
Natural Studio Interfaces
This chapter covers the following topics:

Root Interface

Interface Structure

Working with Control Bars

Working with Node Types

Working with Selections

Working with Natural Development Objects

Working with Generic Text Documents

Working with Generic Documents

Working with Tree Views and List Views

Working with Result Views

Working with Environments

Working with Applications

Working with Plug-ins

Working with Dialogs

Root Interface
Plug-ins access Natural Studio functionality through an Automation interface. All individual interfaces
that form the Natural Studio Automation interface can be reached from the root interface,
INatAutoStudio . A handle to this interface is passed to each plug-in during activation and
deactivation.

Interface Structure
The following tree diagram shows the hierarchical structure of the Automation interface:

INatAutoStudio

 INatAutoObjects

 INatAutoDataAreas

 INatAutoDataArea

 INatAutoDialogs

 INatAutoDialog

 INatAutoPrograms

1

Natural Studio Interfaces Natural Studio Interfaces

 INatAutoProgram

 INatAutoGenericDocuments

 INatAutoGenericDocument

 INatAutoGenericTexts

 INatAutoGenericText

 INatAutoObjectLists

 INatAutoObjectList

 INatAutoObjectTrees

 INatAutoObjectTree

 INatAutoObjectTreeNode

 INatAutoSelectedObjects

 INatAutoSelectedObject

 INatAutoRefreshObject

 INatAutoControlBars

 INatAutoImages

 INatAutoCommands

 INatAutoCommand

 INatAutoToolBars

 INatAutoToolBar

 INatAutoFrameMenus

 INatAutoFrameMenu

 INatAutoPopupMenu

 INatAutoContextMenus

 INatAutoContextMenu

 INatAutoPopupMenu

 INatAutoTypes

 INatAutoNodeTypes

 INatAutoNodeType

 INatAutoNodeImages

 INatAutoPlugIns

 INatAutoPlugIn

 INatAutoResultViews

 INatAutoResultView

 INatAutoSystem

 INatAutoEnvironments

 INatAutoEnvironment

 INatAutoNatparm

 INatAutoNatsvar

 INatAutoApplications

 INatAutoApplication

 INatAutoLinkedApplications

2

Interface StructureNatural Studio Interfaces

 INatAutoEnvironment

 INatAutoSysmain

 INatAutoProgressIndicator

Working with Control Bars
Natural Studio users access plug-in functionality by using commands. A plug-in identifies each command
by a number. The number can be freely chosen, but must of course be unique per plug-in. A command can
have a caption and an image assigned. Caption and image represent the command in menus and toolbars.

To provide a command to the user, a plug-in first creates an INatAutoCommand interface in the
INatAutoCommands collection:

send " Add" to #commands
with 4711 "MyCommand" #myImage
return #myCommand

While creating the command, in the above example the plug-in refers to an image #myImage . This image
is used to represent the command visually in menus and toolbars. The plug-in may have loaded the image
before, using the method INatAutoImages::LoadImage :

send " LoadImage " to #images
with "e:\images\myimage.bmp"
return #myImage

This results in an IPictureDisp interface that can be passed to the method
INatAutoCommands::Add . The IPictureDisp interface is a predefined interface in Windows. An
IPictureDisp interface can be created in Natural using the method
INatAutoImages::LoadImage .

Alternatively, the plug-in can pass the image file name directly to the method
INatAutoCommands::Add :

send " Add" to #commands
with 4711 "MyCommand" "e:\images\myimage.bmp"
return #myCommand

When the user later chooses the command in a menu or toolbar, the plug-in is notified by using the
method INaturalStudioPlugIn::OnCommand .

But in order to make the command accessible to users in the first place, the plug-in must insert it into a
menu or toolbar. We show this with a toolbar as example. Here the plug-in first locates the Tools toolbar.
Then it inserts the previously created command into the toolbar.

send " Item " to #toolbars
with "Tools"
return #toolsToolbar
send " InsertCommand " to #toolsToolbar
with #myCommand

The plug-in needs to create the command only once and can then assign it to different toolbars or menus.

