACE ON parml parmZ parm3

Permitted values for trace parameters are either CMD, SER, ROU (according to the specifications
in the given error message) or ALL to trace all events of Natural for DL/L

To activate the Natural trace facility for DL/I (Initial Trace Activation)

1. Code the TRACE parameter in the NDLPARM module according to the specifications in the given
error message.

Or:

Specify TRACE=ALL to trace all events of Natural for DL/I.
2. Assemble the NDLPARM module.
3. Link-edit the load module that contains Natural for DL/I.

To create and display the Natural trace for DL/I

1. Start the Natural session with DSIZE=64 (or smaller).

593

Problem Determination Guide

Item Corresponding Action
Number

This is required because the trace data is written into the DSIZE buffer.

2. Activate the trace facility (see above) and specify the following commands:

TEST DBLOG D Start DBLOG for DL/I.
Reproduce your problem here.

TEST DBLOG D Display the data logged.

Obtain the Program Listing

Obtain the View Listing

Obtain the DBD Macros

Obtain the PSB Macros

Obtain the NDB Description Printout

DN |G| x| W N

To obtain the printout, execute the Natural module NDLBLOCK in the library SYSDDM with the
following parameters:

= block type (3 bytes alphanumeric) = NDB

= block name (8 bytes alphanumeric) = dbd-name

7 Obtain the NSB Description Printout

To obtain the printout, execute the Natural module NDLBLOCK in the library SYSDDM with the
following parameters:

= block type (3 bytes alphanumeric) = NSB

® block name (8 bytes alphanumeric) = psb-name

8 Obtain the UDF Description Printout

To obtain the printout, execute the Natural module NDLBLOCK in the library SYSDDM with the
following parameters:
= block type (3 bytes alphanumeric) = UDF

® block name (8 bytes alphanumeric) = db-7d**file-number
(that is, 3 digits for the database ID, a literal separator “**” and 3 digits for the 7 7e-number)

9 Obtain a DUMP

10 Obtain the NDLPARM Listing

11 Obtain the NATDBD Procedure Output
12 Obtain the NATPSB Procedure Output

594 Database Management System Interfaces

52 Performance Considerations

L o [11111 (=Y £ 596
B Global AN LOCAI DA ATBASvvveeeeieeeeeee ettt 596
L IS P2 (=T 4T3 PR 596
B DireCt ACCESS 10 LOWET LEVEISviieieiieeece e 596
B DBLOG ULIIEY i a e 597

595

Performance Considerations

This section lists some special considerations which may help you increase the performance of
your Natural for DL/I environment.

Parameters

Set the DLISIZE parameter to 0 if no DL/I database is to be accessed.

Do not modify NDLPARM parameters, unless requested by a corresponding Natural for DL/I error
message. Unused buffers are compressed by the Natural compression algorithm.

DBID

Use the same DBID for all segment types (DDMs) of a given NDB, because an 0PEN command is
generated for each DBID.

Global and Local Data Areas

Keep global and local data areas as small as possible, because the format buffer contains all fields
of the global and local data areas, not only those which are referenced by a Natural I/O statement.

FIND Statements

If the sequence field is unique, use a FIND (1) statement instead of a FIND statement to prevent
an unnecessary second DL/I call.

Direct Access to Lower Levels

Access segments on lower levels directly (by using the field sequence of the parent); that is, access
ancestor segments only if their contents are required by the application program.

In such cases, UDFs of ancestor segments as well as DL/I fields of ancestor segments which are
not sequence fields are not available to the application program.

596 Database Management System Interfaces

Performance Considerations

DBLOG Utility

Use the Natural utility DBLOG (TEST DBLOG D) to tune your application; see Logging Database Calls
(DBLOG) in the Natural Utilities documentation.

Database Management System Interfaces 597

598

53 DL/l Services

B NDB MAINTBNANCE ... e e e e e e e 600
B NSB MaINENANCE ... e e e e 611

599

DL/I Services

When you invoke “DL/I Services” from the SYSDDM main menu, the DL/I Services Main Menu is
displayed which offers you the following functions:

®* NDB Maintenance
An NDB is a DL/I DBD (database description) which is defined to Natural.

® NSB Maintenance
An NSB is a DL/I PSB (program specification block) which is defined to Natural.

NDB Maintenance

This section covers the following topics:

= Menu and Functions

= Select an NDB from a List

= Select an NDB Segment from a List

= Edit an NDB Segment Description

= Generate DDM from Segment Description

Menu and Functions

When you select NDB Maintenance on the DL/I Services Main Menu, the NDB Maintenance
menu is displayed:

14:37:12 *x** DL/I Services **** 2006-05-25
- NDB Maintenance -

Code Functions
S Select an NDB from a List
P Purge an NDB
L Select an NDB Segment from a List
E Edit an NDB Segment Description
G Generate DDM from Segment Description
? Help
. Back
M End
Enter Code: ?
NDB Name:
Segment Name:

ENTER PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12
Help Back End

The individual NDB maintenance functions are listed below:

600 Database Management System Interfaces

DL/I Services

Function

Explanation

Select an NDB from a List

List the NDBs which are defined on the Natural system file. You can then select
NDBs from this list by entering the following function codes:

P to purge an NDB,
L to list the segments of an NDB.

For details, see Select an NDB from a List.

Purge an NDB

Purge an NDB and its related segment descriptions from the Natural system
file. The name of the NDB to be purged must be specified.

Before this function is executed you are prompted to confirm the purge request.

For details, see Select an NDB from a List.

Select an NDB Segment
from a List

List the segments of the specified NDB. You can then select segments from this
list for further processing.

For details, see Select an NDB from a List.

Edit an NDB Segment

Edit a segment description. The segment name and its corresponding NDB

Description name are required when invoking this function. A database ID (DBID) and file
number (FNR) must have been assigned to the segment description (function
code A on the Segment List display) before it can be edited.

For details, see Edit an NDB Segment Description.
Generate DDM from Generate a DDM from a segment description. The DDM definition is a Natural

Segment Description

DDM of the segment. Prior to execution of this function, a DBID and FNR must
have been assigned to the segment (function code A on the Segment List
display).

For details, see Generate DDM from Segment Description.

Select an NDB from a List

When you select an NDB from a list, a list containing all NDBs defined on the Natural system file
is displayed. In addition to the NDB name the following is displayed:

L/P Indicates if ACCESS=L0OGICAL or not.

length |Length of the NDB.

