
Defining and Using Context Menus
This chapter covers the following topics:

Introduction

Construction

Association

Invocation

Manual Invocation

Sharing of Context Menus

Introduction
As from Natural v4.1.1, it is possible to create context menus for use within Natural applications. The
context menus can be completely static (i.e., the menu contents are known in advance and can be built via
the dialog editor) or wholly or partially dynamic (i.e., the menu contents and/or state depend on the
runtime context and are not completely known at design time).

Construction
A context menu is very similar in concept to a submenu. Therefore, the same menu editor is used for
editing a context menu as is used for editing a dialog’s menu bar. Menu items can be added to context
menus, and events associated with them, in exactly the same way as for menu-bar submenus. There are no
functional differences to the menu bar editor, except that the OLE combo box (which is applicable only to
top-level menu-bar submenus) will always be disabled. It should be noted, however, that any accelerators
defined for context menu items will be globally available as long as that menu item exists. Furthermore,
the accelerator will trigger the menu item for which it is defined even if the context menu is not being
displayed or if the focus is on a control using a different context menu or no context menu at all.

The context menu editor may be invoked via either a new menu item, Context menus... on the Dialog
menu, or via its associated accelerator (CTRL+ALT+X by default), or toolbar icon. However, because the
context menu editor can only edit one context menu editor at a time, the context-menu editor is not
invoked directly. Instead, the Dialog Context Menus window is shown, where operations on the context
menu as a whole are made, and from which the menu editor for a given (selected) context menu can be
invoked.

Internally, in order to distinguish between submenus and context menus, context menus have a new type,
CONTEXT MENU. Otherwise, the generated code in both cases is identical. Here is some sample code
illustrating the statements used to build up a simple context menu containing two menu items:

/* CREATE CONTEXT MENU ITSELF:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #CONTEXT-MENU-1
 TYPE = CONTEXTMENU
 PARENT = #DLG$WINDOW
END-PARAMETERS GIVING *ERROR

1

Defining and Using Context Menus Defining and Using Context Menus

/* ADD FIRST MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-1
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the first item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 1’
END-PARAMETERS GIVING *ERROR
/* ADD SECOND MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-2
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the second item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 2’
END-PARAMETERS GIVING *ERROR

Note that if context menus or context-menu items are created dynamically in user-written code, the
context menu or menu items will not be visible to the dialog editor. For example, the dynamically created
menu item will not be visible in the context menu list box, and the dynamically created menu items will
not be visible in the context menu editor.

Association
After creating a context menu, the context menu needs to be associated with a Natural object. Context
menus are supported for almost all controls types capable of receiving the keyboard focus and for the
dialog window itself. The full list includes ActiveX controls, bitmaps, canvasses, edit areas and input
fields, list boxes, push buttons, radio buttons, scroll bars, selection boxes, table controls, toggle buttons,
standard and MDI child windows, and MDI frame windows.

For all object types supporting context menus, the corresponding attribute dialogs in the dialog editor
include a read-only combo box listing all context menus created by the dialog editor, together with an
empty entry. The selection of the empty entry implies that no context menu is to be used for this object,
and is the default.

Internally, the association is achieved by a new attribute, CONTEXT MENU, which should be set to the
handle of a context menu. This attribute can be assigned at or after object creation time, and defaults to
NULL-HANDLE if not specified, indicating the absence of a context menu. For context menus created by
the dialog editor, the context menu is specified at control creation time as illustrated below:

PROCESS GUI ACTION ADD WITH
PARAMETERS
 HANDLE-VARIABLE = #LB-1
 TYPE = LISTBOX
 RECTANGLE-X = 585
 RECTANGLE-Y = 293
 RECTANGLE-W = 142
 RECTANGLE-H = 209
 MULTI-SELECTION = TRUE
 SORTED = FALSE
 PARENT = #DLG$WINDOW
 CONTEXT-MENU = #CONTEXT-MENU-1
 SUPPRESS-FILL-EVENT = SUPPRESSED
END-PARAMETERS GIVING *ERROR

2

AssociationDefining and Using Context Menus

The same syntax can also be used for controls created in user-written event code. In other cases, where the
control was created by the dialog editor but the context menu was not, the context menu attribute must be
assigned to the control after its creation, e.g., in the dialog’s AFTER-OPEN event:

/* CONTEXT MENU SPECIFIED AFTER CREATION:

#LB-2.CONTEXT-MENU := #CONTEXT-MENU-2

Note that a context menu is not destroyed when an object using it is destroyed. Instead, it is destroyed
when its parent object (typically, the dialog for which the context menu was defined) is destroyed.
Similarly, the assignment of a new menu handle to the CONTEXT MENU attribute where one is already
assigned does not result in the previous context menu being destroyed. Thus, using the above examples,
neither of the following statements results in CONTEXT-MENU-1 being destroyed:

PROCESS GUI ACTION DELETE WITH #LB-1 /* #CONTEXT-MENU-1 LIVES ON

#LB-1.CONTEXT-MENU := #CONTEXT-MENU-2 /* SAME HERE

Invocation
The context menu invocation process in Natural is as follows:

1. If the context menu is accessed via the mouse (i.e., secondary mouse button click), the target control
is initially assumed to be the control immediately under the mouse cursor. Otherwise, if the context
menu is accessed via the keyboard (i.e., either via the context menu key, if any, or via the key
combination Shift+F10), the target control is initially assumed to be the control that currently has the
keyboard focus.

