
Natural for Windows

First Steps

Version 6.3.8 for Windows

February 2010

This document applies to Natural Version 6.3.8 for Windows.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2010 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Table of Contents

1 First Steps .. 1
2 About this Tutorial .. 3

Prerequisites ... 4
About the Sample Application .. 4

3 Getting Started with Natural Studio ... 7
Invoking Natural Studio .. 8
Library Workspace ... 9
Issuing Commands .. 10
Creating a User Library .. 10
Programming Modes ... 10

4 Hello World! .. 13
Creating a Program .. 14
Running a Program .. 15
Correcting Program Errors ... 16
Stowing a Program ... 18
Setting the Workspace Options .. 19

5 Database Access ... 21
Starting the Demo Database ... 22
Saving Your Program Under a New Name ... 23
Defining the Required Data Using a View ... 23
Reading Data from a Database ... 27
Reading Selected Data from a Database .. 28

6 User Input .. 31
Allowing for User Input ... 32
Designing a Map for User Input .. 34
Invoking the Map from Your Program .. 45
Ensuring that an Ending Name is Always Used ... 46

7 Loops and Labels ... 49
Allowing Repeated Usage .. 50
Displaying a Message Indicating that Information was not Found 52

8 Inline Subroutines ... 55
Defining the Inline Subroutine ... 56
Performing the Inline Subroutine .. 57

9 Processing Rules and Helproutines .. 61
Defining a Processing Rule .. 62
Defining a Helproutine .. 64

10 Local Data Areas .. 67
Creating a Local Data Area .. 68
Defining Data Fields ... 69
Importing the Required Data Fields from a DDM ... 71
Referencing the Local Data Area from Your Program ... 73

11 Global Data Areas .. 77
Creating a Global Data Area from an Existing Local Data Area 78

iii

Adapting the Local Data Area ... 80
Referencing the Global Data Area from Your Program ... 81

12 External Subroutines ... 83
Creating an External Subroutine .. 84
Referencing the External Subroutine from Your Program 85

13 Subprograms .. 89
Modifying the Local Data Area .. 90
Creating a Parameter Data Area from an Existing Local Data Area 92
Creating Another Local Data Area Containing a Different View 93
Creating a Subprogram .. 94
Referencing the Subprogram from Your Program ... 95

First Stepsiv

First Steps

1 First Steps

This tutorial provides a very simple and brief introduction to Natural Studio (which is the devel-
opment environment for Natural) and to programming with Natural.

Important: It is important that you read the following topics in the sequence indicated below,
and that youwork through all exercises in these topics in the same sequence as they appear
in this tutorial. Problems may occur if you skip an exercise.

Prerequisites and what you will learn in the course of this tutorial.About this Tutorial

How to invokeNatural Studio. Information on the libraryworkspace and
the different ways of issuing commands. How to create the library that

Getting Started with
Natural Studio

will be used in this tutorial. Information onNatural's programmingmodes
and the mode that is required for this tutorial.

How to create, run and stow your first short program. How to display the
content of the current library. Information on some options which control
your workspace.

Hello World!

Information on the demo database. How to read specific data from a
database and display the output.

Database Access

How to prompt the user for information and how to design a map for
user input. How to ensure that a specific value is always used (here: an
ending name), even if it has not been specified by the user.

User Input

How to define a repeat loop and labels for different loops. How to display
a message when specific information (here: the starting name entered by
the user) was not found.

Loops and Labels

How to define and invoke an inline subroutine (that is: a subroutinewhich
is coded directly in the program).

Inline Subroutines

How to define a processing rule (here: a message that is to appear when
the user does not specify a starting name) and a helproutine (here: a help
text for the field in which the user has to enter a starting name).

Processing Rules and
Helproutines

1

How to relocate the field definitions from the program to a local data area
outside the program.

Local Data Areas

How to define a global data area which can be shared by multiple
programs or routines.

Global Data Areas

How to define and invoke an external subroutine (that is: a subroutine
which is stored as a separate object outside the program).

External Subroutines

How to define a parameter data area for a subprogram. How to define
and invoke a subprogram.

Subprograms

First Steps2

First Steps

2 About this Tutorial

■ Prerequisites .. 4
■ About the Sample Application .. 4

3

As a first-time user, you are recommended to work through this tutorial to obtain a basic under-
standing of specific features of the Natural programming environment.

It is assumed that you have a basic understanding of Microsoft Windows.

The layout of the example screens provided in the tutorial and the behavior of Natural described
here can differ from your results. For example, the command or message line may appear in a
different screen position, or the execution of a Natural command may be protected by security
control. The default settings in your environment depend on the system parameters set by your
Natural administrator.

Prerequisites

To perform all steps of this tutorial, the demo database SAG-DEMO-DBmust be installed (either
locally under Windows or under UNIX) and it must be active. This database is installed with
Adabas; it is not automatically installed with Natural.

About the Sample Application

This tutorial illustrates how an application can be structured as a group ofmodules. It is not inten-
ded to provide an example of how an application should be built.

After you have written your first short Hello World program, you will write a program which
reads employees information from a database and displays the output. The user will be prompted
to enter a starting name and ending name for the output. You will enhance your program step by
step by moving specific parts of your program to external modules. When you have completed
all exercises of this tutorial, your application will be structured as follows:

First Steps4

About this Tutorial

Note: This tutorial describes how to create a map which is normally used in a character-
oriented environment (such as a mainframe). For a graphical user interface, you would
create a dialog. However, this is not part of this tutorial.

You can now proceed with your first exercise: Getting Started with Natural Studio.

5First Steps

About this Tutorial

6

3 Getting Started with Natural Studio

■ Invoking Natural Studio .. 8
■ Library Workspace .. 9
■ Issuing Commands .. 10
■ Creating a User Library ... 10
■ Programming Modes .. 10

7

Invoking Natural Studio

After Natural has been installed, the corresponding folder automatically appears in the Programs
folder of the Startmenu. It contains the shortcuts for Natural, including Natural Studio which is
the development environment for Natural. If specified during installation, several shortcuts are
also available on your Windows desktop.

To invoke Natural Studio

■ From the Startmenu, choose Programs > Software AG Natural n.n > Natural.

Or:

Use the following shortcut on your Windows desktop (only available if specified during in-
stallation):

The Natural Studio window appears.

When you start Natural Studio for the very first time, only your local environment containing
the library workspace is shown in the window.

First Steps8

Getting Started with Natural Studio

Library Workspace

All Natural objects required for creating an application are stored in Natural libraries in Natural
system files. There is a system file for system programs (FNAT) and a system file for user-written
programs (FUSER).

Natural thus distinguishes system libraries and user libraries. The system libraries, which start
with the letters "SYS", are reserved for Software AG purposes only. A user library contains all
user-defined objects (for example, programs andmaps) which make up an application. The name
of a user library must not start with the letters "SYS".

Different views are available in the library workspace. The exercises in this tutorial require that
youwork in logical view. In logical view, different nodes are provided for the libraries. The objects
in a library are grouped into different folders, according to their types.

When you have completed all exercises of this tutorial, the node for your user library TUTORIAL
will contain the following folders and objects:

9First Steps

Getting Started with Natural Studio

Issuing Commands

Aswith otherWindows applications,most commands inNatural Studio can be issued in a number
of different ways: they can be chosen from the menu bar or from a context menu, or by choosing
a toolbar button or pressing a key combination. This tutorial, however, does notmention all altern-
atives for issuing the same command. It just mentions commonly-used methods (in most cases:
context menus and toolbar buttons).

To invoke a contextmenu (for example, for an object in the libraryworkspace), you select the object
and then click the right mouse button or press SHIFT+F10.

Several menus or toolbars are only shown in a specific context. For example, the Programmenu
is only shown in the menu bar when you are working with the program editor and the program
editor window is active.

Creating a User Library

You will now create a user library with the name TUTORIAL. This library is to contain all Natural
objects that you will create in the course of this tutorial.

To create a user library

1 In logical view, select the node namedUser Librarieswhich is located directly below the top
node Local Environment.

2 From the context menu and chooseNew.

A new library with the default name USRNEW is now shown in the tree.

3 Specify "TUTORIAL" as the name of the library and press ENTER.

Programming Modes

Natural provides two different programming modes:

■ Structured Mode
Structured mode is intended for the implementation of complex applications with a clear and
well-defined program structure. It is recommended to use structured mode exclusively.

First Steps10

Getting Started with Natural Studio

■ Reporting Mode
Reporting mode is only useful for the creation of adhoc reports and small programs which do
not involve complex data and/or programming constructs.

