5 software~

Natural for Windows

Debugger

Version 6.3.8 for Windows

February 2010

Natural

This document applies to Natural Version 6.3.8 for Windows.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2010 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name Software AG, webMethods and all Software AG product names are either trademarks or registered trademarks of Software AG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Table of Contents

1 DEDUZEET ... 1
2 General Informationccccoeciiiiiiiiiiiiiiii 3
About the Debuggercccoiiiiiiiiiiiiiiiiii 4
Remote Debuggingccoouiiiiiiiiiiii 5
3 Starting and Leaving the Debuggerc.cooiiiiiiiiiiiiiiiiiii 11
Preparing to Use the Debuggercccooooiiiiiiiiiiiii 12
Starting the Debugger ... 12
Restarting the Debuggercccoociiiiiiiiiiiiiiiiii 13
Leaving the Debugger ..o 14
4 Elements of the Debuggerc.ccociiiiiiiiiiiiiiiiiiicc 15
Debugger Information in the Title Bar ..o 16
Menu Commandsccoiiiiiiiiiiiiiii 16
TOOIDAT ... 16
Trace Position in Editor WINdOwccccocciiiiiiiiiiiiii, 17
Debugger WINAOWScccoiiiiiiiiiiiiiiiiiiicic e 18
5 Moving through the Code ..o 23
Stepping Through the Codec.coociiiiiiiiiiiiii 24
Going to the Next Breakpoint or Watchpointcccocoeiiiiiiiiiiiis 26
Going to the Next EVeNntccoccoiiiiiiiiiiiiiicccc e 26
Going to the Cursor POSItIONcooviiiiiiiiiiiiiiccce 27
Going to the Next Statement ... 27
6 Setting Breakpoints and Watchpointscccociiviiiiiiiiiiiiii, 29
About Breakpoints and Watchpointsccccooioiiiiiiiiii, 30
Adding and Removing a Breakpointcccccoociiiiiiiiiiiiiiiiiiiiicicceee, 31
Modifying a Breakpointc.cccoviiiiiiiiiii 32
Adding a Watchpointcccoiiiiiiiiiiiiiii 33
Modifying a Watchpointccccoeoiiiiiiiiiiiiiiiii e 35
Deactivating Breakpoints and Watchpoints Temporarilyc.ccccooceiiiiininn, 36
Showing the Source Code for a Defined Breakpoint or Watchpoint 37
Deleting Breakpoints and Watchpoints ... 38
Symbols Used in the Editor WIndowcccccoeiiiiiiiiiiiiiiniiiiicciceccece 38
7 Modifying and Watching Variablesc.ccccooiiiiiiiiiiiiii, 39
Modifying a Variablecccooiiiiiiiiiiiii 40
Adding a Watchvariableccociiiiiiiiiiiiiiii 43
Managing the Variables in the Variables Windowc.cccooiii, 44
8 Using the Call Stackccciiiiiiiiiiiiiiiiiiiiiici e 49
About the Call Stackcccoccviiiiiiiiiiiiiiiii 50
Displaying the Source Code of a Different Objectcccccocivviiiiiiniiniiiiiineen. 50
Returning to the Object at the Current Trace Positioncccccceeiiiiiiiiiiiininn 51
9 Using the Old Debuggerc.cocooiiiiiiiiiiic e 53
Preparing Natural ODbjectsc.cccciiiiiiiiiiiiiiiiiiiiiii 54
Starting the Debuggerccocooiiiiiiii 54
Leaving the Debuggercccoociiiiiiiiiiiiiiiiiic e 55

Debugger

Operating the Debuggercccooiiiiiiiiiiiiiiiiii s 56
Debugger Source Windowccooviiiiiiiiiiiiic 58
Watchvariables Control Barccccooiiii 65
Variables COntrol BArcoooiiiiiiiiiieeee et e 65
Watchpoints and Breakpoints Control Barcccccoeeiiiiiiiiiiiiiiiiiiiice 66

Debugger

1

Debugger

This documentation, which is complemental to the Using Natural Studio documentation, explains
how to debug Natural applications. It is organized under the following headings:

<@

General Information

About the debugger which is integrated in Natural Studio.
Information on remote debugging and how to set up your
environment for remote debugging.

@ |Starting and Leaving the Information on the SYMGEN parameter. How to start, restart and
Debugger leave the debugger.
& |Elements of the Debugger Information on additional elements which are available in the
Natural Studio window when the debugger has been started.
@ |Moving through the Code How to execute the code by stepping through it or by going to
breakpoints, watchpoints, events or to the cursor position.
i@ |Setting Breakpoints and How to add breakpoints and watchpoints, and how to manage
Watchpoints them in the break- and watchpoints window.
@ |[Modifying and Watching How to modify a variable, how to add watchvariables, and how
Variables to manage the variables in the variables window.
@ |Using the Call Stack How to manage the objects in the call stack window.

In addition to the above topics which describe the new debugger which is integrated in Natural
Studio, the documentation for the old debugger is also provided in the section Using the Old De-
bugger. The old debugger may appear when an old version of Natural is installed on the develop-
ment server; see also General Information.

2 General Information

B ADOUL thE DBDUGGET ...ttt
L =14 To] (e B =100 o o o USSP UTPRUR

General Information

About the Debugger

Starting with Natural for Windows Version 6.2, the debugger is integrated in Natural Studio. The
complete Natural Studio functionality can thus be used in parallel to the debugger. For example,
when the debugger is active, you can navigate to another object in the library workspace or you
can search for a specific object using the Find Object command.

The debugger is used to debug Natural applications in the following environments:

" in the local environment, and

" in a remote environment, that is: on a mapped development server (SPoD). The prerequisite is
that one of the following versions is installed on the development server:

= Natural for Mainframes Version 4.2 or above.

® Natural for UNIX Version 6.2 or above.

No additional settings are necessary for debugging. Natural Studio handles all steps internally
(such as setting up or terminating the communication with the corresponding server).

See also Environments and Views in the Library Workspace in the documentation Using Natural Studio
and Accessing a Remote Development Environment in the documentation Remote Development Using
SPoD.

| Note: Several differences exist when you debug applications in a remote mainframe envir-

onment. These differences are listed in the platform-specific Natural Development Server
(NDV) documentation which applies to this Natural release. The NDV documentation is
available separately; it is not part of this Natural for Windows documentation.

When is the Old Debugger Still Used with SPoD?

When you are working with Natural Studio and invoke the debugger for an object on a mapped
development server, it is possible that the old debugger is invoked instead of the new integrated
debugger. This is the case when an old version of Natural is installed on the development server.
Old versions are:

® Natural for UNIX Version 6.1.1 or below.

See Using the Old Debugger.

4 Debugger

General Information

Remote Debugging

With one of the next versions, remote debugging will no longer supported. Instead, you will have
to use the debugger which is integrated in Natural Studio.

Remote debugging is done when you debug a native Natural for UNIX application from a Windows
computer, or when you debug a Natural dialog application remotely from an other PC. This is
done outside the context of SPoD.

To enable remote debugging, you have to proceed as follows:

* Install the debug front-end on a Windows computer. This also installs the remote debugging
service natdbgsv which must be active for remote debugging. See Installing the Remote Debugger.

® Define the parameters RONODE, ROPORT and RDACTIVE in the environment which contains the
application that is to be debugged. See Setting Up Your Environment for Remote Debugging for
further information.

* Invoke the debugger by entering the system command DEBUG object -name in the environment
which contains the application that is to be debugged.

= |nstalling the Remote Debugger
= Setting Up Your Environment for Remote Debugging
= Scenarios for Remote Debugging

/), Important: For running the remote debugger, the Microsoft Windows Personal Firewall must

be deactivated. See Configuring the Microsoft Windows Personal Firewall to Run Natural in the
Operations documentation for Natural for Windows.

Installing the Remote Debugger

If you have Natural for Windows installed, you must use the remote debugger delivered with
Natural for Windows. If the remote debugger has not yet been installed, use the Modify option
of the Natural installation package to add the remote debugger to your Natural for Windows in-
stallation. See Maintaining Your Natural or Natural Runtime Environment in the Installation docu-
mentation for Natural for Windows.

You only need to install the remote debugger stand-alone, if you do not have Natural for Windows
installed. If you want to you debug a Natural application which is stored on a UNIX platform,
copy $NATDIR/$NATVERS/dbrmt/1386/nrd.exe from the UNIX installation medium to your Windows
computer (for example, to a temporary directory) and unzip it. Run sefup.exe to start the installation
of the remote debugger.

Debugger 5

General Information

Setting Up Your Environment for Remote Debugging

The following topics are covered below:

= Windows Side without Terminal Services
= Windows Side with Terminal Services
= Natural Side

Windows Side without Terminal Services

Either install the remote debugger (the corresponding files can be found on the UNIX installation
medium) or install Natural for Windows (the remote debugger can optionally be installed with a
Natural for Windows custom installation; see the Installation documentation for Natural for Win-
dows). This also installs the Natural remote debugging service natdbgsv.

To uninstall the remote debugging service, enter natdbgsv -u in the command line. To view the

current service's port name and version, enter natdbgsv -s. To re-install the service on a different
port, uninstall it first and then enter natdbgsv -1 portnumber, where portnumber is the value of
the RDPORT profile parameter. If the port number is already used, a dialog appears where you can
enter a new port number.

| Note: Before you install the remote debugging service on a port other than 2600 (default

value), you have to change the value of the RDPORT profile parameter to match the port
number of the client computer where the Natural application is being debugged.