NoSGMS |[Number of the segment types in the NDB.

ACCESS |The access specification taken from the DBD.

From the list, you can select NDBs for further processing by entering the following function codes
in the Func column next to the NDB names:

Database Management System Interfaces 601

DL/I Services

Code |Function

P Purge NDB

This function is identical to the Purge NDB function available on the NDB Maintenance menu. It
deletes an NDB and its related segment descriptions from the Natural system file. Before the function
is executed you are prompted to confirm the purge request.

L List NDB Segments

This function is identical to the “Select NDB Segment from a List” function available on the NDB
Maintenance menu. It lists the segments of the selected NDB.

For details, see Select an NDB Segment from a List.

Select an NDB Segment from a List

When you select an NDB segment from a list, a list containing all segments of the specified NDB
is displayed. If you do not know the NDB name, use the Select an NDB from a List function.

10:50:48 wwwds PL/T SERVICES #w% 2006-05-25
- Segment List -
DBD Name = EDOODBD

Func Level Segment DBID FNR Seg-Lgh UDF-Lgh Response
fffffffffffffffffffffffffff Top of Data ---------"---"---"--"-"--"---"---------
_ 1 COURSE 246 _10 75-80 100
_ 2 PREREQ 246 _11 36-36 40
_ 2 OFFERING 246 _12 41-41 40
_ 3 TEACHER 246 _13 24-24 60
_ 3 STUDENT 246 _14 40-40 40
fffffffffffffffffffffffffffff BOTELOM ==c=c=cccsccccscccccccccosooasnsosa
Code .. _ (? Help . Back M End)
Func = E Edit Segment Description A Assign DBID and FNR
F Free DBID and FNR " ' Change DBID and FNR
G Generate DDM N Take New Copy of UDF

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Exec Help Exit Canc

Next to each segment you can enter one of the function codes listed below. You can mark several
segments at the same time with a function code. If you do not enter any code, the list is scrolled
forward until the bottom of the list is reached.

You can enter one of the following codes next to a segment on the segment list to perform one of
the following functions:

602 Database Management System Interfaces

DL/I Services

Code

Function

Assign DBID/FNR
Assign a DBID and a FNR to the selected segment.

The DBID is a number in the range from 1 to 254. It must be contained in the database ID list (NTDB
macro) of the Natural parameter module. All Natural DDMs which refer to a DL/I segment must
have a DBID belonging to this range. If a DBID has not been entered, a default value is assigned,
which is the entry with the lowest value in the DBID list specified in the Natural parameter module.
For a given NDB, all segments should be assigned the same DBID. Otherwise, Natural assumes
different databases and generates an OPEN command (which, however, is ignored by the DL/I call
handler).

The FNR is a number in the range from 1 to 254. The FNR must be specified; no default value is
assumed by Natural. The segments of a logical NDB must have file numbers different from those
assigned to the segments of the physical NDB.

The DBID/FNR combination must be unique on the Natural system file. It is used by Natural to
uniquely determine the NDB and the segment within the NDB.

Edit Segment Description

Edit the description of a segment within a given NDB. The function is the same as the Edit an NDB
Segment Description function which you can invoke from the NDB Maintenance menu. Before
you can edit a segment description, a DBID and FNR must have been assigned to the segment (see
above).

For details, see Edit an NDB Segment Description.

Free DBID/FNR

Release the DBID and FNR which have previously been assigned to the segment. Once a DBID
and FNR have been released, they are available for assignment to another segment.

Generate DDM

Generate a DDM definition from a segment description. The function is the same as the Generate
DDM from Segment Description function which you can invoke from the NDB Maintenance
menu.

Before you can generate a DDM from a segment description, a DBID and FNR must have been
assigned to the segment (see above).

The generated DDM is a Natural view of the segment. Once it has been generated, the DDM can
be modified and cataloged.

For details, see Generate DDM from Segment Description.

Take New Copy of UDF

Refresh the user-defined fields (UDFs) of a segment when the UDFs of the source segment have
been changed. This applies to UDFs of segments belonging to a logical NDB and to UDFs of logical
virtual children. Before you can execute this function, a DBID and FNR must have been assigned
to the segment (see above).

Database Management System Interfaces 603

DL/I Services

Code |Function

blank |Change DBID/FNR

Change a previously assigned DBID and/or FNR.

For changing a DBID or FNR, the same rules concerning DBID and FNR specification apply as for
assigning a DBID/FNR (see above).

Edit an NDB Segment Description

Additional segment fields, so-called user-defined fields (UDFs), can be defined.

This function is invoked either by entering function code £, an NDB name and a segment name
on the NDB Maintenance menu, or by selecting the segment from the Segment List (by marking
it with function code E). A DBID and a FNR must have been assigned to a segment description
(function code A on the Segment List display) before it can be edited.

EDIT command: DBD EDOODBD SEGMENT STUDENT SEGLGH 40-40
ALL LEV SN FIELD NAME START DLI MAXOCC FOR LGH 'V

1 PM EMPNO 00001 sau A 6

1 PN NAME 00007 SRC A 33

1 PO GRADE 00040 SRC A 1

1 AA BIRTHDATE 00025 A

2 AB DATE-DD N 2

2 AC DATE-MM N 2

2 AD DATE-YY N 2

1 AE BIRTHPLACE A 10

1 AF STUDENT-NAME PN A 18

The following information is displayed on the status line at the top of the screen:

DBD Name of the DBD which contains the edited segment.
SEGMENT |Name of the edited segment.

SEGLGH |Minimum and maximum length of the edited segment, separated by a hyphen.

DL/I fields and user-defined fields are displayed as shown above. You can add, delete or modify
UDFs. DL/I fields, however, can neither be added nor deleted. If the specification TYPE=P is included
in the FIELD statement of the DL/I DBD, the format of the field can be changed from P (decimal
packed unsigned) to S (decimal packed signed) on the edit segment description screen. FOR (format)
is the only attribute of a DL/I field you can modify. In particular, it is not possible to change the
name of a DL/I field, because it is used by Natural to build the segment search arguments (SSA).
If the name of a DL/I field is to be changed, the field can be redefined as an UDF.

