
Using the Clipboard and Drag and Drop
This chapter covers the following topics:

Introduction

Clipboard Specifics

Drag and Drop Specifics

Drag and Drop Insertion Marks

Drag-Drop Checklist

Introduction
Both clipboard and drag/drop data transfer make use of a logical clipboard at the Natural language level,
allowing a single set of methods to handle both requirements. The PROCESS GUI actions for handling
the logical clipboard are as follows: OPEN-CLIPBOARD, SET-CLIPBOARD-DATA,
CLOSE-CLIPBOARD, GET-CLIPBOARD-DATA and INQ-FORMAT-AVAILABLE. Each Natural
process has exactly one logical clipboard, which is why it is referred to in the product documentation as
the "local" clipboard.

OPEN-CLIPBOARD is the first step in building up the logical clipboard data. It takes an optional
parameter (owner window), which is typically the handle of the control sourcing the data. If anything was
previously on the logical clipboard, this action empties it. Note that you don’t need to call this for drag
and drop, because Natural does this implicitly before raising the BEGIN-DRAG event (see below).

SET-CLIPBOARD-DATA puts the actual data on the logical clipboard. The first parameter is the
clipboard format, specified as a string. There are two pre-defined formats (defined in NGULKEY1 as
CF-TEXT and CF-FILELIST), which are used for standard text transfer, and lists of files (suitable for data
exchange with the Windows Explorer and many other applications) respectively. In addition, an arbitrary
string (which should not begin with a dgit) should be used to indicate a private clipboard format that only
Natural applications can understand (they just need to know the format string so they can pass it to
GET-CLIPBOARD-DATA to retrieve the data). The second and subsequent arguments are an arbitrary
number of data operands. These can be any combination of arrays (incl. index ranges) or scalars (incl.
dynamic and large alpha variables). Arrays are internally expanded into their individual elements, which
are then handled individually as for scalars.

For example, the following code:

DEFINE DATA LOCAL
1 #ARR(A1/2,3) INIT (1,1)<’A’> (1,2)<’B’> (1,3)<’C’>
 (2,1)<’X’> (2,2)<’Y’> (2,3)<’Z’>
END-DEFINE
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT #ARR(*,*)

is equivalent to:

1

Using the Clipboard and Drag and Drop Using the Clipboard and Drag and Drop

PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT
 ’A’ ’B’ ’C’ ’X’ ’Y’ ’Z’

For the pre-defined formats, the operands must be alphanumeric (format A). For private formats, the data
arguments can be of almost any type. Exception: handle variables (incl. HANDLE OF OBJECT) are not
supported, because they are process-specific. The data for private formats is stored "as-is" (i.e., no
conversion).

Note that multiple data formats can be placed on the clipboard by performing a SET-CLIPBOARD-DATA
action for each required format. However, any call to SET-CLIPBOARD-DATA for a particular format
replaces any data that may already exist in that format.

Note also that the data is not placed on the Windows clipboard. This is done when the logical clipboard is
closed (see below).

CLOSE-CLIPBOARD closes the logical clipboard, and places the data on the Windows clipboard, so that
it becomes available for pasting into other applications. The data cannot be modified by
SET-CLIPBOARD-DATA after this call. Note that this call is not necessary for drag and drop because
you usually don’t need to also make the dragged data available for pasting. Drag and drop can work
directly with the logical clipboard.

GET-CLIPBOARD-DATA is used by the application performing the paste or acting as the drop target to
retrieves the data from the drag-drop clipboard (if a drag and drop operation is in progress) or from the
Windows clipboard otherwise. The drag-drop clipboard is a synonym for the logical clipboard belonging
to the source Natural process. SET-CLIPBOARD-DATA, a clipboard format is specified, followed by an
arbitrary list of data operands (with the same format type restrictions). For private formats, the operands
need not have the same format type as used in the GET-CLIPBOARD-DATA action. For example, you
can place an integer on the clipboard and read it back into a packed numeric (P) variable. Internally, a
MOVE conversion is done. Therefore, if different format types are used for setting and getting the data,
they must be MOVE-compatible.

