
Operating a Natural RPC Environment
This section mainly describes the tasks required to operate a Natural RPC environment.

Some of these tasks are performed with the SYSRPC utility. For information about the functions the
SYSRPC utility provides, refer to the Natural SYSRPC Utility documentation.

This section covers the following topics:

Specifying RPC Server Addresses

Stubs and Automatic RPC Execution

Modifying RPC Profile Parameters during a Natural Session

Executing Server Commands

Logon to a Server Library

Using the Logon Option

Using Compression

Using Secure Socket Layer

Monitoring the Status of an RPC Session

Retrieving Runtime Settings of a Server

Setting/Getting Parameters for EntireX

Handling Errors

User Exits before and after Service Execution

Specifying RPC Server Addresses
To each remote CALLNAT request, a server must be assigned (identified by servername and
nodename) on which the CALLNAT is to be executed. Therefore, all subprograms to be accessed
remotely must be defined

in a local service directory on the client side,

or in a remote directory accessed via a remote directory server,

or by way of default server addressing with the profile parameter DFS,

or within the client application itself by way of default server addressing.

In addition to the methods mentioned above, you can specify alternative servers.

1

Operating a Natural RPC EnvironmentOperating a Natural RPC Environment

If EntireX Broker is used, it is also possible to define servers using the EntireX Location Transparency,
see Using EntireX Location Transparency.

Below is information on:

Using Local Directory Entries

Using Remote Directory Entries

Specifying a Default Server Address at Natural Startup

Specifying a Default Server Address within a Natural Session

Using an Alternative Server

Using EntireX Location Transparency

Using Local Directory Entries

All data of a client’s local service directory is stored in the subprogram NATCLTGS. At execution time,
this subprogram is used to retrieve the target server. As a consequence, NATCLTGS must be available in
the client application or in one of the Natural steplibs defined for the application.

If NATCLTGS has not been generated into a steplib or resides on another machine, use the appropriate
Natural utility (SYSMAIN or the Natural Object Handler) to move NATCLTGS into one of the steplibs
defined for the application.

If you are using a NATCLTGS for joint usage, you must make it available to all client environments, for
example by copying it to the library SYSTEM, or, if an individual copy is used for a client, it must be
maintained for this client using the Service Directory Maintenance function of the SYSRPC utility.

To define and edit RPC service entries, see the section Service Directory Maintenance in the SYSRPC
Utility documentation.

Using Remote Directory Entries

A remote directory contains service entries that can be made available to several Natural clients. The
Natural clients can retrieve these service entries from remote directory servers. For information on the
purpose and on the installation of remote directory servers; see Using a Remote Directory Server.

Specifying a Default Server Address at Natural Startup

Instead of addressing a server by using a local or remote service directory, you can preset a default server
with the profile parameter DFS, as described in your Natural Operations documentation. This server
address is used if the subprogram can be found in neither the local nor the remote service directory.

The DFS setting determines the default server for the whole session or until it is overwritten dynamically.

If no DFS setting exists and the server address of a given remote procedure call could not be found in the
service directory, a Natural error message is returned.

2

Using Local Directory EntriesOperating a Natural RPC Environment

A default server address defined within a client application remains active even if you log on to another
library or if a Natural error occurs.

Specifying a Default Server Address within a Natural Session

The client application itself may dynamically specify a default server address at runtime. For this purpose,
Natural provides the application programming interface USR2007N. This interface enables you to
determine a default server address that is to be used each time a remote program cannot be addressed via
the service directory.

 To make use of USR2007N

1. Copy the subprogram USR2007N from the library SYSEXT to the library SYSTEM or to the steplib
library, or to any application in the server environment.

2. Using the DEFINE DATA statement in structured mode or the RESET statement in reporting mode,
specify the following parameters:

Parameter Format Description

function A1 Function; possible values are:

P
(Put)

Determines that the server address (composed of the parameters
nodename and servername, see below) is the default
address for all subsequent remote procedure calls not defined in
the service directory.

To remove a default server address, specify a blank for
nodename and servername.

G
(Get)

Retrieves the current default server address as set by the
function P.

nodename A192 Specifies/returns the name of the server node to be addressed.

The node name may have up to 32 characters for physical node names
and up to 192 characters for logical node names. See Using EntireX
Location Transparency.

Note:
For compatibility reasons, servername is defined with the option BY
VALUE or BY VALUE RESULT (see the section
parameter-data-definition in the description of the DEFINE DATA
statement) to support existing callers which pass an A8 field for the
servername.

The sample USR2007P provided in library SYSEXT supports up to 32
characters.

3

Operating a Natural RPC EnvironmentSpecifying a Default Server Address within a Natural Session

Parameter Format Description

servername A192 Specifies/returns the server name to be addressed.

The server name may have up to 32 characters for physical server
names and up to 192 characters for logical service names. See Using
EntireX Location Transparency.

Note:
For compatibility reasons, nodename is defined with the option BY
VALUE or BY VALUE RESULT (see the section
parameter-data-definition in the description of the DEFINE DATA
statement) to support existing callers which pass an A8 field for the
nodename.