3

Natural Studio Interfaces Working with Control Bars

The plug-in might as well create its own toolbar and add the command to this toolbar:

send " Add" to #toolbars
with "MyToolbar"
return #myToolbar
send " InsertCommand " to #myToolbar
with #myCommand

We saw the plug-in use the interfaces INatAutoCommands , INatAutoImages and other interfaces.
But how does the plug-in get access to these interfaces in the first place? The plug-in accesses them by
querying properties of the root interface, INatAutoStudio . A handle to this interface is passed to each
plug-in during activation and deactivation. From this interface the plug-in can navigate to any other
section of the Natural Studio Automation interface.

To work with control bars, a plug-in uses the interfaces described in the following sections:

INatAutoControlBars
INatAutoImages
INatAutoCommands
INatAutoCommand
INatAutoToolBars
INatAutoToolBar
INatAutoContextMenus
INatAutoContextMenu
INatAutoFrameMenus
INatAutoFrameMenu
INatAutoPopupMenu

Working with Node Types
Natural Studio frequently uses tree views and list views to display development objects and to navigate
through them. Each node in a tree view or list view is characterized by a node type. The node type defines
how nodes of a given type are represented in the user interface.

Each node type is identified by an integer number. A development object belonging to a given node type
is identified by the number of that node type and by an alphanumeric key. The format of the key varies
from node type to node type.

Plug-ins that wish to create their own tree views and list views in Natural Studio can refer to the
predefined node types. In addition, plug-ins can define their own node types and can then refer to these
user-defined node types.

The following topics are covered below:

Predefined Node Types

User-defined Node Types

4

 Working with Node TypesNatural Studio Interfaces

Predefined Node Types

The built-in Natural Studio development objects such as program, dialog, class, library or application have
a predefined node type and key format. Many interfaces and methods in the Natural Studio Automation
interface refer to the predefined node types. The full list of available predefined node types and the format
of their keys is defined in the following tables.

Predefined Node Types

Node
Type
Number

Node Type Name Key Format

1001 Parameter data area NATID

1002 Copycode NATID

1003 DDM NATID

1004 Global data area NATID

1005 Helproutine NATID

1006 Local data area NATID

1007 Map NATID

1008 Subprogram NATID

1009 Program NATID

1010 Subroutine NATID

1011 Text NATID

1012 View NATID

1013 Dialog NATID

1014 Class NATID

1015 Command processor NATID

1016 Adapt view NATID

1017 Mainframe DDM DDMID

1018 Function NATID

1019 Shared resource RESID

1020 Error message file NATID

1021 Adapter NATID

1051 Parameter data area (in application) NATID

1052 Copycode (in application) NATID

1053 DDM (in application) NATID

1054 Global data area (in application) NATID

5

Natural Studio InterfacesPredefined Node Types

Node
Type
Number

Node Type Name Key Format

1055 Helproutine (in application) NATID

1056 Local data area (in application) NATID

1057 Map (in application) NATID

1058 Subprogram (in application) NATID

1059 Program (in application) NATID

1060 Subroutine (in application) NATID

1061 Text (in application) NATID

1062 View (in application) NATID

1063 Dialog (in application) NATID

1064 Class (in application) NATID

1065 Command processor (in application) NATID

1066 Adapt view (in application) NATID

1067 Mainframe DDM (in application) DDMID

1068 Function (in application) NATID

1069 Shared resource (in application) RESID

1070 Error message file (in application) NATID

1071 Adapter (in application) NATID

1101 System file FILEID

1102 Natural system file FILEID

1103 User system file FILEID

1104 DDM system file FILEID

1111 Library LIBID

1112 Library (in application) LIBID

1121 Environment BSTR

1131 Base application BSTR

1132 Compound application BSTR

1141 Application server BSTR

Format NATID

6

Predefined Node TypesNatural Studio Interfaces

Syntax Description

name library fnr dbnr Identifies the Natural development object with the given name
in the given library in the given system file. The individual
parts of the identifier are separated by spaces.

name library Identifies the Natural object with the given name in the given
library. The system file is then determined from the library
according to the usual Natural logic, depending on the library
name. The individual parts of the identifier are separated by
spaces.

name Identifies the Natural object with the given name in the
current logon library.

Format RESID

Syntax Description

name/library/fnr/dbnr Identifies the shared resource with the given name in the
given library in the given system file. The individual parts of
the identifier are separated by slashes.

name/library Identifies the shared resource with the given name in the
given library. The system file is then determined from the
library according to the usual Natural logic, depending on the
library name. The individual parts of the identifier are
separated by slashes.

name Identifies the shared resource with the given name in the
current logon library.