Important: This tutorial requires that structuredmode is active. If you try to run your program
in reporting mode, END-IF, END-READ and END-REPEATwill cause errors.

To check whether structured mode is active

1 From the Toolsmenu, choose Session Parameters.

TheNatural Session Parameters dialog box appears.

At the installation ofNatural, theNatural administrator sets these parameters to default values
which are then valid for all users of Natural. When you change them, they are only valid for
current session.

2 In the tree on the left, select Compiler Options.

The compiler options are now shown on the right.

When the Structured mode check box is already selected, no further steps are required and
you can close the dialog box. When it is not selected, proceed as described below.

3 Activate the Structured mode check box.

4 From the Filemenu, choose Save.

11First Steps

Getting Started with Natural Studio

5 Close the dialog box.

You can now proceed with your first program: Hello World!

First Steps12

Getting Started with Natural Studio

4 Hello World!

■ Creating a Program ... 14
■ Running a Program .. 15
■ Correcting Program Errors .. 16
■ Stowing a Program .. 18
■ Setting the Workspace Options .. 19

13

Creating a Program

You will now write your first short program which displays "Hello World!". It will be stored in
the library you have created previously.

To create a new program

1 In the library workspace, select the library named TUTORIAL.

2 From the context menu, chooseNew Source > Program.

Or:

Choose the following toolbar button:

The program editor appears. It is currently empty.

3 Enter the following code in the program editor:

* The "Hello world!" example in Natural.
*
DISPLAY "Hello world!"
END /* End of program

Comment lines start with an asterisk (*) followed by at least one blank or a second asterisk.
When you forget to enter the blank or second asterisk,Natural assumes that you have specified
a system variable; this will result in an error.

If you want to insert empty lines in your program, you should define them as comment lines.
This is helpful, if you want to access your program from different platforms (Windows,
mainframe, UNIX or OpenVMS). With the mainframe version of Natural, for example, the
default is that empty lines are automatically deleted when you press ENTER.

You can also insert comments at the end of a statement line. In this case, the comment starts
with a slash followed by an asterisk (/*).

The text that is to be shown in the output is definedwith the DISPLAY statement. It is enclosed
in quotation marks.

The END statement is used tomark the physical end of aNatural program. Each programmust
end with END.

First Steps14

Hello World!

Running a Program

The system command RUN automatically invokes the system command CHECKwhich checks the
program code for errors. If no error is found, the program is compiled on the fly and then executed.

Notes:

1. The system commands are also available with the mainframe version of Natural. Under Win-
dows, they are invoked by choosing the corresponding command from theObjectmenu.

2. CHECK is also available as a separate command in theObjectmenu.

3. Natural also provides the system command EXECUTEwhich uses the stowed version of your
program (stowing a program is explained later in this tutorial). In contrast to this, the RUN
command always uses your latest modifications to the program.

To run a program

1 From theObjectmenu, choose Run.

Or:

Choose the following toolbar button:

When your code is syntactically correct, the output contains the text you have defined.

Page 1 09-06-30 12:07:25

Hello world!

15First Steps

Hello World!

2 Press ENTER to return to the program editor.

Correcting Program Errors

You will now create an error in your Hello World program and then run the program once more.

To correct an error

1 Delete the second quotation mark in the line containing the DISPLAY statement.

2 Run the program once more as described above.

When the error is found, a dialog box appears, providing information on the error.

First Steps16

Hello World!

3 Correct the error in the dialog box, that is: insert the missing quotation mark at the end of the
line.

4 Choose the Continue button to find the next error.

In this case, no more errors are found and the output is shown.

5 Press ENTER to return to the program editor.

Note: Instead of choosing the Continue button, it is also possible to choose the Edit
button. The dialog box is then closed and you can correct the error directly in the pro-
gram editor.

17First Steps

Hello World!

Stowing a Program

When you stow a program, it is compiled and both source code and a generated program are
stored in the Natural system file.

Like the RUN command, the system command STOW automatically invokes the CHECK command. A
program is only stowed when it is syntactically correct.

Note: If you want to save the changes to your program, even if the program contains a
syntactical error (for example, if you want to suspend your work until the next day), you
can use the system command SAVEwhich can be invoked from theObjectmenu.

To stow a program

1 From theObjectmenu, choose Stow.

Or:

Choose the following toolbar button:

Since your program has not yet been saved, the Stow As dialog box appears.

The name of the currently selected library is automatically provided in the corresponding
drop-down list box.

2 Specify the name "HELLO" in theName text box.

3 Choose theOK button.

A message is now shown, informing you that stowing was successful. This message is either
shown in the status bar or in a dialog box, depending on the setting of a specific workspace
option (see below).

First Steps18

Hello World!

In the library workspace, a new node named Programs appears below the TUTORIAL node.
This node contains the program you have just stowed.

The green dot on the program icon indicates that both source code and a generated program
are available for the object.

Setting the Workspace Options

You will now check the settings of your workspace options.

To check the workspace options

1 From the Toolsmenu, chooseOptions.

2 In the resultingOptions dialog box, display theWorkspace page.

19First Steps

Hello World!

3 When success messages are to be shown in a dialog box, make sure that the corresponding
check box is selected.

Note: Whether line numbers are shown in the program editor is controlled by an option
on the Program Editor page.

4 Choose theOK button to save your changes and to close the dialog box.

You can now proceed with the next exercises: Database Access.

First Steps20

Hello World!

5 Database Access

■ Starting the Demo Database .. 22
■ Saving Your Program Under a New Name .. 23
■ Defining the Required Data Using a View ... 23
■ Reading Data from a Database .. 27
■ Reading Selected Data from a Database .. 28

21

You will now write a short program which reads specific data from a database file and displays
the corresponding output.

When you have completed the exercises below, your sample application will consist of just one
module (the data fields that are used by the program are defined within the program):

Starting the Demo Database

The demo database SAG-DEMO-DB is not started automatically. Before you can proceed with the
exercises in this tutorial, you must make sure that it has been started. Otherwise, the examples
will not work.

The following description applies when Adabas has been installed locally underWindows. If you
want to work with the UNIX version and the demo database is not already running, ask your
UNIX administrator to start it.

To start the demo database

1 From the Startmenu, choose Programs > Adabas n.n > DBAWorkbench.

The status of the demo database is shown in the resulting database list. When the status is
"Active", no further steps are required and you can close the DBAWorkbench application
window.

When the status is not "Active", proceed as described below.

2 Select SAG-DEMO-DB in the database list.

3 From the Databasemenu, choose Start.

A dialog box appears indicating that the database has been started.

4 Choose theOK button to close the dialog box.

First Steps22

Database Access

5 Close the DBAWorkbench application window.

Saving Your Program Under a New Name

You will now create a new program which will be used in the remainder of this tutorial. It will be
created by saving your Hello World program under a new name.

To save the program under a new name

1 From theObjectmenu, choose Save As.

Tip: Make sure that the program editor is selected. Otherwise the above command is
not available.

The Save As dialog box appears.

2 Specify "PGM01" as the new name for the program.

3 Choose theOK button.

The new name is now shown in the title bar of the program editor.

In the library workspace, the new program is shown in the Programs node. Since it has not
yet been stowed, its program icon does not contain a green dot.

4 Delete all code in the program editor (for example, by pressing CTRL+A to select all text and
then pressing the DEL key - this is standard Windows functionality).

Defining the Required Data Using a View

The database file and the fields that are to be used by your program have to be specified between
DEFINE DATA and END-DEFINE at the top of the program.

For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definitionmodule (DDM). TheDDMcontains
information about the individual fields of the file. DDMs are usually defined by the Natural ad-
ministrator.

23First Steps

Database Access

To be able to use the database fields in a Natural program, you must specify the fields from the
DDM in a view. Sample DDMs are provided in the system library SYSEXDDM. For this tutorial, we
will use the DDM for the EMPLOYEES database file.

You can import the fields, including the required format and length definitions, from the DDM
into the program editor.

To specify the DEFINE DATA block

■ Enter the following code in the program editor:

DEFINE DATA
LOCAL

END-DEFINE
*
END

Tip: The Windows version of Natural does not distinguish between uppercase and
lowercase letters. However, when working with the mainframe version of Natural,
keywords and identifiers are always enteredwith uppercase letters; text constantsmay
contain lowercase letters. Therefore, if you also want to edit your programs on a
mainframe, it is recommended that you always enter your program code as youwould
on a mainframe.

LOCALmeans that the variables that youwill definewith the next step are local variableswhich
apply only to this program.

To import data fields from a DDM

1 Place the cursor in the line below LOCAL.

2 From the Programmenu, choose Import.

The Import Data Field dialog box appears.