The sample USR2007P provided in library SYSEXT supports up to 32
characters.

logon A1 Specifies/returns the Logon option, see Using the Logon Option.

protocol A1 Specifies/returns the transport protocol.
Valid value: B (=EntireX Broker).

noservdir A1 Specifies/returns the service directory option, see profile parameter
DFS.

Y Service directory must not be present

N Service directory must be present

3. In the calling program on the client side, specify the following statement:

CALLNAT ’USR2007N’ function nodename servername logon protocol [noservdir]

Note:
The Natural subprogram NATCLTPS in the library SYSRPC is only maintained for compatibility reasons.

Using an Alternative Server

To avoid connection failures, you may want to define several alternative servers for a remote CALLNAT.
If you specify such alternative servers, Natural proceeds as follows:

The client makes a first attempt to establish the connection.

If this attempt fails, instead of providing an error message, a second attempt is made, however, this
time not on the same server. Instead, the service directory is searched again starting at the current
entry to find out whether or not another server is available which offers the desired service.

If a second entry is found, Natural tries to establish the connection to this server. If the remote
procedure call is performed successfully, the client application keeps on running. The user does not
notice whether the connection to the first server or to the alternative server produced the result.

If no further entry is found or if the connection to alternative servers fail, Natural issues a
corresponding error message.

4

Using an Alternative ServerOperating a Natural RPC Environment

 To enable the use of an alternative server

1. Define more than one server in the service directory for the same service.

2. Set the profile parameter TRYALT to ON to give permission to use an alternative server.

This parameter can also be set dynamically for the current session with the Natural system command
GLOBALS (described in the System Commands documentation.

Using EntireX Location Transparency

Using EntireX Location Transparency, you can change physical node and server names without having to
configure anything or to change client and/or server programs. Now, instead of using a physical node and
physical server name, a server can be addressed by a logical name. The logical name is mapped to the
physical node and server names using directory services.

To take advantage of Location Transparency, the Natural RPC has been enabled to accept a logical name
wherever only a node and server name could be specified before. The logical name is passed to the
EntireX Broker before it is used the first time.

The maximum length of a logical name is 192 characters. To avoid new Natural profile parameters, a
logical name is specified in the server name part of the already existing parameters. There are two kinds of
logical names:

Logical node names
With a logical node name you specify a logical name for the node only in conjunction with a real
server name. A logical node name can be used in all places where you can also use a real node name.
To define a logical node name the keyword LOGBROKER must be used.

Example:

SRVNVODE=’LOGBROKER=logical_node_name,my_set’

Logical services
With a logical service, you specify a logical name for both the node and the server. A logical service
can be used in all places where you can also use a real node and server name. To define a logical
service, an asterisk (*) must be specified as node name (intentionally left empty), and the server
name contains the logical service name.

Example:

SRVNVODE=’*’ SRVNAME=’logical_service_name,my_set’

If the Natural Application Programming Interface USR2071N is used, you can LOGON to a logical
service name by using the keyword LOGSERVICE together with the logical service name in the field
broker-id.

For further information about EntireX Location Transparency, refer to the EntireX documentation.

The following components refer to node and server names:

5

Operating a Natural RPC EnvironmentUsing EntireX Location Transparency

Natural profile parameters SRVNODE, SRVNAME, DFS and RDS

Service Directory Maintenance function of the SYSRPC utility

Service directory (NATCLTGS)

Natural Application Programming Interfaces USR2007N, USR2071N

See also Location Transparency in Service Directory Maintenance function of the SYSRPC Utility
documentation.

Stubs and Automatic RPC Execution
Stubs are no longer required if automatic Natural RPC execution is used, as described in Working with
Automatic Natural RPC Execution below.

However, generating stubs provides the advantage of controlling the CALLNAT(s) executed remotely and
facilitates error diagnoses. Should a remote call fail due to an incorrect CALLNAT name, the Natural error
message issued then helps to immediately identify the problem cause. Without a stub, for an incorrect
CALLNAT you may receive follow-up errors returned from the transport layer or the Natural server.

If you want to call an EntireX RPC server with a remote CALLNAT execution, it is strongly recommended
to use a stub subprogram (interface object). A stub subprogram is required if the IDL (Interface Definition
Language) definition of the subprogram you want to call on an EntireX RPC server contains a group
structure. In this case, you must define the same group structure during the stub generation on the Stub
Generation screen or generate the stub subprogram from the EntireX IDL file (Windows only).

Below is information on:

Creating Stub Subprograms

Working with Automatic Natural RPC Execution

Creating Stub Subprograms

With the Stub Generation function of the SYSRPC utility, you can generate the Natural stub subprograms
used to connect the client’s calling program to a subprogram on a server. The stub consists of a parameter
data area (PDA) and of the server call logic; see Stub Generation in the SYSRPC Utility documentation.