Format DDMID

Syntax Description

name fnr dbnr Identifies the mainframe DDM with the given name in the
given FDIC system file. The individual parts of the identifier
are separated by spaces.

name Identifies the mainframe DDM with the given name in the
current FDIC system file.

Format LIBID

7

Natural Studio InterfacesPredefined Node Types

Syntax Description

name fnr dbnr Identifies the Natural library with the given name in the given
system file. The individual parts of the identifier are separated
by spaces.

name Identifies the Natural library with the given name. The system
file is then determined from the library according to the usual
Natural logic, depending on the library name.

Format FILEID

Syntax Description

fnr dbnr Identifies the Natural system file with the given numbers. The
individual parts of the identifier are separated by spaces.

Example

Assume that in a certain development environment, we have a system file with the database number "101"
and the file number "99", containing a library MYLIB with a program MYPROG.

In the given environment

the program is identified by the node type 1009 and the key "MYPROG MYLIB 99 101",

the library is identified by the node type 1111 and the key "MYLIB 99 101",

the system file is identified by the node type 1103 and the key "99 101".

User-defined Node Types

Plug-ins can define their own node types. This is useful if a plug-in wants to display tree views or list
views of development objects not belonging to the predefined set of Natural Studio objects. An example is
the Object Description plug-in. It is also useful for plug-ins that want to display certain aspects of Natural
Studio objects not covered by built-in Natural Studio functionality. An example is the XRef Evaluation
plug-in.

When defining its own node type, a plug-in is free to choose an arbitrary positive integer value starting
with "20000". Values below "20000" are reserved for predefined node types. It does not matter if different
plug-ins chose the same integer value for a node type. Internally, Natural Studio distinguishes the node
types by their numbers and by the plug-in that defined the node type.

The plug-in is free to define the key format for each user-defined node type. Natural Studio does not
interpret the keys of user-defined node types, but treats them as opaque strings.

To define new node types and their visual representations, a plug-in uses the interfaces described in the
following sections:

INatAutoTypes
INatAutoNodeImages
INatAutoNodeTypes
INatAutoNodeType

8

User-defined Node TypesNatural Studio Interfaces

Working with Selections
Through the interfaces described in this section, plug-ins can access the set of objects the user has
currently selected in Natural Studio. A plug-in might need this information to decide if a specific menu or
toolbar command is applicable to the current selection and must hence be enabled in the user interface. If
the user then executes the command, the plug-in again needs to know the set of selected objects in order to
apply the command to each of them. A plug-in has access to the current selection through the interfaces
described in this section.

In order to work with the current selection, a plug-in starts with the root interface INatAutoStudio ,
retrieves the INatAutoObjects interface and then the INatAutoSelectedObjects interface.
We assume here that the plug-in has kept a handle to the interface INatAutoStudio in a variable
named #studio . This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::OnActivate .

#objs := #studio. Objects
#selobjs := #objs. SelectedObjects

The returned INatAutoSelectedObjects interface gives access to the set of objects the user has
currently selected. Using this interface, the plug-in can, for instance, iterate across the selected objects and
inspect them. The method Item returns an INatAutoSelectedObject interface to a specific
selected object.

#iCount := #selobjs. Count
for #i := 1 to #iCount
 send " Item " to #selobjs
 with #i return #selobj
 #iType := #selobj. Type
 #aKey := #selobj. Key
end-for

The property FocusObject returns the index of the specific selected object that currently has the focus.
This index can be used to retrieve the INatAutoSelectedObject interface of the focus object.

#iFocus := #selobjs. FocusObject
send " Item " to #selobjs
with #iFocus return #focus

The method ContainsObjectType can be used for a quick check if the current selected set contains
objects of a specific type. This might be sometimes sufficient to decide if a specific command shall be
enabled or not.

send " ContainsObjectType " to #selobjs
with 1009 return #bContainsPrograms

For specific checks the plug-in can also retrieve and process the current selection as an XML document.