Windows Side with Terminal Services

Install the remote debugger (the corresponding files can be found on the UNIX installation medium)
or install Natural for Windows (the remote debugger can optionally be installed with a Natural
for Windows custom installation; see the Installation documentation for Natural for Windows).
This also creates the debugger shortcut in the Start menu (in the same programs folder in which
you can find the shortcuts for Natural) which represents the listener process natdbgsv. To use re-
mote debugging, natdbgsv must be started. The first time the listener process is launched in a
specific user session, a free port number is displayed which must be entered in the corresponding
field of the RDPORT profile parameter.

Any subsequent activation of natdbgsv causes the listener to be started with the same port number.
If this number is already used by a different application, then the user must provide natdbgsv's
port dialog with a new port number and RDPORT must be adjusted accordingly.

6 Debugger

General Information

Natural Side

Start Natural with the following profile parameter settings:

® RDACTIVE set to "ON".
= RDNODE set to the node name of the Windows server.

" RDPORT set to "2600" or another port number: the number of either port with which you have
installed the remote debugging service (see Windows Side without Terminal Services), or with
which port the listener process was started (see Windows Side with Terminal Services).

Scenarios for Remote Debugging

There are different scenarios of how you can use remote debugging: A single Natural client runs
under the control of one remote debugging session or a distributed Natural application runs under
the control of several remote debugging sessions. Such a distributed application may include both
Natural RPC and DCOM servers or even components not written in Natural, such as Visual Basic
clients.

The following topics are covered below:

= Scenario 1: Debugging a Single Natural Application
= Scenario 2: Debugging a Distributed Natural Application
= Scenario 3: Debugging the Natural Part of a Heterogeneous Application

Scenario 1: Debugging a Single Natural Application

The diagram below illustrates debugging in a single Natural application.

Natural on Windows
Debug Server

Debugger

Natural Debug @ o natdbgsy <4—p Session

Client

Debugger 7

General Information

Scenario 2: Debugging a Distributed Natural Application

To debug each component of the following distributed Natural application, you enter DEBUG
objectname in the command line of Natural debug client 1. The first time the Natural Debug Client
calls a subprogram on a Natural RPC server, a new debug session is opened for the RPC server.
Then, the RPC server's processing is debugged. The debug session is closed as soon as the RPC
server is terminated.

The same applies to a Natural DCOM server.

MNatural on Windows
Debug Server

Natural Debug Debugger

. Client 1 - / Session 1
1 T~

MNatural Debug
p Client2/ 4 natdbgsy —— %‘Zﬁ;‘%?fé
RPC Server
2 /
MNatural Debug - \ Debugger
- [] Client 3/ 5955%%1 3
DCOM Server

1. CALLNAT Subprogram
2 SEND METHQD

8 Debugger

General Information

Scenario 3: Debugging the Natural Part of a Heterogeneous Application

As in the previous scenario, the first time a method on the DCOM server is called, a new debug
session is opened for the DCOM server, the DCOM server's processing is debugged, and the de-
bugger session is closed as soon as the DCOM server is terminated:

Wisual Basic
Client
MNatural on Windows
A Debug Server
L J

MNatural Debug

' Debugger
Client / <—p natdbgsy <—p ;
DCOM Server Session

Debugger 9

10

3 Starting and Leaving the Debugger

Preparing t0 USe the DEDUGUETccovviiiei e
StArting the DEDUGGETeeeeieeee et
Restarting the DEDUGGETeeieeee et
LeaViNg the DEDUGGETeeeiiie ettt

11

Starting and Leaving the Debugger

Preparing to Use the Debugger

To exploit the full functional scope of the debugger, you must set the parameter SYMGEN to "ON".
You can set this parameter in one of the following ways:

® dynamically when starting Natural,

* only for the current session by changing the session parameters, or

" in your parameter file using the Configuration Utility.

When you catalog or stow an object and SYMGEN is set to "ON", a symbol table is generated as part
of the generated program. Since this table contains the information relevant to the variables active

for this object, variables cannot be accessed without SYMGEN being specified, although it is still
possible to debug the object.

| Note: Itis notnecessary to set the parameter SYMGEN when debugging in a SPoD environment

on a mainframe.

Starting the Debugger

The debugger can be used with stowed or cataloged Natural programs and dialogs. It can be used
in the local environment and in the remote environment.

See also the description of the system command DEBUG.

» To start the debugger

1 Open the editor for the object that is to be debugged.
Or:

Select the object in the library workspace.

2 From the Debug menu, choose Start.
Or:
Press CTRL+F7.

Or:

12 Debugger

Starting and Leaving the Debugger

When the Debug toolbar is shown, choose the following toolbar button:

Or:

When you have selected an object in the library workspace, invoke the context menu and
choose Debug.

When the editor for the selected object has not yet been opened, it is opened now.
For a dialog, the dialog source is now shown in a separate window.

When the debugger has been started, additional elements are available in the Natural Studio
window. See Elements of the Debugger for further information.

Restarting the Debugger

When you restart your debugging session, the debugger repositions to the beginning of the applic-
ation while all your current settings for breakpoints, watchpoints and watchvariables are kept.
Thus, restarting a debugging session is useful if want to rerun your application without having
to specify the settings relevant for debugging again.

» To restart the debugger

s From the Debug menu, choose Restart.
Or:
Press CTRL+SHIFT+F7.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

El

Debugger 13

Starting and Leaving the Debugger

Leaving the Debugger

The debugger is terminated automatically if the application ends without an error. You can also
stop the debugger before it terminates automatically; see the description below.

| Note: Closing the editor window does not stop the debugger.

When the debugger is terminated or stopped, your breakpoint, watchpoint and watchvariable
settings are automatically stored. All these settings will be restored the next time you start the
debugger.

In the case of an error, the corresponding source is displayed and the trace position indicates the
line which caused the error. A message window appears with the appropriate error message and
a choice to either continue or end the debugging session. Continuing the debugging session may
be useful, for example, if your application contains any error processing (including error transac-
tions) or if you want to display any variables before you end your debugging session.

» To stop the debugger

s From the Debug menu, choose Stop.
Or:
Press SHIFT+F7.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

The debugging session is terminated and control is returned to Natural.

14 Debugger

4

Elements of the Debugger

= Debugger Information in the Title Barcoooiiiiiii e
B MENU COMMANGS ...ttt ettt ettt ettt et e e

= Toolbar

B Trace Position in BAIEOr WINGOWooieee e s
L L= o000 =T 0o [0SR

15

Elements of the Debugger

When the debugger has been started, additional elements are available in the Natural Studio
window.

Debugger Information in the Title Bar

The title bar of the Natural Studio window shows one of the following:
* [break]
When "[break]" is shown in the title bar, the debugger has control.

* [running]
When "[running]" is shown in the title bar, the Natural application currently being debugged
has control.

When you are debugging an object in a remote environment using SPoD, the title bar also shows
the port number of the host.

Menu Commands

The commands in the Debug menu apply to the debugger.

As long as the debugger has not been started, only the command Start is enabled in the Debug
menu. When the debugger has been started, the remaining commands in the Debug menu are
enabled and the Go command is shown instead of the Start command.

When an editor window is active and the debugger has been started for the object in this window,
the context menu shows commands which apply to the debugger. As long as the debugger has
not been started, only the debug command Toggle Breakpoint is available in the context menu.

Detailed descriptions of these commands are provided later in this documentation.

Toolbar

The debugger has a special toolbar which provides fast access to the commands available in the
Debug menu. As long as the debugger has not been started, only the toolbar buttons for the
commands Start and Toggle Breakpoint are enabled in the Debug toolbar. When the debugger
has been started, all other toolbar buttons are enabled.

16 Debugger

Elements of the Debugger

The buttons in the Debug toolbar represent the following menu commands:

jit Start (only shown when the debugger has not yet been started)
Go (only shown after the debugger has been started)

[t Restart

Stop

7+ Step Over

T Step Into

{# Step Out

. Show Trace Position

M Toggle Breakpoint

gq" Modify Variable

The display of the Debug toolbar can be switched on and off. See Customizing Natural Studio in
the Using Natural Studio documentation for further information.

Trace Position in Editor Window

The current trace position is indicated by an arrow in the left margin of the editor window.

When the debugger is started, the trace position is shown at the first executable source code line.
Example:

{8l HELLD [NATURAL] - Program
* The "Hello world!™ example in Natural.

*

Cy PISPLAY "Hello world!™
END /% End of program

Lol | of

When you have scrolled the editor window so that the trace position is no longer visible, you can
return to the trace position as described below.

] Note: See also Returning to the Object with the Current Trace Position.

Debugger 17

Elements of the Debugger

» To return to the trace position

s From the Debug menu, choose Show Trace Position.
Or:
Press ALT+NUM?*.

| Note: NUM* is the key on the numeric keypad which is used for multiplication.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

5

Debugger Windows

When the debugger has been started, the following windows are shown:

= Variables
= Break- and Watchpoints
= Call Stack

Each tab of a debugger window offers a context menu which contains either the commands which
can be used in combination with the entire tab (when an entry is not selected) or the commands
which can be used with the selected entry. These commands are described later in this document-
ation.

