
How To Open and Close Dialogs
This chapter covers the following topics:

Opening a Dialog

Operands

Passing Parameters to the Dialog

Permanence in Creating, Passing and Checking Data

Processing Steps When Opening a Dialog

Closing Dialogs

Initializing Attribute Values

Opening a Dialog
An event-driven application is started by executing the base dialog. Events triggered by the end user will
then typically cause other dialogs to be started. The application ends when the base dialog is closed.

 To open a dialog from anywhere within an event-driven application

Use the statement OPEN DIALOG.

This statement causes the dialog to be loaded and the processing on its opening to be performed.

Control over processing returns from the opened dialog except for dialogs with the style "Dialog Box".
For those dialog styles, control returns only after the dialog has ended.

The parameters passed are accessible only during the processing on the opening of a dialog (before-open
and after-open events), except for when the parameters are declared as BY VALUE in the parameter data
area of the opened dialog or when the dialog has the style "Dialog Box".

To open a dialog from anywhere within an event-driven Natural application, the following syntax is used:

OPEN DIALOG operand1 [USING] [PARENT] operand2

 [[GIVING] [DIALOG-ID] operand3]

 WITH operand4...

 PARAMETERS-clause

1

How To Open and Close DialogsHow To Open and Close Dialogs

Operands
Operand1 is the name of the dialog to be opened. If the PARAMETERS-clause is used, operand1 must be
a constant (the name of a cataloged dialog).

Operand2 is the handle name of the parent.

Operand3 is a unique dialog ID returned from the creation of the dialog. It must be defined with
format/length I4.

Passing Parameters to the Dialog
When a dialog is opened, parameters may be passed to this dialog.

As operand4 you specify the parameters that are passed to the dialog.

With the PARAMETERS-clause, parameters may be passed selectively:

PARAMETERS [parameter-name=operand 4] _ END-PARAMETERS

Note:
You may only use the PARAMETERS-clause if operand1 is an alphanumeric constant and if the dialog is
cataloged.

Parameter-name is the name of the parameter as defined in the parameter data area section of the dialog.

To avoid format/length conflicts between operands and parameters passed, see the BY VALUE option of
the DEFINE DATA statement in the Statements documentation.

When passing parameters only with operand4, a dialog may be opened as follows:

/* The following parameters are defined in the calling dialog’s parameter
/* data area (not in the parameter data area of the dialog to be opened):
 1 #MYDIALOG-ID (I4)
 1 #MYPARM1 (A10)
/* Pass the operands #MYPARM1 and ’MYPARM2’ to the parameters #DLG-PARM1 and
/* #DLG-PARM2 defined in the dialog to be opened:
 OPEN DIALOG ’MYDIALOG’ USING
 #DLG$WINDOW GIVING
 #MYDIALOG-ID WITH
 #MYPARM1 ’MYPARM2’

When passing parameters selectively with the PARAMETERS-clause, a dialog may be opened as shown in
the following example:

2

OperandsHow To Open and Close Dialogs

/* The following parameters are defined in the calling dialog’s parameter
/* data area (not in the parameter data area of the dialog to be opened):
 1 #MYDIALOG-ID (I4)
 1 #MYPARM1 (A10)
/* Pass the operands #MYPARM1 and ’MYPARM2’ to the parameters #DLG-PARM1 and
/* #DLG-PARM2 defined in the dialog to be opened:
 OPEN DIALOG ’MYDIALOG’ USING
 #DLG$WINDOW GIVING
 #MYDIALOG-ID WITH PARAMETERS
 #DLG-PARM1=#MYPARM1
 #DLG-PARM2=’MYPARM2’
END-PARAMETERS

Permanence in Creating, Passing and Checking Data
The term "permanence" is used in Natural to denote data defined in a base dialog’s local data area whose
existence is guaranteed throughout the whole lifetime of the dialog. Data defined in the global data area
are not kept permanent because the global data area can be exchanged while the application is executed.

The reference to the permanent data is kept by saving the parameter data area internally during opening of
the dialog. This reference is reused when

a dialog element receives an event;

all parameters passed from one dialog to another are permanent, provided they reference the base
dialog’s local data area.

Parameters are accessible

during the before-open and after-open event processing on opening of a dialog or

if all of them reference the base dialog’s local data area.