604 Database Management System Interfaces

DL/I Services

Edit commands are available to copy or delete single lines or to insert a group of empty lines. In
addition, commands for scrolling forward or backward are provided. For details you can enter a
question mark in the “command” field to display the corresponding help information.

After modification of segment field attributes you can save the description by entering SAVE in the
command field.

The following field definition attributes are displayed and can be modified for user-defined fields:

Attribute Description

LEV Level number used to define a group of fields.

SN Short name of the field as used internally by Natural.
FIELD NAME|Name of the field as used in the application programs.
START Start position of the field in the segment.

DLI Type of the DL/I field, as follows:

SIX secondary index field
SQU sequence field (unique)
SQM sequence field (multiple)
SRC search field

MAX0CC Maximum number of occurrences of a multiple field or periodic group.
FOR Format of the field.

LGH Length of the field.

v Variable field length indicator.

Each user-defined field can be defined as follows:

Field Type Description

Elementary Field | A field that contains only one value in a single segment.
Example: Personnel number

Multiple Field |A field that can contain more than one value in a single segment. Reference to a
particular value of a multiple field can be made by appending a one to three-digit
subscript (value 1 - 191) to the field name.

Example: Languages - English, German, Italian

Database Management System Interfaces 605

DL/I Services

Field Type Description
Group A series of one or more adjacent fields that can be referenced with a single name (the
group name). You can also refer to a single field of a group by specifying its name.
Example:
01 Address Group field
02 City Elem. field
02 Street " "
02 Number " !
Periodic Group |A group which is repeated in multiple adjacent occurrences in a single segment. For

a periodic group it is possible to refer to a range of occurrences (or a field within a
periodic group) by specifying the first and the last occurrence number to be referenced
(connected by a hyphen (-)) after the name and in ascending order. Multiple-value
fields or periodic groups are not allowed within a periodic group.

Example: Several addresses

Since DL/I fields cannot be modified as described above (with the exception of FORMAT), they cannot
be directly defined as a group. To define a DL/I field as a group, it is necessary to redefine it as a
user-defined field which then can be redefined as a group. In a DDM, these user-defined fields
must not be specified as descriptor fields. When a DDM is generated, the UDFs are marked as
non-descriptor fields.

Example - Redefinition of a DL/I Sequence Field as a Group:

The description of the segment STUDENT within the DBD named ED00DBD is used as shown in the
Segment List screen above:

LEV SN

FIELD NAME START DLI NOCC FOR LGH V

1 PM EMPNO 00001 SQu A 6

If the DL/I sequence field PM is to be “structured”, it must be redefined as a user-defined field
(AAAAA in the figure below). This UDF can then be structured as required.

606

Database Management System Interfaces

DL/I Services

LEV SN FIELD NAME START DLI NOCC FOR LGH V
1 PM EMPNO 00001 sQu A 6
1 AA AAAAA PM
AB BBBBB A 3
2 AC CcCcCcCC A 3

The group field AAAAA has no format/lenght (FOR/LGH) specified. The length of a group is set equal
to the sum of all fields belonging to the group.

UDF Parameters

For each user-defined field on the above screen, parameters can be specified as listed and described
in the following table. The total length of all DL/I fields and user-defined fields must not exceed
the segment length.

When attributes of a UDF are modified and an old copy of this UDF is contained in the shared
UDF buffer pool, the old copy is marked “invalid”. If the UDF is referred to again by a Natural
program, the modified UDF is read from the Natural system file. Therefore, it is not necessary to
restart the Natural session if a UDF has been modified. However, this applies only to physical
UDFs; that is, to UDFs of a physical NDB. If a physical UDF is modified and a logical NDB refers
to the appropriate segment type, the logical UDF is not marked “invalid” in the buffer pool. To
invalidate a logical UDF it is necessary to restart the TP monitor or to execute function N (Take
New Copy of UDF) of the Segment List screen on the appropriate segments in the logical NDB.

Field Description
LEV (level A one-byte value used to define a group. A field is a group only if the subsequent field
number) has a higher level number. The field immediately after the last group element must have

a lower level number. A group can be defined within another group. The level number
of the first user-defined field must be 1.

SN (short name) | The name used internally by Natural to identify the field. It must be two bytes in length,
the first character must be alphabetic in the range from A to G (E is not permitted). The
second character can be alphanumeric (that is, up to 216 UDF fields can be defined). If the
segment is a logical child, the first character must be alphabetic in the range from H to M.
Short names must be unique among a segment type.

FIELD NAME |External field name, up to 19 bytes long.

START The start position of the field in the segment. The position can be specified as absolute by
giving a three-digit number or it can be specified as relative, by giving the short name of
a previously defined field which is being redefined.

Database Management System Interfaces 607

DL/I Services

Field

Description

It is important to specify the start position for the first user-defined field; otherwise, a
default of 1 is used, which may cause overlapping with previous DL/I fields. The default
for all other user-defined fields is the position immediately after the previous field.

The redefinition of fields is possible only for fields which have the same level number.
When the level is higher than 1 (that is, for a field inside a group), only the last field can
be redefined with the same level number. An absolute position must not be specified for
a field within a group.

MAXOCC

The maximum number of occurrences of a multiple -value field or periodic group in a
segment.

FOR (format)

Standard field formats are:

A Alphanumeric

B Binary

F Fixed Point

P Packed decimal unsigned; that is, the zone halfbyte of the last byteis X' F".

S Packed decimal signed; that is, the zone halfbyte of the last byteis X' C" (positive) or
X'B' (negative).

N Unpacked

LGH (length)

Field length is a three-digit number; it must not exceed the maximum length permitted.
These are as follows:

253 bytes for alphanumeric fields (A),

126 bytes for binary fields (B),

4 bytes for fixed point (F),

14 bytes for packed decimal unsigned (P),
14 bytes for packed decimal signed (S),
27 bytes for unpacked decimal (N)

In addition, the length specified must not exceed the segment length. Length must not be
specified for a group. The length of packed fields is the field length in bytes.

V (variable)

Depending on its value, V or blank, this parameter indicates whether a field has a variable
length. Fields can be specified as variable only if the segment is a segment of variable
length.

Only one field can be defined as variable within a given segment description.

An elementary field can be specified as variable in length only if it is the last field in the
segment. A multiple field or a periodic group can be specified as variable in length
regardless of its position in the segment.