First Steps24

Database Access

3 From the Library drop-down list box, select SYSEXDDM.

When theDDM option button is selected, all defined DDMs are shown in theObject list box.

4 Select the sample DDMwith the name EMPLOYEES.

The importable data fields are now shown at the bottom of the dialog box.

5 Press CTRL and select the following fields:

FULL-NAME
NAME
DEPT
LEAVE-DATA
LEAVE-DUE

6 Choose the Import button.

25First Steps

Database Access

The View Definition dialog box appears.

By default, the name of the DDM is proposed as the view name. You can specify any other
name.

7 Enter "EMPLOYEES-VIEW" as the view name.

8 Choose theOK button.

The Cancel button in the Import Data Field dialog box is now labeledQuit.

9 Choose theQuit button to close the Import Data Field dialog box.

The following code has been inserted in the program editor:

1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)

The first line contains the name of your view and the name of the database file from which the
fields have been taken. This is always defined on level 1. The level is indicated at the beginning
of the line. The names of the database fields from the DDM are defined at levels 2 and 3.

Levels are used in conjunction with field grouping. Fields assigned a level number of 2 or greater
are considered to be a part of the immediately preceding group which has been assigned a lower
level number. The definition of a group enables reference to a series of fields (this may also be
only one field) by using the group name. This is a convenient and efficient method of referencing
a series of consecutive fields.

Format and length of each field is indicated in parentheses. "A" stands for alphanumeric, and "N"
stands for numeric.

First Steps26

Database Access

Reading Data from a Database

Now that you have defined the required data, you will add a READ loop. This reads the data from
the database file using the defined view. With each loop, one employee is read from the database
file. Name, department and remaining days of vacation for this employee are displayed. Data are
read until all employees have been displayed.

Note: It may happen that an error message is displayed indicating that the transaction has
been aborted. This usually happens when the non-activity time limit which is determined
by Adabas has been exceeded. When such an error occurs, you should simply repeat your
last action (for example, issue the RUN command once more).

To read data from a database

1 Insert the following below END-DEFINE:

READ EMPLOYEES-VIEW BY NAME
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ

BY NAME indicates that the data which is read from the database is to be sorted alphabetically
by name.

The DISPLAY statement arranges the output in column format. A column is created for each
specified field and a header is placed over the column. 3Xmeans that 3 spaces are to be inserted
between the columns.

2 Run the program.

The following output appears.

Page 1 09-06-30 16:06:49

 NAME DEPARTMENT LEAVE
 CODE DUE
-------------------- ---------- -----

ABELLAN PROD04 20
ACHIESON COMP02 25
ADAM VENT59 19
ADKINSON TECH10 38
ADKINSON TECH10 18
ADKINSON TECH05 17
ADKINSON MGMT10 28

27First Steps

Database Access

ADKINSON TECH10 26
ADKINSON SALE30 36
ADKINSON SALE20 37
ADKINSON SALE20 30
AECKERLE SALE47 31
AFANASSIEV MGMT30 26
AFANASSIEV TECH10 35
AHL MARK09 30
AKROYD COMP03 20
ALEMAN FINA03 20

As a result of the DISPLAY statement, the column headers (which are taken from the DDM)
are underlined and one blank line is inserted between the underlining and the data. Each
column has the same width as defined in the DEFINE DATA block (that is: as defined in the
view).

The title at the top of each page, which contains the page number, date and time, is also caused
by the DISPLAY statement.

3 Press ENTER repeatedly to display all pages.

You will return to the program editor when all employees have been displayed.

Tip: If you want to return to the program editor before all employees have been dis-
played, press ESC.

Reading Selected Data from a Database

Since the previous output was very long, you will now restrict it. Only the data for a range of
names is to be displayed, starting with "Adkinson" and ending with "Bennett". These names are
defined in the demo database.

To restrict the output to a range of data

1 Before you can use new variables, you have to define them. Therefore, insert the following
below LOCAL:

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">

These are user-defined variables; they are not defined in demo database. The hash (#) at the
beginning of the name is used to distinguish the user-defined variables from the fields defined
in the demo database; however, it is not a required character.

First Steps28

Database Access

INIT defines the default value for the field. The default value must be specified in pointed
brackets and quotation marks.

2 Insert the following below the READ statement:

STARTING FROM #NAME-START
ENDING AT #NAME-END

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20) INIT <"ADKINSON">
 1 #NAME-END (A20) INIT <"BENNETT">
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*
READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ
*
END

3 Run the program.

The output is shown. When you press ENTER repeatedly, you will notice that you will return
to the program editor after a couple of pages (that is: when the data for the last employee
named Bennett has been displayed).

4 Stow the program.

You can now proceed with the next exercises: User Input.

29First Steps

Database Access

30

6 User Input

■ Allowing for User Input ... 32
■ Designing a Map for User Input .. 34
■ Invoking the Map from Your Program ... 45
■ Ensuring that an Ending Name is Always Used ... 46

31

You will now learn how to prompt the user for data, that is: a starting name and an ending name
for the output.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Allowing for User Input

You will now modify your program so that input fields for the starting name and ending name
will be shown in the output. This is done using the INPUT statement.

To define input fields

1 Insert the following below END-DEFINE:

INPUT (AD=MT)
 "Start:" #NAME-START /
 "End: " #NAME-END

The session parameter AD stands for “attribute definition”, its value "M" stands for “modifiable
output field”, and the value "T" stands for “translate lowercase to uppercase”.

The "M" value in AD=MTmeans that the default values definedwith INIT (that is: "ADKINSON"
and "BENNETT") will be shown in the input fields. Different values may be entered by the
user.When the "M" value is omitted, the input fieldswill be empty even thoughdefault values
have been defined.

The "T" value in AD=MTmeans that all lowercase input is translated to uppercase before further
processing. This is important since the names in the demo database file have been defined
completely in uppercase letters. When the "T" value is omitted, you have to enter all names
completely in uppercase letters. Otherwise, the specified name will not be found.

First Steps32

User Input

"Start:" and "End:" are text fields (labels). They are specified in quotation marks.

#NAME-START and #NAME-END are data fields (input fields) inwhich the user can enter the desired
starting name and ending name.

The slash (/) means that the subsequent fields are to be shown in a new line.

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20) INIT <"ADKINSON">
 1 #NAME-END (A20) INIT <"BENNETT">
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*
INPUT (AD=MT)
 "Start:" #NAME-START /
 "End: " #NAME-END
*
READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ
*
END

2 Run the program.

The output shows the fields you have just defined.

33First Steps

User Input

3 Use the default names and press ENTER.

The list of employees is now shown.

4 Press ENTER repeatedly until you return to the program editor, or press ESC.

5 Stow the program.

Designing a Map for User Input

You are now introduced to a different way of prompting the user for input. You will use the map
editor to create a map which contains the same fields that you have previously defined in your
program. A map is a separate object and is used to separate the user interface layout from the
business logic of an application.

First Steps34

User Input

The map you will create now will look as follows:

The first line of the map contains system variables for the current date and time. There are two
data fields (input fields) in which the user can specify a starting name and an ending name. The
data fields are preceeded by text fields (labels).

The following steps are required for the above map:

■ Creating a Map
■ Defining Text Fields
■ Specifying Labels for Text Fields
■ Defining Data Fields
■ Specifying Names and Attributes for Data Fields
■ Adding System Variables
■ Testing a Map
■ Stowing a Map

Creating a Map

You will now invoke the map editor in which you will design your map.

Leave the program editor open in the background.

To create a map

1 In the library workspace, select the library which also contains your program (that is: select
the TUTORIAL node).

2 From the context menu, chooseNew Source > Map.

Or:

35First Steps

User Input

Choose the following toolbar button:

An empty map editor window appears.

Defining Text Fields

You will now add two text fields (also called constants or labels) to the map.

To define the text fields

1 From the Insertmenu, choose Text Constant.

Note: When the map editor is active, different menus are shown in the menu bar. The
menus Insert, Field andMap are now shown (instead of the Programsmenu which
was visible when the program editor was active).

Or:

Choose the following toolbar button:

Note: By default, the toolbar containing this button is shown vertically to the right of
the map editor window. A different toolbar was shown there previously when the
program editor was active.

2 Move the mouse to the position in the map editor window at which you want to insert the
text constant.

The mouse pointer changes showing a cross and the symbol for a text constant.

3 Press and hold down the mouse button.

4 Drag the mouse to the right until the field has the desired length. For our field a length of
about 10 characters is sufficient.

While dragging the mouse, the current length is shown in the status bar of the application
window. The format and the position in the map are also shown there. A text field always
has the format A (alphanumeric).