The PDA contains the same parameters as used in the CALLNAT statement of the calling program and
must be defined in the Stub Generation screen of the Stub Generation function. If a compiled Natural
subprogram with the same name already exists, the PDA used by this subprogram is used to preset the
screen. The server call logic is generated automatically by the Stub Generation function after the PDA has
been defined.

At execution time, the Natural application program containing the CALLNAT statement and the stub
subprogram must exist on the client side. The Natural application subprogram must exist on the server
side. Both the stub and server subprograms must have the same name.

6

Stubs and Automatic RPC ExecutionOperating a Natural RPC Environment

Working with Automatic Natural RPC Execution

You are not required to generate Natural RPC stubs, but you can work with automatic Natural RPC
execution (that is, without using Natural stubs). To work with automatic Natural RPC execution, set the
profile parameter AUTORPC as follows:

AUTORPC=ON

In that case, you can omit the generation of the client stub during your preparations for RPC usage. When
the automatic Natural RPC execution is enabled (AUTORPC=ON), Natural behaves as follows:

if a subprogram cannot be found locally, Natural tries to execute it remotely (a stub subprogram is
not needed),

the parameter data area will then be generated dynamically during runtime.

As stubs only exist for client programs, this feature has no effect on the CALLNAT program on the server.

If profile parameter AUTORPC is set to ON, and a Natural stub exists, it will still be used.

Modifying RPC Profile Parameters during a Natural Session
With the Natural system command GLOBALS, you can dynamically modify some of the RPC profile
parameters set in the Natural profile parameter module for the current session.

Caution:
These modifications are retained as long as the user session is active; they are lost when the session is
terminated. Static settings are only made using Natural profile parameters.

Executing Server Commands
Active servers that have been defined in the service directory (see Specifying RPC Server Addresses) can
be controlled with the SYSRPC server command execution function as described in the relevant section in
the SYSRPC Utility documentation.

Logon to a Server Library
The server library on which the CALLNAT is executed depends on the RPC Logon Option on the client
side and a couple of parameters on the server side.

The following table shows which the relevant parameters are and how they influence the library setting:

7

Operating a Natural RPC EnvironmentModifying RPC Profile Parameters during a Natural Session

 Client Server

1 2 3 4 5 6 7

*library-id RPC
LOGON
flag for
server entry
set?

LOGONRQ
set?

Server
started with
STACK=

NSC
or
native
Natural?

NSC:
RPC Logon
option in
library
profile

Server
*library-id

1 Lib1 no no logon lib1 No influence N/-- Lib1

2 Lib1 no no logon lib2 No influence N/-- Lib2

3 Lib1 no yes (Client LOGON flag = NO) and (LOGONRQ=YES)
is not possible.

4 Lib1 yes No influence No influence NSC AUTO Lib1

5 Lib1 yes No influence No influence NSC N Lib1

6 Lib1 yes No influence No influence Native Natural -- Lib1

Explanation of the table columns:

1. The library ID of the client application where the CALLNAT is initiated.

2. The value of the RPC LOGON flag. Can be set for a whole node or a server.

The flag can be set by using

the Service Directory Maintenance function of the SYSRPC utility,

or the profile parameter DFS,

or the application programming interface USR2007N.

3. The LOGONRQ profile parameter can be set at server startup.

4. The library ID to which the server is positioned at its startup.

5. Does the server run under Natural Security (NSC) (see Using Natural RPC with Natural Security) or
not?

6. The setting of the Logon option in the NSC Library Profile Items (Session options > Natural RPC
Restrictions) of the NSC server application. If the NSC Logon Option is set to A (AUTO), only library
and user ID are taken. If set to N (default), the library, user ID and password parameters are
evaluated.

7. The library on the server where the CALLNAT program is finally executed.

Using the Logon Option
The Logon option defines on which library the remote subprogram is to be executed. See also Logon to a
Server Library.

8

Using the Logon OptionOperating a Natural RPC Environment

Note:
When you do not use the Logon option, the CALLNAT is executed on the library to which the server is
currently logged on. This server logon is defined with the Natural profile parameter STACK=(LOGON
library) . The server will search for the CALLNATs to be executed in library (and all associated
steplibs defined for library).

A client application can be enabled to execute a subprogram on a different library by setting the Logon
option for this subprogram. This causes the client to pass the name of its current library to the server,
together with this Logon option. The server will then logon to this library, searching it for the desired
subprogram and, if the latter is found, it will execute it. After that, it will logoff from the previous library.

Logging on to a Different Library

If the server should logon to a library other than the client’s current libray, the client has to call the
application programming interface USR4008N before the remote CALLNAT is executed. With
USR4008N the client specifies an alternate name of a library to which the server will logon. The name of
this library will be used for all subsequent calls to remote subprograms for which the Logon option
applies. If blank is specified for the library name, the name of the current client library will be used again.

 To make use of USR4008N

1. Copy the subprogram USR4008N from the library SYSEXT to the library SYSTEM or to the steplib
library, or to any application in the server environment.

2. Using the DEFINE DATA statement, specify the following parameters:

Parameter I/O Format Description

P-FUNC I A01 Function code; possible values are:

P
(Put)

Specify a new library for remote CALLNAT execution.