The debugger windows are moveable and dockable. See Dockable Windows in the documentation
Using Natural Studio.

| Note: When the display of the debugger window has previously been switched on using
the corresponding command in the View menu, this debugger window (which shows the
breakpoints and watchpoints that have been defined in the active environment) will be re-
placed by the debugger windows described below. See also Debugger Window in the docu-
mentation Using Natural Studio.

18 Debugger

Elements of the Debugger

Variables

This window shows all variables which are available at current state of the program execution.

ill MName | Formak | Contents | =
#TEST A10 EE T i
:: #ORR (1) a1 1
’ 8RR (2) a1 ~|
A | r 4 Locals £ Globals § Systems § Alvs b Contexts b \Watch

An expand or collapse toggle to the left of the variable name indicates a group, an array or redefined
field. The toggle for a redefined field additionally contains an "R" (for example: *r).

The variables are grouped in different categories. A tab is provided for each category:
® Locals

Shows the local variables used in the active generated program.

* Globals
Shows the global variables of the referenced global data area.

" Systems
Shows all system variables on the current platform. For example, when you are currently debug-
ging an application in a mapped UNIX environment, all system variables which are valid for
UNIX are shown.

= AlVs
Shows the currently available application-independent variables (AIVs) in the application.

® Contexts
Shows the currently available context variables in the application.

* Watch
Shows the variables that you have added yourself in order to watch them. See Adding a
Watchvariable.

You can switch between the display of the different types of variables by choosing the corresponding
tab at the bottom of the variables window.

See Modifying and Watching Variables for further information.

» To switch the variables window display on and off

= From the Debug menu, choose Windows > Variables.
Or:

Press CTRL+ALT+1.

Debugger 19

Elements of the Debugger

When the variables window is displayed in the Natural Studio window, a check mark is
shown next to this menu command.

» To activate the variables window using a shortcut key

= When the variables window is displayed in the Natural Studio window, press CTRL+SHIFT+V
to activate it.

Break- and Watchpoints

This window shows all currently defined breakpoints and watchpoints.

| Line | Ohiect | Library | Hits |
® oo7o DEG1 MATURAL 0

NES

NI+ Ereakpoints {Watchpaints 7

You can switch between the display of the watchpoints and breakpoints by choosing the corres-
ponding tab at the bottom of the break- and watchpoints window.

See Setting Breakpoints and Watchpoints for further information.

» To switch the break- and watchpoints window display on and off

= From the Debug menu, choose Windows > Break- and Watchpoints.
Or:
Press CTRL+ALT+2.

When the break- and watchpoints window is displayed in the Natural Studio window, a
check mark is shown next to this menu command.

» To activate the break- and watchpoints window using a shortcut key

s When the break- and watchpoints window is displayed in the Natural Studio window, press
CTRL+SHIFT+B to activate it.

20 Debugger

Elements of the Debugger

Call Stack

This window shows the objects which have been called during the current debugging session in

hierarchical order.

x|
4

+ | Obiject | Tvpe | Library | Line |
2 5SUEB1 Subprogram MATIRAL 40
1 DBGl Program MATURAL F0

g’ 1 I I*I". Callz

See Using the Call Stack for further information.

» To switch the call stack window display on and off

From the Debug menu, choose Windows > Call Stack.

Or:

Press CTRL+ALT+3.

When the call stack window is displayed in the Natural Studio window, a check mark is
shown next to this menu command.

» To activate the call stack window using a shortcut key

When the call stack window is displayed in the Natural Studio window, press CTRL+SHIFT+C

to activate it.

Debugger

21

22

5 Moving through the Code

= Stepping Through the Code .

= Going to the Next Breakpoint or WatChpointcoiiiiiiii e

= Going to the Next Event

= Going to the Cursor Position
= Going to the Next Statement

23

Moving through the Code

Stepping Through the Code

You can instruct the debugger to execute the next program step. Different commands are available
for this purpose:

= Stepping Over Another Object
= Stepping Into Another Object
= Stepping Out Of Another Object

Stepping Over Another Object

When you instruct the debugger to step over another object, the next program step is executed
and the trace position is shown at the corresponding source code line. If this source code line invokes
or includes a further Natural object, the debugger steps over this object; that is, all source code of

this object is executed at once. The debugger stops, however, if this object contains watchpoints
or breakpoints.

» To step over another object

s From the Debug menu, choose Step Over.
Or:
Press F10.

Or:
When the Debug toolbar is shown, choose the following toolbar button:

[T

Stepping Into Another Object
When you instruct the debugger to step into another object, the next program step is executed and
the trace position is shown at the corresponding source code line. If this source code line invokes

or includes a further Natural object, the debugger steps into this object and the trace position is
shown at the first executable line.

» To step into another object

= From the Debug menu, choose Step Into.

2% Debugger

Moving through the Code

Or:
Press F11.

Or:
When the Debug toolbar is shown, choose the following toolbar button:

#

Stepping Out Of Another Object

When you instruct the debugger to step out of another object, the debugger returns to the previous
program level. The debugger stops, however, if a watchpoint or breakpoint is found before this
previous level is reached.

This command is useful if you debug a subprogram and want to continue with the execution of
the rest of the subprogram. The execution continues without interruption and stops after the pos-
ition in the invoking program from which the subprogram has been invoked.

» To step out of another object

s From the Debug menu, choose Step Out.
Or:
Press CTRL+F11.

Or:
When the Debug toolbar is shown, choose the following toolbar button:

{»

Debugger 25

Moving through the Code

Going to the Next Breakpoint or Watchpoint

You can instruct the debugger to execute the object until the next active breakpoint is found or
until a watchpoint condition becomes true. In this case, the debugger stops at the watchpoint or
breakpoint and the trace position is shown at the corresponding source code line.

» To go to the next watchpoint or breakpoint

= From the Debug menu, choose Go.
Or:
Press 7.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

Going to the Next Event

In an event-driven application, you can instruct the debugger to execute the object until the next
eventis sent to the application. The debugger stops, however, if an active watchpoint or breakpoint
occurs before the next event is sent.

» To go to the next event

= From the Debug menu, choose Go Until Next Event.

Note: In a non-event driven application, this command has the same effect as the Go

command.
Or:

Press ALT+F7.

26 Debugger

Moving through the Code

Going to the Cursor Position

You can instruct the debugger to execute the object until the source code line at the current cursor
position is reached.

» To go to the cursor position

1 Place the cursor in the source code line at which execution is to be paused.

2 Invoke the context menu in the editor and choose Run to Cursor.
Or:

Press CTRL+F10.

Going to the Next Statement

You can instruct the debugger to skip code and to resume execution of the object with the source
code line in which you have placed the cursor. The skipped code is not executed.

(Caution: Depending on the code you want to skip, this command may lead to unpredictable

results. Use this command with care.

» To go to the next statement

1 Place the cursor in the source code line with which you want to resume execution.

2 Invoke the context menu in the editor and choose Set Next Statement.

| Note: This command is only available for the object which is currently processed.

Debugger 27

28

6 Setting Breakpoints and Watchpoints

= About Breakpoints and WatChpOINtSooiiiiiiiiiiee e
= Adding and Removing @ Breakpointc..vueiiiiiriiii e
® Modifying @ BreaKPOiNteeieiiiii e
B AAING @ WAIChPOINT ...
B Modifying @ WatChPOINT ..o
= Deactivating Breakpoints and Watchpoints Temporarilyooooiiiiiiiiiiiiiie e
= Showing the Source Code for a Defined Breakpoint or Watchpointccoooiiiiiiiiiee
= Deleting Breakpoints and WatChpOointsooiiiiiiiiiiee e
= Symbols Used in the EIfOr WINAOWcoiiiiiiiiiiici s

29

Setting Breakpoints and Watchpoints

About Breakpoints and Watchpoints

Two types of entries can be defined in a program for debugging purposes:

® Breakpoints
A breakpoint is a point at which control is returned to the user while a Natural object is executing.

Breakpoints cannot be set on any statement line other than the first one if a single statement
occupies more than one line.

If you accidentally try to set a breakpoint on a non-executable line (for example, a comment
line), the breakpoint is automatically moved to the next executable line.

® Watchpoints
Using watchpoints, you can rapidly detect unexpected alterations to Natural variables by objects
that contain errors.

By default, watchpoints are used to instruct the debugger to interrupt the execution of Natural
objects when the content of a variable changes. However, by specifying a certain value to the
variable together with a watchpoint operator when setting a watchpoint, a condition can be set
which only activates the watchpoint when the condition becomes true.

A variable is considered to have changed either when its current value differs from the value
recorded when the watchpoint was last triggered, or when it differs from the initial value.

Each breakpoint or watchpoint is displayed in the corresponding tab of the break- and watchpoints
window. For each breakpoint, the number of the line is shown in which the breakpoint has been
defined. For each watchpoint, a name is assigned that corresponds to the name of the variable to
which it belongs and the break condition is shown.

Using the check box in the first column of a tab, a breakpoint or watchpoint can be activated or
deactivated at any time during a debugging session. See Deactivating Breakpoints and Watchpoints
Temporarily.

Every breakpoint or watchpoint has a hit count which increases every time the debug entry is

passed. The number of executions of a debug entry, however, can be restricted in the following

ways:

® A number of skips can be specified before the breakpoint or watchpoint is executed. The debug
entry is then ignored until the event count is higher than the number of skips specified.