#aSelectedObjectsXML := #selobjs. SelectedObjects

To work with selections, a plug-in uses the interfaces described in the following sections:

INatAutoObjects
INatAutoSelectedObjects
INatAutoSelectedObject

9

Natural Studio Interfaces Working with Selections

Working with Natural Development Objects
Through the interfaces described in this section, plug-ins can create and edit Natural development objects.
Being able to create new development objects, load existing objects into an editor, manipulate their
contents and to save and stow them, enables plug-ins to provide generation functions and thus to help
automating the development process. An example is the Program Generation plug-in.

To open a program in the program editor, for instance, a plug-in starts with the root interface
INatAutoStudio , retrieves the INatAutoObjects interface and then the INatAutoPrograms
interface. Now it uses the method INatAutoPrograms::Open to load the program into the editor.

We assume here that the plug-in has kept a handle to the interface INatAutoStudio in a variable
named #studio . This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::OnActivate .

#objects := #studio. Objects
#programs := #objects. Programs
send " Open" to #programs
with 1009 "MYPGM" "MYLIB" return #program

The resulting INatAutoProgram interface can now be used to operate on the program, for instance, to
stow it and then to close the editor.

send " Stow " to #program
send " Close " to #program

A new program source is created by using the method Add.

send " Add" to #programs
with 1009 return #program

Source code is added to the program either as a whole by using the property Source :

#program. Source := "WRITE ""HELLO, WORLD!"" END

Or incrementally by using the method InsertLines .

send " InsertLines " to #program
with "WRITE ""HELLO, WORLD!" #return #next
send "InsertLines" to #program
with "END" #next return #next

The interface INatAutoProgram provides also search and replace methods and other methods to
modify the source code.

send " Search " to #program
with "HELLO" return #found
send " ReplaceLines " to #program
with "WRITE ""Good morning" #found

Dialogs and data areas are accessed in a similar way by using the interfaces INatAutoDialog and
INatAutoDataArea . But there is one particularity with these objects: Even though there is a graphical
or structured editor in the user interface for these objects, they are edited textually through the Automation
interface. Applied to data areas this means: If a plug-in wants to generate a data area, it actually has to
generate a DEFINE DATA statement.

10

 Working with Natural Development ObjectsNatural Studio Interfaces

#objects := #studio. Objects
#dataareas := #objects. DataAreas
send " Add" to #dataareas
with 1006 return #lda
*
send " StartEdit " to #lda
send " InsertLines " to #lda
with "DEFINE DATA LOCAL" return #next
send "InsertLines" to #lda
with "1 MYSTRING(A10)" #next return #next
send "InsertLines" to #lda
with "1 MYNUMBER(I4)" #next return #next
send "InsertLines" to #lda
with "END-DEFINE" #next return #next
send " EndEdit " to #lda
*
send " Stow " to #lda
send " Close " to #lda

The calls to the methods INatAutoDataArea::StartEdit and
INatAutoDataArea::EndEdit are used to mark the beginning and end of a series of editing
operations.

To work with Natural development objects, a plug-in uses the interfaces described in the following
sections:

INatAutoObjects
INatAutoPrograms
INatAutoProgram
INatAutoDialogs
INatAutoDialog
INatAutoDataAreas
INatAutoDataArea

Working with Generic Text Documents
Through the interfaces described in this section, plug-ins can use the Natural Studio program editor as
editor for arbitrary text objects. A plug-in can open a program editor session, pass a buffer with text data
to it, let the user edit the data and then retrieve the modified data back. The plug-in itself is responsible for
providing and storing the data to be edited. The program editor provides the usual editing functions, as far
as they are appropriate for generic text objects.

To let the user edit a given text in the program editor, a plug-in starts with the root interface
INatAutoStudio , retrieves the INatAutoObjects interface and then the
INatAutoGenericTexts interface. Now it uses the method INatAutoGenericTexts::Open to
load the text buffer into the editor.

We assume here that the plug-in has kept a handle to the interface INatAutoStudio in a variable
named #studio . This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::OnActivate . Also we assume that the text to be edited is contained in
the alphanumeric variable #buffer .

11

Natural Studio Interfaces Working with Generic Text Documents

#objects := #studio. Objects
#texts := #objects. GenericTexts
send " Open" to #texts
with "Curriculum Vitae" "Dana Scully" #buffer
return #text

The editor is then opened and the user can edit the text interactively.