When applied to a multiple field or a periodic group, a setting of VARIABLE means that
the number of occurrences is not known at definition time; therefore, MAXOCC should be
specified using the maximum expected value.

608

Database Management System Interfaces

DL/I Services

Generate DDM from Segment Description

This function is invoked either by using the G function code of the NDB Maintenance menu - then
an NDB name and a segment name must be specified -, or by selecting the segment from the
Segment List, by marking it with function code G.

A DBID and a FNR must have been assigned to a segment description (function code A on the
Segment List display) before a DDM can be generated.

The DDM is generated from a segment description and represents a Natural view of the segment.
It must be generated and cataloged before the corresponding segment can be referenced by a
Natural program. After generation, default options for field headers or edit masks (decimal posi-
tions) can be modified in the DDM. See Catalog DDM and Edit DDM in the Natural Utilities docu-
mentation for corresponding information.

It should be noted, however, that default options for field headers or edit masks (decimal positions)
are stored with the DDM and not with the NDB or UDF. The data in the NDB or UDF reflects
what is allowed by the DL/I FIELD macro in which the length can be specified only in bytes
(decimals are not allowed). Consequently, when regenerating the DDM, prior modifications in
the DDM must be applied again by the user.

In DL/I a program must be able to reference search fields, sequence fields and secondary index
fields of ancestor segments in order to build a certain search criterion; therefore, DDMs for DL/I
segments can also include fields which are not part of the actual physical segment.

To satisfy the requirements for DL/I processing, a DDM must contain all the fields which can be
referenced. Therefore, the generated DDM can contain the following fields:

® DL/I sequence fields, search fields and secondary index fields of the current (physical) segment.
These fields have been defined in the DBDGEN source for this segment. When the DDM is gener-
ated, information on these fields is obtained from the NDB control block for this segment. DL/I
sequence fields and secondary index fields are marked as descriptor (D), search fields are marked
as non-descriptor (N). All of these fields can be used to qualify search requests.

® DL/I sequence fields and secondary index fields of all the ancestor segments. These fields have
been defined in the DBDGEN source for the ancestor segments. When the DDM is generated, in-
formation on these fields is obtained from the NDB control blocks for the ancestor segments.
These fields are marked as descriptor (D). They can be used to qualify search requests.

® DL/Isearch fields of all the ancestor segments. These fields have also been defined in the DBDGEN
source for the ancestor segments. When the DDM is generated, information on these fields is
also obtained from the NDB control blocks for the ancestor segments. However, these fields are
marked as superdescriptor (S). They can be used to qualify search requests.

" Fields of the current segment defined by the user (UDFs). When the DDM is generated, inform-
ation on these fields is obtained from the UDF control blocks. These fields cannot be used to
qualify search requests.

Database Management System Interfaces 609

DL/I Services

Fields of format S in the segment description (see UDF Parameters) generate format P in the DDM.

The following tables summarize how the various types of fields can be processed using Natural
I/O statements. They illustrate which fields can be used to qualify search requests, and which
fields can be used with the Natural statements DISPLAY, UPDATE or STORE. In addition, the tables
indicate whether the field in the generated DDM is marked as descriptor, superdescriptor or non-
descriptor.

Current Segment
Type of field FIND/READ |DISPLAY |UPDATE | STORE | Marked
DL/I sequence|yes yes no yes |D
DL/Isearch |yes yes yes yes D
DL/I SIX yes yes no no D
UDF no yes yes yes |blank
Ancestor Segment
Type of field FIND/READ | DISPLAY |UPDATE | STORE | Marked
DL/I sequence|yes yes no yes |D
DL/l search |yes no no no S
DL/I SIX yes yes no no D
UDF no no no no blank
| Notes:

1. Using the Natural staement DISPLAY, the DL/I SIX fields can be displayed only if a PCB is used
with this SIX specified in the PROCSEQ parameter. If not, an error message is returned by Natural
at runtime.

2. The DL/I SIX field name cannot be used in an UPDATE or STORE statement. SIX fields, however,
can be updated/stored by referring to the source fields which comprise the SIX.

3. The READ statement returns records in ascending sequence. The possible sequences for DL/I
segments are root sequence or the sequence of any secondary index.

As mentioned above, the generated DDM contains all fields of the current segment and all DL/I
fields of the ancestor segment(s), marked either as D or S. The UDFs of the ancestor segments are
not included in the generated DDM because a DDM refers only to one segment.

The generated external name of the DDM is equal to the segment name prefixed by the DBD name.

Example:

610 Database Management System Interfaces

DL/I Services

Name of DBD:

EDOODBD

Name of segment:

STUDENT

Name of generated DDM:

EDOODBD-STUDENT

The generated external name of DL/I fields is equal to the name specified in the DL/I FIELD macro
during the DL/l DBDGEN procedure.

The generated external name of DL/I fields of ancestor segments is equal to the field name suffixed

by the segment name.

Example:
Name of DL/I field: LOCATION
Name of ancestor segment:|OFFERING

Name of generated field:

LOCATION-OFFERING

The generated external name of the UDFs is equal to the name specified by the user at definition

time.

NSB Maintenance

When you select NSB Maintenance on the DL/I Services Main Menu, the NSB Maintenance

menu is displayed.

From this menu, you can select the following NSB maintenance functions:

Function

Explanation

Select an NSB from a List

List the DL/I PSBs defined on the Natural system file. You can select NSBs
from this list by entering the function code

P to purge an NSB, or
L tolist all PCBs and SENSEGs of an NSB.

Purge an NSB

Delete an NSB and its related PCB descriptions from the Natural system file.
The name of the NSB to be deleted must be specified. Before this function
is executed, you are prompted to confirm the deletion.

List PCBs and SENSEGs
of an NSB

For any NSB specified, this function lists the PCBs and their sensitive
segments. If an indexed database exists, its name is displayed under the
header “PROCSEQ”.