5 Release the mouse button.

First Steps36

User Input

A text field with a default label is now shown. Handles indicate that the text field is selected.
The mouse pointer still shows a cross and the symbol for a text constant and you can imme-
diately draw another text field.

Note: If you want to exit this mode, just click any other position in the map editor.

6 Draw a second text field below the first text field.

If the field starts in the wrong column, you can move it by positioning the mouse pointer on
this field, pressing and holding down the mouse button and then dragging the mouse to the
desired position. When you release the mouse button, the normal mouse pointer is shown
again.

Specifying Labels for Text Fields

The text fields you have just inserted do not yet have the correct labels. Youwill now specify them.

To specify the labels

1 Select the first text field and from the context menu, chooseDefinition.

Or:

Double-click the text field.

The existing text is selected.

2 Enter "Start:" as the label for the first text field and press ENTER.

The text field (forwhich you have previously defined a length of 10 characters) is automatically
resized to the length of this string.

3 Repeat the above steps and enter "End:" as the label for the second text field.

Defining Data Fields

You will now add two data fields to the map. These are the input fields in which the user can
specify the starting name and ending name.

You can define the data fields in two different ways: with the Data Field command where it is
your responsibility to define the correct format and length of the data field, or with the Import >
Data Field command where you simply select the data field from a list and where the correct
format and length is automatically used. These two ways are described below.

To define a data field where you have to specify the length

1 From the Insertmenu, chooseData Field.

37First Steps

User Input

Or:

Choose the following toolbar button:

2 Draw the data field at the right of the previously inserted text field for the starting name.
Draw it in the same way as a text field. A length of 20 characters is required for the data field
(if your field is too short or too long, a later exercise also explains how to modify the length).
The data field is automatically filled with "X" characters.

To import a data field

1 From the Insertmenu, choose Import > Data Field.

The Import Data Field dialog box appears.

2 From the Library drop-down list box, select TUTORIAL.

3 Select the Program option button.

All programs that are currently defined in your library are now shown in theObject list box.

4 Select the program with the name PGM01.

The importable data fields are now shown at the bottom of the dialog box.

First Steps38

User Input

5 Select the field #NAME-END and choose the Import button.

The Cancel button in the Import Data Field dialog box is now labeledQuit.

6 Choose theQuit button to close the Import Data Field dialog box.

The data field is now shown at the top left of the map. It is filled with "X" characters. Handles
indicate that the data field is selected.

7 Move the data field to the right of the previously defined text field for the end name. To do
so position the mouse pointer on this field, press and hold down the mouse button, drag the
mouse to the desired position and then release the mouse button.

Specifying Names and Attributes for Data Fields

The following applies only for the data field for the starting name which you have defined
manually. It does not apply to the data field for the ending namewhich you have imported:When
you create a new data field for a user-defined variable, Natural assigns a field name to it. This
field name contains a number. You have to adjust the names of the newly created fields to the
variable names defined in your program.

You will now make sure that the same names are used as in your program: #NAME-START and
#NAME-END. The output of these fields (that is: the user input) will be passed to the corresponding
user-defined variables in your program.

39First Steps

User Input

Youwill alsomake sure that the same attributes are defined for both #NAME-START and #NAME-END.

To define names and attributes for the data fields

1 Select the data field for the starting name and from the context menu, chooseDefinition.

Or:

Double-click the data field.

The Field Definition dialog box appears.

The Field text box shows the field name that has been assigned by Natural: #FIELD_#1.

2 In the Field text box, enter "#NAME-START".

The format must be A. This is selected by default.

3 In the Length text box, enter "20" (if your field has a different length).

4 Choose the Attributes button.

First Steps40

User Input

The Attribute Definitions dialog box appears.

5 Make sure thatOutput, Modifiable has been selected in the I/O characteristics drop-down
list box.

This defines the field as an output field which can be modified.

6 Make sure that Translate to Upper Case has been selected in the Upper/Lower case drop-
down list box.

This enables the user to enter the name in lowercase letters. Until now, the names in the demo
database could only be foundwhen the nameswere specified completely in uppercase letters.

7 In the Filler character text box, enter an underscore (_) character.

A blank character is defined as the default filler character. Therefore, before you can enter an
underscore in this field, you have to delete the blank.

The filler character is used to fill any empty positions in input fields in the map, allowing the
user to see the exact position and length of a field when entering input.

8 Choose theOK button to close the Attribute Definitions dialog box.

9 Choose theOK button to close the Field Definition dialog box.

10 Repeat the above steps for the data field for the ending name. Make sure that the correct field
name (#NAME-END), format (A) and length (20) are defined. Make sure that the same attribute
definitions are used as for #NAME-START.

41First Steps

User Input

Adding System Variables

Natural systemvariables contain information about the currentNatural session, such as the current
library, user, or date and time. They may be referenced at any point within a Natural program.
All system variables begin with an asterisk (*).

You will now add system variables for the date and time to the map. When the program is run,
the current date and time will be displayed in the map.

To add system variables

1 From the Insertmenu, choose Import > System Variable.

Or:

Choose the following toolbar button:

The Import System Variable dialog box appears.

2 Scroll to *DAT4I and select it.

3 Scroll to *TIMX, press CTRL and select it.

4 Choose the Import button to import the selected variables.

The Cancel button in the Import System Variable dialog box is now labeledQuit.

5 Choose theQuit button to close the dialog box.

Both system variables have been placed at the top left of the map.

First Steps42

User Input

6 Select TT:TT:TT (that is: the system variable for the time) and move it to the end of the first
line.

Note: You may have to resize the map editor window to see the end of the line.

Testing a Map

You will now test your map to check whether it works as intended.

To test the map

1 From theObjectmenu, choose Test.

Or:

Choose the following toolbar button:

The following output is shown.

43First Steps

User Input

Note: You may have to resize the output window to see the time at the top right.

The input field for the starting name is automatically selected since it is the first input field
in the map. Both input fields contain the filler character.

Note: When working in insert mode, the user has to delete the filler characters before
it is possible to enter text. This is not necessary in overwrite mode.

2 Press ENTER to return to the map editor.

Stowing a Map

When the map has successfully been tested, you have to stow it so that it can be found by your
program.

To stow the map

1 Stow the map in the same way as you stow a program.

2 When you are asked to specify a name for the map, enter "MAP01".

First Steps44

User Input

In the libraryworkspace, a new node namedMaps appears below theTUTORIAL node. This
node contains the map you have just stowed.

Leave the map editor open for later modifications.

Invoking the Map from Your Program

Once a map has been stowed, it can be invoked by a Natural program using a WRITE or INPUT
statement.

To invoke the map from your program

1 Return to the program editor.

If you cannot see the program editor (for example, because you have previously maximized
the map editor window), you can return to an open program editor window by choosing the
corresponding command for PGM01 from the bottom of theWindowmenu.

You can also double-click the program PGM01 in the libraryworkspace (or whenworkingwith
the keyboard, select it and press ENTER). When the program has previously been closed, it is
opened again. When it it still open in the background, its editor window is brought back to
the front.

2 Replace the previously defined INPUT lines with the following line:

INPUT USING MAP 'MAP01'

This will invoke the map you have just designed.

The map name must be enclosed in single quotation marks to distinguish the map from a
user-defined variable.

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20) INIT <"ADKINSON">
 1 #NAME-END (A20) INIT <"BENNETT">
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*

45First Steps

User Input

INPUT USING MAP 'MAP01'
*
READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ
*
END

3 Run the program.

Your map is now shown.

4 Press ENTER repeatedly until you return to the program editor, or press ESC.

5 Stow the program.

Ensuring that an Ending Name is Always Used

As your program is coded now, no data will not be found if an ending name is not specified.

Youwill now remove the initial values for the starting name and ending name; then the user always
has to specify these names. To ensure that an ending name is always used, even if it has not been
specified by the user, you will add a corresponding statement.

To use the ending name

1 In the DEFINE DATA block, remove the default values (INIT) for the fields #NAME-START and
#NAME-END so that the corresponding lines look as follows:

1 #NAME-START (A20)
1 #NAME-END (A20)

2 Insert the following below INPUT USING MAP 'MAP01':

IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
END-IF

When the #NAME-END field is blank (that is: when an ending name has not been entered by the
user), the starting name is automatically used as the ending name.

First Steps46

User Input

Note: Instead of using the statement MOVE #NAME-START TO #NAME-END it is also possible
to use the following variant of the ASSIGN or COMPUTE statement: #NAME-END :=
#NAME-START.