The plug-in can use the resulting INatAutoGenericText interface to operate on the text, for instance,
to insert lines:

send " InsertLines " to #text
with "Taught for two years at Quantico Medical School"

If the user chooses the Save button in the editor, the plug-in receives the notification
PLUGIN-NOTIFY-SAVE. In response to this notification, it will usually retrieve the edited text from the
editor and save it.

#buffer := #text. Source
* Now save the text in a plug-in specific way.

To work with generic text documents, a plug-in uses the interfaces described in the following sections:

INatAutoGenericTexts
INatAutoGenericText
INatAutoObjects

Working with Generic Documents
A plug-in that maintains own development objects might want to provide its own editors for each of its
development object types. Editors in Natural Studio typically maintain development objects in MDI
(Multiple Document Interface) windows. In the following, we call them document windows. Natural
Studio has a number of built-in editors, for instance, the program editor and the dialog editor. A plug-in
can implement its own editor with a so-called generic document window.

Implementing such an editor as a generic document window makes the editor behave like the built-in
editors in Natural Studio. Essentially this means: Several editor windows on different objects can be
opened in parallel and the user can switch between them.

In order to implement a generic document window, you first create a Natural dialog of type "Plug-in MDI
window". In your plug-in code, you can then open this dialog with the OPEN DIALOG statement and let
Natural Studio display the dialog as a document window. Normally you will do this in the command
handler of your plug-in, that is in the method INaturalStudioPlugIn::OnCommand :

open dialog "mydlg" null-handle giving #dialogid
#objects := #studio. Objects
#genericdocs := #objects. GenericDocuments
send " Add" to #genericdocs with #dialogid return #doc

The resulting INatAutoGenericDocument interface can now be used to operate on the document
window.

12

 Working with Generic DocumentsNatural Studio Interfaces

The plug-in has several other means to communicate with the Natural dialog contained in the generic
document window:

The plug-in can send events to the dialog with the SEND EVENT statement and using the dialog ID.

The dialog can send method calls to the plug-in. To achieve this, the plug-in should pass its own
*THIS-OBJECT handle to the dialog in the OPEN DIALOG statement.

The dialog can call the Natural Studio Automation interface. To achieve this, the plug-in should pass
the INatAutoStudio interface pointer to the dialog in the OPEN DIALOG statement.

Whenever the user activates a document window, Natural Studio automatically switches the frame menu
to a menu that contains the commands applicable to the active document. In the case of built-in document
windows, these frame menus are predefined. In the case of a generic document window, the plug-in itself
can provide an appropriate frame menu.

The plug-in can create a frame menu of its own by cloning an existing frame menu using the method
INatAutoFrameMenus::Clone and adding new commands to the clone as necessary using the
method INatAutoFrameMenu::InsertCommand .

Afterwards it passes the resulting INatAutoFrameMenu interface to Natural Studio when calling the
method INatAutoGenericDocuments::Add .

To work with generic documents, a plug-in uses the interfaces described in the following sections:

INatAutoGenericDocuments
INatAutoGenericDocument
INatAutoObjects

Working with Tree Views and List Views
Through the interfaces described in this section, a plug-in can display its own tree views and list views in
Natural Studio. Tree views and list views are frequently used in Natural Studio to display development
objects and to navigate through them.

In order to display objects in tree views and list views, the plug-in must first register the types of the tree
or list view nodes that it is going to display. This procedure is described in Working with Node Types.

A plug-in that displays objects in tree views and list views must also implement the methods of the
interface INaturalStudioPlugInTree appropriately. Natural Studio calls the methods of this
interface when expanding or refreshing the tree.

In order to open a tree view, the plug-in starts with the root interface INatAutoStudio , retrieves the
INatAutoObjects interface and then the INatAutoObjectTrees interface. We assume here that
the plug-in has kept a handle to the interface INatAutoStudio in a variable named #studio . This
handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::OnActivate .

#objs := #studio. Objects
#trees := #objs. ObjectTrees

13

Natural Studio Interfaces Working with Tree Views and List Views

The resulting INatAutoObjectTrees interface gives access to the currently open tree view document
windows. Through this interface the plug-in can open a new tree view with a given root object.

send " Open" to #trees
with #type #key #caption
return #tree

The node type specified in the method Open must have been registered before, as described in Working
with Node Types. The INatAutoObjectTree interface returned from the method Open gives access
to the tree view document window just opened. Through this interface the plug-in can, for instance, later
close the document window.

send " Close " to #tree

When opening a tree view, the plug-in specifies at least the type and key of the root object and a caption to
be displayed on the tree view document window. Natural Studio will retrieve additional information
needed to expand the tree view by using the interface INaturalStudioPlugInTree that must be
implemented by the plug-in.