® A maximum number of executions can be specified, so that the breakpoint or watchpoint is ig-

nored as soon as the event count exceeds the specified number of executions.

When a breakpoint or watchpoint is hit inside another object but the currently active one, a new
editor window is opened displaying the source of this new object.

30 Debugger

Setting Breakpoints and Watchpoints

Adding and Removing a Breakpoint

You can add a breakpoint for the current cursor position to the Breakpoints tab of the break- and
watchpoints window. Or, if a breakpoint already exists for this cursor position, you can remove
it from the Breakpoints tab.

A dialog box does not appear in this case. If you want to modify the breakpoint (for example, to
define the maximum number of breaks), see Modifying a Breakpoint.

See also Deleting Breakpoints and Watchpoints.

J

Note: In the local environment and in a remote environment (SPoD), it is also possible to

set and remove breakpoints as described below when the debugger is not active. Each
breakpoint which has been defined in the editor will then be verified when the debugger
is started. When the breakpoint is not allowed at the defined position, it will then be moved
to the next line in which it is possible to define a breakpoint. See also Debugger Window in
the documentation Using Natural Studio.

» To toggle a breakpoint

Select the line on which you want to set or remove a breakpoint.

Invoke the context menu in the editor and choose Toggle Breakpoint.
Or:
Press Fo.

Or:

When the Debug toolbar is shown, choose the following toolbar button:

=M
Or:

In the left margin of the editor window (where the symbols for the breakpoints are usually
shown), click a position next to the required line.

When a breakpoint is set, a symbol is now shown in the left margin of the editor window. See
Symbols Used in the Editor Window. An entry for the breakpoint is also shown on the
Breakpoints tab of the break- and watchpoints window.

Debugger 31

Setting Breakpoints and Watchpoints

When a breakpoint has been removed, the corresponding symbol is no longer shown. The
entry for the breakpoint is removed from the Breakpoints tab of the break- and watchpoints
window.

Modifying a Breakpoint

You can modify each breakpoint which is currently shown in the break- and watchpoints window.
» To modify a breakpoint
1 Select the required breakpoint, invoke the context menu and choose Modify.

The following dialog box appears:

Modify Breakpoint Ed |

Breakpaoink:
DEG1 [MATURAL] Lime: 70

Hits before Break. Iﬂ_ﬁ Mumber of Breaks IU_ ﬁ

Reset Hit Count | Current Hit Count: 0
(8] 4 I Cancel Help

2 Set the required options:

Hits before Break
The number of skips before execution of the breakpoint if it is not to be executed until the
program has run a certain number of times. The default is 0.

Number of Breaks
The maximum number of executions of the breakpoint. After this number has been reached,
the breakpoint is ignored. The default is 0.

Reset Hit Count
When you choose this command button, the current hit count is reset to 0.

3 Choose the OK button.

32 Debugger

Setting Breakpoints and Watchpoints

Adding a Watchpoint

Watchpoints are shown on the Watchpoints tab of the break- and watchpoints window.
You can add watchpoints in different ways:

= Adding a Watchpoint from the Editor Window
= Adding a Watchpoint from the Variables Window
= Adding a Watchpoint Using a Dialog Box

Adding a Watchpoint from the Editor Window

You can add the variable at the current cursor position in the editor window to the Watchpoints
tab of the break- and watchpoints window. A dialog is not shown in this case.

» To define a variable as a watchpoint

1 Select the variable in the editor by placing the cursor at any position within the variable name.

2 Invoke the context menu and choose Add to Watchpoints.
Or:
Press CTRL+SHIFT+W.
Or:

Select the variable in the editor. Use the mouse to drag the selected variable to the Watchpoints
tab and drop it there.

Adding a Watchpoint from the Variables Window

You can add a variable from the variables window to the Watchpoints tab of the break- and
watchpoints window. A dialog is not shown in this case.

» To define a variable as a watchpoint

1 Select the desired variable in the variables window.

2 Invoke the context menu and choose Add to Watchpoints.
Or:

Press CTRL+SHIFT+W.

Debugger 33

Setting Breakpoints and Watchpoints

Adding a Watchpoint Using a Dialog Box

You can use a dialog box to add a watchpoint to the Watchpoints tab of the break- and watchpoints
window.

» To add a watchpoint

1 From the Debug menu, choose Add Watchpoint.
Or:
In the Watchpoints tab of break- and watchpoints window, invoke the context menu and
choose Add. Make sure that no other entry is selected. Otherwise, the context menu does not
show this command.
The Add Watchpoint dialog box appears. The title bar indicates the names of the current
program and library as well as the database ID and file number of the current FUSER.
Add Watchpoint - DBG1 [NATURAL {30,303]
Break Condition
YWariable Cperator Walue
I | Ichanges LI
Skips Before Break IEI ﬂ Mumber of Breaks IIZI ﬂ
IR | Zancel I Help
2 Set the required options:
Variable
The variable that is to be watched in the debugged program.
Operator/Value
To define a condition for the watchpoint, select an appropriate watchpoint operator and
specify a value for this operator. If you do not specify a condition, the default setting
("changes") applies.
34 Debugger

Setting Breakpoints and Watchpoints

The watchpoint operators are:

Operator |Activation of the Watchpoint

changes|Each time the variable is changed. Default.

EQ (=) |Only when the current value of the variable is equal to the specified value.

NE (=) |Only when the current value of the variable is not equal to the specified value.

GT (>) |Only when the current value of the variable is greater than the specified value.

LT (<) |Only when the current value of the variable is less than the specified value.

GE (>=) |Only when the current value of the variable is greater than or equal to the specified value.

LE (<=) |Only when the current value of the variable is less than or equal to the specified value.

Skips before Break
The number of skips before execution of the watchpoint if it is not to be executed until
the program has run a certain number of times. The default is 0.

Number of Breaks
The maximum number of executions of the watchpoint. After this number has been
reached, the watchpoint is ignored. The default is 0.

3 Choose the OK button.

The name of the selected variable is now shown on the Watchpoints tab of the break- and
watchpoints window.

Modifying a Watchpoint

You can modify each watchpoint which is shown in the break- and watchpoints window.

» To modify a watchpoint

1 Select the required watchpoint, invoke the context menu and choose Modify.

The Modify Watchpoint dialog box appears.

Debugger 35

Setting Breakpoints and Watchpoints

Modify Watchpoint - DBG1 [NATURAL ({30,30}]

Break Candition

YWariable Cperator Walue
Ichanges LI

Skips Before Break I] ﬂ Number of Breaks I 0 ﬂ
Reset Hit Count | Current Hit Counk: 0 Ok | Cancel I Help |

This dialog box provides the same options as the Add Watchpoint dialog box. See Adding a
Watchpoint Using a Dialog Box for a description of the options which can be specified in this
dialog box.

In addition, this dialog box provides the Reset Hit Count button. When you choose this
command button, the current hit count is reset to 0.

2 Make all required changes and choose the OK button.

Deactivating Breakpoints and Watchpoints Temporarily

Each defined breakpoint or watchpoint can be deactivated temporarily.

» To deactivate a breakpoint or watchpoint

1 Select the required tab in the break- and watchpoints window.

2 For the desired entry, select the first column of the tab to remove the check mark.
Or:
Invoke the context menu and choose Activate/Deactivate.

When you have deactivated a breakpoint, the symbol which is shown in the left margin of
the editor window changes. See Symbols Used in the Editor Window.

» To activate a deactivated breakpoint or watchpoint

1 Select the required tab in the break- and watchpoints window.

2 For the desired entry, select the first column of the tab so that a check mark is shown again.

Or:

36 Debugger

Setting Breakpoints and Watchpoints

Invoke the context menu and choose Activate/Deactivate.

When you have activated a breakpoint, the symbol which is shown in the left margin of the
editor window changes. See Symbols Used in the Editor Window.

» To deactivate or activate all breakpoints or watchpoints

Select the required tab in the break- and watchpoints window.
Make sure that no entry is selected (otherwise, the context menu does not show the required

command), invoke the context menu and choose either Deactivate All or Activate All.

When you have deactivated or activated all breakpoints, the symbols which are shown in the
left margin of the editor window change. See Symbols Used in the Editor Window.

Showing the Source Code for a Defined Breakpoint or Watchpoint

For each defined breakpoint or watchpoint which is shown in the break- and watchpoints window
(no matter whether it is active or not), you can go to the source in which this breakpoint or
watchpoint has been defined.

» To go to the source in which a breakpoint or watchpoint has been defined

1
2

Select the required tab in the break- and watchpoints window.

Select the required entry, invoke the context menu and choose Go To Source Code.
Or:
Double-click the required entry.

For a breakpoint, the trace position is shown next to the source code line in which the break-
point has been defined.

For a watchpoint, the entire source code in which the watchpoint has been defined is shown.

Debugger 37

Setting Breakpoints and Watchpoints

Deleting Breakpoints and Watchpoints

You can either delete selected breakpoints or watchpoints or you can delete all breakpoints or
watchpoints.

See also Adding and Removing a Breakpoint.

» To delete a breakpoint or watchpoint

1 Select the required tab in the break- and watchpoints window.
2 Select the required entry.

3 Invoke the context menu and choose Delete.
Or:

Press DEL.

» To delete all breakpoints or watchpoints

1 Select the required tab in the break- and watchpoints window.

2 Make sure that no entry is selected (otherwise, the context menu does not show the required
command), invoke the context menu and choose Delete All.