For pre-defined formats, where the individual data items are either delimited by CR/LF (for CF-TEXT
format) or by null-terminators (for CF-FILELIST format), only one item is usually read into each
receiving field. Exception: If the last receiving field is a dynamic alpha variable, it receives all remaining
data items, including the delimiters. This exception allows the application to use (for example) a single
dynamic alpha variable to set and get multiple lines of data or multiple file/directory names. Regardless of
the format used, if too many receiving operands are specified, the excess fields are reset (see the RESET
statement). Note that individual data fields may be skipped by using the nX notation. For example, 5x
skips 5 data items (where a "data item" is a single line for CF-TEXT format).

INQ-FORMAT-AVAILABLE is used for querying whether data is available in a given format (see
specification for syntax). It is typically used to determine whether to enable or disable the Paste
command, or whether to display the "no drop" cursor for drag/drop operations.

Clipboard Specifics
The actual clipboard data transfer has been covered above. However, Natural allows you to define signals,
menu items and toolbar items of the special types Cut, Copy, Paste, Delete and Undo, which (unlike
normal commands) do not raise CLICK events. For input fields, edit areas, selection boxes and table
controls, it’s obvious what Natural should do, and Natural does this implicitly. For Natural, these
commands now support list boxes and ActiveX controls. However, the mechanism is different in this case,
because it is ambiguous as to how Natural should respond to these commands. Therefore, Natural needs

2

Clipboard SpecificsUsing the Clipboard and Drag and Drop

some assistance from the application. This assistance comes in the form of six new events: CUT, COPY,
PASTE, DELETE, UNDO and CLIPBOARD-STATUS, all of which are suppressible (via the new
SUPPRESS-CUT-EVENT, SUPPRESS-COPY-EVENT, SUPPRESS-PASTE-EVENT,
SUPPRESS-DELETE-EVENT, SUPPRESS-UNDO-EVENT and
SUPPRESS-CLIPBOARD-STATUS-EVENT attributes). All six events are suppressed by default. The
CUT, COPY, PASTE, DELETE and UNDO events are raised whenever the respective command is triggered.
The corresponding event suppression flags are used by Natural to decide whether to enable or disable the
corresponding command(s) in the user interface.

The CLIPBOARD-STATUS event is sent to the focus control during idle processing to give the
application a chance to set these event suppression flags dynamically according to the context (e.g.,
whether or not there is an active selection). Natural raises this event before it queries the event suppression
flags for the purpose of clipboard command status updating). Note that these new events are (currently)
only sent to list boxes and ActiveX controls (and, of course, only if they currently have the focus). Input
fields, selection boxes, etc., are still handled implicitly.

The CLIPBOARD-STATUS event is only raised if there is at least one clipboard command in the user
interface that needs to be updated.

The following example shows a typical CLIPBOARD-STATUS event for a list box control:

DEFINE DATA LOCAL
1 #CONTROL HANDLE OF GUI
1 #FMT (A10) CONST<’MYDATAFMT’>
1 #AVAIL (L)
END-DEFINE
...
#CONTROL := *CONTROL
/*
/*
Cut, Copy & Delete are enabled if an item is selected,
/*or disabled otherwise
/*
IF #CONTROL.SELECTED-SUCCESSOR <> NULL-HANDLE
 #CONTROL.SUPPRESS-CUT-EVENT := NOT-SUPPRESSED
 #CONTROL.SUPPRESS-COPY-EVENT := NOT-SUPPRESSED
 #CONTROL.SUPPRESS-DELETE-EVENT := NOT-SUPPRESSEDELSE
 #CONTROL.SUPPRESS-CUT-EVENT := SUPPRESSED
 #CONTROL.SUPPRESS-COPY-EVENT := SUPPRESSED
 #CONTROL.SUPPRESS-DELETE-EVENT := SUPPRESSED
END-IF
/*
/* Paste command is enabled if data is available in a
/* recognized format, or disabled otherwise
/*
PROCESS GUI ACTION INQ-FORMAT-AVAILABLE
 WITH #FMT #AVAIL GIVING *ERROR
/*
IF #BOOL
 #CONTROL.SUPPRESS-PASTE-EVENT := NOT-SUPPRESSED
ELSE
 #CONTROL.SUPPRESS-PASTE-EVENT := SUPPRESSED
END-IF

3

Using the Clipboard and Drag and DropClipboard Specifics

Drag and Drop Specifics
Drag and drop operations can be triggered automatically (for list boxes and bitmap controls) or manually,
via the new PERFORM-DRAG-DROP action (typically for ActiveX controls in response to control-specific
mouse click or drag start events). For automatic drag/drop, the mouse cursor must be over the active
selection (if any). For manual drag/drop, the parameters for PERFORM-DRAG-DROP include the handle
of the control that should receive the drag/drop events (the drag source), and an optional flag indicating
whether drag and drop should begin immediately, or only after the user moves the mouse a
system-defined minimum number of pixels. Both automatic and manual drag/drop use the same code
internally, so the same events are received in both cases.