The nodes of a tree view can be accessed through the interface INatAutoObjectTreeNode . The root
node of a tree view is retrieved with the method INatAutoObjectTree::GetRootNode , which
returns an interface INatAutoObjectTreeNode . This interface can then be used, for instance, to
expand the node and to access the child nodes. In the same way, the currently selected node of a tree view
can be retrieved.

send " GetRootNode " to #tree
return #rootnode
send " Expand " to #rootnode
send " GetChild " to #rootnode
return #firstchildnode
send " GetNext " to #firstchildnode
return #nextchildnode
send " Expand " to #nextchildnode
send " GetSelectedNode " to #tree
return #selectednode
send " Expand " to #selectednode

The interface INatAutoObjectTreeNode controls only the visual appearance of an individual tree
view, not the underlying object structure, which is possibly represented differently in several views at a
time. The object structure itself is under the control of the plug-in that defines and provides it through its
INaturalStudioPlugInTree interface.

List view document windows are created in a similar way as tree view document windows, except that the
interface INatAutoObjectLists is used instead of INatAutoObjectTrees .

To work with tree views and list views, a plug-in uses the interfaces described in the following sections:

INatAutoObjects
INatAutoObjectTrees
INatAutoObjectTree
INatAutoObjectTreeNode
INatAutoObjectLists
INatAutoObjectList
INatAutoRefreshObject

14

 Working with Tree Views and List ViewsNatural Studio Interfaces

Working with Result Views
Through the interfaces described in this section, a plug-in can display the results of its work in the Natural
Studio result view. Objects displayed in a result view can be target of commands and can be used as
starting point for navigation. Examples of built-in functions that use result views are the Cat All
command and the Find command.

In order to display objects in result views, the plug-in must first register the types of nodes that it is going
to display. This procedure is described in the section Working with Node Types.

In order to work with result views, the plug-in starts with the root interface INatAutoStudio and
retrieves the INatAutoResultViews interface. We assume here that the plug-in has kept a handle to
the interface INatAutoStudio in a variable named #studio . This handle was passed to the plug-in
during activation, in the method INaturalStudioPlugIn::OnActivate .

#resultviews := #studio. ResultViews

The resulting INatAutoResultViews interface gives access to the result view control bar and the
currently open result views. The plug-in can use this interface, for instance, to show or hide the result
view control bar.

send " Show" to #resultviews

Through the interface INatAutoResultViews the plug-in can open a new result view.

send " Open" to #resultviews
with #caption #image #headers
return #resultview

When opening a result view, the plug-in specifies a caption and an image to be displayed on the result
view tab and (if needed) column headers for the result view.

The INatAutoResultView interface returned from the method Open gives access to the result view
just opened. Through this interface the plug-in can activate the result view, insert rows into it and update
the display. The method SetVisible scrolls a specific row into view.

#resultview. Active := true
send " InsertRows " to #resultview
with #rows return #last
send " Update " to #resultview
send " SetVisible " to #resultview
with #last

Finally the plug-in can close its result view.

send " Close " to #resultview

To work with result views, a plug-in uses the interfaces described in the following sections:

INatAutoResultViews
INatAutoResultView

15

Natural Studio Interfaces Working with Result Views

Working with Environments
Through the interfaces described in this section, plug-ins can inspect the available local and remote
development environments, map environments, connect to and disconnect from a remote environment and
activate an environment.

In order to work with environments, a plug-in starts with the root interface INatAutoStudio , retrieves
the INatAutoSystem interface and then the INatAutoEnvironments interface. We assume here
that the plug-in has kept a handle to the interface INatAutoStudio in a variable named #studio .
This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::OnActivate .

#system := #studio. System
#envs := #system. Environments

The returned INatAutoEnvironments interface gives access to the local environment and all remote
environments that have once been connected during the current Natural Studio session.