Symbols Used in the Editor Window

The following symbols may appear in the left margin of the editor window.

@ This line contains an active breakpoint.
() This line contains a deactivated breakpoint.
This line contains an active breakpoint. It also contains the trace position.

This line contains a deactivated breakpoint. It also contains the trace position.

® 3 @

This line contains a breakpoint which has not yet been validated (that is, the debugger has not yet
reached the marked line). The state can either be shown as active (red background) or inactive (white
background).

This line contains an invalid breakpoint (for example, when the breakpoint has been set on a line after
the END statement). The state can either be shown as active (red background) or inactive (white
background).

38 Debugger

7 Modifying and Watching Variables

B MOdIfyiNg @ VAMADIEeeeee e
B Adding @ WatChvariabIe ... e
= Managing the Variables in the Variables WINdOWoviiiiiiiiiii e,

39

Modifying and Watching Variables

Modifying a Variable

You can modify a variable in different ways:

= Modifying a Variable in the Editor Window
= Modifying a Variable in the Variables Window

Modifying a Variable in the Editor Window

You can modify the variable which is shown at the current cursor position in the editor window.
In the resulting dialog box, you can also enter the name of another variable to be modified.

» To modify the variable at the cursor position

1 Select the variable in the editor by placing the cursor at any position within the variable name.

2 Invoke the context menu and choose Modify Variable.
Or:
Press SHIFT+F9.

Or:

When the Debug toolbar is shown, choose the following toolbar button:
&g’

The Modify Variable dialog box appears showing the content of the selected variable. In the
case of an array, the node is expanded by default.

40 Debugger

Modifying and Watching Variables

Modify ¥ariable

Yariable:
| #TEST

Value:

Mame | Farmat Contents

[Hexadecimal Display Al | Close I Help

3 Tomodify the content of the variable, enter the new value in the Value text box.

| Note: For variables which cannot be modified (such as unmodifiable system variables)
the Value text box is dimmed.

You can also use the Modify Variable dialog box in the following ways:
® When you enter the name of another existing variable in the Variable text box, the content
of this variable is immediately shown in the dialog box and you can modify it.

* In the case of an array, you can modify the occurrences of this array as follows:

* The same value can be defined for all occurrences: Select the top-level node and enter
the new value.

® Each occurrence can be modified separately: Select the required occurrence and enter the
new value.

= Specific occurrences can be modified at the same time: Specify the required occurrences
in the Variable text box. For example, when you change #MYVAR(1:6) to #MYVAR(2:3),
only the second and third occurrence is shown in the dialog box. When you enter a new
value, it applies only to these occurrences.

Debugger 41

Modifying and Watching Variables

Variables (and occurrences) which you have modified are indicated in red.

4 When you activate the Hexadecimal Display check box, the content of the variable is shown
in hexadecimal format.

5 Choose the Apply button.

Your changes are immediately saved when you choose the Apply button. They are not yet
shown the in variables window.

6 To close the dialog box, choose the Close button.

Your changes are now shown the in variables window.
Modifying a Variable in the Variables Window

You can modify a variable listed in the variables window.

It is not possible to modify an entry which can further be expanded (such as a view). This is only
possible for the individual variables after the entry has been expanded.

Different colors are used for the entries in the variables window:

® Gray
Variables which cannot be modified (such as unmodifiable system variables) are indicated in

gray.
" Red
Variables which you have modified are indicated in red.

» To modify a variable in the variables window

1 Select the required tab in the variables window.
2 Select the required entry.

3 Invoke the context menu and choose Modify.
The Modify Variable dialog box appears showing the content of the selected variable.

For further information on this dialog box, see Modifying a Variable in the Editor Window.

42 Debugger

Modifying and Watching Variables

Adding a Watchvariable

If you want to watch specific variables, you can add them to the Watch tab of the variables window.
You can add a watchvariable in different ways:

= Adding a Watchvariable from the Editor Window
= Adding a Watchvariable from the Variables Window

| Note: Itis not possible to modify the content of a watchvariable.

Adding a Watchvariable from the Editor Window

You can define the variable at the current cursor position in the editor window as a watchvariable.

» To add a watchvariable to the variables window

1 Select the variable in the editor by placing the cursor at any position within the variable name.

2 Invoke the context menu in the editor and choose Add to Watchvariables.
Or:
Press CTRL+SHIFT+T.
Or:

Select the variable in the editor. Use the mouse to drag the selected variable to the Watch tab
of the variables window and drop it there.

Adding a Watchvariable from the Variables Window

You can add variables from the first tabs of the variables window to the Watch tab of the same
window.

» To define a variable as a watchvariable

1 Select the desired variable in the variables window.

2 Invoke the context menu and choose Add to Watchvariables.
Or:

Press CTRL+SHIFT+T.

Debugger 43

Modifying and Watching Variables

Managing the Variables in the Variables Window

The following topics are covered below:

= Showing the Last Modified Variable

= Finding a Variable

= Showing the Content of a Variable in Alphanumeric or Hexadecimal Format
= Refreshing the Display

= Deleting Watchvariables

See also Adding a Watchpoint from the Variables Window.
Showing the Last Modified Variable

You can define that the variables which are modified during debugging are always visible in the
variables window. This is helpful when you debug a program which has more variables than can
be displayed in the variables window at the same time. When a variable is modified during debug-
ging which is currently not visible in the variables window, the display of the variables window
is scrolled in such a way so that the modified variable is visible.

» To switch this feature on an off

1 Select any tab in the variables window.

2 Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Show Last Modified.

When this feature is active, a check mark is shown next to this menu command.
Finding a Variable

When the variables window is active, you can search for a variable on the currently selected tab.

] Note: When a node in the variables window is not expanded, its content is not considered

in the search.

» To find a variable

1 Select the required tab in the variables window.

2 Press CTRL+F.

Or:

44 Debugger

Modifying and Watching Variables

Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Find.

The Find Variable dialog box appears.

Find ¥ariable |
Fird: || ok |
[T case sensitive = Mames
[~ whale waord ™ Contents Help |

3 Specify your search criteria:

Option

Description

Find

The string to be found.

Case sensitive

If this check box is selected, only strings are found that exactly match the entry in the
Find text box. If not selected, any combination of upper- and lower-case letters will
be found.

Whole word |If this check box is selected, the search is restricted to whole words only. If not selected,
all occurrences of the string will be found.

Names When this option button is selected, the string in the Find text box applies to a variable
name.

Contents When this option button is selected, the string in the Find text box is applies to the

contents of a variable. That is: you want to find a variable which contains the specified
contents.

4 Choose the OK button.

When a variable which corresponds to the specified criteria can be found on the current tab,
its name is highlighted.

| Note: A message is briefly displayed indicating whether the specified text has been

found or not.

» To find the next variable with the specified search criteria

m PressFs.

Or:

Debugger

45

Modifying and Watching Variables

Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Find Next.

Showing the Content of a Variable in Alphanumeric or Hexadecimal Format

You can define whether the contents of the variables is shown in alphanumeric or hexadecimal
format in the variables window.

» To toggle the format

1 Select the required tab in the variables window.

2 Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Hexadecimal Display.

When the value in the Contents column was previously shown in the alphanumeric format,
it is now shown in hexadecimal format, and vice versa.

When the hexadecimal format is used, a check mark is shown next to this menu command.
Refreshing the Display

Usually when something changes in Natural Studio, the display is automatically refreshed. In the
debugger, this happens when the content of a variable changes. This automatic refresh requires
that the corresponding option has been set in the workspace options.

When the automatic refresh has been deactivated in the workspace options and the content of one
or more variables changes in the currently selected tab, you have to refresh the display manually
in order to see the current values.

There is one exception: Watchvariables are always refreshed automatically, independent of the
setting in the workspace options.

» To refresh the display manually

1 Select any tab in the variables window (except the Watch tab).
2 PressFs.

Or:

Make sure that no entry is selected on the tab (otherwise, the context menu does not show
the required command), invoke the context menu and choose Refresh.

46 Debugger

Modifying and Watching Variables

Deleting Watchvariables

You can either delete selected watchvariables or all watchvariables from the variables window.

» To delete a watchvariable

1 Select the desired watchvariable in the Watch tab of the variables window.

2 Invoke the context menu and choose Delete.
Or:

Press DEL.

» To delete all watchvariables

= Make sure that no entry is selected in the Watch tab of the variables window (otherwise, the
context menu does not show the required command), invoke the context menu and choose
Delete All.

Debugger 47

48

8 Using the Call Stack

B ADOUL the Call STACK ... eeeieeii e
= Displaying the Source Code of a Different ODJECEooiiiiiiiiii e
= Returning to the Object at the Current Trace POSItIONcoviiiiiiiii e

49

Using the Call Stack

About the Call Stack

The call stack window lists the objects which have been called during the current debugging
session in hierarchical order.

The latest object is always shown at the top of the list. The variables window shows all variables
which belong to this object by default. For example, when you step into a subprogram, this sub-
program is shown at the top of the list and the variables window automatically shows the variables
for this subprogram.

You can bring the editor window for a specific object to the front by double-clicking the corres-
ponding entry in the call stack window.

] Notes:

1. A gray arrow in the editor window indicates the position at which the previous object in the
call stack hierarchy was invoked.