2. The control’s click position is set, relative to the target control’s client area. If the context menu is
accessed via the keyboard, the click position is set to (0, 0).

3. A CONTEXT-MENU event is raised for the target control, if not suppressed via the
SUPPRESS-CONTEXT-MENU-EVENT attribute.

4. The target control’s CONTEXT-MENU attribute is queried. Depending on its value and the type of the
target control, the following action is taken:

If the attribute is set to NULL-HANDLE and the target control is a dialog, the context menu
invocation process is aborted, without any context menu having been displayed.

If the attribute is set to NULL-HANDLE and the target control is a dialog element, the target
control is assumed to be the dialog element’s PARENT, and the context menu invocation process
repeats starting with step 2 above.

If the attribute is set to the handle of a context menu, this context menu is taken as being the
context menu that needs to be displayed (i.e., the target context menu), and processing continues
with step 5 below.

5. A BEFORE-OPEN event is raised for the target context menu, if not suppressed.

6. The target context menu’s ENABLED attribute is queried. If it is set to FALSE, the context menu is
not displayed.

3

Defining and Using Context MenusInvocation

7. Otherwise, a COMMAND-STATUS event is raised for the target dialog, if not suppressed. The target
dialog is the dialog containing the target control, if it is a dialog element, or the target control itself, if it is
a dialog.

8. The context menu is displayed at the click position set in step 2 above.

The actual navigation within the context menu and the triggering of the events associated with the menu
items is done by Windows and Natural with no intervention from the application.

Note that the above process continues up through the control hierarchy, starting with the initial target
control, until if finds a dialog or dialog element with a context menu (if any), and then uses that context
menu.

The purpose of the CONTEXT-MENU event is to allow application to select the appropriate context menu
(by modifying the target control’s CONTEXT-MENU attribute) from a number of possible candidates
according to the context. For an example of using multiple context menus, see Working with List View
Controls.

Similarly, the context menu’s BEFORE-OPEN event gives the application the chance to modify the
context menu according to the current program state. For example, menu items could be added or deleted,
or particular menu items grayed or checked. Here is some sample code for the BEFORE-OPEN event:

/* DELETE FIRST MENU ITEM:
PROCESS GUI ACTION DELETE WITH #MITEM-1
/* CHECK SECOND MENU ITEM:
#MITEM-2.CHECKED := CHECKED
/* DISABLE THIRD MENU ITEM:
#MITEM-3.ENABLED := FALSE
/* INSERT NEW MENU ITEM BEFORE #MITEM-3:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-4
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the first item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 3’
 SUCCESSOR = #MITEM-3
END-PARAMETERS GIVING *ERROR

For context menus not created by the dialog editor, the handling of the BEFORE-OPEN event must be
done in the DEFAULT event for the dialog. Note also that if a control or dialog is disabled, no context
menu is displayed, and the BEFORE-OPEN event is also not triggered. The same applies if the context
menu itself is disabled. For example:

#CONTEXT-MENU-1.ENABLED := FALSE /* DISABLE CONTEXT MENU DISPLAY

Note that it is possible to disable the context menu in this way during the BEFORE-OPEN event, allowing
selective disabling of the context menu depending on the mouse cursor position within the control. For
example, it might be desired to only display a context menu if the mouse cursor is over a selected list-box
item. Determining whether this is the case is possible via the use of two PROCESS GUI ACTION calls:

INQ-CLICKPOSITION has been extended to controls other than bitmaps and canvasses to return
the (X, Y) position of the right mouse button click within the control. In addition, these parameters
are now optional, and a new optional parameter has been introduced that is set to TRUE if the context
menu was accessed via the mouse, or FALSE if it was accessed by the keyboard. In the latter case,
the click position is set to (0, 0). All this information is updated immediately prior to the sending of
the BEFORE-OPEN event.

4

InvocationDefining and Using Context Menus

INQ-ITEM-BY-POSITION . This allows translation of the relative co-ordinate returned by
INQ-CLICKPOSITION applied to a list box to the corresponding item.

As an example of the use of these two new actions, consider the situation where we want to detect whether
the cursor was over a selected list-box item when the right mouse button was pressed in order to determine
whether to display a context menu or not. This can be achieved by the following code in the
BEFORE-OPEN event of the associated context menu:

PROCESS GUI ACTION INQ-CLICKPOSITION WITH
 #LB-1 #X-OFFSET #Y-OFFSET
PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
 #LB-1 #X-OFFSET #Y-OFFSET #LBITEM
#MENU = *CONTROL
IF #LBITEM = NULL-HANDLE /* NO ITEM UNDER (MOUSE) CURSOR */
 #MENU.ENABLED := FALSE
ELSE
 IF #LBITEM.SELECTED = FALSE /* ITEM UNDER CURSOR DESELECTED */
 #MENU.ENABLED := FALSE
 ELSE /* ITEM UNDER CURSOR IS SELECTED */
 #MENU.ENABLED := TRUE
 END-IF
END-IF

In some cases, it may be desired to automatically select the item under the mouse cursor if it is not already
selected, clearing any existing selection. For list boxes, it is possible to achieve this by using the new
AUTOSELECT attribute, either directly or via the new Autoselect check box in the List Box Attributes
window in the dialog editor. If this attribute is set to TRUE, Natural will automatically update the selection
before sending the BEFORE-OPEN event, if the context menu was invoked over an unselected list-box
item.