Drag/drop is controlled by by two new I4 attributes, DRAG-MODE (for drag sources) and DROP-MODE
(for drop targets). These attributes can be set to one of 8 values (defined in NGULKEY1): DM-NONE (no
drag/drop allowed), DM-COPY (copy allowed), DM-MOVE (move allowed), DM-COPYMOVE (copy and
move allowed), DM-LINK (link allowed), DM-COPYLINK (copy and link allowed), DM-MOVELINK
(move and link allowed), DM-COPYMOVELINK (copy, move and link allowed). Link operations imply
that the drop target should create a link to the source data, rather than creating a copy of it. For file
operations, desktop shortcuts are typically used (not currently explicitly supported by Natural). Drag
operations are only initiated if the source’s DRAG-MODE attribute is set to something other that the default
DM-NONE value. In addition, the application must respond to the BEGIN-DRAG event (see below).

Control types capable of acting as drop targets are: ActiveX controls, bitmap controls, list boxes, control
boxes, edit areas, and dialogs (tab controls and table controls are planned for the future but are not
currently supported). These windows are, however, only registered with OLE as drop targets if their
DROP-MODE attribute is set to something other that the default DM-NONE value. During a drag/drop
operation, OLE automatically searches up through the window hierarchy, starting with the window
immediately under the cursor, until it finds a window that has been registered as a drop target. This is the
window that gets the OLE drop notifications and therefore is the window that receives the Natural
drag/drop events (see below).

The new drag/drop related events are: BEGIN-DRAG, END-DRAG, DRAG-ENTER, DRAG-OVER and
DRAG-LEAVE. In addition, the existing DRAG-DROP event (for the Mickey Mouse non-OLE drag/drop
support for bitmap controls) is also used. All events are suppressible via the appropriate event suppression
attributes (SUPPRESS-BEGIN-DRAG-EVENT etc.), all of which are SUPPRESSED by default.

The BEGIN-DRAG event (if not suppressed) is sent to the drag source on initiation of a drag operation.
The application must use the SET-CLIPBOARD-DATA action to place some data on the drag/drop
clipboard before returning from this event, otherwise the drag/drop operation is implicitly cancelled
without the mouse cursor having changed. Note that there is no need to call either of the
OPEN-CLIPBOARD or CLOSE-CLIPBOARD actions.

The END-DRAG event (if not suppressed) is sent to the drag source after a drag/drop operation has
completed (even if the drag operation was cancelled). The main use of this event is to delete the source
data if a Move operation occurred. The application can find out whether a Move operation has occurred by
calling the existing INQ-DRAG-DROP action, which has been extended with two new optional integer
output parameters. The first of these new parameters indicates which mouse buttons are currently pressed
(1 = Left button, 2 = Right button, 4 = Middle button, or a combination thereof). The second new
parameter is the one we need here, and contains the drop effect resulting from a drag/drop operation
(DM-NONE if no drop or if the operation was cancelled, DM-COPY if a Copy operation was performed,
DM-MOVE if a Move operation was performed, and DM-LINK if a link operation was performed.

4

Drag and Drop SpecificsUsing the Clipboard and Drag and Drop

The DRAG-ENTER event (if not suppressed) is sent to the drop target when the drag cursor (re-)enters the
region occupied by the drop target. The application typically responds to this event by calling the
INQ-FORMAT-AVAILABLE action to find out if a compatible data format is available on the clipboard,
and then setting the SUPPRESS-DRAG-DROP-EVENT attribute accordingly. The
SUPPRESS-DRAG-DROP-EVENT is important because it not only determines whether the DRAG-DROP
event should be raised, but also informs Natural as to whether a drop should be allowed. After raising the
DRAG-ENTER and DRAG-OVER events, Natural inspects the SUPPRESS-DRAG-DROP-EVENT
attribute and displays a "no drop" symbol. Otherwise, the drop effect is determined by the combination of
the drag source’s DRAG-MODE value, the drop target’s DROP-MODE value, and the augmentation keys
(SHIFT and CTRL) that are currently being pressed.