Database Management System Interfaces

611

DL/I Services

2006-05-25

NoPCBs Response

Select an NSB from a List
10:44:50 wastsis DLJ/L SERVICES #svssss
- NSB List -
Func NSB Name CMPAT Length
------------------ Top of Data
_ DFSIVP6 YES 140
_ PBNDLO1 NO 160
_ PBNDLO2 YES 160
_ PBNDLO3 YES 160
_ PBNDL04 YES 160
_ PBNDLOS NO 80
_ PBNDL97 YES 160
_ PBNDL98 YES 200
_ PBNDL99 NO 200
_ PBPQAO1 YES 60
_ PBSUP06 NO 440
R - More - ---
Code .. _ (? Help, . Back, M End)
Func .. P (Purge NSB) L (List PCBs and SENSEGs)

Enter-PFl---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

Exec

Help

Exit

Canc

612

Database Management System Interfaces

DL/I Services

List PCBs and SENSECs of an NSB

10:46:57 wsst DL/T SERVICES e 2006-05-25
- PCB List -
NSB Name: PBNDLO1 (CMPAT=NO ,Length=00160)
Number of PCB's NDB Name Level SENSEG PROCSEQ
—————————————————————————— Top of Data --------------------"------
3 EDOODBD
1 COURSE
2 PREREQ
2 OFFERING
3 TEACHER
3 STUDENT
—————————————————————————— Bottom ----------------""----- -

Code .. _ (? Help . Back M End)
Enter=PFl===PF2===PF3===PFd===PF5===PFG===[PF7 = = =PF= = =PFY===PFLO==PFLl==PF12=~-
Exec Help Exit Canc

Database Management System Interfaces 613

DL/I Services

10:49:10 wiesss PIL/1 SERVICES et 2006-05-25
- NDB List -
Func NDB Name L/P Length NoSGMs Access Response
---------------------- Top @F DALE =====================
_ CCCBTDOO P 460 6
_ DNDLO1 P 540 5
_ DNDLO2 P 620 10
_ DNDLO3 L 820 10
_ DNDLO4 P 60 1 GSAM
_ DPQAO4 P 480 5
_ DSUPO2 L 1720 15
_ DSUPO5 P 380 5
_ DSUPO9 P 340 2
_ DSUP10 L 880 10
_ DUSAO01 P 320 5 HDAM
------------------------ = MOP@ = =c=c=ceccscccscesccssaes
Code .. _ (? Help, . Back, M End)

Func: P (Purge NDB) L (List NDB Segments)

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF/---PF8---PF9---PF10--PF11--PFl2---
Exec Help Exit Canc

614 Database Management System Interfaces

Index

D

database management system interfaces, xi

615

616

	Database Management System Interfaces
	Table of Contents
	Database Management System Interfaces
	I Natural for DB2
	1 General Information
	Purpose
	Environment-Specific Considerations
	Natural for DB2 under Com-plete
	Natural for DB2 under CICS
	Natural for DB2 under IMS TM
	Natural for DB2 under TSO
	Natural for DB2 Using CAF
	Natural for DB2 Using DB2 DL/I Batch Support

	Integration with Predict
	Integration with Natural Security
	Incompatibilities and Constraints
	Messages Related to DB2
	Terms Used in this Documentation

	2 Accessing a DB2 Table
	3 Using Natural Tools for DB2
	Invoking Natural Tools for DB2
	Editing within the Natural Tools for DB2
	Global PF-Key Settings
	Global Maintenance Commands

	4 Application Plan Maintenance
	Introduction
	Invoking the Application Plan Maintenance Function
	Commands and PF-Key Settings
	Prepare Job Profile
	Default Job Cards
	Profile for Create DBRM Job
	Profile for DSN Jobs
	Loading Job Profiles
	Unloading Job Profiles

	Create DBRMs
	Bind Plan
	Rebind Plan
	Free Plan
	Bind Package
	Rebind Package
	Free Package
	List JCL Function
	Display Job Output

	5 Catalog Maintenance
	Fixed Mode and Free Mode
	Fixed Mode
	Free Mode

	Invoking the Catalog Maintenance Function
	Create Table Function
	Create Tablespace Function
	Alter Table Function
	Alter Tablespace Function
	SQL Skeleton Members

	6 Interactive SQL
	Invoking the Interactive SQL Function
	SQL Input Members
	ISQL Input Screen
	Fixed Mode with Interactive SQL
	Retrieve an SQL Member
	List of SQL Members

	Data Output Members
	Data Output Screen
	Retrieve an Output Member
	List of Output Members

	Processing SQL Statements
	Execute Statements One By One
	Execute All Statements Together
	Automatic Commit/Rollback
	Optional Commit/Rollback
	Text For NULL Values
	SQL Termination Character
	Maximum Length of Columns
	Maximum Number of Rows
	DB2 Cost Limit
	Header Line Every n Data Lines
	Record Length Data Session

	PF-Key Settings
	Unloading Interactive SQL Results

	7 Retrieval of System Tables
	Invoking the Retrieval of System Tables Function
	List Databases
	List Tablespaces
	List Plans
	Commands Allowed on Plans
	DBRMs of Plan
	Indexes Used in Plan
	Package List of Plan

	List Packages
	List Tables
	User Authorizations
	List Statistic Tables

	8 Environment Setting
	Invoking the Environment Setting Facility
	Connect
	Release
	Set Connection
	Set Current SQLID
	Set Current Packageset
	Set Current Degree
	Set Current Rules
	Set Current Optimization Hint
	Set Current Locale LC_CType
	Set Current Path
	Set Current Precision
	Set Current Maintained Types for Optimization
	Set Current Package Path
	Set Current Refresh Age
	Set Current Schema
	Set Current Application Encoding Scheme
	Set Encryption Password
	Display Special Registers

	9 Explain PLAN_TABLE
	EXPLAIN Modes
	Dynamic EXPLAIN
	Dynamic Mode
	Package Mode

	Bind Plan EXPLAIN
	Bind Package EXPLAIN

	Invoking the EXPLAIN_TABLE Function
	List PLAN_TABLE - Latest Explanations
	List PLAN_TABLE - All Explanations
	Delete from PLAN_TABLE
	Explain PLAN_TABLE Facility for Mass and Batch Processing
	EXPLAINB for Mass Processing
	EXPLAINB in Batch Mode

	10 File Server Statistics
	11 Issuing DB2 Commands from Natural
	Invoking the DB2 Command Part
	Displaying the Command File
	Displaying the Output Report

	12 Using Natural System Commands for DB2
	13 Generating Natural Data Definition Modules (DDMs)
	SQL Services (NDB/NSQ)
	Using SQL Services
	Select SQL Table from a List
	Generate DDM from an SQL Table
	Invoking the Generate DDM from an SQL Table function
	Assigning Default Values - Generating DDMs in Batch
	DBID/FNR Assignment
	Long Field Generation
	Length Indicator for Variable Length Fields: VARBINARY, VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB
	Null Values
	Locator Field for LOB Column

