
Working with Image List Controls
This chapter covers the following topics:

Introduction

Creating the Image List Control

Adding Images

Composite Images

Scaling and Transparency

Bitmaps vs. Icons

Using an Image List

Referencing Images from the Image List

Overlay Images

Modifying Images

Deleting Images

Deleting the Image List Control

Introduction
An image list control is a container of ordered images that can be associated with particular control types,
such as list view and tree view controls. It allows images to be efficiently re-used by the control’s items
without the image being re-loaded from the disk each time. It also ensures that all images are compatible
(e.g., are of the same size and color organization).

Creating the Image List Control
Image list controls are created, as usual, via the ADD action:

PROCESS GUI ACTION ADD WITH
PARAMETERS
 HANDLE-VARIABLE = #IMGLST-1
 TYPE = IMAGELIST
 PARENT = #DLG$WINDOW
 STYLE = ’LS’
END-PARAMETERS GIVING *ERROR

An image list control may consist of up to two sets of images internally, one consisting of large images
(typically 32 by 32 pixels) and one consisting of small images (typically 16 by 16 pixels). Which of these
(if any) is created internally depends on the image list control’s "Large Images (L)" and "Small Images
(S)" STYLE flags. If neither of these flags are specified, a single set of images is created, with an explicit
image size as determined by the image list control’s ITEM-W and ITEM-H attribute values. If both of

1

Working with Image List ControlsWorking with Image List Controls

these are zero, small images are assumed.

Adding Images
Images are added to an image list by creating an image control, based on the required image (bitmap or
icon) file, as a child of the image list control:

PROCESS GUI ACTION ADD WITH
PARAMETERS
 HANDLE-VARIABLE = #IMG-1
 TYPE = IMAGE
 PARENT = #IMGLST-1
 BITMAP-FILE-NAME = ’example.bmp’
END-PARAMETERS GIVING *ERROR

Images are appended to the list by default, unless the SUCCESSOR attribute is used to insert them at a
specific position.

Composite Images
Image controls can be categorized into two types: single-image image controls and multi-image image
controls.

Single-image image controls contribute a single image to each set of images stored by the parent image
list control. That is, if the image list contains both large and small images, one of each is provided by the
image control. Single-image image controls may be bitmaps or icons.

Multi-image image controls, as the name suggests, may contribute more than one image (in each required
size) to the parent image list control. Multi-image image controls must be based on bitmap files, rather
than icons, and are distinguishable from single-image image controls in that their "Composite image (C)"
STYLE flag is set:

PROCESS GUI ACTION ADD WITH
PARAMETERS
 HANDLE-VARIABLE = #IMG-1
 TYPE = IMAGE
 PARENT = #IMGLST-1
 STYLE = ’CsT’
 BITMAP-FILE-NAME = ’composite.bmp’
END-PARAMETERS GIVING *ERROR

The number of images in the composite bitmap is automatically calculated from the size of the bitmap and
the width and height of the images in the (smallest) set of images stored by the parent image list control.
Thus, in the case where both large and small images are stored, the bitmap would typically be 16 pixels
high, and (16 * N) pixels wide, where N is the number of images to be stored in the image control. Here is
an example of a composite bitmap containing five images:

2

Adding ImagesWorking with Image List Controls

Scaling and Transparency
In the example provided in the preceding section, two other style flags were specified in addition to the
"Composite image (C)" style: namely, the "Scaled (s)" and the "Transparent (T)" style flags. The first of
these is absolutely necessary if the parent image list control contains multiple sets of images in different
sizes. For example, if large images are also being used, the flag causes the composite image to be scaled
internally first before being chopped up into its constituent images, as follows:

Note that if the "Scaled (s)" style flag were not specified, the composite bitmap would be extended in the
background color, rather than being scaled, before being chopped up, as shown below:

This would result in the following five large images:

Needless to say, this is not normally what you want!

The "Transparent (T)" style flag indicates that the images should be rendered transparently, such that all
pixels in the bitmap’s background color are not drawn. The background color can be explicitly specified
by setting the BACKGROUND-COLOUR-VALUE and/or BACKGROUND-COLOUR-NAME attributes for the
image control to the required value. Otherwise, if no color is specified (as in the previous example), the
color of the first (i.e., top-left) pixel in the bitmap is taken as being the background color.

Of course, both the "Scaled (s)" and the "Transparent (T)" style flags can also be applied to non-composite
images.