The following example illustrates a case in which two parameters are kept permanently and one other is
not. Assume the base dialog is dialog A. This base dialog now opens dialog B, passing parameters #X and
#Y. After that, dialog B passes parameters #X and #Y on to dialog C. The #X and #Y parameters which
are now in dialog C will be permanent, even if dialog B is closed. If, however, dialog B passes its own
parameter #Z when opening dialog C, the parameter #Z is not permanent, because if dialog B is closed,
the reference to its local data area is no longer valid. No parameter in dialog C is accessible (#Z does not
reference the base dialog’s local data area).

3

How To Open and Close DialogsPermanence in Creating, Passing and Checking Data

Processing Steps When Opening a Dialog
This section describes what happens when a dialog is opening. You can open a dialog either by executing
it, for example from the command line, or by invoking it with an OPEN DIALOG statement.

The dialog object is loaded and starts executing.

The BEFORE-ANY event-handler section is executed, the value of the system variable *EVENT
being OPEN.

The BEFORE-OPEN event-handler section is executed.

The dialog window is created as specified in the dialog editor.

The BEFORE-ANY event-handler section is executed. *EVENT = AFTER-OPEN.

All dialog elements are created as specified in the dialog editor.

The dialog window and all dialogs are made visible except those that are VISIBLE = FALSE .

The AFTER-OPEN event-handler section is executed.

The AFTER-ANY event-handler section is executed. *EVENT = AFTER-OPEN.

The AFTER-ANY event-handler section is executed. *EVENT = OPEN (not if the dialog’s STYLE
attribute value is "Dialog Box").

4

Processing Steps When Opening a DialogHow To Open and Close Dialogs

Closing Dialogs
To close a dialog dynamically, you specify the following:

CLOSE DIALOG [USING] [DIALOG-ID] operand1

*DIALOG-ID

Operand1 is the identifier of the dialog as returned in the OPEN DIALOG statement.

Example:

CLOSE DIALOG *DIALOG-ID /* Close the current Dialog

The dialog will then be erased from the screen and removed from memory. All local data associated with
the dialog will be gone.

Note:
If a modal dialog is a child in a hierarchy of dialogs, the modal dialog should not close its parent(s)
because this will result in a deadlock.

operand1

Operand1 is the name of the dialog to be closed.

To close the current dialog, you specify *DIALOG-ID .

Initializing Attribute Values
You can specify conditions for the opening and closing of a dialog: this applies to the before-open,
after-open, and close events. These conditions can be used to initialize the attribute values in the dialog.

The following is an example of after-open event-handler code: Red foreground color is assigned to push
buttons that the user must press after entering data in the associated input fields.

DEFINE DATA LOCAL
...
 1 #OK-BUTTON HANDLE OF PUSHBUTTON
 1 #CALC-BUTTON HANDLE OF PUSHBUTTON
 1 #SAVE-BUTTON HANDLE OF PUSHBUTTON
 1 #CONVERT-BUTTON
HANDLE OF PUSHBUTTON
...
END-DEFINE
...
#OK-BUTTON.FOREGROUND-COLOUR-NAME := RED
#CALC-BUTTON.FOREGROUND-COLOUR-NAME := RED
#SAVE-BUTTON.FOREGROUND-COLOUR-NAME := RED
#CONVERT-BUTTON.FOREGROUND-COLOUR-NAME := RED

If you want to modify attribute values of dialog elements and of the dialog before the dialog is opened
(and displayed to the end user), do not specify this in the "before open" event-handler code, because the
dialog elements and the dialog window are not yet created. Instead, create the dialog with the dialog editor
and set the attribute VISIBLE to FALSE in the Dialog Attributes window. Then modify all the attribute

5

How To Open and Close DialogsClosing Dialogs

values in the after-open event-handler code (when the handles are available). Then make the dialog visible
with VISIBLE = TRUE .

Example:

DEFINE DATA LOCAL
...
 1 #DIA-1 HANDLE OF DIALOG
 1 #OK-BUTTON HANDLE OF PUSHBUTTON
 1 #CALC-BUTTON HANDLE OF PUSHBUTTON
...
END-DEFINE
...
/* AFTER OPEN event-handler code section
...
#OK-BUTTON.FOREGROUND-COLOUR-NAME := RED
#CALC-BUTTON.FOREGROUND-COLOUR-NAME := RED
#DIA-1.VISIBLE := TRUE

6

Initializing Attribute ValuesHow To Open and Close Dialogs

	How To Open and Close Dialogs
	Opening a Dialog
	Operands
	Passing Parameters to the Dialog
	Permanence in Creating, Passing and Checking Data
	Processing Steps When Opening a Dialog
	Closing Dialogs
	
	 operand1

	Initializing Attribute Values