	List Columns of an SQL Table
	Making a User Exit Routine Available

	14 Dynamic and Static SQL Support
	SQL Support - General Information
	Internal Handling of Dynamic Statements
	I/O Module NDBIOMO for Dynamic SQL Statement Execution
	Statement Table
	Processing of SQL Statements Issued by Natural

	Preparing Programs for Static Execution
	Basic Principles
	Generation Procedure: CMD CREATE Command
	Generating Static SQL for Natural Programs
	Static Name
	USING Clause

	Precompilation of the Generated Assembler Program
	Modification Procedure: CMD MODIFY Command
	BIND of the Precompiled DBRM

	Execution of Natural in Static Mode
	Mixed Dynamic/Static Mode
	Messages and Codes
	Application Plan Switching
	Basic Principles of Plan Switching
	Plan Switching under CICS
	Plan Switching by CICS/DB2 Exit Routine

	Plan Switching under Com-plete
	Plan Switching under IMS TM
	Plan Switching under TSO and in Batch Mode
	Plan Selection with CAF
	Plan Selection with RRSAF

	15 Using Natural Statements and System Variables
	DB2 Special Register Consideration
	Using Natural Native DML Statements
	BACKOUT TRANSACTION
	DELETE
	END TRANSACTION
	FIND
	HISTOGRAM
	READ
	READ when Using the File Server

	STORE
	UPDATE
	UPDATE when Using the File Server
	UPDATE with FIND/READ
	UPDATE with SELECT

	Using Natural SQL Statements
	Syntactical Items Common to Natural SQL Statements
	atom
	comparison
	factor
	scalar-function
	column-function
	scalar-operator
	special-register
	units
	case-expression

	CALLDBPROC - SQL
	Static and Dynamic Execution
	Result Sets
	List of Parameter Data Types
	CALLMODE=NATURAL
	Example of CALLDBPROC/READ RESULT SET

	COMMIT - SQL
	DELETE - SQL
	INSERT - SQL
	MERGE - SQL
	PROCESS SQL
	READ RESULT SET - SQL
	ROLLBACK - SQL
	SELECT - SQL
	SELECT - Cursor-Oriented
	SELECT SINGLE - Non-Cursor-Oriented

	UPDATE - SQL

	Using Natural System Variables
	Multiple Row Processing
	Purpose of Multi-Fetch Feature (Standard)
	Considerations for Multi-Fetch Usage (Standard)
	Size of the Multi-Fetch Buffer (Standard)
	Support of TEST DBLOG Q (Standard)
	Multiple Rows to Program (Advanced)
	Prerequisites
	DB2ARRY=ON
	INTO Clause
	WITH ROWSET POSITIONING Clause
	ROWS_RETURNED Clause
	Restrictions and Constraints
	File Server Usage and Positioned UPDATE and DELETE

	Multiple Rows from Program (Advanced)
	Prerequisites
	DB2ARRY=ON
	VALUES Clause
	FOR n ROWS Clause
	Restrictions and Constraints

	Error Handling

	16 Processing Natural Stored Procedures and UDFs
	Types of Natural UDF
	PARAMETER STYLE
	GENERAL and GENERAL WITH NULL
	Stored Procedure Control Block
	Example of PARAMETER STYLE GENERAL
	Example of GENERAL WITH NULL

	STCB Layout
	PARAMETER DESCRIPTION (STCBPADE)

	DB2SQL
	Parameter CALL TYPE
	Parameter DBINFO
	Determining Library, Subprogram and Parameter Formats
	Invoking a Natural Stored Procedure
	Error Handling
	Lifetime of Natural Session
	Example of DB2SQL - Natural Stored Procedure
	Example of DB2SQL - Natural UDF

	Writing a Natural Stored Procedure
	Writing a Natural UDF
	Example Stored Procedure
	Objects of NDBPURGN
	Defining the Stored Procedure NDBPURGN

	Example Natural User Defined Function

	17 Interface Subprograms
	Natural Subprograms
	NDBCONV Subprogram
	NDBDBRM Subprogram
	NDBDBR2 Subprogram
	NDBDBR3 Subprogram
	NDBERR Subprogram
	NDBISQL Subprogram
	NDBISQLD Subprogram
	NDBNOERR Subprogram
	NDBNROW Subprogram
	NDBSTMP Subprogram
	DB2SERV Interface
	Function D
	Command Syntax

	Function P
	Command Syntax

	18 Natural File Server for DB2
	Concept of the File Server

	19 Natural File Server for DB2
	Concept of the File Server
	Preparations for Using the File Server
	File Server - VSAM
	Defining the Size of the File Server
	Formatting the File Server
	Changes Required for a Multi-Volume File Server

	File Server - Editor Buffer Pool

	Logical Structure of the File Server

	20 Natural for DB2 Version 8.4 - Documentation Updates
	Using Natural Statements and System Variables under Natural for DB2 Version 8.4
	UPDATE with FIND/READ
	scalar-function
	column-function
	special-register

	Select Expressions under Natural for DB2 Version 8.4
	Selection
	GROUP BY Clause

	Dynamic and Static SQL Support under Natural for DB2 Version 8.4
	Plan Switching by CICS/DB2 Exit Routine

	SELECT under Natural for DB2 Version 8.4
	Syntax 1 - Extended Set

	MERGE under Natural for DB2 Version 8.4
	source-table
	matching-condition
	modification-operation
	signal-operation
	Examples - Example 3:

	Searched DELETE under Natural for DB2 Version 8.4
	Syntax 1 - Extended Set

	Search Conditions under Natural for DB2 Version 8.4
	Comparison Predicate

	II Natural for SQL/DS
	21 General Information
	Purpose
	Environment-Specific Considerations
	Natural for SQL/DS under CICS
	Natural for SQL/DS in z/VSE Batch Mode

	Integration with Predict
	Integration with Natural Security
	Messages Related to SQL/DS
	Terms Used in this Documentation

	22 Accessing an SQL/DS Table
	23 Database Management
	SYSSQL Utility
	Fixed Mode
	Creating an SQL/DS Table
	Altering an SQL/DS Table