For table controls, any change in the selection must be done via the application itself in the
BEFORE-OPEN event. To make this possible, another new PROCESS GUI ACTION has been
introduced for table controls:

TABLE-INQUIRE-CELL . This returns the cell’s row and column number (starting from 1) for a
relative (X, Y) position within the table. This position can (and would typically be) the position
returned by a previous call to PROCESS GUI ACTION INQ-CLICKPOSITION .

The COMMAND-STATUS event is an alternative location for the application to perform any updating such
as graying and checking of commands (i.e., menu items, tool bar items and signals). If you are already
using this event, you do not need to perform these actions in the BEFORE-OPEN event.

Manual Invocation
In addition to the automatic context menu invocation process described above, it is also possible to invoke
a particular context menu manually at a specific position via the SHOW-CONTEXT-MENU action.

This is primarily intended for (but not restricted to) use with ActiveX controls where the automatic
mechanism is not always applicable. This is because some ActiveX controls, depending on their internal
implementation, do not raise the message used by Natural to trigger the context menu display. In such
cases, if the ActiveX control raises an event when the secondary mouse button is pressed, the context
menu can be manually displayed within the event handler for that event via this action.

5

Defining and Using Context MenusManual Invocation

For example, assuming we wish to display the context menu #CTXMENU-1 for the Microsoft Rich
Textbox ActiveX Control, #OCX-1, we could use the following code in the control’s MouseDown event
handler:

IF #OCX-1.<<PARAMETER-Button>> = 2
 #X := #OCX-1.<<PARAMETER-x>> + 2
 #Y := #OCX-1.<<PARAMETER-y>> + 2
 PROCESS GUI ACTION SHOW-CONTEXT-MENU WITH
 #CTXMENU-1 #OCX-1 #X #Y GIVING *ERROR
END-IF

where the following local data definitions are assumed:

01 #X (I4)
01 #Y (I4)

Note that the above code first checks whether the secondary mouse button was pressed, then invokes a
context menu manually, based on the position passed by the control. The position is, however, first
corrected slightly to account for the fact that the position supplied by the control is relative to the ActiveX
control (which has a 2-pixel sunken border), whereas the position used to display the context menu is
assumed to be relative to the ActiveX control’s container window (which has no border).

Note that some ActiveX controls may return coordinates in units other than pixels, such as twips
(twentieths of a point). The following example shows how to convert co-ordinates (#X, #Y) from twips to
pixels:

#CONTROL := *CONTROL
/* Convert x-coordinate
MULTIPLY #X BY #CONTROL.DPI
DIVIDE #X BY 1440
/* Convert y-coordinate
MULTIPLY #Y BY #CONTROL.DPI
DIVIDE #Y BY 1440

where #CONTROL is defined as HANDLE OF GUI, and #X and #Y are assumed to be of format I4.

The value 1440 is the number of twips per logical inch, whereas the DPI attribute applied to a dialog
element returns the number of pixels per logical inch.

Sharing of Context Menus
It is of course possible to associate the same context menu with more than one object (i.e., control or
dialog). For example:

#LB-1.CONTEXT-MENU := #CTXMENU-1
#LB-2.CONTEXT-MENU := #CTXMENU-1

In such a scenario, we need to be able to determine for which control the context menu was invoked. We
cannot use *CONTROL in the BEFORE-OPEN event, because this will contain the handle of the context
menu itself. Instead, it is necessary to inquire which control has the focus, since Natural automatically
places the focus on the control for which the context menu is being invoked. Here is some sample
BEFORE-OPEN event code illustrating the use of this technique:

6

Sharing of Context MenusDefining and Using Context Menus

PROCESS GUI ACTION GET-FOCUS WITH #CONTROL
DECIDE ON FIRST VALUE OF #CONTROL
 VALUE #LB-1
 #MITEM-17.ENABLED := FALSE
 VALUE #LB-2
 #MITEM-17.CHECKED := CHECKED
 NONE
 IGNORE
END-DECIDE

However, a better approach, which works in all cases, is to query the context menu’s CONTROL attribute
instead:

#CONTROL := *CONTROL
DECIDE ON FIRST VALUE OF #CONTROL.CONTROL
 ...
END-DECIDE

7

Defining and Using Context MenusSharing of Context Menus

	 Defining and Using Context Menus
	Introduction
	Construction
	Association
	Invocation
	Manual Invocation
	Sharing of Context Menus