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20)
 1 #NAME-END (A20)
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*
INPUT USING MAP 'MAP01'
*
IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
END-IF
*
READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ
*
END

3 Run the program.

4 In the resulting map, enter "JONES" in the field which prompts for a starting name and press
ENTER.

Note: Since Translate to Upper Case has been specified for this field, it is now also
possible to enter the name in lowercase letters.

In the resulting list, only the employees with the name "Jones" are now shown.

5 Press ENTER to return to the program editor.

6 Stow the program.

You can now proceed with the next exercises: Loops and Labels.

47First Steps

User Input

48

7 Loops and Labels

■ Allowing Repeated Usage ... 50
■ Displaying a Message Indicating that Information was not Found .. 52

49

You will now enhance your program by adding loops and labels.

When you have completed the exercises below, your sample application will still consist of the
same modules as in the previous chapter:

Allowing Repeated Usage

As it is now, the program terminates after it has displayed the map and has shown the list. So that
the user can display a new employees list immediately, without restarting the program, you will
now put the corresponding program code into a REPEAT loop.

To define a repeat loop

1 Insert the following below END-DEFINE:

RP1. REPEAT

REPEATdefines the start of the repeat loop. RP1. is a labelwhich is usedwhen leaving the repeat
loop (this is defined below).

2 Define the end of the repeat loop by inserting the following before the END statement:

END-REPEAT

First Steps50

Loops and Labels

3 Insert the following below INPUT USING MAP 'MAP01':

IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
END-IF

The IF statement, which must be ended with END-IF, checks the content of the #NAME-START
field. When a dot (.) is entered in this field, the ESCAPE BOTTOM statement is used to leave the
loop. Processingwill continuewith the first statement following the loop (which is END in this
case).

By assigning a label to the loop (here RP1.), you can refer to this specific loop in the ESCAPE
BOTTOM statement. Since loops may be nested, you should specify which loop you want to
leave. Otherwise, the program will only leave the innermost active loop.

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20)
 1 #NAME-END (A20)
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*
RP1. REPEAT
*
 INPUT USING MAP 'MAP01'
*
 IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
 END-IF
*
 IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
 END-IF
*
 READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
 END-READ
*
END-REPEAT

51First Steps

Loops and Labels

*
END

Note: For better readability, the content of the REPEAT loop has been indented.

4 Run the program.

5 In the resulting map, enter "JONES" in the field which prompts for a starting name and press
ENTER.

In the resulting list, the employees with the name "Jones" are shown. Press ENTER. Due to the
REPEAT loop, the map is shown again. Now you can also see that "JONES" has been entered
as the ending name.

6 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER. Do not forget to delete the remaining characters of the name which is still shown in
this field.

7 Stow the program.

Displaying a Message Indicating that Information was not Found

You will now define the message that is to be displayed when the user enters a starting name
which cannot be found in the database.

To define the message that is to be displayed when the specified employee cannot be found

1 Add the label RD1. to the line containing the READ statement so that it looks as follows:

RD1. READ EMPLOYEES-VIEW BY NAME

2 Insert the following below END-READ:

IF *COUNTER (RD1.) = 0 THEN
 REINPUT 'No employees meet your criteria.'
END-IF

To check the number of records found in the READ loop, the system variable *COUNTER is used.
If its contents equals 0 (that is: an employee with the specified name has not been found), the
message defined with the REINPUT statement is displayed at the bottom of your map.

To identify the READ loop, you assign a label to it (here RD1.). Since a complex database access
program can contain many loops, you have to specify the loop to which you refer.

First Steps52

Loops and Labels

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20)
 1 #NAME-END (A20)
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*
RP1. REPEAT
*
 INPUT USING MAP 'MAP01'
*
 IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
 END-IF
*
 IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
 END-IF
*
 RD1. READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
 END-READ
*
 IF *COUNTER (RD1.) = 0 THEN
 REINPUT 'No employees meet your criteria.'
 END-IF
*
END-REPEAT
*
END

3 Run the program.

4 In the resulting map, enter a starting name which is not defined in the demo database (for
example, "XYZ") and press ENTER.

Your message should now appear in the map.

53First Steps

Loops and Labels

5 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER. Do not forget to delete the remaining characters of the name which is still shown in
this field.

Or:

Press ESC.

6 Stow the program.

You can now proceed with the next exercises: Inline Subroutines.

First Steps54

Loops and Labels

8 Inline Subroutines

■ Defining the Inline Subroutine .. 56
■ Performing the Inline Subroutine .. 57

55

Natural distinguishes two types of subroutines: inline subroutines which are defined directly in
the program and external subroutines which are stored as separate objects outside the program
(this is explained later in this tutorial).

You will now add an inline subroutine to your program which moves an asterisk (*) to the new
user-defined variable named #MARK. This subroutine will be invoked when an employee has 20
days of leave or more.

When you have completed the exercises below, your sample application will be structured as
follows:

Defining the Inline Subroutine

You will now add the subroutine to your program.

To define the subroutine

1 Insert the following below the user-defined variable #NAME-END:

1 #MARK (A1)

This variable will be used by the subroutine. Therefore, it has to be defined first.

First Steps56

Inline Subroutines

2 To define the subroutine, insert the following before the END statement:

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE '*' TO #MARK
END-SUBROUTINE

When performed, this subroutine moves an asterisk (*) to #MARK.

Note: Instead of using the statement MOVE '*' TO #MARK it is also possible to use the
following variant of the ASSIGN or COMPUTE statement: #MARK := '*'.

3 Modify the DISPLAY statement as follows:

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK

This displays a new column in your output. Its heading is ">=20". The columnwill contain an
asterisk (*) if the corresponding employee has 20 days of leave or more.

Performing the Inline Subroutine

Now that you have defined the inline subroutine, you can specify the corresponding code for
performing it.

To perform the inline subroutine

1 Insert the following before the DISPLAY statement:

IF LEAVE-DUE >= 20 THEN
 PERFORM MARK-SPECIAL-EMPLOYEES
ELSE
 RESET #MARK
END-IF

When an employee is found who has 20 days of leave or more, the new subroutine named
MARK-SPECIAL-EMPLOYEES is performed. When an employee has less than 20 days of leave,
the content of #MARK is reset to blank.

57First Steps

Inline Subroutines

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20)
 1 #NAME-END (A20)
 1 #MARK (A1)
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*
RP1. REPEAT
*
 INPUT USING MAP 'MAP01'
*
 IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
 END-IF
*
 IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
 END-IF
*
 RD1. READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 IF LEAVE-DUE >= 20 THEN
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*
 END-READ
*
 IF *COUNTER (RD1.) = 0 THEN
 REINPUT 'No employees meet your criteria.'
 END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE '*' TO #MARK
END-SUBROUTINE

First Steps58

Inline Subroutines

*
END

2 Run the program.

3 In the resulting map, enter "JONES" and press ENTER.

The list of employees should now contain the additional column.

4 Press ESC to close the output window.

5 Stow the program.

You can now proceed with the next exercises: Processing Rules and Helproutines.

59First Steps

Inline Subroutines

60

9 Processing Rules and Helproutines

■ Defining a Processing Rule ... 62
■ Defining a Helproutine .. 64

61

Processing rules and helproutines are defined for fields in a map.

When you have completed the exercises below, your sample applicationwill consist of the following
modules (a processing rule cannot be defined as a separate module; it is always part of a map):

Defining a Processing Rule

You will now define the message that is to be displayed when the user presses ENTER without
specifying a starting name.

To define a processing rule

1 Return to the map editor.

2 Select the input field for the starting name.

3 From the context menu, choose Rules.

The Field Rules dialog box for the field #NAME-START appears.

First Steps62

Processing Rules and Helproutines

4 Choose the Create button.

An empty editor window appears.

5 Enter the following processing rule:

IF & = ' ' THEN
 REINPUT 'Please enter a starting name.'
 MARK *&
END-IF

The ampersand (&) in the processing rule will dynamically be replaced with the name of the
field. In this case, it will be replaced with #NAME-START. If #NAME-START is blank, the message
defined with the REINPUT statement is displayed.

MARK is an option of the REINPUT statement. Its syntax is MARK *fieldname. MARK specifies the
field in which the cursor is to be placed when the REINPUT statement is executed. In this case,
the cursor will be placed in the #NAME-START field.

6 Save the content of the editor window.

63First Steps

Processing Rules and Helproutines

The Rule Selection dialog box appears.

7 In the Rank list box, select 1 and choose theOK button.

The rank defines the sequence in which the rules for the different fields are to be processed.
All rules with rank 1 are processed first, followed by those with rank 2, etc.

8 Close the editor window in which you have entered the processing rule.

9 Test the map.

10 In the resulting output, enter any starting name and press ENTER.

The output window is closed.