Through this interface the plug-in can, for instance, map a new remote environment, specifying host
name, port number, user ID, password and other arguments.

send " Add" to #envs
with "IBM2" "4712" "SCULLY" "secret" "STACK=(LOGON XFILES)"
return #env

The returned interface INatAutoEnvironment gives access to attributes of the environment.

#bIsActive := #env. Active
#bIsConnected := #env. Connected

The property Parameters gives access to the interface INatAutoNatparm . This interface contains
properties that represent the Natural parameters under which the environment is running. Only a subset of
the Natural parameters is available through this interface.

#natparm := #env. Parameters
#fuserDBnr := #natparm. FuserDBnr
#fuserFnr := #natparm. FuserFnr

The property SystemVariables gives access to the interface INatAutoNatsvar . This interface
contains properties that represent the system variables currently set in the environment. Only a subset of
the system variables is available through this interface.

#natsvar := #env. SystemVariables
#language := #natsvar. Language

The plug-in uses the method Disconnect to disconnect from the remote environment.

send "Disconnect" to #env

To work with environments, a plug-in uses the interfaces described in the following sections:

INatAutoEnvironments
INatAutoEnvironment
INatAutoSystem
INatAutoNatparm

16

 Working with EnvironmentsNatural Studio Interfaces

INatAutoNatsvar

Working with Applications
Through the interfaces described in this section, plug-ins can inspect the applications available on the
application server, map applications into the Natural Studio session, connect to and disconnect from an
application, activate an application and create and modify applications. An example of a plug-in that uses
this section of the interface is the Application Wizard.

In order to work with applications, the plug-in starts with the root interface INatAutoStudio , retrieves
the INatAutoSystem interface and then the INatAutoApplications interface. We assume here
that the plug-in has kept a handle to the interface INatAutoStudio in a variable named #studio .
This handle was passed to the plug-in during activation, in the method
INaturalStudioPlugIn::OnActivate .

#system := #studio. System
#apps := #system. Applications

The resulting INatAutoApplications interface gives access to the currently active application
server and the applications it contains. Through this interface the plug-in can, for instance, ask for the
currently active application.

#app := #apps. ActiveApplication

The plug-in can also create a new application and map it into the Natural Studio session.

send " Add" to #apps
with "MYAPPLICATION" return #app

The resulting INatAutoApplication interface gives access to attributes of the application.

#bIsActive := #app. Active
#bIsConnected := #app. Connected

For a compound application, the property LinkedApplications returns the interface
INatAutoLinkedApplications . This interface allows accessing the base applications that are
linked to the compound application.

#linkedapps:= #app. LinkedApplications
#iCount := #linkedapps. Count

For a base application, the property LinkedObjects returns an XML document containing the list of
objects linked to the application.

#aObjects:= #app. LinkedObjects

The plug-in can also link and unlink objects to and from the application.

send " UnlinkObject " to #app
with 1009 "OLDPROG" "MYLIB"
send " LinkObject " to #app
with 1009 "NEWPROG" "MYLIB"

17

Natural Studio Interfaces Working with Applications

Finally the plug-in can disconnect and unmap the application.

send " Disconnect " to #app
send " Unmap" to #app

To work with applications, a plug-in uses the interfaces described in the following sections:

INatAutoApplications
INatAutoApplication
INatAutoLinkedApplications

Working with Plug-ins
Through the interfaces described in this section, a plug-in can inspect the currently installed plug-ins, read
their properties and activate or deactivate a plug-in. This includes the possibility that a plug-in deactivates
itself. An example for a plug-in that uses this section of the interface is the Plug-in Manager.

In order to work with plug-ins, the plug-in starts with the root interface INatAutoStudio and retrieves
the interface INatAutoPlugIns . We assume here that the plug-in has kept a handle to the interface
INatAutoStudio in a variable named #studio . This handle was passed to the plug-in during
activation, in the method INaturalStudioPlugIn::OnActivate .

#plugins := #studio. PlugIns

The resulting INatAutoPlugIns interface gives access to the currently installed plug-ins. Using this
interface, the plug-in can, for instance, iterate across the installed plug-ins and inspect their attributes. The
method Item returns an INatAutoPlugIn interface to a specific plug-in.