Bitmaps vs. Icons
Apart from not being able to source mulitple images (as described above), icons differ from bitmaps in
two important ways. Firstly, a single icon (.ICO) file can contain multiple versions of the icons in different
sizes. Thus when Natural requires the large image, and the source is an icon file, the large icon defined in
the icon file is used, if present, in preference to synthesizing it from one of the other icons in the file by
scaling. Similarly, when Natural requires the small image, and the source is an icon file, the small icon
defined in the icon file is used, if present. In contrast, bitmap files do not contain multiple images, so if
both large and small images are required for an image list, one of the two images (usually the large image)
must by synthesized from the other as described in the previous section.

Secondly, icons typically contain a monochrome bitmap (known as the image mask) that determines
which pixels in the image are transparent (i.e., should not be drawn). Thus, when Natural loads an image
from an icon file, and the image control’s BACKGROUND-COLOUR-NAME attribute is set to DEFAULT
(or is not specified), and the image control’s "Transparent (T)" style flag is specified without the "Scaled
(s)" style flag, Natural uses the icon’s transparency mask, instead of making the above-mentioned
assumption that all pixels in the same color as the first pixel are to be rendered transparently, as is the case
for images loaded from a bitmap file. If an explicit (i.e., non-default) background color is specified, all

3

Working with Image List ControlsScaling and Transparency

pixels in this color are treated as transparent, regardless of whether an icon or bitmap is being used. The
icon’s transparency mask is ignored here, as is also the case if the icon is scaled.

Therefore, if both large and small images are needed, it may be preferable to use single-image image
controls based on icon files containing both large and small representations of the image, rather than use a
multi-image image control based on a single composite bitmap. The use of individual icon (.ICO) files has
the advantage that the and large representations of the image (assuming that both are provided in the file)
can have different levels of detail. The main disadvantage is that it normally takes longer to load the
images from multiple icon files than it does to load them from a single composite bitmap file.

Using an Image List
Before any images from the image list can be used by a control (such as the tree view or list view control),
the image list must be associated with the control. This association is achieved by assigning the handle of
the image list control to the host control’s IMAGE-LIST attribute. For example:

#LV-1.IMAGE-LIST := #IMGLST-1

Having set the image list, the image list control’s images are now available for use by the control’s items.

Referencing Images from the Image List
To use a particular image from the parent control’s image list for a particular item (e.g. list view item or
tree view item), the image to be used has to be specified in one of two ways:

1. By setting the item’s IMAGE attribute to the handle of the image control and (if necessary) the item’s
IMAGE-INDEX attribute to the relative offset of the required image (starting from zero) within the
image control. If the image control only contains one image, it is not necessary to specify an image
index. The image specified must belong to the image list control assigned to the item’s container.

2. By setting the item’s IMAGE-INDEX attribute to the ordinal of the image within the image list
(1=first image, 2=second image, and so on). The item’s IMAGE attribute must be either not specified
or set to the default value of NULL-HANDLE in this case.

In the first case (relative indexing), wrap-around is used on the index. Thus, if an image control has N
images, an image index of 0 refers to the first image in the image control, an image index of (N - 1) refers
to the last image, and an image index of N refers to the first image again, and so on. Thus, if the image
control only contains one image, the relative image index (if specified at all) has no effect: due to
wrap-around, the first (and only) image will always be taken.

In the second case (absolute indexing), no wrap-around is used on the image index, which must be in the
range 1 through to the number of images in the image list (inclusive). If the specified value is not in this
range, no image is displayed for the specified item.

Note that the IMAGE-INDEX attribute can also be applied to an image control. In this case, the attribute is
read-only, and returns the offset (starting from zero) of the image control’s first image within the parent
image list control.

One advantage of using relative indexing is that Natural keeps track the references to the specified image
(both in the dialog editor and at run-time) and automatically propagates changes to the image control or to
its position in the image list. In practice, absolute indexing is probably most useful in situations where an
image list control with a single composite (i.e., multi-image) image control is used, and where the images

4

Using an Image ListWorking with Image List Controls

are not modified at run-time.

Overlay Images
There are situations where it is desirable to be able to offer several variations of an image. For example,
the displayed image for an item representing a folder may need to be modified to indicated that the folder
is active. Rather than providing an image of a folder and an image of an active folder, it may be more
convenient to provide only the first of these images, and to indicate the active state via a second image
containing only the "active" symbol, which is then superimposed on the first. Such an image is referred to
as an overlay image, to distinguish it from the underlying base image.

Overlay images are contained within the same image list that is used to display the base images, as
determined via the host control’s IMAGE-LIST attribute. They are therefore the same size as the base
images, but are always rendered transparently, to allow the underlying image to show through.