G
(Get)

Retrieve previously specified library for remote CALLNAT
execution.

P-LIB I A8 Library on server for remote CALLNAT execution.

3. In the calling program on the client side, specify the following statement:

CALLNAT ’USR4008N’ P-FUNC P-LIB

Note:
The calling program must be executed before the Natural RPC client invokes a remote CALLNAT.

Settings Required on the Client Side

To set the Logon option, you can use either the SYSRPC Service Directory maintenance function (see the
relevant section in the SYSRPC Utility documentation) or - when using a default server - the profile
parameter DFS or the application programming interface USR2007N.

9

Operating a Natural RPC EnvironmentLogging on to a Different Library

Settings Required on the Server Side

No setting is required on the server side.

Using Compression
Compression types may be: 0, 1 or 2. Stubs generated with COMPR=1 or 2 can help reduce the data
transfer rate.

Compression
Type

Description

COMPR=0 All CALLNAT parameter values are sent to and returned from the server, i.e. no
compression is performed.

COMPR=1 M-type parameters are sent to and returned from the server, whereas O-type
parameters are only transferred in the send buffer. A-type parameters are only
included in the reply buffer. The reply buffer does not contain the Format description.

This is the default setting.

COMPR=2 Same as for COMP=1, except that the server reply message still contains the format
description of the CALLNAT parameters. This might be useful if you want to use
certain options for data conversion by EntireX Broker (for more information, see the
description of Translation Services in the EntireX Broker documentation).

Using Secure Socket Layer
The Natural RPC supports Secure Socket Layer (SSL) for the TCP/IP communication to the EntireX
Broker.

To enable the EntireX Broker to recognize that the TCP/IP communication should use SSL, you must use
one of the following methods:

Append the string :SSL to the node name. If the node name has already been postfixed by the string
:TCP , :TCP must be replaced by :SSL .

Prefix the node name with the string //SSL:

Example:

SRVNODE=’157.189.160.95:1971:SSL’

Before you access an EntireX Broker using SSL, you must first invoke the application programming
interface USR2035N to set the required SSL parameter string.

 To make use of USR2035N

1. Copy the subprogram USR2035N from the library SYSEXT to the library SYSTEM or to the steplib
library, or to any application in the server environment.

10

Using CompressionOperating a Natural RPC Environment

2. Using the DEFINE DATA statement, specify the following parameters:

Parameter I/O Format Description

FUNCTION I A01 Function code; possible values are:

P
(Put)

Specify a new SSL parameter string.

The SSL parameter string is internally saved and passed to EntireX each
time an EntireX Broker using SSL communication is referenced the
first time. You may use different SSL parameter strings for several
EntireX Broker connections by calling application programming
interface USR2035N each time before you access the EntireX Broker
the first time.

Example:

FUNCTION := ’P’
SSLPARMS := ’TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=N’
CALLNAT ’USR2035N’ USING FUNCTION SSLPARMS

To set SSL parameters in case of a Natural RPC server, put the name of
the calling program onto the Natural stack when starting the server.

Example:

STACK=(LOGON server-library; set-SSL-parms)

Where set-SSL-parms is a Natural program that invokes the application
programming interface USR2035N to set the SSL parameter string.

G
(Get)

Retrieve previously specified SSL parameter string.

The previously put SSL parameter string is returned to the caller.

For more information about the SSL parameter string, refer to the
EntireX documentation.

SSLPARMS I A128 SSL parameter string as required by the EntireX Broker

3. In the calling program on the client side, specify the following statement:

CALLNAT ’USR2035N’ FUNCTION SSLPARMS

Monitoring the Status of an RPC Session
This part is organized in the following sections:

Using the RPCERR Program

Using the RPCINFO Subprogram

Using the Server Trace Facility

Defining the Trace File

11

Operating a Natural RPC EnvironmentMonitoring the Status of an RPC Session

Using the RPCERR Program

You can run the RPCERR program from the Command line or invoke it by using a FETCH statement from
within a Natural program. RPCERR displays the following information:

The last Natural error number and message if it was RPC related.

The last EntireX Broker message associated with this error.

The last EntireX RPC server error message if the Natural error error number is related to the EntireX
RPC server error.

In addition, the node and server name from the last EntireX Broker call can be retrieved.

Example of an RPC Error Display: RPCERROR

Natural error number: NAT6972
Natural error text :
Directory error on Client, reason 3.

RPC error information:
No additional information available.

Server Node: Library: SYSTEM
Server Name: Program: NATCLT3
 Line No: 1010

Using the RPCINFO Subprogram

You can use the subprogram RPCINFO in your application program to retrieve information on the state of
the current RPC session. This also enables you to handle errors more appropriately by reacting to a
specific error class.

The subprogram RPCINFO is included in the library SYSTEM and can be called by any user application.

A sample program TESTINFO is included in the library SYSRPC together with the parameter data area
RPCINFOL for calling RPCINFO.