	Free Mode
	Free-Mode Editor

	Natural System Commands for SQL/DS

	24 Generating Natural Data Definition Modules (DDMs)
	SQL Services
	Using SQL Services
	Select SQL Table from a List
	Generate DDM from an SQL Table
	Invoking the Generate DDM from an SQL Table function
	DBID/FNR Assignment
	Long Field Redefinition
	Length Indicator for Variable Length Fields: VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC
	Null Values

	List Columns of an SQL Table

	25 Dynamic and Static SQL Support
	SQL Support - General Information
	Internal Handling of Dynamic Statements
	I/O Module NDBIOMO for Dynamic SQL Statement Execution
	Statement Table
	Processing of SQL Statements Issued by Natural

	Preparing Natural Programs for Static Execution
	Basic Principles
	Generation Procedure: CMD CREATE Command
	Generating Static SQL for Natural Programs
	Static Name
	USING-Clause

	Modification Procedure: CMD MODIFY Command

	Execution of Natural in Static Mode
	Mixed Dynamic/Static Mode
	Messages and Codes

	26 Using Natural Statements and System Variables
	Using Natural Native DML Statements
	BACKOUT TRANSACTION
	DELETE
	END TRANSACTION
	FIND
	GET
	HISTOGRAM
	READ
	STORE
	UPDATE
	UPDATE with FIND/READ
	UPDATE with SELECT

	Using Natural SQL Statements
	Syntactical Items Common to Natural SQL Statements
	atom
	comparison
	factor
	scalar-function
	scalar-operator
	special-register
	units

	COMMIT - SQL
	DELETE - SQL
	INSERT - SQL
	PROCESS SQL
	ROLLBACK - SQL
	SELECT - SQL
	SELECT - Cursor-Oriented
	SELECT SINGLE - Non-Cursor-Oriented

	UPDATE - SQL

	Using Natural System Variables
	Error Handling

	27 Interface Subprograms
	Natural Interface Subprograms
	NDBDBRM Subprogram
	NDBDBR2 Subprogram
	NDBDBR3 Subprogram
	NDBERR Subprogram
	NDBISQL Subprogram
	NDBNOERR Subprogram
	NDBNROW Subprogram
	NDBSTMP Subprogram
	DB2SERV Interface
	Function D
	Command Syntax

	Function U
	Command Syntax

	III Natural SQL Gateway
	28 General Information
	Environment-Specific Considerations
	Natural SQL Gateway under CICS
	Natural SQL Gateway Server Deployment
	File Server under CICS

	Natural SQL Gateway under Com-plete
	Natural SQL Gateway under TSO
	File Server under TSO

	Natural SQL Gateway in Batch Mode

	Incompatibilities and Constraints
	Data Type DECIMAL or NUMERIC
	LOBs
	Stored Procedures
	Static Execution

	Messages Related to Natural SQL Gateway
	Terms Used in this Documentation

	29 Introduction to Natural SQL Gateway
	Purpose and Usage
	Product Structure

	30 Accessing an SQL Table
	31 Using Natural System Commands for Natural SQL Gateway
	32 Generating Natural Data Definition Modules (DDMs)
	SQL Services (NSB)
	Select Catalog Name from a List
	CXX Connection Handling
	Select SQL Table from a List
	Generate DDM from an SQL Table
	Invoking the Generate DDM from an SQL Table function
	DBID/FNR Assignment
	Long Field Redefinition
	Length Indicator for Variable Length Fields: VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC
	Null Values

	List Columns of an SQL Table

	33 Dynamic SQL Support
	SQL Support - General Information
	Internal Handling of Dynamic Statements
	Statement Table

	34 Using Natural Statements and System Variables
	Special Register Consideration
	Using Natural Native DML Statements
	BACKOUT TRANSACTION
	DELETE
	END TRANSACTION
	FIND
	GET
	HISTOGRAM
	READ
	STORE
	UPDATE

	Using Natural SQL Statements
	Syntactical Items Common to Natural SQL Statements
	atom
	factor
	scalar-function
	column-function
	scalar-operator
	special-register
	case-expression

	CALLDBPROC - SQL
	Result Sets
	List of Parameter Data Types
	Example of CALLDBPROC/READ RESULT SET

	COMMIT - SQL
	DELETE - SQL
	INSERT - SQL
	PROCESS SQL
	CONNECT
	SET CATALOG
	SET SCHEMA
	GET host-variable = RCI_VERSION

	READ RESULT SET - SQL
	ROLLBACK - SQL
	SELECT - SQL
	SELECT - Cursor-Oriented
	SELECT SINGLE - Non-Cursor-Oriented

	UPDATE - SQL

	Using Natural System Variables
	Error Handling

	35 Interface Subprograms
	NDBCONV Subprogram
	NDBERR Subprogram
	NDBISQL Subprogram
	NDBNOERR Subprogram
	NDBNROW Subprogram
	NDBSTMP Subprogram

	36 Natural File Server
	Concept of the File Server
	Preparations for Using the File Server
	File Server - VSAM
	Defining the Size of the File Server
	Formatting the File Server
	Changes Required for a Multi-Volume File Server

	File Server - Editor Buffer Pool

	Logical Structure of the File Server

	37 Natural SQL Gateway Server
	Natural SQL Gateway Server Concept
	Configuring the Natural SQL Gateway Server
	Configuration Requirements
	Natural SQL Gateway Server Configuration File
	Natural SQL Gateway Server Configuration Parameters
	FRONTEND_NAME
	HANDLE_ABEND
	HOST_NAME
	HTPMON_ADMIN_PSW
	HTPMON_PORT
	PORT_NUMBER
	SESSION_TIMEOUT
	TRACE_FILTER
	TRACE_LEVEL

	Natural SQL Gateway Server Configuration File Example
	Natural SQL Gateway Server Data Sets

	Operating the Natural SQL Gateway Server
	Starting the Natural SQL Gateway Server
	Monitoring the Natural SQL Gateway Server
	Monitor Communication
	Monitor Commands

	Runtime Trace Facility
	Trace Medium
	Trace Configuration
	Trace Level
	Trace Filter

	Monitor Client NATMOPI
	Introduction
	Command Interface Syntax
	Command Options Available
	Monitor Commands
	Directory Commands
	Command Examples

	HTML Monitor Client
	Introduction
	Prerequisites for HTML Monitor Client
	Server List
	Server Monitor