2. If copycode is debugged, the call stack does not contain an additional entry for this copycode.

Displaying the Source Code of a Different Object

For each object listed in the call stack, you can display the source code and thus bring its editor
window to the front. There are different commands for this purpose:

" Go To Source Code
When you choose this command, the variables for the object in the activated editor window are
not considered in the variables window. It still shows the variables of the previously called object.

= Switch To Call Level
When you choose this command, the variables for the object in the activated editor window are
shown in the variables window.

» To go to the source code of a different object

= In the call stack, select the object for which you want to display the source code and from the
context menu, choose Go To Source Code.

The editor window for this object is activated.

50 Debugger

Using the Call Stack

» To go to the source code of a different object and display the variables of this object

» In the call stack, select the object for which you want to display the source code and from the
context menu, choose Switch To Call Level.

The editor window for this object is activated. The content of the variables window changes;
it now shows variables of this object.

Returning to the Object at the Current Trace Position

When you have displayed the source code of a different object, you can return to the object at the
current trace position (which is indicated by an arrow) and thus bring its editor window to the
front.

» To return to the object at the current trace position
= From the Debug menu, choose Show Trace Position.

) Note: See also Trace Position in Editor Window.

The editor window containing the current trace position is activated. The content of the vari-
ables window changes; it now shows the variables of this object.

Debugger 51

52

9 Using the Old Debugger

® Preparing Natural ODJECESoiiiiiii i 54
B Starting the DEDUGGET ... vt e e s 54
B 1 AVING the DEDUGGE ... eieiei ittt e 55
m Operating the DEDUGUETooiiii e 56
B Debugger SOUCE WINAOWuviiiiiiie it e e e e e e e e e e e e e 58
= Watchvariables CONrOl Baroiiiiiiiiii et 65
=4 o] T 0T o = - PSPPSR 65
= Watchpoints and Breakpoints CONrol Baruvvviiiiiiiiiiiiiie e 66

53

Using the Old Debugger

The old debugger may appear when an old version of Natural is installed on the development
server; see General Information for further information.

Preparing Natural Objects

To exploit the full functional scope of the Natural debugger, you must specity the following Nat-
ural profile parameter either dynamically or in your Natural parameter file:

SYMGEN set to "ON"

When an object is cataloged or stowed and SYMGEN is set to "ON", a symbol table is generated as
part of the generated program. Since this table contains the information relevant to the variables
active for this object, variables cannot be accessed without SYMGEN being specified, although it is
still possible to debug the object.

Starting the Debugger

The debugger can be applied to stowed or cataloged Natural programs and dialogs only.

» To start the debugger

= Enter the following Natural command:

DEBUG objectname
where objectname is the name of the Natural object you wish to debug.
The title bar shows one of the following:

* [break]
When "[break]" is shown in the title bar, the debugger has control.

® [waiting]
When "[waiting]" is shown in the title bar, the Natural application currently being debugged
has control.

When the remote debugger becomes active on the Windows operating system, the following in-
formation is shown in the title bar: "Debugging remote Natural client (\ \ nodename: : username: :pro-
cess-1d)", where nodename is the name of the computer where Natural is running, username is
the name of the Natural user and process-17dis the Natural process ID.

The debugger window contains a child window with a source listing of the specified object that
is to be debugged.

54 Debugger

Using the Old Debugger

In conjunction with this object source following information are displayed using control bars:

Control Bar Function

Breakpoints and Watchpoints | This control bar consists of two tab areas. One maintains breakpoints whereas
the other one maintains watchpoints.

Variables This control bar displays the active variables and their actual content. These
variables are displayed under the following categories: Locals, Globals,
Systems, AIVs and Contexts.

Watchvariables This control bar displays the user-selected variables of any category available
in the variables control bar.

The individual control bars are described in more detail in the remainder of this section.

Leaving the Debugger

You can leave the debugger from any point within an application by choosing either Exit (see below)
or the corresponding toolbar button.

The debugger is also terminated if the application ends without an error; the trace cursor is then
placed on the source code line last executed.

In the case of an error, the corresponding source is displayed in the source window and the trace
cursor is placed on the line which caused the error. A message window appears with the appro-
priate error message and a choice to either continue or end the debugging session. Continuing the
debugging session may be useful if, for example:

" your application contains any error processing (including error transactions);
" you want to display any variables before you end your debugging session.
When you leave the debugger, your breakpoint, watchpoint and watchvariable settings are auto-

matically saved together with the window and toolbar settings. All these settings will be restored
the next time you invoke the debugger again.

| Note: When, in the case of remote development, you leave the debugger on a remote system,

the program execution will continue, but the debugging control of the program execution
will stop.

Debugger 55

Using the Old Debugger

Exit Command

Exit terminates the debugging session and returns control to Natural. The Exit command is
available on the first menu in the main window of each of the five debugger main facilities.

Operating the Debugger

Before going into detail about the debugger's source window and other main facilities, this section
provides you with general information on the debugger.

= Windows and Menus

= Toolbar Buttons

= Shortcut Keys

= Watchpoints and Breakpoints

= Restarting the Debugging Session

Windows and Menus

The debugger provides various windows, control bars, toolbars and menus.

Menu commands which are assumed to be used very often, are also available as toolbar buttons
in the corresponding toolbars.

Instead of using the menus, you can choose toolbar buttons or use shortcut keys.
In contrast to Natural itself:

® the debugger has no command line.
* the debugger's Tools menu contains the following options:

® Customize, which allows you to modify your menu and toolbar appearance as well as define
shortcuts for frequently used commands;

* Fonts, which allows you to modify the font of the source window;

® Warning messages, which allows you to decide whether warning messages on missing source
code or symbolic information are to be displayed or not. A message that informs you whether
the currently displayed source code is newer than the corresponding generated program is
also affected.

56 Debugger

Using the Old Debugger

Toolbar Buttons

The toolbars provide you with fast access to frequently used commands. To display a short de-
scription of a command, place the mouse pointer over the corresponding button. The description
appears in the status bar at the bottom of the debugger's main window. If a command is currently
not applicable, the button is disabled.

Shortcut Keys

A further way to execute a debugger command is by entering a corresponding shortcut by using
the keyboard. By default the following shortcuts are defined:

Menu Shortcut|Function

File Ctrl+O |Open
Edit Ctrl+F |Find

F3 Find Next
Debug |F4 Close

F5 Go
F6 Step Over
F7 Step In

Ctrl+F7 |Step Out
Ctrl+F6 |Run To Cursor

Alt+* |Show Trace Position

F9 Toggle Breakpoint
Variables | Ctrl+M |Modify Variable
Ctrl+D |Display Variable
Ctrl+V |Add to Watchvariables
Ctrl+W |Add to Watchpoints

Watchpoints and Breakpoints

Two types of entries can be defined in a program for debugging purposes: watchpoints and
breakpoints. Each watchpoint or breakpoint is displayed in its corresponding control bar. For
each watchpoint, a name is assigned that corresponds to the name of the variable it belongs to.

Each watchpoint or breakpoint can be activated or deactivated at any time during a debugging
session using its corresponding check box.

Every watchpoint or breakpoint has an event count, which increases every time the debug entry
is passed. The number of executions of a debug entry, however, can be restricted in two ways:

Debugger 57

Using the Old Debugger

1. A number of skips can be specified before the watchpoint or breakpoint is executed. The debug
entry is then ignored until the event count is higher than the number of skips specified.

2. A maximum number of executions can be specified, so that the watchpoint or breakpoint is ig-
nored as soon as the event count exceeds the specified number of executions.

Restarting the Debugging Session

When you restart your debugging session, the debugger repositions to the beginning of the applic-
ation while all your current settings (for example, watchpoints or breakpoints) are kept and all
counters as well as the calls history are newly initialized. Thus, restarting a debugging session is
useful if want to rerun your application without having to specify the settings relevant for debug-
ging again. You can restart your debugging session from any point within an application by
choosing either the "Restart” command or the corresponding toolbar icon. The Restart command
is available in the debug menu.

| Note: If you are running a debugging session in a remote environment, the Restart command

is not available, and if you are debugging a DCOM or RPC server, the Restart command
restarts the called method or subprogram.

Debugger Source Window

When the debugger is invoked, it receives control of the specified Natural object and displays the
corresponding source in the source window. When the source is not available, the window remains
empty. The trace cursor is placed on the first executable source code line.

When a user opens a new object or when a watchpoint or breakpoint is hit inside another object
but the currently active one, a new source window is opened displaying the source of this new
object.

The following topics are covered below:

= Debug Menu

= Variables Menu

= Dialog Boxes

= Selecting Variables
= Marking Text in the Source Window
= Display

= Modify

= Quick Watch

= Add Watch

= Add Watchpoint

= File Menu

58 Debugger

Using the Old Debugger

= Edit Menu
Debug Menu

The following commands of the Debug menu are available in conjunction with the source window:

Step Into
When you choose the Step Into command, the next program step is executed and the trace
cursor is placed on the corresponding source code line.

If this source code line invokes or includes a further Natural object, the debugger steps into
this object.

Step Over
When you choose the Step Over command, the next program step is executed and the trace
cursor is placed on the corresponding source code line. This time, however, the debugger steps
over any invoked or included Natural object, but stops if this object contains watchpoints or
breakpoints.

Step Out
When you choose the Step Out command, the debugger returns to the previous program level,
but stops if it finds a watchpoint or breakpoint before this previous level is reached.