Example:

DEFINE DATA LOCAL USING RPCINFOL
 LOCAL
 1 PARM (A1)
 1 TEXT (A80)
 1 REDEFINE TEXT
 2 CLASS (A4)
 2 REASON (A4)
END-DEFINE
...
OPEN CONVERSATION USING SUBPROGRAM ’APPLSUB1’
 CALLNAT ’APPLSUB1’ PARM
CLOSE CONVERSATION *CONVID
...
ON ERROR
 CALLNAT ’RPCINFO’ SERVER-PARMS CLIENT-PARMS
 ASSIGN TEXT=C-ERROR-TEXT

12

Using the RPCERR ProgramOperating a Natural RPC Environment

 DISPLAY CLASS REASON
END-ERROR
...
END

Parameters of RPC Info

RPCINFO has the following parameters which are provided in the parameter data area RPCINFOL:

Parameter Format Description

SERVER-PARMS Contains information about the Natural session
when acting as a server.

The SERVER-PARMS only apply if you execute
RPCINFO remotely on an RPC server.

S-BIKE A1 Transport protocol used; possible value:

B EntireX Broker

S-NODE A32 The node name of the server.

S-NAME A32 The name of the server.

S-ERROR-TEXT A80 Contains the message text returned from the
transport layer.

S-CON-ID I4 Current conversation ID. Note that this is the
physical ID from EntireX Broker, not the logical
Natural ID.

This parameter always contains a value as EntireX
Broker generates IDs for both conversational and
non-conversational calls.

If the physical conversation ID is either
non-numeric or greater than I4, a -1 is returned.

S-CON-OPEN L Indicates whether there is an open conversation.

This parameter contains the value TRUE if a
conversation is open, otherwise it contains FALSE.

CLIENT-PARMS Contain information about the Natural session when
acting as a client.

C-BIKE A1 Transport protocol used; possible value:

B EntireX Broker

C-NODE A32 The node name of the previously addressed server.

C-NAME A32 The name of the previously addressed server.

C-ERROR-TEXT A80 Contains the message text returned from the
transport layer.

13

Operating a Natural RPC EnvironmentUsing the RPCINFO Subprogram

Parameter Format Description

C-CON-ID I4 Conversation ID of the last server call. Note that
this is the physical ID from EntireX Broker, not the
logical Natural ID.

If no conversation is open, the value of this
parameter is less than or equal to 0. If the physical
conversation ID is either non-numeric or greater
than I4, a -1 is returned.

C-CON-OPEN L Indicates whether there is an open conversation.

This parameter contains the value TRUE if a
conversation is open, otherwise it contains FALSE.

C-ENTIREX-RPC-ERROR-MESSAGEA Contains the message text returned from an EntireX
RPC server.

Using the Server Trace Facility

Natural RPC includes a trace facility that enables you to monitor server activities and trace possible error
situations.

Activating/Deactivating the Server Trace Facility

To activate/deactivate the server trace facility, start the server with the option

TRACE=n

The integer value n represents the desired trace level; that is, the level of detail in which you want your
server to be traced. The following values are possible:

Value Trace Level

0 No trace is performed (default).

1 All client requests and corresponding server responses are traced and documented.

2 All client requests and corresponding server responses are traced and documented; in addition,
all RPC data are written to the trace file.

The RPC trace facility writes the trace data to the Natural Report Number 10.

In case of a conversion error which is reported with Natural error number NAT6974 and reason codes 2
and 3, the position of the erroneous data in the buffer is indicated.

Support of TS=ON for RPC Server Trace

The following information applies to Mainframe environments only:

All messages in the Natural RPC server trace are translated into upper case if TS=ON is specified in the
Natural RPC server session. The trace of the data from/to the client is not affected by TS=ON and remains
unchanged.

14

Using the Server Trace FacilityOperating a Natural RPC Environment

Defining the Trace File

The trace file definition depends on the environment:

Trace File Handling for Mainframe Environments - General Information
Trace File Handling in z/OS Batch Mode
Trace File Handling under CICS
Trace File Handling in z/VSE Batch Mode
Trace File Handling in BS2000/OSD Batch Mode
Trace File Handling for UNIX and OpenVMS Environments
Trace File Handling for Windows

Trace File Handling for Mainframe Environments - General Information

On the mainframe, define the trace file appropriate to your environment, see also the NTPRINT macro (in
the Parameter Reference documentation).

Trace File Handling in z/OS Batch Mode

a) Running A Server As Single Task

In the server start job, assign a z/OS dataset to the Natural additional Report CMPRT10.