To use an overlay image for an item, a value must be specified for the item’s OVERLAY and/or
OVERLAY-INDEX attributes. These attributes are used analogously to the IMAGE and IMAGE-INDEX
attributes (respectively) for base images (see above).

For technical reasons, images intended for use as overlay images must be "pre-registered". In Natural, this
is done by setting the image list control’s "O" (Overlay) STYLE. However, if the overlay controls are
defined statically, this style is automatically set by the dialog editor. The presence or absence of this style
distinguishes base images from overlay images. Consequently, the OVERLAY attribute (if specified) can
only refer to an image control with this style, whereas the IMAGE attribute (if specified) can only refer to
an image control without it. If absolute indexing (see above) is being used, the IMAGE-INDEX can refer
to an overlay image (which is then "misused" as a base image). However, a corresponding attempt to use
the OVERLAY-INDEX attribute to refer to a base image fails (no overlay image is drawn).

Windows sets a limit on the number of overlay images that may be defined for an image list. This limit is
currently 15. Note that if any composite overlay image controls are used, each sub-image in the composite
bitmap counts separately towards this quota.

As an example, suppose we create an image control based on a composite image containing the individual
overlay images, as follows:

PROCESS GUI ACTION ADD WITH
PARAMETERS
 HANDLE-VARIABLE = #IMG-2
 TYPE = IMAGE
 PARENT = #IMGLST-1
 STYLE = ’COs’
 BITMAP-FILE-NAME = ’overlays.bmp’
END-PARAMETERS GIVING *ERROR

Then, we could create a list view item (say) using the second overlay image from the composite bitmap by
executing the following code:

5

Working with Image List ControlsOverlay Images

PROCESS GUI ACTION ADD WITH
PARAMETERS
 TYPE = LISTVIEWITEM
 PARENT = #LV-1
 STRING = ’Item with overlay’
 IMAGE = #IMG-1
 IMAGE-INDEX = 3
 OVERLAY = #IMG-2
 OVERLAY-INDEX = 1
END-PARAMETERS GIVING *ERROR

In the above example, the list view item will use the fourth image from COMPOSITE.BMP as its base
image, and the second image from OVERLAYS.BMP as the overlay image (relative image indexes are, as
already mentioned, zero-based). Note that the list view item is created anonymously (i.e., no explicit
HANDLE-VARIABLE attribute value specified).

Modifying Images
Image controls may be modified even if they are currently in use. For example:

#IMG-1.BITMAP-FILE-NAME := ’new.bmp’

Natural keeps track of, and automatically updates and redraws, each item that explicitly (i.e., via relative
indexing) references an image from the modified image control. However, if absolute indexing is used, the
corresponding items are not updated, even if they are implicitly referring to an image within the modified
image control.

Deleting Images
Images may be removed from the image list by deleting the complete image control via the DELETE
action. For example:

PROCESS GUI ACTION DELETE WITH #IMG-1 GIVING *ERROR

All items that explicitly (i.e., via relative indexing) reference an image from the deleted image control are
automatically updated and redrawn to show no image.

However, if absolute indexing is being used, no automatic updating occurs. For example, suppose an
image list control contains three single-image image controls and that items exists that refer to all three
images via absolute indexing. If the second image control is deleted, the items that used to refer to the
second image would suddenly reference the third image and the items that used to refer to the third image
would "fall off the end" and not reference anything. Furthermore, the controls containing the items would
not automatically be redrawn to reflect the changes.

It is, of course, also possible to delete all images in the image list in one go, via the DELETE-CHILDREN
action:

PROCESS GUI ACTION DELETE-CHILDREN WITH #IMGLST-1 GIVING *ERROR

This is equivalent to deleting each image in the image list individually.

Note that it is not possible to delete individual images within a composite (i.e., multi-image) image
control.

6

Modifying ImagesWorking with Image List Controls

Deleting the Image List Control
An image list control may be deleted when no longer required, even if it is in use. For example:

PROCESS GUI ACTION DELETE WITH #IMGLST-1 GIVING *ERROR

All controls using the image list control are updated accordingly, and their IMAGE-LIST attribute is
automatically reset to NULL-HANDLE.

7

Working with Image List ControlsDeleting the Image List Control

	Working with Image List Controls
	Introduction
	Creating the Image List Control
	Adding Images
	Composite Images
	Scaling and Transparency
	Bitmaps vs. Icons
	Using an Image List
	Referencing Images from the Image List
	Overlay Images
	Modifying Images
	Deleting Images
	Deleting the Image List Control

