
Developing Plug-ins
This chapter covers the following topics:

Creating a Plug-in

Debugging a Plug-in

Deploying a Plug-in

Developing Plug-ins in Other Programming Languages

Creating a Plug-in
To create a new plug-in, proceed as described in the section Quick Start.

Debugging a Plug-in
Plug-ins written in Natural are running in server processes distinct from the process that runs Natural
Studio. Therefore, in order to debug a plug-in, remote debugging must be used. See the Debugger
documentation for information on how to set up and use remote debugging in general.

The following topics describe the specific activities required to debug a plug-in using the remote
debugger.

Single Server

Shared Server

Single Server

A plug-in that was created with the option Single server runs in its own Natural server process, distinct
from all other plug-ins. This Natural server process is started when the plug-in is activated in the Plug-in
Manager. In order to debug such a plug-in, this server process must be configured to run under the remote
debugger.

Plug-ins are running under the Natural parameter file NATPARM. Therefore, the following configuration
must be applied to the Natural parameter file NATPARM before activating the plug-in in the Plug-in
Manager:

RDACTIVE must be set to "ON" to enable remote debugging.

RDNODE must be set to the name of the machine where the Natural Remote Debugging Service is
running. Normally this is the machine you are working on.

RDPORT must be set to "2600" (default) or another port number, depending on which port you have
installed the Natural Remote Debugging Service.

1

Developing Plug-insDeveloping Plug-ins

See also Remote Debugging in the Configuration Utility documentation.

Now, when you activate the plug-in in the Plug-in Manager, the Natural debugger is started and stops on
the first statement in the plug-in’s method OnActivate . At this point, you can set breakpoints as
necessary.

Shared Server

A plug-in that was created without the option Single server runs in the same Natural server process as the
Plug-in Manager. This Natural server process is started when the Plug-in Manager is activated. This
happens during the start of the Natural Studio session. We call this mode "shared server". In order to
debug such a plug-in, this common server process must be configured to run under the remote debugger.

Plug-ins are running under the Natural parameter file NATPARM. Therefore, the following configuration
must be applied to the Natural parameter file NATPARM before starting Natural Studio:

RDACTIVE must be set to "ON" to enable remote debugging.

RDNODE must be set to the name of the machine where the Natural Remote Debugging Service is
running. Normally this is the machine you are working on.

RDPORT must be set to "2600" (default) or another port number, depending on which port you have
installed the Natural Remote Debugging Service.

See also Remote Debugging in the Configuration Utility documentation.

Now, when you start Natural Studio, the Natural debugger is started and stops on the first statement in the
Plug-in Manager’s method OnActivate . At this point, you can load the source code of your own
plug-in’s method OnActivate and set breakpoints as necessary.

Deploying a Plug-in
To deploy a plug-in written in Natural to other machines, the Object Handler is used. Start the Object
Handler, select all modules that belong to your plug-in and unload them into a sequential file. Do not
forget to unload the modules INSTALL and INSTAL-N along that were generated during the creation of
the plug-in. These modules are required to install the plug-in in the target environment.

In the target environment, load the sequential file again using the Object Handler. Execute the program
INSTALL in the plug-in library and restart Natural to make the new plug-in visible in the Plug-in
Manager.

Plug-ins written for a specific version of Natural Studio should only be installed under this version.

Developing Plug-ins in Other Programming Languages
Because Natural Studio plug-ins are ActiveX components, you can develop plug-ins in any language that
allows creating ActiveX components. This section contain some hints on how to proceed. Please refer to
the documentation of the respective development environment for details.

2

 Deploying a Plug-inDeveloping Plug-ins

 To develop a plug-in using Microsoft Visual Basic

1. Create a new project of type "ActiveX DLL".

2. Add references to the type libraries NATURALSTUDIOPLUGIN.TLB and
NATURALSTUDIOAUTO.TLB. These type libraries describe the Plug-in Interface and the Natural
Studio Interface respectively.

3. Add the following code to the class that implements your plug-in:

Implements INaturalStudioPlugIn
Implements INaturalStudioPlugInTree

4. Implement the interface methods. The method bodies may initially be left empty.

5. Build the project and register the resulting DLL using regsvr32 .

6. In order to make the ActiveX component visible in the Natural Studio Plug-in Manager, add an
additional registry entry as shown in the example below.

[HKEY_LOCAL_MACHINE\SOFTWARE\Software AG\Natural\ n.n\Plug-ins\{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}]
@="Visual Basic Minimal Plug-in"
"CLSID"="{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}"
"ProgID"="MinimalPlugIn.PlugInClass"

n.n in the first line of the above example stands for the current version number of Natural.

Replace both occurrences of the CLSID in the example by the CLSID of your ActiveX
component.

Replace the ProgID in the example by the ProgID of your ActiveX component.

The name in the line starting with @= will be displayed in the Plug-in Manager.

 To develop a plug-in using Microsoft Visual C++ and the ATL

1. Create an ATL project using the ATL COM Wizard.

2. Create an ATL object in the ATL project.

3. Choose Implement Interface….

4. Select the type library NATURALSTUDIOPLUGIN.TLB. This type library describes the Plug-in
Interface.

5. Select the interfaces INaturalStudioPlugIn and INaturalStudioPlugInTree .

6. Implement the interface methods. The method bodies may initially just return "S_OK".

7. Build the project and register the resulting DLL using regsvr32 .

8. In order to make the ActiveX component visible in the Natural Studio Plug-in Manager, add an
additional registry entry as shown in the example below.

3

Developing Plug-insDeveloping Plug-ins in Other Programming Languages

[HKEY_LOCAL_MACHINE\SOFTWARE\Software AG\Natural\ n.n\Plug-ins\{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}]
@="C++ ATL Minimal Plug-in"
"CLSID"="{617D1BE3-D1D8-4EAC-9633-4FF2842D8B6C}"
"ProgID"="MinimalPlugIn.PlugInClass"

n.n in the first line of the above example stands for the current version number of Natural.

Replace both occurrences of the CLSID in the example by the CLSID of your ATL component.

Replace the ProgID in the example by the ProgID of your ATL component.

The name in the line starting with @= will be displayed in the Plug-in Manager.

4

Developing Plug-ins in Other Programming LanguagesDeveloping Plug-ins

	Developing Plug-ins
	Creating a Plug-in
	 Debugging a Plug-in
	Single Server
	Shared Server

	 Deploying a Plug-in
	Developing Plug-ins in Other Programming Languages