The DRAG-OVER event (if not suppressed) is frequently sent to the drop target as the drag cursor moves
over the drop target. It can be used, for example, to update the drop emphasis (if any) as the user traverses
the items within the control and/or to update the SUPPRESS-DRAG-DROP-EVENT attribute if the
feasibility of a drop operation depends on the position within the drop target.

The DRAG-LEAVE event (if not suppressed) is sent to the drop target when the drag cursor leaves the
region occupied by the drop target without a drop having occurred. This is mainly used (if at all) to
remove the drop emphasis (if any) applied in the DRAG-OVER event.

The DRAG-DROP event (if not suppressed) is sent to the drop target when the user performs a drop. drag
cursor leaves the region occupied by the drop target without a drop having occurred. The application
should respond to this by effectively performing a Paste operation, using the current relative position
within the control, if necessary. Both the relative position and the type of operation can be retrieved via
the INQ-DRAG-DROP action. The latter is returned in the new (optional) "drop effect" parameter (see the
description of the END-DRAG event above for more information).

Drag and Drop Insertion Marks
For list boxes, a new "insertion mark (i)" style can be used to indicate that a dashed horizontal line be used
to indicate the current insert position when the drag cursor is moved over the control (assuming it is a drop
target). The application cannot query the insertion mark position directly, but can find out where to insert
the data by querying the relative position within the control via the INQ-DRAG-DROP action, then
passing these coordinates to the INQ-ITEM-BY-POSITION action, as in the following example:

DEFINE DATA LOCAL
1 #Y (I4)
1 #CONTROL HANDLE OF GUI
1 #ITEM HANDLE OF GUIEND-DEFINE
...
/* DRAG-DROP event:
PROCESS GUI ACTION INQ-DRAG-DROP WITH 4X #Y GIVING *ERROR
*
IF #Y < 0
 #Y := 0
END-IF
#CONTROL := *CONTROL
PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
 #CONTROL 0 #Y #ITEM GIVING *ERROR

After the above code has executed, the variable #ITEM contains the handle of the item immediately
following the insertion point. You can then dynamically insert one or more list box items at this position
by calling the ADD action with the WITH PARAMETERS clause, setting the SUCCESSOR attribute to
#ITEM.

5

Using the Clipboard and Drag and DropDrag and Drop Insertion Marks

Note that the correction for negative y-coordinate in the above example is necessary to cover the situation
where the drop position is on the list boxes top border. If no correction would be made here, #ITEM
would be set to NULL-HANDLE and the new list box item(s) would be added undesirably at the end of the
list instead of at the beginning if we were to directly use #ITEM as the SUCCESSOR attribute, as
described above.

Drag-Drop Checklist
For convenience, here is a brief overview of the steps involved in implementing drag-drop in Natural
applications:

1. Set the DRAG-MODE for each drag source. If the drag source is a bitmap control, its DRAGGABLE
attribute must also be set to TRUE.

2. Set SET-CLIPBOARD-DATA in the BEGIN-DRAG event for each drag source to provide the
transfer data.

3. Set the DROP-MODE for each drop target.

4. In the DRAG-ENTER event, use the INQ-FORMAT-AVAILABLE action to set the
SUPPRESS-DRAG-DROP-EVENT attribute to NOT-SUPPRESSED (0) if a supported clipboard
format is available, or SUPPRESSED (1) otherwise. If the control can also act as a drag source and
you need to prohibit drag-drop operations within the control, call INQ-DRAG-DROP to get the
source control handle and compare it to the current control (*CONTROL), suppressing the drag-drop
event if both are identical.

5. If the effect of the drop is position-sensitive within the target control, use the INQ-DRAG-DROP
action within the DRAG-OVER event to get the current position, determine the item under the drag
cursor (e.g. via the INQ-ITEM-BY-POSITION action) and set the
SUPPRESS-DRAG-DROP-EVENT attribute appropriately. Highlight the current item if desired.

6. If the current item was highlighted in step 5 above, unhighlight it (if necessary) in the DRAG-LEAVE
and (potentially) DRAG-DROP events.

7. Use GET-CLIPBOARD-DATA in the DRAG-DROP event to retrieve the transfer data and process it
accordingly.

8. In the END-DRAG event for the drag source, delete the source data if the drop effect returned by
INQ-DRAG-DROP is set to DM-MOVE.