Example:

//NATRPC JOB CLASS=K,MSGCLASS=X
//NATSTEP EXEC PGM=NATOS
//STEPLIB DD DISP=SHR,DSN=SAG.NAT.LOAD
// DD DISP=SHR,DSN=SAG.EXX.LOAD
//CMPRMIN DD *
IM=D,MADIO=0,MT=0,OBJIN=R,AUTO=OFF,MAXCL=0,ID=’,’,INTENS=1,
PRINT=((10),AM=STD)
/*
//SYSUDUMP DD SYSOUT=X
//CMPRT10 DD SYSOUT=X
//CMPRINT DD SYSOUT=X
/*

b) Running a Server With Replicas

1. Set the RPC parameter NTASKS to a value greater than 1.

2. Assign CMPRMIN to a dataset with DISP=SHR or to * .

3. As each task writes on a separate CMPRINT dataset, define the following DD card names:

CMPRINT for the main task;

CMPRINT1 to CMPRINT9 for the first nine subtasks;

CMPRIN10 to CMPRINnn for the next two-digit numbers of subtask, nn=NTASKS-1.

4. If the keyword subparameter TRACE of profile parameter RPC or parameter macro NTRPC is set, the
trace facility writes to Printer 10.

15

Operating a Natural RPC EnvironmentDefining the Trace File

You must define the following DD card names:

CMPRT10 for the main task;

CMPRT101 to CMPRT1nn for all subtasks, nn=NTASKS-1;

Example:

//NATRPC JOB CLASS=K,MSGCLASS=X
//NATSTEP EXEC PGM=NATOS,REGION=8M
//steplib DD DISP=SHR,DSN=SAG.NAT.LOAD
// DD DISP=SHR,DSN=SAG.EXX.LOAD
//CMPRMIN DD *
IM=D,MADIO=0,MT=0,OBJIN=R,AUTO=OFF,MAXCL=0,ID=’,’,INTENS=1,
PRINT=((10),AM=STD)
/*
//SYSUDUMP DD SYSOUT=X
//CMPRT10 DD SYSOUT=X
//CMPRT101 DD SYSOUT=X
//CMPRT102 DD SYSOUT=X
//CMPRT103 DD SYSOUT=X
//CMPRINT DD SYSOUT=X
//CMPRINT1 DD SYSOUT=X
//CMPRINT2 DD SYSOUT=X
//CMPRINT3 DD SYSOUT=X
/*

Trace File Handling under CICS

Under CICS, assign Print File 10 to a CICS extra-partitioned transient data queue.

Examples:

Natural dynamic profile definition:

PRINT=((10),AM=CICS,DEST=RPCT,TYPE=TD)

CICS definition:

RPCTRAC DFHDCT TYPE=SDSCI, X
 BLKSIZE=136, X
 BUFNO=1, X
 DSCNAME=RPCTRACE, X
 RECFORM=VARUNB, X
 RECSIZE=132, X
 TYPEFLE=OUTPUT
 SPACE
RPCT DFHDCT TYPE=EXTRA, X
 DSCNAME=RPCTRACE, X
 DESTID=RPCT, X
 OPEN=INITIAL

CICS Startup JCL:

RPCTRACE DD SYSOUT=*

16

Defining the Trace FileOperating a Natural RPC Environment

Trace File Handling in z/VSE Batch Mode

In z/VSE batch mode, assign a trace file to the Printer Number 10.

Example:

// LIBDEF PHASE,SEARCH=(SAGLIB.NAT vrs,SAGLIB.ETB vrs),TEMP
// ASSGN SYS000,READER
// ASSGN SYSLST,FEE
// ASSGN SYS050,FEF
// EXEC NATVSE,SIZE=AUTO,PARM=’SYSRDR’
IM=D,MADIO=0,MT=0,OBJIN=R,AUTO=OFF,MAXCL=0,ID=’,’,INTENS=1,
PRINT=((10),AM=STD,SYSNR=50)
/*

where vrs stands for version, release, system maintenance level.

Trace File Handling in BS2000/OSD Batch Mode

In BS2000/OSD batch mode, assign a trace file to Printer Number 10.

Example:

/.NATRPC LOGON
/ SYSFILE SYSOUT= output-file
/ SYSFILE SYSDTA=(SYSCMD)
/ SYSFILE SYSIPT=(SYSCMD)
/ FILE trace-file,LINK=P10,OPEN=EXTEND */server trace file
/ STEP
/ SETSW ON=2
/ EXEC NATBS2
MADIO=O,IM=D,ID=’,’,PRINT=((10),AM=STD)

Trace File Handling for UNIX and OpenVMS Environments

It is recommended that you use a different file name (that is, a different NATPARM parameter file) for each
server so that you can trace them individually. The trace file is defined in the NATPARM parameter file of
the Natural server:

1. Report Assignments
Assign the logical device LPT10 to your Report Number 10.

2. Device Parameter Assignments
Instead of selecting a physical printer specification for LPT10, specify a file name that represents the
name of your trace file.

Example for UNIX:

/bin/sh -c cat>>/ filename

where filename represents the name of the trace file.

17

Operating a Natural RPC EnvironmentDefining the Trace File

Example for OpenVMS:

nattmp: filename

where filename represents the name of the trace file.

Trace File Handling for Windows

It is recommended that you use a different file name (that is, a different NATPARM parameter file) for each
server so that you can trace them individually. The trace file is defined in the NATPARM parameter file of
the Natural server (see Device/Report Assignments in the Configuration Utility):

1. Reports

Assign the logical device LPT10 to your Report Number 10.