11 Test the map once more. Do not enter a name and press ENTER.

The message defined with the processing rule should now appear in the map.

12 To leave the output window, enter a dot (.) in the field which prompts for a starting name
and press ENTER.

13 Stow the map.

Defining a Helproutine

A helproutine is displayed when the user presses the help key when the cursor is on the input
field for the starting name.

You will first define the helproutine and then associate it with a specific field.

To create a helproutine

1 In the library workspace, select the library which also contains your program (that is: select
the TUTORIAL node).

First Steps64

Processing Rules and Helproutines

2 From the context menu, chooseNew Source > Helproutine.

An empty editor appears.

3 Enter the following:

WRITE 'Type the name of an employee'
END

4 Stow the helproutine.

The Stow As dialog box appears.

5 Enter "HLP01" as the name of the helproutine.

6 Choose theOK button.

In the library workspace, a new node namedHelproutines appears below the TUTORIAL
node. This node contains the helproutine you have just stowed.

7 Close the editor window in which you have entered the helproutine.

To associate the helproutine with a field on the map

1 Return to the map editor.

2 Select the data field for the starting name.

3 From the context menu, chooseDefinition.

Or:

Double-click the data field.

The Field Definition dialog box appears.

4 In theHelproutine text box, enter "'HLP01'" (including the single quotation marks).

This is the name under which you have saved your helproutine.

5 Choose theOK button.

6 Test the map.

7 In the resulting output, enter a question mark (?) in the input field for the starting name.

The help text you have defined is shown in a separate window.

8 Press ENTER to close this window.

9 To leave the map, enter a dot (.) in the field which prompts for a starting name and press
ENTER.

10 Stow the map.

65First Steps

Processing Rules and Helproutines

11 Close the map editor window.

You can now proceed with the next exercises: Local Data Areas.

First Steps66

Processing Rules and Helproutines

10 Local Data Areas

■ Creating a Local Data Area ... 68
■ Defining Data Fields ... 69
■ Importing the Required Data Fields from a DDM .. 71
■ Referencing the Local Data Area from Your Program .. 73

67

Currently, the fields used by your program are defined within the DEFINE DATA statement in the
program itself. It is also possible, however, to place the field definitions in a local data area (LDA)
outside the program, with the program's DEFINE DATA statement referencing this local data area
by name. For reusability and for a clear application structure, it is usually better to define fields
in data areas outside the programs.

You will now relocate the information from the DEFINE DATA statement to a local data area. When
you have completed the exercises below, your sample application will consist of the following
modules:

Creating a Local Data Area

You will now invoke the data area editor in which you will specify the required fields.

To create a local data area

1 In the library workspace, select the library which also contains your program (that is: select
the TUTORIAL node).

2 From the context menu, chooseNew Source > Local Data Area.

Or:

First Steps68

Local Data Areas

Choose the following toolbar button:

An editor window appears.

Level, name, format and length are automatically preset in the first row.

Defining Data Fields

You will now define the following fields:

LengthFormatNameLevel

20A#NAME-START1

20A#NAME-END1

1A#MARK1

These are the user-defined variables which you have previously defined in the DEFINE DATA
statement.

You can define the data fields in two different ways: manually in the editor window where it is
your responsibility to define the correct format and length of the data field, or with the Import
command where you simply select the data fields from a list and where the correct format and
length is automatically used. These two ways are described below.

The setting of the following toolbar button in theDataArea Editor Insert toolbar indicates the insert
position.When the toolbar button appears pressed, the newfield is inserted after the selected field
(this state is assumed in this tutorial); otherwise, the new field is inserted before the selected field.

69First Steps

Local Data Areas

To define a data field manually in the editor window

1 Make sure that the Level column in the first row contains the preset value "1".

2 Change the preset value in theName column of the first row to "#NAME-START".

3 Make sure that the Format column in the first row contains the preset value "A".

4 Change the preset value in the Length column of the first row to "20".

To import data fields from a program

1 In the editor, select the row which has been created for #NAME-START.

Note: If required, press ENTER or ESC to switch from single-cell selection to full-row se-
lection mode.

2 From the context menu, choose Import.

Or:

Choose the following toolbar button:

The Import Data Field dialog box appears.

3 Make sure that TUTORIAL is selected in the Library drop-down list box.

4 Select the Program check box.

All programs that are currently defined in your library are now shown in theObject list box.

5 Select the program with the name PGM01.

The importable data fields are now shown at the bottom of the dialog box.

First Steps70

Local Data Areas

6 Press CTRL and select the following fields in the Importable Data list box:

#NAME-END
#MARK

7 Choose the Import button.

The Cancel button in the Import Data Field dialog box is now labeledQuit.

8 Choose theQuit button to close the Import Data Field dialog box.

The fields #NAME-END and #MARK are now shown below the #NAME-START field in the editor
window.

Importing the Required Data Fields from a DDM

You will now import the same data fields which you have previously defined in the program's
DEFINE DATA statement. The fields are read directly from a Natural data view into the data area
editor. A data view references database fields defined in a data definition module (DDM).

In the data area editor, the imported data fields will be inserted below the currently selected data
field.

71First Steps

Local Data Areas

To import data fields from a DDM

1 In the editor, select the row containing #MARK.

2 From the context menu, choose Import.

The Import Data Field dialog box appears.

3 From the Library drop-down list box, select SYSEXDDM.

TheDDM option button is selected.

4 In theObject list box, select the sample DDMwith the name EMPLOYEES.

5 Press CTRL and select the following fields in the Importable Data list box:

PERSONNEL-ID
FULL-NAME
NAME
DEPT
LEAVE-DATA
LEAVE-DUE

Note: The field PERSONNEL-IDwill be used later when you create the subprogram.

6 Choose the Import button.

The View Definition dialog box appears.

7 Specify the same name that you have previously defined for your view (that is:
EMPLOYEES-VIEW).

8 Choose theOK button.

9 Choose theQuit button to close the Import Data Field dialog box.

The local data area should now look as follows:

First Steps72

Local Data Areas

The Type column indicates the type of the variable. The view is indicated by a "V" and each
group is indicated by a "G".

Note: When the Expand/Collapse check box has been selected in the data area editor
options, expand/collapse toggles are shown in the first column (for the view and each
group).

10 Stow the local data area.

11 When you are asked to specify a name for the local data area, enter "LDA01".

In the libraryworkspace, a newnode named LocalDataAreas appears below theTUTORIAL
node. This node contains the local data area you have just stowed.

Referencing the Local Data Area from Your Program

Once a local data area has been stowed, it can be referenced by a Natural program.

You will now change the DEFINE DATA statement your program so that it uses the local data area
that you have just defined.

Leave the data area editor open in the background.

To use the local data area in your program

1 Return to the program editor.

2 In the DEFINE DATA statement, delete all variables between LOCAL and END-DEFINE.

73First Steps

Local Data Areas

3 Add a reference to your local data area by modifying the LOCAL line as follows:

LOCAL USING LDA01

Your program should now look as follows:

DEFINE DATA
 LOCAL USING LDA01
END-DEFINE
*
RP1. REPEAT
*
 INPUT USING MAP 'MAP01'
*
 IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
 END-IF
*
 IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
 END-IF
*
 RD1. READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 IF LEAVE-DUE >= 20 THEN
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*
 END-READ
*
 IF *COUNTER (RD1.) = 0 THEN
 REINPUT 'No employees meet your criteria.'
 END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE '*' TO #MARK
END-SUBROUTINE
*
END

4 Run the program.

First Steps74

Local Data Areas

5 To confirm that the results are the same as before (when the DEFINE DATA statement did not
reference a local data area), enter "JONES" as the starting name and press ENTER.

6 Press ESC to close the output window.

7 Stow the program.

You can now proceed with the next exercises: Global Data Areas.

75First Steps

Local Data Areas

76

11 Global Data Areas

■ Creating a Global Data Area from an Existing Local Data Area ... 78
■ Adapting the Local Data Area .. 80
■ Referencing the Global Data Area from Your Program .. 81

77

Data defined in a global data area (GDA) can be shared bymultiple programs, external subroutines
and helproutines.

Any modification of a data element value in a global data area affects all Natural objects that ref-
erence this global data area. Therefore, if you change the source of a global data area, you have to
stow all previously created Natural objects that reference this global data area once more. The se-
quence in which objects are stowed is important. You must first stow the global data area and
then the program. If you stow the program first and then the global data area, the program cannot
be stowed because new elements in the global data area cannot be found.