Animated Step Into
When you choose the Animated Step Into command, the program is automatically executed
step by step until the end of the program. The debugger steps into any Natural object invoked
or included.

Animated Step Over
When you choose the Animated Step Over command, the program is automatically executed
step by step until the end of the program. The debugger steps over any invoked or included
Natural object; if a watchpoint or breakpoint is set, it jumps to the corresponding statement
line and continues animation.

Go
When you choose the Go command, the program is executed until the next active watchpoint
or breakpoint, and the trace cursor is placed on the corresponding source code line.

Go Until Next Event
When you choose the Go Until Next Event command, this will have the same effect as the Go
command in a non-event driven application. In an event-driven application, however, the
object is executed until the next event is sent to the application; it stops if an active watchpoint
or breakpoint occurs before the next event is sent.

Run to Cursor
When you choose the Run to Cursor command, the program is executed until the source line
at the current cursor position is reached.

Show Trace Position
When you choose the Show Trace Position command, the current trace cursor will be displayed.

Debugger 59

Using the Old Debugger

Toggle Breakpoint

When you choose the Toggle Breakpoint command, a breakpoint for the current trace position
is added to the breakpoints control bar. If a breakpoint already exists for this cursor position,
it will be removed from the breakpoints control bar.

Calls

The Calls submenu provides you with a list (history) of the most recently called Natural objects
including copycodes and inline subroutines. Up to 20 objects can be listed; the most recently
called object appears at the top of the list.

The objects list consists of the following information:

The program level of the called object without counting copycodes and inline subroutines.
The program level of the called object counting copycodes and inline subroutines.

The name of the called object.

The type of the called object.

The event and control handle of the event handler to be processed (with event-driven applic-
ations only).

The status bar at the bottom of the debugger's main window displays additional information
on the called object:

The name of the calling object:

"Natural" is displayed as the calling object if the called object is the application start-up
program or a program activated from the Natural stack (including error transaction programs
and programs activated by a RUN statement from inside the application).

The source code line in which the object was called:
If you select an object from the list, except with "Natural", the source of the calling program

is displayed in the middle of the source window with the cursor placed at the beginning of
the line in which the call occurred.

Variables Menu

The Variables menu is used to:

Display the contents of selected variables.

Modify the contents of selected variables.

Quick watch the contents of the variable at the current trace position.
Add variables to the watchvariables control bar.

Add variables to the watchpoints control bar.

60

Debugger

Using the Old Debugger

Dialog Boxes

When you choose the, Display, Modify, Add Watch or Add Watchpoint command, a dialog box
is appears, which displays a list of all local, global, AIV or system variables active in the current
debugging context. The following controls are part of this dialog box:
® The Variable text box, which shows the currently selected variable.
= The Line Reference or Context ID box, which shows the source code line number of the variable
or context variable currently contained in the Variable text box.
The Line Reference box is only displayed if the line reference is needed to make the variable
selection unambiguous. This is the case if:

* the variable belongs to a map; then the box contains the source code line number of the cor-
responding RULEVAR syntax element generated by the map editor;

" the variable is either a database variable (reporting mode only) or one of the following vari-
ables: *ISN, *COUNTER, *NUMBER; then the box contains the source code line number of the
corresponding database loop or access statement;

* the variable is defined in reporting mode, but without a DEFINE DATA statement.
The Context ID box is only displayed if the variable is a context variable; then the box contains
the “ctx-Id” (context ID).

® The History List list box (Display command only), which contains the most recently selected
variables (up to 20) using a first-in first-out mechanism.
The history list helps you to quickly locate a variable that has been already selected before.
Variables can be selected from the history list in the same way as from the variable list.

® The Variable list box, which contains the corresponding variable listing.
Selecting Variables

When you choose a variable in the variable list of a dialog box, it is shown in the corresponding
Variable text box.

When you choose a variable in the variable list of a dialog box, a further dialog box is displayed
(except with the Watch command).

When you choose an array or variable group:

* the individual array or group elements are displayed in the second dialog box (display),

® the array is displayed in the second dialog box for modification; groups cannot be modified
(modify),

" a corresponding error message is displayed (watchpoint).

Debugger 61

Using the Old Debugger

You can also choose a variable by first marking it directly in the source window and then select
the Display, Modify, Add Watch or Add Watchpoint command respectively. Then, the Variable
text box of the corresponding dialog box exactly shows the piece of source code you have marked,
which then can be modified.

Marking Text in the Source Window

In the source window, you can mark variables or character strings for selection with either the
mouse or the keyboard.

When marking text using the mouse, place the mouse pointer on the first character to be selected,
drag the pointer to the last character you want to select, and release the mouse button. To cancel
a selection, choose anywhere in the document.

When using the keyboard to mark text, cursor movement keys are used. First place the cursor on
a character by using an arrow key, then press and hold down the SHIFT key and use the following
keys for text selection:

" the LEFT-ARROW key to mark the area to the left of your cursor position,
" the RIGHT-ARROW key to mark the area to the right of your cursor position,

" the END key to mark the area until the end of the source code line,

® the HOME key to mark the area until the beginning of the source code line.
Display

With this command, a variable can be selected from the listing in the dialog box for display along
with its current content in a second Display Variable dialog box, where you can choose between
alphanumeric and binary representation of the variable value.

When you select an array, a handle variable or a group of variables, the individual elements and
their values are listed in the second dialog box. With arrays, any variable index expression is
evaluated.

The element listing can be expanded or contracted by choosing the Expand/Contract button.
Whenever the number of arrays, groups or dialog element on the list exceeds a certain display
limit, a "More" line appears, which can be used to display further objects. Alternatively, the Expand
command can also be used.

A variable, array or group of variables can also be selected for display in the Display Variable
dialog box by choosing it with the left mouse button directly in the source window.

62 Debugger

Using the Old Debugger

Modify

With this command, a variable can be selected from the listing in the dialog box for display together
with its current value in a second Modify Variable dialog box, where its value can be modified.

If you want to modify a system variable, only system variables which can be modified are displayed
in the first dialog box.

If you want to modify an array, only its name but no values are displayed in the second dialog
box. The value you enter will then be valid for all array elements.

Groups of variables cannot be selected for modification.
Quick Watch

With this command, a dialog box appears displaying the contents of the variable at the current
cursor position.

Add Watch

With this command, variables, arrays or groups of variables can be selected from the list in the
dialog box in order to add them to the watchvariables control bar.

Add Watchpoint

With this command, single variables and individual group or array elements can be selected from
the listing in the dialog box for the definition of a watchpoint in a second Set Watchpoint dialog
box; arrays and groups of variables cannot be selected.

The second Set Watchpoint dialog box displays the name of the watchpoint (which corresponds
to the name of the selected variable) together with its line reference (if applicable), and the names
of the corresponding Natural object and library.

Note: With system variables, the corresponding watchpoint is not attached to a specific
library and object; therefore, the object and library name will always be SYSTEM.

To define a watchpoint, you specify the following items in the corresponding boxes:

" the state of the watchpoint,
® a condition for the watchpoint to be activated (optional),
® the number of skips before execution of the watchpoint,

® the maximum number of executions of the watchpoint.

Debugger 63

Using the Old Debugger

File Menu

The following commands of the File menu are available in conjunction with the source window:

Open

With the Open command you can specify a further source program to be loaded into the source
window. The Open Source dialog box appears, in which you specify the program name and
the appropriate library name if the program is not contained in the current library (default).

You can also select a character string for being placed into the Open Source dialog box by
marking its name in the source window and then choosing the Open command.

Close

The Close command will close the currently active source window. If the source window you
are about to close contains the trace bar, the window will be iconized.

Exit

The Exit command will exit the debugger and end the current program execution.

Edit Menu

The following commands of the Edit menu are available in conjunction with the source window:

Find

With the Find command, you can search up or down through the active window to locate each
occurrence of a specified word or character string.

The Find dialog box appears, where you can enter the text to be located in the Find text box.
In addition, you can turn the Match Upper/Lower Case and Whole Words Only options on
or off.

If found, the first occurrence of the specified text is highlighted (selected), whereas a message
lets you know if the text could not be found.

With the Match Upper/Lower Case option, you can specify whether the find operation is to
look for an exact match (ON) or for the same characters only, regardless of case (OFF).

With the Whole Words Only option, you can specify whether the find operation is to look for
occurrences that are whole words only, not part of a character string (ON), or for all occurrences
of the specified text, whole words and parts of a character string (OFF).

To change the direction of the find, choose the Up button to search upwards, to the top of the
text, or the Down button to search downwards, to the bottom of the text; Down is the default.

If the find does not start at the top (or bottom) of the text, and the specified text cannot be
found, a dialog appears. You can choose Yes to continue the find at the top (or bottom) of the
text or No to cancel the search.

64

Debugger

Using the Old Debugger

You can also select a character string to be placed into the Find text box by marking it directly
in the source window and then choosing the Find command.

Find Next
With this command, you can repeat the previous find operation and locate the next occurrence
of the text specified with the Find command.

Watchvariables Control Bar

The watchvariables control bar is primarily intended to display previously selected variables for
closer and permanent observation of their content.

It offers a context menu which either displays the commands which can be used in combination
with the entire control bar or displays the commands which can be used with each individual
watchvariable.