#iCount := #plugins. Count
for #i := 1 to #iCount
 send " Item " to #plugins
 with #i return #plugin
 #aName := #plugin. Name
 #aProgID := #plugin. ProgID
 #bIsActive := #plugin. Active
end-for

Through the interface INatAutoPlugIn the plug-in can also activate or deactivate a specific plug-in by
modifying the property Active . The following sample toggles the activation state of a plug-in.

#bIsActive := #plugin. Active
if #bIsActive
 #plugin.Active := false
else
 #plugin.Active := true
end-if

The interface INatAutoPlugIn can be used to send a command to the plug-in. The following sample
checks whether the plug-in command with the ID "200" is currently enabled and if so, lets the plug-in
execute the command. Of course this requires that we know that the plug-in implements a command with
the ID "200" and what this command does.

18

Working with Plug-insNatural Studio Interfaces

#bEnabled = false
#bChecked := false
send " OnCommandStatus " to #plugin
with 200 #bEnabled #bChecked
if #bEnabled
 send " OnCommand" to #plugin with 200
end-if

Through the interface INatAutoPlugIn , the plug-in can get access to arbitrary services that another
plug-in provides with a so-called custom interface. The following sample retrieves the custom interface of
a plug-in and calls one of its services. Of course this requires that the plug-in has documented the services
it provides with its custom interface.

#icustom := null-handle
send " GetCustomInterface "
to #plugin return #icustom
if #icustom ne null-handle
 #result := 0
 send "GetMaritalStatus" to #icustom
 with "Anderson, Gillian" return #result
end-if

In order to provide a custom interface, a plug-in must implement an additional interface beside the two
predefined interfaces INaturalStudioPlugIn and INaturalStudioPlugInTree and make
this interface the default dispatch interface. For a plug-in implemented in Natural this means placing this
interface at the first position in the DEFINE CLASS statement.

define class ...
 object using ...
 id "..."
 interface icustom
 id "..."
 method GetMaritalStatus id 1 is gstat-n
 parameter using gstat-a
 end-method
 end-interface
 interface using nstplg-i
 interface using nstplt-i
end-class
end

To work with plug-ins, a plug-in uses the interfaces described in the following sections:

INatAutoPlugIns
INatAutoPlugIn

Working with Dialogs
If a plug-in wants to open dialog boxes in Natural Studio, some special considerations have to be taken.
The support of dialog boxes in plug-ins depends mainly on the condition if the plug-in is running in as an
in-process ActiveX component or if it is running in a separate process.

The following topics are covered below:

19

Natural Studio Interfaces Working with Dialogs

Plug-ins Running in a Separate Process

Plug-ins Running In-process

Plug-ins Running in a Separate Process

In general, an ActiveX component running in a separate process cannot open a dialog box in the client
process. This restriction of the Windows system itself is overcome in the special case that a plug-in is
written in Natural.

If a plug-in is written in Natural, it can open modal dialog boxes in Natural Studio. Precisely this means:
Natural dialogs that are defined in the dialog editor with the Type attribute set to "Standard window" and
the Style attribute set to "Dialog box". Other styles of the dialog type "Standard window" cannot be used
in plug-ins.

To open a dialog box, a plug-in uses the usual OPEN DIALOG statement.

Plug-ins Running In-process

If a plug-in is implemented as an in-process ActiveX component (this means: as a DLL), it can open
modal and non-modal dialogs in Natural Studio. To open a dialog, the plug-in uses the statements usual in
the programming language it is written in. Plug-ins written in Natural always run in a separate process, so
this applies only to plug-ins written in programming languages that support implementing in-process
ActiveX components.

For details on how to implement plug-ins in programming languages other than Natural, see Developing
Plug-ins in Other Programming Languages.

20

Plug-ins Running in a Separate ProcessNatural Studio Interfaces

	 Natural Studio Interfaces
	Root Interface
	Interface Structure
	 Working with Control Bars
	 Working with Node Types
	Predefined Node Types
	Predefined Node Types
	Format NATID
	Format RESID
	Format DDMID
	Format LIBID
	Format FILEID
	Example

	User-defined Node Types

	 Working with Selections
	 Working with Natural Development Objects
	 Working with Generic Text Documents
	 Working with Generic Documents
	 Working with Tree Views and List Views
	 Working with Result Views
	 Working with Environments
	 Working with Applications
	Working with Plug-ins
	 Working with Dialogs
	Plug-ins Running in a Separate Process
	Plug-ins Running In-process