	IV Natural for VSAM
	38 General Information
	Purpose
	Environment-Specific Considerations
	Natural for VSAM with Natural Security
	Integration with Predict
	Terms Used in this Documentation
	Messages Related to VSAM

	39 Introduction to Natural for VSAM
	Components of Natural for VSAM
	Structure of the Natural Interface to VSAM

	40 Customizing Natural for VSAM
	Customizing the Natural Parameter Module
	VSIZE Parameter
	NTDB Macro
	NTVSAM Macro

	Assembling the VSAM-specific Natural Parameter Module
	Natural I/O Modules for VSAM
	NVSCICS Module
	&FCTRELI - Indicator of Reliable Remote FCT Entries

	NVSMISC Module

	41 Operation
	Invoking Natural for VSAM
	OPEN/CLOSE Processing
	OPRB Parameter for VSAM Databases
	Under z/OS
	Under z/VSE
	Sample OPRB Specification

	Natural File Access
	Natural Data Definition Modules (DDMs)
	SYSDDM Main Menu
	Catalog DDM
	Additional Options for VSAM Files
	VSAM File Information Options

	Edit DDM
	DDM Editor
	Extended Editing at Field Level

	Restrictions with DDM Generation as Compared to Adabas

	Buffers for Memory Management
	FCT - File Control Table
	FWA - File Work Area
	OPV - Open Table
	SFT - System File Table
	SWT - Switch Table
	TAF - Table of Accessed Files
	ROLL - Table of Session Status Information
	DFB - Table of Decoded Format Buffers
	TSA - Table of Sequential Access
	UPD - Table of Update Records
	VCA - Natural Control Area for VSAM

	Application Programming Interfaces
	USR0100N
	USR1047N
	USR2008N

	42 Natural Statements and Transaction Logic with VSAM
	Natural Statements with VSAM
	BACKOUT TRANSACTION
	DELETE
	END TRANSACTION
	FIND
	GET
	GET SAME
	GET TRANSACTION DATA
	HISTOGRAM
	READ
	STORE
	UPDATE

	Natural Transaction Logic with VSAM
	With Native VSAM
	Under CICS
	NVSCICS Module
	Conversational Tasks
	Pseudo-Conversational Tasks

	Under DFSMStvs

	V Natural for DL/I
	43 General Information
	44 Accessing DL/I Data
	45 Natural Parameter Modifications for DL/I
	Parameters in NDLPARM
	DFBNUM - Maximum Entries in Translated Format Buffer
	DFFNUM - Maximum Fields in Single Entry of Translated Format Buffer
	FLBNUM - Number of Entries in Fast Locate Buffer
	INGSIZE - Initial Size of Buffer to Copy Parameter List
	INGOSIZ - Initial Size of I/O Area for DL/I Calls
	INITCAL - Issues INIT Call at Transaction Start
	PCBLEV - Maximum Number of PCB Levels
	PCBNUM - Maximum Number of PCBs in a PSB
	RELEVNT - Requests Relocation Event
	RESINDB - NDB Resident in Buffer Pool
	RESINSB - NSB Resident in Buffer Pool
	RESIUDF - UDF Resident in Buffer Pool
	SASIZE - Size of Natural Save Area for DL/I
	SEQNUM - Maximum Number of Nested Sequential Accesses
	SEQSSA - Maximum Size of an SSA
	THCSIZE - Table Size to Save Natural Field Values
	TRACE - Trace Options
	TYPCHCK - Numeric/Packed Data Check
	TYPWARN - Issues Data Check Warning
	VALNSB - Validate NSB (against PSB)
	WORKLGH - Size of Work Areas

	Storage Estimates
	Natural for DL/I in z/OS Environments

	46 Operation
	Procedure NATPSB
	Procedure NATDBD
	Using Logical Databases with Natural
	Using Index Databases with Natural

	Procedure NATUDF
	Segment Identification Statement
	Segment Field Description

	Generation of DDMs from DL/I Segment Types

	47 System File Structure
	The NDB Subfile
	The NSB Subfile
	The UDF Subfile
	Natural for DL/I Objects
	Displaying Keys of UDF Blocks
	Displaying the Size of Natural for DL/I Objects
	Displaying Natural for DL/I Objects
	Control Blocks in Separate Buffer Pool
	Control Blocks in Buffer Pool Blacklist
	Natural for DL/I Objects and Natural DDMs

	48 Natural Batch Utilities
	Transfer of NDBs/NSBs/UDFs from one System File to Another
	Unloading the NDBs, NSBs and UDFs
	Loading NDBs, NSBs and UDFs
	Selecting NDBs, NSBs and UDFs from a Data Set

	Utility NDUDFGEN for Natural Data Areas
	Input for NDUDFGEN

	49 Execution
	PSB Scheduling
	The NATPSB Command
	PSB Scheduling in a Batch Environment
	Batch Execution under z/OS
	Batch Execution under z/VSE

	PSB Scheduling in a CICS Environment
	PSB Scheduling in an IMS TM Environment

	CALLNAT Interface
	NDLPCBAD Subprogram
	NDLPSBSC Subprogram

	Support of IMS-Specific Features
	Symbolic Checkpoint/Restart Functions - CHKP, XRST
	The INIT Call to Enable Data Availability Status Codes

	Fast Path Support
	Support of GSAM
	Processing in CICS Pseudo-Conversational Mode or under IMS TM

	50 Programming Language Considerations
	Natural versus Third Generation Languages
	Natural Statements with DL/I
	BACKOUT TRANSACTION
	DELETE
	DISPLAY
	END TRANSACTION
	FIND
	GET TRANSACTION DATA
	READ
	RELEASE
	STORE
	UPDATE
	WRITE
	Statements not Available for DL/I

	Natural System Variables with DL/I
	*ISN
	*NUMBER

	51 Problem Determination Guide
	52 Performance Considerations
	Parameters
	DBID

	Global and Local Data Areas
	FIND Statements
	Direct Access to Lower Levels
	DBLOG Utility

	53 DL/I Services
	NDB Maintenance
	Menu and Functions
	Select an NDB from a List
	Select an NDB Segment from a List
	Edit an NDB Segment Description
	UDF Parameters

	Generate DDM from Segment Description
	Current Segment
	Ancestor Segment

	NSB Maintenance
	Select an NSB from a List
	List PCBs and SENSECs of an NSB

	Index