To open the context menu, choose with the right mouse button either on the control bars caption
or on a particular watchvariable.

Variables Control Bar

The variables control bar displays all variables which are available at current state of the program
execution. All variables are grouped in different categories. These categories are Locals, Globals,
Systems, AIVs and Contexts. You can switch between these categories by choosing the corres-
ponding tab at the bottom of the control bar. In order to modify the content, select the content
field of a particular variable. Some system variables are read-only and therefore cannot be modified.

The Variables control bar offers a context menu which either displays the commands which can
be used in combination with the entire control bar or displays the commands which can be used
with each individual variable.

To open the context menu, choose with the right mouse button on either the control bars caption
or on a particular variable.

Debugger 65

Using the Old Debugger

Watchpoints and Breakpoints Control Bar

The Watchpoints and Breakpoints control bar is used to add and maintain watchpoints and
breakpoints. You can switch between the watchpoints and breakpoint by choosing the correspond-
ing tab at the bottom of the control bar.

Watchpoints

Using watchpoints, you can rapidly detect “illegal” alterations to Natural variables by objects that
contain errors.

By default, watchpoints are used to instruct the debugger to interrupt the execution of Natural
objects when the contents of a variable change. However, by specifying a certain value to the
variable together with a watchpoint operator when setting a watchpoint, a condition can be set
which only activates the watchpoint when condition becomes true.

A variable is considered to have changed either when its current value differs from the value re-
corded when the watchpoint was last triggered or when it differs from the initial value.

In order to deactivate a watchpoint temporarily, remove the check mark from the check box of
the corresponding watchpoint entry.

The watchpoint tab of this control bar offers a context menu which either displays the commands
which can be used in combination with the entire tab or displays the commands which can be
used with each individual watchpoint.

To open the context menu, choose with the right mouse button on either the tabs caption or on a
particular watchpoint.

Add Watchpoint

A new watchpoint can be added either by selecting the Add Watchpoint command from the
variables menu or by selecting the command Add from the context menu of the watchvariables
tab.

The Add Watchpoint dialog box allows you to select single variables, arrays and individual group
elements from the list of available variables. Closing the dialog with the OK button will open the
Set Watchpoint dialog box which allows you specify a condition for this watchpoint.

Note: With system variables, the corresponding watchpoint is not attached to a specific
library and object; therefore, the object and library name will always be SYSTEM.

66 Debugger

Using the Old Debugger

Set Watchpoint Dialog Box

The Set Watchpoint dialog box displays the name of the watchpoint (which corresponds to the
name of the selected variable) together with its line reference/context ID (if applicable) and the
names of the corresponding Natural object and library.

Note: With system variables, the corresponding watchpoint is not attached to a specific
library and object; therefore, the object and library name will always be SYSTEM.

To define a watchpoint, you can specify the following items in the corresponding boxes:

" The state of the watchpoint to be set; valid states are "active" (default) and "pending".

® A condition for the watchpoint to be activated (optional).

You can specify an appropriate value and watchpoint operator; if no operator and value (that is,
condition) is specified, the default setting (MOD) applies (for a description of the individual
watchpoint operators, see below).

® The number of skips before execution of the watchpoint if it is not to be executed until the pro-
gram has run a certain number of times; the default is 0.

® The maximum number of executions of the watchpoint; the default is 0.

A watchpoint will not be set until you either choose the OK button or press ENTER. If you choose
the Cancel button or press ESC, no watchpoint will be set.

Once a watchpoint has been specified, it remains until you delete it explicitly.

Watchpoint Operators

Watchpoint operators are set via option buttons; the available watchpoint operators are:

Operator|Stands for Description

MOD |Modification The watchpoint is activated each time a modification of the variable occurs.
Default.

LT Less Than The watchpoint is activated only when the current value of the variable is less
than the specified value.

LE Less or Equal |The watchpoint is activated only when the current value of the variable is less
than or equal to the specified value.

GT Greater Than | The watchpoint is activated only when the current value of the variable is greater
than the specified value.

GE Greater or Equal | The watchpoint is activated only when the current value of the variable is greater
than or equal to the specified value.

EQ Equal The watchpoint is activated only when the current value of the variable is equal
to the specified value.

Debugger 67

Using the Old Debugger

Operator|Stands for Description
NE Not Equal The watchpoint is activated only when the current value of the variable is not
equal to the specified value.

Breakpoints

A breakpoint is a point at which control is returned to the user while a Natural object is executing.

In order to deactivate a breakpoint temporarily, remove the check mark from the check box of the
corresponding breakpoint entry.

The breakpoint tab of this control bar offers a context menu which either displays the commands
which can be used in combination with the entire tab or displays the commands which can be
used with each individual breakpoint.

To open the context menu, choose with the right mouse button on either the tabs caption or on a
particular breakpoint.

Add Breakpoint

With the Add command, you can define a new breakpoint. The Add Breakpoint dialog box is
displayed, where you define the breakpoint by specifying the following items in the corresponding
boxes:

® The state of the breakpoint to be set; valid states are "active" (default) and "pending".

® The name of the Natural object to contain the breakpoint; the default object name is the name
of the object currently in the source window.

* The name of the Natural library that contains the object with the breakpoint; the default library
name is the name of the library which contains the object currently in the source window.

® The line number of the object's source code where the breakpoint is to be executed.
Begin means that the breakpoint is to be set at the first executable line of code of the specified

object; End means that the breakpoint is to be set at the last executable line of code of the specified
object.

® The number of skips before execution of the breakpoint if it is not to be executed until the program
has run a certain number of times; the default is 0.
* The maximum number of executions of the breakpoint; the default is 0.

A breakpoint will not be set until you either choose the OK button or press ENTER. If you choose
the Cancel button or press ESC, no breakpoint will be set.

Breakpoints can also be set directly in the program currently contained in the source window by
double-clicking the appropriate statement line with the right mouse button. This way, a breakpoint

68 Debugger

Using the Old Debugger

is defined with all default values and the corresponding source code line number. It can be displayed
and/or modified by using the corresponding functions.

Breakpoints cannot be set on comment lines or on any statement line other than the first one if a
single statement occupies more than one line.

Once a breakpoint has been defined, it remains until you delete it explicitly.

Debugger 69

70

	Debugger
	Table of Contents
	1 Debugger
	2 General Information
	About the Debugger
	Remote Debugging
	Installing the Remote Debugger
	Setting Up Your Environment for Remote Debugging
	Windows Side without Terminal Services
	Windows Side with Terminal Services
	Natural Side

	Scenarios for Remote Debugging
	Scenario 1: Debugging a Single Natural Application
	Scenario 2: Debugging a Distributed Natural Application
	Scenario 3: Debugging the Natural Part of a Heterogeneous Application

	3 Starting and Leaving the Debugger
	Preparing to Use the Debugger
	Starting the Debugger
	Restarting the Debugger
	Leaving the Debugger

	4 Elements of the Debugger
	Debugger Information in the Title Bar
	Menu Commands
	Toolbar
	Trace Position in Editor Window
	Debugger Windows
	Variables
	Break- and Watchpoints
	Call Stack

	5 Moving through the Code
	Stepping Through the Code
	Stepping Over Another Object
	Stepping Into Another Object
	Stepping Out Of Another Object

	Going to the Next Breakpoint or Watchpoint
	Going to the Next Event
	Going to the Cursor Position
	Going to the Next Statement

	6 Setting Breakpoints and Watchpoints
	About Breakpoints and Watchpoints
	Adding and Removing a Breakpoint
	Modifying a Breakpoint
	Adding a Watchpoint
	Adding a Watchpoint from the Editor Window
	Adding a Watchpoint from the Variables Window
	Adding a Watchpoint Using a Dialog Box

	Modifying a Watchpoint
	Deactivating Breakpoints and Watchpoints Temporarily
	Showing the Source Code for a Defined Breakpoint or Watchpoint
	Deleting Breakpoints and Watchpoints
	Symbols Used in the Editor Window

	7 Modifying and Watching Variables
	Modifying a Variable
	Modifying a Variable in the Editor Window
	Modifying a Variable in the Variables Window

	Adding a Watchvariable
	Adding a Watchvariable from the Editor Window
	Adding a Watchvariable from the Variables Window

	Managing the Variables in the Variables Window
	Showing the Last Modified Variable
	Finding a Variable
	Showing the Content of a Variable in Alphanumeric or Hexadecimal Format
	Refreshing the Display
	Deleting Watchvariables

	8 Using the Call Stack
	About the Call Stack
	Displaying the Source Code of a Different Object
	Returning to the Object at the Current Trace Position

	9 Using the Old Debugger
	Preparing Natural Objects
	Starting the Debugger
	Leaving the Debugger
	Exit Command

	Operating the Debugger
	Windows and Menus
	Toolbar Buttons
	Shortcut Keys
	Watchpoints and Breakpoints
	Restarting the Debugging Session

	Debugger Source Window
	Debug Menu
	Variables Menu
	Dialog Boxes
	Selecting Variables
	Marking Text in the Source Window
	Display
	Modify
	Quick Watch
	Add Watch
	Add Watchpoint
	File Menu
	Edit Menu

	Watchvariables Control Bar
	Variables Control Bar
	Watchpoints and Breakpoints Control Bar
	Watchpoints
	Add Watchpoint
	Set Watchpoint Dialog Box

	Watchpoint Operators
	Breakpoints
	Add Breakpoint

