
How To Create and Delete Dialog Elements
Dynamically
This chapter covers the following topics:

Introduction

Global Attribute List

Creating Dialog Elements Statically and Dynamically

How to Handle Events of Dynamically Created Dialog Elements

Introduction
Dialog elements are usually added to a dialog by means of the dialog editor. However, they can also be
created and deleted dynamically. This may be done, for example, when the layout of a dialog is strongly
context-sensitive.

A dialog element is created dynamically with the ADD action of the PROCESS GUI statement. This
action returns a handle to the newly created dialog element. As soon as the dialog element is created, this
handle points to a set of attributes specified for the dialog element just created.

Note:
ActiveX controls are created in a slightly different way than the standard way described below. This is
described in Working with ActiveX Controls.

For more information on the actions available, and on the parameters that can be passed, see Executing
Standardized Procedures.

Global Attribute List
By modifying any handle attribute operand of the form handlename.attributename (for example,
#PB-1.STRING), you change an attribute value of the specific dialog element. As long as the dialog
element is not yet created and the handle variable has its initial value (NULL-HANDLE), the handle
attribute operand handlename.attributename refers to the global attribute list.

The global attribute list is a collection of all attributes defined for any dialog element. Natural contains
one such collection. Whenever a dialog element is created, it "inherits" its attributes from this global
attribute list. It does not inherit them when you create the dialog element with the PROCESS GUI
statement action ADD using the WITH PARAMETERS option.

Creating Dialog Elements Statically and Dynamically
To define a dialog element statically (in the dialog editor), with an individual set of attributes, you must
first set the attributes in the global attribute list to the desired values and then create the dialog element.
After creation, the values of the attributes in the global attribute list remain intact. The next created dialog
element gets the same attributes from the global attribute list as the previous one, except those that have

1

How To Create and Delete Dialog Elements Dynamically How To Create and Delete Dialog Elements Dynamically

been modified.

The status of the global attribute list as found in the "after open" event handler is influenced by the dialog
elements defined statically. Therefore, before you start creating dialog elements dynamically in the "after
open" event handler, you should reset the attributes by means of the PROCESS GUI action
RESET-ATTRIBUTES to prevent your dialog elements from inheriting unexpected values from the
global attribute list. If you want to avoid this inheritance problem, use the PROCESS GUI statement
action ADD with the WITH PARAMETERS option.

Unexpected values may also result from having attribute values that mean different things if used by
different types of dialog elements. For example, the value s of the attribute STYLE means "scaled" for the
dialog element type bitmap control but "solid" for the dialog element type line control.

The PROCESS GUI action ADD is used to define a dialog element dynamically. This clause of the
PROCESS GUI statement enables you to specify the attribute values within the statement. The
inheritance of attributes from the global attribute list does not affect the PROCESS GUI statement action
ADD. The attributes specified in the statement are transferred to the global attribute list before the action
ADD is performed.

Note:
When you use the PROCESS GUI statement with Parameter Clause 2 of the ADD action, the global
attribute list is not used or affected. For parameters which are needed to create the dialog element, but
which were not specified in the WITH PARAMETERS section of the PROCESS GUI action ADD
statement, the default value is taken. Apart from these, only the parameters which are passed explicitly in
the parameter list are used to create the dialog element.

To create list-box and selection-box items dynamically, it may be more convenient to use the PROCESS
GUI action ADD-ITEMS. This allows you to insert several items at a time.

Example:

/* #PB-A inherits the current settings of the global attribute list
#PB-A.STRING := ’TEST1’
PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-A
#PB-B.STRING := ’TEST2’
/* #PB-B has the same attributes as #PB-A except STRING. This leads to #PB-B
/* covering #PB-A.
PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-B
COMPUTE #PB-C.RECTANGLE-Y = #PB-B.RECTANGLE-Y + #PB-C.RECTANGLE-H + 20
/* #PB-B has the same attributes as #PB-A except RECTANGLE-Y
/* #PB-C will be located 20 pixels below #PB-B
PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-C

To delete dialog elements dynamically, you use the PROCESS GUI action DELETE. You can also use
this technique to delete dialog elements created with the dialog editor (at design time). You should,
however, avoid using the handle of the deleted dialog element because this is invalid.

Dialog elements often do not have to be created dynamically. In some cases, it is sufficient to make dialog
elements VISIBLE = TRUE and VISIBLE = FALSE , depending on the context. This technique is
more efficient and easier to handle. It also enables you to "insert" dialog elements anywhere in the
navigation sequence.

2

Creating Dialog Elements Statically and DynamicallyHow To Create and Delete Dialog Elements Dynamically

Example:

DEFINE DATA LOCAL
 ...
 1 #PB-1 HANDLE OF PUSHBUTTON
 ...
END-DEFINE
...
#PB-1.VISIBLE := FALSE
...
IF... /* Logical condition
 #PB-1.VISIBLE := TRUE
END-IF

How to Handle Events of Dynamically Created Dialog
Elements
When a dialog element is created dynamically, you cannot use the dialog editor to associate events to it.
Instead, you must handle all events of all dynamically created dialog elements in the DEFAULT event. In
this event, you must filter out which event occurred for which dialog element. The code for this is similar
to the code generated by the dialog editor. The general structure is:

Example:

DECIDE ON FIRST *CONTROL
VALUE #PB-A
 DECIDE ON FIRST *EVENT
 VALUE ’CLICK’
 /* Click event-handler code
 NONE
 IGNORE
 END-DECIDE
VALUE #PB-B
 ...
VALUE #PB-C
 ...
END-DECIDE

In the case of event code for dynamically created ActiveX controls, where event parameters are used, it is
necessary to precede the event code with an OPTIONS 2 statement containing the name of the event,
otherwise the compiler will not be able to process parameter references (e.g.,
#OCX-1.<<PARAMETER-...>>) successfully. However, in contrast to the implicit generation of the
OPTIONS statement by the dialog editor for events for statically created controls, no OPTIONS 3
statement should be coded in this case. Otherwise the dialog editor would falsely interpret the OPTIONS
3 statement as the end marker for the DEFAULT event, resulting in a scanning error on attempting to load
the dialog.

Example:

3

How To Create and Delete Dialog Elements DynamicallyHow to Handle Events of Dynamically Created Dialog Elements

DECIDE ON FIRST *CONTROL
VALUE #OCX-1 /* MS Calendar control
 DECIDE ON FIRST *EVENT
 VALUE ’-602’ /* DispID for KeyDown event
 OPTIONS 2 KeyDown
 /* KeyDown event-handler code containing parameter
 /* access (e.g. #OCX-1.<<parameter-shift>>)
 NONE
 IGNORE
 END-DECIDE
...
END-DECIDE

4

How to Handle Events of Dynamically Created Dialog ElementsHow To Create and Delete Dialog Elements Dynamically

	 How To Create and Delete Dialog Elements Dynamically
	Introduction
	Global Attribute List
	Creating Dialog Elements Statically and Dynamically
	How to Handle Events of Dynamically Created Dialog Elements