9. If the drag source is an ActiveX control, call the PERFORM-DRAG-DROP action to initiate the
drag-drop operation in response to a "MouseDown" event (for example) if a location within the
current selection is clicked.

Example - Use of X-Arrays for Transferring Data

One of the problems in setting or retrieving data that may need to be placed or already have been placed
on the Windows or drag-drop clipboard in response to a user interaction is being able to cope with an
arbitrary amount of data at run-time. For example, the user may select a single, a few, or possibly even
hundreds or thousands of list box items before performing a clipboard or drag-drop operation on them.
With fixed-size arrays, one would have to define huge arrays to cope with the worst-case scenario, even
though typically only a small percentage would be used most of the time.

6

Drag-Drop ChecklistUsing the Clipboard and Drag and Drop

There are two possible solutions to this problem available in Natural. The first way is to use a single
dynamic alpha variable to contain all items to be set or retrieved. The application is then responsible for
building up the items (including delimiters) in the dynamic variable before calling
SET-CLIPBOARD-DATA, and for extracting the items from the dynamic variable after calling
GET-CLIPBOARD-DATA. This approach is not possible for private formats, because these are not
delimited.

The second approach is to make use of X-Arrays. For setting clipboard data, these behave similarly to
fixed-size arrays, except that their size can be modified to contain exactly the number of elements needed
in a specific situation. For example, if there are 17 items that need to be written to the clipboard, then you
can use:

DEFINE DATA LOCAL
1 #X-ARR(A80/1:*)
1 #UPB (I4) INIT <17>
END-DEFINE
RESIZE ARRAY #X-ARR TO (1:#UPB)
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT #X-ARR(*)

instead of having to use a wastefully large fixed array, of which only a small range is used:

DEFINE DATA LOCAL
1 #ARR(A80/10000)
1 #UPB (I4) INIT <17>
END-DEFINE
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT ARR(1:#UPB)

When retrieving clipboard data, X-Arrays are even more useful, because the application does not know in
advance how many items are on the clipboard. Passing all array elements (10,000 in the above example)
would be relatively slow, because all unused elements need to be reset.

However, if an X-Array is used instead, Natural automatically resizes the array to (1:N), where N is the
minimum of the number of items (remaining) on the clipboard and the array’s maximum upper bound (as
defined in DEFINE-DATA, where * indicates the maximum possible value). Note that there are three
restrictions on the use of X-Arrays in conjunction with GET-CLIPBOARD-DATA:

The X-Array must be the last (or only) parameter.

Only 1-dimensional X-Arrays are supported.

The X-Arrays defined range must include the element 1.

Here is an example program illustrating the use of a dynamic X-Array for retrieving clipboard data,
including the use of a second X-Array to store and display the data lengths:

DEFINE DATA LOCAL
1 #FMT (A10) CONST<’MYDATAFMT’>
1 #X-ARR (A/1:*) DYNAMIC
1 #X-LEN (I4/1:*)
1 #UPB (I4)
1 #I (I4)
END-DEFINE
PROCESS GUI ACTION OPEN-CLIPBOARD GIVING *ERROR
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH #FMT
 ’MIKE’ ’FRED’ ’JIM’ ’LULU’ ’FRANK’ ’JANA’ ’ELIZABETH’
’TONY’
 GIVING *ERROR

7

Using the Clipboard and Drag and DropExample - Use of X-Arrays for Transferring Data

PROCESS GUI ACTION CLOSE-CLIPBOARD GIVING *ERROR
PROCESS GUI ACTION GET-CLIPBOARD-DATA WITH #FMT #X-ARR(*)
 GIVING *ERROR
#UPB := *UBOUND(#X-ARR)
RESIZE ARRAY #X-LEN TO (1:#UPB)
FOR #I 1 #UPB
 #X-LEN(#I) := *LENGTH(#X-ARR(#I))
END-FOR
DISPLAY #X-ARR(*) (AL=10) #X-LEN(*) / ’*** END OF DATA ***’
END

8

Example - Use of X-Arrays for Transferring DataUsing the Clipboard and Drag and Drop

	 Using the Clipboard and Drag and Drop
	Introduction
	Clipboard Specifics
	Drag and Drop Specifics
	Drag and Drop Insertion Marks
	Drag-Drop Checklist
	Example - Use of X-Arrays for Transferring Data