2. Devices

Instead of selecting a physical printer specification for LPT10, specify a file name that represents the
name of your trace file. As default, old trace files are deleted when a new file with the same name is
created.

If you wish to append the new log to the existing one, specify:

>>filename

Retrieving Runtime Settings of a Server
The Natural application programming interface (API) USR4010N enables you to retrieve the runtime
settings of a server:

the system file assignments for FUSER, FNAT, and FSEC,

the steplib chain.

 To make use of USR4010N

1. Copy the subprogram USR4010N from libray SYSEXT to the library SYSTEM or to the steplib
library or to any application in the server environment.

2. Using a DEFINE DATA statement, specify the following parameters:

18

Retrieving Runtime Settings of a ServerOperating a Natural RPC Environment

Parameter Format Description

FUSER-DBID N5 Database ID of system file FUSER.

FUSER-FNR N5 File number of system file FUSER.

FNAT-DBID N5 Database ID of system file FNAT.

FNAT-FNR N5 File number of system file FNAT.

FSEC-DBID N5 Database ID of system file FSEC.

FSEC-FNR N5 File number of system file FSEC.

STEP-NAME A8/15 Name of steplib.

STEP-DBID N5/15 Database ID of steplib.

STEP-FNR N5/15 File number of steplib.

3. In the calling program on the client side, specify the following statement:

CALLNAT ’USR4010’ USR4010-PARM

See also the Syntax Description of the CALLNAT statement.

4. If RPC parameter AUTORPC=OFF, copy the stub USR4010X to the client environment.

If RPC parameter AUTORPC=ON, the API must not be available to the client environment, otherwise
the API would be called locally.

When USR4010N is called, the values of the parameter specified above are output in the group of fields
USR4010-PARM.

Setting/Getting Parameters for EntireX
The Application Programming Interface (API) USR4009N enables you to set or to get the EntireX
parameters that are currently supported by the Natural RPC. These are:

Compression level

Encryption level

 To make use of USR4009N

1. Copy the subprogram USR4009N from libray SYSEXT to the library SYSTEM or to the steplib
library or to any application in the server environment.

2. Using a DEFINE DATA statement, specify the following parameters:

19

Operating a Natural RPC EnvironmentSetting/Getting Parameters for EntireX

Parameter Format I/O Description

FUNCTION A01 I Function; possible values are:

G
(Get)

The values already set for the EntireX parameters
are returned.

If no PUT has been called before in the Natural
session, all values are zero or blank.

P
(Put)

The values specified for the EntireX parameters
are saved and used in all subsequent calls to
EntireX.

ENVIRONMENT A01 I Environment; possible values are:

S Server

C Client

B Both

COMPRESSLEVEL A01 I/O Compression level.

ENCRYPTION-LEVEL I01 I/O Encryption level.

ACIVERS B02 O ACI version used.

RC B01 O Return code, unless equal to zero. Contains the ACI
version required to set the requested parameter:

0 Function successful.

6 Encryption level requires ACI version 6.

7 Compression level requires ACI version 7.

3. The interface can be called in two ways:

1. From within a program:

CALLNAT ’USR4009N’ FUNCTION ENVIRONMENT
 COMPRESSLEVEL
 ENCRYPTION-LEVEL
 ACIVERS RC

2. From the command prompt or by using the statement STACK with values for the above
parameters.

Examples:

USR4009P P,C,ENCRYPTION-LEVEL=1
USR4009P P,C,,2
USR4009P P,C,ENCRYPTION-LEVEL=1,COMPRESSLEVEL=6

In command mode, you may use the keyword=value notation to set only a subset of the EntireX
parameters. The values for parameters that are not referenced remain unchanged.

20

Setting/Getting Parameters for EntireXOperating a Natural RPC Environment

Notes:

The request is rejected and no values are saved if the ACI version used by the current Natural session
is not high enough to support the requested EntireX parameter. In this case the RC contains the
required ACI version.

The EntireX parameters are only honored by the Natural RPC.

Handling Errors
Remote Error Handling

Avoiding Error Message NAT3009 from Server Program

User Exit NATRPC01

Remote Error Handling

Any Natural error on the server side is returned to the client as follows:

Natural RPC moves the appropriate error number to the *ERROR-NR system variable.

Natural reacts as if the error had occurred locally.

Note:
If profile parameter AUTORPC is set to ON and a subprogram cannot be found in the local environment,
Natural will interpret this as a remote procedure call. It will then try to find this subprogram in the service
directory. If it is not found there, a NAT6972 error will be issued. As a consequence, no NAT0082 error
will be issued if a subprogram cannot be found.

See also Using the RPCERR Program.

Avoiding Error Message NAT3009 from Server Program

If a server application program does not issue a database call during a longer period of time, the next
database call might return a NAT3009 error message.