You will now create a global data area which will be shared by your program and an external
subroutine that you will create later. As the basis for your global data area, you will use some of
the information from the local data area you have just created.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Creating a Global Data Area from an Existing Local Data Area

You can create a new data area from an existing data area by editing it and saving it under a dif-
ferent name and with a different type. The original data area remains unchanged, and the new
data area can be edited. Since the fields #NAME-START and #NAME-END are not required in the global
data area, you will remove them.

Note: It is also possible to create a global data area by choosingNew > Global Data Area
from theObjectmenu.

To create the global data area

1 Return to your local data area.

First Steps78

Global Data Areas

2 From theObjectmenu, choose Save As.

The Save As dialog box appears.

3 Specify "GDA01" as the name for the global data area.

4 Make sure that the library is selectedwhich also contains your program (that is: theTUTORIAL
node).

5 From the Type drop-down list box, chooseGlobal.

6 Choose theOK button.

The new name and type are now shown in the title bar of the editor window. In the library
workspace, the new global data area is shown in theGlobal Data Areas node.

7 Press CTRL and select the following fields:

#NAME-START
#NAME-END

8 From the context menu, chooseDelete.

Or:

Press DEL.

The global data area should now look as follows:

9 Stow the global data area.

The global data area can now be found by your program and by the external subroutine that
you will define later.

79First Steps

Global Data Areas

10 Close the editor window for the global data area.

Adapting the Local Data Area

The fields contained in the global data area are no longer required in the local data area. Therefore,
you will now remove all fields except #NAME-START and #NAME-END from the local data area.

To remove the fields

1 In the library workspace, select the local data area LDA01, and from the context menu, choose
Open.

Or:

In the library workspace, double-click the local data area LDA01.

2 In the resulting data area editor, select all fields except #NAME-START and #NAME-END.

3 From the context menu, chooseDelete.

Or:

Press DEL.

4 Stow the modified local data area.

The local data area should now look as follows:

First Steps80

Global Data Areas

Referencing the Global Data Area from Your Program

Once a global data area has been stowed, it can be referenced by a Natural program.

You will now change the DEFINE DATA statement in your program so that it also uses the global
data area that you have just defined.

Leave the data area editor open in the background.

To use the global data area in your program

1 Return to the program editor.

2 Insert the following in the line above LOCAL USING LDA01:

GLOBAL USING GDA01

Aglobal data areamust always be defined before a local data area. Otherwise, an error occurs.

Your program should now look as follows:

DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
END-DEFINE
*
RP1. REPEAT
*
 INPUT USING MAP 'MAP01'
*
 IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
 END-IF
*
 IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
 END-IF
*
 RD1. READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 IF LEAVE-DUE >= 20 THEN
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF

81First Steps

Global Data Areas

*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK
*
 END-READ
*
 IF *COUNTER (RD1.) = 0 THEN
 REINPUT 'No employees meet your criteria.'
 END-IF
*
END-REPEAT
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE '*' TO #MARK
END-SUBROUTINE
*
END

3 Run the program.

4 To confirm that the results are the same as before (when the DEFINE DATA statement did not
reference a global data area), enter "JONES" as the starting name and press ENTER.

5 Press ESC to close the output window.

6 Stow the program.

You can now proceed with the next exercises: External Subroutines.

First Steps82

Global Data Areas

12 External Subroutines

■ Creating an External Subroutine ... 84
■ Referencing the External Subroutine from Your Program ... 85

83

Until now, the subroutine MARK-SPECIAL-EMPLOYEES has been defined within the program using
a DEFINE SUBROUTINE statement. You will now define the subroutine as a separate object external
to the program.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Creating an External Subroutine

You will now invoke an editor in which you will specify the code for the external subroutine.

The DEFINE SUBROUTINE statement of the external subroutine is coded in the sameway as the inline
subroutine in the program.

To create an external subroutine

1 In the library workspace, select the library which also contains your program (that is: select
the TUTORIAL node).

2 From the context menu, chooseNew Source > Subroutine.

An empty editor window appears.

First Steps84

External Subroutines

3 Enter the following:

DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
END-DEFINE
*
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE '*' TO #MARK
END-SUBROUTINE
*
END

4 Stow the subroutine.

The Stow As dialog box appears.

5 Enter "SUBR01" as the name of the external subroutine and choose theOK button.

In the library workspace, the new external subroutine is shown in the Subroutines node. In
logical view, the name of the subroutine is shown as defined in the code:
MARK-SPECIAL-EMPLOYEES. In all other views, the name SUBR01 is shown.

6 Close the editor window in which you have entered the external subroutine.

Referencing the External Subroutine from Your Program

The PERFORM statement invokes both internal and external subroutines.When an internal subroutine
is not found in the program, Natural automatically tries to perform an external subroutine with
the same name. Note that Natural looks for the name that has been defined in the subroutine code
(that is: the subroutine name), not for the name that you have specifiedwhen saving the subroutine
(that is: the Natural object name).

Now that you have defined an external subroutine, you have to remove the inline subroutine
(which has the same name as the external subroutine) from your program.

To use the external subroutine in your program

1 Return to the program editor.

85First Steps

External Subroutines

2 Remove the following lines:

DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE '*' TO #MARK
END-SUBROUTINE

Your program should now look as follows:

DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
END-DEFINE
*
RP1. REPEAT
*
 INPUT USING MAP 'MAP01'
*
 IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
 END-IF
*
 IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
 END-IF
*
 RD1. READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 IF LEAVE-DUE >= 20 THEN
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X '>=20' #MARK

 END-READ
*
 IF *COUNTER (RD1.) = 0 THEN
 REINPUT 'No employees meet your criteria.'
 END-IF
*
END-REPEAT
*
END

3 Run the program.

4 Enter "JONES" as the starting name and press ENTER.

First Steps86

External Subroutines

The resulting list should still show an asterisk for each employee who has 20 days of leave
and more.

5 Press ESC to close the output window.

6 Stow the program.

You can now proceed with the next exercises: Subprograms.

87First Steps

External Subroutines

88

13 Subprograms

■ Modifying the Local Data Area ... 90
■ Creating a Parameter Data Area from an Existing Local Data Area .. 92
■ Creating Another Local Data Area Containing a Different View ... 93
■ Creating a Subprogram .. 94
■ Referencing the Subprogram from Your Program ... 95

89

You will now expand your program to include a CALLNAT statement that invokes a subprogram.
In the subprogram, the employees identified from the main program will be the basis of a FIND
request to the VEHICLES file which is also part of the demo database. As a result, your output will
contain vehicles information from the subprogram as well as employees information from the
main program.

The new subprogram requires the creation of an additional local data area and a parameter data
area.

When you have completed the exercises below, your sample applicationwill consist of the following
modules:

Modifying the Local Data Area

You will now addmore fields to the local data area that you have previously created. These fields
will be used by the subprogram that you will create later.

To add more fields to the local data area

1 Return to your local data area.

First Steps90

Subprograms

2 Select the row containing #NAME-END.

3 From the context menu, choose Insert > Data Field.

Or:

Choose the following toolbar button:

TheData Field Definition dialog box appears.

4 Define the following fields:

LengthFormatNameLevel

8A#PERS-ID1

20A#MAKE1

20A#MODEL1

Choose the Add button after you have defined a field.

5 When all fields have been defined, choose theQuit button.

The local data area should now look as follows:

6 Stow the local data area.

91First Steps

Subprograms

Creating a Parameter Data Area from an Existing Local Data Area

A parameter data area (PDA) is used to specify the data parameters to be passed between your
Natural program and the subprogram that you will create later. The parameter data area will be
referenced in the subprogram.

With minor modifications, your local data area can be used to create the parameter data area: you
will delete two of the data fields in in the local data area and then save the revised data area as a
parameter data area. The original local data area remains intact.

Note: It is also possible to create a parameter data area by choosingNew > Parameter Data
Area from theObjectmenu.

To create the parameter data area

1 In the local data area, delete the fields #NAME-START and #NAME-END.

2 From theObjectmenu, choose Save As.

The Save As dialog box appears. Specify "PDA01" as the name for the parameter data area.

3 Make sure that the library is selectedwhich also contains your program (that is: theTUTORIAL
node).

4 From the Type drop-down list box, choose Parameter.

5 Choose theOK button.

The new name and type are now shown in the title bar of the editor window. In the library
workspace, the new parameter data area is shown in the Parameter Data Areas node.

The parameter data area should now look as follows:

6 Stow the parameter data area.

7 Close the editor window for the parameter data area.

First Steps92

Subprograms

Creating Another Local Data Area Containing a Different View

You will now create a second local data area and import fields from the DDM for the VEHICLES
database file. This DDM is also provided in the system library SYSEXDDM.

This local data area will be referenced in the subprogram.

To create the local data area

1 In the library workspace, select the library which also contains your program (that is: select
the TUTORIAL node).

2 From the context menu, chooseNew Source > Local Data Area.

Or:

Choose the following toolbar button:

An editor window appears.

3 From the Insertmenu, choose Import.

The Import Data Field dialog box appears.

4 From the Library drop-down list box, select SYSEXDDM.

Select the DDM option button.

In theObject list box, select the sample DDMwith the name VEHICLES.

5 Press CTRL and select the following fields in the Importable Data list box:

PERSONNEL-ID
CAR-DETAILS
MAKE
MODEL

6 Choose the Import button.

The View Definition dialog box appears.

7 Specify the name "VEHICLES-VIEW" as the name for the view.

8 Choose theOK button.

9 Choose theQuit button to close the Import Data Field dialog box.

93First Steps

Subprograms

10 Stow the new local data area.

11 When you are asked to specify a name for the local data area, enter "LDA02" and choose the
OK button.

The local data area should now look as follows:

12 Close the editor window for the local data area.

Creating a Subprogram

Youwill now create a subprogram that uses a parameter data area and a local data area to retrieve
information from the VEHICLES file. The subprogram receives the personnel ID passed by the
program PGM01 and uses this ID as the basis for a search of the VEHICLES file.

To create the subprogram

1 In the library workspace, select the library which also contains your program (that is: select
the TUTORIAL node).

2 From the context menu, chooseNew Source > Subprogram.

An editor window appears.

First Steps94

Subprograms

3 Enter the following:

DEFINE DATA
 PARAMETER USING PDA01
 LOCAL USING LDA02
END-DEFINE
*
FD1. FIND (1) VEHICLES-VIEW
 WITH PERSONNEL-ID = #PERS-ID
 MOVE MAKE (FD1.) TO #MAKE
 MOVE MODEL (FD1.) TO #MODEL
 ESCAPE BOTTOM
END-FIND
*
END

This subprogram returns to a given personnel ID the make and model of the employee's
company car.

The FIND statement selects a set of records (here: one record) from the database based on the
search criterion #PERS-ID.

In the field #PERS-ID, the subprogram receives the value of PERSONNEL-ID that has been passed
by the program PGM01. The subprogramuses this value as the basis for a search of the VEHICLES
file.

4 Stow the subprogram.

5 When you are asked to specify a name for the subprogram, enter "SPGM01" and choose the
OK button.

6 Close the editor window for the subprogram.

Referencing the Subprogram from Your Program

A subprogram is invoked from the main program using a CALLNAT statement. A subprogram can
only be invoked via a CALLNAT statement; it cannot be executed by itself. A subprogram has no
access to the global data area used by the invoking object.

Data is passed from the main program to the specified subprogram through a set of parameters
that are referenced in the DEFINE DATA PARAMETER statement of the subprogram.

The variables defined in the parameter data area of the subprogram do not have to have the same
names as the variables in the CALLNAT statement. Since the parameters are passed by address, it is
only necessary that they match in sequence, format, and length.

Youwill nowmodify your main program so that it can use the subprogram you have just defined.

95First Steps

Subprograms

To use the subprogram in your main program

1 Return to the program editor.

2 Insert the following directly above the DISPLAY statement:

RESET #MAKE #MODEL
CALLNAT 'SPGM01' PERSONNEL-ID #MAKE #MODEL

The RESET statement sets the values of #MAKE and #MODEL to null values.

3 Delete the line containing the DISPLAY statement and replace it with the following:

WRITE TITLE
 / '*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***'
 / '*** ARE MARKED WITH AN ASTERISK ***'//
*
DISPLAY 1X '//N A M E' NAME
 1X '//DEPT' DEPT
 1X '/LV/DUE' LEAVE-DUE
 ' ' #MARK
 1X '//MAKE' #MAKE
 1X '//MODEL' #MODEL

The text defined with the WRITE TITLE statement will appear at the top of each page in the
output. The WRITE TITLE statement overrides the default page title: the information which
was previously displayed at the top of each page (page number, date and time) is no longer
shown. Each slash (/) causes the subsequent information to be shown in a new line.

Since the subprogram is now returning additional vehicles information, the columns in the
output need to be resized. They receive shorter headers. The column in which the asterisk is
to be shown (#MARK), does not receive a header at all. One space will be inserted between the
columns (1X). Each slash in the header causes the subsequent information to be shown in a
new line of the same column.

Your program should now look as follows:

DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
END-DEFINE
*
RP1. REPEAT
*
 INPUT USING MAP 'MAP01'
*
 IF #NAME-START = '.' THEN
 ESCAPE BOTTOM (RP1.)
 END-IF

First Steps96

Subprograms

*
 IF #NAME-END = ' ' THEN
 MOVE #NAME-START TO #NAME-END
 END-IF
*
 RD1. READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 IF LEAVE-DUE >= 20 THEN
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
*
 RESET #MAKE #MODEL
 CALLNAT 'SPGM01' PERSONNEL-ID #MAKE #MODEL
*
 WRITE TITLE
 / '*** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***'
 / '*** ARE MARKED WITH AN ASTERISK ***'//
*
 DISPLAY 1X '//N A M E' NAME
 1X '//DEPT' DEPT
 1X '/LV/DUE' LEAVE-DUE
 ' ' #MARK
 1X '//MAKE' #MAKE
 1X '//MODEL' #MODEL
*
 END-READ
*
 IF *COUNTER (RD1.) = 0 THEN
 REINPUT 'No employees meet your criteria.'
 END-IF
*
END-REPEAT
*
END

4 Run the program.

5 Enter "JONES" as the starting name and press ENTER.

The resulting list should look similar to the following:

97First Steps

Subprograms

 *** PERSONS WITH 20 OR MORE DAYS LEAVE DUE ***
 *** ARE MARKED WITH AN ASTERISK ***

 LV
 N A M E DEPT DUE MAKE MODEL
 -------------------- ------ --- - -------------------- --------------------

 JONES SALE30 25 * CHRYSLER IMPERIAL
 JONES MGMT10 34 * CHRYSLER PLYMOUTH
 JONES TECH10 11 GENERAL MOTORS CHEVROLET
 JONES MGMT10 18 FORD ESCORT
 JONES TECH10 21 * GENERAL MOTORS BUICK
 JONES SALE00 30 * GENERAL MOTORS PONTIAC
 JONES SALE20 14 GENERAL MOTORS OLDSMOBILE
 JONES COMP12 26 * DATSUN SUNNY
 JONES TECH02 25 * FORD ESCORT 1.3

6 Press ESC to close the output window.

7 Stow the program.

You have successfully completed this tutorial.

First Steps98

Subprograms

	First Steps
	Table of Contents
	1 First Steps
	2 About this Tutorial
	Prerequisites
	About the Sample Application

	3 Getting Started with Natural Studio
	Invoking Natural Studio
	Library Workspace
	Issuing Commands
	Creating a User Library
	Programming Modes

	4 Hello World!
	Creating a Program
	Running a Program
	Correcting Program Errors
	Stowing a Program
	Setting the Workspace Options

	5 Database Access
	Starting the Demo Database
	Saving Your Program Under a New Name
	Defining the Required Data Using a View
	Reading Data from a Database
	Reading Selected Data from a Database

	6 User Input
	Allowing for User Input
	Designing a Map for User Input
	Creating a Map
	Defining Text Fields
	Specifying Labels for Text Fields
	Defining Data Fields
	Specifying Names and Attributes for Data Fields
	Adding System Variables
	Testing a Map
	Stowing a Map

	Invoking the Map from Your Program
	Ensuring that an Ending Name is Always Used

	7 Loops and Labels
	Allowing Repeated Usage
	Displaying a Message Indicating that Information was not Found

	8 Inline Subroutines
	Defining the Inline Subroutine
	Performing the Inline Subroutine

	9 Processing Rules and Helproutines
	Defining a Processing Rule
	Defining a Helproutine

	10 Local Data Areas
	Creating a Local Data Area
	Defining Data Fields
	Importing the Required Data Fields from a DDM
	Referencing the Local Data Area from Your Program

	11 Global Data Areas
	Creating a Global Data Area from an Existing Local Data Area
	Adapting the Local Data Area
	Referencing the Global Data Area from Your Program

	12 External Subroutines
	Creating an External Subroutine
	Referencing the External Subroutine from Your Program

	13 Subprograms
	Modifying the Local Data Area
	Creating a Parameter Data Area from an Existing Local Data Area
	Creating Another Local Data Area Containing a Different View
	Creating a Subprogram
	Referencing the Subprogram from Your Program