To avoid this problem, proceed as follows:

1. Add a FIND FIRST or HISTOGRAM statement in program NATRPC39, library SYSRPC.

2. Copy the updated program to library SYSTEM on FUSER.

The steplib concatenation of the library to which the server currently is logged on is not evaluated.

User Exit NATRPC01

The user exit NATRPC01 is called when a Natural error has occurred, actually after the error has been
handled by the Natural RPC runtime and immediately before the response is sent back to the client. This
means, the exit is called at the same logical point as an error transaction, that is, at the end of the Natural
error handling, after all ON ERROR statement blocks have been processed.

21

Operating a Natural RPC EnvironmentHandling Errors

In contrast to an error transaction, this exit is called with a CALLNAT statement and must therefore be a
subprogram which must return to its caller.

The interface to this exit is similar to the interface of an error transaction. In addition, the exit can pass
back up to 10 lines of information which will be traced by the Natural RPC runtime. Only lines which
begin with a non-blank character will be traced.

Important Notes:

1. NATRPC01 must be located in library SYSTEM on FUSER. The steplib concatenation of the library
to which the server currently is logged on is not evaluated.

2. The DEFINE DATA PARAMETER statement block must not be changed.

User Exits before and after Service Execution
To give administrators more control over the execution of services (remote CALLNATs), two optional
user exits are called on the Natural RPC server side.

User Exit Purpose

NATRPC02The optional before-service-execution exit NATRPC02 is called immediately before the
service is executed. At this point in time, the request has already passed all security
checks and the data is unmarshalled.

NATRPC03The optional after-service-execution exit NATRPC03 is called immediately after
successful return from the service. At this point in time, the data is not yet marshalled.
The exit is not called if an unhandled error has occurred.

These exits are independent of each other and can be used separately.

For both exits, the following rules apply:

The exit must be located in library SYSTEM on the FUSER system file.

If the exit is found during startup of the Natural RPC server, a message is written to the Natural RPC
server trace to indicate the activation of the exit. The exit is afterwards called unconditionally. If the
exit is removed during the lifetime of the server session, a permanent NAT0082 error will occur.

If the exit is not found during startup of the Natural RPC server, the exit is never called during the
lifetime of the server session. The exit cannot be enabled dynamically.

The exit must be implemented by the user as a subprogram. The exit is called with a single dynamic
variable as parameter. The content of the dynamic variable is the eight character long name of the
remote subprogram.

The use of the dynamic variable allows us to implement future extensions of the passed information
without causing problems with existing user written exits.

The exit is also called inside a conversation.

22

User Exits before and after Service ExecutionOperating a Natural RPC Environment

The Natural RPC server does not intercept unhandled errors in the exit. If an unhandled error occurs
in the exit, the error is propagated to the client.

The exits may be used for auditing or tracing purposes. NATRPC02 may also be used for addional
security checks.

Example for NATRPC02:

DEFINE DATA PARAMETER
1 SUBPROGRAM (A8) BY VALUE
END-DEFINE
IF *USER <> ’DBA’ AND SUBPROGRAM = ’PRIVATE’
 *ERROR-NR := 999
END-IF
END

23

Operating a Natural RPC EnvironmentUser Exits before and after Service Execution

	Operating a Natural RPC Environment
	Specifying RPC Server Addresses
	Using Local Directory Entries
	Using Remote Directory Entries
	Specifying a Default Server Address at Natural Startup
	Specifying a Default Server Address within a Natural Session
	Using an Alternative Server
	Using EntireX Location Transparency

	Stubs and Automatic RPC Execution
	Creating Stub Subprograms
	Working with Automatic Natural RPC Execution

	Modifying RPC Profile Parameters during a Natural Session
	Executing Server Commands
	Logon to a Server Library
	Using the Logon Option
	Logging on to a Different Library
	Settings Required on the Client Side
	Settings Required on the Server Side

	Using Compression
	Using Secure Socket Layer
	Monitoring the Status of an RPC Session
	Using the RPCERR Program
	Example of an RPC Error Display: RPCERROR

	Using the RPCINFO Subprogram
	Example:
	Parameters of RPC Info

	Using the Server Trace Facility
	Activating/Deactivating the Server Trace Facility
	Support of TS=ON for RPC Server Trace

	Defining the Trace File
	Trace File Handling for Mainframe Environments - General Information
	Trace File Handling in z/OS Batch Mode
	a) Running A Server As Single Task
	Example:
	b) Running a Server With Replicas
	Example:
	Trace File Handling under CICS
	Examples:
	Trace File Handling in z/VSE Batch Mode
	Example:
	Trace File Handling in BS2000/OSD Batch Mode
	Example:
	Trace File Handling for UNIX and OpenVMS Environments
	Example for UNIX:
	Example for OpenVMS:
	Trace File Handling for Windows

	Retrieving Runtime Settings of a Server
	Setting/Getting Parameters for EntireX
	
	Notes:

	Handling Errors
	Remote Error Handling
	Avoiding Error Message NAT3009 from Server Program
	User Exit NATRPC01
	Important Notes:

	User Exits before and after Service Execution
	
	Example for NATRPC02:

